
University of New Hampshire
University of New Hampshire Scholars' Repository

Doctoral Dissertations Student Scholarship

Winter 1989

Pathogenesis, pathology and chemotherapy of
experimental Legionella pneumophila infection
Arthur O. Tzianabos
University of New Hampshire, Durham

Follow this and additional works at: https://scholars.unh.edu/dissertation

This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has
been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more
information, please contact nicole.hentz@unh.edu.

Recommended Citation
Tzianabos, Arthur O., "Pathogenesis, pathology and chemotherapy of experimental Legionella pneumophila infection" (1989).
Doctoral Dissertations. 1601.
https://scholars.unh.edu/dissertation/1601

https://scholars.unh.edu?utm_source=scholars.unh.edu%2Fdissertation%2F1601&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/dissertation?utm_source=scholars.unh.edu%2Fdissertation%2F1601&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/student?utm_source=scholars.unh.edu%2Fdissertation%2F1601&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/dissertation?utm_source=scholars.unh.edu%2Fdissertation%2F1601&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/dissertation/1601?utm_source=scholars.unh.edu%2Fdissertation%2F1601&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:nicole.hentz@unh.edu


INFORMATION TO USERS

The most advanced technology has been used to photograph and 
reproduce this manuscript from the microfilm master. UMI films the 
text directly from the original or copy submitted. Thus, some thesis and 
dissertation copies are in typewriter face, while others may be from any 
type of computer printer.

The quality of this reproduction is dependent upon the quality of the 
copy submitted. Broken or indistinct print, colored or poor quality 
illustrations and photographs, print bleedthrough, substandard margins, 
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete 
manuscript and there are missing pages, these will be noted. Also, if 
unauthorized copyright material had to be removed, a note will indicate 
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by 
sectioning the original, beginning at the upper left-hand corner and 
continuing from left to right in equal sections with small overlaps. Each 
original is also photographed in one exposure and is included in 
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced 
xerographically in this copy. Higher quality 6" x 9" black and white 
photographic prints are available for any photographs or illustrations 
appearing in this copy for an additional charge. Contact UMI directly 
to order.

University  Microfilms International  
A Beil & H ow ell  Information C o m p a n y  

3 0 0  North Z e e b  R o a d .  A n n  Arbor. Ml 4 8 1 0 6 - 1 3 4 6  U S A  
3 1 3  7 6 1 - 4 7 0 0  8 0 0  5 2 1 - 0 6 0 0



O rder N u m b er 9022646

P ath ogen esis, pathology and chem otherapy o f  exp erim ental 
Legionella pneumophila infection

Tzianabos, Arthur O., Ph.D.

University of New Hampshire, 1989

U M I
300 N. Zeeb Rd.
Ann Arbor, MI 48106



PATHOGENESIS, PATHOLOGY AND CHEMOTHERAPY OF 

EXPERIMENTAL LEGIONELLA PNEUMOPHILA INFECTION

BY

ARTHUR O. TZIANABOS 

B.S. BOSTON COLLEGE, 1985

DISSERTATION

Submitted to the University of New Hampshire 
in Partial Fulfillment of 

the Requirements for the Degree of

Doctor of Philosophy 

in

Microbiology

Decem ber, 1989



This dissertation has been  examined and approved.

Dissertation director, Dr\ Frank G. Rodgers 
A ssociate Professor of Microbiology

Dr. William R. C hesbroyProf^ssor of Microbiology

Dr. Donald M. G reen, Professor of Biochemistry

)h Jr Moore Jl 
nd Nutritional

Dr. Thom as G. Pistole, Professor of Microbiology

~2.g fsUvleH&eg, \ ^ °\ 
Date



TO MY PARENTS



Acknowledgments

I wish to thank the Research Office and G raduate School of the University 

of New Hampshire for their support in the form of research funds, teaching and 

dissertation fellowships during my graduate studies.

These years have brought som e of the most exhilarating and difficult 

tim es I have yet known. During this endeavor, I have had the pleasure of 

working with som e great people: I express my d eepest gratitude to my advisor, 

Dr. Frank Rodgers, for his instruction, advice and constant encouragem ent 

throughout the course of this investigation. I shall value what I have learned 

from him. I also thank the m em bers of my doctoral committee, Dr. William 

Chesbro, Dr. Donald G reen, Dr. Joe Moore and Dr. Tom Pistole, for their 

guidance and helpful suggestions.

I am indebted to Bob Mooney for his expertise and friendship during our 

many discussions of m atters scientific and not so scientific. Thanks go to Linda 

Dibernardo and  Alberta Moulton for their help and patience, m em bers of Dr. 

Rodgers' lab for their useful discussion, and to fellow graduate students, Robin 

R oss, Bob Millham and Tod Gavron for their corrupting influence. I also thank 

Kirsten Quist for her love and forbearance during the last year.

Finally, I thank my parents for all of their love and support. I am  forever 

grateful.



TABLE OF CONTENTS

page

DEDICATION..................................................................................................................  iii

ACKNOWLEDGMENTS................................................................................................ iv

LIST OF TABLES............................................................................................................ vii

LIST OF FIGURES.........................................................................................................  ix

LIST OF PLATES............................................................................................................ xii

ABSTRACT...................................................................................................................... xv

FRONTISPIECE...........................................................................................................  xvii

SECTION page

I. NATURAL HISTORY of LEGIONNAIRES' DISEASE.............................  1
1.1 Preface.................................................................................................  1
1.2 Historical perspective......................................................................... 1
1.3 The Organism.......................................................................................  4
1.3.1 Taxonomy and nomenclature..........................................................  4
1.3.2 Morphological characteristics..........................................................  7
1.3.3 Biochemical properties.....................................................................  10
1.3.4 Physico-chemical properties............................................................  13
1.3.5 Genetics...............................................................................................  13
1.3.6 Environmental aspects......................................................................  15
1.4 The Disease........................................................................................  16
1.4.1 Epidemiology....................................................................................... 16
1.4.2 Clinical features................................................................................... 24
1.4.3 Pathology.............................................................................................. 25
1.4.4 Pathogenesis....................................................................................... 27
1.4.5 Diagnosis.............................................................................................. 28
1.4.6 Immunity...............................................................................................  31
1.4.7 Antimicrobial therapy.........................................................................  33

v



II. HYPOTHESIS and SPECIFIC AIMS............................................................  35

III. PARTIAL CHARACTERIZATION of LEGIONELLA PNEUMOPHILA
ADHERENCE TO HOST CELLS...................................................................  37
3.1 Abstract........................................................................................................  37
3.2 Introduction..................................................................................................  38
3.3 Materials and Methods..............................................................................  41
3.4 Results..........................................................................................................  47
3.5 Discussion.................................................................................................... 50

IV. THE EFFECT OF ANTIBIOTICS THAT INHIBIT CELL WALL,
PROTEIN AND DNA SYNTHESIS on the GROWTH and 
MORPHOLOGY OF LEGIONELLA PNEUMOPHILA................................  77
4.1 Abstract........................................................................................................  77
4.2 Introduction.................................................................................................  78
4.3 Materials and Methods.............................................................................  79
4.4 Results.........................................................................................................  81
4.5 Discussion.................................................................................................... 85

V. PATHOGENESIS, PATHOLOGY and CHEMOTHERAPY of 
EXPERIMENTAL LEGIONELLA PNEUMOPHILA INFECTION
in the CHICK EMBRYO....................................................................................  118
5.1 Abstract........................................................................................................  118
5.2 Introduction.................................................................................................. 120
5.3 Materials and Methods.............................................................................  123
5.4 Results.........................................................................................................  126
5.5 Discussion.................................................................................................... 131

VI. GENERAL DISCUSSION.................................................................................. 167

VII. POSSIBLE FUTURE STUDIES........................................................................ 169

VIII. LIST of REFERENCES......................................................................................  171

IX. APPENDICES

Appendix 1 Media used in biological s tu d ies ................................ 186
Appendix 2 Reagents and  materials u se d  in

histological studies........................................................... 190
Appendix 3 R eagents an d  materials u se d  in

electron microscopy studies......................................... 192
Appendix 4 Production of polyclonal an tise ra  against

L. pneumophila.................................................................201

X. REPRINTS OF PUBLICATIONS.....................................................................  204

v i



LIST of TABLES

page

TABLE 1.1 Taxonomy and classification of the genus Legionella...............  5

TABLE 1.2 Morphological properties of L. pneumophila.................................. 8

TABLE 1.3 Biochemical properties of L. pneumophila.....................................  14

TABLE 1.4 Com parison of patients with Legionnaires'
disease or Pontiac Fever....................................................................... 17

TABLE 1.5 Clinical presentation of legionellosis................................................  20

TABLE 1.6 Diagnosis of Legionnaires' d isease ..................................................  29

TABLE 3.1 Bacterial treatm ents prior to adherence a s sa y s ............................ 57

TABLE 3.2 Eukaryotic cell treatm ents prior to adherence a ssay s ................ 58

TABLE 3.3 Competitive binding experiments......................................................  59

TABLE 4.1 Susceptibility of L. pneumophila to selected antibiotics  90

TABLE 4.2 Morphological response of L. pneum ophila following
exposure to antibiotics tor 6 and 24 hours.......................................... 91

TABLE 5.1 LD50 values for L. pneumophila in the em bryonated
hen's egg.....................................................................................................135

TABLE 5.2 Histopathological observations on organs of embryos
inoculated with 1, 10, 100 or 1000 times the 100 YSLD50
of L. pneumophila.......................................................................................136

TABLE 5.3 Ultrastructural observations on cells of em bryo organs
inoculated with 100 tim es the  100 YSLD50 of 
L. pneumophila......................................................................................... 137

v i i



TABLE 5.4 A ppearance of inflammatory cells in chick embryo organs
infected with 100 tim es the 100 YSLD50 of L. pneumophila 
and protected with 10 times the MIC of each antibiotic...............  138

TABLE 5.5 Ultrastmctural cell dam age in embryo organs previously
inoculated with 100 times the 100 YSLD50 of 
L. pneumophila and protected with antibiotic.................................. 139

v i i i



LIST of FIGURES

page

FIGURE 1.1 Incidence of Legionnaires' d isease  c a s e s  reported
to theC D C .............................................................................................. 19

FIGURE 1.2 Reported sporadic cases  of legionellosis to the CDC  23

FIGURE 1.3 Flow schem e for the identification of L. pneumophila  30

FIGURE 3.1 Schem atic representation of potential L. pneumophila
adhesins................................................................................................ 56

FIGURE 3.2 Bacterial binding curve of L. pneum ophila to U937 cells
a s  m easured by viable count assay s .............................................  60

FIGURE 3.3 Bacterial binding curve of L. pneumophila to U937 cells
as  measured by I FA............................................................................  61

FIGURE 3.4 Bacterial binding curve of L. pneumoohila to MRC-5 cells
a s  m easured by viable count assay s .............................................  62

FIGURE 3.5 Bacterial binding curve of L. pneumophila to MRC-5 cells
as  measured by IFA............................................................................  63

FIGURE 3.6 Reduction of L. pneumophila adherence to U937 cells
a s  m easured by viable counts following bacterial 
treatments.............................................................................................  64

FIGURE 3.7 Reduction of L. pneumophila adherence to U937 cells
a s  m easured by IFA following bacterial treatm ents...................  65

FIGURE 3.8 Reduction of L. pneumophila adherence to MRC-5 cells
a s  m easured by viable counts following bacterial 
treatments.............................................................................................. 66

FIGURE 3.9 Reduction of L. pneumoohila adherence to MRC-5 cells
a s  m easured by IFA following bacterial treatm ents...................  67



FIGURE 3.10 Reduction of L. pneumophila adherence to U937 cells 
a s  m easured by viable counts following eukaryotic cell 
treatments.............................................................................................  68

FIGURE 3.11 Reduction of L. pneumophila adherence to U937 cells 
a s  m easured by IFA following eukaryotic cell 
treatments.............................................................................................  69

FIGURE 3.12 Reduction of L. pneumophila adherence to MRC-5 cells 
a s  m easured by viable counts following eukaryotic cell 
treatments.............................................................................................  70

FIGURE 3.13 Reduction of L. pneumophila adherence to MRC-5 cells 
a s  m easured by IFA following eukaryotic cell 
treatments.............................................................................................  71

FIGURE 3.14 Reduction of L. pneumophila adherence to U937 cells 
a s  m easured by viable counts following addition of 
monosaccharide sugars....................................................................  72

FIGURE 3.15 Reduction of L. pneumophila adherence to U937 cells 
a s  m easured by IFA following addition of 
monosaccharide sugars..................................................................... 73

FIGURE 3.16 Reduction of L. pneumophila adherence to MRC-5 cells 
a s  m easured by viable counts following addition of 
monosaccharide sugars....................................................................  74

FIGURE 3.17 Reduction of L. pneumophila adherence to MRC-5 cells 
a s  m easured by IFA following addition of 
monosaccharide sugars....................................................................  75

FIGURE 4.1 The effect of cefotaxime on the growth of L. pneum ophila  92

FIGURE 4.2 The effect of methicillin on the growth of L. pneum ophila  93

FIGURE 4.3 The effect of ampicillin on the growth of L. pneum ophila  94

FIGURE 4.4 The effect of erythromycin on the growth of
L pneumophila....................................................................................  9 5  .

FIGURE 4.5 The effect of rifampicin on the growth of L. pneum ophila  96

x



FIGURE 4.6 The effect of ciprofloxacin on the growth of
L.pneumophila.....................................................................................  97

FIGURE 4.7 Proportion of L. pneumophila exhibiting morphological
changes following exposure to selected antibiotics................. 98

FIGURE 5.1 Schem atic illustration of various routes of inoculation
of the chick embryo............................................................................  140

FIGURE 5.2 Schem atic illustration of the CAM route of inoculation  141

FIGURE 5.3 Bacterial viable counts of embryo organs following
inoculation with the YSLD50 of L.pneumophila.......................... 142

FIGURE 5.4 Bacterial viable counts of embryo organs following
inoculation with 10 tim es the YSLD50 of L. pneum ophila  143

FIGURE 5.5 Bacterial viable counts of embryo organs following
inoculation with 100 times the YSLD50 of L. pneum ophila.... 144

FIGURE 5.6 Bacterial viable counts of embryo organs following
inoculation with 1000 times the YSLD50 of L. pneum ophila.. 145

FIGURE 5.7 Bacterial viable counts of embryo organs previously
inoculated with 100 times the YSLD50 of L. pneumoohila 
and treated one day later with selected antibiotics..................... 146

FIGURE 5.8 Viability of embryos previously infected with 100 tim es
the YSLD50 of L. pneumoohila and treated one day later 
with selected antibiotics.....................................................................  147

x i



LIST of PLATES

page

PLATE 3.1 L. pneumoohila binding to U937 and MRC-5 cells....................  76

PLATE 4.1 Untreated L. pneumophila organism s............................................. 99

PLATE 4.2 L  pneumophila exposed to cefotaxime for 6 h .........................  100

PLATE 4.3 L. pneumophila exposed to cefotaxime for 24 h.......................  101

PLATE 4.4 L. pneumophila exposed to methicillin for 6 h ..............................  102

PLATE 4.5 L. pneumophila exposed to methicillin for 6  h ..............................  103

PLATE 4.6 L. pneumophila exposed to methicillin for 6 h ..............................  104

PLATE 4.7 L. pneumophila exposed to methicillin for 24 h..............................  105

PLATE 4.8 L. pneumoohila exposed to methicillin for 24 h ............................  106

PLATE 4.9 L. pneumoohila exposed to rifampicin for 6 h ................................ 107

PLATE 4.10 L. pneumoohila exposed to rifampicin for 24 h ...........................  108

PLATE 4.11 L. pneumophila exposed to rifampicin for 24h............................  109

PLATE 4.12 L. pneumoohila exposed to rifampicin for 24 h .............................  110

PLATE 4.13 I . pneumoohila exposed to ciprofloxacin for 6 h.......................... 111

PLATE 4.14 L. pneumoohila exposed to ciprofloxacin for 6 h.......................... 112

PLATE 4.15 L. pneumophila exposed to ciprofloxacin for 6 h........................  113

PLATE 4.16 I - nneumophila exposed to ciprofloxacin for 6  h..........................  114

PLATE 4.17 L. nneumophila exposed to ciprofloxacin for 6  h..........................  115

PLATE 4.18 I... pneumophila exposed to ciprofloxacin for 24 h .......................  116

x i i



PLATE 4.19 L. pneumophila exposed to ciprofloxacin for 24 h.......................  117

PLATE 5.1 Histological sections of liver from normal and infected
embryos................................................................................................  148

PLATE 5.2 Histological sections of heart from normal and infected
embryos................................................................................................  149

PLATE 5.3 Histological sections of spleen from normal and  infected
embryos................................................................................................  150

PLATE 5.4 Histological sections of kidney from normal and infected
embryos................................................................................................  151

PLATE 5.5 High magnification of inflammatory cells in liver of infected
embryo..................................................................................................  152

PLATE 5.6 Ultrastructural changes in kidney of infected embryo three
days post-inoculation............................ ............................................. 153

PLATE 5.7 Ultrastructural changes in heart of infected embryo three
days post-inoculation.......................................................................... 154

PLATE 5.8 Ultrastructural changes in spleen of infected embryo four
days post-inoculation.......................................................................... 155

PLATE 5.9 Hemolytic process in kidney of infected embryo four
days post-inoculation.......................................................................... 156

PLATE 5.10 Advanced stages of infection in liver of embryo five
days post-inoculation.......................................................................... 157

PLATE 5.11 Degenerative changes in heart of infected embryo five
days post-inoculation.......................................................................... 158

PLATE 5.12 Pyknosis and karyolysis of nuclei of cells five days post­
inoculation.........................................................................................    159

PLATE 5.13 Intracellular organism within spleen of infected em bryo  160

PLATE 5.14 Thin-sectioned kidney at four days post-inoculation from
infected embryo treated with erythromycin three day s  after 
bacterial infection................................................................................... 161

x i i i



PLATE 5.15 Thin-sectioned kidney at four days post-inoculation from 
infected embryo treated with doxycycline th ree  days after 
bacterial infection.................................................................................  162

PLATE 5.16 Thin-sectioned kidney a t four days post-inoculation from 
infected embryo treated with rifampicin th ree  days after 
bacterial i nfection.................................................................................  163

PLATE 5.17 Thin-sectioned kidney at eight days post-inoculation from 
infected embryo treated with rifampicin th ree  days after 
bacterial infection.................................................................................  164

PLATE 5.18 Thin-sectioned liver at four days post-inoculation from
infected embryo treated with ciprofloxacin th ree  days after 
bacterial infection.................................................................................  165

PLATE 5.19 Thin-sectioned liver at eight days post-inoculation from
infected embryo treated with ciprofloxacin three days after 
bacterial infection........................................ ........................................  166

x iv



Abstract

PATHOGENESIS, PATHOLOGY AND CHEMOTHERAPY OF 

EXPERIMENTAL LEGIONELLA PNEUMOPHILA INFECTION

by

Arthur O. Tzianabos 
University of New Hampshire, Decem ber, 1989

Legionella pneumophila is the causative agent of a  severe, often fatal 

pneum onic illness known as  Legionnaires' disease. The m echanism s by which 

L. pneumophila a ttaches to U937 (transformed human macrophage-like cells) 

and to MRC-5 cells (semi-continuous human lung fibroblasts) w ere 

investigated. Experimental param eters for adherence assays w ere established 

prior to blocking studies designed to identify microbial adhesins and/or 

eukaryotic receptors that m ediate bacterial attachm ent to target cells. Results 

from th ese  studies indicated that a  lectin-like com ponent (s) associa ted  with L. 

pneum ophila may be responsible, at least in part, for microbial adherence to 

th ese  eukaryotic host cells. Erythromycin is the drug of choice for the  treatment 

of clinical legionellosis; however, difficulties with this antibiotic have been 

reported resulting in the need to seek alternative therapeutic regim ens. In th ese  

studies, the effect of clinically relevant antibiotics that inhibited bacterial ceil 

wall, protein and DNA synthesis of this pathogen w as evaluated in vitro by 

growth and viability studies a s  well as  morphologically by negative stain,

xv



scanning and thin-section electron microscopy. Of those tested , cefotaxime, an 

antibiotic of limited value in clinical trials, w as most effective. The pathogenicity 

of L. pneumoohila w as a sse s se d  by LD50 and bacterial growth estim ations in 

the chick embryo animal system  in ovo. In addition, histopathological and 

electron microscopic examination of the cellular and sub-cellular pathology 

induced in the organs of em bryos previously infected with 100 times the yolk 

sac  (YS)LD50 of L- pneumophila w as m ade a s  a  prelude to chem otherapeutic 

treatm ent with a  range of clinically putative antimicrobial agents. The promising 

new quinolone derivative, ciprofloxacin, was most effective in these  trials. 

Results from these  studies may be indicative of novel preventative and control 

m easu res for the therapy of human Legionnaires' disease.

x v i



Legionella pneum ophila, serogroup 1 , strain Nottingham N7. Scanning 
electron microscropy (SEM) preparation. Bar=0.5pm.
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Section I

The Natural History of Legionnaires' Disease

1.1 Preface. L eg ionnaires 'd isease  is a  severe illness of hum ans which 

often occurs in spectacular outbreaks. Although an extensive da ta  base  

concerning all a sp ects  of legionellosis has been established since the outbreak 

in Philadelphia 13 years ago, the m echanism s by which the subsequently 

described causative agent, Legionella pneum ophila, induces d isease  are not 

fully understood. This study exam ines the pathogenesis of this organism at the 

host, cellular and  sub-cellular levels and defines the role of clinically relevant 

antibiotics in th e  d isease  process.

1.2 Historical perspective. The outbreak of a  severe  form of acu te  lobar 

pneum onia during an American Legion Convention held at the Bellevue 

Stratford Hotel in Philadelphia in July 1976 was the precipitating factor which 

led to the isolation and identification of this previously unrecognized human 

pathogen. During this epidemic, 29 of the 182 legionnaires who becam e ill, 

died. An additional 39 individuals who were in or p assed  by the hotel 

developed pneum onia. In all, 34 died from the d isease  or associated  

complications during this outbreak (49). The illness, eventually nam ed 

Legionnaires' d isease , took its nam e from the Philadelphia outbreak. Initially, a  

viral etiology w as suggested  due to the influenza-like symptoms manifested in

1



th e se  people. Indeed, influenza and other bacterial pneum onias are still 

com m on diagnostic considerations by clinicians presented with symptoms of L. 

pneum ophila infection (99).

Failure to immediately isolate the causative agent following the 

Philadelphia epidem ic caused  th e  news media to heighten concerns about the 

p resence  of a  new  microbial killer. These em bellished reports undoubtedly 

expedited the epidemiological and  microbiological investigations following the 

outbreak and contributed to subsequent recognition of this important human 

pathogen. Although investigators at the C enters for D isease Control (CDC) in 

Atlanta announced the cause of the  disease six months after the outbreak, they 

could not identify the mode of transmission but only pointed out that a  common- 

sou rce  epidemic had occurred.

The inability to stain or grow the organism using conventional 

microbiological procedures proved the main problem s in identifying the 

etiological agent of the disease. Dr. Joseph McDade at CDC finally isolated the 

organism  using techniques established for the recovery and identification of 

rickettsiae. The yolk sacs of em bryonated eg g s w ere inoculated with lung 

sam ples from fatal cases  and the bacteria w ere visualized by Gimenez stain 

which contains carbol fucshin rather than safranin. The latter fails to stain 

Legionella species and, as it is the  usual com ponent of the gram  stain, offers 

explanation of the  failure to visualize the agent initially (85). It w as 

subsequently show n that the organism  and the d isease  it c au sed  were not new, 

and  previously unresolved epidem ics were retrospectively attributed to this

2



organism. Among th ese  was an outbreak of a  febrile illness with a  high attack 

rate that occurred in Pontiac, Mi. in 1968 and, due to its non-pneum onic form, 

w as later called "Pontiac Fever" (59). The explanation for the variability of 

sym ptom s of Legionnaires’ d isease  and Pontiac Fever is unknown. The 

spectrum  of d isea se  cau sed  by this and related microorganisms is term ed 

legionellosis.

