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ABSTRACT

AB INITIO  MOLECULAR ORBITAL INVESTIGATIONS OF 
MOLECULAR STRUCTURES FOR LITHIATED 

HYDROCARBONS

By
Shu-Jun Su 

University of New Hampshire, May 1988

Organolithium compounds are important reagents of widespread 
use in synthetic organic chemistry. Structures of organolithium hy­
drocarbons do not follow classical rules; replacement of a hydrogen by 
lithium in their molecules almost always results in a major change in 
geometry, electronic state, or both. The structures of many of these 
compounds still remain unknown and a subject of controversy.

This study investigated the geometries and electronic states of the 
ground states of dilithioacetylene and dilithiomethane molecules by 
using ab initio molecular orbital calculations. The geometries of both 
the molecules have been fully optimized at both the single determinant 
Hartree-Fock self consistent field (HF SCF) and the multiconfigura­
tion self consistent field (MC SCF) levels with a variety of basis sets. 
Linear and planar bridged forms for dilithioacetylene and tetradedral- 
like, cis planar, and trans planar forms for dilithiomethane were stud­

ied. The electronic states examined were the singlet state for both

xii



molecules and the triplet state for dilithiomethane.
It has been found that the equilibrium geometries, a linear and 

a planar bridged structures for dilithioacetylene molecule, and a cis 

planar and a tetrahedral-like forms for the singlet and triplet states 
of dilithiomethane molecule, are rather sensitive to the choice of the 

basis set at the Hartree-Fock level of theory. Calculations at the MC­
SCF level of throry behave the same way but in smaller active multi 
configuration spaces, and do not seem to depend on the basis set in 
larger active spaces. Both the molecules have a relatively flat po­
tential energy surface and do not exhibit strong preferences for the 
optimized structures. This lack of preference for the optimized struc­

tures is especially true for the MCSCF calculations on the multiplicity 
of the ground state structrues for dilithiomethane molecule.



Introduction

Organolithium compounds are widely employed as synthetic inter­

mediates in preparative organic chemistry[1]. Despite their obvious 

importance, relatively little is known experimently regarding their 

structures[2]. Among other things, the strong tendency of lithium 

compounds to aggregate in the solid, in solution, and in the gas phase 

contributes to the complications of studying the structures and ener­

gies of the isolated monomers experimently. In view of these difficul­

ties, theoretical calculations afford the best source of such information. 

Since the geometries of small and moderately large molecules can be 

routinely calculated with considerable confidence [3-5], it appears that 

high level ab initio calculations should be capable of establishing the 

correct equilibrium structures of various kinds of lithiated hydrocar­

bon species. At the present time, there are about forty lithiohydro- 

carbons, in the sense that the lithium is associated with one or more 

carbon atoms,which have been studied at different levels of quantum 

chemical theory [6-32]. These nonempirical calculations have con­

firmed that lithium is capable of replacing many or all of the hydro­

gen atoms for a wide range of hydrocarbon species to form lithiated 

hydrocarbons, Ĉ HyLi* with more than one lithium, and lithiocarbons, 

C.Li*. Two remarkable findings were made from these studies:

1. Some of these lithiated hydrocarbons may exist in unusual struc-

1



tures that would not be anticipated on the basis of conventional 

structure rules, i.e., the theory of tetrahedral carbon, or the van’t 

Hoff-Le Bel hypothesis[34].

2. Some of these lithium compounds are unusual in having triplet 

ground states.

A number of such unusual structures are illustrated, e.g., those with 

propensities for anti-van’t Hoff geometries (molecules with planar 

tetracoordinate carbon [6,7], etc.), those with ability to bridge two or 

more atoms in vicinal arrangements [14,17,19,20], those with multiple 

bridging involving two or more lithiums [19,20], and those partici­

pating in hypermetallated octet rule-violating stoichiometries [29,30]. 

The original literature provides details.

The exact geometric structures of some lithiated hydrocarbon spe­

cies have long been a subject of some controversy. Particularly, the 

structure of the isolated dilithioacetylene molecule, C2Li2, and the 

ground state configuration of the dilithiomethane molecule, CH2Li2, 

still remain uncertain. In the case of the geometric conformation of 

dilithioacetylene, the theoretical results obtained by various authors 

are quite different [6]. In general, the energetically prefered geome­

try is basis set dependent. At the Hartree-Fock SCF level, Apeloig 

et al. [10] predicted the planar D2h structure to be the lowest in en- 

ergy, while Ritchie [31] found the slightly bent form, C2t. symmetry, 

to be the “true” minimum. Recently, Jaworski et al. [33] investigated 

the C2Li2 molecule up to the Coupled Cluster Configuration Interac­

2



tion level with the 6-311G* basis and concluded that the planar D2fc 

structure is predicted to be the minimum in energy. In the case of 

dilithiomethane, Collins et al. [6] claimed that it is difficult to assign 

the ground state configuration since the several examined geometries 

differ relatively little in energy.

The work reported in this dissertation was focused on the ge­

ometries and energies for both dilithioacetylene and dilithiomethane 

isomers. The theoretical calculations were carried out at the post 

Hartree-Fock as well as the Hartree-Fock ab initio SCF levels. More 

specifically, the investigation was done first at the Hartree-Fock single 

determinant SCF level of theory,then followed by the multiconfigura­

tion SCF ab initio calculations using basis sets of different sophistica­

tion. In addition, Mpller-Plesset (MP) perturbation and configuration 

interaction (Cl) calculations were also performed on the dilithioace­

tylene and dilithiomethane molecules, respectively.
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Chapter 1 

