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HB 295

STATE OF NEW HAMPSHIRE

In the year of Our Lord one thousand 
nine hundred and eighty-six

AN ACT

relative to Mirror Lake in the town of Woodstock

Be it Enacted by the Senate and House of Representatives in General Court
convened:

1 Mirror Lake. Notwithstanding the provisions of RSA 486:11, for purposes of 

research of the polyphemus pediculus (sic) only, an exemption shall be granted until 

July 1,1989, for the use of a boat powered by an electric motor on Mirror Lake in 

the town of Woodstock.

2 Effective Date. This act shall take effect upon its passage.
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ABSTRACT

HORIZONTAL DISTRIBUTION, FEEDING RATES AND PREY 

SELECTIVITY OF THE LITTORAL PREDATOR, 

POLYPHEMUS PEDICULUS.

by

Anne T. Packard 

University of New Hampshire, May 1992

Littoral planktonic communities have rarely been included in food web 

dynamics and predator/prey behavior studies of planktonic communities of fresh 

water ecosystems. Polyphemus pediculus, a typically littoral predaceous cladoceran, 

is common in lakes and ponds throughout the northern temperate zone.

The patchy distribution of Polyphemus in littoral surface waters necessitates 

the use of a stratified random sampling regime to estimate and monitor Polyphemus 

populations. The population in Mirror Lake, NH, increased exponentially after the 

first appearance of parthenogenetic juveniles in late April. An abrupt decline in the 

population coincided with the movement of small Micropterus dolomieui fry into 

littoral areas in early June. Gut analyses indicated the small fry were eating 

Polyphemus but as they grew their diet changed to larger insect larvae and the 

Polyphemus population increased. Reproduction was entirely parthenogenetic until 

males appeared in late summer. Females carried resting eggs until the population 

disappeared in November.

Active aggregation behavior coincided with distinct horizontal movements 

toward shore over sunset, away from shore over sunrise. A comparison of diel 

movements of Polyphemus populations in two New Hampshire lakes supports the 

predator avoidance hypothesis.



Diel feeding rates of Polyphemus were studied in four-hour intervals with a 

differential count method. A multichambered predation trap accommodated three 

simultaneous feeding experiments and a control. Three different Polyphemus 

densities were used during each feeding experiment to represent the natural density 

range.

Polyphemus are diurnal feeders, more than 90% feeding occurring between 

sunrise and sunset. Polyphemus appear to select small, vulnerable prey {Polyarthra 

and individual Conochilus) over small prey with protective structures (Kellicottia). 

Feeding rates were highest for Vorticella that lived on Anabena colonies. Polyarthra 

and Conochilus constituted more than 70% of food ingested.

At patch densities feeding rates decreased and evidence of cannibalism was 

observed indicating that Polyphemus' aggregation behavior does not benefit feeding 

activities.



SECTION I. GENERAL INTRODUCTION

Freshwater plankton communities contain complex mixtures of predaceous 

and herbivorous animals interacting with each other and their environment. 

Zooplankton interactions are most often described and measured by ingestion rates 

(Downing and Rigier 1984). Every level of the zooplankton community food web is 

also affected by changes in nutrient levels or vertebrate predators (Threlkeld et aL 

1980). Zooplankton predation contributes to the stability of the planktonic 

community as the predators of smaller zooplankton are also prey for vertebrate 

predators (Levitan 1987). Most research efforts have examined suspension feeders 

such as calanoid copepods and dadocerans (Downing and Rigier 1984). Studies of 

predaceous zooplankton have concentrated primarily on Chaoborus, mysid shrimp 

and copepods (Kerfoot and Sih 1987). Methodologies similar to those used for 

feeding rates of filter feeding zooplankters have been used to estimate predation 

rates and ingestion rates whereby small animals such as nauplii, copepodites, 

rotifers or dadocerans replace algal or bacterial cells (Downing and Rigier 1984). 

Most zooplankton predation studies, however, have been limited to the limnetic 

zone of lake ecosystems. The littoral areas generally cover a small proportion of a 

lake and consequently have received proportionally less attention in limnological 

studies. As a result little is known about food web dynamics of littoral communities 

and predator/prey behavior of littoral zooplankton.

Polyphemus pediculus may be the only predaceous zooplankton that is 

typically littoral. Although P. pediculus is common in lakes, ponds and marshes 

throughout the northern hemisphere (Gurney 1923; Pennak 1978), in situ feeding 

studies of Polyphemus have not been reported previously. Polyphemus is 

monosperific, and hereafter in the text, the spedes name is deleted. The cladoceran

l
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has a unique physical appearance characterized by a large single eye, rounded brood 

pouch and a long slender caudal peduncle with two long setae. The length of 

Polyphemus collected in New Hampshire did not exceed 1 mm.

Whole lake population estimates or population densities are difficult to 

obtain because Polyphemus is not only typically littoral in habitat but also has a 

tendency to swarm in patches or aggregations with densities ranging from 200 to 

more than 10,000 individuals L"1 within the patch (Haney and Mattson 1980).

There appears to be some question in the literature as to the exact spatial affinity of 

Polyphemus (Haney and Mattson 1980). Mattson (1979) observed seasonal and diel 

movement to limnetic regions. In Lake Michigan aggregations of Polyphemus have 

been observed more than 3 km from shore (Wells 1960).

Based on published observations and data, an overall evaluation of 

Polyphemus in the aquatic community is difficult. Variations in morphology 

(Ischreyt 1933), electron and light microscopic studies of the eye structures and 

functions (Odselius and Nilsson 1983; Nilsson and Odselius 1983), embryological 

development of parthenogenic eggs (Kuhn 1913) and life cycle laboratory 

observations (Butorina 1963,1971) have been reported. Habitats range from small 

stagnant and murky ponds (Butorina 1986, Young and Taylor 1988) to wide 

expanses of the Great Lakes (Wells 1960); from flatland lakes (Ischreyt 1933) to 

high altitude ponds (Zacharias 1906). The ecological implications of Polyphemus 

morphology, life cycle and behavior have not been thoroughly considered.

This in situ study of a littoral predator addresses several aspects of predation 

(Holling 19S9). Is the predator affected by light, i.e. time of day or time of year? Is 

the feeding behavior affected by increases of prey density? Is the aggregation 

behavior of Polyphemus related to feeding behavior and do feeding rates increase 

within an aggregation? Do morphological characteristics of the prey affect 

selectivity of one prey over another? What attributes do Polyphemus exhibit to

2



make them successful predators. An overall understanding of the ecology of an 

individual Polyphemus population could reveal how this species has created such a 

successful niche.



Literature Cited

Butorina, L.G. 1963. Some data on distribution and life cycle of Polyphemus 
pediculus. Tr. Inst. Biol. Vnutr. Vod, Akad. Nauk SSSR 6(9): 143-152.

Butorina, L.G. 1971. Biology and life cycle of Polyphemus pediculus L  Tr. Inst. 
Biol. Vnutr. Vod, Akad. Nauk SSSR 21:155-179.

Butorina, L.G. 1986 On the problems of aggregations of planktonic crustaceans 
[Polyphemus pediculus (L), Cladocera]. Arch. Hydrobiol. 105(3): 355-386.

Downing, J.A. and F.H. Rigier. 1984. A manual on methods for the assessment of 
secondary productivity in fresh waters. IBP Handbook 17. Blackwell 
Scientific Publications, Oxford.

Gurney, R. 1923. The crustacean plankton of the English Lake District. Zool. J. 
Linn. Soc. 35:411-447.

Haney, J.F. and M.T. Mattson. 1980. Factors regulating intrazooplankton

gredation by Polyphemus pediculus. Research Report No. 29. Water 
Resource Research Center, Univ. of NH.

Holling, C.S. 1959. The components of predation, as revealed by a study of small 
mammal predation of the European pine sawfly. Can. Entomol. 91:293-332.

Ischreyt, G. 1933. Uber Polyphemus pediculus L. Biologischer Teil. Arch. 
Hydrobiol. 25:261-290.

Kerfoot, W.C. and A. Sih. 1987. Predation: direct and indirect impacts on aquatic 
communities. University Press of New England, Hanover.

Kuhn, A. 1913. Die Sonderung der Keimesbezirke in der Entwicklung der
Sommerereier von Polyphemus pediculus de Geer. Zool. Jb. Anat. 35:243- 
340.

Levitan, C. 1987. Formal stability analysis of a planktonic freshwater community. 
In: W.C. Kerfoot and A. Sih [eds.L Predation: direct and indirect impacts on 
aquatic communities. University Press of New England, Hanover.

Mattson, M.T. 1979. Distribution patterns and population dynamics of Polyphemus 
pediculus (Crustacea, Cladocera) in a small New England lake. Ph.D. thesis. 
University of New Hampshire.

Nilsson, D.E. and R. Odselius. 1983. Regionally different optical systems in the 
compound eye of the water-flea Polyphemus (Cladocera, Crustacea). Proc. R. 
Soc.Lond.B217:163-175.

Odselius, R. and D.E. Nilsson. 1983. Regionally different ommatidial structure in 
the compound eye of the water -flea Polyphemus (Gadocera, Crustacea).
Proc. R. Soc. Lond. B 217:177-189.

4



Pennak, R.W. 1978. Freshwater invertebrates of the United States. John Wiley & 
Sons, New York.

Threlkeld, S.T., J.T. Rybock, M.D. Morgan, C.L. Folt and C.R. Goldman. 1980.
The effects of an introduced invertebrate predator and food resource variation 
on zooplankton dynamics in an ultraoligotrophic lake. In: W.C. Kerfoot [ed.j. 
Evolution and ecology of zooplankton communities. The University Press ot 
New England, Hanover, NH.

Wells, L. 1960. Seasonal abundance and vertical movements of planktonic
Crustacea in Lake Michigan. Fishery Bull. Fish Widl. Serv. U.S. 60:343-369.

Young, S. and V.A. Taylor. 1988. Visually guided chases in Polyphemus pediculus.
J. Exp. Biol. 137:387-398.

Zacharias, O. 1906. Zur biologie and oekologie von Polyphemus pediculus (Linne). 
Zool. Anzeigher. 30:455-459.

5



SECTION II. ESTIMATES OF ABUNDANCE AND LIFE CYCLE PATTERN 

OF POLYPHEMUS PEDICULUS IN MIRROR LAKE

Introduction

The patchy distribution and aggregation behavior of Polyphemus pediculus make 

it difficult to sample (Butorina 1963,1969; Hutchinson 1967). It is generally 

considered to be a littoral species and its affinity for the shore area has been well 

documented (Axelson 1961; Heal 1962; Butorina 1963,1969; Hutchinson 1967; 

Lindstrom 1952). In some lakes, however, Polyphemus occurs in the limnetic zone 

(Kikuchi 1930,1937; McNaught 1966). An extensive study of Polyphemus 

distribution in a small New Hampshire lake, Stonehouse Pond, demonstrated that 

the populations move between the littoral and limnetic areas directed by wind 

action and time of day (Mattson 1979), and in Lake Michigan a patch of Polyphemus 

was reported > 3 km off shore (Wells 1960). Some Polyphemus population 

estimates and descriptions of vertical movements have been based solely on limnetic 

individuals (Kikuchi 1930,1937; Djokosetiyanto and Lair 1983).

Little is known about littoral zooplankton communities, not only in this study 

site, Mirror Lake (Makarewicz 1985), but throughout the lakes of the world. 

Although the littoral areas are relatively small by surface area and percent volume, 

they are heterogeneous, with a variety of habitats and species. Less attention has 

been given to this region than the limnetic because accurate quantitative studies are 

time consuming and labor intensive (Daggett and Davis 1974). The few quantitative 

studies that have been reported involved benthic chydorids (Daggett and Davis 

1974; Keen 1973; Whiteside 1974). Although Polyphemus was reported in some of

6



these studies, population densities were not quantified (Smirnov and Davis 1973).

Location

Mirror Lake is located in the town of Woodstock (Grafton County) New 

Hampshire (43° 56.5'N, 71° 41.5'W) at an altitude of 213 m. The glacially formed 

lake covers an area of IS ha, has a maximum depth of 11.0 m and an average depth 

of 5.7 m. The water is slightly acidic, nutrient poor with summer Secchi disk 

readings from 5 to 7 m. Mirror Lake lies within the Hubbard Brook Experimental 

Forest, a principal research area for watershed management. The physical 

characteristics and ecology of the lake have been well documented (Likens 1985).

