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ABSTRACT

DEVELOPMENT AND APPLICATION 
OF ARTIFICIAL INTELLIGENCE STRATEGIES TO SOLVE INFRARED SPECTROSCOPIC PROBLEMS

by
Barry Wythoff 

University of New Hampshire, December, 1990

The ever-increasing power of modern infrared 
instrumentation, coupled with the decreasing number of 
experienced spectroscopists has created an imbalance between 
information generation and interpretation capabilities. At 
the same time, digital computers are being developed which 
continue to grow in storage and processing capabilities, and 
shrink in cost. Clearly, the computer may serve as a 
valuable tool to aid the analytical chemist in interpreting 
spectroscopic information. This dissertation deals with the 
development of new approaches to exploiting computer 
technology to interpret infrared spectroscopic data.

A large existing expert system for functional group 
analysis, PAIRS, has been modified to transfer the maximum 
amount of information to the chemist. Two closely coupled 
knowledge based systems, IRBASE and MIXIR, have been created 
to identify major components of condensed phase mixtures. A 
second version of MIXIR has been developed to identify major 
components of vapor phase mixtures. Finally, a neural



network approach to peak detection in analytical data has 
been developed.



INTRODUCTION

While research in artificial intelligence has been going 
on for decades, developments in the 1980's brought these 
systems from the academic laboratory to the industrial 
workplace. Artificial intelligence includes such diverse 
topics as computer vision systems, natural language 
processing, theorem proving, and modelling mammalian learning 
processes. The majority of recent interest, however, has been 
in the area of so-called "expert systems". These systems are 
computer programs which attempt to emulate the logical problem 
solving approach of a human expert in a limited problem 
domain. Such systems are potentially useful in any area which 
requires a good deal of expertise, that is, any area that is 
well understood, and requires a significant amount of 
knowledge and/or complex logic to solve problems. The 
creation of an expert system may allow a company to capture 
much of the expertise of a valuable employee approaching 
retirement. The resulting system may then be used to help 
train future "experts", or to provide assistance to personnel 
lacking extensive training to solve a difficult problem which 
they encounter at a later date.

Analytical chemistry is a highly developed science. The 
traditional goals of an analytical chemist are the 
identification and/or quantitation of chemical species. These



substances nay be of known or unknown origin, they nay be pure 
substances, or conplex nixtures. The task facing the analyst 
often requires a great deal of knowledge in the area, and the 
application of deductive reasoning. Chenical analysis is 
therefore a natural area for the application of expert systen 
technology. Indeed, one of the first successful expert 
systens to be developed was designed to identify organic 
compounds from mass spectral data (1). Before looking at the 
application of knowledge based systems to analytical 
chemistry, a brief examination of the nature of this 
technology is in order.

Anatomy of An Expert System:
A number of excellent texts exist which detail the theory 

and practice (2-4) of expert system technology, therefore, 
only a summary of basic concepts is presented below. 
Knowledge Based Systems (KBS), as their name implies, differ 
from conventional computer software in that their primary 
function is to reach a conclusion by applying deductive logic 
to problem data. Unlike conventional algorithmic software, 
these systems often do not specify exactly how a problem is to 
be solved. Rather, only a basis for selecting and applying 
"appropriate" rules to the problem is specified, and the state 
of the problem then determines the action to be taken.

There are three major components in a typical knowledge 
based system. The interface is the portion of the program 
which handles all interaction with the user. While not a



factor in program task performance, the quality of the user 
interface largely determines how useful the system will be in 
practice. The knowledge base is the heart of the expert 
system. It is composed of the rules and facts which 
constitute the domain specific knowledge for a given 
application. An example of a fact is "The upper limit on pump 
pressure is 5000 psi". A rule defines some condition (the 
"antecedent"), and the corresponding action to be taken or 
fact to be deduced (the "consequent") if the condition is 
satisfied. An example of a simple rule is "IF the sample is 
a nonvolatile liquid, THEN high pressure liquid chromatography 
is the separation method of choice".

The inference engine contains the overall control 
strategy. It is responsible for selecting and retrieving 
appropriate rules and facts, carrying out the consequent 
actions, and adding any deduced facts to a "dynamic knowledge 
base" in working memory. Two common control strategies are 
forward chaining and backward chaining. Forward chaining 
involves selecting rules which match known facts, and working 
forward, successively "deducing" new facts and selecting new 
rules, until no new facts may be deduced. This process 
involves matching existing facts to rule antecedents. Forward 
chaining allows the system to "deduce" everything which can be 
learned, given the available information and rules. Backward 
chaining involves selecting some desirable fact to be proven, 
and attempting to work backward through the rule chain to the 
initial known data. This process involves matching facts to
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be proven to rule consequents. Backward chaining is often the 
most efficient means of arriving at a specific conclusion.

As indicated earlier, in theory, the order of the rules 
and facts in the knowledge base is unimportant, since the 
inference engine should simply select the necessary rules as 
dictated by the state of the problem. In practice, the 
knowledge base is ordinarily highly structured. This provides 
more efficient program execution, and greatly simplifies 
program maintenance.

Applications:
There are many potential areas of application for expert 

system technology in analytical chemistry, and numerous 
reviews of these applications have been published (5-12). The 
majority of current systems, however, perform one of two 
general tasks. The first of these is the analysis of complex 
data resulting from nuclear magnetic resonance (NMR) (13-14), 
infrared (IR) (15-37), or mass spectrometric (MS) experiments 
(1,38-41), or some combination (42-45). The goal of such 
systems is ordinarily to assign the functional groups 
(structural fragments) present in a molecule, to assign the 
total structure of a molecule, or to identify the components 
of a mixture. Information from one or more of the above 
spectral techniques may be used, along with supplemental 
physical/chemical information on sample state, molecular 
weight, empirical formula, etc. The second major category of 
application is analytical methods development. Here, a KBS
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will assist in determining which specific procedures and 
techniques are best for a particular analysis, and/or what 
experimental conditions are desirable (46-50).

Another area in artificial intelligence research which 
has enjoyed rapid growth in the 1980's is the creation of 
artificial neural networks (51-59). While knowledge based 
systems are founded on a high-level, conscious model of human 
cognition, artificial neural networks are based on a low- 
level, physical model of cognition. They are a very simple 
hardware or software simulation based on a physical model of 
the brain. A number of fascinating applications of neural 
network technology to solve analytical chemistry problems have 
been reported (60-65).

This dissertation concerns the development and 
application of new computer software technology to solve 
infrared spectroscopic problems:
i) The identification of functional groups present in a 

condensed or vapor phase analyte.
ii) The automated creation of a compound-specfic knowledge 

base for a system to identify the likely components of 
condensed phase mixtures.

iii) The identification of the likely component identities in 
condensed phase mixtures.

iv) The detection of peak-shaped signals in a digitized 
infrared spectrum.

v) The identification of the likely component identities in 
condensed phase mixtures.



CHAPTER 1

DESCRIPTIVE, INTERACTIVE COMPUTER-ASSISTED 
INTERPRETATION OF INFRARED SPECTRA.

Introduction:
PAIRS (17-18,21-23,35), the £rogram for the Analysis of 

Infrared Spectra, is a rule-based expert system which 
interprets an IR spectrum by mimicking the thought process 
used by a spectroscopist. The only output of the original 
version of the system was a numerical indication, or 
"expectation value", of the likelihood of presence or absence 
for a particular functionality or subfunctionality, based on 
an interpretation of the spectral data entered. While this 
system provided useful information in a time efficient manner, 
it quickly became apparent that a single number cannot 
adequately convey all that can be learned from the spectral 
interpretation process. A subsequent modification of PAIRS 
attempted to address this problem by allowing the user to 
trace the decision making process (23). This improved version 
provided the user with a way to see the rules which were used 
by the interpreter to arrive at the expectation values, if so 
desired. While the resulting version of PAIRS was a major 
improvement over earlier versions, it still did not transfer 
the knowledge behind the rules.

The first goal of our present work was to develop a



system, based on PAIRS, which would allow the knowledge in the 
rule base to be easily transferred to the scientist using the 
system. The result can be truly categorized as an expert 
system. Users of the system are able to ask why a decision is 
made and obtain a descriptive explanation of the decision 
making process. This advanced system raises the interpreter 
to the level of a "smart assistant" for researchers involved 
in infrared spectral interpretations.

Saperstein (26) recognized that the user could be a 
valuable resource if allowed to participate in the 
interpretation process. He developed a program, based on 
PAIRS, which allowed the user to evaluate and optimize the 
interpretation results by comparing the original spectrum with 
a synthetic spectrum created from the characteristic 
absorptions of the functionalities determined likely to be 
present by a preliminary PAIRS interpretation. The role of 
the user was thus limited to determining the best visual match 
between the synthetic spectrum and the actual spectrum.

The present modifications to PAIRS allow the user to 
actively participate in the spectral interpretation process, 
since the interpreter is able to explain the reasons for 
decisions as they are being made. This allow- the chemist to 
overcome some of the limitations inherent in a static, rule- 
based system. For example, absorptions due to carbonyl 
stretches are generally expected to be strong. The 
interpretation rules, therefore, will return low expectation 
values for carbonyl containing functionalities for a spectrum



containing only weak bands in the carbonyl stretching region. 
If the user suspects that the sample is a high molecular 
weight compound or a mixture, then a more reasonable 
interpretation might result if the user overrules decisions 
being made on the basis of intensity, for bands in the 
carbonyl stretching region. The ability to modify decisions 
intelligently during the interpretation clearly adds a new 
dimension to the interpretation process.

An important coproduct of the advancements described in 
this paper is the potential that PAIRS may be used as an 
instructional aid. MacDonald (27) suggested that an earlier 
version of PAIRS might be used as a "learning tool" for 
instruction of IR interpretation. Textbook discussion and 
demonstration of actual problem solving is often very limited 
in treatments of spectral interpretation. Merely looking at 
correlation tables cannot provide the skills necessary to 
solve actual interpretation problems. In real situations, the 
researcher must contend with multiple interpretations of 
experimental data, many of which may seem equally valid based 
on the information at hand. It is desirable, therefore, for 
a student to be able to see the approach to problem solving, 
along with the explicit thought process employed, in order to 
learn how to approach more complex problems. PAIRS, by 
providing the user with a detailed explanation of the 
knowledge and logic employed during the interpretation 
process, can now provide the basis for a Computer-Assisted- 
Instruction (CAI) approach to teaching spectral
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interpretation.

Equipment and Materials:
The minicomputer version of PAIRS was transferred from a 

Nicolet 640 (Nicolet Analytical Instruments, Madison, Wl) to 
an AT&T 6300 microcomputer (AT&T, Bedminster, NJ) via a DEC 
8650 (Digital Equipment Corporation, Maynard, MA). An AT&T 
6300 (IBM XT compatible) consisting of: an 8 MHz Intel 8086 
CPU, 640 kilobytes of RAM, and a 20 megabyte Winchester hard 
disk drive, was used for all program development.

Spectra were acquired and processed using a Nicolet 640 
computer and a Nicolet MX-1 FTIR spectrometer bench at a 
nominal 1 cm"1 resolution.

Program Description:
The original PAIRS program, and subsequent modifications, 

have been described adequately elsewhere (17-18,21-23), and 
will be covered only briefly here. PAIRS consists of two 
FORTRAN programs, an interpreter and a rule compiler. The 
interpretation rules are written in an English-like language, 
CONCISE, and transformed by the compiler prior to use by the 
interpreter. Interpretations of the likelihood of 195 
functionalities and subfunctionalities are performed, where, 
for example, ketone is considered a functionality, and 5- 
membered-ring ketone a subfunctionality.

A decision was made to develop this advanced version of 
PAIRS for IBM compatible microcomputers. This decision was
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based on the rapidly growing role of microcomputers in the 
industrial and academic environments. The starting point for 
this work was the minicomputer version of PAIRS previously 
developed for the Nicolet 1180 (18). The minicomputer version 
of both the interpreter and rule compiler were modified to run 
on the AT&T 6300. Modifications were then made to upgrade the 
interpreter to the level of the latest VAX version (23), 
which allows the user to trace the decision making process. 
This new version of the program can be run on IBM PC/XT/AT 
compatible microcomputers with a minimum of 512 kilobytes of 
RAM.

Extensive modification of the interpreter, rule compiler 
and CONCISE interpretation rules was required to provide an 
explanation of the rationale for the major decisions made
during the interpretation process. The PAIRS rule base
includes over 2000 IF-THEN-ELSE rules, which comprise over 
16000 lines of text. Interpretation rules have been written 
for 195 functionalities and subfunctionalities. The first 
step in the process was to diagram the Boolean decision trees 
corresponding to the entire PAIRS rule base. The queries 
corresponding to band positions/shapes were then researched 
using a number of references to determine the appropriate 
vibrational assignments (66-70). This information was then 
used to help determine the reasoning used at the time of rule 
development to define both the overall knowledge base
structure, and the reasoning behind individual queries and 
actions. The result is a very detailed explanation of
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query/action logic and content. In addition to providing the 
band assignments, the majority of the added comments provide 
explanations of the interpretation strategy. Comments 
concerning phenomena which influence infrared band position, 
shape and multiplicity may also be provided. Also, since the 
rule structure was required to be reviewed in such detail 
during the incorporation of explanatory comments, knowledge 
was gained which allowed the actual rules to be improved by 
modification. The overall process resulted in the inclusion 
of over 2200 explanatory lines in the CONCISE interpretation 
rules.

Program changes were required for both the rule compiler 
and interpreter to utilize the additional comment lines. The 
rule compiler was modified to recognize comments, encode their 
presence in the appropriate place in the compiled rule output 
and save all comment lines in a file for use by the 
interpreter. The interpreter was modified to allow the user 
to perform an interpretation with or without tracing the 
decision making process and to trace the interpretation with 
or without viewing the appropriate explanatory comments.

The interpreter was further modified to allow user 
interaction during the interpretation process. These 
modifications work with the explanation facilities. Together, 
they provide a trace of each query as it is processed by the 
interpreter, the resulting answer, and any comments explaining 
query/action rationale. The user is then allowed to agree or 
disagree with the decision, thereby playing an interactive
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role in the interpretation process. The user is given the 
option to participate interactively in the interpretation 
process for an individual functionality or the entire rule 
base.

Results and Discussion:
Examples demonstrating the use of the newly developed 

system in both the interactive and non-interactive modes for 
two different compounds are presented below.

The first step of any interpretation is entry by the 
user of spectral peak information. The spectral data can be 
entered via the keyboard or read into the program from a 
previously generated data file. The interpreter also requires 
information concerning the sample matrix. Providing the 
interpreter with empirical formula information is optional, 
and can significantly enhance program performance, since it 
provides an additional, independent data filter.

Once the experimental data are entered, the user chooses 
an interpretation option from an options menu. There are 
three levels of information which the interpreter is capable 
of providing. In general, as the amount of information 
transferred to the user increases, the time required for an 
interpretation increases. As with previous versions of PAIRS, 
the first option is to have the interpretation results 
presented as a table of the expectation values for each 
functionality, sorted according to decreasing likelihood. The 
second option allows the user to trace the decision making
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process of the interpreter. This allows the user to see which 
queries are made, the answers corresponding to the data as 
entered, and the actions taken, during the interpretation 
process. The user is given the choice of tracing the 
interpretation of any single functionality or all 
functionalities in the rule base, if so desired. The third 
option provides the trace output of the second option, and 
includes comments explaining the rationale for the decisions 
being made. This additional information can help the user to 
understand and evaluate the interpretation results better. 
All interactive interpretations are performed in this mode. 
The reason for this is simply that the user must be informed 
of the reason for the decisions being made to participate 
intelligently in the interpretation process.

The interpretation of a spectrum of maleic acid (Figure 
1-1) will be used to demonstrate the results of a non
interactive interpretation. The spectrum was acquired from a 
pressed KBr pellet sample matrix. The peak data obtained from 
the spectrum and entered into the interpreter are presented in 
Table 1-1. The intensities are integral values, normalized to 
10, and there are three width codes ("I", "2", and ”3"),
corresponding to sharp, medium and broad peaks, respectively. 
No empirical formula information was entered into the program. 
As a first step, the user will usually allow the system to 
perform an interpretation and return the results as a table of 
expectation values (option 1). This information provides a 
starting point for more focused inquiry. Such interpretation
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Figure 1-1. Baseline Corrected Spectrum of Maleic Acid.
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Table 1-1. Peak Data for Maleic Acid

POSITION
CM'1

RELATIVE
INTENSITY

WID

1) 609 5 2
2) 634 5 2
3) 786 4 2
4) 863 9 1
5) 874 8 2
6) 923 6 2
7 ) 949 6 1
8) 990 5 2
9) 1220 8 2
10) 1263 10 2
11) 1434 9 2
12) 1459 9 2
13) 1569 10 2
14) 1590 10 2
15) 1636 9 2
16) 1706 9 2
17) 2480 4 3
18) 2611 4 2
19) 2915 5 2
20) 2920 4 3
21) 2985 4 2
22) 3060 5 2
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results for maleic acid are given in Table 1-2. Expectation 
values may range from 0.01 to 0.99. The higher the 
expectation value, the stronger the likelihood of a given 
functionality or subfunctionality being present. Questions 
that the user might ask at this point include how the program 
determined that an acid was likely to be present, and why the 
subclasses for the acid functionality (i.e., acid-unsaturated) 
are reported at lower expectation values than the parent 
functionality (i.e., acid). The interpretation can be 
repeated with full trace and explanatory comments (option 3) 
to understand better the reasons for the expectation values 
reported. The results of such an interpretation for the 
"acid" functionality are presented in Appendix A.

The trace and explanatory comments inform the user that 
the expectation value for the parent class, "ACID", is 
determined first by considering the more general questions 
which apply to all acids. Speciation is then accomplished by 
focusing on that band which can be used to discriminate 
between the subclasses, the carbonyl stretching absorption. 
This band position is found to match that expected for both 
saturated and unsaturated subclasses of the acid class (of the 
four subclasses discriminated by the condensed phase rules). 
The result is that these two subclasses are set to the class 
value, and then reduced by 20 percent, to indicate the 
ambiguity of the subclass assignment. Both the explicit path 
to these results, as well as the local program flow (here, a 
form of hierarchical classification) are evident when the
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Table 1-2. Interpretation Results for the Spectral Data 
Contained in Table 1-1.

Gca-UR-Hame Expectation value
1) ACID 0.90
2) AMIDE 0.75
3) MERCAPTAN 0.75
4) ACID-SATURATED 0.72
5) ACID-UNSATURATED 0.72
6) ETHER 0.70
7) ETHER-EPOXIDE 0.70
8) NITRAMINE 0.70



18
interpretation process is presented in this Danner.

The interpretation of a spectrum of 1,1-diethoxyethane 
will be used to demonstrate the use of the interactive 
interpretation process. The spectrum of 1,1-diethoxyethane, 
Figure 1-2, was obtained for a neat sample taken as a liquid 
between potassium bromide plates (KBr). The corresponding 
peak data, given in Table 1-3, were entered into the 
interpreter. The interpreter was also provided with empirical 
formula information indicating the compound contained only 
carbon, oxygen and hydrogen.

As in the previous example, a non-interactive 
interpretation was performed to arrive at the results 
presented as a simple list of functionalities with assigned 
expectation values. The results for the interpretation are 
presented in Table 1-4. Once presented with these results, 
the user can begin to ask such questions as, "What data are 
the system using to arrive at 0.58 as the expectation value 
for "acetal"? and "Why is the expectation value for "ketal" 
lower than that for "acetal"?. A trace of the interpretation 
for the functionality "acetal", including explanatory 
comments, is presented in Appendix B. The information present 
in such a trace can often help to answer both questions. The 
trace indicates clearly that a band which appears between 1101 
and 1110 cm'1 was used to differentiate between the "acetal" 
and "ketal" functionalities. Upon further inspection of the 
interpretation trace, the user notices that the first question 
asked is whether or not there are four or more peaks between
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Table 1-3. Peak Data for 1,1-Diethoxyethane.

POSITION
CM-1

RELATIVE
INTENSITY

WID

1) 852 2 2
2) 952 5 2
3) 1030 3 2
4) 1061 8 2
5) 1082 8 2
6) 1101 8 2
7) 1138 10 2
8) 1339 3 2
9) 1380 4 2
10) 1444 2 2
I D 2881 4 2
12) 2898 4 2
13) 2933 4 2
14) 2978 8 2
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Table 1-4. Results for Interpretation of Spectral Data for 
1,l-Diethoxyethane.
Non-Interactive Interpretation:

GROUP NAME EXPECTATION VALUE
1.) ETHER 0.75
2.) ETHER-SATURATED 0.75
3.) ACETAL 0.58
4.) METHYL 0.50
5.) KETAL 0.26

Interactive Interpretation:
GROUP NAME EXPECTATION VALUE

1.) ETHER 0.75
2.) ETHER-SATURATED 0.75
3.) ACETAL 0.71
4.) METHYL 0.50
5.) KETAL 0.26
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1035 cm'’ and 1210 cm'1. The answer based on the spectral data 
entered is "yes". The following question asks if there are at 
least 5 peaks in the sane region, the answer to which is "no" 
based on the data. The user at this point night be inclined
to review the spectrun and ask the "What if " type
question. For exanple, "What if there are two overlapping 
peaks naking a total of 5 bands in this region, how would this 
affect the interpretation for acetal?" The user can answer 
such questions by performing an interactive interpretation for 
the functionality in question.

A portion of the interactive interpretation for the 
"acetal" functionality is presented in Appendix C. (The 
user's responses are presented as lower case, underlined 
characters.) In this case, the user decides that there are or 
could possibly be 5 peaks between 1035 cm'1 and 1210 cm*1 and 
is interested in what if any effect this will have on the 
interpretation results. The user, by participating in the 
interpretation process can quickly determine the effect of 
such a change on the results. In this case, the change 
results in the interpreter assigning a higher expectation 
value for the "acetal" functionality. The results of the 
interpretation are presented in Table 1-4.