After attem pted cultivation on 17 commonly used bacteriological media, 

Feeley et al. (43) reported that Mueller-Hinton ag ar supplem ented with 1% 

hemoglobin and 1% IsovitalexR supported sp arse  L. pneumophila growth. 

Feeley-Gorm an agar, which contained added L*cysteine hydrochloride and 

soluble ferric pyrophosphate, was an improvement upon this medium (42). 

Finally, Edelstein (29) introduced a  useful but expensive solid medium which 

contained a-ketoglutarate (BCYEa) that supported substantial bacterial growth

after a  48-72 h incubation period at 37° C. This remains the medium of choice 

for the  cultivation of legionellae in clinical and research laboratories.

Subsequent investigations have dem onstrated that L. pneum ophila is an 

environmental organism  readily found in stream s, lakes and potable w ater and 

w hen delivered in appropriate aerosolized form enters the respiratory tract of 

hum ans and replicates within alveolar m acrophages of the lung (13, 111). Air 

conditioners, humidifiers, evaporative condensers, cooling tow ers and other 

w ater system s capable of generating aerosols are  potential sources of d isease- 

Human-to-human spread  has never been recorded.

Experimental study of the pathogenic a sp ec ts  of the organism has

3



utilized a num ber of different laboratory animals, but to date none have fully 

simulated all aspects  of legionellosis. G uinea pigs, rats, mice, rabbits and 

monkeys have been experimentally infected with L. pneum ophila by a num ber 

of different inoculation routes and these  manifest som e, but not all the 

sym ptom s of clinical d isease . Guinea pigs are used  most extensively in such 

studies, but restricted availability, high costs  and legislative p ressu res  have 

forced researchers to seek  alternative system s to study pathogenesis of the 

organism .

1.3 The Organism:

1.3.1 T axonom y and  n o m en c la tu re . The classification and  nom enclature 

of this organism is difficult. Brenner et al. (15, 16) used  DNA homology studies 

a s  the  primary tool to establish that the Legionnaires' d isease  bacterium of the 

Philadelphia outbreak w as a  member of a  new family (Leqionellaceael of the 

gen u s  Legionella and species pneum ophila. Serological diversity within this 

sp ec ies  is well established and  num erous additional species, sub-species and 

serogroups have been described since that time (Table 1.1).

The diversity of the genus has been  noted (15) and attributed to the 

failure of traditional biochemical, immunological and genotypic techniques to 

yield corroborative results. Analysis of fatty acid and isoprenoid quinone 

content have been  useful, but do not accurately differentiate all species and  are 

not appropriate for use outside of a  large research laboratory (15). The 

determination of DNA relatedness has been  and rem ains the main criterion for

4



Table 1.1 Taxonomy and classification of the gen u s L eg io n ella *

Isolated From
S p ec ies  S erogroup  H um ans Environment

L. pneumophila^ 1 Yes Yes
2 Yes Yes
3 Yes Y es
4 Yes Y es
5 Yes Y es
6 Yes Y es
7 Yes Yes
8  Yes No
9 Yes Y es
10 Yes Y es
1 1 Yes No
13 Yes No
14 Yes No

L. micdadei2 Yes Y es
L. bozem anii3 1 Yes Y es

2 Yes No

L. dumoffii3 Yes Y es
L. gormanii3 No Y es
L. longbeachae 1 Yes No

2 Yes No

L. jordanis Yes Y es
L. oakridgensis No Yes
L. wadsworthii Y es No
L. feelii 1 Yes Y es

2 Yes No

L. sainthelensi No Y es
L. an isa No Y es
L. m aceachernii Yes Y es
L. jam estow niensis No Y es
L. rubrilucens No Yes
L. erythra No Yes



(continuation)

L. hackeliae 1 Yes No
2 Y es No

L. spiritensis No Yes
L. parisiensis No Yes
L. cherrii No Yes
L. steigerwaltii No Yes
L. santicrucis No Yes
L. israelensis No Yes
L. birm ingham ensis Yes No
L. cincinnatiensis Y es No
L. moravica No Yes
L. brunensis No Yes
L. quinlivanii No Yes
L. tucsonensis Yes No

‘Adapted from reference 136, Winn, W. C. Jr., Clin. Microbiol. Rev.

1|_. pneum ophila contains three subspecies: L. oneumoohila subspecies 
pneum ophila. L. pneumophila subspecies pascullei and  L. pneum oohila 
subspecies  fraseri.

2Alternate genus name: Tatlockia.

3Alternate genus name: Fluoribacter.
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classification. However, practical identification of Legionella  

species has depended on phenotypic characteristics which include gram

reaction a s  well a s  growth on BCYEa with added L-cysteine and the absence of 

growth on blood agar or BCYEa without added L-cysteine.

The classification of Legionella species has been  som ew hat 

controversial. D isagreem ent continues a s  to the deg ree  of genetic divergence 

that constitutes the establishm ent of a  separate  species a s  well a s  the disparity 

with which researchers have applied criteria to make th ese  distinctions. Brown 

et al. (54) proposed alternate criteria for classification purposes in which two 

new genera, Tatlockia and Fluoribacter. were created. T hese would contain 

organism s otherwise called L. micdadei and the autofluorescing Legionella 

species L. bozemanii. L. dumoffii and L. gormanii. respectively (Table 1.1). 

However, this schem e has not found universal acceptance and m ost workers 

accept the single genus terminology of Legionella within which all species are 

located. It is clear that further work is necessary  to establish uniform guidelines 

for the classification of the legionellae and related species.

1.3.2 Morphological characteristics. Morphological properties of L. 

pneum ophila are  shown in Table 1.2 . Transmission electron microscopy of thin- 

sectioned L. pneum ophila cells has dem onstrated the typical morphological 

characteristics associated  with gram -negative bacteria (105). L. pneumophila 

organism s were shown to be pleomorphic gram -negative rods that m easure 2 

to 20 pm in length and 0.3 to 0.9 pm in width. Artificial media giving poor or
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Table 1.2 Morphological properties of L. pneum ophila^

Short rods (from autopsied lung 0.6 x 1-2 pm, from agar 0.4 x 2-3 pm) 

Tapered ends

Vacuolated surfaces, convoluted or smooth surfaces 

Long forms fin vivo up to 20 pm in length, in vitro >50 pm)

Internal PBH granules-deform ed in freezed fracture 

Division by nonseptate binary fission 

Flagella and fimbriae (pili) present

Blebs and granules on surface subunits, no evidence of acid polysaccharide 

capsu le

F-1 antigen (serogroup specific) located at bacterial surfaces 

Limiting cell envelope, "unit membrane", 10 nm thick 

Peptidoglycan-like mucopeptide layer present after partial plasmolysis 

P lasm a m em brane, "unit membrane", 10 nm thick 

Rich in ribosomes, 25 nm diam eter

1 Adapted from reference 107, Rodgers, F.G., Legionellosis.
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slow bacterial growth resulted in organism s with an elongated or filamentous 

form with tapered ends. Those rods visualized from autopsied lung were 

consistently shorter (21,105).

The cytoplasm of each organism is enclosed within a  double cell 

envelope of approximately 25 nm thickness with an electron-lucent zone or 

periplasm between the inner and  outer m em branes indicating, like the aquatic 

pseudom onads, an apparent ab sen ce  of peptidoglycan (105). However, 

peptidoglycan and diaminopimelic acid have been  dem onstrated following 

partial plasmolysis and enzymatic digestion of the organism by electron 

microscopy and by other biochemical techniques (46, 105, 107, 108). The 

outer m em branes of organisms contain substantial am ounts of the bacterial 

lipopolysaccharide component, 2-keto-3-deoxyoctonate (46).

Cytoplasmic contents consist of evenly dispersed, electron-dense 

ribosom es, each of 25 nm diam eter, arranged in small groups or polysom es 

and a  fine skein of nuclear material (105, 110, 111). Electron-lucent vacuoles 

have been  dem onstrated as a  regular feature of the cytoplasm of L 

pneum ophila w hether present in human lung cells, guinea pig spleen, 

peritoneal m acrophages or from bacteriological media (107). The reported size

of th ese  vacuoles varied from 30 to 200 nm (13) but larger forms up to 0.5 pm

have been  found (107). These structures have been confirmed a s  poly-(3-

hydroxybutyrate (PBH) granules by their appearance in freeze-fractured 

preparations (107, 108).

9



Negative-stain and scanning electron microscopy of L. pneumophila 

revealed bacterial cells with nonparallel sides, tapered e n d s  and smooth 

undulating surfaces. Flagella and fimbriae (pili) have been  demonstrated in 

vitro a s  surface appendages  of L. pneumophila (110). The presence of small 

blebs and evaginations of the outer membrane have been noted on the 

surfaces of organisms by thin-section, scanning and freeze-fracture electron 

microscopy, but an  extracellular mucopolysaccharide layer has not been 

detected. In addition, freeze-fracture electron microscopy of L. pneumophila 

demonstrated four short ridges enclosing the bacterial cytoplasm which 

corresponded to the  double-unit membrane seen  in thin-sectioned material 

(107, 108). Fractured aspects of the peptidoglycan were not evident in the 

intramembranous region of bacilli even after partial plasmolysis.

Poly-p-hydroxybutyrate granules were surrounded by a  non-fracturable

membrane evident a s  a  single ridge in freeze-fracture preparations and 

confirmed reports of electron-lucent vacuoles in thin-sections. In keeping with 

the nature of PBH granules, contents of the granules in L. pneumophila 

underwent plastic deformation a s  an artifact of the fracture process and  were 

evident a s  long, drawn out structures (107,108).

1.3.3 Biochemical properties. L. pneumophila is a  non-spore forming, 

aerobic, non-acid fast organism. All species of the genus demonstrate weak 

catalase and peroxidase activity. L. pneumophila also exp resses  gelatinase,

phospholipase and p-lactamase a s  well as  the ability to hydrolyze starch. Many
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reports describe a  number of exoproteases produced by the organism and 

these  degrade a wide variety of proteins (10, 79). Keen and Hoffman (79) have 

isolated and partially characterized an exoprotease of L. pneumophila that 

exhibited cytotoxic and  hemolytic activity.

L. pneumophila contains an unusually large proportion of branched- 

chain fatty acids located in the cell wall (15) but reports demonstrating the 

p resence of an extracellular acid polysaccharide layer by ruthenium red 

staining have been contradictory (66, 105). The organism has been shown to 

p o sse s s  a  high molecular weight antigen or lipopolysaccharide (LPS), termed 

the F-1 antigen (34, 76) which had endotoxic activity, inhibited serological 

reactions and w as localized on the surface of the bacterium. The LPS of L. 

pneumophila serogroup 1 w as found to be tightly bound to the major outer 

membrane protein (MOMP), reacted specifically with the se ra  of patients with L. 

pneumophila serogroup 1 infection and was distinctly different from that of most 

enteric bacteria (136).

The MOMP of L. pneumophila has a  molecular weight of 24 to 29 

kDa (18, 53, 67, 76, 89) and is expressed on the surface of the bacterium (34). 

Reports have suggested  that the MOMP may be associated with LPS (67) and 

peptidoglycan (52). Gabay and Horwitz (52) showed that this molecule formed 

ion-permeable channels  similar in function to those found in Escherichia coli 

upon exposure to lipid membranes. Butler et al. (18) suggested  that the MOMP 

is part of a  larger, four sub-unit 95 kDa complex.

Investigations have shown that amino acids are the major source of
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energy for growth (55, 80), although the specific amino acid requirements are 

a s  yet undetermined. However, it is generally agreed that arginine, threonine, 

methionine, serine, isoleucine, valine, and cysteine are necessary. In addition, 

several groups have demonstrated that L. pneumophila can be grown in 

chemically defined media composed of amino acids (55, 94). While purines, 

pyrimidines, vitamins and other growth factors are not required, it is known that 

this organism has an unusually high requirement for L-cysteine.

The Krebs cycle is the primary route for carbon assimilation and energy 

production for L. pneumophila (55, 68, 122). These studies have shown that all 

the enzymes of this cycle were present but those of the glyoxylate shunt were 

marginal or absent in cell-free extracts of this bacterium.

Legionellae do not appreciably catabolize carbohydrates. Early reports 

showed negative sugar fermentation results but subsequent studies indicated 

that the Entner-Douderoff and pentose phosphate pathways but not the 

Embden-Meyerof pathway functioned to a  limited degree  in glucose catabolism 

(134). However, the gluconeogenic anabolic enzymes of the Embden-Meyerof 

pathway were responsible for sugar synthesis (55).

L. pneumophila growth is enhanced by trace metals, most notably ferric 

iron, but this may not be an absolute requirement (102,121). Other important 

metals include Cu, Mg, Mn, Co, Ca, Mo, Ni, V, and Zn. In addition, Reeves et al. 

(103) have reported the absence  of phenolate or hydroxamate ferric-binding 

compounds in Legionella species. The function of charcoal and a-ketoglutarate 

in the growth media of this organism has been questioned. Some investigators
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believe that these  compounds neutralize oleic acid produced in the media upon 

autoclave sterilization while others have suggested that they may serve to 

scavenge toxic oxygen radicals released from the yeast extract present in the 

medium upon exposure to fluorescent light (69). However, the precise nature of 

this requirement has  not been elucidated.

The electron transport chain of L. pneumophila is com posed of 

cytochromes c, b, a  and d types but the organization of the respiratory chain 

remains undetermined (68). The concentrations of these  heme-containing 

proteins were much lower in Legionella compared with those of other aerobes 

such as  P seudom onas or Campylobacter. Researchers have concluded that 

the respiratory chain is quite complex in L. pneumophila but is punctuated by at 

least three terminal oxidases (68). The biochemical properties of L. 

pneumophila are summarized in Table 1.3.

1.3.4 Physico-chemical properties. The legionellae have an optimum pH 

range for growth of 6.7 to 6.9 in BCYEa but may grow in other m edia with pH

values a s  low as  6.0 (47, 55). Clinical isolates have an optimal temperature 

range of 35 to 37° C but environmental isolates prefer an optimum of 30° C. 

Isolation of the legionellae from water at 50 to 65° C has been reported (47).

1.3.5 Genetics. Genetic analysis of L. pneumophila has proved difficult. The 

fastidious nature of the organism and lack of conventional genetic transfer 

system s for the legionellae have limited our knowledge in this area . Plasmids ■ 

have been found in L  pneumophila but have not b een  shown to contribute to or 

detract from the virulent properties of the organism. Recent efforts to clone the
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Table 1.3 Biochemical properties of L. pneumophila

-non-spore forming 
-aerobic 
-non-acid fast 
-motile (most strains)
-high proportion of branched chain fatty acids in cell wall 
-amino acids a s  carbon and energy sources

-oxidase (+/-)
-catalase (+)
-peroxidase (+)
-nitrate reductase (-)
-urease (-)
-hippurate hydrolysis (-, most strains)
-gelatinase (-)
-B-lactamase (+)
-exoproteases (+)



g en es  for Legionella antigens in E. coli have been successful (27, 37, 38). In 

addition, Cianciotto et al. (23) were able to render a  previously virulent strain of 

L. pneumophila non-infectious for cell cultures through the genetic deletion of a  

24 kDa surface protein. Studies such as  these may help further our knowledge 

concerning the pathogenic mechanisms of this organism.

1.3.6 Environmental aspects. The Legionellaceae are ubiquitous in 

natural aquatic habitats and man-made water systems. L. pneumophila has 

been isolated from lakes, streams, rivers, cooling water, hot water and potable 

water system s (48, 86). There is conclusive epidemiological evidence that the 

generation of aerosols from domestic and industrial air-conditioners, 

evaporative condensers, cooling, hot water and other aquatic system s which 

release micron-sized water droplets into the air serve as  potential sources for 

legionellosis (86). An appropriate infectious dose of L  pneumophila may be 

delivered by aerosolized droplets 5 to 15 pm in diameter which can  readily

enter the nasopharynx and penetrate alveolar airspaces of the lung.

L. pneumophila has  been primarily isolated from warm or thermally 

polluted freshwater systems. Although the organism has been found in a  wide 

variety of aquatic niches, it is estimated to comprise a  very small portion of the 

total bacterial population in the aquatic environment.

The association of Legionella with blue-green algae and freshwater 

protozoans including free-living am oebae  A cantham oeba. Tetrahvm ena and 

Cvclidium species  has been demonstrated (3, 113, 124). Such interactions 

have been hypothesized to provide legionellae with an abundance of nutritional
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support and a  host in which microbial numbers can be amplified. Evidence 

presented by Berendt (11) suggested that the survival of L. pneumophila in an 

aerosolized form w as enhanced by its association with various species  of the 

blue-green algae, Fischerella. and that dissemination away from the source of a 

generated  aerosol may be aided by particular algal components. Results from 

other studies (127) indicated that legionellae may be carried in aerosolized 

form in cooling tower plumes 20 to 50 kilometers downwind and illustrated the 

potential danger posed by this pathogen.

The eradication of legionellae from water system s is rarely possible and 

studies should center on determining acceptable microbial densities for the 

organism. Effective biocidal treatments are being investigated for u se  as  control 

and preventative m easures. The most effective potable water treatments have 

been shown to be hyperchlorination, especially of hot water supplies and 

heating to above 50° C. Acceptable treatments for non-potable water included 

chlorination, use of quaternary ammonium compounds and halamines (118).

1.4 The Disease

1.4.1 Epidemiology. Legionellosis can exist in two forms: the severe  

pneumonic type with associated high fever known a s  Legionnaires' d isease  

and the  non-pneumonic form known as  Pontiac Fever. Table 1.4 lists the 

symptoms for these  conditions. The d isease  can occur a s  epidemics, sporadic 

cases , or nosocomial infections. Epidemic legionellosis has been documented 

in many countries including the United States, Great Britain, Spain, The 

Netherlands, Germany, Sweden, France, C anada  and Italy and shows an
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Table 1.4 Comparison of symptoms of patients with Legionnaires' 
disease or Pontiac Fever.

Symptom Legionnaires' Pontiac
Disease Fever

Cough Yes Yes
Sputum production Yes No
D yspnea Yes No
Hemoptysis Yes No
Myalgias Yes Yes
Upper respiratory symptoms Yes No
H eadache Yes Yes
Confusion Yes Yes
N ausea or vomiting Yes Yes
Diarrhea Yes Yes
Abdominal pain Yes No
Fever Yes Yes

1 7



increase in incidence during the summ er months of July, August and 

Septem ber (Figure 1.1). L. pneumophila serogroup 1 is responsible for 85% of 

reported c a ses  of legionellosis while L. micdadei causes  approximately 6%

(136). A number of species of Leoionella have been isolated from human and 

environmental sources. The most recognized form of legionellosis, 

Legionnaires' d isease, has an incubation period of 2 to 10 days with an attack 

rate of 1 to 5% and a  case-fatality ratio of 0 to 40% (84,139). It has  been 

estimated to be responsible for 1 to 29% of community acquired pneumonia. 

A ssessm ents  of this nature have been difficult due to the environmental nature 

of Legionella and the difficulty in establishing an etiology for many undiagnosed 

pneumonias. Table 1.5 illustrates the clinical presentation of legionellosis.

The d isease  exhibits a  predilection for immunocompromised individuals. 

The risk of development of Legionnaires' d isease increases in the elderly and 

in those  who excessively smoke and/or drink alcoholic beverages. In addition, 

underlying illnesses such as  diabetes mellitus, congestive heart failure, 

malignancy, obstructive pulmonary d isease  or use of immunosuppressive 

medication may increase susceptibility to this opportunistic pathogen.

It has been demonstrated that airborne transmission of aerosolized 

organisms is the mechanism by which the organism and hence the  disease 

disseminates, but identification of pin-point sources of the infection in epidemic 

legionellosis are often difficult. Investigation of the Philadelphia outbreak did 

not conclusively demonstrate the source of the epidemic, but studies showed 

that attendance in a  14th floor hospitality room of the Bellevue-Stratford Hotel
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Table 1.5 Clinical presentation of leg ionellosis

Two forms: Legionnaires' d isease (LD) and Pontiac Fever (PF) 

Genotypically and phenotypically identical

LD PF

Named for:

Attack rate:

Incubation period

Symptoms:

Other organs 
affected:

Case:Fatality rate

Philadelphia outbreak 

1-5%

2-10 days 

Pneumonia

Kidneys, G.l. tract, CNS 

Variable 0-40%

Pontiac out break 

95%

1 -2 days 

Non-pneumonic

None

0%
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may have been a  significant risk factor. However, the development of illness in 

people who never entered the hotel but were in c lose  proximity was suggestive 

of airborne transmission. That evaporative condensers  and air handling 

equipment have been identified a s  the source of o ther outbreaks further 

substantiated this hypothesis (84, 86).

The first reported case  of Pontiac Fever w as  recognized retrospectively 

following the  events of the Philadelphia epidemic. The Pontiac Fever outbreak 

occurred in July 1968 in a  health department in Pontiac, Mi. and this episode 

provided significant evidence of airborne transmission of organisms from a  

evaporative condenser (59). Between the time that the first illness was reported 

until two days  later, 89 of the facility's 100 employees and 15 visitors becam e 

sick. All c a s e s  had no common exposures outside the  building and people 

working in all a reas  of the building were exposed. However, attack rates were 

higher in persons exposed during the morning than in people newly exposed in 

the afternoon suggesting increased risk after the air-conditioning system w as 

first turned on each day. Subsequent investigation revealed that the central air- 

conditioning unit for the building w as contaminated by an adjacent evaporative 

condenser.

Similar instances have been documented w here burst exposure of 

individuals to aerosols or air handling equipment contaminated with L. 

pneumophila have led to illness. Most notably, a  study of recurrent 

Legionnaires' d isease in a  hotel in Spain revealed that members of married 

couples who were the first to shower in the morning had contracted
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legionellosis in fi/e of six c a ses  (5). T hese  data may indicate that inoculum size 

of L. pneumophila is a  contributing factor to the initiation of disease.

Sporadic cases  of legionellosis outnumber epidemic c a s e s  by a  two to 

one ratio. This ratio may even be higher given the probability that only 0.8 to 

2% of these  c a se s  are reported each year. According to the surveillance 

system of the CDC, from the period of 1978 to 1981, sporadic c a ses  had been 

reported in every one of the  states of the USA, occurred primarily in the summer 

months and had an incidence ranging from less than 0.25 to more than 1.0 

c a s e s  per 100,000 people (Figure 1.2). Sixty-six percent of c a s e s  were in 

persons greater than 50 years old (84).

Tobin et al. (125) were the first to suggest that hospital water systems 

other than cooling units could act a s  reservoirs for L. oneumoohila.

Subsequent investigations have substantiated that potable water is a  potential 

source of nosocomial or hospital-acquired legionellosis (1). Environmental 

sampling in several hospitals has led to the isolation of L. oneumoohila and 

other species from a variety of sources including shower heads, tap water, 

medical drills and respiratory therapy equipment (1, 4 ,17). Reports vary as  to 

the incidence of hospital-acquired Legionella infections but th e se  range from 0 

to a s  high a s  30%. In general, investigators actively searching for Legionella as 

a  cause  of pneumonia tend to find it to a  greater frequency.

The incidence of nosocomial Legionnaires' d isease  can be attributed to 

the ubiquity of the organism in hospitals and the presence of a  susceptible 

population. Haley et al. (63) have found that length of stay and  compromised

2 2



25

43i
30

8870
47

20590
325446 35 HC* “f . 3756

24
4626

30
2 4

.101

Figure 1.2 Reported sporadic c a se s  of legionellosis to the CDC from 1978 to 
1981 indicating average incidence per 100,000 individuals per state. Reprinted 
with permission from Legionellosis, S. M. Katz (ed.), copyright CRC Press, Inc. 
Boca Raton, FI.

2 3



immunity were the greatest risk factors for acquisition of d isease  by patients. 

