University of New Hampshire University of New Hampshire Scholars' Repository

Doctoral Dissertations

Student Scholarship

Spring 1992

Comparing natural travel with artificial travel requirements in the study of foraging in the laboratory

Carlos Fernando Aparicio University of New Hampshire, Durham

Follow this and additional works at: https://scholars.unh.edu/dissertation

Recommended Citation

Aparicio, Carlos Fernando, "Comparing natural travel with artificial travel requirements in the study of foraging in the laboratory" (1992). *Doctoral Dissertations*. 1675. https://scholars.unh.edu/dissertation/1675

This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact nicole.hentz@unh.edu.

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.

U·M·I

University Microfilms International A Beil & Howell Information Company 300 North Zeeb Road, Ann Arbor, MI 48106-1346 USA 313, 761-4700 800, 521-0600

· · -

Order Number 9225250

Comparing natural travel with artificial travel requirements in the study of foraging in the laboratory

Aparicio, Carlos Fernando, Ph.D.

University of New Hampshire, 1992

COMPARING NATURAL TRAVEL WITH ARTIFICIAL TRAVEL REQUIREMENTS IN THE STUDY OF FORAGING IN THE LABORATORY

by

Carlos F. Aparicio

B.A. National Autonomous University of Mexico, 1978M.A. National Autonomous University of Mexico, 1983

DISSERTATION

Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of

> Doctor of Philosophy in Psychology

> > May, 1992

This dissertation has been examined and approved.

//

Dr. William M. Baum, Dissertation Director, Professor of Psychology

20 Pune

Dr. Kenneth Fuld, Associate Professor of Psychology

Dr. John A. Nevin, Professor of Psychology

lor

Dr. Michelle Scott, Assistant Professor of Zoology

Dr James T. Taylor Professor of Zoology Taylor, Associate

28 April 1992 Date

TO MY FATHER

Jose Carlos Aparicio Mier

TO MY WIFE

Rossy Aparicio

TO MY SON

Christian I. Aparicio

_--

--

TABLE OF CONTENTS

DEDICATIONiii
ABSTRACTv
INTRODUCTION1
EXPERIMENT 19
Method
Subjects
Annaratus
Procedure 10
Results12
EXPERIMENT 222
Method
Subjects
Apparatus
Procedure
Results
DISCUSSION
DISCUSSION
Optimal Foraging Theory
Equivalence of Natural and Artificial Travel41
Conclusions47
FIGURES 1 TO 18
TABLES 1 TO 18
APPENDIX A94
APPENDIX B
APPENDIX C196
REFERENCES

.

-

-

ABSTRACT

COMPARING NATURAL TRAVEL WITH ARTIFICIAL TRAVEL REQUIREMENTS IN THE STUDY OF FORAGING IN THE LABORATORY

by

Carlos F. Aparicio University of New Hampshire, May, 1992

Is moving from place to place equivalent to pressing a lever or pecking a key? This dissertation addressed this question by comparing natural travel (moving from place to place) with artificial travel requirements (to press on a lever). In two experiments foraging was modeled with operant behavior. Rats "searched" for food by pressing on the left lever. The patch provided a maximum of 1, 2, or 8 pellets. When the patch provided 1 pellet, rats captured the first prey with a .10 probability. The probability dropped to zero after one pellet. When the patch provided 2 or 8 pellets rats captured the first prey with a 1.0 probability. Each prey delivered on the left lever caused this probability to decrease to 0 in steps of .5 or .125 simulating patch depletion. Lever-press on the right lever reset the probability on the left lever to .10 or 1.0. To model artificial travel different reset-probabilities were scheduled on the right lever. The experimental situation was modified to model natural travel. Rats had to run 520 cm to travel back and forth between left and right levers. Experiments 1 and 2 revealed that as the number of available

v

prey in the patch increased the giving-up time increased. Experiment 1 showed that natural travel produced longer residence and giving-up times than the artificial travel conditions. Experiment 2 revealed that by pressing on retractable levers, rats made shorter residence and givingup times than by pressing on standard levers. Sometimes, but not in systematic way, natural travel produced longer residence and giving-up times than by responding to the reset-probabilities. The natural travel with obstacles produced the longest residence and giving-up times. The natural travel with obstacles had more of an effect on residence and giving-up times that any other travel requirement. The residence and giving-up times obtained in Experiments 1 and 2 are in accordance with predictions derived from McNair's (1982) model. As the travel requirement increased the residence and giving-up time increased. This is predicted because the average rate of capture decreased as travel time increased.

vi

INTRODUCTION

The study of foraging behavior by ecologists and biologists has led to the development of optimal foraging theory. The basic assumption of optimal foraging theory is that animals behave to maximize their fitness. To succeed in reproduction, foragers need to maximize net energy gain over the cost of foraging. If so, optimal foraging maximizes fitness. Many researchers have evaluated the assumption that animals behave to maximize their fitness by testing models of optimal foraging with experiments. Their main goal has been to develop an optimal foraging model able to characterize real foraging situations, the environmental aspects to be maximized, and the constraints imposed on the animal (Shettleworth, 1988).

Optimal foraging theory maintains that evolutionary events and conditions have shaped the behavior of species over generations. However, to be effective, evolutionary events and conditions must operate through proximate causation (Mellgren, 1982). Proximal causes are environmental events and conditions that operate in the immediate environment to affect foraging behavior and patterns of optimal behavior (Mellgren, Misasi, & Brown, 1984).

Biologists have studied evolutionary events and conditions, and psychologists have studied the proximate

causes of behavior. Nevertheless, evolutionary biologists and psychologists have the same purposes: to study and understand behavior.

In the last thirteen years, the analysis of foraging behavior by ecologists and biologists has joined the study of schedules of reinforcement by psychologists. In the study of foraging behavior, ecologists and biologists have generated experiments similar to studies of reinforcement schedules (e.g., Houston & McNamara 1985; Kacelnik & Krebs 1985; Lea 1979; Redhead & Tyler 1988). In the study of choice, psychologists have designed experiments similar to studies of foraging (e.g., Baum 1982a, 1982b, 1987; Fantino, 1987; Fantino & Abarca 1985; Hanson & Green 1989a, 1989b).

Instrumental behavior is viewed as foraging, and foraging is studied as instrumental behavior. Both activities involve locomotion, and both are modified by their consequences (Baum, 1982b). Operant simulations of foraging have become common (Baum, 1982a, 1982b; Pietrewicz and Kamil, 1981). For example, operant techniques have been used (Collier & Rovee-Collier, 1981) to test MacArthur and Pianka's (1966) model of prey selection. Moreover, it has been suggested that the methods utilized in the laboratory by operant psychologists represent a suitable way to test optimal models of foraging (Kamil & Yoerg, 1982; Pulliam, 1981; Schoener, 1987).

By using optimal models of foraging, researchers try

to predict how an animal (forager) searching for food will behave in a situation where its behavior depletes a small area (patch). That is, researchers try both to take account of the depletion of food by the forager within the patch, and to identify the variables that determine the animals' decision of when to move to a new patch (Redhead & Tyler, 1988). Among the variables to be considered in such a decision, the quality of a patch and the travel cost to other patches are the most important factors.

Optimal models of foraging have suggested that animals adopt rules to decide when to move to a new patch. Accordingly, foragers may leave the patch: 1) when a specific rate of prey capture is reached, 2) a fixed time after the most recent capture (the giving-up time rule), 3) after a fixed time, or 4) after they have captured a fixed number of prey.

To support the rule of rate of prey capture, optimal models of foraging assume that the environment provides food in a smooth continuous flow (MacArthur & Pianka, 1966; Charnov 1976). According to such a theory, foragers estimate the quality of the patch at any given moment by using the instantaneous rate of intake within a patch. As the patch is depleted the rate of intake decreases. When the rate of intake falls below that of the environment as a whole, it becomes necessary for foragers to leave the patch (Charnov, 1976).

Based on this assumption, optimal models of foraging predict an optimal residence time in a patch. This prediction has been supported qualitatively by observing foraging behavior in the field and by simulating foraging in the laboratory (e.g., Pyke 1984; Schoener 1987; Stephen & Krebs 1986). However, it has not been supported quantitatively (e.g., Fantino & Abarca 1985; Lea 1979), and the paradigm that optimal models of foraging follow to predict optimal residence time has been criticized (Gray, 1987).

McNair (1982) analyzed the assumption that the environment provides food in a smooth continuous flow. He argued that animals obtain discrete portions of food at irregular intervals. Under these circumstances the instantaneous rate of intake does not provide an accurate estimation of the quality of the patch. It would produce errors in estimations (Redhead & Tyler, 1988). To do an accurate estimation, one would need to make the instantaneous rate equivalent to the distribution of the patch yield over a specific residence time. McNair (1982) doubts that animals can adopt such a complicated strategy while foraging.

A viable strategy for animals while foraging is to check the length of time since the last prey capture, and decide to leave the patch when this time reaches a critical value, the giving-up time rule (Krebs, Ryan, & Charnov

1974). This rule has been supported by studies in which birds visited artificial patches, and their giving-up times fitted the predictions made by optimal foraging models (e.g., Ydenberg, 1984). However, some other experiments inspired by optimal foraging models, have found inconsistencies between observed and predicted giving-up times (Lea & Dow, 1984).

Rules based on a fixed time or a fixed number of prey captured, have been contemplated by optimal models of foraging as alternative strategies. Krebs and Cowie (1979) reported results suggesting that to leave the patch, foragers adopt the fixed time rule. However, Redhead and Tyler (1988) showed evidence indicating that animals use the rule of the immediate rate of reinforcement to leave the patch. Thus, under specific circumstances animals may adopt particular rules to leave the patch, the best strategy depends on food distribution within and between patches (Iwasa, Higashi, & Yamamura, 1981; McNair 1982).

The other major factor that determines the decision of when to leave the patch is the travel requirement to reach the next patch. For example, Mellgren, Misasi, and Brown (1984) allowed rats to forage for food by climbing nail ladders to boxes containing food mixed with sand. They varied the amount of food in the patch and the distance (travel) to other patches. When the travel was constant and food varied in density, rats showed optimal usage of the

patches. As the distance between patches increased the utilization of each patch increased. However, when the amount of food was constant or the distance between patches was short, rats did not behave in accordance with optimal models of foraging. Rats tend to underutilize high-density patches and overutilize low-density ones (Mellgren, Misasi, and Brown, 1984).

Optimal models of foraging predict that the utilization of the patch would increase if the travel time to other patches increase (Krebs, 1978). This prediction has been corroborated in the field (Anderson 1978; Zimmerman 1981), in the laboratory with no operant techniques (Cowie 1977; Hartling & Plowright 1979), and in several experiments in which all elements of the patch were simulated with operant techniques (Cuthill, Kacelnik, & Krebs, 1987; Fantino & Abarca, 1985; Hanson, 1987; Hanson & Green 1989; Killeen, Smith, & Hanson 1981; Lea 1979).

As predicted by optimal models, operant simulations that incorporate two sources of food (patches) have shown that travel requirements between patches affect foraging behavior. The residence time in one of the patches increases a function of the travel requirement to the alternative patch (e.g., Abarca & Fantino 1982; Fantino & Abarca 1985; Hanson 1987; Hanson & Green 1989a, 1989b; Killeen, Smith & Hanson 1981; Lea 1979). However, in operant simulations of foraging, travel has been modeled by

requiring rats to press a lever or pigeons to peck a key. Thus, foragers "travel" by responding on a schedule for a given time and waiting in the same spot. When there is no locomotion involved in travel, animals save energy and it may produce data that optimal models of foraging do not fit (Cowie 1977; Kacelnik & Cuthill 1987). As noted by Mellgren (1982), travel in an open area may have other costs for foragers.

In addition, the operant laboratory has produced data indicating that different responses produce different results. For example, pigeons learn quicker to peck a key for food than to press a treadle (McSweeney, 1978).

Nevertheless, there are data suggesting that pecking a key has qualitatively similar effects to moving from place to place. Baum (1982a) exposed pigeons to a choice between two patches that provided food in concurrent variableinterval schedules, and he varied the travel between patches. As the travel increased the residence time in the favored patch increased and the visits to the other patch decreased. With the minimal distance between patches, Baum found that residence times in the preferred patch decreased, and the number of visits to the other patch increased (Baum, 1982a). These results resemble those obtained by Pliskoff and Fetterman (1981) for key-peck "travel".

Although in choice situations the effects of moving from place to place appear to resemble those of comparable

instrumental responses (Baum, 1988), nobody has compared an operant response with a natural travel requirement within the same experimental situation.

The operant chamber has been modified to model natural travel in the laboratory (e.g., Baum 1982a; Krebs, Kacelnik, & Taylor 1978; Ydenberg 1984). However, the operant chamber has not been adapted to compare a natural travel requirement with operant behaviors such a pressing on a lever or pecking a key. Thus the following question remains unanswered: Is moving from place to place equivalent to pressing a lever or pecking a key? In two experiments, this dissertation addressed this question by comparing natural travel (moving from place to place) with artificial travel requirements (pressing on a lever).

EXPERIMENT 1

Natural travel was compared with artificial travel requirements. By pressing on the left lever rats depleted the patch in 1, 2, or 8 pellets. Under artificial travel conditions, the patch was reset by pressing on the right lever. Different reset-probabilities were scheduled. Under the natural travel condition, the patch was reset by passing around the central partition and pressing once on the right lever.

METHOD

Subjects

Four Long-Evans male, experimentally naive rats (A-104, A-230, A-101, and A-123) between 90 and 110 days old at the beginning of the experiment served. Animals were housed in individual cages with water permanently available, and maintained at 80% of their free-feeding weights (\pm 8 g).

<u>Apparatus</u>

The experimental chamber was a rectangular box 147 cm long, and 51 cm wide (see Figure 1). The box was divided all along by wire mesh except at the extreme end. Three 9 v DC lights were mounted on each side of the box: at 23 cm, 51 cm, and 117 cm from the front wall. Two response levers were mounted on the front wall, 3 cm from the floor and 33 cm apart. A pellet dispenser delivered pellets in a hopper on the left of the same wall, 3 cm from the floor, 7.5 cm from the left lever. The experiment was controlled by using a microprocessor (BCC-52). The data were collected and analyzed by using a Zenith PC computer.

Procedure

To run artificial travel conditions, direct passage from one lever to the other was permitted. Passage beyond 17 cm from the front wall (see Figure 1) was blocked with wire mesh. To run the natural travel condition, direct passage from the left to the right lever was blocked with wire mesh (see Figure 2). Changing from one side of the box to the other required passing around the central partition at 130 cm from the front wall. The total distance from left to right and back to left lever was 520 cm.

The left lever (patch) provided 1, 2, or 8 pellets (prey). When the patch provided 1 prey, the probability (p) of obtaining the prey by pressing on the left lever was .10. This probability dropped to zero after one pellet was obtained. When the patch provided 2 or 8 prey, p on the left initially was equal to 1.0. Pressing on the left lever caused p to decrease to zero in steps of .5 or .125, simulating patch depletion.

Pressing on the right lever reset p on the left to .10 or 1.0. Artificial travel was produced by five resetprobabilities (1.0, .25, .10, .05, and .025) scheduled on the right lever. The first response on the left lever turned off the lights on the left side and turned on the lights on the right side. Presses on the right lever that satisfied the schedule reset p on the left, turned off the lights on the right, and turned on the lights on the left, signaling reset of the patch.

Sessions ended when one of three conditions was met: 1) there were 90 visits to the levers, 45 to the left and 45 to the right lever, 2) subjects stopped pressing on both levers for more than 300 seconds, or 3) when subjects obtained within a session a maximum of 190 pellets.

Tables 1 to 3 show the different conditions, grouped by the number of prey available on the left side. The order in which they were studied and the number of sessions per condition appear in the last two columns of Tables 1 to 3. A minimum of ten sessions per condition were conducted. However, the number of sessions was increased when the natural condition or low reset-probabilities showed variability in the data.

Travel time was the predictor variable. It was recorded from the last press on the left lever until the first press on the left following reset on the right lever.

There were three criterion variables: residence time, giving-up time, and capture accuracy. Residence time was recorded for each visit from the first press on the left lever to the last press on the left lever. Giving-up time was recorded from the last pellet obtained in the patch to the last press on the left lever. Capture accuracy

represents the percent of prey obtained per visit in the patch out of the available number.

Results

For each session of each condition, the arithmetic means of travel time, residence time, giving-up time, and capture accuracy were calculated.

An exploratory data analysis (EDA) was conducted. All sessions were included in the analysis. The arithmetic means of the giving-up and travel times were represented in clusters. Some examples are shown in Appendix A.

To summarize the data, I utilized an alternative measure of central tendency, "the bisquare-weighted mean" (BWM). The BWM technique was designed by Mosteller & Tukey (1977) to assign less weight to observations that depart from the middle of the distribution. The BWM technique was adapted (Killeen, 1989) to run in Basic machine language and utilized to calculate BWMs and median absolute deviations (MADs) for travel, residence, and giving-up times. Tables B19 to B21 (Appendix B) summarize the BWM values. For each condition, the variability in travel, residence and givingup times was estimated. The MAD was added to or subtracted from the BWM values, to represent with two values the range of variability in these measurements. The BWM plus its MAD was called the BWM⁺ value. The BWM minus its MAD was called the BWM⁻ value. In tables B19 to B21 (Appendix B) the BWMs appear in the center columns. The numbers to the right and

left are BWM⁺ and BWM⁻ values.

The BWM, BWM^{*} and BWM^{*} values were utilized to determine areas in the plot in which travel, residence, and giving-up times overlapped. The idea was to see if travel times caused by the different reset-probabilities overlapped with travel times produced by the natural requirement.

If natural travel and low reset-probabilities produced travel times of similar duration, then residence and giving-up times produced by low reset-probabilities should have values that overlapped values produced by the natural condition.

The BWM, BWM⁺, and BWM⁻ values for travel, residence, and giving-up times were used to construct Figures A21 to A29 (Appendix A). Travel, residence, and giving-up times produced by low reset-probabilities overlapped travel, residence and giving-up times caused by natural travel. However, there were some instances of no overlap between values produced by natural travel and values produced by artificial travel requirements.

Tables 1 to 3 (center columns) show BWMs for travel, residence and giving-up times. Figure 3 in the left-hand columns of graphs, shows the BWMs for travel time (Y-axis) plotted against the reset-probabilities (logarithmic Xaxis). Different symbols indicate the different subjects. Figure 3 shows that the reset-probabilities on the right lever produced systematic changes in travel times. As

expected, as the reset-probability increased artificial travel time decreased. The function relating artificial travel time to reset-probability, was steeper when the patch was depleted in 2 pellets than when the patch was depleted in 1 or 8 pellets (see panel B, Figure 3).

Residence and giving-up times produced by artificial travel requirements were transformed to logarithmic numbers, and then the arithmetic means of these values were obtained for the conditions depleted in 1-, 2-, and 8-prey. Residence and giving-up times produced by natural travel were also transformed to logarithmic numbers, and the arithmetic mean of these values was obtained for each prey condition. In Figure 4, the arithmetic means obtained for residence and giving-up times (Y-axis) are plotted against the number of available pellets in the patch (X-axis). The filled squares indicate the residence times produced by artificial travel requirements. The empty squares represent residence times produced by the natural travel condition. The filled triangles symbolize the giving-up times produced by the artificial travel conditions. The asterisks represent the giving-up times produced by the natural travel condition. The bottom panel of Figure 4 shows the data averaged across subjects.

Figure 4 shows that on average natural travel produced longer residence and giving-up times than those produced by the reset-probabilities (see group mean in bottom panel of

Figure 12). Generally, as the number of available pellets in the patch increased, residence and giving-up times increased. With exception of the giving-up times for one subject (see asterisks in right-hand top panel for A-104), when the number of pellets in the patch switched from 1 to 2, the residence and giving-up times decreased in the natural travel condition. However, the giving-up times produced by artificial travel conditions increased with the same manipulation (see triangles across panels). When the patch was depleted in 8 prey, the longest residence and giving-up times were observed. Although Figure 4 show larger residence and giving-up time for natural travel, these means are misleading. The effect may be caused by an artifact of the arithmetic mean. The artificial travel requirements caused the residence and giving-up times to vary in duration.

In Figures 5 to 8 (left-hand panels), the residence and giving-up times (logarithmic Y-axes) are plotted against the travel times (logarithmic X-axis). Each figure shows results for one rat. All conditions are included in the left-hand graphs. The natural travel values are enclosed in boxes. Figures 5 to 8, left-hand columns of graphs, show that with exception of subject A-101 natural travel produced longer residence and giving-up times than artificial travel requirements. For A-101 when the patch was depleted in 1 or 2 pellets (top and middle panels, Figure 5), natural travel

produced residence and giving-up times similar to those produced by low reset-probabilities. However, when the patch was depleted in 8 pellets, A-101 in the natural travel produced longer residence and giving-up times than by responding to the reset-probabilities (bottom panel, Figure 5 left-hand).

Generally, low reset probabilities were associated with long residence and giving-up times, and high resetprobabilities with short residence and giving-up times. Usually, natural travel was associated with long residence and giving-up times.

Regression lines were fitted to all residence and giving-up times produced by artificial requirements. The following linear equation was utilized:

Y(x) = a1 + a2 * x (1) Coefficients: $a1 = (Sy * Sxx - Sx * Syx) / (N * Sxx - Sx^2)$

a2= (N * Syx - Sx * Sy) / (N * Sxx - Sx²)

Where $Sx = \Sigma xi$, $Sxx = \Sigma xi^2$, $Sy = \Sigma yi$, and $Syx = \Sigma yi * xi$. The BWM values of travel time were transformed to logarithmic numbers and entered in the equation as the values of the independent variable. The BWM values of residence or giving-up times were transformed to logarithmic numbers and entered in the equation as the values of the dependent variable. Values produced by the natural travel requirement did not enter the equation. Tables A34 to A39 summarize values and calculations (Appendix A).

Tables 7 to 12 show the regression outputs when the patch was depleted in 1 pellet (Tables 7 and 10), 2 pellets (Tables 8 and 11), or 8 pellets (Tables 9 and 12). The left-hand panels show regressions for the residence time, and the right-hand panels regressions for the giving-up time.

When the patch was depleted in 1 or 2 pellets, the linear equation accounted for the variability in residence and giving-up times (r^2 between .76 and .95, mean=.85). There were two exceptions, subject A-104 (r^2 between .05 and .48, mean=.23), and subject A-123 (r^2 between .26 and .90, mean=.68). When the patch was depleted in 8 pellets, the linear equation poorly accounted for the variability in residence and giving-up times (r^2 between .04 and .54, mean=.27).

Figures 5 to 8 show in the right-hand panels the regression lines for residence and giving-up times. The logarithmic values of residence and giving-up times (Y-axes) are plotted against those of travel times (X-axis). The filled squares indicate residence times, and filled triangles giving-up times. The coefficients al (Yintercept), and a2 (slope) are included near each regression line. The coefficient al is the Y-intercept of the regression line and gives an indication of overall level of residence and giving-up times, as long as the slope is not too steep. Results from the natural travel condition are

not included (compare left-hand columns of graphs with right-hand columns).

In general, the right-hand panels in Figures 5 to 8 show that there were not systematic deviations in residence and giving-up times from the regression lines. With exception of subjects A-101 and A-123 (middle panels of Figures 5 and 7), as the number of available prey in the patch increased the residence and giving-up times increased (compare values of al across panels). When the patch was depleted in 2 pellets, the residence and giving-up times of A-123 decreased (compare al in top panel with al in middle panel of Figure 7). However, when the patch was depleted in 8 pellets, the residence and giving-up times of A-123 increased (compare al in bottom panel with al in middle and top panels of Figure 7). The residence times of A-101decreased when he depleted the patch in 2 pellets, but not the giving-up times (compare values of al in top and middle panels of Figure 5). Nevertheless, when A-101 depleted the patch in 8 prey, the residence and giving-up times were greater than when he depleted the patch in 2 or 1 prey (compare al value in bottom panel of Figure 5 with values of al in middle and top panels).

With the exception of A-101 in the 8-prey condition ($a_2 = -.13$), and A-104 in the 2-prey condition ($a_2 = -.07$), the slopes for residence and giving-up times were all positive (compare values of a2 across conditions in Figures

5-8). With the exception of subject A-123 (Figure 7), as the number of available prey in the patch increased the slopes of residence and giving-up times decreased (mean=.41 for the depleted-in-1, mean=.20 for the depleted-in-2, and mean=.06 for the depleted-in-8 conditions). However, when A-104 depleted the patch in 8 prey, the slopes of residence and giving-up times were steeper than when he depleted the patch in 2 prey (compare values of a2 in Figure 6 middle and bottom panels). For A-123 the slope of residence and giving-up times increased as the number of available prey in the patch increased. When A-123 depleted the patch in 2 prey, the slopes of residence and giving-up times were steeper than when he depleted the patch in 8 prey (compare values of a2 middle panel of Figure 7 with values of a2 in top and bottom panels).

The artificial travel times usually produced systematic changes in giving-up time. The right-hand panels in Figures 5 to 8 show that there were only a few exceptions. Short giving-up times were associated with high resetprobabilities. Long giving-up times were associated with low reset-probabilities. However, the reset-probabilities generally caused less change in residence times across conditions (compare values of a2 for residence with values of a2 for giving-up times, right-hand panels in Figures 5 to 8), but see some exceptions (compare X coefficients of residence times with X coefficients of giving-up times) in

Tables 7 to 12.

When the patch was depleted in 8 prey, the longest residence and giving-up times were observed. Rats responding to the reset-probabilities produced less variation in giving-up times (see values of a2 in Figures 5 to 8), except for subject A-123 (right-hand bottom panel of Figure 7).

The BWM values of travel, residence, and giving-up times produced by the natural requirement were transformed to logarithmic numbers. Then, the slopes and intercepts from the regression lines were used to calculate estimates of the residence and giving-up times. Equations 2 and 3 were utilized

where al was the constant and a2 the slope. GUT the givingup time, RT the residence time, and TT [NT] the travel time for the natural travel requirement.

The logarithmic residuals of residence and giving-up times were calculated by using equations 4 and 5

log res GUT = log GUT[NT] - Est GUT (4) log res RT = log RT [NT] - Est RT (5) Tables B25 to B28 summarize these calculations (Appendix B).

The logarithmic residuals of residence and giving-up time calculated for natural travel, were divided by the standard errors of residence and giving-up time estimated

for artificial travel requirements. In Figure 9, these calculations are plotted (Y-axes) against the number of available pellets per visit (X-axis). The Y-axis shows the number of standard error units that residence and giving-up time deviated from estimates based on the regression analysis. The larger these values the less natural travel produced residence and giving-up time durations that were equivalent to those produced by artificial travel requirements. In general, Figure 9 shows that when the patch was depleted in 2 pellets, residence time deviated more standard error units from estimates (mean= 7.14) than when the patch was depleted in 1 (mean= 5.59) or 8 pellets (mean= 2.50). However, giving-up time deviated more standard error units from estimates when the patch was depleted in 1 pellet (mean= 4.67) than when it was depleted in 2 (mean= 3.62) or in 8 pellets (mean= 3.44). Table C34 summarizes results of Figure 9 (see Appendix C).

EXPERIMENT 2

In Experiment 1 pressing on the right lever produced residence times that changed less than giving-up time durations. Travel time on the right lever produced systematic changes in giving-up times. Short durations were associated with high reset-probabilities and long durations with low reset- probabilities. However, residence times did not change in systematic way as a function of artificial travel. Sometimes the .10 reset-probability produced longer residence times than the .05 or .025 reset-probabilities.

In Experiment 1, variations in residence time may have been produced by deficiencies in stimulus control. At the beginning of a session, the first response on the left lever turned off lights on the left side and turned on lights on the right side. After that, presses on the right lever reset the probability on the left, turned off lights on the right, and turned on lights on the left, signaling reset in the patch. By switching from left to right and back to left without resetting the patch, sometimes animals produced longer travel times that actually included some unmeasured residence time.

Experiment 2 was designed to improve stimulus control. The idea was to provide better discrimination between residence and travel. To gain control over residence and travel times, the standard response levers were replaced with retractable levers. If a subject responding on the left switched to the right lever and pressed on it, the left lever was retracted and not extended again until responding on the right lever reset the patch to its original condition. This prevented responding in the patch until reset.

The patch was depleted in 1, 2, or 8 pellets. Only low reset-probabilities were studied and compared with natural travel requirements.

Method

<u>Subjects</u>

Five Long-Evans male, experimentally naive rats (C-1, C-2, C-3, C-4, and C-5) between 90 and 110 days old at the beginning of the experiment served. Animals were housed in individual cages with water permanently available, and maintained at 80% of their free-feeding weights (± 8 g).

<u>Apparatus</u>

The apparatus was the same as in Experiment 1, except that the two standard response-levers were replaced with retractable response-levers.

Procedure

The procedure was similar to that in Experiment 1. The idea was to repeat conditions in which low resetprobabilities were scheduled on the right lever. However, when the patch was depleted in 8 pellets, a natural travel condition with obstacles was included. Three hurdles (obstacles), 25 cm wide and 12 cm high, were constructed

with wire mesh. Two hurdles were placed, one on each side of the box, at 50 cm from the front wall. The other hurdle was placed at 130 cm from the front wall. Tables 4 to 6 show the different conditions, grouped by the number of available prey on the left side. The order in which they were studied and the number of sessions per condition appear in the last two columns of Tables 4 to 6. A minimum of ten sessions per condition were conducted. However, the number of sessions was increased when the natural condition or low reset-probabilities showed variability in the data. Predictor and criterion variables were the same as in Experiment 1.

Results

The same techniques were utilized to analyze the data. The analysis followed the same strategy as in Experiment 1. All sessions from each condition were included in the analysis. Some examples of cluster analysis are shown in Appendix A.

Tables 4 to 6 (center columns) show BWMs for travel, residence, and giving-up times. Figure 3 in the right-hand columns of graphs, shows BWMs for travel time (Y-axis) plotted against the reset-probabilities (logarithmic Xaxis). Different symbols indicate the different subjects. Except for C-3 in the two pellets condition, the reset-probability of .025 produced longer travel times than any other probability. Functions relating reset-

probabilities to travel times varied less than in Experiment 1. Travel time varied less with reset-probability but generally travel time decreased as the reset-probability increased.

Residence and giving-up times produced by artificial conditions were transformed to logarithmic numbers, and then the arithmetic means of these values were obtained for the conditions depleted in 1-, 2-, and 8-prey. Residence and giving-up times produced by natural travel were also transformed to logarithmic numbers, and the arithmetic mean of these values were obtained for each prey condition. In Figure 10, the arithmetic means obtained for residence and giving-up times (Y-axis) are plotted against the number of available prey in the patch (X-axis). The filled squares indicate the residence times produced by artificial travel requirements. The empty squares represent residence times produced by the natural travel condition. The filled triangles symbolize the giving-up times produced by the artificial travel conditions. The asterisks represent the giving-up times produced by the natural travel condition. The X's represent residence and giving-up times produced by natural travel with obstacles. The right-hand bottom panel of Figure 10 shows the data averaged across subjects. Figure 10 shows that with some exceptions (see C-1 and C-5), as the number of available prey in the patch increased residence and giving-up times increased. Except for C-3
(the mean of residence times produced by artificial travel requirements), when the patch was depleted in 1 prey, the means of residence and giving-up time produced by natural travel were greater than the means of residence and givingup time produced by artificial requirements (compare empty squares and asterisks with filled squares and triangles). When the patch was depleted in 2 or 8 prey, (except for C-1, giving-up times) the means of residence and giving-up time produced by natural travel were similar to the means of residence and giving-up time produced by artificial requirements. With the exception of one subject (C-1), the longest residence and giving-up times were produced by natural travel with obstacles (compare X's with other symbols).

Figures 11 to 15 show residence and giving-up times plotted against travel times in logarithmic coordinates. All conditions are included in the left-hand graphs. Each figure shows results for one rat. Natural travel results are enclosed in boxes. Figures 11 to 15, in the left-hand columns of graphs, show that except for one outlier each in the data of C-1, C-2, C-4, and C-5 in the depleted-in-one condition, natural travel produced residence and giving-up times of similar duration to those produced by low reset-probabilities (see Figures 11, 12, 14, and 15 top panels). Usually, natural travel with obstacles produced the longest residence and giving-up times (see subjects C-2,

C-3, and C-5 in Figures 12, 13 and 15).

Generally, low reset-probabilities were associated with long residence and giving-up times, and high resetprobabilities with short residence and giving-up times, but for some conditions the times did not appear to vary systematically.

Regression lines were fitted to residence and giving-up times produced by artificial travel requirements. The BWM values of travel time were transformed to logarithmic numbers and entered the equation as the values of the independent variable. The BWM values of residence and giving-up times were transformed to logarithmic numbers and entered the equation as the values of the dependent variable. Values produced by natural travel did not enter the equation. Tables A40 to A45 (Appendix A) summarize values and calculations.

Tables 13 to 18 summarize the regression results. When the patch was depleted in 1 pellet (Table 13), the linear equation accounted for the variability in residence times $(r^2 \text{ between .64 and .99, mean=.77})$. With a few exceptions (C-4, Tables 15 and 18), when the patch was depleted in 2 or 8 pellets the linear equation poorly accounted for the variability in residence and giving-up times $(r^2 \text{ between .01}$ and .96, mean=.41; Tables 14, 16, and 17).

Regression lines for residence and giving-up times are shown in right-hand columns of Figures 11 to 15. The

logarithmic values of residence and giving-up times (Y-axes) are plotted against those of travel times (X-axis). The filled squares indicate residence times, and filled triangles giving-up times. The coefficients al (Yintercept), and a2 (slope) are included near each regression line. Results from the natural travel condition are not included (compare left columns of graphs with right columns).

In general Figures 11 to 15 show that there were not systematic deviations in residence and giving-up times from the regression lines. As the number of available prey in the patch increased the residence and giving-up times increased (compare values of al across panels in Figures 11 to 15). The increment in giving-up times was less consistent, but al was always greatest for the 8-prey patch. However, from the 1-prey patch to the 2-prey patch, al for giving-up times did not change for C-4, and decreased for C-1, C-2, and C-3 (compare values of al, middle panels in Figures 11 to 15).

With exception of C-5 in the 8-prey patch (a2= -.02), the slopes for residence times were all positive (compare values of a2 across panels in Figures 11 to 15). As the number of available prey in the patch increased, the slopes for residence time decreased (mean=1.08 for the 1-prey, mean=.51 for the 2-prey, and mean=.09 for the 8-prey conditions).

Most slopes for giving-up times were positive, there were 5 exceptions out of 15 slopes (compare values of a2 in Figures 11 to 15). For the 2-prey condition, the slopes for giving-up times were greater (mean=.74) than for the 1-prey (mean=.15) or for the 8-prey conditions (mean=.02). However, in the 8-prey condition, for C-1, C-3, and C-5 the slopes for giving-up time were negative or close to zero (see a2 in Figures 11, 13, and 15 right-hand top panel). However, the slope of giving-up times was highest in the 2prey condition for C-3 and C-4. For C-2, as the number of available prey in the patch increased, the slopes for giving-up times increased (see values of a2 in Figure 12).

Logarithmic residuals of residence and giving-up times were calculated. The same equations were utilized as for Experiment 1. Tables B29 to B33 summarize these calculations (Appendix B). The logarithmic residuals of residence and giving-up time calculated for the natural condition, were divided by the standard errors of residence and giving-up time estimated for artificial travel requirements. In Figure 16, these results are plotted (Yaxes) against the number of available pellets per visit (X-The number of standard error units that residence axis). and giving-up time deviated from estimates are indicated by positive or negative values. Large values indicate situations in which natural travel produced residence and giving-up time durations that were not equivalent to those

produced by artificial travel requirements. In general, Figure 16 shows that when the patch was depleted in 1 prey, residence and giving-up time deviated more standard error units from estimates to positive values (means of .64 and 2.21 respectively) than when the patch was depleted in 2 prey (means of .11 and .47). When the patch was depleted in 8 prey, residence time deviated from estimates to positive values (mean= .15) and giving-up time deviated from estimates to negative values (mean=-.13). In the natural travel with obstacles residence time deviated more units from estimates to positive values (mean= 9.38) than givingup time (mean= 6.02). Table C35 (Appendix C) summarizes results of Figure 16.

Discussion

On the whole, the results of this dissertation supported the use of operant techniques in the study of foraging behavior in the laboratory. Three issues will be discussed: a) feasibility of the method of Experiments 1 and 2, b) their relation with the optimal foraging theory, and c) the issue of equivalence between natural and artificial travel conditions.

Experiments 1 and 2 revealed that as the resetprobabilities increased artificial travel decreased (see Figure 3). Rats made the longest artificial travels by responding to the .025 reset-probability. Rats responding to the 1.0 reset-probability produced the shortest artificial travels. The different reset-probabilities required a different variable number of presses for reset. For example, the .10 probability required on average 10 lever-presses to reset the patch, the .05 probability required on average 20 lever-presses to reset the patch, and the .025 probability required on average 40 lever-presses to reset the patch. However, the 1.0 probability required just 1 response on the right lever to reset the patch, and the .25 probability required on average 4 lever-presses to reset the patch. Obviously, to press on the right lever once, rats needed less time than to press on the lever 4, 10, 20 or 40 times. Thus, because the different resetprobabilities required a different variable number of

presses for reset, responding on the right lever produced artificial travels that changed as a function of the resetprobabilities (see Figure 3). This result confirmed that random ratio schedules of reinforcement can be used to vary artificial travel time (Baum, 1982b; 1987), but are artificial and natural travel equivalent?

Can rats pressing on a lever produce travel times of equivalent duration to the travel time they need to move from place to place? The answer to this question is yes. I compared artificial travel times with the travel time produced by the natural condition. I tried to determine if by pressing on the right lever, rats made travel durations equivalent to those they made by running in the natural condition.

In general, when the reset-probability was .10, the time rats used to press on the right lever an average of 10 times was similar to the time they needed to run in the natural condition. However, rats used more time to press on the lever an average 20 or 40 times (.05 or .025 resetprobabilities) than to run in the natural condition. Rats used shorter time to press on the lever 4 times or less (.25 or 1.0 reset-probabilities) than to run in the natural condition (see Figures A3 to A7, Appendix A).

Experiment 1 showed differences in the function relating reset-probabilities to travel times. The steepest function was obtained when the patch was depleted in 2 prey

(see middle left-hand panel in Figure 3). In addition, responding to low reset-probabilities (.025 and .05), produced longer artificial travel times in Experiment 1 than in Experiment 2 (see group means in Figure A8, Appendix A). The differences in artificial travel times produced by low reset-probabilities suggested that in Experiment 1 the stimulus control functioned differently from Experiment 2. In Experiment 1, where lights were utilized to signal when the patch was replenished, rats sometimes switched from the left to the right lever and back to the left before they reset the patch. When this occurred changeover caused long artificial travel times. Rats switched prematurely between levers when the reset-probability was low (.025 or .05). In addition, when the patch provided 2 pellets, more premature changeovers from right to left lever were observed than when the patch provided 1 or 8 pellets. This caused the steepness of the functions relating reset-probabilities to artificial times (see left-hand middle panel in Figure 3).

In Experiment 2, responding on the retractable levers to low reset-probabilities, produced shorter artificial travel times than responding on the standard levers (compare group means in Figure A8). Responding on the retractable levers produced less variation in artificial travel times. The function relating reset-probabilities to travel times was similar across conditions (see right-hand graphs in Figure 3). Thus, the retractable levers produced more

uniformity and better control of travel times.

Optimal Foraging Theory

According to Charnov's (1976) marginal-value theorem, foragers follow optimal rules to decide when to leave a patch. Charnov assumes that foragers will remain longer in a patch that offers high energy intake per unit of time (E/T) than in a patch that offers low E/T. Accordingly, foragers estimate the quality of a patch based on an instantaneous rate of intake. Charnov's marginal-value theorem says that the forager will leave a patch when the rate of intake decreases to a point at which it falls below the average provided by the environment, and "that this marginal capture rate should be equalized over all patches within a habitat" (Krebs, Ryan, & Charnov, 1976).

The marginal-value theorem predicts that the forager's residence time in a given patch will increase if the travel to other patches increases or if other patches have low quality (Charnov 1976; Krebs 1978). Krebs, Ryan, & Charnov (1974) interpreted this to mean that an optimal forager will use the same giving-up time for all type of patches within an environment, even if these patches differ in quality. In addition, they suggested that the "giving-up time should be shorter in better habitats, where the average capture is higher" (Krebs, Ryan, & Charnov, 1974). Accordingly, the giving-up time should be inversely related to the average capture rate for the environment. Since as travel time increases average rate of capture decreases, giving-up time should increase with travel time.

The predictions from the marginal-value theorem have generated controversy in the study of foraging behavior. It is necessary to differentiate the marginal-value theorem from the marginal value rule (Stephens & Krebs, 1986). The marginal-value theorem is not a rule that foragers use to leave the patch. It is a method that a theorist may utilize to estimate optimal residence times based on gain functions and travel times. The marginal-value theorem is a method "that finds the rate-maximizing rule from a known set of rules" (Stephens & Krebs, 1986). The marginal value rule is a rule that foragers may use namely, to assess the instantaneous rate of gain in a patch and leave when the rate of intake falls below the average provided by the environment (McNamara, 1982). So, the marginal value rule may or may not control the forager's decisions of when to leave the patch, and it may or may not be an optimal rule in a given environment (Stephens & Krebs, 1986).

In Experiment 1 and 2, foraging was studied in different environments, each environment had one type of patch, and travel was varied within each environment. The patches differed in quality by varying the number of available prey. Each prey-condition lasted many days. The probability (p) of obtaining the prey by pressing on the left lever, and each reset-probability scheduled for the right lever formed a pair of probabilities. Each pair of probabilities constituted a different patchy environment. For the depleted in 1-, 2-, and 8-prey conditions, there were 7 different patchy environments: five resetprobabilities, the natural travel without obstacles, and the natural travel with obstacles. With 1 available prey in the patch, p of obtaining the prey was .10, with 2 prey p finished at .5, and with 8 prey p finished at .125. So, the giving-up time should be shorter for the 2-prey condition and about the same for the 1-prey and 8-prey conditions. However, in Experiments 1 and 2 the giving-up time increased as a function of the number of available pellets in the patch (see bottom panel in Figure 4 and right-hand bottom panel in Figure 10). Rats did not keep the same giving-up time in the patch within an environment.

Often, rats obtained all the available pellets and still persevered in the patch. Ideally, rats should have adopted a strategy of obtaining a fixed number of prey, and then leaving the patch. But rats did not do this, particularly in the 1-prey patches, where one might expect the giving-up time to be zero.

Thus, Experiments 1 and 2 showed that as the number of available pellets in the patch increased the giving-up times increased (see Figures 3 and 10). The richer the patch was, the longer rats persisted in the patch. When the patch provided 8 pellets per visit, rats produced the longest

residence and giving-up times. This result is consistent with the conclusion that more plentiful schedules of reinforcement produce greater persistence of responding than less plentiful ones (Nevin, 1979).

In addition, Experiments 1 and 2 showed that the residence and giving-up times increased as a function of the travel requirement. The residence times obtained in Experiments 1 and 2 agreed with predictions from the marginal-value theorem; as the travel requirement increased the residence time increased (compare residence time across conditions in Figures 5-8 and 11-15). This result has been corroborated in both the field (e.g., Anderson 1978; Zimmerman 1981) and in the laboratory (e.g., Cowie 1977; Killeen, Smith, & Hanson 1981; Lea 1979; Mellgren, Misasi, & Brown, 1984). However, the giving-up times obtained in Experiments 1 and 2 did not agree with Krebs, Ryan, & Charnov's (1974) prediction that an optimal forager will use the same giving-up time in the patch within an environment.

