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ABSTRACT
STUDIES OF ROTATIONALLY INELASTIC 

COLLISIONS IN Ar + HF 
by

James J. C. Barrett 
University of New Hampshire, December, 1993

In this dissertation we examine rotationally inelastic 
collisions involving an atom plus a diatom. We concentrate 
specifically on the Ar+HF system. In these investigations we 
employ a number of theoretical methods, including classical 
trajectories, quantum close-coupled calculations and 
semiclassical methods, to examine the differential cross 
sections in Ar+HF. We also investigate the effects of various 
'sudden' approximations on the scattering dynamics and the 
limitations of these approximations.

Through this work we were able to identify a new 
quantum feature in rotationally inelastic scattering. By 
studying the time evolution of transition amplitudes (rather 
than probabilities) we are able to ascribe this feature to a 
balance between the attractive and repulsive parts of the 
potential energy surface governing the collision system. We 
propose that this feature will be a general scattering 
feature in systems with a potential that has substantial 
repulsive anisotropy and a significant attractive well.
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We present a classical trajectory method for direct 
simulation of a scattering experiment. We use this method to 
calculate laboratory frame differential cross sections for 
rotationally inelastic scattering in the Ar+HF system. We 
find that the results of this method are in excellent 
agreement with more standard approaches for the comparison of 
theoretical to experimental results.
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Chapter 1
Introduction

A major goal of all chemists is to understand the 
fundamental workings of the chemical reaction at the 
molecular level. Molecular beam scattering studies have 
provided chemists and chemical physicists with a powerful 
tool for attaining this goal and has opened up the field of 
chemical reaction dynamics.1 The importance of this work has 
been acknowledged by the awarding of the 1986 Nobel Prize in 
Chemistry to three recent practitioners in this field, D. R. 
Herschbach, Y. T. Lee and J. C. Polanyi.

With the development of the early molecular beam 
experiments2 chemists began to gain control over specific 
reaction conditions. Use of these techniques provides the 
capability to explore reactions under single collision 
conditions with great control over the initial state of 
reactants and the energies at which they collide. The 
continued development of better and more sophisticated vacuum 
chambers and pumps, as well as invention and innovation in 
the area of detection techniques have allowed for the
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identification of not only the reaction products, but also 
their internal energy state. Combining the molecular beam 
techniques with these sophisticated detection schemes has 
enabled investigators to approach the goal of experimentally 
probing state-to-state chemical reactions.

The development of these exciting experimental 
techniques has been joined, and sometimes led, by advances in 
theoretical methods for investigating these processes.3 Early 
quantum mechanical studies could describe reactions for 
systems containing only the fewest number of electrons and 
focused on the simplest of all chemical reactions, the 
hydrogen exchange reaction.4 This reaction continues to hold 
many secrets that today's modern computers and most 
sophisticated experiments are still trying to unlock.5

Development of the classical trajectory method6 (which 
had been originally applied to the H+H2 reaction) allowed for 
the investigation of an ever increasing variety of systems, 
including protein simulation.7 This technique gave chemists a 
new tool for probing deeper into the nature of the chemical 
reaction. Comparing the results from quantum and classical 
dynamics, and finding differences between them, led to the 
acknowledgement of the importance of “quantum effects" in 
chemical reactions.8

In all of these studies the limiting factor of our 
ability to model the reaction process is our understanding of 
the potential energy surface. In classical terms, this 
potential governs the motion of the particles as they 
approach one another as reactants and separate as products. 
Quantum mechanically, the Hamiltonian determines the time- 
dependent evolution of the wave function for the system under 
investigation.

2



Many methods have been employed for the accurate 
determination of the potential energy surface.9 Ab initio 
methods have been successful in determining the surface for 
small molecular systems.10 However, for large molecular 
systems ab initio methods can be very inefficient. By 
contrast, semi-empirical methods have been employed with 
great success for very large molecular systems.11 Use of semi- 
empirical potentials in molecular mechanics calculations have 
been very fruitful in understanding of the dynamics and 
conformations of large biological molecules.12 The parameters 
used in these semi-empirical potentials are fit to 
experimental data on the components of these large 
molecules.13 These data include transport properties, dipole 
moments and spectroscopic information.

Spectroscopy has become an important source of 
information on a large variety of van der Waals molecules.14 
Through the investigation of bound state vibrational modes 
and internal rotations of these systems a great deal of 
information may be gained, particularly on the attractive 
minimum of the surface.14 This has been exploited to great 
advantage in the study of atom+diatom van der Waals 
complexes. A prototype system for this type of investigation 
has been the Ar+HF complex.15

Spectroscopic studies, however, provide very little 
information on the repulsive part of the potential surface. 
Scattering experiments probe this part of the surface and 
thus provide complementary information to that from 
spectroscopy.16 In particular, rotationally inelastic 
scattering can provide information on the repulsive 
anisotropy of the potential.17

Recently, experiments on the scattering of hydrogen 
fluoride from argon have been conducted.18-19 These studies 
have provided integral18 and differential cross sections19 for

3



this system. A very recent crossed molecular beam scattering 
experiment has employed a laser+bolometer detection scheme to 
provide final state-selected differential cross sections for 
rotationally inelastic Ar+HF scattering of the hydrogen 
fluoride in the ground vibrational state.20 This study 
revealed novel features in the differential cross sections.
In this dissertation we explain the origin of these features 
and relate them back to the potential energy surface.

In Chapter 2 of this dissertation we briefly review the
four most recent potential energy surfaces for the Ar+HF
system. We discuss the origin of these surfaces and provide 
some analysis of the surfaces. Chapter 3 introduces some of 
the basic concepts employed in scattering theory by carrying 
out scattering studies on several model potential energy 
surfaces. In this chapter we examine the effects of different 
regions of the potential on observed scattering features.

In Chapter 4 we perform classical scattering studies on
the Ar+HF system using the four surfaces discussed in Chapter
2. The calculations are conducted so as to model the 
experimental conditions of reference 20. We also compare the 
classical differential cross sections to the experimental 
results and find substantial differences between them. In 
order to understand the origin of these differences, we 
compare the classical results to quantum calculations for 
this system on the “best* available potential surface. These 
are also compared to the experiment and we find very good 
agreement between the quantum and experimental results.

In Chapter 5 the disagreement between the quantum and 
classical calculations is explored in greater detail. We find 
that there is evidence of a new quantum mechanical scattering 
feature in this system. This feature may be generally 
observed in rotationally inelastic scattering on potential 
energy surfaces which are strongly attractive and have

4



substantial anisotropy. In the final chapter we investigate 
the breakdown of several well known sudden approximations 
commonly used in rotationally inelastic scattering 
calculations.
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Chapter 2
Review of Ar+HF Potential 

Energy Surfaces

 Introduction

In this chapter we briefly review four of the most 
recent potential energy surfaces available for the Ar+HF 
s y s t e m . *'2,3,4 w j.n discuss the methods employed in the 
development of these surfaces and the spectroscopic data used 
in their construction. This is not meant as an exhaustive 
review on the literature on this system. However we do wish 
to provide some general background as to the origin of these 
surfaces. For the interested reader, an excellent review of 
the construction of potential energy surfaces for van der 
Waals complexes from spectroscopic data is available.5

In addition to discussing the general features of the 
Ar+HF potentials, we also analyze the differences between the 
four surfaces. The implications of these differences for 
rotationally inelastic scattering will be discussed in the 
following Chapters.

II_, Potential Energy Surfaces

All of the following potential energy surfaces for the 
Ar+HF system**4 will be used in trajectory calculations for

8



the scattering of a rigid rotor diatom from a rare gas atom. 
Therefore, each of these surfaces is vibrationally averaged 
over the internuclear bond coordinate, so that the potential 
is given as a function of R and y, the intermolecular 
separation and orientation angle, respectively.

Two of the surfaces, reference 1, referred to hereafter 
as "HH M5", and reference 2, referred to as "Douketis", are 
constructed for HF in the ground vibrational state. The 
surface in reference 3 was developed from spectroscopic data 
of the Ar*HF complex with the hydrogen fluoride in the v=l 
vibrational state. The Hutson H6 surface, reference 4, is a 
much more sophisticated potential, as will be discussed 
below.

The HH M5 surface1 was developed using a non-linear 
least squares fitting procedure6 to molecular beam electronic 
resonance spectroscopy7 on the Ar*HF(v=0) van der Waals (vdW) 
complex. The Douketis surface2 was developed from a Hartree- 
Fock damped dispersion (HFD) ab initio calculation8 on 
Ar*HF(v=0). In prior work,9 it was found that the attractive 
part of a previous HFD potential10 was required to be 
increased by -16% in order to accurately reproduce total 
differential cross sections for Ar+HF scattering.9 A similar 
procedure for the Douketis surface was carried out to fit the 
surface to some of the available spectroscopic data.2 The NCC 
surface3 was fit to infrared spectroscopic data for the Ar *HF 
van der Waals complex, with HF in vibrational state, v=l, 
using an RKR inversion method.11

The Hutson H6 potential,4 is the most sophisticated 
potential function of the four surfaces considered in this 
study. The surface is developed from a multi-parameter fit to 
all available spectroscopic information available (at the 
time of publication) on the Ar *HF complex.12 This work 
included spectroscopic information on the Ar*DF complex, with

9



DF in the ground state13 as well as vibrationally excited 
D F .14 The spectroscopic database also included work on 
vibrationally excited Ar »HF complexes.15

The H6 potential surface was constructed to incorporate 
HF vibrational states, v=-l/2 (rigid rotor), 0, 1, 2. It also 
incorporates isotopic substitution of D for H in the diatom.4 
As a test of the validity of the surface, calculations using 
the H6 surface correctly reproduced transition frequencies 
for the Ar«HF vdw complex, not included in the fitting data 
base.4 The surface has also been used to predict transition 
frequencies in the Ar*HF spectrum,16 which were subsequently 
located by new spectroscopic experiments.17

While the four surfaces used in this study are 
quantitatively different, they are qualitatively similar. The 
general features common to each of these potentials are: (1) 
Preferred geometry in the FH- • •Ar configuration (y=0°); (2)
Secondary minimum in the HF---Ar configuration(y=180°) ; (3)
Strongly anisotropic, attractive potential; binding energy 
ranging from 20-30 meV.

In figures 1-3 we show various views of the potential 
energy surfaces1'4 for the Ar+HF system used in this study. In 
figure 1 we present relief plots for each of the four 
surfaces. These plots are set up so that the HF center of 
mass lies at the origin of the diagram with the *H-end" of 
the diatom to the right side of the front axis. The radial 
distance from the origin indicates the internuclear 
separation, the orientation angle, y, as defined above is 
given as zero along the positive ordinate.

In figure 2 we plot the potential as a function of y at 
several fixed values of R. The differences in the repulsive 
wall anisotropy are seen in figures 2(a) and 2(b) for R=2.5 A 
and R=3.0 A. It is evident from these figures that the NCC
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potential shows the least anisotropy in the repulsive region, 
whereas the HH M5 surface displays the most dramatic 
repulsive anisotropy. These plots also indicate the 
asymmetric (about y=90°) nature of the potential. The slices 
near the attractive minima are taken as near as possible to 
absolute minimum of each surface to show the attractive 
anisotropy of each surface.

The location and energy of the minima for each surface 
are more easily seen in figure 3, where the potentials are 
displayed as a function of R at a fixed value of y. The 
values and locations of the potential minima for each surface 
are listed in Table 1. Figures 3(a) and 3(c) also show that 
the 'H* end of the system is more steeply repulsive than the 
"F" end.

We now would like to make a more quantitative 
comparison between the potential energy surfaces. However, 
the functional forms of each of the potentials are vastly 
different. In order to put each of the surfaces on an equal 
footing for comparison, we expand each of the surfaces in a 
normalized Legendre basis, Pi(cosy). The functional form of 
the expansion is given by

V(R,y) = £ v,(R)P1(cosy) (1)
1=0

written in this manner the expansion is exact. In practice, 
however, the expansion is truncated at some reasonable value, 
N. For the comparison made here, we truncate the expansion at 
N = 5 .

Using the orthonormality relationships of the Legendre 
basis, i.e.

11



d(cosy)P, Pr = 5„. (2

we can solve for the expansion coefficients, Vi(R), 
explicitly by

Cj(R) = J ^ ^ cosyJ p^ cosy) V (cosy;R) (3)

at some fixed value of R. The integration of equation 3 is 
carried out by Gauss-Legendre quadrature.18'19 The expansion 
coefficients at several values of R for each surface are 
given in Table 2. From these coefficients it is readily seen 
that the HH M5 surface does indeed display the most 
anisotropic character in the repulsive wall, while the 
anisotropy of the NCC potential arises from Pi and P2 only. We 
will use these expansion coefficients in later Chapters to 
qualitatively and quantitatively compare the scattering 
dynamics on each of these surfaces.
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Table 1. Rmin and potential energy at several values of y for 
each Ar+HF potential employed in this study.

Hutson H6
Rmin [A] Y [degree] -V (R, Y) [meV]
3 .434 0° 27 .30
3.496 90° 8.310
3.375 180° 13.33
HH M5

Rmin [A] Y [degree] -V(R,Y) [meV]
3.390 0° 26.56
3.456 90° 10.34
3.346 180° 9.918

Douketis
Rmin [A] Y [degree] -V (R, Y) [meV]

3.45 0° 28.92
3.45 90° 11.38
3.30 180° 16.82
NCC

Rmin [A] Y [degree] -V(R,Y) [meV]
3.400 0° 26.78
3.550 90° 8.894
3.400 180° 16.24
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Table 2. Expansion coefficients for each potential energy 
surface used in this study at several values of R. 
Coefficients given in meV/A.

Hutson H6
R [A] C 0(R) Ci (R) C, (R) C3(R) C4 (R) C=, (R)
2.5 414.8 82.83 69.95 39.75 22.65 0.2378
3.0 13.16 2.136 -1.013 2.297 0.6122 0.0074
3.5 -17.62 -3.290 -3.546 -1.310 -0.8480 -0.0268
4.0 -11.24 -2.231 -1.778 -0.9012 -0.4810 -0.0108
5.0 -2.988 -0.5152 -0.3857 -0.2145 -0.0973 -0.0004
6.0 -0.9196 -0.1355 -0.1089 -0.0552 -0.0222 0.0001

HH M5
R [A] C0 (R) Ci (R) C?(R) C3(R) C 4(R) Cs(R)
2.5 737.0 579.9 555.4 491.6 396.7 313 .7
3.0 17.38 12.92 7.263 7.191 4.391 2.765
3.5 -15.36 -4.454 -3.665 -1.353 -0.3301 -0.0293
4.0 -9.062 -2.567 -1.754 -0.5707 0.0080 0.1167
5.0 -2.374 -0.6718 -0.4367 -0.1400 0.0094 0.0339
6.0 -0.7555 -0.2179 -0.1435 -0.0485 0.0002 0.0092

Douketis
R [A] C0 (R) Ci (R) C2(R) C3(R) C4(R) C5(R)
2.5 386.3 65.33 34.01 32.80 19.37 22.51
3.0 9.555 4.359 -2.194 2.590 0.6120 0.2889
3.5 -20.35 -3.501 -4.115 -0.8929 -0.3773 -0.2012
4.0 -12.66 -2.246 -2.089 -0.6390 -0.1875 -0.0509
5.0 -3.377 -0.5018 -0.4405 -0.1456 -0.0340 -0.0059
6.0 -1.063 -0.1316 -0.1224 -0.0381 -0.0077 -0.0012
NCC

R [A] C0 (R) Ci (R) C, (R) C 3(R) C 4(R) Cs(R)
2.5 674.6 150.1 92.21 0.000 0.000 0.000
3.0 16.50 2.639 -2.643 0.000 0.000 0.000
3.5 -18.22 -4.294 -5.057 0.000 0.000 0.000
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4.0 -11.68 -2.634 -2.282 0.000 0.000 0.000
5.0 -3.479 -0.5970 -0.4772 0.000 0.000 0.000
6.0 -1.198 -0.1925 -0.1502 0.000 0.000 0.000
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Chapter 3
Scattering on Model Potential Energy Surfaces

L  Introduction

Rotationally inelastic scattering in atom + diatom 
systems has been an exciting field of research for a number 
of years.1 This research has produced a rich literature 
relating observed scattering features to the potential energy 
surface which produced the scattering event.2 Along with the 
vast experimental literature on rotationally inelastic 
scattering,3 many powerful theoretical models have been 
developed to investigate these processes.4

The bulk of the experimental and theoretical work on 
rotationally inelastic scattering has focused on systems 
which involve homonuclear diatoms and potential energy 
surface which are predominantly repulsive in nature.5 Examples 
of this type of scattering system are He+Na2,6 Rg+H2,7 and 
Rg+N28 where Rg refers to a rare gas atom. Some work has been 
carried out on heteronuclear diatom systems, such as Rg+NO9 
and Rg+LiH;10 however, these systems again are predominantly 
repulsive.

Many rotationally inelastic scattering experiments 
reveal a rich structure in the angular distribution (the
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differential cross section) of the scattered products. 
Features such as the rotational rainbow have been predicted 
computationally11 and observed experimentally.12 The 
implications of rotational rainbow scattering as a source of 
information on the potential energy surface have also been 
discussed. The development of simple, efficient computational 
methods for investigating rotationally inelastic scattering, 
such as the infinite order sudden approximation (IOSA),13 have 
also been important in furthering our understanding of these 
types of processes.

For atom+diatom systems, in which there exists an 
attractive well capable of sustaining bound states, the most 
reliable source of information on the potential energy 
surface has been spectroscopic studies of the bound complex.14 
Prototype systems for these types of studies have been rare 
gas + hydrogen halide (Rg+HX) systems.15 In particular,
Ar+HCl16 and Ar+HF17 have been very well studied.

Spectroscopic studies of the van der Waals dimers of 
Rg+HX complexes have led to potential energy functions in 
which the region of the primary attractive minimum has been 
well characterized.18 Recent spectroscopic studies19 on Ar»HF 
have made it possible to construct a potential function of 
high sophistication which not only characterizes the primary 
minimum, but also provides an excellent representation of the 
total attractive anisotropy.20

Spectroscopic studies of van der Waals complexes 
provide detailed information on the attractive part of the 
potential. However, spectroscopic data give very little 
information on the repulsive part of the potential energy 
surface. Scattering studies, on the other hand, probe the 
repulsive part of the potential and rotationally inelastic 
scattering studies give information on the repulsive 
anisotropy of the surface.21 Unfortunately, it is very
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difficult to extract detailed information on the potential 
surface from scattering studies for systems which have 
substantial attractive character.22

Several scattering studies on Rg+HX systems have been 
undertaken in recent years.23 In particular, the Ar+HF system 
has received a great deal of attention.24 Interesting features 
have been observed in rotationally resolved differential 
cross sections (DCS) for this system.25 The scattering 
dynamics in Ar+HF have also been investigated theoretically.26 
Scattering data give information on the potential surface 
which is complementary to that obtained by spectroscopic 
measurements. Therefore, it is necessary to understand the 
details of the collision dynamics for systems such as Ar+HF, 
or Rg+HX systems in general, in order to use the information 
obtained from molecular beam scattering experiments to refine 
the potential energy function.

To gain insight into the complicated scattering 
dynamics of systems such as Ar+HF, we present scattering 
calculations on several model potential energy surfaces. We 
use the model potentials in this study to gain control over 
the attractive well depths and the attractive and repulsive 
anisotropies. By employing a simple functional form for the 
potential, without regard to fitting a potential energy 
function to a particular atom + diatom system, we may 
arbitrarily adjust the potential parameters and attempt to 
correlate the scattering features to changes in the potential 
energy surface.

In Section II we present the potential functions used 
in this study. In Section III we present the computational 
methods employed in the scattering calculations, including 
the methods by which the integrals necessary for 
implementation of the scattering calculations are computed.
An alternative computational approach is also mentioned. Also
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in Section III, the computational methods for calculating the 
differential cross sections from the deflection and opacity 
functions generated from the scattering calculation are 
given. The results from the scattering calculations using the 
model potentials are discussed in Section IV. In Section V we 
present integral cross sections calculated for Rg+HF 
scattering, where the mass of the Rg atom is changed, but the
calculations are performed using the same potential surface
in each case. The potential surface used in this part of the 
study is the Hutson potential for Ar+HF.20 Concluding remarks
are made in Section VI.

£I-i Hodfil Potential Energy Surfaces

The potential energy surfaces for Rg+HX systems are 
unlike those employed for many previous studies of 
rotationally inelastic scattering.27 General features of Rg+HX 
potentials include a primary minimum in the collinear X-H-Rg 
configuration. There is also a secondary minimum in the 
collinear H-X-Rg configuration. The potential surfaces also 
have substantial repulsive anisotropy.

In order to account for these features in a simple 
potential function, the potential is written as an expansion 
in the normalized Legendre polynomials, PX. The function is 
given as

V(R,y ) = I V x(R)Px(cosy) (1)
X

where R is the internuclear separation from the atom to the 
diatom center-of-mass, Y is given as the angle between the 
diatom bond vector, r, and the vector R. By convention y=0° 
in the X-H-Rg configuration and y=180° in the H-X-Rg
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configuration. The expansion is truncated at A,=5. The R 
dependent part of the potential, Vx(R), is in the form of a
Lennard-Jones 6-12 function, given as

where ex is the attractive well depth and Ox is the value of R 
at which V=0, for each term in the expansion. This functional 
form allows for a high level of flexibility and reproduces 
the essential features common to the Rg+HX surfaces.