Interestingly, the widespread presence of legionellae in water sources of 

hospitals d o es  not correlate well with the incidence of disease. Explanations for 

this phenomenon include colonization of water lines with non-virulent 

legionellae, presence of sub-infective d oses  of organisms and variations in the 

susceptibility of patients. Further studies are needed to determine the pre­

existing conditions within a  hospital which are most likely responsible for the 

incidence of nosocomial Legionnaires' disease.

The most perplexing issues concerning the epidemiology of legionellosis 

is the manifestation of two separate illnesses, Legionnaires' d isea se  and 

Pontiac Fever, from infection with the sam e  organism. No differences can be 

attributed to the bacterium or to conditions surrounding outbreaks to explain 

discrepancies in symptoms, attack rate or incubation period. It is possible that 

either the infectious dose  for each d isease  varies or alternatively that patient- 

related differences may be responsible. To date no evidence h as  accumulated 

to support either of these  hypotheses. Further work is needed to determine 

whether this phenomenon is related to other pathogenic features exhibited by L, 

pneum ophila .

1.4.2 Clinical features. Legionellosis is two to three times more common in 

men than in women and infections in children are rare. The d isea se  presents 

a s  an atypical lobar pneumonia and has  an incubation period of 2 to 10 days. 

The infection begins with acute fever, rigors, headache and myalgia. Upper 

respiratory tract symptoms are often absen t and a  non-productive dry cough
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may appear three to four days later. On occasions when sputum is produced it 

is often non-purulent. Dyspnea and respiratory difficulties are  common. 

Extrapulmonary symptoms such a s  gastroenteritis, fatigue and confusion are 

often reported and commonly lead to misdiagnoses by clinicians (see Tables

1.4 and 1.5). Legionellae are difficult to isolate from respiratory secretions but 

may be readily demonstrated in direct lung biopsy by immunofluorescence.

1.4.3 Pathology. X-ray radiographs of patients with Legionnaires' d isease  

have been variable and do not uniquely identify Legionella pneumonia. An 

average  of three days occurs between the onset of symptoms and the 

appearance  of radiographic pathology (40, 81). Deterioration of lung has been 

seen  in two-thirds of c a ses  and the most common features noted are the 

appearance  of infiltrates and pleural effusions. Usually one lobe is affected but 

bilateral involvement has occurred in approximately one-quarter of reported 

c a s e s  (81). The resolution of radiographic problems has often taken longer 

than that of clinical recovery and may require an extended period of 

convalescence. Post-mortem lung samples have demonstrated the 

development of fibrino-purulent d isease in one or both lungs with focal or lobar 

consolidation, edem a, congestion and grey hepatization. In most cases , a 

fibrinous exudate is present in the pleural cavity. Macroscopic lesions are not 

always present but can include hemorrhagic a reas  and focal ab sc e ss  formation 

(14).

Microscopic examination has revealed a  severe inflammatory response 

within the distal a irspaces of the lung. Terminal bronchioles and alveoli are
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filled with proteinaceous material, fibrinous exudate and contain numerous 

m acrophages and polymorphonuclear leukocytes (PMNLs) presenting in 

varying proportions. Proximal bronchi and bronchioles usually remain 

uninvolved throughout the d isease process. Alveolar dam age with hyaline 

m em branes and desquamation of lining cells has been noted in lung biopsies 

(90, 136).

Shortly after the initial outbreak in 1976, Rodgers et al. (111) first 

demonstrated the presence of L. pneumophila within lung cells by electron 

microscopy and described ultrastructural degenerative changes  associated with 

further dissemination of the organism into alveolar extracellular spaces. These 

findings were subsequently confirmed by other ultrastructural reports which 

described the intracellular nature of the organism (105, 106, 107).

Several investigators have demonstrated that patients with severe illness 

have developed extrathoracic pathology that involved the kidneys, heart, liver, 

spleen and brain. Instances of pyelonephritis, hepatic a b scesses ,  cerebral 

myoglial reactions, pericarditis and endocarditis have been reported (4, 136). 

Degenerative changes  have been found in these  organs, but macroscopic 

lesions are uncommon.

Unusual complications such as  dual infection with multiple species (26) 

or subtypes (78) of Legionella or other opportunistic pathogens have been 

reported. In addition, serologic confirmation of sub-clinical infection and diverse 

clinical presentation of d isease  following repeated exposure to the sam e source 

of L. pneumophila has been described (58, 136).
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1.4.4 Pathogenesis. L. pneumophila is a  facultative intracellular pathogen 

which replicates within alveolar m acrophages of the lung. During the course of 

infection, the bacteria are actively phagocytosed by host cells and enter 

phagosom es associated  with ribosomes and mitochondria. Phagocytosis of L 

pneumophila by m acrophages is independent of, but enhanced  by, the 

p resence  of opsonizing antibody and complement. However, phagocytosis by 

PMNLs requires the  presence of antibody, is not bactericidal and d o es  not 

support the growth of L. pneumophila. Direct penetration of bacteria into 

eukaryotic cells h as  been suggested  but uptake of L. pneumophila by guinea 

pig m acrophages h a s  been shown to occur by a conventional phagocytic 

process (36).

Studies have shown that macrophages exhibited an oxidative burst upon 

internalization of virulent L. pneumoohila but subsequent events such a s  

phagolysosomal fusion and acidification of the phagosom e were inhibited (71, 

73). Rapid intracellular multiplication of L. pneumoohila w as followed by 

cellular lysis with re lease  of organisms and continued sp read  to adjacent host 

cells. Further sp read  of the organism via the bloodstream has been described 

and m ay explain the  extrapulmonary pathology observed during advanced 

stages of the d isease  process (31, 105,136).

Although no single microbial feature h as  been shown to confer virulence 

on L. pneumophila , a  number of bacterial products have been implicated as 

potential factors which contribute to its pathogenicity. R elease of toxins which 

neutralize the bactericidal pathways of phagocytes (50) and  induce necrotizing
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inflammatory and cytolytic responses in human tissues (6, 10) may be the most 

important pathogenic aspects of the legionellae.

1.4.5 Diagnosis. Difficulties involved in the diagnosis of L. pneumophila  

infections are due primarily to the similarity between symptoms of Legionella 

infections with those of other bacterial and viral pneumonias and the non- 

pathognomic radiographic appearance of the disease. In addition, failure to 

stain the organism in clinical sam ples further complicates positive identification 

of legionellae as  the causative agent. These problems make it necessary to 

rely on culture, serology, and detection of bacterial nucleic acid or antigen as 

the main methods for the diagnosis of Legionnaires' d isease. Table 1.6 

illustrates clinical and laboratory diagnostic indicators of legionellosis.

The mainstay of laboratory diagnosis remains culture on selective 

bacteriological media {31, 137). Growth on BCYEa with supplemented L-

cysteine in the absence  of growth on a  blood agar media is indicative of JL 

pneumophila. Recovery of clinical specimens by culture will identify 50 to 80% 

of positive samples and  this has been reported to have a  specificity of 100%

(137). Colonial morphology is distinct and requires two to five days for positive 

identification. Once isolated, confirmation of these  tests should be m ade by a 

gram stain in which carbol fucshin is substituted for safranin as  the counter-stain 

along with immunofluorescence. Figure 1.3 illustrates the rationale for 

determining the laboratory detection of L. pneumophila.

The development of a  variety of serological tests  including indirect 

immunofluorescence assay s  (IFA) has  been useful in the identification of

2 8



Table 1.6 Diagnosis of Legionnaires' D isease

Clinical diagnosis
Onset
fever
rigors
h e a d ach es
w eakness
gastrointestinal abnormalities

Acute phase  
unremitting fever 
radiographic abnormalities 
non-productive cough 
nervous system manifestations 
d y sp n ea

Laboratory diagnosis
Organism detection methods (culture, immunofluorescence, nucleic acid 
probes, etc.)
Slightly elevated white blood cell count
hyponatremia
proteinuria
hematuria
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Identification S c h e m e  for L. pn eum ophila

Growth on BCYEa of gram-negatiYe bacillus
N o __________________ 1_____________________ Yes
I I

Not L. pneum ophila Potential L. pneumophila

I----------------------------  1
Growth on B C Y Ea without L-cysteine 

at 37 ° C in 3 days
Y e s _____________ J_______________ No

I I
Probably not L. pneumophila Possible L. pneumophila

I
Growth on  blood containing ag a r  

I
Not L. pneumophila

Immunofluorescence or Agglutination 
Positive----------------1---------------- Negative

Presumptive L. pneumophila Probable L. pneum ophila

B ioc hem icaIA na lysis for co nfirmation

Figure 1.3. Flow schem e for the identification of L. pneumophila.
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Legionella antibody for diagnostic purposes. Although, IFA has a  sensitivity of 

approximately 75% and a  specificity of almost 100%, problems have arisen in 

its use for diagnosis of sporadic ca ses  of Legionnaires' d isease. This is due to 

the incidence of cross-reactivity reported with the use of L. pneumoohila 

antibody and the inherent difficulty involved in the subjective interpretation of 

the assay. Detection of seroconversion to a  four-fold titer by serological 

methods is useful, but yields retrospective results and should be interpreted 

with caution (4, 64, 137).

Direct observation of L. pneumophila antigen in clinical specimens by 

IFA has provided relatively rapid diagnoses but with low sensitivity. Problems 

due  to reagent cross-reactivity with other bacteria and the environmental 

presence of the legionellae have lead to false-positive results (4, 64). 

Commercial nucleic acid probes are now available and exhibit better sensitivity 

than IFA, and although they are gaining widespread acceptance, further 

examination is needed before they replace IFA completely.

Radioimmunoassay, latex agglutination, microagglutination, counter immuno- 

electrophoresis, hemagglutination and enzyme immunoassay techniques have 

been used or are currently being investigated for application as  rapid, sensitive 

and  specific diagnostic tools (64, 114).

1.4.6 Immunity. The immune response to Legionnaires' d isease  is not well 

understood. However, epidemiological evidence has suggested  that 

susceptibility and resistance to Legionella infection are  directly related to risk 

factors which usually immunocompromise the host. Advanced age, underlying
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disease, excessive cigarette smoking and immunosuppressive therapy have 

been shown to influence attack and fatality rates of Legionnaires' disease. 

Experimental studies have demonstrated that the cellular arm of the immune 

system may have a significant role in resistance to infection with L. 

pneumophila. Freidman et al. (51) demonstrated that lymphokine activated 

m acrophages did not support the growth of ingested legionellae while Horwitz 

et al. (72) show ed that non-specific activation of these  cells also inhibited 

intracellular replication of Legionella. That untreated alveolar macrophages of 

mice did not support intracellular growth of this organism (140) further 

suggested that aspects  of the bacteria-macrophage interaction have a central 

function in the immune response to legionellosis.

The role of humoral immunity has  not been well-defined. Theoretically, 

the introduction of anti-L. pneumophila antibodies would facilitate opsonization 

of bacteria with detrimental results to the host. However, animal studies have 

demonstrated that passive transfer of antibody against L. pneumophila is 

effective against subsequent challenge with whole organisms (104, 136).

It has b een  difficult to establish whether individuals who have contracted 

legionellosis a re  susceptible to re-infection. Researchers have shown that 

immunization of guinea pigs with killed antigen is protective in so m e  cases, but 

not in others (7, 33). Winn and Davis (136) were able to protect guinea pigs for 

one month after infection by aerosol or intratracheal route with a  sub-lethal 

inoculum of L. pneumophila.

Human defenses  against legionellosis most likely involve synergistic 

action of the cellular and humoral immune system. Studies that have elucidated a
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defense system in animals have demonstrated limited bacterial Killing or 

bacteriostasis of L. pneumophila. Further work is needed to fully delineate the 

m echanisms of human resistance to Legionnaires’ d isease.

1.4.7 Antimicrobial Therapy. Erythromycin is the current clinical drug of 

choice for legionellosis. Studies have shown that the clinical reaction to this 

antibiotic may range from an immediate response to no therapeutic results at all. 

Relapse of infection and development of severe phlebitis with intravenous use of 

erythromycin have been reported (62). Rifampicin is generally considered the 

most effective drug in vitro and has been used effectively in combined clinical 

therapy with erythromycin, but can not be used alone due to the high frequency 

with which bacterial resistance is induced. Consequently, alternative antimicrobial 

therapeutic regimens are  being sought for the treatment of clinical legionellosis.

L. pneumophila is sensitive to a wide variety of antibiotics in vitro (30, 60, 

123). However, these  sensitivity levels are not always reflected in clinical trials. 

Antimicrobial agents with an effective minimum inhibitory concentration (MIC) such 

a s  the aminoglycosides, cephalosporins and penicillins are  reported a s  ineffective 

in the treatment of human Legionnaires' d isease  (82) while others such a s  

erythromycin, rifampicin and the tetracyclines have an effective role in therapy (2). 

Discrepancy between experimental and clinical trials may b e  explained by the 

inability of various antibiotics to penetrate host cell m em branes and reach 

intracellular bacteria. Indeed, it h as  been reported that ciprofloxacin, erythromycin 

and rifampicin (65, 130) inhibit intracellular growth of L. oneumoohila in cell 

cultures, while the p-lactam antibiotics such a s  ampicillin, cefoxitin and cefotaxime 

do not (142).
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Of the new antibiotics examined, the quinolones have shown great promise 

in vitro and in animal studies (44, 45, 60, 128, 129). Ciprofloxacin, the best 

studied compound of this group, is a  broad spectrum antibiotic which offers 

exceptional oral bioavailability and achieves high tissue concentrations. It is well- 

tolerated by patients and has been used successfully in the clinical treatment of 

various urinary and respiratory tract infections. Results from animal studies 

indicated that the efficacy of ciprofloxacin is equal to or greater than that of 

erythromycin and rifampicin in treatment of experimental Legionella infections (44, 

45 ,128 , 129). Further studies are in progress to develop practical in vivo 

screening methods for the evaluation of new antimicrobial agen ts  for treatment of 

clinical Legionnaires' d isease.

Despite the massive accumulation of d a ta  concerning the nature of L. 

pneum ophila since its initial isolation and identification following the epidemic in 

Philadelphia, Legionnaires' d isease  remains a  major cause  of pneumonia in 

humans. Enhanced aw areness of this syndrome and aggressive therapeutic 

regimens have helped in the maintenance and treatment of legionellosis, but 

further studies are needed  to establish prophylactic or preventative m easures  

especially for "at risk groups". Elucidation of the pathogenic m echanisms of the 

organism and the role chemotherapeutic agents  play in the treatment of d isease 

as  well a s  the investigation of the mechanisms of attachment and penetration used 

by I., pneumophila to initiate the d isease process may lead to new developments 

in the control of this important human disease.
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Section  II

2. Hypothesis and Specific aims.

L. pneumophila is the causative agent of a  fatal form of pneumonia 

known as  Legionnaires' disease. The organism is a  facultative intracellular 

pathogen which a ttaches to, penetrates and replicates within alveolar 

m acrophages of the lung. Continued growth and sp read  of L. pneumophila 

leads to the presentation of well-defined clinical features as  well a s  to extensive 

pulmonary and extrapulmonary pathology. The mechanisms by which L 

pneumophila recognizes and attaches to host cells are crucial to the initiation of 

d isease  in a  susceptible host. The process of binding was investigated using 

human cells in culture in order to elucidate these earliest s tages  of microbial 

infection. It is postulated that determination of th ese  adherence events will lead 

to better understanding of the nature of this infectious disease and to the 

development of more effective control measures. Of the present therapeutic 

regimens, erythromycin is the preferred drug for treatment of Legionnaires' 

d isease. However, patients in the advanced s tages  of severe illness often 

respond poorly to such antimicrobial treatment. The in vitro activity of 

established antibiotics along with novel, potentially useful drugs were evaluated 

against the organism per se  to define the kinetics and  mode of action of these  

antimicrobial agents. Furthermore, th e  in vivo pathogenesis  and pathology 

induced in experimental L. pneumophila infection in the chick embryo were

3 5



examined and the ability of clinically proven or potentially useful antibiotics to 

control or ameliorate the disease process was investigated in this animal 

system. From the results of these combined studies it is anticipated that novel 

preventative or control m easures may be forthcoming for the treatment of 

Legionnaires' d isease.

Specific aims of this project w ere:

1) to establish the experimental parameters leading to the characterization of 

Legionella pneumophila adherence factors by using the human cell lines U937 

(macrophage-like) and MRC-5 (lung fibroblast) to partially define these 

adhesins;

2) to elucidate the in vitro activity of selected antibiotics on the growth and 

morphology of Legionella pneumophila:

3) to delineate the cellular and sub-cellular pathology induced in the chick 

embryo following experimental infection with Legionella pneumophila and to 

define the pathogenesis of infection in this system;

4) to examine the role of antimicrobial agents in the disease and  recovery 

processes.
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Section III

Partial Characterization of Legionella pneumophila 
Adherence to Host Cells

3.1 Abstract

The m echanisms by which the facultative intracellular pathogen, 

Legionella pneumophila, attached to macrophage-like (U937) and human 

embryo lung (MRC-5) cells in vitro was examined. Bacteria and host cell 

surfaces were modified or treated with degradative enzymes, detergents, 

fixatives, lectins, oxidizing chemicals, and sugars prior to adherence a s say s  in 

order to elucidate putative bacterial adhesins and eukaryotic receptors 

responsible for mediating specific bacterial binding to these  cell lines. Bacterial 

attachment to host cells was determined by viable count and indirect 

immunofluorescence assay methods. Results from these  studies suggested 

that one or more lectin-like structures on the surface of L. pneumophila 

organisms may potentiate the specific recognition of eukaryotic host cells.
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3.2 Introduction

The specific recognition of host cells by pathogenic bacteria forms a 

necessary  prelude to the initial stages of the disease state (8 ). Duguid (28) first 

coined the term "adhesin" in 1959 to describe the adhesive structures on 

bacteria which facilitate their ability to attach to susceptible eukaryotic cells. This 

work remained largely unnoticed until Gibbons (56) reported on the adherence 

of bacteria to specific a reas  of the oral cavity. Since that time, numerous and 

extensive investigations (9, 25, 39, 41, 92, 93, 95, 96, 97, 98, 100, 117, 119,

120 , 126, 131, 132) concerning the interaction of pathogenic organisms such a s  

Escherichia coli. Neisseria gonorrhoeae. Vibrio cholerae and Streptococcus 

pyogenes  with host cells have increased our understanding of how bacteria 

initiate disease. These  reports described experiments in which the in situ 

blocking, inhibition or enzyme degradation of putative bacterial adhesm s and 

eukaryotic receptors were designed to identify these structures and characterize 

the nature of microbial adherence to host cell surfaces. Further studies 

demonstrating the inhibition of binding by these isolated bacterial 

com ponents/adhesins or by adhesin/receptor specific antibody provided 

additional evidence that these  molecules were responsible for bacterial 

attachment. Although a  number of these structures have been implicated by 

these  methods, pili are  the best studied (98, 119) and have been shown for a 

number of bacterial species to act sequentially or concomitantly with other 

attachment factors (39, 131) during the binding process.

The elucidation of adhesins and their receptors has led to the
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development of novel strategies for the prevention and control of infectious 

d iseases. Prophylactic or post-infection treatment with anti-adherence vaccines 

and purified adhesin/receptor or adhesin/receptor analogues used in a  

competitive fashion have yielded encouraging clinical results (8 ). In addition, 

studies have indicated that sublethal doses of antibiotics may alter the ability of 

some bacteria to adhere to host cell surfaces (22).

L. pneumophila is a facultative intracellular pathogen which replicates 

within alveolar macrophages in clinical d isease  but has been shown to multiply 

within a wide variety of eukaryotic cells in vitro (36, 74, 75, 91, 138). The 

preliminary steps involved in the attachment of this organism to potential host 

cells prior to invasion have not been elucidated. However, L  pneumophila has 

been shown to p o sse s s  pili, fimbriae and flagella (108, 110) on their surface 

and these , as  pointed out by Rodgers (106) and Figure 3.1, may potentiate 

binding by bridging the gap between the negatively charged surfaces of the 

invading pathogen and host target cells.

Oldham and Rodgers (91) studied the interaction of L. pneumophila with 

MRC-5 cells, a  human embryonic lung cell line, both quantitatively (viable 

counts following eukaryotic cell lysis) as well a s  qualitatively (by electron 

microscopy). Attachment of the legionellae to cells was followed by a  

thickening of eukaryotic cell membranes and the proliferation of microvilli which 

led to bacterial endocytosis by a  process which they termed "bacteriopexis". 

More recently, Cianciotto et al. (23, 37) used U937 cells, a  macrophage-like, 

human histiocytic lymphoma cell line, as  a  cellular model of infection and
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suggested that a 24-kDa surface protein of L. pneumophila potentiated 

infectivity and subsequent intracellular replication. In addition, because  similar 

results with explanted human alveolar m acrophages were obtained, these 

investigators have demonstrated the relevance of this transformed cell line in 

the study of L. pneumophila pathogenesis in vitro.

Patients with systemic Legionnaires' d isease  often respond poorly to 

antibiotic therapy. Vaccines prepared to stimulate antibody production against 

whole L. pneumophila organisms lead to avid opsonophagocytosis by the 

"preferred" host cells (macrophages) and may prove counterproductive to 

therapy. The objective of this study was to conduct preliminary studies on the 

attachment of L  pneumophila to U937 and MRC-5 cells a s  a  prerequisite to 

infection at the cellular level. Specific goals included the development and 

establishment of the experimental parameters for adherence assays  as  well as 

the partial characterization of bacterial "adhesins" and eukaryotic receptors 

involved in the "recognition" process. Fixatives, lectins, detergents, oxidizing 

chemicals, degradative enzymes and sugars were used to modify either 

bacterial or eukaryotic cell surfaces. Following these treatments, L, 

pneumophila was added  to the test cells and adherence assay  experiments 

performed. Viable counts of organisms (following eukaryotic cell lysis) and 

immunofluorescence assays  (IFA) (for direct counts of labelled bacteria) were 

done and the number of bound organisms following adherence was 

determined. Percent inhibition of binding w as ascertained by direct comparison 

of results from treated and untreated control trials.
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Due to the complexity of the bacterial and host-cell membranes, data  

derived from studies of this nature are often hard to interpret and the 

experimental procedures often lead to contradictory results making definitive 

adherence criteria difficult to elucidate (8 , 70, 120). For th ese  reasons, 

researchers have b a sed  their conclusions upon well-controlled, stringently 

analyzed experiments. It has been generally accepted that only those 

experimental treatments that inhibited bacterial adherence at a  level equal to or 

greater than 50% of untreated controls were significant. In the present study, 

similar inhibition levels were used to measure the experimental significance of 

treatments for the binding of L. pneum ophila to U937 or MRC-5 cells. In 

addition, because  quantitative measurem ents of bacteria binding are often 

difficult to a s se s s  accurately, two different types of assay  methods were used, 

and the results cross-referenced, to evaulate bacterial binding to host cells.

The identification of the factors that lead to bacterial adherence will help 

characterize the initial s tages of bacterial invasion of host cells and increase our 

understanding of the pathogenic properties of L. pneumophila. The results from 

these studies may suggest potential clinical regimens for blocking infection at 

the cellular level or the development of split vaccines leading to novel 

approaches in the prevention and control of Legionnaires' d isease .

3.3 Materials and Methods

Reagent formulations and preparations along with detailed procedures 

are given in Appendices 1 and 4.

Bacterial strain and cultivation. L. pneumophila serogroup 1, strain
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Nottingham N7, was isolated from the sputum sample of a  fatal case  of 

Legionnaires' d isease, subsequently passag ed  on bacteriological media, and 

maintained fully virulent in a  frozen state in serum sorbitol at -70° C. Cultures

were grown on buffered charcoal yeast extract agar supplemented with a- 

ketoglutarate (BCYEa) (29) a s  previously described {128, 129) at 37°C for 48 h.

To ensure the use of a  consistent population of organisms in all experiments, L 

pneumophila were harvested from plates, inoculated into buffered yeast extract 

broth supplemented with a*ketoglutarate (BYEa broth) (112) to give a  initial

concentration of approximately 1 os organisms/ml and incubated in a  shaking 

water bath for 24 h at 37oC until the culture had reached approximately 2-3 x 

108 colony forming units (cfu)/ml as  determined by subsequent viable counts. 