The lake is asymmetrical with its deepest part near the north shore (Figure

II. 1). The northern and eastern shores have numerous boulders while the south 

shore is generally sand with areas of cobble (Figure II.2).

Macrophyte colonization extends to 7.2 m (Moeller 1975) (Figure II.3). This 

contour is considered to be the outer boundary of the littoral zone (Moeller 1985). 

Emergent vegetation is scarce. Floating-leaved nymphaeids are established over 

areas covered by mud or organic debris (Figures II.2 and 113). Submerged 

vegetation, however, is extensive. Except for the waterlilies, most of the 

macrophytes are within 10 cm of the lake bottom, none are higher than 60 cm. 

Based on the types of submerged vegetation the littoral zone can be divided into 

three, almost distinct, bands (Moeller 1985). The upper band, to 3.0 m, is primarily 

colonized by submergent macrophytes with flowering stalks. The transition band 

(3.0-5.0 m) is characterized only by dense summer growths of bladderwort. The 

deeper band (5.0-7.2 m) is colonized by submergent pondweeds and Nitella.

Zooplankton populations differ between littoral and limnetic zones. 

Makarewicz (1985) lists Polyphemus pediculus as one of six species from Mirror 

Lake which are typically littoral. Polyphemus was generally found within the 4 m

7



depth contour by Makarewicz (1985). Comparable distributions were observed 

during the pilot studies for this research. Based on these observations and the lake 

morphometry, the littoral zone was defined as the area of the lake < 4 m depth. 

This corresponds to the midpoint of Moeller's intermediate vegetational littoral 

band.

Methods and materials

Sampling Design

Total Population Estimations. To estimate the total population of a 

randomly distributed plankter, the number of organisms in one unit volume are 

simply extrapolated to the total lake volume. This method could greatly exaggerate 

or underestimate the population estimates of nonrandom species. A stratified 

random sampling design was used for Polyphemus because of the patchy occurrence 

and aggregation behavior (Cassie 1971). The strategy of a stratified random 

sampling design is to divide the heterogeneous system into homogeneous 

subpopulations or sampling strata (Cassie 1971; Barrett and Nutt 1979). The 

density of each subpopulation is first estimated from a pilot field study. By 

weighting the sample of each stratum by the relative abundance of its 

subpopulations and the volume of each stratum relative to the entire lake, the mean 

density in the lake can be most accurately estimated. The partitioning procedure is 

therefore very important to the overall success of the method. The more 

homogeneous each section is, the more precise the overall estimate will be.

Partitioning of Sampling Strata. Pilot study estimates of Polyphemus 

abundance around the lake, sediment maps and morphometric information (Likens 

1985) were considered in the partitioning procedure. The pilot study density 

estimates were obtained from horizontal tows taken just below the surface at 

midday with a 151 pm  simple conical plankton net Length of sample tows were 

estimated. The relative Polyphemus abundance in each tow was characterized by

8



high (mostly Polyphemus), medium (Polyphemus present in equal numbers with 

other species) or low (few, if any, Polyphemus) ratings. High densities of 

Polyphemus pediculus were collected along the southwest shore and in areas around 

the three inlets. All of these areas have sandy areas and are free of submergent 

vegetation. Low densities were identified along the northern shores and in the 

outflow area.

The entire lake was divided into seven horizontal strata (Table II. 1), six in 

the littoral zone, and one in the limnetic or open water zone (Figure II.4). The 

surface area of the lake was measured by polar planimetry. Surface areas between 

depth contour lines were measured by superimposing a scale contour map of Mirror 

Lake on graph paper. The area was determined from the number of graph squares 

counted between depth contour lines. The area of each stratum was the sum of 

contour areas within the stratum boundary. Volumes were calculated from depth 

and contour area measurements (Lind 1979) (Table II.2). To estimate vertical 

distributions each horizontal stratum was divided into the following five depth 

intervals: 0-0.25 m, 0.25-0.75 m, 0.75-1.25 m, 1.25-1.75 m and 1.75-2.25 m.

Sample Allocation for population estimates. Polyphemus was sampled 

once a  month during the summer 1986 with three 20 m horizontal surface tows from 

each stratum. The proportion of samples to be taken from each stratum for 

population estimations was determined by the relative density of Polyphemus in 

each stratum. For allocation of samples by depth Polyphemus was sampled from 

two littoral strata (2 and 4) and the limnetic stratum (7) from the surface (0.0-0.25 

m) and 0.5-m depth intervals. Shallow (Zmax= 1.0 m) littoral samples were taken 8 

m from shore from the surface and 0.5 m. Deeper littoral samples were taken down 

to 2.25 m. Limnetic samples were taken down to 2.25 m, 12 - 20 m from shore and 

oblique tows were taken from 8.0 m (Mattson 1979). The pilot study indicated 

approximately 80% of the Polyphemus inhabited shallow littoral areas and, 80% of

9



these were at the 0-0.25 m depth (Table II.3).

To minimize variation caused by swarming behavior and horizontal and/or 

vertical migrations observed during early morning and late afternoon, the length of 

the sampling period was limited to 4 h during midday. During the pilot study each 

sample was completed in approximately 7 min, and up to 34 samples could be taken 

in 4 h. These 34 samples were then distributed among the 7 lake strata with the 

Neyman allocation calculation (Barrett and Nutt 1975):

_  ^ i  SJ Nj sj

* Ni Si NjS! + N2S2 +  Nlsl

where:

n = total number of sample units selected 

n; = number of units selected in stratum i 

Nj -  number of units in stratum i

Sj = estimate of the population standard deviation in stratum i

A total of 34 samples, 31 from the littoral zone and 3 from the limnetic, were 

taken for each sampling period. Since just one individual was collected from the 

limnetic zone in both the horizontal and vertical sampling, stratum 7 was not 

included in the allocation calculations and 3 oblique tows were arbitrarily taken 

from the limnetic zone for the population sampling. Strata 1,3 and 5 had the 

greatest number of Polyphemus pediculus and most of the samples (7 each) were 

distributed to these areas (Table II.4).

The Neyman calculations allocated samples only to the surface depth (0.0- 

0.25 m) although some Polyphemus were collected in the 025-0.75 m depths. If total 

abundance were calculated based on the entire population inhabiting just the top 

025 m, the population would be underestimated by approximately 20%. If the 

numbers were extrapolated to the upper 1 m representing the deeper range of
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habitat the population would be greatly overestimated. The depth to which surface 

densities should be extrapolated was determined by using all population counts from 

the 0.0-0.25 and 0.25-0.75 m samples (n-76). The numbers collected in deeper 

samples, > 0.75 m depth, comprised 13%  of the total and were considered 

insignificant. The percentages collected from each depth (0-0.25 m and 0.25-0.75 m) 

for each transect were regressed with depth. The regression intercept, 0.6 m, 

(r2=0.67, p<0.01) was considered, for the purpose of population estimates, the 

lowest depth range for Polyphemus pediculus in Mirror Lake during midday.

The transect areas to be used for the abundance study were first selected on 

the bathymetric map and then located on site by permanent landmarks to insure 

that the tows would always be taken from the same points. Each littoral sample 

consisted of an oblique transect from shore with the exception of stratum 1, the 

stratum where the highest densities of Polyphemus were collected in the pilot study. 

Here some of the transects were set in a grid pattern to provide information of 

horizontal behavior parallel to the shore line. The limnetic samples were taken 

from a buoy over the deepest point in the lake as oblique tows from 8 m depth 

towed toward different points on shore around the lake (Figure II.4).

Sampling Apparatus

Samples were taken with a 12.5 cm diameter Clarke-Bumpus (CB) metered 

plankton net with a 151 pm  mesh Nitex net All Polyphemus could be collected with 

this size mesh and allow smaller plankton to pass through to prevent clogging. The 

sampling procedure and equipment modifications were described by Mattson 

(1979). The CB unit was mounted on a 2.5 m aluminum pole with holes at 0.5 m 

intervals (Figure II.5). Samples could be taken down to 2.0 m depth by removing 

the pin holding the pole into the pivotal mechanism. This mechanism allowed the 

net to be raised or lowered in the water or maintained in a horizontal position for 

rinsing. The pivotal unit was mounted on the front of a 3.0 m aluminum Jon boat
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This placement minimized avoidance reactions by the zooplankton to the boat's 

shadow (Clutter and Anraku 1968). A stem-mounted electric motor was used to 

drive the boat at a constant speed. Two CB units were used interchangeably for the 

sampling regimes. Calibrations made in the Johns Hopkins University Flumes 

determined that one revolution of the metered sampler represented 4.8 and 3.9 liter 

samples for the two CB units respectively.

Field Sampling

A "sample unit" consisted of a 20 m tow. Each tow was taken at a constant 

speed for a measured period of time. Before each sampling period the time for the 

boat to travel 20 m between 2 fixed points with the sampling net deployed was 

measured several times. The average time was used for all the sample tows for that 

day. The average sample volume (+ /- S.D.) was 155.2 L (21.12).

Prior to sampling the net shutter was opened and held in this sampling 

position with a cotter pin placed through a hole near the mouth of the meter unit. 

When the boat was at sampling speed (approximately 1 m/sec) at the tow location 

the net was pivoted down into the water. After completion of the 20 m tow the 

cotter pin was pulled closing the shutter. The pole was pivoted up to a horizontal 

position. The plankton bucket was rinsed from the outside with lake water and 

emptied into a 151 /im ring net. Organisms in the ring net were backwashed into a 

sample vial and preserved in 4 % sucrose formalin (Haney and Hall 1973). The net 

was reopened and pinned for the next tow.

The stratified random sampling design was implemented in 1987 biweekly 

from 11 May through 16 Nov. All collections were made in random sequence 

between 1000 and 1500 h.

Laboratory Analyses

Samples were counted in the laboratory with a dissecting scope and 

channeled counting chambers. Each sample was counted in its entirety avoiding
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subsampling error. Premature embryos released when preservative was added were 

not counted. Body lengths (from eye to the base of the caudal peduncle) of 25-75 

Polyphemus from each sampling date were measured, gender and number of 

embryos or resting eggs were recorded.

Calculations of Population Abundance

Estimations of total lake population abundance of Polyphemus were based 

on the mean number collected per sampling unit (20-m tow) in each stratum (h) and 

weighting the mean (Yj,) by the proportion of the volume sampled in the stratum 

(njj) to the total stratum volume (Nj,). The sum of the weighted mean densities 

represented the total stratified mean per sample unit (Yst) in the entire sampling 

area (Cochran 1977):

= Nh Yh

Y st=  --------------- 5 Wh Yh
Nh h " 1

where: = total number of units in stratum h

nh = number of units sampled in stratum h

nh 
. ^

Yjj =  -------- = sample mean
nh

Nh
Wjj = ----- --  sample weight of stratum h to sum of

N all strata

If the estimated variance for simple random sampling is:
1 nh -  „

S* = T T  Ei - , ( Yhi -  Y„)2 n h - l  l - l
then unbiased estimates of variance of stratified means 

within each stratum is (Cochran 1977):

-  „  Wh2 Sh2 Wh Sh2
^ yst)= i - i  Enh h = l N
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The estimated variance for each stratum was calculated and then values were 

totaled for each sampling date. The total population of Polyphemus in Mirror Lake 

on each sampling date was estimated by summing the volume weighted stratum 

mean densities as follows (Cochran 1977):

Total Population = N Ys t +/-tNs(Yst)

Bsaills

Total Population Estimations

Juvenile Polyphemus were first noted in the water column of Mirror Lake in 

1987 on 20 April. By 11 May, the population had increased to more than 70 million 

individuals (Figure II.6). The population had two periods of relatively high 

abundance. The maximum size population in May averaged 6.50 x 10? individuals. 

By 14 June the population had decreased to a mid-season minimum of 6.50 x 10  ̂

individuals. The second increase was smaller and averaged 3.65 x 10? individuals. 

The high population level persisted through July and August. The population 

decreased in September and by mid-November Polyphemus was not detected in the 

water column.