Problems associated with using a Lennard-Jones or Morse 
type function in systematic scattering studies have been 
pointed out in the past.28 Of particular note is the 
dependence of the repulsive part of the potential on the e 
parameter in the Lennard-Jones function. Thus by adjusting 
the well depth, the repulsive part of the surface is also 
affected. However the convenient form of these functions 
lends itselve well to computational studies and has been used 
frequently in the past.29 As discussed below, great care has 
been taken to minimize the effect due to differences in the 
repulsive part of the potential.

In this study we also employ a repulsive surface, 
denoted hereafter as REP, as a 'control*. Use of a repulsive 
surface allows the elucidation of the role played by the 
attractive anisotropy in the scattering dynamics. This 
function is also written as a Legendre expansion and has the 
form of eq.l, with the R dependent part of the potential 
given by

(2 )

(3)
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Three attractive surfaces are employed in this study. 
The surface 1 (Si) is qualitatively fit to the Hutson H 6  

potential for Ar+HF.20 This fit is carried out by expanding 
the Hutson H6 potential in a normalized Legendre basis 
(truncated at X=5) and determining the potential minimum (ex.) 
and R position where Vx(R) changes sign (Ox.) for each
expansion term. Surfaces 2 and 3 are generated by doubling 
and halving the ex. parameters of Slf respectively. These three
surfaces are plotted in figure 1. As can be seen from the 
figure, the repulsive anisotropies of these surfaces are 
substantially different. Of greatest concern is the position 
of the classical turning point (the position where the 
potential equals the collision energy, E c o n )  on each each 
surface. The values of R when V(R,y=0°) = 135meV are listed
in Table 1. In order to minimize these differences in the 
turning point on each surface, the Ox parameters for surfaces
2 and 3 are modified by -O.lA and +0.1A, respectively, from 
the Si values. The modified surfaces 2 and 3 (S2 and Si/:, 
respectively) are shown in figure 2 along with Si.

The REP potential is constructed so that the repulsive 
wall anisotropy mimics the repulsive region of the Lennard- 
Jones surfaces. The surface is also adjusted so that the 
turning point is near 5.33 bohr. The REP potential is also 
shown in figure 2. The potential parameters for each of the 
surfaces are given in Table 2.

III. Computational Hethoda
A. Scattering Calculations

In this chapter we employ a semiclassical model to 
explore the collision dynamics of the Rg+HX scattering. We 
have used this model successfully26*6) to explain features 
observed experimentally in DCS for Ar+HF.25 In the 
semiclassical (or classical path) model30 the translational
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coordinate is treated classically, while the internal degrees 
of freedom of the diatom are treated quantum mechanically.
The classical equations of motion for the system are given by

R = —  M P = -Vr(V(R,y)) (4)

where R is the intermolecular vector from the diatom center 
of mass to the atom and P is its conjugate momentum. The 
reduced mass of the collision system, M, is given by

where mRg is the mass of a Rg atom and mnx (= mn+mx) is t l̂e 
mass of the diatom. <V(R,y)> is an appropriate angular 
average of the potential, at a fixed value of R. In this 
study we employ a spherical average over the potential energy 
function. It has been suggested that an Erhenfest average 
over the potential,31 given as

provides a more accurate description of the translational 
dynamics. We have compared the dynamics using a spherical 
average to the Erhenfest approach and find no significant 
difference in the collision dynamics, but achieve 
considerable time savings using the spherical average.

The time evolution of the diatom wave function is 
treated quantum mechanically by solution of the time- 
dependent SchrOdinger equation. The time-dependent wave 
function for the diatom, 4/(t), is given as an expansion in a 
rigid rotor (spherical harmonic) basis set. The quantum 
equations of motion32 are given by

M  _ m Rg * m HX 
m Rg + m HX

(5)

(6 )
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i/»ck(t) = £ c k( t) (k |V (t) | l )exp^i(Ek E|%j (7)

where lk> and I1> represent rotational states, lj,m> and 
with an energy of Ek and Ek, respectively. The 

expansion coefficients, Ci(t), are given by

Cl(t) = ( l | ^ ( t ) )  = (Yjm|T ( t ) )  (8 )

where Y j m  is given explicitly as

Yjm(e.0) = Pf'(c°s0)exp(i m  <>) (9)

with p™ being an associated Legendre function. The interaction 
potential, V(t), is made time-dependent through the classical 
translation, R(t). The integration of <klV(t)ll> is performed 
by Gauss-Legendre quadrature over the 0 coordinate and by 
trapezium rule over <|>. To ensure numerical orthonormality in 
the numerical integration, the Gauss-Legendre quadrature 
requires (jmax+D points; the trapezium requires 2jmax points, 
where jmax is the highest rotational state employed in the 
expansion. Typically, jmax= [(Econ + B j 2) /B ] +2, where the [] 
demotes the maximum integer function.

The quantum system may be represented in one of two 
coordinate systems, the space fixed(SF) coordinates or the 
body fixed(BF) system.33 In the semiclassical approximation 
the coupling between m states arises naturally as the 
trajectory proceeds in the SF coordinate system. In the B F  

representation, the rotational basis is represented in a 
rotating coordinate system, with the z-axis oriented along 
the classical R vector. In this coordinate system, the m 
coupling is included through the Clebsch-Gordan coefficients 
and coordinate transformation matrix between the “fixed" 
(translational) coordinates and "rotating" basis.34 The B F
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coordinate system allows for the implementation of a simple 
approximation to reduce the dimensionality of the quantum 
equations of motion. This approximation includes coupling 
between only the rotational states where m'=m.34 This is the 
semiclassical version of the coupled states (CS) 
approximat ion.33>35

In this chapter we use the semiclassical CS 
approximation for the bulk of our calculations. We have 
compared the semiclassical CS to a semiclassical calculation 
using full m-coupling and find the degeneracy-averaged 
results to be in very good agreement.

B. Deflection and opacity functions

In a scattering calculation, the deflection function is 
given by the scattering angle as a function of the impact 
parameter, 0(b).36 While the deflection function is not 
'observable* in a molecular beam scattering experiment, 
computationally 0(b) gives a great deal of information on the 
potential energy surface governing the scattering dynamics. 
The scattering angle, 0, is defined as the angle between the 
initial and final classical relative momentum vectors, P and 
P', respectively,

| 0 |= cos-l
r \p .p

P* P
:io:

The general trend of the scattering angle goes from 0=180° at 
b=0 to 0=0° as b-»«>, for example see the REP 0(b) in figure
3. When scattering on an attractive potential surface the 
deflection function goes through a minimum, see Si 0(b) in 
figure 3, which is characteristic of the well depth to 
collision energy ratio. This minimum is known as the 
'rainbow' angle.37
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The opacity function, the final rotational state 
probability as a function of impact parameter, is also an 
important quantity for analyzing scattering results and the 
potential surface. Examples of the opacity function for 
rotationally inelastic scattering can be seen in figures 4-6. 
In general lower b-values are associated with back scattering 
(high scattering angles) and large Aj transitions, see figure
6. High b-values are associated with forward scattering and 
small Aj transitions, for example see figure 4. These general 
trends hold for all potential energy surfaces; however in the 
mid-range impact parameters correlations of Aj with b may not 
be as straightforward.

The semiclassical probability of scattering from an 
initial state, 1, into a final rotational state, k, at a 
given impact parameter, Pik (b), is given by

as time, t, approaches infinity. In this study we will be 
primarily concerned with the total scattering probability 
from an initial rotational level j, into a final rotational 
level j ‘. This is given as a weighted sum over the lj,m> 
states of the initial j level, times the sum of probabilities 
into the lj'm'> states of the final j' level,

where pjm is the statistical weight of the initial rotational 
state ljm>.

(1 1 )

m =-j m’= - j’
(12 )
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C. Differential Cross Sections

The angular distribution of the final rotational 
states, the differential scattering cross section (DCS), can 
be calculated from the opacity and deflection functions. The 
classical formulation for the DCS, dO/dGJ, is given by

where dGJ=sin0 d0 d<J>. Due to the cylindrical symmetry of the 
scattering system in the center of mass frame, several impact 
parameters may contribute to the same scattering angle. The 
sum in equation 13 accounts for this. For 0<0r, n=3; for 0>0r, 
n=l, where 0r is the rainbow scattering angle.

In this study the semiclassical trajectories are 
calculated, from b=0 up to bmax» in increments of Ab. For 
b>bmax» the transition probability, Pjj»(b)=8j j >. In practice, 
trajectories are performed up to the lowest impact parameter 
for which the final rotational state probability remains in 
the initial state. At each impact parameter the trajectory is 
integrated until all rotational state probabilities have 
converged to four decimal places.

The calculation of the DCS from equation 13 is 
typically carried out at 1° increments. To do this, it is 
necessary to interpolate the opacity and deflection functions 
between the values generated from the trajectory calculation. 
This is carried out by a four-point Lagrange interpolation 
method38 over 0(b) and Pjj-(b). The derivative, d0/db, at a 
given value of b, is found by a four-point Lagrangian 
differentiation method39 using the numerical deflection 
function values, 0(bj.).

dqjr(e)
dta

f  bj Pn(9(b,))

"  1 Si" 8 |%J (13)
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The DCS gives detailed information on the scattering 
dynamics, however, the overall strength of the scattering 
transition is determined from the integral cross section,
Oj j -. We obtain Gjy by integration of equation 13 to give

°jj=27t£ o dbbPji(b) (14)

Detailed examination of the integral cross sections will be 
given in section V.

iv. Results and Piflcuggjgp

The mass combination employed in the following 
calculations is that for an argon atom (mRg=40 amu) colliding 
with a hydrogen fluoride diatom (mH=l, mx=19 amu). The 
relative collision energy is 135meV; this corresponds to a 
relative collision velocity of 1.40 km/s. The initial diatom 
rotational state is j=0. For these initial conditions, the 
highest final rotational state is j'=6.

A. Deflection functions

We first examine the effect of the different potential 
surfaces on the deflection function; see figure 3. As 
expected,40 the rainbow angle scales monotonically with an 
increase in well depth, while no minimum is observed in the 
deflection function for the repulsive REP surface. At a given 
collision energy, the rainbow angle may be used as a 
diagnostic for the attractive well depth of a potential 
surface.

From Fluendy and Lawley,41 an empirical formula,
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relates the rainbow angle to a ratio of the spherical average 
of the potential well depth, es, to the collision energy,
Econ* Using the Co parameter, from each of the Lennard-Jones 
potentials, we can calculate an expected 0r. As shown in 
Table 3, the 0r values thus calculated are in good agreement 
with the rainbow angles from the trajectories.

Backscattering is generally considered to be a 
diagnostic of the repulsive part of the potential. Even 
though care was taken in constructing the potentials used 
here, the repulsive parts of each of the surfaces show some 
differences. The greatest difference between the surfaces is 
in the 'hardness* or steepness of the surfaces. We can 
quantify this by calculating (3v/0R)y for each of the surfaces 
at the collision energy, the values are listed in Table 4.
The differences in the repulsive walls are evident in figure 
3 by comparing the scattering angles at low impact 
parameters, i.e. b<6 bohr. For impact parameters in the 
range, 3<b<5 bohr, differences in scattering angle of 
approximately 15° are observed between the S2 and REP 
surfaces, with surfaces Si and S1/2 lying between S2 and REP, 
in order of the steepness of the potential. These differences 
in the deflection function will affect the differential cross 
sections, as shown below.

B. Opacity functions

We now examine the opacity functions from each of the 
test potentials. These are shown in figures 4-6. First 
examine the opacity functions for the REP potential. The 
opacity function for j =0—>j ' =0 (figure 4) on this surface 
shows a steadily increasing curve up to unity at b-7.0 bohr.
No additional structure is observed in this opacity function. 
For the higher final rotational states (figures 5 and 6) the 
opacity functions show an essentially flat or slightly
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decreasing function at low b, then drops rapidly to zero 
after some characteristic value of b. The bmax value for each 
j' decreases as j' increases.

Comparing the opacity functions for Si/2 to REP, we can 
see that the addition of even a shallow attractive well has 
profound effects on the opacity function. For the 0-»0 
transition, (figure 4) the opacity functions are quite 
similar through b~5.5 bohr, with the probability increasing.
At b=5.5 bohr the opacity function on the Si/2 surface drops 
abruptly to a minimum, then rises to unity near b=ll bohr.
The structure observed in the 0-*0 opacity function is 
mirrored in the 0-»l transition probability. The peak seen for 
0—>0 at b-5.5 bohr is complemented by a minimum for 0—>1, 
likewise, the minimum at b-7.0 bohr in 0— >0 is complemented by 
a peak in the 0-»l opacity function. This 'coupling" is not 
observed in any of the other opacity functions on the Si/2 
surface.

The j'=2 opacity function on the Si/2 surface (figure 5) 
shows a steadily decreasing function, which fades slowly to 
zero near b-7.0 bohr. The higher j' (i.e. j'£3) show a peak 
in the opacity functions, at decreasing values of b with 
increasing j '. After the peak the probabilities fall rapidly 
to zero, as was seen on the REP surface. In fact, all of the 
attractive surfaces exhibit this type of behavior for the 
high j' opacity functions. Furthermore, for j'=4 and 5 
(figure 6) the opacity functions for all of the surfaces have 
very similar form. This indicates that the scattering 
dynamics for the highly inelastic collisions are determined 
mainly by the repulsive part of the potential. The role of 
the attractive part of the potential for these high Aj 
transitions is to increase the total inelasticity of the 
surface. This is indicated by the greater Pj-(b) values on the 
surfaces with deeper well depths.
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Returning to the opacity functions for the 0—>0 and
0—>1 transitions, (figure 4) we see that the coupling between 
j'=0 and j'=l observed on the S1/2 surface is also present on 
the Si and S2 surfaces. Doubling the attractive well depth on 
surface Si (over the S 1/2 surface) has shifted the first peak 
in the j'=0 opacity function 0.7 bohr to a lower impact 
parameter compared to the S1/2 surface. The change in the 
potential has also caused the minimum in j'=0 opacity 
function to be deepened and broadened.

Another doubling of the well depth (on the S2 surface) 
causes a further shift in the position of the first peak and 
minimum in the j '=0 opacity function of 1.6 bohr to lower 
impact parameter. In addition, the increased well depth gives 
rise to more complicated structure in the impact parameter 
range, b=5-8 bohr, for j'=0 and 1. This b range corresponds 
to the internuclear separation in the region of the 
attractive well for the potential. Oscillations observed in 
the j'=2 opacity function (figure 5) on the Si surface are 
present for S2 . Like the oscillations observed for j'= 0 and 
1, the minimum and peak in j'=2 are shifted to lower impact 
parameters on the more attractive surface.

C. Differential cross sections

As seen in the above analysis, addition of the 
attractive well to the scattering potential leads to rich 
structure in the opacity functions. However, the observable 
in a scattering experiment is the differential cross section. 
Using equation 13, we calculate the DCS using the deflection 
and opacity functions from the trajectory calculations. In 
this section we examine the DCS for several j' on each 
surface to determine the extent that the features seen in the 
opacity functions are retained in the DCS.
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In figures 7-9, the DCS for j =0— >• j ' =0-5 are shown. 
Figure 7 shows the DCS for j'=0 and 1. The DCS on the REP 
surface for j'=0 decreases monotonically from the strong 
forward, elastically scattered, signal, to a flat signal in 
the backscattering region. As with the opacity functions, no 
structure is apparent in the low Aj DCS for the REP 
potential. In contrast, each of the L-J type potentials 
exhibits the characteristic rainbow scattering peak near 3 5°, 
15° and 8°, for the S2, Si, and S1/2 surfaces, respectively.

Each of the L-J surfaces exhibits a peak in the opacity 
function for j '=0 at low impact parameter. The peak occurs at 
b-2.9, 4.7 and 5.4 bohr on the S2 , Si and S 1/2 surfaces, 
respectively. The scattering angles corresponding to these 
impact parameters on the three surfaces are 0-120°, 60° and 
30°. Inspection of the j '=0 differential cross sections 
reveals a 'shoulder* in the area of each of these scattering 
angles on the respective surfaces. Concomitantly, there is a 
'dip' in the j'=l DCS appearing at the same scattering angles 
as the shoulder in the j'=0 DCS on each of the surfaces. This 
dip in the DCS corresponds to the position of the first 
minimum in the j'=l opacity function for each of the L-J 
surfaces.

Like the well known rainbow feature, the *shoulder/dip" 
features in the j'=0 and 1 DCS shift in a monotonic fashion 
to higher scattering angles with increasing well depth (at a 
fixed collision energy). This type of scattering feature, if 
observable experimentally,42 may be of use in obtaining 
information on the potential energy surface from rotationally 
resolved experimental scattering data.

On surface S2 / there is an additional feature which 
appears in the low impact parameter region, near b=4.5 bohr, 
for the j'=0 and 1 opacity functions. These additional 
features manifest themselves in the j '=0 and 1 DCS as a dip
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and bulge, respectively, near 0-70°. These additional 
features in the S2 DCS can be attributed to the increased 
depth of the attractive well. The j'=0 opacity functions for 
surfaces Si and S 1/2 show a dip n the rainbow scattering 
region, while the S2 surface shows a strong oscillatory 
structure. This structure also may be attributed to the 
increased well depth of the S2 surface. However, much of the 
oscillatory structure seen in the opacity function for j'=0 
and 1 on this surface is obscured by the rainbow peak, near 
35°.

Figure 8 displays the DCS for j'=2 and 3 for each of 
the surfaces. Forward scattering, near 0=0, into j'=2 is not 
observed for the REP surface. The strictly repulsive nature 
of this surface does not support higher Aj transitions in the 
forward direction, which is also observed in the DCS for 
j'=3. The structure seen in the opacity functions for j '=2 on 
the Si and S2 surfaces is observed as a dip in the DCS near 
0=60° and 110°, respectively. For j'=3, the sharply rising 
DCS to the backscattering direction indicates the existence 
of a rotational rainbow. This peak moves to higher values of 
0 for each of the L-J surfaces in order of increasing well 
depth.

For the highly inelastic collisions leading to j'=4, 
only the Si and S2 are capable of supporting forward 
scattering. It should be noted that the ordering of the 
rotational rainbow angle has switched. The order goes 
according to attractive well depth, with the rotational 
rainbow angle on the REP surface being largest and the angle 
shifting to lower angles as the well depth increases. It is 
also noted that the DCS for each of the surfaces are taking 
on the shape of that for the REP surface. This indicates that 
the very inelastic collisions are governed most significantly 
by the repulsive wall.
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3Lt Compariaon of Integral Croaa SfiC.ti.onfl . on a
Ar+HF Surface Uaina Claaeical and Seniclaflflical
Methoda

In this section we examine integral cross sections for 
rotationally inelastic scattering of HF from a “Rg" atom on a 
prototype potential energy surface using classical and 
semiclassical methods. The goal is to investigate the effects 
of changing the atomic collision partner in the scattering 
dynamics. We achieve this by altering the mass of the rare 
gas atom in the calculations. The surface used for each mass 
combination is the Hutson H6 for Ar+HF(v=0) .20 In order to 
compare some of our findings with previous scattering 
experiments,43 an initial rotational state of j=l in these 
calculations was used.

In order to compare the classical calculation directly 
with the semiclassical method we employ an ensemble method 
for the classical trajectory.44 In this method a "swarm" of 
trajectories is calculated simultaneously in the average 
potential field generated by the swarm. The equations of 
motion for the ensemble trajectories are given by

where i refers to the i-th trajectory in the swarm, the 
average <>r refers to the ensemble average over all 
trajectories in the swarm. The reduced mass of the diatom is 
represented by |l and M is as defined in eq.5.

As the trajectory swarm progresses, the time dependent 
"rotational state" of a diatom in the swarm is calculated 
from

pri = - V rV(R,r,)

PR = -(vRV(R,r)) (16b)

(16a)
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(1 7 )

where j; is the continuous rotational angular momentum vector 
of the i-th trajectory. We bin the 5i by round off, i.e. the
i-th trajectory contributes to the j-th integer rotational
state box, if j - y  £ | jj| < j + y  .

Another binning method, truncation,45 which ensures 
that an energy-inaccessible transition has not been made, has 
been tested. We find that truncation greatly overestimates 
the j —>j-1 transition at high impact parameters giving a 
transition probability of -50%, where the round-off method 
showed a zero transition probability. Truncation showed no 
significant differences from rounding in the rotational state 
probabilities for other transitions. The weighted binning46 
method was also tested. This method greatly increased the 
transition probabilities for j'=j±l. This increase translates 
into a -50% larger integral cross section for these 
transitions when employing the weighted binning method over 
the cross section when binning by round off. Cross sections 
for all other transitions are within 5% of each other.

In this paper we will employ the more widely accepted 
method of round off for binning the classical rotational 
states.47 Binning the jj allows the determination of the 
classical time-dependent rotational state probability,
P |'( t ;b ) ,  for the swarm, given by

Pj-1 (t; b) = (18)
N

where Nj«(t) is the number of trajectories in a j-rotational 
state bin at a given time, t, and N is the total number of
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trajectories in the swarm at a given impact parameter, b. The 
classical opacity function is given by Py*(t;b) as t— The 
integral cross sections are calculated using eq.10.

We have carried out scattering calculations using the 
semiclassical coupled states and classical ensemble models 
for Rg+HF collisions (Rg has the mass of He, Ne, Ar or Kr) at 
several relative collision energies between 50 and 875 meV 
from a j=l initial state. The scattering results for the 
different mass combinations are labelled with the 
corresponding Rg symbol. In figure 10a we present integral 
cross sections for each of the mass combinations as a 
function of collision energy. The classical integral cross 
section for j = 1—>j ’=0 transition show an essentially flat 
trend with both collision energy and mass combination. The 
exception to this trend is when He is the collision partner, 
these integral cross sections show a slight downward trend 
with increasing collision energy. In the classical model, the 
He results, at the higher collision energies, are 
approximately 10-20% lower than those for the other mass 
combinations.

