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Foreword

Suppose A is a unital C*-algebra, B(H) is the set of all operators on a Hilbert space H and

n,p: A+~ B(H)are unital *-homomorphisms. We say 7 and p are approximately equivalent,

denoted by 7 ~, p, if there is a net {u,} of unitary operators in B(H) such that

[lun7(a)un — p(a)|]| — O for every a in A.

In [VOI 1], D. Voiculescu proved a very deep theorem that characterizes approximate equiv-
alence for representations when A and H are both separable. Later D. Hadwin ([HAD 2])
showed that Voiculescu’s characterization could be formulated in terms of the “rank” func-
tion; more precisely,

7 ~q p if and only if rank x(a) = rank p(a) for every a in A.

D. Hadwin ([HAD 2]) also proved that the “rank” characterization holds when A or H
is nonseparable.

We will look at a “localized” version of Voiculescu’s theorem where we replace B(H)
with a von Neumann algebra R acting on a separable Hilbert space H. If n,p: A— R
are unital *-homomorphisms, we say that x is approximately equivalent to p in R, denoted

by # ~4 p (R), if there is a net {u,} of unitary operators in R such that

[lunx(a)u, — p(a)|| — O for every a in A.

The role of “rank” will be played by our newly-defined function “R-rank”. If T € B(H),
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vi
then rank T is the Hilbert-space dimension of the closure of the range of T. Hence the
rank of T is a function of the projection onto the closure of the range of T. In B(H) two
projections P, Q have the same rank if and only if there is a partial isometry V in B(H)
such that P =V*V and Q = VV*.

In other words two projections in B(H) have tha same rank if and only if they are
Murray-von Neumann equivalent. This equivalence for projections in a von Neumann al-
gebra is one of the fundamental concepts used in the classification and structure theory for
von Neumann algebras.

We define the “R—rank” of an operator T in the von Neumann R to be the Murray-von
Neumann equivalence class in R of the projection onto the closure of the range of T'.

The main focus of this thesis is trying to determine if the following version of Voiculescu’s
theorem is true:

Problem: 7 ~, p (R) <= R-rank x(a) = R-rank p(a) for every a in A.

This paper is organized as follows.

Chapter 1 introduces the sufficient and necessary condition for two normal operators
A and B in any von Neumann algebra R, that acts on a separable Hilbert space, to be
approximately equivalent with unitaries in the given von Neumann algebra R, that is
R-rank f(A) = R-rank f(B) for every continuous function f. In the first section, we
give the definition of “R—rank” function, then we summarize the definitions and proposi-
tions in the literature, that will be used in our paper. Section §1.2 proves that the condition
is sufficient. In the third section we present some results of direct integrals, which are re-
lated to our work. Next we investigate the properties of R—rank function. We prove that
the set of operators T in R, with property R—rank T < R-rank A for a fixed operator

A in R, is closed under *-strong sequential limits. First we prove the result for factor von
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vii
Neumann algebras of type I, type I, type Iy, type I, and type III. Then we extend
the result to any von Neumann algebra acting on a separable Hilbert space. Finally in this
chapter we finish the proof of the necessity of the condition for approximately equivalent
normal operators in any von Neumann algebra acting on a separable Hilbert space.
In Chapter 2, we classify approximately equivalent unital representations r and p, from
a certain class of C*-algebras to all von Neumann algebra R acting on a separable Hilbert
space, by the “R—rank” function. The conclusion is that = and p are approximately equiv-
elent with unitaries in R if and only if R-rank o # = R—rank o p. In the first section
we prove the necessary condition for the general case: if # and p are unital representations
from any C*-algebra into any von Neumann algebra R acting on a separable Hilbert space,
that are approximately equivalent, then R—rank o # = R—rank o p. In Section §2.2, we
study a class of C*-algebras, we denote it by Q. A C*-algebra A is in Q provided for
every von Neumann algebra S, for all unital representations # and p from A into S, if
S-rank o ¥ = S—rank o p, then x and p are approximately equivalent in S. We prove
that if every von Neumann algebra S is acting on a separable Hilbert space, then C(X) is
contained in Q and that if A is in Q, then M,,(A) is also contained in Q for every n > 1.
We also prove that Q is closed under direct sum, direct limit and quotient map from a C*-
algebra onto the quotient C*-algebra. A more interesting result is that if a C*-algebra A is
in Q, 7 and p are unital representations from A into a von Neumann algebra R acting on a
separable Hilbert space, such that for each a in A there are sequences {A,}32,, {Bn}3%:,
{Cn}%, and {D,}3%, in R all depending on a such that A,x(a)B, convergent to p(a) and

Cnp(a) D, convergent to x(a) *-strongly, then x and p are approximately equivalent in R.
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ABSTRACT
APPROXIMATE EQUIVALENCE IN VON NEUMANN ALGEBRAS
by
Hui-Ru Ding
University of New Hampshire, December, 1993
In this paper we investigate approximate equivalence in von Neumann algebras. We find
a necessary and sufficient condition for two normal operators to be approximately equivalent
in any von Neumann algebra R acting on a separable Hilbert space H with unitaries in
R. For the approximate equivalence of two unital representations from a given C*- algebra
to any von Neumann algebra acting on a separable Hilbert space, we find the necessary
condition for the general case. Finally we investigate an interesting class of C'*-algebras,
closed under direct sum, direct limit and quotient map, which contains C(X) and M, (A),

where A is in Q.
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Chapter 1

Approximately Equivalent Normal
Operators in von Neumann
Algebras

Motivated by D. Voiculescu and D. Hadwin’s works about the approximately unitary equiv-
alence of any two normal operators in an operator algebra B(H), where H is a separable
Hilbert space, we use the “R—rank” function to classify approximately equivalent normal
operators in a von Neumann algebra R acting on a separable Hilbert space.

The main result in this chapter is : For any two normal operators A and B in a von
Neumann algebra R acting on a separable Hilbert space H, A and B are approximately
equivalent with unitaries in R if and only if R—rank f(A) = R-rank f(B) for every con-
tinuous function f.

Throughout this thesis R is a von Neumann algebra, I is the identity operator in the
corresponding algebra and o(A) is the spectrum of operator A. The range and kernal of
an arbitrary function F are denoted by ran F and ker F respectively. Let C be the set of
complex numbers and R be the set of real numbers. By continuous function, we mean a

complex-valued continuous function on the spectrum of the corresponding operator.
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1.1 Preliminaries

Definition 1.1.1 [KAP 1] Two projections E and F are said to be Murray-von Neumann
equivalent in R (written E ~ F (R)), when V*V = E and VV* = F for some partial
isometry V in R. A projection E is weaker than a projection F in R (written E < F (R)),
when E is equivalent to a subprojection of F. When E ~ F (R) or E < F (R), we write

E < F (R).

Definition 1.1.2 Two operators A and B in R are said to be approzimately equivalent in

R (written A ~, B (R)) if there is a sequence {U,}32, of unitaries in R such that

||UnAU,; — B|| — 0 as n — oo.

Definition 1.1.3 For an operator A in R, R—rank A is the Murray-von Neumann equiv-

alence class of the projection Prgm— onto the closure of the range of A. We say

R—-rank A XR—-rank B if and only if Prgr—7 <X Prgrrg (R)-

Example 1.1.4 The following ezamples give equivalent conditions for equality of “R—rank”

function in some von Neumann algebras.

1. If R = B(H), and A and B are in R, then

R-rank A = R—rank B <= dim (ran A) = dim (ran B).

2. IfR is a type I, factor von Neumann algebra, 7 is the central value trace on R, then

R—rank A = R—rank B <= 1(Prgr7) = (P )
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The following definitions and propositions will be used throughout this thesis.

Definition 1.1.5 [ARV 2] A polish space is a topological space which is homeomorphic to

a separable metric space.

Example 1.1.8 The following are examples of some polish spaces.
1. Let N be the set of positive integers endowed with the discrete topology. Then N is a
polish space.
2. A countable direct product of polish spaces is a polish space.

3. A closed subspace of a polish space is a polish space.

Definition 1.1.7 [ARV 2] A subset of a polish space P is called analytic if it has the form

f(Q), where Q is a polish space and f is a continuous map of Q into P.

Definition 1.1.8 [ARV 2] Let X be a separable metric space. A subset E of X is absolutely
measurable if for every o-finite Borel measure u on X, E is y-measurable. (i.e. E = AUB,

#(A) = 0, B is a Borel set).

Definition 1.1.9 [ARV 2] Let X andY be topological spaces, f : X — Y a Borel function.
A Borel cross section for f is a Borel function g : Y — X such that f o g = idy, where

idy is the identity map on Y.

Definition 1.1.10 [KAP 1] A projection E in a von Neumann algebra R is said to be an

abelian projection in R if ERE is abelian.

Definition 1.1.11 [KR 1] The central carrier of an operator A in a von Neumann algebra
R is the projection I — P, where P is the union of all central projections P, in R such that

P,A=0.
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4
Definition 1.1.12 [KR 2] A projection E in a von Neumann algebra R is said to be infinite
(relative to R) when E ~ E, (R) and E, < E for some projection E, in R. Otherwise, E
is said to be finite (relative to R). If E is infinite and PE is either 0 or infinite, for each

central projection P, then E is said to be properly infinite.

Definition 1.1.13 /MN 1] A von Neumann algebra R is said to be a factor if the center

of R consists of scalar multiples of I.

Definition 1.1.14 [KR 2] A von Neumann algebra R is said to be of type I if it has an
abelian projection with central carrier the identity - of type I, if the identity is the sum of
n equivalent abelian projections. If R has no non-zero abelian projections but has a finite
projection with central carrier the identity, then R is said to be of type II - of type II, if
the identity is finite - of type Il if the identity is properly infinite. If R has no non-zero

finite projections, the R is said to be of type I11.

Definition 1.1.15 [KR 2] Let R be a von Neumann algebra with center C and unitary

group U. By a center-valued trace on R we mean a linear mapping 7 : R — C such that:
1. 7(AB) =1(BA) (A,B€e R),
2. r(C)=C (CeC(),
3. 1(A)>0(AeR,A>0).

Definition 1.1.18 [KR 2] A weight on a von Neumann algebra R is a mapping p from

R* (the positive operators in R) into the interval [0, 0] such that:

1. p(A+ B) = p(A) + p(B) (A,B € R*),

2. p(ad) =ap(A) (A€ R*,a20).

A weight p is a tracial weight if, in addition
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3. p(AA*) = p(A*A).
A weight p is normal when there is a family {p, : a € 2} of positive normal functionals

Pa on R such that
4 P(A) = Tacapa(A), for cach A € R*.