If rats were following the "marginal-value rule" as Stephens and Krebs (1986) call it, how would giving-up time be expected to change with increases in travel? If givingup time depends only on final capture rate, then it ought to remain constant, because final capture rate was unaffected by travel (see capture accuracy measure in Tables 4-6, the number of pellets obtained remained high throughout Experiment 2). Moreover, when the number of available

pellets in the patch switched from 1 to 2, the giving-up time produced by artificial travel conditions increased (see triangles in Figures 4 and 10). This deviation of giving-up time from that of optimal models of foraging, suggested that an optimal decision to leave the patch may not be to maintain the same giving-up time in the patch within an environment (Krebs et al., 1974), but to increase the giving-up time as the quality of the patch improves (McNair, 1982).

Charnov's (1976) marginal-value theorem offers no clear explanation of why giving-up time should covary with residence time. The reason is that "giving-up time never enters into the model on which the marginal-value theorem is based" (McNair, 1982). The marginal-value theorem was designed to make predictions concerning patch residence times, it was not designed to predict giving-up times. McNair (1982) designed a model, analogous to Charnov's (1976) model, to predict optimal giving-up times. McNair (1982) provided some numerical examples demonstrating that larger giving-up times should be used in better quality patches. Moreover, McNair's model predicts that "increasing the mean interpatch travel time increases the optimal GUT's, as well as the mean patch yields and residence times" (McNair, 1982).

The residence and giving-up times obtained in Experiments 1 and 2 are in accordance with predictions

derived from McNair's (1982) model. As the travel requirement increased the residence and giving-up time increased. This is predicted because the average rate of capture decreased as travel time increased. The right-hand graphs of Figures 17 and 18 illustrate these results. The group means of residence, giving-up time, and average rate of capture (Y-axes) are plotted against the group mean of travel time (X-axis). The filled squares represent the group means of residence time, the triangles the group means of giving-up time, and the asterisks the group means of the average rate of capture. The average rate of capture was estimated by taking the mean of prey captured per visit (the capture accuracy measure in Tables 1-3 and 4-6) and dividing it by the mean of travel time plus the mean of residence time (results are summarized in Tables C36 and C37, Appendix C). Natural travel results are enclosed in boxes. In the left-hand panels of Figures 17 and 18, the group means of residence time, giving-up time, and average rate of capture (Y-axes) are plotted against the probability on the right lever (X-axis) to facilitate comparisons between natural travel and artificial travel requirements (the data for each rat are plotted in Figures A39-A43, Appendix A).

Right-hand panels of Figures 17 and 18 show that in general residence and giving-up time increased as travel time increased. The average rate of capture decreased as travel time increased. Left-hand panels of Figures 17 and

18 show that natural travel and the .025 reset-probability produced longer residence and giving-up times, and lower average rates of capture than any other artificial travel requirement. In Experiment 2, natural travel with obstacles produced the lowest average rate of capture and the longest residence and giving-up times (see right-hand bottom panel of Figure 18 and Table C37). When the patch was depleted in 1 or 2 pellets residence time, giving-up time, and average rate of capture varied more with travel time than when the patch was depleted in 8 pellets.

An alternative optimal strategy to both Charnov's (1976) optimal residence time and McNair's (1982) optimal giving-up time, is the strategy of hunting by expectation developed by Gibb (1962). Accordingly, foragers leave the patch after a fixed number of prey captured. Redhead and Tyler (1988) trained rats to press on the right lever to obtain food according to a progressive variable-interval schedule of reinforcement that simulated patch depletion. The schedule was reset by pressing on the left lever. To model travel time, Redhead and Tyler (1988) increased to 25 seconds the time between pressing the left lever and obtaining a reinforcer from the right lever. They found (Experiment 2), in accordance with the marginal-value theorem, that when the travel time increased the overall residence times increased. However, they reported that rats "appeared to dispense with the giving-up time after the

first few trials (p.92)". Redhead and Tyler reported that to decide when to leave the patch, rats used the interreinforcement interval value (Redhead & Tyler, 1988).

Experiments 1 and 2, the rats may have used the interreinforcement interval as an indication of when to leave the patch, rather than using the giving-up time. Since the inter-reinforcement interval was not recorded, I have no data to support this conclusion. However, if rats used the inter-reinforcement interval as in Redhead and Tyler's (1988) experiment, giving-up times should have decreased from 1 to 2 pellets. On the whole, results of Experiments 1 and 2 agreed with the conclusion that the forager's decision of when to leave the patch is determined by the number of available prey in the patch (Iwasa, Higashi, & Yamamura, 1981).

Equivalence of Natural and Artificial Travel

I tried to determine if rats responding to the resetprobabilities generated equivalent residence and giving-up times to the natural condition. The arithmetic mean of residence and giving-up times produced by artificial requirements was compared with that produced by the natural condition. Although Figures 4 and 10 appear to show larger residence and giving-up times for natural travel, these means are misleading. The effect may be caused by an artifact of the arithmetic mean. The artificial travel requirements caused the residence and giving-up times to

vary in duration. High reset-probabilities (1.0 or .25) produced short residence and giving-up times, and low resetprobabilities (.01, .05, and .025) generated long residence and giving-up times. Thus, short times produced by high reset-probabilities may have brought down the mean for artificial times.

Experiment 1 suggested that residence and giving-up times in the natural travel were not equivalent to residence and giving-up times in the artificial travel requirements (see Table C34). Often, residence and giving-up times in the natural condition deviated from estimates based on artificial travel (see Figure 9). There were many instances of logarithmic residuals of residence and giving-up times that deviated from estimates more than 2 standard error units (see Table C34). But maybe that was due to the tendency to premature changeover from the right to the left lever (poor stimulus control).

Results of Experiment 2 indicated that there were few violations of equivalence with retractable levers (see Table C35). Only when the patch was depleted in 1 pellet, it was clear that giving-up times in the natural travel were not equivalent to giving-up times in the artificial travel requirements. In addition, these violations of equivalence were only consistent for two rats (see C-3 and C-4; maybe C-5 assuming that 2 standard error units constitutes an outlier). Moreover, Figure A33 (Appendix A) revealed that

all the overlap between the variability in giving-up times for natural and artificial travel requirements tends to undermine the significance of the large deviations in giving-up times in the one-pellet condition (see Table C35 and Figure 10). The giving-up times of C-3 produced a negative slope in the regression analysis (see right-hand panels of Figure 13) and that tended to inflate the deviations, when the giving-up times for natural travel were actually not that different from the others. For C-4, the giving-up times were close to a line, producing an unusually small standard error, which tended to inflate the calculated deviation.

Although Experiment 1 suggested that natural travel had more of an effect on residence and giving-up times than artificial travel, Experiment 2 showed much less effect (see Figure 10 and Table C35). However, the natural travel with obstacles had a strong effect in the rats' residence and giving-up times. In this condition, rats produced the longest residence and giving-up times. That is, rats persevered a long time in the patch before they switched to the right lever. With some exceptions, in the natural condition with obstacles, the residual of residence and giving-up times deviated more standard error units (means of 9.38 and 6.02 in Table C35) from estimates based on artificial travel than in the natural condition without obstacles means of .15 and -.13 respectively. The natural

condition with obstacles had more of an effect on residence and giving-up times than the natural travel without obstacles and produced the longest residence and giving-up times (see left-hand panels in Figures 11, 12, 13, and 15). These results suggested that the natural condition with obstacles demanded from rats more energy than any other travel requirement. Rats reacted differently to natural travel with obstacles than to artificial travel requirements, indicating a possible non-equivalence between natural travel with obstacles and artificial travel requirements. The results of Experiments 1 and 2 call for more research in which natural and artificial travel requirements are compared within the same experimental situation, particularly experiments in which travel will be more difficult than running (e.g., climbing).

The results of Experiments 1 and 2 supported the conclusion that with minimal modifications to the operant chamber, it is possible to introduce natural travel into operant experiments (e.g., Baum 1982a; Krebs et al. 1978; Ydenberg 1984). However, results of such experiments may change when natural travel is included. For example, choice situations in which a large travel is required between instrumental response alternatives produces different effects on the forager's behavior than choice situations that require a small travel between response alternatives. Baum (1982a) utilized concurrent variable-interval schedules of reinforcement and varied the travel requirement between response alternatives. Baum found a strong preference for one response alternative when the travel requirement was large. The pigeons' rate of changeover between response alternatives decreased as the travel requirement increased. Baum also included a natural travel condition with an obstacle (a hurdle). He found that the visit duration (residence time) increased on both response alternatives as the natural travel increased, and particularly as the hurdle was raised. In fact, Baum found that the natural travel by itself had less effect on the pigeon's behavior than the natural travel with the obstacle (Baum, 1982a).

Experiments 1 and 2 indicated that in a choice situation between two instrumental response alternatives, a large travel requirement without obstacles controlled the rats' behavior in a similar way to that in Baum's (1982a) experiment. For Experiment 2, in the natural travel without obstacles, rats spent about the same time on the left lever as with comparable artificial travel requirements. However, results of Experiment 2 suggested that by running in the natural condition without obstacles, rats did not consume more energy than by responding to the .05 or .025 resetprobabilities. In the natural travel condition with obstacles, rats may have spent more energy than in any other travel requirement. This suggests a possible nonequivalence between natural travel with obstacles and

artificial travel requirements.

On the whole, Experiments 1 and 2 demonstrated that by using operant techniques, it is possible to compare in the same experimental situation natural travel with artificial travel requirements. The residence and giving-up times obtained in Experiments 1 and 2, suggested that the effects produced by natural travel in patch utilization are sometimes not equivalent to those produced by artificial travel requirements. The conclusion that ratio schedules of reinforcement can be used to model travel in the laboratory (Baum 1982b; 1987; 1988) needs to be taken with caution.

To determine if natural and artificial travel produced the same effects on the foragers' behavior, we must to evaluate them within the same experimental situation. Under these circumstances, the experimenter can make direct comparisons between natural and artificial travel requirements. The experimental situation can be adapted to reproduce a travel requirement that resembles travel in the real world. When this condition is satisfied, it maybe possible to demonstrate that natural travel does not produce the same effects on foraging behavior than artificial travel requirements. To predict that natural and artificial travel requirements affect the utilization of the patch in similar ways, we must demonstrate empirically that they do not differ from each other.

In summary, Experiment 1 showed that the natural travel

condition produced longer residence and giving-up times than the artificial travel conditions. But maybe that was due to a poor stimulus control. Experiment 2 revealed that by pressing on the retractable levers, rats made shorter residence and giving-up times than by pressing on the standard levers. Sometimes, but not in systematic way, natural travel conditions produced longer residence and giving-up times than the reset-probabilities. However, in the natural travel with obstacles, rats produced the longest residence and giving-up time durations. The natural travel with obstacles demanded from rats more energy than any other travel requirement.

Conclusions

1. This dissertation examined the utilization of operant techniques to the study of foraging behavior in the laboratory.

2. As expected, artificial travel times varied inversely with reset-probabilities.

3. In Experiment 1 rats made longer artificial travel times than in Experiment 2. This result indicated that in Experiment 1 the stimulus control functioned differently from Experiment 2. In Experiment 1 lights sometimes failed to control the rats' switching, with the result that rats switched from the right to the left before they reset the patch. Thus, changeover produced long artificial times and caused the functions relating reset-probabilities to travel

times to be steep.

4. Experiment 2, eliminated the premature changeover. Thus, the function relating reset-probabilities to travel times was similar across conditions.

5. Experiments 1 and 2 showed that the residence and givingup times generally increased as a function of the travel condition.

6. With some exceptions rats made the longest residence and giving-up times when they had to run in the natural condition or when rats had to respond to the .025 resetprobability.

7. Experiments 1 and 2 found that as the number of available pellets in the patch increased the giving-up times increased. The richer the patch was the longer rats persevered in the patch. Rats did not leave the patch when their rate of pellets intake decreased below the average provided by the environment. Often, rats obtained all the available pellets and still persevered in the patch.
8. Experiments 1 and 2 indicated that the quality of the patch interacted with the travel requirement to control the residence and giving-up times. When rats depleted the patch in 8 pellets, and they had to run in the natural condition or to respond to the .025 reset-probability, rats produced the longest residence and giving-up times.

9. Experiment 1 showed that residence and giving-up times in the natural travel were not equivalent to residence and giving-up times produced by artificial travel requirements, but Experiment 2 showed much less of an effect.

10. By making more difficult the natural condition for the rats, I found that maybe a difference between the natural condition and the artificial requirements. Rats responding to natural travel with obstacles made the longest residence and giving-up times. The natural travel with obstacles had more of an effect on residence and giving-up times than any other travel requirement. That is, natural travel with obstacles demanded from rats more energy than any other travel requirement. In the natural travel with obstacles, rats persevered a long time in the patch.

11. Experiments 1 and 2 demonstrated that by using operant techniques, it is possible to compare in the same experimental situation natural travel with artificial travel requirements. The operant chamber can be modified to include natural travel in the laboratory. To determine if natural and artificial travel requirements produced the same effects on the forager's behavior, we must evaluate them within the same experimental situation. To predict that natural travel and artificial travel requirements control the utilization of the patch in similar way, we must demonstrate empirically that they do not differ from each other. Figure 1. The experimental situation, the bottom panel shows the set-up for artificial travel conditions.

-

Figure 2. The experimental situation adapted to run the natural travel condition.

-

Figure 3. The BWMs of travel time (Y-axis) against the reset-probabilities on the right lever (logarithmic X-axis) for the depleted in 1-, 2-, and 8-prey conditions. The left-hand panels show results of Experiment 1, and the right-hand panels results of Experiment 2. The subjects are indicated by different symbols.

54

Figure 4. The arithmetic means of residence and giving-up times (Y-axes) against the number of available pellets in the patch (X-axis). The filled squares indicate the residence times produced by artificial travel requirements. The empty squares represent residence times produced by the natural travel condition. The filled triangles symbolize the giving-up times produced by the artificial travel conditions. The asterisks represent the giving-up times produced by the natural travel condition. The bottom panel shows the data averaged across subjects.

Figure 5. For subject A-101, the left-hand panels show the residence and giving-up times (logarithmic Y-axes) against the travel times (logarithmic X-axis). The natural travel results are enclosed in boxes. The right-hand panels show the regression lines for residence and giving-up times. The logarithmic values of residence and giving-up times (Y-axes) are plotted against those of travel times (X-axis). The filled squares indicate residence times, and filled triangles giving-up times. The coefficients al (Y-intercept), and a2 (slope) are included near each regression line. Results from the natural travel condition are not included.

Figure 6. For subject A-104, the left-hand panels show the residence and giving-up times (logarithmic Y-axes) against the travel times (logarithmic X-axis). The natural travel results are enclosed in boxes. The right-hand panels show the regression lines for residence and giving-up times. The logarithmic values of residence and giving-up times (Y-axes) are plotted against those of travel times (X-axis). The filled squares indicate residence times, and filled triangles giving-up times. The coefficients al (Y-intercept), and a2 (slope) are included near each regression line. Results from the natural travel condition are not included.

Figure 7. For subject A-123, the left-hand panels show the residence and giving-up times (logarithmic Y-axes) against the travel times (logarithmic X-axis). The natural travel results are enclosed in boxes. The right-hand panels show the regression lines for residence and giving-up times. The logarithmic values of residence and giving-up times (Y-axes) are plotted against those of travel times (X-axis). The filled squares indicate residence times, and filled triangles giving-up times. The coefficients al (Y-intercept), and a2 (slope) are included near each regression line. Results from the natural travel condition are not included.

Figure 8. For subject A-230, the left-hand panels show the residence and giving-up times (logarithmic Y-axes) against the travel times (logarithmic X-axis). The natural travel results are enclosed in boxes. The right-hand panels show the regression lines for residence and giving-up times. The logarithmic values of residence and giving-up times (Y-axes) are plotted against those of travel times (X-axis). The filled squares indicate residence times, and filled triangles giving-up times. The coefficients al (Y-intercept), and a2 (slope) are included near each regression line. Results from the natural travel condition are not included.

Figure 9. The logarithmic residuals of residence and giving-up time for natural travel divided by the standard errors of residence and giving-up time estimated for artificial travel requirements (Y-axes) against the number of available pellets per visit (X-axis). The Y-axis shows the number of standard error units that residence and giving-up time deviated from estimates based on the regression analysis. The filled squares indicate residence times, the triangles giving-up times, the empty squares redeterminations of residence time, and the Xs redeterminations of giving-up time.

....

Figure 10. The arithmetic means of residence and giving-up times (Y-axes) against the number of available pellets in the patch (X-axis). The filled squares indicate the residence times produced by artificial travel requirements. The empty squares represent residence times produced by the natural travel condition. The filled triangles symbolize the giving-up times produced by the artificial travel conditions. The asterisks represent the giving-up times produced by the natural travel condition. The Xs indicate residence and giving-up times produced by natural travel with obstacles. The right-hand bottom panel shows the data averaged across subjects.

Figure 11. For subject C-1, the left-hand panels show the residence and giving-up times (logarithmic Y-axes) against the travel times (logarithmic X-axis). The natural travel results are enclosed in boxes. The right-hand panels show the regression lines for residence and giving-up times. The logarithmic values of residence and giving-up times (Y-axes) are plotted against those of travel times (X-axis). The filled squares indicate residence times, and filled triangles giving-up times. The coefficients al (Y-intercept), and a2 (slope) are included near each regression line. Results from the natural travel condition are not included.

Figure 12. For subject C-2, the left-hand panels show the residence and giving-up times (logarithmic Y-axes) against the travel times (logarithmic X-axis). The natural travel results are enclosed in boxes. The right-hand panels show the regression lines for residence and giving-up times. The logarithmic values of residence and giving-up times (Y-axes) are plotted against those of travel times (X-axis). The filled squares indicate residence times, and filled triangles giving-up times. The coefficients al (Y-intercept), and a2 (slope) are included near each regression line. Results from the natural travel condition are not included.

Figure 13. For subject C-3, the left-hand panels show the residence and giving-up times (logarithmic Y-axes) against the travel times (logarithmic X-axis). The natural travel results are enclosed in boxes. The right-hand panels show the regression lines for residence and giving-up times. The logarithmic values of residence and giving-up times (Y-axes) are plotted against those of travel times (X-axis). The filled squares indicate residence times, and filled triangles giving-up times. The coefficients al (Y-intercept), and a2 (slope) are included near each regression line. Results from the natural travel condition are not included.

Figure 14. For subject C-4, the left-hand panels show the residence and giving-up times (logarithmic Y-axes) against the travel times (logarithmic X-axis). The natural travel results are enclosed in boxes. The right-hand panels show the regression lines for residence and giving-up times. The logarithmic values of residence and giving-up times (Y-axes) are plotted against those of travel times (X-axis). The filled squares indicate residence times, and filled triangles giving-up times. The coefficients al (Y-intercept), and a2 (slope) are included near each regression line. Results from the natural travel condition are not included.

Figure 15. For subject C-5, the left-hand panels show the residence and giving-up times (logarithmic Y-axes) against the travel times (logarithmic X-axis). The natural travel results are enclosed in boxes. The right-hand panels show the regression lines for residence and giving-up times. The logarithmic values of residence and giving-up times (Y-axes) are plotted against those of travel times (X-axis). The filled squares indicate residence times, and filled triangles giving-up times. The coefficients al (Y-intercept), and a2 (slope) are included near each regression line. Results from the natural travel condition are not included.

Figure 16. The logarithmic residuals of residence and giving-up time for natural travel divided by the standard errors of residence and giving-up time estimated for artificial travel requirements (Y-axes) against the number of available pellets per visit (X-axis). The Y-axis shows the number of standard error units that residence and giving-up time deviated from estimates based on the regression analysis. The filled squares indicate residence times, the triangles giving-up times, the empty squares redeterminations of residence time, and the X redeterminations of giving-up time. The results of natural travel with obstacles are indicated with different symbols.

Figure 17. In the right-hand graphs, for Experiment 1 the group means of residence time, giving-up time, and average rate of capture (Y-axes) are plotted against the group mean of travel time (X-axis). The filled squares represent the group means of residence time, the triangles the group means of giving-up time, and the asterisks the group means of the average rate of capture. Natural travel results are enclosed in boxes. In the left-hand panels, the group means of residence time, giving-up time, and average rate of capture (Y-axes) are plotted against the probability on the right lever (X-axis) to facilitate comparisons between natural travel and artificial travel requirements.

Figure 18. In the right-hand graphs, for Experiment 2 the group means of residence time, giving-up time, and average rate of capture (Y-axes) are plotted against the group mean of travel time (X-axis). The filled squares represent the group means of residence time, the triangles the group means of giving-up time, and the asterisks the group means of the average rate of capture. Natural travel results are enclosed in boxes. In the left-hand panels, the group means of residence time, giving-up time, and average rate of capture (Y-axes) are plotted against the probability on the right lever (X-axis) to facilitate comparisons between natural travel and artificial travel requirements.

		PROBABILITY	BISQUAR	RE WEIGHTED	MEANS			
		ON	TRAVEL	RESIDENCE	GIVING	CAPTURE		
SUBJECT	CONDITION	RIGHT LEVER	TIME	TIME	UP TIME	ACCURACY	ORDER	SESSIONS
A-104	NT	1.00	1 22 72	1068	6.78	93%	1	10
		010	36.49	4.23	0.31	98%	2	14
		0.06	36.93	4.48	0.30	96%	3	16
		0.25	12.42	4.46	016	99%	4	16
	NT*	1.00	66 98	9.36	5.35	99%	6	16
		0.025	36.32	5.12	0.40	99%	6	16
	•	0.25	11.12	4.66	0.45	99 %	7	10
		1.00	6.64	3 91	0.31	98%	8	10
	••	1 00	5.58	3.33	0.19	82 %	9	11
A 230	NT	1 00	85 02	33.02	22 39	98°6	1	10
		010	24 55	5.71	2 37	98°£	2	14
		0 05	54 37	10.08	5 77	96 %	3	16
		0 25	10.65	4.51	1 67	99°:	4	16
	NT*	1 00	26.50	11.73	7.94	1 00°2	5	16
		0 025	68 23	12.47	6.98	99 °C	6	16
	•	0 25	8.52	5.27	2.34	1 00 °a	7	10
		1 00	4 44	3 78	0 30	98°°	8	10
	••	1 00	4.49	3 95	0.34	50°1	9	11
A 101	NT	1 00	43 01	10.04	6.61	98 %	1	10
		0.10	15 82	8 00	2.00	99 %	2	14
		0 05	27 93	9.40	1.97	97 %	3	16
		0.25	9 52	5.95	1 47	100%	4	16
	NT*	1 00	1693	6 39	2.53	100%	5	16
		0 025	57 85	8 03	3.04	1 00°6	6	16
	•	0.25	8 74	4.80	1.46	1 00 % b	7	10
		1.00	5.86	413	1.17	1 00%	8	10
	••	1.00	5.32	4.45	1.06	53 %	9	11
A-123	NT	1 00	22 53	1017	5 32	99%	1	10
		010	21 58	6 09	0 40	99 %	2	14
		0 05	44 60	6 94	0 77	97%	3	16
		0 25	15 00	5 25	0 27	1 00%	4	16
	NT*	1 00	1471	7 72	2 29	100%	5	16
		0 025	41 12	7 04	1 44	94%	6	16
	•	0 25	11.04	5.42	0 90	1 00%	7	10
		1 00	6.35	5.18	0.71	99%c	8	10
	**	1.00	514	4.99	0 25	54%	9	11

		PHOBABILITY	BISQUAL	HE-WEIGHTEL	MEANS			
		ON	TRAVEL	RESIDENCE	GIVING	CAPTURE		
SUBJECT	CONDITION	RIGHT LEVER	TIME	TIME	UP TIME	ACCURACY	ORDER	SESSIONS
A-104		1.00	5.48	4.26	2.68	97%	1	10
		0.25	6.09	4.22	2.57	94%	2	10
		0.10	11.69	3.97	2.22	95 %	з	10
		0.06	16.11	4.42	2.39	96 %	4	10
	NT	1.00	26.38	13.92	10.67	1 00%	5	10
	•	0.05	20.57	4.29	1.41	100%	6	10
	•	0.10	12.92	4.74	2.53	96%	7	10
	NT*	1.00	21.34	6.84	4.56	100%	8	10
		0.025	43.38	4.63	2.73	1 00%	9	10
A 230		1.00	4.47	2.85	1.68	91 %	1	10
		0 25	8.27	4 39	2.28	1 00%L	2	10
		010	25.94	4.82	2 32	100%	3	10
		0 05	58.02	6.50	3 50	1 00°5	4	10
	NT	1.00	20.22	13.59	7.32	1 00%	5	10
	•	0.05	61.18	5.95	2.93	100%	6	10
	•	0.10	17.77	5.50	2.62	97%	7	10
	NT*	1.00	15.67	7.68	4.36	100%	8	10
		0 025	83.10	6.87	4.09	1 00%	9	10
A 101		1.00	6.09	2.83	1.56	95 %	1	10
		0.25	8.20	3.42	1.91	97%	2	10
		0.10	11.32	3.86	2.50	98 %	3	10
		0.06	26.18	5.54	4.13	1 00%	4	10
	NT	1.00	17.11	7.10	3.93	98 %	5	10
	•	0.05	26.36	4.02	2.46	100%	6	10
	•	010	13.70	4.41	2.55	1 00%	7	10
	NT"	1.00	15.05	5.17	3.09	1 00%	8	10
		0.025	58.14	6.09	4.13	100%	9	10
A 123		1 00	6 66	0.81	0 48	69 %	1	10
		0 25	7 65	0.97	0.53	70°6	2	10
		010	1388	4 97	2.86	95%	3	10
		0.06	24.26	710	4.47	95°ć	4	10
	NT	1 00	1387	7 98	4.12	97°ċ	5	10
	•	0.05	24.25	5.04	2.58	100%	6	10
	•	010	12.49	3.92	1.73	1 00%	7	10
	NT-	1.00	14.87	4.83	1.98	100%	8	10
		0 025	41.99	5.65	3 32	97%	9	10

Table 2 Patch depleted in two preys, initial probability on left lever = 1.0 (went to zero in steps of .5)

Re-determinations

Ę

87

		ON -	TRAVEL	BESIDENCE	GIVING	CAPTURE		
SUBJECT	CONDITION	RIGHT LEVER	TIME	TIME		ACCURACY	ORDER	SESSIONS
A-104		1.00	4.50	30.26	6.04	79%	1	10
		0.10	11.54	20 79	5.77	67%	2	10
		0.25	5.38	24 61	5.65	83%	3	10
		0.05	24.83	30.29	7.40	88%	4	10
	NT	1.00	17.79	44.78	17 39	91%	5	10
	*	0.10	9.34	28 24	5.53	77%	6	10
	*	0.05	14.66	36.99	7.09	91%	7	10
	NT*	1.00	13.34	37.22	10.48	91 %	8	10
A-230		1.00	6 37	18 57	3 00	63°ø	1	10
		0.10	31 09	18 04	5 38	55°o	2	10
		0 25	4.81	21.88	12.83	80°o	з	10
		0.05	94.29	32.04	10.38	95°o	4	10
	NT	1.00	20.50	32.08	12.41	86%	5	10
	*	0.10	13.28	25.67	6.93	76%	6	10
**	NT*	1 00	42.90	120 40	48 10	87%	8	10
A-101		1.00	7.06	27.99	5.85	71%	1	10
		0.10	18.73	16 97	4 4 1	56°o	2	10
		0.25	13 37	19 91	5 33	79°ø	3	10
		0.05	30.55	21.02	6.62	77°o	4	10
	NT	1.00	16 49	28.87	8.10	88*•	5	10
	*	0.10	14.23	21.87	5 42	82%	6	10
	*	0.05	24.38	26.35	6.94	86°~	7	10
	NT*	1.00	13.56	28.11	7.99	91 °o	8	10
A-123		1.00	6.40	14.03	2.76	48%	1	10
		010	11 15	10.47	2.01	36°o	2	10
		0 25	6 87	917	1 83	42°°	3	10
		0.05	14.79	13.88	4 01	59°°	4	10
	NT	1.00	13.31	27.75	6.57	97°•	5	10
	•	0.10	8.71	12.78	2.77	49°°	6	10
	•	0.05	17.76	20.20	4.49	68%	7	10
	NT*	1.00	14.75	30.39	6.34	84%	8	10

Table 3 Patch depleted in eight preys, initial probability on left lever = 1.0 (went to zero in steps of 125) PROBABILITY_BISQUARE-WEIGHTED MEANS

* Re-determinations, **A-230 sick (condition 7 miss).

Ē

		PROBABILITY	BISQUAR	RE WEIGHTED	MEANS			
		ON	TRAVEL	RESIDENCE	GIVING	CAPTURE		
SUBJECT	CONDITION	RIGHT LEVER	TIME	TIME	UP TIME	ACCURACY	ORDER	SESSION
		1.00	6.13	1.42	1.37	100%	1	10
C-1	NT	1.00	36.64	17.17	13.86	100%	2	18
		0.10	16.84	4.06	0.73	100%	3	10
	NT*	1.00	27.88	8 05	1.63	1 00%	4	15
	•	0.10	31.19	6.22	3.21	100%	8	19
		0.06	16.05	3.24	0 42	1 00%	6	10
		0.025	28.39	5 00	1.90	100%	7	10
C-2		1.00	5.47	1.06	1.05	100%	1	10
	NT	1.00	26.57	2.34	2.32	1 00%	2	18
		0.10	9.51	3.32	0.40	99%	3	10
	NT-	1.00	15.17	2.62	0.39	100%	4	15
	•	0.10	20.24	3.00	0.74	99 %	6	19
		0.05	15.92	3.13	0.37	99 %	6	10
		0.025	23.08	3.34	0.37	100%	7	10
Ç-3		1.00	5.17	0.89	0.87	1 00%	1	10
	NT	1.00	19.19	1 06	1.06	1 00%	2	18
		010	9 06	2.88	0.33	1 00%	3	10
	NT*	1 00	15.91	4.08	0.98	1 00%	4	15
	•	0.10	19.00	3.66	0.51	100%	8	19
		0.06	11.02	3 59	0 23	96%	6	10
		0 025	1773	3.31	012	1 00%	7	10
C-4		1 00	4.99	0.35	0.33	100%	1	10
	NT	1.00	17.81	2.05	2 03	1 00%	2	18
		0.10	11.69	3.45	0.81	96%	3	10
	NT*	1.00	14.31	5.64	3.00	100%	4	15
	•	0.10	18.25	3.96	1.39	100%	5	19
		0.05	18.35	4.41	1.60	1 00%	6	10
		0.025	53.47	5.06	2.91	100%	7	10
C-6		1.00	10.89	1.30	1.28	1 00%	1	10
	NT	1.00	45.03	6.88	6.86	100%	2	18
		0.10	20 91	7.73	1 77	1 00%	3	10
	NT*	1.00	23.27	10.24	3 93	1 00%	4	15
	•	0.10	25.13	7.86	3.97	1 00%	5	19
		0.05	19.45	4.64	1.30	1 00%	6	10
		0.025	26.94	5.09	1.55	1 00%	7	10

. .

SUBJEC' CO C-1 C 2 C 2 C 3	NU:TION NT	ON RIGHT LEVER 010 010 005 0025 100 0025 100 0025	TRAVEL TIME 12 71 12 10 14 79 20 92 16 45 28 51	RESIDENCE TIME 4 42 3 12 2 82 2 47 4 94	GIVING UP TIME 2 24 0 85 0 53 0 41	CAPTURE ACCURACY 97% 98% 99% 97%	ORDER 1 2 3	56.55/ONS 10 22 15
SUBJECT CO C:1 C 2 C 2 C 3	NU-TION • • • • •	PIGHT LEVER 010 010 005 0025 100 0025 100 0025	TIME 12 71 12 10 14 79 20 92 16 45 28 51	TIME 4 42 3 12 2 82 2 47 4 94	UP TIME 2 24 0 85 0 53 0 41	ACCURAC* 97% 98% 99% 97%	0RDEP 1 2 3	56.55/ONS 10 22 15
C.1 C 2	NT	010 010 005 0025 100 0025 100 0025	12 71 12 10 14 79 20 92 16 45 28 51	4 42 3 12 2 82 2 47 4 94	2 24 0 85 0 53 0 41	97% 98% 99% 97%	1 2 3	10 22 15
C 2	NT	010 005 0025 100 0025 100 0025	1210 1479 2092 1645 2861	312 282 247 494	0 85 0 53 0 41	98% 99% 97%	3	22 15
C 3	NT	005 0025 100 0025 100 0025	14 79 20 92 16 45 28 51	2 82 2 47 4 94	0 53 0 41	96% 97%	3	15
 	NT • • •	0 025 1 00 0 025 1 00 0 025	20.92 16.45 28.51	2 47 4 94	0 41	97%		
 	NT	1 00 0025 1 00 0 025	16 45 28 51	4 94			4	10
 	• •	0 025 1 00 0 025	28.51		285	100%	5	10
 	NT• •	1 00 0 025	10.00	3 69	170	1 DC%	6	13
 C 2 C 3	•	0 0 25	19.85	282	° 93	100%	7	7
C 2 	•		30 68	4 87	1 93	99%	8	9
 C 3	•	010	10 33	186	1 28	95%	1	10
 C 3		010	1011	410	2 64	96%	2	22
•• •• •• C 3		0.05	1294	3 37	1 25	99%	з	15
 C 3		C 325	20.38	2 64	074	99%	4	10
 C 3	NT	• 00	1635	414	233	100%	5	• 5
:: C 3	•	0.025	2567	4 53	284	100%	6	• 3
 C 3	N*+	• 00	17 24	299	1 22	° OC%	7	1
С 3	•	0.0525	32.56	363	1 80	100%6	8	S
		016	7 73	2.95	1.20	96%	1	۰r.
		010	51 48	976	895	96%	2	22
		0.05	55 Ū4	1040	682	56%	3	•5
		1.2	1885	2:3	0.42	58%	4	•
	N	• 37	12.95	3.84	96	99%	5	
••	•	226	1822	271	0 82	90%	5	• 2
••	NT+	1.00	14 53	3 38	• 24	100%	7	7
**	•	0 025	1829	2 59	0.64	100%	8	9
C 4		010	1260	4.63	202	0794		
(, ,			1122	303	1 77	06%	2	20
		- 	15.73	415	226	0094	`	16
		- 026	27.26	4 29	266	00%	4	10
	N."	2000	17 44	606	4 80	1009	5	• •
		5.025	47 47	12 313	1012	100%	6	
	N. 14	100	18.00	517	295	100%	ž	,
••		ായക	52 36	16.84	1419	100%	8	9
~ -		5.10	0.30	307	1 70	0094	-	•
00		010	0.76	3.97	0.70	9970	2	
		010	22.00	317	6.00	1000		~
		5 UD 5 105	23 563 47 57	697	3 000 3 73	100%	2	. 5
••	<u>۰</u>	100	21.64	4.61	373	100%	• -	
		- 00	21 34	4 51	232	10076	5	
••				-2 60	+ 20	009	6	13
	NTE	1.00	20/0	358	1 32	99%	6	13

-

			0104074		10121410			
		ON	TRAVEL	RESIDENCE	GIVING	CAPTURE		
SUBJECT	CONDITION	RIGHT LEVER	TIME	TIME	UP TIME	ACCURACY	ORDER	SESSIONS
		0.10	14.00	35.54	8.85	84%	1	10
C-1	NT	1.00	22.01	40.50	11.63	94%	2	10
	•	0.10	12.55	34.94	9.22	87%	3	12
		0.05	14.95	28.44	7.24	88 %	4	10
		0.025	26.21	34.18	8.12	96 %	5	10
	NT*	1.00	18.54	34.10	9.13	96 %	6	10
	NT w/obst	1.00	59.22	38.29	16.49	97%	7	11
C-2		0.10	14.53	26.19	7.53	88%	t	10
	NT	1 00	20.66	19.57	4.65	92 %	2	10
	•	0.10	11.62	23.67	5.97	88%	3	12
		0.05	16.15	24.26	6.19	94%	4	10
		0.025	26.59	26.74	7.01	97°c	5	10
	NT*	1.00	20.13	25.74	6.13	97%	6	10
	NT w obst	1.00	59.98	62.83	38.44	94%	7	11
СЗ		0.10	10.89	29.55	6.86	82%	1	10
	NT	1.00	17.27	33.99	9.10	98 %	2	10
	•	0.10	8.64	26.91	4.93	91 %	3	12
		0.05	10.81	27.14	5.48	92°°	4	10
		0.025	14.57	28.21	5.00	95°n	8	10
	NT*	1.00	18.55	32.10	7.67	97%	6	10
	NT w/obst	1.00	74.08	80.76	52.38	95°6	7	11
C-4		010	21.60	48.36	16.30	88 %	1	10
	NT	1 00	21.28	41.50	11.18	93 %	2	10
	•	0.10	19.19	41.35	14.27	93°6	3	12
		0.05	19.52	45.58	16.59	94%	4	10
		0.025	39.57	51,93	18.06	99%	5	10
	NT*	1.00	26.35	46.46	14.28	91 %	6	10
	NT w/obst	1.00	42.37	53.43	16.38	91 %	7	11
C-5		010	16.54	28.57	7.43	87%	1	10
	NT	1.00	23.4	28.88	6 75	89%	2	10
	•	0.10	1517	24 13	5.23	80%	3	12
		0.05	17.37	25.58	5 48	86%	4	10
		0.025	24.97	25.28	5.59	85%	5	10
	NT*	1.00	23.01	30.43	6.52	90%	6	10
	NT w/obst	1.00	58.93	66.37	33.14	94%	7	11

Table 6 Patch depleted in eight preys, initial probabilityon left lever = 1.0 (to 0 in steps of .125), retractable levers PROBABILITY BISCUARE WEIGHTED MEANS

-

	SUBJECTS						
Regression Output	A .114	A 230	A 101	A 123			
Constant!	11 44	0.31	0.42	0.5			
Std Errict Y Est	0.05	0.06	0.08	0.02			
R Squared	0.4.5	ee 9 (N 11	0.00			
No. of Observations		2	1	-			
Degrees of Freedom	8	5	5	5			
X Coefficient s)	0.12	0.39	0.33	0.16			
Std Err of Coef	0.05	0.05	0.08	0.02			

Tame 10. Experiment 1, regression for artificial travel

	-	SUBI	ECTS		
Regression Output:	A 114	A 230	A 10	A : 14	
Constant	0 3	0.95	0.24	0.,	
Std Err of Y Fe	0.16	0.23	0.04	0.2	
R Squared	0.15	0.85	0.95	8 W	
No. of Observations	,	-			
Degrees of Freedom	5	5	5	5	
X Coefficient's)	0.18	1.02	0.41	11 30	
Std Err of Coef	0 19	0.19	0,04	61 3 64	
V= LOG IT, DV= LOG	GUT. 1.L = .1	0			

Tuble & Experiment 1, regression for artificial travel conditions.

	SUBJECTS						
Regression Output:	A-104	A 230	A 101	A-123			
Constant	0.59	0.35	0.25	-0.80			
Std Err of Y Est	0.02	0.05	0,05	0.20			
R Squared	0.23	0.86	0.83	0,76			
No. of Observations	•	7	•	-			
Degrees of Freedom	5	5	2	5			
X Coefficient si	(1) (14	0.25	0.31	1.10			
Std Err of Coet.	0.03	0.05	0.06	0.23			

Table 11. Experiment 1, regression for artificial travel conditions

	SUBJECTS						
Regression Output:	A 104	A-230	A (0)	A :2			
Constant	0.45	0.09	0.05	1 118			
Std Err of Y Est	0 11	0.05	0.05	0.20			
R Squared	0.05	0.85	H 'U	0.15			
No. of Observorscos	•	.,	•				
Degrees of Freedum	5	5	ſ	`			
X Coefficient s	60,	0.25	H 4 (1:12			
Std Frr of Coef	0 14	0.05	0.50	0.16			

Lone 9. Experiment 1, regressions for artificial travel conditions

	SUBILICITS						
Regression Output	A 104	A 230	A 101	A 123			
C. nstant	1.3	1.22	1.50	11 44			
Std Err of Y Est	() (N)	0 10	0.06	0.10			
R Squarea	0.06	n 44	0.13	0.40			
No. of Observations	•	2	٨	6			
Degrees of Freedom	4		4	4			
X Coetheentis	0.05	0.11	0.13	0.42			
Sid Errich Coel	0.15	11.190	0.1	0.26			

Type D. Experiment 1 regressions for artificial travel conditions

		SUB	LCTS				SUB	FC15	
Regression Output	A (04	A 230	A 101	A 123	Regression Output:	A 194	A 230	A 101	A
Constant	1.3	1.22	1.50	11 44	Constant	0.65	0.7	0.63	11 9
StatErr of Y Est	0.09	0 10	0.08	0.10	Std Err of Y Est	0.04	0.25	0.05	0 °
R Squarea	0.06	n 44	0 (3	0.40	R Squared	6 54	8.62	11	0.54
Net of Observations	6	5	•	6	No of Observations	*	5	•	•
Degrees of Freedom	4		4	4	Degrees of Freedom	4	3	4	4
X Coetheen's	0.05	0.11	0 [3	0.42	N Coefficient: s	0.14	0.10	0.10	0.64
Std Erry of Coel	0.15	11.199	0.1	0.26	Std Err of Coet.	0.07	0.27	0.15	10,341
"INSLOGITEDV LOG	REST.LLE	EPLETE	O IN EIGI	11	"IV = 1.06 11 DV = 1.00	FGUT II DE	PLETED	IN EIGH	

-

	SUB FC1S					
Rearest + Output	C1	C 2	C3	(4	 C 5 	
Constant	0.54	0.14	0.00	014	- 1 t.	
State: (Yet)	0.01	0:>	015	03;	01+	
R Squited	0.44	0.64	¢ 'i	0.69	0.40	
N 1 Observations	× •	×	8	5		
Degreer f Freed m	3	3	١	3	٦	
X Crefficient F	0.5	0 n	09	; 08	1.64	
Std Frr. (C.ef.	0.02	0.79	0 34	0 4 ?	0.51	

	SOBJECTS					
Represe in Ourput	C 1	C 2	- C3	(* 4	 C : 	
C nerant	à 48	6.21	411	. 68	61.	
StatErr (f.Y.Ev)	0.3	0.70	0.40	f1 (4A	9,10	
R Squared	0:4	0 V.	01	A 96.	- 6 N.	
N Chiercan ex-	、	5				
Degrees (Foresting	3	1	3.	3		
X C efficient e	0.45	041	0 Ar.	693	0.0	
Std Err of Coef	0.66	0.39	0 65	0::	0.5	

Regression Output:	C 1	C 2	C3	C 4	C 5			
Constant	0.30	0.14	4.44	0.44	0.22			
Std Err of Y Ert	0.12	015	0.19	014	0.13			
R Squared	0.00	0:0	0 70	0 A (() din			
N - FOhervation		•	•	•	•			
Destrees (Breeu m	4	4	4	4	4			
X C efficient r	0 ; 9	0.1	0.40	69;	A L.			
Stu Err I Ciet	0.31	0.32	02	0.22	0.10			

Table 11 Experiment (retractatue leve	<u>re i artificiai trave</u>	e e na na na	
		S BFC S		
Regression Output.	<u>C</u> 1	C2 C1	C 1	Çs

Constant	-4.53	0.11	1.54	. 04	0.53
Std Err of Y Fr	0.34	0.25	04	A (A	0.71
R Squared	ý (.	0.0;	0 .		64,
N f Oheers ats ins	•	•	•	•	•
Degrees (Ered m)	1	t.	4	:	:
X Clefts, ett.c	041	60	5.4.	. ••	6 64.
Stu Err_f C et	0 4	0.52	0.1	0.29	0-10
W - travel time, DV	gridig up time, h	fClever d	epleted in	the preve	

			5.18	11 C.S.	
Regress - Output	C 1	С?	(³	(;	(
C netant	. S	1.25	; 4.	3.45	. 11
Sta Err. FY Ert	0.02	00.	04.	0.01	6.63
R Squated	6.66	<u>ن</u> ، ن	6 X	ų	0.6
N Coversit is	4	4	4	3	3
Degrees of Ereeu m	2	2	2		•
X C efforent s	44.	6	0.04	÷.	55
States in a	6.22	Ó Ö A	014	A	0.14

s'	A	÷x;+r	Terr?	and china	e	and the market	

			_ , .,		
Regress, 5. Output	C :	C 2	C3	(;	C 2
C prise	, 6 \	() her	0.16	0 Ý;	0.89
Stolen d V Ext	0.01	0.01	Ø 0 A	99.	() () A
R Squares	0	0 (A	0.00	0.64	0.0.2
N. Cheese of the	L	4	4	4	4
Degrees (Fired m	2	2	2	?	2
N.C. all, and a	911	6 1	0.61	0.22	010
Stater (Cet	0.22	0.0	0.50	н. і	0 °.

