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ABSTRACT

COMPUTATIONAL STUDY OF RED CELL
DISTRIBUTION IN SIMPLE NETWORKS
by
Wen-Rong Fu

Unijversity of New Hampshire. December. 1990

The distribution of red biood cells (RBC) across the vessel lumen is disturbed when
blood flows through a junction. As the blood flows downstream from the junction, the
RBC distribution “corrects” itself to regain its original symmetric character. A dispersion-
type process has been used to model this rearrangement process in 3-dimensional branching
tubes.

In this study, the disturbance in the RBC profile is quantified by tracing streamlines
through the junction. The tracing technique is hbased on scaled-up dye studies. The com-
putation starts at a location where the velocity profile is fully developed. Both uniform and
parabolic RBC profiles are examined as possible, final symmetric distributions for the com-
putations. Three velocity profiles are used alternatively. The dispersion convective equation
of continuity in cylindrical geometry is solved with the method of finite differences. The
resulting RBC concentration profiles is then used to compute flux-flow curves which are
frequently used to examine plasma skimming phenomena.

The numerically computed flux-flow curves are compared to in vitro experimental data
from 50 pm serial bifurcation replicas. The dispersion coefficient is used as an adjustable
parameter to give the best match between computation and measurement. The averaged
dispersion coefficients obtained agree with previous experimental data and show an en-

hanced dispersion.

xi



Simple vascular networks are generated and the dispersion model is further applied to
the networks. By calculating the discharge hematocrit of each branch vessel in the network
the network Fahraeus effect is observed. Influences of flow disturbance to the downstream
hematocrit are examined. The effects of fiow heterogeneity and the dispersion model on the

hematocrit heterogeneity are presented.
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Chapter 1

Introduction

The quantitative study of blood flow started when Poiseuille (1840) [1] first used homoge-
neous fluids in his capillarvy experiments. Empirically, he established the famous relation-
ship betwecu flow, vessel diameter, fluid viscosity and pressure drop per unit length which
is known as the Poiseuille’s law. Generally speaking Pouiseuille’s law does not apply to the
microcirculatory system because it is not possible to think of the blood as a homogeneous
fluid with constant viscosity. It is essential to treat it as a suspension of red cells and other
formed elements in plasma. Obviously, simple straight tubes do not constitute the whole
vessel network of a living body. Branching tubes are more characteristic of the vascular
svstem.

Flowing blood accomplishes transportation of nutrients, heat, waste, and other sub-
stances for living animals among which the majority of the oxygen is delivered by the red
blood cells. The distribution of red blood cells in the microcirculation also has an impor-
tant effect on in vivo blood rheology. To evaluate the circulation it is not only important 1o
understand the whole blood distribution in a circulating network but also the distributions
of each of its constituents. This study is aimed at understanding human red blood cell

distribution in branching tubes and its further extension to vascular networks.

1.1 Microcirculation

Most mass transfer between blood and tissue is thought to occur in the microcirculation.

In the microcirculation vessels sizes range from about 100 to a few pm, including arterioles,



precapillaries. capillaries, postcapillaries. and venules . Direct measurement of low condi-
tions is extremely difficult not only because of the sensitivity to mechanical stimulus of the
microvessels but also the tiny scale that is involved. Several unique features of blood flow
in such small vessels are discussed below to differentiate microcirculation from the syvstemic
circulation.

Apparently the homogeneous fluid approximation is not appropriate in microcirculation
hecause even the largest vessels in microcirculation have only 15 to 20 times the diameter of
a red cell. The Reynolds numbers (Re) are usually very low and decreases as microvessels
get smaller. For example. in vessels of 100 pzm the Re is typically around 0.5 and decreases
to about 0.005 in 10 um vessels [2.3.4]. This implies that the inertial forces are negligible
compared to the viscous forces.

The pulsatile character of blood flow is much less important in microcirculation than in

larger arteries. A dimensionless parameter. the Womersley number, defined as

_d fw

2V v

is used in pulsatile flow analysis to resemble the Reynolds number. The w is the angular
frequency. v is the kinemetic viscosity. and d is the tube diameter. A small a (usually less
than 1) indicates the flow is more likely to retain its velocity profile. The oscillation of
pressure gradient (inertial effect) has little interference and the viscous force controls the
profile. As a increases. phase lag starts to set in and the velocity profile is then distorted.
In the microcirculation. a is usually very small. In a capillary, a is of the order of 1073, A
“quasi-steady™ state is obtained for such small Womersley numbers which means that the
velocity profile is in phase and proportional to the local pressure gradient.

The red blood cell distribution through the microcirculation has been studied in a va-
riety of tissues. For example, the tube and corresponding discharge hematocrit! in the rat

mesentery have been reported [3]. A tube hematocrit is determined by instantaneously

!The hematocrit is a measure of red cell concentration which is defined as the volumetric fraction occupied

by the red cells.



stopping the flow in a tube and measuring the packed red cell fraction. At fullv-developed
steady flow this is equal to the cross-sectional cell density. The tube and discharge hema-
tocrits generally decrease through the arterial network and increase through the veuous
network. Similar results are reported in other microvascular networks. The ratio of the
minimum micro-hematocrit to the systemic hematocrit are 0.45 in the rabbit omentum [6];
0.20 [7). 0.24 [8] in the hamster cremaster muscle: 0.26 in the cat mesentery [9]; and 0.36 in
the rat mesentery [3]. It is suspected that the very low capillary hematocrit comes from the
Fahraeus eflfect in single vessels and the repeated phase separation of red cells and plasma
at vascular bifurcations [10].

The distributions of flow and pressure in microvascular networks have heen studied
extensively [8.11.12]. Most results are reported as average values grouped either by vessel
diameter or by branching order. Some histograms of velocity distribution have been reported
[7.12]. But systematic analysis of histograms based on vessel size or branching order is not

vet available.

1.2 Blood in tubes

Blood is composed of particles (cells} and a medium (plasma) that suspends them. Several
types of cell are present in the circulating blood but red cells most significantly influence
the mechanical properties of normal blood. They occupy about 45 per cent of the volume
in normal blood. If we count the cells in normal blood, for every thousand red cells only
one to two white cells and 50 to 100 platelets are present. The platelet is so small that
each platelet has only one tenth the volume of a red cell. Thus, more than 95 per cent of
the suspended phase is occupied by red blood cells. The compositions of human blood and
characteristics of blood cells are illustrated in Table 1.1.

The disk-shaped mammalian red blood cell has a very thin isotropic membrane {13] with
viscous hemoglobin solution enclosed. It is easier to hend than to stretch the membrane,
making red cells undergo constant surface area deformations in response to stresses [14).

The suspending medium, plasma containing various salts, lipids and proteins. is usually



Table 1.1: Cells in human blood

Cell No. per mm?®  Unstressed shape and Volume conc. (%)
dimensions (pm) in blood
Ervthrocytes 4 — 6108 Biconcave dise 45
Bx1-13

Leukocytes 4—11%108 Roughly 1

Neutrophils 1.5 - 7.5 10% spherical

Eosinophils 0—4x102 T—22

Basophils 0—2%102

Lymphocytes 1-4.5%10°

Monocytes 0—8x102
Platelets 250 — 500 * 103 Rounded or oval

2-4

considered as an aqueous solution and has proven to be a Newtonian fluid {15]. Macro-
molecules in plasma, for example fibrinogen and giobulin, can bridge cell surfaces and cause
red cells to aggregate face to face and form rouleaux.

The extent of RBC aggregation and deformation predominantly determines the blood
rheological properties. Experimental results based on tube, cone-and-plate, and Couette
viscometers show non-Newtonian behavior for blood. Its apparent viscosity varies with
hematocrit and red cell aggregation (shear rate dependent). At very low shear rate the
red cell aggregation is responsible for the non-Newtonian behavior. When the shear rate
is raised high enough to break all the cell rouleaux (approximately 100-200/sec for normal
blood). cell deformations contribute to the non-Newtonian behavior. At higher shear rates
(approximately >1000/sec for 45% hematocrit at 37°C), cell aggregates are completely
broken and cell deformation becomes less important. The apparent viscosity no longer
varies with shear rate and the blood can be approximated by a Newtonian fluid [17] if

the hematocrit is held unchanged. In addition to the shear rate, hematocrit is another



decisive variable that affects the blood rheological properties, As a consequence of the
small diameter of vessels in the microcirculation, wall shear rates can be considerably higher
than in the large vessels. sometimes on the order of 1000 sec~!. At these higher shear
rates. Fahraeus and Lindqvist [18] measured the blood apparent viscosity (viscosity derived
from the Poiseulle equation) in various diameters of tubes. They found that for tubes
with dianeters less than about 500 pm the apparent viscosity decreased with decreasing
diameters down to approximately 60 gm. This has been known as the Fahraeus-Lindqvist
effect. Other investigations have shown the Fahraeus-Lindqvist effect continues down to
about 8 ym diameter. Barbee and Cokelet [19] proposed that use of average tube hematocrit
instead of feed hematocrit would enable one to ignore the Fahraeus-Lindqvist effect. Their
experimental results supported this argument at least down to 29 um tube diameters.

In tubes smaller than about 500 um the tube hematocrit is less than the feeding hema-
tocrit or the discharged hematocrit. This is called the Fahraeus effect [20] and can be
explained by the presence of a nonuniform RBC distribution and a nonuniform velocity
profile across the vessel lumen. When the hematocrit in the central zone is higher than
the circumferential zone and the velocity is decreasing from the maximum in the center to
zero at the tube wall, the mean residence time of cells will be less than that of plasma.
To meet the conservation law, the tube hematocrit must be less than the feed or discharge
hematocrit. It should be noted that Fahraeus effect alone should not cause a difference from
feed to discharge hematocrit. When the size of the small tube is comparable to that of a
cell, a screening effect may cause a difference in measured feed hematocrit and discharged
hematocrit. The screening effect is an entrance phenomenon resulting from the fact that
near the entrance of a small tube from the reservoir, cells might collide with the edge of the
entrance or other cells and are then unable to enter the tube as easily as plasma.

The radial movements of particles in Poiseulle flow has been studied by Goldsmith [21].
In very dilute suspensions deformable red cells migrate radially towards the axis of the
tube. As the concentration of the suspension is increased, particle-particle interactions and

collisions begin to occur. The red cells deform much more than they do in a dilute solution.



The analysis of particle motion in concentrated suspensions is extremely complex. The
radial dispersion of red cells in concentrated suspensions has heen studied by tracing red
cells in ghost cell suspensions. Self-diffusion coefficients were obtained by measuring the
radial displacements of red cells over equal time intervals using the random walk theorem.
They ranged from 3 x 10~ cim?/sec near the center to 1.5 X 10~ cm?/sec close to the wall.

The fact that a cell center can never be located on the tuhe wall is termed the wall
exclusion effect. Together with the tendency of cell migration from the tube wall toward
the center. it suggests that a laver of cell free (at least poor} suspending fluid is very likely to
exist near the wall. This was first observed by Malpighi in the 17th century. The thickness
of the plasma layer has been reported to be about 4-13 yum depending on the hematocrit.
in 40 to 70 um glass tubes [22]. In 100 gm arterioles the thickness were reported to be 3 to
5 pm. Carr [24] computed the thickness to be 4 um in tubes sized from 20 to 100 gm.

In 1968 Phibbs and Burton {25] measured the radial distribution of red cells in rabbit
fermoral arteries with diameters of approximately 1 mm. They used a liquid nitrogen quick
freezing technique and found the distribution to be uniform except near the wall. Palmer
[26] has studied the red cell distribution across a two dimensional slit channel. The size of
the channel was 30 um. By collecting blood from several transverse positions he found that
the red cells do not distribute uniformly across the channel.

The velocity profile is also changed by the presence of concentrated particles. Experi-
ments [21] showed that the velocity profile (based on the particle velocities) is blunt near
the axis. The actual profile is influenced by the particle concentration, cell to tube diameter
ratio, and flow rate. It was also found that the blunting decreases as the flow rate increases
and finally reached parabolic at very high flow rates. Baker and Wavland [2] also concluded
that the velocity profile is almost parabolic when %/d is greater than 6 sec™!,

All the phenomena described above arise in small vessels where the characteristic di-
mensions of flow channel and particle approach each other. In other words the continuum
concept becomes inappropriate and the particulate nature of blood becomes more impor-

tant.



1.3 Branching points and bifurcations

With the plasma gap near the wall in mind. imagine a small vessel branching off the main
vesse] on the side and draining a small amount of fluid from the main channel. It is very
likely that the small side branch will contain a larger plasma {raction than the main vessel.
This is because the small branching vessel takes fluid away from the cell poor region of the
main vessel. Krogh [27] first denoted the term “plasma skimming™ for this phase separation
plicnomenon. separation of the suspending medium. plasma and the suspended particles,
red cells. He ohserved a reduction of hematocrit when there was a reduction in flow in the
small side branch. Since then plasma skiiaming has been the subject of numerous studies
both in vive and in vitro [23.26.28.29.30.31.32.33].

By occluding vessels downstream from branch points Svanes and Zweifach [34] found
that the changes in arteriolar hematocrits depend on the flow fraction split into the side
branch. Johnson [35] and Johnson et al. [36] used optical opacity as an index of the
hematocrits at capillary bifurcations in mesentery. They found that the hematocrits of
daughter branches are determined by the cell velocities in each branch. In vitro experiments
concerning plasma skimming have been conducted either by perfusing biood suspensions
through small channels. or by using scaled-up models to simulate the blood flow in small
vessels both kinematically and dynamically. Yen and Fung [29] used a scaled up model with
gelatin pellets suspended in silicon fluid. The flow had very iow Revnolds numbers (10-2-
10-3) so the branching angle was considered unimportant. They found that in bifurcations
with same size branches, the branch with higher velocity would have more cells. Also
a critical flow was observed and found to be dependent on the feed hematocrit and the
particle/tube size ratio. Palmer [26]) used a blood suspension flowing through a tiny (30
pm} two dimensional slit channel. He found a nonuniform hematocrit profile across the slit
which should be responsible for the plasma skimming. Dellimore et al. [33] used human
blood perfused through a cylindrical tube bifurcation of 180 ym diameter. They observed
plasma skimming by plotting fractional cell flux versus fractional volumetric flow of a side

branch. Fenton ef al. [37] used different preparations of blood suspensions perfused through

=1



equal-sized-branch bifurcations with sizes ranging from 20 to 100 gam. They concluded that
at least three factors are important in bifurcation plasma skimming: feed hematocrit. tube
size and flow rate distribution. In addition to the separation of plasma and red cells, recentlv
the issue of plasma platelet separation at junctions has received attention [38].

In spite of so much work having been done on plasma skimming and the factors that
affect it. most studies are confined to single bifurcations and assume axisvmmetric charac-
teristics as the blood approaches the hifurcation. The problems of plasma skimming when
bifurcations in series are considered may be an important issue.

The jdea that plasma skimming occurs at a bifurcation strongly suggests that, due to
the flow disturbance of the side branch, the red cell concentration profile across the lumen
is skewed after a bifurcation. Apparently two parameters affect the extent of asvmmetry:
one is the amount of flow withdrawn by the side branch (magnitude of the disturbance).
and the other is the shape of the streamtube (shape of the separating surface) which goes
into the side branch. The term separating surface is defined as the boundary surface which
divides the flow into two parts, each part flowing to different branches downstream of the
bifurcation. If this skewed red cell concentration profile is carried to the next junction before
it 1s fully rearranged. then the amount of plasma skimming of the second bifurcation will
be different from the first ore. In such a case the hematocrit profile prior to the bifurcation
is an important variable in determining the amount of plasma skimming. Several studies
[21.39] suggest that this rearranging process could be relatively slow and would result in a

considerably non-axisymmetric hematocrit profile when the second junction is reached.

1.4 Synopsis of this study

The flow behavior of blood at a branching site is examined in this study by conducting a
scaled-up dye experiment. Separating surfaces for T-type branch junctions are quantified.
Mapping techniques of upstream flow to a downstream location of a bifurcation are pre-
sented and verified by the dye experiment. The rearrangement of RBC between bifurcations

in series is modeled by a dispersion process. A model mathematical equation describing this



rearrangement process is solved using numerical techniques to obtain RBC concentration
profiles at each axial location. Dispersion coefficients are estimated by comparing in vitro
experimental data obtained for 30 um hore tubes and calculated results. These matliemat-

ical models are then applied to compute hematocrit distributions in a simple network.