A weight p is semifinite when the linear span of ¥, = {A € Ut : p(A) < o0} is weak-
operator dense in R, where Ut is the set of positive unitary operators in R.

A weight p is faithful if p(A) > 0, whenever A€ R and A > 0.

Definition 1.1.17 [KR 2] Let Q be a o-compact, locally compact (Borel measure) space.
Let u be the completion of a Borel measure on Q. Suppose {H,} is a family of separable
Hilbert spaces indezed by the points p of . We say that a separable Hilbert space H is the
direct integral of {H,} over (Q,pu) (written as H = [ H,du(p)) when, to each z in H,

there corresponds a function p — z(p) on Q such that z(p) € Hy for each p and

1. p —< z(p),y(p) > is p-integrable and < z,y >= [, < z(p), y(p) > du(p), where
z,y€ H, < , > is the inner product in the corresponding Hilbert space.

2 Ifu, € H, for all p in Q and p —< up, y(p) > is integrable for each y € H, then
there is a u € H such that u(p) = u, for almost every p.
We say that f{? H,du(p) and p — z(p) are the (direct integral) decompositions of H

and z respectively.

Example 1.1.18 A direct sum of Hilbert spaces is the case of a direct integral decomposition

over a discrete measure space.

Definition 1.1.19 [KR 2] Suppose that H is the direct integral of {H,} over (Q, ), then
an operalor T € B(H) is said to be decomposable when there is a function p — T(p) on

such that T(p) € B(H,) and for each z € H, T(p)(z(p)) = (T(z))(p) for almost every p.
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6
Definition 1.1.20 /KR 2] Suppose that H is the direct integral of Hilbert spaces { H,} over
(Q,1). A representation ¢ of a C*-algebra A on H is said to be decomposable over (R, u)
when there is a representation ¢, of A on Hy such that o(A) is decomposable for each
A € A and o(A)(p) = ¢p(A) almost everywhere. The mapping p — @, is said to be a

decomposition of .

Definition 1.1.21 [KR 2] Let H be the direct integral of Hilbert spaces {H,} over (Q,p).
A von Neumann algebra R on H is said to be decomposable with decomposition p — R,
when R contains a norm-separable strong-operator-dense C*-algebra A for which the identity
representation i is decomposable and such that ip(.A) is strong-operator dense in R, almost

everywhere. In this case we write R = [P Rpdu(p).

Proposition 1.1.22 [KAP 1] Every von Neumann algebra is uniquely a direct sum of

algebras of type I, I}, 11, and I11.

Proposition 1.1.23 [KAP 2] A type I von Neumann algebra R can be decomposed uniquely
into a direct sum of type I, von Neumann algebras R, (n € K ), where K is a family of

mutually distinct cardinal numbers.

Proposition 1.1.24 [KR 2] If R is a type I, factor, where n is finite, then R is -

isomorphic to B(H), where H has dimension n.

Proposition 1.1.25 [KR 2] If R is a finite von Neumann algebra with center C, then there

is a unique positive linear mapping v from R into C such that

1. 7(AB) = 7(BA) (A,B€ R),

2 r(C)=C (C€C).

Moreover, if A€ R and C € C, then
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3. 1(A)>0ifA>0,

4. 7(CA)=C1(A)(C€C,A€ER),

5. |l7(AM < [|A]l, and

6. The mapping 7 is ultraweakly continuous.

Proposition 1.1.28 [KR 2] If R is a factor of type I, or Il, then there is a faithful,

normal, semi-finite, tracial weight p on R.

Proposition 1.1.27 [DIX 5] Every von Neumann algebra is ezpressed as a direct integral
of factors. If R is a von Neumann algebra of type I, I1,, 11, or I11 acting on a separable
Hilbert space H, then the components R, of R in its direct integral decomposition relative

to its center are, almost everywhere, factors of type I,, I, Il or I1I respectively.

Proposition 1.1.28 [SUND 1] Suppose R is @ factor. If E and F are projections in R,

then EXF (R) or F X E (R).

Proposition 1.1.28 [SUND 1] Suppose R is a factor and E and F are infinite projections

inR. Then E~ F (R).
Proposition 1.1.30 [ARV 2] A continuous image of an analytic set is analytic.

Proposition 1.1.31 [ARV 2] Let A be an analytic set in a polish space P. Then A is

u-measurable for every finite Borel measure u on P, i.e. A is absolutely measurable.

Proposition 1.1.32 [ARV 2] Suppose X is analytic and Y is a countably separated Borel
space. Let [ be a Borel map of X onto Y. Then f has an absolutely measurable cross

section.

Corollary 1.1.33 Suppose X and Y are analytic spaces and f is a Borel map of X onto

Y. Then f has an absolutely measurable cross section.
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Proposition 1.1.34 [DUG 1] Suppose Y is a Hausdorff, normal space and E and F be
disjoint closed subsets in Y. Then there is a continuous function f : Y — R such that
flE=0,flr=1and0 < f <1. The function f is called a Uryshon function for E and F.
Moreover a necessary and sufficient condition for the ezistence of a Uryshon function

satisfying E = f~1(0) is that E is a G set.

Proposition 1.1.35 [KR 2] Suppose H is the direct integral of Hilbert spaces {H,} over
(Q,p). If R is a decomposable von Neumann algebra on H and E is a projection in R,

then the following assertions hold almost everywhere:

1. E, is a projection in R,,.
2. IfE~ F (R), then E, ~ F, (R.).

3. If E is abelian in R, then E,, is abelian in R,,.

Proposition 1.1.36 [DIX 5] Let T, = [ Ta(p)du(p) (n = 1,2,--) and T = [ T(p)du(p)

be decomposable operators.

1. If T, SOT T, there ezists a subsequence {T,,} such that T, (p) ot T(p) almost

everywhere,

2. If Tu(p) so1 T(p) almost everywhere, and if sup ,||Ty|| < 0o, then T, oT r.
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1.2 Sufficient Condition

In this section we prove:

Theorem 1.2.1 Let R be a von Neumann algebra acting on a separable Hilbert space H,
and let A and B be two normal operators in R such that R—rank f(A) = R—rank f(B) for

all continuous function f. Then there is a sequence {Un}32, of unitaries in R such that
|UnAU; — B|| — 0 as n — oo.

Throughout this section H is a separable Hilbert space unless specifically noted.

Lemma 1.2.2 Suppose {Pc}}_, and {Qi}}_, are two sets of orthogonal projections in R
both with sum I, where 1 < n < Ro. Furthermore suppose P, ~ Qi (R) for 1 < k < n.

Then there is a unitary U in R such that UP,U® = Qi for 1 < k < n.

Proof: Since Py ~ Qi (R) for 1 < k < n, by Definition 1.1.1 there are partial isometries
Vi in R such that V;Vi = P, ViV? = Qi for 1 < k < n. Define U = E;::]QVI:PI:. It

follows that U is a unitary in R, since

n ® n®
UU=), BViViPe=)_ P =1,
k=1 k=1

n® n ®
vt =Y VRPRVy =Y Q=1
k=1 k=1

and for 1 <k <mn,

UPU" = Vi PV = Qx.
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Lemma 1.2.3 Suppose A is a normal operator in R and f is a continuous function. Then

X( c\{o})ne(4)(A)

rnan A

Pomgay = Xs-1(c\opna(a)(A)-

Proof: Since A is normal, AA* = A*A. Note

ran (A*A) = ran A* = (ker A)*,

ran (AA*) = ran A.

It follows that

ran A4 = (ker A)t.

Now we show that

Prziz = X(c\{o})na(4)(A)-

This is equivalent to showing that

mel = X{O)M(A)(A)’

i.e.

Prer 4 = X{0}no(a)(A). (1.1)
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Equation ( 1.1) is true since ker A is the set of eigenvectors of A corresponding to the

eigenvalue 0, and x{o}no(4)(A) is the projection onto ker A. We have proved that

Peaiz = X( c\{o})no(a)(A)-

Therefore, for any continuous function f,

P = X(eMonnats(an(f(A))

(x( c\{ons(o(a)) © F)(A)

Xf-1( c\{opno(4)(A)-

Lemma 1.2.4 Suppose A and B are two normal operators in R. Suppose that for all

continuous function f, R—rank f(A) = R—rank f(B). Then o(A) = o(B).

Proof: We show o(A) C o(B) via contradiction.

Suppose a € 0(A) and a ¢ o(B).

Since o(A) and o(B) are compact subsets of C, and a € o(A) and a ¢ o(B), therefore
there is an open rectangle E = (¢1,d)) X (¢2,d3) containing a such that ENo(B) = ¢. Note
that C \ E is a G5 set. By Proposition 1.1.34, there is a continuous function f such that
f(a) =1 and f~1(0) = € \ E. Hence f(B) = 0 and [|f(A)]| = sup .eo(a)lf(2)| # 0, e,
f(A) # 0. It follows that

P # 0 and P

Tan J(A) an 7(8) = O
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But by the hypothesis, R—rank f(A) = R—rank f(B), thus

Pran A~ Pen 7(B) (R),

ie. PFEW(T) # 0 & Py 7(B) # 0. This is a contradiction since P 70A) # 0 and

Pran 7 =0
We have proved that o(A) C o(B).

Similarly we can show that o(B) C o(A). Hence o(A) = o(B). D

Lemma 1.2.5 Let A and B be as in the preceding Lemma. Suppose a,b,c and d are real

numbers such that a < b, ¢ < d and E = (a,b) x (¢,d). Then xg(A) ~ xe(B) (R).

Proof: Choose ¢ > 0such that a+¢ < b—eand c+¢ < d—¢. Let F = [a+¢,b—€]x[c+¢,d—¢].
Since F and C \ E are disjoint closed subsets of a metrizable space C, and C\ E is a G;
set, there is a continuous function f such that flr =1, f~}(0)=C\Eand 0< f <1by

Proposition 1.1.34. Applying Lemma 1.2.3 gives

P 74 - Xs-1( c\{o))no(4)(4)
= XEno(4)(4),
Pe7m = Xs-1(c\opno(8)(B)

= XEno(B)(B)-

By the hypothesis, R—rank f(A) = R—rank f(B). Therefore P. ~ P (R),
ran f(4) ~ ‘ran f(B)

i.. XEno(a)(A) ~ XEno(B)(B) (R). By Lemma 1.2.4, 0(A) = o(B), and it follows that

xe(A) ~ xg(B) (R).
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Lemma 1.2.6 Let A, B and E be as in Lemma 1.2.5. Suppose F = (a,b] x (¢, d], and

X{6}x(c.d)(A) = X8} x(c,d)(B) = X(ap)x (d}(4) = X(ap)x (a}(B) = 0,

x{8}x{d}(A4) = X8} x () (B) = 0.