The semiclassical cross sections show an interesting 
trend with collision energy. At low energy, the cross 
sections, <Ji0, for the Ne, Ar, and Kr collision partners are 
small and increase to a maximum at Ecoll=174 meV, then tail 
off slowly at high collision energy. The He cross sections 
show a similar decrease from a large to smaller cross section 
with increasing collision energy. As with the classical cross 
sections, the semiclassical cross sections for He as the 
collision partner are much smaller than those for Ne, Ar, or 
K r .

None of the other integral cross sections show this 
type of behavior with collision energy. In figure 10b we show
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the classical and semiclassical cross sections for the 
transition j = 1—>j ' = 2. The classical cross sections again show 
an essentially flat trend (with, perhaps, a slight decrease) 
with increasing collision energy. The semiclassical cross 
sections are also essentially flat with increasing collision 
energy, except for the decrease in the cross section where 
the <Tio goes through a maximum. The He cross section, however 
shows a modest increase at Econ  = 174 meV. For the remainder of 
this section we will focus our attention on the 1—>0 
transition.

To get a better understanding of the collision dynamics 
leading to the cross sections we present the opacity 
functions for each of the mass combinations at several 
collision energies in figure 11. A similar structure in the 
opacity functions is apparent for all mass combinations and 
collision energies. For b<3.5 bohr, there is an initial flat 
region, then Pi0(b) falls off dramatically near b~4-6 bohr.
The He transition probability for j = l—>0 drops to essentially 
zero in this region. Between the impact parameters b-6-8 
bohr, the 1—>0 transition probability surges to a maximum near 
b=6.5, then falls off to zero at impact parameters, b>8.0 
bohr.

In an earlier study on Ar+HF scattering26̂ ) the first 
dip in the opacity function was attributed to a "balance" 
between the attractive and repulsive parts of the potential 
energy surface. This balance corresponds to a "zero action" 
trajectory, which leaves the diatom essentially in its 
initial rotational state. In the impact parameter range where 
the 1—>0 probability shows the dip, the elastic scattering 
probability is above 80% in most cases. Close examination of 
the opacity functions shows that the balance trajectory 
shifts to higher impact parameters with increasing collision 
energy.
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In figure 12, typical plots of the elastic coupling 
potential

at a fixed relative collision energy, Ecoii=173 meV, at 
several impact parameters are shown. We now employ these 
plots to help explain this shift in the opacity functions 
described above.

In Chapter 4 we will show that the dynamics is governed 
by the elastic coupling potential, Vjj(t). For impact 
parameters where the potential goes positive, b<5.5 bohr, we 
may break up the coupling potential into components from the 
attractive (Vjj(t)<0) and repulsive (Vjj(t)>0) regions, in 
figure 12 we can see that the contribution to the dynamics 
due to the attractive part of the potential for b<5.5 bohr is 
essentially constant. However, it is clear that the 
contribution from the repulsive part of the potential 
decreases with increasing b. In figure 13 we plot the 
coupling potential at a single impact parameter for the Ar+HF 
mass combination at several collision energies. As the 
collision energy is increased, the trajectory accesses more 
of the repulsive part of the potential, thus the repulsive 
contribution to the dynamics at a given impact parameter is 
increased. Concomitantly, the attractive contribution is 
decreased with increasing collision energy. These changes in 
the coupling potential with b and Econ  explain the shift of 
the balance trajectory to higher impact parameters with 
increasing collision energy.

In figure 11 we observed that the largest contribution 
to the integral cross section comes from the impact parameter 
region, b-6-8 bohr. To highlight this, we present the b 
weighted opacity functions in figure 14. It is apparent from

(19)
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figure 14 that the greatest contribution to the integral 
cross section does come from this impact parameter range. 
Since the bulge in the b-weighted opacity functions is in a 
region where the potential is always attractive, it should be 
clear that the coupling between the j=l and j=0 states is 
driven by the attractive part of the potential.

In figure 15 we present the classical b-weighted 
opacity functions for the same mass combinations shown in 
figure 14. First, we note that the classical transition 
probability for 1—»0 is ~6X smaller (note the different scales 
in figures 14 and 15) than in the semiclassical model. (The 
total transition probability in the semiclassical model must 
be degeneracy weighted.) Second, these plots show that the 
classical integral cross sections are not dominated by 
transitions in the impact parameter range, b~6-8 bohr, as in 
the semiclassical model. This is a crucial difference between 
the classical and semiclassical models. The quantum treatment 
of the diatom rotational states allows a strong coupling, in 
the attractive region of the potential, between the j=l and 0 
rotational states which is not seen in the classical model.

We now examine the mass effects on the integral cross 
sections. By changing the reduced mass of the collision 
system (i.e. the Rg collision partner) at a given relative 
collision energy, we are able to control the relative 
collision velocity. To investigate the effects of the 
relative collision velocity on the integral cross section we 
plot the semiclassical and classical integral cross sections 
for all mass combinations vs collision velocity in figure 16.

The classical integral cross sections show a linearly 
decreasing trend with increasing collision velocity. The 
semiclassical cross sections, for all mass combinations, lie 
along a single curve as a function of collision velocity. The 
peak in the semiclassical integral cross sections comes at a
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collision velocity of ~1.40km/s. Each mass combination peaks 
near this collision velocity, except He. The calculated 
collision energy to achieve the 1.40km/s collision velocity 
for He+HF is 33.85 meV. At this low collision energy the 
trajectories show complex behavior, i.e. trapping and 
orbiting. The simple approximations used in this study 
calculate the cross sections break down under these 
conditions.

To explore the decrease in the integral cross section 
with collision velocity we recall that the integral cross 
section is dominated by the impact parameter range, b~6-8 
bohr. In figure 14 it is seen that as the collision energy 
(velocity) is increased, the contribution to the cross 
section from this region is decreased. In figure 17 we plot 
the coupling potential at an impact parameter of b=7.0 bohr 
at several collision velocities. With increasing collision 
velocity the interaction time is correspondingly decreased, 
reducing the overall action for the trajectory. As we reduce 
the collision velocity below 1.40km/s, the probability for 
T<=>R transfer decreases and the integral cross section 
decreases.

YI_, Conclusions

In this chapter we have attempted to correlate specific 
features in the observable differential cross sections for 
rotationally inelastic scattering to the potential energy 
surface. We have seen that in addition to the “impact 
parameter rainbow' and the rotational rainbow, the potential 
surfaces studied here exhibit another type of feature. This 
feature appears as a shoulder in the elastic DCS and a dip in 
the slightly inelastic (j'=j+l) DCS. Specifically for the 
system studied, a "shoulder/dip' feature was observed in the 
j'=0 and j'=l differential cross sections. This feature 
shifted in a "rainbow-like" manner to higher scattering
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angles as the attractive well depth on the potential surface 
was increased. Additional structure in the elastic and 
slightly inelastic opacity functions was observed on the 
surface having the deepest attractive well depth.

In addition we have presented integral cross sections 
for 'Rg'+HF ('Rg* = He, Ne, Ar, Kr) rotationally inelastic 
scattering using semiclassical and classical trajectory 
calculations. The classical and semiclassical cross sections 
are found to be qualitatively different as a function of 
collision velocity. The classical cross sections decrease 
linearly with increasing collision velocity. The 
semiclassical integral cross sections peak at a velocity near 
1.40 km/s for each mass combination. The differences between 
the classical and semiclassical results are due to a strong 
coupling between the j=0 and 1 states at impact parameters 
corresponding to the attractive minimum, i.e. b=6.0-8.0 bohr, 
in the semiclassical model.
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Table 1. Position of V(R,y=0)=135 meV for each of the model 
potential energy surfaces.

1 R fbohrl
Surface 1 5.33
Surface 2 5.52
Surface 3 5.16
Repulsive 5.35
surface
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Table 2. Lennard-Jones parameters for the potential surfaces 
employed in this calculation. The Ox for the S2 surface are 
shifted -O.lA; Ox. for the S2 surface are shifted +0.1A from 
those given in the first part of the table. Potential 
parameters for the R14 surface are given in the second part 
of the table.

X Ok [A] Si
Ex. [meV]

s2
Ex. [meV]

Sl/2
ex [meV]

0 3 .12 17.6 36.2 8.81
1 3.10 3.73 7.46 1.86
2 2.95 3.93 7.86 1.96
3 3 .20 1.31 2.62 0. 655
4 3.12 0.843 1.696 0.424
5 3 .01 0.0268 0.0536 0.0134

X Ok [A] REP 
ex [meV]

0 2.85 17.6
1 2.85 3.73
2 2.85 3.93
3 2.85 1.31
4 2.85 0.843
5 2.85 0.0268
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Table 3. Comparison of rainbow angles calculated from 
equation 15, using £o as the well depth and the collision 
energy of 135 meV, to the trajectory result on each potential 
surface.

£0 [meV] 0r H 0r E°]
ea. 15 trajectory

8.81 7.48 6.94
17.6 14.9 14.7
36.2 30.8 35.9
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Table 4. Derivatives of the potential with respect to R at 
Y=0 at the energy V(R,0)=135 meV. Also given is the value of 
R at this point.

Surface R [bohr] - Ov/dR)v=o
Si 5.33 529.2
s 2 5.33 656.2

S l / 2 5.33 428.4
REP 5.35 363.0
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Figure 1. Lennard-Jones and repulsive potential energy functions as a 
function of R at fixed gamma.
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Chapter 4
Simulation of the Ar+HF Scattering Experiment

I_, Introduction

The classical trajectory method has been a workhorse in 
molecular dynamics calculations since its first applications 
to chemical reactions in 1965.1 The method has been employed 
to study such widely diverse systems as the H+H2-»H2+H 
reaction and, more recently, protein dynamics simulations.2 
The method has proved reliable in many applications.

Despite the many successes of the classical trajectory 
method for predicting reactive and scattering dynamics for 
small systems (i.e. two to six atoms), many deviations 
between classical and quantum dynamics have been reported.3 
These discrepancies have led to the acceptance of the 
importance of quantum effects, arising from tunneling, zero- 
point energy and resonances, in reaction dynamics.4

Exact quantum methods have been developed for studying 
inelastic scattering processes5 and have had great success in 
reproducing experimental scattering results.6 While these 
methods have proved valuable for the study of systems 
containing a small few number of electrons, the methods are 
still too cumbersome for practical application to many larger
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systems. Many approximate techniques have been devised to 
reduce the number of close-coupled equations required for 
fully quantum calculations.7 In particular the infinite order 
sudden approximation (IOSA)8 has proved to be an excellent 
method for describing rotationally inelastic scattering 
processes.9 The IOSA has provided invaluable insight into the 
scattering dynamics for atom+diatom collision systems, and 
has led to the elucidation of scattering features such as the 
rotational rainbow.

Even with advances in computer power and theoretical 
methods, the classical trajectory method has still remained 
an important source of information on detailed scattering 
dynamics.10 The appeal of the classical method lies in its 
ability to follow the encounter between the collision 
partners, and in the intuitive link between the scattering 
dynamics and the potential energy surface governing the 
collision. This combination of benefits provides valuable 
insight into the scattering process and the nature of the 
collision.

Another important function of the classical trajectory 
method is to provide a benchmark to which scattering results 
from other methods may be compared. It is in this capacity 
that allows what are termed “quantum effects* to be defined. 
In this sense, deviations between classical and quantum 
models establish the existence of a quantum effect for a 
particular system. Comparison of the theoretical results to 
experimental observations indicates the importance of quantum 
effects (if found) in the description of the natural process.

In this Chapter we present a method for the direct 
simulation of a scattering experiment using classical 
trajectories. The method is then applied to rotationally 
inelastic scattering of hydrogen fluoride from argon. The 
experiment being modeled is that of Rawluk, et al.11 In this
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experiment a beam of HF molecules is crossed by a second beam 
of Ar atoms. The scattered HF is detected by means of a 
laser+bolometer detection system.12 The experimental setup 
provides single collision conditions and the detection is 
final rotational state selective.11 At the collision energies 
of this experiment vibrational excitation of the HF by 
scattering is not energetically permissible.11

In Section II the computational methods are presented. 
These include the standard classical trajectory methods and 
methods for calculating the center of mass differential cross 
section, we also present the method for transformation of the 
center of mass results into the laboratory frame for 
comparison with experimental results. The method for direct 
simulation of the experimental conditions is also presented. 
In Section III we discuss the results of these calculations. 
We compare the results from more standard methods of 
calculating laboratory frame differential cross sections with 
our simulation method. We also examine the effects of the 
potential energy surface on the scattering dynamics.13 The 
classical results are compared to the experimental 
differential cross sections11 in Section IV. We also compare 
the classical and experimental results with fully converged 
quantum close-coupled results.14 Conclusions on the methods 
and the classical to quantum comparison are made in Section 
V.

II-. Calculations
A. Classical trajectory method

The classical Hamiltonian, Hci, in Cartesian 
coordinates for an atom+diatom collision system is given by



where R and P are the relative position of the atom to the 
diatom center of mass and its conjugate momentum vectors, 
respectively; r is the diatom intramolecular bond vector and 
p its conjugate momentum. The interaction potential between a 
closed shell atom, A, and I state diatom, BC, is given by 
V(R,r), and is single valued. The reduced mass of the 
collision system is given by

M = -  —v  ------------------------------------------ (2)
mA + mB + mc

where mx is the mass of atom X. The diatom reduced mass is 
given by

= |3) 
m B + nip

The classical equations of motion, given by the 
solution of Hamilton's equations of motion, are

P = — VrHcI ; R = VPHC| (4a)
p = -VrHcl ; r = VpHcl (4b)

Equations 4 comprise the twelve simultaneous differential 
equations describing the motion of the particles. Integration 
of equations 4, from a given set of initial conditions, is 
performed by a variable step size GEAR integrator.15

In the rigid rotor approximation, the length of the 
intramolecular bond vector is set to the equilibrium bond 
length, re . Within this approximation the interaction 
potential reduces to a function, V(R,y), of R and y, the 
intermolecular separation and the orientation angle between 
the vectors r and R, respectively. Due to the cylindrical 
symmetry of the scattering system the initial intermolecular 
vector, Ri=(0,b,Rz), is set up with Rz large and b as the
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impact parameter. The initial momentum vector is given by 
P= (0, 0, - (2MEcon ) 1/2) . initial trajectory conditions are 
specified using standard methods.1,16 The exception to the 
standard methods given in references 1 and 16 is the 
selection of b for the trajectory. Here we follow the methods 
of Raff, et al.17 and Barg, et al.18 The method of references 
17 and 18 is to select b linearly, rather than quadratically. 
This allows a more efficient sampling of the impact parameter 
region where the more interesting scattering dynamics occur. 
Of course, when using linear sampling methods, the individual 
trajectory result must be appropriately weighted.18

For a given set of initial conditions we compute a 
trajectory by solution of equations 4 until some *end' 
criterion has been satisfied (i.e. the particles have 
separated to some large distance, typically R>25 bohr). The 
final trajectory conditions are then determined. These 
results are labeled with the impact parameter of the 
trajectory. The scattering angle, 0, is the angle between the 
initial and final relative momentum vectors, P and P', given 
by

0 = arccos (5)

The final rotational state of the rotor can be 
determined from the continuous rotational action vector given 
by

hj  = r  x p (6)

i - | 2Classically, the rotational energy is given by, Erot = B j  , 

where B=h2 (2\ir2) is the rotational constant of the diatom 

and j is the magnitude of the rotational action. Quantum
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mechanically, the rotational energy is, Erot = Bj(j + l), where j
is the rotational quantum number. Equating the two 
expressions for the rotational energy we get a relation 
between the classical and quantum results

where 5 is defined as the continuous "rotational quantum 
number* resulting from the classical trajectory. Following 
the quasi-classical philosophy we now "bin" 5 into integer 
boxes to mimic the quantum result. The binning method most 
often used is a simple round off,19 where the trajectory 
contributes to the j'th-bin if (j '-0.5) <5'£ (j'+0.5).

B. Differential croaa section

The fundamental measure of the overall strength of a 
scattering event, X, is the integral cross section, cx, given 
as

where Px (b) is the probability of the event X as a function of 
b and Px (b)=0 for b>bmax* The angular distribution of the 
scattering event, the differential cross section (DCS), is 
given by

1/2

(7)

ox = 2lt/0b~dbbPx(b) (8 )

/0-dbbPx(b) (9)

where dGJ = d<j»d0sin0, and due to the cylindrical symmetry of 
the scattering system in the center of mass (CoM) frame the 
integral over <|> is given explicitly as 2it.



In this study we are primarily concerned with the final

dOj(e)rotational state selected differential cross section, —  ----.
dra

For each trajectory, labeled with an impact parameter, b, 0 
and j' are determined using equations 5 and 7, respectively. 
In order to determine the angular distribution of the 
scattered products from a Monte Carlo simulation the 
scattering angles are boxed. The angular boxes are centered 
at a series of angles, 0i, with a width of A0i. The width of 
A0i is chosen as fixed or variable over the range of 0. 
Variable width boxing is used to improve the resolution of 
the angular distribution where there is typically a high 
density of trajectories (at lower scattering angles for 
elastic scattering) and to reduce the error in the scattering 
region where the scattering density is low (the back 
scattering direction for highly inelastic collisions). This 
is most effective when examining state-to-state DCS. The 
fixed box width method is used when the scattered density is 
evenly distributed over the entire angular range. This method 
is used in calculating the experimentally averaged DCS from 
the Monte Carlo simulation.

A trajectory contributes to the ith angular box if the 
scattering angle for the trajectory falls within 0i± A 0i/2 . 
The frequency or 'weight* of scattering into a given angular 
interval is given by

p(rA;b), ^ l (10)
N

where N (j\0 i;b )  is the number of trajectories scattering into
the ith angular box with final rotational state j '. N is the 
total number of trajectories. Because 0 is being boxed, 
equation 9 for the DCS is rewritten as
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co incorporate the 0-box size and equation 10.

In the spirit of the quasiclassical trajectory method17 
the impact parameters for the trajectories are selected based 
upon quantum mechanically allowed values of the orbital
angular momentum, /. The relations between b and t are given 
by

Because of the non-continuous nature of the orbital angular 
momentum in quantum mechanics, dt should be replaced by A/ in 
equation 12b. In the trajectory calculations, b is selected 
from a narrow /-interval centered at ti. The value of At is 
chosen so that only a narrow strip of impact parameters is 
accessed in each /-interval. (For A/=10, Ab~0.5 bohr, at the 
collision energies and mass combinations of this study.)

Using equations 12 and substituting At for dt, equation 
11 is transformed from an integral over b to a sum over the 
orbital angular momentum to give the DCS as

(12b)

(12a)

dqj(6i) A2 A/ y
d(0 2P2 A0j sin 0j ,

X ( 2 / 1 + l ) p ( j ’.0 i; / 1) (13)

where the weight into a final rotational state and angular 
box is now labeled by /i.



Equation 13 is an adequate formulation for the DCS when 
a fixed collision energy is used for all trajectories.
However, for a simulation involving an experimental collision 
energy distribution function, the DCS is seen to be dependent 
on P. Since P affects both the transition probability and 0, 
equation 10 is modified to include the initial collision 
momentum and scattering angle for each trajectory 
contributing to a (j',0i) box. This "weighted probability" is 
given as

where the k refers to the kth trajectory and Ni is the total 
number of trajectories beginning in the 1th /-interval. Using 
equation 14, the DCS is now given as

for a constant A/.

C. Center of maee to laboratory transformation

In order to compare the calculated DCS to the 
experimental results, the Co m  DCS must be transformed into 
the laboratory (Lab) frame. The relation between the Co m  and 
Lab frames is illustrated in figure 1 for in-plane 
scattering. Due to the cylindrical symmetry of the scattering 
system about the relative collision velocity vector, the CoM 
scattering angle (±0) has two components which contribute to 
the Lab frame scattering signal. For obvious reasons the Lab 
frame vectors from these components are labeled as the 
"fast", f, and "slow", s, vectors. The Lab frame scattering

(14)

(15)
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angle, 0, is given as the angle between the initial, v1( and 
final, Lab velocity vectors.

The Lab frame DCS is given by

dof(0) dOj.(8)

where the sum (if necessary) is over the fast and slow 
contributions to the Lab scattering angle, 0 .  The 
appropriate20 transformation Jacobian, jf, in equation 16 
between the CoM and Lab frames is given by

7/ dm v’?/ =  — = ̂ c o s  e (17)
ail uf

where vi would be appropriately labelled as the fast or slow 
component. The angle, e, as defined in figure 1, is between 
the final velocity vectors, ui and vi.

Because the Jacobian includes velocity terms, this 
transformation is highly sensitive to the kinematics of the 
collision. For this reason it is standard practice14 to 
compute the CoM cross sections at a single total energy (i.e. 
fixed collision energy; single initial rotational state) and 
transform these DCS into the Lab frame. The Lab frame DCS 
from the single energy calculations would then be 
appropriately weighted, according to experimental conditions, 
and averaged for comparison to the experimental results. when 
many initial states contribute to the final signal and the 
collisional energy distribution is wide, this standard method 
can become very cumbersome to implement.

In order to facilitate the CoM to Lab transformation in 
a trajectory calculation where the experimental conditions
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are simulated by Monte Carlo integration, we employ a 
trajectory-by-trajectory CoM to Lab mapping. That is, each 
individual trajectory is mapped into the Lab frame carrying 
its appropriate Jacobian weighting prior to any averaging or 
boxing in the CoM frame. In a truly 'Monte Carlo' simulation, 
a binary choice to accept the fast or slow Lab frame vector 
would be made for each CoM trajectory. In this study we have 
decided to 'double' the 'work' of each trajectory and include 
both the fast and slow contributions in the CoM to Lab 
transformation.