Chapter 2

Models of Plasma Skimming

The amount of plasma skimming at a single bifurcation is demonstrated by plotting F*
versus Q*. which is usually called a flux-flow curve for simplicity. F* is the volumetric
fraction of cells entering one daughter branch and Q* is the volumetric fraction of flow
entering the same side branch. In the case that the RBCs are evenly distributed across the
parent vesse] lumen, there will be no phase separation (no plasma skimming) at the junction
and the resulting fiux-flow curve for such a single bifurcation is the identity line. Thus the
extent of plasma skimming can be quantified by the deviation of the flux-flow curve from
the identity line. Another important issue worth addressing is that in two-dimensional (slit)
flow, symmetric velocity and RBC profiles result in a symmetric flux-flow curve about the
point (Q*=0.5. F*=0.5), this is not necessarily true in three dimensional flow (tube flow
for example). This is due to an additional degree of freedom in three dimensions. the shape
of separating surface. But the mirror image of a flux-flow curve for one daughter branch
through the point (0.5, 0.3) is always the flux-flow curve for the other daughter branch.

Sometimes the hematocrit ratio plot is used in interpreting plasma skimming. In these
plots the ratio F*/Q* is plotted against Q* of a branch. Physically F*/Q* represents the
ratio of side to parent discharge hematocrit. Not only is the discharged hematocrit ratio
directly read from this kind of plot, the differences between such curves are also magnified
which are usually small and hard to detect in a flux-flow curve.

If one assumes that each particle (RBC) follows a fluid streamline through the junction,
as was done throughout this study, then three determining factors for plasma skimming

in a bifurcation are identified : the RBC concentration profile (including the width of the
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cell-free gap if there is one). the velocity profile and the shape of separating surface.

2.1 Velocity and hematocrit profiles

As mentioned in the previous chapter. the velocity profile of a red cell suspension in tubes
can vary from blunt to parabolic depending on the flow rate [G). Three different profiles will
be examined in this study. The fiat (uniform) and parabolic proftles were used to mimic the
two extremes at lower and higher flow rates. The 2-phase velocity profile considered takes
into account the existance of two lavers of fluid with different viscosities. one is the cell-rich
core phase and the other is the cell-free plasma gap phase. Taking the average velocity. ¢
as the characteristic velocity and defining the dimensionless radial coordinate as £ = r/R
where R is the tube radius and r is the radial coordinate . these velocity profiles can be

expressed in the following dimensionless forms,

s flat

V(€)= ”“’ =1 (2.1)
e parabolic

Vg =2A1-€) (2.2)
e 2-phase

I”’ (1-G)P?+[1-(1-GPlp—£€%2 0<€<1-G corephase
(2.3)
where normalized plasma gap width G = g/R,

4
K =((1-GRa-g¢y4+ 229" G)

(¢ - 1)+ ]
A=(1-G¥+1-(1-G)s,

and ¢ is the viscosity ratio of the core and gap. Barbee [40] proposed a correlation for
¢ and core hematocrit. Given the feed hematocrit and gap width the viscosity ratio

is found from the Barbee correlation through the law of conservation.
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The form of the hematocrit prefiles used is either uniform or parabolic core lematocrit.
¢ Uniform

0 1-G<E&<1 gap phase

H. 0<&<1—-G core phase
e Parabolic

0 1-G < €< 1 gap phase
H(E) = (2.5)

Hmax{(1 = G)?~€?] 0<£&<1-G core phase
2.2 Cell-free gap width

The idea of a cell-free plasma gap implies that there will be no cells going into the side
branch when the disturbance coming from side branch withdrawal is not significant enough
to penetrate into the core zone. In some sense. this is similar to the phenomenon frequently
observed in capillaries of in vivo experiments [29.41] in that a threshoid (critical) flow is
required to have cells present in a side branch. Using a 2-phase velocity profile and planar
(flat) separating surface Carr [24] calculated the cell free plasma gap width and suggested
that a 4 pm gap width is adequate for equal sized T-branches ranging from 20 to 100
pm, and 20% to 40% feed hematocrit. He also concluded from his experiment that cell
deformability has negligible influence on gap width. The same plasma skimming data was
used in this study to calculate the hest fit plasma gap width when substituting a flat velocity

profile. The results showed that a layer of 2 pm fit the 50 um diameter data the best.

2.3 Separating surfaces

Various shapes of separating surfaces have been reported. The shape of separating surface
is influenced by flow splits, branching angle, ratio of branch sizes. feed hematocrit and flow
rate. Based on our experimental results presented in Chapter 4, two kinds of separating
surfaces are selected for discussion in this section, flat and arc shaped. Flat surfaces have
been used by several investigators {41,42]. As shown in Figure 2-1 the flat surface is de-

termined by one parameter, the perpendicular displacement of the surface from the tube

12



center. s. When the bifurcation has geometrically symmetric branches and equal flow splits.
the separating surface will be located at the center plane. The arc surface. bulging away
from the side branch opening. is always assumed to be centered at the tube wall and also

determined by only one parameter [38]. the radius of the arc. 7,. in these madeling studies.

Figure 2-1: Flat and curved (arc) separating surface.

The flux-flow curves are obtained by integrating flow and flux in the flow region A,

bounded by separating surfaces and the tube wall:

"= M_é_ 2.6
o = Qﬂ'ﬁ]RU(T‘)TdT (2.6)
F fA;(T)H(T)dA , (2.7)

27 fo v(r) H(r)rdr

Using a 2-phase velocity profile Fenton et al. [37] calculated the Q* and F* for flat
separating surfaces, Perkkio and Keskinen [43] have presented the forms for arc surfaces.

A simple parabolic velocity profile, uniform RBC distribution in the core and a cell free
gap width, g were assumed for this study. (These are generally assumed in the calculations

that follow except when specified.) By introducing following normalized dimensionless
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variables.

5=s/R, and

R.=r/R=(R-g)/R=(1-G)

Q* and F* for flat and arc separating surface are calculated as following,

e I'lat surfaces

25 sin3(cos™1 &) §sin{cos™! §)—cos1 §)

3r 7
7 5 cos?8 1 R? R?
r o= (= _— .5 cos — =)= —=={f++ - =2
[2+9+RCC050+RCSCOGB( 3 2) 2{ + m))/7(1 5 )(2.9)
for —R. < 5 < R, and 8 = sin! ﬁq—c
e Arc surfaces
. _ H2- RI/4)R3cos? 6, 4 R,coséy. R} 1
@ = T TR - =)= g
1 2 3 R? .

_-é-TF{(Q_Ra)COS 02+3[02+(1—'?)C0502]} (210)

where R, is the dimensionless arc radius, R, = r,/R and

.- _'Ra .- R2
#; = sin™? 5 #; = sin 1(1—3"-).

ForG < R, < (G +2)

. 3+ (R2-R2+1)/2 Ri R? - R? —1)cos#
- = { ( 3 ) ](Ruc0503)3—7[03+( - SRQ = 3]
rR3 R = (R2 — R®> 4+ 1)cosé,
LTI - S - KA P i e
1 + R(1 > )[2 4 R, ]
2 _ p2 3 3 2
_(RZ - R3 +61)Rccos 94}/[77}23(1_%2)] (2.11)
where
R}-R?-1 R~ R241
= &} -1 [ a , 8. = si -1 c a .
f3 = sin —5R . 4 = sin —5F E.
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For demonstration. a calculated flux-flow plot for flat and arc separating surfaces is shown
in Figure 2-2. The solid curve represents the calculatjon results based on the flat separation
surface and the broken curve on the arc surface. Using dpm as the gap width in a 20
pm diameter tube, this plot shows the effect of the shape of separation surfaces on plasma

skimming,.

Figure 2-2: Flux-flow curves for flat (solid line) and arc (broken) separating surfaces

Sometimes these S-shaped curves are represented by a logit function to correlate exper-
imental data [33,8.44].
Logit( F™) = a + bLogit{Q") (2.12)

where Logit(z) = In[(1 — z)/z). The parameter @ determines the asymmetry of the cell
distribution between the branches, while b characterizes the shape of the curve. Since a flat
separating surface with axisymmetric profiles results in a symmetric flux-flow curve with

respect to point (0.5,0.5), the corresponding Logit function fit should have parameter «



vanish. As far as the critical flow is concerned. according to Pries ef al. [44]. the Q* is
further substituted by 0.5 — F":‘h(ﬂ.é — @*). in which Xy is the critical flow fraction. The
no cell flux requirement when Q* is Xy and 1 — X is thus satisfied. But this substitution
does not allow different critical flows at different ends of the flux-flow plot, which exists
when curved separating surfaces are used.

If the plasma gap remains at 4 jon the magnitude of the dimensionless gap width will
change as the size of the vessel changes. Obviously as the vessel size increases the plasma
gap becomes relatively less important. However when the factor of the shape of separating
surface exerts its influence the net effect is not so clear. It is asked if there is a range of vessel
sizes in which the choice of the separating surface makes little difference as far as plasma
skimming is concerned. A plot of the differences between computed flux-flow curves versus
vessel sizes was thus created. The area between two flux-flow curves is used to quantify the

difference. The plot is shown in Figure 2-3.

Surprisingly. this plot suggests that the shape of separating surface is irrelavent to the
plasma skimming when the parent vessel is larger than about 30 gm in diameter. The
choice of separating surface makes a drastic difference when the vessel size is less than 30

pm.
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Chapter 3

Problems of Serial Bifurcations

Though the phase separation is tiny for vessels larger than capillaries (about 20-70 g
[43]). it could be accentuated if a series of bifurcations is encountered. In addition to
the problem of plasma skimming at a branching point. the process which takes place in the
vessel segment between junctions has to be evaluated if bifurcations in series are considered.
The streamlines bend while the blood flows through the junction. By assuming the red cells
follow the streamlines [41.24.17,37,43]. the cell distribution downstream of the junction is
no longer axisymmetric, nor is the velocity profile.

The velocity profile corrects itself through hvdrodynamic processes. This hydrodyvnamic
entrance length is usually short compared to the diffusional entrance length. This can be
checked by comparing the suspension kinematic viscosity and the red cell diffusivity. A pre-
liminary test from the RBC self-diffusion coefficient derived by Goldsmith [21] shows little
question about this statement. Experimentally Levine and Goldsmith [46] showed that the
velocity profiles developed mostly within one to two diameters in a diverging Y-bifurcation.
Because the viscosity and hematocrit are interrelated, strictly speaking the velocity profile
shall not be symmetric until the concentration profile is fully developed (symmetric). In
this study it is assumed that the velocity profile recovers from the disturbance in a short
distance (compared to the hematocrit recovery length) and remains unchanged throughout
the red cell rearranging process. The corrections due to viscosity changes are neglected.

As blood flows between junctions, the hematocrit profile regains symmetry. It is sus-
pected that this is because red cells migrate across streamlines. The driving force of red

cell movement across suspension streamlines exists for the following reasons:
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e The famous Segré-Silberberg effect [47.48] (or tubular pinch effect), which indicates
the existence of inertia-induced radial migration of an isolated neutrally buoyvant rigid
particle toward an equilibrium position in shear flow. For deformable particles Gold-
smith {21] showed that the equilibrium position is at the tube axis even at negligible
fluid inertia. In these conditions the rigid particles do not migrate in either direction

due to the kinematic reversibility of the flow.

e Shear-induced interactions among neighboring particles in concentrated suspensions
(particle collisions), first postulated by Thomas et el. [19]. Each particle in shear
flow rotates and creates a local velocity field around it. In concentrated suspensions
this field influences the neighboring particles and each particle is influenced by the
fields created by its neighboring parficles. Also, particles travel at different velocities
in shear flow. and frequent collisions, not necessary physical contacts, occur among
neighboring particles. Particle lateral movements do occur when many particles are
involved in this process [50]. Eckstein [51] proposed that when many particles are
involved the particle lateral migration is caused by continuous inputs from successive
randomly arranged surounding particles. This particle migration process exhibits
stochastic behavior associated with random-walk processes. Thus it is plausible to
quantify this process by Fick's law of diffusion in terms of a coefficient of self-diffusion.
Goldsmith [21] analyzed the random radial displacements of red cells as similar to
Brownian motion and measured the self-dispersion coeflicient in red cell suspensions

with hematacrit of 0.39.

e The tendency of forming a concentric configuration when two immiscible fluids with
different viscosities are flowing in a circular pipe, with the thinner fluid encapsulat-
ing the thicker fluid. This has been observed experimentally [52.53] and explained
theoretically by minimum viscous dissipation. Joseph [54] showed that the viscous
dissipation principle is not always true thouglh, the lubrication flow of the thinner
fluid encapsulating the thicker fluid is stable as long as the fractional core radius is

greater than 0.7. The entrance length of this encapsulation process has been studied
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experimentally. The most similar system to the plasma/red cell suspension studied
was the xylene/sucrose solution system. Its entrance lengtl was approximately 1

vessel diameter [55].

The high red cell concentration (about 40% to 15% in volume) in the circulatory system
prohably favors the particle collision mechanism over the tubular pinch effect. The short
distance for developing the lubrication laver in two immiscible phases may not apply to
the blood suspension case because of the absence of an immiscible interface in bood flow.
Local apparent viscosity varies with the hematocrit profile. Iimmediately downstream of a
junction the hematocrit profile is shifted and a sharp interface between enlarged plasma gap
{less viscous phase) and shifted cell-rich core (more viscous phase) could exist momentarily.
As soon as this interface starts to move herefrom. according to the minimum viscous dissi-
pation principle [56]. a gradual gradient of hematocrit across the original interface develops.
Then, the lubricating process should slow down asymptotically. This procedure continues
until either the minimum viscous dissipation flow configuration is achieved. or the viscosity
difference no longer exists.

It is thus believed that after being disturbed (perhaps by the presence of a side branch),
the resulting asvmmetric hematocrit profile corrects itself. This rearranging process in
a blood vessel is driven by at least two different mechanisms. One is the tendency to
form a lubricating layer and the other is the shear-induced diffusional type mechanism
resulting from neighboring particles interactions. Apparently, local particle concentration
and shear rate in the flow field play important roles in the latter mechanism which is
not the same as the ordinary diffusion. In fact the wall interference (depending on the
geometric parameters), shear rate gradient, particle related fluid Reynolds number, such as
pa?y [y, and gravity (if particles are not neutrally buoyvant ) also effect the “diffusional” radial
migration. The intrinsic dispersion coefficient is most probably anisotropic (directional)
because the hematocrit and shear rate won’t be constant when the cells are rearranging
themselves between junctions, and that the wall interference only disappears in very large

vessels. In this situation the random walk theory does not apply ideally. To consider all
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these factors separately introduces extreme difficulties. It is intented in this study that all
these effects be included in a lumped parameter, the effective dispersion coefficient.

In summary. the answer to the problem of red cell distribution at hand is divided into
two stages. First. the branching tube flow forces the cell-rich core portion in the parent tube
to shift to the intralateral side of the daughter branch, the disturbed velocity profile recovers
in a short distance. during which the red cells may migrate across streamlines a little but the
ma jor shift is due to the streamline bending. At the same time the wall exclusion and sonte
lubrication effect build up a cell-free plasma gap quickly along the intralateral tube wall.
When all this is completed. the initial hematocrit distribution is developed. It is assumed
that all these actions are included in an initial shift mechanism. The technique to derive this
initial shift 1s described in Section 3.1. Then. starting from this initial hematocrit profile
the red cells rearrange themselves toward a syminetric profile as the bulk flow continues
down the vessel. This process is modeled by using a constant effective dispersion coefficient

as discussed in Section 3.2.

3.1 Initial shift in hematocrit profile

This section will discuss the shift of the hematocrit profile across the junction at an ax-
ial location where the velocity profile is fully developed. This is essential and provides
the required initial condition if the subsequent rearrangement process is to be quantified.
Streamline tracing of suspending medium was attempted to gain the initial condition. Ana-
Iytical solution was first attempted but found not feasible. Then a semi-empirical technique

was developed to give the initial condition.