Then xg(A) ~ xr(B) (R).

Proof: Note that

xr(A) = xe(A)® Xy x(c.d)(A) ® X(a.b)x (d}(A) ® x (b} x (a}(A)
= XE(A)’and
xrF(B) = xE(B)® x)x(c.a)(B) ® X(ap)x {a}(B) ® x(s}x (a}(B)
= xe(B).
Lemma 1.2.5 implies that xg(4) ~ xr(B) (R). O

Lemma 1.2.7 Suppose R is a von Neumann algebra acting on H and A and B are normal

operators in R.
Let

E) = {a € R: X{a41i}(A) # 0 and X(a44i}(B) #0, —00 <t < oo}

and

E; = {a € R: X{144i}(A) # 0 and X(144i}(B) #0, —o0 <t < 00},

where i2 = —1. Then E; is at most countable for 1 < j < 2.

Proof: Since {X{a4ti}(A)}aeR is a family of orthogonal projections in B(H) and H is

separable, the set {a € R : x(441i}(A) # 0,—00 < t < 00} is at most countable. This is also
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true for operator B. So E, is at most countable. Similarly, E; is countable. o

Proposition 1.2.8 Suppose A and B are normal operators in a von Neumann algebra R
acting on H such that R—rank f(A) = R—rank f(B) for all continuous function f. Then

for every € > 0, there is a unitary U, in R such that ||U, AU; - B|| < e.

Proof: By Lemma 1.2.4, 0(A) = o(B). Given € > 0, there is a partition {F; ;} of a(A)(=

o(B)) such thatfor 1 <i<nand1<j<m,
L F;= (aisaipa] x (bj, bj41],
. €
2. diam(F; ;) < 3"

By Lemma 1.2.7, we can choose a partition {F;;} such that for 1 < i <nand 1< j<m,

X{a.“}x[b,,b,“](A) = X(oiu)xlb;.b;u](B) =0,

and

X(asaes]x (8,41 3{(4) = X(ai,aes1]x{b,41}(B) = 0.

Soforl1<i<nand1<j<m,
X{ﬂ-‘n}x(b:"’;u)(A) = X{Gu‘n}x(b,,b,u)(B) =0,

X(ai.ai+1)x{bj+g}(A) = X(o.‘.a.'“)x{b,“}(B) =0,
X{aip1}x (8541} (A) = X{aigr}x(8,41}(B) = 0.

By Lemma 1.2.6, xr,,(A) ~ xr,,(B)(R)for1 < i< nand1 <j<m Note that

{xF,,(A)} and {xF,,(B)} are two sets of orthogonal projections in R with sum I respec-
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tively. By Lemma 1.2.2, there is a unitary U, € R such that U.xr, ,(A)U; = xF,,(B) for
1<i<nand1<j<m.

Choose a; ;€ F;jfor1 <i<nand1<j<m,so

€
llz - Y eiixr,(?lle < 7
1<ign, 1<i<m
It follows that
€
A - D aiixr.,(A < 2 and
1<ign, 1<j<m
€
IB- ¥ axs,BI < 3
1<i<n, 1<<m
Therefore
AV - Bl < WWAU;-UL Y aigxr, (ADUN+] 3 aisxm,(B)- B
1<i<n, 1<5<m 1<i<n, 1<j<m
< ¢ + €
2 2

I
o

Now we prove Theorem 1.2.1.
Proof: For every positive integer n, let €, = % Applying Proposition 1.2.8 to see that
there is a unitary Uy in R such that ||U, AU — B|| < 1 for n > 1. Hence there is a sequence

{Un}22, of untaries in R such that ||U,AU; — B|| — 0 as n — oo. 0

Theorem 1.2.9 Suppose R is a type I1I factor and S and T are normal in R. Then

S ~g T (R) <= o(S) = o(T).
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Proof: (=) Suppose § ~, T (R).

There is a sequence of unitaries {u,}32, in R such that

[lunSupy = T|| — 0 as n — oo.

Therefore for every continuous function f,

llunf(S)up = S(TH| — 0 as n — oo.

Hence f(S) # 0 <= f(T) # 0,i.e. Py #0 <= P # 0

Since R is a type II[ factor, it follows that for every continuous function f,

Pram G Prm 1(T) (R),

i.e. R-rank f(S) = R-rank f(T) for all continuous function f. Applying Lemma 1.2.4
gives that o(S) = o(T).

(<=) Suppose o(S) = o(T).

Since

IS(S = sup teo(s)| SO = 8uP teoqm)|S()} = I A(T)II-

Therefore for every continuous function f, f(S) # 0 <= f(T) #0.

Hence
Pm#()‘:}}’anlﬂ')#o
Since R is a type I1] factor, Prgpy 7~ Per ) (R) for every continuous function f.
Applying Theorem 1.2.1 tosee S ~, T (R). O
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1.3 Direct Integrals

In this section we will prove some results about direct integrals.
Throughout this section, R is a von Neumann algebra acting on a separable Hilbert
space H. For cach w € , let R, be the von Neumann algebra acting on the separable

Hilbert space K. Let R = [? R du(w) C L>(u, B(K)).

Definition 1.3.1 Two operators A and B in R are said to be unitarily equivalent in R, if

there is a unitary U in R such that UAU* = B. We denote this by A ~ B (R).

Proposition 1.3.2 Suppose A and B are in R C L>(u, B(K)). Suppose A = [& A, du(w)

and B = [? B,dp(w). Then

A, ~ B, (R,) almost everyw € 2 <> A~ B (R).

Proof: (<) Suppose A ~ B (R).

By Definition 1.3.1, there is a unitary U € R such that UAU* = B. Since we can
decompose U into the direct integral of unitaries in R, write U = fg U.dpu(w), where U,
is a unitary in R, C B(K) almost everywhere. For almost all w € Q, U, is a unitary.
Therefore we may assume U, is a unitary in R,, for every w € Q.

It follows from

B = UAU*

®
/n U AU dp(w)

/n ® Budp(w),

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



18

U,A U = B, almost everywhere. Thus for almost every w € ,

A, ~ B, (R.).

(=) Suppose A, ~ B, (R.) almost everywhere.

Without loss of generality, we may assume that ||A]| < 1 and ||B|| £ 1. (If not replace
A and B by A/max(||A||,]|B||) and B/max(||A|l,||B]|), respectively)

For almost every w € Q, thereis a unitary U, in R, such that U,A, U2 = B,. Neglecting
a set of measure 0, we assume for every w € {0, there is a unitary U, € R, such that
U,AU: = B,,.

Let ¥ = {U € B(K) : U is a unitary} with the *-strong operator topology (write »-
SOT). Let V = {T € B(K) : ||T|| £ 1} with the #-strong operator topology. Since K is
separable, BallB(K) is +-SOT separable and metrizable. Since & and V are *-SOT closed
in BallB(K'), by Definition 1.1.5 and Example 1.1.6,/ and V are polish spaces. Therefore
U x V x V with the product topology is a polish space.

Let

X ={(U,A,B)EU XV xV:UAU" = B).

We show that X is a polish space, for which it suffices to show X is a closed subset of

UxVxV.
Suppose (Uy, Ap, B,) € X for n > 1, and (Uy, Ap, Bn) — (U, A, B) as n — o0, i.e.
v, =T v
A, 38T Aand

»«-SOT
—" Basn— .
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Therefore U, A, and B are in B(K), ||A|| < 1, ||B}| £ 1 and U is a unitary in B(K).

Since

Un AUz * 38T UAU® as n — o0 and

Un AU, = B,
*-59T Basn —s oo.
It follows that U AU* = B. We have proved that X is closed, and hence X is a polish space.
Define

x: X — Vx Vby (U, A, B) = (A, B).

7 is continuous since 7 is a coordinate projection. Thus x(X) is an analytic subset of
V x V by Definition 1.1.7. Since x : X — x(X) is an onto Borel function, it follows from
Corollary 1.1.33 that 7 has an absolutely measurable cross section a : #(X) = X such
that 7 0 a = id,(x)-

Note V is a polish space and hence the Borel structure of V x V equals the product Borel
structure. Define §: Q2 — V x V by f(w) = (A, B.).

Since

>
]

®
/n A,dp(w) and

®
B = / Bodu(w),
a

the maps w — A, and w — B, are u-measurable functions. It follows that 8 is u-

measurable.
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Note (U,, A, B,) € X for every w in 9,
ao ﬂ(“") = O(Aw, Bw) = (Uw» Awa Bw)) and

U, =moaof(w),

where 7, is the first coordinate projection of X. Therefore
m1o0aof:Q+— U defined by 7y 0 a0 f(w) = U,

is a p-measurable function, since 7;, a and  are u- measurable. We have shown that the
mapping w — U, is y-measurable. (m)

Define U = ff? U.dpu(w). So U is a unitary in R and

®
UAU* = /0 Uo AU du(w)

[ Budute)

= B,

ie. A~ B (R). 0

Proposition 1.3.3 Suppose P and Q are projectionsin R. Suppose P = fg’ P,du(w) and

Q = [@Qudpu(w) in L=(u,B(K)). Then
P~Q (R)< P, ~ Q. (R.) almost everywhere.

Proof: Note that P, and Q. are projections in R, C B(K) almost everywhere. Without

loss of generality, we may assume P, and Q,, are projections in R, for each w € Q.
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(=) Applying Proposition 1.1.35 gives that P, ~ Q, (R.) almost everywhere.
(<) Suppose P, ~ Q. (R.) almost everywhere.
There are partial isometries V,, in R, such that V2V, = P, and V,VJ = Q. almost
everywhere. We may assume that for every w € Q there is a partial isometry V,, € R, such
that

V2V, = P, and V,V: = Q..

Let 4 = {V € B(K) : V is a partial isometry} with the *-strong operator topology.
Let V = {T € B(K) : T is a projection} with the *-strong operator topology. Since K is
separable, BallB(K') is *-strong separable and metrizable. Since & and V are *-SOT closed
subsets of BallB(K'), hence U and V are polish spaces. It follows that 2/ x V x V is a polish
space, which is endowed with the product topology.

Let X = {(V,P,QY EU XV XV :V*V =Pand VV* = Q}. Now we prove that X is a
+-SOT closed subset of i x V x V. It will follow that X is a polish space.

Suppose (V,, Pn,@n) € X for every positive integer n, and (Vy, Pr,@s) — (V,P,Q) as

n — o0, i.e.