Population Composition

Juvenile Polyphemus appeared before mature females in early spring and 

were assumed to have developed from resting eggs. Resting eggs had been collected 

in benthic samples during the winter. Reproduction in Mirror Lake was entirely 

parthenogenetic through late summer (Figure II.7). Gametogenetic females first 

appeared in late August and males appeared in late September. By the end of 

October 75-85% of the population was gametogenetic with 40% males.
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Discussion

Total Population Estimations

Two general seasonal trends of population abundance have been reported 

for Polyphemus. Most populations have a large spring maximum followed by a rapid 

decline with a smaller second increase or even a third later in the summer (Mattson 

1979; Ischreyt 1933; Butorina 1963). Single population maximums have been 

reported specifically in high altitude lakes (Zacharias 1906). Mirror Lake had more 

than one population maximum, but it is difficult to compare total population 

estimates with most abundance estimates in the literature, other than Mattson 

(1979). Butorina (1963) reported spring densities in a reservoir reaching 2,173 

individuals L*l, while in the next year during low water levels, only 806 individuals 

L 'l were observed. Ischreyt (1933) sampled densities up to 51 L*1 during the spring 

maximum and 27 L'* later in the season during the second increase in abundance. 

The sampling methods used in both studies did not take into account a patchy 

distribution and total population figures cannot be extrapolated from these data. 

Populations of Polyphemus in Mirror Lake and Stonehouse Pond (Mattson 1979) 

were estimated on a lake-wide basis. Although Mirror Lake is almost three times as 

large as Stonehouse Pond the total population of Stonehouse Pond during the spring 

maximum was almost three times greater in 1975 and two times greater in 1976 

(Figure II.8). Total abundance in both lakes was similar during August and 

September. The number of embryos carried by a mature parthenogenetic female, 

the brood size, contributed to the size of the spring population maximum. Brood 

sizes averaged six Polyphemus'^ in Mirror Lake during mid-May, the maximum was 

nine. Brood sizes had decreased to 3 or 4 by the end of May. Larger brood sizes 

(20-30) have been reported (Strohl 1907). Brood sizes up to 29 embryos were 

reported in Stonehouse Pond (Mattson 1979) which could account for the greater
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population abundance when compared to Mirror Lake. Embryo production 

averaged between 2.0 and 3.0 per brood from July to October in both lakes. 

Population Composition

Dicyclic reproduction patterns with two periods of sexual reproduction in a 

season have been reported for several dadoceran species (Green 1966; Stross 1969; 

Lampert and Krause 1976). In most cases, the first sexual reproductive period 

occurs during the spring population maximum. Dicyclic reproductive patterns have 

been reported for Polyphemus in European Lakes (Kielhach 1906; Strohl 1907; 

Ischreyt 1933; Green 1966). Mattson (1979) observed that the spring maximum and 

the first appearance of gametogenetic individuals occurred before the spring 

maximum of prey spedes on which Polyphemus feeds and suggested that lack of 

food stimulated formation of sexual individuals. A monocyclic pattern (single 

reproductive period) and low population densities occurred during a year of severe 

drought in an otherwise dicyclic population (Butorina 1963). In a high altitude lake 

(1200 m) monocyclic patterns and no spring population maxima were observed 

where colder temperatures inhibited the first reproductive pulse (Zacharias 1906) 

indicating that geographical location, higher latitudes and elevations can control the 

Polyphemus life cycle.

The total population of Polyphemus in Mirror Lake decreased from more 

than 70 million to less than 1 million individuals with no sexual reproduction 

observed. The rapid decline in total population abundance during periods of sexual 

reproduction can be attributed to the production of resting eggs which would not 

develop until later in the season in dicyclic populations or until the next season in 

monocyclic populations (Lampert and Krause 1976). The decrease in the average 

brood size after the spring maximum could maintain the population at a lower 

abundance level. The environmental factors generally believed to initiate sexual 

reproduction, such as extreme changes of water temperature or food availability, did
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not occur in Mirror Lake in either 1986 or 1987.

Since the decrease in the Polyphemus population cannot be attributed to the 

production of resting eggs by sexual reproduction, other external stresses on the 

population should be examined as possible explanations. Predators could decrease 

the abundance of a fecund population. Smallmouth bass (Micropterus dolomieui) 

and yellow perch (Perea flavescens) are two of five fish species in Mirror Lake 

(Helfman 1985). Fry of both species were sighted in the shore area of Mirror Lake 

during the rapid decline of the Polyphemus population (Fig 11.6). The average 

length of Af. dolomieui fry collected on 2 June was 11.4 mm. Feeding studies of Af. 

dolomieui reported that fry up to 15 mm in length feed on copepods and 

cladocerans, selecting insect larvae as they get larger (Wilkliff 1920 in Tester 1932). 

Polyphemus was reported to be selectively eaten by young of the year P. flavescens 

(Keast 1985). On one occasion after a feeding experiment had begun many young 

Af. dolomieui encircled the relatively transparent apparatus, suggesting the bass were 

visually attracted to Polyphemus.

Gut analyses of 122 Af. dolomieui fry (8-29 mm) and 57 P. flavescens 

(13-34 mm) collected at 4 m from shore at different time periods 4-24 June 1991 

indicated that Af. dolomieui were feeding on Polyphemus (Table II.5). No 

Polyphemus were found, however, in the guts of P. flavescens. Most of the 

Polyphemus consumed (94 %) were obtained from guts of fry 8-16 mm in length.

The P. flavescens fry were generally larger, but consumed large numbers of other 

dadoceran spedes similar in size to Polyphemus. The smaller Af. dolomieui fry 

appear to be the more important predator on Polyphemus. The smallmouth fry can 

consume large numbers of Polyphemus. Up to 70 individuals were found in one gut 

of a 16 mm fry. Four fiy caught in the chambers during feeding studies had an 

average of 195 Polyphemus in each gut The average length (+ /-  S.D.) of Af. 

dolomieui fry collected after 18 June in 1987 and 1991 was 215  mm (2.1), n=32.
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Polyphemus was not detected in any gut contents. The fry were feeding on Diptera, 

Trichoptera and Ephemeroptera larvae.

M. dolomieui are crepuscular feeders (Helfman 1980). Although all the 

Polyphemus found in gut contents were from fry collected before or after sunset, the 

data are inadequate to form any hypothesis of diel feeding activity of M. dolomieui 

fry on Polyphemus. Consecutive studies of fish size, gut analyses and diel migrations 

with Polyphemus horizontal movements and population abundance would provide a 

better understanding of this predator/prey interaction.

The most recent survey in 1973 of the population of M. dolomieui in Mirror 

Lake was reported to be 600-700 individuals, not including young of the year 

(Helfman 1985). If a conservative estimate of 100,000 fry were to feed on littoral 

zooplankton during early growth and each ate 20 Polyphemus in one day, 2.00 x 10? 

individuals could be removed from the population each day. Over a  two week 

period, more than one third of the population could be consumed by M. dolomieui. 

The fish predation is probably important in causing the first major decline in the 

population. The decrease in population caused by fish predation also reduces other 

environmental stress e.g. food availability and competition which could otherwise 

have stimulated sexual reproduction and formation of resting eggs.
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Figure II.5 Modifications of Clark Bumpus net and boat for stratified 
sampling (after Mattson 1979).
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Stratum Description

1 Public beach: Sandy, SSW exposure, high densities
2 Outlet: Boulders, organic debris, mud or sand, NNE 

exposure, low to medium densities
3 Inlet: Organic debris, boulders and steep slope, NE 

and SE exposures, low to medium densities
4 Inlet: Organic debris and mud, vegetation, WNW

exposure, high densides
5 Inlet: Shallow organic debris and mud, emergent and

floating vegetation, sandy beach area in front of private 
cabins, WSW exposure, medium to high densities

6 Pool: Between old (N) and new (S) dam, shallow
organic debris over mud and sand, emergent and 
floating vegetation, low to medium densities

7 Open water: Beyond the 4 m contour

Table H I  Descriptions of major features of lake strata.
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Littoral
Stratum

Stratum 
Surface. 

Area (M3)

Total 
Stratum „ 

Volume (M3)

Polyphemus 
Habitat _ 

Volume (M3)

Habitat/
Total
Ratio

1 6224 10024 2976 297

2 7312 11160 3437 .308

3 4712 7532 2285 303

4 3552 5824 1762 302

5 14480 31600 7668 .243

6 2256 2360 1046 .433

Littoral
Total 38536 68500 19174 .280

Limnetic
Stratum 85452 341808 51271 14.99

Table II.2 Strata morphometric data for stratified sampling design.
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Inner Littoral 
8 m from shore 
^m ax= 1-0 m

Outer Littoral 
20 m from shore 

^max= 4-0 m
Limnetic

Surface 2.1 (1.0) 0.5 ( 0.7) 0

0.5 m 0.5 (0.4) 0.2 (0.1) 0

1.0 m 9 <0.1 (< 0.1) <0.1 (<0.1

13 m 9 <0.1 (<0.1) 0

2.0 m 9 0 0

0 - 8.0 m OBUQUE LIMNETIC TOWS 0

Table 113 Pilot study to establish vertical distribution. Average number 
Polyphemus L‘* (+/-  S.D.).
* indicates no sample taken
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Littoral
Stratum

Mean No. Polyphemus 
L*1 (+/-  S.D.)

Allocated 
Sample Tows

1 62  (0.8) 7

2 7.4 (3.9) 7

3 6.4 (3.5) 5

4 3.5 (0.9) 2

5 2.9 (1.3) 7

6 6.2 (1.9) 3

7 <0.1 (<0.1) 3

Table II.4 Sample Allocation for Stratified Sampling 
Design.
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Time Period Size Range
(mm)

M. dolomieui 
n

Polyphemus
eaten

SUNRISE
0500 - 0700 <10 0

10-14 11 0
15-19 0
20-24 0
>25 0

BEFORE SUNSET
1700-1930 < 10 9 7.4 (9.8)

10-14 10 1.5 (1.8)
15-19 2 0
20-24 0
>25 0

AFTER SUNSET
2015-2350 < 10 2 55  (3.5)

10-14 53 0.8 (3.0)
15-19 20 6.9 (19.3)"
20-24 10 0
> 25 2 0

Table II.5 Relationship of average number Polyphemus eaten (+ / -  S.D.)
per fish, size range of fish and time of day. "Three guts contained 

Polyphemus; two, more than 50.
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SECTION III. SPATIAL DISTRIBUTION AND DIEL MOVEMENTS OF

POLYPHEMUS PEDICULUS

Introduction

Polyphemus typically occurs in aggregations or patches in shallow littoral 

areas. The patches range in size from a few centimeters to several meters in 

diameter, and most are limited to 0-0.5 m depth (Butorina 1986). Formation of 

patches has been associated with diel changes of light intensity (Mattson 1979). 

Aggregations reportedly lose integrity at sunset as individuals disperse in response 

to decreased light intensity (Butorina 1969,1986). Aggregations reach highest 

densities as they reform in the morning (0400-0900 hours) (Butorina 1986). 

Although some aggregations are fixed in location (Butorina 1986), horizontal diel 

and seasonal movements between the littoral and limnetic zone have been reported 

in Stonehouse Pond, NH (Mattson 1979). Horizontal movements into the limnetic 

zone occurred at night, often succeeded by an inward movement to the littoral 

during the day. The diel movements were directed by changes in light intensity 

affecting visually mediated swimming behavior and by wind induced water currents 

(Mattson 1979).

Functions attributed to aggregation behavior include reproduction, feeding 

and protection (Butorina 1986). Aggregation behavior, however, has been observed 

in both parthenogenic populations and mixed gamogenetic (sexual) and 

parthenogenetic populations. Changes of light conditions initiate patch formation. 

The aggregation behavior could also be an adaptation response to a selective force 

such as fish predation. Horizontal distribution and movements of the Polyphemus 

population in Mirror Lake were studied to observe possible diel patterns.
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Methods and Materials

Location

Mirror Lake is located in the town of Woodstock (Grafton County) New 

Hampshire (43® 56.5’N, 71® 41.5'W) at an altitude of 213 m. The glacially formed 

lake covers an area of 15.0 ha, has a maximum depth of 11.0 m and an average 

depth of 5.75 m. Located within the Hubbard Brook drainage basin Mirror Lake 

has been included in the Hubbard Brook Ecosystem Study and the limnology has 

been well documented (Likens 1985). The lake is oriented on a NW-SE axis. The 

deepest part is closest to the north side creating steeper slopes which contain 

numerous boulders. The south side of the lake is more gently sloped and is sandy. 

The outflow of Mirror Lake drains from the SE end of the lake into the Hubbard 

Brook which is a tributary to the Pemigewasset River.

