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ABSTRACT

AN IMPROVED MULTI-DIMENSIONAL CMAC NEURAL NETWORK: 
RECEPTIVE FIELD FUNCTION AND PLACEMENT

by
Pak-Cheung Edgar An 

University of New Hampshire, September, 1991

The standard CMAC has been shown to have fast learning 
computation as a result of modular receptive field placement, 
rectangular receptive field shape and a simple weight 
adaptation algorithm. The standard CMAC, however, suffers from 
slow convergence at some critical frequency due to the 
rectangular receptive field shape. A linearly-tapered field, 
which requires a uniform placement, was used in this research. 
The receptive field placement of the standard CMAC becomes 
less uniform locally for a larger receptive field width. This 
dissertation suggests a new field placement which is more 
uniform without extra computation. Results show that the slow 
convergence at the critical frequency is eliminated, and the 
interaction of the linearly-tapered field with the new 
placement achieves more accurate function approximation. A 
theoretical bound on the receptive field width as a function

xi
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of the input dimension is proposed if a uniform placement is 
to be achieved. Also, a procedure for adapting receptive field 
density to minimize the weight usage for a given approximation 
accuracy is suggested.

xii
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CHAPTER I

INTRODUCTION

Artificial neural networks have been widely studied and 
applied in the areas of robotics control, signal processing 
and pattern recognition as these networks are capable of 
approximating complex system dynamics better than most 
traditional parameter estimation techniques [15]. In general, 
the study of artificial neural networks is different from the 
study of biological neural networks in that the former places 
its interest in modelling system behavior while the latter 
places its interest in modelling biological behavior [ 7 ]. This 
dissertation is concerned with the issues of localized 
receptive field function and placement for an artificial 
neural network called the Cerebellar Model Arithmetic Computer 
(CMAC). Results indicate that both the uniformity of the 
receptive field function and placement play an important role 
in approximating a desired output in a multi-dimensional input 
space (RN).

Figure 1.1 shows a general artificial neural network 
architecture for a scalar input (X) and a scalar output 
(Y(X)). X and Y(X) are connected through multiple layers of 
processing elements. Each broken line indicates a possible 
connection between processing elements, and the connectivity 
strength is determined by an associated weight value (W). The

1
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output of each processing element is a non-linear function of 
its weights and inputs. The common non-linear input-output 
relationships are the sigmoidal function, the binary threshold 
function and the linear threshold function (figure 1.2).

All existing neural networks can be categorized as either 
globally generalizing or locally generalizing. The network 
generalization is considered global if one or more of the 
adaptable parameters in the network, such as weights and 
biases, can potentially affect the network output at every 
point in the input space. On the other hand, the network 
generalization is considered local if only a small subset of 
the adaptable parameters can potentially affect the network 
output in a local region of the input space. In other words, 
the locally generalizing network can be viewed geometrically 
as a set of localized receptive fields (with finite region of 
support) distributed in R" in which each localized receptive 
field will be excited when the input falls in its region.

While the network shown in figure 1.1 is commonly 
described as globally generalizing (assuming all processing 
elements are fully connected), the multi-layered network can 
behave as if it were made of localized receptive fields given 
a particular set of weights and biases (8, which provides 
function shifting). Figure 1.3 shows how processing elements 
can be transformed into a set of localized receptive fields 
for a scalar input. Assume that the output of each processing 
element is a linear threshold function of its input, SWjX* -

2
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Figure 1.1 A general neural network architecture.
X and Y (X) are the network input and output 
respectively.
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Figure 1.2 Common non-linear functions for
processing elements.
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0*. By setting Wt and 0* appropriately as shown in figure 1.3, 
the processing elements in the second layer respond as 
localized receptive fields in which only one processing 
element in the second layer will have non-zero output for any 
input. A similar concept can be applied to construct localized 
receptive fields in a higher dimensional input space.

Compared to locally generalizing networks, globally 
generalizing networks have three major undesirable features in 
terms of learning computation and convergence. First, the time 
for adjusting weights and computing a network output is much 
longer because all the adaptable parameters must be adjusted 
for each training pair. Second, when the training is 
incremental (only one training sample is used at a time), 
there is a global learning interference between network 
outputs for any distant network inputs because of the non­
locality of basis functions synthesized by the network. In 
order to reduce the learning interference, each weight must be 
adjusted in a small step, which causes the learning 
convergence to be sluggish. Last, there is a lack of a 
geometrical understanding of how to adjust the weights in 
those intermediate layers. The most commonly used technique 
for implementing gradient descent weight adjustment in a 
layered network is called back-propagation, in which an error 
signal propagates back through layers of processing elements 
during learning [24]. Since the relationship between the 
approximation error and the weights in the network can be

4
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highly complicated, the weights often converge to yield a 
local minimum of the approximation error in which only a sub- 
optimal performance is achieved.

On the other hand, locally generalizing networks require 
fewer numerical computations per training cycle to generate 
network outputs because only a small portion of weights need 
to be adjusted in each training cycle. Also, because of the 
localized receptive field arrangement, the network outputs 
associated with distant inputs are independent. This 
eliminates any learning interference between network outputs 
associated with distant inputs. Each weight can thus be 
adjusted in a larger step, which results in faster learning 
convergence. Further, as the fixed weights in the first two 
layers (figure 1.3) are used to construct localized receptive 
fields, only the weights in the output layer need to be 
adjusted. Thus, the relationship between the approximation 
error and the weights is well behaved, and an optimal learning 
performance can be achieved. Based on these considerations, 
this dissertation studied only the locally generalizing 
networks. In other words, the receptive fields in these 
networks are strictly localized (with finite region of 
support).

In general, learning performance is best measured by the 
training error (how well a network can approximate the given 
training data), the generalization error (how well the network 
can generalize given data not in the training set) and the

5
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speed of convergence. Clearly, the generalization error 
depends on the data distribution [25]. This dissertation 
focuses on the training error, the generalization error and 
the speed of convergence.

Chapter II reviews basic characteristics of four major 
locally generalizing networks: the Cerebellar Model Arithmetic 
Computer (CMAC), the Kohonen Map (KOH), the Sparse- 
Distributed-Memory (SDM) and the Radial Basis Functions (RBF). 
For these locally generalizing networks, the learning 
performance is highly dependent upon the receptive field 
function and placement in RN. Although each network has its 
own unique features, this dissertation is specifically focused 
on the issues of receptive field function and placement in 
CMAC. The CMAC network output computation is inherently faster 
than other networks (refer to chapter II), which is highly 
desirable in a real-time control environment.

Chapter III discusses some undesirable features of the 
standard receptive field function and placement of CMAC in 
learning [5]. Chapter IV suggests an alternative CMAC 
architecture which preserves the desirable features but 
minimizes the undesirable features. Chapter V discusses some 
learning issues using multiple CMACs and a single CMAC with 
adaptive receptive field density (defined later). Chapter VI 
summarizes the effectiveness of the improved CMAC architecture 
in learning and offers suggestions for future research.

6
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CHAPTER II

LOCALLY GENERALIZING NETWORKS

This chapter presents the physical architecture, the 
method of weight adaptation and the network function of four 
locally generalizing networks. Section II. 1 presents the 
Cerebellar Model Arithmetic Computer (CMAC). Section II.2 
presents the Kohonen Map (KOH). Section II.3 presents the 
Sparse-Distributed-Memory (SDM). Section II.4 presents the 
Radial Basis Functions (RBF). Finally, Section II.5 provides 
a summary comparison of these networks in terms of the network 
architecture and learning. As mentioned in Chapter I, the 
receptive fields in these networks are strictly localized. In 
other words, any receptive field with infinite region of 
support is avoided.

II.1 Cerebellar Model Arithmetic Computer (CMAC)

Albus proposed the Cerebellar Model Arithmetic Computer 
(CMAC) architecture to model the localized activities in the 
cerebellum [1][2][3]. Miller [17][18] later applied CMAC to 
a real-time closed-loop control problem. Functionally, CMAC is 
capable of approximating any arbitrary function within the 
desired input region.

Figure 2.1 shows the physical CMAC structure made of an
8
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Generalization level (C -5) CMAC [” “ j

Input ‘‘“Input J Output
Space Mapper CMAC Memoiy Space 
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Figure 2.1 A general CMAC architecture. X, through 
XM are input variables. Y(X) is a scalar network 
output as indicated by a single W. (CMAC_BLK.WPG)

Input vector

Receptive
Field
Center

Input Generalization Level 4
Number of Input Quantization Intervals 12

Figure 2.2 A CMAC Input Mapper.
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input mapper (IM) and a weight vector (W). These weights are 
used to reconstruct the desired network output after observing 
enough input-output data. IM is fixed a priori, and only W can 
be modified during learning. Given an input, X, of dimension 
N, the output of IM, f, has exactly C components of 1 and the 
remaining components of zero. The value of C defines the input 
generalization, and is fixed a priori. A network output, Y, is 
then defined as an inner product of f and W fL). In the
case in which Y is a vector, each individual output (Y±) will 
have its corresponding vector Wj.. This guarantees that the 
network outputs are totally independent.