Theoretical Background

All theoretical calculations carried out in this study are based on 

the molecular orbital theory (MO) and can be further classified into 

two main categories. One is the Hartree-Fock self-consistent field 

(SCF) level of theory, which is based on the single determinant de­

scription of the total wavefunction. Within the framework of the 

Hartree-Fock (HF) theory, the restricted Hartree-Fock (RHF), the un­

restricted Hartree-Fock (UHF) and the restricted open-shell Hartree- 

Fock (ROHF) [35-42] methods are used in this research. The second 

category is based on the multideterminant superposition representa­

tion of the total wavefunctions. The multiconfiguration self-consistent 

field (MCSCF) method [43-48] and configuration interaction (Cl) [49- 

52] fall into this category and are also employed in this work. Among 

several approaches of the MCSCF method, the complete active space 

self-consistent field (CASSCF) procedure [53-55] is used throughout 

the entire study reported in this dissertation. For the purpose of co­

herency and understanding, the theoretical methods used in this work 

are outlined briefly in this section.
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1.1 V ariational P rin cip le  and M olecular O rbital 

T heory

Under the Born-Oppenheimer approximation [56], the energy and 
many other properties of a stationary state of an n electron molecule 
can be obtained by solution of the Schrodinger partial differential 
equation

HV = EV  (1.1)

where the nonrelativistic Hamiltonian H  in atomic units is

H  =  -  £  ? V? -  • £  • £  z . / n  +  £  1 /r ,, +  Y ,  (1-2)
i  i  a i< j  a<b

The first term is the electronic kinetic energy operator for the ith  

electron, the second term is the potential energy operator between the 

«th electron and the ath  nucleus (with charge Za), the third term is the 

electron-electron repulsion energy between the ith  and j th  electrons, 

and finally, the last term is the nucleus-nucleus repulsion energy with 

Rab the distance between the ath  and 6th nucleus of respective charges 

and Zfom
Given a normalized wavefunction $  that satisfies the appropriate 

boundary conditions
< | > =  1 (1.3)

the variational principle proves that the expectation value of the 
Hamiltonian value is an upper bound to the exact energy of the quan-
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turn mechanical system in question

< * | £  | *>>£<> (1.4)

Therefore the “best” wavefunction of a given form is the one that 

yields the lowest energy. To find out the “best” wavefunction the 

molecular orbital (MO) approximation has provided a theoretical fra­

mework for such a purpose. The rigorous mathematical treatment of 

the molecular orbital model is the Hartree-Fock approximation.

1.2 H artree-Fock T heory

For closed-shell atoms and molecules the Hartree-Fock theory approx­
imates the wavefunction $  in Eq.(1.4) as a Slater determinant [57]

® =  M  =  (1-5)

in which A is an antisymmetrizing operator for n electrons which guar­

antees that any interchange of the full space and spin coordinates of 

two electrons brings about a sign change in the wavefunction. The 

{fa} are spin orbitals, each of which is a one-electron function: a prod­

uct of a spatial function and a one-electron spin function [a (spin up) 

or 0 (spin down)].

By minimizing the energy resulting from the single determinant 

wavefunction in Eq.(1.5) with respect to the choice of spin orbitals,



one can derive an equation, actually a set of integrodifferential equa­

tions, called the Hartree-Fock equations, which determine the optimal 

spin orbitals. Therefore the Hartree-Fock wavefunction is the best ( 

in the variational sense) wavefunction which can be constructed by 

assigning each electron to a separate orbital, or function, depending 

only on the coordinates of tha t electron.

The solution to the Hartree-Fock equation is conducted in such 

a way that < $ | H | tp > is minimized while the orbitals {&} are

generated until self consistency is reached.
Only for one-electron systems such as the hydrogen atom can the 

Hartree-Fock equations be solved in closed form. However, for many- 
electron atoms the Hartree-Fock equation may be solved to a rather 
high accuracy by numerical integration. For molecules one invariably 
expands the orbitals {&} in terms of a set of analytic basis functions

m
4>i =  T T l > n  (1.6)

where c^ are the molecular orbital coefficients, and the set of atomic 
orbitals is called a basis set. If the set of {x#x} were complete, 
this would be an exact expression. Unfortunately, it is never possible 
to use a mathematically complete set of basis functions in molecular 
calculations of practical nature; thus one truncates the expression to 
m finite number of the basis functions. As such one can obtain ap­
proximate solutions to the Hartree-Fock wavefunction. If the {x^} are 
chosen as the atomic orbitals of the constituent atoms, this is known 
as the linear combination of atomic orbitals (LCAO) approximation. 
From Eq.(1.6), the problem of calculating the Hartree-Fock molecular 
orbitals reduces to the problem of calculating an optimal set of linear 
coefficients ĉ ,. That is, the coefficients are adjusted to minimize the

7



expectation value of the Hamiltonian

E = < V \ H \ V  > /  < V \ 9 > (1.7)

where $  is any single determinant wavefunction. This implies the 
variational equations

dE/dCft, =  0 fo r  all fi (1.8 )

The essential point is that the Hartree-Fock wavefunction is the 

best wavefunction, in the variational sense, which can be constructed 

by assigning each electron to a separate orbital depending only on 

the corrdinates of that electron. The best (lowest energy) single- 

determinant wavefunction constructed within a finite basis set is the 

self-consistent field (SCF) wavefunction. Most of the electronic struc­

ture calculations reported in this work are of the SCF variety.

In practical calculation of Hartree-Fock wavefunctions one must be 

more specific about the spin orbitals {<£,}• There are two types of spin 

orbitals: restricted spin orbitals, which are constrained to have the 

same spatial function for a  and (3 spin functions; and unrestricted 

spin orbitals, which have different spatial functions for each pair of 

ot and (3 spin functions. The solution of the Hartree-Fock equations 

employing restricted spin orbitals yields the restricted Hartree-Fock 

(RHF) wavefunction. For a RHF wavefunction each of the occupied 

spatial molecular orbitals is doubly occupied.

Obviously, not all molecules, nor all states of closed-shell molecules, 

can be described by pairs of electrons in restricted orbitals. In deal-



ing with such open-shell problems, there are two approaches: the 

unrestricted open-shell (UHF) and the restricted open-shell (ROHF) 

procedures. In the UHF formalism, the spin orbitals for a closed-shell 

electron pair are no longer assumed to be equal, and all electrons 

occupy different spatial orbitals. In the ROHF formalism, all elec­

trons, except those that are explicitly required to occupy open-shell 

orbitals, occupy closed-shell orbitals, that is, each pair of a  and /3 

electrons shares the same spatial function.