Diel Studies

Two studies were designed to examine diel distributions and movements of 

Polyphemus throughout the entire littoral zone. The first study was conducted 17-18 

August 1987 to observe diel horizontal movement of Polyphemus indicated by 

density changes between stations. Twenty sites were selected and marked at 100-m 

intervals around the lake. From these sites 20-m tows were taken perpendicular to 

the shoreline (Figure III.l). The entire sampling scheme was conducted five times 

beginning at 1500,1930,2200,0530 and 1100 in random sequence and took two 

hours to complete.

A second diel study, conducted 18-19 August 1987, followed horizontal and 

vertical distributions and movements toward and away from the southwestern shore 

(south station). In each sampling period a series of 20-m tows was taken parallel to 

the shore; at 0.1 m, 4 m, 8 m, 12 m, and 20 m from shore. Buoys marked the 

location for each tow (Figure m .l). Samples were taken at surface (0.0-0.25 m) and 

0.5-m depth intervals to the bottom along each transect at mid-day, during sunset,
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mid-night and during sunrise. From 26 July-16 August 1990 the same sampling 

procedure was repeated three times at three locations, the southwest, north and east 

shores (south (1), north (2) and east (3) stations) (Figure III. 1). Sampling frequency 

was increased and samples were taken one hour before, during and after sunset and 

sunrise at all stations. After the first diel sampling period in 1990 only surface 

samples were taken because in 1987 and in 1990 91-99 % of Polyphemus collected 

were from the surface sample (0.0-0.2S m). The sampling sequence was followed for 

three consecutive 24-h periods and two stations were sampled simultaneously.

Aggregation or patch densities of Polyphemus change seasonally with total 

lake abundance. For my study a Polyphemus aggregation was defined as a group 

with a density three or more times the average lake density of Polyphemus at that 

sampling period (Mattson 1979). The average Polyphemus density during the diel 

studies in August 1987 was 1.4 L*1.

A 12.5 cm diameter Clarke-Bumpus (CB) metered plankton net with a 151 n 

m mesh Nitex net was used for the diel studies following the procedure described 

elsewhere (Section II). Organisms collected were preserved in 4 % sucrose formalin 

(Haney and Hall 1973). In the laboratory the entire sample was examined and 

Polyphemus was enumerated with a dissecting microscope and channeled counting 

chamber. The proportion of the population collected at each distance from shore 

during a time period was weighted by that distance from shore to describe the 

position of the population in weighted mean distance (WMD).

Results

Diel changes in Polyphemus densities and horizontal distribution were 

observed throughout the littoral zone in the first diel study (Figure III.2). The 

highest average densities occurred at sunset and sunrise (2.24 and 3.48 L 'l), and the 

lowest occurred at night (1.14 L 'l).

During mid-day sampling periods (1500 h, 17 August and 1100 h, 18 August),
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average Polyphemus densities (1.6 and 1.8 L*l) were higher than the average density 

calculated from the total abundance estimate, 1.4 L '1 (Section II). Patches were 

observed only at site 18 on the south shore. The highest number of patches were 

observed at sunrise (8) and sunset (4), all but one along the south and southwest 

shores. At night a total of 364S Polyphemus were collected, half (.51) the number 

collected during sunset (7167). Highest night densities, including one patch, were 

found along the west shore. The changes in Polyphemus densities indicate a general 

movement from the north and south shores around to the west shore at night. No 

Polyphemus were collected in limnetic samples taken during the diel study. The sky 

was overcast and windspeeds decreased from 4.0 kph during the first sampling at 

1500 h to < 1.0 kph from sunset to sunrise. Wind speeds increased to 15 kph out of 

the northwest during the 1100 h sampling (Hubbard Brook Experimental Forest 

weather data).

The second diel study, 18*19 August 1987, at the south station (station 1) 

revealed dynamic horizontal movement,. At mid-day the population was dispersed 

in the outer littoral area, 8 - 20 m from shore (Figure III.3). At night 97% had 

moved within 8 m of shore. By sunrise 60% of the population had moved out to 8 - 

20 m from shore. Polyphemus also exhibited short distance vertical movements. At 

midday most of the population was just below the surface, (0.0-0.25 m), although 

14% had moved down to 0.5 m and 0.5% to 1.0 m. The deeper individuals moved 

up before sunset and 97% were at the surface as the population moved inward. The 

direction of movement in Mirror Lake was opposite to the diel movement observed 

in Stonehouse Pond (Mattson 1979).

Polyphemus moved away from shore during sunrise and toward shore during 

sunset at three stations in 1990 (Figures IIL3 and III.4). Average weighted mean 

distances (WMD) after sunset were closer to shore than before sunset at the north 

(2) and east (3) stations (Table III.1). At the south (1) station, however, an outward
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movement during sunset is indicated (Figure III.4). The south station was at the 

public beach and during all sunset sampling periods there was swimming activity 

within the buoys. The outward movement was likely a physical interference with the 

typical inward movement. An hour after sunset the swimmers had left and 

Polyphemus had moved into shore (WMD = 0.62 m).

Polyphemus appeared to have retained the post-sunset horizontal 

distributions throughout the night. An hour before sunrise, 75 - 95% of the 

Polyphemus collected at all three stations were still between the shoreline and 4 m 

(Figure III.5)(average WMD = 0.91 m). Movement away from shore before sunrise 

was rapid and an hour after sunrise only 10 % of the Polyphemus collected remained 

between the shore and the 4 m depth.

Changes in weighted mean distances were significantly affected by time of 

day and not by station orientation (2 way ANOVA, F=537, p<0.05). Weighted 

mean distances were significantly different before sunrise and after sunset 

(Duncan's multiple range test, p<0.05). Only a small proportion of the population 

(< 15%) exhibited vertical movements, up before sunset and down after sunrise, not 

exceeding 1 m.

Discussion

Horizontal movements of Polyphemus were very pronounced in Mirror Lake; 

most of the population moved distances up to 20 m within two hour periods. 

Swimming speeds from 11.2 to 57.2 m sec** have been video-recorded in the 

laboratory (Young and Taylor 1988). Butorina (1986) reported rapid long distance 

movements by Polyphemus of 25 m in two hours. These swimming speeds could 

account for the diel changes of density distribution throughout the littoral area and 

the dynamic diel patterns of horizontal movement from the outer regions of the 

littoral area into shore during sunset and back out before sunrise.

39



Most patches were observed during sunset (1730 samples) and sunrise (0S30 

samples) concentrated along the SSW shore (Figure III.2). The absence of patches 

throughout the littoral areas except at station 18 during daylight hours and 

formation of patches along the west shore and not the SSW shore at night suggest 

some type of diel movement. If there was diel movement of Polyphemus in the 

littoral area, where were the large numbers collected at sunrise during the night? 

They did not move out into deeper limnetic water. Polyphemus was not collected in 

limnetic tows taken beyond 8 m from shore. The relatively low numbers of 

Polyphemus first sampled at night in the perpendicular tows can be explained. Most 

likely Polyphemus moved into shore at night as observed in the second diel study. If 

Polyphemus had moved to within 2-m from shore they could not collected with the 

methodology used and described elsewhere (Section II). In the second diel study > 

50% of the Polyphemus collected at night were 0.1 m from shore. Polyphemus must 

have been in the inshore shallow areas of the lake and during the first diel study the 

shallow areas were not sampled.

Although the methodology explains the low densities at night it does not 

explain the unusually high densities along the west shore (Figure m.2). There was a 

flood light at site 4, which illuminated the entire sampling area and four other sites 

where the high Polyphemus densities occurred. Between site 4 and both adjacent 

sites (3 and 5) there were large boulders extending into the water and large trees at 

the shoreline which blocked the light from the surface of the water at the two sites. 

Polyphemus densities at sites 3 and 5 were similar to densities along the eastern 

shore, < 1 L '1. Light levels at all sites were below the sensitivity of the Whitney 

Photometer used to measure light intensity, as were light levels before sunrise and 

after sunset. The artificial light source could have simulated sunrise or sunset light 

conditions and Polyphemus responded by moving out from shore and/or 

aggregating.

40



The prevailing winds on Mirror Lake are usually from the northwest 

(Hubbard Brook Experimental Forest weather data) which could explain high 

densities of Polyphemus along the south shore. Mattson (1979) found a strong 

correlation between patch location and wind direction during the summer months. 

Patches formed on the downwind side of Stonehouse Pond during strong winds.

The formation and function of zooplankton patch densities or aggregations 

has often been associated with social activity or sexual reproduction (Colebrook 

1960), increased feeding rates and predator avoidance (Folt 1987). Sexual activity 

has also been suggested as a function of Polyphemus aggregations (Butorina 1986). 

Active aggregations of parthenogenetic individuals were observed throughout the 

season before gamogenetic individuals appeared in the population. Feeding rates of 

Polyphemus have been reported to increase with predator density (Butorina 1986). 

Most feeding activity in Mirror Lake, however, occurred during the daylight hours 

(Section V), when Polyphemus densities approximated the average lake-wide littoral 

density.

Crepuscular aggregations in Mirror Lake were associated with an upward 

movement by a small proportion of the population. More pronounced than the diel 

vertical movement was the diel horizontal movement. The co-occurrence of 

aggregation and diel movements suggests there is a relationship between the two 

events. In Stonehouse Pond, a lake morphologically similar to Mirror Lake,

Mattson (1979) observed significant horizontal movement of Polyphemus opposite 

of that observed in Mirror Lake; away from shore at night into the limnetic zone 

and, in varying degrees, inward during the day. His observed horizontal movement 

also coincided with vertical movement, downward at night, upward during the day. 

Absence of wind at night facilitated dissipation of patches and population shift into 

the limnetic zone. Similar diel behavior has been reported in the Rybinsk Reservoir 

(Butorina 1969).
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During the 17-18 August 1987 diel studies wind speed did not exceed 5 kph 

except at mid-day on 18 August when speeds to 18 kph were recorded. The diel 

horizontal patterns occurred consistently throughout the study. Inward horizontal 

movements were observed during calm, rain and storm conditions, while outward 

movements were observed against high wind. In Mirror Lake it is doubtful that this 

diel horizontal behavior can be correlated with wind.

A likely stimulus for this horizontal movement in Mirror Lake is light. Light 

intensity changes during sunset and sunrise are common cues for vertical and 

horizontal movements of many zooplankters (Haney 1988). Polyphemus is able to 

detect refracted or reflected light from particles under the water surface. The large 

compound eye of Polyphemus comprises 25 % of the body length and contains 130 

facets (ommatidia). The photoreceptor within each ommatidium is a light sensitive 

rhabdom. There are 4 types of rhabdoms, regionally arranged, in the Polyphemus 

eye (Nilsson and Odselius 1983). One type of rhabdom causes Polyphemus to be 

more sensitive to vertically polarized light than to horizontally polarized light 

(Odselius and Nilsson 1983). This sensitivity is maximized when the angle between 

the sun's rays and a line drawn perpendicular to the surface is between 42® and 640. 

At Mirror Lake this angle at which Polyphemus best detects other plankters and 

particles occurs in late morning, 0830 -1030 hours, and late afternoon, 1530 - 1730 

hours (Anderson 1977). These two periods of optimum vision for detecting particles 

coincide with maximum Polyphemus feeding but not with horizontal movements. 

Feeding activity and horizontal movements as affected by light are independent of 

each other and perhaps the relationship of light and diel movements can be 

explained with descriptive functions of the other rhabdom types.

The different patterns of diel movement in two physically similar New 

Hampshire lakes, Mirror Lake and Stonehouse Pond, suggest different selective 

forces. Predators can often affect behavior and abundance of prey populations
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(Hall et al. 1970). The invertebrate predator species of both lakes was Chaaborus. 

Chaoborus exhibits pronounced vertical migrations after sunset and did not appear 

near the surface of Mirror Lake until after Polyphemus had moved into shore. The 

vertebrate predators, however, were different in the two lakes. Micropterus 

dolomieui (smallmouth bass) fry have been identified as a predator in Mirror Lake 

for the first few weeks after hatching (Section II). Several studies have reported 

increased feeding activity of M. dolomieui during crepuscular periods (Helfman 

1981) followed by cessation of feeding and offshore migrations (Munther 1970; 

Emery 1973). The activities of M. dolomieui coincide with the aggregation and 

inshore movement of Polyphemus. The outward movement of Polyphemus during 

sunrise occurs just before or simultaneously with the inward movement and first 

feeding activity of the predators. Polyphemus aggregation and diel movements could 

have evolved as a predator avoidance behavior which decreased the chances of an 

individual being eaten and diminished the probability of encounter with a predator.