Although the size of the vector W (|w|) can be large 
(order of thousands), learning computation can still be fast 
because only C weights are adjusted for each training sample, 
and C is usually much smaller than |w|.

IM computes the number of weights shared between any two 
inputs (Xi, Xj) approximately as C minus their Manhattan 
distance (2 |XU - X21|). If the Manhattan distance is greater 
than C, no weights will be shared. In doing so, similar inputs 
produce similar outputs and dissimilar inputs produce 
independent outputs.

II.1.A Input Mapper
Figure 2.2 shows an example of a two-dimensional input 

mapper (IM). IM is made up of layers of receptive fields. Each 
receptive field is represented by a square in each layer, and

10
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its associated weight is stored in W. SH is defined as a 
quantized input space in which each axis is quantized into S 
intervals (12 in this example). For the example in figure 2.2, 
the input generalization is 4 input quantization intervals 
wide, and each receptive field occupies 4X4 input quantization 
intervals.

In the standard CMAC, the input generalization is equal 
to the number of layers of receptive fields. Thus, there are 
four layers of receptive fields in figure 2.2. For any input, 
IM excites only one receptive field in each layer. This 
guarantees that exactly C receptive fields will respond to 
each training sample. The larger the value of S, the higher 
the input resolution, and vice versa.

While each receptive field responds only to a coarse 
input sub-region, the overall network resolution can be 
increased by offsetting each consecutive layer by one input 
quantization interval in each axis. Figure 2.3 shows all the 
centers of receptive fields superimposed onto a single layer. 
With the layer offset, 57 receptive fields (represented by 
circles) are required to cover the entire quantized input 
space (S2). One can easily extend the mapping technique to a 
multi-dimensional input space (SN) by treating each layer as 
a hyper-layer, and each receptive field as a hypercube of side 
C input quantization intervals. CN is defined as a reference 
hvpercube of side C in which C individual receptive fields 
from each hvper-laver are superimposed. These C individual

11
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receptive fields are each located in the same physical space 
as the reference hypercube (CN).

The total number of receptive fields required (NRF) can 
be computed by using equation 2.1. If S+C-l is divisible by C, 
the second term on the right hand side will become zero (a=y). 
NRF is then reduced to (S+C-l )N/CH_1 (the first term on the 
right hand side). If S+C-l is not divisible by C, S+C-l must 
lie somewhere between a and y  Thus, extra receptive fields 
can be accounted for by using linear proportionality (the 
second term on the right hand side).

NRF = aVC"-1 + {yN/CN-1 - a N/ C N- 1 } -  P  Eq. 2.1
where a = I (S+C-l)/Cj-C,

Y = r(S+C-l)/Cl *C,
P = (S+C-l-a)/C.

If only the receptive fields of finest resolution 
(centers at each intersection of the input quantization 
intervals) were used, there would have been CN number of 
receptive fields inside the reference hypercube of side C. By 
using hyperlayers of coarse receptive fields, the receptive 
field density (defined as the number of receptive fields 
inside the reference hypercube) is reduced by a factor of 1/C"-
1. As a result, the receptive field coverage becomes more 
sparse for a larger N or C (except when N is 1). By 
superimposing the centers as in figure 2.3, centers of

13
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receptive fields are distributed on the hyperdiagonal in CN. 
Although the overall field coverage appears uniform in SN, 
increasing C causes the field coverage to be less uniform 
inside CN.

It is worth noticing that CMAC can only learn to 
approximate a network function in a finite input region 
because of the finite number of available weights, and more 
importantly, because of the finite support of the receptive 
field function used. If S and C are chosen to be 100 and 32 
respectively in a 10-dimensional space (a reasonable size for 
robotics control problems), 59,705,579 receptive field centers 
will be required for learning in SN. Fortunately in most 
control problems, the desired network output tends not to span 
the entire input space. Although the possible input space can 
be very large, the input space actually traversed is often 
much smaller. Therefore, a hashing technique can be applied to 
W to further reduce the number of weights. The hashing might 
deteriorate learning as it could cause undesirable collisions. 
A collision occurs when two distant inputs share the same 
weight. While there has not been any extensive research done 
on learning interference due to collisions, cumulative results 
have suggested that the effect of hashing on learning is 
minimal unless the frequency of collisions is high [17][18].

II.1.B Adaptation

The vector W is initialized to zero prior to learning.
14
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When given a training sample {X, Yd(X)}, c receptive fields 
are excited, and their weights are summed to form a network 
output, Y(X,k), where k is the number of training cycles 
iterated. These C weights are then adjusted by means of the 
gradient descent method shown in equation 2.2.

Y(X,k) = £  W±(k)

Wi(k+1) = £  Wi(k) + (P(Yd(X) - Y(X,k) ) / C eq. 2.2

where (3 is the learning rate, and W±(k) is one of C weights 
associated with the input X* Usually, p is set less than 1 for 
smoother convergence.

15
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II.2 Self-Organizing Kohonen Network

Kohonen proposed a self-organizing feature map to model 
the human visual and auditory cortex. Functionally, this map 
is capable of approximating continuous input statistics, and 
its primary applications are found in pattern clustering and 
classification [11][12][13][14].

In general, the self-organizing map contains a set of 
receptive fields arranged in a two-dimensional layer (figure 
2.4). Each receptive field i has a weight vector (WJ of N 
components (Wu , W12,..W1H), where N is the input dimension. As 
the mapping from the input (X) to the receptive fields varies 
during learning, a search process is required to locate the 
"winner" receptive field (chosen to be a representative for 
the input).

The search is done by computing the Euclidean distance 
between X and for each receptive field center. The "winner" 
receptive field is then chosen to be the one with the smallest 
Euclidean distance. After locating the "winner" receptive 
field, a fixed number of neighboring receptive fields (C) in 
the two-dimensional layer are also located. It is important to 
notice that these neighboring centers are only the "winner" 
center's neighbors in the two-dimensional layer, but not in 
the N-dimensional input space (R") . While a standard
neighborhood region has not been defined, it is often chosen

16
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Figure 2.4 A two-dimensional Kohonen Map.
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to be either hexagonal or rectangular in shape.
Prior to learning, the weight components of each 

receptive field are initialized with small random values. When 
the input (X) is presented, the "winner" receptive field and 
its neighboring receptive fields are located. These weight 
vectors are then adjusted according to equation 2.3.

Wifk+l) = W^k) + p f (i) (X - Wi(k)) eq. 2.3

where p is the learning rate and f(i) is the pseudo-receptive 
field function (figure 2.5). Wi(k) is the weight vector of 
receptive field i. The index i refers to the distance (in an 
integer metric) from the "winner" center in the two- 
dimensional layer. W„(k) is the weight vector of the "winner" 
receptive field.

The name "pseudo" is used because the receptive field 
strength does not depend on the Euclidean distance between X 
and Wi in RN, but rather it depends on the Euclidean distance 
in the two-dimensional layer. The pseudo receptive field 
function is tapered so that receptive fields closer to the 
"winner" receptive field receive larger weight updates than 
those farther away. The "winner" receptive field receives the 
maximum weight update. In practice, proper training requires 
P be very small (on the order of 0.01), which in turn requires 
a large number of training samples for proper convergence.

This type of learning is commonly categorized as
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unsupervised or competitive because there is no explicit 
desired network output available for learning. The weights are 
adjusted only to form the mapping from input to receptive 
fields. An important observation from this adaptation rule is 
that as the training inputs are presented randomly, the 
weights will gradually self-organize in either an ascending or 
descending order so that no two distant centers will respond 
to the same input [14]. During the retrieving cycle with a 
testing input, only the output of the winner receptive field 
is 1, while the outputs of the others are zero.
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II.3 Sparse-Distributed-Memory (SDM)

Kanerva proposed a model of human memory called Sparse- 
Distributed-Memory (SDM) [10]. SDM is particularly well suited 
to learning a set of iterated sequences for which the current 
network output becomes the next network input. SDM can also be 
constructed to perform function approximation. Both the input 
(X) and the output (X') in SDM are binary vectors of dimension 
N ({0,1}N). Usually, N is set as high as 1000 for proper 
learning.

In the case where N is 1000, the total number of possible 
inputs is 21000 (M). In practice, the number of receptive 
fields available (M') is much smaller (106). In addition, the 
field placement is usually not deterministic. As a result, all 
of the receptive fields are sparsely and randomly distributed 
in {0,1}“.