1.3 M u ltid eterm in an t M O M eth od s

In the Hartree-Fock approximation, the electrons interact among them­

selves only in the presence of an average potential field. The Pauli 

principle keeps electrons with parallel spin (in different orbitals) away 

from each other, but it has nothing to offer to electrons with antipar­

allel spin in the same molecular orbital. That is the major deficiency 

of the Hartree-Fock method which prevents the obtaining of reliable 

results in some aspects of chemical interest. Accounting for details of 

electronic motions beyond the Hartree-Fock level is ususally referred 

to as the electron correlation problem. Many schemes have been de­

vised and employed for that purpose, such as unrestricted and ex­

tended Hartree-Fock methods, multiconfiguration SCF, perturbation

9



theory, and configuration interaction.

1.3.1 Configuration Interaction (C l)

Configuration interaction [58], abbreviated Cl, starts with a single de­
terminant calculation as usual. The molecular orbitals thus obtained 
are used to construct excited states of the appropriate symmetry by 
promoting electrons from ground state orbitals to all virtual orbitals. 
The linear variational method is then applied to find the best possible 
mixing coefficients

=  £  C & { (1.9)
t

where the represent particular assignments of electrons to orbitals

and are called configuration state functions (CSFs), Particularly, the

first term in Eq.(7), $0, is the SCF wavefunction. All of the other are

formed by replacing one, two, ... or all the occupied spin MO’s with

the virtual MO’s. If the summation is over all possible substituted

determinants, it leads to the full configuration interaction method.

The difference between the Hartree-Fock energy with a given basis

set and the full Cl energy with the same basis set is the correlation

energy within the basis.
Since the total number of the CSFs constructed for an n electron 

system in a basis set of N functions is given by

(2iV)!/[n!(2jV — n)!J

as the basis set becomes more complete, that is, as the number of 
basis functions N -> oo, the full Cl method is not practical. Many
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procedures therefore have been designed to limit the length of the Cl 
expansion. The most straightforward way to do so is to truncate the 
series at a given level of electron substitution. Among them, two types 
of truncated Cl are most widely used. One is the double substituted 
Cl, termed Configuration Interaction,Doubles or CID

*cW=c„*„+e e ^ e  e:> ? *s (mo)

in whcih all are constructed by replacing two, and only two, oc­
cupied MO’s with two virtual MO’s at a time; and the other is the 
single and double substituted Cl, termed Configuration Interaction, 
Singles and Doubles or CISD

occ v irt

9c,so = Co*.+ E  E  c,?*“ + E  E “ ' E  E l  Z c $  f1-11)
i a

in which both the single and double substitutions are included.

1.3.2 M ulticonfiguration SCF (M CSCF) M ethod

The mixing of electronic states can also be achieved by considering 
more that one configuration at the SCF level. That leads to the multi­
configuration self-consistent field (MCSCF) method [48]. The central 
idea is that the MCSCF wavefunction is a. truncated Cl expansion

^  MCSCF =  Y1 (1.12)
i

where each of the CSF expansion terms 4>jS is a Slater determinant 

of orthonormal molecular orbitals <&.
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The formal basis of the MCSCF methods lies in the following two 

assumptions:

1. The CSF terms, which depend on the orbitals, determine the 

Hamiltonian matrix elements;

2. The shape of the orbitals then affect the eigenvalues of the Hamil­

tonian matrix expanded in terms of a limited CSF basis.

For a fixed CSF expansion, the shape of the orbitals may be varied, 

thereby producing different approximate energies. A particular choice 

of orbital set that gives the lowest approximate energy, and therefore 

the closest approximation to the exact energy, gives the best wavefunc- 

tion for the given CSF expansion. However, the energy minimization 

with respect to orbitals alone does not guarantee a good agreement 

of the approximate energy with the exact energy. This agreement 

is achieved with a combination of the appropriate choice of CSF ex­

pansion set and of orbital optimization for this chosen expansion set. 

Therefore, minimizing < Wmcscf I H | Vmcscf >, with respect to or­

bital variations and CSF expansion coefficient variations would lead 

to an MCSCF wavefunction which is the best approximate wavefunc- 

tion to the exact wavefunction for the given choice of CSF’s. In other 

words, for a MCSCF wavefunction in Eq. (1.12), both the expan­

sion coefficients C* and the orthonormal orbitals contained in 3>* are 

optimized simultaneously. In other words, in an MCSCF procedure, 

an effective one-particle potential is adjusted until self-consistency is 

obtained for all of the electrons of a molecular system and that is

12



done for a wavefunction that consists of the superposition of several 

electronic configurations, i.e., CSFs.

1.4 T he C A SSC F  M eth od

The complete active space self-consistent field (CASSCF) method 

[53-55] is a special approach to the MCSCF method. It originally 

was developed from a scheme to select CSFs and turns out to be an 

outstanding development for optimizing the variables in an MCSCF 

wavefunction.
A CASSCF study normally starts by defining an orthonorraal molec­

ular orbital space

r) t =  1 ,2 ,  . . . ,m  (1.13)

Normally these molecular orbitals are obtained as expansions in a set 

of atom-centered basis functions, m  being the number of such func­

tions and, in principle, infinite. Then an CASSCF calculation begins 

by dividing the molecular orbital space into three subspaces: the in­

active, the active and the external orbitals. The inactive and active 

subspaces constitute the internal (occupied) orbital subspace, while 

the external orbitals constitute the unoccupied subspace. It should 

be noted that some of the virtual orbitals in a RHF wavefunction are 

included in the active subspace.The configuration state functions 

are then generated from these orbitals in the following way:
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•  The inactive orbitals are doubly occupied in all CSFs, these or­

bitals then have occupation numbers exactly equal to 2;

• The remaining (active) electrons occupy the active orbitals; the 

active orbitals have occupation numbers varying between 0 and

2. Using these electrons and orbitals, a full list of CSFs which 

have the required spin and spatial symmetry is constructed.