APPENDIX A

Figure A1, Experiment 1, shows clusters selected from conditions in which the patch provided 8 pellets. This condition was selected from the exploratory data analysis to show the typical performance of rats responding on standard The giving-up times (logarithmic Y-axis) are levers. plotted against the travel times (logarithmic X-axis). The first and last sessions are indicated by arrows. The legends (bottom) indicate the subjects' number. Figure A1 illustrates that giving-up times varied proportionally to For travel times the range of variation was travel times. approximately from 10 to 38 seconds. For giving-up times the range was approximately from 3 to 10 seconds. However, A-104 in the natural condition produced giving-up times of about 80 seconds. Occasionally, giving-up times changed from one session to another and stood out of range in one or two sessions (see left-hand middle panel). There were conditions in which giving-up times stood out of range in the last three sessions (see left-hand top and middle panels and right-hand bottom panel in Figure A1).

Figure A2, Experiment 2, shows clusters from conditions in which the patch was depleted in two pellets. This condition was selected from the exploratory data analysis to show the typical performance of rats responding on retractable levers. The arithmetic means of giving-up time (logarithmic Y-axis) are plotted against those of travel time (logarithmic X-axis). The first and last sessions are indicated with arrows. Figure A2 illustrates that travel and giving-up times generally did not vary in a wide range. For giving-up times the range was approximately from .2 to 3 seconds. For travel times, the range was approximately from 13 to 20 seconds. Usually, when travel times stood out of range, the first and last responses were located within the same range. Giving-up times rarely stood out of range.

Based on observations of these clusters, I decided to include all sessions into the analysis, rather than to include only the last three sessions of each condition.

To compare travel times produced by reset-probabilities with those produced by natural travel, in Figures A3 to A7, the BWMs of travel time (logarithmic Y-axis) are plotted against the probability on the right lever (logarithmic Xaxis). With the exception of Figure A7 that shows results for one rat, each Figure shows results for two rats. The natural travel results are enclosed in boxes.

In general, Figures A3 to A7 show that travel durations for the .10 reset-probability were close to travel durations for the natural condition without obstacles. Travel durations for .25 and 1.0 reset-probabilities were shorter than those rats made by running the long distance without obstacles. However, rats responding to the .05 and .025 reset-probabilities, usually made longer travel durations than those they produced by running in the natural condition without obstacles. However, the natural travel with obstacles produced the longest travel durations (see bottom panels of Figures A5 to A7).

In Experiments 1 and 2, for each condition the variability in travel, residence, and giving-up times was estimated. The MAD was added to or subtracted from the BWM values, to represent with two values the range of variability in these measurements. The BWM plus its MAD was called the BWM* value. The BWM minus its MAD was called the In Tables B19 to B24 (Appendix B) the BWMs BWM⁻ value. appear in the center columns. The numbers to the right and left are BWM⁺ and BWM⁻ values. The BWM, BWM⁺, and BWM⁻ values were utilized to determine areas in the plot in which travel, residence, and giving-up times overlapped. Figures A21 to A38 show the BWM, BWM*, and BWM values for travel, residence, and giving-up times. In each group of points the middle point represents the BWM (X and Y coordinates). Points around the BWM represent the variability expressed in BWM^{+} and BWM^{-} values. The open squares indicate results with natural travel. Different reset-probabilities were indicated by different symbols.

Figures A21 to A26 show that travel times produced by low reset-probabilities overlapped travel times caused by natural travel. Residence and giving-up times produced by natural travel fell within the range of residence and giving-up times caused by low reset-probabilities, but see A-104 (Figures A21-A26). In Figures A27 to A29, residence times (Y-axis) are plotted against giving-up times (X-axis). Overlap was again observed. Natural travel produced values on both measurements that fell within the range of times produced by low reset-probabilities. However, there were some instances in which overlapping between points of natural and artificial requirements was not observed. Sometimes residence and giving-up times for natural travel were out of range, did not overlap with artificial results. Often subjects A-104, A-230, and A-123 in the natural condition, produced longer residence and giving-up times than in the artificial conditions (see Figures A27 to A29). Residence times varied less than giving-up times (rectangles wider than high in Figures A27-A29).

In Experiment 2, when the patch was depleted in 1 pellet (Figure A30), low reset-probabilities on the right produced travel times that overlapped those generated by natural travel at the high end of the range. When the patch was depleted in 2 pellets (Figure A31) travel times produced by low probabilities were generally longer than those produced by natural travel. Generally, travel times produced by the natural requirement fell between those caused by reset-probabilities of.05 and .025. With exception of subject C-3, when the patch was depleted in 8 pellets (Figure A32) always travel times produced by the natural condition fell between those caused by resetprobabilities of .05 and .025. The longest travel times were produced by natural travel with obstacles. Except for C-1 in one condition (Figure A36), low reset-probabilities produced residence and giving-up times similar to those caused by the natural travel requirement (Figures A36-A38). That is, residence and giving-up times produced by natural travel fell within the range of residence and giving-up times caused by low reset-probabilities. However, natural travel with obstacles produced the longest residence and giving-up times (Figure A38). Residence times varied less than giving-up times (most rectangles wider than high in Figures A36-A38). The natural travel with obstacles produced giving-up times that varied over a relatively wide range (Figure A38).
Figure A1. Clusters selected from conditions in which the patch was depleted in 8 pellets. This condition was selected from the exploratory data analysis to show the typical performance of rats responding on standard levers. The giving-up times (logarithmic Y-axis) are plotted against the travel times (logarithmic X-axis). The first and last sessions are indicated by arrows. The legends (bottom) indicate the subjects' number.

A1

Figure A2. Clusters selected from conditions in which the patch was depleted in two pellets. This condition was selected from the exploratory data analysis to show the typical performance of rats responding on retractable levers. The arithmetic means of giving-up time (logarithmic Y-axis) are plotted against those of travel time (logarithmic X-axis). The first and last sessions are indicated with arrows. The legends (bottom) indicate the subjects' number.

Figure A3. The BWMs of travel time (logarithmic Y-axis) are plotted against the probability on the right lever (logarithmic X-axis). The left-hand panels show results for subject A-101, and the right-hand panels for A-104. The natural travel results are enclosed in boxes.

Figure A4. The BWMs of travel time (logarithmic Y-axis) are plotted against the probability on the right lever (logarithmic X-axis). The left-hand panels show results for subject A-123, and the right-hand panels for A-230. The natural travel results are enclosed in boxes.

Figure A5. The BWMs of travel time (logarithmic Y-axis) are plotted against the probability on the right lever (logarithmic X-axis). The left-hand panels show results for subject C-1, and the right-hand panels for C-2. The natural travel results with and without obstacles are enclosed in boxes.

Figure A6. The BWMs of travel time (logarithmic Y-axis) are plotted against the probability on the right lever (logarithmic X-axis). The left-hand panels show results for subject C-3, and the right-hand panels for C-4. The natural travel results with and without obstacles are enclosed in boxes.

Figure A7. The BWMs of travel time (logarithmic Y-axis) are plotted against the probability on the right lever (logarithmic X-axis). The panels show results for subject C-5. The natural travel results with and without obstacles are enclosed in boxes.

Α7

-

Figure A8. The group means of travel times (Y-axis) is plotted against the reset-probability on the right lever (Xaxis). The filled squares represent the group means of artificial travel times for Experiment 1, and the triangles the group means for Experiment 2.

A8

Figure A21. For the depleted in 1-prey condition, the BWM, BWM^{*}, and BWM⁻ values for residence time and travel time were used to construct this figure. The residence times (Yaxis) are plotted against travel times (X-axis). In each group of points the middle point represents the BWMs of these variables on the X and Y axes. Points around the BWM represent variability expressed in BWM⁺ and BWM⁻ values. Each panel show results for one subject. The open squares indicate results with natural travel. The resetprobabilities are indicated by different symbols.

Figure A22. For the depleted in 2-prey condition, the BWM, BWM⁺, and BWM⁻ values for residence time and travel time were used to construct this figure. The residence times (Yaxis) are plotted against travel times (X-axis). In each group of points the middle point represents the BWMs of these variables on the X and Y axes. Points around the BWM represent variability expressed in BWM⁺ and BWM⁻ values. Each panel show results for one subject. The open squares indicate results with natural travel. The resetprobabilities are indicated by different symbols.

÷

Figure A23. For the depleted in 8-prey condition, the BWM, BWM⁺, and BWM⁻ values for residence time and travel time were used to construct this figure. The residence times (Yaxis) are plotted against travel times (X-axis). In each group of points the middle point represents the BWMs of these variables on the X and Y axes. Points around the BWM represent variability expressed in BWM⁺ and BWM⁻ values. Each panel show results for one subject. The open squares indicate results with natural travel. The resetprobabilities are indicated by different symbols.

.

Figure A24. For the depleted in 1-prey condition, the BWM, BWM⁺, and BWM⁻ values for giving-up time and travel time were used to construct this figure. The giving-up times (Yaxis) are plotted against travel times (X-axis). In each group of points the middle point represents the BWMs of these variables on the X and Y axes. Points around the BWM represent variability expressed in BWM⁺ and BWM⁻ values. Each panel show results for one subject. The open squares indicate results with natural travel. The resetprobabilities are indicated by different symbols.

A24

Figure A25. For the depleted in 2-prey condition, the BWM, BWM⁺, and BWM⁻ values for giving-up time and travel time were used to construct this figure. The giving-up times (Yaxis) are plotted against travel times (X-axis). In each group of points the middle point represents the BWMs of these variables on the X and Y axes. Points around the BWM represent variability expressed in BWM⁺ and BWM⁻ values. Each panel show results for one subject. The open squares indicate results with natural travel. The resetprobabilities are indicated by different symbols.

A25

Figure A26. For the depleted in 8-prey condition, the BWM, BWM⁺, and BWM⁻ values for giving-up time and travel time were used to construct this figure. The giving-up times (Yaxis) are plotted against travel times (X-axis). In each group of points the middle point represents the BWMs of these variables on the X and Y axes. Points around the BWM represent variability expressed in BWM⁺ and BWM⁻ values. Each panel show results for one subject. The open squares indicate results with natural travel. The resetprobabilities are indicated by different symbols.

Figure A27. For the depleted in 1-prey condition, the BWM, BWM⁺, and BWM⁻ values for residence time and giving-up time were used to construct this figure. The residence times (Yaxis) are plotted against giving-up times (X-axis). In each group of points the middle point represents the BWMs of these variables on the X and Y axes. Points around the BWM represent variability expressed in BWM⁺ and BWM⁻ values. Each panel show results for one subject. The open squares indicate results with natural travel. The resetprobabilities are indicated by different symbols.

Figure A28. For the depleted in 2-prey condition, the BWM, BWM⁺, and BWM⁻ values for residence time and giving-up time were used to construct this figure. The residence times (Yaxis) are plotted against giving-up times (X-axis). In each group of points the middle point represents the BWMs of these variables on the X and Y axes. Points around the BWM represent variability expressed in BWM⁺ and BWM⁻ values. Each panel show results for one subject. The open squares indicate results with natural travel. The resetprobabilities are indicated by different symbols.

Figure A29. For the depleted in 8-prey condition, the BWM, BWM⁺, and BWM⁻ values for residence time and giving-up time were used to construct this figure. The residence times (Yaxis) are plotted against giving-up times (X-axis). In each group of points the middle point represents the BWMs of these variables on the X and Y axes. Points around the BWM represent variability expressed in BWM⁺ and BWM⁻ values. Each panel show results for one subject. The open squares indicate results with natural travel. The resetprobabilities are indicated by different symbols.

Figure A30. For the depleted in 1-prey condition, the BWM, BWM⁺, and BWM⁻ values for residence time and travel time were used to construct this figure. The residence times (Yaxis) are plotted against travel times (X-axis). In each group of points the middle point represents the BWMs of these variables on the X and Y axes. Points around the BWM represent variability expressed in BWM⁺ and BWM⁻ values. Each panel show results for one subject. The open squares indicate results with natural travel. The resetprobabilities are indicated by different symbols.

Figure A31. For the depleted in 2-prey condition, the BWM, BWM⁺, and BWM⁻ values for residence time and travel time were used to construct this figure. The residence times (Yaxis) are plotted against travel times (X-axis). In each group of points the middle point represents the BWMs of these variables on the X and Y axes. Points around the BWM represent variability expressed in BWM⁺ and BWM⁻ values. Each panel show results for one subject. The open squares indicate results with natural travel. The resetprobabilities are indicated by different symbols.

Figure A32. For the depleted in 8-prey condition, the BWM, BWM⁺, and BWM⁻ values for residence time and travel time were used to construct this figure. The residence times (Yaxis) are plotted against travel times (X-axis). In each group of points the middle point represents the BWMs of these variables on the X and Y axes. Points around the BWM represent variability expressed in BWM⁺ and BWM⁻ values. Each panel show results for one subject. The open squares indicate results with natural travel. The resetprobabilities are indicated by different symbols.

Figure A33. For the depleted in 1-prey condition, the BWM, BWM⁺, and BWM⁻ values for giving-up time and travel time were used to construct this figure. The giving-up times (Yaxis) are plotted against travel times (X-axis). In each group of points the middle point represents the BWMs of these variables on the X and Y axes. Points around the BWM represent variability expressed in BWM⁺ and BWM⁻ values. Each panel show results for one subject. The open squares indicate results with natural travel. The resetprobabilities are indicated by different symbols.

Figure A34. For the depleted in 2-prey condition, the BWM, BWM^{*}, and BWM⁻ values for giving-up time and travel time were used to construct this figure. The giving-up times (Yaxis) are plotted against travel times (X-axis). In each group of points the middle point represents the BWMs of these variables on the X and Y axes. Points around the BWM represent variability expressed in BWM⁺ and BWM⁻ values. Each panel show results for one subject. The open squares indicate results with natural travel. The resetprobabilities are indicated by different symbols.

Figure A35. For the depleted in 8-prey condition, the BWM, BWM⁺, and BWM⁻ values for giving-up time and travel time were used to construct this figure. The giving-up times (Yaxis) are plotted against travel times (X-axis). In each group of points the middle point represents the BWMs of these variables on the X and Y axes. Points around the BWM represent variability expressed in BWM⁺ and BWM⁻ values. Each panel show results for one subject. The open squares indicate results with natural travel. The resetprobabilities are indicated by different symbols.

Figure A36. For the depleted in 1-prey condition, the BWM, BWM⁺, and BWM⁻ values for residence time and giving-up time were used to construct this figure. The residence times (Yaxis) are plotted against giving-up times (X-axis). In each group of points the middle point represents the BWMs of these variables on the X and Y axes. Points around the BWM represent variability expressed in BWM⁺ and BWM⁻ values. Each panel show results for one subject. The open squares indicate results with natural travel. The resetprobabilities are indicated by different symbols.

Figure A37. For the depleted in 2-prey condition, the BWM, BWM⁺, and BWM⁻ values for residence time and giving-up time were used to construct this figure. The residence times (Yaxis) are plotted against giving-up times (X-axis). In each group of points the middle point represents the BWMs of these variables on the X and Y axes. Points around the BWM represent variability expressed in BWM⁺ and BWM⁻ values. Each panel show results for one subject. The open squares indicate results with natural travel. The resetprobabilities are indicated by different symbols.

Figure A38. For the depleted in 8-prey condition, the BWM, BWM⁺, and BWM⁻ values for residence time and giving-up time were used to construct this figure. The residence times (Yaxis) are plotted against giving-up times (X-axis). In each group of points the middle point represents the BWMs of these variables on the X and Y axes. Points around the BWM represent variability expressed in BWM⁺ and BWM⁻ values. Each panel show results for one subject. The open squares indicate results with natural travel. The resetprobabilities are indicated by different symbols.

149

Figure A39. The means of residence time, giving-up time, and average rate of capture (Y-axes) are plotted against the probability on the right lever (X-axis). The filled squares represent the means of residence time, the triangles the means of giving-up time, and the asterisks the means of the average rate of capture. Natural travel results are enclosed in boxes. The left-hand graphs show results for subject A-101, and the right-hand panels results for subject A-104.

A39

Figure A40. The means of residence time, giving-up time, and average rate of capture (Y-axes) are plotted against the probability on the right lever (X-axis). The filled squares represent the means of residence time, the triangles the means of giving-up time, and the asterisks the means of the average rate of capture. Natural travel results are enclosed in boxes. The left-hand graphs show results for subject A-123, and the right-hand panels for subject A-230.

A40

Figure A41. The means of residence time, giving-up time, and average rate of capture (Y-axes) are plotted against the probability on the right lever (X-axis). The filled squares represent the means of residence time, the triangles the means of giving-up time, and the asterisks the means of the average rate of capture. Natural travel results with and without obstacles are enclosed in boxes. The left-hand graphs show results for subject C-1, and the right-hand panels results for subject C-2.

A41

155

Figure A42. The means of residence time, giving-up time, and average rate of capture (Y-axes) are plotted against the probability on the right lever (X-axis). The filled squares represent the means of residence time, the triangles the means of giving-up time, and the asterisks the means of the average rate of capture. Natural travel results with and without obstacles are enclosed in boxes. The left-hand graphs show results for subject C-3, and the right-hand panels results for C-4.

Figure A43. For subject C-5, the means of residence time, giving-up time, and average rate of capture (Y-axes) are plotted against the probability on the right lever (X-axis). The filled squares represent the means of residence time, the triangles the means of giving-up time, and the asterisks the means of the average rate of capture. Natural travel results with and without obstacles are enclosed in boxes.

-

•

A43

A 104	Linear Equ	intion		7		o1 -	3 84
H -104	Emean Equ	ation	11 –	,		a1 a2 =-	0.07
x	v	x*v	x^2	v calc	% error		
36.32	5.12	185.96	1319.14	4.66	0.09		
36.93	4,48	165.45	1363.82	4.67	-0.04		
36.49	4.23	154.35	1331.52	4.66	-0.10		
12.42	4,46	55.39	154.26	4.13	0.07		
11.12	4.66	51.82	123.65	4.10	0.12		
6.64	3.91	25.96	44.09	4.00	-0.02		
5.58	3.33	18.58	31.14	3.97	-0.19		
145.50	30.19	657.51	4367.62				
A-230	Linear Equ	ation	n =	7		a1 =	3.32
						a2 =	0.12
x	у	x*y	x^ 2	y calc	% error		
68.23	12.47	850.83	4655.33	12.09	0.03		
54.37	10.08	548.05	2956.10	10.31	-0.02		
24.55	5.71	140.18	602.70	6.48	-0.13		
10.65	4.51	48.03	113.42	4.69	-0.04		
8.52	5.27	44.90	72.59	4.42	0.16		
4.44	3.78	16.78	19.71	3.89	-0.03		
4.49	3.95	17.74	20.16	3.90	0.01		
175.25	45.77	1666.51	8440.02				
A -101	Linear Equ	ation	n =	7		a 1 =	4.98
						a 2 =	0.07;
X	<u> </u>	x*y	<u>x^2</u>	y calc	% error		
37.83	8.03	404.54	3340.02	9.94	-0.16		
Z1.93	9.40	262.54	780.08	7.09	0.25		
15.82	8.00	126.56	250.27	6.18	0.23		
9.52	3.95	36.64	90.63	5.70	0.04		
8./4	4.80	41.95	76.39	5.64	-0.18		
5.30	4.13	24.20	54.54	5.43	-0.31		
3.3Z	4.43	23.07	28.50	5.39	-0.21		
131.04	44.76	1000.11 T	4000.04				
1V = 11,	DV = KES-	1. 	_	7			4 77
H -123	Lincar Equ	auon	n =	,		a1 = -2 -	4,77
x	v	X *V	x^2	v calc	% error	az =	0.052
41.12	7.04	289.48	1690.85	6.90	0.02		
44.60	6.94	309.52	1989.16	7.09	-0.02		
21.58	6.09	131.42	465,70	5.89	0.03		
15.00	5.25	78.75	225.00	5.55	-0.06		
11.04	5.47	59.84	121.88	5.34	0.01		
6.35	5.18	37.89	40.37	510	0.02		
5.14	4.99	25 65	76 47	5.10	-0.01		
****	40.01	07756	4550.22	3.04	-0.01		
144 33			A 1 1 1 1 1 1				

Table A34. Experiment 1, patch depleted in one prey.

160

-

*Note: TT=travel time, RES=residence time.

----- ·

A-104	Linear Ec	uation	n =	7	<u> </u>	a1 =	0.492
	_	-				a2 =	0.116
log x	log y	x*y	x^2	y calc	% error		
1.56	0.71	1.11	2.43	0.67	0.05		
1.57	0.65	1.02	2.46	0.67	-0.03		
1.56	0.63	0.98	2.44	0,67	-0.07		
1.09	0.65	0.71	1.20	0,62	0.05		
1.05	0.67	0.70	1.09	0.61	0.08		
0.82	0.59	0.49	0.68	0.59	0.01		
0,75	0.52	0.39	0.56	0.58	-0.11		
$\frac{8.40}{10-1}$	4.42	$\frac{3.39}{9.71 - 1}$	10.86				
A.230	i, Dv – Ke Linear Ec	J·1, L=.1 Instion	0 n =	7		a1 =	0 300
11 200		Marian	n –	,		$a_1 = a_2 =$	0.395
log x	log y	x*y	x^2	y calc	% error		
1.83	1.10	2.01	3.36	1.03	0.06		
1.74	1.00	1.74	3.01	0.99	0.01		
1.39	0.76	1.05	1.93	0.86	0.13		
1.03	0.65	0.67	1.06	0. 71	-0.09		
0.93	0.72	0.67	0.87	0.68	0.06		
0.65	0.58	0.37	0.42	0.56	0.02		
0.65	0.60	0.39	0.43	0.57	0.05		
8.22	5.41	6.91	11.07				
•IV=TI	, DV = RE	S T, L = 10)	-			
A-101	Linear Eq	uation	n =	7		$a1 = a^2 =$	0.419
X	100 V	x*v	x^ 2	v calc	% error	4 L -	0.520
1.76	0.90	1.59	3.11	1.00	-0.10		
1.45	0.97	1.41	2.09	0.89	0.08		
1.20	0.90	1.08	1.44	0.81	0.10		
0.98	0.77	0.76	0.96	0.74	0.04		
0.94	0.68	0.64	0.89	0.73	-0.07		
0.77	0.62	0.47	0.59	0.67	-0.09		
0.73	0.65	0.47	0.53	0.66	-0.01		
7.82	5.50	6.43	9.60				
*IV= T	$\Gamma, DV = RE$	$S \cdot T, L = 1.$	0				
A-123	Linear Eq	nation	n =	7		a1 =	0.573
102 X	102 V	x*v	x^2	v calc	% error	42 =	0.160
1.61	0.85	1.37	2.61	0.83	0.02		
1.65	0.84	1.39	2.72	0.84	0.01		
1.33	0.78	1.05	1.78	0.79	-0.00		
1.18	0.72	0.85	1.38	0.76	-0.06		
1.04	0.73	0.77	1.09	0.74	·0.0 1		
0.80	0.71	0.57	0.64	0.70	0.02		
0.71	0.70	0.50	0.51	0. 69	0.02		
8.33	5.34	6.48	10.73				
IV = TI	, DV= RE	$S \cdot T, L = .1$	0				

Table A34 (continued), BWM values transformed to logarithmic numbers.

A-104	Linear E	quation	n =	7		a1 =	4.196
						a 2 =	0.010
<u>x</u>	у	x*y	x^2	y calc	% error		
43.38	4.63	200.85	1881.82	4.63	0.00		
16.11	4.42	71.21	259.53	4.36	0.01		
20.57	4.29	88.25	423.12	4.40	-0.03		
11.69	3.97	46.41	136.66	4.31	-0.09		
12.92	4.74	61.24	166.93	4.32	0.09		
6,09	4.22	25.70	37.09	4.26	-0.01		
5.48	4.26	23.34	30.03	4.25	0.00		
116.24		517.00	2935.18		,		
A-230	Linear E	quation	n =	7		a1 = a2 =	3.793
x	v	x*v	x^2	v calc	% error	4 2 -	0.040
83.10	6.87	570.90	6905.61	7.11	-0.03		
58.02	6.50	377.13	3366.32	6.11	0.06		
61.18	5.95	364.02	3742.99	6.24	-0.05		
25.94	4.82	125.03	672.88	4.83	-0.00		
17.77	5.50	97.74	315.77	4.50	0.18		
8.27	4.39	36.31	68.39	4.12	0.06		
4.47	2.85	12.74	19.98	3.97	-0.39		
258.75	36.88	1583.86	15091.95				
A-101	Linear E	quation	n =	7		a1 =	3.133
						a 2 =	0.055
X 50.1.4	<u> </u>	<u>x*y</u>	<u>x~2</u>	y calc	% error		
38.14	6.09	354.07	3380.26	6.33	-0.04		
26.18	5.54	145.04	685.39	4.57	0.17		
20.30	4.02	105.97	694.85	4.38	-0.14		
11.32	3.80	43.70	128.14	3.73	0.03		
15.70	4.41	00.4 <i>L</i>	187.69	3.89	0.12		
8.20	3.42	28.04	67.24	3.58	-0.05		
6.09 1.40.00	2.83	17.23	37.09	3.47	-0.23		
149.99	30.17	/34.4/	5180.66				
A-123	Linear E	quation	n =	7		a1 =	1.498
		·				a 2 =	0.138
X	у	x*y	x^2	y calc	% еггог		
41.99	5.65	237.24	1763.16	7.30	-0.29		
24.26	7.10	172.25	588.55	4.85	0.32		
24.25	5.04	122.22	588.06	4.85	0.04		
13.88	4.97	68.98	192.65	3.42	0.31		
12.49	3.92	48.96	156.00	3.22	0.18		
7.55	0.97	7.32	57.00	2.54	-1.62		
5.66	0.81	4.58	32.04	2.28	-1.81		
1 30.08	28.46	661.56	3377.46				
V = TT	, DV = RE	ST, L = 1 .0	D-D.5				

Table A35. Experiment 1, patch depleted in two prey.

*Note: TT=travel time, RES T=residence time.

-

162

.

A-104	Linear Ec	uation	n =	7	to to gattitum	a1 =	0.594
						a 2 =	0.040
logx	log y	x*y	x 2	y calc	% error		
1.64	0.67	1.09	2.68	0.66	0.01		
1.21	0.65	0.78	1.46	0.64	0.00		
1.31	0.63	0.83	1.72	0.65	-0.02		
1.07	0.60	0.64	1.14	0.64	-0.06		
1.11	0,68	0.75	1.23	0.64	0.06		
0.78	0.63	0.49	0.62	0.63	-0.00		
0.74	0.63	0.46	0.55	0.62	0.01		
7.86	4.47	5.05	<u>9.40</u>				
1V = 1	I, DV = RE	S-1, L = 1. 	0-D.3	7		.1 -	0.255
A-230	Linear EC	luation	n =	'		$a_1 = a_2 = a_1$	0.333
02 X	log v	x*v	x^ 2	v calc	% error	42	0.204
1.92	0.84	1.61	3.68	0.84	-0.01		
1.76	0.81	1.43	3.11	0.80	0.01		
1.79	0.77	1.38	3.19	0.81	0.04		
1.41	0.68	0.97	2.00	0.71	-0.04		
1.25	0.74	0.93	1.56	0.67	0.09		
0.92	0.64	0.59	0.84	0.59	0.09		
0.65	0.45	0.30	0.42	0.52	-0.14		
9.70	4.95	7.20	14.81				
IV = T	Γ DV= RE	$S \cdot T, L = 1.$	0D.5	-			
A·101	Linear Eq	Juation	n =	1		a1 = a2 =	0.247
log x	log y	x*y	x^2	y calc	% error		
1.76	0.78	1.38	3.11	0.79	-0.01		
1.42	0.74	1.05	2.01	0.68	0.08		
1.42	0.60	0.86	2.02	0.69	-0.13		
1.05	0.59	0.62	1.11	0.57	0.02		
1.14	0.64	0.73	1.29	0.60	0.07		
0.91	0.53	0.49	0.84	0.53	0.01		
0.78	0.45	0.35	0.62	0.49	-0.08		
8.49	4.35	5.49	11.00				
V = T	$\Gamma, DV = RE$	$S \cdot T, L = 1.$	0D.5	-			
A-123	Linear Eq	luation	n =	/		a1 = a2 =	-0.798 1.098
log x	log y	x*y	x^ 2	y calc	% error		
1.62	0.75	1.22	2.63	0.98	-0.31		
1.38	0.85	1.18	1.92	0.72	0.15		
1.38	0.70	0.97	1.92	0.72	-0.03		
1.14	0.70	0.80	1.31	0.46	0.34		
1.10	0.59	0.65	1.20	0.41	0.31		
0.88	-0.01	-0.01	0.77	0.17	13.59		
0.75	-0.09	-0.07	0.57	0.03	1.32		
8.26	3.49	4.74	10.31				
•IV = ∏	I, DV = RE	S-T, L=1.	0-•D.5				

-

Table A35 (continued), BWM values transformed to logarithmic numbers.

_

A.104	l inear Ea	nation		<u>6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 </u>		<u> </u>	25 007
A 114	LINCAI EY	Walling	n -	e.		41 - a? =	0.224
x	v	x*v	x^2	y calc	% error	-2	0.221
24.83	30.29	752.10	616.53	31.47	0.04		
14.66	36.99	542.27	214.92	29.19	0.21		
11.54	20.79	239.92	133.17	28.49	-0.37		
<u>9.34</u>	28.24	263.76	87.24	28.00	0.01		
5.38	24.61	132.40	28.94	27.11	-0,10		
4,50	30.26	136.17	20.25	26.92	0.11		
70.25	171.18	2066.62	1101.05				
A -230	Linear Eq	uation	n =	5		a1 = a2 =	19.691 0.118
x	v	x*v	x^2	v calc	% error		
94.29	32.04	3021.05	8890,60	30,86	0.04		
31.09	18.04	560,86	966.59	23.37	-0,30		
13.28	25.67	340.9 0	176.36	21.26	0.17		
4.81	21.88	105.24	23.14	20.26	0.07		
6.37	18.57	118.29	40.58	20.45	-0.10		
149.84	_116.20	4146.35	10097.26				
A-101	Linear Eq	uation	n =	6		a1 =	24.580
						a 2 =	-0.123
X	у	x* y	x^2	y calc	% error		
30.55	21.02	642.16	933.30	20.81	0.01		
24.38	26.35	642.41	594.38	21.57	0.18		
18.73	16.97	317.85	350.81	22.27	-0.31		
14.23	21.87	311.21	202.49	22.82	-0.04		
13.37	19.91	266.20	178,76	22.93	-0.15		
7.06	27.99	197.61	49.84	23.71	0.15		
108.32	134.11	2377.44	2309.59				
A-123	Linear Eq	vation	B =	6		a1 = a2 =	6.724 0.612
x	y	x*y	x^2	y calc	% error		
14.79	13.88	205.29	218.74	15.77	-0.14		
17.76	20.20	358.75	315.42	17.59	0.13		
11.15	10.47	116.74	124.32	13.55	-0.29		
8.71	12.78	111.31	75.86	12.05	0.06		
6.87	9.17	63.00	47.20	10.93	-0.19		
6.40	14.03	89.79	40.96	10.64	0.24		
65.68	80.53	944.88	822.51				
IV = TT.	DV = RES	T, L = 1.0-	D.125				

Table A36. Experiment 1, patch depleted in eight prey.

*Note: TT=travel time, RES-T=residence time.

-

A-104	Linear Eq	nation	n =	6		a1 =	1.373
						a2 =	0.076
log x	log y	x*y	x^2	y calc	% error		
1.39	1.48	2.07	1.95	1.48	0.00		
1.17	1.57	1.83	1.36	1.46	0.07		
1.06	1.32	1.40	1.13	1.45	·0.10		
0.97	1.45	1.41	0.94	1.45	0.00		
0.73	1.39	1.02	0.53	1.43	-0.03		
0.65	1.48	0.97	0.43	1.42	0.04		
5.98	8.69	8,69	6.34				
$\bullet IV = TT$, $DV = RES$	T , L = 1.0 · ·	D.125				
A-230	Linear Equ	uation	n =	5		a1 =	1.219
_						a 2 =	0.112
log x	log y	x*y	x^2	y calc	% error		
1.97	1.51	2.97	3.90	1.44	0.04		
1.49	1.26	1.88	2.23	1.39	-0.10		
1.12	1.41	1.58	1.26	1.35	0.05		
0.68	1.34	0.91	0.47	1.30	0.03		
0.80	1.27	1.02	0.65	1.31	0.03		
6.08	6.78	8.37	8.50				
*IV = TT	, DV = RES	$T, L = 1.0 \cdots$	D=.125				
A-101	Linear Equ	ation	n =	6		a 1 =	1.500
						a 2 =	0.130
log x	log y	x*y	x^2	y calc	% error		
1.49	1.32	1.96	2.21	1.31	0.01		
1.39	1.42	1.97	1.92	1.32	0.07		
1.27	1.23	1.56	1.62	1.34	-0.09		
1.15	1.34	1.55	1.33	1.35	-0.01		
1.13	1.30	1.46	1.27	1.35	-0.04		
0.85	1.45	1.23	0.72	1.39	0.04		
7.27	8.06	9.74	9.07				
\bullet IV = TT	, DV = RES	T , L = $1.0 \cdot \cdot$	D=.125				
A-123	Linear Equ	ation	n =	6		a1 =	0. 694
						a 2 =	0.416
log x	log y	x*y	x^2	y calc	% error		
1.17	1.14	1.34	1.37	1.18	-0.03		
1.25	1.31	1.63	1.56	1.21	0.07		
1.05	1.02	1.07	1.10	1.13	-0.11		
0.94	1.11	1.04	0.88	1.09	0.02		
0.84	0.96	0.81	0.70	1.04	-0.08		
0.81	1.15	0.92	0.65	1.03	0.10		
6.05	6.68	6.81	6.26				
$\bullet IV = TT$, $DV = RES$	T, L = 1.0	D.125				

· -

_

Table A36 (continued), BWM values transformed to logarithmic numbers.

A-104	Linear Equa	uion	n =	,	
x	у	x*y	x^2	y calc	% error
36.32	0.40	14.53	1319.14	0.34	0.16
36.93	0.30	11.08	1363.82	0,34	-0.13
36.49	0.31	11.31	1331.52	0.34	-0.09
12.42	0.16	1.99	154.26	0.28	0.78
11.12	0.45	5.00	123.65	0.28	0.37
6.64	0.31	2.06	44.09	0.27	0.12
5.58	0.19	1.06	31.14	0.27	-0.42
145.50	2.12	47.03	4367.62		
IV= TT,	DV= GUT.				
A-230	Linear Equa	tion	n =	7	

Table A	37. Experiment 1, left lev	ver depleted in o	ne prey.
A-104	Linear Equation	n=	7

-230 Linear Equation	n =	7			
x	y	x*v	x^2	y calc	% error
68.23	6.98	476.25	4655.33	7.02	-0.01
54.37	5.77	313.71	2956.10	5.67	0.02
24.55	2.37	58.18	602.70	2.78	-0.17
10.65	1.67	17.79	113.42	1.43	0.15
8.52	2.34	19.94	72.59	1.22	0.48
4.44	0.30	1.33	19.71	0.82	-1.74
4.49	0.34	1.53	20.16	0.83	-1.44
175.25	19.77	888.72	8440.02		
V= TT	, DV= GU1	Г.			
-101	Lin c ar Eq	uation	n =	7	
x	y	x*y	x^2	y calc	% error
57.85	3.04	175.86	3346.62	3.08	-0.01
27.93	1.97	55.02	780.08	2.05	-0.04
15.82	2.00	31.64	250.27	1.64	0.18
9.52	1.47	13.99	90.63	1.42	0.03
8.74	1.46	12.76	76.39	1.40	0.04
5.86	1.17	6.86	34.34	1.30	-0.11
5.32	1.06	5.64	28.30	1.28	-0.21
131.04	12.17	301.78	4606.64		
V= TT 122	, DV= GU1	ſ.			
123	Linear Eq	uanon	n =	/	
x	у	x*y	x^2	y calc	% error
41.12	1.44	59.21	1690.85	0.99	0.31
44.60	0.77	34.34	1989.16	1.04	-0.35
21.58	0.40	8.63	465.70	0.69	-0.73
15.00	0.27	4.05	225.00	0.59	-1.19
11.04	0.90	9.94	121.88	0.53	0.41
6.35	0.71	4.51	40.32	0.46	0.36
5.14	0.25	1.29	26.42	0.44	-0,76
144.83	4.74	121.97	4559.33		

•IV= TT, DV=GUT. Note: TT= travel time, GUT= giving-up time.

_

166

-

0.257 0.002

0.392 0.097

1.096 0.034

0.361 0.015

A-104	Linear Eq	uation	n = 7			al =	-0,753	
						a2 =	0.175	
log x	log y	x*y	x^2	y calc	% error			
1.56	-0.40	-0.62	2.43	-0.48	-0.21			
1.57	-0.52	-0.82	2.46	-0.48	0.08			
1.56	-0.51	-0.79	2.44	-0,48	0,06			
1.09	-0.80	-0.87	1.20	-0,56	0.29			
1.05	-0.35	-0,36	1.09	-0.57	0.64			
0.82	-0.51	-0.42	0.68	-0.61	-0.20			
0.75	-0.72	-0,54	0.56	-0,62	0.14			
8.40	3.80	-4.43	10,86					

Table A37 (continued), BWM values transformed to logarithmic numbers.

•	IV=	ŤŤ,	DV=	GUT,	LL=.10
	••-	,	U • -	001,	LL10

A-230	Linear Eq	uation	n	7		a1 = a2 =	-0,977 1.024
log x	log y	x*y	x^2	y calc	% error	42	1.72
1.83	0.84	1.55	3.36	0.90	-0.07		
1.74	0.76	1.32	3.01	0.80	-0.05		
1.39	0.37	0.52	1.93	0.45	-0.19		
1.03	0.22	0.23	1.06	0.08	0.66		
0.93	0.37	0.34	0.87	-0.02	1.06		
0.65	-0.52	-0.34	0.42	-0.31	0.40		
0.65	-0.47	-0.31	0.43	-0.31	0.34		
8.22	1.58	3.32	11.07				
IV = TT,	DV= GUT,	LL= .10					
A -101	Linear Equ	ation	n =	7		a 1 =	-0.238
			_			a 2 =	0,405
log x	log y	x*y	x^2	y calc	% error		
1.76	0.48	0.85	3.11	0.48	0.01		
1.45	0.29	0.43	2.09	0.35	-0.18		
1.20	0.30	0.36	1.44	0.25	0.18		
0.98	0.17	0.16	0,96	0.16	0.05		
0.94	0.16	0.15	0,89	0.14	0.13		
0.77	0.07	0.05	0.59	0.07	-0.07		
0.73	0.03	0.02	0.53	0.06	-1.22		
7.82	1.50	2.03	9.60				
• IV= T1	Ω, DV = GU1	Γ, LL=.10					
A-123	Linear Equ	ation	n =	7		a1 =	-0.712
				·		a2 =	0.392
log x	logy	<u>x*y</u>	x^ 2	y calc	% error		
1.61	0.16	0.26	2.61	-0.08	1.50		
1.65	-0.11	-0.19	2.72	-0.07	0.42		
1.33	-0.40	-0.53	1.78	-0.19	0.52		
1.18	-0.57	-0.67	1.38	-0.25	0.56		
1.04	-0.05	-0.05	1.09	-0,30	-5.62		
0.80	-0.15	-0.12	0.64	-0.40	-1.67		
0.71	-0,60	-0.43	0.51	-0,43	0.28		
833	-1 72	-1.73	10.73				

167

A-104	Linear Equation		n = 7			a1 =	2.355
					07	a2 =	0.000
X 12 29	<u> </u>	<u> </u>	<u>X Z</u>	<u>y calc</u>	<u>% error</u>		
45.56	2.73	38.50	250.53	2.37	0.15		
20.57	1 41	20.00	42312	2.50	-0.68		
11.69	2.22	25.95	136.66	2.36	-0.06		
12.92	2.53	32.69	166.93	2.36	0.07		
6.09	2.57	15.65	37.09	2.36	0.08		
5.48	2.68	14.69	30.03	2.36	0.12		
116.24	16.53	274.91	2935.18				
•IV = TT	, DV= Gl	JT					
A-230	Linear Equation		n =	7		a1 =	1.860
						a2 =	0.025
X	у	x*y	x^2	y calc	% error		
83.10	4.09	339.88	6905.61	3.92	0.04		
58.02	3.50	203.07	3366.32	3.30	0.06		
61.18	2.93	179.26	3742.99	3.38	-0.15		
25.94	2.32	60.18	672.88	2.50	-0.08		
17.17	2.62	44.99	294.81	2.29	0.13		
8.27	2.28	18.86	68.39	2.07	0.09		
4.47	1.68	7.51	19.98	1.97	-0.17		
258.15	19.42	853.74	15070.99				
•IV=TT,	DV=GU	JT.		-			
A-101	Linear E	quation	n =	7		a1 = a2 =	1.777
x	у	x*y	x^2	y calc	% error		
58.14	4.13	240.12	3380.26	4.41	-0.07		
26.18	4.13	108.12	685.39	2.96	0.28		
26.36	2.46	64.85	694.85	2.97	-0.21		
11.32	2.50	28.30	128.14	2.29	0.08		
13.70	2.55	34.94	187.69	2.40	0.06		
8.20	1.91	15.66	67.24	2.15	-0.12		
6.09	1.56	9.50	37.09	2.05	-0.32		
149.99	19.24	501.48	5180.66				
IV = TT	IV = TT, DV = GUT.						
A-123	Linear E	quation	n =	7		a1 = a2 =	0.701
x	v	x*v	x^2	v calc	% error	.2	0.000
41.99	3.32	139.41	1763.16	4.27	-0.29		
24.26	4.47	108.44	588.55	2.76	0.38		
24.25	2.58	62.57	588.06	2.76	-0.07		
13.88	2.86	39.70	192.65	1.88	0.34		
12.49	1.73	21.61	156.00	1.76	-0.02		
7.55	0.53	4.00	57.00	1.34	-1.53		
5.66	0.48	2.72	32.04	1.18	-1.46		
130.08	15.97	378.44	3377.46				
$^{*}IV = TT$	DV = GI	TT.					