3.1.1 Stream function approach

If the streamlines do not cross each other in a slit bifurcation, the mapping of streamlines in
a two-dimensional junction is easily accomplished by using the concept of stream functions.
The stream function of a two dimensional flow can be derived by integrating velocity with

respect to the coordinate across the slit, £. By definition the difference between the value
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of the stream function for two streamlines is exactly the volumetric flow between these two
streamlines. If the integration constant is set to zero then the stream function has value
zero at £=0. The magnitude of the velocity can be adjusted so that the volumetric flow
across the slit is normalized. making the value of the stream function equal to 1 at £=1.

For Poiseuille flow the upstream stream function ¢' is thus
w(€) = 3¢% — 263 (3.1)

The streamline that separates the flow into two daughter branches must have the value Q*
if the flow split designates this fraction of flow to enter the side branch. Being constant
along a solid boundary surface. the stream function after the velocity profiles in daughter

branches are fully developed must be
¥(¢) = Q*(3¢% - 2¢°%) (3.2)
for the branch receiving the flow portion having stream function values less than Q* and
w(n) = (1 - Q*)(39° - 27°) + Q* (3.3)

for the other branch. The { and 5 represent the dimensionless coordinates across branch
slits. The streamline tracing can be achieved by equating values of stream functions to solve
for downstream location { or 7.

The streamline in three dimensions is expressed as the intersection of two families of
level surfaces [57). Similar information, the velocity profiles, the separating surfaces, the
mapping of streamlines on the boundary surfaces, are used to simulate the derivation of the
2-D case in order to trace every streamline in three dimension. Unfortunately, the extension
of the stream function approach to a three-dimensional flow has not been successful. The
outcome is comprehensible that in 2-D flow the bending of streamlines has only one degree
of freedom (1 directional} which is easily solved by insisting that the downstream velocity
profile satisfy the continuity equation. While in 3-D flow the bending is two-directional.
The condition of matching the flow between level surfaces {continuity requirement) alone

does not suffice to solve a problem with 2 unknown variables. The force balance equation
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(Navier-Stokes equation) must be solved simultaneously to get a solution. Such solutions

have not yvet been available.

3.1.2 Mapping technique

A mapping technique was proposed to determine the initial hematocrit shift. Initiated
from the idea of separating surfaces, this teclinique assumed that the fluid elements never
clhiange their relative positions through the junction. To keep their relative positions in the
case of a flat separating surface. every point in the flow field to be mapped is imagined as
the intersection of two imaginary flat separating surfaces. chord AD and BF as shown in
Figure 3-1: one parallel (chord BF) to the actual separating surface {chord CE) and the

other (chord AD) perpendicular to it,

Upstream Downstream
B C B’
/- oot
A / A° / - D
P |D P

F—— -

Figure 3-1: Mapping demonstratign

One of the ways to maintain relative position after the bifurcation is to require that
the flow through area ABCDPA and area ABPFA upstream remain in area A’'B’D'P’A’
and A'B'P'F'A’ downstream respectively. By matching the flow fractions in these regions
the locations of chord A'D" and B’F’ are determined. The point P’ is thus mapped from
upstream point P. In this fashion the flow element above point P upstream the junction

will never come beneath it after the junction, and the fluid element originally on its left
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will remain on its left downstream the junction. With the same idea the straight chords
used can be changed to any shape depending on the shape of separating surface. This
techinique is not only used in mapping the plasma gap boundary. it is also used to shift the
upstream hematocrit profiles to downstream when they are not uniform. Depending on the
velocity profile used, the evaluation of flow bounded in different shaped regions was done by
numerical integration with Simpson's rule. The technique was tested in a dve experiment

as described in the next chapter.

3.2 Model equation for cell dispersion between junctions

It is proposed that a dispersion type of process be used to model the cell rearrangement
between junctions in a serial bifurcations network. A constant parameter. dispersion co-
efficient D, is assumed. The mass balance of red cells results in the following convective
diffusion equation

v-YH=DY*H+v m, (3.4)
where v is the velocity. H is the local cells concentration, and D is the effective particle
dispersion coefficient. The 7 is included for generality which is responsible for the driving
forces of the Segré-Silberberg effect. The exact form of this vector function is not known.
When a cell-free plasma gap is present the domain of Equation 3.4 is confined to the core
region in which the cells can be present. The boundary condition near the wall side would
be no flux of cells crossing the plasma gap boundary. Mathematically this means a balance
between the diffusional flux and /.

It is assumed that the formation of the plasma gap is due to the exertion of wall stress
upon the suspension and established as quickly as the velocity profile regains its symmetry
after the disturbance (bifurcation). Thus, in addition to the mapping technique described
in the previous section the initial condition of this problem is obtained by also imposing
a minimum plasma gap on the inner lateral side of the downstream branch. That is, the
mapping techniques apply to the core region only. No cells can ever be mapped into the

plasma gap region.
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Using the magnitude of RBC self-diffusion coefficient derived by Goldsmith [21], dimen-
sional analysis shows that the dispersion in the axial direction is negligible. It is assumed
that the flux vector @ has only a component in radial direction. For parabolic velocity

profile Equation 3.4 can be expressed in cylindrical coordinates as

de 19 0c 1 0% 18

—_ (—)2]= = —— —_—— —_(r .5
21 ( ) ] p[wdr( ()r)+1-2892]+1'07'(7???r) (3:3)
with boundary conditions
- —-f{: = m, at =R-
¢ is finite at =0 7
(3.6)

c(r.0.zY=¢(r.2n.z) and %(7‘.0.:):%(1'.21-’.:)

{ c=ci(r.8) at =
The asvmptotic solution (as n — o¢), ¢5, must be function of r only. From Equation 3.5

the ¢; can be expressed as
_pPs oy B (3.7)

dr r

where K’ is an integration constant. Since ¢, is finite at r = 0, i’y must vanish. and the
asymptotic solution is determined by the flux vector functin 7i. Equation 3.7 is now exactly
the same as the first boundary condition in Equation 3.6. Since ¢ = ¢5 + ¢;, subtracting the
asymptotic solution from the total solution gives the transient solution. The equation and

boundary conditions for the transient concentration will always be the same regardless of

the asvmptotic solution chosen. They are

Bct 148 6(‘: 1 62(.‘1
— (= = —_—— ¥
201 - (5157 = Pgr g + 2 g (3.8)
(.
22 =0 at r=R-g
¢; is finite at r=10
B. C. 4 (3.9)

ce(r.0,2) = ¢p(r,2m,z) and ‘:’f (r.0. 2} = ‘:’f (r,2m,z2)

¢ = cir.8) at z2=0

\

The asymptotic solution is affected only by m,.
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By introducing proper dimensionless variables Equation 3.8 is non-dimensijonalize to

oC 1 9*C 18C 1 9%C
— = - -y L .
A= = ve'ae Y eae TEoe) (3.10)
e =0 at £=1-~G
C s finite at £=0
B. C. ' _ (3.11)
0.y =C(E2x. ) and %(f.O.r]): %%(6.21.-.7))
| C=C5(E.8) at n=20
where
r z
£ = — - —
ST R T=F
. _ Ci _ 2R
= = Pe = 5

and ¢, is any reference concentration. Similarly if a uniform velocity profile is substituted

in place of the parabolic velocity profile, the dimensionless form becomes

ac 2 9C 19C 1 8°C _
o = vl o T Eae T @oe) 12

with the same boundary conditions shown in Equation 3.11.

In this study, two asvmptotic solution will be specified. One is a flat concentration
profile which will eliminate the last term in Equation 3.4. Actually in such case the m, in
Equation 3.7 becomes zero. The other asvmptotic solution used will be a parabolic profile
with zero concentration on the outside boundary. The parabolic profile results if m, is

a linear function of r. Numerical methods and solutions for Equation 3.10 and 3.11 are

demonstrated in Chapter 5.
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Chapter 4

Experiments to Determine

Separating Surfaces and Mapping

Flow through branching tubes or bifurcations was examined by scaled-up dyve experiments.
Bifurcations with T-type configuration were studied. A T-type bifurcation is a straight
parent tube with another straight side branch extending out perpendicularly from it. For
clarity the feeding segment is designated as the parent branch. The other two vessels are
defined as daughter branches with one called the side branch. and the other the continuing
branch. It was suspected that the daughter to parent branch size ratios (Db/Dp) and the
flow splits determine the shapes of separation surfaces. The branching angle is thought to
be havelittle effect at low Reynolds numbers. Separating surfaces of two different size ratios
at various fractional flow off the side branch were obtainred. Streamline tracing (mapping)
through the bifurcation was also accomplished in this experiment to test the mathematical

mapping technique presented in the previous chapter.

4.1 Materials and methods

The major experimental apparatus is illustrated in Figure 4-1. The bifurcation is fabricated
by drilling a hole through a Lucite block as the parent tube. Another hole is drilled from
the side edge untill the parent tube is reached and connected, forming the side branch. The
inside wall of these holes are reamed to obtain the desired bore size, and polished so the

dye stream can be seen clearly from the outside.
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Two similar blocks were built: one has a 0.5-in diameter parent tube and a 0.5-in side
branch (Db/Dp=1}): the other has the same sized parent tube but half sized (0.23-in) side
branch (Db/Dp=1/2). No extra work was doune to the rims connecting parent branch and
side branch. they remained sharp edged. Three extension plexiglass tubes were mounted
firmly to the block at each end of the branches with Teflon tape to prevent leakage. At the
feeding end of the plexiglass tube an injector section was connected. The injector section
consists of a cylindrical block with a 0.5-in. hole drilled along its axis. a protractor mounted
to the cylindrical block. a dye injection needle penetrating through a nylon scr'e\;&' is mounted
on the side of the cylinder as shown in Figure 4-1. The nylon screw can be turned in or
out of the cvlindrical block to adjust the radial location of the injection needle tip in the
upstream flow field. At the joint of the injector section and the feeding tube leading to
the bifurcation block, two O-rings were fit into slits to serve as leakage sealant and still
enable rotation of the whole injector section with respect to the bifurcation block. The
displacement of the needle tip from the tube wall was obtained by measuring the external
length of the nylon screw using a dial caliper. The angular location was adjusted by rotating
the whole injector section. With the help of the protractor the angular displacement was
read from a reference position, which consists of a stationary thread with a hanging weight
to remain vertical. A similar device, the detector section, is connected to the continuing
branch. However. a micrometer head with a sewing needle was mounted on the detector
instead of the nylon screw used in the injection section. The radial locaton of the needle
tip detecting the dye stream was read directly from the micrometer.

As shown in Figure 4-2, flow is gravity driven by maintaining a constant level difference
between feeding and draining reservoirs. Flow fractions of the two daughter branches are
controlled by two valves and monitored through two identical rotameters. In order to
have low Reynolds number flow (Re < 1) without decreasing the velocity too much, a
concentrated (about 60 wt% ) sugar solution was prepared and used as the major working
fluid for its high viscosity. Tap water served as another working fluid for higher Reynolds

numbers. The injected dye solution was prepared by mixing red food coloring with isopropyl
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Figure 4-2: Experimental setup.
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alcohol or sugar solution to adjust its density so that the buovancy effects are minimized.
Meanwhile the device is set up vertically to decrease these effects. 1t was visually observed
that tle dye filament did not flow straight up from the injection needle tip. instead it bent
back slightly along the length of the needle before rising vertically, Thus. there is deviation
between the needle tip and the actual dye stream locations. This bending depends on the
local velocity near the needle tip. Correlation of the injection needle position and the dve
location was used to correct this effect. The correlation was obtained by running fluid
through a section of straight tube instead of a bifurcation block. Length measurements of
the nylon screw represented the needle tip’s radial location while the dve stream’s position
was determined by tlie micrometer needle tip in the detector section.

The Reynolds number in the parent branch is checked by measuring flow rate and
viscosity befare and after each run. Flow rate is measured by collecting fluid (about 25 ml)
and the viscosity is measured by a cone and plate viscometer (Brookfield RV'T).

The separating surface is found by moving the location of the injection needle tip until
the dye filament was equally split at the rim of the junction. Initially the experiments were
conducted by running water through the model. The entering Revnolds numbers in the
parent branch were about 167. At these Reynolds numbers vortices were observed near the
junction which agreed with the results reported by Karino et al. [58]. Sugar solution was
then introduced to decrease the Revnolds number so the vortices were avoided. Separating
surfaces for three branching configurations have been obtained: same size branches (0.5
in.—0.5 in.) with side-brancli-tvpe jucntion; same size branches with the side branch as the
feeding vessel; and half size (0.5 in.—0.25 in.) side-branch-type junction.

The mapping of flow element through the junction is done by setting an upstream dyve
filament location then detecting its downstream location. Similar to the injection needle.
the dye stream bends as it approaches the detection needle. The detection is accomplished
by moving the detection needle tip until two criteria are met: first, the dye filament and
the tip are visually superimposed angularly; second, the needle tip is radially located at

the imaginary dye stream continuation line, which is the line connecting the upstream dye
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stream and downstream needle tip.
Data points at upstream circies, 20° apart from each other were mapped to their down-

stream locations for several different flow splits.

4.2 Results

Figures 4-3. 4-4. 4-5 show the results of the separating surfaces at low Reynolds numbers
(less than 1). The numbers associated with each set of data represent the flow {raction. Q*
off the side branch. Figure 4-3 shows the flat separating surfaces when the branches Lave
the same diameters (0.5in.-0.5in.). Slight curvature appears as Q* deviates from one half.
It is also suspected that the curvature is present near the tube wall although this is not
clearly shown in the figure. The results when using the side branch as the feeding branch are
shown in Figure 4-4. Again a flat separating surface is obtained for this fiow arrangement.
Figure 4-5 shows the results when the side branch is half the size of the parent branch.
The separating surfaces are curved. buiging away from the opening of the side branch. The
solid curves shown in Figure 4-5 are arcs centered at the tube wall. By varyving only one

parameter. the radius, these arcs fit the data satisfactorily.

Figure 4-3: Separating surfaces for side-branch-type junction.
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Figure 4-4: Separating surfaces for T-type junction.

Figure 4.5: Separating surfaces for side branch junction with unequal diameters.

33



The results obtained by running water at higher Revnolds numbers (about 167) are
shown in Figure 4-6. Vortices were seen in these experiments. When a dve stream enters
a vortex it is very likely that it spread itself to a broader stream then diverge into more
than one stream in the vortex. Very often these branched dve streams end up in different
branch tubes and the flow becomes very complicated. The data points shown in Figure 4-6

are those injection positions where injected dve did not enter a vortex.

Figure 4-6: Separating surfaces at high Reynolds number.

Figure 4-7 shows previous work done on separating surfaces [60.59.61.31.17]. Among
the three crescent shaped separating surfaces with bulges toward the side branch opening,.
Pinchak and Ostrach reported the Reynolds number to be 500, @fjord and Clausen reported
600, Stoltz et al. did not report flow rates or Reynolds numbers. It is suspected that in
such high Revnolds numbers vortex formation seems to be unavoidable in most flow splits
[58]. This shape of separating surface is believed to exist only when the side branch flow

fraction is small and during which the major vortex is absent.

The double-humped shape reported by Deakin and Blest is peculiar. It has been brought

to the author’s attention that attempts to locate the absolute position of the injection needle
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Deakin & Blest, 1970
®Deakin & Blest, 1970
*0fjord & Clausen, 1983
Xpinchak & Ostrach, 1976
*Stoltz et al., 1973
*Chien et ol., 1986

Figure 4-7; The shape of separating surfaces previously obtained.

tip is difficult due to the ofiset imbedded in the device when it was fabricated. For this
reason the separating surfaces shown in this dissertation were all obtained by full range
measurement (that is. every point in the flow field shown was actually measured). then
about ten degrees of rotation was needed to bring the pictures of surfaces to symmetry.
Deakin and Blest only measured one half of the flow field and completed the whole figure
by folding the data points through the half plane of assumed symmetry, If the side branch
opening has not been Jocated precisely with respect to the data points. the half plane
used for flipping over would not be correct and a double-hump can easily result. It is
thus suspected that if a full range measurement was conducted instead of folding over. the
double-humped image could be avoided. Also the close proximity of the bifurcation and
mapping site (about three quarters of a diameter) could cause problems [24]. Chien et al.
studied the separating surface for the same sized T-junctions with the side branch as the
feeding branch. A much greater range of Q* was examined in their study. At Revnolds

numbers ranging from 0.1 to 0.01, a nearly flat shape is reported.
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The experimental results of streamline tracing through the junction are shown in Fig-
ure 4-8. The fractional circle in each plot is the upstream ring to be mapped (the portion
not shown ts withdrawn into the side branch). The broken line represents the computational
result based on the mapping technique described in the previous chapter. In the case where
the side branch has the same size as the parent branch (a. b. c). flat separating surfaces
were used to compute the downstream mapping. For the half size side branch (d. e. f)
the actual separating surface is curved. The calculation was based on the best fitted arc
separating surfaces as the actual separating surface. For simplicity. every point upstream
is still defined by two perpendicular chords. similar to the same size side branch case. The
fractional flow into the side branch in each plot is : (a). 18%: (b). 50%.: (c). T0%: {d). 50%.;
(e). 82%: (), 18%. The agreement between the computation and the measurements is quite
good. Only when the upstream ring gets close to the tube wall does the computation not
agree with measurements as well, especially in the case of half size side branch. Figure 4-9
shows the worst case obtained.