Following the development of the center of mass DCS, 
the Lab frame results are also labeled by the initial t- 
interval. The Lab frame scattering angle, 0, is boxed in a 
similar fashion to the CoM, a trajectory contributes to a 
0i-box if 0  falls within 0i±A0j./2. A 'weighted' Lab frame 
probability for a scattering event into the ith Lab frame 
angular box is given as

where k refers to the kth trajectory in the t\-interval and 
2Ni is employed to account for the 'double work' of the CoM 
trajectory in the Lab frame. Finally, the Lab frame DCS is 
given by

The goal of this work is to simulate the experimental 
conditions of a resent experiment on the final state selected 
differential cross sections of HF scattering from Ar.11 See 
Appendix A for details on the Monte Carlo integration scheme 
and distribution functions employed to model these

(18)

(19)
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conditions. The translational energy weighting corresponding 
to the conditions of reference 11 is calculated from the 
initial beam velocity distributions. Treating the beam 
distributions as Gaussian, we generate a Gaussian 
distribution function for the relative collision velocity.
The mean and FWHM for the beam and relative collision 
velocities are given in Table 1. The translational energy 
weight is calculated by normalizing the sum of the relative 
collision velocity probability for each of four collision 
energies to unity. The translational energy and initial 
rotational state weighting factors are given in Table 2.

IXL« EfiU8uI.tLa And D iscu s s io n
A. Validation of the trajectory-by-trajectory 
transformation method

In figure 2 we plot the Lab frame classical 
differential cross sections (DCS) from the classical 
trajectory method using Monte Carlo integration over the 
experimental conditions and trajectory-by-trajectory 
transformation into the Lab frame (referred to hereafter as 
the MC trajectory method). We also plot the DCS resulting 
from 24 single total energy trajectory calculations properly 
weighted and summed over the experimental conditions. In this 
averaging the initial rotational state weighting is taken as 
the experimental rotational state distribution from Rawluk, 
et al.11

As can be clearly seen from figure 2 the agreement 
between the MC trajectory calculation and the weighted 
average method is very good. The greatest disagreement 
between the two calculations is in the higher final 
rotational states, j'=4 and j'=5. This discrepancy is caused 
primarily by the higher relative error (-12-20%) in the MC 
calculation due to the low probability of these states in the 
initial beam distribution and the low transition probability
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into these final rotational states. The spread in 
translational energy (due to the continuous rotational energy 
in the classical model) is wider for highly inelastic 
transitions and this also contributes to the discrepancy 
between the two methods.

The major benefit of the MC trajectory method with 
direct trajectory-by-trajectory transformation into the Lab 
frame is that the theoretical Lab frame DCS can be generated 
in a single trajectory run. This greatly simplifies the 
computational effort needed to generate the Lab DCS for 
comparison to the experimental data. In figures 3-5 we 
compare the MC trajectory Lab frame DCS calculated from 
trajectory runs using four different potential energy 
surfaces for the Ar+HF system.2122'23'24 In these figures we 
also plot the experimental DCS from Rawluk, et al.11 for each
j' •

The agreement between the experimental and theoretical 
DCS for the mid-j' states is qualitatively quite good. 
However, quantitative differences are evident. Most notable 
is the disagreement between the classical and experimental 
DCS in j'=0, there is also disagreement between the classical 
and experimental DCS in the higher j '. We will discuss the 
deviation between the theoretical and experimental DCS in 
greater detail in the next section. For now we concentrate on 
the differences between the DCS from each of the potentials.

B. Effects of the potential surface on the scattering 
dynamics

We now relate some of the potential energy surface 
features to the scattering dynamics observed for each 
potential energy surface discussed in Chapter 2. Please refer 
to this Chapter for further details on the potential energy 
surfaces. In figure 4 we can see that the scattering dynamics
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into the j'=2 (and to some extent into j ' =3 > are relatively 
insensitive to the potential energy surface. The greatest 
sensitivity to the potential for these rotational states is 
in the angular region where the j '=3 signal increases. On 
each of the potentials, the j'=3 signal falls off rapidly 
from the strong forward scattering signal (which is due 
primarily to elastic forward scattering) to a minimum in the 
angular range 0-15-30°. The first potential to show 
resurgence in the j'=3 signal is the very anisotropic HH M5 
surface21 at 0-20°. The surface with the least repulsive 
anisotropy, the NCC,23 which peaks near 0-55°, is the last 
surface to recover from the dip in the j '=3 signal. As we 
shall show below these features can be related to the 
repulsive wall anisotropy.

The greatest difference between the DCS on these 
surfaces is for the j '=0 and j'=5 states. In both cases, the 
DCS diverge drastically after a scattering angle of 0-15°. 
The strongest signal in the j'=0 state for backwards 
scattering is produced by the NCC surface, the largest signal 
for back scattering in j'=5 is generated on the HH M5 
surface. Again, we see a correlation between the repulsive 
wall anisotropy and the scattering dynamics.

It is well known from "hard wall* scattering theory25-26 
that repulsive anisotropy leads to higher angular momentum 
transfer and backscattering in atom-diatom collisions.25 It 
has also been shown that in addition to repulsive anisotropy, 
asymmetry (i.e. difference in the potential with respect to a 
cut along the diatom center of mass perpendicular to the bond 
axis) in the potential generates high angular momentum 
transfer.27 This type of behavior is displayed in the Ar+HF 
system. Over 75% of the j'=5 signal in the backscattering 
region comes from transitions out of j=0 and 1. The large 
signal for j'=5 for the HH M5 surface comes at the expense of 
the j'=0 (and j'=l) signal (the lowest in the backscattering

85



region of all the potentials). Conversely, the low j'=5
signal on the NCC surface is complemented by the highest j '=0
signal of all the surfaces.

In an attempt to quantify these observations, we 
calculate the total differential cross section, given by

dqtot(Q) = £ dqj (Q ) „
d j t i  dQ

for each potential surface. We also calculate the percent

dO j(0)
contribution of each — 1---- to the total at a given 0. The

dQ
results, at several values of 0, for selected j' on each 
surface are given in Table 3.

From an examination of the expansion coefficients,
Vx(R), (Table 2, Chapter 2), we can see that the HH M5 surface 
does indeed display the most anisotropic characteristics. A 
measure of the total anisotropy at a given R can be taken as 
a sum over the Vi(R) (excluding 1=0). The asymmetry of the 
potential surface is determined by the magnitude of the 
contribution from the odd Legendre polynomials. We correlate 
the asymmetry of the potential surface with inelasticity in 
the system by plotting, in figure 6, the fraction of the j'=5 
contribution to the total DCS at several angles in the back 
scattering region against the total odd Legendre coefficients 
at R=3.0 A. The plot indeed shows a general relationship 
between the asymmetry of the surface and the inelasticity of 
the collisions. This type of correlation may provide 
information which may be helpful in suggesting changes to the 
potential in order to provide a better fit to experimental 
data and an improved potential energy surface.
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C. Rainbow Scattering

Reexamining figures 3-5 we see that the DCS calculated 
from the different potential energy surfaces show 
qualitatively similar structure. The DCS for lower j' (j'£2) 
exhibit the characteristic strong forward peak of elastic 
scattering and show a slow decreasing signal in the 
backscattering region. The DCS for the higher j' show a 
qualitatively different structure. The strong forward elastic 
scattering signal is apparent, however after an initial 
decrease of the signal in the mid-scattering angles, the 
signal increases in the back scattering region. This type of 
structure is indicative of a rotational rainbow.28

In order to examine this structure more carefully, we 
calculate the DCS out of initial j=0 at a single collision 
energy. The DCS for this calculation is plotted in the center 
of mass frame in figure 7. The forward scattering peak is 
seen only in the j'=0 and j'=l DCS with an impact parameter 
type rainbow,29 familiar from atom-atom scattering,30 apparent 
in the j'=l DCS. The DCS flattens out in j'=2 and then shows 
a sharp increase in the sideways and back scattering for 
j'^3, clearly indicating a rotational rainbow for these 
higher j' states.

This progression in rainbow structure, from I-type to 
rotational rainbow, in rotationally inelastic scattering on 
an attractive potential energy surface was previously 
reported by Mayne and Keil.31 The dip and increase in the DCS 
for j'£3 is also seen in the experimental results of Rawluk, 
et al.11 (figures 3-5). The /-type rainbow, seen in the j'=l 
of figure 3 (fixed total energy), is washed out when the 
results are averaged over the experimental conditions (see 
figure 3).
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The disagreement between the classical trajectory 
results and the experimental data (particularly evident in 
the low j' DCS) limits our ability to conclude from the 
calculations that the progression in rainbow type has been 
experimentally observed for this system. However, it may be 
stated that rotational rainbow structure, normally associated 
with high energy collisions or strongly repulsive potential 
surfaces,32 is evident in the j'>3 experimental data for a 
system which exhibits a strongly attractive surface.14 We now 
address the differences between the theoretical and 
experimental DCS in more detail.

IV. Compariaon Between Theoretical Models and
Experimental Results

As was seen in figure 3 (particularly j'=0), the 
classical DCS from each of the potential energy surfaces used 
in this study fail to reproduce the experimental results. 
There are also marked differences between the classical DCS 
and the experimental results in the high j' (figure 5) as 
well. In order to determine if these deviations are caused by 
the classical approximation to the true scattering dynamics 
or if they are due to inaccuracies in the potential energy 
surface themselves, quantum close-coupled33 (CC) calculations 
were carried out14 on each of the potential surfaces discussed 
above.

CC calculations were implemented using the HIBRIDON 
scattering package34 and carried out by Alexander and 
Rawluk.14 Details of the these calculations are given in 
reference 14. The calculations were carried out at a single 
total collision energy, 24 total energies were required to 
mimic the experimental conditions of Rawluk et al.n The 
center of mass DCS were then transformed into the Lab frame 
and averaged to produce a Lab frame differential cross 
section suitable for comparison with the experimental
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results. A statistical analysis35 of the CC DCS on each of the 
four Ar+HF surfaces21'24 compared to the experimental results 
was performed.14 From this analysis it was concluded that the 
Hutson H6 potential24 best reproduced the experimental results 
of Rawluk, et al.14 Our comparisons between the theoretical 
and experimental DCS below will be made using the Hutson H6 
potential energy surface.

In figure 8 we compare the classical, quantum CC and 
experimental DCS for all final rotational states in the Lab 
frame. Since the CC DCS were calculated using the 24 total 
collision energies and averaged over the experimental 
conditions, we use the classical DCS calculated in the same 
manner for comparison. The experimental DCS were scaled so as 
to give the best fit to the CC DCS. This scaling procedure 
amounts to applying a single factor to all of the 
experimental data points.

As can be seen in figure 8, while quantitative 
differences remain between the theory and experiment, the CC 
DCS reproduce the primary features exhibited in the 
experimental results. Particular note is made of the 
agreement between the CC experimental DCS for j'=0, and the 
shoulder in this DCS at 0-30-40°. The classical DCS 
completely fails to reproduce the DCS for this final 
rotational state.

Another disagreement between the classical and quantum 
models of note is the too steeply increasing forward 
scattering DCS in the classical model. In the higher final 
rotational states the agreement between the classical and CC 
results, for scattering in the sideways and backwards 
directions, is quite good. This is seen quite clearly in the 
DCS for j'=4 and j'=5. Both the classical and CC DCS are 
higher than the experimental values for these final states. 
This discrepancy may indicate that the repulsive part of the
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Hutson H6 potential may not be a very accurate description of 
the actual surface for this system.

Recall that the Hutson H6 surface was fit to 
spectroscopic measurements on the Ar »HF vdW dimer. This 
surface is especially sensitive to the attractive part of the 
potential energy surface, near the attractive minimum. By 
incorporating spectroscopic data on the internal bending 
modes,36 Hutson was also able to obtain an excellent fit to 
the attractive anisotropy of this surface. However, the 
spectroscopic measurements are relatively insensitive to the 
repulsive part of the potential. It is precisely this region 
of the potential surface which is responsible for the highly 
inelastic transitions that are the major contributors to the 
high j' DCS. In light of this it should not come as a 
surprise that the fit is not as good in the repulsive region.

We now examine the j'=0 DCS. Approximately 95% of the 
total signal in j'=0 comes from either the j=0 or j=l initial 
state. These elastic or slightly inelastic scattering events 
should be sensitive to the attractive part of the potential. 
This part of the potential the region best characterized by 
the spectroscopic measurements. The 'exact* quantum 
scattering treatment of this system using the Hutson H6 
surface reproduces the salient experimental features, which 
rules out the potential energy surface as the source of the 
deviation seen in the classical DCS. Therefore, it is 
apparent from the comparison of the classical to the CC 
results that the classical dynamics fails to reproduce the 
scattering dynamics into this final rotational state.

To investigate further the differences between the 
quantum and classical dynamics, we examine state-to-state 
differential cross sections for this system at a single total 
energy. Since >95% of the j'=0 signal originates in j=0 or
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j = l, we concentrate our efforts on transitions out of initial 
state j =0 at a collision energy of 134.85 meV.

In figure 9 we plot the center of mass differential 
cross sections for the transitions j=0—>j'=0 and j=0—»j'=l.
The differences between the quantum CC and classical DCS are 
spectacular. The CC DCS shows a shoulder located in the 
center of mass frame a 0-45-60°. (Upon transformation into 
the Lab frame this corresponds to the shoulder observed at 
0-30-40° in the experimental results of Rawluk, et al.11) 
Concomitant with the shoulder in the j'=0 DCS is a hole in 
the j =0— >j '=1 DCS (this "hole" does not appear in the 
experimental data due to averaging over experimental 
conditions). Neither of these features, the shoulder in j'=0 
or the hole in j'=l, are evidenced in the classical DCS under 
the same collision conditions.

The shoulder in the j'=0 DCS cannot be assigned as an 
impact parameter rainbow. For the well depth and collision 
energies of this calculation, the rainbow would be predicted 
to appear near 0-7°, we point out that this feature is 
observed in the j'=l DCS. The feature is obviously not 
attributable to a rotational rainbow since the feature 
appears in the elastic DCS.

The feature does exhibit rainbow like characteristics, 
in that the shoulder/hole pair shows a monotonic shift with 
relative collision energy. The hole feature has been shown14 
to be sensitive to both the repulsive wall and attractive 
well anisotropy. Indeed, when the potential energy surface 
was altered to make the attractive well symmetric (i.e. 
removal of the odd Legendre terms from the expansion in the 
attractive region) the forward scattering signal for j=0—>j'=l 
went to zero.14 The features are also sensitive to the balance 
between the attractive and repulsive parts of the potential. 
This sensitivity is demonstrated by a shift in the position
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of the hole in the j = 0—»j'=l DCS to 45° and 75° when the 
calculations are made using the Douketis and NCC potentials, 
respectively.14 Because the features observed here are not 
attributable to well known scattering features in atom-diatom 
collision and because the features are observed only in the 
quantum calculation, we assign the features to new type of 
quantum interference.14

3L. Concluaiona

We have presented a Monte Carlo trajectory method with 
trajectory-by-trajectory transformation into the Lab frame.
We have shown that this method reproduces the Lab frame DCS 
calculated using the more traditional method of determining 
the center of mass DCS for a single total collision energy, 
transforming this DCS into the Lab frame, then averaging the 
Lab frame DCS of the single energy calculations over the 
experimental conditions. For this case a minimum of 24 
separate center of mass trajectory calculations were required 
to simulate the experimental conditions. Whereas with the 
Monte Carlo simulation of the experiment the Lab frame DCS 
were generated from a single trajectory run. (To generate the 
plots of figure 2 a total of ~2xl05 trajectories were required 
for the 24 single total energy runs; ~2xl04 trajectories were 
used in the MC trajectory method.)

The classical calculations were carried out on four 
recent potential energy surfaces for the Ar+HF system.21'24 
Each of these surfaces exhibit the same general 
characteristics, i.e. each predict the minimum energy 
geometry to be in the Ar-‘-HF configuration with a secondary 
minimum in the Ar---FH configuration; each of these surfaces 
also exhibits some degree of repulsive wall anisotropy.
However the potentials show subtle differences from one 
another, in that the absolute well depths and the degree of 
repulsive wall anisotropy and asymmetry differ on each
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surface. The DCS from the classical calculations are 
sensitive to each of these differences. The greatest 
differences between the surfaces are revealed in the elastic 
(or nearly elastic) j'=0 and the very inelastic j'=4 and j'=5 
DCS.

The DCS into the high j' (i.e. j'= 4 and 5) show the 
greatest sensitivity to the repulsive wall. We have shown 
that the inelasticity of the collisions is not only sensitive 
to the repulsive anisotropy, but is related to the asymmetry 
of the potential. This sensitivity may be exploited in future 
studies to suggest improvements to the repulsive part of the 
potential energy surface, a region of the potential not 
readily accessible from spectroscopic studies. In this manner 
scattering experiments provide complementary information to 
the available spectroscopic data.

We used state-to-state classical calculation at a 
single collision energy to examine the rainbow structure in 
the DCS in the center of mass frame. It is evident from the 
calculations that the progression in rainbow structure from a 
{-type rainbow to a rotational rainbow occurs in this system. 
However, the {-type rainbow in j'=l in washed out when we 
average the results over the experimental conditions. In 
order for this rainbow progression to be observed 
experimentally, better initial state selection, as well as 
improved angular resolution will be required.

The classical calculations fail to reproduce the 
scattering dynamics into j'=0. The experimental results show 
a clear shoulder in the Lab frame DCS centered near 0=40°.
The fully averaged classical DCS show no indication of this 
shoulder. "Exact" quantum close-coupled calculations were 
performed14 in order to determine if this result was due to 
problems with the potential or the classical approximation to 
the collision dynamics. The fully averaged CC DCS calculated
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with the Hutson H6 potential24 reproduced all of the salient 
features observed in the experimental DCS.11 The classical 
results on the same surface agree very well with the CC for 
the high j ' DCS. From this it was concluded that the 
classical mechanics was the source of the deviation in the 
j '= 0 DCS and that the repulsive wall of the Hutson potential 
requires additional fitting in order to bring the theoretical 
(quantum) results in line with the experiment.

In order to investigate the source of the shoulder in 
the j'=0 DCS, we examined state-to-state center of mass 
differential cross sections at a single collision energy. 
These calculations reveal a novel shoulder/hole feature in 
the CC DCS for the transitions j=0—»j ' =0/j =0— >j ' =1. These 
features were completely absent from the classical DCS. This 
shoulder/hole feature was found to show rainbow like 
qualities, but could not be assigned as a rotational or t- 
type rainbow. The feature was found to be sensitive to the 
both the repulsive and attractive anisotropy of the potential 
surface. In light of these findings the shoulder/hole 
features was assigned as a new quantum scattering feature.14 
In our continuing work we will investigate the exact nature 
of this new quantum feature.
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Table 1. Beam velocity distribution from Rawluk, et al. 
refence 11.

Mean velocity 
[km s'1]

FWHM 
[km s'1]

HF 1.21 0.241
Ar 0.559 0.0414

Relative 1.333 0.218
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Table 2. Collision energy and initial rotational state 
weighting used in calculating the Lab frame DCS from 24 
single total energy trajectory runs.