The ability to participate interactively in the 
interpretation process is not, however, without peril and the 
expectation values obtained should be viewed with caution. 
The user must realize the potential exists for generating 
erroneous results if decisions based on the spectral data are
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changed or peak data are inserted or deleted arbitrarily. 
Since the tracing facilities show only the path dictated by 
the experimental data input, they cannot show what results 
would have been obtained, had the data been different. In the 
example given above, the user must be aware that an additional 
peak in the above region may also affect the expectation 
values assigned to other functionalities. Further, as 
indicated by the comments included in the decision trace for 
acetal, other functionalities can be determined with higher 
reliability. If the additional peak causes the expectation 
value for one of these functionalities to increase, it is 
conceivable that the expectation value assigned for "acetal" 
can actually decrease. It is for this reason, that the user 
must perform a total non-interactive re-interpretation after 
making appropriate additions or deletions to the spectral 
data, to insure the reliability of the results. Used 
properly, the ability to interact during the interpretation 
process can significantly enhance the information transferred 
to the informed user.

Conclusion:
The goal in incorporating the explanatory comments was to 

provide the user with as much information as possible, while 
retaining a reasonably compact format. It was sought to 
provide comments which presented both an explanation of the 
interpretation, and provided information of an instructive 
nature. These new capabilities significantly extend the



24
usefulness of computer assisted IR spectral interpretation, 
and further expand the applications of such systems to include 
instruction, by exploiting the knowledge gained during ten 
years of refinement. Since the developed system provides 
extensive resident explanation of the knowledge base, the 
comments included should also further facilitate the evolution 
of computer-assisted IR spectral interpretation.



CHAPTER 2

GENERATION OP COMPOUND-SPECIFIC DESCRIPTIONS FOR 
INTERPRETING INFRARED SPECTRA OF CONDENSED-PHASE MIXTURES

Introduction:
A rapid, simple, cost-effective method for identifying 

the likely components of unknown mixtures has many potential 
applications. These include identification of components in 
hazardous wastes, environmental screening for hazardous 
compounds and industrial process control. Infrared
measurements on the intact mixtures, followed by 
interpretation of the complex spectra acquired can be used to 
solve such problems. Interest in the use of computer-assisted 
spectral interpretation techniques for such analyses is 
increasing due to their ability to interpret complex spectra 
quickly and reproducibly. Both statistically based (71-80) 
and knowledge based systems (1,13-45) have been used. The 
practical use of knowledge based systems has increased 
dramatically during the past few years, although the high 
expectation and promise of such systems remains largely 
unfulfilled. One of the major issues concerning large systems 
is the time and expense required for system development and 
maintenance (81). Many of the ideas for the present work 
resulted from an examination of the strengths and weaknesses 
of the Erogram for Automated Haste Mixture Identification
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(PAWMI), including subsequent modifications (24-25,30), and 
the table driven approach used by Trulson and Munk (20).

The PAWMI system made use of an automated rule generator 
which yielded fixed (or static), compound-specific 
interpretation rules which were used by the PAIRS interpreter 
(17-18,21-23,35). Intensity and width criteria were not 
incorporated in the rules. The shifting of band positions 
(due to matrix interactions, etc.) was treated with three 
concentric position windows which were centered about the 
peaks in the spectrum of the pure compounds. The same 
position windows were used for all spectral bands, without 
regard to the functionality giving rise to the band. A major 
drawback arises from the disparity in the magnitude of band 
shifts, thus, a single position window for all features in a 
spectrum is likely to be inadequate.

As in the approach taken by Trulson and Munk, it was 
decided that the knowledge base produced by IRBASE should be 
composed of information or facts only, not rules. This 
separation of logic from data simplifies revision of both 
control and information modules. More importantly, it allows 
unlimited flexibility in the use of the information during a 
spectral interpretation. MIXIR, the system which uses the 
IRBASE output, approaches spectral problems dynamically and in 
an iterative fashion (37). A dynamic approach is difficult to 
implement when the information contained in the knowledge base 
is locked into predetermined, static rules as are used in
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systens such as PAIRS.

Rapid and consistent generation of the knowledge base, 
which contains the spectral descriptions of the suspected 
components, was judged to be critical for success. The 
accuracy of the compound descriptions depends on two key 
factors: (1) the ability to extract the important features
from the spectra of the pure compound, and (2) the ability to 
decide when a corresponding relationship exists between a 
feature observed in the spectrum of the mixture, and a known 
feature from the spectrum of a pure compound.

The design of IRBASE is sufficiently flexible to allow 
the use of heuristic rules for other types of spectral data 
(i.e., Raman, ESCA, etc.). Similarly, the logic used in MIXIR 
is suitable for any compound data which can be represented as 
a set of peaks. For example, to build a Raman interpretation 
system for a small (approximately 50 compound) data set, one 
would need to perform the following tasks. A new knowledge 
base for IRBASE would have to be constructed, to account for 
the expected spectral features and their shifts. This would 
be performed using a utility program designed for this 
purpose. The reference spectra would be reduced to peak 
tables, and the peak tables entered into IRBASE, along with 
the corresponding functional group information. MIXIR could 
then be left intact to operate on the knowledge base produced. 
If the information to be entered into the knowledge base were 
available, the entire system would be ready for preliminary 
testing in perhaps two man-weeks.
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Experimental:

A Nicolet 3600 FT-IR instrument, including a Nicolet 640 
workstation (Nicolet Analytical Instruments, Madison, WI), was 
used for all spectral processing. The spectral data were 
processed using Nicolet 1180 and 620 minicomputers. The pure 
compound spectra were obtained from the 2 cm'1 resolution 
Nicolet-Aldrich FT-IR spectral library.

A VAX 8650 superminicomputer (Digital Equipment Corp., 
Maynard, MA) was used for program development. Once 
developed, the programs and data tables were downloaded to an 
AT&T PC 6300 personal computer (AT&T Information Systems, 
Bedminster, NJ).

Data Pre-Treatment:
All spectra were subjected to two successive nine point 

Savitsky-Golay smoothing routines (82), to avoid detecting 
noise-induced false peaks. This treatment was obtained 
through a compromise between decreased spectral information 
and increased peak data reliability with greater smoothing. 
The peak picking threshold was set to 5% of the intensity of 
the largest band in the spectrum. The spectra were reduced to 
peak tables containing position, intensity and width values. 
Positions were rounded to integral wavenumber values. 
Intensities were normalized to the largest peak in the 
spectrum and scaled to integral values from 0 to 20. Peak 
widths were classified empirically as being either sharp, 
medium or broad, corresponding to integer values of 1, 2, and
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3, respectively. An additional integer code was assigned to 
peaks which needed "special consideration". These codes 
corresponded to split, shoulder and poorly formed peaks. The 
code for "poorly formed” was used to mark bands having poorly 
defined maxima.

Program Description:
The programs contained in the IRBASE system were written 

entirely in ANSI standard FORTRAN 77. This language was 
chosen primarily for its excellent portability. Other 
important considerations were the high performance provided by 
a compiled procedural language and the large number of 
scientific programmers familiar with FORTRAN.

IRBASE consists of two main programs. A database program 
generates the initial spectral descriptions. A processing 
program evaluates the "quality” of each component of these 
descriptions to arrive at the reduced description used by 
MIXIR. Together these two programs are comprised of 
approximately 2400 lines of code. Additional modules include 
a correlation table, a list of defined functionalities, and 
routines for maintaining them. The two programs of IRBASE are 
run independently, with the larger requiring approximately 70 
kilobytes of system memory in the microcomputer version. The 
correlation and band shifting information are retained as 
separate files, and the logic used to process them is encoded 
in a generalized "meta” format in the FORTRAN code, using 
modular subroutines. The use of this generalized meta format
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circumvents the problems associated with manual rule 
generation. The "metareasoning" used by IRBASE can best be 
illustrated by describing so-called "metarules" (3,4).

Rules define some condition and the corresponding action 
to be taken when that condition exists. Metarules are rules 
which control other rules. One example of a metarule is a rule 
which directs the selection of other rules to be used by an 
inference engine, such as "If a band appears in the carbonyl 
region, then examine the rules concerning ketones". Another 
example of a metarule is a rule which defines a generalized 
approach to the formulation of more specific rules, such as: 
"If feature A appears in examples of X, but not in Y, then A 
can be used to discriminate X from Y". Although IRBASE uses 
metareasoning and uses meta-type rules, they are not, strictly 
speaking, metarules since the files they produce contain 
spectral descriptions, not rules.

The use of meta-reasoning has many advantages. First, 
creation and updating of the rule base may be accomplished 
very quickly using metarules. Generalization of rule 
strategies may allow the application of a set of metarules to 
several different problems. Further, the metarules provide a 
manageable, understandable perspective on any knowledge base 
which is created. Finally, the incorporation of metarules in 
the inference engine of an expert system can provide the 
capability to formulate rules as they are needed during a 
"consultation session". This reduces the storage requirements 
of a large rule base, and, more importantly, has fundamental
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implications on the ability of a knowledge based system to 
approach a so-called "intelligent" system.

A key feature of the IRBASE design is the separation of 
logic from data, or "rules" from "facts". This allows the 
program strategy to be developed and updated independently of 
the data that is being manipulated. Finally, the generalized 
rule format yields a program logic which can be readily 
examined, understood and rapidly changed.

Problem Description:
Many factors complicate the correlation of the spectral 

features of condensed-phase mixtures with those observed in 
the spectra of pure compounds. Peak position, intensity, and 
width can all be altered in mixtures, due to sample dilution 
and matrix effects. Some features which are found in the 
spectra of the pure compounds may be hidden in the spectrum of 
the mixture, and previously hidden features may be observed, 
due to these same effects. Finally, few spectral features are 
unique to a particular compound, even when only a limited 
number of compounds are in the database. Simple efforts to 
draw a one to one correspondence between known and unknown 
spectral features are, for these reasons, of limited value.

One approach to overcoming these problems is to use a 
library or database containing the spectral information for 
known mixtures, thereby providing information on the effects 
of peak shifting. The physical interactions leading to band 
shifting and distortions are, however, complex and often both
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compound and concentration dependent. Thus, the number of 
spectra required, even for a small number of compounds, would 
be prohibitive. Alternately, computer-generated spectra of 
mixtures can be produced by coadding of spectra of the pure 
components. These synthetically generated spectra would, 
however, not exhibit the matrix effects which are often 
observed in mixtures. Rather than attempting to extract 
information from an exhaustive database, IRBASE uses the pure 
compound spectra, along with functionality information 
provided by the user to assign the bands in the spectrum of 
the pure compound. Information describing reasonable peak 
shift ranges for various polar functionalities is used to 
predict the behavior for the bands in a mixture.

Generating Compound-Specific Spectral Descriptions:
The information flow for IRBASE is presented in Figure 2- 

1. The user, to create a spectral description, provides 
IRBASE with the compound's name, spectral information in the 
form of a peak table and the functional groups which are 
present in each compound. The program output consists of a 
total peak table, a major component knowledge base, a minor 
component knowledge base, and a compound dictionary. The 
total peak table contains the information necessary to 
evaluate the band significance. This information includes the 
position window determined by IRBASE, along with the relative 
intensity of the spectral features of the pure compound, for 
all bands of all compounds included in the data base. As will
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be explained, two different spectral descriptions are created, 
one corresponding to the features expected for the compound as 
a major component of the mixture and the other for the 
compound as a minor component.

A detailed flow chart for the IRBASE system is given in 
Figure 2-2. The strategy used by IRBASE is to assign bands in 
the spectra of the pure compounds, knowing the functional 
groups which are present. Once the band origins are known, 
reasonable predictions may be made concerning band shifting 
expected in mixtures. Spectral regions used in band 
assignment for the pure compounds were kept fairly 
conservative, (i.e., narrow), to reduce the number of broad 
spectral windows assigned. The user is informed if a band 
expected for a given functionality is not observed in the 
spectrum of the pure compound. IRBASE then displays the 
spectral region sought, along with any nearby peaks, and the 
user is given the opportunity to make the assignment.

The spectral regions in which the pure compound bands are 
sought and the corresponding spectral windows are stored in a 
"correlation table" by functional group name. This table is 
the knowledge base for the database program of IRBASE. The 39 
common polar functionalities currently in the correlation 
table are given in Table 2-1. Nonpolar functional groups are 
not specifically included, since these are unlikely to 
experience strong matrix effects and can be treated with 
default windows. Discrimination among subfunctionalities is 
rarely performed, as little information existed to allow
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Figure 2-1. A Diagram of the Information Input/Output for
IRBASE.
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Figure 2-2. Overall Flow Diagram for 1RBASE.
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Table 2-1. Functionalities 
ACETAL
ALCOHOL-PHENOL
ALCOHOL-PRIMARY
ALCOHOL-SECONDARY
ALCOHOL-TERTIARY
ALDEHYDE-SATURATED
ALDEHYDE-UNSATURATED
AMIDE-PRIMARY-SATURATED
AMIDE-SECONDARY-SATURATED
AMIDE-TERTIARY-SATURATED
AMINE-PRIMARY-AROMATIC
AMINE-PRIMARY-SATURATED
AMINE-SECONDARY-AROMATIC
AMINE-SECONDARY-SATURATED
AMINE-TERTIARY-SATURATED
BROMO
CHLORO-a-DI
CHLORO-AROMATIC
CHLORO-MONO-PRIMARY

36
Available In the Knowledge Base. 

CHLORO-MONO-SECONDARY 
ESTER-ACETATE 
ESTER-BENZOATE 
ESTER-FORMATE 
ETHER-PROPRIONATE 
ETHER-SATURATED 
ETHER-UNSATURATED 
FLUORO-DI 
FLUORO-MONO
KETONE-a,B-UNSATURATED
KETONE-ARYL
KETONE-DI-UNSATURATED
KETONE-SATURATED
NITRILE
NITRO-AROMATIC
NITRO-PRIMARY
NITRO-SECONDARY
NITRO-TERTIARY
OLEFIN
PHENYL
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separate prediction of the band shifting effects among 
subfunctionalities. Table 2-2 gives some examples of the 
spectral windows. Initial values for these windows were 
empirically derived using information from Bellamy (70), along 
with references contained therein. Trial mixtures were
prepared to test some of these values, and the windows 
adjusted accordingly. Finally, testing of the knowledge base 
prepared by IRBASE with the MIXIR interpretation system 
provided some additional information. These windows could 
possibly be improved with additional testing of the MIXIR 
system, however preliminary results indicate good performance 
(37). The spectral windows used for band assignment were 
obtained from published correlation tables (66-68).

IRBASE generates two corresponding descriptions from the 
pure compound data. One description corresponds to the 
spectral features expected for the compound as a major 
component of the mixture, the other is for the compound as a 
minor component. Major components are those compounds present 
in the mixture at approximately 30 percent by volume or 
greater. Minor components are those present at less than 
approximately 30 percent by volume. These definitions are not 
intended to be rigid or exclusive, however, as the bands which 
are observed in the spectrum of the mixture for any component 
depends on both the location and intensity of features 
observed for other components. Only bands with an intensity 
at least 50% of the largest in the spectrum of the pure 
compound are included in the minor components table. The



38
Table 2-2. Examples of Spectral Windows.

POSITION INTENSITY WIDTH
(cm*1)

Band Origin 
ALCOHOL-PRIMARY

HI LO HI LO HI LO
O-H in-plane-bend +30 -15 +4 1 3 2
O-H out-of-plane +20 -50 +4 1 3 3
O-H stretch +200 -50 +4 1 3 2
(Essential) + 250 -250 20 1 3 1
(Alternately) 3700 3600 +4 1 2 1
C-0 stretch +6 -6 +4 1 3 1
ESTER-ACETATE
C-0 stretch +8 -8 +4 1 3 1
(Essential) + 50 -50 20 1 3 1
C=0 stretch +5 -12 +4 1 3 1
(Essential) +50 -50 20 1 3 1
Notes:

Position (HI,L0), Intensity (HI,LO), Width (HI,LO) refer 
to upper and lower position, intensity and width bounds, 
respectively.
Intensities are normalized from 1 to 20.
Widths are 1= Sharp, 2= Medium, 3= Broad.
Signed values represent offsets from the values found 
in the spectrum of the pure compound, unsigned values are 
absolute.
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reason for this lower limit is that smaller bands are more 
likely to be obscured by spectral interferants and noise, 
since they will be diluted by the major components of the 
mixture.

As in most knowledge based systems, a number of system 
parameters needed to be established during program 
development, with no a priori knowledge of the "correct" 
values. Therefore, scientific judgement was used to determine 
the initial settings. These were then adjusted by observing 
the results produced on trial mixtures by the analysis system, 
MIXIR. Generally, little or no adjustment was required in most 
cases.

A diagram of the basic flow used by IRBASE to assign the 
spectral windows is presented in Figure 2-3. Creating a 
spectral description requires the determination of both 
spectral position windows and the corresponding significance 
of the regions defined by those windows. The process used by 
IRBASE to assign the position windows and determine their 
significance is described below.

Spectral Window Criteria:
(A) Band Position Limits - Bands arising from polar 

functional groups contained in the knowledge base are assigned 
first. The position windows describing shifts are then 
established. Bands arising from nonpolar functionalities 
receive an initial "default" position window of +/- 4 cm-1 for 
bands having narrow and medium widths, and +/- 10 cm'1, for



Figure 2-3. Window Assignment Scheme for IRBASE.
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broad bands. Broad bands receive a larger window, due to the 
greater uncertainty in the assignment of band position. Once 
the initial limits have been established, the windows for 
those bands marked by the user as being "poorly formed" are 
increased by an additional +/- 4 cm'1. These limits were 
deemed reasonable for 2 cm'1 resolution spectral data, and 
would reguire modification for optimum results at other 
resolutions. Bands indicated as being "shoulders" are not 
included in either the major or minor component table since 
they will likely be obscured in the spectrum of a mixture.

(B) Band Intensity Limits - The upper intensity limit, 
for major components, is set at I0 + 4, where I0 denotes the 
normalized intensity of the band in the spectrum of the pure 
compound. Although extinction coefficients may be larger for 
the band in the mixture than the pure compound, it is expected 
that such effects will be offset by dilution. For minor 
components, the upper intensity limit is set at IG - 8, since 
such components are expected to exhibit only weak bands.

(C) Band Width Limits - Width criteria are rarely used, 
for several reasons. While it is possible to define classes 
for band width, determining these values experimentally is a 
difficult and time consuming process, particularly for 
overlapping bands. Even if the width values can be measured, 
it is expected there will be little variance among the band 
widths that is significant relative to the accuracy with which 
the widths can be determined. For these reasons, width 
discrimination is only attempted for very broad bands, such as
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hydroxyl stretching bands. Such bands can, in general, be 
unambiguously classified as broad, and this value is often 
significant.

The correlation table also contains information on 
alternative regions where spectral peaks may be found in the 
mixture, and on "essential peaks". The former is included to 
provide the ability to detect alternative species which may be 
present in the mixture. Hydroxyl stretches, for example, may 
be found as a broad band in the 3350 cm'1 region under the 
influence of hydrogen bonding, while free hydroxyl stretches 
appear as a sharp band at approximately 3650 cm'1. These 
secondary regions were included to provide a more complete 
description of the spectral properties of the compound. In an 
effort to use "not" information, many of the more intense 
bands are marked as being "essential” when assigned, and a 
second, conservative spectral region is established about 
them, for use as an initial screening query for the compound. 
The presence of a given compound is considered to be extremely 
unlikely in the absence of such an "essential" band. Only 
bands with an intensity of 14 or greater may be considered as 
essential, to reduce the likelihood of false negative results.

Determination of Band Significance:
The reduction of the number of features sought in the 

spectrum of a mixture is important for two reasons: 1.) To 
prevent dilution of the significance of the more important 
features, and 2.) To speed the spectral analysis. At present,
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the 15 most significant spectral features are selected during 
the peak weighting process. If at least ten bands remain, 
exclusive of the C-H stretching bands, then the C-H bands are 
discarded, since the vast majority of organic mixtures will 
contain C-H stretching bands. The determination of such 
bands, therefore, will generally add little selectivity, 
relative to other spectral regions. If fewer than 10 bands 
exist without the C-H bands, however, they are included, since 
the use of too few peaks in the spectral description of the 
compound may also cause poor selectivity. The overall scheme 
for feature reduction is presented in Figure 2-4.

Three factors are considered to arrive at the value of 
the overall band significance. First is the uniqueness of a 
given spectral feature, which is taken as:

UNIQi = Z POSnjPOS! ( 1 )
n

where UNIQi represents the uniqueness of band i, and POSn|POSt 
represents the fractional overlap of the position window of 
band n with that of band i.

The second factor, INTi, is the intensity of a spectral 
band, relative to others for the compound. The more intense 
features of the spectrum for a given compound are more likely 
to be observed in the spectrum of a mixture containing that 
compound. The normalized values used for intensity, 
calculated during preprocessing, represent this factor.