Each input excites a number of receptive fields (C) in 
its neighborhood. The neighborhood is a hypercube with its two 
farthest corners R apart (Hamming distance). R is a parameter 
which determines the input generalization. Because of the 
random placement of receptive fields, a search is required to 
locate these neighboring receptive fields. This can be done by 
computing the Hamming distance between X and each receptive 
field center. Any receptive fields with centers less than 
distance R from X are excited. A smaller R results in smaller
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generalization, and vice versa. It is worth mentioning that 
the value of C might differ from one input to another because 
of the random field placement and the Hamming distance 
constraint.

The neighborhood distance threshold (R) and the centers' 
locations are fixed prior to learning. Only the receptive 
field contents can be modified during learning.

Given a desired input-output pair in each training cycle, 
SDM searches for receptive field centers close to X by 
measuring their Hamming distance. The desired output is then 
stored in the excited receptive fields, assuming that these 
receptive fields provide enough storage for learning. For 
example, if there are 10,000 inputs and 106 receptive fields, 
each receptive field will store an average of 10 inputs, given 
that the average value of C is 1000.

After enough training, each receptive field contains 
copies of all the previous training inputs within its 
receptive field. Given a testing input, the Hamming distance 
is again computed to locate these neighboring centers. X' is 
then generated according to the majority rule for which each 
individual output bit is the thresholded bit-sum of all the 
data stored in all C excited receptive fields. X' is the 
current network output, and becomes the network input in the 
next testing cycle. The threshold level for the bit-sum is 
another parameter to be chosen prior to retrieval. The ability 
to retrieve a correct output depends on the overlap between
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the hypercube centered at the desired input and one at the 
testing input.

An important observation from this adaptation rule is 
that if the testing input (X) is close to the desired input 
(Xd) r then X' is even closer to the desired output of Xdr X<j', 
than X to Xd (figure 2.6). In cases in which the network has 
been trained to reproduce sequences (the current X' is the 
next X), the sequence formed by each network output will 
converge to the desired sequence. Kanerva introduced a 
critical distance (Dcr) at which the sequence will diverge from 
the desired one if the testing input is more than Dcr away from 
the desired input. Dcr is a function of the number of words 
stored and the neighborhood size [10].
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•  Receptive field center
X Testing Input
Xd Target input
X  Output of X
Xd1 Desired output

Figure 2.6 An abstract view of SDM receptive field center 
placement for an N-dimensional binary input.
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II.4 Radial Basis Functions (RBF)

Radial Basis Functions are derived from a well known 
regularization technique, and is capable of performing 
function approximation given a set of training data and some 
prior knowledge about the surface smoothness of the desired 
network output [2 2][2 3].

Figure 2.7 shows an example of a one-dimensional RBF 
(one-input-one-output) network composed of linearly tapered 
receptive fields with non-uniform field widths and field 
locations. Thus, different inputs might excite different 
receptive fields. As the field locations and field widths 
adapt during learning, a search is required to locate these 
neighboring receptive fields because each receptive field is 
assumed to be strictly localized (with finite region of 
support).

L± and Oi stand for the ith field location and the ith 
field width respectively. When the input (X) is presented, 
each receptive field computes its Euclidean distance (dj 
between X and Li. Centers of receptive fields with Euclidean 
distances less than are excited. The strength of receptive 
field i is fi(d±(X) ,Oi). The network output (Y) is then defined 
as a weighted sum of these individual non-linear receptive 
field functions.
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where W± is a weight value associated with receptive field i.

Given that an input falls in receptive field i during 
learning, Wlf L± and o± are adjusted by means of the gradient 
descent method. Other rules of adjusting these parameters are 
also available. Each individual variable is adjusted while 
keeping the other variables fixed. In batch learning (adjust 
variables based on all the given training pairs), the network 
cost function is defined as a sum of all the squared errors 
for all the training samples (equation 2.4). Some smoothness 
constraint on the function surface can also be incorporated in 
the cost function [22]. is then updated according to 
equation 2.5. a* and L* are updated according to equation 2.6 
and 2.7 respectively.

eq. 2.4

J = (1/2)* ^  ej2

5W±(k) = ^  P* e j* fi(di.(X),Oi)

6oA(k) = ^  p-ej-Wi* (dfitd^Oi) / do±)

eq. 2.5

eq. 2.6
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6L± = p-ej-Wi* (afi(difai) / dL±) eq. 2.7

where p is the learning rate [22][23].
In incremental learning (where only one training pair is 

used at a time), these equations can still be used by dropping 
the first summation sign on the right hand side.

The derivative of the radial basis function is only 
required when the field width or the field location needs to 
be adjusted. In practice, the initial field coverage is 
uniform (assume no prior knowledge about the input data 
distribution) and the learning rate is small. The choice of 
f1(d1,o1) is crucial to learning. A well-known radial basis 
function is of Gaussian shape [22].

The learning performance of the network is often not 
optimal because the gradient surface with respect to these 
parameters usually contains multiple local minima.
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field width of center X1 (o)

XI Receptive field center

X2 X3

Figure 2.7 A one-dimensional Radial Basis Functions network.
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II.5 Discussion

Six fundamental characteristics are summarized for the 
CMAC, KOH, SDM and the RBF networks as follows.

Supervised vs. Unsupervised - The RBF, CMAC and SDM networks 
are classified as supervised networks because of the 
availability of the desired network outputs. This allows the 
network to approximate a function. On the other hand, the KOH 
network is classified as an unsupervised network because a 
desired network output is not available. Its main use is to 
perform pattern clustering or classification.

Localized Receptive Field - All of these networks use 
localized receptive fields, which have properties of local 
generalization in the formation of network responses. That is, 
similar inputs produce similar outputs, while distant inputs 
produce independent outputs.

Receptive Field Width - The receptive field widths in the 
standard CMAC and SDM are fixed during learning. On the other 
hand, the field widths in RBF and KOH are adaptable during 
learning. RBF adapts the field widths based on the function 
approximation error while KOH adapts the field widths (in RN) 
based on the input distribution in RN.
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Receptive Field Placement - The receptive field placement in 
both CMAC and SDM are fixed during learning. The field 
placements in CMAC are modular in SN but the field placements 
in SDM are random in {0,1}N. On the other hand, the receptive 
field placements in KOH and RBF are adaptable during learning. 
RBF adapts the field locations based on function approximation 
error, while KOH adapts the field locations based on the input 
distribution in RN. Thus, CMAC is similar to SDM in terms of 
the fixed receptive field placement and field width (except 
the placement in SDM is irregular). However, hashing (without 
any collisions) in CMAC can be considered as an adaptive 
placement of available receptive fields based on the input 
distribution, like KOH.

Search For Neighboring Fields - In general, the number of 
receptive fields required for a network to approximate to a 
given accuracy grows exponentially with the dimensionality N. 
Thus, the search time for neighboring receptive fields in SDM 
and RBF increases with the input dimension. In contrast, the 
modular receptive field placement in CMAC eliminates any 
search for neighboring receptive fields. While the irregular 
(SDM) or adaptable (KOH, RBF) receptive field placement might 
be better models for biological systems, the search process is 
highly undesirable in real-time control applications.

Weight Adjustment - The weight adjustment during learning in
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all of these networks utilizes the gradient descent method or 
a variation. As only a small number of weights are adjusted at 
a time (localized receptive field concept) using a simple 
weight update law and a relatively large learning rate (except 
KOH), the numerical computation is potentially fast (without 
considering the searching process). However, in RBF, not only 
the weights but also the field locations and the field widths 
need to be adjusted in each training cycle. Very often, the 
error surface with respect to these variables contains local 
minima, which can lead to a sub-optimal performance.
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CHAPTER III

RECEPTIVE FIELD FEATURES IN THE STANDARD CMAC

While the standard CMAC is capable, in general, of 
approximating any arbitrary function, it is useful in practice 
to determine which training functions are more difficult to 
approximate. The level of difficulty is related to issues of 
the speed of convergence and the final approximation error.

This chapter presents sinusoid and impulse learning 
experiments and results for the standard CMAC. The 
corresponding desired outputs were space-spanning in nature. 
Because of the local generalization feature, the network 
output does not relate linearly to the network input. On the 
other hand, the network output is linear relative to the 
network weights. Suppose generates Y±(X) and W1+W2+-*W1 
generates Y1 (X) +Y2(X ) +♦ • Y± (X ). If each W* contains proper 
weight values approximating the ith Fourier component of the 
desired output, any arbitrary periodic function can thus be 
approximated by summing all the individual weight vectors 
(Wi). Any difficulty in approximating a particular Fourier 
component of the desired output will lend useful insights in 
approximating the desired output as a whole, which justifies 
the use of sinusoids of different frequencies in learning.

Section 1 of this chapter presents the experiments for a 
one-dimensional input. Section 2 presents the experiments for
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a two-dimensional input. Each analysis in the following 
sections was performed under the following conditions. There 
were 50 input quantization intervals (S) in each axis. The 
input generalization was 10 input quantization intervals wide, 
and the learning rate (P) was set to 0.5. All the training 
pairs were obtained by sampling at each input quantization 
interval (and their intersection) in SH. All the training 
samples then formed a training set. Thus, there were SN 
possible independent training samples in the training set. 
Each sample input, X, could take any value from 0 to 1.