Vo 2T,
P, *38T P and

Qn +-SOoT Q as n — oo.

Hence P and Q are projections in B(K), and

vev, =287 v*vand

VoV, = P
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*3OT pPasn— .
This follows that V*V = P. Using a similar argument, we can show that VV* = Q. We
have proved that (V, P,Q) € X. Hence X is a +-SOT closed subset of ¥ x V x V.

Define 7 : X — V x V by x(V, P,Q) = (P,Q). The map x is continuous since « is the
coordinate projection. Applying Definition 1.1.7 to see x( X) is an analytic subset of V x V.
Because 7 : X ~— 7(X) is an onto Borel function, applying Corollary 1.1.33 we see that »
has an absolutely measurable cross section a : #(X) — X such that x 0o a = id,(x). Define

B:Q— ¥V xV by f(w)=(P,,Qu). By the hypothesis

w
Il

@
/ P.du(w) and
1]

[ Qudute,

O
]

hence w — P, and w — @, are u- measurable functions. Since V is a polish space, it
follows that the Borel structure of V x V equals the product Borel structure, and therefore

0 is a p-measurable function.

Note (V,,, P.,,Q.) € X for every w in (2,

ao ﬂ(“-’) = a(Puv Qw) = (Vw Puan)’ and

moaof(w)=V,,

where 7, is the first coordinate projection of X. Therefore xy 0o a0 8 : X —— U, defined
by 1, 0ao0 f(w)=V,, is a u-measurable function, since 7;,a and § are y- measurable

functions. We have defined a y-measurable mapping w — V.
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Define V = [@ V_du(w). Since

Vv

@
/n VeV, du(w)

™

P, and

vv*

2]
| vvedut)

[ Qudute)

Q.

V is a partial isometry in R and P ~ Q (R). o

Proposition 1.3.4 Suppose R = fg’ R.du(w). Suppose A and B are normal operators in
R, A= fg’ A,dp(w) and B = f‘? B,du(w). Without loss of generality, we may assume A,
and B, are normal operators in R, for every w € Q). Moreover suppose A ~4 B (R).

Then A, ~4 B, (R.) almost everywhere.

Proof: Since A ~, B (R), there is a sequence {U,}32, of unitaries in R such that

||UnAU, - B|| — 0 as n — oo.

Let U, = [$ Undu(w). Then for every n > 1, U2 is a unitary in R,, almost everywhere.
Let Q, = {w € Q: UD is a unitary in R, } for n > 1. Note that u(2\ Q,) = 0. Let

Qo = N, Ny For every w € No, {U2}32, is a sequence of unitaries in R, and

B2\ Qo) = p(Unzy(2\ 2)) = 0.
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Note that

(<] D
| [ vz Az due) - [T Budu@)l = ess supeallUZALUZ" - Bl

U AU - BY

— 0 asn — o0.

It follows that for almost every w € €,

IUSALUS” — Bull — 0 as n — oo,

i.e. for almost every w € Q,, A, ~4 B, (R.). Hence for almost everyw € Q, A, ~; B, (R,)-

o
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1.4 R-rank Function

In this section, we will investigate some properties of the R-rank function, where the R-rank
function is as in Section 1.1.

Throughout this chapter, R is a von Neumann algebra acting on a Hilbert space H.

Lemma 1.4.1 For every operator T in R, R—rank T = R—rank TT".

Proof: For every operator T, ran T = ran TT*. It follows that Peor = Pz

i.e. R—rank T = R—rank TT". 0

Lemma 1.4.2 For all operators A and B in R,
R—rank AB < R-rank A and R—rank AB <X R—rank B.

Proof: Note that for all operators A and B in R, ran AB = AB(H) C A(H) = ran A,

and hence ran AB C ran A. Thus P75 < Ppa i@ R-rank AB < R-rank A.

Note that (ker AB)* = ran (AB)* = ran B*A* C ran B* = (ker B)*. It follows that

P(ker AB)+ < P(ker B)+- (1.2)

Applying the Polar decomposition, we see that P(l(er B~ Praz5 (R) and P(ker AB)L ™

Pz (R). Hence Prprp X Prazp (R) by (1.2), ..

R-rank AB < R—rank B.

Lemma 1.4.3 IfU is a unitary in R and S € R, then R—rank USU* = R—rank S.
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Proof: Since U is a unitary in R, we have

U*(ran USU®) = U*(USU*(H))

= SU*(H)
= S(H)

= ran S.

It follows that U*(ran USU*) = ran §, i.e. the unitary U*® in R is such that

U*:ran USU*+—ran §.

Let V = U*Pgppsps- Vis a partial isometry in R, and

VeV = PW and VV* = U.Pran USU‘U = P.

ran s°

Therefore P

ran USU* ~ Pran S (R), i.e. 'R-—rank USU. = R—-rank S,

Lemma 1.4.4 Suppose S € R and0< S < I. Then P52 §.

Proof: Since (ran S)* = ker §* = ker S, for all z € (ran S)*,

((Pezzs — §)z,2) = (0,2) = 0.

Since ||S|| < 1, for all z € ran S,

((Pags—-95)2,2) = (z-Sz,2)

(z,z) — (Sz,z)
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v

llIi? = lishi=N?

v

0.

Therefore Przy5— S5 2 0. o

Lemma 1.4.5 Suppose S is a normal operator in R and f is a continuous function with
0< f<1and f(0)=0. Then Pom—rres < Prgis-

ran f(S) =

Proof: Note that f < x ¢\(o) for every continuous function f with0 < f < 1and f(0) = 0,

and hence
f(8) £ x e\ {o)(S)-
It follows that ran f(S) C ran x ¢c\{0} = ran S, which implies the result. Q

Lemma 1.4.8 Suppose S is a normal operator in R. Then

Prpes = sup{g(5): 0 < g £ 1, g(0) = 0 and g is continuous}.

Proof: Applying the preceding Lemma to see that g(S) < Pry for every continuous
function g with 0 < g <1 and g(0) = 0.
Note that there is an increasing sequence {g,} of continuous functions convergent to

X( ¢\{0})ne(s)- For instance we can choose g, to be

0 ifz=0
g(z)=4 1 if|2] > 1

linear if 0 < |z]< L.
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So

WOT
9n(5) == x( c\(opre(s)(S) = P as n — oo,

i.e. Pozps <sup{g(5):0<g<1, g(0)=0and g is continuous}.

This proves that

Pars= sup{g(S):0< g <1, g(0) =0 and g is continuous}.

Lemma 1.4.7 Suppose T is the unique positive center-valued trace on the factor von Neu-
mann algebra R of type I, with n finite or type II, and E and F are projections in R.

Then

E~F(R) & 7(E)=71(F)and

E<F < Tt(E)<Tt(F).

Proof: (=>)Suppose E ~ F (R).
By Definition 1.1.1, there is a partial isometry V in R such that V*V = Eand VV* = F.

Therefore

T(E)=7(V*V)=1(VV*) = 1(F).

(<) Suppose 7(E) = 7(F).
Proposition 1.1.28 implies that either £ X F (R) or F X E (R). Without loss of

generality, we asume E < F (R). We will prove E ~ F (R) via contradiction.
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Assume E < F (R). By Definition 1.1.1, there is a projection F, in R such that

E~F,<F(R).

Since 7 is the center-valued trace, 7(F,) < 7(F), it follows that r(E) = 7(F,) < 7(F), a
contradiction. Therefore E ~ F (R).

Similarly we can show E < F <= 7(E) < 7(F). o

Lemma 1.4.8 Suppose p is the faithful, normal, semifinite tracial weight on the factor von

Neumann algebra R of type I, or type Il,. Then

E~F <= p(E)=p(F)and

E<F <= p(E)<p(F).

Proof: Use a similar argument to that in the preceding Lemma. o
Suppose A is in R. We define £ = {T € R: R—rank T < R-rank A}.

Now we prove € is closed under *-strong sequential limits.

Theorem 1.4.9 If R is acling on a separable Hilbert space, then £ is closed under *-strong

sequential limits.
First we prove Theorem 1.4.9 for factor von Neumann algebras acting on any Hilbert space.

Proposition 1.4.10 If R is a factor von Neumann algebra of type I, (where n is finite)

or type I1,, then £ is closed under *-strong sequential limits.

Proof: Since R is a factor von Neumann algebra of type I,, (with n finite) or type I}, R
is a finite von Neumann algebra. Proposition 1.1.25 implies that there is a unique central

value trace 7 and that 7 is weak operator topology continuous.
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Suppose {Tm}P_, C £ and Ty "7 T as m — oo. Hence TnTs “=3T TT* as

m — oo and {||TnT[|}35=, is bounded. Let sup 5, ||TmTrn|l = M and let D(0, M) be

the closed disk centered at the orign with radius M. Then for every continuous function
f:D(0, M) — C,

S(TnTs) =28 f(TT*) as m — o0. (1.3)

Applying Lemma 1.4.1 and Lemma 1.4.6, we see that for every m > 1,

Pr—e—sre = P

ran T ran TmTy,

= sup { g(TmTy):0< g <1,9(0)= 0 and g is continuous }.

Since {Tm}%., C &, R-rank T\,T, = R—rank T;, < R—rank A for every m > 1. Thus

™(Pamr7s) < 7(Pmg -) for every m > 1. Therefore for every continuous function g with

0<g<1andg(0)=0,

T(9(TmT5)) < 7(F;

ran T...T—,:,) < 7(F;

=na) for every m > 1. (1.4)

Since for every continuous function g, 7(g(TmTn)) — 7(9(TT*)) as m — oo, therefore

by ( 1.4), for every continuous function g with 0 < g <1 and g(0) = 0,

7(9(TT*)) £ 7(Przm=)-

Note that

7(Pypr=) = sup {7(9(TT*)): 0 < g < 1,9(0) = 0 and g is continuous }.
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Thus

(Panrr) < "(Pmna)-

< P

It follows that P =

ran TT* —

=i (R),i.e. R—rank TT* < R-rank A.
By Lemma 1.4.1, R—rank T = R—rank TT* < R—rank A. We have proved that T € €.

This shows that £ is closed under *-strong sequential limits. Q

Proposition 1.4.11 If R is a factor von Neumann algebra of type I, or Il, then £ is

closed under *-strong sequential limits.

Proof: Since R is a factor von Neumann algebra of type I or I, Proposition 1.1.26
implies that there is a faithful, normal, semifinite, tracial weight p on R such that p =
S a€n Pas Where p, is a positive normal functional. Hence p, is weak operator topology
continuous.

Suppose {T,}2,C€and T, *39TT as n — oo.