Bacteria were harvested by centrifugation at 3000 x g in a  Beckman Microfuge 

12 (Beckman Instruments, Palo Alto, Ca.). This procedure did not alter either 

the ability of organisms to adhere to eukaryotic cells or influence the LD50 for 

the fertile hen 's  egg (see Section 5). Organisms were w ashed  in Hank’s 

Balanced Salt Solution (HBSS) (Irvine Scientific, Santa Ana, Ca.) and diluted 

1 :10 in HBSS prior to adherence assays. The ratio of bacteria to cells w as 

approximately 100:1 for both cell lines used in these trials. The rationale for the 

selection of this multiplicity of infection (MOI) as  the inoculum for both cell lines 

w as based on da ta  derived from a) bacterial adherence experiments (see 

Adherence to U937 and MRC-5 cells, p. 44) and  b) adherence  studies on other 

microorganisms in which an inocula of 100 MOI was used.
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Eukaryo tic  cells  a n d  grow th co n d it io n s .  U937 cells. U937 cells, 

derived from a  histiocytic lymphoma cell-line, were obtained from the ATCC 

(Rockville, Md.) and maintained as  replicative, non-adherent monocyte-like 

cells in Minimal Essential Medium with Earle's salts (MEM) (Irvine Scientific, 

Santa  Ana, Ca.) supplemented with 10% bovine calf serum (Hyclone 

Laboratories, Inc., Logan, Utah) and 3mM L-glutamine (Sigma Chemicals, St. 

Louis, Mo.). The cells were grown in T-75 cm 2 flasks (Costar, Cambridge, Ma.) 

and harvested for use in adherence trials at points when the culture reached 

late exponential phase of growth (1-2 x 106 cells/ml). At this stage, the cells 

were differentiated into a non-replicative, adherent macrophage-like cell line 

with 12-O-tetra decanoylphorbol-13-acetate (TPA) (Sigma Chemicals, St. Louis, 

Mo.), which w as added at a  final concentration of 10-0 M for 48 h. Cells were 

removed from flasks with 0.2% EDTA, w ashed with media, and distributed into 

24-well plastic plates (Costar, Cambridge, Ma.) at a cell density of 4-8 x 105 

cells/well for use  in viable count adherence assay s  or into similar 6 -well plates 

containing g lass  coverslips at a  cell density of 5-8 x 105 cells/well for u se  in IFA 

counts.

MRC-5 cells . MRC-5 cells, a semi-continuous, adherent line of human 

embryonic lung fibroblasts, were obtained from Flow Laboraties (McLean, Va.) 

and maintained in MEM supplemented with 10% bovine calf serum and 3 mM L- 

glutamine. Cells were grown to a  confluent s tate  in 24-well or 6 -well plates (on 

glass coverslips) and used directly for viable count or IFA L. pneumophila 

adherence assays . Confluent cell monolayers reached a  density of
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approximately 1-2 x 105 cells/well in 24 well plates and  approximately 2-3 x 105 

cells/coverslip in 6 well plates.

Adherence to U937 and MRC-5 cells. To determine the maximum 

bacterial binding capacity to both cell types in these assays , L. pneumophila

w as grown in BYEa broth for 24 h as described. Cultures were pooled,

centrifuged, serially diluted ten-fold and each  dilution added to 6 and  24-well 

plates containing either U937 or MRC-5 cells for 1 h. The number of organisms 

bound to each cell type was assayed by viable count and  IFA methods to 

determine the specificity of bacterial attachment to th ese  cells.

Inhibition of adherence. Bacterial treatm ents. The role of L, 

pneumophila surface proteins and sugar moieties in the  adherence process 

w as examined. L. pneumophila was treated with degradative enzymes, 

detergents, fixative and oxidizing chemicals and adherence determined by the 

viable count and IFA methods described below {p. 45-47). The type, treatment 

time, concentrations and mode of action of the agents used  to modify the 

surface of the bacteria are shown in Table 3.1. All agents, with the exception of 

glutaraldehyde (Electron Microscopy Sciences, Ft. Washington, Pa.), were 

obtained from Sigma Chemicals (St. Louis, Mo.) and prepared at the 

concentration specified in HBSS prior to testing. Bacteria were treated  with the 

test agent for the time indicated, washed three times in HBSS and used  in the 

adherence a s say s  (p. 45)

Eukaryotic treatments. The role of eukaryotic surface protein, 

glycoprotein, lipid, glycolipid or sugar w as examined a s  possible adhesins in
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the binding process. The type, treatment time, concentrations, and mode of 

action of the degradative enzymes, detergents, fixatives, oxidizing chemicals 

and lectins used to modify the surfaces of U-937 and MRC-5 cells are shown in 

Table 3.2. All agents were obtained from Sigma Chemicals (St. Louis, Mo.) with 

the exception of the glutaraldehyde and formaldehyde (Electron Microscopy 

Sciences, Ft. Washington, Pa.) and prepared at the specified concentration in 

HBSS prior to testing. Cells were treated with agents for the time indicated and 

w ashed three times with HBSS prior to adherence assays.

S u g ars . A number of sugars were examined as  possible inhibitors of the 

attachment process by conducting adherence assay s  in the presence of these 

carbohydrates. Monosaccharides (Sigma Chemicals, St. Louis, Mo.) used  in 

these  studies are  shown in Table 3.3. Sugars were prepared at the specified 

concentrations in HBSS, adjusted to pH 7.2 and added to cells 10 minutes prior 

to the addition of L. pneumophila for adherence experiments.

Adherence assays. U937 and MRC-5 cells were w ashed three times 

with HBSS prior to adherence experiments. Following either treatment of 

bacteria and/or eukaryotic cells with the agents to be tested or after competitive 

binding, cells were washed with HBSS and L  pneumophila added to wells of 6 

and 24-well plates and allowed to adhere to eukaryotic cells for 1 h.

Appropriate control organisms and cells were treated with HBSS. After the 

binding period, unattached organisms were removed by three-fold washings 

with HBSS and host-cell bound organisms assayed  by viable count and IFA 

methods a s  follows:
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Viable counts . After removal of non-adherent L. pneumophila eukaryotic 

cells were lysed by the addition of 1 ml of sterile distilled water. This procedure 

did not affect the viability of the bacteria a s  ascertained by viable count studies 

of similarly treated organisms. Bacterial counts were m ade on lysates from 

each of 10 separate  wells by inoculating 10fil in duplicate of appropriate

dilutions onto BCYEa plates. Plates containing 30 to 300 colonies after an

incubation period of 72 h were used to calculate average viable counts of 

lysates for each well as  previously described (91). Ratios of cfu/eukaryotic cell 

were determined by dividing average lysate values for each  well by the number 

of eukaryotic cells seeded  per well. These values were compared to untreated 

control values within each experiment for determination of the percent reduction 

of adherence following each treatment used.

Non-specific binding of organisms to the plastic culture plates was 

determined for each experimental trial. For every well, viable count estimations 

of unbound organisms contained in w ashes made following the 1 h incubation 

period for adherence assay s  were determined. This value was added  to the 

corresponding lysate value for the appropriate well and subtracted from the 

inoculum. The resultant figure was used to estimate the presence of bacteria 

non-specifically stuck to exposed plastic not covered by the cell monolayers. In 

multiple experiments, this value was found to be a  consistently small 

percentage of the inoculum. The level of nonspecific binding was found to be 

unaffected by bacterial or eukaryotic cell treatments and w as not altered by the
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addition of de-ionized water.

Immunofluorescence. Following bacterial or eukaryotic cell treatments 

and binding experiments, U937 and MRC-5 cells were fixed in 10% buffered 

formalin for 12 h, washed in HBSS, and treated in situ on the glass coverslips 

with a  1:100 dilution of rabbit anti-L. pneumophila antibody (see Appendix 4) for 

1 h at 37o C. Unbound globulin was removed with three-fold washings of 

HBSS. Cells were then treated with a  1 :200 dilution of goat anti-rabbit FITC 

conjugated antibody (Cooper Biomedical, Malvern, Pa.) for 1 h at 37° C. 

Unbound globulin w as removed by repeated washings and cells 

counterstained with 1% (w/) propidium iodide for 5 min. G lass coverslips were 

mounted in 1% (w/v) 1 ,4- diazobicyclo (2.2.2.) octane (DABCO) (Sigma 

Chemicals, St. Louis, Mo.) in glycerin onto microscope slides and viewed with 

an Olympus BH-2 epifluorescence microscope using an excitation filter emitting 

a  wavelength of 490 nm and a  barrier filter blocking wavelengths above 515 

nm. The number of fluorescing organisms bound to 200 eukaryotic cells w as 

determined and expressed  a s  adherent organisms/cell. These were compared 

to control values within each experiment to determine the percent reduction of 

adherence. Non-specific binding of labelled organisms to a reas  of g lass  not 

covered by eukaryotic cells was ascertained by IFA. Although this w as noted to 

be insignificant in all experiments, these  organisms were not counted in the IFA 

assay  for adherence to host cells.

3.4 Results

Adherence to U937 and MRC-5. Bacterial binding to U937 and
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MRC-5 cells is illustrated by IFA in plate 3.1 and binding curves for both cell 

lines are summarized in Figures 3.2-3.5. For each cell type, the use of 

approximately 5 x 108 cfu/ml a s  the inoculum gave adherence kinetics 

approaching saturation of the eukaryotic receptors. This was consistent for 

either U937 (Figures 3.2 and 3.3) or MRC-5 (Figures 3.4 and 3.5) cells as  

determined by both assay  techniques. The saturation points corresponded to 

an average cfu/cell ratio of 2.5 and 11 1or U-937 (Figure 3.2) and MRC-5 (Figure 

3.4) cells, respectively, a s  assayed by viable counts. IFA equivalent ratios were 

3.1 and 6.9 organisms/cell for U937 (Figure 3.3) and MRC-5 (Figure 3.5) cells, 

respectively. At this high inoculum level, marked non-specific binding to the 

plastic of culture dishes and glass coverslips were noted by both viable counts 

and  IFA. However, the use of an inoculum with 10-fold fewer organisms 

(approximately 5 x 107 cfu/ml) gave non-specific binding levels that were 

dramatically reduced. This inoculum was equivalent to about 100 bacteria/ 

eukaryotic cell (or 100 MOI) and approached the saturation point of eukaryotic 

receptors of both cell lines.

Inhibition of adherence studies. Bacterial trea tm en ts . Figures 3.6-

3.9 illustrate the percent reduction of adherence following modification of L  

pneumophila with the agents listed in Table 3,1. Prior treatment of L.

pneumophila with glutaraldehyde, p-galactosidase, chymotrypsin, lipase,

protease, trypsin and sodium metaperiodate all effected a  greater than 50% 

reduction in adherence to U937 cells a s  compared with controls in both viable 

count and immunofluorescence assays. For MRC-5 cells only bacterial
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treatments with glutaraldehyde, chymotrypsin, protease, trypsin and sodium 

metaperiodate effected a  similar response; i.e., unlike for U937 cells, lipase and

(3-galactosidase treatment did not significantly influence bacterial binding to

MRC-5 cells. Bacterial adherence or inhibition of binding to both U937 and 

MRC-5 cells w as consistently similar whether a ssayed  by viable count or IFA 

methods.

Eukaryotic treatment. Figures 3.10-3.13 illustrate the percent reduction in 

adherence following modification of U937 and MRC-5 cell surfaces with the 

agents  listed in Table 3.2. Concanavalin A, wheat germ agglutinin, sodium 

metaperiodate, nonidet P40, glutaraldehyde and formaldehyde reduced 

binding of L.pneumophila to treated U937 cells by greater than 50% (Figures

3.10 and 3.11). Similar results were obtained by viable count and IFA 

generated data. It was noted that none of the enzymatic treatments reduced 

bacterial binding to U937 cells. In addition, modification of U937 cell surfaces 

with cytochalasin B, a eukaryotic microtubule formation inhibitor, did not result 

in differences between treated and untreated cells a s  m easured by either a ssay  

technique. These  results were difficult to interpret but suggested that bacterial 

uptake by the phagocytic U937 cells may be independent of attachment since 

the difference between the two assays w as not great.

The percent reduction of adherence to MRC-5 cells following treatment 

with the modifiers listed in Table 3.2 are illustrated in Figure 3.12 and 3.13. 

Concanavalin A, wheat germ agglutinin, sodium metaperiodate, nonidet P40, 

glutaraldehyde and formaldehyde effected significant reductions in bacterial
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binding a s  m easured by viable counts and IFA. However, viable counts but not 

IFA indicated that lipase and chymotrypsin treatment of cells reduced 

adherence by greater than 50%.

In all eukaryotic treatments with either cell line assay ed  by both 

techniques, concanavalin A, wheat germ agglutinin, glutaraldehyde and 

formaldehyde were the strongest inhibitors of bacterial binding.

S u g a rs . Co-incubation of L  pneumophila with either cell line in the 

presence  of those sugars  listed in Table 3.3 are  illustrated in Figures 3.14-3.17. 

Of those  tested, no monosaccharide was able to significantly reduce bacterial 

binding to U937 or MRC-5 host cells. Viable count and IFA techniques yielded 

similar results for ail sugars tested.

3.5 Discussion.

The adherence of microorganisms to host cells a s  a  prelude to the 

d isease  process has  been well documented (8 ). A number of bacterial 

components, including pili and fimbriae, have been shown to mediate the 

specific attachment of microbes to eukaryotic cells (8 , 70, 116), but evidence 

has suggested  that th e se  and other structures may act concomitantly or 

sequentially (39, 131) in this process. In addition, the role of van der Waals, 

thermodynamic forces and hydrophobic interactions in the initial attachment 

and eventual binding of bacteria to cell surfaces is still unclear. The parameters 

for both an  effective bacterial binding assay and a  rationale for determining 

adherence were established. These  criteria were used to partially characterize 

the nature of "adhesins" involved in L. pneumophila adherence.
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The adherence curves indicated that a  specific interaction between L. 

pneumophila and both cell types occurred. Bacterial binding to eukaryotic 

receptors approached apparent saturation levels when an inoculum of 

approximately 108 cfu/ml was used  in adherence assays. However, this data 

required caution in interpretation as  increasing quantities of non-specific 

binding to plastic wells were noted to exceed acceptable levels at this point.

Determination of adherence as  m easured by viable count and IFA 

techniques yielded consistent and  corroborative results and provided evidence 

that a  lectin-like adhesin(s) associated with the surface of L. pneumophila was 

in part, responsible for mediating attachment to U937 and MRC-5 cells. 

Degradation and immobilization of bacterial surface proteins with enzyme and 

fixative treatments a s  well as periodate oxidation of microbial sugars 

significantly reduced L. pneumophila adherence to both types of host cells. That

lipase and (5-galactosidase treatment of bacteria prior to adherence

experiments significantly reduced adherence to U937 cells, but not to MRC-5 

implied that lipid and lactose moieties may also be important components in the 

bacterial binding process. Several gram-negative bacteria p o sse s s  lectin-like 

molecules associated with pili, fimbriae, or flagella which enable them to 

adhere to host cell surfaces {8 , 70, 120). L  pneumophila p o ssesses  

analogous bacterial appendages  (108 and Figure 3.1) which may facilitate 

bacterial binding by similar mechanisms. Isolation of these  structures in pure 

form for u se  a s  potential blocking agents in similar adherence experiments will 

further elucidate their role as adhesins.
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Treatment of eukaryotic cell surfaces with the lectins concanavalin A and 

wheat germ agglutinin substantially reduced bacterial binding an a  corroborated 

our results from the bacterial treatment trials. That oxidation of eukaryotic cell 

surface sugars with sodium metaperiodate inhibited bacterial binding further 

supported these  findings. However, co-incubation of bacteria and cells in the 

presence of mannose or N-acetyl glucosamine (sugars specific for 

concanavalin A and wheat germ agglutinin) failed to appreciably inhibit 

attachment. This may be due to the presence of dissacharides or complex 

oligosaccharides on the surfaces of the U937 and MRC-5 cells that contain the 

appropriate sub-unit monosaccharides specific for concanavalin A and  wheat 

germ agglutinin. Therefore, the addition of simple monosaccharides a s  

potential blocking agents in these experiments may not be recognized by L. 

pneumophila lectin-like surface molecules and consequently failed to reduce 

adherence. Use of dissacharides or oligosaccharides in similar competitive 

blocking studies may elucidate putative receptors for L. pneumophila.

However, determination ot the nature of th e se  "docking" sites by th e se  methods 

are  easily complicated by steric considerations such a s  the presence of 

disaccharide sugar receptors conjugated with proteins, lipids or other cell 

membrane moieties. In this study, efforts were focused on the bacterial 

component of L. pneumophila adherence to host cells.

That fixation of cell surfaces drastically reduced L. pneumophila binding 

to U937 and MRC-5 cells while treatment with proteolytic enzymes did not, may 

signify a  requirement for mobile, complex proteins or glycoproteins to facilitate
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the adherence of bacteria to these cells. In addition, oxidation of eukaryotic cell 

surface sugars  with sodium metaperiodate actively inhibited bacterial binding, A 

possible role for these molecules could be selective steric masking or exposure 

of receptors specific for adhesins on the surface of L. pneumophila. In addition, 

treatment with nonidet P-40 blocked adherence of L. pneumophila to both cell 

lines w hereas  similar treatment with lipase was generally not effective (reducing 

adherence to MRC-5 cells by 53% as  assayed by viable counts only). These 

results suggested  membranous lipid moieties as  possible components of 

eukaryotic receptors a s  well. It was clear from the compiled data that a  simple 

and uniform receptor system for L. pneumophila may not exist on the surface of 

U937 and  MRC-5 cells. Indeed, synergistic, sequential, steric and hydrophobic 

interactions between different membrane components of host cells may have a 

role in the recognition process and further complicate the elucidation of host cell 

receptors specific for L. pneumophila.

The cytochalasins inhibit the internalization processes  of eukaryotic cells 

and have been used to determine whether pathogens enter host cells by means 

of active invasion or phagocytosis. Elliott and Winn (36) have shown that L. 

pneumophila fails to actively penetrate cytochalasin-treated guinea pig alveolar 

m acrophages in vitro. However, the attachment of bacteria to phagocyte 

m em branes was not inhibited in these trials. In the present studies, adherence 

experiments following treatment of the macrophage-like U937 cells with 

cytochalasin B resulted in similar binding capacities a s  assayed by viable 

counts and  IFA when com pared to untreated controls. Given that viable counts
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measure attached and internalized organisms while IFA staining facilitate the 

detection of only bound bacteria these experiments indicate that significant 

numbers of legionellae were not phagocytosed during the one hour binding 

assay and that a  process of "uptake-independent-adherence" (UIA) occurred for 

L. pneumophila.

Caution should be exercised when extrapolating in vitro results derived 

from laboratory experimental conditions to the context of the clinical situation. 

Neither eukaryotic cell type used in this study were the natural host cell of L. 

pneumophila in human clinical disease. Although both are human cell lines, 

U937 cells are macrophage-like cells derived from a histiocytic lymphoma and 

may p o ssess  characteristics not resembling those of primary alveolar 

macrophages. MRC-5 cells are a  semi-continuous fibroblast cell from the lung 

and exhibit few of the properties of alveolar macrophages. Other potential 

factors include environmental differences that exist between cells propagated in 

vitro as com pared with those grown in vivo. Exposure to disparate nutritional 

sources, regulatory signals and other microorganisms could effect the 

expression of host target cell receptors. Similarly, varying nutritional conditions 

between the in vitro and clinical environment will most likely affect the growth of 

microorganisms and may alter expression of adhesins responsible for 

attachment to eukaryotic cells.

The d a ta  from these  studies offer evidence that a  lectin-like adhesin(s) 

mediates attachment to U937 and MRC-5 cells. The nature of this receptor(s) 

remains to be elucidated. Host cell receptors most likely consist of
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oligosaccharide and lipid structures that interact to form complex but as yet 

unresolved "docking site" for the organism. The finding that lectin-like adhesins 

occur on other gram-negative bacteria possessing appendages  such as  pili, 

fimbriae, or flagella in association with these adhesive molecules suggest that 

L. pneumophila may utilize similar attachment strategies. Studies using these 

and other fractionated bacterial structures as blocking agents along with wider 

c la sse s  of saccharides in adherence assay s  could further characterize or 

identify specific components responsible for mediating attachment. The 

elucidation of factors which contribute to the binding of L. pneumophila to host 

cells will increase our understanding of the pathogenic mechanisms used by 

this intracellular pathogen to initiate d isease  and may eventually influence the 

prevention and control of clinical legionellosis.
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Figure 3.1. Lenionalla pneumophila. Schematic representation of potential 
"adhesins" and eukaryotic cell receptors.
(Reproduced with kind permission from reference 38, Oldham and Rodgers, Zbl. 
Bakt. I Abt. Orig. A.)
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Table 3.1. Bacterial treatments prior to adherence a ssa y s

Agent Concentration Treatment 
Time (min)

Function

Enzvmes Activity
(units/ml)

Treatment 
Time {mint

Function

B-galactosidase 100 60 Degradation of
chymotrypsin 250 60 protein/sugar-containing
lipase 100 60 adhesins on surface of
neuram inidase 20 60 L. pneumoDhila
protease 5 60
trypsin 250 60

Fixative Concentration 
Time (min)

Treatment Function

glutaraldehyde 0 .1% 10 Immobilization of protein 
moieties

Oxidizina
Aa&oi

Concentration 
Time (min)

Treatment Function

sodium
metaperiodate

10mM 30 Oxidation of carbohydrate 
moieties
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Table 3.2. Eukaryotic cell treatments prior to adherence a ssa y s

Agent Concentration  
Time (min)

Treatment Function

Enzvmes Activitv
(units/ml)

Treatment 
Time (min)

Function

Chymotrypsin 0.1 30 Degradation of enzyme
Lipase 100 30 sensitive receptors
Neuraminidase 1.0 30 on host cells
Pepsin 100 30
Protease 0.005 30
Trypsin 50 30

Agent Concentration 
Time (min)

Treatment Function

Glutaratdehyde 0 .1% 10 Immobilization of protein-
Formaldehyde 1 .0 % 10 containing moieties

Nonidet P40 0.005% 60 Action on membrane 
lipids

Sodium
m etaperiodate

5mM 10 Oxidation of carbohydrate 
moieties

cytochalasin B 3ug/ml 60 Inhibition of microfilament 
formation/phagocytosis

Lectins Concentration 
Time (mint

Treatment Function

Concanavalin A 100ug/ml 60 Binds to m annose

Wheat Germ 
Agglutinin

100ug/ml 60 Binds to N-acetyl 
glucosamine
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Table 3.3 Competitive binding experiments

S ugars

1) N-acetyl-D-galactosamine
2) N-acetylneuraminic acid
3) N-acetylgiucosamine
4) a-D(-)-Fucose
5) £-D{+)-glucose
6 ) D(+)-mannose
7) D(+)-galactose

Concentration

100mM 
100mM 
100mM 
10OmM
100mM
100mM
100mM

Function

Competitive
binding
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Inoculum ( c f u / m l )

Figure 3.2 Bacterial binding of L. pneumophila to U937 cells a s  m easured by 
viable counts of organisms released from lysed cells. Ratios of cfu per cell were 
calculated by dividing the average lysate value obtained from each inoculum by 
the average eukaryotic cell seed  per well. For this experiment the average cell 
s eed  equaled 5.7 x 105 cells/well. Bacterial attachment to eukaryotic cell 
receptors approached saturation when an inoculum of approximately 5 x 108 
cfu/ml was added to cell cultures (arrow). This corresponded to a  ratio of 2.5 
cfu/eukaryotic cell. Each point represents an average of three separate trials.
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Inoculum (cfu/ml)

Figure 3.3 Bacterial binding of L. pneumophila to U937 cells a s  m easured by 
IFA. The number of fluorescing organisms bound to approximately 200 
eukaryotic cells is expressed  as a  ratio of organisms/eukaryotic cell for each  
inoculum used. An inoculum of about 5 x 108 approached saturation of 
eukaryotic receptors (arrow). This corresponded to a  ratio of 3.1 
organisms/eukaryotic cell.
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I no cu l u m  ( c f u / m l )

Figure 3.4 Bacterial binding of L. pneumophila to MRC-5 cells a s  m easured by 
viable counts of organisms released from lysed cells. Ratios of cfu per cell were 
calculated by dividing the average lysate value obtained from each  inoculum by 
the average eukaryotic cell seed  per well. For this experiment the average cell 
s e e d  equaled 1 .6 X 105 cells/well. Bacterial attachment to eukaryotic cell 
receptors approached saturation when an inoculum of approximately 5 x 108 
cfu/ml was added to cell cultures (arrow). This corresponded to a  ratio of 11 
cfu/eukaryotic cell. Each point represents an average of three separate  trials.