In Stonehouse Pond the vertebrate predators were limited to an introduced 

population of brook trout (Salvelinus fontinalis). As a part of New Hampshire's 

reclamation program Stonehouse Pond was treated regularly with rotenone, most 

recently in 1970. S.fontincdis were stocked as fall fingerlings, 10 -15 cm long, and 

spring yearlings, 20 - 25 cm long, and were larger than fish fry which select 

Polyphemus size prey. If S. fontinalis were to swim into an aggregation, feeding did 

occur (Haney and Mattson 1980). Several years after Mattson's study of Polyphemus 

in Stonehouse Pond, another vertebrate predator, Lepomis gibbosus (common 

sunfish) was introduced. L. gibbosus exhibit feeding behavior similar to M. 

dolomieui and were very efficient predators on a Polyphemus population which did 

not exhibit a predator avoidance behavior. Polyphemus has not been in Stonehouse 

Pond since 1985. It appears that aggregation behavior did not prevent predators 

from decimating this population.
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20m shoreline

Figure m.1 Location of sample tows for diel studies on 17-18 August 1987, 
18-19 August 1987 and 26 July-18 August 1990. Inset shows detail 
of marker locations for horizontal movement studies.
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Figure UI2 Total diel densities and horizontal distribution of Polyphemus, 
Mirror Lake, 17-18 August 1987. (Gockwise, from upper left)
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Figure III3 Horizontal distribution of Polyphemus during sunrise (18-19 August 1987 and 26 
July-16 August 1990) at the south (1), north (2) and east (3) stations. Bars 
represent average percent collected at each distance from shore relative to total 
number collected at that time period. Before sunrise n *21,106; sunrise 
n - 22,556; after sunrise n* 16375.
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Figure III.4 Horizontal distribution of Polyphemus during sunset (18*19 August 1987 and 26 
Jul - 16 August 1990) at the south (1), north (2) and east (3) stations. Bars 
represent average percent collected at each distance from shore relative to total 
number collected at that time period. Before sunset n=30,127; sunset n » 32,073; 
after sunset n-36452.
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Station

South

North

East

Before

1.29(1.46)

1.81(1.16)

1.98(1.44)

SUNSET

During

1.44(1.19)

1.40(0.78)

1.56(0.85)

After

0.61(0.53)

0.29(0.29)

0.46(0.65)

Difference 

+0.67 

+ 1.52 

+ 1.52

South

North

East

Before

0.33(0.26)

1.56(1.01)

0.84(0.96)

SUNRISE

During

2.03(1.69)

1.59(0.87)

1.45(1.21)

After

2.88(3.18)

2.07(1.42)

235(2.10)

Difference

-2.55

-0.51

-1.51

Table UI.l Average weighted mean distances (m) (+/-S.D.) from shore 
during sunset and sunrise 18-19 August 1987 and 26 July-16 
August 1990).
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SECTION IV. METHODOLOGIES DEVELOPED TO STUDY FEEDING 

RATES AND SELECTIVITY OF POLYPHEMUS PEDICULUS

Introduction

Predation rates of zooplankton are generally estimated by one of three 

experimental approaches; gut content analyses (Gliwicz 1969; Confer 1971; Infante 

1973; Swift and Federenko 1973; Brandi and Fernando 1975; Murtaugh 1981; 

Downing and Rigler 1984), isotope food labeling (Haney 1971,1973; Peters 1975; 

Lane et al. 1976; Downing and Rigler 1984) and differential counts (Gliwicz 1968; 

Downing and Rigler 1984). The method I chose for estimating ingestion rates of 

Polyphemus was differential counts. Although this method is time consuming and 

labor intensive it has several advantages. Feeding rates on different prey can be 

estimated simultaneously. Experiments can be allowed to continue for long periods 

of time, thus compensating for variations caused by discontinuous feeding and 

undetected diel feeding patterns (Downing and Rigler 1984). Incompletely eaten 

prey cannot be identified in gut content analyses, but can be counted as such using 

the direct count method. Predaceous cladocerans tear prey with their mandibles 

and then suck the body contents in, rendering gut contents to a homogenous mass 

(Mordukhai-Boltovskaya 1960; Monokov 1972). Feeding rates and prey selectivity 

of predaceous cladocerans, therefore, cannot be established with gut content 

analyses. Predation studies with labeled food requires radioactive cultures of 

bacteria or algae which are first fed to the prey, and in turn are fed to the predators. 

Feeding studies have to be brief, ending before the labeled cells can pass through 

the gut of the prey or the prey through the gut of the predator. Butorina and 

Sorokin (1970) used 14-Carbon labeled Chlorella to label Bosmina and Keratella
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which were offered to Polyphemus in unusually high densities. In high prey 

densities, gut passage of Polyphemus was as short as 10 minutes. Loss of the 

radioactive material through manipulation, incomplete ingestion, egestion, 

respiration or egg development, if the experiments were allowed to last too long, 

could result in underestimates of feeding rates (Peters 197S).

Feeding rates of the zooplankton community are affected by many factors. 

Light conditions, temperature, time of day, duration of the study, animal size, size 

and concentration of food particles, container size and volume per animal influence 

grazing and feeding by zooplankton in varying degrees (general literature review by 

Peters 1985). Peters and Downing (1984) surveyed the literature and collected 

feeding data from a broad range of experimental conditions and performed multiple 

regression analyses to describe the significance of these factors on feeding rates. 

Ingestion rates of herbivorous cladocerans are affected most significantly by food 

concentration, followed by animal size, water volume per animal, food size and 

temperature. In the laboratory, predation rates by the differential count or 

radioactive labeling method are typically estimated from experiments conducted in 

small vessels containing mixtures of plankton concentrated from net tows (e.g. 

Murtaugh 1981; Ramcharan and Sprules 1986; Matveeva 1989; Grossnickle 1978) or 

cultured prey (Butorina 1986). Duplicating in situ conditions and natural predator 

and prey densities and composition is very difficult. In addition, the handling 

required to set up feeding experiments could injure the predators or the prey or 

affect their behavior and physiology (Chow-Fraser 1986). In situ feeding 

experiments are not as convenient as those conducted in the laboratory but can 

provide a more accurate indication of what kind of prey and how many prey the 

predators are actually eating under virtually natural conditions.

The first in situ feeding studies were conducted by Gliwicz (1968) who used 

two 3 L. capacity experimental chambers. Both chambers trapped zooplankton and
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lake water. A narcotic was released into one chamber to stop feeding activity. 

Zooplankton counts from this chamber were used as the control. Feeding rates of 

the zooplankton community were estimated by the differential count method. 

Hillbricht-Ilkowska and Karabin (1970) modified the method to study feeding rates 

of the predaceous dadoceran Leptodora kindtii. Vanderploeg et al. (1982) modified 

and enlarged the traps (30 L.) to study feeding rates and prey selectivity of Mysis 

relicta. In both studies traps were used to collect water containing natural 

zooplankton assemblages, predators were added to one chamber and the other 

chamber served as the control.

To ensure measurable feeding rates, predator densities used in the Leptodora 

experiments were 2-10 times ambient densities (350 m‘3). Bowers and Vanderploeg 

(1982) chose a predator density of 166 mysids m*3, only slightly above the natural 

observed range of 30-140 m'3 (Grossnickle 1978; Beeton 1960) as a compromise 

between two conflicting requirements; sufficient numbers to obtain measurable 

feeding, while minimizing density induced stress. In situ Polyphemus densities are 

more variable than Leptodora and Mysis. Non-aggregation densities are less than 

1jc . 1()3 m'3, whereas densities within aggregations have been reported up to 1.5 x 

107 individuals m*3 (Mattson 1979). This broad range indicates the potential 

importance of predator density. The relationship of predator density and feeding 

rates could be demonstrated with manipulated feeding studies at several natural 

predator densities. A manipulative experiment by definition always involves two or 

more treatments and has as its goal one or more comparisons (Hurlbert 1984). 

Predator manipulated studies, especially in situ plankton feeding, are rare in the 

literature (Sih et al. 1985). Several predator densities used in a single experiment 

representing the range of natural densities would permit estimates of predator 

density effects on feeding rates. It is assumed that any changes occurring in the 

control chamber during the experiment also occur in the other chambers
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(Hillbricht-Ilkowska and Karabin 1970; Vanderploeg et al. 1982; Hart and 

Christmas 1984; Nero and Sprules 1984).

The variability of natural prey densities between control and experimental 

chambers affects the sensitivity of an in situ differential count method of estimating 

predation rates. Vanderploeg et al. (1982) demonstrated that distribution of prey 

populations in control and experimental chambers were random. Cassie (1959), 

however, observed small scale patchiness in samples taken on a horizontal plane at 

10 cm spatial intervals.

Methods and Materials

Feeding Chamber Design

A multichambered transparent plankton feeding trap was constructed to 

accommodate multiple predator densities in a single feeding experiment. Each 

chamber was designed to meet several criteria for an acceptable plankton trap.

First, the chamber must move through lake water with minimal turbulence and close 

quickly at the selected depth to eliminate or minimize possible plankton avoidance 

responses (Smyly 1968). The chamber must be transparent to reduce visual 

avoidance (Schindler 1969, Hodgkiss 1977). The chamber must be large enough to 

collect a number of prey individuals adequate for statistical evaluation.

The multiple unit apparatus collects water with a Schindler trap-type closing 

mechanism and a remote predator introduction system modified after Haney (1971). 

Each chamber of the four-chambered trap was fabricated from 0.635 cm Plexiglas 

(21 x 21 x 61 cm outside diameter) with a capacity of 21.15 liters (Figure IV.l). The 

two end lids are hinged by pieces of rubber tubing and connected by a stainless steel 

tie rod causing the lids to work simultaneously. Self-adhesive foam gasket tape was 

applied to the contact area of the back and side edges of the lids as well as the
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corresponding areas of the rims to prevent leakage. Magnetic tape on the front 

edges of the lids and rims kept the traps from opening under water. Holes (3 cm) 

were drilled in the center of each top lid to allow air to escape when closing on 

surface waters and to permit water to drain out as the assembly is raised. Rubber 

stoppers were placed into the holes during the feeding experiments to prevent 

exchange of water. On the bottom end of the front surface of each chamber is a 2.9 

cm hole with a 3 cm neck. A ring net assembly is attached to the neck. A ring net 

assembly consisted of a 10 cm long tapered net with a Plexiglas plankton bucket (10 

cm long, 8.5 cm diameter, 10 pm  mesh) attached to the narrow end.

Polyphemus are automatically released from a small cylinder in the comer of 

each chamber when the trap is closed. Each predator-release cylinder is constructed 

of Plexiglas tubing, rubber stoppers connected by a black wire strand leader to close 

off the ends of the cylinder and a second leader connecting the bottom stopper with 

an eyelet screw in the bottom lid (Figure IV. 1).

This plankton trap/feeding chamber assembly was specifically designed for 

the surface waters of littoral areas typically inhabited by Polyphemus. The assembly 

of four chambers was set in a stainless steel frame and was raised and lowered by a 

winch mounted on a small permanent platform (Figure IV.2). The chambers are 

held open while being lowered by monofilament lines attached to the top lid and 

hooked to the top of the steel frame. Polyphemus were put into the release cylinders 

and the assembly was quickly lowered into the water. The lids were manually 

closed, releasing the predators. As an alternative, Polyphemus were added through 

the hole in the top lid. The procedure was reversed at the termination of the 

feeding experiments. The stoppers were removed from the top lids and the 

assembly was slowly raised allowing the water in each trap to filter through the ring 

nets. Plankton collected on the nets was backwashed into sample vials for 

preservation and subsequent laboratory analyses.
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Equipment and Assumptions Tested

Two assumptions of the differential count feeding method were tested before 

the experiments were begun. The first assumption was all individuals introduced or 

collected in the chambers are recovered. Second, prey distribution among the four 

replicate chambers is uniform, i.e. the number of each prey taxon in each of the 

three experimental chambers and the control chamber is not statistically different.

To test the first assumption, I examined the recovery rate of Polyphemus 

from the chambers. A known number of Polyphemus was added to each chamber as 

the assembly was deployed. After four hours the assembly was raised and all 

individuals in the chambers were collected on ring nets. The chambers were not 

rinsed. The individuals recovered were counted and the recovery rate for each 

chamber was calculated (Table IV. 1 A). The average recovery rate was 82.28%

(+ /-  7.29 S.D. n=28).