Figures 4-10 and 4-11 show the domains in which the mapping technique works sat-
isfatorily. The curves on the top of each plot is the boundary of possible flow fraction
and upstream radius. Above the curve all the streamlines on the ring bend into the side
branch. In these plots a circled dot represents satisfactory matches between calculation and

experiment. a cross means the agreement is less than satisfactory.
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Figure 4-8: Some results of streamline tracing.
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Figure 4-9: The worst match of computational and experimental results.
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Figure 4-10: Domain for satisfactory match, same size side branch.
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Chapter 5

Solution to the Model Equation

The detailed finite differencing numerical method used to solve Equations 3.10 and 3.12 is
demonstrated in this chapter. In vitro experimental data are used to obtain the effective
dispersion coefficient D. The results by using unifortn or parabolic shapes as final equi-
libuiuin hematocrit profiles are compared. Three velocity profiles as shown in Chapter 2

are applied alternatively to see their effects on red cell dispersion.

5.1 Numerics

To retain the advantage of a tri-diagonal matrix the Alternating-Direction-Implicit (ADI)
method was used [62]. From Equation 3.10 the difference equations in both radial and

angular directional sweeps were derived as following

1k+] ] k+1 i k+] k+1 k+] k+l
(1- fz)cf.g ok 1 G 20T+ Gl G - G
£y Pe (AP JENE
Chioi—2CH + ('f‘.'.m] (5.1)
£2(A8)? '
ok k+3 ke d ka k+1 kg ket
(1- 62)C b -Gt i[C,--{‘fj - 20y, + Cidy | Cigdy — Gy
Y Pe (AL)2 2EAE
£2(A0)2 )

where £ = (7 - 1)A£ and {,j.k are indices for £, @, and n directions respectively. Indices

numbering is shown in Figure 5-1.

Collecting similar terms gives
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(5.4)

. . SETY BN 8 . .
In these two equations the unknown variables are C**2's and ("**1's on the left hand side

of each equation.

The boundary condition requires that at i=NI+1,
Citr,j = Ci1j

Substitution into Equation 5.3 and 5.4 gives

okt citir_2 2Pe(1 — £2), k)
’”[(AE o lmgp * T a7 Gl =
Ckiy—2CE +Chpy +Ck_2Pe(1—€2)
E’(-’\é‘)2 Mo Ag
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The singularity at £ = 0 (i=1) was treated by summing values of nodes surrounding it [62].

,J.+-
a,

_ 2an Nl Lok, + Ch g )/(2ND) = CF,

Pe

(Ag)?

+ (.

{5.8)

The C'f_",—'l is obtained the same way. The symmetry about the tube half plane requires that

Cia=Cizgand C; N33 = CiNJ41-

Two syvstems of linear algebraic equation are solved for every full step advance in -

direction. one for the first half step and one for the second half. The first half step sweeping

in £-dimension (Equation 3.3) results in a series of simultaneous linear equations.

coefficient corresponding to each unknown variable '

Ar(d). A1), Az

k+3

If the

in Equation 5.3 is denoted by

Equation 5.3 can be expressed in a matrix form as following.

F A2(2) Aal(3) 0
A1(2) Ax(3) As(4)
0 A1(3)  Al(4)
0
0

t]
Az(5)

A1(NI-1)
0

0

Ax(NT)
1(NI)

0
Asz(NI+1)

kel
CN1

C“’f

A2(NI+1) |

NI+1,; ]

(7) respectively. and the right hand side of Equation 5.3 is denoted by B(i, j).

B(2,7)
B(3.7)
B(4.j)

B(NLj)

B(NI+1,j)

(5.9)

For j=2 to NJ+2 . B(2.j) includes the first term in Equation 5.3 through the evaluatjon

of €7 from Equation 5.8. The A;(NI) in the last row includes the coefficient of the third

term of Equation 5.3 by applying Equation 5.5. The solved C**+%'s are then passed to

Equation 5.4 to solve for C*+1's in @-directional sweep. Similarly, A}(j). A(7), A4() and
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B'(i. j) denote the coeflicients of Equation 5.4 the matrix form is shown as follows.

g a0 [ a1 s |
Ay A A 0 i3t B(i.3)
0 A AR A5() 0 iy B
0 - : : = E (5.10)
0
0 ALE) AL ALD ('j_‘i{]ﬂ B(i.N1+1)
L 0 A A | ijﬂ,{”” | B'(iNI+2)

For i=2 to NI+1. the A5(7) in the first row includes the first term coefficient of Equa-
tion 3.4 and the Aj(7) in the last row includes the coefficient of the third term of Equa-
tion 5.4. These tridiagonal matrices were solved by simple eliminations and back substitu-
tions.

A typical FORTRAN program used is listed in Appendix A. The program was tested for
stability and convergence by varyving mesh sizes in all three directions. The resuits are listed
in Appendix B. The convergence is checked by comparing concentration profiles derived by
specifving different mesh sizes. The comparison of two concentration profiles is accomplished
by first calculating the flux-flow curve for each concentration profile, then finding the area
between the two flux-flow curves as an indication of the difference between two concentration
profiles. The difference of the initial concentration profile and the symmetric profile is used
as a reference scale. The results show that no noticeable difference is observed by varyving
mesh sizes in radial and axial directions (less than 0.01% difference with respect to the
reference scale). Obviously the ADI differencing is not unconditionally stable in cylindrical
coordinates as it is in rectangular coordinates. It becomes unstable as Ap is increased (or
A decreased). The mesh size in angular direction has little or no effect as far as the stability
is concerned, but it will change the convergence when it is extremely small. Empirically we
conclude that the solution is stable when the ratio 5‘-‘%’%};@ is less than about one half. The

numerijcal solution was also checked against an analytical solution. A mesh density of [A£,
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Af)=[(1-G)/65.7/45]) with y/Pe equal to 0.02/240 has given satisfactory results.
The analvtical solution readily available is for flat velocity profile and axisvmmetrical
situation. which means that the angular variation is absent [63]. With initial condition.

fl&). the solution has the form

2 = n 7 -
C(E.y) = = Y {fexp(— 20,,1)/PeR2)]M/ EfE)Jo(Ean/RIAEY  (5.11)
¢ n=0 n

where the a, are the roots of

.I]((l) =0

An axisymmetric initial condition is specified for the testing of the numerical operations.
The resulting concentration profile in two different axial locations are compared with the
analvtical solution derived from Equation 5.11. The detail is demonstrated in Appendix B.
The results of the comparison show one to two percent difference between the analytical
solution and the solution obtained by the method of finite differencing. The difference is
almost parallel, that is. one of the concentration profile is alwayvs greater than the other
throughout every radial position. A mass balance check between the initial concentration
profile and a calculated downstream concentration profile is thus conducted 1o see whether
this one to two percentage error is resulted from the finite differencing calculation. A
difference less than 0.01% is found in this mass balance check. It is thus suspected that the
one to two percentage error between analyvtical and the numerical solutions resulted from the
specification of the initial condition. In the numerical solution. the initial condition cannot
be assigned exactly the same as that in the analvtica) calculation due to the descretization.
At the radial mesh size and the initial condition specified in the example run. the initial mass
input difference is estimated to be about 1.5%, which explains the one to two percentage

difference abtained earlier.

5.2 Comparison to data

Computational results were compared to published phase separation data in serial bifur-

cations [64]. These in vitro experimental data were obtained by perfusing blood through
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models with two 50pm- 50um bifurcations located on opposite sides of a straight tube,
Reported experimental data include Q1*. the fractional flow off the first branch: Q2*. the
fractional flow off the second branch: F2*. fractional red cell flux off the second branch:
flow rate and tube length between bifurcations. Q1* quantifies the disturbance to the red
cell profile, Q2* and F2* are used to produce flux-flow curves. Flux-flow plots can show
the symmetry of the developing hematocrit profile. A symmetric flux-flow curve through
point (0.5. 0.5) indicates that the hematocrit distribution is axisvmmetric [37]. Data points
were first sorted by Q1*. Four groups. with Q1* equal to 30% +5%. 40% £53%. 50% . £5'%.
60% £5% were obtained. In comparing the length in which dispersion of cells takes place

the important parameter is y/Pe [65]. By definition

ooyl = (ZyER ;
FE_(R)(%R)_(Q)( 7 ) (5.12)

If D is assumed constant. =/¢) becomes the important parameter. In each group of Q1%
collected data points were further divided into two sub-groups based on the reported z/Q
values. Each set of sub-group is plotted on a flux-flow curve for comparison with calculation
results. The grouped data is listed in Appendix B.

Once the velocity profile is chosen the numerical solution of the red cell concentration
profile at any axial location, 5/Pe. can be used to produce a flux-flow curve. A flat separating
surface was used to calculate the red cell flux and volumetric fliow through Equation 2.6 and
2.7. Calculated curves were compared to the experimental curves in an eflfort to determine
which value of (1/Pe). best fit the data. The best fit curve is the one that minimizes the
absolute error between experimental data and the calculated curve. The error is defined
as the vertical distance between the two. By matching the average experimental z/Q and
computational 7/Pe corresponding to the best fit curves, the dispersion coefficient 7 can

be calculated by definition as
n/Pe (5.13)

3
1l
Al
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5.2.1 Flat hematocrit profile

Assuming that the hematocrit profile tends to correct itself to a uniform distribution across
the core region in the vessel. Figure 5-2 and 5-3 show the best fit flux-flow curve to each
data group. Parabolic velocity profile and a dum plasma gap width (G=0.16) are used
in the calculations. In each plot three curves are shown. The lowest curve is the curve
calculated from the initial concentration profile (immediately after the hranch), which is
derived by the mapping technignes demonstrated in Section 3.1.2. Wlhile the upper most
curve is for the axisymmetric concentration profile when the cells are totally rearranged.

The curve between is the best fit to the data points according to the criteria stated above.

Flux Fraction, F2*

Flow Fraction, Q2+
Figure 5-2; Best fit flux-flow curve (para. vel.. flat het.) for Q1*=30%. 2/Q=134.2 s/mm?.

For only two out of eight groups can the best fit curves be found within the initial
and final equilibrium curves. The other plots showed that the initial and symmetric curves
could not envelope the data. The calculated dispersion coefficients from matching the best

fit curve are listed in Table 5.1.

46



o [=] o
4+ < [= -3
2 1 1

Flux Fraction, F2=

o
ho
1

Flow Fraction, Q2x
Figure 3-3: Best fit flux-flow curve (para. vel.. flat het.)for Q1*=40%, z/Q=142.0 s/mm?.

Table 5.1: Dispersion coefficients for uniform hematocrit and parabolic velocity profiles

Q1* (%) 2/Q (s/mm?) D (em?/s) || Q1* (%) z/Q (s/mm?) D (cm?/s)
30 24.6 <2.2x10°° 50 22,2 <24x10°8
30 134.2 7.9 %1077 50 153.9 <34 x107°
40 244 <2.2x10-8 60 52.6 > 2.4 x10°°
40 142.0 9.3 x 107 60 488.2 < 1.1x107*




Having not been able to envelope most of the data by the calculation. the idea of
parabolic hematocrit profile was proposed. The area enclosed by the two extreme curves

(initial curve and syimmetric curve} is anticipated to be broader.

5.2.2 Parabolic hematocrit profile

A two-dimentional study [26] showed that the equilibrium RBC' concentration profile across
a slit is not necessarily uniform in a small channel. The equilibrium profile of hematocrit
for three-dimensjonal tube flow is not clear vet. The effect of hematocrit profile on the
results of the calculation is examined in this section by forcing a parabolic profile as the
final equilibrium profile. Assuining the same governing equation (Equation 3.) except that
the asymptotic hematocrit profile has changed to a parabolic one. the driving force of the
rearranging process can be. thought of as the concentration deviation from the parabolic
equilibrium profile. The initial concentration profile was obtained by tracing back every
node in the domain to its location upstream from the first bifurcation. Assuming a fully
developed parabolic hematocrit profile upstream of the first bifurcation. the same mapping
technique was used to obtain the initial profile. Having Q1* and the corresponding F1*
for the first bifurcation. the magnitude of the final hematocrit profile was calculated by
conservation of the red cells. The actual initial concentration profile fed into the computer
program is the difference between this mapped initial profile and the final parabolic profile.
The output concentration profile from the calculations is added back to the final parabolic
hematocrit profile to calculate the flux-flow curve,

The resulting dispersion coefficients are listed in Table 5.2. The calculated flux-flow plots
matching the experimental data are shown in Figure 5-4. 5-5, 5-6. 5-7, 5-8, and Figure 5-9.

The problem of not being able to envelope the data within two extreme curves seemed
to improve by using the parabolic equilibrium hematocrit profile. Among eight cases, best
fits could be found for all except two. But these figures (3-4 through 3-9) also showed that
the best fit curves are not in harmony with the trend of the data. Almost all the fitted

curves start at lower F* than the data when the Q* is small, and increase more sharply
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Figure 5-4: Best fit flux-flow curve {para. vel., para. hct.) for Q1*=30%. z/Q=24.6 s/mm?2.
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Figure 5-5: Best fit flux-flow curve (para. vel., para. hct.) for Q1*=30%, z/Q=134.2

s/mm?.
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Figure 5-6: Best fit flux-flow curve (para. vel.. para. het.) for Q1*=40%. z/Q=24.4 s/mm"°.
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Figure 5-7: Best fit flux-flow curve (para. vel., para. hct.) for Q1*=50%, z/Q=22.2 s/mm?2.
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Figure 5-8: Best fit flux-flow curve (para. vel.. para. hct.) for Q1*=50%. z/Q=153.94
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Figure 5-9: Best fit flux-flow curve (para. vel., para. hct.) for Q1*=60%, z/Q=488.2
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Table 5.2: Dispersion coeflicients for paraholic hematocrit and parabolic velocity profiles

Q1* (%) z/Q (s/mm?) D (em?/fs) | Q1* (%) z/Q (s/mm?) D {cm?/s)
30 21.6 4.2 x 1073 || 50 22.2 5.5 x 107°
30 134.2 1.3 x 105 || 50 153.9 5.0 x 10~
40 24.4 7.4 x107® || 60 52.6 > 6.6x 1075
40 1420 > 2.5 x 107" | 60 4882 2.2 x 107¢

than the data do. Finally all the curves end up at a higher F* when the Q* approaches 1.

Two more steps were taken to counter this: one was to introduce a flat velocity profile in

the computation: the other was to take into account the shear effects.

It was suggested that a flat velocity profile would be closer to the experimental situations.

In order to use a flat velocity profile the plasma gap width was adjusted by refitting the

experimental data obtained by Carr [24] for 50 um tubes. The best fit curve supported

the gap width to be 1.75 pm (G=0.07). Similar procedures were followed by using the flat

velocity profile. The calculated dispersion coeflicients are shown in Table 5.3.

Table 5.3: Dispersion coefficients for uniform hematocrit and flat velacity profiles

QI* (%) 2/Q (s/mm?) D (cm?/s) i Q1* (%) z/Q (s/mm?) D (cm?/s)
30 246 1.7x 1073 50 222 <12x%10°%
30 134.2 5.5 x 10~ 50 153.9  5.2x 1077
40 24.4 2.0 x 10~% 60 52.6 >3.5x 1078
40 1420 1.7 x 107 60 4R88.2 3.8x 10°°

The results of the best fit are shown in Figure 5-10, 5-11. 5-12, 5-13, 5-14 and Figure 5-

15. The use of a flat velocity profile resulted in six out of eight best fit curves. The matching

of the curves and the data is satisfactory.
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Figure 5-10: Best fit flux-flow curve (flat vel.. flat het.) for Q1*=30%. z/Q=24.6 s/mm?.