Relative 
Collision 

Enercrv [meV]
Weight

Initial 
Rotation State Weight

82.43 0.0223 0 0.280
107.04 0.4120 1 0.370
134.85 0.5206 2 0.210
165.88 0.0451 3 0.100
Total 1.0000 4 0.032

5 0.008
Total 1.000
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Table 3. Total differential cross section and fractional 
contribution of j' DCS to the total at several values of 0.

da,,(0)/daAll cross section in AVsr. Column headings f-i'=-------------
dat o t (G)/dSl  '

Hutson H6

0  [degree]
dotot (0)

aa
fo f2 f5

12 76.4 0.25 0.22 0.02
62 3.94 0.10 0.31 0.03
72 3.35 0.09 0.25 0.07
92 2.31 0.10 0.23 0.12

HH M5

0  [degree]
dotot(0)

aa
fo f2 fs

12 65.9 0.31 0.19 0.01
62 4.39 0.04 0.22 0.27
72 3.51 0.04 0.25 0.27
92 2.42 0.03 0.23 0.37

Douketis

0  [degree] dOtot (©)
da

fo f2 f 5

12 88.3 0.28 0.18 0.01
62 4.18 0.11 0.25 0.06
72 3.59 0.13 0.23 0.11
92 2.36 0.12 0.24 0.19
NCC

0  [degree]
dotot (0)

da
fo f2 U

12 81.2 0.28 0.19 0.01
62 4.04 0.23 0.24 0.01
72 3 .57 0.25 0.26 0.02
92 2.40 0.27 0.17 0.05
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Figure 1. Newton diagram relating the CoM and Lab frames. Subscripts 1 and 2 
represent the primary (detected) and secondary collision particles. The particle 
velocity vectors are tabled with v or u indicating the Lab or CoM frame, 
respectively. Final velocity vectors are primed. The vector c is the system center 
of mass velocity. Due to cylindrical symmetry about the relative velocity vector, 
g(=V]-v2), a final CoM vector with scattering angle, 0, may result in two Lab 
frame vectors with Lab frame scattering angles, 0 . The subscripts f and s refer 
to the "fast” and "slow" final Lab frame velocities. The angle between u' and v' 
is e.
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Figure 2. Comparison of classical Lab frame differential cross sections using the M C  simulation 
method and the DCS from a weighted sum of 24 single energy trajectory calculations. Trajectory 
conditions selected to mimic the Rawluk, et al. experiment of reference 11.
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Figure 3. Comparison of Lab frame differential cross sections calculated 
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conditions are selected to mimic the experiment of Rawluk, et al., reference 11. 
Also show are the experimental differential cross section of reference 11. The 
experimental cross sections are adjusted as discussed in reference 14.
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Figure 7. Classical center of mass differential cross sections calculated on the Hutson H6 potential.
Initial j = 0; collision energy is 135 meV. Error bars on j'=1 and j'=4 are representative of the other j'.
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Chapter 5
Quantum Effects in Ar+HF Rotationally Inelastic 

Scattering A Semiclassical Interpretation

I-. IMTRODPCTIOH

Recent experimental1 and computational2 studies of 
rotationally inelastic scattering of HF by Ar show several 
unexpected and previously unobserved features. These 
features apparently have a quantum mechanical origin, as 
illustrated by their complete absence from corresponding 
classical calculations.2 The computationally converged state- 
to-state "exact" quantum differential cross sections (DCS) 
also show pronounced isotope effects when compared to Ar+DF 
scattering. The realistic nature of these calculations, 
carried out on a potential energy surface fitted to 
spectroscopic precision for the Ar «HF van der Waals molecule,3 
is strongly substantiated by good reproduction of 
experimental DCS measurements for state-resolved Ar+HF 
scattering.2 Despite numerous computational investigations, 
however, the physical origin of the quantum features was not 
fully elucidated by our recent study.
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Earlier investigations into the origin of quantum 
features observed for rotationally inelastic scattering 
focussed on systems with no substantial attractive anisotropy4 
(unlike Ar+HF). As an example, the Ne+Na2 system, having 
almost the same reduced mass as Ar+HF, can be interpreted on 
the basis of rotational rainbow structure5 using the infinite- 
order sudden approximation (IOSA) and hard-shell models.6 
However, Ar+HF scattering appears to be significantly more 
complicated than systems examined previously. For example, no 
recognizable rainbow structure, attractive or repulsive, has 
yet been resolved for Ar+HF scattering.1’2-7 Furthermore, the 
large rotational energy spacing for HF violates the energy 
sudden component of the IOSA.8 Our earlier work2 showed that 
the IOSA, while giving DCS qualitatively similar to the exact 
results, was quantitatively inaccurate. We have investigated 
the origin of this discrepancy in a separate study,9 and find 
that the energy sudden approximation is, indeed, the culprit. 
Thus, in order to investigate this system, we must abandon 
the IOSA, with its computational simplicity, and use a more 
appropriate dynamical method.

Our earlier computational work showed that at least 
some of the observed features of the DCS are due to the 
attractiveness of the potential energy surface for Ar+HF, and 
to its substantial anisotropy.2 The goal of our present study 
is to further elucidate the origin of the most pronounced DCS 
features, and to investigate how such features probe specific 
regions of the potential energy surface for Ar+HF scattering. 
In particular, it would be very helpful if some of the novel 
quantum features found in our earlier study could be 
connected to specific regions of the potential energy 
surface, much as rotational rainbow structure has been 
connected to the repulsive wall in such systems as Ne+Na2.6

As in our earlier work,2 we focus attention on the 
elastic j=0-»j'=0 and the weakly-inelastic j=0—> j * =1 DCS. At
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a collision energy of 13 5 meV, chosen to mimic the 
experimental measurements,1 the j=0— >j '=0 DCS shows a broad 
shoulder centered at a scattering angle of 0=60° in the 
center-of-mass (CoM) frame. In the same region, the j=0—»j'=l 
DCS shows a sharp minimum that is very sensitive to the 
potential surface.2 In the present work, we use only Hutson's 
"H6" surface for HF in its ground vibrational state, v=0.3

The quantum close-coupling (CC) calculations reported 
here were performed using the Hibridon scattering package,10 
as discussed in our earlier work.2 The CC calculations show 
rapid quantum diffraction oscillations11 having periods of 
<2°, which we remove (using a 2°-wide smoothing function) 
simply to avoid obscuring broader DCS features.

In this paper we present semiclassical (classical 
path) calculations in an attempt to investigate the novel 
scattering features seen earlier. In order to elucidate the 
quantum origin of the effects, we compare these semiclassical 
results with their classical limit. Both semiclassical and 
classical methods are described in Section II. Results from 
these calculations are discussed in Section III, and lead us 
to consider a time-dependent model calculation in Section IV. 
Finally, we summarize the insights gained from the 
semiclassical and model calculations in Section V. We devote 
close attention to connecting our understanding of the 
scattering features to particular aspects of the potential 
surface and discuss the utility of these connections for 
improving the potential surface.

££* CALCULATIONS
A. SemlclaBBical Method

We use the traditional Jacobi coordinates to treat the 
dynamics. The HF bond vector is r, the displacement of the Ar 
atom to the HF center of mass is R. Because of the relatively
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light HF reduced mass, we treat the rotational states of the 
diatom quantum mechanically by expansion in a rigid rotor 
(spherical harmonic) basis set over r. Taking advantage of 
the heavy collisional reduced mass, we treat the 
translational motion in R classically using a self-consistent 
field approach.12 The Ar+HF potential is made time-dependent 
through the translational coordinate, V(R(t),r). The time 
evolution of the system is calculated using the method of 
variation of parameters.13 The approach is very similar to the 
traditional Impact Parameter method proposed by Mott14 and by 
Bates.15 However, we make no simplifying assumption for the 
classical trajectory. Such “classical path" models have been 
used extensively in the past and several excellent reviews of 
the subject are available.16

While the disadvantages of a mixed dynamics approach 
are well known,16’17 we feel they are outweighed by the 
advantages for this particular case. Since the energy spacing 
of the H F (j=0) and HF(j=l) states is relatively small (41.12 
cm*1) compared with the translational energy (1089 cm'1), the 
lack of energy conservation in the classical coordinate was 
not found to be of great significance. While the 
translational degree of freedom could certainly have been 
treated using wavepacket methods, it is not clear that the 
considerable increase in computational effort would have 
significantly affected the outcome of the full calculation. 
Finally, we did attempt a fully consistent calculation using 
the Miller-Marcus semiclassical S-matrix theory.18-19 However, 
the difficulties involved in incorporating the necessary 
phase information were formidable. (A very recent study20 has, 
in fact, used this approach to explain quantum effects in Ar 
+ HBr inelastic scattering.) Therefore, while the current 
approach has known deficiencies, we feel its computational 
ease, in combination with the dynamical insight yielded, 
outweighs these concerns. It should be noted that similar 
methods have been employed recently with great success in
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surface scattering21 and in predissociation of van der Waals 
complexes.22 Mixed dynamics methods have also been used to 
calculate state-to-state differential cross sections for 
vibrationally inelastic collisions,23 and to study fine 
structure transitions in atom-atom scattering.24 In 
considering the validity of the semiclassical model later in 
this paper (Section III), we will compare the results of the 
semiclassical dynamics to those from the exact quantum 
calculations which we carried out earlier.2

The classical (Hamilton's) equations of motion of Ar 
relative to the HF center of mass are given in Cartesian 
coordinates by:

R = ii ; P„ = -(V„ V(it,r)) ( i ) .
M

where M is the reduced mass of the collision system and the 
expectation value is over the angular coordinates of r =
(re,9,<j», for HF at a fixed R. The quantum mechanical 
equations of motion are

iflck(t) = ^C i(t)V kl(t)exp(itoklt) (2)
1

where ll> and lk> denote the rigid rotor states lj,m> and 
lj',m'>, respectively, (Oy = (Ek - , and

are the expansion coefficients. The 

potential matrix elements, Via, are given by

Vu =^k|v(R,f)|l^ (3)

This becomes V ki(t) through the time dependence of R from 
eq . (1) .
In this study we focus on transitions from initial state j=0, 
m=0 to final states j ’. Since we are concerned only with
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level-to-level transitions, the probability of scattering 
into the j' rotational level, as a function of time, is given 
by

P j ( t )  = P0_>j( t )=  I  | ( j ,m ' | 'P ( t ) ) |2 (4)

At a given impact parameter, b, a classical trajectory 
was started at large distance from the diatom and allowed to 
evolve to large times. For each b, the final scattering 
angle, 0, given by 0=arcos (Pr (t=0) • Pr (t=<») ) , is obtained 
along with the level-to-level quantum mechanical transition 
probability, Pj •(t—>°°;b) . Since we are dealing with heavy 
scattering particles, differential cross sections are 
calculated using the classical deflection function, 0(b), and 
Pj-(b) using the equation

daj (0) _ l 
dGJ sin 0 X*>.

d0
db

-l

b,
Pj'(bi) (5)

As in the standard classical treatment of elastic 
scattering,25 the sum is over all impact parameters which 
contribute to the same value of 0. Pj-(bi) is the quantum 
mechanical probability of finding the system in the final 
rotational state, j' for each such impact parameter bj.. The 
errors involved in this approximation have been discussed 
previously.26 In particular, the greatest sacrifice is the 
loss of interference information between the partial waves at 
each orbital angular momentum. For instance, rainbow 
scattering will be represented by, at best, a primitive 
semiclassical picture, in which the DCS at the rainbow angle 
shows a singularity.27 Furthermore, such features as 
diffraction oscillations will not be observed. Since the 
latter phenomenon is not yet experimentally resolvable, its 
loss is not significant for the present analysis. As will be
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shown in Section III, the quantum features observed in the 
DCS for j '=0 and 1 do not arise from this type of 
interference.

B. Classical Mean Field Trajectory Method

In order to compare the purely classical time
evolution of the system with that of the semiclassical method 
just discussed, we use the classical mean field technique.28 
Rather than computing several trajectories with random 
initial orientation individually and averaging to obtain the 
desired scattering data,29 a "swarm" of trajectories are run 
simultaneously at a single impact parameter. This swarm 
randomly samples the initial diatom orientation space, as 
required for an atom-rigid rotor collision. The equations of 
motion for the mean field trajectories are

where the subscript i denotes the ith classical trajectory. 
The symbol < > r in eq. (6b) denotes the ensemble average over
each trajectory in the swarm. As before, M is the collisional 
reduced mass and n is the diatom reduced mass. The vectors ri 
and pri are the diatom displacement and momentum,
respectively. By propagating the relative motion in the mean 
field of the potential, we ensure that the only difference 
between the dynamics of the mean field trajectory and the 
semiclassical methods is the quantum nature of the rotational 
state evolution.

During the course of integrating the trajectory swarm, 
the current "rotational state" of the diatom may be 
calculated for each of the individual trajectories by the

(6a)

(6b)
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relation

»ji = «ix Pr, (7)

where j( is the continuous rotational angular momentum of the 
diatom of the ith trajectory. By using an appropriate binning 
method, one can determine the rotational state probability of 
the classical system at any time, t. The ith trajectory

classical rotational state probability, 3}cl, is given by

where N is the total number of trajectories in the swarm at a 
given b (typically N=100) and Nj(t) is the number of 
trajectories in the jth bin at some time, t.

The classical opacity function is given by 3]cl(t;b) as 
t-»o°. The classical DCS are calculated by eq.(5), just as are 
the semiclassical DCS, only now we use the classical opacity 
function, 3^'(b). This permits a direct comparison between the
classical and semiclassical models of the scattering 
dynamics.

Classical and semiclassical deflection functions and 
opacity functions for j'=0, 1, and 2 are shown in figure 1. 
The classical and semiclassical deflection functions are so 
close that any differences in the corresponding DCS must be 
due almost exclusively to their opacity functions. The lower 
two panels of figure 1 do indeed show striking differences 
between them. The semiclassical results show weak 
probabilities into j'^2, so that the j'=0 and j'=l

contributes to the jth rotational bin if j - \  < | j(| < j + y  . The

(8 )

III. RESULTS AND DISCUSSION
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probabilities are almost 'mirror images" of each other. This 
is most clearly seen in the oscillatory structure for the 
impact parameter range of b~3-8 bohr. In contrast, the 
classical results show no such strong coupling between the 
j'=0 and j'=l states, and there is no similar oscillatory 
structure at all; the classical opacity function for j '=0 
shows essentially a monotonic increase of (T*1 (b) for b>4 bohr.

The semiclassical cross sections obtained from 
equation 5 are shown in figure 2. They are also compared with 
the purely classical calculations, and with the 'exact" 
quantum close-coupled DCS obtained earlier.2 it is immediately 
clear that the semiclassical DCS qualitatively reproduce all 
features of the close-coupled DCS except for the j=0—»j'=l DCS 
below 0=20°. We will discuss the DCS in this angular region 
later in this section. We now concentrate on the j=0—»j'=0 
"shoulder" and the j=0—»j'=l "hole* features near 0=60°, which 
we identified in an earlier publication as quantum mechanical 
in origin2. From figure 1, we can see that this scattering 
angle corresponds to an impact parameter of b~4.5 bohr. This 
is just where the semiclassical 0—>0 probability goes through 
a local maximum, with a corresponding minimum in the 0-»l 
probability. The 0—>0 shoulder and 0—>1 hole therefore are 
seen to be complementary features that are present in the CC 
and semiclassical dynamics, but altogether absent at the 
fully classical level. The order-of-magnitude difference 
between the classical and close-coupled DCS of figure 2 is a 
consequence of the divergence of the classical and 
semiclassical opacity functions in the narrow range of impact 
parameters near b~4.5 bohr.

Using the classical relation /=Mvb (where / is the 
orbital angular momentum and v is the collision velocity), 
the range of impact parameters near b~4.5 bohr corresponds to 
/-70ft. Because so little angular momentum is due to the HF 
rotation, the region of greatest interest is for total

118



angular momenta near J=70h. This is just where the CC 
calculations show their greatest sensitivity to the potential 
energy surface.2 The quantum effects identified earlier also 
arise from this J range.2 The correspondence between the CC 
and semiclassical results in this range of J's and b's arises 
because of the quantum treatment of the HF rotor in the 
semiclassical model. This suggests that the potential 
surface, in its role of coupling the rotational states, makes 
significant contributions to both the existence and location 
of these quantum features. Conversely, such features in the 
DCS should provide valuable information on the exact nature 
of the potential energy surface.

Returning now to the region of scattering angles below 
0=20°, we see virtually perfect agreement between the 
semiclassical and CC results for the j'=0 DCS, in contrast to 
a very strong peak in the classical DCS at 0=13°. The latter 
is clearly identified with the minimum seen for the classical 
deflection function in figure 1(a), yielding a classical
rainbow infinity due to the |d0/db| 1 factor in equation 5.
Although the semiclassical calculation shares this minimum in 
the deflection function, the 0-»0 probability in figure 1(b) 
is so low that the rainbow is quenched, beautifully 
reproducing the close-coupled DCS. A consequence of the 0—>0 
minimum in the semiclassical probability is the 0— >1 maximum, 
which therefore produces a pronounced maximum in the 
semiclassical j'=l DCS. The inelastic 0-»l rainbow has 
essentially completely quenched the elastic 0—>0 rainbow, thus 
preventing observation of a strong rainbow in the 
rotationally unresolved DCS experiments of Vohralik, et al.7 
That this rainbow is shifted to a larger scattering angle 
relative to the close-coupled DCS is known from other 
comparisons of primary rainbows in classical and quantum 
mechanics .30
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The above discussion allows assignment of the feature 
near lei = 10° as an /-type rainbow.6>31 The sudden drop of signal 
from the "bright* to the "dark" side of the rainbow beyond 
|0|=13° in the classical and semiclassical DCS is also well 
known.27 It is due to three impact parameter contributions to 
equation 5 for |0|<13° switching to only one contribution for 
|0|> 13°.

In our earlier publication,2 we also gave close-coupled 
DCS for scattering of Ar+DF(j = 0) —»Ar+DF(j '=0,1) for comparison 
to the HF scattering. Figure 3 displays such a comparison for 
the present semiclassical results. Away from the rainbow 
region, we find again that the semiclassical results are very 
similar to the CC cross sections (not shown here). In 
particular, the striking dissimilarities between Ar+DF and 
Ar+HF scattering are reproduced faithfully. The "shoulder" at 
0=60° for H F (j '=0) is replaced by a "dip* near 0=30° for DF; 
similarly the HF(j'=l) dip becomes a shoulder for DF(j'=l).
We seek an explanation for these changes in the opacity 
functions for Ar+DF scattering.

Figure 4 shows a comparison of Ar+DF and Ar+HF opacity 
functions. Since the translational reduced mass is hardly 
affected by the H—>D isotopic substitution, there is 
relatively little change in the classical deflection 
function, which remains indistinguishable from that shown in 
figure 1(a). Examination of the opacity functions reveals 
them to be qualitatively similar to the HF results. The 
probabilities for Ar+DF are also oscillatory and the 0—>0 and 
0—>1 opacity functions still mirror each other, despite larger 
probabilities for Ar+DF(j‘>2). However, the 0-»0 maximum has 
shifted to lower impact parameters, from b~4.5 to b - 3 .6 bohr, 
and has broadened, moving the Ar+DF shoulder substantially 
outward in scattering angle (and significantly weakening it). 
Simultaneously, there is very little 0—>0 probability in the 
entire impact parameter range of b~5-7 bohr, corresponding to
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the DCS minimum seen near 0-30°. The Ar+DF 0—>1 opacity 
function no longer has a minimum at b~4.5 bohr, so there is 
no "hole' like that seen in the DCS for Ar+HF scattering. 
Instead, the monotonic 0-»l probability for b in the range 
3.0-7.0 bohr fills in the entire DCS for Ar+DF scattering 
from 0-3O°-9O°. It is seen that shifts in the details of the 
opacity functions for Ar+DF scattering are sufficient to 
completely alter the DCS shown in figure 3.

Excellent agreement between the semiclassical 
(classical path) results and close-coupled DCS (Figure 2) 
justifies the use of the former approach. We now utilize the 
time-dependent aspect of these calculations to investigate 
the role played by the potential in producing the DCS shown 
in figures 2 and 3. To that end, we introduce a model 
calculation for the insight it yields into the details of the 
collision dynamics.

IV. THB ROLE OF THE INTERMOLBCULAR POTENTIAL: 
HQDBL CALCULATION

To exploit the full power of the semiclassical method, 
we now utilize the time-dependent aspect of the calculation 
to explore the scattering dynamics. In figure 5 we show the 
quantum mechanical time evolution of Pj • for various impact 
parameters. It is clear that there is strong coupling between 
the j=0 and 1 states at all times; indeed it is the t—x» 
manifestation of this coupling which is observed in the 
semiclassical opacity functions of figure 1. At high impact 
parameter, this coupling is not surprising since, as observed 
above, states with j '>1 have little probability; that is, P0 
and Pi sum to approximately unity. At low impact parameter, 
higher j' states are populated, but the sum of their 
probabilities is essentially decoupled from the j'=0 and 1 
probabilities. For clarity, the probabilities into other
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states are not shown in figure 5. However, no obvious 
coupling pattern was observed for these higher rotational 
states.

Noting the coupling between the j=0 and 1 rotational 
states, we attempt to examine the dynamics of the rotational 
energy exchange using a simplified two-state model. We choose 
these states to be 10,0> and ll,0>. The justification for 
this choice will be given in some detail later. The potential

matrix elements lo, o |v (R ( t ) , r ) |o ,o \  = Voo(t) and

impact parameters. Since all the diagonal matrix elements, 
<klV(t)lk>, are similar (not shown in figure 6), we set 
Vn=Voo in our model calculation. Also, since V 0i(t) is much 
less than V 0o(t), but qualitatively similar in form, we model 
V0i (t) as e V0o (t ) , where e is a constant less than 1. Finally, 
we impose the energy sudden approximation by setting O)0i=0, 
corresponding to degenerate rotational energy levels. In this 
model the quantum equations of motion, given for the full 
system in equation 2, reduce to

These simplifications allow us to examine several different 
coupling cases (weak, intermediate and strong) through the 
variation of a single parameter, e, which is a measure of the 
potential energy coupling between the rotational states. We 
employ the initial conditions c0(0)=l and ^ ( 0 = 0 .  The 
relative collision energy is 135 meV, as was used in the full 
treatments. The V00(t) are taken from these runs.

shown in figure 6 for several

iflc0(t) = Voo(t)[co(t) + ec^t)] 
i*c,(t) = Voo(t)[EC0(t) + c,(t)]

(9a)
(9b)

Using this two-state model the internal state dynamics
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reduces to the time evolution of the coefficients, c0(t) and 
Ci(t). We plot trajectories of these expansion coefficients in 
the complex plane in figures 7-9 for various values of b and 
e. In order to gain insight into the meaning of these plots, 
we note first that for e =0 (i.e. no coupling between j=0 and 
1) the equations of motion, eqs.9, become

Cj = ~ 1C’V°° (i = 0,1)
h

(10)

By writing Ci= I ci I exp (i<j>i) , where <|>i=arg (ci) , substituting 
into eq.10, and equating the real and imaginary parts we 
obtain:

—  Id-!) ;dt1 11 dt ' A
(11)

with the explicit result that

ci(t) = ci(0)exp̂-iJ(Jdt'V0o(t’)/«j
(12)

gives the time-evolution for the states. The integral in 
eq.12 is known as the action integral. Thus motion in the e=0 
case is pure rotation in the complex plane. A negative V 0o 
leads to counter-clockwise rotation in the complex plane; a 
positive V 0o gives clockwise rotation.