The third factor is the intensity of a band relative to 
others found in the same region for the compounds in the data
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Figure 2-4. The Scheme Used by IRBASE for Feature Selection.
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set. Even bands of moderate intensity are likely to be 
observed, if only small interfering bands due to other 
components are found in the same region of the spectrum. This 
factor is taken as:

INTj
IWT4= _____________________________ (2)

E ( (POSn|POS1)*INTn) + UNIQj
n

where IWT, is the overlap intensity weight of band i.
Another way of viewing these coefficients is that the 

uniqueness factor reflects the likelihood of the presence of 
a compound, given a spectral feature, while the latter two 
factors reflect the likelihood of observing a spectral 
feature, given the presence of a compound. A number of 
compromises must be made in choosing both strategies and 
parameters in any spectral interpretation system. Frequently, 
a clear choice can be seen between strategies minimizing false 
positive results (i.e., the system indicates a compound is 
present in a mixture when it actually is absent), as opposed 
to false negative results (i.e., the system indicates a 
compound is absent in the mixture when it actually present). 
It was our desire to minimize false negative results, at the 
expense of false positive results. False negative errors were 
considered to be of greater concern, since the result in error 
is eliminated from the analyst's consideration, in contrast to 
false positive results. The two factors concerning the 
significance of band absence are important to minimizing false 
negatives, while the factor related to band presence is
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important for minimization of false positives. Therefore, 
only the latter two factors were used in peak selection for 
spectral descriptions of the compound.

These two factors are then normalized and combined to 
yield the overall band significance as follows:

SIG, = (C1*IWT1, + C2*INT,) * ATTN (3)

where SIGi is the significance of band i, and IWT1, and INT, 
are the normalized intensity weights. Cl and C2 are weighting 
coefficients which have been empirically set to 0.67 and 1.00, 
respectively, and ATTN is an empirical attenuation factor. 
The ATTN factor is 1.0 for all bands except those which are 
marked as split or poorly formed. "Poorly formed" refers to 
bands which are ill-defined or non-Gaussian. It is difficult 
to determine peak maxima locations for such bands. Poorly 
formed bands will likely be missed by the peakpicking program 
for the spectrum of a mixture. Split bands may merge, due to 
peak shifting in a mixture. Therefore, bands so marked have 
an ATTN equal to 2/3 to account for the lower likelihood of 
assigning them in the mixture. The value of 2/3 for ATTN was 
chosen empirically following preliminary testing of the 
knowledge base. The resulting SIG values are then used to 
select the 15 most significant features for the compound.

Results and Discussion:
The creation of the spectral description for the compound
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ethyl acetate will be used to illustrate the spectral 
descriptions generated by IRBASE. The spectral peak table 
resulting fron processing the IR spectrum of ethyl acetate is 
given in Table 2-3, along with the relative peak weighting 
factors determined by IRBASE. The peak table information, 
along with the functionality information Ester-Acetate, were 
entered as data into IRBASE. Fourteen of the 28 bands 
originally picked were rejected for use in the final spectral 
description due either to having insufficient intensity 
(intensity=l) or being classified as "shoulders". Spectral 
intervals were still derived for these bands, however, and 
included in the total peak file used for uniqueness 
derivation.

The spectral intervals derived for the remaining bands, 
as major components of the mixture, as they appear in an 
intermediate spectral data file, are given in Table 2-4. 
Using the correlation table, IRBASE determined the polar C=0 
absorption at 1742 cm’1, and the C-0 stretch at 1241 and 
assigned +5/-12 and +/-8 cm'1 position windows respectively, 
to them. The remaining bands were assigned an initial +/-4 
cm'1 window. The range was increased by 4 cm'1 at each end for 
the bands coded as poorly formed. All bands were assigned an 
upper intensity limit of I, + 4, as previously noted, and a 
lower intensity limit of 1. The width limits for all of these 
bands are 1 to 3, corresponding to no width discrimination. 
Both the C=0 and C-0 stretching bands were considered to be 
essential, and an additional essential peak



Table 2-3. Peak Table and Weighting Factors for Ethyl Acetate
Position 
(cm'1)

Relative
Intensity Width

Special
Code

Relative
Weight

———————— — — — — — — — — — — — —  —  — ------- — — — — — — — —

463 2 2 2 *
608 5 1 - 0.576
634 4 2 - 0.394
786 3 2 - 0.228
847 4 2 - 0.555
918 3 2 2 *
938 4 2 - 0.420
1004 3 2 2 *
1048 15 1 - 0.851
1098 6 2 1 0.320
1160 2 2 2 *
1173 2 2 2 *
1241 20 2 - 1.000
1301 7 2 2 *
1374 14 1 - 0.802
1447 7 2 3 0.166
1465 6 2 3 0.137
1479 5 2 3 0.146
1555 1 2 - *
1567 1 2 2 *
1742 17 2 - 0.858
1830 1 2 2 *
1889 1 2 3 *
2878 2 2 2 *
2908 4 2 2 *
2943 5 2 2 *
2985 9 2 - *

3464 1 2 2 *

Notes: Intensities are normalized from 1 to 20.
Width: 1= Sharp, 2= Medium, 3= Broad
Code: 1= Split, 2= Shoulder, 3= Poorly Formed
* Denotes a band not included in the final description.
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window was written for these, denoted by the "Essential" code.

The spectral windows derived for ethyl acetate as a minor 
component are given in Table 2-5. Only four bands, those with 
at least 50 percent of the intensity of the largest peak, were 
selected for this group. The position windows for these peaks 
are the same as for those included in the major component 
description. The upper intensity limit, however, is set to 
I0-8. This different intensity limit is chosen since these 
bands should be observed at reduced intensity if the compound 
is a minor component.

The peak weighting factors derived for the bands chosen 
to be included in the spectral description are presented in 
Table 2-3. These weights are expected to reflect the 
likelihood of observing the band, given the presence of ethyl 
acetate in a mixture. The C-H stretching band at 2985 cm'1 was 
eliminated since at least 10 rule peaks remained, and the C-H 
stretch is expected to be of little diagnostic value. As one 
would expect, there is a general trend toward higher weighting 
factors for larger bands. The bands with the lowest weights, 
(i.e., those in the region from 1447 to 1479 cm'1) are both 
poorly formed and also appear in a region where many intense 
bands, due to other compounds, are observed.

Once established, the spectral windows, special codes, 
alternative regions, etc., for the selected bands are written 
to a binary file. This process produces both the major and 
minor component tables. The resulting binary files are 
utilized by the MIXIR analysis program during an



Table 2-4. Spectral Windows for Ethyl Acetate as a Major Component of the Mixture.
Band
Position
(cm-) Intensity Width

Special
Code

Window
Position
(cm-) Intensity Width

------------------ ————————— ----------- — — — — — — — --------------------- --------------------- -----------

608 5 1 - 604 - 612 1 - 9 1 - 3
634 4 2 - 630 - 638 1 - 8 1 - 3
786 3 2 - 782 - 790 1 - 7 1 - 3
847 4 2 - 843 - 851 1 - 8 1 - 3
938 4 2 - 934 - 942 1 - 8 1 - 3
1048 15 1 - 1044-1052 1 - 1 9 1 - 3
1098 6 2 1 1094-1102 1 - 1 0 1 - 3
1241 20 2 - 1233-1249 1 - 2 0 1 - 3
1374 14 1

Essential 1191-1291
1370-1378

1 - 2 0
1 - 1 8

1 - 3
1 - 3

1447 7 2 3 1439-1455 1 - 1 1 1 - 3
1465 6 2 3 1457-1473 1 - 1 0 1 - 3
1479 5 2 3 1471-1487 1 - 9 1 - 3
1742 17 2 — 1730-1747 1 - 2 0 1 - 3
2985 9 2

Essential 1692-1792
2981-2989

1 - 2 0
1 - 1 0

1 - 3
1 - 3

Note: An "Essential" prefix denotes a corresponding essential peak query window, with same 
format as main window entries.



Table 2-5. Spectral Windows for Ethyl Acetate as a Minor Component of the Mixture.
Band
Position
(cm1) Intensity Width

Special
Code

Window
Position
(cm1) Intensity Width

1048 15 1 - 1044-1052 1 - 7 1 - 3
1241 20 2

Essential
1233-1249
1191-1291

1 - 1 2
1 - 2 0

1 - 3
1 - 3

1374 14 1 - 1370-1378 1 - 6 1 - 3
1742 17 2

Essential
1730-1747
1692-1792

1 - 9
1 - 2 0

1 - 3
1 - 3

Note: An "Essential" prefix denotes a corresponding essential peak query window, with same m 
format as main window entries. I"'
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interpretation session. Peak significance factors are 
continually recalculated by MIXIR for the rule peaks during 
the interpretation process. It should be noted that the 
mathematical manipulations used to calculate peak significance 
factors in MIXIR are different from those used in IRBASE, due 
to the different logical analysis possible. In IRBASE, we are 
looking forward and attempting to forecast the significance of 
spectral features, the goal being to select the most important 
features for rule queries. In MIXIR, we have a good deal of 
information available specific to the problem at hand. This 
information is updated as knowledge is gained during the 
interpretation process, and band significance may be 
calculated by looking back at what is known. The MIXIR system 
is described in detail in chapter 3.

The spectral windows used by IRBASE to generate the 
compound descriptions are so-called "hard" or Boolean windows. 
It may be advantageous to use a "fuzzy" approach (78), or a 
modified Boolean approach as was used in PAWMI. 
Alternatively, a "smart" interpreter would ideally use the 
likelihood of component presence in a mixture, determined in 
a first pass, to consider the likelihood of observing a given 
spectral shift. Thus, rather than simply assuming that a -8 
cm'1 spectral shift is unlikely for C=0, the interpreter would 
check the likelihood of the presence of strong hydrogen 
bonding species in the mixture, to attempt to "rationalize" 
the observation. Simulating logical deduction may prove more 
powerful than application of statistics to such interpretation
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Conclusion:
IRBASE, provides rapid and consistent generation of 

compound-specific knowledge bases for a dynamic, knowledge 
based spectral interpretation system, MIXIR. The modular 
construction of IRBASE and the use of metareasoning allows 
rapid knowledge base development and practical program 
maintenance. The spectral descriptions produced by the system 
for each compound are highly specific. IRBASE presently 
includes heuristic rules describing the infrared 
characteristics of 39 polar functionalities. Infrared 
spectral descriptions have been created for 50 organic 
compounds using the system. Extending this approach 
represents an important step toward the creation of practical 
knowledge based systems for the rapid analysis of complex 
mixtures.



CHAPTER 3

DYNAMIC, COMPUTER-ASSISTED INTERPRETATION OF 
INFRARED SPECTRA OF CONDENSED-PHASE MIXTURES

Introduction:
Demand is increasing for the rapid analysis of complex 

mixtures for environmental and industrial applications. While 
such analyses can usually be accomplished using a combination 
of a separation and identification techniques (e.g. GC/MS), 
there are time, cost, and often scientific advantages to 
analyzing the intact mixture. Recent reductions in the cost 
of FTIR instrumentation have made this technique especially 
attractive for mixture analysis due to the volume of 
information which can be obtained rapidly. Interpretation of 
the complex spectral data is, however, often a problem. Due 
to the complexity and time required for such analyses, there 
have been numerous attempts to develop so-called expert or 
knowledge based systems for interpreting IR spectra (15-37).

Briefly, expert systems apply an "inference engine" to 
process input data through a "knowledge base”, to arrive at a 
logical analysis of the data (2-4). There has been a 
tremendous surge of interest in this area in the past several 
years, as artificial intelligence (AI) applications have begun 
to move from the laboratory to the workplace. Such systems 
are still evolving, however, and many limitations must yet be
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overcome before AI technology can become commonplace in 
analytical chemistry.

One such limitation is frequently the knowledge base 
itself. Hard coding of rules for every possible event in the 
solution of complex problems is nearly impossible. What can 
be done, however, is to broadly classify the possible events, 
and to generalize the problem solving strategy for each event. 
Once this has been accomplished, rules may be derived 
according to the generalizations, as the need arises. This 
approach involves the use of "meta-reasoning” (3-4). The use 
of meta-reasoning was deemed necessary to accomplish a major 
goal of the MIXIR system, the dynamic derivation of rules 
during the interpretation process.

The problem of determining the components of condensed- 
phase mixtures by IR spectroscopy presents several interesting 
challenges. It is a spectral recognition problem where many 
features may be missing, or altered. Additionally, the 
spectral features of the mixture are the result of a 
combination of the spectral features for each of the unknown 
components. A set of bands which could be attributed to 
compound "X" may in fact be due to the simultaneous presence 
of compounds ”Y” and "Z”. Although "fuzzy” matching criteria 
have been defined (78), conventional AI search methods cannot 
be directly applied, since the question is not simply, "Which 
compound does this resemble most?”, but "Which combination of 
compounds might give rise to this set of features?”. Applying 
an AI searching algorithm to the various combinations possible
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from the database is possible, in principle, if allowances are 
made for changes in the spectrum of the components by matrix 
interactions. This is prohibited in practice, however, by the 
time required to search the various combinations for even a 
small data set. Due to practical constraints then, the 
fundamental question MIXIR seeks to answer is: "Could a
subset of the spectral features arise from the presence of 
compound "X"?"

The goal of this work was to develop a user-interactive 
knowledge based system to assist chemists in determining the 
likely components of complex mixtures. The user decides on 
the logical paradigms used by the system to interpret the 
spectral data and, if so desired, may participate in the 
interpretation process. Thus, the system functions as a so- 
called "smart assistant" in the interpretation process.

Experimental:
A Nicolet 3600 FTIR instrument (Nicolet Analytical 

Instruments, Madison, WI) was used for all spectral 
acquisition. The spectral data were processed using Nicolet 
1180 and 620 minicomputers. Spectra of the pure compounds 
were obtained from the high resolution Nicolet-Aldrich FTIR 
spectral library. Mixtures were prepared, by weight, using 
Aldrich (Milwaukee, HI) spectral grade solvents. Spectra of 
these mixtures were acquired as thin films pressed between KBr 
plates, to reproduce the sample preparation of the pure 
compounds contained in the spectral library.
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Data Pre-Treatment:

Spectra were obtained at a nominal 2 cm*1 resolution by 
coaddition of 100 interferograms. Spectral post-processing 
was performed exactly as in the preparation of the knowledge 
base (36).

Program Description:
MIXIR was written in ANSI standard FORTRAN 77 and 

comprises over 4700 lines of code. A VAX 8650
superminicomputer (Digital Equipment Corp., Maynard, Mass.) 
was used for program development. The programs and associated 
data tables, once developed, were downloaded to an Dell System 
310 (Dell Computer Corporation, Austin, Texas). The 
microcomputer version of MIXIR requires approximately 260 
kilobytes of system memory for execution, and was compiled 
with the Microsoft FORTRAN compiler, version 4.1 (Microsoft 
Corporation, Redmond, Washington).

Execution times on the microcomputer, which was equipped 
with a 20 MHz Intel 80386/387 CPU and math coprocessor, were 
dependent on the options chosen, and the number of iterations 
required. A typical value is 30 seconds, using the "optimum" 
combination of options, detailed in the results and discussion 
section. No attempt was made to optimize the code for speed. 
Clarity of code was instead placed foremost during the 
software design process.

A block diagram of the basic interpretive flow of MIXIR 
is given in Figure 3-1. The system accesses a knowledge base
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previously compiled by the IRBASE program (36). This 
knowledge base consists of the spectral descriptions for all 
compounds in the data base. No IF-THEN-ELSE constructs are 
coded in the knowledge base. The separation of logic from 
data allows unlimited flexibility in the use of the 
information contained in the knowledge base and is a key 
feature of MIXIR. This freedom is critical to providing the 
dynamic interpretation capabilities sought in developing 
MIXIR. The system design also simplifies the revision of both 
the data and controlling logic (20).

Since MIXIR derives interpretation rules at runtime, 
using the spectral descriptions provided by IRBASE, the user 
is able to provide information concerning the sample being 
analyzed. The user can designate compounds which are known to 
be present or absent in the mixture. Compounds suspected of 
being present can also be so designated for later use by the 
interpreter. The information provided by the user is stored 
in a "static” database. During the subsequent interpretation, 
inquiries for compounds known to be present or absent are 
bypassed since their presence or absence has already been 
established by the user (A conservative approach would be to 
perform the interpretation with and without restricting the 
domain). The information contained in the static database is 
also used during the calculation of significance factors for 
the remaining substances.

An analogous "dynamic" database is maintained during the 
interpretation process. This dynamic data base is initialized
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to the values of the static database at the start of an 
interpretation and is updated after each pass of the 
interpreter. It indicates the current state of inquiry for 
each compound and is probed while determining peak 
significance factors. The allowed states are: "present",
"absent", or "unknown". The designation "unknown" is 
accompanied by a value indicating the current state of belief 
for the presence of that compound. This value ranges from 
+0.999 to -0.999, indicating maximum belief in compound 
presence or absence, respectively.

The idea behind the dynamic data base is to achieve some 
of the evolutionary qualities of human problem solving 
techniques. Consider, for example, the following hypothetical 
spectroscopist's approach: Noting a strong band in the mixture 
spectrum at 1745 cm'1, the spectroscopist may think, "A
saturated ester appears to be present". Examining a group of 
likely components reveals five saturated esters. The 1745 cm'1 
band is not significant evidence for any of these, on the 
first pass. By checking for the remaining features for these 
compounds, however, the scientist will revise the relative 
significance of the 1745 cm'1 band for each ester. In an 
analogous way, MIXIR probes the dynamic database during each 
interpretation cycle to reevaluate the relative significance 
of expected features, using the likelihood of competing 
explanations.
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Evaluation of Band Significance:
When interpreting an IR spectrum of a mixture, there is 

significance in observing a band which corresponds to a band 
in the spectrum of a pure compound. It is also significant if 
a band in the spectrum of any given pure compound is not found 
in the spectrum of the mixture. These two possible events are 
evaluated independently during a MIXIR interpretation. This 
division is in many ways analogous at a conceptual level to 
the "Correlation factor" and "Uniqueness factor" reported by 
Palmer, et al. (41). for mass spectral interpretation rules.

The significance of finding a spectral feature in the 
mixture spectrum, which correlates with a band in the pure 
compound, is related to the confidence that the band is due to 
the presence of the compound in question. This factor, UWTi, 
is given by:

UWTi = (1/NQ) * (Sj/S^,) (1)
where NQ is the number of queries for the compound, St is the 
compound score from the previous pass, and SMII is the maximum 
of all compound scores which may explain the band, from the 
previous pass of the interpreter. The second term in the 
equation provides a competition for each band sought, between 
the compound in question, and the best explanation in the 
knowledge base for that band. The relative "quality" of a 
given explanation depends on the total evidence for a given 
compound. The value of the competition term is set to 1.00 
during the first pass of the interpreter, since no information 
exists at that time to determine any preference of one
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explanation over another.

The significance of not finding a band in a given 
spectral region is related to the confidence that the band is 
actually missing, rather than masked by another peak or below 
the intensity threshold of the peakpicking program. To 
evaluate the significance of not finding a band, the raw 
intensity weight, RIWTi is first calculated:

RIWTi = INT, * ATTN1 * ATTN2 (2)
where INTi is the intensity of the band for the pure compound, 
ATTN1 and ATTN2 are used to account for moderating factors. 
ATTN1 is set to 2/3 for peaks which were indicated as being 
poorly formed, or split in the pure compound. Split bands may 
merge, and poorly formed (i.e., ill-resolved or non-Gaussian) 
bands will likely be missed by the peakpicking program. ATTN2 
reflects the likelihood that a band is masked by another 
nearby band. The value assigned to ATTN2 ranges from 0.20 to 
1.00, corresponding to a high and low likelihood for the band 
being masked, respectively. The factor is determined using a 
heuristic procedure to be further described in a subsequent 
section.

The intensity weights are adjusted to sum to 1.00 using:
RIWTi

IWTi =   (3)
Z RIWT3
3

Interpretation Process:
An outline of the overall program scheme is presented in 

Figure 3-2, and a diagram of the basic interpretation process
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is given in Figure 3-3. The system was designed to 
continually evaluate the effective uniqueness of spectral 
features. Uniqueness is considered to be the number of 
compounds in the database which are potential explanations for 
a feature found in the spectrum of the mixture. The 
uniqueness is recalculated during each interpretation cycle 
using the information contained in the dynamic database which 
is revised after each cycle, using the interpretation results. 
This feedback process will ideally converge with a uniqueness 
of one for a given spectral feature for each compound present.

Only those compounds whose presence is deemed "unknown" 
are interpreted in each pass. The remaining compounds, 
however, influence band uniqueness calculations. Each of the 
"unknown" compounds is queried in turn, with the goal being to 
determine what evidence exists to support the presence of the 
compound in the mixture. Matching a spectral feature results 
in the addition of the significance determined for finding a 
band in the region queried (UWT), for the compound in 
question. A missing feature results in the subtraction of the 
determined significance (IWT) for a band being absent from 
this region. The significance factors related to presence and 
absence of bands are each scaled to sum to a value of one. 
Thus, the resulting compound expectations may range from -1.00 
to 1.00, indicating minimum to maximum evidence for the 
presence of a compound.
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Figure 3-2. A Procedural Flow Diagram of MIXIR.
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Figure 3-3. An Algorithmic Description of the Basic MIXIR 
Interpretation Process.
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User Selectable Interpretation Options and Paradigms:
A major goal in designing MIXIR was to incorporate as 

many problem solving strategies as possible, realizing the 
limitations imposed by the use of peak tables to represent the 
spectra. While these strategies provide potentially greater 
discriminatory capabilities and allow the user to participate 
in the interpretation process, they may also provide 
misleading results, particularly to the uninformed user. It 
was decided, therefore to include these paradigms as options, 
and provide a brief on-line explanation of each. Thus, the 
user is forced to make informed decisions concerning the 
specific problem solving paradigms employed. The chosen 
strategy may include any or all of the options available. The 
system includes both pre and post-interpretation options which 
are user selectable. The nine pre-interpretation options are:
1) User Override- This option provides a complete 

interpretation trace, and causes the interpreter to pause 
after presenting each query and answer. The user is 
permitted to override the decision, if so desired. Thus, 
the user is actively involved in the interpretation at 
the most detailed level. The ability to interactively 
participate in the interpretation process has proven to 
be very useful for other knowledge based spectral 
interpretation systems (35).