III.l One-Dimensional Input

III.l.A Sinusoid Learning Experiment

In this experiment, the desired output was sin(2itMX), 
where M is the harmonic number. Ten sinusoidal functions of 
different spatial frequencies (the first harmonic to the tenth 
harmonic) were trained separately. The spatial wavelength of 
the first harmonic function was 50 input quantization 
intervals wide. In each training cycle, a sample was randomly 
chosen from the training set. The training ended when the 
standard deviation of the training error (the difference 
between the desired output and the network output at the 
training samples) was less than 0.1. Figure 3.1 shows the 
relationship between the number of training cycles needed to 
reach 0.1 RMS error and the function harmonic.
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The learning convergence was sluggish when functions 
reached integer multiples of a critical spatial frequency (fcr) 
[5]. fcr is defined as S/C (the fifth harmonic in this case). 
Also, the time to converge, in general, increased with the 
harmonic number, except near fcr.

The slow convergence can be explained by examining the 
weight update at fcr (the fifth harmonic) in the following 
example. All the training samples are used simultaneously 
(batch training). At for, the spatial wavelength of the desired 
output is equal to the receptive field width (10 in this
case). Assume that all of the weights are initialized to zero,
and the learning rate is 1. Using the rectangular field 
function, the weight update (6W±) is shown in equation 3.1.

6w± = [Y± - (W± + •• + Wi+9)] / 10 + eq. 3.1
[Y±+i " (Wi+1 + •• + W1+10)] / 10 + ••
[Yi+9 - (Wi+9 + •• + Wi+18)] / 10

= (Yi + Yi+1 + •• Yi+9) / 10

After the batch training, each W* becomes 5W±. Since the 
desired output is sinusoidal with wavelength equal to the 
receptive field width, the sum of all the desired outputs 
within any complete cycle is exactly zero. Thus, each 5WA is 
zero, and the network output will never converge. When each 
sample is trained sequentially, 6W± depends on the specific 
sequence of the training samples, and will not be exactly
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zero. However, the slow convergence can still be expected.

III.l.B Impulse Learning Experiment

In this experiment, the desired network output was a 
discrete impulse function of magnitude 1. The impulse was 
located at 0.5. Figure 3.2 shows the relationship between the 
network output and the input after 10,000 and 50,000 random 
trainings.

After 10,000 random trainings, the network output 
approximated the impulse fairly well except at places where 
inputs were taken from odd multiples of 0.1 (these glitches 
were C input quantization intervals apart). After 50,000 
trainings, the glitches disappeared. The network output and 
the desired impulse were almost identical.

These periodic glitches can be explained by examining 
the following equations. Assume that the impulse is located at 
X-t with which W± through are associated. Also, assume that
each W± has its appropriate value to reconstruct the desired 
impulse output. Equations 3.2 through 3.5 show the weights 
associated with inputs near the impulse. Equation 3.6 
indicates a strong coupling of weights of C input quantization 
intervals apart.

Wi_! + w± + • • + Wi+8 = 0 eq.
Wi + Wi+1 + • • + wi+9 = 1 •0)

Wi+1 + Wi+2 + • • + Wi+10 = 0 fl> ►Q •
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wi+2 + wi+3 + • • + W1+11 = 0 eg. 3.5

Subtracting eg.3.2 from eg.3.3, Wi+9 - Wi.x = 1
Subtracting eg.3.4 from eg.3.3, Wi - Wi+10 = 1,
Subtracting eg.3.5 from eg.3.4, î+i = W1+11/

By deduction,
Eg. 3.6 Wi+j = Wi+j+c , V j * 0,-1
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III.2 Two Dimensional Input

III.2.A. Sinusoid Learning Experiment

In this experiment, the desired output was sin(2jtM(X+Y)), 
where M is the harmonic number. Ten sinusoidal functions of 
different spatial frequencies (the first harmonic to the tenth 
harmonic) were trained separately. The spatial wavelength of 
the first harmonic function in each axis was 50 input 
quantization intervals wide. In each training cycle, a 
training sample was randomly chosen from the training set. 
Figure 3.3 shows the relationship between the standard 
deviation of the training error (difference between the 
network output and the desired output at the training samples) 
and the function harmonic after 10,000 and 50,000 random 
trainings.

The RMS error remained unchanged after 40,000 additional 
random trainings, implying that the approximation can not be 
improved further regardless of the training time. The network 
approximated better at lower spatial frequencies. At 
frequencies above fcr, the network produced non-diminishing RMS 
values of about 0.8.

As mentioned in chapter 2, the number of available 
receptive fields is completely determined by S, C and N 
(equation 2.1). For a one-dimensional input, there are always 
more receptive fields (S+C-l) available than the number of
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Figure 3.4 A CMAC input-output relationship of a 
two-dimensional desired impulse output after 10,000 
random trainings with C set to 10.
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possible independent training samples (S). This results in an 
under-determined condition in which there are infinite number 
of weight combinations which can reconstruct the desired 
output exactly at the training samples. However, for a two- 
dimensional input, there are fewer receptive fields available 
than the number of possible independent training samples (S2). 
This results in an over-determined condition in which there is 
no set of weights which can reconstruct an arbitrary desired 
output exactly at the training samples.

III.2.B Impulse Learning Experiment

The desired network output was a discrete impulse 
function of magnitude 1. The impulse was located at 0.5 in 
each axis. Figure 3.4 shows the relationship between the 
network output and the input after 10,000 random trainings. 
Figure 3.5 shows the same relationship after 50,000 random 
trainings. Figure 3.6 shows the relationship between the 
network output and the input after 10,000 random trainings in 
which C was changed from 10 to 5.

In figure 3.4, the convergence was not complete because 
each sample was only trained an average of four times. In both 
figure 3.4 and 3.5, it is clearly seen that the network output 
did not converge to the desired impulse after 50,000 
trainings. This is caused by an inadequate number of available 
receptive fields for learning (the peculiar network responses 
favored in the X axis has not been understood). Figure 3.5 and
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3.6 show that the network output better resembled the desired 
impulse after changing C from 10 to 5 (which increased the 
number of receptive fields).
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Figure 3.5 A CMAC input-output relationship of a 
two-dimensional desired impulse output after 50,000 
random trainings with C set to 10.

V
Figure 3.6 A CMAC input-output relationship of a 
two-dimensional desired impulse output after 10,000 
random trainings with C set to 5.
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III.3 Discussion

Four considerations should be taken into account when 
using CMAC to approximate a function. First, the convergence 
is slow at the critical spatial frequency (fcr) when the sum 
of all the desired outputs within the receptive field is 
exactly zero and the rectangular receptive field function is 
used. Since fcr was found to be an important spatial frequency 
limit for both a one-dimensional input and a two-dimensional 
input, it is very likely that it also is important for multi­
dimensional inputs.

Second, the value of C has a different impact on the 
allocation of receptive fields in a one-dimensional CMAC and 
a multi-dimensional CMAC. Because the coarse receptive fields 
are arranged in a hyperlayer structure, the receptive field 
density (or the number of receptive fields inside the 
reference hypercube) is inversely proportional to CN_1. For a 
one-dimensional input, a larger C allocates more receptive 
fields (C-l more than S). However, for a multi-dimensional 
CMAC, a larger C allocates fewer receptive fields (always 
fewer than SN) because of the reduction factor (CN_1).

Third, the receptive field centers are placed on the 
hyper-diagonals in the input space. Increasing C not only 
reduces the number of receptive fields in SN, but also forces 
the center placement to be less uniform in CN. It is
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speculated that this non-uniform center placement will become 
more pronounced for a larger N. In addition, the number of 
receptive fields required grows exponentially with N. This 
makes the experiment impossible without the use of hashing, 
which further complicates the analysis. This justifies the use 
of a two-dimensional CMAC in this chapter for learning.

Last, while learning a space-spanning desired output in 
SN requires an excessive number of receptive fields, learning 
a trajectory in SN, however, requires fewer receptive fields. 
For example, a trajectory on the hyperdiagonal in SN is 
equivalent to a function in S1, assuming that the hashing does 
not generate any collisions.