L= (=] (=}
E (=] e
1 (] 1

Flux Fraction, F2x

o
N
[

Flow Fraction, Q2x
Figure 5-11: Best fit flux-flow curve (flat vel., flat hct.) for Q1*=30%. z/Q=134.2 s/mm?.
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Figure 5-12: Best fit flux-flow curve (flat vel.. flat hct.) for Q1*=40%. z/Q=24.4 s/mm"*.
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Figure 5-13: Best fit flux-flow curve (flat vel., flat hct.) for Q1*=40%, z/Q=142.0 s/mm?2.
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Figure 5-14: Best fit flux-flow curve (flat vel., flat hct.} for Q1*=50%. z/Q=153.9 s/mm?.

Flux Froction, F2*

Flow Fraction, Q2=
Figure 5-15: Best fit flux-flow curve (fiat vel., flat hct.) for Q1*=60%, z/Q=488.2 s/mm?.



5.2.3 Zydney’s correlation for “D”

The diffusivity is likelv to be shear rate dependent instead of a global constant. It is desired
to evaluate the validity of Equation 3.4 at different shear rates. Zydney [66] collected
published self-diffusion data for suspensions of deformable particles. both liquid drops and
red blood cells in tube flow. With the local shear rates evaluated at the mean particle
position using reported velocity profile he replotted the dimensiouless effective particle

diffusivity D/(a®y) versus particle volume fraction and proposed a formula to fit the data

Dy

—L = ko,(l — . 5.14
112‘} p( @p) (D )

where D, is the particle diffusivity. a is the particle radius. 4 is the local shear rate. and o,
is the particle volumetric fraction. The & and n were parameters evaluated by the best fit
to the experimental data and found to be 0.15 and 0.8 respectively. Having this correlation
the dispersion coefficient D in Equation 5.12 need not to be constant any more. Although
it is still not possibie to treat the dispersion coefficient at each point, it can now be shown
how an ~overall” shear rate during the experiment affects the proposed constant dispersion
coefficient model.

After being grouped by Q1*, the experimental data were regrouped by 7/Pe, instead of
z/Q as in the previous section. If the wall shear rate of a Poiseuille flow is substituted into

the Zydney’s correlation. the parameter #/Pe becomes

n _ 2zatkey(l — ép)"

Pe R3

(5.15)

Seven sets of regrouped data based on 7/Pe were obtained with their n/Pe shown in Ta-
ble 5.4. The regrouped data are also shown in Appendix C. A similar finite differencing
program was run and the best fit flux-flow curve found for each group of data. Using a flat
ayvmptotic hematocrit profile, flat and 2-phase velocity profiles were examined in this set
of calculations. Figure 5-16, 5-17, 5-18, 5-19, 5-20. 5-21,and Figure 5-22 show the best fit
curves and Table 5.5 shows the comparisons of 1/Pe between calculation and experiments

for flat velocity profile being used.



Table 5.4: Experimental data grouped by »/Pe
Ql*  (n/Pelmax. (1/Pelyiy. (n/Pelavg. mno. of data

30% 0.09 0.08 0.082 8
309 0.10 0.09 0.094 24
40% 0.10 .09 0.094 17
50% 0.07 0.06 0.061 g,
50% 0.10 0.09 0.095 22
60% 0.12 0.11 0.118 6
60%. 1.00 0.89 0.808 5
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Figure 5-16: Best fit flux-flow curve (flat vel., flat het.) for Q1*=30%, (n/Pe)esp.=0.082.
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Figure 5-17: Best fit flux-flow curve (flat vel.. flat het.) for Q1*=30%. (n/Pe)crp.=0.094.
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Figure 5-18: Best fit flux-flow curve (flat vel., flat het.) for Q1*=40%. (7/Pe)csrp.=0.094.
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Figure 5-19: Best fit flux-flow curve (flat vel.. flat hct.) for Q1*=50%., (n/Pe)crp.=0.061.
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Figure 5-20: Best fit flux-flow curve (flat vel., flat het.) for Q1*=50%, (n/Pe)czp.=0.095.
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Figure 5-21: Best fit flux-flow curve (flat vel., flat het.) for Q1*=60%. (7/Pe).p. =0.118.
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Table 5.5: Comparison of experimental and calculated 5n/Pe in flat vel. prof.

QLl* (n/Pelexp. (n/Pe)., ((1/7;?)2:':

30% 0.082 0.079 1.04
30% 0.094 0.079 1.19
10% 0.094 0.079 1.19
50% 0.061 ¢.033 1.85
50% 0.095 0.025 3.80
60% 0.118 0.454 0.26
60% 0.898 0.088 10.20

For convenience, in the case of 2-phase velocity profile the Pe was redefined as

pR[(1 — G)2(A - (1-G)(é=1)+¢
Pe = ! [( G) (A ;)+ 2 ] (5.16)

Results of computation and experiments are shown in Figure 5-23, 5-24, 5-25, 5-26. 5-27,

5-28 and Table 5.6.

Table 5.6: Comparison of experimental and calculated n/Pe for 2-phase velocity profile.

@O 0/Pele, S

30% 0.161 0.067 24
30% 0.186 0.042 4.5
40% 0.186 0.100 1.9
50% 0.121 0.033 3.7
50% 0.187 0.033 5.7
60% 0.234 S —
60% 1.773 0.108 16.4

The sensitivity of the initial condition on the best fit results is investigated. Each data

set is fitted by increasing or decreasing the initial condition (the Q1*) one tenth of the
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Figure 5-23: Best fit flux-flow curve (2-ph. vel.. flat het.) for Q1*=30%. (1/Pe).rp.=0.161.
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Figure 5-24: Best fit flux-flow curve (2-ph. vel,, flat het.) for Q1*=30%, (7/Pe)crp.=0.186.
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Figure 3-25: Best fit flux-flow curve (2-ph. vel.. flat het.) for Q1*=40%. (n/Pe)cr,.=0.186.
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Figure 5-26: Best fit flux-flow curve (2-ph. vel.. flat hct.) for Q1*=50%, (n/Pe)erp.=0.121.
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Figure 5-27: Best fit flux-flow curve (2-ph. vel., flat het.) for Q1*=50%. (n/Pe).;, =0.187.
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total flow. The ratio of (n/Pe).,, to (7/Pe).. is plotted against Q1* for each data set.
Figure 5-29 shows such plots. The footnote on the figure shows that the plus signs represent

the results for best fitting the data set with Q1*=30%. (3/Pe).,, =0.082. and so on.
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Figure 5-29; Sensitivity of initial concentration.
Noted that the experimental data were first grouped by Q1%*, has 10% spanning in each

set of data. For example, the data categorized in the data set with Q1*=30% have measured

Q1* span from 25% to 35%.



5.3 Discussion

The dispersion coeflicients obtained by the best fit to in vitro experimental data are on
the order of 10~° to 10~7. about two orders of magnitude greater than the self-diffusion
coefficient derived by Goldsmith [21]. The reported wall shear rates (calculated by assuming
Poiseuille flow} under which the data used in this study were gathered. were also at least one
to two orders of magnitude higher than those reported in Goldsmith's paper. Consulting
the dimensionless parameter D/a?5, the “averaged™ dispersion coefficients obtained in this
study still seem to be slightly greater than the reported self-diffusion coefficient. which
agrees with the result reported by Leighton and Acrivos [67.68] for rigid particles: the net
effect of non-random particle motion enhances the particle dispersion. The disagreement
of computations and experiments for cases when Q1*=G0% might be atiributed to the
following two reasons: one is the fewer experimental data available (5 and 6 points in each
group); the other is the inaccuracy in estimating the initial condition when the withdrawal
(disturbance) is large.

Table 5.5 and 5.6 reveal that the experimental n/Pe values are always higher than
the calculated ones (results for Q1*=60% were excluded due to the reasons stated above).
Although all the differences are either within the 95% confidence interval of Zvdney's corre-
lation (Equation 3.14) or within the error range of the data collected for the correlation, it
is suspected that the use of wall shear rate of a Poiseuille flow (4%/R) explains some of the
difference. Because of the blunting of the velocity profile at the cell concentrated region,
the actual shear rate in which the red cell dispersion takes place could be less than the
number being put into Equation 5.14 for . This means the real values of (17/Pe)¢, would
be smaller than suggested and the agreement would be better. Another reason for this
difference may be the initial condition used in the calculation. The shape of the separating
surface and the mapping technique are derived from situations with parabolic velocity pro-
files, while in the tubular flow of the blood suspension they may be different. If the initial
condition (cell distribution) has not been defined appropriately, the disagreement between

calculation and experiment would not be a surprise.
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Chapter 6

Simple Network Model

The mathematical models proposed in previous chapters are to be combined and applied 10
very simple vessel networks in this chapter. The network model is first generated. subjected
to the parameters available and the limitations of the mathematical model presented in this
dissertation. The hematocrit of each branch of the network is then calculated either with
or without the diffusion model. The resulis of the hematocrit distribution are presented
in a vector form to permit comparison among different situations. The comparison is done
by choosing a “reference” vector and calculating the deviation of each vector from this
reference.

The “network Fahraeus effect™ is first examined to see how the hematocrit shift effects
the overall network hematocrit [69.70]. Based on the mass conservation law, the network
Fahraeus effect states that in a complete network of branching vessels, tlie number average
discharge hematocrit of the network is definitely less than the discharge hematocrit that
feeds the network if the following three conditions are satisfied. Condition 1) the flow het-
erogeneity exists among the network vessels. 2) a discharge hematocrit heterogeneity exists
due to the phase separation at upstream junctions. 3) the flow and discharge hematocrit are
positively correlated. It should be noted that the network Fahraeus effect still can he seen
even when the positive correlation between flow and discharge hematocrit is not strong.

The next question asked is, how far downstream can a disturbance in the volumetric
flow distribution in the network be propagated and detected. The disturbance is modeled
by varying the flow split in one of the bifurcations and the resultant discharge hematocrits

at downstream branches are calculated. Due to the concepts of separating surface and
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dispersion process. the extent of phase separation in the network depends on the orientation
of the side branch. Two geometrical arrangements of the network are employed to study
their influences.

The degree of heterogeneity of RBC distribution within a network is another issue of
interest. The effect of including the dispersion model on the hematocrit heterogeneity of
a network is presented. The flow heterogeneity in a network is also defined to show its

correlation with the hematocrit heterogeneity.

6.1 Network generation

The configuration of the vessel network used must be restricted due to some limitations of
the streamline mapping technigue. The mapping results obtained by using two chords for
curved separating surfaces (different sized side branch) need improvement to be satisfactory.
Because of this shortcoming the network used in this study will be restricted by having all
branches of equal diameter. This closely approximates some microvascular beds. as the
diameter ratio of parent to daughter branch decreases with the vessel size. The existing
geometrical data from human eyve bulbar conjunctiva [71] shows the diameter ratio to be
about 1.28 for arterial vessels with diameter of 14 to 18 um. The microvessels in cat
mesentery have mean diameter ratios of 1.22 at vessel sizes of about 10 pm [72].

Due to the uncertainty in matching the density of the dve solution and the working
fluid, streamline mapping are not available for the side branch; only the continuing branch
is mapped. Although it is believed that at very low Reynolds numbers the branching angle
makes neglible difference (the side branch and the continuing branch become similar). the
mapping technique is not to be used for the side branch for caution’s sake. This leaves one
only able to deal with vessel networks where bifurcations branch off the same parent vessel.

The vessel networks used in this study are created by using as many available real
parameters as possible. It is emphasized again that no attempt is made to simulate any
real vessel network. For the restrictions stated above, two network topologies are selected

and shown in Figure 6-1.
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5 5
6 6
same side branching alternating branching

Figure 6-1: Network configurations

One is a series of bifurcations branching off the main vessel on the same side. the other
has the bifurcations branching off each side alternatively.

By observing branching river networks, Horton [73] defined a bifurcation ratio as the
ratio of the number of streams at a given order to the number of streams at the next higher
order. by ordering the network centripetally!. He found that the bifurcation ratio tends to
be a constant throughout the network. The stream number at different orders is thus given
by

N, = RS *N,. (6.1)
where N, is the number of branches of order number u. R is the bifurcation ratio, N; is

the number of first order segments. Horton also found that the similar relationship applied

to the average length of streams of a given order.
L,=R{1L, (6.2)

where L, is the average length of a given order u, L; is the average length of the first order
segnemts and Ry is the length ratio. Fenton and Zweifach {71] applied Horton’s stream

law in the vascular bed. They used the bifurcation ratio to generate the topology of the

!Ordering from the most distal streams, as order 1, toward the larger streams.
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vascular network stochasticallyv. In addition. they also found that a similar relationship

closely approximates changes in vessel diameters between orders. That is
D, =Ry1Dy (6.3)

where D, represents the average diameter of a given order u. D; is the average diameter of
the first order vessels and Rp is the diameter ratio.

In the current study the geometric parameters of the networks, if free of restrictions . are
all determined in this fashion. In vivo experimental data from rabbit omentum arteries [71]
suggested a diameter ratio 1.30 with an average capillary diameter of 12.3zm. and a length
ratio of 1.61 with an average capillary length of 135 um. Ordering the network branch
centripetally the vessel-size and branch-order has the following correspondence according

to Horton's law,

order 1 2 3 4 3 6

diameter(ym}) | 12.3 16.0 20.8 27.0 351 45.7

length(um) 135 217 350 563 907 1460

To select vessel diameters around 50 pm the corresponding order is 6 and the length
is 1460 gm. The #n/Pe is then calculated from Equation 5.15. To save the CPU time and
exaggerate the effects, this length is cut in half and resulted in the n/Pe to be 0.06 for the
following network calculation.

The flow split at each bifurcation is determined stochastically by Popel’s flow histogram
[74] assuming there is no dispersion on geometric parameters. That is, about 30% of the
vessels have the average flow, 25% have three quarters of the average . 25% have one and a
quarter of the average , 10% have one and half the average, 10% have one half the average.
Among the six branches shown in Figure 6-1 two would have the average flow. the rest have
0.5, 0.75, 1.25, and 1.5 times of the average. The sequence is randomly arranged, from
upstream down they are 1.25, 1. 0.75. 1.5, 1, 0.5. The corresponding calculated flow splits,
Q*, are then 20%. 20%. 20%, 50%, 70%.

Both flat and 2-phase velocity profiles are used in the dispersion model. Tube size of

70



the network is assigned to be 50 ym. The plasma gap width used are 2 and J um for flat

and 2-phase velocity profiles. respectively.

6.2 Vector comparisons

Hematocrit distribution in a network is expressed as a vector in order to demonstrate
its spatial variation and be able to quantitatively compare the heterogeniety of red cell
distribution. Each discharge hematocrit of the network branch is assigned to a designated
component of a vector based on its geometrical location. Vectors are compared through
their deviation from a standard vector. The deviation is defined as the magnitude of their
difference. Two presumed standard vectors are used for comparison. Cune is the hematocrit
distribution vector of a network which has the same distribution of flow splits except the
red cells have been fully rearranged before approaching the next bifurcation. In this case
no diffusion equation is solved to obtain the standard vector. Fractional cell lux F* is
calculated directly from Equation 2.7. The discharge hematocrit of each branch is then

calculated from the feed hematocrit as

F
(Hd)branch = 'Q"“E(Hd)feed (6.4)

The other standard hematocrit distribution vector is just the homogeneous hematocrit
distribution in which no phase separation has occured. In normalized form it is the unit

vector I—

6.3 Computational results

Discharge hematocrits in each branch of the networks shown in Figure 6-1 are computed.
The fractional flow split in the second branch or the third branch are varied as the distur-
bance, while holding Q* constant in the rest of the branches. The calculated hematocrit is
compared with the first standard hematocrit vector (the one with red cells fully rearranged

in every vessel segment ). This comparison shows whether hematocrit profile rearrangement



makes anyv difference on red cell distribution in the network. The difference of each corre-
sponding component. AH,. is plotted against Q* at the varying branch. Figure 6-2 shows
such a plot when the branches are on the same side of the straight tube (the left configu-
ration in Figure G-1). The broken lines represent the results when the flow in the second
branch is varving, while the solid lines represent the flow variation in the third branch.
Each line has an associated number representing the branch number (refer to Figure 6-1).
The components of the difference vector. AH, never have values significantly larger than
zero. vet some have values as low as -0.2. Therefore, if one defines average hematocrit as
a number average. the idea of shifting Liematocrit profiles enhances the so called “network
Fahlraeus effect”™. The branches farthest downstream have the largest deviations from the
total rearrangement case. Notice that the broken and solid curves for branch 5 fall on top
of each other. The same is true for branches 4 and 6. This suggests that the location of
upstream side branch divisions in flow is not important in determining downstream branch
hematocrits: only the cummulative magnitude of the side branch flows is important when
all branches are on the same side as the parent vessel. As far as the hematocrits in branches
4.5 and 6 are concerned. it does not matter if a change in flow rates occurs in branch 2 or

3. the result is nearly the same.