Table A38. Experiment 1, left lever depleted in two prey.

*Note: TT=travel time, GUT=giving-up time.

_

A-104	Linear Ec	juation	n =	7		a1 =	0.447
						a 2 =	-0.074
log X	log y	<u>x*y</u>	$\frac{\mathbf{x}^2}{2}$	y calc	% error		
1.04	0.44	0.71	2.08	0.33	0.25		
1.21	0.36	0.40	1.40	0.30	1.35		
1.51	0.15	0.20	1.72	0.55	-1.35		
1.07	0.35	0.37	1.14	0.37	0.00		
0.78	0.40	0.45	0.62	0.37	0.05		
0.74	0.43	0.32	0.55	0.39	0.08		
7.86	2.55	2.82	9.40	0.55	0.00		
*DV=1	$T_{\rm v} IV = GU$	\overline{T} . $LL = 1$.	0D=.5				
A-230	Linear Ec	uation	n =	7		a1 =	0.085
		•				a2 =	0.247
log x	log y	x*y	x^2	y calc	% error		
1.92	0.61	1.17	3.68	0.56	0.09		
1.76	0.54	0. 96	3.11	0.52	0.04		
1.79	0.47	0.83	3.19	0.53	-0.13		
1.41	0.37	0.52	2.00	0.43	-0.19		
1.23	0.42	0.52	1.52	0.39	0.07		
0.92	0.36	0.33	0.84	0.31	0.13		
0.65	0.23	0.15	0.42	0.25	-0.09		
9.69	2.99	4.48	14.78				
$\mathbf{DV} = \mathbf{T}$	$\Gamma, IV = GU$	$\Gamma, LL = 1.0$	- D=.5				
A-101	Linear Eq	uation	n =	7		a1 =	-0.085
						a 2 =	0.412
1 76	logy	<u>x y</u>	<u>x 2</u>	y calc	% error		
1.70	0.62	1.09	3.11	0.04	-0.04		
1.42	0.62	0.87	2.01	0.50	0.19		
1.42	0.39	0.36	2.02	0.30	-0.28		
1.05	0.40	0.42	1.11	0.39	0.12		
0.01	0.41	0.40	1.29	0.30	-0.04		
0.78	0.20	0.20	0.64	0.29	-0.04		
8.40	2 00	3.81	11.00	0.24	0.25		
$\overline{DV} = T^{T}$	V = GU	1.01	D=5				
A-123	Linear Ea	ustion	D=.5 n =	7		a1 =	-1.082
						a2 =	1.121
log x	log y	x*y	x^2	y calc	% error		
1.62	0.52	0.85	2.63	0.74	-0.41		
1.38	0.65	0.90	1.92	0.47	0.28		
1.38	0.41	0.57	1.92	0.47	-0.14		
1.14	0.46	0.52	1.31	0.20	0.57		
1.10	0.24	0.26	1.20	0.15	0.38		
0.88	-0.28	-0.24	0.77	-0.10	0.64		
0.75	-0.32	-0.24	0.57	-0.24	0.25		
8.26	1.68	2.62	10.31				
DV = 11	, IV = GUT	LL = 1.0	-D = .5				

Table A38 (continued), BWM values transformed to logarithmic numbers.
A-104	Linear Eq	uation	n =	6		a1 =	5.210
	•					a 2 =	0.089
x	у	x*y	x^2	y calc	% error		
24.83	7.40	183.74	616.53	7.41	0.00		
14.66	7.09	103.94	214.92	6.51	0.08		
11.54	5.77	66.59	133.17	6.23	-0.08		
9.34	5.53	51.65	87.24	6.04	-0.09		
5.38	5.65	30.40	28.94	5.69	-0.01		
4.50	6.04	27.18	20.25	5.61	0.07		
70.25	37.48	463.49	1101.05				
VIV = TT,	$\overline{DV} = \overline{GUT}$						
A -2 3 0	Linear Eq	uation	n =	5		a 1 =	6.825
						a 2 =	0.029
<u>x</u>	<u>y</u>	x*y	X ¹ 2	y calc	% error		
94.29	10,38	978.73	8890.60	9.59	0.08		
31.09	5.38	167.26	966.59	7.74	-0.44		
13.28	6.93	92.03	176.36	7.21	-0.04		
4.81	12.83	61.71	23.14	6.97	0.46		
6.37	3.00	19.11	40.58	7.01	-1.34		
149.84	38.52	1318.85	10097.26				
V = TT,	DV = GUT						
4-101	Linear Eq	uation	n =	6		a1 =	4.761
					~	a2 =	0.055
<u>x</u>	<u> </u>	<u>x*y</u>	<u>x^2</u>	y calc	% error		
30.55	6.62	202.24	933.30	6.45	0.03		
24.38	6.94	169.20	594.38	6.11	0.12		
18.73	4.41	82.60	350.81	5.80	-0.32		
14.23	5.42	77.13	202.49	5.55	-0.02		
13.37	5.33	71.26	178.76	5.50	-0.03		
7.06	5.85	41.30	49.84	5.15	0.12		
108.32	34.57	<u>643.73</u>	2309.59				
A 192	T		-	ć		.1 -	0.943
n-1 23	LIDEAT EY		n -	0		a1 - a2 =	0.842
x	у	x*y	x^ 2	y calc	% error		
14.79	4.01	59.31	218.74	3.73	0.07		
17.76	4.49	79.74	315.42	4.31	0.04		
11.15	2.01	22.41	124.32	3.02	-0.50		
8.71	2.77	24.13	75.86	2.54	0.08		
6.87	1.83	12.57	47.20	2.18	-0.19		
6.40	2.76	17.66	40.96	2.09	0.24		
65.68	17.87	215.82	822.51				
• IV - TT	DV-CU		D= 125				

Table A39. Experiment 1, left lever depleted in eight prey.

* Note: TT=travel time, GUT=giving-up time.

A-104	Linear Eq	uation	n =	6		a1 =	0.651
						a2 =	0.143
logx	logy	x*y	<u>x^2</u>	y calc	% error		
1.39	0.87	1.21	1.95	0.85	0.02		
1.17	0.85	0.99	1.36	0.82	0.04		
1.06	0.76	0.81	1.13	0.80	-0.05		
0.97	0.74	0.72	0.94	0.79	-0.06		
0.73	0.75	0.55	0.53	0.75	-0,00		
0.65	0.78	0.51	0.43	0.74	0.05		
5.98	4.76	4.79	6.34				
DV = T	$\mathbf{T}, \mathbf{IV} = \mathbf{GUT}$	LL = 1.0	D=.125				
A-230	Linear Equ	uation	n =	5		a1 =	0.715
						a2 =	0.098
<u>log x</u>	log y	x*y	x^2	y calc	% error		
1.97	1.02	2.01	3.90	0.91	0.11		
1.49	0.73	1.09	2.23	0.86	-0.18		
1.12	0.84	0.94	1.26	0.83	0.02		
0.68	1.11	0.76	0.47	0.78	0.29		
0.80	0.48	0.38	0.65	0.79	-0.66		
6.08	4.17	5.18	8.50				
IV = TI	, DV = GUT	, LL = 1.0··	D=.125	-			
A-101	Linear Equ	uation	n =	6		a1 =	0.632
						a 2 =	0.102
log x	log y	x*y	x^2	y calc	% error		
1.49	0.82	1.22	2.21	0.78	0.05		
1.39	0.84	1.17	1.92	0.77	0.08		
1.27	0.64	0.82	1.62	0.76	-0.18		
1.15	0.73	0.85	1.33	0.75	-0.02		
1.13	0.73	0.82	1.27	0.75	-0.03		
0.85	0.77	0.65	0.72	0.72	0.06		
7.27	4.53	5.52	9.07				
•IV=TT	, DV= GUT	LL = 1.0	D=.5		•		
A-123	Linear Equ	ation	n =	6		a 1 =	-0.191
	•					a2 =	0.637
log x	log y	x*y	x^2	y calc	% error		
1.17	0.60	0.71	1.37	0.55	0.08		
1.25	0.65	0.81	1.56	0.60	0.07		
1.05	0.30	0.32	1.10	0.48	-0.57		
0.94	0.44	0.42	0.88	0.41	0.08		
0.84	0.26	0.22	0.70	0.34	-0.30		
0.81	0.44	0.36	0.65	0.32	0.27		
6.05	2.70	2.83	6.26				
+ IV - T	DV = GUT	<u> </u>	D = 125				

.

Table A39 (continued), BWM values transformed to logarithmic numbers.

C-1	Linear Eq	uation	n =	5		a1 =	0.411
		a. 8			01	a2 =	0.178
X 20 20	<u> </u>	141.05	X 2	y calc	% error		
20.39	3.00	52.03	803.99 357.03	3.40	-0.09		
10.00	3.24	76.40	251.92	3.21	-0.01		
10.04	4,00	104.00	073.93	5.70	0.07		
51.19	1.42	8 70	3750	J.90 1.50	0.04		
100.61	1.42 19.94	473.18	2429.25	1.50	-0.00		
C-2	Linear Eq	uation	n =	5		a1 =	1.426
						a 2 =	0.091
x	у	x*y	x^2	y calc	% error		
23.08	3.34	77.09	532.69	3.52	-0.05		
15.92	3.13	49.83	253.45	2.87	0,08		
9.51	3.32	31.57	90.44	2.29	0.31		
20.24	3.00	60.72	409,66	3.26	-0.09		
5.47	1.06	5.80	29.92	1.92	-0.81		
74.22	13.85	225.01	1316.15				
C-3	Linear Eq	uation	n =	5		e1 ==	0 981
	Dinea 24	unon		5		a2 =	0.152
x	у	x*y	x^2	y calc	% error		
17.73	3.31	58.69	314.35	3.68	-0.11		
11.02	3,59	39.56	121.44	2.66	0.26		
9.08	2.88	26.15	82.45	2.36	0.18		
19.00	3,66	69.54	361.00	3.87	-0.06		
5.17	0.89	4.60	26.73	1.77	-0.99		
62.00	14.33	198.54	905.9 7				
C-4	Linear Eq	uation	n =	5		a1 =	1.964
						a2 =	0.069
x	y	x*y	x^2	y calc	% error		
53.47	5.06	270,56	2859.04	5.68	-0.12		
18.35	4.41	80.92	336.72	3.24	0.27		
11.69	3.45	40.33	136.66	2.78	0.20		
18.25	3.96	72.27	333.06	3.23	0.18		
4.99	0.35	1.75	24.90	2.31	-5.60		
106.75	17.23	465.83	3690.38				
C-5	Linear Eq	uation	n =	5		a1 =	-1.363
					~	a2 =	0.324
26.04	<u>y</u>	137.12	1 2 775 76	y calc 7.35	% error		
10.45	J.07 A 64	137.12	123.10	1.33	-V.44 A A-4		
17.4J 20.01	4.04	90.23 161.63	3/8.30	4.93	-0.00		
20.71	1.13 7 44	107.03	431.23	J.40 6 77	0.30		
10 80	1.20	191.32	031.32 118 50	0.//	0.14		
103 27	1.30 76 47	14.10	110.JY	2.10	-0,00		
193.32	20.02	VVV.09	2291.40	01.5			

Table A40. Experiment 2, retractable levers, patch depleted in one prey.

*Note: TT=travel time, RES-T=residence time.

172

-

_..

C-1	Linear Eq	uation	n =	S	anninic nome	al =	-0.533
•••	Eniter Eq.			2		a2 =	0.874
log x	log y	x*y	x^2	y calc	% error		
1.45	0.70	1.02	2.11	0.74	-0.05		
1.21	0.51	0.62	1.45	0.52	-0,02		
1.28	0,61	0.78	1.63	0.58	0.05		
1.49	0,79	1.19	2.23	0,77	0.03		
0.79	0.15	0.12	0.62	0.15	-0.02		
6.22	2.76	3.71	8.04				
•IV= TT	, DV= RES	T, L=.10	RETRACT	ABLE			
C·2	Linear Equ	uation	n =	5		a1 =	-0.339
						a2 =	0.669
log x	log y	x*y	x^2	y calc	% error		
1.36	0.52	0.71	1.86	0,57	0.09		
1.20	0,50	0.60	1.44	0,47	0.06		
0.98	0.52	0.51	0,96	0.32	0.39		
1.31	0,48	0.62	1.71	0,53	-0.12		
0.74	0,03	0.02	0,54	0.15	-5.11		
5.59	2.04	2.46	6.51				
·IV= TT	, $DV = RES$	$T, L = .\overline{10},$	RETRACI	ABLE			
C-3	Linear Equ	ation	n =	5		a 1 =	-0.603
						a2 =	0,966
log x	log y	x*y	x^2	y calc	% error		
1.25	0.52	0.65	1.56	0.60	-0.16		
1.04	0,56	0.58	1.09	0.40	0.27		
0,96	0.46	0,44	0.92	0.32	0.30		
1.28	0,56	0.72	1.64	0.63	-0.12		
0.71	-0.05	-0.04	0.51	0.09	2.70		
5.24	2.05	2.35	5.71				
IV = TT	, DV = RES	T, P = .10, 1	RETRACI	ABLE			
C-4	Linear Equ	uation	n =	5		a1 = a7 -	-0.892
log x	logy		x^2	v calc	% error	a., -	1.078
1.73	0.70	1.22	2.99	0.97	-0.38		
1.26	0.64	0.81	1.60	0.47	0.27		
1.07	0.54	0,57	1.14	0.26	0.52		
1.26	0.60	0.75	1.59	0.47	0.22		
0.70	-0.46	-0.32	0.49	-0.14	0.69		
6.02	2.03	3.04	7.80				
·IV=Tf	DV= RES	T, L = .10,	RETRACT	ABLE			
C-5	Linear Equ	ation	n =	5		a 1 =	-1.7 28
						a2 =	1.839
log x	log y	x*y	x^2	y calc	% error		
1.43	0.71	1.01	2.05	0,90	-0.28		
1.29	0.67	0,86	1.66	0.64	0.04		
1.32	0.89	1.17	1.74	0.70	0.21		
1.40	0.90	1.25	1.96	0.85	0.05		
1.04	0.11	0.12	1.08	0.18	-0.57		
648	2 21	A A1	8 40				

Table A40 (continued), BWM values transformed to logarithmic numbers.

	Lineor F	auntion	actable leve	.18, patch C	repieted in t	at -	2652
CI	L'inear E	quation	n -	, v		a1 – a2 =	0.046
x	v	x°y	x^2	V calc	% error		
20.92	2.47	51.67	437.65	3.61	-0,46		
28.61	3.69	105.57	818.53	3.96	-0,07		
30,68	4.87	149.41	941.26	4.05	0.17		
14.79	2.82	41.71	218.74	3.33	-0.18		
12.71	4.42	56.18	161.54	3.23	0.27		
12.10	3.12	37,75	146.41	3.21	-0.03		
119.81	21.39	442.29	2724.14				
C-2	Linear E	quation	n =	6		a1 =	2.594
	v	x*v	* ~ 7	v celc	% error	az –	0.041
20 38	2 64	53.80	415 34	341	-0.30		
25.67	4.53	116.29	658.95	3 64	0.20		
32.26	3 63	117.10	1040 71	3.01	-0.08		
12.94	3 37	43.61	167 44	3.17	0.07		
10 33	1.85	1911	106.71	3.02	-0.63		
1011	4 10	41.45	102.21	3.02	0.27		
111.69	<u>20.1</u> 2	391.36	2491.37	5.01	0.27		
C-3	Linear E	quation	n =	6		a1 =	-0.246
-						a 2 =	0.189
<u>x</u>	<u>y</u>	<u>x'y</u>	<u>x ~ 2</u>	y calc	% error		
18.85	213	40.15	355.32	3.31	-0.55		
18.22	2/1	49.58	331.97	3.19	-0.18		
18.29	2.39	47.37	354.52	3.21	-0.24		
55.04	10.40	5/2.42	50/29.40	10.14	0.02		
1.13	2.95	ZZ.80	39.75	1.21	0.59		
31.4 8	9.70	502.44	2650.19	9.47	0.03		
109.01		1254.50	0/01.10				
C-4	Linear Ea	quation	n =	6		a1 = a7 -	-0.575
x	v	x'v	x^2	v calc	% error	42 -	0.254
27.26	4.29	116.95	743.11	7.43	-0.73		
47.47	12.33	585.31	2253.40	13.36	-0.08		
52.36	16.84	881.74	2741.57	14.80	0.12		
15.73	4.15	65.28	247.43	4.04	0.03		
12.60	4.52	56.95	158.76	3.12	0.31		
13.22	3.93	51.95	174.77	3.31	0.16		
168.64	46.06	1758.18	6319.04				
C-5	Linear Ec	quation	n =	6		a1 =	3.207
						a 2 =	0.082
X	<u>y</u>	x*y	<u>x^2</u>	y calc	% error		
4/.9/	0.87	329.33	2301.12	7.15	-0.04		
Z3.78	5.58	92.29	004.61	5.3Z	-0.49		
28.23	5.38	151.88	796.93	5.52	-0.03		
25.98	8.02	192.52	5/5.04	5.18	0.35		
8.59	3.97	55.51	70.39	5.90	0.02		
8./3 147.10	3.17	21.14	76.30	5.95	-0.24		
143.10	30.99	021.09	4484.00				

Table A41. Experiment 2, retractable levers, patch depleted in two prey.

Note: TT = travel time, RES-T = residence time.

174

CI	Linear Fo	ustion	n =	-6	e legaritimite	al =	0.299
、	Linear La	- and a		Ŷ		a2 =	0.189
log x	log y	x*y	x^2	y calc	% error		
1.32	0.39	0.52	1.74	0.55	-0.40		
1.46	0.57	0.83	2.12	0.57	-0.01		
1.49	0.69	1.02	2.21	0,58	0.16		
1.17	0.45	0.53	1.37	0.52	-0.16		
1.10	0.65	0.71	1.22	0.51	0.21		
1.08	0.49	0.54	1.17	0.50	-0.02		
7.62	3.24	4.14	9,84				
•IV= T1	$\Gamma, DV = RE$	ES T, L = 1	.0-D.5, RE	TRACTA	BLE		
C-2	Linear Ec	luation	n =	6		a1 =	0.182
0.0 1	0.0 1	¥*U	×^7	V colc	The error	az =	0.265
1 31	0.42	0.55	1 71	0.53	.0.26		
1 4 1	0.66	0.92	1.00	0.55	0.15		
1.51	0.56	0.84	2.28	0.50	-0.04		
1 1 1	0.53	0.54	1.24	0.36	0.10		
1.01	0.33	0.27	1.03	0.40	-0 69		
1.00	0.61	0.67	1.05	0.45	0.27		
7 36	3.05	3 70	9.25	0.45	0.27		
'IV= 1	DV = RE	ST, L=1	.0-D.5, RE	TRACIA	BLE		
C-3	Linear Ec	uation	n =	6		a1 =	-0,479
						a2 =	0.802
log x	log y	x*y	x^2	y calc	% error		
1.28	0.33	0.42	1.63	0.54	-0.65		
1.26	0.43	0.55	1.59	0.53	-0.23		
1.26	0.41	0.52	1.59	0.53	-0.29		
1.74	1.02	1.77	3.03	0.92	0.10		
0,89	0.47	0.42	0,79	0.23	0,50		
1.71	0.99	1.69	2.93	0.89	0.10		
8.14	3.65	5.37	11.56				
"IV= T]	f, DV = RE	$S \cdot T, L = 1$.0-D.5, RE	IRACTA	BLE		
C-4	Linear Eq	luation	u =	0		al = 92 =	-0.444
log x	log y	x*v	x^2	v calc	% error	az	0.907
1.44	0.63	0.91	2.06	0,86	-0.36		
1.68	1.09	1.83	2.81	1.08	0.01		
1.72	1.23	2.11	2.95	1.11	0.09		
1.20	0.62	0.74	1.43	0.64	-0,04		
1.10	0.66	0.72	1.21	0.55	0.15		
1.12	0.59	0.67	1.26	0.57	0.04		
8.25	4.82	6.9 7	11.73				
*IV= T1	, DV = RE	S-T, L =1	.0-D.5, RE	IRACTA	BLE		
C-S	Linear Eq	uation	n =	6		a1 =	0.215
10.0 m						a2 =	0.364
1.6 <u>8 x</u>	10g y	<u> </u>	7 02	y calc	% error		
1 #1	0,04	0.79	1.00	0.03	0.01		
1.41	0.33	V./0 1.04	1.99	0.73	-0.32		
1 3 2	0.75	1.00	1.00	0.74 0.77	-0.02		
0.07	0.50	0.55	1.50	0.72	0.08		
0.92	0.00	0.33	17,00 A 80	0.55	0.00		
779	4 13	5.52	10.57	0.50	-0.11		
- TT	' DV- PF	STI-1	0.D 5 PE	DACTA	805		

C·1	Linear Eq	uation	n =	4		a1 =	32.694
						a2 =	0.034
x	у	x* y	x^2	y calc	% error		
26.21	34.18	895.86	686.96	33.59	0.02		
14.95	28.44	425.18	223.50	33.21	-0.17		
14.00	35.54	497.56	196.00	33.17	0.07		
12.55	34.94	438.50	157.50	33.12	0.05		
67.71	133.10	2257.09	1263.97				
C .2	Linear Ea	mation	• -	٨		a1 —	22 222
C 2		warron	<i>.</i>	•		a2 =	0.167
x	у	x*y	x^2	y calc	% error		
26.59	26.74	711.02	707.03	26.78	-0.00		
16.15	24.26	391.80	260.82	25.04	·0.0 3		
14.53	26.19	380.54	211.12	24.76	0.05		
11.62	23.67	275.05	135.02	24.28	-0.03		
68.89	100.86	1758.40	1314.00				
C-3	Linear Eq	uation	n =	4		a 1 =	25.876
					~	a 2 =	0.185
<u>x</u>	<u> </u>	<u>x*y</u>	<u>x^2</u>	y calc	% error		
14.57	28.21	411.02	212.28	28.57	-0.01		
10.81	27.14	293.38	110.80	27.88	-0.03		
10.89	29.55	321.80	118.59	27.89	0.06		
8.04	20.91	232.30	/4.03 522.20	21.41	-0.02		
44.91	111.81	1238.71	322.38				
C-4	Linear Ea	nation	n =	4		a1 =	37 458
			-	·		a 2 =	0.375
x	у	x*y	x^2	y calc	% error		
39.57	51.93	2054.87	1565.78	52.28	-0.01		
19.52	45.58	889.72	381.03	44.77	0.02		
21.60	48.38	1045.01	466.56	45.55	0.06		
19.19	41.35	793.51	368.26	44.65	-0.08		
99.88	187.24	4783.11	2781.63				
6.5	Linear Bo	nation	. =	A		a1 —	26 843
CJ				•		$a_{2} =$	-0.051
x	v	x*v	x^2	v calc	% error		
24.97	25.28	631.24	623.50	25.56	0.01		
17.37	25.58	444.32	301.72	25.95	-0.01		
16.54	28.57	472.55	273.57	25.99	0.09		
15.17	24.13	366.05	230.13	26.06	-0.08		
74.05	103.56	1914.17	1428.92				
⁺IV = TT	DV= RES	S-T, L=1.0-1	D.125, RET	RACTAB	LE		

Table A42. Experiment 2, retractable levers, patch depleted in eight prey.

*Note: TT = travel time, RES-T = residence time.

C-1	Linear Eq	uation	n =	4	ogaritanite it	a1 =	1.508
						a2 =	0.011
log x	log y	x*y	x^2	y calc	% error		
1.42	1.53	2.18	2.01	1.52	0.01		
1.17	1.45	1.71	1.38	1.52	-0.05		
1.15	1.55	1.78	1.31	1.52	0.02		
1.10	1.54	1.70	1.21	1.52	0.02		
4.84	6.08	_7.36	5.91				
$\bullet IV = TI$	$\overline{DV} = \overline{RES}$	T, L = 1.0	D.125, RE	RACTAE	BLE		
C -2	Linear Eq	uation	n ≈	4		a 1 =	1.248
						a2 =	0.126
log x	log y	x*y	x^2	y calc	% error		
1.42	1.43	2.03	2.03	1.43	-0,00		
1.21	1.38	1.67	1.46	1.40	-0.01		
1.16	1.42	1.65	1.35	1.39	0.02		
1.07	1.37	1.46	1.13	1.38	-0.01		
4.86	5.60	6.82	5.98				
V = TI	DV = RES	T, L = 1.0	D.125, REI	RACTAE	ILE		
C-3	Linear Eq	uation	n =	4		al =	1.357
<u> </u>						a 2 =	0.085
log x	logy	x*y	<u>x^2</u>	y calc	% error		
1.16	1.45	1.69	1.35	1.46	-0.00		
1.03	1.43	1.48	1.07	1.45	-0.01		
1.04	1.47	1.53	1.08	1.45	0.02		
0.94	1.43	1.34	0.88	1.44	0.01		
4.1 /)./8	6.03	4.37				
1v = 11	, DV = RES	-1, L=1.0-	D.125, KEI		LE	-1 -	1 351
C-4	Lineai Eq	uation	n –	4		$a_1 = a_2 = a_1$	0.231
logx	logy	x*y	x^2	y calc	% error		
1.60	1.72	2.74	2.55	1.72	-0.00		
1.29	1.66	2.14	1.67	1.65	0.01		
1.33	1.68	2.25	1.78	1.66	0.02		
1.28	1.62	2.07	1.65	1.65	-0.02		
5.51	6.68	9.20	7.64				
IV = TI	DV = RES	T, L = 1.0	D.125, RET	RACTAE	LE		
C-5	Linear Eq	uation	n =	4		a1 =	1.444
						a 2 =	-0.025
log x	log y	x*y	x^2	y calc	% error		
1.40	1.40	1.96	1.95	1.41	-0.00		
1.24	1.41	1.75	1.54	1.41	-0.00		
1.22	1.46	1.77	1.48	1.41	0.03		
1.18	1.38	1.63	1.39	1.41	-0.02		
5.04	5.65	7.11	6.37				
IV = TI	, DV = RES	T, L = 1.0	D.125, RET	RACTAB	LE		
						7	Table 15.

.

Table A42 (continued), BWM values transformed to logarithmic numbers.

C-1	Linear Ec	ustion	n =	5		a1 =	0,045
						a2 =	0.075
x	у	x*y	x^2	y calc	% error		
28.39	1.90	53.94	805.99	2.18	0.15		
16.06	0.42	6.75	257.92	1.25	-1.98		
16.84	0,73	12.29	283.59	1.31	0.79		
31.19	3.21	100.12	972.82	2.39	0.26		
6.13	1.37	8.40	37.58	0.51	0.63		
98.61	7.63	181.50	2357.89	<u> </u>	<u></u>		
C-2	Linear Eq	uation	n ==	5		a1 =	0, 900
						a2 =	-0.021
x	У	x*y	x^2	y calc	% error		
23.08	0,37	8,54	532.69	0.41	-0.11		
15.92	0.37	5.89	253.45	0.56	-0.52		
9.51	0.40	3,80	90.44	0.70	-0,75		
20.24	0,74	14.98	409.66	0.47	0,36		
5.47	1.05	5.74	29.92	0.78	0.25		
74.22	2.93	38.96	1316.15				
C-3	Linear Eq	uation	n =	5		a 1 =	0,746
						a2 =	-0.027
X	У	x*y	x^2	y calc	% error		
17.73	0.12	2.13	314.35	0.27	-1.24		
11.02	0.23	2.53	121.44	0.45	-0.95		
9.08	0.33	3.00	82.45	0.50	-0.52		
19.00	0.51	9.69	361.00	0.23	0.54		
5.17	0.87	4.50	26.73	0.61	0.30		
62.00	2.06	21.85	905.97				
C-4	Linear Eq	uation	n =	5		al =	0.332
			<u><u> </u></u>		a and a	a2 =	0.050
53.47	<u> </u>	155.60	2850.04	y calc			
18 35	1.60	20.26	2039.04	1.76	-0.04		
11.60	0.81	29.50	136.66	0.03	0.21		
10.09	1.20	9.47	130.00	0.92	-0.14		
10.25	0.33	23.37	333.00	1.25	0,10		
4.55 106.75	0.33 7,04	221.44	24.90 3690.38	0.58	-0.77		
C-5	Linear Eq	uation	n =	5		a1 = a7 -	0.174
x	Ÿ	x*v	x^2	v calc	% error	az -	0.067
26.94	1.55	41.76	725.76	2.51	-0.62		
19.95	1.30	25.94	398.00	1.90	-0.46		
20.91	1.77	37.01	437.23	1.99	-0.12		
25.13	3.97	99.77	631.52	2.35	0.41		
10.89	1.28	13.94	118.59	1.12	0.13		
103.82	9.87	218.41	2311.10				
1X7_ TT	DV- GUI	L - 10 DE	TDACTAR				

Table A43. Experiment 2, retractable levers, patch depleted in one prey.

•Note: TT = travel time, GUT = giving-up time.

C-1	Linear Eq	uation	n =	5		a1 =	-0.479
						a2 =	0.455
log x	logy	x*y	x ^2	y calc	% error		
1.45	0.28	0.41	2.11	0.18	0.35		
1.21	-0.38	-0.45	1.45	0.07	1.18		
1.23	-0.14	-0.17	1.50	0.08	1.57		
1.49	0.51	0,76	2.23	0.20	0.60		
0.79	0.14	0.11	0.62	-0.12	1.89		
6.17	0.41	0.65	7.92				
·IV=TI	DV = GU1	L = .10 R	ETRACTA	BLE			
C-2	Linear Eq	uation	n =	5		a1 =	0.228
						a2 =	-0.450
log x	logy	x*y	x^2	y calc	% error		
1.36	-0.43	-0.59	1.86	-0,38	0.11		
1.20	-0.43	-0.52	1.44	-0.31	0.28		
0,98	-0.40	-0.39	0.96	-0.21	0.47		
1.31	-0.13	-0.17	1.71	-0.36	-1.75		
0.74	0.02	0.02	0.54	-0.10	5.89		
5.59	-1.37	-1.65	6.51				
IV=TT	DV= GUT	L = .10 R	ETRACTA	BLE			
C-3	Linear Equ	uation	n =	5		a 1 =	0.427
				-		a? =	-0.864
log x	log v	x*v	x^2	v calc	% error		
1.25	-0.92	-1.15	1.56	-0.65	0.29		
1.04	-0.64	-0.67	1.09	-0.47	0.26		
0,96	-0.48	-0.46	0.92	-0.40	0.17		
1.28	-0.29	-0.37	1.64	-0,68	-1.32		
0.71	-0.06	-0,04	0.51	-0.19	-2.13		
5.24	-2.39	-2.69	5.71				
*IV= TT	DV= GUT	L = .10 R	ETRACTA	BLE	·····		
C-4	Linear Equ	ation	n =	5		a1 =	-1.077
						a2 =	0.935
log x	logy	X* V	x^2	y calc	% error		
1.73	0.46	0.80	2.99	0.54	-0.16		
1.26	0.20	0.26	1.60	0.10	0.49		
1.07	-0.09	-0.10	1.14	-0.08	0.13		
1.26	0.14	0.18	1.59	0.10	0.29		
0.70	-0.48	-0.34	0.49	-0.42	0.12		
6.02	0.24	0.81	7.80				
* IV= TI	, DV= GU1	Γ , L = .10 R	ETRACTA	BLE			
C-5	Linear Equ	ation	n =	5		a1 =	-0.618
	•					a2 =	0,670
log x	logy	x*y	x^2	y calc	% error		
1.43	0.19	0.27	2.05	0.34	-0.79		
1.30	0.11	0.15	1.69	0.25	-1.22		
1.32	0.25	0.33	1.74	0.27	-0,08		
1.40	0.60	0.84	1.96	0.32	0,46		
1.04	0.11	0.11	1.08	0.08	0.28		
6.49	1.26	1.70	8.52				
'IV= TT	DV = GUT	L = .10 RF	TRACTA	BLE			

_

Table A43 (continued), BWM values transformed to logarithmic numbers.

Table A4	44. Experii	ment 2, retr	actable leve	rs, patch o	depleted in th	wo prey.	
C-1	Linear Equation		n =	n = 6			0,671
		vF.	*^?	n colc	The error	a2 =	0.0.90
20.97	0.41	<u> </u>	437.65	1 31	-7.18		
28.61	1.70	48 64	818 53	1.54	0.09		
30.68	1.93	59 21	941.26	1.60	0.07		
14 79	0.53	7 84	218 74	1.12	-1 11		
12.71	2.24	28.47	161.54	1.06	0.53		
12.10	0.85	10.29	146.41	1.04	-0.22		
119.81	7.66	163.02	2724.14				
C-2	Linear E	quation	n =	6		a1 = a2 =	1. 499 0.014
x	y	x y	x^2	y calc	% error		
20.38	0.74	15.08	415.34	1.78	-1.41		
25.67	2.84	72.90	658.95	1.86	0.35		
32.26	1.80	58.07	1040.71	1.95	-0.08		
12.94	1.25	16.18	167,44	1.68	-0.34		
10.33	1.28	13.22	106.71	1.64	-0.28		
10.11	2.64	26.69	102.21	1.64	0.38		
111.69	10.55	202.14	2491.37				
<u></u>	Linese E			-		-1	1 040
C-3	Linear E	quation	n =	0		ai = a? =	0.177
x	У	x*y	x^2	y calc	% error		
18.85	0.42	7. 92	355.32	1.48	-2.52		
18.22	0.82	14.94	331.97	1.37	-0.67		
18.29	0.64	11.71	334.52	1.38	-1.16		
55.04	6.82	375.37	3029.40	7. 8 7	-0.15		
7.7 3	1.20	9.28	59.75	-0.48	1.40		
51.48	8.95	460 .75	2650.19	7.24	0.19		
169.61	18.85	879.96	6761.16		······		
C-4	Linear E	quation	n =	6		a1 = a2 =	-2.169
x	y	x*y	x^2	y calc	% error		
27.26	2.56	69.79	743.11	5.40	-1.11		
47.47	10.12	480.40	2253.40	11.01	-0.09		
52. 36	14.19	742.99	2741.57	12.37	0.13		
15.73	2.25	35.39	247.43	2.20	0.02		
12.60	2.92	36.79	158.76	1.33	0.54		
13.22	1.77	23.40	174.77	1.50	0.15		
168.64	33.81	1388.75	6319.04				
C-5	Linear E	quation	n =	6		a1 = 	1.142
					de anno	a∡ –	0.001
47 97	373	178.03	2301 12	4 06	-0.00		
25 78	1 37	34.03	664 61	2 71	-1 05		
28.23	2 34	66.06	796 93	7.86	-0.22		
23.98	5.66	135.73	575 64	2.60	0.54		
8.39	1.72	14.43	70.39	1.65	0.04		
8.75	0.78	6.83	76.56	1.67	-1.15		
143.10	15.55	436.00	4484.66	,			

*Note: TT=travel time, GUT=giving-up time.

180

C-1	Linear Ec	uation	n =	6		a1 =	-0.528
						a2 =	0.433
log x	log y	x*y	x^2	y calc	% error		
1.32	-0.39	-0.51	1.74	0,04	1.11		
1.46	0.23	0,34	2.12	0.10	0.55		
1.49	0.29	0.42	2.21	0.12	0.59		
1.17	-0.28	-0.32	1.37	-0.02	0.92		
1.10	0.35	0,39	1.22	0.05	1.14		
1.08	-0.07	-0.08	1.17	-0,06	0.16		
7.62	0.13	0.24	9.84				
IV=T	I, DV= GL	T, L = 1.0	D.5 RETR	ACTAB	LE		
C-2	Linear Eq	uation	n =	6		a1 =	0.109
						a2 =	0.075
log x	logy	x*y	x^2	y calc	% error		
1.31	-0.13	-0.17	1.71	0.21	2.58		
1.41	0.45	0.64	1.99	0.21	0.53		
1.51	0.26	0,39	2.28	0.22	0.13		
1.11	0.10	0.11	1.24	0.19	-0,98		
1.01	0.11	0.11	1.03	0.18	-0.72		
1.00	0.42	0.42	1.01	0.18	0.56		
7.36	1.20	1.49	9.25				
$\mathbf{IV} = \mathbf{T}$	I, DV= GL	JT, L = 1.0	D.5 RETR	ACTAB	LE		
C-3	Linear Eq	uation	n =	6		a1 =	-1.576
						a2 =	1.311
log x	log y	x*y	x^ 2	y calc	% error		
1.28	-0,38	-0.48	1.63	0.10	1.25		
1.26	-0,09	-0.11	1.59	0.08	1.88		
1.26	-0.19	-0.24	1.59	0.08	1.40		
1.74	0.83	1.45	3.03	0.70	0.15		
0.89	0.08	0.07	0.79	-0,41	6.21		
1.71	0.95	1.63	2.93	0,67	0.30		
8.14	1.21	2.32	11.56				
IV = T	T, DV= Gl	JT, L = 1.0	D.5 RET	RACTAB	LE		
C-4	Linear Eq	uation	n =	6		a1 =	-1.079
100.7	100.0					az =	1.225
1 44	i0g y	0.50	204	y calc	0 44		
1.44	1.01	1 40	2.00	0.00	-0.00		
1.00	1.01	1.09	2.01	1.07	0.03		
1.72	0.35	0.42	1.43	0.30	0.11		
1.20	0.33	0.42	1.45	0.39	-0.10		
1.10	0.47	0.31	1.21	0.27	0.42		
8.75	3.63	5.46	11 72	0.29	-0.19		
0.2.5 IV - T	$\overline{\mathbf{D}}$	J.40	11.75 D S DISTO	AZTAR	-		
1V = 11 7.5	Lineer Ea	vation	D.J KEIK			o1 -	.0 532
	Diriour Eq	eatton	μ —	v		a1	0.552
0.0	00.0	Y ⁴ U	* ^7	N colo	The error	az -	0.039
1 68	0.57	0.06	783	0.58	.0.01		
1 41	0.12	0.50	1 00	0.40	.7 20		
1 45	0 37	0.54	2.37	0.40	-2.50		
1 38	0.75	1.04	1 00	0.42	0.15		
0.07	0.75	0.22	1.50	0.00	0.50		
0.92	v.24 _0 11	-0.10	0.05	0.00	1.07		
770	1 04	7 87	10 57	0.09	1.02		
1.17	1.74	L.OL	10.37				

Table A44 (continued) BWM values transformed to logarithmic numbers

181

C·1	Linear Ec	quation	n =	4	·`	a1 =	9.106
						a 2 =	-0.044
x	у	x*y	x^2	y calc	% error		
26.21	8.12	212.83	686.96	7.95	0.02		
14.95	7.24	108.24	223.50	8.44	-0.17		
14.00	8.85	123.90	196.00	8.49	0.04		
12.55	9.22	115.71	157.50	8.55	0.07		
67.71	33.43	560.67	1263.97				
C-2	Linear Ec	uation	n =	4		a1 =	5.958
		•				a 2 =	0.042
x	у	x*y	x^2	y calc	% error		
26.59	7.01	186.40	707.03	7.06	-0.01		
16.15	6.19	99.97	260.82	6.63	-0.07		
14.53	7.53	109.41	211.12	6.56	0.13		
11.62	5.97	69.37	135.02	6.44	-0.08		
68.89	26.70	465.15	1314.00				
C-3	Linear Ec	quation	n =	4		a1 =	5.968
					07	a 2 =	0.036
<u> </u>	<u>y</u>	72.05	X L	y calc	% error		
14.37	5.49	72.0J 50.24	116.96	5.59	-0.09		
10.81	J.48 6 96	J9.24 74 71	110.00	5.50	-0.02		
0.69	0.00	/4./1	74.65	5.56	0.19		
0.04 44.01	4.90	42.00	74.05	5.00	-0.15		
44.51	LL.LI	249.39	522.30				
C-4	Linear Ec	uation	n =	4		a1 =	13.172
						a 2 =	0.126
x	у	x*y	x^2	y calc	% error		
39.57	18.08	715.43	1565.78	18.14	-0.00		
19.52	16.59	323.84	381.03	15.63	0.06		
21.60	16.30	352.08	466.56	15.89	0.03		
19.19	14.27	273.84	368.26	15.58	-0.09		
99.88	65.24	1665.18	2781.63				
C-5	Linear Ec	nation	n =	4		a1 =	6.666
		•				a 2 =	-0.040
x	у	x*y	x^2	y calc	% error		
24.97	5.59	139.58	623.50	5.68	-0.02		
17.37	5.48	95.19	301.72	5.98	-0.09		
16.54	7.43	122.89	273.57	6.01	0.19		
15.17	5.23	79.34	230.13	6.06	-0.16		
74.05	23.73	437.00	1428.92				
IV = TT,	DV = GU	T, L = 1.0 - D.	125 RETR	ACTABLE	3		

Table A45. Experiment 2, retractable levers, patch depleted in eight prey.

*Note: TT=travel time, GUT=giving-up time.

.

C·1	Linear Eq	uation	n =	4	0	a1 =	1.054
	•					a2 =	-0.110
log x	log y	x*y	x^2	y calc	% error		
1.42	0.91	1.29	2.01	0.90	0.01		
1.17	0.86	1.01	1.38	0.92	-0.07		
1.15	0.95	1.09	1.31	0.93	0.02		
1.10	0.96	1.06	1.21	0.93	0.03		
4.84	3.68	4.45	5.91				
$\bullet IV = TI$	$\Gamma, DV = GU'$	Γ, L = 1.0-D	0.125 RETH	RACTABL	E		
C-2	Linear Eq	uation	n =	4		a1 =	0.661
						a2 =	0.133
log x	log y	x*y	x^2_	y calc	% error		
1.42	0.85	1.20	2.03	0.85	-0.01		
1.21	0,79	0.96	1.46	0.82	-0.04		
1.16	0.88	1.02	1.35	0.82	0.07		
1.07	0.78	0.83	1.13	0.80	-0.03		
4.86	3.29	4.01	5.98				
$\bullet IV = TI$	f, DV = GU	$\Gamma, L = 1.0 \cdot \Gamma$	0.125 RETH	RACTABL	E		
C-3	Linear Eq	uation	n =	4		a 1 =	0.761
						a2 =	·0.019
log x	log y	x* y	x^2	y calc	% error		
1.16	0.70	0.81	1.35	0.74	-0.06		
1.03	0.74	0.76	1.07	0.74	-0.00		
1.04	0.84	0.87	1.08	0.74	0.11		
0.94	0.69	0.65	0.88	0.74	-0.07		
4.17	2.97	3.09	4.37				
•IV = T1	f, DV = GU	Г, L = 1.0-D	0.125 RETH	RACTABL	E		
C-4	Linear Eq	uation	n =	4		$a1 = a^2 = a^2$	0.908
102 8	lagy	**v	x^2	v calc	% error	42	0.220
1.60	1.26	2.01	2.55	1.26	-0.00		
1.29	1.22	1.57	1.67	1.19	0.02		
1.33	1.21	1.62	1.78	1.20	0.01		
1.28	1.15	1.48	1.65	1.19	-0.03		
5.51	4.84	6.68	7.64				
$\overline{IV} = TT$,	DV = GUT	L=1.0-D.	125 RETR.	ACTABLE			
C-5	Linear Eq	uation	n =	4		a1 =	0.889
						a 2 =	-0.095
log x	log y	x*y	x^2	y calc	% error		
1.40	0.75	1.04	1.95	0.76	-0.01		
1.24	0.74	0.92	1.54	0.77	-0.04		
1.22	0.87	1.06	1.48	0.77	0.11		
1.18	0.72	0.85	1.39	0.78	-0.08		
5.04	3.08	3.87	6.37				
V = TI	DV = GU	r, L=1.0-D	.125 RETE	ACTABL	Ê		

.