Possible physical entrapment of Polyphemus in the chambers was examined 

by a series of rinses. By rinsing each chamber with four liters of filtered water an 

average of more than 95% of the Polyphemus was recovered (Table IV.IB).

To test whether leakage from the chambers could account for any loss of 

Polyphemus the opening for the plankton bucket at the bottom of each chamber was 

covered and the chamber was filled with well water. An average of 522.1 mL 

(S.D.=286.2, n =11) leaked between the gaskets of the bottom lids in 4 minutes, the 

maximum time to raise the assembly at the end of a feeding experiment. This is an 

overestimation of water loss because the openings for the plankton buckets had 

been covered for the tests and the water pressure within the chambers exceeded that 

which existed during normal use. In practice, as the chambers were raised from the 

lake the water flowed out through the plankton buckets and the water levels in the 

chambers remain close to the lake level.

The 2.5% water loss could explain Z5%  of Polyphemus not recovered (six out
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of an original concentration of 250 Polyphemus). The remaining proportion of 

Polyphemus not recovered (2.5%) was probably either still trapped in the chamber 

or cannibalized by other individuals. The rinse procedure was followed for all 

feeding experiments to insure high recovery rates of both predators and prey.

The second assumption of the differential count feeding method is uniform 

distribution of prey. Prey distribution in limnetic predation studies, however, has 

been reported as random (Vanderploeg et al. 1982), and small scale patchiness of 

zooplankton has been reported within small surface areas as sampled by the trap 

( < 1 m^) (Cassie 1959). Larger scale (> 1 m2) random distribution has been 

reported for some rotifer species in Mirror Lake (Keratella and Kellicottia) while the 

distribution of the other prey species was patchy (Makarewicz 1974). Small scale 

distribution studies of plankton in Mirror Lake have not been reported.

Since the control was not replicated during each in situ feeding experiment, 

Polyphemus predation rates were estimated by subtracting the single control 

chamber count of each prey item from the final count in each experimental chamber 

with Polyphemus. Lower than actual feeding rates would be obtained from 

experimental chambers with prey densities higher than the control at the beginning 

of the feeding period. Conversely, higher feeding rates would be obtained in 

experimental chambers with lower densities than the control chamber. The 

magnitude of the prey variation can determine the threshold sensitivity for the 

differential count method.

To determine whether variability between chambers was random I took ten 

multiple samples with the predation trap on seven separate dates. Two multiple 

samples were taken on two of these dates, three samples on one. Seven prey taxa 

were enumerated from each chamber.

A  nested analysis of variance (ANOVA) model was developed to classify and 

compare three levels of variation in these data:
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DATE - representing day to day variation among the 

seven days.

WITHIN DATE - representing variation among the replicate 

sets of counts taken on the same day.

REPLICATE - representing within date variation among 

the four chambers of one multiple sample.

The results demonstrate that all models were highly significant with R-squares of 

between 0.87 and 0.997 (Table IV.4). Within date, replicate variation was only 0.3% 

to 14.8% of the variation explained by the model, depending on the taxon. Based on 

the magnitude of date to date (12.0 - 99.7%) and within date (4.7 - 96.7%) 

variations, within chamber, or replicate variation cannot be pooled across these time 

frames. Differential counts were, therefore, derived by subtracting the single 

control chamber density from the three feeding chambers of the same feeding 

period.

Negative predation rates obtained from experimental chambers were not set 

to zero prior to computing mean predation rates since negative feeding rates reflect 

random, within chamber variation with equal probability of being positive or 

negative. If negative feeding rates, calculated from feeding chambers with more 

prey than the control chamber at the end of the feeding period, were set to zero, 

calculated mean feeding rates would be overestimated.

Density variation of copepod nauplii was the highest of all prey taxa 

examined. Nauplii were the largest of the prey taxa and also the fastest swimming. 

Patchy distribution of this group has been reported in Mirror Lake (Makarewicz and 

Likens, 1979)

Density variation of colonial forms can be exaggerated when individuals are 

enumerated and not the colonies. The number of Conochilus in a live colony ranged 

from 12 - 50 individuals, the average was 30 (n = 140). Most Conochilus colonies
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lost their integrity when placed in preservative which made individual enumeration 

necessary.

Vorticella, a large ciliate, was physically attached to Anabena colonies in 

Mirror Lake. More than 100 Vorticella were often counted on one colony. Vorticella 

was not, however, found on all Anabena colonies and the average number of 

Vorticella per Anabena colony ranged from 2 -10. The number of individuals per 

colony was not correlated with total number counted chamber*! (Conochilus, R - = 

0.05, n = 10; Vorticella = 0.05, n = 9).

To demonstrate the differential count method, three sets of data from 

feeding experiments conducted 1986-1987 are presented (Table IV.2). Prey density 

differences between the control and each of the experimental chambers indicate the 

number of each prey taxon eaten. Feeding rates can be calculated from these data 

(Section V) (Table IV.3).

The primary advantages of this in situ methodology for studying zooplankton 

predation are simplicity, dependability and accuracy. In addition, multiple samples 

can be obtained simultaneously for repetitions of predator/prey manipulations. 

Handling of manipulated organisms is kept to a minimum. The major limitation of 

this in situ feeding methodology is the lack of within test replicate variation of 

zooplankton among the single control and multiple experimental chambers.
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Figure IV. 1 Section of chambers showing undeployed and deployed chamber.
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Figure TV 2  Configuration of four chambers in stainless steel frame.
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A. Initial Recovery Rates

Replicate Average Recovery Rates (%) j)

1 83.4 6

2 87.1 4

3 78.7 4

4 78.0 4

Overall rate 81.3 _+ 7.3 (SE)

B. Rinse Treatments

Replicate No Rinse 2_L 4_L A L
1 79.2 81.2 93.2 96.8
2 82.0 86.8 100.0 99.6
3 87.2 86.0 94.8 96.0
4 69.6 79.2 94.4 89.6

Overall Rate 79.5 ±  6.4 83.3 _+ 3.2 95.6 ±  2.6 95.5 ±  3.7

Table IV. 1.
A. Percentages of Polyphemus recovered from chambers (250 
individuals per chamber).
B. Percentages of Polyphemus recovered from chambers with 
increasing volumes of rinse water (250 individuals in each chamber), 
n= 16.
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Polyphemus Prey species
Date NAU M B KEL SQ L CON VOR RHZ ROT

28 May 86 0 319 58 5436 1684 1183 117 0 337
1995 270 67 3248 1005 412 165 9 119
6088 196 17 1471 544 110 17 0 76
7984 255 9 1095 383 210 73 0 154

0 412 231 2613 8163 5825 55 165 1668
866 298 137 2137 4502 4625 62 103 1176
1162 248 101 1729 3124 5147 8 54 783
4421 216 48 894 1416 3905 0 6 108

0 425 87 383 383 1242 1179 683 177
1087 284* 81 216 270 1256 338 554 104
2429 491 78 185 299 627 221 385 106
5236 218 75 120 09 390 173 97 45

Table IV 2  Examples of total populations ofPoiyphemus and prey after 
feeding experiments.
(NAU nauplii; KER KerateUa; KEL Kellicottia;
POL Poly arthra; CON Conochilus; VOR Vorticetta;
RHZ rhizopods; ROT, other rotifers.)
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Polyphemus Prey species
Date L-l NAU KER KEL POL CON VOR RHZ ROT

28 May 86 94 0.01 0.00* 0.37 0.11 0.21 0.00* 0.00 0.03
288 0.03 0.00* 0.30 0.08 0.06 0.01 0.00 0.03
378 0.00* 0.00* 0.28 0.08 0.04 0.00* 0.00 0.01

24 Jun 86 42 0.04 0.06 0.15 1.69 0.35 0.00* 0.02 0.17
55 0.05 0.03 0.23 1.70 0.15 0.00* 0.03 0.27
209 0.02 0.01 0.16 0.81 0.11 0.00* 0.02 0.26

21 Sep 87 51 0.03 0.00* 0.04 0.03 0.00* 0.24 0.03 0.02
115 0.00* 0.00* 0.02 0.01 0.07 0.12 0.01 0.02
248 0.01 0.00* 0.01 0.02 0.05 0.06 0.04 0.00*

• < 0.005

Table IV.3 Examples of predator densities (individuals L'*) and calculated 
feeding rates (prey Polyphemus'1 h *) on prey species from feeding 
experiments in a multichambered feeding/trap assembly. See Table
IV.2 for explanation of designations for prey species.
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" H T " Taxon Data Within Date Replicate Total
Variance Percent Variance Percent Variance Percent Variance

0.87 NAU 461 18.5% 1,663 66.7% 368 14.8% 2,493

0.99 KER 41,088 29.5% 95,996 69.0% 1,941 1.4% 139,025

0.98 KEL 684 44.7% 792 51.8% 53 3.5% 1,530

0.98 CON ----- 0.0% 1,637,593 97.4% 43,120 2.6% 1,680,713

0.91 VOR 44,710 92.1% — 0.0% 3841 7.9% 48,551

0.95 ROT 6,537 56.6% 4,451 38.5% 563 4.9% 11,551

0.98 POL 18,029 38.8% 27,296 58.7% 1,174 2.5% 46,499

0.99 Total 1,070,045 26.9% 2,860,352 72.0% 41,135 1.0% 3,971,532

Table IV.4 ANOVA data; DATE, WITHIN DATE and REPLICATION 
variation.
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SECTION V. FEEDING RATES AND PREY SELECTIVITY OF THE 

PREDACEOUS CLADOCERAN POLYPHEMUS PEDICULUS

Introduction

There has been an increasing awareness in recent years of the important role 

of predators in an aquatic ecosystem (Kerfoot and Sih 1987). Vertebrate predators, 

particularly fish, can affect species composition and size frequency distributions of 

the entire zooplankton community (Brooks and Dodson 1965). Predaceous 

zooplankton can similarly affect the plankton community (Confer 1971; Kerfoot 

1977). Where predation is intense, more vulnerable prey species are limited in 

numbers or excluded from the system (Williamson et al. 1989). Often predaceous 

zooplankton play dual roles in the structure and function of the planktonic 

community by selectively feeding on smaller zooplankton and as preferred prey to 

larger zooplankton (Bowers and Vanderploeg 1982).

Of the three predaceous cladocerans, Leptodora, Bythotrephes and 

Polyphemus, Polyphemus pediculus is the smallest. It is typically littoral and 

ubiquitous throughout the northern temperate zone (Gurney 1923; Pennak 1978). 

Because of its patchy distribution, however, Polyphemus is seldom collected with 

traditional sampling methods and thus is overlooked in most studies. Its role in the 

food web of a fresh water ecosystem is not understood.

This Held study is the first to measure feeding rates and prey preference of 

Polyphemus on natural zooplankton assemblages at ambient densities. Most feeding 

studies with Polyphemus were conducted under laboratory conditions with varied 

numbers of predators and prey counted into small containers (Butorina and Sorokin 

1968,1970; Matveeva 1989). In situ feeding studies have been limited to adding
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selected numbers of Polyphemus to containers with single prey species (Haney and 

Mattson 1980). Because there was no precedence for prey preference by 

Polyphemus, all species were initially considered potential prey.

Methods and Materials

Location

Mirror Lake is located in the town of Woodstock (Grafton County) New 

Hampshire (43°56.5'N-71°41.5'W) at an altitude of 213 m. The lake covers an area 

of 15.0 ha, has a maximum depth of 11.0 m and an average depth of 5.75 m. The 

water is slightly acidic and has a well established population of Polyphemus 

pediculus. Mirror Lake lies within the Hubbard Brook Experimental Forest and is a 

principal research area for watershed management. The limnology of the lake has 

been well documented (Likens 1985).

Field Procedures

A four chambered Plexiglas trap was designed and fabricated to collect water 

and ambient zooplankton populations for the feeding experiments (Section IV).

The in situ studies were conducted from a platform supported by a wooden stilt 

frame 8 m from shore at a depth of 1.5 m. The platform was equipped with a winch 

for deploying and retrieving the feeding chambers.

Polyphemus to be added to the chambers for the feeding experiments were 

collected with a 151 pm plankton net from horizontal tows in littoral areas of the 

lake. They were separated from the other plankton in the tows by attracting them 

towards a light at the end of a long aquarium. Fractions representing 1/2,1/4 and 

1/8 of Polyphemus separated were placed into the release cylinders in each of the 

three experimental chambers. Polyphemus densities added to the feeding chambers 

(7-550 L*l) represented ambient densities (Mattson 1979). To expedite the 

predator release process and avoid overcrowding, Polyphemus was often poured 

directly into the chambers after deployment. The remaining 1/8 fraction of
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Polyphemus was examined to detect any evidence of cannibalism or other mortality 

which could have occurred during collection, separation and introduction 

procedures, preserved in sucrose formalin and enumerated.