2) Relative Peak Intensity Checking- Absolute peak 
intensities are not significant when interpreting spectra 
of mixtures, since an unknown dilution factor renders



them meaningless. Relative peak intensities, however, 
may be significant. If two bands in a spectrum of a pure 
compound have a ratio of 3:1 then it is not expected that 
corresponding bands in the mixture will have a ratio of 
1:4. Gross intensity mismatches are checked using this 
option. For each unknown peak matched for a given 
compound, the intensity relationship to the next peak 
mr.tched is determined. The intensity relationship is 
assigned one of five values, ranging from "much greater 
than" to "much less than". The intensity relationships 
for the peaks in the spectrum of the pure compound are 
then compared to the corresponding intensity ratios in 
the spectrum of the mixture. If a corresponding or 
adjoining relationship is not found, the compound score 
is significantly reduced. This option was designed as a 
coarse filter, to reduce decisions leading to false 
positive results.
Essential Peak Checking- Discrimination by this filter 
corresponds to the spectroscopist's argument: "Without a 
band in the carbonyl region, I know that acetone cannot 
be present in my sample". This option makes use of any 
essential peak descriptions which may be encoded in the 
spectral description for each compound. Failure of an 
essential peak query results in the score for the 
compound being set to the minimum value, and further 
queries for the compound are ignored.
Extended Scoring System- This option considers the



cumulative importance of matching bands which can only be 
attributed to a few compounds. When invoked, the number 
of bands matched for a given compound which can only be 
attributed to 2 and 3 compounds in the knowledge base is 
noted. Additional credit is then given for the 
cumulative number of each of these, using an empirically 
derived exponential function:

Sig = Sig0 * 1.20" * 1.10y

"Sig" is a value normalized from 0 to 1, Sigc is the 
compound score prior to the function application, also 
normalized from 0 to 1, while x and y represent the 
number of bands matched for the compound which could only 
be attributed to two and three compounds, respectively. 
The function output is then converted to the -1 to 1 
scale normally used by MIXIR.
Automatic Cycling- Using this option, the interpreter 
will iteratively interpret the mixture spectrum, updating 
the dynamic database after each interpretation. The 
dynamic database is probed during each cycle to 
continually update the band significance factors, using 
the new information. This iterative process continues 
until no compound score changes by more than 0.05. This 
capability is extremely important, as it provides the 
interpreter with the ability to use knowledge gained 
during the interpretation process to reevaluate the 
significance of the presence or absence of spectral
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features. The problem is attacked by a progression 
through a series of successive states.

6) Interpreter Trace- It is important that the user be able 
to determine how the program arrived at a given 
conclusion. This option provides a complete real time 
trace of the interpreter queries, answers, and actions.
This option is a non-interactive user information 

utility.
7) Peak Justification- This option checks that all major 

bands in the mixture spectrum can be attributed to a 
compound which has been determined likely to be present 
at high significance. The interpreter pauses after the 
initial interpretation process to determine whether the 
compounds with scores greater than 0.20 can account for 
all of the major unknown peaks. If not, then all 
compounds which could explain this feature are examined, 
and those with the two highest scores are determined. 
The user is informed of the situation and can attempt to 
distinguish between the various compounds which may 
account for each unclaimed band using a post
interpretation "either/or" procedure.

8) Reduced Peak Set Check- If a compound is present at a low 
concentration, it is expected that only the most intense 
bands of that compound will be observed in the spectrum 
of the mixture. If one were to arrange the bands sought 
for that compound, in order of decreasing relative 
intensity in the pure compound, and mark those which are
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observed in the mixture, then one would expect to obtain 
two distinct groups of peaks. The first group would 
contain the peaks which are above the threshold used by 
the peakpicking program while the second group would 
contain those peaks which are below it. Using reduced 
peak set checking causes the interpreter to look for 
situations where (a) Three bands are matched, and those 
matched are all larger than those which are missed, or 
(b) More than three bands are matched, and at most one 
anomaly exists in the expected pattern. Such anomalies 
can be explained if an intense band which we expect to be 
present may is still missed due to peak overlap, or a 
less intense band that we expect not to be observed may 
be correlated due to another component. If either of 
these conditions (a or b) are met, the compound score is 
increased by 25 percent.

9) Peak Swamping Check- This paradigm considers situations 
where a band from a component at low concentration may be 
masked by a large band due to another component. Using 
this option, the interpreter does not deduct for a missed 
spectral feature if it is reasonable to expect that the 
band may be present but masked. Decisions concerning the 
likelihood of band masking are made using a heuristic 
tree consisting of approximately twenty rules. These 
rules take into account the intensity of the band in the 
pure compound spectrum, the distance to the closest band 
in the unknown mixture, and the intensity and width of



the closest band. When selected, this procedure is used 
for all compounds. It can also be invoked for individual 
compounds which are suspected to be components of the 
mixture, as described previously.

Three user selectable post-interpretation paradigms are
available to provide additional information. They are:
1) Peak Assignment- This corresponds to a spectroscopist 

saying ”1 know that these bands can be attributed to 
compounds X,Y..etc, what information is still left to be 
explained, and what compounds can account for it?". To 
answer this question MIXIR determines all bands in the 
spectrum of the mixture which can be attributed to 
compounds above a user specified score. The 
interpretation is then repeated for the remaining 
compounds, neglecting the assigned bands. This option 
may reduce false positives, but there is the danger that 
false negatives may result. Erroneous results are 
expected if coincident information exists for compounds 
present in the mixture at greatly disparate 
concentrations. The compound at high concentration would 
then be expected to have a high score, and have bands 
attributed to it eliminated. Any unresolved band due to 
the compound at lower concentration would then also be 
eliminated.

2) Either/Or Procedure- This procedure is very useful when 
structurally similar compounds are present in the
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knowledge base. If one such compound is present in the 
unknown mixture, then any analogs will likely also be 
assigned high scores. This option should be used with 
two chemically similar compounds as the arguments. A set 
of interpretation rules is then derived for each compound 
which excludes any coincident spectral information. 
Thus, the results of a subsequent interpretation 
indicates the evidence for each compound, neglecting the 
coincident information.

3) Interpretation Cycle- This option allows the user to 
single step through interpretation cycles as in the auto 
mode. The user is thereby permitted to examine the 
developing solution by reviewing the numerical results 
after each pass of the interpreter.

Results and Discussion:
The MIXIR system was evaluated using a knowledge base 

produced by IRBASE (36). The knowledge base consists of 
spectral descriptions for 50 compounds as both major and minor 
components. The test compounds are listed in Table 3-1. The 
system was evaluated using a set of 20 mixtures (Table 3-2), 
which included 10 two-component mixtures and 10 
three-component mixtures, with components ranging from 10 to 
90%, by mass.

To evaluate the system, the entire set of mixture spectra 
was interpreted with and without using combinations of the 
interpreter options previously described. The results are



Table 3-1. Compounds
acetone
anthracene
benzaldehyde
benzene
2-butanone
butyl-acetate
chlorobenzene
1-chlorodecane
chloroform

0-chlorotoluene
1-phenyl-l-propanol 
o-cresol 
p-cresol 
cyclohexanone
dibuty1-phtha1ate 
o-dichlorobenzene

Included in the MIXIR Knowledge Base.
m-dichlorobenzene
1.2-dichloroethylene 
dichloromethane
2,4-dichlorophenol
1.2-dichloropropane
1.3-dichloropropane
1.3-dichloropropene 
dicyclopentadiene 
diethyl-phthalate 
dioctyl-phthalate
2-ethoxyethyl-acetate 
ethyl-acetate 
ethyl-alcohol 
ethylbenzene
2-ethylphenol 
m-ethyltoluene

p-ethy1toluene 
eugeno1to1uene 
hexachloro-1,3-butadiene 
hexach1orocyc1opentad iene 
n-hexane

2-hexanone 
methyl-alcohol

3-methylpentane
4-methyl-2-pentanone 
pentachloroethane 
phenol 
n-propanol 
n-propy1-acetate
2-propanol 
styrene
1.2.3.4-tetrachlorobenzene
1.2.4.5-tetramethylbenzene



Table 3-2. Test Mixtures Used to Evaluate MIXIR.
Components Composition (w/w)

1. Ethylbenzene/1,3-Dichloropropane 1:1
2. Ethylbenzene/1,3-Dichloropropane 4:1
3. Chloroform/Ethyl Acetate 3:1
4. Chloroform/Ethyl Acetate 1:5
5. n-Propanol/2-Butanone 3:1
6. n-Propanol/2-Butanone 1:9
7. Chlorobenzene/n-Hexane 2:1
8. Chlorobenzene/n-Hexane 1:5
9. Ethylbenzene/Chlorobenzene 9:1
10. Ethylbenzene/Chlorobenzene 1:4
11. Ethylbenzene/1,3-Dichloropropane/Ethyl Acetate 3:1:1
12. Ethylbenzene/1,3-Dichloropropane/Ethyl Acetate 1:3:1
13. Ethylbenzene/1,3-Dichloropropane/Ethyl Acetate 1:1:3
14. n-Propanol/2-Butanone/Ethyl-Acetate 1:1:1
15. n-Propanol/2-Butanone/Ethy1-Acetate 5:1:1
16. n-Propanol/2-Butanone/Ethyl-Acetate 1:1:8
17. Chlorobenzene/n-Hexane/Chloroform 2:2:1
18. Chlorobenzene/n-Hexane/Chloroform 1:9:1
19. Chlorobenzene/n-Hexane/Chloroform 8:1:1
20. Ethylbenzene/Chlorobenzene/n-Hexane 1:1:6



75
reported as: 1.) the average scores for the compounds present
and absent, and 2.) the number of false positive and false 
negative results at 7 different score cutoff values. The 
reason for reporting results at a number of different 
thresholds is to avoid interpreting a blanket increase or 
decrease in compound scores as an actual improvement or 
degradation of system performance.

Non-Iterative Interpretation: The interpretation results 
follow a predictable pattern when the automatic recycle option 
(i.e., iterative interpretation) is not used. The effect of 
using the other options can be determined by comparison of the 
interpretation results with those produced when no user- 
selectable options are specified (Table 3-3). The relative 
peak intensity checking and essential peak checking options 
are expected to reduce the compound scores when the spectra do 
not meet the criteria previously described. This is indeed 
the case, as can be seen from the results in Table 3-4. 
Several points should, however, be emphasized. Relative peak 
intensity checking reduces the scores of the compounds 
present, as well as those of compounds absent. Thus, although 
a higher number of correct results is obtained for most cutoff 
thresholds, there is some tradeoff of increased false negative 
results for decreased false positive results, using this 
option.

Using the essential peak checking option results in a 
slight decrease in the average scores of the compounds present 
in the mixture but also results in a marked decrease in the
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Table 3-3. Baseline MIXIR Results (No User Selectable Options 
in Use) for the Interpretation of the Mixtures Given in Table
3-2.
Average score for the compounds which are present: 0.516 
Average score for the compounds which are absent: -0.560
LEVEL False False Correct

Positives Negatives Decisions
0.40 4 16 980
0.30 7 14 979
0.20 13 13 974
0.10 26 7 967
0.00 42 6 952

-0.10 65 5 930
-0.20 114 3 883
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Table 3-4. Interpretation Results for the Non-Iterative Use 
of the Intensity Checking and Essential Peak Checking Options.

A. Intensity Checking Option
The average score for the compounds which are present: 0.451 
The average score for the compounds which are absent: -0.590

LEVEL False
Positives

False
Negatives

Correct
Decisions

0.40 2 18 980
0.30 4 17 979
0.20 8 15 977
0.10 18 11 971
0.00 30 9 961

-0.10 48 8 944
-0.20 88 5 907

B. Essential Peak Checking Option
The average score for compounds which are present: 0.516 
The average score for compounds which are absent: -0.680
LEVEL False False Correct

Positives Negatives Decisions
0.40 4 16 980
0.30 7 14 979
0.20 13 13 974
0.10 25 7 968
0.00 40 6 954

-0.10 60 5 935
-0.20 104 3 893
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average scores for the compounds which are absent. This 
result confirms the desired selectivity for this logic filter. 
It should also be noted, however, that the number of false 
positive and false negative results is unaffected, compared to 
the baseline results, until a score cutoff threshold of 0.10 
is reached. Thus, essential peak checking did not 
discriminate greatly against false positive results at high 
significance for the test mixtures. Since the strong false 
positive results tend to come from closely related compounds, 
it is not surprising that they contain major spectral features 
which are similar.

The extended scoring system, option 4, had no effect 
without performing iterative interpretations. This result 
simply indicates that no peaks of uniqueness 2 or 3 could be 
matched without reducing the problem bounds, and updating the 
effective uniqueness, i.e., performing an iterative 
interpretation.

The results obtained using the peak swamping check and 
reduced peak set check options are presented in Table 3-5. 
Reduced peak set checking (option 8) produces enhanced scores 
for compounds present, while leaving the scores for compounds 
which are absent largely unaffected. The result is reasonable 
since it is more likely that compounds which are present in 
the mixture will demonstrate the expected intensity pattern 
than compounds which are absent.

While reducing the number of false positive results, the 
consideration of peak swamping (option 9) also produces a
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Table 3-5. Interpretation Results for the Non-Iterative Use 
of the Reduced Peak Set Checking and Peak Swamping Check 
Options.

A. Reduced Peak Set Checking Option
The average score for compounds which are present: 0.593 
The average score for compounds which are absent: -0.558
LEVEL False False Correct

Positives Negatives Decisions
0.40 4 14 982
0.30 7 12 981
0.20 14 11 975
0.10 27 6 967
0.00 43 5 952

-0.10 66 4 930
-0.20 114 3 883

B. Peak Swamping Option
The average score for the compounds which are present: 0.571 
The average score for the compounds which are absent: -0.487
LEVEL False False Correct

Positives Negatives Decisions
0.40 6 16 978
0.30 20 11 969
0.20 33 8 959
0.10 50 7 943
0.00 68 5 937

-0.10 117 4 879
-0.20 162 2 836
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significant enhancement in the scores for compounds which are 
absent. In fact, the proportional gain for absent compounds 
is greater than for those compounds which are present. This 
observation can be explained by considering the following 
facts. The peak swamping check discriminates between
compounds for which band masking is unlikely. If, however,
band masking is expected, then it is equally likely that the 
judgement on masking will be made for a band of a compound 
which is present as for one which is absent. Since this 
option only has an effect when a band is not observed, and 
compounds which are not present will have more missing bands, 
then on average these compounds will have a greater
enhancement. This option should, therefore, only be chosen if
the user is willing to accept a significant increase in the 
number of false positive results, for the greater margin of 
safety afforded.

Iterative Interpretation: The success of interpretations 
using the autocycle option can be seen by comparing the 
results given in Table 3-6 with the baseline results of Table
3-3. Even more dramatic gains are made when the extended 
scoring system is used in conjunction with autocycling (Table
3-7). As noted above, the extended scoring system only has an 
effect when just two or three compounds can explain a given 
band. This high uniqueness is obtained through iterative 
interpretation.

Use of the essential peak checking option in conjunction 
with autocycling produced interpretation results which may
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Table 3-6. Interpretation Results Using the Autocycle Option.
The average score for compounds which are present: 0.507 
The average score for compounds which are absent: -0.709
LEVEL False False Correct

Positives Negatives Decisions
0.40 2 18 980
0.30 4 15 981
0.20 6 13 981
0.10 6 9 985
0.00 14 8 978

-0.10 23 6 971
-0.20 36 5 959
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Table 3-7. Interpretation Results Using the Extended Scoring 
System and Autocycle Options, Concurrently.
The average score for compounds which are present: 0.751 
The average score for compounds which are absent: -0.713
LEVEL False False Correct

Positives Negatives Decisions
0.40 3 8 989
0.30 4 8 988
0.20 6 8 986
0.10 9 8 983
0.00 12 7 981

-0.10 21 6 973
-0.20 35 5 960
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Table 3-8. Interpretation Results Using the Essential Peak 
Checking and Autocycle Options, Concurrently.
The average score for compounds which are present: 0.574 
The average score for compounds which are absent: -0.781
LEVEL False False Correct

Positives Negatives Decisions
0.40 2 16 982
0.30 4 13 983
0.20 6 11 983
0.10 6 9 985
0.00 14 8 978

-0.10 23 6 971
-0.20 34 5 960
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seem puzzling initially. It was expected that using the 
essential peak checking option would reduce the scores of 
those compounds which failed the essential peak check test, 
while leaving the scores of the other compounds unaffected. 
The results given in Table 3-8 show the expected decrease in 
the scores of absent compounds. What is not so obvious is 
that the scores of the compounds not directly affected 
(ideally, only compounds present), must then increase. This 
is readily explained by the competition term of equation 1. 
Autocycling, which was designed to be a feedback amplification 
mechanism, tends to magnify both the desirable and undesirable 
effects produced by the logical algorithms employed.

The "optimum" combination of user selectable options is 
defined as the condition which produces the greatest 
separation between scores for the compounds which are present 
and those which are absent for the test mixtures. Of the 
combinations of options tested, optimum results were obtained 
using the autocycle, essential peak checking, extended scoring 
system and reduced peak checking options, concurrently. The 
results achieved using this combination of options to 
interpret the mixture spectra are presented in Table 3-9.

A portion of the score report for the interpretation of 
a 1:1:6 w/w mixture of ethylbenzene, chlorobenzene, and n- 
hexane, using the optimum option settings, is given in Table
3-10. The likelihood of each compound as a major and as a 
minor component is reported along with the number of bands 
sought, and the number of bands matched. This latter
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Table 3-9. Interpretation Results for the "Optimum" Option 
Combination Specified in the Text.
The average score for compounds which are present: 0.803 
The average score for compounds which are absent: -0.780
LEVEL False False Correct

Positives Negatives Decisions
0.40 6 7 987
0.30 6 6 988
0.20 6 5 989
0.10 10 5 985
0.00 17 5 978

-0.10 23 5 972
-0.20 33 5 962



Table 3-10. Partial Score Report for a 1:1:6 w/w Mixture of Ethylbenzene/Chlorobenzene/n- 
Hexane.

Peaks
COMPOUND MAJOR Matched
n-HEXANE .999 6
ETHYLBENZENE .999 12
CHLOROBENZENE .999 10
TOLUENE .795 9
DICHLOROMETHANE -.333 2

: (44 Intermediate Compound Scores)

1,2,3,4-TETRACHLOROBENZ ENE -.999 0

Peaks
Sought MINOR

Peaks
Matched

Peaks
Sought

8 -.999 0 4
15 -.603 l 5
12 -.331 3 8
12 -.710 1 6
7 -.999 0 2

15 -.999 0 8

00
at
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information may be important for cases where the pure compound has 
only a few peaks such that finding a few corresponding bands in the 
mixture spectrum will generate a high score for that particular 
compound. The user should, therefore, suspect a false positive 
result. Similarly, a false negative result should be suspected 
when a number of bands in the mixture are attributed to a 
particular compound, but the score for that compound is low.

One of the difficulties encountered in designing a spectral 
interpreter for mixture analysis is determining how to distinguish 
between compounds which are close structural analogs and, thus, 
have a high degree of spectral similarity. It is often observed if 
one of the structural analogs is a component of the mixture, that 
interpretation of the spectral data results in a high likelihood 
for the other analogs being present as well. The MIXIR program was 
designed to allow the user to perform a two part interpretation of 
the data to resolve this problem. The first interpretation is used 
to answer the question, "What compounds are likely to be present in 
this mixture?". Subsequently, the user recognizing that 
structurally similar compounds are indicated as likely components 
of the mixture can perform a second interpretation, using the 
"either/or" post-interpretation option. This option is used to
answer the question; "If only one of these two compounds is 
present, which is more likely, X or Y ?". Since the coincident 
spectral features for the two compounds provide no information 
which allows MIXIR to discriminate between the two compounds, the 
interpreter must evaluate the spectral features which are unique 
for each compound. The separation of logic from data in the design
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of the system, allows MIXIR to derive a set of rules to 
discriminate between two compounds. To perform an interpretation 
with the "either/or" option, the user simply indicates which two 
compounds to distinguish between. After determining which spectral 
bands can be attributed to both of these compounds, MIXIR discards 
the corresponding peak queries. The remaining peak queries are 
then used to derive a set of interpretation rules which correspond 
to the spectral features unique to each compound.

The score report for the interpretation of a 1:1:6 w/w mixture 
of ethylbenzene, chlorobenzene, and n-hexane (Table 3-10) will be 
used to illustrate an "either/or" interpretation. On examining 
this report, it is apparent that toluene is falsely reported to be 
a component of the mixture with a score of 0.795. The user should 
question these results since nine bands of the mixture spectrum 
were matched for toluene, while ten bands were matched for a close 
structural analog, ethylbenzene. Thus, much of the spectral 
evidence for toluene may be a subset of that for ethylbenzene. A 
second interpretation was performed using the "either/or" option to 
discriminate between these two compounds. The interpretation 
resulted in scores of 0.534 and -0.033, for ethylbenzene and 
toluene, respectively, which indicates that little spectral 
information is unique to toluene.

The 20 mixture spectra were interpreted using the previously 
described optimum combination of user selectable options. If 
compounds with scores above 0.20 are assumed to be present, then 6 
false positives results are obtained. Only 3 false positives 
remained after using the post-interpretation "either/or" option to
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distinguish between obvious structural analogs which had scores 
above 0.20 from the first interpretation. The criterion used for 
discrimination between the two structural analogs was that their 
scores, after using the "either/or" option, differ by at least 
0.500.