The inactive orbitals represent an “SCF sea” in which the ac­

tive electrons move around. By the graphic unitary group approach 

(GUGA) [59], all necessary information about the CSFs and their rel­

ative ordering is contained in a compressed table called the distinct

row table (DRT) [59]. The CASSCF wavefunction is formed as a lin­

ear combination of all these CSFs, constituting a complete expansion 

in the active orbital subspace. That is, once the inactive and active 

orbitals are chosen, the wavefunction is completely specified. The op­

timization step then consists of finding those expansion coefficients in 

Eq.(1.12) and the molecular orbitals that make the energy stationary

with respect to all parameters.
A number of procedures for performing the optimization can be 

found in the literature [60]. In this study, the non-linear Newton- 
Raphson precedure [60-63] was used. It actually solves a linear equa­
tion system

' g(c) \  /  H<ce> H<co> \  ( s \
g<°> j + [ (H ! '^ ) 'h H  j y T J _ 0 1-14̂

where g^  and g<o) are the gradients ( c for the configuration and o for 

the orbital part), H is Hessian matrix, and S and T are parameters
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that constitute a set of variables that can be used to determine the 

stationary point of the energy. Equation (1.12) is solved iteratively 

for S and T until the convergence criteria are fulfilled to the desired 

accuracy.

The strength of the CASSCF method lies in its simplicity. It is a 

pure orbital method in the sense tha t one only has to worry about 

selecting an appropriate inactive and active orbital space in order to 

define the CAS wavefunction.

1.5 M 0ller—P lesse t P ertu rb ation  T heory

The perturbation theory of M0ller-Plesset [64] is an alternative ap­
proach to the correlation problem. This model partitions the Hamil­
tonian as

H x = H 0 +  X V  (1.15)

where H0 (the zeroth-order Hamiltonian) is the Hartree-Fock operator

H 0 =  £ / ( < )  =  J > ( i )  +  „ " (< ) )  (1.16)
i  i

and
X V  = X ( H - H 0) (1.17)

is called the perturbation. Here H  is the correct Hamiltonian and A
is a dimensionless parameter. Clearly H x coincides with H 0 if A =  0,
and with H if A =  1. and E \,  the exact (within a given basis)
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ground state wavefunction and energy for a system described by the 
Hamiltonian Hx, may now be expanded in power of A

=  $ °  +  A +  A2 +  . . .  (1.18)

Ex =  E° +  A E {1) +  A2 E w  +  . . .  (1.19)

Practical correlation methods may now be formulated by setting the

parameter A = 1 and by truncation of the series in Eq.(1.18-1.19) to

various order. Therefore truncation after second order results in MP2 

method, after third order in MP3 and so forth.
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Chapter 2 

D etails o f The C om putations

2.1 T h e M olecular S ystem s

Two groups of lithiated hydrocarbon isomers, six each for dilithioace- 

tylene C2Li2 and dilithiomethane CH2Li2, were computationally studied 

in this work. Figure 1 shows their structures and spatial symmetries. 

1 - 6  are the isomers for C2Li2 in the singlet state, 7 - 9  are the 

starting geometries for CH2Li2 in the singlet and triplet state.

2.2 T h e B asis  Sets

Three types of basis sets: minimal, split-valence and polarization, 

were used throughout the entire work reported in this dissertation.

The minimal basis set used was STO-6G [65-66]. This basis set 

representation for hydrogen, lithium and carbon comprises the follow­

ing atomic functions
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H: Is

Li and C: Is, 2s, 2px, 2py, 2pz

Each atomic function is expanded in terms of six gaussian functions.

In a split-valence basis set [67-69], hydrogen is represented by two 

s-type functions, and lithium and carbon by two complete sets of 

valence s and p functions.

H: Is ’,Is”

Li and C: l s ’,2s’,2p!C’,2pj,’,2p2’,2s” ,2p;n” ,2py”, 2pz”

Here the basis functions comprising the two valence shells are denoted 

’ and ” , respectively. Each basis function is then represented by a 

linear combination of gaussian functions.

The 6-31G split-valence basis set was actually used in this work. 

It comprises inner-shell functions each expressed in terms of a linear 

combination of six gaussians, and the two split valence-shells repre­

sented by three and one gaussians, respectively.

Li and C: Is ’ — 6 gaussians 

2s’ — 3 gaussians 

2s” — 1 gaussian 

2p*’,2pj,’,2pz’ — 3 gaussians each 

2p*’\2 p y”,2p2” — 1 gaussian each 

H : Is ’ — 3 gaussians
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Is” — 1 gaussians

The polarization basis sets used in this work were 6-31G* and 6-31G** 

[70-72]. The 6-31G* basis set is constructed by the addition of a set of 

six d-type gaussian functions to the split-valence 6-31G basis set repre­

sentation for each heavy (non-hydrogen) atom. The d-type functions 

are a single set of 3d primitive gaussians1. For computational conve­

nience, there are “six” 3d functions per atom — 3dxx, 3dyy, 3dzz, 3dxy, 

3dyz, and 3dzx. These six, the Cartesian gaussians, are linear combi­

nations of the usual five 3d functions — 3dxy, 3da2_y2, 3dy2, 3dzx, and 

3dz2 and a 3s function. The 6-31G** basis set is identical to 6-31G* 

except for the addition of a set of three p-type gaussian functions to 

hydrogen atoms. It is obvious that the 6-31G* and 6-31G** basis 

sets are the same for the C2 Li2 system since no hydrogen atoms are 

present.

In addition, the Dunning-Hay (9s 5p)/[3s 2p], abbreviated D95V, 

contracted basis set [73] and the 6-311G split valence basis set and 

the 6-311G* basis were used in parts of this work. The Dunning-Hay 

basis set is a contracted one and uses disjoint subsets of primitives 

so th a t no primitive appears in more than one basis function. In this 

work, the Dunning-Hay D95V basis set used is

H: (4s)/[2s]

C and Li: (9s 5p)/[3s 2p]

1 Primitive gaussians are individual gaussian functions used to construct basis functions
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These descriptions stand for a contraction scheme. For H, it is 

represented by two s-atomic orbitals, each of which is a linear com­

bination of 4 gaussian primitives; for Li and C, the nine primitives of 

s-type symmetry are contracted to three basis functions and the five 

primitives of p-type symmetry are contracted to two basis functions. 