Each feeding experiment lasted 4 hours, after which the assembly was raised, 

and the water was drained at a constant rate through the 30 pm  mesh ring nets 

attached to the outlet of each chamber. As the bottom of the assembly reached the 

surface each chamber was rinsed thoroughly with 4 L. of filtered lake water. Soda 

water (250 mL) was added to each chamber to stop feeding activity (Gannon and 

Gannon 1975). The organisms collected in the ring nets were preserved in sucrose 

formalin (Haney and Hall 1973).

A total of 96 feeding experiments (four chambers for four hours) were 

conducted from May 1986 to October 1987 with a frequency of 1-6 experiments per 

week. In 1986 daytime feeding experiments were run from 1000-1400 hours. In 

1987 diel feeding studies were run at 4-h intervals over 24 h periods.

Laboratory Analyses

Polyphemus and all prey species; crustaceans, rotifers and large protozoans, 

were identified and enumerated. Subsamples of at least 10% of each sample were 

taken with a Hensen Stemple pipette (Edmondson and Winberg 1971), placed in 

sedimentation chambers and allowed to settle at least 1 h mL'l* The entire 

chamber was counted with an inverted microscope to avoid possible error caused by 

uneven distribution of the organisms in the chamber.

The difference between the number of each prey taxon in the control 

chamber, the chamber to which no Polyphemus were added, and the numbers in the 

experimental chambers, to which Polyphemus were added, represented the number 

of prey consumed by Polyphemus during the 4-h feeding period. Clearance rates 

(the volume of water from which the predator removed prey per unit time) were 

calculated from Gauld (1951) for each prey species and the total prey community:
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C = V (InCo - InCt) /  tN 

where C = clearance rate in mL per Polyphemus per hour 

Co = number prey in control chamber

Ct = number prey in experimental chamber 

t = time in hours 

N = number predators 

V = Volume of water in each chamber 

Feeding rates (f), the number of prey eaten h*l Polyphemus **, were 

estimated for each species according to Frost (1972):

f = C x C

where C  is the arithmetic mean of the number of prey mL*l counted in the control 

and experimental chambers.

To compare the relative contribution of each prey type to the total 

consumption by Polyphemus, the numerical abundance was converted to biomass. 

Average dimensions of 25-50 individuals for each prey group, measured at 60 or 

150x, were used to calculate biovolume (Downing and Rigler 1984). Dry weights 

were estimated from these biovolumes by assuming a specific gravity of 1.0 and a 

dry weight to wet weight ratio of 10% (Pace and Orcutt 1981)(Table V.l). Dry 

weights of Polyphemus were calculated from length and dry weight relationships 

(Rosen 1981).

Absolute and relative prey abundance varied considerably between in situ 

experiments. Selectivity Coefficient (W') was chosen to estimate prey preference 

because it is not biased by varying relative abundances of prey, amount of prey 

consumed or number of prey categories (Vanderploeg and Scavia 1979a). 

Coefficients were calculated by dividing the clearance rate for each prey species by 

the highest clearance rate calculated for that feeding period from each experimental 

chamber. W  is defined between 0 and 1. If a prey species was not consumed the
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selectivity was 0 and the selectivity of the prey with the highest clearance rate, the 

most preferred, was 1.

Data analysis computed by regression or analysis of variance are presented at 

a significance level of p <0.05 unless otherwise indicated.

Results

Table V.l lists the zooplankton species eaten by Polyphemus in this study 

among all other zooplankton species present in Mirror Lake (Table V.2). The 

three letter designation for each prey group is used in some figures. The grouping, 

'Other Rotifers' (ROT), includes the rotifer genera Ascomorpha, Gastropus, 

Pleosoma, Rotaria and Trichocerca which individually were too rare to be 

enumerated with the differential count method, but collectively numbers were high 

enough to insure accurate counts. This group includes both loricated and 

unloricated species with a length of 75 -150 /im.

Clearance Rates

Highest clearance rates Polyphemus'* h 'l (+ /- .95 C.I.) were for Vorticella 

(4.5 + /-1.4 mL), 'Other Rotifers' (4.6 + /-1.2 mL) and Reratella (4.2 + /-1.9 mL) 

(Figure V.l). The lowest clearance rates were for Kellicottia (0.9 + /- 0.5 mL) and 

nauplii (0.8 + /- 0.3 mL). Clearance rates for Conochilus, Difflugia and Pofyarthra 

were significantly higher than for Kellicottia and nauplii (F=7.59).

Clearance rates of Polyphemus were not significantly correlated with 

individual or total prey densities. Clearance rates Polyphemus'* on the total prey 

community decreased exponentially with increased density of Polyphemus (Figure

V.2). The highest clearance rates (>20 mL h ' ̂ Polyphemus’ *) occurred in densities 

less than 62 L '1. Although there were also several low clearance rates obtained in 

low predator densities, there were no high clearance rates at high predator densities.

Body size of Polyphemus was not significantly correlated with clearance rates. 

The lack of significance of body size on clearance rates in Mirror Lake is probably
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attributed to the small size range. Body lengths of Polyphemus in Mirror Lake, 

including brood pouch, ranged from 0.45-0.94 mm. Body lengths of Polyphemus in 

other lakes ranged from 0.74-2.0 mm (Scourfield and Harding 1941; Brooks 1959; 

Balcer, Korda and Dodson 1984).

Feeding Rates

Feeding rates on the total prey community averaged 037 prey Polyphemus’* 

h 'l  between sunrise and sunset. The feeding rates varied considerably on different 

prey. The highest average feeding rates, 0.20 Vorticella + /-  0.11 Polyphemus'* h'* 

were ten times higher than for nauplii (0.02 + /- 0.01 Polyphemus’* h'*) (Figure 

V3). Feeding rates on other prey species ranged from 0.05 (+ /-.01) Polyphemus'* 

h'* on Difflugia to 0.11 ( + /-.05) h'* on Polyarthra. Feeding rates on Vorticella were 

significantly higher than other prey taxa except Keratella. Although feeding rates on 

all prey species were significantly higher than feeding rates on nauplii, there were no 

significant differences among feeding rates on the other six prey taxa (F =4.74). Dry 

weight conversions of prey allows comparisons of prey biomass ingested. For 

example, the dry weight biomass of one Polyarthra equals that of 36 Vorticella. Dry 

weight ingestion rates, based on dry weight conversions of total feeding rates, 

averaged 108 + /- 47 ng Polyphemus’  ̂ h'*. Most of the dry weight consumed 

Polyphemus’* h'* was Polyarthra (56 +/-24 ng), nauplii (16 + /- 5 ng) and 

Conochilus (13 + /- 6 ng) (Figure V.3). Biomass consumption of prey increased 

exponentially with increased prey biomass (Figure V.4). There appeared to be a 

tendency of decreased biomass consumption with increased predator densities but 

the decrease was not significant (Figure V.5).

Polyphemus ingested 6.67 (+/-10.5)%  of its body weight h'* of daylight 

throughout the season (Table V.4). Most of the dry weight (% body weight 

Polyphemus** h'*) ingested was Polyarthra (2.53), Conochilus (1.73) and Vorticella 

(0.74).
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Evidence of cannibalism was most often observed when Polyphemus densities 

were greater than 90 L~1 in the feeding chambers (Figure V.6). Cannibalism was 

presumed because no evidence of cannibalism had been observed before 

Polyphemus were added to the chambers and no other predators which could prey 

on Polyphemus were collected from the chambers after the feeding experiments. 

Evidence of cannibalism included pieces of an individual Polyphemus', single 

antenna, jaw, caudal peduncle or the eye. Often the major portion of the body was 

intact with just a piece removed, from the brood pouch or just behind the eye. 

PESiLSslgctiyity
Selectivity coefficients (W') indicate Polyphemus prefers small prey or prey 

that have little or no protective structures (Figure V.7). Selectivity for Kellicottia, 

Polyarthra and rhizopods were significantly higher than for nauplii (F=7.16). 

Vorticella, was most preferred by Polyphemus with an average W' (+ /-  C.I.) of 0.74 

+ /-  0.09 which was significantly higher than for all other prey except for Keratella, 

the smallest, (0.51 + /- 0.14) and the 'Other Rotifers', (0.67 + /- 0.09). However, in 

the case of Vorticella selection may not be strictly on size as they live on Anabena 

colonies and may therefore be considered colonial like Conochilus.

Prey density and relative abundance of prey were not significantly correlated 

with the W' of any species. A single comparison of density effect with all prey 

species was not made since at no one time were all of the prey species present 

together in Mirror Lake. To detect if the presence or absence of one species could 

affect selectivity of Polyphemus for another species, a comparison of all selectivity 

coefficients among species present together was made. Whenever two species co­

occurred the species with the higher W' was considered to be the preferred prey 

(Table V3). Frequency of preference is the proportion of times a prey species had 

a higher W' with a co-occurring prey species. The colonial Vorticella had a 0.90 

frequency of preference with nauplii, 0.81 with Kellicottia, 0.87 with Polyarthra, 0.83
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with the colonial Conochilus and 0.84 with Difflugia. With Keratella and the 'Other 

Rotifers', however, the frequencies were close to even, 0.54 and 0.52 respectively, 

indicating very little or no preference of one over the other. Nauplii had preference 

frequencies of <0.50 with all other prey taxa suggesting selection against the larger 

prey. The frequencies of preference exhibit almost the same pattern as average W's 

when compared to prey size. Both are higher for smaller prey with two exceptions. 

Kellicottia are smaller than nauplii, Polyarthra and Conochilus, but had lower 

preference frequencies and selectivity coefficients than Polyarthra or Conochilus. 

Conochilus is ten times, by dry weight, the size of Keratella, Polyphemus did not 

exhibit preference for the smaller when the two prey co-occurred (Table V.3).

Diel Clearance and Feeding Rates

Clearance rates, feeding rates and biomass consumed were highest from 

sunrise through sunset (0530-1930 hours). Clearance rates on the total prey 

community during midday averaged between 8.8 and 12.9 mL Polyphemus’  ̂h*l and 

decreased significantly after sunset (Figure V.8). Lowest clearance rates occurred at 

night (0.8 mL Polyphemus' 1 h*1). Before sunrise total clearance rates averaged 3.5 

mL Polyphemus' 1 h 'l and increased to 6.7 mL h 'l during sunrise. Although 

clearance rates indicate vulnerability of prey to predation these data can also 

demonstrate the diel pattern of feeding activity. Feeding rates averaged 0.12 to 0.78 

prey Polyphemus' 1 h"1 during the daylight hours and decreased to 0.09 prey h-1 after 

sunset (Figure V.9). Polyphemus can be considered a diurnal feeder since the 

average feeding rate at night was 0.05 prey h*l, and was not significantly different 

from zero (p>0.05). Although diel dry weight ingestion rates followed a similar 

pattern to feeding rates on prey individuals, there was a shift in the prey species 

eaten with time of day. Highest dry weight ingestion rates of Polyarthra occurred 

during the four hours after midday; second highest of Polyarthra and highest of 

Kellicottia and Vorticella, during sunset (Figure V.10). The high ingestion rate of
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Polyarthra dry weight reflected increased available prey during these feeding periods 

(Figure V.9) since W' values were low. Both abundances and W  values were high 

for Kellicottia and Vorticella over sunset.

Discussion

Feeding Behavior

This study clearly demonstrates, as Haney and Mattson (1980) first 

speculated, that Polyphemus is a daytime predator. This supports the possibility of 

visual prey detection. Young and Taylor (1988) demonstrated that Polyphemus 

visually sight, chase and catch prey. The basic features of the Polyphemus 

compound eye are similar to other cladoceran eyes. The unusual foveal rhabdom of 

Polyphemus, however, may depress sensitivity to vertically polarized light (Nilsson 

and Odselius 1983; Odselius and Nilsson 1983), allowing Polyphemus to detect 

contrasts created when light is reflected or refracted off the prey. These structural 

components and their arrangement in the eye suggest that Polyphemus visually hunt 

their prey which appear as light particles against a dark background (Odselius and 

Nilsson 1983).