6 2



10

Inoculum (cfu/ml)

Figure 3.5 Bacterial binding of L. pneumophila to MRC-5 cells a s  m easured by 
IFA. The number of fluorescing organisms bound to approximately 200 
eukaryotic cells is expressed as  a  ratio of organisms/eukaryotic ceil for each 
inoculum used. An inoculum of about 5 x 100 approached saturation of 
eukaryotic receptors (arrow). This corresponded to a  ratio of 6.9 organisms/cell.
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Agents

B-galactosidase

chymotrypsin

lipase

neuraminidase

protease

trypsin

glutaraldehyde
sodium

metaperiodate

Figure 3.6 Bacterial treatments, U937 cells. Percent reduction of L. 
pneumoohila binding to U937 cells a s  measured by viable count estimation of 
eukaryotic lysates following treatment of bacteria with th e  agents listed in Table 
3.1. Each value represents the average of 10 separate trials. Error bars 
indicate standard error of the mean for each  treatment.

% reduction of adherence
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Agents

B-galactosidase
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lipase

neuraminidase
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trypsin

glutaraldehyde
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metaperiodate

10 2 0  3 0  40 5 0  60 70 8 0  90 100

% reduction of adherence

Figure 3.7 Bacterial treatments. U937 cells. Percent reduction of L. 
pneumophila binding to U937 cells as m easured  by counts of fluorescing 
organisms bound to approximately 200 eukaryotic cells following treatment of 
bacteria with the agents listed in Table 3.1.
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Agents

B-galactosidase

chymotrypsin

neuraminidase

protease

trypsin

glutaraldehyde
sodium

metaperiodate

% reduction of adherence

Figure 3.8 Bacterial treatments, MRC-5 cells. Percent reduction ol L  
pneumophila binding to MRC-5 cells as  measured by viable count estimations 
of eukaryotic lysates following treatment of bacteria with the agents  listed in 
Table 3.1. Each value represents the average of 10 separate  trials as 
compared with untreated controls. The standard error of the mean is indicated 
for each treatment.
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Agents

B-galactosidase

chymotrypsin

lipase

neuraminidase

protease

trypsin

glutaraldehyde

sodium
metaperiodate

10 2 0  30 4 0  50  60  70 80 90  100

% reduction of adherence

Figure 3.9 Bacterial treatments, MRC-5 cells. Percent reduction of L, 
pneumophila binding to MRC-5 cells a s  m easured by counts of fluorescing 
organisms bound to approximately 200  eukaryotic cells following treatment of 
bacteria with the agents listed in Table 3.1.
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Agents

chymotrypsin 
lipase 

neuraminidase
pepsin 

protease , 
trypsin  

formaldehyde . 
glutaraldehyde _

nonidet P40 
sodium ' 

metaperiodate. 
cytochalasin 8

ConA
VJGA _

-1 0 0 10 2 0  30 40  50  60 70 80 90  100

% reduction of adherence

Figure 3.10 Eukaryotic cell treatments, U937 cells. Percent reduction of L. 
pneumophila binding to U937 cells a s  measured by viable count estimations of 
eukaryotic lysates following treatment of host cells with the agents listed in 
Table 3.2. Each value represents the average of 10 separate trials. Error bars 
indicate standard error of the mean for each treatment.
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Agents

chymotrypsin
lipase

neuraminidase
pepsin

protease
trypsin

formaldehyde
glutaraldehyde

nonidet P40 
sodium 

metaperiodate
cytochalasin B 

CcnA 
V\GA

50  60 70 80  90 10010 20 3 0  40

% reduction of adherence

Figure 3.11 Eukaryotic cell treatments, U937 cells. Percent reduction of L, 
pneumophila binding to U937 cells a s  m easured by counts of fluorescing 
organisms bound to approximately 200 eukaryotic cells following treatment of 
host ceils with the agents listed in Table 3.2.
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Agents

chymotrypsin
lipase

neuraminidase

pepsin
protease
trypsin

formaldehyde
glutaraldehyde

nonidet P40 
sodium 

metaperiodate
ConA
VJGA

1 0 2 0  3 0  40 50  60 70 8 0  90 100

% reduction of adherence

Figure 3.12 Eukaryotic cell treatments, MRC-5 cells. Percent reduction of L. 
pneumophila binding to MRC-5 cells a s  m easured by viable count estimation of 
eukaryotic lysates following treatment of host cells with the agen ts  listed in 
Table 3.2. Each value represents the average of 10 separate  trials. Error bars 
indicate the standard error of the mean for each treatment.
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Agents

chymotrypsin
lipase

neuraminidase

pepsin
protease
trypsin

formaldehyde
glutaraldehyde

nonidet P40 
sodium 

metaperiodate
ConA
W3A

10 20 30  4 0  50 60 7 0  80  90 100

% reduction of adherence

Figure 3.13 Eukaryotic cell treatments, MRC-5 cells. Percent reduction of L  
pneumophila binding to MRC-5 cells a s  measured by counts of fluorescing 
organisms bound to approximately 200  eukaryotic cells following treatment of 
host cells with the agen ts  listed in Table 3.2.
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S u g a r

fucose
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glucose
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N-acetyl
galactosamine

N-acetyl
glucosamine

N-acetyl 
neuraminic acid
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50  60  70 8 0  90 100

% reduction of adherence

Figure 3.14 Competitive binding studies with sugars, U937 ceils. Percent 
reduction of bacterial adherence following co-incubation of L. pneumophila and 
U937 cells in the presence of monosaccharide sugars listed in Table 3.3 as 
m easured by viable counts of eukaryotic lysates. Concentration of added 
sugars was 100 mM. Each value represents the average of 10 separate  trials. 
Standard error of the mean is indicated for each treatment. None of the sugars 
used  in these experiments effected a  significant reduction of adherence.
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S u g a r

fucose  

galactose  

gl ucose

mannose

N -acety l  
galactosami ne
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-10  0 10 20 30 40 50 60 70 80 90 100

% reduction of adherence

Figure 3.15 Competitive binding studies with sugars, U937 cells. Percent 
reduction of bacterial adherence following co-incubation of L  pneumophila and 
U937 cells in the presence of monosaccharide sugars listed in Table 3.3 a s  
measured by counts of fluorescing organisms bound to approximately 200  
eukaryotic cells. None of the sugars used in these  experiments effected a  
significant reduction of adherence. Concentration of added sugars  was 100 
mM.
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fucose

galactose

glucose

mannose

N-acetyl
galactosamine

N-acetyl
glucosamine

N-acetyl 
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— i r —i-----1------ 1------- 1------- 1
10 20  30 40 50 60 70 8 0  90 100

% reduction of adherence

Figure 3.16 Competitive binding studies with sugars, MRC-5 cells. Percent 
reduction of bacterial adherence following co-incubation of L. pneumophila and 
MRC-5 cells in the presence of monosaccharide sugars listed in Table 3.3 as  
m easured by viable counts of eukaryotic lysates. Concentration of added 
sugars was 100 mM.Each value represents the average of 10 separate  trials. 
Standard error of the mean is indicated for each treatment. None of the sugars 
used in these experiments effected a  significant reduction of adherence.
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Figure 3.17 Competitive binding studies with sugars, MRC-5 cells. Percent 
reduction of bacterial adherence following co-incubation of L. pneumophila and 
MRC-5 cells in the presence of monosaccharide sugars listed in Table 3.3 as 
m easured by counts of fluorescing organisms bound to approximately 200 
eukaryotic cells. Concentration of added sugars was 100 mM.
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Plate 3.1 L. pneumophila binding to U937 and MRC-5 cells in an indirect 
immunofluorescence assay. Organisms are labelled with FITC (green) while 
eukaryotic cells are counterstained with propidium iodide (red), 
a) L. pneumophila attachment to U937 cells. Note incidence of bacterial binding 
to host cell surfaces (X 660), b) higher magnification of L. pneumophila binding 
to MRC-5 cells. Note single organism attached along its length to the host cell 
surface (X 1,650).
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Section IV

The Effect of Antibiotics That Inhibit Cell Wall, Protein and DNA 
Synthesis on the Growth and Morphology of 

Legionella pneumophila 

4.1 Abstract

The response of L. pneumophila to cell wall, protein synthesis and DNA 

synthesis inhibitory antibiotics was examined by electron microscopy, MIC 

estimations and viable count assays. Cefotaxime, methicillin, rifampicin and 

ciprofloxacin, each used separately at 20 times their respective MIC values, 

showed activity against L. pneumophila in these studies. The cell wall 

inhibitors, cefotaxime and methicillin, effected the greatest bactericidal activity 

and induced the most extensive morphological changes. Organisms treated 

with th ese  antibiotics lost cytoplasmic contents through membranous lesions 

induced in their cell walls. In terms of ultrastructural dam age and loss of 

viability, the  protein and DNA synthesis inhibitors were less efficacious than 

antibiotics that acted on the microbial cell wall. Rifampicin treated cells 

po ssessed  irregular m em branes and were partially or fully lysed while 

ciprofloxacin induced abnormally elongated organisms with intermittently lysed 

and detached inner membranes. These results illustrated the ability of clinically 

putative antibiotics with diverse modes of action to affect microbial cytology at ■ 

the ultrastructural level a s  well as  the viability of L. pneumophila in vitro.
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4.2 Introduction

Leoionella pneumophila, the causal agent of a  fatal form of lobar 

pneumonia known as  Legionnaires' d isease, has been studied by negative 

stain, thin-section, freeze-etching, and scanning electron microscopy (105,

108). The response of this human pathogen to treatment with antimicrobial 

chemotherapeutic agents has been investigated using various in vitro and in 

Yim  techniques (19, 30, 35, 44, 45, 57, 60, 65, 83, 107, 109, 112, 128, 129, 

142). Although several antibiotics have excellent activity against Li 

pneumophila in vitro a s  a sse s se d  in minimum inhibitory concentration (MIC) 

studies, few show similar results in clinical trials.

Erythromycin is the current drug of choice for the treatment of 

legionellosis; however, inherent problems arise in its use. These include 

reports of relapse of infection, onset of phlebitis with intravenous antibiotic 

administration and potential complications associated with the development of 

bacterial resistance to therapy. In addition, studies in which Elliott and Rodgers 

(35) examined the morphological and growth response of L. pneumophila to 

erythromycin and ampicillin illustrated that erythromycin had limited bactericidal 

activity in vitro. Rifampicin has proven effective in clinical trials but is not used 

as  the sole therapeutic drug because of the high frequency with which 

resistance is induced. For these  reasons, a  number of other antimicrobial 

agents have been investigated as  potential alternatives for clinical use  in the 

treatment of legionellosis. Of those examined, the quinolone antibiotics have 

been the most promising. Ciprofloxacin, the best studied of this group, is a  lipid
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soluble antimicrobial which inhibits bacterial DNA gyrase and  has yielded 

encouraging results against experimental L. pneumophila infection in vivo (44, 

45, 128, 129).

In the present study, the morphological characteristics and growth 

response of L. pneumophila was examined following exposure to antimicrobials 

derived from three groups of antibiotics (bacterial cell wall, protein synthesis 

and DNA inhibitors). The evaluation of the efficacy of these drugs was 

determined using MIC estimations, viable count data and ultrastructural 

investigations.

4.3 Materials and Methods.

Reagent formulations and preparation along with detailed procedures 

are given in the appendices 1 and 3 .

Bacterial strain and growth conditions. L. oneumoohila 

serogroup 1, strain Nottingham N7 w as  isolated from a sputum sample of a  fatal 

c a se  of Legionnaires’ disease, was subsequently passaged  twice on 

bacteriological media and maintained fully virulent in a frozen state in serum 

sorbitol at -70° C. Cultures were grown on buffered charcoal yeast extract agar

supplemented with a-ketoglutarate (BCYEcc) (29) at 37° C for 48 h. Organisms 

were harvested from plates and inoculated into a-ketoglutarate enriched 

buffered yeast extract (BYEa) broth containing 10 g/l yeast extract (Difco), 10g/I 

ACES buffer (Sigma), 1 .Og/I a-ketoglutarate (Sigma), 0.4 g/l L-cysteine (Sigma) 

and 0.25 g/l ferric pyrophosphate (Sigma). The broth was adjusted to pH 6.9
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with KOH and filter sterilized through a  0.2pm filter to give a final concentration

of approximately 105 colony forming units (cfu)/ml. Organisms were incubated 

in static culture at 37°C and 5 ml aliquots removed at 4 to 6 h intervals to 

develop growth curves for this organism in the broth to be used for subsequent 

antibiotic activity studies.

Antibiotics. Dilutions of cefotaxime (sodium salt) (Hoechst-Roussel 

Pharmaceuticals), methicillin (sodium salt) (Sigma Chemical Company), 

rifampicin (Sigma Chemical Company), and ciprofloxacin (Miles 

Pharmaceuticals) were prepared in BYEa broth. Each antibiotic was added in

the mid-exponential phase of organism growth to give a  final concentration of 

20 times the MIC of each antimicrobial agent. Aliquots of 5 ml were removed 

after incubation for 6 and 24 h in the presence of antibiotics. Organisms were 

harvested by centrifugation at 600 g for 10 min, washed twice in broth and 

either serially diluted for viable counts or prepared for electronmicroscopy. 

Control samples of untreated organisms were harvested and prepared in the 

sam e manner.

Viable count technique. Bacterial counts were determined in 

triplicate by inoculating 10 pi aliquots of serially diluted antibiotic-treated

cultures onto BCYEa agar. Resultant cfu/ml were counted from those plates

containing 30 to 100 colonies as  previously described (91) to define the 

influence of th ese  antibiotics on bacterial viability.

Electron microscopy. Bacteria were fixed in 3% (v/v) glutaraldehyde
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in 0.05M sodium cacodyiate containing 10mM MgSC>4 (35 ). For negative stain

electron microscopy, 25 pi of each sample was mixed with an equal volume of

1% (w/v) phosphotungstic acid pH 6.7, and applied to 400 mesh formvar-carbon 

coated copper electron microscope grids. For scanning electron microscopy, 

samples were applied to specimen stubs, dehydrated in a  graded ethanol 

series, and treated with hexamethyldisilaxane (HMDS) (Polysciences, Inc.) 

(Warrington, Pa.) (87). Prior to examination, samples were coated with 20 nm of 

either gold/palladium with a target to specimen distance of 5 cm, at a  current of

15 mA for 4 min in a  Hummer V sputter coater. For thin-section electron 

microscopy, all samples were post-fixed in 1% (w/v) osmium tetroxide, 

dehydrated in an ethanol series and embedded in epon-araldite mixture. 

Sections of approximately 60 nm thickness were cut on an LKB Ultratome III 

with a diamond knife and stained with uranyl acetate 5% (w/v) for 1 min and 

lead citrate 0.4% (w/v) for 20 sec  (105, 108).

MIC determination. MICs were determined by the broth dilution 

method (133). Briefly, serial two-fold dilutions of each antibiotic were prepared 

in BYEa broth and inoculated with cultures in the mid-exponential phase of

growth to give a  final concentration of 105 cfu/ml. The broths were incubated for

16 h and the lowest concentration of antibiotic which inhibited growth w as taken 

a s  the MIC (Table 4.1)

4.4 Results.

Viability studies. MIC values for all antibiotics are shown in Table 4.1.
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The growth characteristics and effect on viability of L. pneumophila by the 

antibiotics investigated are illustrated in Figures 4.1-4.6 (data on ampicillin and 

erythromycin are from reference 35 with permission and are included for a 

complete comparative profile). L. pneumophila grown in BYEa broth, had a

mean generation time of 1.5 h. The bacterial cell wall inhibitors, cefotaxime and 

methicillin, effected the most rapid decline in viable counts during the first 6 h of 

treatment, while the remaining antibiotics also showed excellent activity against 

L. pneumophila throughout the course of these experiments. Of those tested, 

cefotaxime most effectively reduced organism viability and induced the most 

dramatic morphological changes  at the time intervals investigated.

Morphological studies. Untreated. Negative stain, scanning and 

thin-section electron microscopy studies of normal control organisms revealed 

the typical appearance of legionellae and confirmed the findings of others.

Most cells were 2-10 pm long and 0.25-0.5 pm wide. The bacterial surface of

normal cells w as rugose and ruffled in appearance. Organisms showed a cell 

wall structure consistent with that of gram-negative bacteria. A lipid bilayer, or 

cytoplasmic membrane, enclosed the cytoplasm which consisted of ribosomes, 

a  small number of intracellular vacuoles and a  fine skein of nuclear elements. 

The latter were distributed evenly throughout the bacterial cytoplasm. The outer 

membrane enveloped the periplasm which showed little structural evidence of a 

peptidoglycan layer (plate 4.1).

Cell wall inhibitors. Cefotaxime treatment. Cefotaxime at 20 times
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the MIC caused  extreme dam age to microorganisms. Incubation with this 

antibiotic for 6 h resulted in the formation of lesions and lytic points in the cell 

walls of a  greater number of bacteria than any of the antibiotics studied at this 

time period. Extrusion of the bacterial cytoplasmic contents through such lytic 

points was the most common feature noted. Bulbous vesicles were observed 

on the surface of cells and many organisms possessed  diffuse electron-lucent 

cytoplasmic contents. Extension of treatment with cefotaxime to 24 h resulted in 

an increase in dam age to these cells in terms of the degree of membranous 

lesions and vesicles induced in the cell surfaces as  well as  the number of 

organisms affected. In addition, many bacteria lacked either cytoplasmic 

contents or prokaryotic structure. The formation of spheroplasts w as not 

observed (plates 4.2 and 4.3).

Methicillin treatment. Organisms grown in the presence of 20  times the 

MIC of methicillin showed extensive morphological changes. Affected cells 

exhibited cell wall and membrane abnormalities and developed several lytic 

points through which the cytoplasmic contents extruded into the surrounding 

menstruum. Although many organisms appeared normal, spheroplast 

formation w as evident at this stage. Incubation with methicillin for 24 h induced 

a  greater degree  of cell wall and membrane dam age than the lesser incubation 

period. The outer membrane of the majority of organisms was found to have 

separated from the remaining cell wall and the development of small vesicles 

on the cell surfaces was evident. As a  consequence of lysis of the inner and 

outer membranes, a  loss of cytoplasmic material occurred (plates 4.4-4.S).

8 3



Protein synthesis inhibitor. Rifamoicin treatm ent. Exposure of L* 

pneumophila to 20 times the MIC of rifampicin induced marked dam age to 

bacteria. Incubation for 6 h in the presence of this antimicrobial induced 

membrane dam age to the organism but this appeared less pronounced than for 

the other antibiotics examined. Separation of outer membranes from the 

remaining cell wall and breakage points in the inner m em branes were evident 

in affected microorganisms. In addition, the ribosomes of these  cells were 

enlarged, much increased in electron density and associated with a reas  of 

cytoplasmic clearing. Extended treatment with rifampicin elicited a  more 

pronounced effect in which lytic points in the membrane of cells and loss of 

intracellular contents led to eventual collapse (plates 4.9-4.12).

DNA inhibitor. Ciprofloxacin treatment. Organisms treated for 6 h with 

20 times the MIC of ciprofloxacin exhibited marked morphological changes.

The majority of cells were abnormally elongated forming filaments each of 

which possessed  centrally located "pinched zones" suggestive of arrested 

division. The inner membranes of many legioneilae were intermittently lysed 

and separated from the remaining cell wall material. In addition, the 

intracellular contents of cells were more densely packed due to an apparent 

overall increase in the size of individual ribosomes. Further exposure to this 

antibiotic induced dam age to 98% of the Legionella organisms present. 

Twisted, convoluted bacteria were found with depressed, partially collapsed 

a reas  on their cell surface. In addition, some organisms at this time had lost 

their intracellular contents through breakage points in the cell wall while others

8 4



maintained the densely packed cytoplasmic appearance found in 6 h antibiotic 

treated organisms (plates 4.13-4.19).

Figure 4.7 shows the relative proportion of lysed and partially dam aged 

cells compared with those of normal morphology following antibiotic treatment 

for both 6 and  24 h and Table 4.2 summarizes the morphological findings.

4.5 Discussion

Erythromycin is the preferred drug for the treatment of Legionnaires’ 

disease. However, because  patients with severe illness often respond poorly to 

antimicrobial therapy, new antibiotics are being studied for use  as  alternate 

therapeutic regimens. In vitro screening of these potential agents  to determine 

the activity an d  mode of action of these antibiotics must be performed in order to 

evaluate subsequent in vivo and clinical trials. In the present study, the in vitro 

effect of clinically relevant antibiotics, including the new quinolone, 

ciprofloxacin, on the growth and morphology of L. pneumophila was examined.

Electron microscopy studies have been important for the delineation and 

understanding of antimicrobial activity against many pathogenic 

microorganisms (61, 77, 141). Elliott and Rodgers (35,107, 109) evaluated the 

morphological and growth response of L. pneumophila following exposure to 

ampicillin and erythromycin for 6 and 24 hours using electron microscopy, MIC 

determinations and microbial viable count data. In that investigation, ampicillin 

exhibited grea ter  bactericidal activity and induced more ultrastructural changes 

than erythromycin in vitro. Ampicillin treatment caused  the appearance of 

vacuole-like lesions in the cell walls of organisms which led to extensive
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bacterial lysis and collapse of legionellae while exposure of L. pneum ophila to 

erythromycin effected occasional breakage points in the cell wall along with 

cytoplasmic clearing, formation of membranous vesicles and some cell lysis.

In this study, all antibiotics tested were effective against L. pneumophila 

as a ssayed  by MIC data, the reduction in bacterial viable counts and 

morphological response induced. Methicillin showed extreme bactericidal 

activity against multiplying organisms in broth culture. This was confirmed by 

the morphological studies in which many lysed and empty cells were evident 

after 6 and 24 h exposure periods. Formation of spheroplasts following 

treatment with 1280 pg/ml of this antibiotic was demonstrated and confirmed

previous observations by Elliott and Rodgers of this phenomenon with another 

cell wall inhibitory antibiotic, ampicillin (35). These data suggested that the 

formation of minicell-like organisms and spheroplasts upon exposure to cell 

wall inhibitory antibiotics such a s  methicillin and ampicillin may constitute a 

mechanism by which osmotically protected legionellae survive within host cells 

and continue infection following reversion to vegetative forms upon 

discontinuation of therapy. Such findings may offer an explanation for the 

reported apparent "reactivation" infections due to L. pneumophila and may 

reflect ineffective killing of the organism in vivo in human lung.

Chan et al. (19) reported similar spheroplast formation for methicillin 

used at 100 pg/ml, but could not demonstrate this phenomenon with increased

doses of up to 1000 pg/ml of methicillin. It is possible that the addition of
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magnesium salts to the fixatives and buffers used  in the present study could 

have stabilized fragile bacterial membranes and may account for the 

differences in spheroplast detection.

Cefotaxime showed the greatest bactericidal activity and this resulted in 

the most rapid decline in numbers of viable organisms. Indeed, this third 

generation cephalosporin induced the greatest morphological changes in 

microbial cytology at either of the exposure times. These results conflicted with 

those of Chan et al. (19) who reported no morphological changes  in response 

to treatment of L. pneumophila with different doses  of this antibiotic. It was 

interesting to note that this drug failed to induce spheroplast formation by L. 

pneumophila although a  similar finding was reported following treatment of 

other gram negative bacteria with increased levels of cephalothin (88 ).