This particular size, (9s 5p), is chosen based on its performance in the 

sense of both the accuracy and the computing time. It is well known 

that for a basis set of size m, the number of two-electron integrals 

which must be computed increases rapidly with the number of func­

tions ( as m4 ). This (9s 5p)/[3s 2p] contraction reduces the number 

of basis functions from 24 to 9, therefore it can save a great deal of 

CPU time almost without any loss of accuracy.

2.3  T h e C om putation al P roced u re

Ab initio Hartree-Fock and MCSCF-CASSCF calculations with and 

without geometry optimization were carried out. All MCSCF calcu­

lations were performed with the GAMESS program [5]. All Hartree- 

Fock single point calculations were done mostly with GAMESS as well 

as GAUSSIAN 82 [4] and GAUSSIAN 86 [74],

For both groups of C2Li2 ,and CH2Li2 ,th e first step  of th e  ca lcu la tio n s  

was to perform RHF (UHF for the tr ip let s ta tes  of CH2Li2) geo m etry  

optimization with STO-6G basis on the standard structures [65, 75-
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76]. For the C2 Li2 group, there are six starting structures with four 

types of symmetries; for the CH2 Li2 group, there are three starting 

structures with two types of symmetries (see Figure 1).

As the next step, for the C2Li2 group, since the six starting struc­

tures were optimized to two symmetries in the first step of calculations 

(one is a linear form and the other is a planar bridged form), ab ini­

tio geometry optimizations were carried out only on the linear and 

planar-bridged forms in the sequence of ascertaining the theoretical 

level; that is, first the Hartree-Fock single determinant optimization 

was performed and this was followed by the multiconfiguration SCF 

geometry optimization; at each level of theory, geometry optimization 

was preceded by using more and more sophisticated basis sets. Within 

the MCSCF method, the inactive subspace was chosen as all of the 

core orbitals only, which is four orbitals, then CASSCF calculations 

were conducted in the order of increasing active subspaces from seven 

, eight, nine, and up to ten active orbitals. That is, with ten valence 

electrons activated for C2Li2 , the active space was changed as follows:

• At first it consisted of seven active orbitals and the wavefunction 

comprised 196 configurations.

•  Then it was changed to eight active orbitals and yielded a wave­

function of 1176 configurations.

•  Next it was increased to nine active orbitals and resulted in a 

5292 configuration wavefunction.
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• Finally, the active space was constituted from ten orbitals and 

led to a wavefunction made with 19404 configurations.

For the group of CHaLi2 isomers, the second step was the same as 

that for the C2Li2 group within the Hartree-Fock level, but a slightly 

different procedure was used at the MCSCF level. The inactive sub­

space was also chosen as all core orbitals which is three, but the size 

of the active subspace did not change at all.The MCSCF calculations 

were performed only on one fixed size of active subspace, that is, an 

eight orbital active space for the singlet sapce and a nine orbital active 

space for the triplet state. With all eight valence electrons participat­

ing, the wavefunction contained 1760 CSF’s for the singlet state and 

7650 CSF’s for the triplet state.

In addition, for the singlet state for the dilithiomethane molecule, 

geometry optimizations of configuration interaction with all single and 

double substitution from the Hartree-Fock determinant, i.e., CISD, 

were also performed with 6-31G* basis set.

Finally, all geometry optimization calculations were carried out in 

such a way that each of them used the geometry obtained from the 

previous optimization at a lower level or with a simpler basis set as its 

input. In other words, a geometry optimized at lower theoretical level 

or wilh a simpler basis set was used as an starting point for the next 

optimization at a higher theoretical level or with a more complicated 

basis set.
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Chapter 3

R esults

Results from this theoretical research are reported in two parts: one 

for the dilithioacetylene C2Li2 structures and the other for the dili- 

thiomethane CH2Li2 structures.

3.1 D  ili t h ioace t y  lene

3.1.1 H artree-F ock  C alcu lations

Geometry optimization at the RHF/ST0-6G level was initially car­

ried out on the six starting structures with the four different sym­

metries shown in Figure 1. The RHF/STO-6G optimized structures 

and energies are presented in Table 1. This shows clearly that the six 

starting structures which belonged to four different symmetry groups 

were optimized to two symmetries, that is, a linear form with 

symmetry, 1, and a planar-bridged form with D2/t symmetry, 2. The 

structures 3, 4 and 6 were together optimized to the symmetry of
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Table 1. R H F/ST0-6G  Optimized Geometries* For C2 Li2

Starting Geometries Optimized Structures

Symmetry R c c  RcLi R titi Symmetry Rcc RcLi BLiLi

Doo h 1.200 1.800 Doofc 1.220 1.810
D2/1 1.200 1.900 D2/, 1.266 1.905 3.590
C2v 1.260 1.250 1.654 D2/1 1.266 1.904 3.590
c 2v 1.200 1.800 D2/l 1.266 1.904 3.590
c 2„ 1.200 1.800 D»ii 1.200 1.810
c 3h 1.200 1.800 D2/1 1.266 1.905 3.590

f Bond length in A  unit
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the structure 2 which is D2h while the structure 5 (trans bent) was 

stretched to a linear symmetry. At this level, the linear form of C2 Li2 , 

1, was found to be less stable than the planar bridged one, 2, by about 

19 kcal/mol. All subsequent calculations were performed only on the 

linear and planar bridged forms of dilithioacetylene.

Geometry optimization with the split valence 6-31G, Dunning-Hay 

contracted (9s 5p)/[3s 2p], 6-311G and polarization 6-31G* basis sets 

were then carried out. Each optimization with a more complicated 

basis employed a structure optimized with a relatively simpler basis 

set as a starting geometry. The RHF optimized energies and struc­

tures with these basis sets are given in Tables 2 and 3, respectively. As 

can be seen from these, the Hartree-Fock relative energies of the lin­

ear C2 Li2 vs. the planar bridged one are basis dependent. In general, 

if the polarization functions are not included in the basis set (using 

all but the minimal STO-6G basis), the linear form is found to 

be more stable than the planar bridged D2/1. However, if d orbitals 

are added, the planar bridged was predicted to be lower in energy. 