A similar plot is given in Figure 6-3 for the alternating side branch network. Again
the components of the difference vector are plotted as a function of Q2* and Q3*. Broken
lines represent results for varying Q2* and the solid lines are for changes in Q3*. The
magnitude of the difference vector components are much smaller in this case. Obviously
the alternating side branch arrangement results in much less network Fahraeus effect in this
example. Alternating shifts in the hematocrit profile keep the red cell concentration profile
closer to axisymmetry.

In contrast to the same side network, the location of flow variations does make a differ-
ence in downstream hematocrits when branches are on alternating sides of the parent. This
is most noticable in branch 4 in this case. Increasing the flow into branch 2 results in in-

creased hematocrits for branch 4, yet branch 4 hematocrits decrease when flow is increased
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Figure 6-2: Effects of disturbance at different locations for same side branches
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Figure 6-3: Effects of disturbance at different locations for alternating side branches



in branch 3.
Changing the velocity to a 2-phase tyvpe profile in the calculation results in curves shown
in Figure 6-4 for the same side side branch configuration. The influence attenuation of the

disturbance location is also seen in this plot. similar to the results shown in Figure 6-2.

DHn

Q2+, or Q3s

Figure 6-4: Same side for 2-phase velocity profile

In addition to the comparison of the hematocrit distribution vector with the situation
where the cells are fully rearranged, the heterogeniety of the hematocrit distribution in a
network is also examined. Starting from a normalized feed hematocrit the homogeneous
distribution requires that every branch has the same discharge hematocrit, 1. The branch

number averaged deviation from the homogeneous hematocrit distribution, J, defined as

, - WA -1 _ 1& -1 1
Hematocrit heterogeniety = = =,/—% (H,-1)?
: I vl PR

is used as an index to quantify the heterogeniety of a network hematocrit distribution.

Figures 6-5 and 6-6 show the index of hematocrit heterogeneity plotted as the ordinate versus
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the fiow splits in the second or the third branch with the flow split in the fourth hranch. Q3.
as the third paranteter. Figure 6-5 shows the results computed with the dispersion model,
while Figure 6-6 shows the results where the red cells are {ully rearranged. A flat velocity
profile and the same-side side branch network are used in these computations. Three pairs
of plots are shown in the figures. eacl represents the fourth fractional flow split to be 20%.
50%. and R0%. In each pair the broken line represents the results when the flow in the
second branch is varving., while the solid line represents the flow variation in the third

branch.

Heterogeniety

Het.

o O O O O o o o O O

Figure 6-5: Heterogeniety vs. flow variation for same side branching configuration

The first thing to be noted from these plots is that the fully rearranged red cell profile
results in a more homogeneous hematocrit distribution. Figure 6-5 again showed that the
location of the flow variations is not as important as the variations themselves as far as
network heterogeneity is concerned. It is also noted that a flow distribution for the most

homogeneous hematocrit distribution exists.
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Figure 6-6: Heterogeniety vs. flow variation for fullv rearranged red cells.

Based on the concept that the heterogeneity of hematocrit distribution depends on the
volumetric flow distribution. 2 homogeneous flow distribution. also expressed in vector form.
is used as the standard to correlate the hematocrit heterogeneity with flow heterogeneity.
For the same n/Pe used in previous computations with flat velocity profiles, a flow split
distribution of [0.50, 0.24. 0.28, 0.30. 0.30. 0.70] would result in a homogeneous hematocrit
distribution. I. Using this flow distribution as the standard. every flow split vector previ-
ously used can be expressed in terms of its deviation from the standard flow distribution

which is defined as
”Q - Qstandard”
“Qatandard“

Replotting the results presented in Figure 6-5 should show a monotonic relationship. Such

Flow heterogeniety =

a plot is shown in Figure 6-7.
The scattering of results shown in Figure 6-7 is expected because there are multiple flow
distributions possible for any specified degree of flow heterogeneity. And not all of these

possible flow distribution give the same hematocrit heterogeneity. The range of the scatter
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Figure 6-7: Hematocrit heterogeniety vs. flow heterogeniety

represents the span of hematocrit heterogeniety within the same flow heterogeniety.



Chapter 7

Conclusions and

Recommendations

In summary. this study has accomplished the measurement of separating surfaces for hoth
equal sized side branches and half sized side branch bifurcations at low Reynolds numbers
(< 1). Flat separating surfaces are a good approximation for the case of an equally sized
side branch. Arc shaped separating surfaces bulging away from the opening of the side
branch are obtained for half sized side branches.

The extent of plasma skimming was calculated for both flat and arc separating surfaces.
Wlhen a plasma gap of 4 ym in width is used. the shape of the separating surface becomes
unimportant if the tube diameter is 30 pm or more.

A mathematical technique for mapping streamlines through a bifurcation was proposed
and tested by scaled-up dye experiments. Satisfactory agreements for almost all the branch-
ing flow are obtained when the separating surface is a flat one. In the case where the sepa-
rating surface is arc shaped, the technique needs some modifications for mapping the flow
region near the tube wall.

A dispersion type of process has been proposed to describe red cell redistribution across
the lumen while blood flows between junctions. A constant diffusion coefficient is assumed
in the process. This adjustable lumped parameter, D, is determined by matching the
numerical solution of the model equation and the in vitro experimental data. The results
agree fairly well with the Zvdney’s correlation derived from coliected published data when

the effects of shear rate are taken into account. It is thus well confirmed that the dispersion
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process is strongly shear rate dependent.

The tested streamline tracing technique and the dispersion model have been applied to
a simple vascular networks to calculate the discharge hematocrit distribution. Hematocrit
distribution is expressed in vector form for comparison. Noticeable difference was found
when the current model is used compared to the case where the asvinmetry of the red cell
profile is neglected. This difference varied with flow splits in upstream branches of the
network. It has been found that the location of the flow splits variations has less influence
on the downstream branch hematocrits compared to the magnitude of the variation itself.
An index of hematocrit heterogeneity has also been developed to compare tlie hematocrit
distributions, The heterogeneity of hematocrit distribution depends strongly on the flow
distribution. A correlation has been attempted for the hematocrit heterogeneity with flow
heterogeneity.

The separating surface has plaved a crucial role in this studv. However several questions

are left unanswered:
e How does the shape of separating surface vary with the side/parent branch size ratio?

e Concentrated cell suspensions are not likely to have the same velocity profile as that
in the dye experiment. How well, then. do the separating surfaces obtained from the

dve experiments resemble the actual ones during blood flow?

e Since the solutions for Stokes flow through a tubular junction are not available. how
can one map streamlines into the side branches without testing experimentally for

more extensive network applications?



Appendix A

Computer Program

The FORTRAN 77 source codes of the body of the finite differencing and major 1/0 portion

are listed below.

PROGRAM PARAALL

COMMON CO,NI,NJ,DR,DTHETA,DZ,PE

REAL CNEW(65,50),COLD(65,50),Z,0QSTAR(1001)
INTEGER NI,NJ

CHARACTER*20 DFNAME

C INPUT  scokokorsicok sk kool o ok o o o 3ok o ok e o i3 o oo o ook ok o ook s s 8 6 3 o o oo o o ok ok K ok
DELTA=.16

KI=60

NJ=45

DZ=.02

PE=240

Co=1,

PI=3.141583

DR=(1-DELTA)/NI

DTHETA=PI/NJ

WRITE (*,*) 'Z(START),Z(END),Z(STEP) 7’
READ(*,*) ZSTART,ZEND,ZSTEP

PRINT =*,’ZWANT= 7’

READ (*,%) ZWANT
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PRINT *,’EXPT’’L DATA IS IN 7 FILE (eg. Q30224.6)°
READ °(A)’ ,DFNAME
PRINT *,’Qix = ?’
READ(*,*)Q1STAR
c ksl ok o o 8 ke ok ok ok ok ok o ok o o e o ook o o e a3k sk ok o ks S o o ok o o ok oK K o o o ok
CALL READIN(QSTAR)
C NOW ALL C’S ARE ZEROS, USED TO DERIVE EQUILIBRIUM ERROR.
CALL calerr(COLD,DFNAME,DELTA,QSTAR,C,0,ERRFIN)
C ASSIGNING INITIAL CONDITION TO NODES
CALL ASSIGN (DELTA,QSTAR,CCLD,Q1STAR,F1STAR)
CALL calerr(COLD,DFNAME,DELTA,QSTAR,Q1STAR,F1STAR ,ERRINI)
WRITE(*,*) ’ERRINI=’ ,ERRINI, ’ERRFIN=’ ,ERRFIN
PREERR=MAX (ERRINI,ERRFIN)
K=0
KKK=0
150 K=K+1
IF (Z.EQ.ZWANT) THEN
CALL MKFL(COLD,DELTA,QSTAR,Q1STAR,F1STAR)
PRINT *,’ZWANT AFTER’,ZWANT,’'IS 7°

READ (,%) ZWANT

ELSE
ENDIF
CALL ADI (COLD,CNEW)
Z=K*DZ

ZC=ZSTART+ZSTEP*KKK
IF (ZC.GE.ZEND) ZWANT=Z
IF (ABS(ZC-Z).LE.DZ/2) THEN

CALL calerr (CNEW,DFNAME,DELTA,QSTAR,Q1STAR,F1STAR,SUMERRDR)
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WRITE (x,*)'THE SUM OF ABS. ERR. AT Z =’,Z,*IS’,SUMERROR
IF (SUHERRUR.GT.PREERR) THEN
CALL MKFL (COLD,DELTA,QSTAR,Q1STAR,F1STAR)
WRITE(*,*)'SECOND DFNAME 7°*
READ ’(A)’, DFNAME
WRITE(*,*)’ZSTART ,ZEND,ZSTEP = 7°
READ(*,*)ZSTART, ZEND,ZSTEP
KKK=0
CALL CALERR (COLD,DFNAME,DELTA,QSTAR,0,0,ERRFIN)
PREERR=ERRFIN
ELSE
PREERR=SUMERROR
KKK=KKK+1
ENDIF
ELSE
ENDIF
DO 130 I=1,NI+1
DO 140 J=1,NJ+3
COLD(I,J)=CNEW(I,J)
140 CONTINUE
130  CONTINUE
GOTO 150
END
(C kol s o o o o S s oo o K o o sk ok oo o K 0 o R 3 o o o o 3 e o o o S 3 o o Sk sk ke oo o S ok o oo o o
SUBROUTINE READIN(QSTAR)
DIMENSION QSTAR(1001)
OPEN (UNIT=11,FILE='FLOWFILE.DAT’,STATUS=’0LD?*)

DO 1 I=2,1001
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READ(11,* ,END=2) QSTAR(I)
1 CONTINUE
2 QSTAR(1)=.5
QSTAR(1001)=0.0
RETURN
END
(C ok e s o o ok 3k 3k o ok ok e 3k 3k ok ok o o ok 3k ok 9k 3k a2 o ok a3 ok ok 35 e 3 86k 3Kk ok 3K 38 3 e o o 8 2 3K ok 3k ok ok ak e e ok ok sk sk 3k K ok ok 3k ok
SUBROUTINE ASSIGN (DELTA,QSTAR,COLD,Q1STAR,F1STAR)
COMMON CO,NI,NJ,DR,DTHETA,DZ,PE
REAL QY(501),INTEGRAL,QSTAR(1001),COLD(65,50)
PARAMETER (NUM=500)
PI=4*ATAN(1.)
QTOT=1.-Q1STAR
Q1ST=Q1STAR
IF (QiSTAR.GT..5) Q(1ST=1-Q1STAR
DO 11 II=1,1001
IF (QSTAR(II).GE.Q1ST.AND.Q1ST.GE.QSTAR(II+1)) GOTO 12
11 CONTINUE
WRITE(*,*) 'WRONG AT SEARCHING FOR S°
STOP
12 S=(-~1)*x(Q1STAR.GT..5)*((II-1)/1000.)
IF (S.EQ.0)THEN
F1STAR=.5
ELSE
CALL FSEVA (DELTA,S,F1STAR)
ENDIF
HMAX=1/((1-DELTA)**2~-(1-DELTA) **4/3)

N=20
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QY(1)=.5
DO 1 I=2,NUM+1
Y=(I-1.}/NUNM
XHI=1.
XLO=SQRT(S**2+Y**2)
H=(XHI-XLO)/N
IF (H.LT.0) THEN
QY(I)=0.
GOTO 1
ELSE
ENDIF
IF (S.EQ.O0)THEN
SUM=0
ELSE
SUM=(S.GT.0) *(-1)* (XLO-XLO%*3) * (PI-2%ATAN(Y/S))
ENDIF
DO 2 J=2,N
XI=XL0+(J-1)H
IF (S.EQ.0) THEN
YI=(XI-XI*%3)*(PI/2-ASIN(Y/XI))
ELSE
YI=(XI-XI**3)%(~PI*(S.GT.0)~((~1)**(S.LT.0))*ATAN(SQRT(
& XI%#2-S*x2) /ABS(S) )-ATAN(Y/SORT (XI**2-Y*%2)))
ENDIF
IF (MOD(J,2).EQ.0) THEN
SUM=SUM+4*YI

ELSE
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SUM=SUM+2x*YI
ENDIF
2 CONTINUE
INTEGRAL =SUM=*H/3

IF (5.LE.0) GOTO 3

XHI=XLO
XLo=Y
H=(XHI-XLO)/N
SUM=0
DO 4 IJ=2,N
XI=XLO+(IJ-1)*H
YI=(XI-XI#*3)*(PI-2%ATAN(Y/SQRT(XI**2-Y%%2)))
IF (MOD(IJ,2).EQ.0) THEN
SUM=SUM+4»YI
ELSE
SUM=SUM+2xYI
ENDIF
4 CONTINUE
SUM=SUM+ (XHI-XHI**3)»(PI-2%«ATAN(Y/SQRT (XHI*%2-Y*%2)))
INTEGRAL=INTEGRAL+SUM»H/3
3 QY(I)=(2/PI)*INTEGRAL/QTOT

1 CONTINUE

DO & I=1,NI+1
R=(I-1)»*DR
DO 10 J=2,NJ+2

THETA=(J-2)*DTHETA
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XD=R*COS(THETA)
YD=R#SIN(THETA)
IF (ABS(XD).LT.0.001) THEN
QXD=.5
ELSE
IF (XD.LT.0) THEN
QXD=1.-QSTAR(NINT(-XD*1000))
ELSE
QXD=QSTAR (NINT(XD*1000))
ENDIF
ENDIF
IF (YD.LT.0.001) THEN
QYD=.5
ELSE
QYD=QSTAR(NINT(YD*1000))
ENDIF
QXD=(QXUP-Q1STAR) /QTOT
QXUP=QXD*QTOT+Q1STAR
QYD=QYUP/QTOT  SINCE QY(I) IS NORMALIZED ALREADY SO...
QYUP=QYD
SEARCH FOR Y
DO 6 Ji=1,NUM+1
IF (QY(JJ).GE.QYUP.AND.QYUP.GE.QY(JJ+1)) GOTO 7
CONTINUE
WRITE (*,*) ’SOMETHING’’S WRONG IN SEARCHING QY(I)’
STOP
YUP=REAL(JJ-1) /NUM