Hence T, T}, *SOT 7T+ as n — 00 and {||T,T;||}2, is bounded. Let sup w1 1T Toll =
M. Let D(0, M) be the closed disk centered at the origin with radius M. For every

continuous function f: D(0, M) — C, f(T,T;) ~5oT f(TT*) as n — oo.

By Lemma 1.4.6 and 1.4.8, for every continuous function f with0 < f < 1and f(0) = 0,

p(Pm) 2 p(f(TuTy))

Since R-rank T,, = R—rank T,,T; X R—rank A, and

PUA(TT3)) = Y. palS(TuT3)),

134
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it follows that for every finite subset €, of 2 and for every n > 1,

P(Panz) 2 A Parrs)
> p(f(T.Ty))
> Y A(TaTY)).

kefl,

Since for every finite subset {, of €,

Y Af(TaT3)) — 3 Ar(S(TT")) a5 n — oo,

k€N k€fle

it follows that for every finite subset Q, of 2.

P(Pziz) 2 2 p(S(TT")).
k€N,

Therefore
p(Pez) 2 sup { X pu(f(TT")) : Q is finite }.
ke,
Hence p(Pezsz) 2 ToeaPal(f(TT*)) = p(f(TT*)) for every continuous function f with

0< f<1and f(0) = 0. By Lemma 1.4.1 and 1.4.6,

P,

fanT = b

7+ = sup {f(TT*):0 < f <1, f(0)= 0 and f is continuous }.

Thus p(Pz5) 2 p(Pzp7), i-e. R—rank T X R—rank A. This proves that T € £, and

therefore £ is closed under *-strong sequential limits. (]

Proposition 1.4.12 If R is a factor von Neumann algebra of type I11, then £ is closed

under x-strong sequential limits.
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Proof: Suppose {T,}22, C € and Ty, "=37T as n — oc.
In the case 4 = 0, note that R—rank 7,, < R—rank A for all n > 1, therefore T,, = 0
for all n > 1. Hence T = 0. It follows that R—rank T = R—rank A.
If A # 0, note that any two infinite projections in a factor von Neumann algebra are
Murray-von Neumann equivalent by Proposition 1.1.29. Therefore

= R-rank A ifT#0
R-rank T

< R-rank A ifT=0

We have proved T € £. Therefore £ is closed under *- strong sequential limits. 0
Next we prove Theorem 1.4.9 for type I, (n is finite), I, I}, 1 or I1] von Neumann

algebras acting on a separable Hilbert space.

Lemma 1.4.13 Suppose H = [@ H du(w) C L*(p,K), where K is a separable Hilbert
space and R = [@Rudu(w) C L®(p,B(K)). Suppose A = [§ A(w)dp(w) and T =

J® T(w)dp(w) in R. Then

R--rank T < R—rank A <> R,—rank T(w) <X R,—rank A(w) almost everywhere.

Proof: (=) Suppose R—rank T X R —rank A.

There is a projection P in R such that

Poir~ P < Pz (R). (15)

Let P = [? P(w)du(w). P(w) is a projection in R, and P(w) < Pm almost ev-

erywhere. Without loss of generality, we assume that P(w) is a projection in R, and
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that P(w) < P;

Fan Al for every w in Q. By Proposition 1.1.35 and ( 1.5 ), F;

an T(w)
P(w) (R,) almost everywhere. We assume this is true for every w in 2. Therefore for every
win Q,

Panroy ™ P(w) (Ro) < Pz A(@)

This proves that R,—rank T(w) < R,—rank A(w) almost everywhere.
(¢<=) Suppose R, —rank T(w) < R,—rank A(w) almost everywhere.

For almost every w in §, there is a projection P(w) in R, such that

P

m"' P(w) (Rw) S Pl‘

an A(w)’ (16)

Without loss of generality, we assume this is valid for every w in . Therefore by ( 1.6 ), and
by similar argument to that in Proposition 1.3.3, there is a projection P = fg’ P(w)dp(w)
in R such that

®
Paar~P(R)< Prm=/ﬂ Pty (W), (1.7)

i.e. R—rank T < R-rank A. Q

Lemma 1.4.14 Suppose R and R are von Neumann algebras on Hilbert spaces H and K
respectively. Suppose u: H — K is a unitary such that uRu* = R. Suppose S and T are

normal operators in R. Then
R-rank S < R—rank T <=> R—rank uSu® < R—-rank uTu".

Proof: (=) Suppose R—rank § X R —rank T.
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There is a partial isometry V in R and a closed subspace M of H such that

V:ran § — M Cran T is an isometry.

Therefore

uVu® : ran uSu®* — uMu® C ran uTu* is an isometry,

i.e. Paposer ~ Puus (R) < Pgpores
Hence R~rank uSu®* = R-rank PW < R-rank uTu*.
(<=) Suppose R—rank uSu* < R—rank uT'u".

There is a partial isometry W in R and a closed subspace M of K such that

uWu® : ran uSu®* — M C ran uTu® is an isometry .

Hence

uWu*:uran S u* — M Curan T u° is an isometry.

It follows that

W :ran § — u"Mu Cran T is an isometry ,

i.e. R—rank § = R—rank Pyepqy < R—rank T. (]

—

Proposition 1.4.15 Let H be a separable Hilbert space. Suppose R is a type I, von Neu-
mann algebra acting on H, where n is finite. Then £ is closed under %-strong sequential
limits.

Proof: Suppose {Trn}%_, C € and T, *39T T as m — 0. Suppose R is a type I, von

Neumann algebra acting on a separable Hilbert space H.
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Let C be the center of R. There is a (locally compact, complete separable metric)
measure space (X,u) such that H is (unitarily equivalent to) the direct integral of Hilbert
spaces { Hp} over (X,u), and R is (unitarily equivalent to) the direct integral of type I,
factors almost everywhere relative to C. ([DIX 5])
Note that there is a separable Hilbert space K and a family {vp},ex of unitary transfor-
mations such that v, maps H, into K, p— v,z(p) is measurable for each z in f?ﬁ Hypdu(p),
and p — v, Apv; is measurable for each A in R ([DIX 5]). Thus I3 v Hpdu(p) = L¥(u, K).

Hence there is a unitary u : H +— [ v, H,du(p) C L?(p, K) such that

®
uRu* = /X 'dell(P) c Loo("’ B(K))i

where {R,},ex is a family of type I, factors on the separable Hilbert space K almost

everywhere. Since T, *SO0T T asm —s 00, it follows that uT,, u® *=SOT uTu* as m — oo.
Let
@
uTnw = [ Tu(p)du(p),
®
uTu* = ./x T(p)du(p) and
N D
udw = [ AGdu(p).
Note that

ulu* SOT uTu* as m — oo.

Proposition 1.1.36 implies that there is a subsequence {T,,,} such that for almost every p
in X,

T, (p) 225 T(p) 2s k — oo
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Note that

ul, u*)" o7 uTu®)* as k — oo.
k

By Proposition 1.1.36 again, there is a subsequence {Tm‘, } such that for almost every p in

X,

« SOT

T, (p)* = T(p)" as j — oo.

Therefore there is a subsequence {Tm,‘,} such that for almost every p in X,
«-SOT .
Tny, (P) "—" T(p) as j — oo. (1.8)

Without loss of generality, we assume R, is a type I, factor and ( 1.8 ) is true for every p
in X. Since {T,,.,‘,} C £, R—-rank T,,.,, < R-rank A for every j > 1. By Lemma 1.4.14,
for every j 2> 1,

uRu*—rank uT,,.,,, u* < uRu*—rank uAdu®.

By Lemma 1.4.13, for every j > 1 and for almost every p in X,
Rp,—rank T,,.,’ (p) 2 Rp—rank A(p).
Proposition 1.4.10 and ( 1.8 ) imply that for almost every p in X,
Rp—rank T(p) X R,—rank A(p).
By Lemma 1.4.13, uRu®*—rank uTu* < uRu*—rank uAu®*. Lemma 1.4.14 implies that

R-rank T < R-rank A.
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We have proved T € £. Hence £ is closed under -strong sequential limits. o

Proposition 1.4.18 Suppose R is a type I, ( or II;, 11y, 11I) von Neumann algebra

acting on a separable Hilbert space. Then £ is closed under +-strong sequential limits.

Proof: Use an analogous proof to that of the preceding Proposition. o
Now we prove some results about direct sums.

Lemma 1.4.17 Suppose R = 3-8 R,. Suppose {T,}32, CR and T, *39T T. Suppose

To = T8 Ta(a) for everyn > 1 and T = Y-8, T(a). Then for every a in Q,

Tn(a) *3QT T(a) as n — oo.

Proof: Let H = T8, Ha, where R, C B(H.,).

For a fixed o, € §Q and for every z € H,,, let y = }:;"Gn y(a), where

z ifa=a,
y(a) =
0 ifa#a..

. SOT
Since T, — T as n — 00,

[(Tn(@e) = T(ao))z|| = [(Tn — T)yll — 0 as n — oo.

This proves that T,(a,) ot T(a,) as n — o0o. Therefore T,(a) ot T(a) as n — oo for

every a in Q.

Similarly we can prove that for every a in Q, T,(a)* o1 T(a)* as n — oo.

Hence for every a in ©, Ta(a) =37 T(a) as n — co. 0

Lemma 1.4.18 Suppose R and R, are von Neumann algebras such that R = Z?ex Ra,
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where K is an indez set. Let E and F be projections in R, and E, and F,, be projections

in Ry, for n € K, such that E = Y8, E, and F = 84 F,,. Then
En ~ F, (Ry) for everyn € K <= E ~ F (R).

Proof: (=) Suppose E,, ~ F,, (R,) for every n € K.
By Definition 1.1.1, there are partial isometries V, € R, such that V'V, = E,, and
VoaVie = F, for every n € K. Define V = E?GK Va. Then V is a partial isometry in R.

Since

viv = (P va)

neK nekK

= Y %vv
neK

= Y%

neK
= FE, and

v = (%%

neK nekK

= Y%
nekK

= Y%k

neK
= F,

it follows that E ~ F (R).
(<) Suppose E ~ F (R).
By Definition 1.1.1, there is a partial isometry V in R such that V*V = Eand VV* = F.

Decompose V into the direct sum of partial isometries in Ry, (n € K), say V = .8 1 V,,,
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where V,, is a partial isometry in R, for n € K. Since

vy o= (L Va)

nekK nekK

= Y%
neK

= F

= EwEnv

neK

it follows that VrV,, = E, for n € K. Similarly we can show that V,,V;r = F,, for n € K.