Table A45 (continued), BWM values transformed to logarithmic numbers.

APPENDIX B

		π			RES			GUT	······································
		X			Y			Y	
A-104	<mad< td=""><td>BWM</td><td>MAD></td><td><mad< td=""><td>BWM</td><td>MAD></td><td><mad< td=""><td>BWM</td><td>MAD></td></mad<></td></mad<></td></mad<>	BWM	MAD>	<mad< td=""><td>BWM</td><td>MAD></td><td><mad< td=""><td>BWM</td><td>MAD></td></mad<></td></mad<>	BWM	MAD>	<mad< td=""><td>BWM</td><td>MAD></td></mad<>	BWM	MAD>
NT	111.83	122.72	133.61	8.44	10.68	12.91	4.20	6.78	9.36
NT*	54.61	66.98	79.34	7.56	9.36	11.16	3.41	5.35	7.30
R=1.0	5.36	6.64	7.93	3.60	3.91	4.23	0.17	0.31	0.45
R=1.0**	5.36	5.58	5.79	2.95	3.33	3.71	0.18	0.19	0.20
R=.25	10.33	12.42	14.50	4.13	4.48	4.80	0.09	0.16	0.24
R=.25*	10.55	11.12	11.69	4.44	4.68	4.88	0.14	0.45	0.76
R=.10	29.08	36.49	43.89	3.98	4.23	4.49	0.09	0.31	0.52
R= 05	29.04	36.93	44.82	4.20	4.48	4.76	0.09	0.30	0.50
R= .025	34.25	36.32	38.39	4.48	5.12	5.75	0.16	0.40	0.65
A-230									
NT	58.89	85.02	108.15	22.16	33.02	44.20	16.08	22.39	28.69
NT*	22.76	26.50	30.24	9.36	11.73	14.10	5.43	7.94	10.44
R=1.0	4.21	4.44	4.68	3.44	3.78	4.11	0.25	0.30	0.34
R=1.0**	4.15	4.49	4.83	3.70	3.95	4.20	0.25	0.34	0.43
R= 25	8.76	10.65	12.54	3.85	4.51	5.16	0.60	1.67	2.23
R=.25*	7.35	8.52	9.69	4.33	5.27	6.20	1.56	2.34	3.11
R≖.10	12.49	24.55	36.61	4.16	5.71	7.26	0.59	2.37	4.14
R=.05	40.24	54.37	68.49	5.41	10.08	14.75	1.72	5.77	9.82
R= 025	56.51	68.23	79.95	6.20	12.47	18.74	0.62	6.98	13.34
A-101									
NT	28.36	43.01	57.65	6.75	10.04	13.32	3.36	6.61	9.86
NT*	16.34	16.93	17.52	5.38	6.39	7.40	1.71	2.53	3.35
R=1.0	5.14	5.86	6.58	3.90	4.13	4.36	1.05	1.17	1.30
R=1.0**	4.95	5.32	5.70	4.23	4.45	4.66	0.95	1.06	1.17
R=.25	9.06	9.52	9.98	5.16	5.95	6.75	1.03	1.47	1.91
R=.25*	8.27	8.74	9.21	4.11	4.80	5.48	1.09	1.46	1.84
R=.10	12.76	15.82	18.89	6.37	8.00	9.64	0.97	2.00	3.03
R=.05	24.78	27.93	31.07	8.13	9.40	10.66	0.91	1.97	3.03
R=.025	42.97	57.85	72.74	7.01	8.03	9.05	1.91	3.04	4.17
A-123									
NT	15.99	22.53	29.07	7.92	10.17	12.43	2.97	5.32	7.66
NT*	13.88	14.71	15.54	7.13	7.72	8.31	1.91	2.29	2.67
R=1.0	5.39	6.35	7.30	4.96	5.18	5.39	0.37	0.71	1.05
R=1.0**	4.95	5.14	5.33	4.40	4.99	5.57	0.18	0.25	0.32
R=.25	13.05	15.00	16.95	4.51	5.25	6.00	0.15	0.27	0.39
R=.25*	10.45	11.04	11.63	4.97	5.42	5.88	0.65	0.90	1.15
R=.10	19.30	21.58	23.86	5.16	6.09	7.03	0.13	0.40	0.66
R= 05	40.67	44.60	48.53	5.89	6.94	10.99	0.25	0.77	1.28
R=.025	34.33	41.12	47.91	5.29	7.04	8.79	0.42	1.44	2.45

Table B19. Experiment 1, left lever depleted in one prey.

*Re-determination, **L=.10--D.05-R=1.0

		π			RES			GUT	
		X			Y			Y	
A-104	<mad< td=""><td>BWM</td><td>MAD></td><td><mad< td=""><td>BWM</td><td>MAD></td><td><mad< td=""><td>BWM</td><td>MAD></td></mad<></td></mad<></td></mad<>	BWM	MAD>	<mad< td=""><td>BWM</td><td>MAD></td><td><mad< td=""><td>BWM</td><td>MAD></td></mad<></td></mad<>	BWM	MAD>	<mad< td=""><td>BWM</td><td>MAD></td></mad<>	BWM	MAD>
NT	22.51	26.38	30.25	9.52	13.92	18.32	6.72	10.67	14.62
NT*	18.74	21.34	23.93	5.77	6.84	7.91	3.75	4.56	5.38
R=1.0	4.36	5.48	6.61	2.60	4.26	5.91	1.18	2.68	4.08
R= 25	5.43	6.09	6.74	3.72	4.22	4.72	2.18	2.57	2.95
R=.10	10.53	11.69	12.85	3.57	3.97	4.36	1.82	2.22	2.61
R=.10*	10.71	12.92	15.13	4.24	4.74	5.24	2.31	2.53	2.76
R=.05	14.58	16.11	17.64	3.87	4.42	4.97	1.97	2.39	2.80
R= .05*	15.82	20.57	25.32	3.32	4.29	5.27	1.09	1.41	1.73
R=.025	39.28	43.38	47.48	4.24	4.63	5.02	2.11	2.73	3.35
A-230									
NT	16.98	20.22	23.46	8.73	13.59	18.45	4.91	7.32	9.73
NT*	14.96	15.67	16.38	6.38	7.68	8.98	2.77	4.36	5.96
R=1.0	4.13	4.47	4.81	1.62	2.85	4.08	0.79	1.68	2.57
FI=.25	6.87	8.27	9.67	4.01	4.39	4.76	1.88	2.28	2.67
R=.10	23.85	25. 9 4	28.03	3.98	4.82	5.65	1.92	2.32	2.71
R=.10*	13.85	17.77	21.69	5.00	5.50	5.99	2.01	2.62	3.23
R=.05	47.68	58.02	68.36	4.64	6.50	8.36	1.19	3.50	5.81
R=.05*	44.11	61.18	78.24	5.45	5.95	6.44	2.43	2.93	3.43
R=.025	60.06	83.10	106.15	5.31	6.87	8.42	2.83	4.09	5.36
A-101									
NT	15.22	17.11	19.00	5.30	7.10	8.90	2.83	3.93	5.03
NT*	14.41	15.05	15.68	4.42	5.17	5.92	2.50	3.09	3.69
R=1.0	5.73	6.09	6.46	2.63	2.83	3.03	1.37	1.56	1.75
R=.25	7.85	8.20	8.55	3.11	3.42	3.74	1.72	1.91	2.10
R=.10	10.44	11.32	12.20	3.45	3.86	4.27	1.90	2.50	3.11
R=.10*	12.66	13.70	14.73	3.64	4.41	5.18	1.84	2.55	3.26
R=.05	23.84	26.18	28.52	4.90	5.54	6.18	3.41	4.13	4.85
R=.05*	24.85	26.36	27.87	3.30	4.02	4.73	2.04	2.46	2.88
R=.025	51.07	58.14	65.21	5.57	6.09	6.61	3.54	4.13	4.72
A-123									
NT	12.79	13.87	14.95	5.55	7.98	9.91	2.10	4.12	6.14
NT*	13.69	14.87	16.04	3.87	4.83	5.78	1.17	1.98	2.79
R=1.0	5.30	5.66	6.02	0.46	0.81	1.16	0.14	0.48	0.82
R=.25	7.00	7.55	8.10	0.50	0.97	1.44	0.16	0.53	0.90
R =.10	12.76	13.88	15.00	4.20	4.97	5.73	2.34	2.86	3.38
R=.10*	11.73	12.49	13.26	3.38	3.92	4.46	1.39	1.73	2.08
R=.05	20.25	24.26	28.27	6.13	7.10	8.08	3.36	4.47	5.57
R= 05*	21.45	24.25	27.06	4.66	5.04	5.43	2.02	2.58	3.14
R= 025	39.34	41.99	44.64	4.52	5.65	6.78	2.30	3.32	4.34

Table B20. Experiment 1, left lever depleted in two preys.

F

*Re-determination, TT=travel time, RES=residence time, GUT=giving-up time.

Table B21. Expe	eriment 1. left	lever depl	leted in ei	aht i	Drevs
-----------------	-----------------	------------	-------------	-------	-------

ŀ

-

	Π			RES			GUT	
	Х			Y			Y	
A-104 < MAD	BWM	MAD>	<mad< td=""><td>BWM</td><td>MAD></td><td>< MAD</td><td>BWM</td><td>MAD></td></mad<>	BWM	MAD>	< MAD	BWM	MAD>
NT 16.05	17.79	21.52	34.67	44.78	54.89	9.64	17.3 9	25.14
NT* 11.77	13.34	14.91	35.5 9	37.22	38.84	8.66	10.48	12.30
R=1.0 3.64	4.50	5.36	26.51	30.26	34.02	4.76	6.04	7.31
R=.25 4.19	5.38	6.57	20.02	24.61	29.21	4.77	5.65	6.53
R=.10 9.08	11.54	13.99	13.25	20.79	28.31	5.02	5.77	6.39
R=.10* 8.63	9.34	10.04	26.12	28.24	30.36	4.38	5.53	6.69
R=.05 12.88	24.83	36.78	27.97	30.29	32.61	6.97	7.40	7.83
R=.05* 12.75	14.66	16.57	35.53	36.99	38.45	6.16	7.09	8.03
A-230								
NT 16.35	20.50	24.64	29.85	32.08	34.31	9.96	12.41	14.86
NT* 32.74	42.90	53.05	96.7	120.4	144	34.29	48.10	61.95
R=1.0 5.78	6.37	6.97	15.5	18.57	21.64	2.37	3.00	3.63
R=.25 2.99	4.81	6.63	15.98	21.88	27.78	11.09	12.83	14.56
R=.10 18.91	31.09	43.27	13.51	18.04	22.57	3.92	5.38	6.84
R=.10* 11.06	13.28	15.50	22.12	25.67	29.22	5.46	6.93	8.40
R=.05 57.34	94.29	131.24	26.04	32.04	38.04	8.05	10.38	12.70
A-101								
NT 14.50	16.49	18.48	26.04	28.87	31.7	7.52	8.10	8.65
NT* 12.83	13.56	14.29	27.09	28.11	29.13	6.45	7.99	9.53
R=1.0 5.77	7.06	8.35	24.62	27.99	31.35	4.61	5.85	7.09
R=.25 8.90	13.37	17.85	15.37	19.91	24.45	4.71	5.33	5.95
R=.10 14.65	18.73	22.81	9.156	16.97	24.78	1.91	4.41	6.91
R=.10* 12.95	14.23	15.52	19.31	21.87	24.43	4.87	5.42	5.97
R=.05 24.83	30.55	36.26	18.73	21.02	23.31	5.81	6.62	7.43
R=.05* 21.16	24.38	27.59	25.03	26.35	27.67	6.01	6.94	7.86
A-123								
NT 12.47	13.31	14.15	25.51	27.75	29.98	5.54	6.57	7.59
NT* 12.31	14.75	17.18	27.9	30.39	32.88	5.29	6.34	7.38
R=1.0 5.70	6.40	7.11	11.92	14.03	16.13	1.72	2.76	3.81
R≖.25 6.52	6.87	7.22	8.198	9.168	10.14	1.61	1.83	2.04
R=.10 8.54	11.15	13.76	7.32	10.47	13.62	1.62	2.01	2.40
R=.10* 8.00	8.71	9.43	11.61	12.78	13.94	2.03	2.77	3.52
R=.05 12.68	14.79	16.89	12.33	13.88	15.42	3.30	4.01	4.71
R=.05* 15.00	17.76	20.52	18.95	20.2	21.45	3.89	4.49	5.09

* Re-determination.

29 908					RES	xey, reua		GUT	
•		×			۲			>	
÷	< MAD	BWM	MAD>	< MAD	BWM	MAD>	< MAD	BWM	MAD>
N	26.02	36.64	47.26	4.15	17.17	30.19	4.12	13.86	23.59
L,	24.56	27.88	31.20	4.09	5.05	6.01	0.89	1.63	2.37
R=1.0	5.43	6.13	6.84	0.75	4 .	2.09	0.69	1.37	2.05
R=.10	15.14	16.84	18.53	3.61	4.06	4.51	0.29	0.73	1.16
R≈.10*	19.46	31.19	42.91	3.77	6.22	8.67	0.71	3.21	5.71
R=.05	14.47	16.06	17.65	2.76	3.24	3.72	0.18	0.4 4	0.69
R=.025	24.36	28.39	32.42	3.67	5.0	6.33	0.58	1.90	3.22
C-2									
NT	22.40	26.57	30.65	0:30	2.34	4.38	0.28	2.32	4.36
-TN	14.24	15.17	16.10	2.33	2.52	2.71	0.13	0.39	0.65
R=1.0	5.17	5.47	5.78	0.54	1.08	1.58	0.52	1.05	1.58
R= 10	8 4	9.51	10.58	2.85	3.32	3.79	0.21	0 4	0.59
R=.10*	14.67	20.24	25.81	2.53	3.00	3.47	0.0	0.74	1 .42
R=.05	14.06	15.92	17.78	2.88	3.13	3.39	0.07	0.37	0.66
R=.025	21.04	23.08	25.49	2.72	3.34	5.51	0.09	0.37	0.65
C-3									
NT	17.22	19.19	21.16	0.36	1.08	1.80	0.34	9	1.78
×1×	15.68	15.91	16.14	3.23	4.08	484	0.49	0.98	1.47
R=1.0	4.88	5.17	5.46	0.17	0.89	1.60	0.15	0.87	1.58
R=.10	8.57	9 .08	9.59	2.86	2.88	3.10	0.13	0.33	0.53
R=.10*	14.03	19.00	23.97	3.34	3.66	3.98	0.06	0.51	0.95
R≕.05	10.37	11.02	11.67	3.275	3.59	3.91	0.04	0.23	0. 4
R≡.025	16.16	17.73	19.30	2.98	3.31	3.64	0.07	0.12	0.16
4									
NT	15.49	17.81	20.04	0.17	2.05	3.92	0.15	2.03	3.90
•Tr	12.89	14.31	15.73	4.31	5.64	6.98	1.74	8 8	4.25
R=1.0	4.70	4.98	5.28	0.17	0.35	0.53	0.15	0.33	0.51
R=.10	11.17	11.69	12.38	3.35	3.45	3.55	0.47	0.81	1.14
R= 10*	11.56	18.25	24.94	2.77	3.96	5.15	0.52	1.39	2.26
R≃.05	14.08	18.35	22.62	3.87	4.41	4.95	1.07	8.	2.14
R=.025	38.79	53.47	68.15	4.16	5.06	5.96	2.07	2.91	3.75
0-5 2									
LN	4 8	45.03	53.63	1.62	6.88	12,14	60.	6.96	12.12
LL N	21.63	23.27	24.91	7.68	10.24	12.80	2.59	3.93	5.27
R=1.0	9.21	10.89	12.57	Ó.15	1.30	2.45	0.13	1.28	2.43
R≡.10	14.20	20.91	26.81	6.32	7.73	0 .14	1.07	1.7	2.47
H= 10*	13.48	25.13	36.78	4.75	7.86	10.97	1.43	3.97	6.50
R=.05	17.64	10.45	21.26	4.12	404	5.15	0.85	1.30	1.74
R=.025	20.46	26.94	33.42	4.00	5.09	6.18	1.00	1.55	2.09
* Re-dete	minatio	u, <u>11≡</u> tr	avel time,	RES=rea	idence	time, GUI	= giving		_

		TT			RES			GUT	
		X			Y			Y	
C-1	<mad< td=""><td>BWM</td><td>MAD></td><td><mad< td=""><td>BWM</td><td>MAD></td><td><mad< td=""><td>BWM</td><td>MAD></td></mad<></td></mad<></td></mad<>	BWM	MAD>	<mad< td=""><td>BWM</td><td>MAD></td><td><mad< td=""><td>BWM</td><td>MAD></td></mad<></td></mad<>	BWM	MAD>	<mad< td=""><td>BWM</td><td>MAD></td></mad<>	BWM	MAD>
NT	14.80	16.45	18.10	4.00	4.94	5.88	2.08	2.85	3.62
NT*	18.63	19.92	21.20	2.82	3.74	4.66	0.90	1.93	2.96
R=.10	11.58	1271	13.84	3.52	4.42	5.31	1.03	2.24	3.44
R=.10*	11.00	1210	13.20	294	3.12	3.30	0.57	0.65	1.14
R=.05	13.80	14.79	15.78	2.53	2.82	3.11	0.29	0.53	0.77
R=.025	20.17	20.92	21.67	2.23	2.47	271	0.21	0.41	0.60
R=.025	24.00	28.61	33.23	3.08	3.69	4.30	1.15	1.70	2.25
R=.025*	29.10	30.68	32.27	3.65	4.87	6.10	1.27	1.93	2.58
C-2									
NT	15.50	16.35	17.20	3.31	4.14	4.97	1.55	233	3.10
NT*	16.40	17.24	18.09	2.52	299	3.47	0.70	1.22	1.73
R=.10	9.51	10.33	11.15	0.55	1.85	3.15	0.16	1.28	2.40
R≈.10*	8.65	10.11	11.27	3.30	4.10	4.91	1.54	2.64	3.74
R=.05	11.91	12.94	13.98	2.79	3.37	3.95	0.76	1.25	1.74
R=.025	18.25	20.38	22.52	2.61	2.64	2.68	0.68	0.74	0.80
R=.025	22.54	25.67	28.80	3.96	4.53	5.10	2.32	2.84	3.37
R=.025*	30.60	32.26	33.93	3.38	3.63	3.88	1.48	1.80	212
C-3									
NT	11.62	12.99	14.36	2.97	3.84	4.71	1.14	1.95	2.78
NT*	14.03	14.53	15.03	2.61	3.38	4.14	0.48	1.24	1.99
R=.10	7.26	7.73	8.19	262	2.95	3.27	0.79	1.20	1.61
R=.10*	16.01	51.48	86.95	3.00	9.76	16.53	1.40	8.95	16.48
Fi=.05	20.87	55.04	89.21	3.00	10.40	17.79	1.35	6.82	12.29
R=.025	18.26	18.85	19.43	201	213	2.24	0.28	0.42	0.55
R=.025	16.45	18.22	19.99	2.36	271	3.06	0.53	0.82	1.11
R=.025*	17.91	18.29	18.68	2.23	2.59	294	0.25	0.64	1.03
C-4									
NT	16.95	17.44	17.94	5.29	6.95	8.62	3.28	4.80	6.32
NT"	17.15	18.00	18.84	4.04	5.17	6.30	1.88	2.95	4.03
H=.10	10.35	12.00	14.84	3.48	4.52	5.56	1.67	2.92	4.17
H=.10"	11.04	13.22	15.40	3.28	3.93	4.58	1.13	1.77	2.41
H=.05	14.46	15.73	17.00	3.47	4.10	4.82	1.82	225	268
H=.025	22.06	27.20	32.46	3.78	4.29	4.81	215	256	2.98
H=.025	28.34	47.47	00.00	8.88	12.33	15.77	0.99	10.12	13.25
H=.025	40.68	52.36	64.03	9.15	10.84	24.54	0.47	14.19	21.61
U-D NT	10.10	-	~~~~	3.04	4 64	E 40	4.67		
	10.10	21.04	20.90	3.84	9.01	D.1¥	1.0/	2.52	28/
NI" R= 10	20.42	24.01	20.80	3.00	9.12	0.19	1.10	1.864	2/4
n=.10	7.80	6.JV	8.63	3.36	3.47	4.00	1.23	1.72	221
R= 05	0.4U 4.8 KF	0.70	91.1U	2.02	0.17	3.00	0.03	0.78	10.50
	10.00	47 07	84.50	2.8J 1.15	6.02	10.11	1.22	1 72	8.05
R= 025	21.42	-77.07	27 22	1.00	3.54	3.04	0.04	4 3 2	1 74
R= 026*	24 70	28.23	31 78	3.53	5.30	7.22	0.95	1.34 2.14	3.87
	4V	للجمع	91.79		0.00	· • • • • • •	V.40		0.00

Table B23. Experiment 2, left lever depleted in two preys, retractable levers.

* Re-determination, TT=travel time, RES=residence time, GUT=giving-up time.

		TT			RES			GUT	
		X			Y			Y	
C-1	<mad< th=""><th>BWM</th><th>MAD></th><th><mad< th=""><th>BWM</th><th>MAD></th><th><mad< th=""><th>BWM</th><th>MAD:</th></mad<></th></mad<></th></mad<>	BWM	MAD>	<mad< th=""><th>BWM</th><th>MAD></th><th><mad< th=""><th>BWM</th><th>MAD:</th></mad<></th></mad<>	BWM	MAD>	<mad< th=""><th>BWM</th><th>MAD:</th></mad<>	BWM	MAD:
NT	19.29	22.01	24.73	39.04	40.50	41.95	9.88	11.53	13.17
NT *	17.86	18.54	19.22	31.81	34.10	36.39	7.74	9.13	10.52
NT w/obs	41.42	59.22	77.01	35.53	38.29	41.05	12.99	16.49	19.99
R=.10	11.46	14.00	16.53	29.22	35.54	41.85	6.88	8.85	10.83
R=.10*	11.73	12.55	13.37	32.60	34.94	37.28	8.23	9.22	10.20
R= 05	13.43	14.95	16.47	26.18	28.44	30.69	6.23	7.24	8.25
R=.025	24.89	26.21	27.52	30.98	34.18	37.38	7.18	8.12	9.06
C-2									
NT	20.10	20.66	21.21	18.73	19.57	20.40	4.55	4.65	4.75
NT*	19.20	20.13	21.06	24.49	25.74	26.99	5.35	6.13	6.91
NT w/obs	46.10	59.98	73.86	35.58	62.83	90.08	15.00	38.44	62.33
R=.10	12.16	14.53	16.90	24.95	26.19	27.43	5.70	7.53	9.36
R= 10*	10.39	11.62	12.85	21.65	23.67	25.69	4,44	5.97	7.50
R=.05	14.46	16.15	17.84	23.07	24.26	25.65	5.74	6.19	6.64
R=.025	23.13	26.59	30.05	25.09	26.74	28.39	6.21	7.01	7.81
C-3									
NT	15.50	17.27	19.02	30.81	33.99	37.18	7.82	9.10	10.30
NT "	15.32	18.56	21.79	31.17	32.10	33.03	6.74	7.87	9.00
NT w/obs	54.30	74.08	93.86	43.50	80.76	118.02	9.96	52.38	94.81
R=.10	10.17	10.89	11.62	21.54	29.55	37.56	4.79	6.86	8.93
R= 10*	7.68	8.64	9.59	24.51	26.91	29.31	3.96	4.93	5.89
R=.05	10.08	10.81	11.54	25.64	27.14	28.64	5.24	5.48	5.71
R= 025	13.34	14.57	15.80	26.34	28.21	30.07	4.57	5.00	5.43
C-4									
NT	19.36	21.28	23.20	37.82	41.50	45.17	9.21	11.18	13.15
NT *	24.34	26.35	28.36	41.00	46.46	51.92	10.25	14.28	18.31
NT w/obs	38.42	42.37	46.32	44.94	53.43	61.92	12.86	16.38	19.91
R=.10	17.76	21.60	25.44	44.56	48.36	52.16	14.01	16.30	18.59
R≖.10*	17.13	19.19	21.25	36.62	41.35	46 .07	11.36	14.27	17.18
R≈.05	17.22	19.52	21.82	43.05	45.58	48.12	14.5 9	16.59	18.59
R≠.025	36.52	39.57	42.62	49.79	51.93	54.07	16.70	18.08	19.4
C-5									
NT	21.80	23.40	25.00	26.99	28.88	30.77	6.11	6.75	7.39
NT*	21.50	23.01	24.52	27.07	30.43	33.80	5.70	6.52	7.34
NT w/obs	53.37	58.93	64.49	44.62	66.37	88.11	10.94	33.14	55.34
R=.10	15.52	16.54	17.55	26.18	28.57	30.96	6.14	7.43	8.72
R=.10*	13.51	15.17	16.83	23.22	24.13	25.04	4.62	5.23	5.84
R=.05	15.93	17.37	18.81	23.55	25.58	27.61	4.52	5.48	6.44
R=.025	22.69	24.97	27.25	23.41	25.28	27.15	5.27	5.59	5.90

Table 824 Experiment 2 left lever depleted in eight preve, retractable levers

*Re-determinations, NT/obs=natural travel with obstacles.

A-104	LL=.10		
al for GUT	-0.753	0.447	0.651
a2 for GUT	0.175	-0.074	0.143
Std Err of Y Est for GUT	0.160	0.110	0.040
al for RT	0.492	0.594	1.373
#2 for RT	0.116	0.040	0.076
Std Err of Y EST for RT	0.050	0.020	0.090
LOG TT(NT)	2.090	1.420	1.250
LOG TT(NT)~	1.830	1.330	1.130
LOG RT(NT)	1.270	1.140	1.650
LOG RT(NT) ~	0.970	0.840	1.570
LOG GUT(NT)	0.830	1.030	1.240
LOG GUT(NT)~	0.730	0.660	1.020
#2 GUT * LOG TT(NT)	0.366	-0.105	0.179
a2 GUT • LOG TT(NT)~	0.320	-0.098	0.162
a2 RT * LOG TT(NT)	0.242	0.057	0.095
#2 RT * LOG TT(NT)~	0.212	0.053	0.086
Est1 GUT = a1 + (a2 * log TT[NT])	-0.387	0.342	0.830
Est2 GUT= a1 + (a2 * log TTINT]~)	-0.433	0.349	0.813
Est1 RT= a1 + (a2 * logTT[NT])	0.734	0.651	1.468
Est2 RT = $a1 + (a2 \cdot \log TT[NT]^{\sim})$	0.704	0.647	1.459
log res1 GUT=log GUT(NT) Est1 GUT	1.217	0.688	0.410
log res2 GUT = log GUT(NT) ~ Est2 GUT	1.163	0.311	0.207
log res1 RT -log RT(NT) - Est1 RT	0.536	0.489	0.182
log res2 RT = log RT(NT) - Est2 RT	0.266	0.193	0.111
"Re-determination.			
Table B20. Experiment 1, residuals across con-	ditio n s. —		
Table B20. Experiment 1, residuals across con- A-230	LL=.10	LL D in 2	LL D is 8
Lable B20. Experiment 1, residuals across con- A-230 a1 for GUT	ditions. LL = .10 -0.977	LL D in 2 0.085	LL D in 8 0.715
Lable B20. Experiment 1, residuals across cont A 230 al for GUT a2 for GUT	LL = 10 -0.977 1.024	LL D in 2 0.085 0.247	LL D in 8 0.715 0.098
Lable B20. Experiment 1, residuals across cond A 230 al for GUT a2 for GUT Std Err of Y Est for GUT	LL = .10 -0.977 1.024 0.230	LL D in 2 0.085 0.247 0.050	LL D in 8 0.715 0.098 0.280
Lable B20. Experiment 1, residuals across cond A 230 a1 for GUT a2 for GUT Std Err of Y Est for GUT a1 for RT	ditions. LL = .10 -0.977 1.024 0.230 0.309	LL D in 2 0.085 0.247 0.050 0.355	LL D in 8 0.715 0.098 0.280 1.219
Lable B20. Experiment 1, residuals across cond A 230 a1 for GUT a2 for GUT Std Err of Y Est for GUT a1 for RT a2 for RT	LL = .10 -0.977 1.024 0.230 0.309 0.395	LL D in 2 0.085 0.247 0.050 0.355 0.254	LL D in 8 0.715 0.098 0.280 1.219 0.112
Lable B20. Experiment 1, residuals across cond A 230 al for GUT a2 for GUT Std Err of Y Est for GUT a1 for RT a2 for RT Std Err of Y EST for RT	ditions. <u>LL = .10</u> -0.977 1.024 0.230 0.309 0.395 0.060	LL D in 2 0.085 0.247 0.050 0.355 0.254 0.050	LL D in 8 0.715 0.098 0.280 1.219 0.112 0.100
Lable B20. Experiment 1, residuals across cont A: 230 a1 for GUT a2 for GUT Std Err of Y Est for GUT a1 for RT a2 for RT Std Err of Y EST for RT LOG TT(NT)	ditions. LL = .10 -0.977 1.024 0.230 0.309 0.395 0.060 1.930	LL D in 2 0.085 0.247 0.050 0.355 0.254 0.050 1.310	LL D in 8 0.715 0.098 0.280 1.219 0.112 0.100 1.310
1 able 520. Experiment 1, residuals across coar A 230 at for GUT at for GUT Std Err of Y Est for GUT at for RT a2 for RT Std Err of Y EST for RT LOG TT(NT) LOG TT(NT)	ditions. LL = .10 -0.977 1.024 0.230 0.309 0.395 0.060 1.930 1.420	LL D in 2 0.085 0.247 0.050 0.355 0.254 0.050 1.310 1.200	LL D in 8 0.715 0.098 0.280 1.219 0.112 0.100 1.310 1.630
Lable B20. Experiment 1, residuals across coar A 230 at for GUT 25 for GUT Std Err of Y Est for GUT at for RT at for RT Std Err of Y EST for RT LOG TT(NT) LOG TT(NT) LOG RT(NT)	ditions. <u>LL = .10</u> -0.977 1.024 0.230 0.309 0.395 0.060 1.930 1.420 1.520	LL D in 2 0.085 0.247 0.050 0.355 0.254 0.050 1.310 1.200 1.130	LL D in 8 0.715 0.098 0.280 1.219 0.112 0.100 1.310 1.630 1.510
Lable B20. Experiment 1, residuals across coas A 230 a1 for GUT a2 for GUT Sid Err of Y Est for GUT a1 for RT a2 for RT Sid Err of Y EST for RT LOG TT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT)	ditions. <u>LL = .10</u> -0.977 1.024 0.230 0.309 0.395 0.060 1.930 1.420 1.520 1.070	LL D in 2 0.085 0.247 0.050 0.355 0.254 0.050 1.310 1.200 1.130 0.890	LL D in 8 0.715 0.098 0.280 1.219 0.112 0.100 1.310 1.630 1.510 2.080
Lable B20. Experiment 1, residuals across coar A 230 a1 for GUT a2 for GUT Stid Err of Y Est for GUT a1 for RT s2 for RT Std Err of Y EST for RT LOG TT(NT) LOG RT(NT) LOG RT(NT) LOG GUT(NT) LOG GUT(NT)	ditions. LL = .10 -0.977 1.024 0.230 0.309 0.395 0.060 1.930 1.420 1.520 1.070 1.350	LL D in 2 0.085 0.247 0.050 0.355 0.254 0.050 1.310 1.200 1.130 0.890 0.860	LL D in 8 0.715 0.098 0.280 1.219 0.112 0.100 1.310 1.630 1.510 2.060 1.090
Lable B26. Experiment 1, residuals across coar A-230 al for GUT s2 for GUT Stid Err of Y Est for GUT al for RT s2 for RT Stid Err of Y EST for RT LOG TT(NT) LOG TT(NT) LOG RT(NT) LOG GUT(NT) LOG GUT(NT)	ditions. LL = .10 -0.977 1.024 0.230 0.309 0.395 0.060 1.920 1.420 1.520 1.070 1.350 0.900	LL D in 2 0.085 0.247 0.050 0.355 0.254 0.050 1.310 1.200 1.130 0.890 0.860 0.660	LL D in 8 0.715 0.098 0.280 1.219 0.112 0.100 1.310 1.630 1.510 2.080 1.090 1.680
14ble B20. Experiment 1, residuals across coar A 230 at for GUT at for GUT at for RT at for RT at for RT Std Err of Y EST for RT LOG TT(NT) LOG TT(NT) LOG RT(NT) LOG RT(NT) LOG GUT(NT) LOG GUT(NT) A LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) COG GUT(NT)	ditions. LL=.10 -0.977 1.024 0.230 0.395 0.060 1.930 1.420 1.520 1.070 1.520 1.070 1.350 0.900 1.976	LL D in 2 0.085 0.247 0.050 0.355 0.254 0.050 1.310 1.200 1.130 0.890 0.860 0.640 0.324	LL D in 8 0.715 0.098 0.280 1.219 0.112 0.100 1.310 1.630 1.510 2.080 1.090 1.680 0.128
1able B20. Experiment 1, residuals across coar A 230 al for GUT al for GUT al for RT al for RT al for RT Std Err of Y EST for RT LOG TT(NT) LOG TT(NT) LOG RT(NT) LOG GUT(NT) LOG GUT(NT) Al GUT * LOG TT(NT) al GUT * LOG TT(NT) COG TT(NT)	ditions. LL=.10 -0.977 1.024 0.230 0.309 0.395 0.060 1.930 1.420 1.520 1.070 1.350 0.900 1.976 1.454	LL D in 2 0.085 0.247 0.050 0.355 0.254 0.050 1.310 1.200 1.130 0.890 0.860 0.640 0.324 0.296	LL D in 8 0.715 0.098 0.280 1.219 0.112 0.100 1.310 1.630 1.510 2.060 1.090 1.680 0.128 0.160
1able B26. Experiment 1, residuals across coar A 230 at for GUT at for GUT at for GUT at for RT at for RT at for RT be the state of Y EST for RT LOG TT(NT) LOG TT(NT) LOG RT(NT) LOG GUT(NT) LOG GUT(NT) A COG GUT(NT) COG GUT(NT) COG GUT(NT) COG GUT(NT) COG GUT(NT) COG GUT • LOG TT(NT) COG TT(NT)	ditions. LL 10 -0.974 0.230 0.309 0.395 0.060 1.920 1.420 1.520 1.070 1.350 0.900 1.976 1.454 0.762	LL D in 2 0.085 0.247 0.050 0.355 0.254 0.050 1.310 1.200 1.130 0.890 0.860 0.640 0.324 0.296 0.333	LL D in 8 0.715 0.098 0.280 1.219 0.112 0.100 1.310 1.630 1.510 2.080 1.690 0.128 0.169 0.128
1able B20. Experiment 1, residuals across con- A-230 at for GUT at for GUT at for GUT at for RT at for RT std Err of Y EST for RT LOG TT(NT) LOG TT(NT) LOG RT(NT) LOG RT(NT) LOG GUT(NT) LOG GUT(NT) at CG GUT(NT) LOG GUT(NT) LOG GUT(NT) at CG GUT + LOG TT(NT) at RT + LOG TT(NT)	ditions. LL 10 -0.971 1.024 0.230 0.309 0.395 0.060 1.930 1.520 1.520 1.520 1.520 1.350 0.900 1.976 1.454 0.762 0.551	LL D in 2 0.085 0.247 0.050 0.355 0.254 0.050 1.310 1.200 1.130 0.890 0.860 0.640 0.324 0.296 0.333 0.305	LL D in 8 0.715 0.098 0.280 1.219 0.112 0.100 1.310 1.510 2.080 1.090 1.680 0.128 0.160 0.128
Lable B20. Experiment 1, residuals across con- A 230 at for GUT at for GUT Sid Err of Y Est for GUT at for RT s2 for RT Sid Err of Y EST for RT LOG TT(NT) ~ LOG TT(NT) ~ LOG RT(NT) ~ LOG GUT(NT) ~ LOG GUT(NT) ~ LOG GUT(NT) ~ a2 GUT • LOG TT(NT) ~ a2 GUT • LOG TT(NT) ~ a2 RT • LOG TT(NT) ~ b2 RT • LOG TT(NT) ~ b31 GUT ~ a1 + (a2 * log TT[NT])	ditions. LL = 10 -0.977 1.024 0.230 0.309 0.395 0.060 1.930 1.420 1.520 1.070 1.520 1.070 1.520 1.070 1.350 0.900 1.976 1.454 0.762 0.561 0.999	LL D in 2 0.085 0.247 0.050 0.355 0.254 0.050 1.310 1.200 1.130 0.890 0.860 0.860 0.860 0.860 0.324 0.296 0.333 0.305 0.409	LL D in 8 0715 0.098 0.280 1.219 0.112 0.100 1.310 1.630 1.510 2.080 1.690 0.128 0.160 0.147 0.183 0.843
Lable B20. Experiment 1, residuals across coar A 230 at for GUT at for GUT at for RT at for RT at for RT box at for RT LOG TT(NT) LOG TT(NT) LOG RT(NT) LOG RT(NT) LOG GUT(NT) COG RT(NT) at GUT • LOG TT(NT) at GUT • LOG TT(NT) box at • LOG TT(NT)	ditions. LL = 10 -0.977 1.024 0.230 0.309 0.305 0.060 1.930 1.420 1.520 1.070 1.350 0.900 1.976 1.454 0.762 0.561 0.990 0.477	LL D in 2 0.085 0.247 0.050 0.355 0.254 0.050 1.310 1.200 1.130 0.890 0.860 0.860 0.324 0.324 0.333 0.305 0.305 0.3409 0.341	LL D in 8 0.715 0.098 0.280 1.219 0.112 0.100 1.310 2.080 1.510 2.080 1.690 0.128 0.160 0.147 0.183 0.843 0.843
1 able B20. Experiment 1, residuals across contact A 230 a1 for GUT a2 for GUT a2 for GUT a2 for RT a2 for RT LOG TT(NT) LOG RT(NT) LOG RT(NT) LOG GUT(NT) LOG GUT(NT) a2 GUT • LOG TT(NT) a2 GUT • LOG TT(NT) a2 GUT • LOG TT(NT) b2 GUT = a1 + (a2 * log TT[NT]) b3 b1 B7 = a1 + (a2 * log TT[NT])	ditions. LL - 10 -0.977 1.024 0.230 0.309 0.395 0.060 1.930 1.420 1.520 1.070 1.350 0.900 1.976 1.454 0.762 0.561 0.999 0.471 1.071	LL D in 2 0.085 0.247 0.050 0.355 0.254 0.050 1.310 1.200 1.130 0.890 0.860 0.640 0.324 0.296 0.333 0.305 0.409 0.381 0.688	LL D in 8 0.715 0.098 0.280 1.219 0.112 0.100 1.310 1.630 0.1510 2.080 1.690 0.128 0.160 0.147 0.183 0.843 0.875 1.365
1 able B20. Experiment 1, residuals across coal A 230 a1 for GUT a2 for GUT a2 for GUT a2 for RT Std Err of Y Est for GUT a1 for RT a2 for RT Std Err of Y EST for RT LOG TT(NT) LOG RT(NT) LOG RT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT * LOG TT(NT) a2 GUT * LOG TT(NT) a2 RT * LOG TT(NT) b2 RT * LOG TT(NT) b2 GUT * LOG TT(NT) b2 GUT * LOG TT(NT) b2 GUT * LOG TT(NT) b2 RT * 1 + (a2 * log TT[NT]) b2 RT * a1 + (a2 * log TT[NT] ~)	ditions. LL = .10 -0.971 1.024 0.230 0.309 0.395 0.060 1.420 1.520 1.070 1.350 0.900 1.976 1.454 0.762 0.561 0.999 0.477 1.071 0.870	LL D in 2 0.085 0.247 0.050 0.355 0.254 0.050 1.310 1.200 1.130 0.890 0.860 0.640 0.324 0.333 0.305 0.409 0.381 0.688 0.660	LL D in 8 0.715 0.098 0.280 1.219 0.112 0.100 1.630 1.510 2.080 1.090 1.680 0.128 0.160 0.147 0.183 0.843 0.875 1.366 1.402
Table B20. Experiment 1, residuals across con- A 230 at for GUT at for GUT at for GUT at for RT at for RT Std Err of Y Est for GUT at for RT LOG TT(NT) LOG TT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) ACG GUT * LOG TT(NT) at COG TT(NT) at COG TT(NT) at COG TT(NT) bit GUT = at + (at * log TT[NT]) Est 2GUT = at + (at * log TT[NT])	ditions. LL 10 -0.971 1.024 0.230 0.309 0.395 0.060 1.930 1.920 1.520 1.070 1.350 0.900 1.976 1.675 0.999 0.477 1.071 0.870 0.835	LL D in 2 0.085 0.247 0.050 0.355 0.254 0.050 1.310 1.200 1.310 1.200 1.310 0.890 0.860 0.640 0.324 0.326 0.326 0.333 0.305 0.409 0.381 0.688 0.660 0.451	LL D in 8 0.715 0.098 0.280 1.219 0.112 0.100 1.310 1.610 2.080 1.510 2.080 1.690 0.128 0.160 0.128 0.160 0.147 0.183 0.843 0.843 0.843 0.875 1.366 1.402 0.247
1able B20. Experiment 1, residuals across cont A-230 ai for GUT ai for GUT a2 for GUT Sid Err of Y Est for GUT ai for RT Sid Err of Y Est for RT LOG TT(NT) LOG TT(NT) LOG RT(NT) LOG GUT(NT) a2 GUT * LOG TT(NT) a2 GUT * LOG TT(NT) a2 GUT * LOG TT(NT) a2 RT * LOG TT(NT) b2 RT * LOG TT[NT]	ditions. LL = 10 -0.977 1.024 0.230 0.309 0.395 0.060 1.930 1.420 1.520 1.070 1.520 1.070 1.520 1.070 1.520 1.070 1.520 1.070 1.520 1.076 1.654 0.561 0.990 0.477 1.071 0.870 0.335 0.423	LL D in 2 0.085 0.247 0.050 0.355 0.254 0.050 1.310 1.200 1.130 0.890 0.860 0.860 0.324 0.324 0.324 0.333 0.305 0.409 0.381 0.6688 0.6660 0.451 0.759	LL D in 8 0715 0.098 0.280 1.219 0.112 0.100 1.310 1.630 1.510 2.080 1.090 1.680 0.128 0.160 0.128 0.160 0.147 0.183 0.875 1.366 1.402 0.247 0.905
1 able B20. Experiment 1, residuals across cont A-230 ai for GUT ai for GUT a2 for GUT s2 for RT LOG TI(NT) LOG TT(NT) LOG RT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) a2 GUT * LOG TT(NT) a2 RT * LOG TT(NT) a2 RT * LOG TT(NT) batt GUT = a1 + (a2 * log TT[NT]) Eatt GUT = a1 + (a2 * log TT[NT]) Eatt RT = a1 + (a2 * log TT[NT]) Eatt RT = a1 + (a2 * log TT[NT]) Eatt RT = a1 + (a2 * log TT[NT]) Eatt RT = a1 + (a2 * log TT[NT]) Eatt RT = a1 + (a2 * log TT[NT]) Eatt RT = a1 + (a2 * log TT[NT]) Eatt RT = a1 + (a2 * log TT[NT]) Eatt RT = a1 + (a2 * log TT[NT])	ditions. LL 10 -0.977 1.024 0.230 0.309 0.305 0.060 1.930 1.420 1.520 1.070 1.350 0.900 1.976 1.454 0.762 0.561 0.990 0.477 1.071 0.870 0.351 0.440	LL D in 2 0.085 0.247 0.050 0.355 0.254 0.050 1.310 1.200 1.130 0.890 0.860 0.860 0.324 0.324 0.324 0.333 0.305 0.409 0.331 0.668 0.660 0.451 0.259	LL D in 8 0715 0.098 0.280 1.219 0.112 0.100 1.310 2.080 1.630 1.510 2.080 1.690 0.128 0.160 0.147 0.183 0.843 0.843 0.843 0.843 0.843 0.843
1 able B20. Experiment 1, residuals across contact A 230 ai for GUT ai for RT a2 for RT LOG TT(NT) LOG TT(NT) LOG RT(NT) LOG RT(NT) LOG GUT(NT) LOG GUT • LOG TT(NT) a2 GUT • LOG TT(NT) a2 GUT • LOG TT(NT) bat GUT = a1 + (a2 • log TT[NT]) bat RT = a1 + (a2 • log TT[NT]) bat RT = a1 + (a2 • log TT[NT]) bat RT = a1 + (a2 • log TT[NT]) bat RT = a1 + (a2 • log TT[NT]) bat RT = a1 + (a2 • log TT[NT]) bat RT = bac RT(NT) · bat1 RT log res1 RT = log RT(NT) · · bat2 RT log res1 RT = log RT(NT) · · bat1 RT	ditions. LL = .10 -0.971 1.024 0.230 0.309 0.395 0.060 1.920 1.420 1.520 1.070 1.350 0.900 1.470 1.351 0.423 0.423 0.423 0.423 0.423 0.423	LL D in 2 0.085 0.247 0.050 0.355 0.254 0.050 1.310 1.200 1.130 0.890 0.860 0.640 0.324 0.296 0.333 0.305 0.409 0.381 0.688 0.660 0.451 0.259 0.442 0.230	LL D in 8 0.715 0.098 0.280 1.219 0.112 0.100 1.310 1.630 1.510 2.080 1.690 0.128 0.160 0.128 0.160 0.147 0.183 0.843 0.843 0.875 1.366 1.402 0.247 0.805 0.144 0.575

Table B25. Experiment 1, residuals across conditions.