0XU=QXUP
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IF (QXUP.GT..5) QXU=1.-QXUP
DO & KK=1,1001
IF (QSTAR(KK).GE.QXU.AND.QXU.GE.QSTAR(KK+1)) GOTD 9
8 CONTINUE
WRITE (*,*) *SOMETHING’’S WRONG IN SEARCHING QXU’
STOP
9 XUP=((KK-1)/1000.)*(-1)** (QXUP.GT. .5)
RUP=SQRT (XUP**2+YUP**2)
IF (RUP.GT.(1-DELTA)) RUP=1-DELTA
COLD(I,J)=HMAX*(1-(RUP/(1-DELTA))**2-((1.-F1STAR)/
& (1~Q1STAR) )*(1-(R/(1-DELTA) ) **2))
10 CONTINUE
5 CONTINUE
CALL BOUNDIMAGE{(COLD)
RETURN
END
(e ke e ke - 3 ke e ke ke ok 3K 3 ok ok o ek e ok sk i 3 3 i a8 ok i s s sk sk afe e e ol ke o o o o ok ke ok b ok 3k ok oK ok ke ok sk ok ok Al ok e ok ook
SUBROUTINE BOUNDIMAGE (C)
COMMON CO,NI,NJ,DR,DTHETA,DZ,PE
DIMENSION C(65,50)
DO 60 I=1,NI+1
C(I,NJ+3)=C(I,NJ+1)
C(I,1)=C(1,3)
60 CONTINUE
DO 6 J=1,NJ+3
C(NI+2,J)=C{NI,J)
6 CONTINUE

RETURN



END
(3% o ke e ke ok ok ke ke o e e sk e 0 e 2l sk e 30 3 ke ok 3 e 6 3 3k e K 3 e S i o e e o Bk o ok e ol i ol ke ok 6 ak sk K ook s 3k ok R o 3k e o ok 3k ok oK
SUBROUTINE ADI (COLD,CNEW)
COMMON CO,NI,NJ,DR,DTHETA,DZ,PE
DIMENSION CNEW(65,50),COLD(65,50),CMID(65,50),A(65,4)
c C c c c c C C C
CC SOLVE CMID (HALF ADVANCED CONCENTRATION)
CC Advance in centerline first
CALL HALFCENTER (HALF,COLD)
DO 80 J=2, NJ+2
A(1,1)=0
A(1,2)=(2/DR**2)+(2*PE*(1-DR*%2))/DZ
A(1,3)=-(1/DR*x%2+1/(2*DR*DR))
A(1,4)=(COLD(2,J~1)-2%COLD(2,J)+COLD(2,J+1) )/ (DR*DTHETA) % %2
& +2%PE*COLD(2,J)* (1-DR*%2) /DZ+HALF/ (2%DR**2)
DO 90 1=3,NI
R=(I-1)*DR
A(I-1,1)=1/(2%R*DR)~-1/DR*%2
A(I-1,2)=24PE*(1-R*%2)/DZ+2/DR**2
A(I-1,3)=-(1/DR*x2+1/(2«R*DR))
A(I-1,4)=(COLD(I,J-1)-2%COLD(I,J)+COLD(X
& ,j+1)) /(r»dtheta) **2+2«PE*COLD(I,J) *x (1~R**2)/DZ
90 CONTINUE
R=NI=*DR
A(NI,1)=-2/DR**2
ACNI,2)=2*PEx{1-R#%2)/DZ+2/DR**2
A(NI,3)=0

A(NI,4)=(COLD(NI+1,J-1)~2%COLD(NI+1,J)+COLD(NI+1,J+1))
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& / (R*DTHETA) **2+2%PExCOLD{NI+1,J)*(1~R*%2)/DZ

CALL TRIDG (A,NI)
CMID(1,J)=HALF
DO 100 I=1,NI
CMID(I+1,J)=A(1,4)
100 CONTINUE
80 CONTINUE
CALL BOUNDIMAGE (CMID)
o c C o C c
cc SOLVE FOR CNEW BY CMID AND COLD
CALL halfCENTER(FULLSTEP,CMID)
DO 7 J=2,NJ+2
CNEW(1,J)=FULLSTEP
7 CONTINUE
DO 8 I=2,NI+1
R=(I-1)*DR
A(1,1)=0
A(1,2)=2/{(R*DTHETA)*%2+2*PEx (1-R*%2)/DZ

A(1,3)=-2/(R*DTHETA) **2

A(1,4)=(CMID(I-1,2)=-2%CMID(I,2)+CMID(I+1,2))/DR**2+(CMID

& (I+1,2)-CMID(I-1,2))/(2*R*DR)+2%PE*CMID{I,2)*{(1~R**2)/DZ

Do 9 J=3,RJ+1

A(J-1,1)=-1/(R*DTHETA) **2

A(J-1,2)=2/(R*DTHETA) **2+2%PE* (1-R%x2) /DZ

A(J-1,3)=A(J-1,1)

A(3-1,4)=(CMID(I~1,J)-2%CMID(I,J)+CMID(I+1,J) ) /DR**2+(CMID

& {I+1,J)-CMID(I-1,J))/(2%R*DR)+2*PE*CMID(I,J)*(1-R*%x2) /D2

9 CONTINUE
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A(NJ+1,1)=-2/(R*DTHETA) *%2
A(NJ+1,2)=2/(R*DTHETA) **2+2%PE* (1-R*%2) /DZ
A(NJ+1,3)=0
A(NJ+1,4)=(CMID(I-1,NJ+2)-2%xCMID(I,NJ+2)+CMID(I+1,NJ+2))
& JDR**2+ (CMID(I+1,NJ+2)~-CMID(I-1,NJ+2))/(2*R*DR)+2*PE=*
-3 CMID(I,NJ+2)*(1-R*42)/DZ
CALL TRIDG (&,NJ+1)
DU 110 J=1,NJ+1
CNEW(I,J+1)=A(J,4)
110 CONTINUE
8 CONTINUE
CALL BOUNDIMAGE (CNEW)
cC ¢ c o C C c c c c c
RETURN
END
(53K 3 3 e s ke 2k 6 ok e 8 e 2 o ek ok ok 3k ok 3K o 3 3k oK sk sk ek ok ke ke 3k 3k ok e ok A ok 3 K 3K ok e 3 3k e 3 3 o ke e 3K ok o ok sk ok ke
SUBROUTINE HALFCENTER (HALF,C)
COMMON CO,NI,NJ,DR,DTHETA,DZ,PE
DIMENSION C(65,50)
SUM=0
D0 70 J=3,NJ+1
SUM=SUM+2%C(2,J)
70 CONTINUE
SUM=SUM+C(2,2)+C(2,NJ+2)
HALF=C(1,1)+DZ*2%(SUM/ (NJ*2)-C(1,1))/(PE*DR*%2)
RETURN
END

Chok ok sk b sk afe g e o o i ok e o ok o o o ok sfe 3 ok ai ok ek a sk sk i ke sk ke s sk ko ok e 2B ok e ok ke o ok ok e ok ok ol ke ok ke ke ak ko ke o ok o ok ok K ok
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SUBROUTINE TRIDG (A,N)
DIMENSION A(65,4)
DO 1 I=2,N
ACI,1)=A(1,1)/A(I-1,2)
A(I,2)=A(I,2)-A(1,1)*A(I-1,3)
A(I,4)=A(T,4)-A(I,1)*A(I-1,4)
1 CONTINUE
C BACK SUBSTITUTING
NM1=N-1
A(N,4)=A(N,4)/A(N,2)
DO 2 I=NM1,1,-1
C THE INDEX M WILL COUNT UP THE ROWS
A(I,4)=(A(I,4)-A(I,3)*A(I+1,4))/A(1,2)
2 CONTINUE
RETURN
END
(0 2% s ke e ok e 34 ke Sk o o e ok ke ke ok ke ke ik ko sk o ok 3k ok k3 ok sk ke ac i ok ok ok 3 ok ak o o s ok s 3 oK e o ok ok sk e o e ok ke e ke ke ok o
SUBROUTINE calerr(C,DFNAME,DELTA,QSTAR,Q1STAR,
& F1STAR, SUMERROR)
COMMON CO,NI,NJ,DR,DTHETA,DZ,PE
DIMENSION C(65,50),CN(65,50),Q5TAR(1001)
CHARACTER*20 DFNAME
HMAX=1/((1-delta}**2-(1~DELTA)**4/3)
DO 1 I=1,NI+i
R=(I-1)*DR
DO 2 J=2,NJ+2
CN(I,J)=C(I,J)+HMAX*((1.~F1STAR)/(1-Q1STAR))*(1-

& (R/ (1-DELTA) ) #%2)
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2  CONTINUE
1 CONTINUE
OPEN (UNIT=12,FILE=TEST.DAT’,STATUS=’SCRATCH’)
CALL INTEGRATION (CN,1.,TNORM)
DO 180 S=-1,1,.005
CALL INTEGRATION(CN,S,TOTO)
FSTAR=TOTO/TNORM
IF (ABS(S).LT.0.001) THEN
Qs=.5
ELSE
IF (S.LT.0) THEN
0S=QSTAR(NINT(-S*1000))
ELSE
QS=1.-QSTAR(NINT(S*1000))
ENDIF
ENDIF
WRITE (12,190)QS,FSTAR
190 FORMAT (1X,2F12.7)
180 CONTINUE
OPEN (9,FILE=DFNAME,STATUS=’0LD’)
SUMERROR=0.
DO WHILE (.TRUE.)
READ(9,*,END=20)DQ2,DF2
REWIND (12)
READ (12,%)CQ2,CF2
SMALLCQ2=CQ2
SMALLCF2=CF2

READ (12,%)CQ2,CF2
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BIGCQ2=CQ2
BIGCF2=CF2
DO WHILE (DQ2 .GT. BIGCQ2)
SMALLCQ2=BIGCQ2
SMALLCF2=BIGCF2
READ (12,%*)CQ2,CF2
BIGC32=CQ2
BIGCF2=CF2
END DO
IF (SMALLCQ2 .LT. DQ2 .AND. DQ2 .LT. BIGCQ2) THEN
RATIO=(DQ2-SMALLCQ2)/ (BIGCQ2-SMALLCQR2)
F2=SMALLCF2+RATIO*{BIGCF2-SMALLCF2)
ERROR2=ABS (DF2-F2)
ELSE
PRINT =*,’SOMETHING’’S WRONG2’
RETURN
ENDIF
SUMERROR=SUMERROR+ERROR2
END DO
20 CLOSE (%)
CLOSE (12)
RETURN
END
(C e ok o o o ko s o e ok o o o oo e o e e o o oo o ko o ook o ok o ok o o oo o o s o o o ok 3K o e koK ok o ook
SUBROUTINE MKFL(C,DELTA,QSTAR,Q1STAR,F1STAR)
COMMON CO,NI,NJ,DR,DTHETA,DZ,PE
DIMENSION C(65,50),CN(65,50),QSTAR(1001)

HMAX=1/((1-delta)**2-(1-DELTA)**4/3)
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DO 1 I=1,NI+1
R=(I-1)*DR
DO 2 J=2,NJ+2
CN(I,J)=C(I,J)+HMAX*((1.-F1STAR)/(1-Q1STAR))*(1i-
& (R/(1-DELTA) ) *%2)
2  CONTINUE
1 CONTINUE
OPEN (UNIT=12,FILE=’PLOT.DAT’,STATUS="NEW')
CALL INTEGRATION (CN,1.,TNORM)
DO 180 S=-1,1,.01
CALL INTEGRATION(CN,S,TOTO)
FSTAR=TOTO/TNORM
IF (ABS(S).LT.0.001) THEN
Qs=.5
ELSE
IF (S.LT.0) THEN
QS=QSTAR(NINT{(-S%1000))
ELSE
QS=1.-QSTAR(NINT(S*1000))
ENDIF
ENDIF
IF (FSTAR.LT.O0.AND.FSTAR.GT.-.001) FSTAR=0
WRITE (12,190)QS,FSTAR
190 FORMAT (1X,2F12.7)
180 CONTINUE
CLOSE (12)
RETURN

END
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SUBROUTINE INTEGRATION(C,S,TOTO)
COMMON CO,NI,NJ,DR,DTHETA,DZ,PE
DIMENSION C(65,50)
PI=4*ATAN(1.)
TOTO=0
DO 2 J=2,NJ+2
THETA=(J-2)*DTHETA
SUM=0
IF (S.GE.0.) SUM=C(1,J)*DR*%2+%(.25-DR*%2/32)/NJ
DO 1 I=2,NI
R=(I-1)*DR
X=R*C0S (THETA)
IF (X .LT. S) THEN

SUM=SUM+C{(I,J)*R*DR*(2-2%R**%2=DR**2/2) /NJ

ELSE
ENDIF

1 CONTINUE
R=NI*DR

X=R*COS (THETA)
IF (X.LT.S) SUM=SUM+C(NI+1,J)*DR*(R-DR/44DR%*3/32-
& Rxx3+ . 75%Rex2xDR-.25«R*DR*%2) /NJ
IF ((J.EQ.2).0R.(J.EQ.NJ+2)) SUM=SUM/2
TOTO=TOTO+SUM
2 CONTINUE
TOTO=TOTO*2
RETURN

END
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SUBROUTINE FSEVA (DELTA,S,FS)
INTEGER I,J
PI=4%ATAN(1.)
SC=8
IF (S.LT.0) SC=-3
N=INT((1.-DELTA-SC}*500)
IF (MGD(N,2).EQ.1) THEN N=N+1
IF (N.EQ.Q) STOP
H=(1.-DELTA-SC)/N
SUM=0
DO 1 J=2,N+1
X1=5C+(J~1)%H
HXI=(1-(XI/(1-DELTA))**2)/((1-DELTA)*%*2-{1./3)*{1-DELTA)**4)
VEI=2/PIx(1-XI**2)
VAL=ACOS (SC/XI)*XI*HXI*VXI
IF (J.EQ.N+1) GODTO 2
IF (MOD(J,2)} .EQ. 0 ) THEN
SUM=5UM+4*VAL
ELSE

SUM=SUM+2*VAL

ENDIF
1 CONTINUE
2 SUM=SUM+VAL

FS=2%SUM*H/3

IF (S.LT.0) FS=1.-FS
RETURN

END
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Appendix B

Numerical Check

The computer program is checked in three ways. First. the convergence and stability are
investigated by varying mesh sizes. Second. the mass balance is checked between two axial
locations. Third, an analytical solution for an axisymmetric condition is used to compare
the results from numerical methods. Flat velocity profile is used throughout the calculation

in this chapter.

B.1 Mesh sizes check

By using flat separating surfaces to obtain the flux-flow curve for each concentration profile.
the difference between two crossectional concentration profiles is quantified by calculating
the area, Al. between the two corresponding flux-flow curves. The conditions used in this

section are listed below:
s initial condition: Q1*=40%
e dimensionless gap width: G=0.07

e axial location where concentration profile is withdrawn for flux-flow curve comparison:

n/Pe=19/240

The calculated Al at different mesh sizes are listed below. A reference value of Al is the
area between the flux-flow curves of the initial concentration profile and the axisymmetric

concentration profile which has the value of 2.74x1072.
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Table B.1: Concentration difference. at NJ=45 and An/Pe=0.02/210.
NI | &2be | Ap

(2£)°

10 | 0.010 | 2.56x10~°%
20 [ 0.039 | 4.44x10°C
30 | 0.087 | 2.48x10°%
40 | 0.154 | 2.37x10°7
60 | 0.347 | 8.61x10™°
700 0472 | 448%107"
80 | 0.617 unstable

90 | G.780 unstable

Table B.2: Concentration difference. at NI=60. NJ=45 and Pe=240.

An/Pe
An | X5 Al

0.002 | 0.035 | 6.56x10-7
0.005 | 0.087 | 2.65%10-8
0.010 | 0.173 | 4.05x10~8
0.020 | 0.347 | 8.61x107%

0.030 | 0.520 unstabie

Table B.3: Concentration difference. at N1=60. An/Pe=0.02/240.
an/Pe
NI [ 257 Al

20 | 0.347 | 1.11x107%
45 | 0.347 | 8.61x10-¢
60 | 0.347 | 1.54x10-
80 | 0.347 | 2.06x10¢
90 | 0.347 | 5.34x1078
95 | 0.347 | 4.94%x10""7
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B.2 Mass balance check

With Q1*=40%. the initial concentration profile gives the totoal red cell flow of 0.7835338
hy numnerical integration. The concentration profile. calculated by the ADI finite difference
method at an axial location Ayp/Pe=19/240, results in a total red cell flow of 0.7836066.