By Definition 1.1.1 again, E, ~ F,, (R,) forn € K. (]

Lemma 1.4.19 Suppose R and {R,}acq are as in Lemma 1.4.17. Suppose A and T are

in R such that T = Zg’en To and A = E?en Aqo. Then
R-rank T < R—rank A <> Ro-rank T, < R,—rank A, for every a € 2.

Proof: (=) Suppose R—rank T X R—rank A.

There is a projection P in R such that

Let P = zgen P,. For every a in R, P, is a projection in R, and

Po < Pegiz- (1.10)
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By Lemma 1.4.18 and ( 1.9 ), for every a in 2,

P~ Pa (Ra). (1.11)

By ( 1.10 ) and ( 1.11 ), Ro—rank T, X R,—rank A, for every a in (2.
(<) Suppose R, ~rank T, < R,-rank A, for every a in Q.
For every a in §, there is a projection P, in R, such that

P.

ran 7Ta (1.12)

~ Py (Ra) < P

an Aa’

Let P = Y8 P,.

By (1.12), P < P,

< Pz By Lemma 1.4.18 and ( 1.12), Pz ~ P(R). Hence

P 2 Pan (R),i.e. R—rank T < R-rank A. (w]

Finally we prove Theorem 1.4.9.

Proof: By Proposition 1.1.22, R is the direct sum of type I, type I'l;, type Il and
type 111 von Neumann algebras. Write R =R ® Ry, ® Ri1, ® Rin1.

By Propostion 1.1.23, R is the direct sum of type I,, von Neumann algebras, write
R = Z:?e,\f R1,, where K is a family of mutually distinct cardinal numbers.

Suppose {Tm}%-; C € and T, *=SOT T as m — 0o0. Hence R-rank T < R-rank A

for every m > 1. Write

®

T = Z Thh g TIh @ T!= @ TI for every m > 1,
neK
5]
A = Z A"‘ @A’Il @A’I“’ EBAI,I,
neK
¢:)
T = Z T"' ® T”l ® T”oo ) TIII.
nekK
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By Lemma 1.4.19,

R, —rank T/ R;,-rank A for every n € K,

1A

1A

R 11, —rank T,{," R, —rank Alh ,

Ry1,, —rank Thle Ri1,,—rank All=,

A

Ry11—rank T,{." Ryri—rank Al

1A

Since Ty "=28T T as m — o0, Lemma 1.4.17 implies that

Thn *39T Tl for every n € K,
T!h *=SQT pih,
T'f.l@ +-SOT T,

TH! *39T T a5 m — oo

Hence by Propositions 1.4.15, Proposition 1.4.16 and ( 1.13 ) - ( 1.20 ),

R},—rank Tl < Ry -rank Al for every n € K,

R 11, —rank T

1A

R 1, -rank Al

11 11
Ri1, —rank T Ri1,,—rank A%,

IA

Ri1—rank T < Ryy-rank AT,

42

(1.13)
(1.14)
(1.15)

(1.16)

(1.17)
(1.18)
(1.19)

(1.20)

Therefore an application of Lemma 1.4.19 shows that R—rank T X R-rank 4, ie. £ is

closed under *-strong sequential limits.

o

Actually, we have proved that the R—rank function is sequentially lower-semicontinuous
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in the #-strong operator topology in the following sense.

Definition 1.4.20 Suppose X is a topological space and (Y, <) is a partial ordered set. We
say that  : X — (Y, <) is sequentially lower-semicontinuous if for every element a inY,

the inverse image of {y € Y : y < a} under ¢ is sequentially closed in X .

Lemma 1.4.21 LetY = {R—rankT :T € R }. Then “<” is a partial order in Y.

Proof: It’s obvious since Murray-von Neumann equivalence is an equivalence relation. O

Theorem 1.4.22 Let X = R with »-strong operator topology, where R is a von Neumann
algebra acting on a separable Hilbert space. Let Y = {R—rankT :T € R } with partial

order “<”. Then R—rank : R — Y is sequentially lower-semicontinuous.

Proof: Suppose A € R and a = R—rank A in Y. Suppose {To}32, C F, where F is the

inverse image of {y € Y : y < a} under R—rank function, and T, *OT T as n — o0.

Since {T,}3%, C F, therefore R—rank T, < a = R—rank A for n > 1. Since T,, 50T
T as n — oo, Theorem 1.4.9 implies that R—rank T < R-rank A, i.e. T € 7. We have

proved that F is closed in X under R—rank function. Hence R—rank function is *-strong

sequentially lower-semicontinuous. a
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1.5 Necessary Condition

In this last section, we prove a necessary condition for two normal operators in a von
Neumann algebra acting on a separable Hilbert space to be approximately equivalent in the

algebra.

Theorem 1.5.1 Suppose A and B are normal operators in a von Neumann algebra R
acting on a separable Hilbert space H. If A ~4 B (R), then R—rank f(A) = R—rank f(B)

Jor all continuous function f.

Proof: Since A ~, B (R), there is a sequence {u,}32, of unitaries in R such that

|lun Auy, ~ Bj| — 0 as n — oo.

Hence for every continuous function f,

lunf(A)u; - f(B)|| — 0 as n — oo.

Therefore

u, f(A)u;, *239T £(B) as n — oo.

n

Note that

R-—rank u, f(A)u, = R—rank f(A) for every n > 1.

Applying Theorem 1.4.9 gives that

R-rank f(B) < R-rank f(A). (1.21)
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Similarly, since

ulf(B)un "57 f(A) as n — oo,

it follows that

R-rank f(B) < R-rank f(A). (1.22)

By ( 1.21 ) and ( 1.22 ), for all continuous function f,

R-rank f(A) = R-rank f(B).
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Chapter 2

Approximately Equivalent
Representations in von Neumann

Algebras

In this chapter, we classify two unital representations # and p from a C*-algebra A to a
von Neumann algebra R acting on a separable Hilbert space H by the R—rank function,
where the R—~rank function is as before.

We start by giving some definitions.

Definition 2.0.1 Suppose 7,p: A —— R are unital representations. If for every element

a € A, R—rank n(a) = R—rank p(a), then we say R—ranko * = R—rank o p.

Definition 2.0.2 We say that two representations x,p : A — R are approzimately

equivalent in R (written ® ~4 p (R)) if there is a net {Ua}o of unitaries in R such that
IUam(a)Ug — p(a)|| — O for every a € A.

Throughout this chapter A is a C*-algebra, C(X) is the set of complex-valued continuous

functions defined on the compact Hausdorff space X and Bor(X) is the set of complex-

46
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valued bounded Borel functions defined on X. The set of n X n matrices with entries in A

is denoted by M,(A).
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2.1 Necessary Condition

Throughout this section R is a von Neumann algebra acting on a separable Hilbert space.

Theorem 2.1.1 Suppose x,p : A — R are unital representations. If x ~, p (R), then

R—-ranko * = R—rank o p.

Proof: Since ®* ~4 p (R), there is a net {uy}, of unitaries in R such that for every a in A,

leax(a)ug - p(a)ll — O.

Thus for a fixed a in A, there is a sequence {u,}3%; C {uq}a such that

llunn(a)uy, — p(a)l| — 0 as n — oo.

Therefore
lunx(a)x(a)*uy — p(a)p(a)’|| — 0 as n — oo.
Since 7(a)r(a)* and p(a)p(a)* are normal in R, an application of Theorem 1.5.1 shows

that R-rank r(a)x(a)* = R-rank p(a)p(a)*. By Lemma 1.4.1,

R-rank x(a)

R-rank r(a)r(a)*,

R-rank p(a) = R-rank p(a)p(a)’.

Hence R—rank 7(a) = R—rank p(a) for every a in A. Thus R-rank o x = R—rank o p.

a

Theorem 2.1.2 Suppose x,p: A+— R are unital representations. Suppose that for each a

in A there are sequences {Ap}3%y, {Bn}32, {Cn}2, and {D,}32, in R all depending on a
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such that A,7(a)B, *+-5qT p(a) and Cpp(a)Dy, "— " x(a) asn — o0o. Then R—rank ox =

R —rank op.

Proof: Lemma 1.4.2 implies that for every n > 1,

R-rank A,7(a)B, < R-rank A,x(a) X R-rank x(a),

R—rank Cpp(a)D,, < R-rank C,p(a) X R-rank p(a).

Since A,7(a)B, "3 p(a) as n —s 0o, Theorem 1.4.9 and ( 2.1 ) imply that

R-rank p(a) <X R—rank 7(a).

Since C,p(a)D, = 59T 7(a) as n — oo, Theorem 1.4.9 and ( 2.2 ) imply that

R-rank 7(a) < R-rank p(a).

By (2.3 ) and ( 2.4 ), R—rank x(a) = R—rank p(a) for every a in A, i.e.

R-rankox = R—rank o p.
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2.2 Sufficient Condition

In this section, we study a class Q of well-behaved C*-algebras. A C*-algebra A is in Q
provided for every von Neumann algebra S and for all unital representations x and p from
Ainto S, if S—rank or = S—rank op, then x ~, p (S).

First we prove that Q contains C(X).
Theorem 2.2.1 If every von Neumann algebra S is acting on a separable Hilbert space,

then C(X) is contained in Q.

Lemma 2.2.2 [MUR 1] Suppose x,p : C(X)— R are unital representations. Then there

are unital representations ,p : Bor(X) — R such that %|c(x) = * and plc(x) = p-

Lemma 2.2.3 Suppose F = {fi, f2,- -, Jn} 18 a subset of C(X). Let C*(fi, f2,-- -, fa) be
the C*-algebra generated by . Then C*(fi, f2,+ -, fn) i8 *- isomorphic to C(Y), where Y
is a closed bounded subset of C(®) = R(37),

Proof: Let M(C*(f1, f2,-"+, fa)) be the maximal ideal space of C*(fi, f2,- -, fn), i-€.
M(C*(f1, f2r - fa)) = {a| a : C*(fr, fa,++ s fn) — C is a #-homomorphism, a(1) = 1}.
Since C*(f1,f2,- -+, fa) is a commutative C*-algebra, it is isometric, *-isomorphic to
C(M(C*(f1, f2,: -, fa))), the set of continuous functions defined on M(C*(f1, f2,°-*, fn))-

Define

& : M(C* (1, far+ -+ fa)) — €™ by &(a) = (a(f1),a(f2),- - - a(fa))-

Since a € M(C*(f1, f2,***, fn)), it follows that a € M(C*(f;)) for 1 < i < n, and therefore

a(f;) € a(fi), since

a(f) = {a(fi):a e M(C*(f))}-
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We have proved

M(C*(fis far- - S C T o(f).