Although most Legionella species produce (3-lactamases, the p-lactam

antibiotics are most effective against actively dividing L. pneumophila cells in 

vitro. In this study, antibiotics were added in the mid-exponential phase of 

growth, which for L. pneumophila using the broth selected and an inoculum of 

105 cfu/ml was achieved 24 h into the growth cycle, to allow th ese  agents to 

function at their full capacity. Failure of Chan et al. (19) to detect similar 

morphological changes due to this antibiotic may have reflected the non- 

replicative status of the organisms subjected to antimicrobial treatment.

Ciprofloxacin and rifampicin showed effective bactericidal activity in 

viable count estimations at all the times studied. Despite showing the greatest 

activity in MIC assays, these  antibiotics induced only moderate structural
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dam age after short term exposure. However, such changes increased with 

treatment time. That bacterial viability was lost prior to the induction of 

extensive ultrastructural dam age probably reflected the mode of action of these  

antimicrobial agents against L. pneumophila cells in the exponential phase of 

growth.

Results from this and other studies (35, 107, 109) demonstrated that the 

cell wall inhibitory antibiotics were the most effective in terms of their ability to 

reduce L. pneumophila viability and induce morphological dam age in vitro. 

Although all the antibiotics investigated in this study showed in vitro 

antimicrobial activity against L. pneumophila, it has been reported that the 

aminoglycosides, cephalosporins, and penicillins including ampicillin and 

methicillin were clinically ineffective in the treatment of legionellosis (82). 

Because of its intracellular nature, L. pneumophila can avoid the effects of 

antimicrobial agents that lack the ability to penetrate host cell membranes. 

Indeed, it has been reported that ciprofloxacin, erythromycin and rifampicin (65, 

130) inhibit intracellular L. pneumophila growth while the (5-lactam antibiotics

such as  ampicillin, cefoxitin and cefotaxime do not (142). This most likely 

explains the efficacy of erythromycin and rifampicin in the clinical treatment of 

human legionellosis and emphasizes the need for further in vivo testing of 

ciprofloxacin as  a  potential alternative to current clinical therapeutic regimens.

That bacteria with apparently normal morphology were found following 

extended incubation with all antibiotics examined in this study and in similar 

experiments performed by Elliott and Rodgers (35) with ampicillin and
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erythromycin may offer further explanation for failure of current antimicrobial 

therapeutic protocols for the treatment of clinical Legionnaires' disease. In 

addition, these results considered in combination with reports of increasing 

incidence of bacterial resistance to standard antibiotic regimens indicated a 

continued need for thorough in vitro investigation of the response of pathogenic 

agents  to antimicrobial chemotherapy.

These data  illustrate the in vitro activity and mode of action of clinically 

relevant antibiotics for the treatment of Legionnaires' d isease. This information 

is necessary  to the understanding and evaluation of subsequent in vivo trials 

investigating the activity of these  agents for the treatment of experimentally 

infected animal systems and for potential therapy of clinical disease.
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Table 4.1 Susceptibility of L. pneumophila to se lected  antibiotics

Antibiotic MIC (pg/ml)i

Cell wall inhibitors

cefotaxime 8.0
methicillin 64
(ampicillin 0.4)2

Protein synthesis
inhibitor

rifampicin 0.03
(erythromycin 0.5)2

DNA inhibitor

ciprofloxacin 0.08

1For viability and ultrastructural studies antibiotics were added to broth cultures 
at a  final concentration of 20 times the MIC, respectively.

2Data for ampicillin and erythromycin reproduced with permission (Elliott and 
Rodgers, J. Med. Microbiol., reference 35) and are included here to complete 
the comparative profile. Data were derived in a similar manner as  for the other 
antibiotics.
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Table 4.2 Morphological response of L. pneumophila following exposure to antibiotics for 6 and 24 
hours.

Feature Antibiotic

Cef Meth Amp1 Erv1 Rif Cipro 
6 h 24h 6 h 24h 6 h 24h 6 h 24h 6h 24h 6h 24h

formation of lesions in cell wall 
cytoplasmic clearing 
membrane vesicle formation 
spheroplast formation 
membrane abnormalities 
enlargement of ribosomes 
plasmolysed cells 
convoluted organisms

+ + + + +  + + + /- + + +
+ + + +  + + + - - - /+ +

+ + + + +  + + + - - - -

- - + + +  +
+ + + + +  + + + + + + +

+ + + + +

+ + + + + + + + + + + +

+ + + + -/+  + + + + + + +
o>

1From reference 35, Elliott and Rodgers, J. Med. Microbiol., with permission. Data included to 
complete comparative prolile.
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Figure 4.1 Growth of L. oneumoohila in BYEa broth ( ■  ■ ). The effect on

bacterial viability of cefotaxime ( ♦  ♦  ) added during the mid-exponential
phase  of growth (arrow) is shown. This antibiotic was very effective at reducing 
bacterial viability.
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Figure 4.2 Growth of L. pneumoohila in BYEa broth ( ■  ■  ). The effect on

bacterial viability of methicillin ( ♦  ♦  ) added during the mid-exponential
phase of growth (arrow) is shown. This antibiotic was very effective at reducing 
bacterial viability.

9 3



C o n tr o l

A m p ic illin

0 20 8040 60

t im e  (h)

Figure 4.3 Growth of L. pneumophila in enriched blood broth. The effect on 
bacterial viability of ampicillin added during mid-exponential phase of growth 
(arrow) is shown. This antibiotic effected a  rapid decline in viable counts but 
was not bactericidal for the entire bacterial population. Data reproduced with 
kind permission (Elliott and Rodgers, J. Med. Microbiol.. reference 35) and 
included here to complete comparative analysis. Growth of L  pneumophila in 
this broth had a  mean generation time of 2.0 h.
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Figure 4.4 Growth of L. pneumophila in enriched blood broth. The effect on 
bacterial viability of erythromycin added during mid-exponential phase of 
growth (arrow) is shown. This antibiotic was the  least effective in terms of 
bactericidal activity. Data reproduced with kind permission (Elliott and Rodgers, 
J. Med. Microbiol., reference 35) and included here to complete comparative 
analysis. Growth of L. pneumophila in enriched blood broth had a  mean 
generation time of 2.0 h.
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Figure 4.5 Growth of L. pneumophila in BYEa broth ( ■  ■  ). The effect on

bacterial viability of rifampicin ( ^  ) added during the mid-exponential 
phase of growth (arrow) is shown. This antibiotic showed marked antibacterial 
activity.
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Figure 4.6 Growth of L. pneumophila in BYEa broth ( ■  ■  ). The effect on

bacterial viability of ciprofloxacin {^  ♦  ) added during the mid-exponential
phase of growth (arrow) is shown. This antibiotic showed marked antibacterial 
activity.
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Figure 4.7 Proportion of bacterial cells showing normal morphology ( Q ) and 
those dam aged $ H )  after exposure for 6 or 24 h to the various antibiotics at 20 
times their respective MIC values. Percentages were calculated from counts of 
100 or more cells for each agent and for each treatment time. Data in boxed 
area  is reproduced with permision (Elliott and Rodgers, J. Med. Microbiol., 
reference 35) and is included for the purposes of comparison.
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Plate 4.1 Untreated, control Legionella organisms showing normal 
morphology. The bacterial surface is ruffled and the cell wall structure is 
com posed of a  double track membrane with little visual evidence of a 
peptidoglycan.

a) negative stain (X 18,000), b) scanning (X 30,000), c) thin-section (X 40,000). 
Bars=0.5 pm.
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Plate 4.2 L. pneumophila organisms exposed to cefotaxime for 6 h.
a) note bulbous vesicles on the surface of the organism, scanning (X 20,000),
b) organism showing loss of intact membrane structure surrounding diffuse, 
electron-lucent cytoplasmic contents, thin-section (X 40,000), c) bacterium with 
advanced membrane damage and associated loss of cytoplasm, thin-section 
(X 60,000). Bars=0.25 \im.
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Plate 4.3. Legionellae exposed to cefotaxime for 24 h. 
a) formation of lytic points (arrow) in the bacterial cell wall, negative stain 
(X16,000), b) collapsed organism with abnormal surface structure, scanning 
(X 30,000), c) plasmolyzed organism with loss of prokaryotic structure, (thin-
section (X 80,000). a, b Bars=0.5 pm, c Bar=0.25 pm.
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Plate 4.4 L. pneumophila exposed to methicillin for 6 h. 
a) L. pneumophila organism with breakage point in cell wall (arrow), negative- 
stain (X 16,000), b) advanced s tage of lysis-cytoplasmic contents extruding 
through lytic point in the cell wail of an organism, negative-stain (X 18,000). 
Bars=0.5 pm.
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Plate 4.5 Legionellae exposed to methicillin for 6 h.
a) dam aged  bacterial cells surrounding an apparently normal cell, thin-section 
(X 30,000), b) spheroplast formation is evident alongwith deformed and normal 
cells, thin-section (X 40,000). Bars=0.25 pm.
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Plate 4.6 L. pneumophila exposed to methicillin for 6 h.
a) severely dam aged cells with abnormal membrane distortion (arrow), thin-
section (X 40,000), b) plasmolyzed organism with pinching and ballooning of
membranes, thin-section (X 80,000). Bars=0.25 pm.
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Plate 4.7 Legionella organisms exposed to methicillin for 24 h. 
a) note loss of cytoplasmic contents through advanced lytic point in bacterial 
cell wall (arrow), negative-stain (X 12,000), b) induction of numerous blebs on 
the microbial surface, scanning (X 20,000). Bars=0.5 pm.
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Plate 4.8 L. pneumophila exposed to methicillin for 24 h. 
a) complete loss of bacterial cytoplasmic contents with extreme damage to the 
microbial cell walls, thin-section (X 40,000), b) organism devoid of cytoplasm 
with associated inner and outer membrane separation, thin-section (X 40,000). 
Bars=0.5 pm.
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Plate 4.9. Organisms exposed to rifampicin for 6 h.
a) note numerous breakage points in the cell wall and loss of cytoplasm from 
cell (arrows), negative-stain (X 16,000), b) extrusion of cytoplasm w as evident 
(short arrow) as  well a s  regions of bacterial collapse (long arrow), scanning (X
25,000). Bars=0.5 pm.



a c

Plate 4.10 L. pneumophila exposed to rifampicin for 24 h. 
a) darkly staining surface lesions and numerous small vesicles present, 
negative-stain (X 16,000), b) distorted, partially collapsed organisms, scanning 
(X 15,000), c) disruption of outer membrane and increased size and density of 
ribosomal content of cells, thin-section (X 70,000). 
a, b Bars=0.5 pm, c  Bar=0.25 pm.
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Plate 4.11 Organisms exposed to rifampicin for 24 h. Note localized zones of 
increased density and size of ribosomes within cytoplasm as  well as  distorted 
membrane structure of cells (arrow), thin-section (X 34,000). Bar=0.25 pm.



Plate 4.12 Organisms exposed to rifampicin for 24 h. Increased density of 
cytoplasmic contents is evident in addition to separation of cell walls from 
remaining cell contents, thin-section (X 34,000).
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Plate 4.13 L. pneumophila exposed to ciprofloxacin for 6 h. 
a) darkly staining lesions in cell wall of a  partially collapsed organism, negative- 
stain, (X 24,000), b) convoluted organism with centrally located pinched zone, 
scanning (X 20,000). Bars=0.5 pm.
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Plate 4.14 L. pneumophila exposed to ciprofloxacin for 6 h. Note severely 
deformed cell (arrow) with a reas  of cytoplasmic clearing and abnormal 
membrane structure, thin-section (X 34,000). Bar=0.25 urn.
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Plate 4.15 L. pneumophila exposed to ciprofloxacin for 6 h. Abnormal 
distribution of ribosomes alongwith areas  of localized clearing within the 
bacterial cytoplasm of cells, thin-section (X 40,000). Bar=0.25 pm.



Plate 4.16 Legionellae exposed to ciprofloxacin for 6 h. Note vesiculation of 
bacterial cytoplasm (arrow) and  increased size and density of ribosomes, thin- 
section (X 60,000). Bar=0.25 pm.



Plate 4.17 L. pneumophila exposed to ciprofloxacin for 6 h. Single cell showing 
very d e n se  ribosomal contents within bacterial cytoplasm, thin-section 
(X 60,000). Bar=0.25 ^m.
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Plate 4.18 L. pneumophila exposed to ciprofloxacin for 24 h. 
a) twisted, convoluted organism with multiple pinched zones, negative-stain (X
12,000), b) filamentous, twisted organisms are evident, scanning (X 10,000), c) 
partially collapsed organism with centrally located pinched zone, scanning
(X 34,000). a, b Bars=0.5 p.m, c Bars=0.25 urn.
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Plate 4.19 L  pneumophila exposed to ciprofloxacin for 24 h. Organisms 
showing various types of morphological response to treatment. Som e cells 
have lost their cytoplasmic contents (short arrow) while others exhibit increased 
ribosomal density (long arrow). Note twisted, abnormally shaped cell 
morphologies, thin-section (X 24,000). Bar=0.5 pm.
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Section V

Pathogenesis, Pathology and Chemotherapy of Experimental 
Legionella pneumophila Infection in the Chick Embryo

5.1 Abstract

The pathogenicity of Legionella pneumophila, serogroup 1, strain 

Nottingham N7, was a sse s se d  in terms of LD50 data  and the ability of the 

organism to induce histopathoiogical and ultrastructural lesions in the fertile 

hen's egg. Histological examination of embryo organs after inoculation with 1 , 

10 , 100 and 1000 times the yolk sac  LD50 revealed a  disseminated infection. 

Systemic spread  of the organism resulted in the appearance of pathological 

lesions and the generation of edema fluid. These were particularly severe  in 

the liver, heart, spleen and kidney. Electron microscopy of the pathology 

induced in organs of chick embryos previously infected with 100 times the 

YSLD50 of L. pneumophila confirmed these observations. Subtle pathological 

changes were noted three days post-inoculation while more extensive cellular 

and sub-cellular necrotic changes occurred at four days post-inoculation. The 

infection elicited an inflammatory cell response that consisted of 

polymorphonuclear leucocytes and lymphocytes. Selected antimicrobial 

agents were investigated in therapeutic studies for their capacity to ameliorate 

or control d isease  processes  in this test system. Of those examined, 

ciprofloxacin was most effective at reducing or reversing the incidence of
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lesions in these  tissues and for prolonging embryo viability. Rifampicin, and to 

a  lesser degree, erythromycin and doxycycline, also showed antimicrobial 

activity in these  in vivo trials. These results illustrated the efficacy of the fertile 

hen’s  egg as  a  useful alternative in vivo assay  system for the evaluation of 

clinically putative antimicrobial agents in the treatment of Legionnaires' 

d isease. In addition, this study demonstrated the superior antimicrobial activity 

of ciprofloxacin in the treatment of experimentally induced Legionella infections.
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5.2 Introduction

L- pneumophila is the etiological agent of legionellosis which in the 

severe pneumonic form presents as  Legionnaires’ d isease (85). Despite the 

accumulation of considerable data  describing the invasive nature of the 

microorganism, the pathogenic mechanisms by which this gram-negative rod 

causes infection are  not well understood. In human d isease  and experimental 

animal infections, the legionellae are facultative intracellular pathogens which 

survive and  replicate within alveolar macrophages.

Although primarily recognized as a  pneumonic illness, Legionnaires' 

disease has  been shown to produce a widespread bacteremia alongwith the 

appearance  of soluble L. pneumophila antigen in clinical samples of serum and 

urine (12) in association with extrapulmonary pathology (13, 115). Multi-organ 

inflammatory lesions due to Legionella bacteremia are not common but have 

been described (24). Because Legionnaires' d isease first presents a s  a  classic 

pneumonic infection, the extra-thoracic aspects  of the d isease  have been 

overlooked, but it is evident that the serious pathological sequelae that result 

from L. pneumophila infection may play a larger role in the overall d isease  

process than was previously suspected.

Numerous antibiotics with different m odes of action have shown activity 

against L. pneumophila in vitro (30, 35, 60, 109, 112, 123). However, many of 

these antibiotics with effective minimum inhibitory concentrations (MIC) are 

reported a s  ineffective in the treatment of Legionnaires' d isease  (82) while 

others such  as erythromycin, rifampicin, and to a  lesser extent, the tetracyclines
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have been efficacious in therapy (2). Erythromycin is considered the drug of 

choice for Legionnaires' d isease but variable clinical responses in patients to 

this antibiotic and problems associated with low dose  or intravenous 

erythromycin therapy have been reported (62). Consequently, other therapeutic 

options are currently sought.

The quinolones are  antimicrobial agents that effectively inhibit bacterial 

DNA gyrase activity. One member of this group, ciprofloxacin, is a  promising 

new lipid soluble antibiotic with broad spectrum activity and the ability to 

penetrate eukaryotic cells. This antibiotic has few side-effects, offers oral 

bioavailability, achieves high tissue concentrations and  has been used 

successfully in the treatment of various urinary and respiratory tract infections. 

Ciprofloxacin has been shown to be very active against L. pneumophila in vitro 

(60, 65) and in experimental Legionella infections of guinea pigs (44, 45, 135).

Because treatment of human legionellosis often com m ences well after 

onset of d isease, controlled clinical studies exploring the use of alternative 

chemotherapeutic agents are difficult to perform and force researchers to 

depend on animal studies for data accumulation. Although in vivo testing of 

antibiotic efficacy in guinea pigs has thus far correlated well with clinical data, 

investigators using this animal system for these studies require specialized 

equipment, animal laboratory facilities, specialized expertise, and, according to 

current regulations, qualified staff, animal care and u se  permission, and in 

som e countries animal licenses. In addition, the cost and availability of these 

animals limits the use of significant numbers in experiments and makes
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interpretation of data difficult. It is clear that the ability to test alternative 

therapeutic regimens for the treatment of Legionnaires’ d isease has become 

increasingly important and necessitates the development of a simplified and 

reproducible in vivo antimicrobial assay system.

Lewis et al. (83) introduced the use of embryonate eggs to examine in 

vivo prophylactic and post-infection antibiotic therapy of experimental 

legionellosis following the initial outbreak of Legionnaires' d isease in 

Philadelphia in 1976. This study evaluated antimicrobial therapy based  on the 

ability of antibiotics to reduce mortality rates of infected embryos and yielded 

results in keeping with clinical findings. In the present study, the chick embryo 

w as used to delineate the baseline histological and ultrastructural pathology 

associated with the progression of experimental infection in this animal with L. 

pneumophila in order to determine the therapeutic value of antimicrobial agents 

introduced into this animal following experimental infection. Results from these 

investigations were used to evaluate the chick embryo a s  an alternative in vivo 

assay  system for the testing of new and/or putative antimicrobial agen ts  in the 

treatment of human legionellosis. In addition, the quinolone antibiotic 

ciprofloxacin w as examined for its chemotherapeutic activity and compared with 

clinically relevant antibiotics for its effectiveness at regulating infection in the 

chick embryo animal system. Elucidation of the mechanisms of pathogenesis 

and  growth of L. pneumophila in this in vivo host system and the role of 

antimicrobial therapy in the d isease process may have an impact on current 

procedures for the maintenance and care of patients with legionellosis.
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5.3 Materials and Methods.

Reagent formulations and preparations along with detailed procedures 

are given in Appendices 1 ,2 ,3 ,  and 4.

Preparation of bacterial inocula. L. pneum ophila, serogroup 1 , 

strain Nottingham N7, was isolated from the sputum of a fatal c a se  of 

Legionnaires' d isease , subsequently passaged  twice on bacteriological media 

and maintained frozen at -70° C in 10% serum with added 1% sorbitol. Thawed 

aliquots were grown at 37°C on buffered charcoal yeast extract agar enriched

with L-cysteine, ferric pyrophosphate and a-ketoglutarate (BCVEa) (29) and

incubated aerobically for 48 hours. Organisms were harvested in 5 ml 

phosphate buffered saline pH 6.9 (PBS) to give a  density equivalent to 108 

colony forming units (cfu)/mi as  determined by a  Klett-Summerson photoelectric 

colorimeter. Organism mass, expressed in terms of viability, w as  determined in 

duplicate a s  cfu on BCYEa to confirm opacity data.

Egg type, incubation, inoculation route and determination of 

LD5 0 s. Antibiotic free, fertile White Leghorn hens' eggs (UNH Poultry Farm) 

were incubated at 36°C in a  humid atmosphere. Organisms were introduced 

into eggs  by four inoculation routes: allantoic and amniotic sa c s  (at 10 days of 

embryo incubation), chorioallantoic membrane (CAM) and yolk sac  (at 7 days of 

embryo incubation) (Figures 5.1 and 5.2). Sixty embryonate eggs  were used for 

each inoculation route. Serial 10-fold dilutions of L. pneumophila in PBS were 

made and those ranging from 101 to 106 cfu/ml were inoculated at a  rate of 10
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eggs per dilution. Inoculated eggs were incubated and candled twice daily to 

check for embryo viability. Mortality and protection experiments were performed 

three times and the LD50 for each inoculation route was determined from the 

averaged mortality data by the method of Reed and Muench (101).

Recovery of organisms and histopathoiogy studies. Organism 

m ass  was calculated as  described and the inocula adjusted to give inoculation 

d oses  equivalent to 1, 10, 100 and 1000 times the yolk sac  LD50 {YSLD50).

Each multiple dose  LD50 of L. pneumophila was inoculated into the yolk sacs of 

fertile eggs and these  were harvested at 24 hour intervals from one to eight 

days post-inoculation. Organ samples including liver, heart, spleen and kidney 

were removed aseptically from embryos, rinsed thoroughly in PBS and 

weighed. Organs were homogenized in a  Sorval Omni Mixer, serially diluted 

and aliquots inoculated onto BCYEa for viable count assay. Colony counts

were expressed a s  cfu/gram of tissue and were calculated for each organ at 

each time interval in triplicate. Similarly inoculated and control eggs were 

harvested and whole embryos a s  well as  samples of liver, heart, spleen and 

kidney were fixed in 10% buffered formalin and em bedded in paraffin wax in a 

Lab Tek Tissue Processor. Four micron thick sections were cut, deparaffinized 

and routinely stained with hematoxylin and eosin for histopathological 

examination.

Immunofluorescence. Deparaffinized tissue sections and tissue 

homogenates were incubated with a  1 in 50 dilution of rabbit anti-L.
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pneumophila serum, followed by incubation with a 1 in 200 dilution of FITC- 

conjugated goat anti-rabbit serum  (Cappel Laboratories, Malvern, Pa.). All 

labelling steps were followed by 3-fold washings in PBS to remove unbound 

globulins.

Electron m ic ro sco p y  s tu d ie s .  Eggs were inoculated with 100 times 

the YSLD50 by the yolk sac route, and the embryo organs, liver, heart, spleen 

and kidney, harvested at 24 h intervals and prepared for electron microscopic 

examination. Tissue samples were rinsed in 0.1 M cacodylate buffer, pH 7.2 

(CB) fixed in 3% (v/v) glutaraldehyde in CB for 24 hours, post-fixed in 1% (w/v) 

osmium tetroxide (OSO4 ) in CB for two hours and dehydrated in a  graded 

ethanol series. Samples were embedded in an epon-araldite resin mixture and 

polymerized for 24 hours at 60° C (105, 108). Thin sections, cut on an LKB 

Ultratome III with a  diamond knife, were stained with 5% (w/v) uranyl acetate 

and 0.4% (w/v) lead citrate and examined by transmission electron microscopy 

in a  Hitachi H600 electron microscope used  at 80kV.

Antibiotic therapy studies. MIC values were calculated for 

ciprofloxacin (Miles Pharmaceuticals, West Haven, Ct.), erythromycin, 

doxycycline and rifampicin (Sigma Chemicals, St. Louis, Mo.) by a  standard 

agar dilution technique (133) using BCYEa. For these experiments, eggs were 

infected by the yolk sac  route with 100 times the YSLD50 of L. pneumoohila.