Consider next the effect of the off-diagonal terms in 
e q . (9). In general, if ci is itself negligible, then the time 
evolution of ci is governed by the present value of Cj (j*i). 
The equations of motion reduce to
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or

SiglKYggd))̂

(j*i)

(14 )

(13 )

The term within the braces{} is always positive. Thus, the 
change in Ci due to a nonzero Cj is a complex number rotated 
7C/2 from cj either clockwise or counter-clockwise depending 
on the sign of V0o- The amplitude of 8ci is, of course, 
governed by £.

impact parameter case. For b£6 bohr, V0o is never positive 
(see figure 6), and therefore the sense of rotation in the 
complex plane is always counter-clockwise. This is clearly 
shown for b=6.0 bohr in figure 7-9(c). Here Co(0)=(l,0) and c0 
spirals inward as a function of time. Simultaneously, Ci 
spirals outward from (0,0). Since V0o(t) is always negative, 
the rotation is counter-clockwise. The points on the figures 
are sampled at evenly-spaced time steps. Thus, the separation 
of points indicates the rate of rotation in the complex 
plane, and hence, the magnitude of Voo- At first closely 
spaced, the points become more widely spaced as the classical 
trajectory samples the most attractive part of the potential. 
Then the spacing closes up as IV00I approaches zero near the 
classical turning point. The attractive well region is 
traversed again as the particles separate, resulting in 
acceleration and finally, as R becomes large, deceleration of 
the angular motion in the complex plane. At this impact 
parameter, it can also be seen that the classical turning 
point occurs near co=(-l,0) for the low (e=0.1) and 
intermediate (e=0.2) coupling cases.

The easiest plots to analyze are those for the large

The effect of changing £ can be seen be comparing the
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panels for £=0.1, 0.2, and 0.5 at the same value of b. The 
effect is particularly obvious at high b (figures 7-9(d)). 
Clearly e controls the radial velocity at which Ci spirals out 
from (0,0). Note that at times near t=0, when co“ (l,0) that 
8ci lies along (0,1); that is, 8ci is rotated tc/2 radians 
counter-clockwise from c0, as predicted by eq.(14).

As is clear from figure 6, the magnitude of V00(t) 
decreases as the impact parameter increases from 6 bohr to 10 
bohr. The role of the V0o potential in the dynamics is seen by 
examination of figures 7-9, panels (c) and (d). The smaller 
the magnitude of V0o(t), the less c0 rotates from its starting 
value of (1,0). Therefore, for b=10 bohr, we see Co rotates 
only 60°, compared with the 350° rotation attained for b=6 
bohr, in the weak and intermediate coupling cases. (The 
pattern in the strong coupling case, £=0.5, is as might be 
expected, more complicated and will be discussed later.)

Since the sense of rotation of ci is also governed by
Voo /
it is not surprising that the modulus of Ci is influenced by 
the magnitude of V0o; the more ''time* available for rotation 
in the complex plane, the farther Ci can spiral out from the 
origin. In both the £=0.1 and £=0.2 cases, this can be seen by 
comparing panels (c) and (d) of figures 7-9. In the b=6 bohr 
case, Ci has "time* to spiral outward, and reach a significant 
nonzero value of I ci I; for b=10 bohr, this is not the case. 
Thus, the magnitude of the V 0o potential is a significant 
factor in determining the transition probability. The ability 
to rotate about the origin is a measure of the strength of 
the potential. It is closely related to the action, Jvoo( t )

dt. In Table 1 we compare this measure of the rotation, 
arg(co(°°)), and the action. (Note that the arguments given in 
Table 1 are not modulo 2k ; rotation in the complex plane 
often goes onto neighboring Riemann sheets. The branch cut is

125



along the real axis.) Clearly, both these measures diminish 
as b increases past 8 bohr. As can be seen from figure 10 
this is precisely the range of b values for which the 0—>1 
transition probability monotonically decreases.

These panels also illustrate the effect of increasing 
e. Clearly from eq.(14), e gives a measure of the radial 
component of the motion. For b=10 bohr, for example, the 
"total rotation* (action) is the same in all cases, but the 
magnitude of the radial motion clearly scales with £.

Examination of the opacity functions (figure 10) for 
varying values of e illustrates the effect of £ in coupling 
the two states as t—>°°. As £ is increased, the strength of 
the coupling between I0> and I1> is increased. This coupling 
appears as an oscillation in the opacity functions. The 
weakly coupled system (£=0.1), shows only a slight 
oscillation in the opacity functions. By the time we get to 
the very strong coupling case (£=0.5) the opacity functions 
are oscillating wildly. The origin of this strong oscillation 
can be gleaned from the figures 7-9. In particular, consider 
figure 9(c). As in figures 7(c) and 8(c), V0o controls the 
angular motion and £ controls the radial motion. In this 
particular case, though, the coupling is so strong that c0 
initially spirals very rapidly toward the origin. As the 
counter-clockwise rotation continues, it loops back on itself 
in the upper half of the plane, and spirals back out to a 
large I Co I - Clearly, then for large E, such closed loops will 
lead to a dynamics highly sensitive to the exact details of 
the potential.

Let us now examine the evolution of Co(t) and Ci(t) at 
the lower impact parameters. It can be seen in figures 7 - 9 (a) 
and (b) that for b<6.0 bohr, the rotation of Co(t) reverses 
its direction during the collision. This is evidently the 
result of encountering the repulsive part of the potential.
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This reversal, as we pass from the attractive region to the 
repulsive on the incoming part of the trajectory, and the 
retracing of its path on the outgoing part, has the effect of 
bringing Ci(t) back toward the origin. That is, at lower 
values of b the repulsive part of the potential favors the 
transition 0—>1, but the attractive part of the potential 
after the turning point forces the system back into j'=0. 
However, as b becomes sufficiently large, V0o has no repulsive 
component. There is therefore no reversal of direction; hence 
no tendency for Cj to reverse back toward the origin. At these 
intermediate impact parameters (b=5-7 bohr) the attractive 
part of the potential favors the 0—>1 transition, and we see 
the continuing outward spiral of the Ci(t) coefficient.

The actual average value of V 0i/V0o for the H6 
potential (see figure 6) is near 0.2, where the opacity 
function behaves much less dramatically than in the £=0.5 
case. In fact, the model calculations for £=0.2 nicely 
reproduce many of the features seen in the opacity functions 
for the full calculation. Therefore, we will use the model 
data for £=0.2 to discuss the opacity functions of figure 
1(b). The opacity function of figure 10(b) is qualitatively 
similar to that for the semiclassical data in figure 1(b).
This semi-quantitative agreement between the asymptotic 
results of the two-state model and the full run is our 
justification (albeit empirical) for the use of the model. By 
following detailed dynamics in several cases, we have 
established that the model is reasonable in the sense that 
P0(t) in the model and full calculations are qualitatively 
similar for the appropriate choice of coupling parameter.

The reason for the peak in the opacity function for 
j'=0 at b=4.0 bohr in the model calculation can be understood 
by examination of figure 8 (b). It can be seen from this 
figure that the c0(t) returns to (1,0) twice during the 
collision. In fact it is clear that the net action for this
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trajectory is almost exactly zero. That is, at this impact 
parameter the attractive and repulsive parts of the potential 
exactly balance each other on the incoming and outgoing 
portions of the classical path. We can see that initially 
Co(t) rotates counter-clockwise until the repulsive part of 
the potential is reached. At this point V0o(t) becomes 
positive and c0(t) retraces its initial path. The rotation of 
c0(t) continues to a point conjugate to the position where the 
repulsive part of the potential was entered. As the 
trajectory goes back into the attractive part of the 
potential, the cycle is completed by c0(t) retracing its path 
once more back to (1,0). It is this balancing between the 
attractive and repulsive parts of the potential (and the 
consequent peak in Po) that is responsible for the quantum 
feature seen near 0=30-60° in the DCS for the full system.
The generality of this zero action trajectory is apparent 
from examination of the c0(t) for e=0.1 and 0.5 (Figures 7 
and 9 (b)). In all cases the balance between the attractive 
and repulsive part of the potential is observed and the 
trajectory retraces itself and returns to its t=0 value.

Although the model calculation with £=0.2 reproduces 
the full semiclassical data reasonably well at the level of 
the opacity function (figure 10(b)), requiring that the full 
calculation and the model agree as a function of time is more 
demanding. We therefore compare coefficients from a full run 
using e q . (2) (figure 11) with those from the model 
calculation (figure 8). Clearly, from figures 8 and 11 (c) 
and (d), one difference is that Ci(t) 'rotates* farther in the 
full calculation. This is due to the presence of the d)0i term 
in the latter. Rewriting eq.(2) for a two-level system 
yields:

iftc0(t) = c0(t)V00(t) +c1(t)V01(t)exp(ici)01t)
(15a)
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iftc,(t) = c0(t)V01(t)exp(-i<o01t) +c,(t)V n (t)
(15b)

Following our earlier analysis, for V0i=0 we find that,

Cj(t) = Cj(0) e x p ^ - i j ^ d t ' j . Therefore, the overall rates of

rotation in the complex plane are not affected by the 0)0i 
term.

On the other hand, if the effect of the diagonal terms 
is ignored, then the eqs.(15) simplify to :

(16a)

(16b)

i/ic0( t ) = c, ( t ) V01 ( t) exp( ico01t ) 

iftc,(t) = c0(t)V0,(t)exp(-ia)01t)

yielding a change, 8ci, (c./. eq.(14)):

8cj(t) = |8 t^ "1|v 01(t) ||c j (t) |Jexp  i ^ j  - sign(V0, ( t ) ) ±  ci)01t

where the plus(minus) sign applies for i=0(l). One effect of 
this is to change the initial sense of rotation of Cx(t). The 
initial motion of Ci(t) is now no longer along (0,1), but 
pushed somewhat into the second quadrant. This explains why Cj 
"rotates" farther in the full dynamics. This is confirmed by 
comparing figures 8 and 11. On the whole, while it is clear 
that reinstating all the terms in the dynamics produces 
quantitative changes, the qualitative behavior - even at this 
detailed level - is still very similar.

Clearly, the model calculation has simplified the true 
inter-state coupling and neglected the O)01. However, the 
insight gained from this model has exciting implications. The

: 17:
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potentials V 0o(t) and V 0i(t) can be parameterized. (In fact 
they are often known extremely accurately for the attractive 
part of the potential.) If the V 0o(t) potential is known, then 
the elastic scattering problem can be solved by standard 
methods,32 yielding both 0(b) and R(t) for each impact 
parameter. The traditional route to inversion of potentials 
in elastic scattering33 is to first assume a parameterized 
0(b), then to use semiclassical methods to obtain the 
differential cross section. The classical deflection function 
is then optimized to give the best fit to the observed DCS. 
Finally, the 0(b) is inverted to obtain the potential. Our 
approach reduces the many-state problem to a series of 
elastic problems. Inverting eq.(5) allows one to extract the
opacity functions for each j state, at least for 0 values
beyond the rainbow. The parameterized potentials can then be 
optimized to obtain the best fit to the experimental data 
using eqs.(9a) and (9b). The insight gained from the use of 
eqs.(9) can guide the adjustment of the parameters. The
advantage of this method for potential inversion is that each
coupling element can be adjusted independently of all others. 
Clearly, the advantage of such a semiclassical framework for 
inversion is that the coupling can be optimized at each 
separate 0. A recalculation of the DCS using close coupling 
methods would require a new global solution of the DCS for 
each change in the potential. Furthermore, an inspection of 
the time evolution of the system is intuitively appealing, 
and the contribution of each part of the potential can be 
readily assessed.

 CONCLUSIONS

We have used a semiclassical (classical path) 
approximation to investigate the quantum dynamics of Ar +
H F (j =0—* j '=0,1) on the Hutson H6 potential.3 We were able to 
reproduce previous DCS obtained from close-coupled 
calculations. The time-dependent approach is readily
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implemented using the semiclassical approximation offering an 
intuitive appeal which is often more difficult to cull the 
time-independent CC calculations. (Recent work by Alexander34 
has suggested a new representation of time-independent data 
which could probably furnish most of the mechanistic details 
described here.) In particular, it is often easier to 
visualize the influence of the potential on the dynamics when 
its contributions are localized in time. In an earlier 
publication,2 we were only able to analyze whether a given 
potential feature was important or not by comparing CC 
calculations in the presence of and in the absence of that 
feature. For instance, by artificially making the repulsive 
wall isotropic, it was observed that the dip in the 0—>1 DCS 
disappeared. From this it could be inferred that the 
repulsive anisotropy was crucial for the observation of all 
aspects of the quantum features, but the extent of the 
competing contributions of the repulsive and attractive 
anisotropy could not be clearly gauged. In contrast, the 
time-dependent picture allows us to "see" how the potential 
affects the dynamics. In particular, plots of the expansion

coefficients, , in the complex plane seem to

represent a significant step forward in allowing us to 
determine the exact nature of the contribution of each region 
of the surface to the scattering dynamics.

Furthermore, for this particular system, it was found 
that all the qualitative features of the dynamics could be 
reproduced by considering the dynamics of two rotor states 
only: I 0,0> and 11,0 > . Thus the effect of the potential could 
be reduced to that of the coupling matrix elements V 0o and 
V 10. Using this two-state model, we were able to rationalize 
the features observed in our previous paper.2 Essentially, the 
quantum feature seen previously is due to the existence of an 
impact parameter for which the trajectory experiences an
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overall balance between the attractive and repulsive parts of 
the potential, resulting in a net zero action. For this 
trajectory, the collision is found to be asymptotically 
elastic, returning all flux to j'=0. Therefore, at this 
impact parameter, the 0—>0 probability (and consequently the 
differential cross section) goes through a maximum. 
Probability conservation, of course, ensures a minimum 
probability into all other channels - particularly 0—» 1 at 
this impact parameter.

This has implications for the 'inversion* of a 
potential surface from experimental scattering data. A clear 
intuitive grasp of the role played by each part of the 
potential is a great aid in guiding the adjustment of a 
parameterized potential in order to improve agreement with 
experimental input. In particular, it seems that the 
technique we have explored here shows very distinctively the 
contrasting effects of attraction and repulsion. While the 
attractive region of the potential energy surface of van der 
Waals molecules is often well characterized by potentials 
derived from spectroscopic data,3 the repulsive wall is 
usually much more obscure, and often obtained by 
extrapolation of bound state data.3’35 However, we envisage 
being able to employ the techniques explored here to 
systematically investigate the effect of small changes in the 
repulsive wall, with the goal of improving qualitative 
agreement with scattering data. Used in conjunction with 
converged close-coupled results, this could prove a promising 
approach to obtaining accurate global potential energy 
surfaces for van der Waals molecules.
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J’able 1. Comparison of the action along the classical path, 
V00dt, and final value of the argument of the c0 coefficient

in the complex plane. Note the "balanced" trajectory, at 
b=4.0 bohr, has an action and arg(co) of -0.

b [bohr] Jvoodt [ft] -arg(c0(oo))
[radian]

0 0.2676 5.356
2 0.2037 4.192
4 0.0092 0.2161
6 -0.3065 -6.128
8 -0.1882 -3.761
10 -0.0478 -0.9550
12 -0.0167 -0.3314
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Figure 1. Deflection and opacity functions from semiclassical 
and classical trajectory calculations. Plotted are:
(fi9 1(a)) the scattering angle,0 ; (fig 1(b)) semiclassical 
final rotational state probability, Pj-; and (fig 1(c)
classical final rotational state probability <Jfl, as a
function of the impact parameter, b. The initial rotational 
state is I j =0, m=0>. Relative collision energy is 13 5 meV.
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Figure 3. Differential scattering cross sections for Ar+HF 
and Ar+DF. Initial rotational state and collision energy are 
the same as those in figure 1. Only the semiclassical results 
are shown.
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Figure 5. Time-dependent rotational state probabilities from 
semiclassical calculation at several impact parameters, b. 
Initial rotational state is j=0; relative collision energy is 
135 meV. Note that the time scales in figures 5 and 5 vary 
with b. This is done to locate the turning point in the 
translational motion, near the mid-point of the time axis 
(figure 5) and to emphasize the symmetry of the time- 
dependent potential (figure 6).
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and Ci=(0,0). The initial sense of motion is a spiral in the 
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potential elements (that is, for clockwise rotation -- see 
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Chapter 6
Semiclassical Study of the Sudden Approximations in Rotationally Inelastic Scattering of Ar+HF

L  Introduction

One of the first attempts to systematize rate 
constants for state-to-state rotational relaxation was made 
by Polanyi and Woodall over two decades ago,1 as a by-product 
of measuring state-resolved populations in chemiluminescent 
reactions producing hydrogen halide products. The early 
success of their 'exponential gap' scaling rule lay in its 
ability to correlate rate constants for a wide variety of 
systems. More detailed measurements however, especially 
differential cross sections, could not be explained by a two- 
parameter empirical model. Instead, these more detailed 
studies began to reveal the dynamical role of the potential 
energy surface for rotational energy transfer.

In the last decade, scattering studies have been 
joined by high-resolution spectroscopic studies on weakly-

148



bound van der Waals molecules. Whenever it has been 
accessible, experimental high resolution spectroscopy has 
always provided the most accurate source of information on 
intermolecular forces, including those for van der Waals 
molecules.2 In particular, accurate potential energy surfaces 
have been obtained using these techniques for weakly-bound 
rare gas+hydrogen halide systems.3-4 However, such 
measurements are sensitive primarily to those parts of the 
potential capable of supporting bound states. Repulsive 
regions of the potential surface can only be obtained by 
rather extensive extrapolations of the spectroscopic 
information. In contrast, state-to-state scattering 
experiments, especially differential cross sections (DCS), 
probe the repulsive wall of the potential directly.5-6 Such 
experiments can help characterize the potential for purely 
repulsive or very weakly attractive systems.6

It is clear from the above that scattering 
measurements and spectroscopy tend to provide complementary 
information on the potential. Spectroscopic data7 for the 
Ar+HF system have been used by Hutson3 to obtain a potential 
of excellent quality in the attractive region, hereafter 
referred to as the “Hutson H6* potential. Scattering data, in 
the form of final state selected DCS from crossed molecular 
beam experiments on Ar+HF, have also recently been obtained.8 
In order to analyze these experiments, *Exact“ quantum 
mechanical close-coupled (CC) inelastic scattering 
calculations have been carried out9 using the Hutson H6 
potential energy surface.3 When the results were transformed 
to the laboratory scattering frame, and averaged over the 
experimental conditions, the agreement was found to be quite 
good for the low final rotational states, j'£2. The 
comparison of the CC results with the experimental DCS for 
the higher rotational states was poor.9 This is not 
surprising, since large Aj transitions are due primarily to 
collisions which sample the repulsive wall of the
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potential, 10•,, and this is the portion of the potential not 
directly probed by the spectroscopic studies. Again it is 
clear that spectroscopic and scattering results are best 
combined to determine attractive and repulsive regions of the 
potential surface.

Nevertheless, scattering results are not necessarily 
insensitive to the attractive portions of the potential. In 
the earlier study,9 we conducted calculations to determine the 
sensitivity of the scattering to various features of the 
potential. It was found that the state-to-state DCS, 
particularly for the j=0—»j'=0 and j=0—>j'=l transitions, 
displayed novel features with interference characteristics of 
quantum mechanical origin.9 Using the CC method, it was shown 
that these DCS were very sensitive to changes in the 
repulsive wall. Further work on this system using a 
semiclassical approach12 showed that the features were due to 
the combined influence of both the attractive and repulsive 
regions of the potential.

For predominantly repulsive systems, the theoretical 
technique most successful in extracting information on the 
potential energy surface has been the infinite order sudden 
approximation (IOSA).13-14 This approximation has also been 
invaluable in obtaining a physical understanding of 
rotational excitation due to scattering from a hard 
anisotropic core.1115 The success of the IOSA in fitting 
repulsive potentials is due to the following: the method is 
computationally fast; and, in conjunction with an additional 
semiclassical approximation,n -16 it links the local surface 
topography with the dynamics. Unfortunately, it is likely 
that the IOSA performance is poorest for precisely those rare 
gas+hydrogen halide (HX) van der Waals systems best 
characterized spectroscopically. Not only is the energy 
sudden criterion violated by the large HX rotational 
spacings, but the centrifugal sudden criterion must also be
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regarded as suspect because of the attractiveness of the 
potential energy surface.