The aggregation behavior of Polyphemus does not enhance the feeding 

activity as suggested by Butorina (1986). Instead, feeding efficiency decreased at 

high Polyphemus densities. Visual or mechanical interference is highly probable in 

aggregations. The number of prey sightings could be decreased by one Polyphemus 

obstructing the visual field of another Polyphemus and a possible prey. An 

intervenient Polyphemus could also mechanically interrupt a chase path of another 

or be detected as prey and attacked. With increasing Polyphemus densities, the rate 

of encounter with another Polyphemus, and the likelihood of cannibalism, increases 

(Figure V.6). Cannibalism for lack of other prey could be considered an alternative 

hypothesis. If the density of prey were reduced by Polyphemus during a feeding 

experiment so encounters with available prey were decreased, would Polyphemus
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feed on other Polyphemus'! The proportion of available prey eaten was not 

correlated with predator density, suggesting that cannibalism occurred 

independently of prey density.

Although Butorina (1986) reported increased feeding rates with increased 

predator densities the correlation was not significant (p < 0.05). The number of 

predators used in her feeding studies ranged from 1 to 1000 Polyphemus, but 

densities could not be determined because the volume of the containers used was 

not given.

The maximum Polyphemus density used in the feeding experiments for this 

study was 550 L*l. The maximum density sampled in Mirror Lake during this study 

was 46 L~l. from a 20-m horizontal tow during a diel study (Section III). The 

density could be underestimated if the sample were taken through an aggregation. 

Densities of Polyphemus to 806 L 'l have been reported in the Rybinsk reservoir 

(Butorina 1986) and aggregations have been reported to reach 15000 L*1 in 

Stonehouse Pond, NH (Haney and Mattson 1980). While aggregation behavior has 

been reported throughout the day (Mattson 1979; Butorina 1986) it is most 

pronounced in Mirror Lake during dusk and pre-dawn (Section IV). Clearance rates 

and prey consumption, after dusk, were significantly lower than during mid-day 

suggesting that, although both feeding and aggregation activities are visually 

stimulated, the responses differ.

Feeding Rate Responses to Changes of Prev Densities

Polyphemus feeding rates increased as functions of density of the total prey. 

Maximum densities of individual species ranged from 53 L*1 (Difflugia) to 375 L*1 

(Polyarthra), 473 L*1 (Vorticella) and 495 L** (Conochilus individuals in colonies). 

The feeding rate response to increased densities was significant for Vorticella and 

Polyarthra (Figure V .ll). Similar increases of feeding rates on Kellicottia and 

Polyarthra have been observed in laboratory studies (Fuhlendorf, unpublished
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data). Matveeva (1989) reported a significant increase in feeding rates as a function 

of prey density for Synchaeta pectinata and solitary Conochilus unicornis, reaching a 

saturation plateau at densities of 800 L** and 300 L*1 respectively. Butorina (1971) 

observed increased feeding rates on different prey types with increased densities up 

to 20 - 40 x 1()3 L*1 and an abrupt decrease at higher prey densities. The laboratory 

studies demonstrated that there is a feeding saturation plateau for Polyphemus and 

indicate a type III feeding curve. The prey densities at which maximum feeding 

rates occurred, however, did not exist in Mirror Lake. The laboratory data suggest 

that Polyphemus did not reach maximum feeding potential during the in situ studies. 

The Conochilus density at which feeding saturation occurred in Matveeva's study 

was lower than natural Conochilus densities in Mirror Lake but, unlike the colonial 

nature of most Conochilus, only single individuals were used in the laboratory study. 

Prey Selectivity

Polyphemus and the other predatory cladocerans, Bythotrephes and 

Leptodora, have been reported to be size-dependent predators (Zaret 1980). In 

addition to size, the presence or absence of protective morphological structures or 

predator avoidance behavior affects prey selection as indicated by the selectivity 

coefficients. Vorticella are picked off Anabena colonies by Polyphemus along with a 

lew Anabena cells as evidenced by the intact cells in the gut. If Polyphemus were a 

visual feeder the Anabena colony would provide a larger target than an individual 

Vorticella and be selected as prey. As a colony, Conochilus could be considered a 

visual target but it is too large for Polyphemus to manipulate, while small colonies 

and solitary individuals are easily consumed (Haney and Mattson 1980; Matveeva 

1989; Fuhlendorf, unpublished). The spined loricas of Keratella and Kellicottia could 

negatively affect selectivity. Although Keratella is smaller than Vorticella, and moves 

slowly (0.2-0.5 mm s'*) (Gilbert 1987) the many short spines probably compensate 

for the vulnerability of its size. The spines of Kellicottia triple the length of the body,
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making it too long for Polyphemus to manipulate with the thoracic appendages. 

Lorica remains from the feeding chambers had large gashes in the main part of the 

bodies which were bent into right angles. This evidence indicates that Polyphemus 

grabbed the body, used the jaws to make holes in the loricas and removed the 

contents by suction (Monakov 1972).

Rapid movement of the paddles of Polyarthra mediate an escape response; 

short, quick jumps (about 2 mm or IS body lengths, average velocity 36 mm s'*) 

(Gilbert 1985). In laboratory studies Polyarthra escape responses have been very 

effective against other invertebrate predators; Asplanchna, Diacyclops and first 

instar Chaoborus larvae. The escape response was often initiated by direct contact 

with a slow moving predator (Asplanchna) (Gilbert 1985). Stimulation of the escape 

response by acceleration of water has been observed in the inhalent current of filter 

feeding Daphrtia (Gilbert 1987). The average swimming speed of Polyarthra is 03 

mm s'* (Gilbert 1985). The swimming speed of Polyphemus chasing a prey, 

however, has been recorded at 15.4 mm s'* (Young and Taylor 1990). Polyphemus 

is an active predator and therefore does not create a water current for feeding. 

Polyphemus moves faster and may catch Polyarthra before the escape mechanism is 

engaged. The muscles which control the paddles are well developed and result in a 

higher than average dry weight/wet weight ratio (Dumont et al. 1975) which 

increases the food value of this prey.

Biomass ingested and relative ingestion rates.

Although selectivity coefficients and feeding rates indicate Polyphemus 

preferred and consumed high numbers of small prey, VorticeUa and Keratella, the 

smallest of the eight prey taxa, averaged less than 5% of the total ingested diy 

weight during the 1987 season while the major bulk of the diet (average, 67%) was 

nauplii and Polyarthra, the largest prey taxa. From early August through mid- 

September, however, more than 50% of the biomass consumed by Polyphemus was
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small prey although the larger prey were available. There is no indication from total 

population estimates or the average number of embryos carried by Polyphemus that 

the population was starving as both remained essentially unchanged over this time 

(Section II). This selectivity indicates that small prey can fulfill a large proportion 

of the energy requirements of Polyphemus.

Relative ingestion rates (% body dry weight ingested Polyphemus'* h*l) were 

calculated (Haney and Trout 1985) to compare biomass intake of Polyphemus at 

different times of the season. The average relative ingestion rate 

Polyphemus'* was 6.6% h_l (Table V.4). Haney and Trout (1985) reported lower 

rates for larger filter feeders e.g., Daphnia pulex, 2.3% h-1 and Ceriodaphnia 

quadrangula, 2.1% h'*. Monakov (1963 in Monakov 1972) in 24-h studies reported 

86.0% relative ingestion rates per day for the predator Macrocyclops albidis 

comparable to an average of 91.8% for Polyphemus during a 14-h feeding period 

(sunrise to sunset) observed in this study. Relative ingestion rates ranged from 0.01 

- 31.1% h*l (Figure V.12) and were not correlated with predator size (p<0.01) or 

with prey density (p<0.01). Highest average relative ingestion rates occurred in late 

June and late July when increases in population estimations were observed 

Polyarthra, the high food value prey (Dumont et al. 1975), contributed 75% of the 

dry weight ingested in late June when the Polyphemus population was increasing at 

an exponential rate after an abrupt decline in early June.

In summary, Polyphemus is a diurnal feeder with more than 90% of its 

feeding between sunrise and sunset.

Feeding rates and selectivity were highest for Vorticella and other small species, 

indicating that Polyphemus is a size selective predator. Polyphemus selects larger, 

more vulnerable prey (Polyarthra and individual Conochilus) over smaller prey with 

protective structures (Kellicottia). Larger prey, Polyarthra and Conochilus and 

nauplii, however, constituted more than 70% of the biomass ingested as indicated by
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relative ingestion rates.

Although biomass ingestion rates increased with increased densities of 

preferred prey, saturated feeding levels were not attained during the in situ studies. 

Patch formation does not benefit feeding as feeding rates decreased with increased 

predator densities and cannibalism was observed at aggregation densities.
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Species

PROTOZOANS

Average Volume 
Individual* 1 
(pm x 1(P)

Vorticella sp 
(VOR)

wsp. 
(RMZ)

ROTIFERA

Polyarthra spp. 
(POL)

Conochilus sp. 
(CON)

KelUcottia sp. 
(KEL)

Keratella spp. 
(KER)

0

14.0

63.0

506.0

140.0

101.5

10.2

Morphological/ 
Behavioral Comments

Colonial living in 
Anabena circutalis

Spherical granulated 
test

Bladelike paddles 
cause erratic jumps

5-60 indiv. held in
!;elatinous sheath, 
arge, slow moving

Loricated with long 
anterior and posterior 
spines

Loricated with several 
short anterior and one 
posterior spines

Other Rotifers 
(ROT)

COPEPODA

Nauplii
(NAU)

A

150.0

800.0

See Text

Large, fast moving

Table V.l Prey in Mirror Lake eaten by Polyphemus pediculus.
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Herbivores

Cladocera

Alonella excisa 
Bosmina longirostris 
Chydorus spp. 
Daphnia ambigua 
Daphnia catctwba 
Holopedium gibberum 
Hyalella azteca 
Latona setifera 
Ophryoxus gracilis 
Scapholeberis kingi 
Sida crystallina

Copepoda
Diaptomus minutus 
Epischura lacustris

Rotifera
Ascomorpha ecaudis 
Ascomorpha ovalis 
Ascomorpha saltans 
Ascomorpha sp. 
Conochiloides dossuarius 
Conochilus unicornis 
Gastropus stylifer 
Kellicottia bostoniensis 
Kellicottia longispina 
Keratella cochlearis 
Keratella crassa 
Keratella quadrata 
Keratella taurocephala 
Lecane sp.
Pleosoma lenticulare 
Polyarthra dolichoptera 
Polyarthra vulgaris 
Polyarthra sp.
Rataria rotatoria 
Trichocerca spp.

Protozoa
Difflugia sp.
Vorticella sp.

Table V.2 Zooplankton

Omnivores/Predators

Leptodora kindtii 
Polyphemus pediculus

Cyclops scutifer 
Cyclops vemalis 
Macrocyclops albidas 
Mesocyclops edax 
Tropocyclops prasinus

Asplanchna priodonta

of Mirror Lake
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NAU KEL POL CON R H Z KER RO T VOR

NAU \ .71 .73 .58 .83 .82 .91 .90

KEL .29 \ .77 .58 .86 .88 .79 .81

POL .27 .23 \ .60 .79 .81 .78 .87

CON .42 .42 .40 \ .71 .45 .69 .83

RHZ .17 .14 .21 .29 \ 30 .69 .84

KER .18 .12 .19 .55 .50 \ .70 .54

ROT .09 21 .22 31 31 .30 \ 32

VOR .10 .19 .13 .17 .16 .46 .48 \

Table V3 Frequency of preference of co-occurring species. The figures
represent a matrix of the proportion of times the species group listed 
along the top had a higher W' when present with each of the species 
listed on the side.
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Prey
Taxon

PreyDiy Weight 
(ng individual11)

Feeding Rate 
(ng h-1)

Relative Ingestion 
Rate (% n*1)

NAU 800 12.0 (4.0) 0.63(0.11)
POL 506 53.6 (25.7) 231 (1.12)
ROT 150 10.9 (4.6) 0.54 (0.27)
CON 140 10.4 (4.2) 1.60 (0.94)
KEL 101 6.7 (2.5) 0.22 (0.07)

RHZ 63 3.7 (0.9) 0.24 (0.06)
VOR 14 33 (1.6) 0.70 (0.30)
KER 10 0.8 (0.4) 0.11 (0.06)

TOTAL 83.8 (263) 636 (3.03)

Table V.4 Average feeding rates and relative ingestion rates of prey species by 
Polyphemus (+ /-  95% Confidence Intervals), 05 May - 06 October 1987
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