To summarize, the hyper-diagonal field placement becomes 
less uniform in CN for a larger C. On the other hand, too 
small a C does not provide sufficient generalization in SH. 
Also, the learning will be very sluggish at fcr if the 
rectangular field function is used. Based on these undesirable 
features in the standard CMAC, Chapter IV presents an 
alternative receptive field function and placement, while 
still requiring the field placement to be modular and the 
field width to be uniform, which are desirable features in the 
standard CMAC.
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CHAPTER IV

RECEPTIVE FIELD FUNCTION AND PLACEMENT

The use of a rectangular field function in a standard 
CMAC is undesirable for two reasons. First, the network output 
is insensitive to any input within a input quantization 
interval. Second, learning is sluggish at the critical spatial 
frequency (fcr) [5]. A better receptive field should be tapered 
from the field center to its boundary so that the network 
output is continuous rather than piecewise constant. On the 
other hand, using a tapered receptive field function also 
means the network output becomes sensitive to the center 
placement within CH. That is, a non-uniform center placement 
is likely to deteriorate the learning performance. This 
chapter studies both the effect of linearly-tapered field 
function and center placement on learning.

The region of support for the linearly-tapered receptive 
field used in this chapter is either hypercubic or 
hyperspherical. In order to define the receptive field 
strength over these regions of support, let the field strength 
of the ith receptive field projected onto the kth dimension be 
fiIc. Also, imagine that a hypersphere of radius R is bounded 
by the hypercube with all faces touching the hypersphere. If 
the region of support is hypercubic, the field strength of the 
ith receptive field for a given input is defined as the
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smallest fik. For a two-dimensional input, the receptive field 
function is a pyramid. If the region of support is 
hyperspherical, the field strength of the ith receptive field 
is a function of the Euclidean distance between the input and 
the center of the ith receptive field. The field strength is 
zero for any input outside the hypersphere. For a two- 
dimensional input, the receptive field function is a cone. 
Although the 1inearly-tapered field with the hypercubic 
support introduces discontinuity in slope on the hyper­
diagonal, the magnitude of the field strength is independent 
of the input dimension (N).

A general weight update equation for any arbitrary field 
function is given in equation 4.1. The network output Y for 
input X is 2f1(X)Wi, where fi(X) is the receptive field 
strength associated with X. The weight adjustment 5W* is 
derived by means of the gradient descent method.

6W± = P- (Yd(X) - £  fiQUWJ-f^X) / £  f2±(X) eq. 4.1

where W± is one of C weights associated with X. 2 f2i(X), a 
normalizing factor, is a sum of all C squared receptive field 
strengths associated with X.

In the case of the rectangular receptive field, 2f2j(X) 
is equal to C because each ft(X) is 1. Thus eq.4.1 reduces to 
eq.2.2. Equation 4.1 is used in this chapter to account for
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the linearly-tapered receptive field function by setting each 
f± appropriately.

Section IV.1 of this chapter presents sinusoid learning 
experiments on CMAC for one-dimensional and two-dimensional 
inputs. A linearly-tapered field function with a diagonal 
center placement was used. Section IV.2 presents a sinusoid 
learning experiment for only a two-dimensional input. A 
linearly-tapered field function with a different center 
placement (PI) was used. Section IV.3 presents a sinusoid 
learning experiment for only a one-dimensional input. A CMAC 
with non-uniform field widths and offsets (P2) was studied for 
both a linearly-tapered and a rectangular field function. 
Section IV.4 presents three heuristic rules which provide a 
more uniform center placement. In particular for a two- 
dimensional input, a perfectly uniform center placement 
(defined shortly) can be achieved if the value of C satisfies 
a given constraint. Learning with a linearly-tapered receptive 
field with hyperspherical support was also studied. Section 
IV. 5 presents experimental evaluation of the uniformity of 
placement for the diagonal placement and the heuristic 
placement.

Each analysis in Section IV.1-3 was performed under the 
following conditions, unless otherwise stated. There were 50 
input quantization intervals (S) in each axis. The input 
generalization was 10 input quantization intervals wide, and 
the learning rate was 0.5. All of the training pairs were
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obtained by sampling at the input quantization intervals (and 
their intersections) in SN. All the training samples formed a 
training set. Thus, there were SN possible independent 
training samples in the training set. Each sample input could 
take any value from 0 to 1. Also, the region of support for 
the linearly-tapered field function was hypercubic.
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IV. 1.A ID Sinusoid Learning Experiment

In this experiment, the desired output was sin(2jtMX), 
where M is the harmonic number. Ten sinusoidal functions of 
different spatial frequencies (the first harmonic to the tenth 
harmonic) were trained separately. The spatial wavelength of 
the first harmonic was 50 input quantization intervals wide. 
A linearly-tapered field function (with a hypercubic support) 
and a diagonal center placement was used.

In each training cycle, a sample was randomly chosen from 
the training set. The training ended when the standard 
deviation of the training error at the training samples was 
less than 0.1. Figure 4.1 shows the relationship between the 
number of training cycles required and the function harmonic.

The slow convergence at the critical spatial frequency 
(fcr) was eliminated, indicating relatively wider learning 
bandwidth. However, the time to converge increased 
exponentially beyond fcr. The poor learning convergence beyond 
fcr suggests that any generalization larger than the spatial 
period of the sinusoid is undesirable, regardless of the 
receptive field function.

IV.l.B 2D Sinusoid Learning Experiment

In this experiment, the desired output was sin(2nM(X+Y)), 
where M is the harmonic number. Ten sinusoidal functions of
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different spatial frequencies (the first harmonic to the tenth 
harmonic) were trained separately. The spatial wavelength of 
the first harmonic in each axis was 50 input quantization 
intervals wide. A linearly-tapered field function with a 
diagonal center placement was used. Figure 4.2 shows the 
relationship between the standard deviation of the training 
error and the function harmonic after 10,000 and 50,000 random 
trainings.

While the error remained unchanged below fcr after 40,000 
extra trainings, a noticeable error reduction was observed 
beyond fcc. Also, the error was unusually large at low spatial 
harmonics, compared to the rectangular field function (figure 
3.3). The large error at low spatial harmonics can be 
explained by considering the following example using a one­
dimensional CMAC with C set to 1 (only one layer of receptive 
fields).

In figure 4.3, suppose that XA is near the field edge of 
f* (maximum field strength W* at the center of f*), and XB is 
near the center of f*. Also, suppose a desired output for both 
XA and XB is Yd, the weight adjustment 6W* due to XA will be 
large because both f*(XA) and f*(XA)*W* are small (refer to eq. 
4.1). On the other hand, 6W* due to input XB will be relatively 
small because both f*(XB)*W. and f*(XB) are large (near 1). As 
both XA and XB fall within the same receptive field (f*), W* 
will thus oscillate which may result in a larger final 
approximation error. Based on this argument, approximating a
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constant desired output (or any output with low spatial 
frequencies) with a non-uniform center placement and a 
linearly-tapered field function is undesirable.
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f* Is the receptive field
W* Is the maximum field strength of f*
XA and XB are training Inputs

w*

Figure 4.3 A single layer of linearly-tapered receptive 
fields for a scalar input.
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IV.2 2D Sinusoid Learning Experiment with PI Placement

The results in Section IV. 1 show that, for a two- 
dimensional input, learning was worse at low spatial harmonics 
because of the interaction of the non-uniform center placement 
and the 1inearly-tapered receptive field function. Learning 
might be improved if a uniform center placement is available. 
Unfortunately, searching for a uniform center placement in SN 
is inherently difficult. For this reason, the following 
experiment was carried out only for a two-dimensional input 
where a uniform center placement (Pi) was easily arranged 
(figure 4.4). Pi is a perfectly uniform placement because the 
distribution of centers not only is uniform in a two- 
dimensional space (same Euclidean distance between any two 
nearest neighbors), but also the projected distribution of 
centers onto each axis is uniform. The uniform projection of 
centers onto each axis is especially desirable because the 
number of projected receptive fields is the same for each 
axis, allowing a uniform input resolution in each axis.

The experimental conditions were identical to those in 
Section IV.l.B, except that the PI placement was used. Figure 
4.5 shows the relationship between the RMS training error and 
the function harmonic after 10,000 and 50,000 random 
trainings. Comparing to figure 4.2, the undesirably large RMS 
errors found previously at low spatial harmonics were reduced
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significantly. However, no significant changes in RMS error 
were observed at high spatial harmonics between the diagonal 
placement and the Pi placement. While the uniformity of the 
center placement leads to a smaller final approximation error 
at low spatial harmonics, the effect of the uniform center 
placement becomes less significant at higher spatial harmonics 
given the receptive field width is fixed.
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IV.3 ID CMAC With Non-Uniform Field Widths And Offsets

In both Section IV. 1 and IV.2, the center placement 
assumed uniform field widths in each layer of the CMAC. In 
general, the placement can also be constructed by using 
different field widths for different layers. This section 
presents a one-dimensional sinusoid learning experiment based 
on a center placement (P2) with non-uniform field widths and 
non-uniform offsets. Both linearly-tapered field and 
rectangular field were used.