Accordingly, calculations on the Hutson H6 Ar+HF 
potential were carried out using the IOSA and compared with 
CC data.9 The results were disappointing poor, at least 
quantitatively, in the sense that they failed to reproduce 
the 'exact* CC results at the state resolved level, thus 
prohibiting the use of the IOSA in systematically improving 
the repulsive region of the potential. Since the IOSA is such 
a frequently used tool in the analysis of rotationally 
inelastic scattering11 it would be beneficial to better 
understand these discrepancies between the IOSA and CC 
results. In particular, we use here previously developed 
semiclassical methods12'17 to understand the origins of these 
deviations. There have previously been a few systematic 
studies of decoupling approximations within a time-dependent 
framework.17-18'19 Perhaps the most comprehensive such work was 
that on the classical limit of decoupling.20

In section II, we present the computational methods 
employed in this study. In particular, we detail the 
semiclassical method together with the decoupling and sudden 
approximations used. In section III, we compare the 
semiclassical CC and IOSA results. We further relate features 
in the CC and IOSA DCS to oscillations in the semiclassical 
opacity functions. This leads us to introduce a two-state 
model of the semiclassical method. This simplification 
elucidates shortcomings of the IOSA occurring even for low 
impact parameters (i.e. repulsive collisions). Finally, we 
examine the time-dependent evolution of the system to explain 
the failure of the IOSA for high impact parameters.
Concluding remarks are made in section IV.
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Ilui C a l c u l a t i o n s
A. Time-Independent Methoda

The time-independent close-coupled (CC) calculations 
using the HIBRIDON package of molecular scattering programs 
have been described elsewhere in detail.9,21 The infinite 
order sudden approximation (IOSA) calculations are carried 
out using the standard /-initial convention.13,14

B. Time-Dependent Methoda

The time-dependent methods employed here are less 
standard than the time-independent methods. We therefore 
describe the time-dependent semiclassical (or classical path) 
method in some detail. In addition, we give explicit 
formulations for a hierarchy of approximations leading 
ultimately to the semiclassical version of the IOSA. The 
methods have been reviewed previously.17,19,22

In the semiclassical approximation for rotationally 
inelastic collisions23 we take advantage of the mass 
discrepancy between the translational and internal 
coordinates of the collision system. In this case we are 
scattering a hydrogenic diatom (HF) from a heavy rare gas 
atom (Ar). In this problem the translational reduced mass, 
given by

in ̂  + m F + m H

is large. Therefore, the relative motion can reasonably be 
treated classically. Conversely the rotational degrees of 
freedom of the hydrogenic HF must be treated quantum 
mechanically to give accurate dynamics.9
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The motion for the translational coordinate is 
governed by Hamilton's equations of motion. In Cartesian 
coordinates these are given by

R  - m ci p - _ (2 )
ap ’ br

where R is the displacement of the atom from the diatom 
center of mass, and P is its conjugate momentum. The 
classical Hamiltonian for the translational motion is given 
by

P2
H d = ^  + <V ( R)> (3)

where (V(R)) is an appropriate average of the potential 
energy over the internal coordinates.24

Propagation of the rotational degrees of freedom is 
achieved by solving the time-dependent Schrddinger equation 
for the internal state wave function25

diva)) A ,
ifl-L = Hq|*P(t)) (4)

where H q is the quantum Hamiltonian for a rigid rotor in a
time-dependent external field, V(t). The time dependence of 
H q arises from the external field as

H q = H 0 + V(t) , (5)

where ft0 is the zeroth order Hamiltonian for an unperturbed
rigid rotor. We expand the wave function for the system in an
appropriate basis set (i.e. the eigenstates of H0, the 
spherical harmonics) so that
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| 'H(t)) = X c, ( t ) | l )exp^ - iEl/ j Q  (6 )

with ci(t) being the time-dependent expansion coefficient for 
the 1th rotational state, ljm>, and Ei is the energy 
associated with the j rotational level of the 1th state. The 
time-dependent quantum equations of motion are then given by

iftck = ]Tc,Vw(t) exp(iook]t) (7)

where

and

E> (9)

We shall refer to eq.7 as being the 'full* semiclassical 
treatment, or simply ''SC*. The integral in eq.8 is given by

Vu (t) = J df Y;m( f ) V (R ( t ) , f ) Y jm(r)  ( io)

where R(t) is the atom-diatom displacement vector as a 
function of time from the classical part of the calculation 
and fc is the diatom bond unit vector. The classical and 
quantum degrees of freedom are propagated simultaneously.

The potential energy operator, V, taken as the 
interaction potential, V(R,y), is a function of R and y only. 
R is the length of the vector R(t) and y is the angle between 
£ and R (t ). In the classical trajectory, R is described in
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space-fixed coordinates.26 In this study V(R,y) is taken as 
the Hutson H6 potential for Ar+HF(v=0).3 This potential is 
selected over several other surfaces27 because it has been 
shown in previous work9 to best reproduce scattering features 
experimentally observed in rotationally resolved differential 
cross sections.8 It has also been very useful in extending 
further spectroscopic studies.28

The time-dependent probability of finding the system 
in some rotational state, k, is given by

The final probability is taken as t—»«>. In our semiclassical 
treatment a trajectory is started at some impact parameter, 
b, and run until the final rotational state probability is 
constant to three decimal places. Since we are not concerned 
with resolving the m-sublevels, the quantum opacity function 
for a given final rotational level, Pj-(b), is given as the 
sum

the angle between the initial and final classical relative 
momentum vectors, P and P', respectively. The classical 
deflection function, 0(b), is obtained from a set of 
trajectories calculated for an elastic collision between the 
Ar and HF. The (V(R)) used in the classical trajectory 
calculation is taken as the spherical average of the H6 
potential. It has been suggested that an "Ehrenfest" average 
of the potential,22’23 given by

Pk(t) = |ck(t)|2 (1 1 )

(1 2 )

The scattering angle, 0, for a trajectory is given as

(1 3 )
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be used in the classical trajectory. We have employed this 
method in our calculations and find that using the spherical 
average of the potential shows no significant difference 
between the deflection or opacity functions from an Ehrenfest 
average calculation, but with a substantial savings in 
computational time.

From the quantum opacity function and the classical 
deflection function we calculate the DCS using

where bi is the impact parameter leading to the particular 
scattering angle, 0. In the sum over i, there is one 
trajectory for 0>10r I, whereas three trajectories contribute 
for 0 £ l0 r l ,  where 0r is the classical rainbow angle.29 The 
problems associated with using this classical definition of 
the DCS are well known;30 however we find this method to be 
sufficient in our application.

dynamics that we introduce is the “energy sudden' 
approximation.31'32 This approximation is based on the 
assumption that all rotational energy levels are degenerate,
i.e. Ek=Ei. In this case, G))a=0 and eq.7 reduces to

We will refer to this as the semiclassical energy-sudden 
approximation (SC-ES). While this approximation does not lead 
to a significant savings in computational time, we will see 
in the following section that the SC-ES does allow for the 
investigation of the exact nature of any differences between 
the IOSA and a fully coupled calculation of the scattering

(14)

The first of the approximations to the full SC

toCk = X clVkl(0 • (15)
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dynamics.

In order to implement the decoupling approximations, 
we introduce body-fixed (BF) coordinates,33 in which the BF 
vector, fc, is chosen to lie along the internuclear separation 
vector, R. In this case, the time-dependent equations of 
motion are given by

i«cjm(t) = ^ c jm(t)( j 'm |V (t) |jm ) exp(io)jjt) . (16)
j

(Note that due to the axial symmetry of the potential, only 
Am=0 transitions are allowed.) Because of the similarity of 
this method to the time-independent coupled-states 
approximation,34 we shall denote the results from eq.16 as the 
semiclassical coupled-states (SC-CS) approximation. 
Essentially, the approximation involved in going from the 
full semiclassical theory to the SC-CS approximation,in which 
the m-sublevels are decoupled, is equivalent to the 
"centrifugal sudden" approximation.13-35

The final approximation required to produce a coupling 
scheme in the time-dependent, semiclassical regime equivalent 
to the IOSA is to incorporate the energy sudden approximation 
into eq.16. Thus, the time-dependent equivalent of the IOSA 
is given by

^Cjm(0 = X c jm(t ) ( j ’m | V ( t ) | j r n )  . (17)
j

We shall refer to this result as the SC-IOS approximation. In 
all of the semiclassical methods the time-dependent equations 
are solved using a standard fourth-order Runge-Kutta 
integrator. We concentrate our efforts in this paper on the
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transitions out of an initial state |j=0,m=0> at a single 
collision energy of 135 meV, the nominal collision energy of 
the scattering experiment.8-9

XXXj Result 8 and Discussion

The DCS calculated using the 'exact* CC, IOSA and full 
semiclassical methods at a collision energy of 13 5meV are 
shown in figure 1. The most notable features of the CC DCS 
have been discussed elsewhere.9-12 To summarize: (1) the 
rainbow, expected at 7°, in the elastic 0— >0 DCS is suppressed 
whereas this feature is present in the 0—>1 DCS; (2) there is 
a broad shoulder in the 0—>0 DCS at 9~40-70° with a 
concomitant dip in the 0—>1 DCS centered near 0-60°. It has 
been shown9 that these features have a quantum mechanical 
origin. Away from the rainbow angle, there is good agreement 
between the semiclassical DCS and the CC results indicating 
that the full semiclassical model provides an reasonable 
description of the collision dynamics.12

The IOSA DCS shows features qualitatively similar to 
those in the CC DCS. For instance, the rainbow in the 0— >0 DCS 
is suppressed in this approximation, whereas the 0-»l DCS does 
show a rainbow. In addition, there is a shoulder in the 0—>0 
DCS, but in the IOSA the feature has shifted out to 
scattering angles near 0-90°. The accompanying dip in the 0—>1 
DCS is also shifted to the same region.

In figure 2 we compare the full semiclassical 
calculations of the DCS with those using the SC-CS and the 
SC-IOS approximations. It is seen that the full and CS 
semiclassical results are in very good agreement, so that the 
SC-CS approximation reproduces the CC DCS rather well for 
this case. In contrast, the SC-IOS differs markedly from the 
SC results. The shoulder/dip features in the SC-IOS DCS are 
shifted to higher scattering angles. In fact, the SC-IOS
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greatly resembles the results from the time-independent IOSA 
calculation. To emphasize the similarity, we compare the DCS 
from the IOSA with those from the SC-IOS treatment in figure
3. The agreement is very good, with the exception of an 
indication of the rainbow in the SC-IOS elastic DCS. (In the 
rainbow region, a “primitive" semiclassical approximation 
like eq.14 is expected to fail catastrophically.36)

We now examine the collision dynamics within each of 
the approximations more closely. We take advantage of the 
time-dependent semiclassical framework, in which we can 
examine the contributions from individual impact parameters 
and the role of the potential as the trajectory evolves in 
time. We use these attributes to analyze the discrepancies 
between the fully-coupled SC and the SC-IOS calculations and 
relate these back to the differences between the quantum CC 
and IOSA results.

We first examine opacity functions from the full SC 
calculation and from each of the more approximate methods, 
shown in figures 4a-d. The opacity functions for the full SC 
(figure 4a) and the SC-CS (figure 4b) are almost identical, 
with the most marked difference being a somewhat smaller Pi(b) 
near the maximum at b=7 bohr in the SC-CS. This translates 
into the excellent agreement between the full SC and SC-CS 
DCS of figure 2. Comparing the opacity functions from the SC- 
ES (figure 4c) and SC-IOS (figure 4d) with figure 4a, we 
immediately see a dramatic difference attributable to the ES 
approximation.

The most obvious difference between the SC-ES and the 
full SC opacity functions is in the impact parameter region, 
5.5<b<8.0 bohr. However, the far more noticeable effect on 
the observed DCS comes from the more subtle difference in the 
range, 3.5<b<5.5 bohr, as we shall explain below. In this 
region, the peak and dip seen, respectively, in the P0 (b) and
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Pi (b) functions are shifted to a slightly lower b in the SC-ES 
(and SC-IOS) opacity functions. To highlight this shift we 
plot, in figure 5, the opacity functions for j'=0 only. We 
also show the deflection function in this plot to indicate 
the scattering angles at which the features in the opacity 
functions manifest themselves in the DCS. The DCS is obtained 
from the opacity and deflection functions using eq.14. It is 
clear that a maximum in the opacity function, in the region 
where 0(b) is single valued, will account for a peak or 
"shoulder" in the DCS. (Scattering angles less than the 
rainbow angle, 0r, result from impact parameters b>6 bohr. In 
this region the effect of changes in the Pj-(b) on the DCS is 
less obvious since three impact parameters contribute to the 
DCS.) From figure 5 we recognize that the shift of the Po(b) 
peak to lower impact parameter will cause the "shoulder" 
feature in the j'=0 DCS to shift out to higher scattering 
angles. The shift in the Po(b) peak from b=4.5 bohr to b=4.0 
bohr is responsible for the shift of the shoulder in the 0—>0 
DCS in the IOSA of figure 1. Note that, although the Po(b) has 
a larger value in the SC-IOS, it occurs at a lower b value. 
This reduced b-weighting (see eq.14) compensates for the 
increased peak height and the shoulders are seen to have 
comparable intensities.

Complementary arguments are used to explain the more 
dramatic dip in the 0—>1 DCS observed between the CC and the 
IOSA. In figure 6 we plot the opacity functions for j'=l from 
each of the SC approximations. As with the peak in P0(b), the 
dip in Px(b) is shifted to lower impact parameters in the SC- 
IOS as compared to the dip in the full SC opacity function.
We can also see in figure 6 that the dip in the SC-IOS Pi(b) 
is deeper than in the SC model. The combination of these two 
features — the shift to lower impact parameter and the 
smaller P^b) - result in the deep hole observed for the 0—>1 
IOSA DCS in figure 1.
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We have now established a connection between the 
opacity functions calculated from the various SC 
approximations and the features observed in the CC and IOSA 
D C S . We now go on to discuss the origins of the differences 
observed in the opacity functions calculated using the SC and 
SC-ES methods. Looking at figures 5 and 6 we see that there 
are two distinct regions in the opacity functions. In the low 
impact parameter region, b<5.5 bohr, the SC and SC-ES results 
are qualitatively similar. However, in the high impact 
parameter region, b>5.5 bohr, the opacity functions differ 
quite dramatically. We take this impact parameter, b=5.5 
bohr, as the division point for our discussion because of the 
qualitative difference between the opacity functions in these 
regions.

Further investigation of the dynamics reveals that a 
qualitative change in the coupling potential, Vki(t), occurs 
in the region of the dividing point, b=5.5 bohr. This is 
illustrated for V 0o(t) and Voi(t) in figure 7. The Vki(t) 
changes from a function which has attractive and repulsive 
portions to one which is solely attractive. We discuss the 
scattering dynamics in these two impact parameter regions in 
the sections below.

A. Low impact Parameter Region

As stated above, the shift in the shoulder/hole 
feature to higher scattering angles in the IOSA is caused by 
a related shift of the peak in the Po(b) to lower impact 
parameters in the SC-IOS calculations. In a previous 
publication Barrett, et al.12 employed a "two-state model" to 
suggest that the shoulder/hole feature in the j'=0 and 1 DCS 
was due to a balance between the repulsive and attractive 
parts of the potential energy surface. A two-state model was 
justified in the previous study by noting that: (1) There is 
a strong coupling between the j=0 and j=l states, denoted by
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the near mirror imaging of the Po(b) in the Pi(b); that is, as 
the Po(b) increases or decreases, the Pi(b) displays a 
complementary decrease or increase; (2) The transition 
probabilities for the system are dominated by the transitions 
0—>0 and 0—>1; these two final states comprise 70% or more of 
the total transition probability at all impact parameters.

The equations of motion for the two-state model, 
within the SC-CS approximation, are given by

i/»c0(t) = c0(OVoo(t) + c 1(t)Voi(t)exp(ico0it) (18a)
iftc1(t)  = c0(t)V01(t)exp(i(i),ot) + c ,(t)V u (t) . (18b)

Note that V 10(t)=V0i (t) . By recognizing12 that the V 0o(t) and 
V u (t) are very similar during the course of the time 
evolution and by further recognizing12 that the V 0i(t) has
roughly the same functional form as V 0o(t), but with a smaller
magnitude, we make the following simplifications to eqs.18:
(1) we substitute V0o(t) for Vn(t); (2) We employ a parameter 
to determine the coupling between the 0 and 1 states, in 
doing this we replace V0i(t) with ev0o(t), where e is the 
coupling parameter less than 1. Using these simplifications 
in eqs.18 we obtain

iftc0(t) = Voo(t)(c0(t) +ec1(t)exp(ia>01t)) (19a)
i»C|(t) = Voo(t)(ECo(t)exp(ico10t) +c,(t)) (19b)

as the basic equations for the fully coupled two-state model. 
As in a previous work12 we use, as a reasonable estimate to 
the true coupling potential, an £ value of 0.2 to analyze the 
scattering dynamics of the fully coupled system.

We may further simplify the two-state model by 
incorporating the ES approximation into eqs.19 to obtain
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iAco(t) = Voo(tXco(t) + £Ci(t)) 
iftc,(t) = V00(t)(Ec0(t) + C|(t))

(20a)
(20b)

as the 'energy sudden' two-state model. We now use the 
simplified two-state models of eqs.19 and 20 to explore the 
effects of the ES approximation on the scattering dynamics.
In figure 8 we plot the opacity function for j'=0 from the 
two-state model with and without the ES approximation. It is 
evident that the P0(b) are similar up to b-5.0 bohr. The only 
significant difference is a slight shift of the energy sudden 
curve to lower impact parameters. Qualitatively, this is just 
what is observed in figure 5: both methods which employ the 
energy sudden approximation have their first maximum in P0 (b) 
at lower b values than those calculations which have non-zero 
energy spacings. This shift to lower b in that impact 
parameter region where the scattering is sideways is just 
what is required to shift the shoulder in the 0-»0 DCS to 
higher scattering angles, as was observed in the IOSA of 
figure 1. Thus the two-state model reproduces this trend very 
well. We analyze this shift further below.

simple to analyze. In particular, there are only two state 
coefficients to consider, c0(t) and c^t), and the scattering 
dynamics reduce to the time-evolution of these two states. We 
plot trajectories of these coefficients in figure 9. The 
upper panel shows the time-evolution of the system using the 
energy sudden formulation (eqs.20); the lower panel shows the 
evolution of the full two-state model (eqs.19). In order to 
explain the motion in these plots we note that for e=0 (i.e. 
no coupling between the states) the equations of motion are

One advantage of the two-state model is that it is

c (i = 0.1) (21 )
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By writing ci= I ci I exp (i0i) , where <J>i=arg (ci) , substituting 
into eq.21, and equating the real and imaginary parts we 
obtain:

(2 2 )

Thus motion in this case is pure rotation in the complex 
plane. A negative coupling potential leads to counter­
clockwise rotation in the complex plane; a positive V0o gives 
clockwise rotation. Furthermore, for the £=0 case, the 
equations may be solved explicitly to give

as the time-evolution for the states. The integral in eq.23 
is known as the action integral.17,22

We consider next the effect of Cj (j*i) on ci when ci 
is negligible. In this case we have

where the +(-) applies to i=0(l). An alternative expression 
for eq.24 gives the change in Ci, 8ci, as

The term within the bracesO is always positive. Thus, when 
CDoi is zero (i.e. in the ES approximation), the change in ci 
due to a nonzero Cj is a complex number rotated tc/2 from Cj on
the clockwise or counter-clockwise side depending on the sign 
of V 00.

(23)

ih  C i ( t )  =  C j ( t ) e V00( t ) e x p ( ± i a )0i t ) (24)

S c jd )  = Cj(t)8t = (8tfl *e Voo(t)|cj(t)| jexp^i(<j>j -  %  ± co0it)J 

=  /  St  ft-1P I t l l l r . f  t l l l m r n  if  A. -
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The two-state model was utilized in an earlier study12 
to explain the presence of the shoulder in the 0—»0 DCS. We 
briefly reiterate some of our earlier findings to explain the 
difference between the two-state model with and without the 
ES approximation. Referring to the upper panel of figure 9, 
we see that the c0(t) returns to its initial value of (1,0) 
twice during the collision. In fact, it is clear that the net 
action for this trajectory is almost exactly zero. That is, 
at this impact parameter the attractive and repulsive parts 
of the potential exactly balance each other on the incoming 
and outgoing portions of the classical path. We can see that 
initially Co(t) rotates in a counter-clockwise sense until the 
repulsive part of the potential is reached. At this point the 
potential becomes positive and Co(t) retraces its initial 
path. Note that during this trajectory, the ci term always 
remains small and the evolution of the states is essentially 
governed by the simplification given in eq.21. The rotation 
of Co(t) continues to a point conjugate to the position where 
the repulsive part of the potential was entered. As the 
trajectory goes back into the attractive part of the 
potential, and V0o goes negative, the cycle is completed by 
Co(t) retracing its path once more back to a point near (1,0). 
It is this balancing between the attractive and repulsive 
parts of the potential - which leads to the zero action - 
that is responsible for the quantum feature seen near 0=40- 
70° in the CC DCS in figure 1.

Now examine the lower panel of figure 9. The motion 
begins as in the two-state energy sudden case, however 
instead of the change in ci being directed along a vector ~ to
the direction of c0, the motion is pushed further in the 
counter-clockwise direction due to the presence of the G)0i 
term. This motion is exemplified by eq.25. When the potential 
becomes positive, instead of retracing itself, as with the ES
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model, the Ci in the full model is pulled out further. That 
is, the rotation rate in the clockwise direction is slowed by 
the non-zero (o0i. As the particles separate on the outgoing 
path of the trajectory, the Ci is again pulled in the counter­
clockwise direction and spirals toward the origin. The 
trajectory once more produces a nearly null action; however, 
the inclusion of the non-zero frequency, CO01, has slightly 
shifted the phase of the coefficients. Thus the overall trend 
of the ci (t ) motion is similar in the two models, but the 
asymptotic values of the Ci are slightly shifted. This 
accounts for the shift of the shoulder/hole feature observed 
in the CC and IOSA DCS.

B. High Impact Parameter Region

We now discuss the scattering dynamics in the impact 
parameter range, 5.5<b<8.0 bohr. Because this impact 
parameter range lies in the rainbow scattering region, 
changes in the opacity functions have a less obvious effect 
on the shape of the DCS, but have a large effect on the 
integral cross section. This region also shows the greatest 
difference between the opacity functions of the full SC 
calculation and the SC-IOS, and understanding this difference 
is important to identifying any shortcomings in the IOS 
approximat ion.