1<i<n
Let Y = ®(M(C*(f1, fas -+ fn)))-
Now we prove that & is a homeomorphism.
Since a one-one, continuous map from a compact space onto a Hausdorff space is a
homeomorphism ((WILD 1)), M(C*(f1, f2,- - -, fn)) is compact and Y is Hausdorff, it is
sufficient to show that ® is one-one and continuous. This is proved next.

Suppose d’(a) = é(ﬂ)a aoﬂ € M(C.(fl’fﬁ’ Y fn))’ ie.

(a(fl)aa(f2)v v '1a(fn)) = (ﬂ(fl)»ﬂ(f?)’ vt ',ﬂ(fn))'

Therefore a(f;) = 8(f:;) for 1 < i < n, and it follows that

a(f) = ﬂ(f) for every f € C.(fhf2y Y fn)’

i.e. a = . We have proved that ® is one-one.

Suppose a,, — a as m — oo in M(C*(f1, f2,* : *, fa)) (with the weak®-topology).
Hence a,,(f) — a(f) as m — oo for every f € C*(f1, f2,* -+ fn). Therefore a,,(f;) —
a(f;) as m — oo, for 1 < i < n. So ®(ay,,) — ®(a) in €™ as m — oco. This proves
that ¢ is continuous.

Hence ¢ is a homeomorphism.

Suppose Y is compact. Since M(C*(f1, f2, -+, fn)) is compact and Hausdorff, Y is
compact and Hausdorff and ® : M(C*(f;, f2,+*, fn)) — Y is a homeomorphism, it follows

that C(M(C*(fi, f2,- - *» fa))) is »-isomorphic to C(Y) ([KR 1}). Since C*(fi, f2," s fa)
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is isometric, »-isomorphic to C(M(C*(f1, f2,: -+, fn))) , it follows that C*(fi, fa,-- -, fn) is
x-isomorphic to C(Y').

It remains to show that Y is compact.

Note that @ is continuous and M(C*(f1, f2,:- -, fu)) is compact. Hence

Y = ®(M(C*(h, fa,- -+ fn))) is compact.

Note that [] 1<i<n 0(/fi) is Hausdorff and Y is a compact subset of [ 1<icn o(fi), Y is
closed.

We have completed the proof. a

Lemma 2.2.4 Suppose x,p: C(Y) — R are unital representations, where Y is a compact
subset of C (") = R(2") and R is a von Neumann algebra acting on a separable Hilbert space
H. %, p are extensions of =,p to Bor(Y) respectively. Suppose R—rank o # = R—rank o p.

Then #(xg) ~ p(xg) (R), where E =[] 1<i<an (aisbi), ai,b; are real numbers.

Proof: For E =[] 1¢i<2n (ai,bi), there is a € > 0 such that a; + € < bi —efor1<i<2n.

Let F =[] 1cicon [ai+€,bi—¢]. Then F is closed in R(") and FN(Y\E) = ¢. Since Y
is a compact, Hausdorff space, Urysohn’s lemma implies that there is a continuous function
[ such that fl[r =1, fly\g =0and 0 < f < 1. Since Y \ E is a G set, Proposition 1.1.34
implies that we can choose f such that f is continuous, f|r =1,0< f <1 and f~1(0) =

Y \ E. Lemma 1.2.3 implies that for every continuous function f,

o] p— P
“ran =(f)) — “ran #(§)
= xc\(o)(*(f))

= #(xc\oyo/f)
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= #*(xe)

Pl'an I Pran 8(f)
= xc\{o)(A()))
= Axc\oy°/f)
= p(xE)-

Since R—rank or = R—rank op by the hypothesis, P et P >0 (R).

This establishes that #(xg) ~ p(xE) (R). a

Lemma 2.2.5 Let7,p, E,C(Y)and R be as in the preceding Lemma. Let F =[] 1<ican (ai, b),
Fi =1 1cick~1 (@irbi) x {0k} X [1 r41cican (8isi) for1 < k < 2n and F' =11 1cican {bi}-

Suppose #(x£,) =h(xr,) = 0 for 1 < k < 2n and #(x) = H(xp+) = 0. Then #(xFr) ~ H(XF) (R).

Proof: Let E =[] 1<ican (8ibi). Note that F = E Uy, FxU F'. Since {E, Fi, F'} are
disjoint subsets of Y,

2n

XF=XE+ Y XF + Xp-
k=1

Therefore #(xr) = #(xg) and p(xr) = p(xE) by the hypothesis. By the preceding Lemma,

we see that #(xg) ~ p(xe) (R). Hence #(xr) ~ p(xr) (R). o

Proposition 2.2.8 Letx,p,C(Y) and R be as in Lemma 2.2.4. Suppose F = {f1, f2,---fn},

Ji € C(Y) for 1 < i < n. Then for every given € > 0, there is a unitary U, € R such that

WWer(f)UZ - p(fi)ll <€ for 1 S i< m. .

Proof: For 1 < k < 2n, let

S ={be R:%(xr) #0,/(xr,) # 0, where F, = H R x {b}}.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



54

Let

T = {(by, b2, -, b2n) € R 1 #(xF) # 0,5(xF) # 0, where F =[] {b:}}.
1<i<2n

Since H is separable, {#(xF,)}seRand {#(xF,)}scR are two sets of orthogonal projections in
R respectively, and hence card(Si) < R, for 1 < k < 2n. Similarly card(7) < R,. Therefore

by Lemma 2.2.5, for a given € > 0, there is a partition {F}}¥, of Y such that
L Fi =]l 1<ic2n (af, aj,),
2. #(xr) ~ P(xR)(R) for 1<IS N,
3 Nfi-TN,aixpllo <€/2for1<i<nanda; € Cfor1 <IN,

Since #* and p are unital representations, for 1 < i < n,

N
i%(f:) - Zali’(XF,)" < €/2and
=1

N
16(f:) - Y_ablxr)ll < e/2

=1

Note that {#(xr)}¥, and {p(xF)}{L, are two sets of orthogonal projections in R with
sum I respectively, and #(xr,) ~ p(xr)(R) for 1 <1 < N. Lemma 1.2.2 implies that there

is a unitary U, € R such that for 1 <! < N,
UA(xr)US = A(xR)-
Hence for 1 < i< n,

N N
NUAS)U: = B < NWUF(FUS = UY ek (xe)DUCI + 11 Y- end(xr) = A(Si)l
= {=1
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< €f/2+¢/2

Now we prove Theorem 2.2.1.

Proof: Suppose 7,p : C(X) — R are unital representations, where R is a von
Neumann algebra acting on a separable Hilbert space. Suppose R—rank o x = R—rank o p.

By an application of Lemma 2.2.2, there are unital *-homomorphisms #, 5 : Bor(X) —
R such that #|¢(x) = 7, plc(x) = p.

First we show that for every finite subset F = {f, f2,- -+, fa} of C(X) and for every
¢ > 0, there is a unitary U, € R such that ||[Ux(f;)U? — p(fi)ll < efor 1 <i<n.

Lemma 2.2.3 implies that C*( fi, fa,*, fa) is *-isomorphic to C(Y'), the set of continuous
functions defined on Y, where Y is a closed, bounded subset of C{®) = R(27), Suppose
®:C*(fi,f2, -+ fn) — C(Y) is the »-isomorphism such that ®(f;) = gi for 1 < i < n.

Therefore 7 0 =1 and po ®~! : C(Y) — R are unital *-homomorphisms and

R-rankoro®~! = R—rankopo ®~!.

According to Proposition 2.2.6, there is a unitary U, € R such that for 1 < i < n,

Uex 0 &Y (g)U> = po &~ (gi)|| < ¢,

jie. for1<i<n,

\Ux(£)U? = p(fi)ll < €.
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Let S = {(F,¢): F is a finite subset of C(X) and ¢ > 0}, ordered by
(.7'-1,(1) 2 (.rg,(z) = F2C F,q Lq.

Then S is a directed set. By the above argument, for every (F,1/#F) € S, where #F is

the cardinality of F, there is a unitary Ur € R such that for all f € F,

1

WUr=(£)Uz - p(f)]l < ryd

It follows that there is a net {Ur} of unitaries of R such that for every f € C(X),

WUr=(S)Uz — p(SH] — O,

ie. T ~q p(R). 0
Next we prove that if A is in Q, then M, (A) is in Q, where My(A) is the set of n X n
matrices with entries in A.
Let I be the identity in the corresponding algebras. Let E(I) be the n x n matrix that
each entry on the first diagonal above the main diagonal is I and all other entries are 0.
For each A in A and for 1 < ,j < n, let E; j(A) be the n x n matrix with a A in the (i, j)

position and 0’s elsewhere.

Theorem 2.2.7 If A is in Q, then M,(A) is8in Q for n > 1.

oI

0r
Lemma 2.2.8 M, (A) is the C*-algebra generated by E = and Ey1(A) =

nxn
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0 , where A € A.
._0
nxn
Proof: Note that E; (1) = (E(I)E(I)* — E(I)*E(I))E(I) and E,(I) = Ey3(I)Ey 2(1)".
Therefore E; 2(I) and E;(I) are generated by E(I). Note that Ey j41(I) = E; ;(I)E(I)
for 1 < j < n-1. Hence for 1 £ j < n, Ey;(I) and E; (I) = E, j(I)* are generated by
E(I).

Inductively E; j(I) is generated by E(I) for 1 < 4,5 < n. Thus
Ei;(A) = Evi(I)Era(A)Ey ;(T)
is generated by E;1(A) and E([I) for every A € A. Therefore

F = (Aij)axn = Y Eij(Ai;) € Ma(A)

,7=1
is generated by E(I) and E, (A) for every F € M,(.A). 0

Lemma 2.2.9 Suppose {Hi}?_, is a set of Hilbert spaces and H = Sr_,®H,. Suppose
A = (Aij)nxn € B(H), where A;j € B(H;,H;) for 1 < i,j < n. Then ||A; || < ||A]l for

1<i,j<n

Proof: For 1 <1i,j < n and for every unit vector z in H;, let

y=0000---600z600---00.

Jj-1 n—j
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y is a unit vector in H. It follows that for 1 <i,7 < n,

n
1
Ayl = O IlAL;zI?)E 2 1Azl
=1

Therefore for 1 < ¢,j < n,

Al = supyem =131 AVl 2 sUPzen, jizy=1) 1 Aiizll = | Ai;ll-

Now we prove Theorem 2.2.7.

Proof: Let A be a C*-algebra in Q. Suppose that 7,p : M,(A) — R are unital
representations, and that R—rank o # = R-rank o p.