Users must be aware, however, of the limitations of the 
neither/orn procedure. For example, several mixtures were prepared 
containing structural analogs. Two of these also became subject to 
the either/or procedure, and in one case, a false negative result 
was produced. In that case, interpretation of the spectrum of a 
9:1 w/w ethylbenzene/chlorobenzene mixture resulted in scores of 
0.999 for both compounds. A second interpretation was performed 
using the either/or option to distinguish between these two 
compounds. The resulting scores were 0.999 for ethylbenzene and 
0.291 for chlorobenzene. The difference, 0.707, was greater than 
the 0.500 discrimination criterion chosen previously, thus 
indicating, ethylbenzene is more likely to be present in the 
mixture than chlorobenzene. This result should not be surprising, 
since ethylbenzene was present in the mixture at nine times the 
mass fraction of chlorobenzene. Similarly, an interpretation of a 
1:1:6 mixture of ethylbenzene/chlorobenzene/n-hexane again yielded 
initial results of 0.999 for chlorobenzene and ethylbenzene. 
Interpretation using the either/or procedure in this case yielded
0.576 for chlorobenzene and 0.758 for ethylbenzene. Since the two 
compounds were present at equal concentrations, neither was found 
as a preferred explanation by this procedure. The either/or 
procedure is invoked to perform a discriminatory function: to
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determine which of two compounds is the preferred explanation for 
spectral evidence. It should be realized that if structural 
analogs are actually present at widely different levels, then the 
one which is more concentrated will likely be preferred.

A discussion of system performance would not be complete 
without an easily digestible summary. Table 3-11 presents the 
results of testing the interpreter using the 20 mixture test set, 
as described. The "optimum" option combination was used to 
interpret the mixture spectra. The expectation cutoff for compound 
presence was set at 0.20. Defining system reliability as the 
number of correct decisions divided by the total number of 
decisions, as given in Table 3-11, resulted in a derived 
reliability of 0.99 for the test data. This value demonstrates the 
discrimination abilities of MIXIR.

The possible pitfalls associated with the various optional 
interpretation procedures have already been discussed. The major 
limitation associated with the present system, however, is that it 
is currently a peak-based system operating on hardware remote from 
the instrument computer. The advantages and disadvantages of peak- 
based interpretation methods were examined by Coates (32). Ideally, 
one would have a peak-based method for coarse searching, followed 
by the use of spectral curve-fitting to resolve ambiguities. Such 
a system would reside directly in the instrument computer, and 
interact with the existing instrumental software to gain maximum 
effectiveness. While not a scientific question, ease of use would 
be improved if a (hardware-dependent) graphical window-based 
environment were developed, as exists on most modern commercial
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Table 3-11. MIXIR Performance Summary.
The Following Interpretation Options Were Used Concurrently: 
Essential Peak Checking, Extended Scoring System, Automatic 
Recycle, Peak Swamping Check

TP TN FP FN
Without Either/Or Procedure: 45 944 6 5
After Either/Or Procedure*: 44 947 3 6
Best Case Results: 50 950 0 0
Worst Case Results: 0 0 950 50

* Used to derive the following:
FP

% False Positives =   * 100 = 5.9%
(FP + TP)

FN
% False Negatives =   * 100 = 0.6%

(FN + TN)

(TP + TN)
Reliability  --------------------   0.99

(TP + TN + FP + FN)
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software. Resolution of the above issues, along with 

incorporation of additional interpretation paradigms, should be the 
goal of future work.

The true usefulness of a knowledge based system is not simply 
a function of the distilled output (i.e., the compound scores), but 
of the user's ability to understand and interpret the results (35). 
The design of MIXIR provides a "smart assistant" for interpreting 
IR spectra of mixtures. The informed user is allowed to 
participate in the interpretation process, specify the logic to be 
used to interpret the spectral data, perform a dynamic 
interpretation of the spectral data and as a result is better able 
to utilize the interpretation results.



CHAPTER 4

SPECTRAL PEAK DETECTION MITH A MULTI-LAYERED PERCEPTRON 

Introduction:
Artificial neural networks are mathematical models of 

biological neural systems. Although they are a gross 
simplification of actual physical cognitive processes, 
application of these models has indicated that artificial 
neural networks have strengths and weaknesses in the same 
areas as humans. For example, they excel at recognition of 
visual patterns, but are poorly suited to precise mathematical 
calculation. Despite the advances in traditional mathematical 
approaches to pattern recognition, humans are generally still 
considered to be the most effective pattern recognition system 
available for audible and visual patterns. Together, the 
superiority of humans at visual pattern recognition and the 
link between biological and artificial neural networks 
provided the inspiration for the research to be described. 
The object of this research was to investigate the ability of 
an artificial neural network to reproduce human judgements on 
the presence of peak-shaped signals in infrared spectral data.

Much of the interest in neural nets stems from their 
remarkable ability to robustly process information containing 
a degree of uncertainty. This uncertainty may correspond to 
a variable, noisy, or incomplete input. Moreover, no
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underlying statistical assumptions are made on the behavior of 
the data. As a result, any type of variation in the inputs 
may be accounted for by simply including example input 
patterns containing such variation during the training 
process.

The roots of adaptive artificial neural networks date 
back to ideas proposed in the late 1940's by D.O. Hebb (51). 
Hebb first described a system where a group of interconnected 
neurons "learns" by adjusting the strength of the synaptic 
connections between them. A great deal of work was done in 
the 1960's using "single-layered perceptrons", also known as 
"linear learning machines" (52), including some applications 
in infrared spectroscopy (60-62). Interest in the area waned, 
however, when it became apparent that the computational 
machinery available then was not sufficently powerful to 
support the volume of calculations involved in training a 
large network, which may involve billions of floating point 
calculations. A further blow was dealt by the theoretical 
work of Minsky and Papert (53), which proved that single
layered neural networks using linear transfer functions could 
not solve a non-linearly separable classification problem, 
e.g. the "exclusive-or" problem.

The 1980's brought the development of more complex 
network architectures, and more sophisticated activation and 
learning rules. Classification is now possible in pattern 
spaces of arbitrary complexity. Concomitant advances in 
computer hardware allow the practical implementation of neural



95
network models on relatively inexpensive, readily available 
hardware. As a result of these advances, a renewed surge of 
interest has occurred in neural network theory and 
application. Nunk and Robb (63) recently developed a system 
for recognition and identification of functional group 
patterns in infrared spectra. Donahue, Brown and Kumaresan 
have also reported a system for neural networks to identify 
functional groups from infrared spectra (64). Long and 
Gemperline have used a feed-forward network to perform 
quantitation of wheat samples using near-infrared reflectance 
spectroscopy (65).

Recent work on developing a peak-based infrared spectral 
interpretation program for mixture analysis (36-37) has shorn 
that a fundamental limitation of such systems lies in the 
quality of the peak table. That is, the power of the system 
is limited not only by the power of the processing logic or 
mathematics, but by the quality and amount of the spectral 
input information provide to the system.

Many conventional signal detection algorithms are 
available (83-86). The infrared spectroscopist is however, 
often limited to those algorithms which are commonly available 
with commercial infrared instrumentation or employing visual 
peak detection using a "trained eye". Spectroscopists often 
find it necessary to perform the additional step of visual 
validation of peak lists produced by the instrument's 
software. The problem with this human intervention is that it 
is time consuming and requires a trained scientist to obtain
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reasonable results. Additionally, human judgements on signal 
presence cannot generally be reproduced. Studies have shown 
however, that the "trained eye" can provide equivalent or 
better results than other peak detection methods (86). It 
would, therefore, be highly desirable to have an automated 
method of peak validation with the proficiency of a trained 
human. The development of a peak validation system and stand 
alone peak recognition system, based on a neural network model 
termed the multi-layered perceptron (54-59), is described 
here.

Experimental:
The vapor phase infrared spectra used for this study were 

acquired at a nominal 0.3 cm'1 resolution, and were transformed 
to 2 cm'1 resolution representation for use in a knowledge 
based system designed to interpret infrared spectra of vapor 
phase mixtures. The 2 cm'1 resolution data was used for this 
study, since a major goal was to improve the peak table input 
to the knowledge based system. The spectral transformation 
and derivation of the training peak tables were carried out on 
a Nicolet 620 FT-IR workstation (Nicolet Analytical 
Instruments, Madison, HI). The spectral data and training 
peak table were subsequently downloaded to a Dell 310 
microcomputer (Dell Computer Corp., Austin, TX) via a DEC 8820 
superminicomputer (Digital Equipment Corp., Maynard, MA), 
using Nicolet VAXtran software. The Dell 310 was equipped 
with a 20 MHz Intel 80386 CPU and the companion 20 MHz 80387
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nath coprocessor, along with an Intel 82385 cache controller.

The neural network sisulation and data visualization 
programs were written in their entirety by the author at the 
University of New Hampshire. The source code for these 
programs was written in Pascal, comprising approximately 3000 
lines. The programs were compiled using the Turbo Pascal 
Compiler, version 5.0 (Borland International, Scotts Valley, 
CA). The graphic displays were created using a set of 
routines written by the author to drive the routines provided 
in the Borland Graphics Interface (BGI).

Program Description:
The system consists of three programs: (1) a visual peak 

confirmation program, (2) a network training and diagnostic 
program, and (3) a stand-alone peak-picking program. The peak 
confirmation program is used to provide the "correct" output 
values used in network training, and has been very useful in 
determining an appropriate form for the network input. Each 
input pattern is graphically displayed by this program, scaled 
analogously to the network input normalization algorithm, and 
the human "teacher" specifies the correct output for that 
input pattern. The system was designed such that it allows 
the teacher to obtain essentially the same view of the data as 
the network training program. This is important since the 
network is presumed to carry out the pattern classification in 
a manner analogous to a human pattern classifier. It was 
decided that any change in the form of the input pattern which
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made it easier to distinguish visually between peaks and noise 
would be incorporated into the network preprocessing 
calculations.

A three-layered back-propagation network was employed. 
The layers are termed the input layer, the hidden layer, and 
the output layer. A fully connected architecture was used,
i.e. every node in a given layer was connected to every node 
in the layer below it (Fig. 4-1). The input nodes simply 
distribute the input signal to each of the hidden layer nodes. 
The input vector was composed of a set of absorption values 
taken from a digitized infrared spectrum. The input vector 
was first range-scaled (77) as a preprocessing measure to 
prevent decisions from being made on absolute absorption 
magnitude.

The network training and diagnostic program constructs 
the specified network structure in the computer and carries 
out the calculations and operations involved in training the 
network: forward propagation of neuron activation, and
backward propagation of the error, with concomitant 
adjustments to the connection weights (54-55,58-59). The 
eguations governing these processes are normally expressed 
from the viewpoint of a single node, and are understood to be 
carried out over all nodes in the network. The calculations 
which follow describe the hidden and output layers, not the 
input layer. As noted above, the input layer merely 
distributes the input vector to the first hidden layer inputs, 
and does not alter the values in doing so.
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Figure 4-1. A Schematic Representation of an Arbitrary Fully 
Connected Neural Network Architecture.
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Forward propagation begins with calculation of the input 

to a node, given by a simple weighted sum of the inputs:

where the xt are the input signals to the node, and the Wi are 
the corresponding weights. The last term, w tT, represents the 
threshold or bias to be applied to the node. The T-value is 
a constant, which was given a value of 1.0 here, as is the 
convention.

The input is then processed through a nonlinear transfer 
function to obtain the activation for the node according to 
the general perceptron "sigmoidal" activation equation:

This activation level "A” is then passed as the output from 
the node in question to the input of the nodes in the layer 
above it.

Back propagation of the error is carried out according to 
a modification of the "generalized Delta learning rule" 
(54,59). The delta value for an output node (i) is defined 
as:

I = (E WiXi) + wtT (1)

A = 1/(1 + e -1) (2)

Ei = yi(l-yi) (di-yt) (3)

where di represents the desired node output for the input
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pattern presented, and yt represents the actual output of the 
node. There is no known value for the correct output for a 
hidden layer node, and so the delta for a hidden node is 
recursively defined in terms of the errors of the nodes in the 
layer above it:

where the y, is the output of the hidden node on the previous 
pass, and the error summation is taken over all the output 
nodes fed by that hidden node, weighted by the connection 
strengths (weights) between them.

The adjustment to the weights which accomplishes the so- 
called "learning" process is defined by a modification to the 
generalized Delta rule:

where the x and w are an input-weight pair, and 6 is the so- 
called "gain" constant, which controls the rate of learning. 
The gain constant was set at 0.60 for all the experimental 
results to be presented. The "(t)" and "(t+1)" subscripts 
refer to the old and new values of a variable for a training 
iteration step. In this work, a so-called "momentum" term was 
added, to produce:

e4 » yi(i-yi) EEjWj) (4)

Wi<t*n w1(t, + BEx1(t) (5)

( 6 )
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The momentum term tends to preserve the direction and
magnitude of a trend in movement of the weight vector during
optimization. The purpose of this added term is twofold: to
attempt to carry the weight vector out of local minima during 
the optimization process, and to filter out high frequency 
variations in the error surface (59). Due to these two 
characteristics, the presence of the momentum term often 
speeds the convergence of the learning process, as well. The 
value of a selects the fraction of the previous step to be 
summed with the present step. The momentum constant was set 
at 0.80 for all the experimental results presented here.

Results and Discussion:
The infrared spectral data used in this study were 2 cm'1 

resolution spectra of vapor phase species. These data 
presented an exceptional challenge, since the natural width of 
some of the features was on the order of the spectral 
resolution. As a result, spectral peaks were often 
represented by a single data point in this data. This made 
the task of distinguishing signal from noise very difficult, 
since no band shape information was available for the 
narrowest features.

The spectrum used in training the networks (Fig. 4-2) was 
obtained from a vapor phase mixture of tetrahydrofuran, 1,1- 
dichloroethane, benzene, ethylbenzene, methylene chloride and 
1,1,1-trichloroethane, at concentrations of approximately 3 
ppm each. A peak table composed of 132 peaks was produced
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Figure 4-2. IR Spectrum of a Vapor Phase Mixture of 
Tetrahydrofuran, 1,1-Dichloroethane, Benzene, Ethylbenzene, 
Methylene Chloride and 1,1,1-Trichloroethane, at 
Approximately 3 ppm Each. Data from this Spectrum was Used 
for Training the Neural Network Systems.
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from this spectrum, using the peak-picking algorithm from the 
instrument workstation. The peakpicking threshold (in 
absorption units) was deliberately set very low, to include a 
number of false and suspect peaks in the resulting peak table. 
The peak table, and the spectral absorption (Y) values in the 
(X) range from 400 to 4000 cm'1 were then transferred to the 
microcomputer.

Initially, the input vector was chosen as a group of 17 
data points centered about a "peak maximum" from the peak 
list. After some experience, it was apparent from the view 
provided by the peak confirmation program that a modification 
of the input vector was necessary. It was often impossible 
for the teacher to decide if the input pattern corresponded to 
an actual or a noise peak, when using only a few data points 
surrounding a test pattern (Fig. 4-3a,b). Further analysis of 
the human signal detection process showed that a "visual" 
comparison of a signal pattern with the form and amplitude of 
the spectral noise was being performed.

A portion of noise data from the spectrum was then added 
to each input vector. This greatly facilitated judgements on 
peak presence (Fig. 4-3c,d). The noise data are chosen by the 
teacher using a spectral cursor which may be interactively 
manipulated on the display. A vertical line in the left 
portion of the display output serves to visually separate the 
signal pattern (left side) from the noise reference (right 
side), and the circled data point indicates the peak maximum. 
The X-values assigned to the noise points are meaningless, and
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Figure 4-3. Two Test Patterns, (a,b) Without a Noise 
Reference, and (c,d) With the Noise Reference. The Circled 
Point Indicates the Peak Position Being Evaluated.
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Figure 4-3. Two Test Patterns, (a,b) Without a Noise 
Reference, and (c,d) With the Noise Reference. The Noise 
Reference Provided for Comparison in Examples c and d are 
Presented to the Right of the Solid Line. The Circled Point 
Indicates the PeaX Position Being Evaluated. (Continued from 
Previous Page).
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are sinply assigned in a Banner to make then contiguous to the 
data pattern X-values, for plotting. Only the spectrun Y- 
values are presented to the network. The noise region was 
"wiggled" over a range of 20 data points at random, during 
training. This was done to prevent the network from attaching 
any significance to the form of a particular noise pattern.

Experiments with the noise-augmented input pattern did 
show dramatic improvements in learning rate, accuracy, and 
generalization, compared to the original pattern results. 
However, the stand-alone peakpicking program still produced 
some undesirable results. Two significant characteristics of 
the noise portion of the input pattern could be identified: 
the frequency and the amplitude. Consideration of the 
mathematics performed in the learning process showed that the 
network could not learn the frequency of a randomly varying 
signal (the noise appears at the frequency of the infrared 
sampling rate).

Since the characteristics learned during training cannot 
be directly controlled, it was decided to use the standard 
deviation of the noise data to augment the input pattern. 
This was done to force the network to learn the desired noise 
characteristic. A single value was then defined to represent 
the noise. The noise input value was taken as the minimum of 
the spectral pattern absorbance values plus 20 times the 
standard deviation of the noise:

Xj»1m  — ^ain 20(JnoiM (7)
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The factor of 20 was chosen empirically to increase the noise 
measure by a constant factor. The value of 20 was chosen 
because this placed the magnitude of the noise input at 
approximately the same magnitude as a typical signal. The 
purpose of multiplying by this factor is to insure that the 
network learning algorithm "recognizes" the importance of that 
value in determining the correct output (see equations 1 and 
5 for justification). The backpropagation procedure 
corresponds to a gradient search of an error surface in weight 
space. "Noise" is observed on this surface which can 
misdirect the search procedure. Increasing the magnitude of 
an input results in a proportional increase in the gradient of 
the error surface along the corresponding weight dimension 
(59). It was presumed that this action would help to overcome 
the effect of local fluctuations in the error surface due to 
noise.

The next step was to test if the network shared the same 
improvement in reliability of signal detection as the human, 
with the addition of a noise reference to the signal. After 
some experimentation, it was decided that 13 data points can 
describe most of the bands in the test data, and that 25 noise 
points is sufficient to provide an adequate description of the 
noise. The network was trained twice using the same 
parameters: once using 13 data points surrounding the test 
patterns, and again using 13 data points plus the noise input 
derived according to equation 7 from the 25 noise points. 
These noise points are the same as those included in the
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visual pattern confirmation process. Two noise regions were 
included from each spectrum, to account for the variation in 
noise with wavelength. The region closest to the center of a 
given test pattern was chosen as the reference by the training 
program. The training patterns were presented repetitively 
and in random order to the network to minimize the possibility 
of cycling of the weight vector during training.

The values assigned for the correct output for each test 
pattern were assigned to one of five discrete values: 0.00, 
0.25, 0.50, 0.75, and 1.00 with the peak confirmation program. 
These values are intended to reflect the teacher's belief that 
a given pattern actually represented a spectral peak, rather 
than noise.

While values of 0.00 and 1.00 only could have been used, 
this was not done, owing to the following: Even with the noise 
reference, it is often difficult to make a simple yes/no 
decision on peak presence in the test patterns. Keeping in 
mind that the network performs a mathematical mapping of the 
input vector to the output vector, it is difficult to 
reconcile assigning a 1.00 to a questionable "yes", and a 0.00 
to a questionable "no". These types of patterns are normally 
more similar to each other than they are to the ideal yes and 
no cases. It was felt that providing a range of output values 
for intermediate cases would aid the network in providing a 
continuous mapping for the full range of input patterns. 
Judgements finer than five levels of belief, however, were 
deemed excessive.
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A "training epoch" was defined as 1000 successive 
presentation/correction cycles. After each epoch, the 
complete set of 132 training patterns was presented to the 
network, each in turn, performing only the forward-feeding of 
activation. The actual output was compared to the desired 
output for each training pattern, and the mean absolute 
difference was calculated. The descent of the error function 
was not a smooth one (Fig. 4-4). This may be due to a 
combination of factors, including a complex. error surface, 
noise on the surface, and the inertia of the search dynamics 
caused by the momentum term (eqn. 6). Due to the spikes 
superimposed on the error descent during training, training 
was allowed to proceed for 500 epochs, and was then halted 
after the mean error decreased for three successive epochs.

After training was accomplished, two sets of test data 
were then presented to each network. The first was obtained 
from a vapor phase mixture of vinyl chloride, trichloroethane, 
toluene, tetrachloroethylene and chlorobenzene at 
concentrations of approximately 5ppm each. The second test 
spectrum was derived from a vapor phase methyl isobutyl ketone 
sample, also at approximately 5ppm. In all, 189 test patterns 
were presented to the networks. The distribution of "correct" 
scores that were defined with the peak confirmation program 
for the training and test patterns is shown in Figure 4-5.

A network with nine hidden layer nodes was trained with 
and without an added noise reference, and the mean absolute 
difference between the actual and desired network output was
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Figure 4-4. Plot of the Mean Absolute Error Difference 
Between the "Correct" and the Actual Network Output vs the 
Training "Epoch" Number for a Network with 9 Hidden Nodes. A 
Training Epoch was Defined as a Period of 1000 Learning Cycles
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Figure 4-5. Histogram Showing the Distribution of Belief 
Classes for the Spectral Patterns Used to Train and Test the 
Networks. The Belief Classes Ranged from a Low of 0.0, 
Indicating the Pattern was Definitely not a Peak, to a High of 
1.0, Indicating the Pattern Definitely Represented a Peak. 
The Patterns were Classified by the Author.
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tabulated for the training and test patterns.