At the higher impact parameters (b>5.5 bohr) the 
potential is attractive during the full time-evolution of the 
system. That is, the trajectory never encounters the 
repulsive part of the potential. Examination of figure 8 
shows that the two-state model does not reproduce the trends 
in the opacity functions of the SC or SC-IOS. This is very 
intriguing because in this impact parameter range the 
asymptotic values of the expansion coefficients, (that is, 
the opacity functions of figure 4a) show that >90% of the 
total probability is in the j'=0 and 1 rotational states if
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the full dynamics are employed. In addition, figure 4d 
reveals that for the SC-IOS -50% of the final state 
probability is in j'>2. In light of this, we see that the 
two-state model is inappropriate for an understanding of the 
energy sudden dynamics in this impact parameter region. 
Accordingly, we set it aside and return to the multi-state 
methods.

parameters greater than 5.5 bohr, transitions to the higher 
rotational states (i.e. j'^2) do not occur when 0)kl is non­
zero. This is due to the energetic separation of the states 
which manifests itself through the exp(itokit) term, which is 
included in the full SC and in the SC-CS. The effect of the 
frequency term is most easily seen, perhaps, if one considers 
the first order perturbation theory limit37 of the time- 
dependent scattering:

This has the form of the Fourier transform of the interaction 
potential. In general, for simple V 0j-(t), this term will 
decrease as a>0j> increases; that is, the low frequency terms 
will dominate. Since in the impact parameter region of 
interest here - high b - V0j-(t)<0 for all time, this is 
expected to hold. Clearly, the sudden approximation of 
setting a)0j- to zero removes this frequency dependence, and 
the probabilities of all transitions become solely a function 
of the action integral for the 0— ' transition.

Figures 4c and 4d show that a substantial component of
the total transition probability is in j'^2 for the SC-ES and 
SC-IOS approximations. We also see from figure 4 that the 
major differences between the SC and the SC-IOS in the high 
impact parameter region result from making the ES

Examination of figures 4a and 4b shows that at impact

d t V0j. ( t )exp(ic i)0j t )  h (26)
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approximation. Because of this, we focus on the differences 
between the full SC and SC-ES methods.

In figure 10 we plot the rotational state probability 
as a function of time, Pj>(t), for the SC and SC-ES models at 
several impact parameters. At the lower impact parameters the 
time-dependent probability for j '=0 and j'=l are quite 
similar in both models, as expected from our previous 
analysis. The summed probabilities into rotational states 
j'>2 are also similar; however, the SC-ES overestimates the 
probability into j'=2. As we move to higher impact parameters 
(e.g. b=5.0 bohr), again the j'=0 and 1 probabilities are 
similar in the two methods, but it is now becoming clear that 
the SC-ES is greatly overestimating the transition 
probability into the higher rotational states.

By b=6 bohr, the dynamics exhibited by the SC and the 
SC-ES are quite different. The reason for this should be 
clear from the above discussion. In this impact parameter 
interval, the interaction potentials (see figure 7) are 
purely non-positive. Thus, the “sudden* action can accumulate 
monotonically along the trajectory. This is not necessarily 
the case for all V 0j-, but it certainly explains the generally 
poor performance of the SC-ES in this region. For instance, 
in the SC method the Pi(t) increases steadily from its initial 
value of zero to become the dominant transition. In the SC-ES 
the Pi(t) increases on the incoming part of the trajectory, as 
in the full SC method, however the Pi(t) reaches its 
asymptotic value by the mid-point of the trajectory. In both 
methods the P2 <t) increases steadily and reaches a maximum 
near the turning point of the trajectory, then falls off to 
P2 (t )<0.1. The difference between the methods is that in the 
full SC the P2 (t ) (along with the continued decrease in P0 (t ) ) 
relinquishes much of the flux to Pi(t). In the SC-ES, however, 
because of the removal of the exp(ia)kit) term the states j ' >2 
begin to dominate the total transition probability.
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This is the impact parameter region where the IOS 
approximation performs most poorly. By overestimating the 
transition probability into the higher rotational states, the 
IOS approximation no longer provides an adequate 
representation of the true collision dynamics. It is 
generally accepted that the IOSA is poor when the scattering 
is dominated by a strongly attractive potential.11 Our time- 
dependent pictures provide a rather striking illustration of 
this.

I Y j C o n c l u a i o n a

In this paper we have explored the collision dynamics 
for Ar+HF using several computational approaches. We 
presented time-independent quantum mechanical CC and IOSA 
results calculated on the Hutson H6 potential for the 
Ar+HF(v=0) system at a collision energy of 135meV out of an 
initial rotational state, lj=0,m=0>. The differential cross 
sections obtained using the IOSA differ markedly from the CC 
differential cross sections. The origin of this discrepancy 
was investigated using several time-dependent semiclassical 
methods. With this approach, the effect of each of the 
decoupling approximations on the dynamics was explored. The 
intuitive advantage of the time-dependent methods over the 
the time-independent methods, is that the local (rather than 
the global) effects of the potential on the scattering 
dynamics can be observed.

From this work it was found that the biggest deviation 
of the IOSA from the “exact" CC calculations is due to the 
inclusion of the energy sudden approximation. Further, it was 
found that the energy sudden approximation "failed" 
differently for different impact parameter regions. For b<5.5 
bohr, in which the repulsive part of the potential is sampled 
and backwards and sideways scattering dominate, the opacity
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functions obtained from the SC-IOS are qualitatively similar 
to those obtained using the fully coupled SC method. While 
this qualitative agreement is encouraging, the quantitative 
differences are sufficiently great to shift features in the 
DCS by as much as 30°.

An analysis of the time dependence of the dynamics in 
this low impact parameter region was facilitated by the use 
of a two-state model calculation. The model data agreed well 
with the SC calculations, and revealed the same trends on the 
inclusion of the ES approximation. The model revealed that at 
one impact parameter in this range the net action along the 
the classical trajectory will be zero. In the model with the 
energy sudden approximation included it was found that the 
zero action trajectory leads to a transition probability for 
0—>0 of essentially unity - necessarily a maximum. With the ES 
approximation absent, the trend is similar but the maximum 
shifts slightly to higher impact parameters.

In the impact parameter range b>5.5 bohr, the SC-ES 
method performs badly when compared to the full SC. The two- 
state model is no longer appropriate in this region to study 
the sudden approximation, since it is clear that the energy 
sudden approximation allows access to higher product 
rotational states than occur in the full calculation. At 
these higher impact parameters, the trajectory experiences 
exclusively an attractive potential. It is the presence of 
the attractive potential and the energy sudden approximation 
that artificially couples the system to high j' states in the 
IOSA; this does not occur to as great an extent for a 
repulsive encounter.

Finally, we make some remarks on the universality of 
our findings. As its name implies, the accuracy of the 
"sudden* approximation depends on the time scales involved 
during the collision. At the collision energy used here, the
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collision time is on the order of 2xl04 au. This is comparable 
with the classical rotational period for an HF molecule in 
its j=l state, 3.354X104 au. Therefore, for the system at 
hand, the IOSA is unlikely to be accurate, even for the 
j=0—>j'=l transition, at collision energies less than 1 eV. 
Similarly, one would expect the sudden approximation to 
perform better in calculations with lighter rare gas atoms, 
but worse with heavier ones. Our findings here and previously9 
indicate that the IOSA is unlikely to prove a useful tool in 
improving potential surfaces for rare gas+hydrogen halide 
scattering for the experimental conditions presently 
accessible.
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Figure 1. Differential cross sections for 
Ar + H F (j =0) —»Ar+HF(j '=0,1) calculated using the full 
semiclassical, quantum CC and IOSA formalisms. Relative 
collision energy, Econ  = 135 meV. Note that the CC and IOSA 
results have been smoothed using a 2° angular averaging 
function to suppress high frequency oscillations.
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Figure 2. Differential cross sections calculated using the 
full semiclassical method and indicated approximations. 
Collision energy and initial rotational state are as in 
figure 1.
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Figure 3. Comparison of DCS from the time-independent quantum 
IOSA and the semiclassical IOS approximations.
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Figure 4. Opacity functions for Ar+HF(j =0) —>Ar+HF(j ' ) from: 
(a)the full semiclassical method; (b)SC-CS; (c)SC-ES; and 
(d)SC-IOS. The summation refers to the total transition 
probability into rotational states j'£2.
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Figure 5. Upper panel: Classical deflection function for 
elastic Ar+HF(0-»0) collision on the Hutson H6 (v=0) surface, 
used in calculating each of the semiclassical DCS. Lower 
panel: Comparison of the j'=0 opacity functions from each cf 
the semiclassical approximations.
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Figure 6. Comparison of the opacity functions for 
Ar+HF(j =0) — »Ar+HF(j '=1) from each of the semiclassical 
approximations.
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Figure 7. Time-dependent coupling potentials at several 
impact parameters, b. The upper panel shows <00lV(t) 10 0 >, 
denoted V 00(t;b). The lower panel shows <00lV(t)I10>, denoted 
Voi (t;b) .
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Figure 8. Opacity functions from a two-state model of the 
Ar+HF collision dynamics. 'Full1' indicates use of eqs.20; 
“ES" indicates use of eqs.21.
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Figure 9. Time evolution of the expansion coefficients c0 and 
Ci from the full (lower panel) and ES (lower panel) two state 
models at impact parameter, b=4.0 bohr. Initially, c0 = (1,0), 
Ci = (0,0). Thus the outer curve describes the evolution of 
c0, the inner curve Ci. The V0o potential controlling the 
dynamics is shown in figure 7. The initial sense of motion is 
counter-clockwise. At t=-2400 au, v00 changes sign, as does 
the sense of motion. The next reversal occurs at t=2400 au.
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Figure 10. Time evolution of rotational state probability 
from the full SC and the SC-ES models. In both cases the 
summation refers to the total probability for rotational 
states, j'>2. Note different time scales for each impact 
parameter.



Appendix

Ar + HF Classical Trajectories - Differential Cross Section 
in the Laboratory Frame

 Calculation of the Differential Cross section 
in the Lab Frame

For the Ar+HF scattering study that we are conducting 
we simulate the scattering experiment of Rawluk, et al.1 A 
crossed molecular beam scattering apparatus with final 
rotational state selective detection of the scattered HF is 
used in this experiment. The scattered HF is detected in the 
plane defined by the initial molecular beams. The detection 
system is a "flux detector"; that is, the detection is 
independent of the final HF velocity.2

To simulate this experiment we sample our initial 
trajectory conditions over the experimental beam conditions. 
This includes the velocity and angular distribution of the 
molecular beams and the initial rotational state distribution 
in the HF beam. All of the HF is initially in the ground
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vibrational state and the collision energy of the experiment 
is below the threshold for vibrational excitation. The beam 
conditions are given in Table 1. The initial rotational state 
distribution of the HF is given in Table 2.

The relationship between the center of mass (CoM) frame 
and the laboratory (Lab) frame is given in the Newton diagram 
of Figure 1. Using the convention of Toennies,3 we designate 
the CoM velocity vectors with u and the lab velocity vectors 
with v .  Subscripts 1 and 2 refer to the primary (detected) 
and secondary beams, respectively. Primes (') indicate final 
velocity vectors. Upper case Greek letters refer to lab 
angles, lower case to CoM angles. The angle £ is given as the 
angle between v* and u * . Due to the cylindrical symmetry of 
the scattering about vr in the CoM frame, the in-plane 
scattering case leads to two final lab scattering vectors for 
each CoM trajectory. In general, this will lead to a "fast" 
and a "slow" lab scattering vector, we describe these with a 
subscript f or s, respectively. (0,1 or 2 of these final 
vectors may contribute to the "observed" lab signal.)

Figure 1. Newton diagram for in-plane scattering. Center of mass motion 
vector designated as c ,  beam intersection angle as T. The angles 0 and 
0  are the CoM and lab scattering angles, respectively. Other labels are 
defined in the text. Arrows on most vectors have been omitted for 
viewing clarity.
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To calculate the scattered intensity into a final HF 
rotational state, j ', we need to integrate over all initial 
conditions. This leads to the expression

l )' = Klo Jj=o vr®j'( vr)p( vr)h( j ) dj dvr (1)

where vr is the relative collision velocity; Cj • is the vr 
dependent, final-state-selected total cross section for j'; p 
is the density function for vr; h is the initial rotational 
state distribution function and the tilde (~) indicates a 
continuous variable; and K is a constant containing the 
particle density of the beams and the collision volume.

Normalization over the initial rotational state 
distribution is given by

(Note: The initial distribution of HF rotational states is 
non-continuous function over the integer values, j. 
Therefore, the integration over j should be replaced by a 
summation over j

where the hj are taken from the percent distribution of 
initial rotational states in Table 2.)

The relative collision velocity is a direct function of 
the initial beam velocity distribution densities and the

(2 )

(3)
j=0
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angular divergence of the beams. The beam divergence 
functions may be combined into an intersection angle densi ty 
function, f ( D  . The velocity densities for the primary and 
secondary beams may be given as / (vi) and / (v2), respectively. 
The function p(vr) may now be written as a product of the 
density functions

P(vr) = / ( v i ) / ( v 2) / ( r )  (4)

Using equation 4 in equation 1 and including the 
summation over the initial rotational state distribution, 
equation 3, we can write the state selected scattering 
intensity as

h' = KXj=bhj(j)Jo Jo~Jov*-(vv v2' r )<*r [ vr(vi 'v 2/ r )]/ (v1) / ( v 2) / ( r ) d r d v 2dVl
(5)

indicating vr as a function of vi, v2, and T. The 
normalization over the functions, /, is given by

JoT Jo" / N / ( v 2) / ( r ) d r d v 2dVl=i (6)

The type of CoM differential cross section employed in 
this study is the over the CoM solid angle, CD, and the recoil 
velocity u 1, denoted as, d3o/d2codu'. The relation between the 
recoil CoM velocity function, /(ui‘) and the cross section, 
or,is given by Warnock and Bernstein2 as

d3o (v r) . . 9j3'j|Vrl ,  v .  O (71

The normalization for this function over the CoM coordinates 
is
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sin6d0 d<>du (8 )

In order to simplify the notation of equation 5, we 
will condense the integration (and summation) over all of the 
initial conditions in to a single function Q, such that

where dQ indicates the sum and integration over all variables 
contained in Q. Doing this does not imply a loss of 
generality for the integration, it is only done for the sake 
of simplifying the notation. If one substitutes equation 
into equation 5 and uses the simplification of equation 9, 
then

where the dependence of vr on v\, V2 , and T still exists, but 
is not explicitly shown.

After transformation of equation 10 into the lab frame 
and conversion of the intensity to a cross section (details 
are given in the next section), the average lab DCS is given 
by

JqQdQ = IjrobjU) J o T lo ' (vl ) / ( y2 ) / ( r ) drdv2dv! (9)

sin6d6d<t>du'dQ (10 )

uk’2 cos Ek
vr 1

 dQ (1 1 )

where Pj • is the transition probability into a final HF 
rotational state into the lab solid angle, f2d as a function 
of CoM scattering 0 and N is an appropriate normalization



constant. The summation over k refers to the contribution of 
each CoM trajectory (0,1, or 2) to the lab frame DCS. The n 
is a factor related to the relative collision velocity.

The integration over the initial conditions, Q, is 
carried out by Monte Carlo sampling. The initial rotational 
state function, h(j), is weighted according to the initial j 
with percent population given in Table 2. From the percent 
population distribution a cumulative probability distribution 
function, pj, is generated

The initial j selection is accomplished by generating a

initial rotational state is j.

The distribution functions, /, over the beam velocity 
distributions and the intersection angle are assumed to be 
Gaussian. A normalized Gaussian distribution centered at X 
with standard deviation, <r, in standard form4 is

A normalized Gaussian random number, is generated from two 
random numbers selected on the interval 0->l, and £2» using

Pi = X'.ohiO) (1 2 )

random number on the interval 0—>1, £. For pj^£<p-j+i, the

(13)
V /

^ = V-21n(Ci) *cos(2tcC2) (14)

A random value of a function, fix), from a normalized 
Gaussian distribution is then generated by

/(x) = X + ̂  * a (1 5 )
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(Note: FWHM = a*2^21n2 .) For the mean and FWHM for the beam 
velocity and intersection angle distributions refer to Table 
1.

A trajectory is calculated in the center of mass (CoM) 
frame using standard methods5 to select the initial 
orientation of the diatom and position of the atom. A Gear 
(variable step size) integrator is used to solve Hamilton's 
equations of motion for the trajectory. The exception to the 
standard methods of reference 5 is the method for selection 
of the impact parameter, b. To choose b the linear sampling 
method of Barg et al.6 is employed. In this method the orbital 
angular momentum range, t=0-lm&x> is divided into L A l- 
intervals and b selected linearly within each interval. 
Therefore, each trajectory has a weighting of (2/+1).

In the actual trajectory calculation b and the relative 
collision velocity are selected as independent functions. The 
I weighting for each trajectory is generated as a continuous 
function of b and vr. From the relationship

where P is the initial relative momentum, the "continuous"

(16)

variable, t, is given by

(17)

and the (2/+1) weighting as a function of b and vr is simply

(1 8 )
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The CoM trajectory is transformed into the lab frame
directly, prior to any boxing of the final conditions. On
transformation the Jacobian for the trajectory is combined

1with the CoM scattering angle weighting of ^ n 0  • 
produces a transformation weighting factor of

.2w(e(8)) = ̂r 1
cose

1 (19)
sin 6

Equation 19 along with equation 18 give the correctly 
weighted contribution, W(0)i, of ith trajectory to the Lab 
frame DCS

W (0). = w ( 0 ( 0 ) ) * ( 2 /  + l) (20)

The results of the trajectory are then "boxed" by final 
rotational state and scattering angle. The final rotational 
energy from the classical trajectory is continuous. The 
quantum relation for the final rotational state is

r(r+i)=j2 (2 d

where J is the length of the classical rotational vector. 
Solving equation 21 gives the continuous "quantum" number of 
the final rotational state as

j '=  Vj2 + 0.25 - 0 . 5  (22)

The final rotational state, j', is then boxed to the nearest 
integer state, j*. For example j'<0.5, goes into the j * =0 box;
0.5<j'<1.5, goes in the j ’=1 box, etc.

The scattering angle, 0, is boxed using a fixed box 
size or a variable box size method. The fixed box size method
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divides the angular range into equally spaced boxes 
(typically a A0=5° width). The variable box size method 
divides the angular range such that each angular box holds an 
equal number of trajectories. The advantage of the variable 
box size method is that regions of high scattering density 
are finely divided to reveal structure in the cross section, 
while regions of sparse density are highly averaged to reduce 
the relative error.

The trajectory weightings, W ( 0 ) i ,  are now boxed and 
summed over all trajectories within an /-interval, ni. This 
sum is then transformed into an /-weighted transition 
probability by multiplying by the normalization factor

where A/ is the width of the /-interval. Summation over all /- 
intervals gives the final state selected transition 
probability

(23)

L n,
(24)

1=0 i=1

Finally, the transition probability is converted into the 
average lab DCS by multiplication by the factor related to 
the average relative collision velocity



II. Center of Maas to Laboratory Frame Jacobian

In this section the details of converting the CoM DCS 
into Lab DCS are covered. To accomplish this, the integration 
of equation 10 over CoM variables, (0,<j>,u'), is transformed 
into the lab variables (<J>,0,V). The Jacobian of this 
transformation is given by

9(9,([hu) _ y’2 cos<E 
9(<l>,0,v') u'2 sin0

Use of equations 10 and 26 gives the lab frame signal 
intensity as

d3qj(vr)
d2codu'

v-2—5-cos<l>d<l>d0dv’dQ (27;
u

To condense notation, we write the integration over the lab 
coordinates as cos<I>d<I>d0=d2Q, and equation 27 simplifies to

Ir = K U o  L VfQ
d3gi'(vr)
d2codu'

,2
—s-d2Qdv'dQ 
u

(28)

where the integration over Q  represents the integration over 
<I> and 0.

The scattered flux into the solid angle subtended by 
the detector, 52fld = (cos «Dd)8«I>d80d , is given by

82Ii(-*>d.ed) = KS2« d U 0"v rQ d3gf(vr) 
d2 co du'

.•2
—̂ -dv’dQ
u

(29)
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given that the detector current is unity across 52£la (as is 
the case for the Keil experiment of reference 1). The 
differential lab intensity is then given as

A ( » d - 9 d) = tcj r  Q
r t C l j  V O  '

d3Of(vr)
d2o)du'

v’2—=-dv'dQ 
u'2

(30)

For a given relative collision velocity the average lab 
differential cross section (DCS) is related to the 
differential lab intensity by

d2l (* d .O d )  K /  d2d 
a2 fid r\ d 2n

:3i)

We now examine the differential cross section, d3o
d2<adu'

Recall that there is no <|> dependence on the scattering 
function in the CoM, under the experimental conditions of 
Keil, et al.1 We now write the differential cross section as

“ ° (v ,)u '2 /(e ,4 i, u') = N o (v r)p (e , u') 
d (Odu

(32)

where N is an appropriate normalization constant and P is the 
scattering probability distribution, 0£P<1, for 0 and u ‘.

Using equations 32 and 31 along with equation 30 we may 
write an expression for the final state selected average lab 
DCS subtended by the detector solid angle

* 2 - )  = Jg N fJo"V' <3®i(vr)P (» -“ ' ) - 4 d ' ' ' dQ 133)d fid /j. ' “1 v  ' ' u

where N T is a normalization constant and includes a term which 
accounts for the dependence of the lab DCS on the relative
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collision velocity, which is a function of the initial 
trajectory conditions.

In equation 33 the scattering probability, P, is 
dependent upon u' while the integration is over v ' . The 
Jacobian for the transformation between these two variables 
is obtained from the Newton diagram of Figure 1, and is given 
by3

dv' . .-1— —  = I cos el (34)
du 1

Using equation 34 in equation 33, we arrive at equation 11.
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Table 1. Ar and HF beam conditions from Rawluk, et a l . 
experiment. T is the intersection angle of the two beams in 
the Lab frame.

HFfkm/si Arfkm/si Tfdeal 
mean 1.21 0.559 90
FWHM 0.2408 0.0414 3.999
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Table 2. initial rotational state distribution in the HF beam 
of the experiment of reference 1 given as a percent of the 
total molecules in the beam.

j_________ i
0 28
1 37
2 21
3 10
4 3.2
5 0.8
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