In P2, seven layers were used. The field widths in the 
first three layers were each set to 10, and their respective 
offsets were 0, 4 and 7. The field widths in the fourth and 
fifth layers were each set to 7, and their respective offsets 
were 0 and 4. The field widths in the last two layers were 
each set to 4, and their respective offsets were 0 and 2. The 
overall center placement is shown in figure 4.6. The sizes of 
these field widths were chosen in such a way that both the P2 
placement and the diagonal placement had the same total number 
of receptive fields. Unlike the standard CMAC, the number of 
layers was not equal to the width of the receptive field (C). 
Also, it should be noticed that although the distribution of 
centers is uniform in each individual layer, the overall 
distribution in P2 is no longer uniform.

Figures 4.7 and 4.8 show the relationship between the RMS
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error and the function harmonic using the rectangular field 
function and 1inearly-tapered field function respectively 
after 10,000 random trainings. In the case of the rectangular 
field function, the CMAC (parameter values, such as C, S and 
(3, were given earlier in this chapter) with uniform field 
widths and offsets achieved substantially smaller RMS error 
than the P2 placement. The non-uniform field widths and 
offsets caused the field coverage to be non-uniform, which 
adversely affected the approximation accuracy. However, in 
contrast to the CMAC with uniform receptive field widths, the 
error magnitude for the P2 placement did not peak at fcr 
because of the averaging effect of different field widths and 
offsets.

In the case of the linearly-tapered field function, 
similar results were found at low spatial harmonics. However, 
the P2 placement performed better at high spatial harmonics. 
At these harmonics, the desired output started to resemble a 
linearly-tapered field with a small field width (o). The 
desired output can easily be approximated by using only a 
single layer of linearly-tapered receptive fields with the 
field width set to a. This mere coincidence of matching the 
receptive field to the desired output should not be used to 
conclude that the non-uniform center placement is useful at 
high spatial harmonics.
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IV.4 Receptive Field Center Placement

Although the diagonal receptive field placement of the 
standard CMAC is undesirable for a large C in SH because of 
its non-uniform center coverage, the arrangement has three 
useful features which are important to preserve. First, the 
receptive field width should be uniform or the coverage will 
not be uniform. Second, the receptive field placement should 
be modular in SN. This eliminates unnecessary searching for 
neighboring fields in order to generate a network output. 
Last, the projection of receptive field centers onto each 
individual axis should be uniform in order to obtain a uniform 
input resolution.

Three heuristic rules were developed to provide a more 
uniform center placement in C" while preserving these 
desirable features. A modular arithmetic expression is used to 
define each center's co-ordinates. The co-ordinates of the mth 
center inside CN is defined as

[m'di % C, m*d2 % C, —  m*dN % C], m e (0,* • • ,C-1),
diF m e I

where % is a modulo operator and d± is the displacement offset 
in the ith dimension. Due to the modular feature constraint, 
d± must be an integer.
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By using this co-ordinate definition, the first center is 
always located at the origin [0,0*•,0]. A displacement vector 
D is defined as <d1,d2,* • ds>, where dx is always set to 1. 
Thus, the center placement is completely described by the 
vector D. D becomes a unity vector for the standard CMAC. The 
three heuristic rules (HR1, HR2 and HR3) which provides a more 
uniform displacement offset for the center placement in CMAC 
are given as follows.

HR1: a • dt y • C,
where 2 £ i £ N, l s d ± < C/2, difa,Y e I 

HR2: d± * djf 2 s i,j £ N, i * j

HR3: Max SD(D), D E {HR1> D {HR2>
where SD(D) stands for a standard deviation of all components 
in D.

HRl prevents d±'s from sharing common factor(s) with C. 
As a result, dj/s satisfying HRl ensure that the projection of 
centers on each axis will be uniform. This means that the 
number of independent projected receptive fields along each 
axis is always C. Each point in the space falls in exactly C 
receptive fields, and a unit step in position parallel to any 
axis crosses one and only one receptive field boundary. d± 
should be less than C/2 due to the mirror image symmetry.

By avoiding any two d±'s which are the same, HR2 ensures

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



that the projected center placement onto any subspaces can not 
be diagonal. All the possible candidates to be used in HR2 
must also satisfy HRl.

HR3 ensures that the standard deviation of all d±'s in D 
must be maximized. Otherwise, centers will be clustered in 
some local region in CN. Again, these dj/s must also satisfy 
HRl and HR2.

To illustrate how to apply these rules, let C be 10 and 
N be 2, the only choice for dL after applying HRl is 3. This 
choice (3) also satisfies HR2 and HR3 (because dx is 1 and d2 
is 3). If a vector D <1,3> is used, the centers' co-ordinates 
are [0,0], [1,3], [2,6], and so forth. The resulting center 
arrangement is shown in figure 4.4. Note that if C is prime, 
then each dj, has less than C/2 choices, which indicates that 
C should be greater than 2*N. This is a lower bound on C for 
any N if a uniform placement is to be achieved. Also, if C is 
2° (a e I), then each d± has less than C/4 choices (because 
only the odd numbers are valid), which indicates that such C 
should be greater than 4*N. In general, a larger N requires a 
larger C in order to maintain uniform projected field coverage 
in each individual axis.

It is important to notice that these heuristic rules do 
not guarantee a uniform projection of centers onto higher 
dimensional subspaces (CM, M < N). However, these heuristic 
rules allow the center placement to be more uniform than the 
diagonal placement. For a two-dimensional input, a perfectly
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Figure 4.9 A configuration required for the proof of a 
uniform center placement for a 2D input.
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uniform center placement can be achieved if d2 is set to V (C -  

1). In this case, D is <1,/(C-1)>. This condition can be
derived by referring to figure 4.9. Let X2 ([ 1,d2]) be the
immediate neighbor of X1. By using symmetry of axis, there 
must be another center located at X4 ([d4,-l]). Also, there 
must be another center located at X3 ([d4,C-l]) because of the 
modular feature. In order to require the nearest neighbor of 
X2 in each axis to be the same distance away, d2 should be set
to d4 and d2*d4 = C-l, d22 = C-l. For example, C can be either
10, 17 or 26.

Although there is no analytical proof of any better 
configuration for D, numerical searches for other possible 
arrangements in CN have not yet provided any significantly 
better solutions. Also, an optimal range of C has emerged from 
these heuristic rules. It has been mentioned that too large a 
C causes the field coverage to be sparse (refer to chapter 
two). On the other hand, too small a C causes the field 
coverage to be less uniform. To summarize, the lower bound on 
C for any N is 2-N.
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IV.5 Experimental Evaluation

Using a modulo arithmetic method to arrange receptive 
field centers, Parks and Militzer [20] performed an exhaustive 
search to select good displacement vectors D for various 
combinations of C and N. Their exhaustively searched placement 
is referred to in this dissertation as the Parks placement. 
Their search criterion was based on maximizing the minimum 
distance between two nearest neighbors (no learning was 
involved). Another way to evaluate the uniformity of the 
center placement is to set all weights equal to 1 (no 
learning), and to evaluate the network output at many random 
points in CH. In this case, the network output is simply the 
sum of C field strengths. If the sum is not a constant over 
the region, the network is more responsive to some inputs than 
others. Since the network is designed without consideration of 
the exact function to be learned, such spatial variation in 
sensitivity is undesirable. It is assumed that the most 
uniform arrangement of receptive fields will have the least 
spatial variation in sensitivity.

Experiments were done using CMACs with C in the range from 
2 to 50 in both S3 and S10. A linearly tapered receptive field 
with either hyperspherical or hypercubic support was used in 
all three placements (the diagonal placement, the heuristic 
placement and the Parks placement). In the heuristic
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placement, only HRl and HR3 were used to determine D 
(otherwise there might not exist any valid vector D for some 
values of C if HR2 is imposed). The network output was 
evaluated at 1000 random inputs inside CN. A uniformity index 
was defined as a ratio of the standard deviation to the mean 
of these responses. As any input excites exactly C receptive 
fields, the index using a rectangular field will always be 
zero. Thus, the use of the rectangular field with the diagonal 
placement does not lend any useful insights in determining the 
uniformity of field coverage. In other words, the index is 
only meaningful for tapered receptive field functions.

Figure 4.10 shows the relationship between the uniformity 
indexes of the hypercubic support and the generalization (C) 
in S3, while figure 4.11 shows the relationship between the 
indexes of the hyperspherical support and the generalization 
(C) in S3. In both figure 4.10 and 4.11, all three center 
placements (diagonal, heuristic, Parks) were used. First, the 
indexes for the diagonal placement with the linearly-tapered 
receptive field were independent of C (except for a small C) 
for both regions of support. While increasing C makes the 
coverage less uniform, increasing C also increases the mean 
field strength. Second, the indexes for the heuristic 
placement were much smaller than the indexes for the diagonal 
placement for both regions of support, indicating that the 
heuristic placement was more uniform. However, the indexes for 
the heuristic placement were very sensitive to C (especially
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a small C ). This suggests that field coverage for some values 
of C were better than others even though the same heuristic 
rules were applied. Last, the indexes for the Parks placement 
and the heuristic placement were very similar for both regions 
of support, suggesting that the heuristic placement is as good 
as the exhaustive search placement.