For histopathological studies, one or ten times the MIC of each  of the four 

antimicrobial agen ts  were administered intra-allantoically at one day post­
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inoculation. Mortality data were calculated with time for each antibiotic and 

bacterial viable counts determined from embryo organ homogenates. Similar 

samples were harvested and prepared for histological examination to a s se s s  

the ability of each antibiotic to inhibit either an inflammatory cell response or the 

development of pathological lesions in embryo organs.

Antibiotic therapy of chick embryos was commenced at three days post­

infection for electron microscopic investigations. This schedule was selected 

because  electron microscopic studies of untreated control samples showed that 

this time interval allowed for the earliest expression of ultrastructural 

pathological lesions to develop after the introduction of L. pneumophila into the 

chick embryo. In such treatments, 10 times the MIC levels of each of the four 

antibiotics were administered intra-allantoically and organ sam ples of liver and 

kidney from viable embryos were harvested for electron microscopy at four and 

eight days post-inoculation (one and five days post-therapy, respectively).

5.4 Results

Pathogenesis. The LD50 values for L. pneumophila introduced into 

the embryonate egg were determined and are illustrated in Table 5.1. The 

inocula required to induce embryo death ranged from 1.4 X 102 cfu/ml for the 

amniotic sac  to 5.5 X 10* cfu/ml for the allantoic sac. The LD50 studies 

demonstrated that those inoculation routes which accessed  the immediate 

environment or the nutritional source of the embryo required lower organism 

numbers to induce fatal infections compared with more peripheral routes.

Inoculation of multiple doses of the YSLD50 into fertile hens’ eggs
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resulted in dissemination and growth of Legionella organisms in the liver, heart, 

spleen and kidney. A tissue response and dose effect w as observed in that 

viable counts on harvested organs of embryos infected with 1 or 10 times the 

YSLD50 revealed that exponential bacterial growth began at four days post­

inoculation in the liver and heart but after five days in the spleen and kidney 

(Figures 5.3 and 5.4). In addition, bacterial assay s  of organs from embryos 

inoculated with 100 and 1000 times the YSLD50 showed that organism growth 

began at four days post-inoculation in all examined organs (Figures 5.5 and 

5.6). Microbial assay  of tissues at eight days post-inoculation with 1000 

YSLD50 yielded counts ranging from 3.3 X 104 to 9.9 X 105 cfu/gram in the 

kidney and liver, respectively (Figure 5.6). Organism concentration in organs 

was highest in the liver and lowest in the kidney irrespective of the multiple 

dose used  as  inoculum.

Histopathology. Gross examination of the organs of embryos infected 

by various routes of inoculation with multiple d o ses  of the YSLD50 showed no 

ostensible lesions. Inoculated CAMs failed to demonstrate visible pocks or 

pathological changes. Following yolk sac inoculation, histopathological 

examination on organs of embryos infected with 1 , 10 , 100 and 1000  times the 

YSLD50 revealed pathological changes in the liver, heart, spleen and kidney 

and were most evident in regions rich in blood vessels (plates 5.1-5.5). With 

inocula of 1 , 10, or 100 times the YSLD50 an inflammatory cell response 

appeared simultaneously at five days post-inoculation in all organs examined
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but at four days following administration of 1000 times the YSLD50. At this 

stage, congestion of the blood vessels within tissues were most evident (plates 

5.1 -5.2). Heart tissue showed marked vascular congestion with evidence of an 

edem atous response (plate 5.2). In the kidney, pathological changes in the 

glomeruli, with an associated cell exudate, were evident as compared with the 

relatively undam aged convoluted tubules (plate 5.4).

Histopathological examination of sections at higher magnification 

showed degenerative in each organ typified by breakdown of cell and nuclear 

membrane structure, loss of cell components, and margination of nuclear 

chromatin. Darkly staining PMNLs and leucocytes were also common (plate 

5.5). These results are summarized in Table 5.2.

Immunofluorescence. The presence of L. pneumophila organisms in 

situ in tissue sections and homogenates was confirmed by specific 

immunofluorescence. Labelled organisms were visualized along with tissue 

dam age  in liver, heart, spleen and kidney sections of embryos previously 

inoculated with multiple doses  of the YSLD50.

Ultrastructural pathology. Electron microscopic examination of the 

liver, heart, spleen, and kidney of infected chick embryos revealed extensive 

pathological d am age  at the cellular and sub-cellular levels. These  

observations are  summarized in Table 5.3. The ultrastructural tissue damage 

induced by the organism was similar in all organs examined and the earliest, 

most tenuous pathological changes  were observed at three days post­

inoculation. Mitochondrial dam age was evident at this time (plate 5.6 and 5.7).
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Major ultrastructural changes occurred at four days post-inoculation and 

consisted of extensive degenerative changes which included fatty degeneration 

and cytoplasmic clearing. These changes were characterized by ballooning 

and breakdown of the cellular and nuclear membranes, nuclear clearing, 

margination of chromatin material, and cytoplasmic vesiculation (plate 5.8). A 

hemolytic process (plate 5.9) was evident in these tissues. During latter stages 

of the infection, many lysed, swollen or apparently empty mitochondria were 

distributed throughout the cytoplasm of affected cells. At this stage, the nuclei of 

many cells exhibited pyknosis or karyolysis (plate 5.10-5.12). In addition, 

lysosomal bodies were present within cells presumably involved with autolysis 

of these tissues. Occasionally, small numbers of legionellae were observed 

within cells of embryo organs (plate 5.13).

Antibiotic therapy studies. The MICs of ciprofloxacin, doxycycline, 

erythromycin and rifampicin for L. pneumophila are shown in Table 5.4. Of the 

four antibiotics, ciprofloxacin at 10 times the MIC proved most effective in 

delaying tissue dam age and preventing an inflammatory cell response prior to 

eight days post-inoculation a s  a s sessed  by histopathological examination. 

Erythromycin, doxycycline or rifampicin effected a delay in the  development of 

these  lesions, but their effect was much less pronounced. These results are 

shown in Table 5.4. Only embryos protected with ciprofloxacin survived to term. 

In addition, the efficacy of these  antibiotics was evaluated in bacterial viable 

count assays  performed on organs of embryos previously infected eight days  

previously with 100 times the YSLD50 of L. pneumophila. Results are shown in
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Figure 5.7. At 10 times their MIC, ciprofloxacin was more efficient at reducing 

organism numbers in these tissues than either erythromycin or rifampicin.

Figure 5.8 shows the results of embryo viability after inoculation with 100 times 

the YSLD50 of L  pneumophila with administration 24 hours later of 10 times the 

MIC levels of ciprofloxacin, erythromycin or rifampicin. Ciprofloxacin gave the 

highest percentage of embryo survival throughout the trials. Eight days post­

inoculation the survival rate for embryos protected with ciprofloxacin w as 83% 

compared with rifampicin at 33% or erythromycin at 10%. By 14 days post­

inoculation all rifampicin or erythromycin treated embryos had succumbed to 

infection.

Ultrastructural observations of infected embryo organs treated three days 

subsequently with 10 times the MIC of these  antibiotics showed similar changes 

and are summarized in Table 5.5. Only viable embryos were processed for 

electron microscopic examination. Ultrastructural tissue dam age in 

erythromycin (plate 5.14) and doxycycline (plate 5.15) treated embryos w as less 

severe than unprotected tissues at four days post-inoculation. Indeed, the 

cellular changes at this stage in the presence of erythromycin were similar in 

appearance to those at day three of infection in the absence  of antibiotic. 

Tissues from rifampicin treated embryos also showed less  damage than 

controls and were comparable at four and eight days post-inoculation (plates 

5.16 and 5.17). However, tissues from ciprofloxacin treated embryos were 

found to be consistently less dam aged at eight days than at four days post­

infection (plates 5.18 and 5.19) indicating that the degenerative process
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associated with infection at the ultrastructural level had been reversed.

5.5 Discussion

In keeping with current pressures and legislation to reduce vertebrate 

animal use in research and diagnosis, the self-contained embryonate hen's egg 

offers an alternative in vivo antibiotic assay system for L. pneumophila. Eggs 

are relatively easy to handle, inexpensive, and can be used in sufficiently large 

numbers to test each antibiotic so a s  to give significant assessm en t levels 

normally unattainable with other laboratory animals. In addition, no specialized 

animal facilities, equipment, personnel or licenses a re  required.

The LD5o studies revealed the high degree of pathogenicity of L  

pneumophila for this animal. These findings reflected the relative few numbers 

of microorganisms required to achieve these mortality data and illustrated the 

extreme infectious nature of the bacterium for the chick embryo and  its tissues. 

The rapid growth of L. pneumophila in the liver, heart, spleen and  kidney 

following inoculation with multiple d o ses  of the YSLD50 indicated that growth of 

the organism in the chick embryo was characterized by a bacteremia with 

satellite infections in these  organs. Microbial a s say s  also revealed that 

irrespective of the inoculum dose, extensive organism growth occurred within 

organs all organs examined, most notably in the liver but to a  lesse r  degree in 

the kidney. These data supported similar observations by other workers that 

organisms were found within the extrapulmonary organs of hum ans and 

animals previously infected with L. pneumophila.

Correlation exists between human legionellosis and experimental
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infections in various animal models. Pyrexia, antibody production, cell- 

mediated immunity and bacteremia have been demonstrated in various 

laboratory animals. In addition, the production of inflammatory cells in response 

to experimental and natural infections with the organism is often similar and 

consists of a  mixed infiltrate of PMNLs and macrophages. Histopathological 

examination of the liver, heart, spleen and kidney of the chick embryo following 

inoculation with multiple doses  of L. oneumoohila revealed the simultaneous 

appearance of vascular cells in all organs and suggested a  large scale 

inflammatory cell response consisting primarily of PMNLs and lymphocytes.

Experimental infection of fertile hens' eggs with L. pneumophila elicited 

severe cellular and sub-cellular pathological changes in all embryo organs 

examined by electron microscopy. That ultrastructuraf tissue dam age was 

found to be similar and occurred synchronously three days post-inoculation in 

these  organs supported histopathological observations of a  systemic-type 

infection in this animal (128). The ultrastructural appearance of tissues of 

infected embryo organs was comparable to similar features exhibited in human 

legionellosis (20, 21, 30, 105, 111).

Although L. pneumophila is sensitive to a  variety of antimicrobial agents 

in vitro, the ability of this pathogen to replicate intracelluiarly limits the use of 

many of th ese  agents in vivo. Antibiotics which have been used  successfully in 

treatment include erythromycin, rifampicin and the tetracyclines. Animal 

experiments with guinea pigs previously exposed to aerosol suspensions of L. 

pneumophila and treated with clinically proven antibiotics readily demonstrated
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the efficacy of rifampicin and to a lesser extent erythromycin. Effective 

antimicrobial agents were able to decrease  mortality and clear viable L. 

pneumophila from the lungs but only rifampicin was able to reverse 

histopathological lesions (57). Similar results were obtained using L. 

pneumophila infected fertile hens' eggs in which mortality da ta  was reduced by 

treatment with rifampicin and erythromycin administered either prophylactically 

or post-infection (83). To date, additional antimicrobial investigations have not 

been performed to corroborate and extend these results.

Ciprofloxacin has shown excellent in vitro activity against L. pneumophila 

in preliminary studies with agar and broth dilution tests as  well as  cell cultures 

(65). Effective ciprofloxacin treatment of experimental Legionella infection in 

guinea pigs has also been demonstrated. In these  studies, ciprofloxacin was as 

effective a s  rifampicin and better than erythromycin in preventing death of 

infected guinea pigs (44).

In the present study, the fertile hen's egg was used a s  an in vivo assay  

system for the critical evaluation of clinically useful antibiotics. Antimicrobial 

agents were administered one day post-inoculation and tested  for their ability to 

delay the development of histopathological lesions and the appearance of 

infiltrative cells, reduce organism numbers in tissues and d ecrease  embryo 

mortality. Ciprofloxacin, erythromycin, doxycycline and rifampicin were all 

effective against L. pneumophila infection of the embryonated egg in all aspects 

of testing as  compared with PBS controls. However, results from these 

investigations demonstrated the superior activity of ciprofloxacin in these in vivo
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trials.

The treatment of human legionellosis often com m ences well after the 

disease process is initiated. In this study, the progression of disease was 

monitored at the ultrastructural level and antimicrobial therapy administered to 

eggs to correspond with the appearance of the earliest cellular and sub-cellular 

pathological changes in tissues. It was evident that ciprofloxacin was the most 

effective antibiotic investigated based on its consistent ability to reverse 

ultrastructural lesions induced in response to infection with L. pneumophila.

Although no animal system completely simulates the conditions of 

human therapy, these results established the efficacy of the chick embryo to 

evaluate clinically putative antibiotics for the treatment of human legionellosis 

and to investigate the pathology associated with otherwise fatal experimental L. 

pneumophila infections. The usefulness of ciprofloxacin in the treatment of 

such infections in this animal was also demonstrated in all aspects  of these 

trials. Rifampicin, erythromycin and doxycycline also showed antimicrobial 

activity in this assay  system, but to a  lesser degree. Evidence from this and 

other reports suggested that the use of ciprofloxacin for the treatment of L  

pneumophila experimental infections in animals requires further investigation.

In addition, studies are necessary to determine whether the use of this drug may 

be efficacious in the treatment of clinical legionellosis.
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Table 5.1 LD5 0  values for L. pneumophila in the embryonated 
hen’s egg.

Route of Inoculation cfu/ml

allantoic sac  5.5 x 104

amniotic sac  1.4 x 102

chorioallantoic membrane (CAM) 3.3 x 104

yolk sac  6 .6 x 102
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Table 5.2 Histopathological observations on organs of embryos 
inoculated with 1, 10, 100 or 1000 times the YSLD5 0  of U  
pneum ophila.

Days post-inoculation 

1, 2, 3, 4 5, 6 , 7, 81

Feature

systemic degenerative changes 
in organs

edem a

congestion of blood vessels 

cellular dam age  

inflammatory cell response

+++ = extensive damage, - = not found

1 All features described reflect findings with inoculas of 1, 10 and 100 times the 
YSLD 50 with the exception of 1 0 0 0  YSLD 50 , which were found at four days post­
inoculation.

+ + +

+ + +

+ + +

+ + +

+ + +
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Table 5.3 Ultrastructural observations on cells of embryo organs 
inoculated with 100 times the YSLD50 of L. pneumophila.

Cell Damage Days post-inoculation

1, 2 4 ,5

Breakdown of cell and  nuclear membrane

Cytoplasmic clearing

Fatty degeneration

Ballooning of nuclear membrane

Pyknosis

Karyolysis

Mitochondrial dam age

Margination of chromatin and nuclear

clearing

Intercellular spaces  and  cellular vacuoles 

Hemolysis

+++

+ + + +

+ + + +

+ + + +

+ + + +

+ + + +

+ + + +

+ + + +

+ + + +

+ + + +

+ + + +

++++ = extensive in all cells examined; +++ = common in many cells; 

+ = rarely found; - = never found
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Table 5.4 Appearance of inflammatory cells in chick embryo 
organs infected with 100 times the YSLD5 0  of L. pneumophila and 
protected with 10 times the MIC of each antibiotic.

Antibiotic MIC (pg/ml) Days post-inoculation

control (100 YSLD5o) 5

ciprofloxacin 0.08 8

doxycycline 0.80 6

erythromycin 0.50 6

rifampicin 0.03 6

1 3 8



Table 5.5 Ultrastructural cell damage in embryo organs previously 
inoculated with 100 times the YSLD50 of L. pneumophila 
and protected with antibiotic

Antibiotic MIC
(pg/ml)

Dose administered 
per egg 1 (pg/ml)

Days post-inoculation

4
(1 day post­

therapy)

8
(5 days post­

therapy)

Ciprofloxacin 0.08 28 +++2 +

Rifampicin 0.03 10.5 +++ +++

Erythromycin 0.50 175 + Dead

Doxycycline 0.80 280 + Dead

iDose per egg was based upon 10 times the MIC for each drug and an average 
egg volume of 35 mis.

2Degree of ultrastructural dam age observed, +++= marked, += slight
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Figure 5.1 Schematic illustrating various routes of inoculation and compartments 
of the chick embryo.
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Chorio-allentoic membrane route

Air displaced 
from sac
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Figure 5.2 Schematic illustrating the chorioallantoic route of inoculation of the 
fertile hen 's  egg.
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Figure 5.3 Bacterial viable counts assays  on embryo organs from eggs inoculated 
with the YSLD50of L. pneumophila. Note rapid bacterial growth in all organs 
examined. Organisms were found most concentrated in the liver.
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Figure 5.4 Bacterial viable count assays on embryo organs from eggs inoculated 
with 10 times the YSLD50 of L. pneumophila. Note increased bacterial growth rate 
in all organs examined. The liver contained the densest microbial population.

143



L iver

H ea rt

S p le e n

K id n ey

3 4 7 95 6 8

days post-inoculation

Figure 5.5 Bacterial viable count assays on embryo organs from eg g s  inoculated 
with 100 times the YSLD50 of L. pneumophila. Bacterial growth in organs was 
similar in all organs examined but was less rapid than growth in organs of embryos 
inoculated with 10 times the YSLD50.
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Figure 5.6 Bacterial viable count assay s  on embryo organs from eggs inoculated 
with 1000 times YSLD50 of L. oneumoohila. Note increased bacterial growth in 
liver and heart tissue after 6 days post-inoculation.
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ciprofloxacin was most effective at reducing bacterial growth in the majority of 
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Figure 5.8 Viability rate of embryos previously infected with 100 times 
theVSLDso of L. pneumophila and treated with 10 times the MIC of each 
antibiotic. PBS control (o), ciprofloxacin (■), erythromycin ( ^ )  and rifampicin 
(□)■ Ciprofloxacin was the most efficacious antibiotic used  in these trials.
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Plate 5.1 Histological sections of liver tissue from the chick embryo. 
Hematoxylin and eosin stain.
a) normal tissue with dispersed red blood cells (RBCs) (X 165), b) liver tissue 
five days after inoculation with the VSLD50 of L. pneumophila. Note edematous 
tissue and densely staining inflammatory response within congested  central 
vein (X660).
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Plate 5.2 Histological sections of heart tissue from the chick embryo. 
Hematoxylin and eosin stain.
a) normal tissue (X 165), b) heart tissue five days after inoculation with the 
YSLD50 of L  pneumophila with marked vascular congestion (arrows) (X 165).
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Plate 5.3 Histological sections of spleen from the chick embryo. Hematoxylin 
and eosin stain,
a) normal tissue (X 165), b) spleen 5 days after inoculation with the YSLD50 of 
L. pneumophila. Inflammatory cells are evident within central artery and 
surrounding tissue (X165).
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Plate 5.4 Histological sections of kidney from the chick embryo. Hematoxylin 
and eosin stain.
a) normal tissue showing glomeruli, convoluted tubules and circulating RBCs of 
the kidney (X 165), b) kidney five days after inoculation with the YSLD50 of L 
pneumophila. Note dam aged  sustained by glomeruli (short arrow) as 
compared to the convoluted tubules (long arrow). Inflammatory cells are 
distributed thoughout tissue the tissue (X 660).
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Plate 5.5 Histological section of liver at five days post-inoculation at high 
magnification showing influx of inflammatory cells. Note incidence of PMNLs 
(short arrow) and lymphocytes (long arrow) as  well as  dam aged hepatocytes (X 
1650). Hematoxylin and eosin stain.
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Plate 5.6 Electron micrograph of kidney three days after inoculation with 100 
times the YSLD50 of L. pneumophila. Subtle pathological changes within the 
mitochondria of cells were evident at this time (arrows) alongwith fatty 
degeneration and vacuole formation (X 8,000). Bar=1 pm.
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Plate 5.7 Electron micrograph of heart three days after inoculation with 100 
times the VSLD50 of L. pneumophila. Note extreme d am ag e  to mitochondria 
(arrows) and initial stages of cytoplasmic clearing (X 10,000).
Bar=1 pm.
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Plate 5.8 Electron micrograph of spleen four days after inoculation with 100 
times the YSLD50 of L. pneumophila illustrating ballooning of nuclear 
membranes (short arrow), margination of chromatin material (long arrow), 
vesicle formation within cytoplasmic space (open arrow) and the presence of 
"ghost mitochondria" (curved arrow) (X 6,000). Bar=5 |4.m.
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Plate 5.9 Electron micrograph of kidney four days after inoculation with 100 
times the YSLD50 of L. pneumophila. Note the various s tag es  of the hemolytic
process (X 8,000). Bar=1 pm.
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Plate 5.10 Electron micrograph of liver five days after inoculation with 100 times 
the YSLD5o of L. nneumophila illustrating advanced s tages  of the infection. 
Necrotic hepatocytes are bordered by hemolysed RBCS. Cell membranes of 
liver cells are intermittently lysed (X 4,000). Bar=5 pm.

1 57



Plate 5.11 Electron micrograph of heart five days after inoculation with 100 
times the YSLD50 of L. pneumophila showing pathological changes at this 
stage of the infection. Fatty degeneration, intercellular and intracellular 
clearing, margination of chromatin material and membrane lysis are apparent 
(X 4,000). Bar=5 \xm.
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Plate 5.12 Electron micrograph of spleen five days after inoculation with 100 
times the YSLD50 of L. pneumophila. Pyknosis (short arrow) and karyolysis 
(long arrow) of nuclei are evident alongwith the formation of many cytoplasmic 
vesicles (X 6,000). Bar=5 pm.



Plate 5.13 Electron micrograph of spleen tissue four days after inoculation with 
100 times the YSLD50 of L. pneumophila. Cell with intracellular organism 
associated with cellular and sub-cellular pathology (X 8,000). Inset: higher 
magnification of L. oneumoohila organism (X 20,000). Bars=1 pm.



Plate 5.14 Electron micrograph of kidney from embryos treated with 10 times the 
MIC of erythromycin three days after bacterial infection. Thin-sectioned tissue at 
four days post-infection (one day post-therapy) showing improved tissue as  
compared to untreated controls at the same stage of infection. Erythromycin did 
not sustain this level of activity with time (X 10,000).
Bar=l pm.
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Plate 5.15 Electron micrograph of kidney from embryos treated with 10 times the 
MIC of doxycycline three days after bacterial infection. Thin-sectioned material 
at four days post-infection (one day post-therapy) illustrating improved 
presentation of tissue as  compared with untreated controls at the sam e stage of 
infection. Doxycycline was not able to maintain this level of activity with time ■
(X 8,000). Bar=1 urn.
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Plate 5.16 Electron micrograph of kidney from embryos treated with 10 times 
the MIC of rifampicin three days after bacterial infection. Thin-sectioned 
material at four days post-infection (one day post-therapy). Rifampicin treated 
tissue showed some improvement as  compared to untreated tissue at the same
stage of infection (X 4,000). Bar=5 (a.m.
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Plate 5.17 Electron micrograph of kidney from embryos treated with 10 times the 
MIC of rifampicin three days after bacterial infection. Thin-sectioned material at 
eight days post-infection (five days post-therapy). No improvement of the 
condition of the tissue was noted with time (X 4,000). Bar=5 pm.
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Plate 5.18 Electron micrograph of liver from embryos treated with 10 times the 
MIC of ciprofloxacin three days after bacterial infection. Thin-sectioned material 
at four days post-infection (one day post-therapy) exhibiting no significant 
improvement of tissue condition a s  compared to untreated controls at the same
stage of the infection (X 4,000). Bar=5 pm.
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Plate 5.19 Electron micrograph of liver from embryos treated with 10 times the 
MIC of ciprofloxacin three days after bacterial infection. Thin-sectioned material 
at eight days post-infection (five days post-therapy). Note much improved 
condition of tissue a s  compared with treated embryos at 4 days post-infection (X
4,000). Bar=5 pm.

166



Section VI

6. General Discussion

Data from these studies indicated that a  molecule or molecules with lectin­

like activity on the surface of this organism may be responsible, at least in part, for 

L. pneumophila binding to host target cells. Further identification and isolation of 

L. pneumophila surface structures which facilitate attachment to target cells may 

lead to the development and production of potentially useful anti-adherence 

vaccines. The process by which L. pneumophila recognized and adhered to host 

cell surfaces represents the earliest, most critical stage of bacterial infection. The 

ability to block these initial events with such prophylactic treatments would 

illustrate a  novel strategy for the prevention of clinical legionellosis.