The results derived without the added noise reference 
will be considered first. On the training data, the mean 
absolute difference between actual and desired scores was 
0.038. With nine hidden layer nodes, the network was able to 
map very closely to the training data. It may at first seem 
then, that a useful system has been derived. In fact, 
however, with a sufficient number of hidden nodes, any 
arbitrary mapping of training inputs to outputs may be 
performed. Whether or not any useful mapping has been 
learned, however, is determined by performance on the unknown, 
or test data.
On the test data, the mean absolute difference was 0.357, 
which is very close to the mean difference of 0.33 between two 
values chosen at random from the interval 0 to 1. This 
indicates that nothing generally useful was learned from the 
representation without a noise reference.

The results for the network trained with a noise 
reference were slightly better for the training data (0.028), 
and dramatically better for the test data (0.190). These 
results indicate that an effective mathematical mapping is 
possible when a noise reference is present in the input 
pattern, and seem to confirm the similarity between the human 
and network pattern recognition processes.

The next factor investigated was the influence of the 
number of hidden nodes on network performance. The same 
training and test data were used as in the study described
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above.

Networks with one to nine hidden layer nodes were 
evaluated. The solution to the error nininization derived 
during training is in general not unique. For this reason, 
each training procedure was repeated in triplicate, starting 
from a different set of random weights, and the results 
averaged. The mean absolute difference between the desired 
and actual network outputs was then plotted for both the 
training and test data (Fig. 4-6).

The error in mapping the training values decreased with 
the number of hidden nodes. The larger the number of surfaces 
we can position in the pattern space, the more closely we can 
trace the topology of the training pattern group shapes. The 
error in emulating the human judgements on the test patterns, 
however, passed through a minimum at 2 nodes (Fig. 4-6). This 
can be explained in the following way: the training set
contains only a sample of the entire set of all possible 
patterns. Therefore, many topological features of a training 
set group in the pattern space will not be representative of 
the true shape of the group, but just the shape of the example 
group. As we increase the number of hidden nodes, we will 
more closely follow the topology of the training group 
clusters on optimization. This results in a greater "recall 
accuracy" for the training set. Above an optimum level, 
however, adding more nodes will result in tracing the training 
patterns too closely, thereby falsely excluding some unknown 
(test) patterns from the group during classification of



Figure 4-6. The Mean Absolute Difference Between the Desired
and Actual Outputs for the Training and Test Data, Plotted as
a Function of the Number of Hidden Nodes.
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unknowns, or "generalization". Below the optinun level of 
nodes, we cannot accurately reproduce the true shape of the 
pattern distributions. This behavior is analogous to the 
familiar problem of overfitting a regression equation to a set 
of experimental data points. While increasing the order of 
the equation will continue to improve the correlation 
coefficient for the model, it will also inevitably exceed the 
true functional complexity of the data.

All of the accuracy values for the test data must be 
interpreted with the following in mind: the network is being 
trained to reproduce the judgement of a chemist in fuzzy 
decisions on signal presence. It was often difficult to 
decide whether a pattern should be a 0.00 or a 0.25, a 0.50 or 
a 0.75, and so on. Therefore, even if the network perfectly 
emulates the judgement of the chemist, it should be expected 
that "errors" on the order of 0.25 will occasionally occur, 
corresponding to the variation in judgement of the teacher.

An objective measure of peak presence, such as the output 
of a cross-correlation algorithm could alternatively be 
suggested to train the network. This would then provide a 
reproducible and continuously variable range of outputs. 
However, this would also produce no useful results. If a 
mathematical function were used to provide the teaching 
values, we would at best be providing a difficult means to 
emulate an existing mathematical function. The implicit 
assumption made here is that humans are better at recognizing 
signals in non-ideal data than mathematical algorithms, so a
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human judgement must therefore be used to train the network.

In order to learn more about the learned network mapping 
function, the weighting function of the simplest network was 
investigated. This network contains only one hidden node 
between the inputs and the output node. The weighting 
procedure (eqn. 1) is analogous to that applied during signal 
cross-correlation (87), an alternative signal detection 
procedure. Since the transfer function is continuous and 
increasing (eqn. 2), it was expected that the learned 
weighting function should be similar in appearance to the 
optimum cross-correlation function for the set of data inputs. 
The optimum cross-correlation function, while unknown, should 
be dominated by a peak-shaped component. The noise input was 
presumed to take on a negative weight, since neuron activity 
should be inhibited by an increased noise measure. The actual 
network input weights produced a mirror image of the function 
proposed above (Fig. 4-7).

While at first confusing, the inversion is readily 
explained by the last input weight shown, which corresponds to 
the weight applied to the connection between the hidden node 
and the output node. The negative value of this weight 
effectively inverts the mapping performed by the hidden node, 
hence the mirror image. The network has learned what we would 
expect, but without the familiar convention of image 
orientation. The analysis of the weights for the larger 
networks would of course be more complex. However, this 
example provides increased insight into and confidence in
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Figure 4-7. Input Heights to the Hidden (1-14) and Output 
(15) Nodes Learned When Using Only One Hidden Node. "Center 
Pt." Refers to the Midpoint of the Test Pattern Window, "Noise 
Pt." to the Weight Given to the Noise Reference Input, and 
"Output Node" to the Connection Between the Hidden Node and 
the Output Node.
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these networks.

On the basis of the results of these studies, a stand
alone peakpicking program was written to perform autonomous 
evaluation of a test spectrum. This program can use any 
network architecture and connection weights created with the 
training/evaluation program. A data window equal in width to 
the number of inputs for the network is incrementally moved 
down the spectrum data points, one at a time. A simple 
prefilter is employed to reduce the volume of data processed 
in the network: The data in the window is only passed through 
the network if the centerpoint of the window has a larger 
amplitude than both its neighbors. At the start of the 
program, the test spectrum is displayed, and the user is asked 
to position an arrow shaped cursor at the location of two 
noise regions to be used for the reference portion of the 
input patterns. The user is then asked to choose a threshold 
value for the output of the network mapping function. Only 
test patterns producing a network output greater than this 
value are then presented. The variable threshold allows the 
user to select the degree of conservatism to be employed in 
generating the peak list.

The peakpicking program may be operated in either an 
interactive mode, or a fast file dump mode. The interactive 
mode of operation causes the program to pause at each pattern 
with an output greater than the threshold. This pattern is 
then graphically displayed on the screen, along with the peak 
position, intensity, and network output value. The file dump
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node generates an ASCII file containing the peak list. The 
peak list consists of a list of records, with each record 
containing peak position, intensity, and network output 
values.

The network calculations are efficient. When the system 
is prevented from pausing to display matching patterns, the 
region from 600 to 4000 cm'1 (ca. 3400 data points) is 
processed in about 1 second. The interactive mode produces 
some intriguing results. Five sample patterns obtained from 
the test spectrum of methyl isobutyl ketone are shown in 
Figure 8a-e, along with the network output values. These 
plots were photographed from the microcomputer display with 
the program running in the interactive mode. It is clear from 
these results that the network is performing a useful 
function. Since the network is an adaptive feedback learning 
system, further training will be performed in the future, 
using the results of this first generation system. This is 
expected to yield improved network performance. The use of 
alternative network architectures, perhaps with an additional 
hidden layer, and/or a restricted connectivity, will also be 
explored.

Conclusion:
The feasibilty of exploiting neural network technology to 

recognize peak-shaped signals in analytical data has been 
evaluated. While the system described has been developed to 
interpret infrared spectral data, peak detection has



1 2 1

Figure 4-8. Sample Results Produced by the Stand-Alone 
Peakpicking Program on the Test Data, Using Three Hidden 
Nodes. The Network Output is Given in the Block in the Upper 
Right Hand Corner for each Evaluation. The Network Outputs 
for these Patterns Ranged from a Low of 0.208 for Figure 8a, 
Indicating that the Pattern is Probably not a Peak, to a High 
of 0.959 for Figure 8e, Indicating that the Pattern Probably 
is a Peak, on the Basis of the Data Used to Train the Network.

Peck Position; 866.8 
Peck Intensity: 0.005 
Network OutPut: 0.208

II IN**

— e -  m u b

HI IIM T U f --

(a)

II IHI4|

I I

•■K* - -  __III.-*? 103% n

(b)
Peak Position; 10V.5 
Peak Intensity: 0.004 
Network OutPut: 0.^9°

f ■ /!
\ I!

• i i

ios3 ias/ i aoo •**’/



1 2 2

Figure 4-8. Sample Results Produced by the Stand-Alone
Peakpicking Program on the Test Data, Using Three Hidden
Nodes. (Continued from Previous Page).
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Figure 4-8. Sasple Results Produced by the Stand-Alone 
Peakpicking Progras on the Test Data, Using Three Hidden 
Nodes. (Continued from Previous Page).
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implications in every chemical application where the 
recognition of peak-shaped signals in analytical data is 
important. Chemical applications could include virtually all 
spectroscopic and chromatographic methods, as well as flow 
injection analysis and the scanning electrochemical methods.

The idea that the human and artificial neural network 
would perform the signal detection task best under similar 
conditions was examined. The incorporation of a noise 
reference was found to aid both the human and the network 
signal detection processes. Other modifications of the input 
pattern and the network connectivity must be explored, however 
it is clear that there is a great deal of potential in 
applying artificial neural networks to perform signal 
recognition for chemical data.



CHAPTER 5

COMPUTER ASSISTED INFRARED IDENTIFICATION OF 
VAPOR-PHASE MIXTURE COMPONENTS

Introduction:
Infrared analysis of organic vapors has many potential 

applications, including on-site measurement of toxic compounds 
at hazardous waste sites, in the workplace, and analysis of 
unresolved effluents from GC-FTIR experiments. Efforts at 
computer-assisted interpretation of infrared spectra of 
mixtures has been largely directed at condensed phase 
analysis. Quantitative analysis of vapor phase mixtures has 
recently been explored in the Fourier domain using factor 
analysis (88), and in the spectral domain using least squares 
fitting (LSF) techniques (89,90). Qualitative identification 
of vapor phase mixture components has been reported using 
Iterative Least Squares Fitting Techniques (ILSF) (91). An 
intriguing possibility is the use of a knowledge based system 
to reduce the number of components fed into an LSF 
quantitation program. This should greatly reduce the workload 
required for the LSF calculations, and provide more accurate 
quantitative results, as well.

The IRBASE/MIXIR system is a knowledge based system 
developed to identify the likely components of mixtures from 
infrared spectral data. The original work concerned the
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development of a compound-specific automated rule generator
(36), and a knowledge based system to manipulate these rules
(37). The experimental test data were condensed phase 
mixtures; however, most of the interpretation algorithms and 
logic are applicable to vapor phase samples as well. A 
previous attempt at adapting a condensed phase expert system 
for vapor phase analysis has been made (92). It was concluded 
in that research that a peak based expert system was "not 
appropriate" to vapor phase analysis. It was recognized from 
the outset, therefore, that these data would present a 
difficult challlenge. The goal of this research was to 
attempt to define the limits of knowledge based systems for 
interpreting peak based information from infrared spectra of 
mixtures.

While adapting these programs for vapor phase analysis, 
many improvements have been made which can also be used for 
condensed phase analysis. This paper describes these 
modifications and enhancements, which represent another phase 
in the continuing evolution of the MIXIR/IRBASE system.

Experimental:
The vapor phase infrared spectra used for this study were 

acquired at a nominal 0.3 cm'1 resolution, and were transformed 
to a 2 cm'1 resolution representation for this work. The raw 
spectral data were obtained from Xiao Hong-kui at the 
University of Michigan. There were three groups of mixture 
spectra, consisting of mixtures with component concentrations
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of approximately 50, 5, and 2 parts per million (ppm). The 50 
ppm mixtures, designated TANK A through TANK F, were obtained 
from undiluted 50 ppm reference standard gases, and have been 
the subject of previous quantitative LSF (90) and qualitative 
ILSF (91) studies. The 5 ppm mixtures, designated TANK 1 and 
TANK 3, and the 2 ppm mixtures, designated EPA 1 through EPA 
3, were obtained by dilution with "zero air" containing very 
low levels of carbon dioxide and water vapor. These low 
concentration mixtures were prepared by the US EPA Atmospheric 
Research and Exposure Assessment Laboratory, Research Triangle 
Park, NO. The 2 ppm mixture data have been the subject of a 
previous quantitative ILSF study (90).

The spectral transformation and derivation of the peak 
tables were carried out on a Nicolet 620 FT-IR workstation 
(Nicolet Analytical Instruments, Madison, HI). The derived 
spectral data were subsequently uploaded to a DEC 8820 
superminicomputer (Digital Equipment Corp., Maynard, MA), 
using Nicolet VAXtran software.

The IRBASE and MIXIR systems were both written entirely 
in standard FORTRAN 77 and therefore run both on VAX and IBM- 
PC hardware. The majority of the present program development 
and testing, however, were carried out on the Digital 
computer. Approximately 1500 lines of FORTRAN code were added 
or modified during this vapor phase work.

Data Pre-Processing:
The 50 ppm vapor phase reference spectra were subjected
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to a 5 point Savitsky-Golay smoothing algorithm (82). The 
mixture spectra received a 13 point smooth. The smoothing 
was performed to reduce noise-induced false peaks in the peak 
tables. The degree of smoothing is always a compromise 
between removing noise-induced false peaks and removing small, 
poorly resolved signal peaks. Another value of the smoothing 
window size may have produced better results on some spectra, 
however the 13 point window used in the mixtures was found to 
be a good compromise in most cases.

The mixture spectra were plotted in a "stacked format" 
(Figs. 5-1 to 5-4). Examination of these plots shows that the 
signal to noise ratio decreased with decreasing component 
concentration, as expected. In addition to instrumental 
noise, "chemical noise" presented difficulties.

Correction for background absorptions, primarily of water 
and carbon dioxide, is often incomplete. A variation of the 
amount of water and/or carbon dioxide vapor in the optical 
path between acquiring the background spectrum and the sample 
spectrum will cause an incomplete ratio correction for the 
background. In addition, variation in the experimental 
conditions, among them, temperature and pressure, can cause 
band shifting in the background spectrum, which further 
hampers efforts to correct for background absorptions. It
is clear that positive background contributions, such as the 
the carbon dioxide features dominating the 2350 cm'1 region of 
the 2 ppm spectra (Fig. 5-4), will interfere with sample peak 
signal detection. Even negative background contributions, as
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Figure 5-1. A "Stacked Plot" of the 50 ppm Mixture Spectra
(a) TANK A, (b) TANK B, and (c) TANK C.
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Figure 5-2. A "Stacked Plot" of the 50 ppm Mixture Spectra
(a) TANK D, (b) TANK E, and (c) TANK F.
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Figure 5-3. A "Stacked Plot" of the 5 ppm Mixture Spectra (a)
TANK 1 and (b) TANK 3.

A

r(Q

<0

■in

-in

W
A

V
EN

U
M

BE
R



132
Figure 5-4. A "Stacked Plot" of the 2 ppm Mixture Spectra (a) 
EPA 1, (b) EPA 2, and (c) EPA 3.
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in the (inverted) water features in the 1300-1900 cn'1 regions 
of TANK A, TANK C (Fig. 5-1) and TANK E (Fig. 5-2) present 
major problems for signal detection. The inverted water 
features superimposed on the sample features create false peak 
maxima in the spectrum at the valley points of the true water 
absorptions. Another form of chemical noise in the mixture 
spectra is the overlap of spectral features from different 
mixture components, which often render individual sample 
features undetectable.

Since isolated molecules should exhibit little change in 
molar absorptivities, and vapor phase spectra can be easily 
taken with reproducible optical pathlengths, real-valued 
absorption intensities were included in the knowledge base. 
Previously, these intensities were preprocessed to integral 
values ranging from 0 to 20, normalized against the most 
intense peak in the spectrum.

Peak widths were coarsely classified into ranges 
emperically set at 0 to 15, 15 to 35, 35 to 75, and greater 
than 75 cm*1, corresponding to very sharp, sharp, average, and 
broad band widths, respectively. The actual width values, in 
wavenumbers, were determined by the instrument peakpicking 
algorithm, and integer codes corresponding to the four classes 
described above were then assigned by a utility program 
developed to create MIXIR format peak files.

It was determined from early testing that the quality of 
the results was greatly influenced by the ability to include 
small mixture bands in the MIXIR input. A program was written
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to allow the user to interactively specify up to 50 points on 
the spectrum baseline by manipulating a spectral cursor. A 
linear interpolation was performed between these baseline 
points, and the interpolated baseline subtracted from the 
spectrum. The adjusted spectrum allows a lower peakpicking 
threshold to be set, thereby providing access to the smaller 
spectral features. This program was used on any of the 
reference and mixture spectra which originally had ill-behaved 
baselines.

Program Description:
The IRBASE and MIXIR systems have been adequately 

described elsewhere (36,37), and so will be only briefly 
summarized here. IRBASE is a knowledge based system which 
creates a condensed-phase compound specific knowledge base for 
use by MIXIR. Information on functional groups present in a 
compound to be included in the knowledge base is used to 
predict the likely range of shifts in mixtures of the peak 
parameters: position, intensity and width. A subset of the 
resulting band descriptions is chosen for each compound, based 
on the program's judgement of the likelihood of observing the 
feature in a spectrum of a mixture containing that compound.

MIXIR is an adaptive knowledge based system which reports 
the likelihood of presence or absence of reference compounds 
in an unknown mixture. A flexible set of interpretation 
routines is available for the user to manipulate the data, 
providing various logical algorithms. The interpretation is
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approached in a dynamic fashion, making use of information 
gained during the interpretation process.

Modifications to the MIXIR Knowledge Base:
Since vapor phase spectra normally show features of 

isolated molecules, the tailoring of band position windows to 
functional group origin is unnecessary. Instead, band 
position windows were scaled to the width of the peaks in the 
pure compound spectra, to account for the greater uncertainty 
in determining the location of band maxima for broader bands. 
Initial values were arrived at empirically by considering the 
spectral resolution employed, (2 cm'1) and the magnitude of 
likely errors in determining the positions of the various band 
maxima. Subsequent testing allowed refinement of these 
windows. The final position window settings were 2,3,10, and 
25 cm'1 above and below the band position in the reference 
spectrum, for very sharp, sharp, average, and broad bands, 
respectively.

It has been determined that reduction of the original 
spectral features in the reference spectra prevents dilution 
of the significance of important spectral features during an 
interpretation, and improves execution speed. However, no 
reduction was performed at the stage of creating the knowledge 
base, as had been done in IRBASE. It was decided that the 
optimum description should be created dynamically at runtime, 
from the entire set of spectral features for a given compound, 
using what is known about the sample matrix. Delaying
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decision making as long as possible allows the MIXIR system 
the maximum ability to adaptively interpret an unknown sample, 
using information gained from the user, and determined by 
MIXIR throughout the analysis. For example, MIXIR can 
adaptively compensate for changes in background absorptions 
due to H,0 and C02, by ignoring unknown features in these 
regions (important for normalization of intensities), and 
eliminating queries which refer to these regions which may 
contain strong interfering absorptions.

MIXIR was modified to use an estimate of the relative 
strength of compound absorptions in the unknown matrix to 
determine which features from the reference set could be 
reasonably expected to appear in the particular mixture under 
study. Elimination of preliminary feature reduction allows 
MIXIR a larger set of features to select from when performing 
an "either/or" interpretation, used to discriminate between 
two structurally similar compounds (37). Although this type 
of approach is costly in terms of runtime processing 
requirements, it also provides the maximum use of the 
available information. This provides a higher degree of 
system "intelligence", and should therefore provide more 
accurate spectral analyses.

The knowledge base server routines now calculate the 
integral normalized intensity values from the real valued 
intensities at runtime. In the future, absolute intensities 
will allow the interpreter to make coarse quantitation 
estimates. These results will be useful to the interpreter as
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well as to the user. The interpreter nay later use estimates 
of large component concentrations to determine what spectral 
regions should be avoided in making subsequent peak queries.

Separate descriptions are no longer written for the major 
and minor component mixture features. This workload has been 
shifted to the MIXIR program, and is described below.

Modifications to the MIXIR System:
The regions where the sample matrix may provide strong 
interfering absorptions have been noted in the program for 
vapor phase as follows:

HjO: 1200-2100cm_1, 3200-4000 
C02: 2225-2400

The presence of these spectral interferences is determined by 
queries to the user. This information is then used by the 
knowledge base server routines. Spectral descriptions 
provided by these routines will not contain any band queries 
in an interfering region. Normalized band intensities will 
exclude reference to bands in this region, preventing, for 
example, normalization of sample bands against a strong C02 
absorption, which would otherwise provide inappropriate 
intensity values.

As mentioned above, the full set of band descriptions is 
available to the knowledge base server routines at runtime. 
An option has been added which provides dynamic selection of 
bands for queries, based on the results from a spectral pre
scan. This procedure is as follows: the query server routines
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accept parameters which specify the minimum reference peak 
intensity to be accepted for a query set, the maximum number 
of queries requested, and the intensity window selection 
scheme to be used. To determine the minimum reference 
intensity desired, a band query set is requested with a 
maximum of twenty queries, and with a "null" intensity window 
scheme, i.e., all intensities are passed by the query. The 
null scheme is used here since no information exists at this 
stage to allow adaptive settings. The most intense unknown 
band which can be matched to these queries is then determined 
(lu>)> and the minimum reference intensity desired is taken as 

I.lB - 20.0/1.., (1)
The MIXIR integral intensities are normalized to range 

from 0 to 20. Equation (1) therefore allows MIXIR to discard 
reference peaks which can be expected to correspond to bands 
with insufficient intensity in the mixture under study to be 
detected.

In addition to the null intensity window scheme mentioned 
above, two other intensity window schemes are provided. The 
first is identical to that produced in the condensed phase 
rule generation program, IRBASE, and will hereafter be termed 
the "default scheme". This method sets the upper intensity 
limit to a value equal to the normalized reference intensity 
plus 4, or 20, whichever is less. The lower intensity limit 
is set to a value of 1. This scheme, like the null scheme, is 
static- it does not use any information from the unknown 
mixture to adaptively set limits.