Figure 4.12 shows the relationship between the uniformity 
indexes of the hypercubic support and the generalization (C) 
in S10, while figure 4.13 shows the relationship between the 
indexes of the hyperspherical support and the generalization 
(C) in S10. As in S3, the indexes for the diagonal placement 
with the linearly-tapered receptive field were independent of 
C (except for a small C) for the same reason. Also, the 
indexes for the Parks placement and the heuristic placement 
were very similar for both regions of support. These results 
are consistent with those obtained in S3, suggesting that the 
heuristic rules are a good set of rules. However, the indexes 
with the hyperspherical support were much larger than those 
with the hypercubic support. Since the Euclidean distance from 
one center to its far corner inside CN is (/N)*(C/2), centers 
at far corners with respect to the input contributed 
insignificant field strengths to the network output in SN. 
Thus, the overall mean strength was much smaller. The indexes 
for the heuristic placement were less sensitive to C than 
those in S3.
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IV.6 Discussion

For the diagonal placement, C must be larger than or 
equal to N so that the hyper-diagonal inside CN is completely 
filled. Otherwise, the coverage in CN is sparse, and results 
in a larger uniformity index.

The heuristic placements used in Section IV. 5 were 
generated by utilizing both HRl and HR3. In figure 4.10 
through 4.13, those center placements which violated HR2 had 
significantly larger indexes. This suggests that HR2 is an 
important constraint.

It is interesting to notice that the lower bound on C 
defined in Section IV.4 predicted the knee of each curve well 
(refer to figure 4.10-4.13). This suggests that this lower 
bound can be useful in assigning C for any N. In other words, 
while a smaller C (< 2*N) causes the center coverage to be 
less uniform inside CN, a larger C results in fewer available 
receptive fields in SK (the sparse center coverage).

The differences between the indexes for the diagonal 
placement and the heuristic placement were smaller in S10 than 
in S3. However, in S10, increasing C leads to a smaller index 
for the heuristic placement, but increasing C does not change 
the index for the diagonal placement (C a 10). Thus, the 
difference in indexes between the heuristic placement and the 
diagonal placement increases for a larger C.
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The heuristic placement produces a better fit without 
requiring any additional numerical computation. The 
hyperspherical support was found to be undesirable in CMAC. A 
linearly-tapered receptive field with a hypercubic support was 
found to be better suited to the hypercubic structure of CMAC.
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CHAPTER V

ADAPTIVE RECEPTIVE FIELD DENSITY CMAC

In the sinusoid learning experiments described in the 
previous chapters, the desired output was a sinusoid of a 
single spatial frequency in S2. In practice, the desired 
output contains regions of high spatial frequencies and of low 
spatial frequencies. Thus, a different desired output (Yd) in 
S2 was studied in this chapter (figure 5.1). The desired 
output (Yd) was sin(2jid)+sin(10jtd) inside a radius of 0.25 
centered at <0.5,0.5>, where d2 was (x-0.5)2+(y-0.5)2. Outside 
of this radius, the desired output was zero. A multi­
dimensional CMAC and a two-dimensional CMAC have the shared 
properties of sparse and possibly non-uniform receptive field 
coverage and non-zero final approximation error. However, 
learning in SN requires a huge number of virtual receptive 
fields which must be hashed into the physical weight storage. 
Based on these considerations, only a two-dimensional input 
was used in the following experiments.

Section V.l provides a comparison between a single CMAC 
and multiple CMACs (several complete CMACs were used) after 
training to approximate Yd. Section V.2 presents results of 
approximating Yd with an adaptive receptive field density CMAC 
in which the receptive field density (or the number of 
receptive fields in the reference hypercube) is allowed to
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Figure 5.1 A desired two-dimensional CMAC output.
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vary during training. As fewer receptive fields are needed to 
represent a smoother function surface, one might expect fewer 
receptive fields would be needed in reconstructing the 
constant surface outside the circle centered at <0.5,0.5> 
(refer to figure 5.1) while more receptive fields would be 
needed in reconstructing the inner sinusoidal surface. This 
justifies the use of the adaptive receptive field density.

Experiments in this chapter were performed under the 
following conditions unless otherwise stated. There were 50 
input quantization intervals (S) in each axis. All the 
training pairs were obtained by sampling at the input 
quantization intervals (and their intersections) in S2. All 
the samples formed a training set. Each sample could take any 
value from 0 to 1. The receptive field was chosen to be 
linearly tapered with hypercubic support, and the center 
placement was set according to the heuristic rules (refer to 
chapter IV).

V.l Multiple CMACs

While increasing the number of receptive fields in 
general reduces the approximation error (refer to figure 4.10- 
4.13), it is not clear whether to choose a CMAC with a smaller 
C (with uniform field widths) or to choose multiple CMACs with 
different field widths. Thus, three different CMAC structures 
were studied for learning.

The input generalization (C) for CMAC I was 5 input
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quantization intervals wide, and that for CMAC II was 10 input 
quantization intervals wide. The learning rates ((3) for both 
CMAC I and CMAC II were 0.5. The displacement vectors D for 
CMAC I and CMAC II were <1,2> and <lf3> respectively. Unlike 
CMAC I and CMAC II, CMAC III was made up of two individual 
CMACs with C set to 5 and 10 input quantization intervals 
wide, and the learning rate for each individual CMAC in CMAC 
III was 0.5. The absolute offset of the center placement in 
each individual CMAC in CMAC III was zero. The weight update 
6W± for CMAC III was defined as

6Wi = P- (Yd(X) - Y5 - Y10)-f±(X) / £  f2±(X) i E CMAC III

where Y5 and Y10 are individual CMAC outputs with C set to 5 
and 10 input quantization intervals respectively.

50,000 random trainings were performed for all three CMAC 
structures, and figure 5.2 shows the relationship between the 
RMS approximation errors after training and the weight usage 
after 20,000 and 50,000 random trainings.

The RMS errors did not change significantly in any of 
these CMACs after 30,000 additional trainings. This indicates 
enough trainings had been done to eliminate any transient 
behavior. As expected, CMAC I (C=5) produced much smaller RMS 
errors than CMAC II because more receptive fields (weights)
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were available in CMAC I. In contrast, although there was a 
huge increase in weights available, CMAC III was not able to 
further reduce the error by any significant amount, as 
compared to CMAC I. Since the overall center coverage in CMAC 
III is no longer uniform (although each of the individual 
CMACs has uniform center coverage), this suggests that 
multiple CMACs with different individual field widths for 
approximating a function are undesirable in terms of the final 
approximation error for a fixed number of available weights 
(consistent with the result in Section IV.3).

V.2 Adaptive Receptive Field Density

Since fewer receptive fields are needed to approximate a 
smoother function surface and the field width should be kept 
uniform, a single CMAC with an adjustable weight density was 
used to approximate Yd in this section. The input 
generalization was 10 input quantization intervals wide. 
Unlike a regular CMAC, even layers (the first layer and every 
other layer) of receptive fields were grouped together to form 
CMACe, while odd layers (the remaining layers) of receptive 
fields were grouped together to form CMAC0. The learning rates 
for CMACe and CMAC0 were |3e and (30 respectively. If CMACe and 
CMAC0 were put together, a complete CMAC would be recovered. 
Although CMACe and CMAC0 each possessed half as much input 
resolution as their standard counterpart (C = 10), CMACe and 
CMAC0 each had a uniform field coverage (because the
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displacement offsets of these sub-networks satisfy the 
heuristic rules).

Two phases (<&1, <I>2) of training were involved. In 4>1, the 
learning rate was 0.5, and only the weights (Wei) in CMACe were 
adjusted as follows.

6We<1 = 0.5* (Yd(X) - Y.)-fe<1(X) / ^  f20(1 i e [even]

where Ye is the output of CMACe.

$2 began after Sw training cycles in $1. In <I>2, the 
weights (W6fi) in CMACe were adjusted as follows.

We.i = Pe* (Yd(X) - Ye - Y0)• fe,i / E  f2e,i(X) i e [even]

where Ye is the output of CMAC0.

The weights (W0>1) in CMACc were adjusted if the error 
residue at the beginning of each training cycle was greater 
than Thr which is an error threshold level parameter.

6W0/1 = po- (Yd(X) - Ye - Y0)• f0(1(X) / E  f2o.i i e [odd]
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With this adaptive receptive field density configuration, 
four new parameters are introduced: Sw, Th, (3e and |30.

Figure 5.3 shows the relationship between the standard 
deviation of the approximation error and eleven different 
parameter arrangements after 20,000 and 50,000 random 
trainings. The weight usage was also shown on the right side 
of each bar in the figure. In <52, only one or two parameters 
were varied in each case while the rest of the parameters were 
kept at their nominal values. Under the nominal condition 
(shown on the right side of figure 5.3), |3a and |30 were each 
set to 0.1, S„ was set to 5000, and Th was set to 0.05.