However Ritchie [31] found the bent form (C2t) symmetry) to be the 

minimum. Though the bond lengths of C—C and C—Li are shorter 

in the linear C2 Li2 than in the planar bridged form, the differences 

are very small and generally fall in a range of 0.01 to 0.02 A. Com­

paring the Mulliken net charges [76] that are included in Table 4, one 

can see more accumulation of negative charges on the carbon atoms 

in the linear C2 Li2 - The overlap population between carbon atoms
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Table 2. RHF Optimized Energies For C2Li2

Linear Planar Bridged D2h

Basis Energy (a.u.) AE* Energy (a.u.) AE*

STO-6G -90.284786 0.0 -90.316215 19.7
6-31G -90.525607 -9.3 -90.510708 0.0
D95V* -90.539673 -6.5 -90.529369 0.0
6-311G -90.555594 -4.3 -90.548812 0.0
6-31G* -90.550953 0.0 -90.561614 -6.7
6-311G* -90.577568 0.0 -90.587950 -6.5

t AE =  ELintaT -  Eflrirfffed in kcal/mol
*D95V is the Dunning-Hay (9s 5p)/[3s 2p] contracted basis

Table. 3 RHF Optimised Geometries For CjLiz

Linear Dooh Planar Bridged D2J1

R cc (A) Rc£.(A) B-cc(A) Rin£;(A) Rcl»( A)

STO-6G 1.220 1.811 1.270 3.592 1.904
6-31G 1.246 1.892 1.263 3.931 2.064
D95V 1.256 1.903 1.269 3.945 2.072
6-311G 1.241 1.876 1.255 3.865 2.068
6-31G* 1.235 1.900 1.250 3.856 2.068
6-31G** 1.23 1.90 1.25 3.86
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Table 4.1 RHF Mulliken Analyses For Linear CjLij

Net Charge Overlap Population

Basis C Li C—C C—Li

STO-6G -0.10 0.10
6-31G -0.45 0.45
D95V -0.49 0.49 1.44 0.64
6-311G -0.60 0.60 1.86 0.51
6-31G* -0.32 0.32 2.05 0.73
6-311G* -0.48 0.48 1.99 0.66

Table 4.2 RHF Mulliken Analyses For Planar-Bridged CjLij

Net Charge Overlap Population

Basis C Li C—C Li—Li C—Li

STO-6G -0.08 0.08
6-31G -0.40 0.40 0.69 0.12 0.35
b95V -0.45 0.45 1.04 0.07 0.32
6-311G -0.52 0.52 0.47 0.07 0.29
6-31G* -0.22 0.22 1.16 0.08 0.49
6-311G* -0.41 0.41 1.17 0.02 0.40
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and between carbon atom and its adjacent lithium atom in the linear 

C2 Li2 is much larger than that in the planar bridged one. Addition 

of d functions greatly increases the overlap between the carbon atoms 

in the planar bridged form.

3.1.2 M CSCF-CASSCF Results

All RHF/STO-6G, RHF/6-31G and RHF/6-31G* optimized struc­

tures were reoptimized with the same basis sets but at the multi­

configuration self-consistent field , MCSCF, level. Tables 5, 6 and 7 

summarize the MCSCF CASSCF energies, the relative energies ( lin­

ear vs. planar-bridged) and optimized geometries, respectively. Due 

to the fact that the run of MCSCF/STO-6G optimization with 66 

configurations (CSF) for the planar bridged C2 Li2 never converged, 

no results for this are given.

W ith the minimal STO-6G basis, in smaller active spaces,( i.e., 

number of configurations (CSF) equal to 66, 196 and 1176), the planar 

bridged C2 Li2 is lower in energy. The energy difference between the 

linear and bridged forms first increases with the increase in the num­

ber of configurations until the active space with 1176 configurations 

is reached; afterwards the linear structure becomes energy-favorable 

and continues to maintain this position relative to the planar bridged 

structure. W ith the split valence 6-31G basis, the situation is un-
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Table 5.1 MCSCF Optimized Energies For Linear CaLij

Number of Energy (a.u.)

Configurations STO-6G 6-31G 6-31G*

66 -90.367617 -90.598088 -90.615960
196 -90.372332 -90.601748 -90.619279
1176 -90.392039 -90.618247 -90.650644
5292 -90.427832 -90.653415 -90.669064
19404 -90.432160 -90.664512 -

Table 5.2 MCSCF Optimized Energies for Bridged CjLij

Number of Energy (a.u.)

Configurations STO-6G 6-31G 6-31G"

66 -90.385739 -90.624062
196 -90.389202 -90.591434 -90.627029

1176 -90.412267 -90.613190 -90.647245
5292 -90.422174 -90.623972 -90.657453
19404 -90.425363 -90.66

30



Table 6. MCSCF Relative Energies For CjLij

Number of ^ L i n e a r - B r i d g e d

Configurations ST0-6G 6-31G 6-31G"

66 11.4 - 5.1
196 10.6 -6.5 4.9

1176 12.7 -3.2 -2.1
5292 -3.6 -18.5 -7.3
19404 -4.3 -

* in kcal/mol



Table 7. MCSCF Optimized Geometries For CjLij

Number of Linear ^oo/l Planar Bridged

Basis Configurations Rcc (A) Rcti(A) RCC (A) RLiLi(A) Rc£<(A)

66 1.246 1.815 1.284 3.566 1.895
196 1.251 1.811 1.287 3.563 1.894

STO-6G 1176 1.249 1.829 1.283 3.597 1.909
5292 1.262 1.830 1.284 3.622 1.922
19404 1.267 1.827 1.286 3.617 1.919

66 1.265 1.892 - -

196 1.269 1.891 1.286 3.883 2.045
6-31G 1176 1.266 1.905 1.282 3.915 2.060

5292 1.282 1.904 1.283 3.947 2.075
19404 1.282 1.907

66 1.255 1.896 1.270 3.821 2.013
6-31G* 196 1.258 1.895 1.273 3.818 2.012

1176 1.273 1.896 1.270 3.847 2.026
5292 1.270 1.908 1.270 3.873 2.038
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ambiguous: the linear C2 Li2 is always more stable than the planar 

bridged in all sizes of the active subspaces that this research could 

consider. In the polarized 6-31G* basis set optimization, the changes 

in the MCSCF energy repeated the pattern found in the STO-6G 

calculations. That is, the linear form of is still favored in en­

ergy over the planar D2 /* form at larger active subspaces. But with 

the MCSCF/6-31G* geometry optimized in 5292-configuration space, 

the MCSCF/6-31G* calculation without geometry optimization (in 

19404 configuration space) surprisingly showed th a t the energy dif­

ference between the linear and the planar bridged C 2 Li2 decreased to 

0.65 kcal/mol only, with the linear form still lower in energy.