139
The third scheme is a dynamic approach. First, the 

average ratio of matched unknown peaks to reference peaks is 
determined as follows: The server routine is prompted for a 
query set with a maximum of 12 queries, a minimum reference 
intensity of 1, and the null intensity window scheme. A 
weighted average of the ratio of normalized unknown peak 
intensities to matching reference peak intensities is 
calculated (R.vq). The weighting factor used is the reference 
peak intensity. This factor was chosen because larger 
reference bands are more likely to be matched. Subsequent 
calls to the server routines requesting dynamic intensity 
windows produce the following intensity limits:

In = (R.v, * I0) + 4 (2)

or 20, whichever is larger, and

Iu> - (R.v, * Io) - 4 (3)

or 1, whichever is smaller.
This procedure allows MIXIR to set intensity windows to 

levels which reflect the average intensity of bands which 
appear to match the queries for a particular compound. It is 
known that even for compounds which are present in an unknown 
mixture, spectral bands which are primarily due to other 
components in the mixture will often be "matched", causing the 
intensity ratios described above to vary across a query set. 
The underlying assumption, however, is that this variation 
will be smaller on the average than that observed for a 
compound which is absent from the mixture. It is expected 
that this behavior would provide more frequent band rejection
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for compounds which are absent from the mixture.

An automated peak justification option was added to 
prevent false negative results. Similar to the condensed 
phase MIXIR peak justification, this procedure checks for any 
mixture bands with an intensity of 4 or greater which cannot 
be attributed to compounds with scores greater than or equal 
to 0.20. The compound with the highest score which can 
explain this feature is determined, and its score is set to 
0.20, since it can be assumed that one of the compounds with 
a score less than 0.20 must then be responsible.

Results and Discussion:
A knowledge base consisting of the spectral descriptions 

derived from the spectra of 40 vapor phase compounds of 
toxicological significance was generated using a utility 
program written for this purpose. Many of the compounds are 
very similar in structure, and so have similar spectral 
features. Three sets of vapor phase mixture data were then 
presented to MIXIR. The first set to be discussed was 
composed of six mixtures at approximately 50 ppm concentration 
for each component. The dataset consisted of four 5-component 
mixtures, one 2-component mixture, and one 6-component mixture 
(Table 5-1).

The entire set of mixture spectra was interpreted using 
MIXIR with different combinations of the optional procedures. 
The results were summarized in two ways: (a) The number of 
false positive results and false negative results at each of



141
Table 5-1. The 50 ppm Vapor Phase Mixture Constituents and 
Concentrations.

Mixture Components Concentration*
TANK A Toluene 46.8 ppm

1.1.1-Trichloroethane 47.5
1.4-Dioxane 42.8
Acetone 50.1
1.2-Dichloroethane 47.7

TANK B Vinyl Chloride 49.9
Benzene 49.9
Methylene Chloride 50.2
1.1-Dichloroethene 46.8
Trichloroethylene 53.2

TANK C 2-Butanone 46.1
n-Hexane 58.9
4-Methyl-2-Pentanone 48.7
Perchloroethylene 53.1
1.4-Dioxane 48.1

TANK D Cyclopentane 48.6
Ethyl Acetate 49.9
1.1-Dichloroethane 49.0
1.1.2-Trichloroethane 51.1
Carbon Tetrachloride 50.2

TANK E o-Chlorotoluene 26.1
Chlorobenzene 24.4

TANK F Isopropanol 48.5
Ethyl Ether 48.7
3-Chloropropene 49.1
Styrene 55.1
Ethylbenzene 50.8
Freon-11 51.1

'Analyzed by GC by Scott Specialty Gases.
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ten expectation thresholds ranging from 0.40 to -0.50 was 
tabulated and (b) the average score of the compounds which 
were present in the mixtures and absent from the mixtures was 
tabulated.

An early version of the vapor phase MIXIR system was 
first obtained by creating a program which produced IRBASE 
formatted descriptions, with position windows scaled to peak 
width as described above, and the "null" intensity windows. 
The position windows were set at 3,5,10, and 25 cm"1 about the 
position of the reference peaks. At this stage MIXIR itself 
was only modified to handle the larger peak tables of vapor 
phase spectra. The knowledge base used at this stage was a 
subset of the final knowledge base, containing 41 compounds. 
The interpreter options used were "Essential Peak Checking", 
"Reduced Peak Set Checking", and the "Extended Scoring 
System". These options have been previously described in 
detail elsewhere (37), and were used in producing all of the 
results discussed in this work. The highest percentage of 
correct decisions at a given threshold was 91.3%, at 
thresholds of 0.30 and 0.20. These results, however, were 
obtained with an unacceptable number of false negative results 
(13 and 9), representing false rejection of 46% and 32% of the 
actual mixture components, respectively.

False negative results are of much greater concern to us 
than false positives. It is envisioned that this system can 
be used as an aid to an analytical chemist, to reduce the 
number of possibilities under consideration to a manageable
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number. Incorrectly eliminating a compound from further 
consideration, is therefore potentially more harmful than 
incorrectly retaining a compound for consideration. A better 
threshold to use routinely for this dataset might therefore be 
-0.10, where only 3 false negative results were obtained, at 
the cost of 23 false positives. It should be noted that
setting a binary decision threshold for compound
presence/absence is a compromise between rejecting as many 
false positive results as possible, while sustaining as many 
false negative results as acceptable.

One goal of this work was to produce a system which could
be used as a prefilter for quantitative least squares
analysis. Fulfilling this goal, however, meant that no false 
negative results would be acceptable. Since 72 false positive 
results were produced at this level (-0.10), it was obvious 
that further work was necessary.

After producing the system modifications which were 
described above, and further tuning the position windows, the 
system was retested on the the same early knowledge base, 
using the same interpreter options. The results produced were 
clearly superior to those obtained with the early version of 
the system. A maximum of 94.2% correct decisions were 
obtained, and three false negatives were obtained at the 
expense of only 13 false positives. More significantly, zero 
false negative results were obtained with 28, instead of 72 
false positives. This corresponds to eliminating 90.1% of the 
compounds absent from the mixture from further consideration,
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without eliminating any actual components of the mixture.

The reference spectra were then peakpicked again with 
less aggressive smoothing (a 5 point Savitsky-Golay smooth was 
performed), and five more compounds were added to the 
knowledge base, making a total of 45 reference compounds in 
the final knowledge base (Table 5-2).

It was determined that weighting the significance of not 
finding a queried spectral band by a factor proportional to 
the square of the reference intensity, instead of directly 
proportional to the reference intensity, as had been done 
previously, was beneficial. The average score of the 
compounds present in the mixture, Avgp, increased by a 
significant amount (approximately 0.10, depending on the other 
options selected). The average score of the compounds absent 
from the mixture, AvgA, increased by only a very small amount 
(approximately 0.005). This change was subsequently 
incorporated into the MIXIR significance evaluation scheme.

Comparison of the results summaries for evaluation with 
null intensity windows, and with and without autocycling, 
showed a large overall benefit from autocycling (Table 5-3). 
The addition of autocycling provides a much larger spread 
between the values of AvgP and AvgA. Despite this success, it 
is more instructive to examine the failures of interpretation 
strategies. While in most cases autocycling provided 
significant and selective score enhancement for compounds 
present in the mixtures (e.g. Tank B results, Table 5-4), in 
some cases, it depressed the score of a compound actually
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Table 5-2. The Reference Compounds in the Vapor Phase MIXIR
Knowledge Base.

1.3-Butadiene 
Acetonitrile 
Acetone 
Acetylaldehyde 
Acrylonitrile 
Butyl Acetate 
Benzene 
Chlorobenzene 
Bis-chloroethyl Ether
2-Butanone 
Chloroform
3-Chloropropene 
o-Chlorotoluene 
Cyclopentane 
Carbon Tetrachloride
1.2-Dibromoethane
1.2-Dichloroethane
1.1-Dichloroethane
1.1-Dichloroethene 
Dimethyl Disulfide
1.4-Dioxane 
Ethyl Acetate

Ethylbenzene
Ethoxy Ethanol
Ethyl Ether
Ethylene Oxide
Freon-11
Freon-114
Freon-12
Freon-13
n-Hexane
Isopropanol
Methylene Chloride
4-Methyl-2-Pentanone
Perchloroethylene
Propylene Oxide
Pyridine
Styrene
1,1,2-Trichloroethane
1,1,1-Trichloroethane 
Trichloroethylene 
Tetrahydrofuran 
Toluene
Vinyl Chloride 
o-Xylene
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Table 5-3. Summary Results on 50ppm mixtures, using Null
Intensity Windows; with and without the Autocycling Option.

With Autocycling:
Average score for the compounds which are present: 0.624 
Average score for the compounds which are absent: -0.843
LEVEL False False Correct

Positives Negatives Decisions
0.40 3 8 259
0.30 4 8 258
0.20 6 8 256
0.10 9 5 256
0.00 10 5 255

-0.10 12 5 253
-0.20 15 4 251
-0.30 18 3 249
-0.40 22 1 247
-0.50 24 0 246

Without Autocycling:
Average score for the compounds which are present: 0.229 
Average score for the compounds which are absent: -0.777
LEVEL False False Correct

Positives Negatives Decisions
0.40 2 20 248
0.30 3 20 247
0.20 4 17 249
0.10 7 12 251
0.00 13 6 251

-0.10 17 4 249
-0.20 22 2 246
-0.30 24 0 246
-0.40 28 0 242
-0.50 36 0 234
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Table 5-4. Abbreviated Score Reports for the 50ppm Mixture
TANK B, obtained using Null Intensity Windows; with and
without Autocycling.

With Autocycling: 
Compound
TRICHLOROETHYLENE* 
METHYLENE CHLORIDE*
1,1-DICHLOROETHENE* 
BENZENE*
CARBON TETRACHLORIDE
1,1,2-TRICHLOROETHANE 
VINYL CHLORIDE* 
BIS-CHLOROETHYL ETHER 
O-CHLOROTOLUENE 
CHLOROBENZENE

(35 Remaining Compounds)

Peaks Peaks 
Score Matched Sought
0.999 4 12
0.999 7 9
0.999 6 12
0.999 7 12
0.337 1 4
0.240 3 12
0.127 4 12
0.113 3 12

-0.280 3 12
-0.679 4 12

Without Autocycling: 
Compound
METHYLENE CHLORIDE* 
BENZENE*
CARBON TETRACHLORIDE
1,1,2-TRICHLOROETHANE 
TRICHLOROETHYLENE* 
BIS-CHLOROETHYL ETHER
1,1-DICHLOROETHENE* 
VINYL CHLORIDE* 
O-CHLOROTOLUENE 
CHLOROBENZENE 
ETHYL ETHER

(34 Remaining Compounds)

Peaks Peaks 
Score Matched Sought
0.749 7 9
0.534 7 12
0.195 1 4
0.120 3 12
0.041 4 12
0.030 3 12
0.019 6 12

-0.114 4 12
-0.121 3 12
-0.401 4 12
-0.484 3 12

Note: Asterisks mark actual mixture components.
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present in a Mixture.

Consider, for example, the results for TANK C: one
component, 2-butanone, received scores of -0.466 and -0.286, 
when interpreted with and without autocycling, respectively. 
The score was lower in the presence of autocycling because 
MIXIR attached less significance to the three features matched 
for 2-butanone in TANK C. Autocycling introduces a 
competition between compounds to explain unknown spectral 
features. In this case, only a few features were matched for
2-butanone. Most of the major features were not detected in 
the mixture, due to spectral overlap with other component 
absorptions. The few reference features which were matched 
had low uniqueness weightings, due to other mixture components 
which had coincident information, such as 4-methyl-2- 
pentanone. A spectroscopist might have come to the same 
conclusion here. It is reasonable to believe that a 
particular compound is absent from a mixture when only a few 
matching features can be found for that compound, and these 
can also be explained by other compounds which appear more 
likely to be present.

The dynamic intensity window scheme described above 
enhanced the results slightly in the presence of autocycling, 
and degraded the results slightly in the absence of 
autocycling. The exact origin of these results was not 
explored further, but since the distinction between the two 
runs is competition of compounds for the unknown spectral 
features, it is assumed that a (fortuitous) occurrence of
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screening out several compounds which had features matched 
which had significant coincidence with those of actual mixture 
components occurred. It should be noted that even at the 
lowest threshold monitored of -0.50, there was still one false 
negative result, both with and without autocycling. These 
results suggest that intensity changes due to spectral overlap 
preclude general application of tight constraints on peak 
intensities, in mixtures.

It was also found that the dynamic query selection 
procedure had little overall effect on the average scores for 
this set of mixture data. Individual compound scores, 
however, often showed significant changes. TANK F was a 
troublesome spectrum to interpret due to the fact that one of 
the components, freon-11 (CFC1,), has C-Cl stretching 
absorptions which are approximately four times as intense as 
the most intense absorptions due to the other components. As 
a result, in addition to missing features due to spectral 
overlap, many of the smaller features in the spectrum had an 
integral intensity of zero when normalized. Attempts to allow 
zero intensity mixture bands to satisfy band queries however, 
seriously degraded results overall, since many false peaks 
were then included.

It was expected that dynamic query selection would 
benefit this spectrum in particular, assuming that the larger 
features were matched, and the smaller ones missed, due to the 
normalization effect noted above. Table 5-5 presents 
abbreviated score reports for TANK F, using default intensity
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Table 5-5. Abbreviated Score Reports for the 50ppm Mixture
TANK F, Obtained with Default Intensity Windows; with and
without Dynamic Query Selection.

With Dynamic Query Selection
Compound
FREON-11*
STYRENE*
CHLOROFORM
BIS-CHLOROETHYL ETHER 
ETHYL ETHER*
3-CHLOROPROPENE*
ETHYLBENZENE* 
TRICHLOROETHYLENE
1,1,2-TRICHLOROETHANE
1,3-BUTADIENE 
ETHOXY ETHANOL 
TETRAHYDROFURAN 
ISOPROPANOL*
ACETONITRILE
TOLUENE

(Remaining Compounds)

Score
Peaks
Matched

Peaks
Sought

0.999 2 2
0.999 3 5
0.272 1 3
0.267 2 5
0.185 5 12
0.182 5 9
0.176 3 5
0.053 4 12
0.046 1 5

-0.034 1 5
-0.127 5 12
-0.134 3 11
-0.144 4 12
-0.368 1 5
-0.371 2 5

Without Dynamic Query Selection:
Peaks Peaks

Compound Score Matched Sought
FREON-11* 0.999 2 2
STYRENE* 0.278 6 12
CHLOROFORM 0.272 1 3
ETHYL ETHER* 0.185 5 12
3-CHLOROPROPENE* 0.112 6 12
TRICHLOROETHYLENE 0.053 4 12
BIS-CHLOROETHYL ETHER 0.028 3 12
ETHYLBENZENE* -0.079 5 12
ETHOXY ETHANOL -0.127 5 12
TETRAHYDROFURAN -0.134 3 11
ISOPROPANOL* -0.144 4 12
1,1,2-TRICHLOROETHANE -0.166 1 12
1,3-BUTADIENE -0.288 1 12
TOLUENE -0.416 4 12

(Remaining Compounds)
Note: Asterisks mark actual mixture components.
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windows, both with and without dynamic query selection. The 
autocycling option was not used in producing these results. 
Three of the six mixture components: styrene, 3-chloropropene, 
and ethylbenzene benefitted from this approach, and none 
suffered from it. It should also be noted, however, that a 
compound which was not present in the mixture, bis-chloroethyl 
ether, also had its scored increased by dynamic query 
selection.

The automatic peak justification feature, when used 
without autocycling, had a significant effect on compounds 
having scores in the middle of the range, as shown in Table 5- 
6. The number of false negative results produced at the 0.20 
threshold is cut by 61% when automated peak justification is 
employed. Further examination of this table shows that the 
scores of those mixture compounds which had the least evidence 
to indicate their presence (those scoring below 0.00) were not 
significantly increased by this procedure. There was little 
effect produced by automated peak justification in the 
presence of autocycling, since neazly all of the mixture 
components scores which were improveded by automated peak 
justification were already being boosted by autocycling.

Conclusions on 50 ppm Results:
Significant improvements were made in MIXIR by tuning the 

position windows to appropriate vapor phase limits, and using 
squared intensity weighting. Modifications which attempted to 
use band intensity information more fully met with mixed
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Table 5—6. Summary Results on the 50ppm mixtures, Obtained 
with Default Intensity Windows; with and without the Auto-Peak 
Justification Option.
With Auto-Peak Justification:
Average score for the compounds which are present: 0.271 
Average score for the compounds which are absent: -0.789
LEVEL False False Correct

Positives Negatives Decisions
0.40 1 20 249
0.30 3 20 247
0.20 6 7 257
0.10 7 6 257
0.00 13 5 252

-0.10 15 3 252
-0.20 22 2 246
-0.30 25 0 245
-0.40 27 0 243
-0.50 34 0 236

Without Auto-Peak Justification:
Average score for the compounds which are present: 0.206 
Average score for the compounds which are absent: -0.792
LEVEL False False Correct

Positives Negatives Decisions
0.40 1 20 249
0.30 3 20 247
0.20 4 18 248
0.10 6 13 251
0.00 12 10 248

-0.10 14 4 252
-0.20 21 2 247
-0.30 24 0 246
-0.40 27 0 243
-0.50 34 0 236
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results. This indicates that peak intensity information in 
mixtures, cannot generally be considered significent, due to 
spectral overlap. Even at the zero tolerance level for false 
negative results, MIXIR could, with several combinations of 
options, reject 90% of the compounds which were absent from 
the mixtures. Close examination of the results indicated that 
the conclusions which MIXIR reached, even when incorrect, were 
reasonable based on the information presented to the system. 
The major limitation at this time appears to be the 
reliability with which component peaks can be detected in 
mixtures.

5 ppm Results:
There were two spectra in this group, one with six 

components, and one with five components (Table 5-7). 
Overall, the results for these spectra with the option 
combinations investigated were about equal to the quality of 
results obtained with the 50 ppm mixtures. A sample results 
summary obtained with the default intensity scheme, is 
presented in Table 5-8. At the level of zero false negative 
results, 98% of the compounds which were absent from the 
mixture were eliminated from further consideration. These 
spectra still had good signal to noise ratios, and little 
interference from carbon dioxide and water absorptions (Fig.
5-3), hence, the results were quite good.

The false positive rejection was numerically better for 
the 5 ppm results just described than for the 50 ppm results



Table 5-7. The 5 ppm Vapor Phase Mixture Constituents andConcentrations.
Mixture Components Concentration*
TANK 1 Acrylonitrile 5.8 ppm

1,3-Butadiene 5.4
Ethylene Oxide 5.4
Methylene Chloride 5.9
Propylene Oxide 8.1
o-Xylene 8.4

TANK 3 Carbon Tetrachloride 4.3
Chloroform 3.2
Perchloroethylene 6.8
Benzene 3.3
Vinyl Chloride 3.1

“Analyzed by GC.
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Table 5-8. Sunnary Results on the 5 ppm Mixtures Obtained 
Using Null Intensity Windows.
Average score for the conpounds which are present: 0.423
Average score for the conpounds which are absent:
LEVEL False

Positives
False
Negatives

Correct
Decisions

0.40 0 5 85
0. 30 0 5 85
0.20 0 3 87
0.10 0 1 89
0.00 2 0 88

-0.10 3 0 87
-0.20 3 0 87
-0.30 5 0 85
-0.40 9 0 81
-0.50 10 0 80
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obtained with the identical interpreter options. Ne suspect 
that this difference might be explained by one or more of the 
following factors: (1) While the signal to noise ratio was 
better for the 50 ppm spectra, they also had greater 
interferences from background water (compare Figs. 5-1,5-2 
with Fig. 5-3). Therefore, signal detection may have been 
more reliable in the 5 ppm spectra. (2) Mixtures containing 
different components will present different spectral patterns- 
it cannot easily be determined why one pattern is more 
difficult to analyze than another.

Dynamic query selection also performed better on the 5 
ppm data than on the 50 ppm data. This too, indicates that 
more reliable signal detection was obtained in the 5 ppm data, 
since dynamic query selection requires fairly reliable 
information to be effective. The largest separation observed 
between Avgp and Avg* was in one of the tests on the 5 ppm 
data. In this run, default intensity windows, autocycling, 
and dynamic query selection were used. The average score of 
the actual mixture components was 0.902, and the average score 
of the compounds not present in the mixture was -0.863. The 
success achieved in this run can be attributed to the high 
quality of the input information, which allowed more complex 
inference procedures to be effective.

2 ppm Results
The mixture constituents for the 2 ppm mixtures are 

presented in Table 5-9. There were three such samples: one
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Table 5-9. The 2 ppm Vapor Phase Mixture Constituents and 
Concentrations.

Mixture Components concentration*
EPA 1 Tetrahydrofuran 2.3 ppm

1.1-Dichloroethane 3.5
Benzene 2.3
Ethylbenzene 2.1
Methylene Chloride 2.4
1.1.1-Trichioroethane 2.5

EPA 2 Vinyl Chloride 2.4
Trichloroethylene 3.7
Perchloroethylene 2.0
Toluene 2.5
Chlorobenzene 2.1

EPA 3 Cyclopentane 1.3
Ethyl Acetate l.3
1.1-Dichloroethane 1.2
1,1,2-Trichloroethane 1.4
Carbon Tetrachloride 1.3
Isopropanol 2.8
Ethyl Ether 2.5
3-Chloropropene 2.6
Styrene 1.6
Ethylbenzene 2.4
Freon-11 2.9

'Results of GC analysis.
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six component mixture (EPA 1), one five component mixture (EPA 
2) and one eleven component mixture (EPA 3). The signal to 
noise ratio of these spectra was poor, as can be seen in 
Figure 5-4. In addition, the presence of large (relative to 
the sample absorptions) carbon dioxide absorptions in all of 
these spectra necessitated the use of the matrix interference 
option for carbon dioxide described previously. The spectra 
for mixtures EPA 2 and EPA 3 had significant positive 
interference from background water, as well. These two were 
therefore treated with the water interference option. The use 
of these options prevented the normalization of the sample 
absorptions against the large carbon dioxide absorption which 
dominated them. Additionally, queries in the interfering 
regions were eliminated, which prevented false negative or 
positive judgements of component peak presence in these areas. 
Of course, eliminating these spectral regions, although 
necessary, also reduced the number of features which could be 
queried in the resulting interpretations.