Several special cases are worth noting. In case 1, only 
Ye was used for training (Sw was very large) with |30 set to 
0.5. In case 2, only Ye was used for training (Th was very 
large) with f5e set to 0.1 during 02. In case 3, both Ye and Y0 
were always used in each training cycle (because Th was set to 
0) with pe set to 0.5 and |30 set to 0.1. The rest of the cases 
can be interpreted in a similar manner.

Results from cases 4, 8 and 9 show that the time to 
switch to 02 is not critical, which indicates that the general 
surface of the desired output was well approximated in Ol.

Results from case 1 and 2 show that if only Ye was used 
throughout the training, a smaller learning rate in 02 
produced a smaller RMS error. This suggests that a relatively 
good approximated surface was developed in Ol. In 02, any 
extra training would appear as a random perturbation on the
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network output. Similar observations were found in CMAC II and 
CMAC III (figure 5.2). Also, results from case 4, 5, 6 and 7 
show that smaller learning rates for both Ye and Y0 produced 
smaller RMS errors and lower weight usage.

Results from case 4, 10 and 11 show that a smaller Th 
produced a smaller RMS error at the expense of a larger number 
of weights used.

An optimal set of parameters has yet been formulated for 
a given desired output. Results from cases 3 and 4 clearly 
indicate that the number of weights used can be reduced 
significantly (23% weight reduction) by dividing the full size 
CMAC into two sub-halves. In general, the network is not only 
restricted to form two sub-halves. The CMAC network can be 
divided into any relative ratios of many sub-networks as long 
as the individual displacement offsets satisfy the heuristic 
rules. However, it is worth noticing that the size of the 
weight reduction depends on the desired network output.
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CHAPTER VI

SUMMARY

This chapter summarizes observations made in previous 
chapters on the effect of the receptive field function and 
placement in CMAC on learning a space-spanning desired network 
output in SN. A bound on the receptive field width or 
generalization in CMAC as a function of the input dimension is 
proposed. This chapter also suggests several issues on the 
CMAC architecture which deserve further research.

Modular Receptive Field Placement - The center placement 
in most receptive field networks is either random or adaptive. 
A time-consuming search process is required to locate 
neighboring receptive fields to generate a network output, 
which increases the computation time for a large N. In 
contrast to most receptive field networks, CMAC has a unique 
modular center placement in SH, which completely avoids the 
search process.

Receptive Field Function and Critical Spatial Frequency - 
In the CMAC neural network, modular center placement is not 

the only feature which affects proper learning or 
approximation. Receptive field function is also a critical 
feature in reconstructing the desired output in S". The use of
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a rectangular field function in the standard CMAC is 
undesirable for two reasons. First, the network output is not 
sensitive to variation of input within a single input 
quantization interval. Second, convergence is slow at the 
critical spatial frequency (for) when the sum of all the 
desired outputs within a single receptive field is exactly 
zero. The use of a linearly tapered field function allows the 
network output to be continuous and also provides a wider 
learning bandwidth. However, the network with the linearly 
tapered field function becomes sensitive to the center 
placement inside CN.

Diagonal Center Placement - In the standard CMAC, centers 
of receptive fields are placed on the hyper-diagonal inside 
CN. Increasing C not only leads to fewer available receptive 
fields in SN, but also forces the center placement to be less 
uniform in CN. Thus, learning is particularly hard for a 
larger C because the coverage is more sparse as well as less 
uniform. In addition, a large C gives rise to a small fcr. This 
inhibits the network from learning the high spatial harmonics 
embedded in the desired output.

Heuristic Center Placement - A more uniform center 
placement can be generated by utilizing the modulo arithmetic 
method. Three heuristic rules can be used to determine the 
displacement offsets in each input dimension. HRl ensures that
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the projection of centers onto each axis is uniform which 
allows the input resolution to be uniform in each axis. HR2 
ensures that the projection of centers onto any subspace can 
not be diagonal. HR3 ensures that the projection of centers 
will not be clustered in some local region (C CN). It is 
important to notice that these rules do not guarantee a 
uniform projection of centers onto any higher dimensional 
subspace. In other words, the center placement (by the 
heuristic rules) is not necessarily perfectly uniform. 
However, a perfectly uniform center placement in S2 can be 
established if the displacement offset satisfies the 
constraint shown in Section 4 of chapter IV. Also, a lower 
bound on C (2*N) for any N emerged from these heuristic rules, 
resulting in a more reliable determination of C for a given 
problem.

Receptive Field Region of Support - A hypercubic region 
of support for the 1inearly-tapered field function was shown 
to be better than a hyperspherical region of support (see 
chapter IV). However, the hypercubic support creates 
discontinuities in slope on the hyper-diagonals of the 
receptive field. While this might not have any direct adverse 
effect in approximating a function, the discontinuous region 
could be undesirable for some closed-loop control problems 
that require function derivatives [9]. Parks [21] suggests a 
field contour based on a super-ellipse function. In the super-
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ellipse function, the field contours near the center of the 
receptive field appear radially symmetric, while those near 
the edge of the receptive field appear hypercubic. Although 
this receptive field function is inherently complex for 
learning computations, the discontinuity in slope along the 
hyperdiagonal is eliminated. Lane et al. [16] have proposed 
the use of multi-dimensional B-splines to form receptive field 
functions for CMAC neural networks. The generality of this 
approach is limited however by the complexity of B-splines 
functions in spaces of more than three dimensions.

Non-Uniform Field Width - A CMAC network with non-uniform 
field widths always results in a non-uniform receptive field 
placement, which is highly undesirable in terms of the 
approximation error for a fixed number of available weights. 
This also suggests that learning with multiple CMACs with 
different individual field widths is undesirable in terms of 
the final approximation error for a fixed number of available 
weights. Moody [19] has suggested a multi-resolution CMAC in 
which the receptive field widths are different in different 
layers. However, in [19], no direct comparison between the 
standard CMAC and his multi-resolution CMAC was made in terms 
of the speed of convergence or the final approximation error. 
It is speculated that the multi-resolution scheme for the 
receptive field width might be useful in terms of the speed of 
convergence, but not in terms of the final approximation error
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given a fixed number of weights. This speculation deserves 
further investigation.

Adaptive Receptive Field Density - A uniform center 
placement is a reasonable placement given that there is no 
prior knowledge available about the desired network output. 
The uniform center placement avoids unnecessary network biases 
to the desired output. However, in the presence of training 
data which may not have uniform spatial frequency content 
throughout the space, the receptive field density in the 
network should be allowed to adapt in order to approximate the 
desired output more efficiently. Although the center placement 
with the adjustable receptive field density might be less 
uniform in SN, the center placement remains uniform as seen by 
each training input. With this adjustable receptive field 
density feature, the network would require fewer receptive 
fields to approximate the desired output than the network with 
a fixed receptive field density.

Bound on the Receptive Field Width (C) - Results in this 
dissertation have led to a better understanding of the effect
of uniformity of the receptive field placement on C. The
proposed bound on C is shown in equation 6.1.

2*N s C s min(P±) eq. 6.1
where Pi stands for the spatial period of the Fourier

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



component i of the desired output, and is measured by the 
number of input quantization intervals.

It is very interesting to notice that the lower bound on 
C grows only linearly with the input dimension to achieve 
uniform input resolution in each axis, and is fixed once the 
input dimension is chosen. On the other hand, the upper bound 
depends on the input scaling (S). A smaller S results in a 
smaller minfPi) because P± is measured by the number of the 
input quantization intervals. Also, a smaller S implies there 
are fewer available receptive fields in SN. Too small a S 
could have sub-optimal approximation performance because there 
might not be any C which satisfies equation 6.1. In general, 
C is determined by N, S and Px.
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FUTURE RESEARCH

Better Receptive Field Placement - The heuristic 
placement provides a uniform projection of centers onto each 
axis, and also guarantees the projection of centers onto 
subspaces are not diagonal. However, there has not been any 
theoretical proof of the existence (or non-existence) of a 
better placement. A proof of the optimality of the heuristic 
rules for the displacement vector selection would be most 
worthwhile.

Dimensionality Reduction - Although the desired output is 
defined in R“, the desired output might be very dense only in 
some subspaces (RH, M < N). In this case, it might be more 
efficient to allocate the receptive fields only in RM when the 
issue of the approximation error and the limited weight 
storage are critical.

Partitioning of the input space - In the standard CMAC, 
the entire input space is partitioned into hypercubes. Results 
in Chapter IV.5 indicate that the hypercubic receptive field 
support is desirable because of the hypercubic partitioning in 
CMAC. However, other partitioning in the input space should 
not be ruled out. Given that the goal is to achieve fast 
network computation, the partitioning should be done so that 
all of the individual building blocks are modular. A search 
for neighboring receptive fields is thus avoided.
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