Let

P; = n(E;(I)) and Qi = p(E;(I)) for 1 <i<n.

Then {P;}™, and {Q;}™, are two sets of orthogonal projections in R with sum I respec-
tively, since { E; ;(I)}7, is a set of orthogonal projections in M,(.A) withsum /,and 7 and p
are unital representations. Also R—rank P, = R-rank Q;,i.e. P~ Q; (R)for1 <i<n,
since R—rank o r = R—rank o p. By Lemma 1.2.2, there is a unitary u in R such that

un(E; i(I))u* =p(E;i(I)) for 1 < i < n. Without loss of generality, we may assume
P, = m(Eii(I) = p(Eii(I)) = Qi for 1 <i < n.
For otherwise, we replace v by ux()u® and using Lemma 1.4.3, we obtain

R-rank our()u® = R-rank ox = R—rank op.
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Forl1<i<n-1,

*(Eiipi(D)x(Eiipa(I))” = P,
*(Eiina(D))'®(Eiir(I)) = Py,
P(Eiip(D)p(Eiin(1)) = P,

P(Eiipi(D))p(Eiisa(I) = P

Note that dim ran P, = dim ran P;;; and that x(E;;41(7)) and p(E;i41(7)) : ran Piyy —
ran P, are isometries for 1 < i < n. Let H; = ran P; for 1 < i < n. Therefore H =

S°r_,®H,. There exist isometries A; and B, in B(H41, Hi)NR for 1 < i < n—1, such that

04,

0 A,

r(E(I)) = € R, and (2.5)
"-An-l
0
0 B,
0 B;
p(E(D)) = ER. (2.6)
.'-Bn—l
0
Therefore

7(Era (1)) = Eya(I) = p(Era(1)). (2.7)

Let ¢ : A — M,(A) be defined by ¢(A) = E,1(A) for every A € A. Then ¢ is a
one-one, *-homomorphism. Therefore x 0 ¢,p0 ¢ : A — R are unital *-homomorphisms
(restrict to the image of x0¢ and po ¢ respectively), and since R—rank o x = R—rank o p,

R-rank o (To¢) = R-rank o (po¢). Since A € Q, there is a net {u,}, of unitaries in R
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such that

[[ua® 0 #(A)uy — po ¢{A)|] — 0 for every A € A, (2.8)

[luam(Ey,1(A))u; — p(Ey,1(A))|| — 0 for every A € A. (2.9)

We can write u, = (uf;)nxn, where u?; € B(H;, H;) for 1 <1,j < n.

By (2.7 ) and ( 29),
lua Exa(I)ug — Era(Z)|| — O. (2.10)
By an application of Lemma 2.2.9 and ( 2.10 ),

luf uf,* =1l — 0, and (2.11)

lufs*ufy = Il — O. (2.12)

Hence for sufficiently large @, u§, is invertible,and 27, = (u‘,"',u‘,”'l‘)‘%'u‘,"'l is a unitary
in B(Hi))NR.

Define

ve = Xea ) (2.13)

where X§ = B{Z{, A, is a unitary in B(H2) "R, and X{ = B}_; X, A;_ is a unitary in
B(H;)NR for 3 < i< n. U”is a unitary in R.

Since M,(A) is generated by E(I) and {E;,(A) : A € A}, toshow * ~; p(R) it is
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sufficient to show that

NUex(E(I)U** - p(E(I))I| — 0 and (2.14)

U x(Ey1(A)U* = p(Ey1(A))|| — O for every A € A. (2.15)

By (25),(26)and (2.13),

Uex(E(I)U®" - p(E(I)) = 0.

This proves ( 2.14 ). It remains to show ( 2.15 ).

Since for 2 < i < n and for every A € A,

P.'1I‘(E1,|(A)) = 0 and

[
L

x(E11(A))F;

we can write 7( Ey,1(A)) = E, 1(C)forsome C € B(H,). Similarly, we can write p( E;,1(A)) =

E1 (D) for some D € B(H,). By Lemma 2.2.9 and ( 2.9 ),

luf,Cui,y® — DIl — 0. (2.16)

Note that

U x(Era(A)DU* = p(Exp(ADI = |127,C Z5," ~ DIl

It remains to show

23, Z¢,* - D|| — 0. (2.17)
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By ( 2.11),

ll(ug g, ") - 1) — 0.

Therefore

128 = ufall < I(uqug, ")~ = Il||ug, )l — o. (2.18)

By ( 2.16 ) and ( 2.18 ), it follows that

127,C 27, - Dl =
1224 C 275" = ui C 273" + uf C 25" — uia Cuf,y " + ui, Cuyy " = D]

< “Zi'.l - "?.1|l||C|”|Zf.l'|| + ||“7.1||||C||||Zf,1. - “7,1‘" + ”"‘1’.10“?,1' - D||,

and this last quantity tends to 0, hence ( 2.17 ) is established
We have proved that x ~, p (R). a}
Then we will prove that Q is closed under direct sum, direct limit and quotient map.

First we prove that Q is closed under direct sum.
Theorem 2.2.10 Suppose A, and A; are in Q. Then A ® Az isin Q.

Proof: Suppose 7,p: A;®A; — R are unital representations. Suppose R—rank o x =
R-rank o p.
We can write x = 1, @ 72, p = p1 ® p2 and R = R, & R, where =x,,p, : A; — R,; are

unital representations for 1 < i < 2. Since R—rank o # = R—rank o p, it follows that

R,-rank o r; = R;—rank o p;, and Ry—-rank o 7 = Ra—rank o p;.

Note that A; and A; are in Q. Hence 7; ~4 p; (R;) for 1 <i< 2.
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For every ¢ > 0 and for every finite subset F C A; @ Az, suppose that
F = {01 @ bly“? &) b?v' cy0n @ bn}-

Since {a;,az,- - -,a,} C A; and {by, b2, -, by} C A, there are unitaries U}.‘) and Ug) in

R, and R, respectively such that for 1 < k& < n,

0D (a)UD” = pr(ar)l < €/2,

IUPxab)US” = pa(bi)ll < €/2.
Define Ur = U;:l) ® U}?). Then Ur is a unitary in R such that for 1 < k< n,

|Urm(ak & bk)UE — p(ax & bi)l|
= ||Ur(m1(ak) ® 72(bx))Ur — pr(ax) ® p2(bi)|

= sup { U (@)U = pr(ai)ll, WU m2(b)UE - pa(be)l] }

Let S = {(F,¢): F is a finite subset of A, ® A; and € > 0}, ordered by
(F,60) € (Fy,€63) <= F; C F; and ¢ 2 €3.

S is a directed set. By the above argument, for every 3 = (F,1/#F) in S, there is a unitary

Up in R such that for every a in F

Usx(a)Uj - pla)ll < 1/#F.
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Hence # ~, p (R),i.e. A;® Az isin Q. D

Next we will prove that Q is closed under direct limit.

Theorem 2.2.11 Suppose { Ay : A € 1} is an increasing net of C*-algebras in Q. Then

the direct limit A = lim A, is in Q.

Proof: Suppose 7,p : A — R are unital representations. Suppose R—rank ox =
R~—rank o p.

Let 7y = |4, and py = p|a, for every A. Then 7),p) : Ax — R are unital rep-
resentations for every A\. Also R—rank o x5y = R-rank o p) for every A in {2, since
R-rank o # = R—rank o p.

For every A in €, since Ay € Q, there exists a net {u)}, of unitaries in R such that

luza(a)ul” — pa(a)]] — O for every a € A,.

Now we show that for every € > 0, for every finite subset F of Uyeq.A), there is a unitary
u in R such that

llux(a)u® — p(a)|| < € for all a € F.

Since {.A,} is an increasing net of C*-algebras and F is a finite subset of UrenAa, there is

a §in Q such that F C Ag. Thus

lufr(a)ud” - p(a)ll = llulms(a)ud” — po(a)l

— Oforalla€ F.
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It follows that there is a unitary u € {uf}, such that
|lux(a)u® — p(a)|| < € for all a € F.

Let

T = {(F,¢€): F is a finite subset of Uyen Ax and € > 0},

ordered by (F1,€;) < (Fa,€2) <> F1 C F2 and €4 > ¢;. Then T is a directed set. By the

above argument, for every v = (F, -#17) € T, there is a unitary u, € R such that

. 1
[fuym(a)us, — p(a)ll < 77 for all a € F.

Thus there exists a net {u,}~ of unitaries in R such that
[luym(a)ul — p(a)ll — O for all a € UrenAa.

Since S = {a € A : |luyx(a)u} — p(a)|| — 0} is a norm-closed linear space containing
UnenAy, it contains A = UngndAa o, ie. & ~g p (R). o

Now we prove that @ is closed under quotient map.

Theorem 2.2.12 Suppose that A is in Q and that J is a closed ideal in A. Then A/J is
in Q.
Proof: Suppose =,p:A/J +~— R are unital representations such that R—rank o x =
R-rank o p.

Suppose 5 : A — A/J is the canonical map. Therefore xonand pon: A+— R

are unital representations and R—rank o (x o ) = R-rank o (pon). Since A is in Q,
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Ton~, pon(R). It follows that x ~, p (R),i.e. A/T isin Q. a

The following results are somewhat more interesting.

Theorem 2.2.13 Suppose R is a factor von Neumann algebra of type III and A is a

C*-algebra in Q. Suppose x,p : A — R are unital representations. Then

T ~g p (R) & ker ® = ker p.

Proof: (=) Suppose 7 ~, p (R).

There is a net {u,}, of unitaries in R such that

[luam(a)u; — p(a)l| — O for every a € A.

Hence r(a) = 0 <= p(a) = 0, i.e. ker x = ker p.
(¢<=) Suppose ker © = ker p.
For every a in A, 7(a) # 0 <= p(a) # 0. Hence

Pran #(a) # 0= Pran p(a) # 0.

Therefore P =r i Py @) (R) for every a in A, since R is a type I1] factor, i.e.

R-rank ox = R—ranko p.

Thus 7 ~, p (R), since A is in Q. (]

Theorem 2.2.14 Suppose A is in Q and x,p : A+— R are unital representations, where

R is acting on a separable Hilbert space. Furthermore suppose for every a in A, there are
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sequences {An}32y, {Bn}32,, {Cn}3%; and {Dy}32, in R all depending on a such that

A.n(a)B, 59T p(a) and Cpp(a)D, +59T x(a) as n — oo.

Then ® ~4 p (R).

Proof: By Theorem 2.1.2, R-rank o # = R—rank o p. Therefore x ~, p (R), since A is

in Q. 0
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