The results of the MCSCF structures optimized in different sub­

spaces are presented in Table 7; one finds that the electron correla­

tion lengthens the C—C bond in the linear C2 H 2 by about 0.02 A but 

makes no difference in the C—C bond of the bridged form. It is also 

seen from Table 7 that the inclusion of electron correlation stretches 

the C—Li distance in both forms of C2 Li2 * However, the addition of d 

orbitals led to shortening of the C—C bond length compared to that 

occurring in STO-6G and 6-31G basis sets.

Tables 8 - 1 0  list the linear combination coefficients,the C, in 

Eq.(7), of the first three most important configurations,in these wave- 

functions. This shows that the contribution from the ground state 

configuration to the wavefunction, Co, is decreased with the increase 

in the size of the active subspace while the coefficients of the excited
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Table 8. The First Three Most Important CSFs in

The M CSCF/STO-6G Wavefunction For CjLij

Number of Linear Planar Bridged

Configurations First Second Third First Second * Third

66 0.97 0.14 0.12 0.97 0.12 0.12
196 0.96 0.15 0.13 0.97 0.12 0.11
1176 0.94 0.15 0.14 0.93 0.25 0.12
5292 0.93 0.18 0.13 0.92 0.26 0.12
19404 0.91 0.22 0.15 0.92 0.26 0.11
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Tabic 9. The First Three Most Important CSFs in

the MCSCF/6-31G Wavefunction For C2 L12

Number of Linear Planar Bridged

Configurations First Second Third First Second Third

66 0.97 0.13 0.11 - - -
196 0.96 0.14 0.12 0,97 0.13 0.12
1176 0.93 0.27 0.12 0.90 0.38 0.11
5292 0.92 0.24 0.11 0.88 0.36 0.11
19404 0.95 0.12 0.12

Table 10. The First Three Most Important CSFs 

in the MCSCF/6-31G* Wavefunction For CjLij

Number of Linear Planar Bridged

Configurations First Second Third First Second Third

66 0.97 0.12 0.11 0.97 0.12 0.11
196 0.97 0.13 0.12 0.97 0.12 0.12
1176 0.92 0.27 0.12 0.95 0.18 0.11
5292 0.93 0.22 0.11 0.93 0.23 0.11
19404* 0.95 0.12 0.11 0.96 0.11 0.10

* using the optimized geometry in 5292 CSF space
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state configurations, especially that of the second most important 

CSF, are increased with the expansion of the active space.

The Mulliken net charges are presented in Tables 11-13. As can be 

seen, electron correlation reduces Mulliken net charges on the carbon 

and lithium atoms in both the linear and bridged C2 Li2 . Moreoever, 

the change in Mulliken net charges in the bridged form of C2 Li2 is 

larger than that in the linear form.

3.1.3 M 0ller-P lesset (M P) Calculations

The M0ller-Plesset perturbation calculations of the second order cor­

rection (MP2), third order (MP3) and fourth order (MP4) with the 

STO-6G, 6-31G and 6-31G* basis sets on the MCSCF optimized ge­

ometries are shown in Tables 14 and 15. With 6-31G split valence 

basis, MP results (MP2, MP3, MP4SDQ, and MP4SDTQ) predict 

the linear form of C2 Li2 to be more stable than the bridged one while 

both MP/STO-6G and MP/6-31G* results reach totally different con­

clusions, viz., the planar bridged one is the minimum in energy. Table 

16 shows the MP relative energies of the linear vs. the bridged forms 

of C2Li2.
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Table 11. M CSCF/ST0-6G Mulliken Net Charges and Dipole Moments

For C2Li2

Number of Linear Bridged D2/,

Net Charge Dipole Moment Net Charge Dipole Moment

CSFs C Li Debye C Li Debye

66 -0.12 0.12 - -0.11 0.11 -
196 -0.12 0.12 -0.11 0.11 -
1176 -0.11 0.11 - -0.08 0.08 -
5292 -0.11 0.11 - -0.08 0.08 -
19404 -0.09 0.09 — -0.07 0.07
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Table 12. MCSCF/6-31G Mulliken Net Charges and Dipole Moments
For C3Li3

Number of Linear Bridged D2h

Net Charge Dipole Moment Net Charge Dipole Moment

CSFs C Li Debye C Li Debye

66 -0.47 0.47
196 -0.47 0.47 - -0.43 0.43 -

1176 -0.43 0.43 - -0.38 0.38 -
5292 -0.43 0.43 - -0.38 0.38 -

19404 -0.42 0.42 — — — —

Table 13. MCSCF/6-31G* Mulliken Net Charges and Dipole Moments
For CjLij

Number of Linear Dog/, Bridged D3h

Net Charge Dipole Moment Net Charge Dipole Moment

CSFs C Li Debye C Li Debye

66 -0.35 0.35 _ -0.27 0.27
196 -0.35 0.35 - -0.27 0.27 -

1176 -0.35 0.35 - -0.23 0.23 -

5292 -0.32 0.32 -0.22 0.22 —
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Table 14. Moller-Plesset Energies For Linear C3Li2

Model Energy (a.u.)