The difference is less than 0.01%.

B.3 Analytical solution check

The bessel functions in Equation 5.11 are evaluated from IMSL-SFUN. the integral is eval-
uated by IMSL subroutine QDAGS. The same initial condition for both analytical and
numerical calculation is a step function with the jump located at £=0.5. The rest of the
conditions used are as the same as those used in Section B.1. Using {four terms for ths series
under the specified conditions gives at least seven figures of accuracy. The comparison of
analytical and numerical solution is listed below. Both four terms and ten terms results are

listed for the analvtical solution.

Table B.4: Concentration distribution at »/Pe=19/240.

Analytical Numerical

£ 4 terms | 10 terms

0.000 | 0.35645 | 0.35645 0.36137
0.186 | 0.34692 | 0.34692 0.35176
0372 | 0.32234 | 0.32234 0.32696
0.558 | 0.29288 | 0.29288 0.29724
0.744 | 0.27015 | 0.27015 0.27432
0.930 | 0.26198 | 0.26198 0.26608
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Table B.5: Cloncentration distribution at 5/Pe=5/240.

Analvtical | Numerical

3 4 terms

0.000 | 0.77695 0.78333
0.186 | 0.70937 0.71605
0372} 0.53075 0.53739
0.538 | 0.31431 0.31947

0.744 | 0.15136 0.15446

0.930 | 0.09473 (.09694
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Appendix C

Table ('.1: Flux-flow data grouped by 2/Q

Q1*=30% Q1*=40%

2/Q=24.6 s/mm* | z/Q=134.2 z2/Q=21.4 z/Q=142.0

Q2+ F2* Q2= F2* || Q2  F2* | Q2¢ Far
0.601 0.614 0.340 0318 { 0.264 0.200  0.689 0.702
0.586 0.570 0.681 0.676 || 0.646 0.640{ 0.751 0.772
0.507 0.496 0.544 0534 || 0.v79 0.790 | 0.208 0.19%
4.576 0.563 0.480 0.479 | 0.688 0.674 | 0445 0.447
0.589 0.568 0.869 0.899 || 0.563 0.468 | 0.056 0.050
0.443 0.442 0.871 0.890 (| 0.510 0.499 | 0.320 0.264
0.486 0.474 0.429 0.409 | 0.563 0.547 ; 0.294 0.244
0.596 0.584 0.329 0324 || 0.812 0.820 | 0.517 0.487
0.234 0.195 0.192 0.181 {f 0.373 0.321 | 0463 0.430
0.660 0.656 0.057 0.040 |f 0.318 0.296 | 0.079 0.078
0.779 0.784 0.557 0.565 || 0.285 0.231

0.399 0.374 0.517 0.483 || 0.563 0.550
0.693 0.697 0.510 0.494 || 0.342 0.309

0.787 0.794 0.792 0.829 || 0.289 0.270

0.509 0.491 0.243 0.213

0.438 0.407 0.220 0.207

0.486 0.450
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Q1*=50% Q1*=60%
2/Q=222 | 2/Q=1539 | z/Q=526 | z/Q=1882
Q2* F2* | Q2* F2* || Q¢ T2+ | Q2 F2¢
0.359 0.283 ] 0.584 0550 || 0.346 0.318 | 0.541 0.515
0.220 0.140 | 0.644 0615 || 0425 0.426 | 0.855 0.898
0.8%9 0.858 | 0.753 0.781 || 0.495 0.497 | 0.385 0.329
0.229 0.149 | 0.438 0.409 || 0450 0.447 | 0.492 0.115
0.595 0.568 | 0.312 0.253 || 0.519 0.509 | 0.619 0.619
0.619 0602 | 0.165 0.158 || 0477 0.4%0
0.330 0.262 | 0.270 0.221 || 0.48% 0.479
0.179  0.126 | 0.116 0.045
0.388  0.335 | 0.736 0.748
0.766 0.773 | 0.625 0.596

0.694 0.668
0.766 0.691
0.414 0.411
0.353  0.267
0.071 0.061
0.171 0.115
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Table ('.2: Flux-flow data grouped by n/Pe

Q1-=30(Z

Q1*=40%

{ ’I/Pe)avg.=0.08'2

(1]/Pe)avg,=0.094

( ?]/PE )avg_=0.094

Qr  Fr | Q>  F2 Qr  F2
0340 0318 [0.605 0527 {0209  0.197
0871 0890 | 0681 0689 [ 0445  0.447
0420 0409 | 054 0534 |/ 0056  0.049
0.329 0.324 0480 0.479 0.320 0.264
0660  0.656 | 0.792  0.797 | 0.646  0.640
0.779  0.781 | 0.869  0.899 | 0779 0.790
0.603  0.697 |058% 0570 | 0517 0487
048 0450 [0.507 0496 [ 0079  0.078

0.087 0072 [ 0812  0.820

0.576 0.563 0.373 0.321

0192 081 [ 0318  0.296

0.057  0.040 [ 0285 0231

0.557  0.565 [ 0563  0.550

0.517 0483 | 0342  0.309

0.510  0.494 [ 0.289  0.270

0.792 0820 0243 0213

0443 0442 [ 0220  0.207

0486  0.474

0.596  0.584

0234  0.195

0.399  0.374

0.787  0.794

0.509  0.491

0438 0407
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Q1==50%

Q1-=60%.

{ ’]/Pe)a‘vg_=0.0()'1

(n/Pe)avg.=0.095

(7)/P9)a.\'g.=0.118

(n/Pe)avg.=0.898

Q2- F2- Q2" F2 Q2 F2- Q2- F2-
0220 0140 | 0606 0494 [ 0425 0426 | 0701  0.736
0.889  0.856 | 0.357  0.34% || 0495 0497 | 0.835  0.898
0220 0.149 | 0587 0550 |l 0.450  0.447 | 0385  0.329
0.595 0568 | 064 0615 |[ 0519  0.509 | 0492 0415
0649  0.602 |0.753  0.781 0477 0480 | 0619  0.619
0330 0262 |0312 0253 || 04% 0479
0179  0.126 | 0.165  0.158
0.38% 0335 | 0270 0221
0.317  0.397 |0.116  0.045

0.330  0.287

0.688  0.613

0.742  0.811

0.146  0.121

0.736  0.748

0625  0.569

0.694  0.668

0.414  0.411

0.353  0.267

0.071  0.061

0171  0.115

0311 0281

0.766  0.77
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Appendix D

The experimental data shown include the separating surfaces and streamline tracing. Rect-

angular coordinates are used and the data listed are normalize by the tube radius.

Table D.1: Side-branch-tvpe separating surfaces. equal diameters.

Q*=5% | x| 636 .681 .68 .691

v| G639 -.613 .109 -.0R85

10% x| 604 574 GO08 .603 541 358 505

v o321 -373 -.011 562 -.622 41 -.TT8

20% x| 452 436 413 423

v| 104 -.1539 .590 -.582

30% x| 216 .193 .209 246 234 .261 .252  .235 .229
y|-004 -908 904 715 -.719 536 -.540 324 -.328

10% x| .024 117 .098 .106 .097 .094 .107 .0R4 .06V
v | .000 276 -.284 497 -.499 766 -.764 .960 -.9G2

50% x|-.026 .009 -.040 .026 -.014 .014

v | .503 -504 753 -.7H6 268 -.268

60% x| -068 -072 -.135 -.094 -.104 -062 -.123 -.064 -.096
v .001 312 -290 .536 -.534 .705 -.697 918 -915

0% X | -.216 -.247 -.221 -242 -251 -.194 -220 -195 -.166
¥y 004 284 -304 496 -.492 677 -.666 _.R46 -.852

80% x| -412 -400 -.448 -421 -421 -355 -.355
v | .007 414 -.362 579 -.379 .836 -.836

90% x| -.656 -.567 -.604 -538 -.512
v 011 547 -.507 .741 -.759




Table D.2: T-branch (side-branch=1feed branch). equal diameter.

*=5% | x | -.696 -.699 -.699
v|-012 -35 .356
10% | x| -.630 -589 604 -.604 -.626 -.626 -.560
v|-255 340 525 -525 -.696 .696 .000
20% | x{-436 -.460 -460 -480 -.451 438 -.470
v .000 -.373 373 552 -.57T -.791 76T
30% | x| -.184 -230 -256 -234 -.279 -.246 -.270 -.28%  -.225
v 000 341 -.328 526 -.504 67T -.668 821 -.R38
0% | x|-040 -073 127 -.099 -.099 -.084 -.119 -.000 -.105
v| 000 316 -.208 166 466 683 -.6TR -855 854
50% | x| .036 -.023 .023 -.016 .024 .023 -.023 .000 .000
v 000 .259 -.259 -.456 .455 668 -.G6S .860 -.860
60% (x| .040 .160 .093 .42 .068 .113 .101 .117 .102
v| .000 .205 -.208 412 -.431 -.638 G40 832 -.834
TOY% | x| 204 220 257 248 256 267 .234 258  .230
v| 000 .315 -.285 466 -.462 630 -.643 .795 -.804
R0% | x| 455 443 438 461 .470 435 .440
v |-701 709 -342 311 486 -518  .000
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Table D.3: Side-branch-type. unequal size (Db/Dp=1/2).

Q*=10% | x| 682 636 .567 .535 .719 .79 473
vi o HA10 -479 314 -334 0 561 374 .050
20% x| 359 342 499 527 M6 246
v 233 -258 535  -.50% 057 -.057
H0% x| 052 022 022 024 -.014 .005
v 421 423 689 685 260 -.260
RO%. x| -.335 -.363 -.193 -.233
vi .536 -.518 T2 =761
90%. X[ -236 -.174 -495 -480 -311 -361 -.534
v|-881 K95 430 - 447 732 709 -.056
Table D.4: At high Revnolds number.
Q*=10% | x| .033 -.114 272 .219 105 .030
vi 935 -.929 748 -.765 .858 -.RG3
30% x| -.384 -490 -2v2 -324 -.048 -.096 .194 .194
y| 787 -.726 748 -.727 .GR6 -.681 534 -.534
40% x| 306 .125 .034 -.041 -.132 -305 -.337 -.557
v 257 468 - 483 587 -.373 626 -.609 .597
x{-625 -.743 -.798 -.BES -.88)
hg 525 .501 -.407 412 -.412
50% Xx|-971 -975 -745 -786 -.5090 -.599 -.284 -417
y| .102 -.034 430 -350 .565 -.468 582 -.496
x| -.009 -.142
y! .516 -.496
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Table D.5: Mapping data. equal diameters (Dh/Dp=1).
Q*=18%

k=0.31 R=0.19 R=0.73

X y X A X A

-0.283 | -0.020 | -0.468 | -0.108 | -0.66%8 | -0.1¥9
-0.261 { 0.111 | -0.444 | 0.062 | -0.681 | 0.085
-0.195 | 0.233 | -0.369 | 0.240 | -0.606 | 0.350
-0.096 | 0.314 | -0.257 | 0.367 | -0.441 | 0.544
0.051 | 0.364 } -0.089 | 0.459 ! -0.208 [ 0.681
0.182 | 0.315 | 0.084 | 0.533 | 0.064 | 0.737
0.284 | 0.247 | 0.274 | 0456 | 0.412 | 0.686
0.427 | 0.227 | 0497 | 0.403 | 0.495 | -0.634
0.525 | 0.141 § 0.743 | 0.285 } 0.165 | -0.713
0.597 | 0.063 | 0.644 | -0.357 | -0.113 | -0.715
0.606 | -0.085 | 0.386 | -0.444 | -0.379 | -0.584
0.522 { -0.190 | 0.121 [ -0.522 | -0.587 | -0.396
0.390 | -0.294 | -0.082 ; -0.465 ; -0.660 | -0.165
0.245 | -0.337 | -0.233 | -0.387
0.093 | -0.323 | -0.367 | -0.257
-0.060 | -0.310 | -0.470 | -0.100

-0.168 | -0.258
-0.231 | -0.128
-0.278 | -0.029
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Q*=50%

R=0.31 R=0.54 R=0.76
X v X v X v
0.031 | 0.008 | -0.335} -0.122 | -0.658 | -0.239
0.020 | -0.003 |} -0.318 | 0.109 | -0.67% | 0.119
0.152 | 0.088 | -0.217 | 0.288 | -0.574 | 0.387
0.281 | 0.244 | -0.064 | 0407 | -0.342 ) 0.592
0470 | 0.282 | 0.214 | 0.530 | 0.000 | 0.744
0.542 | -0.326 | 0.272 | -0.512 | 0.051 0.734
0.211 | -0.261 | -0.047 | -0.446 | -0.275 | -0.648
0.044 | -0.175 | -0.236 | -0.303 | -0.502 | -0.452
-0.015 | -0.037 | -0.331 | -0.120 { -0.652 | -0.1G63
Q*=82%

R=0.68 R=0.83

X v X v

0.217 | 0.538 | -0.473 | -0.492

-0.125 | 0.325 | -0.684 | -0.012

-0.291 | 0.073 | -0.616 | 0.341

-0.239 | -0.161 | -0.286 | 0.643

0.036 | -0.414 | 0.243 | 0.796

0.538 | -0.502 | 0.211 | -0.734

-0.296 | -0.634

-0.564 | -0.395
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Table D.G: Mapping data. unequal dianeters (Db/Dp=1/2).
Q*=18%

R=0.29 R=0.47 R=0.74

X v X v X ¥

-0.243 | -0.026 | -0.397 | -0.137 | -0.687 | -0.264
-0.24G6 | 0.071 | -0.411 | 0.029 | -0.712 | 0.012
-0.167 | 0.155 | -0.371 | 0.197 | -0.690 | 0.279
-0.085 | 0.211 | -0.239 | 0.320 | -0.541 } 0.522
0.004 | 0.244 | -0.120 | 0.419 | -0.340 | 0.666
0.106 | 0.250 ; 0.072 | 0.434 | -0.052 | 0.746
0.243 | 0.260 | 0.239 | 0.430 | 0.232 | 0.715
0.391 | 0.226 | 0.460 | 0.334 | 0.560 | 0.360
0.598 | 0.149 | 0.627 | -0.253 | 0.463 | -0.638
0.721 | 0.101 | 0.361 | -0.374 | 0.172 | -0.744
0.784 1 0.000 | 0.135 | -0.469 { -0.131 | -0.745
0.599 | -0.106 | -0.059 | -0.420 | -0.387 | -0.645
0.457 | -0.213 | -0.211 | -0.3581 | -0.591 | -0.478
0.255 | -0.293 | -0.339 } -0.274 | -0.702 | -0.269
0.093 | -0.285 | -0.410 | -0.110
-0.035 | -0.250
-0.119 | -0.190
-0.193 | -0.121
-0.230 | -0.028

110



Q*=-)0%)

R=0.30 R=0.45 R=0.73
X v X ¥ X A3
0.064 | 0.008 | -0.203 | -0.047 | -0.651 | -0.200
0.000 | 0.000 | -0.205 | 0.067 | -0.695 | 0.085
0.0406 | 0.069 | -0.150 | 0.192 | -0.610 | 0.352
0.150 | 0.155 | -0.049 | 0.280 | -0.394 " 0.584
0371 | 0.214 | 0.109 | 0.356 | -0.438 | 0.561
0.416 | -0.231 | 0.555 | 0.098 | 0.219 | 0.715
0.135 } -0.208 | 0.264 | -0.406 | 0.400 | -0.665
-0.005 1 -0.072 | -0.035 | -0.334 | -0.026 | -0.732
0.035 | 0,007 | -0.169 | -0.208 } -0.343 | -0.619
-0.244 | -0.089 ; -0.548 | -0.429
-0.679 | -0.169
Q*=82%
R=0.65 R=0.80

X ¥ X v

-0.120 | -0.094 | -0.545 | -0.198

-0.089 | 0.086 | -0.582 | 0.082

-0.004 | 0.236 | -0.438 | 0.381

0.352 | 0.377 | -0.169 | 0.588

0.046 | -0.325 | 0.359 | 0.647

-0.131 | -0.099 | 0.096 | -0.681

-0.320 | -0.493

-0.522 | -0.243
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