In addition to the increased problems with instrumental 
noise and background absorptions, one of the 2 ppm mixtures, 
EPA 3, contained eleven components. Due to these 
difficulties, one would expect the results on the 2 ppm 
mixtures to be poorer than those previously described. This 
was indeed the case. The score thresholds examined were 
reduced by 0.30, since the components scored lower on the 
average in these mixtures. Even at -0.80, however, at least 
one false negative result still remained, regardless of the
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options used. This false negative was 1,1-dichloroethane in 
mixture EPA 3. No matching bands were found for this 
compound, regardless of the options used.

The spectrum of 1,1-dichloroethane is dominated by the C- 
C1 stretching absorptions, which appear at about 710 cm'1. 
This region of the absorption spectrum of 1,1-dichlorethane is 
shown superimposed on the same spectral region of EPA 3 in 
Figure 5-5 (the absorption axis shown is that of the mixture). 
The two large absorptions of 1,1-dichloroethane have virtually 
disappeared into the absorption background of the mixture, and 
hence were not detected by the peakpicker. This situation 
cannot be cured by any interpretation logic- if no 
corresponding bands are detected, then the compound cannot be 
judged to be in the mixture in guestion. Only better signal 
recognition algorithms can help in such cases.

At a level of one false negative, the minimum number of 
false positive results observed with any option combination 
was 35, using the default intensity windows only (Table 5-10). 
This corresponds to 69% of the possible false positive 
compounds rejected, along with one actual mixture component.

Conclusions:
It has been demonstrated that effective vapor phase 

spectral descriptions can be generated from peak tables of a 
reference set. A modified form of the condensed phase 
spectral interpreter, MIXIR, was found to reject 90 and 98% of 
the possible false positive results for the 50 ppm and 5 ppm
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Figure 5-5. A Portion of the C-Cl stretching Region for the 
1,1-Dichloroethane Reference Spectrum, and the 2 ppm Mixture 
Spectrum EPA 3.
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Table 5-10. Summary Results on the 2 ppm Mixtures Obtained 
Using Default Intensity Windows.

0.190Average score for the compounds which are present
Average score for the compounds which are absent:
LEVEL False False Correct

Positives Negatives Decisions
0.10 8 10 117
0.00 10 6 119

-0.10 15 5 115
-0.20 16 4 115
-0.30 16 3 116
-0.40 20 3 112
-0.50 23 2 110
-0.60 24 2 109
-0.70 27 2 106
-0.80 35 1 99
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mixtures tested, respectively, without eliminating any actual 
mixture components. MIXIR could not, however, produce results 
at the level of zero tolerance for false negatives, for the 2 
ppm mixtures tested.

Several new interpretation paradigms were developed and 
tested. These provided extended dynamic capabilities, based 
largely on peak intensity information. These paradigms were 
found to be useful, however, only so long as the unknown peak 
information was reliable, and extensive overlap between bands 
of widely differing intensity did not occur in the mixtures.

The major limitation currently facing MIXIR is the 
question of reliable signal detection. More sensitive and 
selective peak detection algorithms must be developed before 
the system can be advanced to work under more adverse 
conditions, i.e., those involving poor signal to noise ratios, 
and extensive component band overlaps. The issue of 
interfering background absorptions due to water and carbon 
dioxide might be solved by developing a library of water and 
carbon dioxide spectra taken under varying conditions. 
Computer selection of the best background match from this 
library to that observed in a sample spectrum would likely 
produce more effective correction for these spectral 
interferences. If effective, this would greatly extend the 
limits of infrared spectral detection in complex mixtures.



CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

Significant progress was made in developing adaptive 
knowledge based systems for spectral analysis. The major 
advances made with these systems stem from their dynamic 
approach to data interpretation. This approach is largely 
made possible due to the creation of computer procedural 
methods used to mimic the human interpretive processes which 
have been identified. It has been shown that the major 
components of condensed phase and vapor phase mixtures may be 
reliably determined using peak-based information only.

At this stage, several factors have been identified which 
limit the IRBASE/MIXIR system as it stands. From the 
chemist's perspective, the most important of these is that the 
system already makes nearly optimum use of the peak-based 
information which is used. As noted in the research chapters, 
attempts to use increasingly subtle relationships in the peak 
data often failed, due to the reliability of the information. 
Significant further advances will probably not be possible 
without increasing the information which is presented to the 
system.

One way to increase the information is to improve the 
signal detection process itself. Exploratory work into the
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use of neural networks for infrared peak detection has 
provided some promising results, however this work is still 
immature. It may be that the preprocessing performed on the 
network input should be eliminated, or modified. Another 
modification which might prove beneficial would be to alter 
the method of noise representation. The reason for presenting 
the noise input was that it was determined that visual 
comparison of signal height to noise magnitude was being 
performed in human peak detection. However, with the method 
used, the network is left to determine the proper relationship 
of the noise representation to the rest of the data. Since 
the human use of the information is a comparison of magnitudes 
(i.e. a ratio), the ratio of the signal magnitude to the noise 
magnitude would likely prove more effective. When a specific 
characteristic which we wish the network to learn can be 
identified, it makes sense to provide this characteristic 
directly. This places less reliance on the network learning 
process to extract meaningful information from a series of 
examples.

It is my opinion that any information extraction which 
can be performed through preprocessing, without actually 
eliminating other information as a side effect, is beneficial 
and should be performed. Providing this aid to the network 
may seem to conflict with the notion of the network as a 
general purpose "learning machine”. Consider, however, that 
a neural network is useful when specific mathematical 
properties of data which are needed to solve a problem cannot
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be identified. It is hoped that the network will then be able 
to implicitly extract these properties from the data set 
through the learning process. This process may be 
misdirected, however, by the variation and noise present in 
the data which cause us to choose the network approach in the 
first place. By essentially "pointing out" those features 
which can be identified we can not only ensure that the 
network learns these characteristics, but can also improve the 
chances that the network will be able to correctly identify 
those features which we cannot.

Further improvements may result from modification of the 
network architecture. A fully connected network architecture 
was used, since this is the simplest and most common approach 
in what still constitutes art as well as science. However, 
again, when we can identify any manner in which information is 
processed in a human pattern recognition process, advantage 
should be taken of this knowledge. In the way that the author 
processes spectral data, the signal to noise ratio is one 
piece of information, and the shape of a prospective signal 
pattern is another. These two are evaluted separately, and 
the results of these two evaluations are then combined. This 
behavior can be forced in the network by allowing the hidden 
layer to perform the shape analysis, and providing the signal 
to noise ratio as an input to be combined at the output layer. 
In this way, the topology of our network would mimic the 
topology of the author's human information processing flow.

As stated in chapter 4, a comparison of the frequency of
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the noise with the width of a prospective signal pattern is 
also performed in the author's "signal processor". In order 
for the network to do this, however, it must first be given 
the frequency of a noise sample from the spectrum. This might 
be done by performing an FFT on the noise train, and using the 
largest peak of the resulting noise spectrum for the noise 
frequency input to the network. It still remains then for the 
network to learn how to extract the "width" of an arbitrary 
pattern such as will confront it in use. This is more 
daunting, since it is difficult to think of what might 
constitute the width of an arbitrary function which is 
truncated by our spectral window. If this can in some way be 
conceived, then at least we can have hope that the network 
will be able to learn it, and can begin to take steps to aid 
this process.

Returning to the question of providing additional 
information to a peak-based spectral interpreter, the use of 
least-squares fitting (LSF) techniques for vapor phase 
spectra, and in limited spectral regions, for condensed phase 
spectra, should be explored. The two methods could be 
combined into a large system which uses the peak based expert 
system to narrow down the possibilites. Traditional least 
squares quantitation of the reduced reference set to the 
unknown could then be performed much more quickly and 
reliably.

Alternatively, LSF could be performed locally in the 
spectrum to perform conflict resolution for the expert system.
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When several compounds appear to offer a matching feature for 
an unknown feature, LSF could be used to determine which of 
these compounds are contributing to this feature in the 
unknown. Since LSF provides for simultaneous solutions to the 
system, the competition which can sometimes be a disadvantage 
for MIXIR could be avoided, when necessary.

From a computer science perspective, a major issue facing 
MIXIR and IRBASE is their complexity, and the implementation 
language. FORTRAN is not well suited to writing complex 
programs which require modelling abstract processes. The lack 
of structure type definition capabilities in particular 
severely handicaps the FORTRAN programmer. MIXIR and IRBASE 
are currently in a state where they are very difficult to 
understand mechanistically. They should both be recast in a 
modern language such as Pascal or C. Maximum advantage should 
be made of the chosen language capabilities to redesign, 
rather than simply translate the resulting programs. An 
object-oriented languages such as Object Pascal, C~, or the 
like could probably be used to even better advantage to 
control complexity. Although these are more engineering than 
scientific considerations, the practical need for this cannot 
be overemphasized.
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APPENDIX A.

TRACE OF THE INTERPRETATION PROCESS FOR THE 
FUNCTIONALITY "ACID" INCLUDING EXPLANATORY COMMENTS.



175

FUNCTIONALITY ACID
PASSED INITIAL EMPIRICAL FORMULA TEST
* (Carboxylic Acids undergo extremely strong intermolecular
* Interactions, therefore, vapor phase spectra require separate
* rules:)
QUERY— IS THE SOLVENT/SAMPLE STATE VAPOR?

ANSWER-----NO------
* (Begin Pyridine-Like Acid queries. This functionality also
* requires at least one nitrogen, in addition to the other
* formula stipulations already queried:)
FORMULA QUERY----- ANY NITROGEN(S) ?

ANSWER-----YES-----
* (Since Pyridines are aromatic, and this class has already been
* determined, we check for a reasonable value here, before
* proceeding any further:)
EXPECTATION VALUE QUERY

IS AROMATIC GREATER THAN 0.20?
ANSWER-----YES-----

* (The acid group on the molecule is capable of protonating the
* pyridyl nitrogen. For protonated pyridine-like bases, there is
* evidence to indicate the formation of a (pyHpy)+ complex, with
* with a double minimum proton potential, observed spectro-
* scopically at about 2500 and 2000 cm-1. Such a species may
* be involved here, as similar absorptions are observed in
* pyridine-like acids, to which the following two queries
* pertain:)
PEAK QUERY
ANY PEAK(S) POSITION: 2251 - 2520 INTENSITY: 1 - 6

WIDTH: BROAD
ANSWER-----YES-----

ACTION----- SET ACID-PYRIDINE-LIKE TO 0.10
CURRENT VALUE - 0.10

PEAK QUERY
ANY PEAK(S) POSITION: 1801 - 2000 INTENSITY: 1 - 6

WIDTH: BROAD 
ANSWER-----NO-----

* (Begin "normal" Acid queries- here, Acid-Sat. Looking for the
* extremely strongly H-bonded 0-H stretch which characterizes
* the Acid functionality. It is broadened to the degree that
* such hydrogen bonding exists, due to the increased environ-
* mental heterogeneity. The best possible peak match is 7-10,B,
* 3050-2900. The peak queries will attempt to converge on
* these values:)
PEAK QUERY

ANY PEAK(S) POSITION: 2780 - 3150 INTENSITY: 4 - 1 0
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WIDTH: BROAD
ANSWER---- YES-----

ACTION----- SET ACID TO 0.25 CURRENT VALUE - 0.25
PEAK QUERY

ANY PEAX(S) POSITION: 2780 - 3150 INTENSITY: 7 - 1 0
WIDTH: BROAD

ANSWER---- NO------
PEAK QUERY

ANY PEAK(S) POSITION: 2900 - 3050 INTENSITY: 4 - 6
WIDTH: BROAD

ANSWER-----YES-----
ACTION ADD 0.10 TO ACID CURRENT VALUE - 0.35
* (Looking for the H-bonded C-0 stretch of the Acid dimer,
* which often is observed concurrently with the monomeric form,
* but is the more prevalent, ordinarily, of the two:)
PEAK QUERY

ANY PEAK(S) POSITION: 1661 - 1750 INTENSITY: 7 - 1 0
WIDTH: SHARP TO BROAD

ANSWER-----YES-----
ACTION--ADD 0.25 TO ACID CURRENT VALUE - 0.60
* (Looking for C-0 stretch:)
PEAK QUERY

ANY PEAK(S) POSITION: 1191 - 1300 INTENSITY: 4 - 1 0
WIDTH: SHARP TO BROAD

ANSWER-----YES-----
ACTION--ADD 0.10 TO ACID CURRENT VALUE - 0.70
* (Narrowing peak-intensity "window" to converge on most likely
* values:)
PEAK QUERY

ANY PEAK(S) POSITION: 1191 - 1300 INTENSITY: 7 - 1 0
WIDTH: SHARP TO BROAD

ANSWER-----YES-----
ACTION ADD 0.10 TO ACID CURRENT VALUE « 0.80
* (Looking for O-H bending vibration, which typically is broad
* also, due to hydrogen bonding. Here, we begin with the best
* match to expected values, and broaden the guery range
* slightly, to include less typical cases, if necessary. Such an
* approach is rarely taken in PAIRS, for although this has no
* effect on the outcome, it is formally a less efficient way of
* asking the questions->think about this...:)
PEAK QUERY
ANY PEAK(S) POSITION: 900 - 950 INTENSITY: 3 - 6

WIDTH: BROAD
ANSWER-----NO-----

PEAK QUERY
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ANY PEAK(S) POSITION: 876 - 970 INTENSITY: 1 - 1 0
WIDTH: BROAD

ANSWER----- NO-----
PEAK QUERY

ANY PEAK(S) POSITION: 900 - 950 INTENSITY: 3 - 6
WIDTH: AVERAGE

ANSWER-----YES-----
ACTION ADD 0.10 TO ACID CURRENT VALUE - 0.90
* (Begin speciation (Acid subclasses) based on position natch of
* C-O stretch for the various subclasses. Again, all queries
* refer to the dineric form predominant in condensed phases:)
PEAK QUERY

ANY PEAK(S) POSITION: 1661 - 1750 INTENSITY: 7 - 1 0
WIDTH: SHARP TO BROAD

ANSWER-----YES-----
PEAK QUERY

1 PEAK(S) POSITION: 1661 - 1750 INTENSITY: 7 - 1 0
WIDTH: SHARP TO BROAD 

ANSWER-----YES-----
* (Looking for C-0 stretch for acid with an electron withdrawing
* group alpha to the carbonyl. Such substitution increases the
* C-0 stretching frequency, due to the increased importance of
* the canonical form 2(R)C+— 0-, here:)
PEAK QUERY

ANY PEAK(S) POSITION: 1726 - 1750 INTENSITY: 7 - 1 0
WIDTH: SHARP TO BROAD 

ANSWER-----NO------
* (The following peak position range corresponds to an area

* where both Alpha-withdrawing Acids and Saturated Acids
* appear. A "hit" here will cause.both these subclasses to be
* set to the class value here; then reduced by 20%, to indicate
* the ambiguity of the subclass assignment:)
PEAK QUERY

ANY PEAK(S) POSITION: 1721 - 1725 INTENSITY: 7 - 1 0
WIDTH: SHARP TO BROAD

ANSWER-----NO------
PEAK QUERY

ANY PEAK(S) POSITION: 1708 - 1720 INTENSITY: 7 - 1 0
WIDTH: SHARP TO BROAD 

ANSWER-----NO------
* (The following peak position range corresponds to an area

* where both Saturated and Unsaturated Acids appear. A "hit"
* here will cause both these subclasses to be set to the class
* value here; then reduced by 20%, to indicate the ambiguity of
* the subclass assignment:)
PEAK QUERY

ANY PEAK(S) POSITION: 1700 - 1707 INTENSITY: 7 - 1 0
WIDTH: SHARP TO BROAD
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ANSWER-----YES-----

ACTION-----SET ACID-UNSATURATED TO 0.90 CURRENT VALUE -
ACTION MULTIPLY ACID-UNSATURATED BY 0.80 CURRENT VALUE -
ACTION-----SET ACID-SATURATED TO 0.90 CURRENT VALUE -
ACTION MULTIPLY ACID-SATURATED BY 0.80 CURRENT VALUE -
* (Compare Acid score to that for the Acid-Pyridine-Like
* subclass, and save the larger as the Acid class value:)
PROBABILITY QUERY

IS ACID LESS THAN 0.10?
ANSWER-----NO------

0.90
0.72
0.90
0.72



APPENDIX B.

TRACE OP THE NONINTERACTIVE INTERPRETATION FOR THE 
"ACETAL" FUNCTIONALITY, INCLUDING EXPLANATORY COMMENTS, 

FOR THE SPECTRAL DATA OF 1,1-DIETHOXYETHANE.
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FUNCTIONALITY ACETAL
PASSED INITIAL EMPIRICAL FORMULA TEST
* (Looking for C-O-C-O-C symmetric and asymmetric stretches:
* For Acetals, the C-0 stretches are split into multiple
* components, due to multiple coupling of adjacent C-0
* vibrations, along with any molecular asymmetry about these
* groups:)
PEAK QUERY

AT LEAST 4 PEAK(S) POSITION: 1035 - 1210 INTENSITY: 1 - 1 0
WIDTH: SHARP TO BROAD

ANSWER----- YES----
ACTION----- SET ACETAL TO 0.15 CURRENT VALUE - 0.15
* (Likely observe further splitting:)
PEAK QUERY
AT LEAST 5 PEAK(S) POSITION: 1035 - 1210 INTENSITY: 1 - 1 0

WIDTH: SHARP TO BROAD 
ANSWER-----NO------

* (Two of the components of the C-O-C-O-C multiplet should be
* in this region:)
PEAK QUERY

AT LEAST 2 PEAK(S) POSITION: 1120 - 1195 INTENSITY: 1 -10
WIDTH: SHARP TO BROAD 

ANSWER-----NO------
* (Looking for a particular component of the C-O-C-O-C
* multiplet:)
PEAK QUERY

ANY PEAK(S) POSITION: 1156 - 1190 INTENSITY: 1 - 1 0
WIDTH: SHARP TO BROAD 

ANSWER-----NO------
* (Looking for a particular component of the C-O-C-O-C
* multiplet:)
PEAK QUERY

ANY PEAK(S) POSITION: 1061 - 1100 INTENSITY: 1 - 1 0
WIDTH: SHARP TO BROAD

ANSWER-----YES-----
ACTION ADD 0.05 TO ACETAL CURRENT VALUE = 0.20
* (Looking for C-H adjacent to C-O, this is the sole band
* differentiating Acetals from the closely related Ketals:)
PEAK QUERY

ANY PEAK(S) POSITION: 1101 - 1110 INTENSITY: 1 - 1 0
WIDTH: SHARP TO BROAD

ANSWER-----YES-----
ACTION ADD 0.25 TO ACETAL CURRENT VALUE « 0.45
* (The following functionality(s), already queried, have similar
* absorptions, and can be determined with greater reliability.

* If they appear to be absent then, we can increase our
* confidence in assigning these peaks to Acetal. Implicit here
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* is an "either/or" approach..when night this type of reasoning
* fail? :)
EXPECTATION VALUE QUERY

IS ACID GREATER THAN 0.50?
ANSWER-----NO------

EXPECTATION VALUE QUERY
IS ALCOHOL GREATER THAN 0.50?
ANSWER-----NO------

EXPECTATION VALUE QUERY
IS AMIDE GREATER THAN 0.50?
JkNQHCR— — H I V — —

EXPECTATION VALUE QUERY
IS AMINE GREATER THAN 0.50?
ANSWER-----NO------

ACTION MULTIPLY ACETAL BY 1.29 CURRENT VALUE - 0.58



APPENDIX C.

PARTIAL TRACE OF AN INTERACTIVE INTERPRETATION 
FOR 1,1-DIETBOXYETHANE
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FUNCTIONALITY ACETAL
PASSED INITIAL EMPIRICAL FORMULA TEST
* (Looking for C-O-C-O-C symmetric and asymmetric stretches:
* For Acetals, the C-0 stretches are split into aultiple
* components, due to multiple coupling of adjacent C-0
* vibrations, along with any molecular asymmetry about these
* groups:)
PEAK QUERY

AT LEAST 4 PEAK(S) POSITION: 1035 - 1210 INTENSITY: 1 - 1 0
WIDTH: SHARP TO BROAD 

ANSWER-----YES-----
DESIRED ANSWER (YES,NO, RETURN): y 
THE ANSWER IS: YES
ACTION----- SET ACETAL TO 0.15 CURRENT VALUE - 0.15
* (Likely observe further splitting:)
PEAK QUERY
AT LEAST 5 PEAK(S) POSITION: 1035 - 1210 INTENSITY: 1 - 1 0

WIDTH: SHARP TO BROAD 
ANSWER-----NO------

DESIRED ANSWER (YES,NO, RETURN): y 
THE ANSWER IS: YES
ACTION ADD 0.10 TO ACETAL CURRENT VALUE - 0.25

[Deleted portion of trace ouput.]
ACTION MULTIPLY ACETAL BY 1.29 CURRENT VALUE - 0.71
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