A 101	LL=.10	LLD is 2	LL D in 8
al for GUT	-0.238	-0.085	0.632
a2 for GUT	0.405	0.412	0.102
Std Err of Y Est for GUT	0.040	0.080	0.080
al for RT	0.419	0.247	1.500
a2 for RT	0.328	0.309	-0.130
Std Err of Y EST for RT	0.080	0.050	0.060
LOG TT(NT)	1.630	1.230	1.220
LOG TT(NT) ~	1.230	1.180	1.130
LOG RT(NT)	1.000	0.850	1.460
LOG RT(NT)~	0.810	0.710	1.450
LOG GUT(NT)	0.820	0.590	0.910
LOG GUT(NT)~	0.400	0.490	0,900
#2 GUT + LOG TT(NT)	0.660	0.507	0.124
a2 GUT + LOG TT(NT)~	0.498	0.486	0.115
#2 RT * LOG TT(NT)	0.535	0.380	0.159
12 RT • LOG TT(NT)~	0.403	0.365	0.147
Eat1 GUT = a1 + (a2 * log TTINTT)	0.422	0.422	0.756
Eat2 GUT = a1 + (a2 * log TTINT) \sim)	0.260	0.401	0.747
Fat1 RT = a1 + (a2 * logTTINTT [~])	0.954	0.627	1 341
$F_{a12}RT = a1 + (a2 \circ logTIINTI^{\sim})$	0.822	0.612	1.353
log real GUT = log GUT(NT) Fatt GUT	0 308	0.168	0154
log res2 GUT = log GUT(NT) ~ Est? GU	0140	0.080	0153
log rest BT mice BT(NT) - Est BT	0.046	0.223	0.175
los res? PT = los PT(NT)~ . Est? PT	.0.012	0.009	0.007
Redeterminations	0.012	0.098	0.097
Table B78 Experiment 1 residuals serves co	adihoas		
Table B28. Experiment 1, residuals across co A.123	aditions.		TIDist
Table B28. Experiment 1, residuals across co A-123	LL=.10	LL D is 2	LL D is 8
Table B28. Experiment 1, residuals across co A-123 a1 for GUT >2 for GUT	10.712	LL D in 2 -1.082	LL D in 8 -0.191 0.617
Table B28. Experiment 1, residuals across co A-123 a1 for GUT a2 for GUT Sid Err of Y Est for GUT	0.712 0.392 0.270	LL D in 2 -1.082 1.120 0.200	LL D in 8 -0.191 0.637 0.120
Table B28. Experiment 1, residuals across co A:123 a1 for GUT a2 for GUT Std Err of Y Est for GUT a1 for BT	111085. LL = .10 .0.712 0.392 0.270 0.573	LL D in 2 -1.082 1.120 0.200 -0.708	LL D in 8 -0.191 0.637 0.120
Table B28. Experiment 1, residuals across co A-123 a1 for GUT a2 for GUT Std Err of Y Est for GUT a1 for RT a2 for RT	ditions. <u>LL = .10</u> 0.712 0.392 0.270 0.573 0.140	LL D in 2 -1.082 1.120 0.200 -0.798 1.098	LL D in 8 -0.191 0.637 0.120 0.694 0.416
Table B28. Experiment 1, residuals across co A-123 a1 for GUT a2 for GUT Std Err of Y Est for GUT a1 for RT a2 for RT Std Err of Y EST for PT	ditions. <u>LL = .10</u> 0.712 0.392 0.270 0.573 0.160 0.020	LL D in 2 1.082 1.120 0.200 -0.798 1.098 0.200	LL D in 8 -0.191 0.637 0.120 0.694 0.416 0.100
Table B28. Experiment 1, residuals across co A:123 al for GUT a2 for GUT Std Err of Y Est for GUT a1 for RT a2 for RT Std Err of Y EST for RT LOG TT(NT)	aditions. <u>LL = .10</u> 0.712 0.392 0.270 0.573 0.160 0.020 1.350	LL D in 2 -1.082 1.120 0.200 -0.798 1.098 0.200 1.140	LL D in 8 -0.191 0.637 0.120 0.694 0.416 0.100
Table B28. Experiment 1, residuals across co A:123 a1 for GUT a2 for GUT Std Err of Y Est for GUT a1 for RT a2 for RT Std Err of Y EST for RT LOG TT(NT) LOG TT(NT) C	aditions. LL = .10 -0.712 0.392 0.270 0.573 0.160 0.020 1.350 1.170	LL D in 2 -1.082 1.120 0.200 -0.798 1.098 0.200 1.140 1.170	LL D in 8 -0.191 0.637 0.120 0.694 0.416 0.100 1.120
Table B28. Experiment 1, residuals across co A 123 a1 for GUT a2 for GUT Std Err of Y Est for GUT a1 for RT Std Err of Y EST for RT LOG TT(NT) LOG TT(NT)	aditions. LL = .10 -0.712 0.392 0.270 0.573 0.160 0.020 1.350 1.170	LL D in 2 -1.082 1.120 0.200 -0.798 1.098 0.200 1.140 1.170	LL D is 8 -0.191 0.637 0.120 0.694 0.416 0.100 1.120 1.170
Table B28. Experiment 1, residuals across co A-123 a1 for GUT a2 for GUT Std Err of Y Est for GUT a1 for RT a2 for RT Std Err of Y Est for RT LOG TT(NT) LOG RT(NT) LOG RT(NT)	aditions. LL = .10 -0.712 0.392 0.270 0.573 0.160 0.020 1.350 1.170 1.010 0.999	LL D in 2 -1.082 1.120 0.200 -0.798 1.098 0.200 1.140 1.170 0.900	LL D in 8 -0.191 0.637 0.120 0.694 0.416 0.100 1.120 1.170 1.440
Table B28. Experiment 1, residuals across co A-123 a1 for GUT a2 for GUT Std Err of Y Est for GUT a1 for RT s2 for RT Std Err of Y Est for RT LOG TT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT)	aditions. LL = .10 -0.712 0.392 0.270 0.573 0.160 0.020 1.350 1.170 1.010 0.890 0.730	LL D in 2 -1.082 1.120 0.200 -0.798 1.098 0.200 1.140 1.170 0.900 0.680	LL D is 8 -0.191 0.637 0.120 0.694 0.416 0.100 1.120 1.170 1.440 1.440
Table B28. Experiment 1, residuals across co A-123 a1 for GUT a2 for GUT Std Err of Y Est for GUT a1 for RT a2 for RT Std Err of Y Est for RT LOG TT(NT) LOG RT(NT) LOG GUT(NT) LOG GUT(NT)	aditions. LL10 -0.712 0.392 0.270 0.573 0.160 0.020 1.350 1.170 1.010 0.890 0.730 0.730	LL D in 2 -1.082 1.120 0.200 -0.798 1.098 0.200 1.140 1.170 0.900 0.680 0.610	LL D in 8 -0.191 0.637 0.120 0.694 0.416 0.100 1.120 1.170 1.440 1.440 0.820 0.820
Table B28. Experiment 1, residuals across co A:123 a1 for GUT a2 for GUT Std Err of Y Est for GUT a1 for RT a2 for RT Std Err of Y Est for RT LOG TT(NT) LOG RT(NT) LOG RT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) COG GUT(NT)	aditions. LL = .10 -0.712 0.392 0.270 0.573 0.160 0.020 1.350 1.170 1.010 0.890 0.730 0.360 0.560	LL D in 2 -1.082 1.120 0.200 -0.798 1.098 0.200 1.140 1.140 1.170 0.900 0.680 0.610 0.300	LL D in 8 -0.191 0.637 0.120 0.694 0.416 0.100 1.120 1.170 1.440 1.440 0.820 0.800 0.800
Table B28. Experiment 1, residuals across co A-123 a1 for GUT a2 for GUT Std Err of Y Est for GUT a1 for RT a2 for RT Std Err of Y Est for RT LOG TT(NT) LOG RT(NT) ~ LOG GUT(NT) ~ LOG GUT(NT) LOG GUT(NT) A GUT * LOG TT(NT) A GUT * LOG TT(NT)	aditions. LL10 -0.712 0.392 0.270 0.573 0.160 0.020 1.350 1.170 1.010 0.990 0.730 0.360 0.529 0.529	LL D in 2 1.082 1.120 0.200 0.798 1.098 0.200 1.140 1.170 0.900 0.680 0.610 0.300 1.277	LL D is 8 -0.191 0.637 0.120 0.694 0.416 0.100 1.120 1.170 1.440 1.440 0.820 0.800 0.713
Table B28. Experiment 1, residuals across co A-123 a1 for GUT a2 for GUT Std Err of Y Est for GUT a1 for RT a2 for RT Std Err of Y Est for RT LOG TT(NT) LOG RT(NT) LOG RT(NT) LOG GUT(NT) LOG GUT(NT) a2 GUT • LOG TT(NT) a2 GUT • LOG TT(NT) a2 GUT • LOG TT(NT)	aditions. LL = .10 -0.712 0.392 0.270 0.573 0.160 0.020 1.350 1.170 1.010 0.890 0.730 0.529 0.459 0.459	LL D in 2 -1.082 1.120 0.200 -0.798 1.098 0.200 1.140 1.170 0.900 0.680 0.680 0.300 1.277 1.310	LL D is 8 -0.191 0.637 0.120 0.694 0.416 0.100 1.120 1.170 1.440 1.480 0.820 0.800 0.713 0.745
Table B28. Experiment 1, residuals across co A-123 a1 for GUT a2 for GUT Std Err of Y Est for GUT a1 for RT a2 for RT Std Err of Y Est for RT LOG TT(NT) LOG RT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) a2 GUT • LOG TT(NT) a2 GUT • LOG TT(NT) a2 GUT • LOG TT(NT)	aditions. LL = .10 -0.712 0.392 0.270 0.573 0.160 0.020 1.350 1.170 1.010 0.890 0.730 0.360 0.529 0.459 0.216	LL D in 2 1.082 1.120 0.200 -0.798 1.098 0.200 1.140 1.170 0.900 0.680 0.610 0.300 1.277 1.310 1.252	LL D is 8 -0.191 0.637 0.120 0.694 0.416 0.100 1.120 1.170 1.440 1.440 0.820 0.800 0.713 0.745 0.466
Table B28. Experiment 1, residuals across co A 123 a1 for GUT a2 for GUT Std Err of Y Est for GUT st for RT a2 for RT Std Err of Y Est for RT LOG TT(NT) LOG RT(NT) LOG GUT(NT) LOG GUT(NT) COG GUT(NT) a2 GUT * LOG TT(NT) a2 GUT * LOG TT(NT) a2 RT * LOG TT(NT) a2 RT * LOG TT(NT)	aditions. LL = .10 -0.712 0.392 0.270 0.573 0.160 0.020 1.350 1.170 1.010 0.890 0.730 0.360 0.360 0.529 0.459 0.216 0.187	LL D in 2 1.082 1.120 0.200 -0.798 1.098 0.200 1.140 0.900 0.680 0.610 0.300 1.277 1.310 1.252 1.285	LL D in 8 -0.191 0.637 0.120 0.694 0.416 0.100 1.120 1.170 1.440 1.490 0.820 0.800 0.713 0.745 0.466 0.487
Table B28. Experiment 1, residuals across co A 123 a1 for GUT a2 for GUT Std Err of Y Est for GUT a1 for RT Std Err of Y Est for GUT a1 for RT Std Err of Y Est for RT LOG TT(NT) LOG TT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) a2 GUT • LOG TT(NT) a2 RUT • LOG TT(NT) a2 RT • LOG TT(NT) Est1 GUT = a1 + (a2 • log TT[NT])	aditions. LL = .10 -0.712 0.392 0.270 0.573 0.160 0.020 1.350 1.170 1.010 0.890 0.730 0.360 0.529 0.459 0.216 0.187 -0.183	LL D in 2 -1.082 1.120 0.200 -0.798 1.098 0.200 0.200 1.140 1.170 0.900 0.650 0.610 0.300 1.277 1.310 1.252 1.225 0.195	LL D is 8 -0.191 0.637 0.120 0.694 0.416 0.100 1.120 1.170 1.440 0.820 0.800 0.713 0.745 0.466 0.487 0.522
Table B28. Experiment 1, residuals across co A 123 a1 for GUT a2 for GUT Std Err of Y Est for GUT a1 for RT a2 for RT Std Err of Y Est for RT LOG TT(NT) LOG RT(NT) LOG RT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) a2 GUT • LOG TT(NT) a2 GUT • LOG TT(NT) a2 RT • LOG TT(NT) a2 RT • LOG TT(NT) Est1 GUT= a1 + (a2 • log TT[NT]) Ext2 GUT= 1	aditions. LL10 -0.712 0.392 0.270 0.573 0.160 0.020 1.350 1.170 1.010 0.890 0.730 0.360 0.529 0.459 0.459 0.216 0.187 -0.183 -0.233	LL D in 2 -1.082 1.120 0.200 -0.798 1.098 0.200 0.200 0.200 1.140 1.170 0.900 0.610 0.300 1.277 1.310 1.225 0.195 0.228	LL D is 8 -0.191 0.637 0.120 0.694 0.416 0.100 1.120 1.170 1.440 1.440 0.820 0.800 0.713 0.745 0.466 0.487 0.522 0.534
Table B28. Experiment 1, residuals across co A-123 a1 for GUT a2 for GUT Sid Err of Y Est for GUT a1 for RT a2 for RT Sid Err of Y Est for RT LOG TT(NT) LOG RT(NT) LOG RT(NT) LOG GUT(NT) a2 GUT • LOG TT(NT) a2 GUT • LOG TT(NT) a2 RT • LOG TT(NT) Ext GUT = a1 + (a2 • log TT[NT]) Ext RT = a1 + (a2 • log TT[NT])	aditions. LL = .10 -0.712 0.392 0.270 0.573 0.160 0.020 1.350 1.170 1.010 0.890 0.730 0.529 0.459 0.216 0.187 -0.183 -0.253 0.789	LL D in 2 -1.082 1.120 0.200 -0.798 1.098 0.200 1.098 0.200 1.140 1.170 0.900 0.680 0.680 0.680 0.300 1.277 1.310 1.252 1.285 0.195 0.228 0.454	LL D is 8 -0.191 0.637 0.120 0.694 0.416 0.100 1.120 1.170 1.440 1.480 0.820 0.800 0.713 0.745 0.466 0.487 0.522 0.554 1.160
Table B28. Experiment 1, residuals across co A-123 a1 for GUT a2 for GUT Std Err of Y Est for GUT a1 for RT a2 for RT Std Err of Y Est for RT LOG TT(NT) LOG RT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) a2 GUT * LOG TT(NT) a2 GUT * LOG TT(NT) a2 GUT * LOG TT(NT) a2 RT * LOG TT(NT) Ext GUT = a1 + (a2 * log TT[NT]) Ext RT = a1 + (a2 * log TT[NT]) Ext RT = a1 + (a2 * log TT[NT])	aditions. LL = .10 -0.712 0.392 0.270 0.573 0.160 0.020 1.350 1.170 1.010 0.890 0.730 0.360 0.529 0.459 0.216 0.187 -0.183 -0.253 0.760	LL D in 2 -1.082 1.120 0.200 -0.798 1.098 0.200 1.098 0.200 0.400 0.400 0.680 0.610 0.300 0.680 0.610 1.277 1.310 1.252 1.285 0.195 0.228 0.454 0.487 	LL D is 8 -0.191 0.637 0.120 0.694 0.416 0.100 1.120 1.170 1.440 1.440 1.440 0.820 0.800 0.713 0.745 0.466 0.487 0.522 0.554 1.160 1.181
Table B28. Experiment 1, residuals across co A-123 a1 for GUT s2 for GUT Std Err of Y Est for GUT a1 for RT a2 for RT Std Err of Y EST for RT LOG TT(NT) LOG TT(NT) LOG RT(NT) LOG GUT(NT) COG GUT(NT) LOG GUT(NT) COG GUT(NT) COG GUT(NT) COG GUT(NT) COG GUT • LOG TT(NT) a2 GUT • LOG TT(NT) a2 GUT • LOG TT(NT) a2 RT • LOG TT(NT) Est1 GUT = a1 + (a2 • log TT[NT]) Est2 RT = a1 + (a2 • log TT[NT]) Est2 RT = a1 + (a2 • log TT[NT]) Est2 RT = a1 + (a2 • log TT[NT]) St1 RT = a1 + (a2 • log TT[NT]) St2 RT =	aditions: LL =.10 -0.712 0.392 0.270 0.573 0.160 0.020 1.350 1.170 1.010 0.890 0.730 0.360 0.529 0.459 0.216 0.187 -0.183 -0.253 0.760 0.913	LL D in 2 1.082 1.120 0.200 -0.798 1.098 0.200 1.140 1.140 1.170 0.900 0.680 0.610 0.300 1.277 1.310 1.252 1.245 0.195 0.295 0.454 0.487 0.415	LL D is 8 -0.191 0.637 0.120 0.694 0.416 0.100 1.120 1.170 1.440 1.480 0.820 0.800 0.713 0.745 0.466 0.487 0.522 0.534 1.160 1.181 0.298
Table B28. Experiment 1, residuals across co A 123 a1 for GUT a2 for GUT Std Err of Y Est for GUT a1 for RT a2 for RT Stid Err of Y Est for RT LOG TT(NT) LOG TT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) a2 RT * LOG TT(NT) Batt BUT = a1 + (a2 * log TT[NT]) Batt RT = a1 + (a2 * log TT[NT]) Istr RT = a1 + (a2 * log TT[NT]) Istr BUT = a1 + (a2 * log TT[NT]) Istr BUT = a1 + (a2 * log TT[NT]) Istr BUT = a1 + (a2 * log TT[NT]) Batt RT = a1 + (a2 * log TT[NT]) Batt RT = a1 + (a2 * log TUT[NT]) Istr BUT = log GUT(NT) · Eatt GUT log res1 GUT = log GUT(NT) · Eatt GUT log res2 GUT = log GUT(NT) · Eatt GUT	aditions: LL =.10 -0.712 0.392 0.270 0.573 0.160 0.020 1.350 1.170 1.010 0.890 0.730 0.360 0.529 0.459 0.216 0.187 -0.183 -0.253 0.789 0.760 0.913 0.613	LL D in 2 -1.082 1.120 0.200 -0.798 1.098 0.200 1.140 1.170 0.900 0.6810 0.300 1.277 1.310 1.252 0.195 0.228 0.415 0.072	LL D is 8 -0.191 0.637 0.120 0.694 0.416 0.100 1.120 1.170 1.440 1.440 0.820 0.800 0.713 0.745 0.466 0.487 0.522 0.554 1.160 1.181 0.298 0.246
Table B28. Experiment 1, residuals across co A 123 a1 for GUT a2 for GUT Std Err of Y Est for GUT a1 for RT a2 for RT Std Err of Y Est for RT LOG TT(NT) LOG TT(NT) LOG RT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) a2 GUT • LOG TT(NT) a2 RT • LOG TT(NT) a2 RT • LOG TT(NT) a2 RT • LOG TT(NT) bat RT • LOG TT(NT) bat RT • LOG TT(NT) a2 RT • LOG TT(NT) bat RT • LOG TT(NT) bat RT • LOG TT(NT) a2 RT • LOG TT(NT) bat RT = a1 + (a2 • log TT[NT]) Bat RT = a1 + (a2 • log TT[NT]) bat RT = a1 + (a2 • log TT[NT]) bat RT = a1 + (a2 • log TT[NT]) bat RT = a1 + (a2 · log TT[NT]) bat RT = a1 + (a2 · log TT[NT]) bat RT = a1 + (a2 · log TT[NT]) bat RT = a1 + (a2 · log TT[NT]) bat RT = a1 + (a2 · log TT[NT]) bat RT = a1 + (a2 · log TT[NT]) bat RT = a1 + (a2 · log RT[NT] · lat RT	aditions. LL10 -0.712 0.392 0.270 0.573 0.160 0.020 1.350 1.170 1.010 0.890 0.730 0.360 0.529 0.459 0.459 0.216 0.187 -0.183 -0.253 0.789 0.760 0.913 0.613 0.221	LL D in 2 -1.082 1.120 0.200 -0.798 1.098 0.200 0.200 1.098 0.200 1.140 1.170 0.900 0.6810 0.6810 0.300 1.277 1.310 1.225 1.285 0.195 0.228 0.454 0.415 0.072 0.446	LL D is 8 -0.191 0.637 0.120 0.694 0.416 0.100 1.120 1.170 1.440 1.440 0.820 0.800 0.713 0.745 0.466 0.466 0.467 0.522 0.534 1.160 1.181 0.298 0.246 0.240
Table B28. Experiment 1, residuals across co A 123 a1 for GUT a2 for GUT Std Err of Y Est for GUT a1 for RT a2 for RT Std Err of Y Est for RT LOG TT(NT) LOG TT(NT) LOG RT(NT) LOG GUT(NT) LOG GUT(NT) a2 GUT * LOG TT(NT) a2 GUT * LOG TT(NT) a2 RT * LOG TT(NT) a2 RT * LOG TT(NT) Bett GUT= a1 + (a2 * log TT[NT]) Est2 GUT= a1 + (a2 * log TT[NT]) Bett GUT= a1 + (a2 * log TT[NT]) In triangle and triangl	aditions. LL = .10 -0.712 0.392 0.270 0.573 0.160 0.020 1.350 1.170 1.010 0.890 0.360 0.529 0.459 0.216 0.187 -0.183 -0.253 0.789 0.760 0.913 0.613 0.221 0.130	LL D in 2 -1.082 1.120 0.200 -0.798 1.098 0.200 1.140 1.170 0.900 0.680 0.610 0.300 1.277 1.310 1.252 1.245 0.195 0.228 0.454 0.457 0.415 0.072 0.446 0.193	LL D is 8 -0.191 0.637 0.120 0.694 0.416 0.100 1.120 1.170 1.440 1.440 0.820 0.800 0.713 0.745 0.466 0.487 0.522 0.534 1.160 1.181 0.298 0.246 0.280 0.299

Table B27. Experiment 1, residuals across conditions.

<u>U1</u>			
	4455	4.00	1.0.34
Std For of V Fot for CLFT	4133	4.433	-4774
	4.511	4.7%	1.544
al for RT	40,000	4144	1.500
End For of V PST (or DT	4.414	4134	0.011
	0.034	4174	0.030
	1.300	1.22	1.340
LOG TI(NT)	1,430	1.344	12/0
LOG 11(N1) Wobe			1.//
LOG RI(NI)	1.23	0.650	1.410
LOG RI(NI)	9,799	8.439	1.534
LOG RT(NT) wobe			1.54
LOG GUT(NT)	1149	0.450	1.060
LOG GUT(NT)*	0.210	0.290	0.360
LOG GUT(NT) wobs			1.22
AZGUT LOG TI(NT)	0.710	0.574	-0147
2 GUT LOG TT(NT)~	0.660	0.563	-0.140
2 GUT · LOG TT(NT) w/obs			-0.1947
AZRT · LOG TT(NT)	1.363	0.231	0.015
AZRT · LOG TT(NT)~	1.267	4.246	8.014
aZRT LOG TT(NT) wobs			0.01947
Est1 GUT= a1 + (a2 * log TT[NT])	0.231	0.000	0.507
Ent2 GUT = a1 + (a2 * log TT[NT] \sim)	0,1,61	0.035	0.914
Est3 GUT= a1 + (a2 * log TT[NT] w/obs)			0.4593
Estl RT = al + (a2 * logTT[NT])	0.830	0.530	1.523
$Ext2 RT = a1 + (a2 \cdot logTT[NT]^{-})$	0,734	0.545	1.522
Est3 RT= a1 + (a2 * logTT[NT] w/obs)			1.52747
log resi GUT = log GUT(NT) · Esti GUT	0.999	0.450	0153
log res2 GUT = log GUT(NT)~ Est2 GUT	4.429	4.255	8.846
log res3 GUT = log GUT(NT) w/obs - Est3 GUT			0.3607
log real RT= log RT(NT) - Esti RT	0.400	0.160	0.067
log res2 RT = log RT(NT) = - Est2 RT	-4.434	-0.095	0.005
log res3 RT = log RT(NT) w/obs - Est3 RT			0.05253
Re-determination, (NT)w/obs = natural travel w	ith obstack	4 .	
Re-determination, (NT)w/obs = natural travel w Table B30. Experiment 2, randuals across condition	ith obstack ons (retra	n. :table lavers	ı).
Re-determination, (NT)w/obs=natural travel w Table B30. Experiment 2, residuals across conduc C-2	ith obstack ons (retra LL= J0	n. table lavers LL D in 7). LLDint
Re-determination, (NTW/obs=natural travel w Table Bi4. Experiment 2, renduals across condit C:7 al for GUT	ith obstack one (retra LL=J0 0.224	n. table levers LL D in 7 0.109). LL D in 1 0.461
Re-determination, (NT)w/dos = natural travel w Table B30. Experiment 2, renduals across conduit CZ al for GUT a2 for GUT	ith obstacl ons (retra LL = J0 0.228 -0.450	n. table lavers LL D in 7 0.07 0.075). LL D in 5 0.461 0.133
Tele Bi4. Experiment 2, renduals across conduct Tele Bi4. Experiment 2, renduals across conduct C:2 al for GUT al for GUT Std Err of Y Est for GUT	th obstack ons (retra LL= 30 0.228 -0.450 0.200	n. table lavers LL D in 7 0.075 0.250). LL D in 1 0.661 0.133 0.050
Table BJ4: Experiment 2, renduals across condit C2 at for GUT a2 for GUT Std Err of Y Est for GUT a1 for RT	th obstack ons (retra LL= J0 0.228 -0.450 0.200 -0.339	n. table lavera L D in 7 0.109 0.075 0.250 0.182). LL D in 8 0.461 0.133 0.050 1.244
Tele B34. Experiment 2, renduals across condit C2 al for GUT std Err of Y Est for GUT std Err of Y Est for GUT al for RT al for RT	ith obstacl ons (retra LL= 10 0.228 -0.459 0.200 -0.339 0.669	EL 13 in 7 0.109 0.075 0.250 0.182 0.182 0.265). LL D in 8 0.461 0.133 0.050 1.244 0.133
Tele BM. Experiment 2, renduals across condit C2 al for GUT Std Err of Y Est for GUT al for RT al for RT Std Err of Y Est for RT Std Err of Y EST for RT	ith obstack ons (retra- LL= 10 0.224 -0.459 0.200 -0.339 0.669 0.150	n. stable lavera 0.107 0.075 0.250 0.182 0.265 0.150). LL [3 in 3 0.461 0.133 0.55 1.244 0.133 0.620
Table BJ4: Experiment 2, renduals across condit CZ al for GUT 22 for GUT Std Err of Y En for GUT al for RT al for RT 25 for RT Std Err of Y EST for RT LOG TT(NT)	ith obstack ons (retra- LL= 10 0.224 -4.450 0.200 -4.339 0.669 0.150 1.420	n. table lavera 0.109 0.075 0.250 0.182 0.265 0.150 1.210). LL D in 8 0.461 0.133 0.050 1.244 0.133 0.020 1.320
Tele Bill. Experiment 2, renduals across condit C2 al for GUT sud Err of Y En for GUT al for RT al for RT sud Err of Y EST for RT LOG TT(NT) LOG TT(NT)	ith obstack ons (retrac 0.228 -0.459 0.209 -0.339 0.669 0.159 1.429 1.180	n. table lavera 0.109 0.075 0.250 0.182 0.265 0.150 1.210 1.240). LL D in 8 0.461 0.133 0.050 1.244 0.133 0.620 1.320 1.300
The determination, (NT)w/dob is natural travely Table BM. Experiment 2, renduals across condit C2 al for GUT Std Err of Y Est for GUT al for RT 2 for RT 2 for RT 2 for RT LOG TT(NT) ~ LOG TT(NT) ~ LOG TT(NT) ~	ith obstack ons (retra LL=10 0.224 -0.450 0.200 -0.339 0.669 0.150 1.420 1.180	n. table levers (L D in 7 0.109 0.075 0.250 0.182 0.265 0.150 1.210 1.240). LL D in 8 0.661 0.133 0.050 1.244 0.133 0.020 1.320 1.300 1.780
Tele BM. Experiment 2, renduals across could Table BM. Experiment 2, renduals across could C2 al for GUT Std Err of Y En for GUT al for RT al for RT Std Err of Y EST for RT LOG TT(NT) LOG TT(NT) LOG TT(NT) LOG TT(NT)	th obstack ons (retra LL=]0 0.224 -0.450 0.200 -0.339 0.669 0.150 1.420 1.180 0.370	n. table levers (L D in 7 0.109 0.075 0.250 0.182 0.265 0.150 1.210 1.240 0.620). LL D in 8 0.461 0.133 0.050 1.244 0.133 0.020 1.320 1.300 1.740 1.299
Tele Bill. Experiment 2, renduals across condit Table Bill. Experiment 2, renduals across condit C2 al for GUT Std Err of Y Est for GUT al for RT std Err of Y Est for RT Std Err of Y EST for RT LOG TT(NT) = LOG TT(NT) = LOG RT(NT) = LOG RT(NT) =	th obstack ons (retra LL=_10 0.228 -0.459 0.200 -0.339 0.669 0.150 1.420 1.180 0.370 0.400	table levers table levers 0.109 0.199 0.250 0.182 0.265 0.150 1.210 1.240 0.620 0.400). LL D in 8 0.661 0.133 0.050 1.244 0.133 0.050 1.320 1.320 1.320 1.320 1.320 1.320 1.410
Tele B4. Experiment 2, renduals across condit C2 al for GUT Std Err of Y Est for GUT al for RT 2 for GT Std Err of Y Est for RT LOG TT(NT) LOG TT(NT) LOG TT(NT) LOG RT(NT) LOG RT(NT) COS	11h Obstack come (retra LL=10 0.228 0.228 0.200 0.200 0.4339 0.669 0.150 1.420 1.180 0.370 0.400	L Din 2 0.107 0.107 0.259 0.142 0.265 0.159 1.210 1.249 0.629 0.480). LL D in 8 0.461 0.133 0.050 1.244 0.133 0.020 1.320 1.320 1.320 1.320 1.410 1.400
Tele Bill. Experiment 2, renduals across could C2 al for GUT stafer of Y En for GUT al for GUT stafer of Y En for GUT al for RT al for RT stafer of Y EST for RT LOG TT(NT) LOG TT(NT) LOG TT(NT) LOG RT(NT) LOG RT(NT)	11h Obstack com (retra- 0.224 -0.459 0.200 -0.339 0.159 1.420 0.370 0.370	table lever table lever table lever table lever 0.107 0.259 0.142 0.255 0.156 0.156 0.150 0.259 0.142 0.259 0.142 0.259 0.142 0.259 0.142 0.259 0.142 0.259 0.142 0.259 0.142 0.259 0.142 0.259 0.142 0.259 0.142 0.259 0.159); LL D3 in 8 0.461 0.133 0.050 1.244 0.133 0.020 1.300 1.740 1.290 1.410 1.400 0.670
"Redetermination, (NT)w/dos instural travel Teble BM: Experiment 2, renduals across condit C? al for GUT Sid Err of Y Est for GUT al for RT al for RT al for RT Sid Err of Y EST for RT LOG TT(NT) LOG TT(NT) w/dos LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT)	ith obstack come (retract 0.228 -0.459 0.200 -0.339 0.669 0.159 1.420 1.180 0.370 -0.410	**************************************). LL D in 8 0.461 0.133 0.050 1.244 0.133 0.020 1.300 1.780 1.200 1.416 1.440 0.670 0.790
Tele Bile. Experiment 2, renduels across condit C2 al for GUT al for GUT al for GUT Std Err of Y En for GUT al for RT Std Err of Y EST for RT LOG TT(NT) LOG TT(NT) LOG TT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG GUT(NT) LOG GUT(NT) COG CUT(NT) COG CUT(NT) COG C	11h obstack com (retra- LL = 3)0 4,254 4,454 4,554 4,	 table levern L D in 7 0.167 0.175 0.256 0.142 0.265 0.156 1.240 0.429 0.400 0.376 0.996). LL D in F 0.461 0.133 0.60 1.244 0.133 0.620 1.320 1.320 1.340 1.410 1.410 0.676 0.796 1.540
Tele Bill. Experiment 2, renduals across condit C2 al for GUT sub Err of Y En for GUT al for GUT Sub Err of Y En for GUT al for RT sub Err of Y EST for RT LOG TT(NT) LOG TT(NT) LOG TT(NT) = LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG GUT(NT) LOG GUT(NT)	th obstack com (return 0.223 0.459 0.459 0.469 0.469 0.469 0.370 0.370 0.376 0.410 0.377	x. x.table lowers (L. Din 7, 6.107 6.075 6.159 6.159 1.219 1.249 6.629 6.469 6.379 6.099 6.091). LL D in 8 0.461 0.133 0.052 1.244 0.133 0.029 1.329 1.329 1.329 1.329 1.349 0.479 0.479 0.479 0.479 0.479 0.479
Tele BM. Experiment 2, renduals across condit Tele BM. Experiment 2, renduals across condit C2 al for GUT Sid Err of Y Est for GUT al for RT a2 for RT Sid Err of Y EST for RT LOG TT(NT) LOG TT(NT) = LOG TT(NT) = LOG RT(NT) = LOG RT(NT) = LOG RT(NT) = LOG GUT(NT) = LOG TT(NT) = LOG TT	ILL Constructions (Figure 11) Constructions (Fi	table levers t). LL [2] in § 0.461 1.244 0.133 0.859 1.244 0.133 0.629 1.309 1.760 1.760 1.419 1.409 0.479 1.509 1.509 0.173
Tele Bill. Experiment 2, renduals across condit C2 al for GUT al for GUT std Err of Y En for GUT al for RT Std Err of Y EST for RT LOG TT(NT) LOG TT(NT) LOG TT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG GUT(NT) LOG GUT(NT) ACC Std Err of Y EST for RT LOG TT(NT) COG RT(NT) COG RT(NT) COG GUT(NT) COG GUT(NT) COG GUT(NT) COG GUT(NT) COG GUT(NT) COG GUT(NT) COG GUT(NT) COG GUT(NT) COG GUT(NT) COG TT(NT) COG GUT(NT) COG GUT(NT) COG TT(NT) COG CUT(NT) COG CUT(NT)	th obtack one (retra- one (retra- 0.228 -4.454 0.228 -4.454 0.209 0.469 0.159 0.469 0.376 0.376 -0.419 -0.531	L stable laver L101 0.107 0.107 0.107 0.107 0.107 0.112 0.120 0.121 0.121 0.120 0.121 0.120 0.121 0.259 0.376 0.379 0.999 0.991 0.993). LL D in 7 0.461 0.453 0.059 1.244 0.133 0.629 1.320 1.320 1.320 1.320 1.409 1.409 0.479 0.479 0.476 0.176 0.176 0.277
Tele Bill. Experiment 2, renduels acrow condit C2 al for GUT state Er of Y En for GUT al for GUT stater of Y En for GUT al for RT al for RT al for RT stater of Y EST for RT LOG TT(NT) = LOG TT(NT) = LOG TT(NT) = LOG RT(NT) = LOG RT(NT) = LOG RT(NT) = LOG GUT(NT) = LOG TT(NT) = al GUT = LOG TT(NT) = al GUT =	th obstack one (retree LL=30 4.224 4.459 4.224 4.459 4.200 4.339 4.459 4.339 4.459 4.339 4.459 4.459 4.459 4.490 4.376 4.400 4.376 4.419 4.439 4.5311 4.539 4.5311 4.5311 4.53114 4.539 4.531144 4.531144 4.5311444 4.53114444444444444444444444444444444444	table lavered table l). LL [2] in § 0.641 0.433 0.856 1.244 0.133 0.133 0.130 1.300 1.766 1.416 1.416 1.406 0.476 0.176 0.176
Tele Bile Experiment 2, renduels error condit C2 al for GUT 22 for GUT 32 for GUT 32 for GUT 34 for RT 34 for RT 35 for RT 35 for RT 35 for RT 35 for RT 36 for RT 36 for RT 37 for RT 36 for RT 36 for RT 37 for RT 36 for RT 37 for RT 36 for RT 36 for RT 37 for RT 36 for RT 37 for RT 36 for RT	th obtack one (retrained 0,228 -4,459 0,228 -4,459 0,209 -4,339 0,469 0,159 0,499 0,159 0,499 0,499 0,370 -4,410 0,370 -4,410 0,370 -4,410 0,370 -4,410 0,370 -4,410 0,370 -4,459 0,370 -4,459 0,370 -4,459 0,499 0,599 0,499 0,599 0,79	table lavered table l). LL D in 8 0.461 1.244 0.133 0.829 1.244 0.629 1.309 1.740 1.740 1.409 1.409 1.409 0.479 0.799 0.175 0.173
Tele Bill. Experiment 2, renduals across condit C2 al for GUT staff of GUT al for GUT staff of AT al for RT al for RT al for RT al for RT bog TT(NT) LOG TT(NT) LOG TT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) COG GUT(NT) LOG TT(NT) al for T(NT) al for T(NT) al for the formation of the formation of the formation LOG GUT(NT) al for T(NT) al for the formation al formation	iii obstazi oss (retra oss (retra 0.223 0.239 0.499 0.59 0.499 0.370 0.410 0.376 0.410 0.376 0.410 0.376 0.410 0.376 0.410 0.376 0.410	Cable lower Cable l). LL [2] in 3 0.650 1.243 0.859 1.245 1.340 1.340 1.740 1.740 1.740 0.679 0.776 0.176 0.176 0.176 0.176 0.176 0.176 0.237
"Redetermination, (NT)w/dos insturial travel Table BM. Experiment 2, renduals across condit C2 al for GUT Std Err of Y Est for GUT al for RT Std Err of Y Est for RT LOG TT(NT) = LOG TT(NT) = LOG TT(NT) = LOG RT(NT) = LOG RT(NT) = LOG RT(NT) = LOG RT(NT) = LOG GUT(NT) = LOG GUT(NT) = LOG GUT(NT) = LOG GUT(NT) = LOG GUT(NT) = LOG GUT(NT) = LOG TT(NT) = 2 GUT = LOG TT(NT) = 2 GUT = LOG TT(NT) = 2 GUT = LOG TT(NT) = 2 RT = 2 RT = LOG TT(NT) = 2 RT = 2	III. obstack osa (retrin 4 4.224 4.224 4.224 4.246 4.247 4.247 4.247 4.247 4.247 4.247 4.247 4.247 4.247 4.247 4.247 4.247 4.247 4.247 4.247 4.247 4.247 4.2577 4.2577 4.2577 4.2577 4.2577 4.2	Cable lower CLD in 7 0.107 0.259 0.259 0.142 0.259 0.159 1.210 1.210 0.422 0.429 0.440 0.379 0.497 0.497 0.497 0.497 0.492 0.493 0.329 0.220). LL D in 4 0.461 1.244 0.133 0.859 1.244 0.133 0.629 1.309 1.740 1.309 1.410 1.410 1.409 0.779 0.175 0
Tele Bile. Experiment 2, renduels errors condit C2 al for GUT al for GUT std Err of Y En for GUT al for RT Std Err of Y En for GUT al for RT Std Err of Y EST for RT LOG TT(NT) LOG TT(NT) LOG TT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG GUT(NT) LOG GUT(NT) CG GUT * LOG TT(NT) CG CT(NT) CG GUT(NT) CG CT(NT) CG CT(NT	III obstack om (retrins 6.223 4.339 6.200 4.339 6.669 1.420 1.180 6.370 6.370 6.370 6.370 6.370 6.370 6.410 6.539 6.539 6.539 6.759 6.411	Cable lowers Cable lowers </td <td>). LL D in V 6.461 4.133 6.059 1.244 1.299 1.299 1.416 6.479 6.479 6.479 6.476 6.175 6.427 6.175 6.227 6.175 6.227 6.454</td>). LL D in V 6.461 4.133 6.059 1.244 1.299 1.299 1.416 6.479 6.479 6.479 6.476 6.175 6.427 6.175 6.227 6.175 6.227 6.454
Tele Bill. Experiment 2, renduels errors condit C2 al for GUT std Err of Y Est for GUT al for RT al for RT al for RT std Err of Y EST for RT LOG TT(NT) LOG TT(NT) LOG TT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG GUT(NT) LOG TT(NT) al GUT + LOG TT(NT) al GUT + LOG TT(NT) al CG TT(NT) cd CG CT cd	11h obstack 0000 (returns 0.223 0.434 0.234 0.434 0.434 0.434 0.439 0.449 0.370 0.419 0.370 0.419 0.459 0.469 0.370 0.419 0.469 0.469 0.370 0.419 0.469 0.419 0.419 0.429 0.419	Cable lovern Cable lovern </td <td>). LL [2] in 8 0.431 0.433 0.659 1.244 0.133 0.629 1.309 1.740 1.740 1.750 0.776 0.776 0.175 0.176 0.175 0.176 0.175 0.176 0.175 0.237 0.4337 0.437 0.459</td>). LL [2] in 8 0.431 0.433 0.659 1.244 0.133 0.629 1.309 1.740 1.740 1.750 0.776 0.776 0.175 0.176 0.175 0.176 0.175 0.176 0.175 0.237 0.4337 0.437 0.459
Tele Bis Experiment 2, renduels across condit C2 al for GUT 22 for GUT 24 for GUT 24 for GUT 24 for RT 26 GT V Est for RT 20 GTT(NT) LOG TT(NT) LOG TT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) 2 GUT * LOG TT(NT) 2 GUT * LOG TT(NT) 2 GUT * LOG TT(NT) 2 RT * LOG TT(NT	11h obstack come (return a 0.221 -0.221 -0.454 0.454 0.454 0.454 0.476 0.376 0.376 0.376 0.376 0.376 0.376 0.376 0.376 0.410 0.537 0.555 0.769 0.769 0.411 0.365 0.769 0.411 0.375 0.411 0.435 0.411 0.411 0.411 0.455 0.411 0.455 0.411 0.455 0.411 0.455 0.411 0.455	Lisble lovern CD in 7 0.107 0.259 0.259 0.259 0.265 0.139 1.210 1.220 0.259 0.420 0.420 0.420 0.420 0.420 0.420 0.420 0.420 0.420 0.420 0.420 0.421 0.422 0.422 0.421). LL D in 4 0.461 1.244 0.133 0.859 1.244 0.133 0.4029 1.309 1.309 1.760 1.419 1.419 1.419 1.419 1.419 0.759 0.173 0.173 0.175
Tebe BM. Experiment 2, renduals across condit C2 al for GUT 22 for GUT 32 for GUT 32 for GUT 32 for RT 32 for RT 32 for RT 32 for RT 32 for RT 34 for RT 35 for RT 36 for RT 36 for RT 36 for RT 36 for RT 37 for RT 36 GUT Y EST for RT LOG TT(NT) LOG TT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG GUT(NT) 40 for RT 10 fo	11h obstack 0000 (return of 0.223 0.454 0.455 0.459 0.459 0.459 0.459 0.459 0.459 0.470 0.370 0.410 0.370 0.411 0.359 0.411 0.459	Cable lowers Cable lowers </td <td>). LL [2] in 7 6.461 4.133 6.056 1.244 1.330 6.259 1.340</td>). LL [2] in 7 6.461 4.133 6.056 1.244 1.330 6.259 1.340
Tebe BM. Experiment 2, renduals acrow condit C2 al for GUT Std Err of Y Est for GUT al for RT a2 for GUT Std Err of Y Est for RT LOG TT(NT) LOG TT(NT) = (LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) LOG TT(NT) Std Err (LOG TT(NT) a2 GUT * LOG TT(NT) a2 GUT * LOG TT(NT) a2 RT * LOG TT(NT) a2 RT * LOG TT(NT) satt * LOG * LO	III obstack cose (retrin 4 4.234 4.234 4.2444 4.2444 4.2444 4.2444 4.2444 4.2444 4.2444 4.24444 4.244444 4.244444444	Child Elevent). LL [2] in 8 0.451 0.453 0.056 1.244 0.133 0.229 1.300 1.740 1.740 1.740 1.740 0.796 0.796 0.775 0.175 0.176 0.175 0.275
Tele Bile. Experiment 2, renduels errors condit C2 al for GUT 22 for GUT 24 for GUT 24 for GUT 24 for GUT 24 for GUT 24 for RT 24 for RT 24 for RT 24 for RT 25 for RT 26 fT (NT) LOG TT(NT) LOG TT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG GUT(NT) 26 GUT * LOG TT(NT) 26 GUT * LOG TT(NT) 27 T * LOG TT(NT) 28 GUT * 1 + (22 * log TT[NT]) E42 GUT = 1 + (22 * log TT[NT]) E43 RT = 1 + (22 * log TT[NT]) E43 R	ILI ODSTAL 0008 (retrins 4.459 0.223 -4.459 0.669 0.459 0.669 0.490 0.376 -0.410 0.376 -0.410 0.376 -0.410 0.376 -0.410 0.375 0.400 0.375 0.400 0.375 0.411 0.439 0.451 0.459 0.451). LL D in V 6.461 4.133 6.059 1.244 1.330 6.133 6.029 1.349 1.349 1.419 6.479 6.479 6.476 6.175 6.237 6.175 6.237 6.237 6.237 6.454 6.237 6.454 6.237 6.454 6.237 6.454 6.237 6.454 6.237 6.454 6.237 6.454 6.237 6.454 6.237 6.454 6.237 6.454 6.237 6.454 6.237 6.455 6.237 6.454 6.237 6.456 6.237 6.456 6.237 6.456 6.237 6.456 6.237 6.456 6.237 6.456 6.237 6.456 6.237 6.456 6
Teleb BM. Experiment 2, renduals across condit C2 al for GUT Std Err of Y Est for GUT al for RT al for RT al for RT al for RT Std Err of Y EST for RT LOG TT(NT) LOG TT(NT) LOG TT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG GUT(NT) COG GUT(NT) COG GUT(NT) COG GUT(NT) COG GUT(NT) COG TT(NT) COG COT COG TT(NT) COG TT(NT) C	11h obstack cons (retrins 4 4.223 4.454 4.230 4.459 4.200	Lobic layers CLD in 7 0.107 0.250 0.254 0.254 0.256 0.158 1.240 0.401 0.256 0.156 1.240 0.402 0.409 0.379 0.4091 0.4091 0.4092 0.329 0.202 0.501 0.3179). LL [2] in V 0.451 0.453 0.859 1.244 0.133 0.829 1.390 1.740 1.740 1.740 1.740 1.740 0.679 0.776 0.176
Tele Bile Experiment 2, renduels error condit C2 al for GUT 22 for GUT 32 for GUT 32 for GUT 34 for RT 34 for RT 34 for RT 35 for RT 36 for RT 37 for RT 36 for RT	111. obstack 0000 (returns) 0.223 -0.454 0.224 -0.454 0.240 -0.379 0.376 0.376 0.376 0.410 0.376 0.410 0.376 0.410 0.376 0.410 0.376 0.410 0.376 0.411 0.459 0.761 0.411	Cable lovern Cable lovern Cable lovern 0.107 0.107 0.107 0.107 0.107 0.120 0.121 0.120 0.121 0.400 0.379 0.409 0.379 0.409 0.379 0.409 0.379 0.409 0.379 0.409 0.379 0.409 0.379 0.409 0.379 0.409 0.379 0.409 0.379 0.409 0.379 0.409 0.329 0.201 0.329 0.202 0.543 0.511 0.170 0.312). LL D in 8 0.451 0.451 0.451 0.455 1.244 0.133 0.029 1.309 1.760 1.760 1.410 1.410 1.409 0.476 0.173 0.176 0.176 0.175 0.176 0.175 0.454 0.454 0.454 1.424 1.425 1.424 1.425 0.454 0.455 0.454 0.455 0
Tele Bill. Experiment 2, renduals across condit C2 al for GUT 22 for GUT 32 for GUT 32 for GUT 32 for GUT 32 for RT 32 for RT 32 for RT 32 for RT 34 for RT 35 for RT 36 for RT ST 36 for RT 37 for RT 36 for RT 36 for RT 37 for RT 36 for RT 36 for RT 37 for RT 36 for RT 36 for RT 37 for RT 36 for RT 37 for RT 36 for RT 36 for RT 36 for RT 37 for RT 36 for RT 37 for RT 36 fo	11h obstack 0000 (return of the second of	Cable lowers Cable lowers </td <td>). LL D in V 6.461 4.133 6.059 1.244 1.299 1.399 1.730 1.730 6.479 6.479 6.479 6.479 6.479 6.175 6.237 6.237 6</td>). LL D in V 6.461 4.133 6.059 1.244 1.299 1.399 1.730 1.730 6.479 6.479 6.479 6.479 6.479 6.175 6.237 6.237 6
The BM. Experiment 2, renduals across condit Table BM. Experiment 2, renduals across condit C2 al for GUT Std Err of Y Est for GUT al for RT al for RT al for RT Std Err of Y EST for RT LOG TT(NT) LOG TT(NT) LOG TT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) LOG TT(NT) Std Err - LOG TT(NT) al GUT + LOG TT(NT) al RT + LOG TT(NT) al RT + LOG TT(NT) std GUT = al + (al * log TT[NT] Bat GUT = al + (al * log TT[NT] Bat RT = al + (al * log TT[NT] big real GUT = log GUT(NT) - Ead GUT log real GUT = log GUT(NT) - Ead RT log real RT = log RT(NT) - Ead RT log real RT = log RT(NT) - Ead RT	111. obstack 0000 (returns 0.223 0.424 0.425 0.426 0.427 0.428 0.429 0.439 0.429 0.419 0.429 0.411 0.439 0.411 0.439 0.411 0.439 0.411 0.439 0.411 0.439 0.411 0.439 0.411 0.439). LL [2] in ¥ 0.461 0.433 0.859 1.244 0.133 0.629 1.309 1.740 1.740 1.740 0.796 0.796 0.175 0.175 0.176 0.175 0.176 0.175 0.176 0.175
Tele Bile Experiment 2, renduals across condu C2 al for GUT 22 for GUT 24 for GUT 24 for GUT 24 for GUT 34 for AT 24 for AT 24 for AT 25 for AT 24 for AT 25 for AT 26 for AT 27 for AT 26 for AT 26 for AT 26 for AT 27 for AT 26 for AT 26 for AT 26 for AT 26 for AT 27 for AT 26 for AT 26 for AT 27 for AT 26 for AT 26 for AT 26 for AT 27 for AT 26 for AT 26 for AT 26 for AT 27 for AT 26 for AT	111. obstack 0000 (return 112-30 0.223 -4.454 0.240 -0.376 -0.376 -0.410 0.376 -0.410 0.376 -0.410 0.376 -0.410 0.376 -0.410 0.376 -0.410 0.376 -0.410 0.459 0.451 0.452 0.761 -0.430 0.761 -0.2241 -0.859	• • •:rable levers • •:rabl). LL D in V 6.461 4.133 6.659 1.244 1.309 1.409 0.331 0.334 0.334 0.334 0.344 0.344 0.344 0.344 0.344 0.344 0.344 0.344 0.345 0.355 0