The chick embryo was established as  a powerful tool for the evaluation of L  

pneumophila virulence and proved a viable alternative to other animal systems for 

the study of the pathology and chemotherapy of the extrapulmonary manifestations 

of experimental L. pneumophila infections. Because of the intracellular nature of 

this organism, in vitro MIC data do not reflect in vivo or clinical results. These 

studies demonstrated the fertile hen's egg as  a readily accessible in vivo system 

for the evaluation of putative antimicrobial therapy for legionellosis and may prove 

of significant value for the evaluation of antibiotic regimens for other facultative 

intracellular pathogens such as Brucella. Yersinia. Listeria. Chlamydia and many 

others. Although, erythromycin (the drug of choice for Legionnaires' disease), 

rifampicin and doxycycline showed antimicrobial activity in this animal system,
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ciprofloxacin, a  newer broad spectrum quinolone antibiotic was the most 

efficacious in these trials.

Studies which characterized the morphological response of L. oneumoohHa 

to clinically relevant antibiotics provided indicators of the bacteriostatic versus 

bactericidal nature of these agents and yielded some information concerning the 

structural nature of the organism. In addition, examination of the microbial damage 

induced by selected antimicrobials was necessary for the interpretation of results 

derived from further in vivo evaluations of these antibiotics.

L. pneumophila is a  human pathogen that cau ses  fatal disease. 

Immunocompromised individuals are particularly susceptible to infection and 

respond variably to the current antibiotic regimens. The present investigation 

partially characterized the adherence of L. pneumophila to host cells and explored 

the possibilities of novel preventative m easures in the form of anti-adherence 

vaccines for human disease. Furthermore, these data delineated the 

pathogenesis and pathology of L. pneumoohila in experimental animal infections 

and illustrated the role of clinically relevant antibiotics in the outcome of disease. 

These results may lead to the development of aggressive combination therapeutic 

regimens in which protective vaccines and new broad-spectrum antimicrobial 

agents  can be used for the prophylaxis and control of clinical legionellosis. Finaily, 

this work clearly demonstrated the superior antimicrobial activity of the quinolones 

and their potential for treatment of human Legionnaires' disease.
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Section VII

7. Possible future studies:

This work has taken a  number of interesting turns and has revealed a variety of 

problems which could usefully be addressed concerning the further characterization of 

the pathogenesis of L. pneumophila:

1) role of humoral and cell-mediated immunity of the chick embryo to L. 

pneumophila infection and the outcome of disease.

2 ) examination of the potential intracellular colonization of the inflammatory 

cells reported here by L. pneumophila.

3) characterization of the role of L. pneumophila toxins in the disease process 

in the chick embryo.

4) role of bacterial toxins and antibiotics in intracellular survival of L. 

pneum ophila.

5) comprehensive characterization of specific L. pneumophila adhesins (outer 

membrane proteins, fimbriae, pili, lectins) involved in adherence to host ceils.

6 ) identification of host cell receptors for L. pneumophila.

7) electron microscopic examination of L. pneumoohila adherence to U937 and 

subsequent internalization processes.

8) effect of selected antibiotics (especially at sub-MIC levels) on L  

pneumophila adherence to host cells.
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9) evaluation of immunosuppressive regimens on the outcome of experimental 

legionellosis in the chick embryo system.

10) determination of the synergistic action of selected antimicrobial agents in 

vitro and in vivo.

11) characterization of the mechanisms of L. pneumophila uptake by host cells
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APPENDICES

Appendix 1

Media used in biological studies.

1. Cell cultures

1.1 De-ionized water

All water used to make up media was obtained from a Millipore Milli Q 

filtration system. Ten Megohm water was collected, filter sterilized through a  0.2 

pm filter, and one liter aliquots stored at 4° C.

1.2 Phosphate  buffered saline (PBS\

Solutions of PBS were made in de-ionized water a s  follows and

sterilized by autoclaving and stored in 100 ml aliquots in glass bottles at 4° C.

co m ponent grams/liter

NaCI 8.0
KCI 0.2
KH2P 0 4 0.2
Na2H P 0 4 0.15

1.3 Hanks’ Balanced Salt Solution (HBSS)

A concentrated 10 X sterile solution of HBSS with 0.35 g/l sodium 

bicarbonate and phenol red was obtained from Irvine Scientific. For use, the 

stock solution was diluted ten-fold under aseptic conditions with sterile 

de-ionized water. The stock and working strength solutions were stored in 

sterile g lass  bottles at 4° C.
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1.4 Sodium bicarbonate solution (NaHCCh)

A stock 7.5 % solution of sodium bicarbonate was m ade by dissolving 75 

g NaHC0 3  in 1 liter of de-ionized water and sterilized by filtration. Aliquots of

100 mis were placed in sterile bottles and stored at 4° C.

1.5 Bovine calf serum

Sterile bovine calf serum supplemented with iron was obtained from 

Hyclone Laboratories, distributed in 50 ml volumes in sterile plastic tubes and 

stored at -20° C.

1.6 Glutamine

This was obtained in powdered form from Sigma, dissolved in sterile 

de-ionized water to make a  100 X stock (300mM) solution and filter sterilized. 

Aliquots were stored at -20® C.

1.7 Minimal Essential Media with Earles salts and non-essential amino acids 

(MEM)

This medium w as obtained from Irvine Scientific as a  sterile 10 X 

concentrated solution with added phenol red. For use, stock solutions were 

diluted ten-fold with sterile de-ionized water in an aseptic manner. Stock and 

working strength solutions were stored in sterile glass bottles at 4° C.

1.8 Trvosin-EDTA

Trypsin and sodium versenate (EDTA) were obtained in powdered form 

from Sigma and dissolved in 100 ml of warm PBS to make a working solution of

0.05% trypsin and 0.02% EDTA. Aliquots of 10 ml were stored at -20°C.1.8
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Growth medium

MEM with Earles salts was prepared with the following sterile 

constituents:

Com ponent Volume

MEM with Earles salts 450 ml
Bovine calf serum 50 ml
Sodium Bicarbonate (7.5%) 10 ml
Glutamine 5 ml

2 . Organism  growth

2.1 SaiicLmedium

Buffered yeast extract agar supplemented with a-ketoglutarate (BCYEa)

was obtained from Gibco Laboratories (Madison, Wisconsin) and prepared 

according to the manufacturer’s instructions. Components of this medium were 

as  follows:

Com ponent grams/liter

yeast extract 10.0
ACES buffer 10.0
ferric pyrophosphate 0.25
a-ketog lu tara te  1.0
agar  15.0
charcoal, activated 2.0

Four ml of a  filter sterilized solution of 10% L-cysteine HCI was then aseptically 
added to 1 liter of medium according to manufacturer's instructions.

1 8 8



2.2 Broth medium

Buffered yeast extract broth supplemented with a-ketoglutarate (BYEa) 

was prepared as  follows:

Component grams/liter

yeast extract 10.0
ACES buffer 1 0 .Q
ferric pyrophosphate 0.25
a-ketoglu tara te  1.0

Constituents were added to one liter of distilled water, allowed to 

dissolve, filter sterilized through a 0.2pm filter and collected aseptically. Four mi

of a  filter sterilized 10% solution of L-cysteine HCL was aseptically added to the 

medium prior to use.
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A ppend ix  2

1. Reagents and materials used in histological studies.

1.1 Harris' Alum Hematoxylin

This solution was comprised of the following:

Component Amount

hematoxylin crystals 5.0 g
absolute alcohol 50 ml
aluminum ammonium sulfate 100 g
de-ionized water 1000 ml
mercuric oxide 2.5 g

Hematoxylin crystals were dissolved in alcohol and the aluminum ammonium 

sulfate dissolved in water. The two solutions were then mixed and rapidly 

brought to a  boil. Mercuric oxide was added slowly and the mixture reheated 

for 15-20 min. This was kept covered in a glass coplin jar ready for use.

1.2 Stock 1% aqueous eosin solution

The following components comprised this solution:

Component Amount

water soluble eosin 10 g
de-ionized water 1000 ml
glacial acetic acid 2.0 ml

This were mixed and the solute allowed to dissolve. The stock solution was 

kept in a  glass stoppered bottle and stored at 20° C. A working solution was 

made by mixing 50 ml of the stock solution with 120 ml absolute alcohol, 30 mi 

de-ionized water and 1.0 ml glacial acetic acid.

1.3 Acid alcohol solution

This was made by adding 70% (710 ml of 95%alcohol with 290 ml
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deionized water) to 10 ml concentrated hydrochloric acid, and stored in a 

stoppered bottle at 20° C.

1.4 Saturated lithium carbonate

This was made by dissolving 4.5 g of lithium carbonate in 450 mi de­

ionized water and stored in a  stoppered bottle at 20°C.

1.5 Buffered formalin solution

A 10% solution of formaldehyde (VWR) was prepared in PBS and stored 

in a stoppered glass bottle at room temperature.

1.6 Preparation of histological sections

Tissue samples were harvest from embryos and fixed in 10% buffered 

formalin. Samples were then embedded In paraffin with a  Lab Tek Tissue 

Processor and trimmed with a razor blade. Four micron sections were cut with a 

American Optical rotary microtome, attached to glass slides and prepared for 

staining.

1.6.1 Hematoxylin and eosin staining procedure 

The following staining procedure was used:

Treatment Time

Histoclear (two changes} 2 min
100% alcohol (two changes) 1 min
95% alcohol (two changes) 1 min

de-ionized water 3 dips
Harris' Hematoxylin 6 min
Running tap water 2 min
Acid alcohol 6-8 dips
de-ionized water 3 dips
lithium carbonate 7 dips
running tap water 15 min
eosin 1 -4 min
95% alcohol (two changes) 15 sec
100% alcohol (two changes) 15 sec
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Appendix 3

Reagents and materials used in electron microscopy studies.

1. Negative staining

1.1 Grids

Copper 400 mesh grids were supplied by Electron Microscopy Sciences 

(EMS) and were used in all studies.

1.2 Formvar

This was obtained from EMS as a dry powder. A stock 2% solution was 

made by dissolving one gram of formvar in 50 ml electron microscopy grade 

ethylene dichloride (EMS). Remaining solid after vigorous shaking dissolved 

upon standing overnight. Stock solution was stored in glass stoppered bottles 

in a  desiccator until use.

Working solution was made up freshly as a 0.2% solution by mixing 18 

ml ethylene dichloride with 2 ml stock formvar solution.

1.3 Formvar coating of grids

A clean dry glass slide was dipped into 20 ml 0.2% working strength 

formvar solution in a Coplin jar, removed and drained. When dry, the film was 

cut in situ into suitable sized squares using a  sharp scalpel, and these  squares 

were floated off onto the surface of de-ionized water by carefully submerging at 

a  shallow angle the formvar coated slide. In reflected light, the formvar films 

could be seen  as  pale opalescent squares floating on the surface of the 

de-ionized water. Copper grids were placed (matt side down) on top of the films 

and collected from the water by carefully placing pieces of Whatman No. 1 filter 

paper over the films. Filter papers with adherent formvar films and grids were
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collected and dried.

1.4 Phosphotunastic acid fPTA) negative stain

A 1% (w/v) solution was made by dissolving potassium 

phosphotungstate in 100 ml de-ionized water and the pH was adjusted to 6.7 

using fresh aqueous potassium hydroxide. Any turbidity remaining after 

standing at room temperature for 24 hours was removed by centrifugation at 

10,000 RPM in a  Beckman Microfuge 12. The stain was stored at room 

temperature and used as  required.

1.5 Negative staining procedure

Equal volumes of a  bacterial suspension of approximately 5 x106 cfu/ml 

were mixed with 1% PTA on a  glass slide and a  drop of the resultant mixture 

w as  placed onto a formvar coated grid. The mixture was allowed to remain on 

the grid for about 10-15 seconds before being drained off by touching the edge 

of the grid with a  piece of Whatman No. 1 filter paper. The rate at which the 

bacteria-stain mixture drained from the grid into the filter paper was indicative of 

the  suitability of the preparation. Drops that drained quickly usually contained 

insufficient material.

2 . Embedcing and thin-sectioning

2.1 Grids

EMS 400 mesh copper grids were used in all studies.
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2 .2  Cacodvlate buffer

This was made by adding the appropriate amount of sodium cacodylate 

(EMS) to one liter of de-ionized water to give the following concentrations: 

Sam ples  Concentration

bacteria 0.05 M (supplemented with 10mM M gS04)

tissue 0.10 M

These solutions were adjusted to a pH of 7.2 using hydrochloric acid and stored

at 4 o C until required.

2.3 G.lutaraldehvde

Glutaraldehyde was obtained from EMS as an electron microscopy 

grade 25% (v/v) aqueous solution. The stock solution w as stored in at 4° C and 

working 3% (v/v) solutions were made freshly in cacodylate buffer a s  required.

2.4 Osmium tetroxide

A stock 2% (w/v) solution of OSO4 (Stevens Metallurgic Corporation) was 

made by dissolving the contents of a  ig  ampule in 50 ml cacodylate buffer. 

OSO4 emits a dangerous vapor and was always handled in a  fume hood. The 

solute was completely dissolved after standing overnight at 4° C. The stock 

solution was stored at 4° C in a tightly capped bottle covered with aluminum foil. 

The working 1% solution was made by mixing equal volumes of the stock 2% 

solution and cacodylate buffer.

2.5 Ethanol series

A graded ethanol series was made by mixing appropriate amounts of dry 

absolute ethanol and cacodylate buffer. The 50% and 70%  solutions were 

stored at 4 o C and the 90%. 95% and absolute ethanol solutions were stored at
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room temperature. (Percentages refer to the concentration of ethanol).

2.6 Propylene oxide

This w as obtained from EMS and was supplied ready for use. The 

container was kept tightly stoppered at all times.

2.7 Resin mixture

The resin used in all studies is described in 2.7.1 below. All volumes 

were m easured in disposable 50 ml tri pour beakers from VWR except for 

dibutyl phthalate and DMP-30 which were m easured using one ml disposable 

syringes without needles.

2.7.1 Epon-araldite resin mixtur£

The resin mixture was comprised of the following:

Com ponent Proportion

1) Epon 812 (resin) 5 parts

2) Dodecenyl succinic anhydride (DDSA) 11 parts

3) Araldite (resin) 3 parts

4) Dibutyl phthalate (plasticizer) 0.8 parts

5) Methyl nadic anhydride (DMP 30) (accelerator) 0.4 parts

Components were added to a glass bottle in this order and vigorously shaken 

for 10 min with the exception of DMP 30 which was added just before resin was 

required for use. Complete resin (with DMP-30) was then vigorously shaken for 

an  additional three to five min. This resin mixture was polymerized at 60° C for 

24 h.

1 9 5



2.8 Embedding and thin-sectioning procedure

For bacterial samples, organisms were harvested, fixed in 3% buffered 

glutaraldehyde, washed three times in 0.05 M cacodylate buffer containing 

lOrnM MgSC>4 and pre-embedded in 3% (w/v) Noble agar. Cubes of 1 m m 3  

:hickness were cut and post-fixed in 1% OSO4 in cacodylate buffer for 1 h.

Tissue samples were harvested, rinsed in 0.1 M cacodylate buffer and 

fixed in 3% buffered glutaraldehyde. One mm3 cubes were cut and post-fixed in 

1% OSO4 in cacodylate buffer for 1 h, All samples were rinsed in cacodylate 

buffer three times followed by a dehydration procedure of immersion for five 

min in each of 50%, 70%, 90% and 95% ethanoi in cacodylate buffer. 

Dehydration of samples was completed by two rinses of ten min each  in 

absolute alcohol. Ethanol was removed by pipette and the specimens rinsed 

twice in propylene oxide. Specimens were not allowed to dry during any step of 

this procedure.

Resin infiltration was done by placing the samples in a  2:1 mixture of 

propylene oxide and complete resin for one hour, and this mixture w as then 

replaced by a 1 :2 mixture of propylene oxide and complete resin for an 

additional hour. Specimens were placed in complete resin for one hour after 

which the resin was changed for fresh complete resin which had been 

degassed  for 20 min in a  vacuum desiccator. These remained in the degassed  

resin for one hour, removed and located in embedding molds. The molds were 

filled with d egassed  complete resin. Specimens were manipulated using 

wooden swab sticks sharpened at one end to form a flexible spatula which was 

pre-treated by dipping in degassed  complete resin. These treated spatulas
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were placed at 60° C for one hour prior to use to allow the resin end to dry and 

so as  to prevent the introduction of air bubbles around the specimen. Blocks 

were labelled with hardened paper and polymerized in a 60° C oven for 24 h. 

After removal from the oven, blocks were left at room temperature for two or 

three days to allow complete hardening of the resin prior to their removal from 

the molds. Embedding of samples was completed in one day and was followed 

by a 24 h polymerization, the whole procedure taking approximately 30 h to 

complete. The embedding schedule and times required are summarized in 

Table 1.

Polymerized blocks were placed in the round chuck of a LKB Ultratome III 

ultramicrotome and trimmed mechanically with a glass knife made with an LKB 

knife maker.

When blocks had been appropriately trimmed, ultra thin sections were 

cut using the thermal advance on the ultramicrotome and using a Diatom 

diamond knife filled with clean de-ionized water. The diamond knife edge v. as 

cleaned with a  soft clean pith stick. Sections giving grey or silver interference 

colors (60-90 nm thickness) were chosen. Individual sections and small 

ribbons were picked up on copper grids. Grids were submerged in the boat and 

sections located above them with a  mounted eyelash. Sections were removed 

by lifting the grid out of the water and the grids blotted dry by touching the edge 

to a  piece of filter paper.

Ultrathin sections were stained with 5% aqueous uranyl acetate for 60 

seconds by floating grids, sections downward, on a drop of stain placed on 

parafilm and covered by a  glass petri dish lid. Grids were removed and
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sections washed thoroughly in a running stream  of de-ionized water using 

approximately 15 ml per grid, after which they were blotted and allowed to dry. 

The grids were then held in fine forceps and a  drop of lead citrate placed on 

them for 20 seconds, after which they were washed as before using 

approximately 25 to 30 ml de-ionized water per grid. Grids were blotted and 

allowed to dry a s  before, Stain was removed from the stock bottles using a  fine 

pasteur pipette with the tip located about 5mm below the meniscus. The first 

drop in the pipette was always discarded, thus ensuring minimal stain deposit.

Thin-sectioning was performed under strictly dust free conditions and all 

materials coming into contact with sections, knife or boat water were stringently 

cleaned and rinsed under running de-ionized water. Sections were examined 

and photographed in a  Hitachi H600 electron microscope at 75 kV, using 

various instrumental manipulations.

2.9 Stains for ultra thin sections

2.9.1 Urany! acetate

A 5% (w/v) solution of uranyl acetate w as made by dissolving 1 g in 20 ml 

de-ionized water. The solid was found to dissolve completely upon standing 

overnight at room temperature. The solution w as filtered through a  Whatman 

No. 2 filter paper and stored in a  dark glass-stoppered bottle at room 

temperature.

2.9.2 Lead citrate

One pellet sodium hydroxide was dissoved in 15 ml boiled cooled d e ­

ionized water. This solution was added to 0.1 g lead citrate in a  glass screw- 

capped bottle and dissolved by shaking. A further 10 ml boiled cooled de-
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ionized water was added, and the stain was stored tightly capped at room 

temperature.

3 . Scanning electron microscopy (SEM)

3.1 Hexamethvldisilaxane (HMDS1

This was obtained from Polysciences, Inc. (Warrington, Pa.) and kept 

tightly capped in a fume hood prior to use.

3.2 SEM procedure

Bacterial specimens were fixed in 3% glutaraldehyde in cacodylate 

buffer, washed three times in buffer and dehydrated in 50%, 70%, 90%, and 

absolute ethanol. Samples were then treated with two changes of HMDS and 

applied to specimen stubs with double sided sticky tape. Stubs were coated 

with 20 nm gold/palladium at a  target to specimen distance of 5 cm with a 

current of 15 mA for 4 min. Specimens were viewed in a  Hitachi H600 electron 

microscope in the scanning mode at an accelerating voltage of 40 kV.
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Table 1 . Embedding of specimens for electron microscopy. 

P ro ce d u re  T im e

1) Wash in cacodylate buffer 15 min

2) Fix in 3% glutaraldehyde in cacodylate buffer 30 min

3) Wash in cacodylate buffer (ten changes) 30*40 min

4) Post*fix in 1% OsC>4 1 h

5) Wash in cacodylate buffer 5 min

6) Dehydrate in ethanol series in cacodylate buffer 20 min

7) Complete dehydration in absolute ethanol 40 min
and propylene oxide

8 ) Resin / propylene oxide mixtures 120 min

9) Resin (two changes) 120 min

10) Polymerization 24 h

Total Time Required Approximately 30 h
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Appendix 4

1. Production of polyclonal antisera against L. pneumophila.

1.1 Babbits

White New Zealand rabbits were obtained locally and pre-bled to a ssess  

pre-immunization level of antibodies against L. pneumophila.

1.2 Antigen preparation

Whole cells of L, pneumophila (approximately 1 x 1 09 cfu/ml) were 

formalin fixed in 1% (v/v) formaldehyde (VWR) in PBS and a small volume of 

sterile egg yolk. Prior to immunization of rabbits, 1 ml of this solution was mixed 

with an equal volume of Freund's Incomplete adjuvant (VWR) and 

homogenized in a Sorval Omni Mixer.

1.3 Bleeding procedure

1.3.1 Ear bleed

Samples of blood obtained for antibody titer analysis following 

immunization were drawn aseptically from the central artery of one of the 

rabbit's ears. Vasodilation of this artery was achieved by warming the rabbit's 

e a r  with a 15 watt bulb of a  portable lamp. When the artery w as suitably 

dilated, the e a r  was sw abbed with alcohol and a 21 gauge needle was inserted 

to release approximately 5 ml blood into a sterile test tube. The ear was then 

swabbed again with alcohol and treated appropriately to stop the bleeding.

1.3.2 Cardiac puncture

Once the antibody titer had reached a suitable level following 

immunization, the final volume of blood was collected by cardiac puncture and 

exsanguination of the rabbit. The rabbit was anesthetized with the addition of a
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sodium solution of Nembutal into the peripheral vein of the ear and blood 

drawn through an 18 gauge needle and syringe inserted through the chest 

cavity into the heart. The rabbit was exsanguinated in a humane fashion with a 

final injection of Nembutal into the heart.

Blood obtained from ear bleeds and cardiac puncture was allowed to clot 

overnight at 4o C and the resultant serum decanted for titer analysis or stored 

frozen in 1 ml aliquots at -70° C.

1.4 Antibody titer assay

An indirect immunofluorescence assay (Materials and Methods, Chapter 

Four) was used to measure the titer of sera  drawn from rabbits. Once obtained, 

doubling dilutions of the serum were made in PBS and used immediately in the 

analysis. Formalin fixed whole L pneumophila cells were added to multiple 

spots on glass slides and allowed to dry. Dilutions of the serum were added to 

these a reas  as the primary antibody in an indirect immunofluorescence assay  

and allowed to incubate at 37° C for 1 hour. Three-fold w ashes  were m ade with 

PBS whereupon goat anti-rabbit FITC conjugated serum was added to all spots 

on the glass slide and incubated for 1 hour at 37° C. These were washed three 

times and viewed with an BH-2 Olympus microscope in the 

immunofluorescence mode. Appropriate scores of immunofluorescence for 

each dilution were made and the most diluted spot which gave a  positive score 

selected as  the titer.

1.5 Immunization procedure

Rabbits were pre-bled and analyzed for pre-immunization antibody 

against L. pneumophila. A small area of the rabbits back was clean shaven,
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swabbed with alcohol and the antigen-adjuvant mixture administered into 10 

sub-cutaneous sites with a  21 gauge needle and syringe. These sites were 

swabbed with alcohol again and examined for unusual reactions. The rabbits 

were boosted with a similar antigen mass 2 and 4 weeks later. Antibody titer 

was checked every week during this time.
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