Table B29. Experiment 2, renduals across conditions (retractable levers).

al for GUT 4.427 1.576 4.741 al for GUT 4.364 1.311 4.819 al for RT 4.364 1.311 4.819 al for RT 4.463 4.477 1.357 GUT 4.364 4.477 1.357 LOG TT(NT) 1.284 4.19 4.663 LOG TT(NT) 1.284 1.194 4.194 LOG TT(NT) 1.284 1.194 4.195 LOG RT(NT) 1.284 1.597 1.506 LOG RT(NT) 6.676 6.596 1.597 LOG GUT(NT) 6.676 6.418 6.528 1.597 LOG GUT(NT) 6.679 4.295 6.755 1.597 LOG GUT(NT) 1.166 1.435 4.627 4.635 2 GUT * LOG TT(NT) 1.166 1.435 4.627 4.635 2 GUT * LOG TT(NT) 1.136 6.459 4.128 6.777 Ext CU GUT T(NT) woba 1.224 6.459 4.135 e2 GUT = 1.4 (c2 * log TT(NT) 4.647 4.131 4.627 Ext ST = al + (c2 * log TT(NT)		LL=10	LL D in Z	LL D in J
$ 2 \mbox{for GUT} 4444 1311 4499 Sel Err of Y, Esr (or GUT 4346 449 447) 1357 2 \mbox{for RT} 4449 447 1357 2 \mbox{for RT} 4449 447 1357 2 \mbox{for RT} 4449 447 1357 1357 2 \mbox{for RT} 4449 447 1357 1357 1357 1357 1357 1357 1357 135$	al for GUT	0.427	-1.576	0.761
Std Err of Y Ext for GUT 9.340 9.341 9.341 al for RT 9.364 9.477 1.357 2 for RT 9.364 9.477 1.357 2 for RT 9.364 9.442 9.465 Std Err of Y EST for RT 9.136 9.139 8.272 LOG TT(NT) 1.280 1.149 1.246 LOG RT(NT) 6.873 8.564 1.536 LOG RT(NT) 6.873 8.564 1.536 LOG GUT(NT) 6.873 8.564 1.537 LOG GUT(NT) 6.874 6.279 6.957 LOG GUT(NT) -1.166 1.455 4.874 2 GUT * LOG TT(NT) -1.166 1.455 4.874 2 GUT * LOG TT(NT) 1.246 8.959 6.165 2 RT * LOG TT(NT) 1.246 8.959 6.165 2 RT * LOG TT(NT) 4.647 4.12 6.773 Earl GUT = al + (a2 * log TT(NT) 4.647 4.12 6.733 Earl GUT = al + (a2 * log TT(NT) 6.453 6.451 1.4635 Earl AT = al + (a2 * log TT(NT) 6.454 4.453	a2 for GUT	-4.864	1.311	4.019
al for RT 4.469 4.479 1.357 2 for RT 6.76 RT 6.76 RT 6.76 4.462 6.463 5 sd En of Y EST for RT 6.156 6.156 6.462 6.463 1.005 TT(NT) 1.226 1.116 1.224 1.005 TT(NT) 4.05 1.146 1.224 1.005 RT(NT) 4.05 1.146 1.224 1.005 RT(NT) 4.05 1.146 1.224 1.005 RT(NT) 4.05 1.156 1.005 RT(NT) 4.05 1.156 1.005 GUT(NT) 4.05 1.156 1.005 GUT(NT) 4.05 1.156 1.005 GUT(NT) 4.05 1.156 2.007 1.005 TT(NT) 1.116 1.455 4.719 2.007 1.005 TT(NT) 1.116 1.455 4.719 2.007 1.005 TT(NT) 1.116 1.455 4.719 2.007 1.005 TT(NT) 1.116 1.455 4.724 2.007 1.005 TT(NT) 1.115 4.751 4.824 2.007 1.005 TT(NT) 4.115 4.751 4.824 2.007 1.005 TT(NT) 4.619 4.122 4.757 End GUT= 4.1 + (2 ² log TT(NT)) 4.619 4.122 4.757 End GUT= 4.1 + (2 ² log TT(NT)) 4.619 4.123 4.773 End GUT= 4.1 + (2 ² log TT(NT)) 4.619 4.113 4.622 End RT= 4.1 + (2 ² log TT(NT)) 4.619 4.11 4.622 End RT= 4.1 + (2 ² log TT(NT)) 4.649 4.153 4.411 1.462 End RT= 4.1 + (2 ² log TT(NT)) 4.640 4.169 4.641 6.974 2.077 4.041 1.222 1.05 End RT= 4.1 + (2 ² log TT(NT)) 4.640 4.169 4.644 1.05 End RT= 4.1 + (2 ² log TT(NT) 4.640 4.169 4.644 1.05 End RT= 4.1 + (2 ² log TT(NT) 4.644 4.151 1.05 End RT= 4.1 + (2 ² log TT(NT) 4.644 4.151 1.05 End RT= 4.0 RT(NT) - End RT 4.640 4.169 4.644 1.05 End RT= 4.0 RT(NT) - End RT 4.640 4.169 4.644 1.05 End RT= 4.0 RT(NT) - End RT 4.644 4.169 1.05 End RT= 4.0 RT(NT) - End RT 4.644 4.169 1.05 End RT= 4.0 RT(NT) - End RT 4.644 4.169 1.05 End RT= 4.0 RT(NT) - End RT 4.644 4.131 1.05 End RT= 4.1 + (2 ² log TT(NT) 4.054 5.22 1.22 2.20 T 1.005 TT(NT) - End RT 4.147 4.057 2.20 T 1.005 TT(NT) - End RT 4.031 4.044 4.639 2.20 T 1.005 TT(NT) - End RT 4.031 4.044 4.639 2.20 T 1.005 TT(NT) - End RT 4.031 4.044 4.23 2.20 T 1.005 TT(NT) - End RT 4.125 4.047 1.05 End RT= 4.1 + (2 ²	Std Err of Y, Eat for GUT	6.366	6.416	9.966
	al for RT	4.683	-0,479	1.357
Std Err of Y EST for RT 0.150 0.150 0.150 0.150 LOG TT(NT) 1.200 1.140 1.254 1.140 1.254 LOG TT(NT) 0.653 0.536 0.536 1.540 LOG RT(NT) 0.653 0.536 0.536 0.536 LOG RT(NT) 0.656 0.524 0.566 0.557 LOG GUT(NT) 0.656 0.296 0.559 0.556 0.556 0.556 LOG GUT(NT) 0.657 0.6	a2 for RT	0.966	0.842	0.065
	Std Err of Y EST for RT	0.1.50	0.190	0.020
LOG T1(NT) L280 1140 1244 LOG T1(NT) 4503 6.546 1.536 LOG RT(NT) 6.610 6.522 1.566 LOG GUT(NT) 6.600 6.973 6.959 LOG GUT(NT) 6.600 6.973 6.959 LOG GUT(NT) 4.000 6.973 6.959 LOG GUT(NT) 4.000 6.973 6.959 2 GUT * LOG TT(NT) 1.186 1.453 4.874 2 GUT * LOG TT(NT) 1.197 1.196 6.959 6.959 2 GUT * LOG TT(NT) wobs 4.951 6.211 6.959 6.195 2 RT * LOG TT(NT) mobs 6.959 6.195 6.737 Eat RT = at + (a2 * log TT[NT]) 4.619 4.955 6.737 Eat RT = at + (a2 * log TT[NT]) 4.633 6.411 1.462 Eat RT = at + (a2 * log TT[NT]) 4.633 6.411 4.625 Eat RT = at + (a2 * log TT[NT]) 6.633 6.411 4.625 Eat RT = at + (a2 * log TT[NT]) 6.633 6.414 6.169 Eat RT = at + (a2 * log TT[NT]) 6.633	LOG TT(NT)	1.200	1_110	1.237
LOG RT(NT) 6.613 6.513 6.514 LOG RT(NT) 6.613 6.524 1.586 LOG RT(NT) 6.610 6.524 1.586 LOG RT(NT) 6.610 6.524 1.586 LOG GUT(NT) 6.610 6.524 1.597 LOG GUT(NT) - 4.646 6.673 6.455 LOG GUT(NT) - 1.683 1.521 4.874 2 GUT * LOG TT(NT) 1.156 1.455 4.674 2 GUT * LOG TT(NT) 1.159 6.979 6.165 2 RT * LOG TT(NT) 4.614 4.625 6.777 Ea1 GUT= a1 + (a2 * log TT[NT]) 4.619 4.055 6.777 Ea2 GUT = a1 + (a2 * log TT[NT]) 4.619 4.053 6.411 1.442 Ea2 RT = a1 + (a2 * log TT[NT]) 4.633 6.411 1.442 1.581 Ea3 GUT= a1 + (a2 * log TT[NT]) 4.633 6.411 4.422 log TT[NT] 4.640 6.659 4.121 6.777 Ea3 GUT= a1 + (a2 * log TT[NT]) 6.554 6.533 6.411 4.422 log TT[NT] 6.564 5.56 6.513 </td <td>LOG TT(NT)~</td> <td>1.200</td> <td>1.160</td> <td>1.268</td>	LOG TT(NT)~	1.200	1.160	1.268
LUG R (I(NT) - 6.733 6.534 1.546 LOG R (I(NT) - 6.754 1.546 LOG R (I(NT) - 6.756 6.279 6.959 LOG GUT(NT) - 4.644 6.975 6.959 LOG GUT(NT) - 4.644 6.975 6.959 LOG GUT(NT) - 1.146 1.453 6.874 2 GUT - LOG TT(NT) 1.146 1.453 6.874 2 GUT - LOG TT(NT) 1.126 6.384 6.165 2 RT - LOG TT(NT) w/dx 4.159 6.164 6.175 2 RT - LOG TT(NT) w/dx 4.159 6.121 6.757 Eat GUT = at + (a2 ' log TT(NT) / 4.619 4.635 6.777 Eat GUT = at + (a2 ' log TT(NT) / 6.556 6.451 1.462 Eat RT = at + (a2 ' log TT(NT) / 6.556 6.451 1.462 Eat RT = at + (a2 ' log TT(NT) / 6.556 6.451 1.462 Eat RT = at + (a2 ' log TT(NT) / 6.556 6.451 1.462 Eat RT = at + (a2 ' log TT(NT) / 6.556 6.477 6.411 Eat RT = at (ag RT(NT) / Eat RT / <td>LOG TI(NT) w/ob/</td> <td></td> <td></td> <td>1.669</td>	LOG TI(NT) w/ob/			1.669
LOG RT(NT) 0.310 0.321 1.587 LOG RT(NT) 0.699 0.299 0.959 LOG GUT(NT) 0.690 0.995 0.955 LOG GUT(NT) 0.606 0.995 0.955 LOG GTT(NT) 1.166 1.455 4.874 2 GUT * LOG TT(NT) 1.183 1.521 4.874 2 GUT * LOG TT(NT) 1.216 6.459 0.195 2 GUT * LOG TT(NT) 1.216 6.459 0.195 2 GUT * LOG TT(NT) wdos 0.159 0.155 2 RT * LOG TT(NT) wdos 0.159 0.155 2 RT * LOG TT(NT) wdos 0.159 0.155 Eat RT = al + (a2 * log TT[NT]) 4.619 4.633 0.111 2 Bat GUT = al + (a2 * log TT[NT]) 0.633 0.411 1.422 Eat RT = al + (a2 * log TT[NT]) 0.633 0.411 0.425 Eat RT = al + (a2 * log TT[NT]) 0.633 0.411 0.425 Eat RT = al + (a2 * log TT[NT]) 0.633 0.411 0.425 Eat RT = al + (a2 * log TT[NT]) 0.633 0.411 0.425 Eat	LOG RT(NT)	0.033	0.590	1.530
	LOG RI(NI)=	0.610	0.3ZI	1.306
	LOG CLETONED			1.30/
Loo G UT (NT) wide 1719 2 GUT * LOG TT(NT) 1.146 1.455 4.874 2 GUT * LOG TT(NT) 1.145 1.455 4.874 2 GUT * LOG TT(NT) 1.136 1.455 4.874 2 GUT * LOG TT(NT) 1.236 4.846 4.854 2 RT * LOG TT(NT) 1.236 6.849 6.145 2 RT * LOG TT(NT) 4.619 4.121 6.773 East GUT = at + (a2 * log TT[NT]) 4.619 4.815 6.773 East GUT = at + (a2 * log TT[NT]) 4.619 4.825 6.775 East GUT = at + (a2 * log TT[NT]) 4.633 6.411 1.455 East RT = at + (a2 * log TT[NT]) 6.633 6.411 1.455 East RT = at + (a2 * log TT[NT]) 6.556 6.451 1.455 East RT = at + (a2 * log TT[NT]) widos East RT 6.640 6.169 East RT = at + (a2 * log TT[NT) widos East RT 6.640 6.164 East RT = at + (a2 * log TT[NT) widos East RT 6.640 6.164 East RT = log RT(NT) - East RT 6.640 6.164 6.164 East RT = log RT(NT) widos East RT			4.441	0.939
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		-	4.475	1 71 0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.1 144	1.455	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	*2 GUT * LOG TT(NT)~	1 417	1 525	
a2 RT * LOG TT(NT) 1236 6.399 6.195 a2 RT * LOG TT(NT) 1.159 6.399 6.165 a2 RT * LOG TT(NT) 1.159 6.399 6.166 a2 RT * LOG TT(NT) 4.675 4.121 6.777 Bat GUT = a1 + (a2 * log TT(NT) 4.619 4.055 6.777 Bat GUT = a1 + (a2 * log TT(NT) 4.619 4.055 6.777 Bat GUT = a1 + (a2 * log TT(NT) 6.533 6.411 1.462 Bat RT = a1 + (a2 * log TT(NT) 6.535 6.451 1.465 Bat RT = a1 + (a2 * log TT(NT) 6.554 6.451 1.462 Bar RT = a1 + (a2 * log TT(NT) 6.554 6.451 6.451 Bar RT = a1 + (a2 * log TT(NT) 6.624 6.144 6.155 Bar RT = log RT(NT) Eat RT 6.464 6.166 Bar rest RT = log RT(NT) Eat RT 6.464 6.166 Bar rest RT = log RT(NT) Wobs = Eat RT 6.464 6.166 Bar rest RT = log RT(NT) Eat RT 6.354 6.077 6.441 Bar rest RT = log RT(NT) Eat RT 6.354 6.077 6.441	aZ GUT * LOG TT(NT) m/chs	1.447	1.041	
	AZ RT + LOG TT(NT)	1.236	6.176	0.105
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 RT * LOG TT(NT)~	1.159	4.910	0.106
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	a2 RT * LOG TT(NT) w/obs			0.159
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Eat1 GUT = a1 + (a2 * log TT[NT])	-0.679	-0121	0.737
En3 GUT= al + (a2 * log TT[NT]) 6.633 6.411 1.462 Earl RT= al + (a2 * log TT[NT]) 6.633 6.411 1.462 Earl RT= al + (a2 * log TT[NT]) 6.535 6.451 1.462 Earl RT= al + (a2 * log TT[NT]) 6.535 6.451 1.462 Earl RT= al + (a2 * log TT[NT] works) 1.516 1.516 1.522 log real GUT= log GUT(NT) - Earl GUT 6.940 0.144 0.152 log real RT = log RT(NT) - Earl RT 4.640 0.169 0.944 log real RT = log RT(NT) - Earl RT 4.640 0.169 0.944 log real RT = log RT(NT) - Earl RT 4.640 0.169 0.944 log real RT = log RT(NT) - Earl RT 0.944 0.915 0.914 log real RT = log RT(NT) - Earl RT 0.915 1.107 0.914 log real RT = log RT(NT) - Earl RT 0.915 1.107 0.914 al for GUT 1.677 1.677 0.914 0.916 al for RT 0.916 0.916 0.916 0.916 LOG TT(NT) 1.167 0.917 0.211 0.916 LOG TT(NT) 1.169 1.24	Est2 GUT = a1 + (a2 * log TT[NT] -)	4.610	-0.055	0.737
	Est3 GUT= a1 + (a2 * log TTINT) w/obs)			¢.725
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Esti RT= al + (a2 * logTT[NT])	0.633	0.411	1.462
East RT = al + (a2 * log TTINT) wides) 1.516 log real GUT = log GUT(NT) - East GUT 6.492 0.141 0.222 log real GUT = log GUT(NT) - East GUT 0.994 0.642 0.144 0.154 log real GUT = log GUT(NT) - East RT 0.642 0.144 0.154 log real RT = log RT(NT) - East RT 0.640 0.164 0.646 0.646 log real RT = log RT(NT) - East RT 0.640 0.646 0.646 0.646 log real RT = log RT(NT) - East RT 0.640 0.646 0.646 0.646 0.646 log real RT = log RT(NT) - East RT 0.640 <td< td=""><td>Est2 RT= al + (a2 * logTT[NT]~)</td><td>0.556</td><td>0.451</td><td>1.465</td></td<>	Est2 RT= al + (a2 * logTT[NT]~)	0.556	0.451	1.465
	Est3 RT = a1 + (a2 * logT1[NT] w/obs)			1.516
$\label{eq:restrict} \begin{array}{cccccccccccccccccccccccccccccccccccc$	log rest GUT = log GUT(NT) - Eart1 GUT	0.709	0.411	●. 222
	log res2 GUT = log GUT(NT) ~ - Ent2 GUT	9.692	0148	0.3.54
	log res3 GUT = log GUT(NT) w/obs Est3 GUT			4.994
$ log real R I = log RI(NI)^ Ea2 R I $	log res1 RT= log RT(NT) - Est1 RT	-4.644	0169	0.062
	log res2 K1 = log K1(NT) - Eat2 KT	0.054	0.077	0.041
$\label{eq:second} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	IO TOUS KI + IO KI(NI) WODE - EAU KI		_	0.371
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$R_{\rm e}$ -OFTET INTERCOL ($R_{\rm e}$) 78% OD8 = DECUTE, USAVE: W	nu obraci	es).	
ai for GUT 1.477 1.477 1.477 6.474 al for GUT 6.935 1.225 6.274 al for GUT 6.935 1.225 6.274 al for GUT 6.935 1.225 6.274 al for RT 6.946 6.140 6.940 6.140 al for RT 6.947 4.444 1.351 al for RT 1.978 6.997 6.231 Sud Err of Y EST for RT 6.316 6.140 6.404 LOG TT(NT) 1.259 1.246 1.349 LOG TT(NT) * 1.169 1.240 1.340 LOG RT(NT) * 6.316 6.444 1.620 LOG RT(NT) * 6.316 6.444 1.620 LOG RT(NT) * 6.316 6.444 1.620 LOG GUT(NT) * 6.316 6.446 1.620 LOG GUT(NT) * 6.316 6.446 1.620 LOG GUT(NT) * 1.451 1.544 6.312 2 GUT * LOG TT(NT) * 1.445 1.250 1.351	Table B17 Ferrerument 7 renduals across conduct		ممسما ملخده	۸
	Table B32. Experiment 2, renduals across condit	ote (retra	ctable levers	i). 11.12 in 1
	Table B32. Experiment 2 renduals across condit C-4 al for GUT	ions (retra LL = 10 -1.077	ctable levers LL D in 2 -1.079). LL D in I
al for RT 4447 4444 1331 a2 for RT 4447 1351 a2 for RT 1977 4444 1351 b3 dErr of Y EST for RT 6316 6446 6456 LOG TT(NT) 1256 1246 1336 LOG TT(NT) 1256 1246 1346 LOG TT(NT) 1256 1246 1346 LOG TT(NT) 1600 LOG RT(NT) 1600 LOG GUT(NT) 1600 2 GUT 2 LOG TT(NT) 1146 1455 1546 1459 LOG RT(NT) 1600 2 GUT 2 LOG TT(NT) 1146 1455 1546 4312 2 GUT 2 LOG TT(NT) 1546 1125 4357 Esti GUT= a1 + (a2 2 log TT[NT]) 6455 6445 1220 Esti GUT= a1 + (a2 2 log TT[NT]) 6455 6441 1455 Esti GUT= a1 + (a2 2 log TT[NT]) 6455 6441 1455 Esti GUT= a1 + (a2 log TT[NT]) 6456 6441 1455 Esti GUT= a1 + (a2 log TT[NT]) 6456 6441 1455 Esti GUT= a1 + (a2 log TT[NT]) 6456 6441 1455 Esti GUT= a1 + (a2 log TT[NT]) 6456 6441 1455 Esti GUT= a1 + (a2 log TT[NT]) 6456 6441 1455 Esti GUT= a1 + (a2 log TT[NT]) 6456 6441 1455 Esti GUT= a1 + (a2 log TT[NT]) 6456 6441 1455 Esti GUT= a1 + (a2 log TT[NT]) 6456 6441 1455 Esti GUT= a1 + (a2 log TT[NT]) 6456 6441 1455 Esti GUT= a1 + (a2 log TT[NT]) 6456 6441 1455 Esti GUT= a1 + (a2 log TT[NT]) 6456 6441 1455 Esti GUT= a1 + (a2 log TT[NT]) 6456 6441 1455 Esti GUT= a1 + (a2 log TT[NT]) 6456 6441 1455 Esti GUT= a1 + (a2 log TT[NT]) 6456 6441 1455 Esti GUT= a1 + (a2 log TT[NT]) 6456 6441 1455 Esti GUT= a1 + (a2 log TT[NT]) 6456 6441 1455 Esti GUT= a1 + (a2 log TT[NT]) 6456 6451 1220 Esti GUT= a1 + (a2 log TT[NT]) 6456 6451 1256 Esti GUT= a1 + (a2 log TT[NT]) 6456 6451 1256 Esti GUT= a1 + (a2 log TT[NT]) 6456 6451 1256 Esti GUT= a1 + (a2 log TT[NT]) 6456 6451 1256 Esti GUT= a1 + (a2 log TT[NT]) 6456 6451 1256 Esti GUT= a1 + (a2 log TT[NT]) 6456 6451 14557 log real GUT= a1 + (a2 log TT[NT]) 6456	Table B32. Experiment 2, renduals across condit C-4 al for GUT a2 for GUT	LL= 30 -1.077 0.935	ctable levers LL D in 2 -1.079 1.225). 111 D in 1 0.906 0.220
	Table B32. Experiment 2, renduals across condit C-4 al for GUT 22 for GUT Stid Err of Y Est for GUT	LL = 30 -1.077 0.935 0.060	ctable levers LL D in 2 -1.079 1.225 0.180). LL D in 8 0.906 0.220 0.030
Sub Err of Y EST for RT 4.310 6.140 6454 LOG TT(NT) 1.256 1.240 1.336 LOG TT(NT) 1.256 1.240 1.336 LOG TT(NT) 6.316 6.446 1.470 LOG RT(NT) 6.316 6.446 1.470 LOG GUT(NT) 6.316 6.446 1.470 LOG GUT(NT) 6.316 6.446 1.470 LOG GUT(NT) 0.316 6.446 1.470 LOG GUT(NT) 1.149 1.319 6.273 LOG GUT(NT) 1.149 1.319 6.273 2 GUT * LOG TT(NT) 1.344 1.325 6.367 2 GUT * LOG TT(NT) 1.344 1.325 6.367 2 RT * LOG TT(NT) 1.344 1.226 6.371 2 GUT * LOG TT(NT) 1.344 1.226 6.371 Ext T * LOG TT(NT) 1.344 1.226 6.371 Ext T * LOG TT(Table BJ2 Experiment 2 renduals across condit C-4 al for GUT a2 for GUT Sud Err of Y Ent for GUT al for RT	-1.077 0.935 0.060 -0.892	ctable levera LL D in 2 -1.079 1.225 0.180 -0.444). LL D in 8 0.906 0.220 0.030 1.351
LOG TT(NT) 1259 1240 1330 LOG TT(NT) 1259 1240 1330 LOG TT(NT) 1400 LOG TT(NT) 1400 LOG RT(NT) 1400 LOG RT(NT) 1400 LOG RT(NT) 150 LOG RT(NT) 150 LOG RT(NT) 150 LOG GUT(NT) 150 LOG GUT(NT) 150 LOG GUT(NT) 150 LOG GUT(NT) 1140 2 GUT 2 LOG TT(NT) 1040 2 GUT 2 LOG 2 LOG 104 2 GUT 2 LOG 2 LOG 2 LOG 104 2 GUT 2 LOG 2 LOG 104 2 GUT 2 LOG 2 LOG 2 LOG 104 2 GUT 2 LOG 2 LOG 104 2 GUT 2 LOG 2 LOG 104 2 GUT 2 LOG 2 LOG 2 LOG 104 2 GUT 2 LOG 2 LOG 104 2 GUT 2 LOG 2 LOG 104 2 GUT 2 LOG 2 LOG 2 LOG 104 2 GUT 2 LOG 2 LOG 104 2 GUT 2 LOG 2 LOG 104 2 GUT 2 LOG 2 LOG 2 LOG 104 2 GUT 2 LOG 2 LOG 104 2 GUT 2 LOG 2 LOG 2 LOG 104 2 GUT 2 LOG 2 LOG 104 2 GUT 2 LOG 2 LOG 104 2 GUT 2 LOG 2 LOG 2 LOG	Teble BJ2. Experiment 2 renduals across coadu C-1 al for GUT al for GUT Std Err of Y Est for GUT al for RT al for RT	10008 (retra LL=30 -1.077 0.935 0.060 -0.892 1.078	ctable levera LL D in 2 -1.079 1.225 0.180 -0.444 0.907). 0.906 0.220 0.030 1.351 0.231
LOG TT(NT)~ 1169 1269 1479 LOG RT(NT) wobs 1649 1649 LOG RT(NT) 6.310 6.444 1479 LOG RT(NT) 6.739 6.710 1679 LOG RT(NT) 6.310 6.444 1420 LOG RT(NT) 6.310 6.444 1479 LOG RT(NT) 6.310 6.444 1479 LOG GUT(NT) 6.310 6.444 1959 LOG GUT(NT) 6.310 6.444 1959 LOG GUT(NT) 1.451 1.519 6.223 2 GUT * LOG TT(NT) 1.445 1.544 6.312 2 GUT * LOG TT(NT) 1.344 1.125 6.307 2 RT * LOG TT(NT) 1.344 1.325 6.307 2 RT * LOG TT(NT) 6.405 1.270 8.332 2 RT * LOG TT(NT)	Table BJ2 Experiment 2, renduals across condit C4 al for GUT s2 for GUT Std Err of Y En for GUT al for RT s2 for RT Std Err of Y EST for RT	1000 (retra 112 - 30 -1.077 0.935 0.040 -0.892 1.078 0.310	ctable levers LL D in 2 -1.079 1.225 0.180 -0.444 0.907 0.140). 0.906 0.720 0.030 1.351 0.231 0.030
LOG TT(NT) 6.310 6.440 LOG RT(NT) 6.310 6.460 LOG RT(NT) 6.310 6.470 LOG RT(NT) 6.310 6.470 LOG RT(NT) 6.310 6.440 LOG RT(NT) 6.310 6.440 LOG GUT(NT) 6.310 6.440 LOG GUT(NT) 6.440 6.470 LOG GUT(NT) 1.169 1.519 LOG GUT LOG TT(NT) 1.145 1.544 2 GUT * LOG TT(NT) 1.345 1.6312 2 GUT * LOG TT(NT) 1.344 1.125 2 GUT * LOG TT(NT) 1.344 1.25 2 RT * LOG TT(NT) 4.354 4.371 Batl GUT= al + (a2 * log TT[NT]*) 6.495 6.465 2 RT * al + (a2 * log TT[NT]*) 6.495 <	Table BJ2 Experiment 2, renduals across could C-4 al for GUT sud Err of Y Ent for GUT al for RT al for RT sud Err of Y EST for RT LOG TT(INT)	0000 (retra LL= 30 -1.077 0.935 0.040 -0.892 1.078 0.310 1.250	ctable levers LL D in 2 -1.079 1.225 0.180 -0.444 0.907 0.140 1.240). LL D in 1 6.9% 6.220 6.9% 1.351 6.231 6.9% 1.359 1.359
LOG RT(NT) 6.310 6.440 1.620 LOG RT(NT)~ 6.759 6.710 1.670 LOG RT(NT) w/dbs 1.776 1.760 1.776 LOG GUT(NT) 6.310 6.640 1.959 LOG GUT(NT) 6.310 6.640 1.959 LOG GUT(NT) 6.440 6.470 1.159 LOG GUT(NT) 1.440 6.470 1.321 2 GUT * LOG TT(NT) 1.145 1.544 6.312 2 GUT * LOG TT(NT) 1.445 1.544 6.312 2 RT * LOG TT(NT) w/dbs 6.357 6.351 6.344 2 RT * LOG TT(NT) w/dbs 6.357 6.352 6.357 2 RT * LOG TT(NT) w/dbs 6.357 6.352 6.440 1.291 Earl GUT= al + (a2 * log TT[NT]) 6.455 6.440 1.291 Earl GUT= al + (a2 * log TT[NT]) 6.455 6.441 1.551 Earl GUT = al + (a2 * log TT[NT]) 6.455 6.461 1.551 Earl ST = al + (a2 * log TT[NT]) 6.356 6.461 1.555	Table BJ2. Experiment 2, renduals across conduct C-1 al for GUT a2 for GUT Std Err of Y En for GUT a1 for RT a2 for RT Std Err of Y EST for RT LOG TT(NT) LOG TT(NT)	0000 (retra LL= 10 -1.077 0.935 0.060 -0.892 1.078 0.310 1.250 1.160	ctable levera LL D in 2 -1.079 1.225 0.180 -0.444 0.907 0.140 1.240 1.260). LL D in 8 0.220 0.030 1.351 0.231 0.030 1.330 1.420
LOG RT(INT) ~ 6.759 6.759 1.679 LOG RT(INT) w/dbs 1.774 1.759 1.679 LOG GUT(INT) w/dbs 6.310 6.640 1.959 LOG GUT(INT) ~ 6.310 6.640 1.959 LOG GUT(INT) ~ 1.240 1.319 1.359 LOG GUT ^ LOG TT(INT) ~ 1.445 1.544 6.312 2 GUT ^ LOG TT(INT) ~ 1.445 1.544 6.312 2 RT ^ LOG TT(INT) ~ 1.344 1.125 6.307 2 RT ^ LOG TT(INT) ~ 1.344 1.325 6.307 2 RT ^ LOG TT(INT) ~ 1.344 1.325 6.307 2 RT ^ LOG TT(INT) w/dbs 6.452 6.444 1.201 Ext R T = LOG TT(INT) w/dbs 6.455 6.441 6.357 Ext R T = al + (a2 * log TT[INT] w/dbs) 1.257 1.257 1.257 Ext R T = al + (a2 * log TT[INT] w/dbs) 1.257 1.256 6.441 1.554 Log rang GUT = log GUT(NT) - Ext GUT 6.216 6.451 1.554 6.359 1.772 Log rang GUT = log	Table BJ2 Experiment 2, renduals errors condit C4 al for GUT a2 for GUT staff cr GUT a1 for GUT a1 for RT a2 for RT Staff cr GY EST for RT LOG TT(NT) LOG TT(NT) wobs	0000 (retra LL=10 -1.077 0.935 0.040 -0.892 1.078 0.310 1.250 1.160	ctable levera LL D in 2 -1.079 1.225 0.180 -0.444 0.907 0.140 1.240 1.260). LL D in 8 6.906 6.220 0.030 1.351 6.030 1.330 1.420 1.630
	Table BJ2 Experiment 2, renduals errors condit C-4 al for GUT sub Errol Y En for GUT al for RT al for RT Sub Errol Y EST for RT LOG TT(NT) LOG TT(NT) LOG TT(NT) LOG TT(NT) LOG RT(NT)	0000 (retra LL=30 -1.077 0.935 0.000 -0.892 1.078 0.310 1.250 1.160 0.310	ctable levera LL D in 2 -1.079 1.225 0.180 -0.444 0.907 0.140 1.240 1.260 0.840). LL D in 8 0.906 0.220 0.030 1.351 0.231 0.030 1.330 1.420 1.630 1.620
	Table BJ2 Experiment 2, renduals errors conduct C-1 al for GUT a2 for GUT d2 for GUT d2 for GUT d2 for RT d2 for RT d2 for RT LOG TT(NT) LOG TT(NT) LOG TT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT)	0000 (retra LL= 30 -1.077 0.935 0.000 -0.892 1.078 0.310 1.250 1.160 0.310 0.750	ctable levers LL D in 2 -1.079 1.225 0.180 -0.444 0.507 0.140 1.240 1.240 0.540 0.710). LL 12 in 8 6.946 6.946 1.351 6.936 1.351 6.936 1.336 1.429 1.636 1.670
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Table BJ2 Experiment 2, renduals errors could C4 al for GUT a2 for GUT d1 for GUT d1 for RT a2 for RT Std Err of Y EST for RT LOG TT(NT) ~ LOG TT(NT) ~ LOG TT(NT) ~ LOG RT(NT) ~ LOG RT(NT) ~ LOG RT(NT) ~ LOG RT(NT) ~	one (retr. LL=10 -1.077 0.935 0.060 -0.892 1.076 0.310 1.250 1.360 0.310 0.750	ctable levers LL D in 2 -1.079 1.225 0.180 -0.444 0.507 0.140 1.240 1.260 0.540 0.710). LL 12 in 8 6.946 6.946 1.351 6.936 1.351 6.936 1.350 1.420 1.634 1.620 1.670 1.736
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Table BJ2 Experiment 2, renduals errors could C-4 al for GUT 32 for GUT al for GUT al for RT al for RT bid Err of Y Est for RT LOG TT(NT) LOG TT(NT) LOG TT(NT) LOG RT(NT) LOG RT(NT)	bone (retr. LL = 30 -1.077 0.935 0.640 -0.972 1.074 0.310 1.250 1.160 0.3100 0.310 0.3100 0.3100 0.3100 0.	ctable levers <u>LL D in 7</u> -1.079 1.225 0.130 -0.444 0.597 0.140 1.240 1.240 0.540 0.710 0.640). LL D in 8 0.906 0.220 0.030 1.351 0.231 0.030 1.330 1.420 1.634 1.670 1.736 1.050
LOG TI (NT) LISP	Table BJ2 Experiment 2, renduals errors condit C-1 al for GUT 2 for GUT 3 dd Err of Y En for GUT al for RT 3 dd Err of Y EST for RT LOG TT(NT) LOG TT(NT) LOG TT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT)	bone (retra LL-30 -1.077 0.935 0.646 -0.892 1.074 0.310 1.260 1.360 0.310 0.310 0.310 0.310 0.310	cuble levers LL D in 2 -1.079 1.225 0.150 -0.444 0.997 0.446 1.249 1.249 0.640 0.640 0.479). LL D in 8 6.906 6.220 6.030 1.351 6.231 6.030 1.420 1.670 1.670 1.670 1.150 1.150 1.150
a 2 GUT LOG TT(NT) w/dbs a 35 a 2 RT LOG TT(NT) 1.344 1.125 e.047 a 2 RT LOG TT(NT) 1.344 1.125 e.047 a 2 RT LOG TT(NT) 1.344 1.125 e.047 a 2 RT LOG TT(NT) w/dbs 6.357 e.337 a 2 RT LOG TT(NT) w/dbs 6.452 6.444 1.251 Bat1 GUT= a 1 + (a 2 * log TT[NT]) 6.495 6.444 1.251 Bat2 GUT= a 1 + (a 2 * log TT[NT]) 6.456 6.441 1.554 Bat3 GUT= a 1 + (a 2 * log TT[NT] w/dbs) 1.257 1.257 Bat3 RT = a 1 + (a 2 * log TT[NT] w/dbs) 1.257 1.257 Bat3 RT = a 1 + (a 2 * log TT[NT] w/dbs) 1.728 6.461 1.554 log read GUT = log GUT(NT) - Eat1 GUT 0.216 0.249 4.151 log read SUT = log GUT(NT) - Eat2 GUT 0.472 0.465 0.475 log read SUT = log RT(NT) - Eat2 RUT 0.497 0.408 0.159 4034 log read RT = log RT(NT) - Eat1 RT 0.447 0.447 <	Table BJ2 Experiment 2, renduals errors could C4 al for GUT a2 for GUT staff or 0 Y En for GUT a1 for RT a2 for RT Staff or 0 Y EST for RT LOG TT(NT) LOG TT(NT) LOG TT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG GUT(NT) LOG TT(NT) LOG LOG LOG LOG LOG LOG LOG LOG LOG LOG	bone (retra LL-30 -1.077 0.935 0.664 0.689 0.689 0.310 0.310 0.310 0.310 0.310 0.310 0.310 0.310	cuble levers 11 D in 2 -1,079 1,225 0,180 -8,444 0,997 -8,444 0,944 1,249 1,249 0,440 0,710 0,640 0,479 1,510). LL D in 8 6.206 6.226 6.036 1.351 1.420 1.420 1.670 1.670 1.559 1.256 1.256 1.256 1.256
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Table BJ2 Experiment 2, renduals errors could C-4 al for GUT 32 for GUT al for GUT al for RT al for RT bid Err of Y Ent for GUT al for RT bid Err of Y EST for RT LOG TT(NT) LOG TT(NT) LOG TT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG GUT(NT) LOG GUT(NT)	Done (retra LL = 10 -1.077 -0.935 -0.935 -0.935 -0.935 -0.927 -0.74 -0.174 -0.174 -0.174 -0.174 -0.174 -0.174 -0.174 -0.174 -0.174 -0.175 -0.174 -0.177 -0.935 -0.125 -0.116 -	cuble levers <u>LL D in 7</u> -1.079 1.225 0.140 -0.440 0.997 0.140 1.240 0.440 0.710 0.640 0.470 1.519 1.544). LL D in 8 0.229 0.330 0.231 0.231 0.231 0.231 0.231 1.359 1.429 1.434 1.479 1.479 1.479 1.559 1.230 0.231 0.232 0.231 0.232 0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Table BJ2 Experiment 2, renduals errors condit C-1 al for GUT al for GUT defor of Y En for GUT al for RT 2 for RT Sid Err of Y EST for RT LOG TT(NT) LOG TT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG GUT(NT) LOG GUT(NT) COG GUT(NT) LOG GUT(NT) COG TT(NT) COG CUT(NT) COG CUT(NT)	IL-10 -1.077 -0.975 0.060 -0.4972 1.074 0.310 0.310 0.310 0.310 0.310 0.440 1.169 1.045	Ctuble levers 1.07 -1.07 -1.07 1.225 0.140 0.240 0.240 1.240 1.260 0.440 0.719 0.646 0.476 1.519 1.544). LL D in 8 6.996 6.226 0.351 6.231 6.231 6.231 1.336 1.420 1.420 1.420 1.420 1.420 1.420 1.556 1.556 1.556 1.556 1.556 1.556 1.556 1.556 1.556 1.556 1.556 1.556 1.556 1.556 1.556 1.557 1.556 1.556 1.556 1.556 1.557 1.556 1.556 1.556 1.557 1.556 1.566 1
$ \begin{array}{c} a2 \ RT \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	Table BJ2 Experiment 2, renduals errors could C4 al for GUT a2 for GUT staff and the staff of GUT a1 for RT a2 for RT Staff and Y EST for RT LOG TT(NT) LOG TT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) COG GUT(NT) COG TT(NT) a2 GUT * LOG TT(NT)	International Contraction Cont	cable leven <u>ILD in 7</u> -1.079 -1.225 0.1840 -0.444 0.997 0.1440 1.246 0.446 0.719 0.6446 0.470 1.519 1.519 1.544 1.125). LL D in 8 6.996 6.296 6.296 0.231 6.296 0.231 6.296 1.351 1.351 1.429 1.429 1.429 1.420 1
	Table BJ2 Experiment 2, renduals errors coulds C-4 al for GUT 32 for GUT 32 for GUT al for RT 32 for RT 33 d Err of Y Est for RT LOG TT(NT) - LOG TT(NT) - LOG TT(NT) - LOG RT(NT) - LOG RT(NT) - LOG RT(NT) - LOG RT(NT) - LOG GUT(NT) - LOG GUT(NT) - LOG GUT(NT) - LOG GUT(NT) - LOG GUT(NT) - LOG GUT(NT) - 2 GUT • LOG TT(NT) - 2 GUT • LOG TT(NT) - 2 RT • LOG TT(NT) -	International Content of Content	cable levers LLD in 2 -1.679 1.225 0.160 -6.444 0.997 0.146 0.146 0.146 0.146 0.440 0.440 0.440 0.440 0.440 0.440 0.440 0.470 1.256 1.256 1.269 1.259 1.259 1.259 1.259 1.259 1.259 1.259 1.259 1.554 1.265 1.265 1.265 1.559 1.554 1.255 1.25)) LL D in 8 6.396 6.226 6.231 6.231 6.231 1.351 1.356 1.356 1.420 1.420 1.420 1.420 1.420 1.420 1.420 1.555 1.210 6.231 0.355 0.315 0
	Table BJ2 Experiment 2, renduals errors could: C4 al for GUT al for GUT al for GUT al for RT al for RT bid Err of Y Est for RT LOG TT(NT) ~ LOG TT(NT) ~ LOG TT(NT) ~ LOG RT(NT) ~ LOG RT(NT) ~ LOG RT(NT) ~ LOG RT(NT) ~ LOG GUT(NT) ~ LOG GUT(NT) ~ LOG GUT(NT) ~ al GUT ~ LOG TT(NT) ~ al COT TT(NT) ~ al RT ~ LOG TT(NT) ~ al COT TT(NT) ~ al RT ~ LOG TT(NT) ~ al RT	LI = 10 -1.077 -0.935 0.040 -0.937 0.975 0.940 1.074 0.3100 0.3100 0.3100 0.3100 0.3100 0.3100 0.310	cable leven LL_D in 7 -1.079 -1.225 0.130 -0.444 0.997 0.144 0.997 0.244 1.244 0.244 0.446 0.719 0.446 0.479 1.519 1.514 1.125 1.145), LL D in 8 6,966 6,226 6,956 6,226 6,956 1,351 1,351 1,356 1,356 1,356 1,426 1,436 1
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Table BJ2 Experiment 2, renduals errors condit C4 al for GUT al for GUT stat Err of Y En for GUT al for RT al for RT LOG TT(NT) ~ LOG TT(NT) ~ LOG RT(NT) ~ LOG RT(NT) ~ LOG RT(NT) ~ LOG RT(NT) ~ LOG RT(NT) ~ LOG GUT(NT) ~ LOG GUT(NT) ~ LOG GUT(NT) ~ LOG GUT(NT) ~ LOG GUT(NT) ~ LOG GUT(NT) ~ LOG TT(NT) ~ al GUT * LOG TT(NT) ~ al RT * LOG TT(NT) ~ al (LOG TT(NT) ~ a	In the second se	cable lowers 1.079 1.275 0.160 0.444 0.907 0.144 0.144 0.144 0.144 0.144 0.144 0.144 0.144 0.144 0.144 0.144 0.144 0.144 0.1519 1.544 1.125 1.143 0.444), LL D in 8 6,966 6,226 6,956 6,226 1,351 1,351 1,351 1,356 1,356 1,356 1,456 1,456 1,456 1,756 1,556 1,556 1,556 1,556 1,556 1,556 1,556 1,557 1,556 1,557 1,556 1,557 1,556 1,557 1,557 1,556 1,557 1,557 1,556 1,557 1,557 1,556 1,557 1,557 1,557 1,556 1,557 1,557 1,557 1,556 1,557 1,557 1,557 1,557 1,557 1,557 1,557 1,557 1,557 1,557 1,557 1,557 1,557 1,557 1,557 1,557 1,557 1,556 1,557 1,557 1,557 1,556 1,557 1,557 1,557 1,556 1,557 1,556 1,557 1,567 1
	Table BJ2 Experiment 2, renduals errors condit C-4 al for GUT 22 for GUT 32 for GUT 32 for GUT 42 for RT 32 for RT 42 for RT 40 fT(NT) 42 ft RT 40 f	IL = 30 -1.077 0.935 0.040 -0.975 0.935 0.040 -0.975 1.074 0.310 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000	cable lowers 1.679 1.225 0.160 4.444 0.907 0.146 0.146 0.146 0.146 0.146 0.146 0.146 0.146 0.146 0.146 0.146 0.146 0.146 0.146 0.146 0.1519 1.519 1.519 1.514 1.125 1.145), LL D in 8 6,396 6,229 6,036 6,229 1,351 1,351 1,351 1,354 1,429 1,429 1,429 1,429 1,429 1,429 1,429 1,429 1,429 1,559 1,359 6,312 6,359 6,359 6,327 1,220 1,220
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Table BJ2 Experiment 2, renduals errors could: C4 al for GUT al for GUT al for GUT al for GUT al for GUT al for GUT al for GUT al for RT al for RT LOG TT(NT) LOG TT(NT) LOG TT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) 2 GUT * LOG TT(NT) al for * LOG TT(NT) al RT * LOG TT(NT) al RT * LOG TT(NT) al RT * LOG TT(NT) al RT * LOG TT(NT) al GUT * al + (al * log TT[NT]) Eatl GUT * al + (al * log TT[NT]) Eatl GUT = al + (al * log TT[NT]) Eatl GUT * al + (al * log TT[NT])	IL = 10 IL = 10 -1.077 -0.975 0.040 -0.975 -0.97	cable leven -1.079 -1.077 1.225 0.150 0.444 0.907 0.140 0.444 0.444 0.446 0.445 1.25 1.45 0.446 0.445 0.445), LL D in 8 6,966 6,229 6,966 6,229 6,976 1,351 1,359 1,359 1,429 1,439 1,439 1,439 1,439 1,439 1,439 1,439 1,439 1,439 1,439 1,559 1,259 6,312 6,317 6,312 6,317 6
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Table BJ2 Experiment 2, renduals errors condit C4 al for GUT al for GUT al for GUT al for GUT al for GUT al for RT al for RT LOG TT(NT) LOG TT(NT) LOG TT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) al for T(NT) LOG GUT(NT) al for T(NT) LOG GUT * LOG TT(NT) al for T(NT) al for TT(NT) al for T(NT) al GUT * LOG TT(NT) al for T(NT) al for T(NT) al for T(NT) al for T = LOG TT(NT) al for T(NT) al for t = 4 + (al for T(NT) al for the set for th	IL - 30 -1.077 -1.077 -0.935 -0.840 -0.897 -0.840 -0.310 -	cable lowers 1.079 1.275 0.160 0.444 0.907 0.140 0.140 0.140 0.140 0.140 0.140 0.140 0.140 0.140 0.140 0.140 0.140 0.443 0.445 0.465 0.461), LL D in 8 6,966 6,229 6,956 6,229 1,351 1,351 1,351 1,351 1,351 1,351 1,354 1,354 1,354 1,355 1,356 1,356 1,356 1,356 1,356 1,356 1,357 1,356 1,357 1,356 1,357 1,357 1,356 1,357 1,357 1,356 1,357 1,357 1,357 1,357 1,356 1,357 1,357 1,357 1,357 1,357 1,357 1,357 1,357 1,357 1,357 1,357 1,357 1,357 1,357 1,357 1,356 1,357 1,357 1,357 1,357 1,357 1,357 1,356 1,357 1,356 1,456 1
log read GUT= log GUT(NT) - Entl GUT 0.218 0.244 -0.151 log read GUT= log GUT(NT) - Entl GUT 0.472 0.0472 -0.470 log read GUT= log GUT(NT) - Entl GUT 0.472 0.0470 -0.657 log read GUT= log GUT(NT) wrobe - Entl GUT -0.057 -0.057 -0.057 log read RT= log RT(NT) - Entl RT 0.146 0.159 -0.041 log read RT= log RT(NT) wrobe - Entl RT 0.392 0.011 -0.009 log read RT = log RT(NT) wrobe - Entl RT 0.392 0.011 -0.009 log read RT = log RT(NT) wrobe - Entl RT 0.442 0.442 0.442	Table BJ2 Experiment 2, renduals errors condit C4 al for GUT 2 dor GUT 3 dor GUT 3 dor AT 2 for AT 3 dor AT 2 for AT 3 dor AT 2 for AT 3 dor AT 4 for AT 5 for AT	IL = 30 -1.077 0.935 0.040 -0.975 0.935 0.040 -0.975 1.074 0.310 0.310 0.310 0.310 0.310 0.310 0.310 0.310 0.310 0.440 1.465 1.465 0.097 0.097 0.095 0.095 0.095 0.095 0.095 0.095 0.00	cable lower LL D in 2 -1.679 1.225 0.160 -4.44 0.997 0.146 0.146 0.146 0.146 0.146 0.146 0.146 0.146 0.479 1.251 1.255 1.245 1.255 0.4465 0.446 0.44)) LL D in 8 6396 6229 6396 6229 6396 6229 6396 6229 6396 6299 6391 1,339 1,339 1,429 1,429 1,429 1,429 1,429 1,429 1,429 1,559 1,359 6,359 6,359 6,359 6,377 1,281 1,285 1,285 1,285 1,285 1,285 1,285 1,285 1,285 1,285 1,285 1,285 1,285 1,285 1,285 1,285 1,295
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Table BJ2 Experiment 2, renduals errors condit C4 al for GUT al for GUT al for GUT al for GUT al for GUT al for GUT al for RT al for RT al for RT LOG TT(NT) LOG TT(NT) LOG TT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG GUT(NT) wides LOG GUT(NT) LOG GUT(NT) al GUT * LOG TT(NT) al GUT * LOG TT(NT) al GUT * LOG TT(NT) al RT * LOG TT(NT) al RT * LOG TT(NT) al GUT = al + (a2 * log TT[NT]) Ext GUT = al + (a2 * log TT[NT]) Ext GUT = al + (a2 * log TT[NT]) Ext GUT = al + (a2 * log TT[NT]) Ext RT = al + (a2 * log TT[NT]) Ext RT = al + (a2 * log TT[NT]) Ext RT = al + (a2 * log TT[NT]) Ext RT = al + (a2 * log TT[NT])	1.0016 (retr. 1.071 - 1.077 -1.077 -0.975 -0.840 -0.872 -0.840 -0.972 -0.910	cable levers 1.073 1.275 1.225 0.140 0.444 0.907 1.240 1.240 0.444 0.440 0.440 0.440 0.440 0.440 0.440 0.441 0.499), LL D in 8 6,966 6,229 6,966 6,229 6,966 1,351 1,351 1,359 1,359 1,429 1,439 1,439 1,439 1,439 1,439 1,439 1,439 1,439 1,439 1,559 1,259 6,312 6
log read GUT 60 GUT(NT) wróbe -Eat3 GUT 40.857 log read RT = log RT(NT) - Eat1 RT 40.166 0.159 40.838 log read RT = log RT(NT) - Eat2 RT 40.972 40.11 40.899 log read RT = log RT(NT) wróbe Eat2 RT 40.972 40.11 40.899 log read RT = log RT(NT) wróbe Eat3 RT 40.42 40.42 40.42 Bar defamination (MT) Guide a science (International Action Action International Action Action 40.42	Table BJ2 Experiment 2, renduals errors condit C4 al for GUT al for GUT al for GUT al for GUT al for GUT al for RT al for RT bd Err of Y Est for RT LOG TT(NT) LOG TT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) wdos LOG RT(NT) LOG GUT(NT) LOG GUT(NT) wdos al GUT * LOG TT(NT) wdos al GUT * LOG TT(NT) wdos al RT * LOG TT(NT) wdos al GUT * LOG TT(NT) wdos al RT * LOG TT(NT) wdos al GUT = al + (a2 * log TT[NT]) Bet GUT = al + (a2 * log TT[NT]) Bet GUT = al + (a2 * log TT[NT]) mode) Bet RT = al + (a2 * log TT[NT]) mode) Bet RT = al + (a2 * log TT[NT]) mode) Bet RT = al + (a2 * log TT[NT]) mode)	Note (retr. LL = 30 -1.077 0.935 0.040 0.935 0.935 0.935 0.935 1.074 0.310 0.310 0.310 0.310 0.310 0.310 0.310 0.310 0.446 1.259 0.092 0.095 0.095 0.456 0.356 0.356 0.356 0.218	cable lowers 1.079 1.275 0.160 0.444 0.907 0.146 0.466 0.), LL D in 8 6,966 6,229 6,956 6,229 1,351 1,351 1,351 1,351 1,351 1,351 1,354 1,354 1,456 1,756 4,355 4,355 4,355 4,355 1,275 4,355 4,555 4
log real RT= log RT(INT) - Esti RT -4.146 4.159 -4.638 log real RT= log RT(INT) - Est2 RT 0.972 0.611 4.069 log real RT = log RT(INT) w/obs - Est3 RT 0.092 0.092 Re-defermention (MT) w/obs - Set0 [Terms - 100 [Terms - 10	Table BJ2 Experiment 2, renduals errors condit C4 al for GUT 21 or GUT 32 for GUT 32 for GUT 32 for RT 33 d Err of Y Ent for GUT al for RT 34 Err of Y EST for RT LOG TT(NT) ~ LOG TT(NT) ~ LOG RT(NT) ~ LOG RT(NT) ~ LOG RT(NT) ~ LOG RT(NT) ~ LOG GUT(NT) ~ 2 GUT * LOG TT(NT) ~ 2 GUT * LOG TT(NT) ~ 2 GUT * LOG TT(NT) ~ 2 RT * LOG TT(NT) ~ 2	IL = 30 -1.077 0.935 0.040 -0.975 0.935 0.040 -0.975 1.074 0.310 0.355 0.35	cable lower LLD in 2 -1.679 1.225 0.160 -4.44 0.997 0.146 0.146 0.146 0.146 0.146 0.146 0.146 0.146 0.146 0.146 0.146 0.146 0.146 0.146 0.125 1.255 1.246 0.445 0.446 0.465 0.466 0.465 0.466 0.465 0.466 0.465 0.466 0.465 0.465 0.466 0.465 0.466 0.465 0.466 0.465 0.466 0.465 0.466 0.465)) LL D in 8 6396 6229 6396 6229 6396 6229 6396 6229 6396 1331 1429 1429 1429 1429 1429 1429 1429 6392 6397 6392 6392 6392 6392 6392 6392 6397 6392 6392 6392 6397 6392 6397 6392 6397 6392 6397 6392 6397 6392 6397 639
$ \log \max r = \log RT(NT) - \log T R T 0.392 0.011 -0.009 \log r = 3 R T = \log R T(NT) wobe - Ext3 R T 0.002 Receiver mathem (1) mode - Let3 R T 0.002$	Table BJ2 Experiment 2, renduals errors condit C4 al for GUT al for GUT al for GUT al for GUT al for GUT al for GUT al for RT al for RT al for RT LOG TT(NT) LOG TT(NT) LOG TT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) wdos LOG RT(NT) LOG RT(NT) LOG GUT(NT) wdos LOG GUT(NT) wdos LOG GUT(NT) al GUT * LOG TT(NT) al GUT * LOG TT(NT) al RT * LOG TT(NT) al RT * LOG TT(NT) al RT * LOG TT(NT) al RT * LOG TT(NT) al RT * LOG TT(NT) al RT * LOG TT(NT) al RT * LOG TT(NT) al RT * LOG TT(NT) al RT * LOG TT(NT) al RT * LOG TT(NT) al RT * LOG TT(NT) al RT * LOG TT(NT) al RT * LOG TT(NT) al RT * LOG TT(NT) al RT * LOG TT(NT) al RT * LOG TT(NT) al RT * LOG TT(NT) al RT * LOG TT(NT) al RT * LOG TT(NT)	1.0016 (retr. 1.071	cable levers 1.1.73 1.2.75 1.2.75 1.2.25 1.3.64 0.4.44 0.9.07 1.2.46 1.2.46 0.4.44 0.4.46 0.4.46 0.4.47 1.5.19 1.5.44 1.2.55 1.4.45 0.4.46 0.4.45 0.4.46 0.4.45 0.4.46 0.4.45 0.4.46 0.4.45 0.4.46 0.4.45 0.4.46 0.4.45 0.4.46 0.4.45 0.4.46 0.4.45 0.4.46 0.4.45 0.4.46 0.4.45 0.4.46 0.4.45 0.4.46), LL D in 8 6,966 6,229 6,956 6,229 6,956 6,229 6,229 6,229 6,229 6,229 1,351 1,351 1,359 1,359 1,459 1,459 1,267 1,267 1,267 1,267 1,267 1,265 1,272 1,275 4,457 1,726 4,457 1,726 4,457 1,726 4,457 1,726 1
IOg THE R.I = IOg R.I (N.I.) WIODS - EXT R.I. 4.002	Table BJ2 Experiment 2, renduals errors condit C4 al for GUT al for GUT al for GUT stat Err of Y Ent for GUT al for RT al for RT LOG TT(NT) LOG TT(NT) LOG TT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) COG GUT(NT) LOG GUT(NT) COG GUT(NT) COG GUT(NT) COG TT(NT) al CT 2 GUT LOG TT(NT) al CT cog TT(NT) al CT cog TT(NT) al CT cog TT(NT) al CT cog TT(NT) cog CT cog TT(NT) cog CT cog TT(NT) cog CT cog TT(NT) cog CT cog CT cog TT(NT) cog CT cog CT c	Note (retr. LL = 30 -1.077 0.935 0.040 0.935 0.935 0.935 0.935 0.935 0.935 0.310 0.310 0.310 0.310 0.310 0.310 0.310 0.310 0.446 0.355 0.092 0.095 0.005 0.455 0.356 0.356 0.356 0.218 0.472 -0.146 0.316 0.472 -0.146 0.356 0.356 0.218 0.472 -0.146 0.316 0.472 -0.146 0.356 0.356 0.356 0.356 0.472 0.472 -0.146 0.316 0.475 0.	cable levers LL D in 2 -1.079 1.225 0.140 0.444 0.907 0.140 0.140 0.140 0.140 0.140 0.140 0.140 0.140 0.140 0.140 0.445 0.465 0.465 0.465 0.465 0.244 0.895 0.244 0.895 0.244 0.895 0.244 0.895 0.244 0.995 0.244 0.995 0.244 0.995 0.244 0.995 0.244 0.995 0.244 0.995 0.245 0.255 0.255 0.245 0.255 0.245 0.25), LL D in 8 6,966 6,226 6,956 6,226 6,956 1,351 1,351 1,351 1,356 1,376 1
	Table BJ2 Experiment 2, renduals errors condit C4 al for GUT al for GUT std Err of Y En for GUT al for RT Std Err of Y EST for RT LOG TT(NT) ~ LOG TT(NT) ~ LOG RT(NT) ~ LOG RT(NT) ~ LOG RT(NT) ~ LOG RT(NT) ~ LOG RT(NT) ~ LOG GUT(NT) ~ LOG TT(NT) ~ del RT - LOG TT(NT) ~ del RT - al + (a2 ~ log TT[NT]) Est RT = al + (a2 ~ log TT[N	Note (retr. LL = 30 -1.077 0.935 0.040 0.935 0.040 1.167 0.310 0.355	cable lower 1.079 1.071 1.225 0.160 0.444 0.997 0.146 0.146 0.146 0.146 0.446 0.470 0.446 0.470 0.446 0.470 1.519 1.544 1.255 1.145 1.455 0.460 0.465 0.465 0.465 0.495 0.159 0.519 0.215 0.159 0.511), LL D in 8 6,396 6,229 6,896 6,229 6,296 6,397 6,397 6,397 6,397 6,397 6,397 6,397 1,226 6,397 6,397 6,497 6

.

Table B31. Experiment 2, readuals across conditions (retractable levers).

194

-

•

Table B33	Experiment 2	meduals across conditions i	(retractable learna)
THORE DOD.	Transfer intraction of	TORGER ICTOR CODULTOR	remectatore revers).

C-5	LL=.10	LL D in Z	LL D in #
al for GUT	-0.618	-0.532	0.889
a2 for GUT	0.670	0.659	-0.095
Std Err of Y Est for GUT	0.200	0.270	0.060
a1 for RT	-1.772	0.215	1.444
n2 for RT	1.839	0.364	-0.025
Std Err of Y EST for RT	0.160	0.130	0.040
LOG TT(NT)	1.650	1.330	1.370
LOG TT(NT)~	1.370	1.390	1.360
LOG TT(NT) w/obs			1.770
LOG RT(NT)	0.840	0.650	1.460
LOG RT(NT)~	1.010	0.440	1.480
LOG RT(NT) w/obs			1.820
LOG GUT(NT)	0.840	0.370	0.830
LOG GUT(NT)~	0.590	0.280	0.810
LOG GUT(NT) w/obs			1.520
12 GUT * LOG TT(NT)	1.106	0.876	-0.130
■2 GUT * LOG TT(NT)~	0.918	0.916	0.129
a2 GUT * LOG TT(NT) w/obs			-0.168
#2 RT * LOG TT(NT)	3.034	0.484	-0.034
•2 RT • LOG TT(NT)~	2.519	0,506	-0.034
a2 RT * LOG TT(NT) w/obs			-0.044
Est1 GUT= a1 + (a2 * log TT[NT])	0.487	0.344	0.759
Est2 GUT= a1 + (a2 * log TT[NT]~)	0.300	0.344	0,760
Est3 GUT= a1 + (a2 * log TT[NT] w/obs)			0.721
Est1 RT= a1 + (a2 * logTT[NT])	1.262	0.699	1.410
$Est2RT = s1 + (s2 + logTT[NT]^{\sim})$	0.747	0.721	1.410
Est3 RT = s1 + (s2 * logTT[NT] w/obs)			1.400
iog res1 GUT= log GUT(NT) · Est1 GUT	0.353	0.026	0.071
log res2 GUT = log GUT(NT) ~ Est2 GUT	0.290	-0.104	0.050
log res3 GUT= log GUT(NT) w/obs - Est3 GUT			0.799
log res1 RT= log RT(NT) - Est1 RT	-0.422	-0.049	0.050
log res2 RT = log RT(NT) ~ Est2 RT	0.263	-0.281	0.070
log res3 RT = log RT(NT) w/obs - Eet3 RT			0.420

"Re-determination, (NT)w/obs= natural travel with obstacles.

195

APPENDIX C

		Residence Time			G	ving-up	o Time	
		Pellets			Pellets			
Subject		1	2	8	1	2	8	
A-101		0.58	4.46	1.49	9.95	2.10	1.93	
	*	-0.25	1.96	1.21	3.50	1.11	1.91	
A-104		10.72	24.45	2.02	7.61	6.25	10.25	
	*	5.32	9.65	1.23	7.27	2.83	5.18	
A-123		11.05	2.23	2.80	3.38	2.08	2.48	
	×	6.50	0.97	2.99	2.27	0.36	2.05	
A-230		7.48	8.84	1.44	1.53	9.02	0.88	
	*	3.33	4.60	6.78	1.84	5.1 8	2.88	
Mean		5.59	7.14	2.50	4.67	3.62	3.44	

Table C34. Logarithmic residuals divided by standard errors.

* Redetermination.

			Resid	ence Ti	me		Giving	-up Tim	e
			Pe	ellets			Pel	lets	
Subject		1	2	8	**	1	2	8	**
C-1		13.33	1.33	1.74	1.05	2.46	1.32	3.06	7.21
	*	-1.13	-0.79	0.16		0.08	0.75	0.92	
C-2		-1.61	0.78	-6.70	15.75	3.91	0.68	-3.34	13.64
	*	-0.33	-0.21	-0.55		-0.54	-0.45	-0.88	
C-3		-4.00	0.89	3.40	19.55	2.36	1.00	2.78	1.24
	*	0.36	0.41	2.05		2.01	0.36	1.98	
C-4		-0.47	1.14	-1.27	0.07	2.73	1.33	-5.03	-1.90
	*	1.26	0.08	-0.30		5.90	0.03	-2.33	
C-5		-2.64	-0.38	1.25	10.50	1.77	0.10	0.89	9.90
	*	1.64	-2.16	1.75		1.45	-0.3 9	0.63	
Mean		0.64	0.11	0.15	9.38	2.21	0.47	-0.13	6.02

Table C35. Experiment 2, logarithmic residuals divided by standard errors.

* Redetermination, ** natural travel with obstacles.

ŀ

	PROBABILITY	PELLETS PER VISIT			
SUBJECT	RIGHTLEVER	1	2	8	
A-104	0.025	0 024	0.042		
	0.050	0.024	0.095	0.128	
	* 0.05		0.080	0.141	
	0100	0.024	0.121	0166	
	* 0.10		0111	0.164	
	0 250	0 059	0182	0.221	
	* 0.25	0 063			
	1.00	0.093	0199	0.182	
	** 1 00	0.058			
	NT	0.007	0.050	0.116	
	* NT	0.013	0.071	0144	
A-230	0 025	0012	0 022		
	0.060	0015	0.031	0 080	
	• 0 05		0 030		
	0100	0 032	0 065	0.090	
	* 010		0 083	0156	
	0 250	0 0 85	0158	0240	
	* 0 2 5	0 073			
	1 00	0119	0 249	0 202	
	** 1 00	0.059			
	NT	0 008	0.059	0.131	
	* NT	0 026	0.086	0.043	
A -101	0.025	0.015	0.031		
	0.050	0.026	0.063	0.119	
	* 0.05		0.066	0.136	
	0.100	0.042	0.129	0.125	
	* 0.10		0.110	0.182	
	0.250	0.065	0.167	0.190	
	* 0.25	0.074			
	1.00	0.100	0.213	0.162	
	** 1 00	0 054			
	NT	0.018	0 0 8 1	0.155	
	NT*	0.043	0.099	0.175	
A-123	0.025	0.020	0.041		
	0.050	0.019	0.061	0.165	
	* 0.05		0.068	0.143	
	0.100	0.036	0.101	0.133	
	* 0.10		0.122	0.182	
	0.250	0.049	0.164	0.209	
	* 0.25	0.061			
	1.00	0.086	0.213	0.188	
	** 1.00	0.053			
	NT	0.030	0.089	0.189	
	* NT	0.045	0.101	0.149	
Hedetermin	nation.				

Table C36 Experiment 1, average rate of prey captured

199

Table C37 E	able C37 Experiment 2, average rate of prey captured					
	PHOBABILITY	PELL	IS PER VISIT			
SUBUECT	RIGHT LEVER	1	2	8		
U-1	U 025	0.030	0.083	U127		
	0.025		0.062			
	- 0.025		0.055			
	0.06	0.062	0112	0.102		
	10	0.048	0.113	0.1.35		
	- 0.10	0.027	0.129	U147		
	100	0.132	0.004	0.470		
	TN-1 4 ALT	0.019	0.099	0148		
	NT w/obs	0.050	0.080	0.090		
	NT W/005					
C-2	0.025	0.038	0.096	D.146		
	* 0.025		0.086			
	0.025		0.056			
	0.06	0.062	0.121	0.196		
	0.10	0.077	0.156	0.173		
	• 0.10	0.043	0.139	0.199		
	1 00	0.153				
	NI	0.035	0.098	0.183		
	* N1	0.057	0.099	0.169		
	NT W/0Ds			0.061		
C-3	0.025	0.049	0.093	0.179		
	* 0.025		0.095			
	* 0.025		0.096			
	0.05	0.067	0.029	0.194		
	0.10	0.084	0.180	0.162		
	* 0.10	0.044	0.031	0.205		
	1.00	0.1665				
	NT	0.049	0.118	0.163		
	* NT	0.060	0.112	0.153		
	NT w/obs			0.049		
C-4	0.025	0.017	0.063	0.097		
	0.025		0.033			
	• 0.025		0.029			
	0.05	0.044	0.100	0.116		
	0.10	0.066	0.113	0.101		
	• 0.10	0.045	0.112	0.123		
	1.00	0.187				
	NT	0.060	0.082	0.119		
	* NT	0.060	0.096	0.100		
	NT w/obs			0.076		
C-5	0.025	0.031	0.036	0.136		
	• 0.025		0.067			
	* 0.025		0.059			
	0.06	0.042	0.063	0.160		
	0.10	0.036	0.180	0.154		
	* 0.10	0.030	0.1 66	0.163		
	1.00	0.082				
	NT	0.019	0.077	0.136		
	* NT	0.030	0.073	0.135		
	NT W/0bs			0.080		

.

* Redetermination.

F 1

REFERENCES

- Abarca, N., & Fantino, E. (1982). Choice and Foraging. Journal of the Experimental Analysis of Behavior, 38, 117-123.
- Anderson, M. (1978). Optimal foraging area: Size and location of search effort. Theoretical Population Biology, 13, 397-409.
- Baum, W. M. (1982a). Choice, changeover, and travel. Journal of the Experimental Analysis of Behavior, 38, 35-49.
- Baum, W. M. (1982b). Instrumental behavior and foraging in the wild. In M. L. Commons, R. J. Herrnstein, & H., Rachlin (Eds.). Quantitative analyses of behavior: Vol.2. Matching and maximazing accounts (pp. 227-240). Cambridge: Ballinger.
- Baum, W. M. (1987). Random and systematic foraging, experimental studies of depletion, and schedules of reinforcement. In A. C. Kamil, J. R. Krebs & H. R. Pulliam (Eds.), Foraging behavior (pp. 587-607). New York: Plenum.
- Baum, W. M. (1988). How to model foraging with operant behavior. Manuscript unpublished.
- Charnov, E. L. (1976). Optimal foraging: the marginal value theorem. Theoretical Population Biology, 9, 129-136.
- Collier, G. H., & Rovee-Collier, C. K. (1981). A comparative analysis of optimal foraging behavior: laboratory simulations. In A. C. Kamil & T. D. Sargent. Foraging behavior: Ecological, ethological, and psychological approaches (pp. 39-76). New York: Garland STPM press.
- Cowie, R. J. (1977). Optimal foraging in great tits. Nature, 268, 137-139.
- Cuthill, I. C., Kacelnik, A., Krebs, J. R. (1987). Starlings exploiting patches: The effects of recent experience on foraging decisions. Kings College Research Memo, Kings College, Cambridge.
- Fantino, E., & Abarca, N. (1985). Choice, optimal foraging, and the delay-reduction hypothesis. The Behavioral and Brain Sciences, 8, 315-330.

Gibb, J. A. (1962). L. Tinbergen's hypothesis of the role of specific search images. *Ibis*, **104**, 106-111.

- Gray, R. D. (1987). Faith and Foraging: A critique of the "
 paradigm argument from design". In A. C. Kamil, J. R.
 Krebs, & H. R. Pulliam (Eds.), Foraging behavior (pp.
 69-140). New York: Plenum.
- Hanson, J. (1987). Test of optimal foraging using an operant analogue. In A. C. Kamil, J., R. Krebs, & H. R. Pulliam (Eds.), Foraging behavior (pp. 335-362). New York: Plenum.
- Hanson, J., & Green, L. (1989a). Foraging decisions: prey choice by pigeons. Animal Behavior, 37, 429-443.
- Hanson, J., & Green, L. (1989b). Foraging decisions: patch choice and exploitation by pigeons. Animal Behavior, 37, 968-986.
- Hartling, L. K., & Plowright. (1979). Foraging by bumblebees on patches of artificial flowers: a laboratory study. Canadian Journal of Zoology, 57, 1866-1870.
- Houston, A. I., & McNamara, J. M. (1985). The variability of behavior and constrained optimization. *Journal of Theoretical Biology*, **112**, 265-273.
- Iwasa, Y., Higashi, M., & Yamamura, N. (1981). Prey distribution as a factor determining the choice of optimal foraging strategy. American Naturalist, 117, 710-723.
- Kacelnik, A., & Cuthill, I. C. (1987). Starlings and optimal foraging theory: Modeling in a practical world. In A. C. Kamil, J. R. Krebs, & H. R. Pulliam (Eds.), Foraging behavior (pp. 303-333). New York: Plenum.
- Kacelnik, A., & Krebs, J. R. (1985). Rate of reinforcement matters in optimal foraging theory. Behavioral & Brain Sciences, 8, 340-341.
- Kamil, A. C. & Yoerg, S. I. (1985). The effects of prey depletion on the patch choice of foraging blue jays (Cyanocitta cristata). Animal Behavior, 33, 1089-1095.
- Killeen, P. R. (1989). The bimean: A measure of central tendency that accommodates outliers. In press, BRCMI & C.

Killeen, P. R., Smith, J. P., & Hanson, S. L. (1981).

Central place foraging in Rattus norvegicus. Animal Behavior, 29, 64-70.

- Krebs, J. R. (1973). Behavioral aspects of predation. In P. G. Bateson & P. H. Klopfer (Eds.), Perspectives in ethology (pp. 73-111). New York: Plenum Press.
- Krebs, J. R. (1978). Optimal foraging: Decision rules for predators. In J. K. Krebs & N. B. Davies (Eds.), Behavioral ecology: An evolutionary approach (pp. 23-63). Sunderlang, MA: Sinauer Associates.
- Krebs, J. R., Kacelnik, A., & Taylor, P. (1978). Test of optimal sampling by foraging great tits. Nature, 275, 27-31.
- Krebs, J. R., Ryan, J. C., & Charnov, E. L. (1974). Hunting by expectation or optimal foraging? A study of patch use by Chickadees. Animal Behavior, 22, 953-964.
- Lea, S. E. G. (1979). Foraging and reinforcement schedules in the pigeon: Optimal and non-optimal aspects of choice. Animal Behavior, 27, 875-886.
- Lea, S. E. G. & Dow, S. M. (1984). The integration of reinforcements over time. In J. Gibbon & L. Allan (Eds.), Timing and perception. Annals of the New York Academy of Sciences, 423, 269-277.
- MacArthur, R. H. & Pianka, E. R. (1966). On optimal use of a patchy environment. American Naturalist, 100, 603-609.
- McNamara, J. M. (1982). Optimal patch use in a stochastic environment. Theory Population Biology, 21: 269-288.
- McNair, N. J. (1982). Optimal giving-up times and the marginal value theorem. American Naturalist, 119, 511-529.
- McSweeney, F. K. (1978). Negative behavioral contrast on multiple treadle-press schedules. Journal of the Experimental Analysis of Behavior, 29, 463-473.
- Mellgren, R., Misasi, L., & Brown, S. W. (1984). Optimal foraging theory: Prey density and travel requirements and Rattus norvegicus. Journal of Comparative Psychology, 98, 142-153.
- Mosteller, F. & Tukey, J. W. (1977). Data analysis and regression: A second course in statistics. Reading, MA: Addison-Wesley.

- Nevin, J. A. (1979). Reinforcement schedules and response strength. In M. Zeiler & P. Harzem (Eds.) Reinforcement and the organization of behavior (pp. 117-158). New York: Wiley.
- Pietrewicz, A. T., & Kamil, A. C. (1977). Visual detection of cryptic prey by blue jays (Cyanocitta cristata). Science, 195, 580-582.
- Pliskoff, S. S., & Fetterman, J. G. (1981). Undermatching and overmatching: The fixed-ratio changeover requirement. Journal of the Experimental Analysis of Behavior, 36, 21-27.
- Pyke G. H. (1984). Optimal foraging theory: A critical review. Annual Review of Ecology and Systematics, 15, 523-575.
- Pulliam, H. R. (1981). Learning to forage optimally. In A. C. Kamil & Sargent (Eds.) Foraging behavior: Ecological, ethological, and psychological approaches, (pp. 379-388). New York: Garland STPM.
- Redhead, E. & Tyler, P. A. (1988). An experimental analysis of optimal foraging behavior in patchy environments. The Quarterly Journal of Experimental Psychology, 40B, (1) 83-102.
- Schoener, T. W. (1987). A brief history of optimal foraging ecology. In A. C. Kamil, J. R. Krebs, & H. R. Pulliam (Eds.), Foraging behavior (pp. 5-67). New York: Plenum.
- Shettleworth, S. J. (1988). Foraging as operant behavior and operant behavior as foraging: What have we learned? In G. H. Bower (Ed.), The psychology of learning and motivation, (pp. 1-49). New York: Academic Press, Vol.,22.
- Stephens, D. W. & Krebs, J. R. (1986). Foraging theory. Princeton, NJ: Princeton University Press.
- Ydenberg, R. C. (1984). Great tits and giving-up times: Decision rules for leaving patches. *Behaviour*, **90**, 1-24.
- Zimmerman, M. (1981). Optimal foraging, plant density and the marginal value theorem. Oecologia, 49, 148-153.