MP2 MP3 MP4DQ MP4SDQ MP4SDTQ

1 -90.467245 -90.455779 -90.463619 -90.464600 -90.472238
2 -90.467867 -90.455904 -90.463869 -90.464847 -90.472622
3 -90.467780 -90.455948 -90.463972 -90.464966 -90.472720
4 -90.469213 -90.455987 -90.464429 -90.465424 -90.473578
5 -90.469579 -90.455878 -90.464446 -90.465438 -90.473726

6 -90.714941 -90.710303 -90.714243 -90.718961 -90.729998
7 -90.716196 -90.710305 -90.715327 -90.719086 -90.730236
8 -90.717460 -90.711608 -90.716632 -90.720400 -90.731566
9 -90.718728 -90.712153 -90.717422 -90.721318 -90.732829
10 -90.718793 -90.711977 -90.717326 -90.721263 -90.732882

11 -90.817547 -90.817413 -90.818307 -90.823507 -90.841890
12 -90.817648 -90.817586 -90.818459 -90.823633 -90.841958
13 -90.817395 -90.816509 -90.817584 -90.822979 -90.841966

I. STO-6G//MCSCF(66 CSFs); 2. STO-6G//MCSCF(196 CSFs);
3. STO-6G//MCSCF(1176 CSFs); 4. STO-6G//MCSCF(5292 CSFs); 
5. STO-6G//MCSCF(19404 CSFs);
0. 6-3lG//MCSCF(66 CSFs); 7. 6-3lG//MCSCF(196 CSFs);
8. 6-3lG//MCSCF(1176 CSFs); 9. 6-3lG//MCSCF(5292 CSFs);
10. 6-31G//MCSCF(19404 CSFs);
II. 6-31G*//MCSCF(196 CSFs); 12. 6-31G*//MCSCF(1176 CSFs); 
13. 6-3lG*//MCSCF(5292 CSFs);
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Table 15. Moller-Plesset Energies For Planar-Bridged CjLia

Model Energy (a.u.)

MP2 MP3 MP4DQ MP4SDQ MP4SDTQ

1 -90.482873 -90.474074 -90.481409 -90.485066 -90.493219
2 -90.486556 -90.477576 -90.485061 -90.488453 -90.496212
3 -90.486334 -90.477583 -90.484954 -90.488358 -90.496113
4 -90.486312 -90.477497 -90.484885 -90.488332 -90.496162
5 -90.486488 -90.477571 -90.485003 -90.488456 -90.496308

6 -90.707642 -90.698047 -90.705017 -90.709181 -90.721030
7 -90.707557 -90.697762 -90.704818 -90.709009 -90.720929
8 -90.709531 -90.700095 -90.706996 -90.711168 -90.723015
0 -90.711046 -90.701598 -90.708500 -90.712701 -90.724604
10 -90.710872 -90.701297 -90.708253 -90.712467 -90.724411

11 -90.832879 -90.833521 -90.834449 -90.839239 -90.857385
12 -90.832647 -90.833446 -90.834302 -90.839059 -90.857123
13 -90.832275 -90.833011 -90.833863 -90.838645 -90.856776

I. ST0-6G//MCSCF(66 CSFs); 2. STO-6G//MCSCF(196 CSFs);
3. ST0-6G//MCSCF(1176 CSFs); 4. STO-6G//MCSCF(5292 CSFs); 
5. STO-6G//MCSCF(19404 CSFs);
8. 6-31G//MCSCF(66 CSFs); 7. 6-31G//MCSCF(196 CSFs);
8. 6-31G/ /MCSCF(1176 CSFs); 0. 6-31G//MCSCF(5292 CSFs);
10. 6-31G//MCSCF(19404 CSFs);
II . 6-3lG*//MCSCF(196 CSFs); 12. 6-31G*//MCSCF(1176 CSFs); 
13. 6-31G*//MCSCF(5292 CSFs);
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Table 16. Moller-Plesset Relative Energies For CjLij

Model L inear—Bridged

MP2 MP3 MP4DQ MP4SDQ MP4SDTQ

1 9.8 11.5 11.2 12.9 13.2
2 11.7 13.6 13.3 14.8 14.8
3 11.6 13.6 13.2 14.7 14.7
4 10.7 13.5 12.8 14.4 14.2
5 10.6 13.6 12.9 14.4 14.2

8 -5.2 -7.7 -6.4 -6.1 -5.6
7 -5.4 -7.9 -6.6 -6.3 -5.8
8 -5.0 -7.2 -6.0 -5.8 -5.4
9 -4.8 -6.6 -5.6 -5.4 -5.2
10 -5.0 -6.7 -5.7 -5.5 -5.3

11 9.6 10.1 10.1 9.9 9.7
12 9.4 10.0 9.9 9.7 9.5
13 9.3 10.4 10.2 9.8 9.3

t in kcal/mol units

I. ST0-6G//MCSCF(66 CSFs); 2. STO-6G//MCSCF(196 CSFs);
3. STO-6G//MCSCF(1176 CSFs); 4. STO-6G//MCSCF(5292 CSFs); 
5. STO-6G//MCSCF(19404 CSFs);
8. 6-3lG//MCSCF(66 CSFs); 7. 6-31G//MCSCF(196 CSFs);
8. 6-3lG//MCSCF(ll76 CSFs); 9. 6-3lG//MCSCF(5292 CSFs);
10. 6-31G//MCSCF(19404 CSFs);
II. 6-31G*//MCSCF(196 CSFs); 12. 6-31G*//MCSCF(1176 CSFs); 
13. 6-31G*//MCSCF(5292 CSFs);
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3.2 D ilith iom eth an e

3.2.1 H artree-F ock  (R H F , U H F , R O H F ) C alcu lations

Starting at the standard geometries 7 -  9 in Figure 1, the Hartree- 

Fock restricted (RHF), unrestricted (UHF) and open shell restricted 

(ROHF) geometry optimization were carried out on each of the three 

forms and led to two different symmetries for each: one is for the sin­

glet state which resulted from the RHF optimization, the other from 

both the UHF and ROHF optimizations.The Hartree-Fock geometry 

optimizations were carried out within the assumed standard geometry 

with STO-6G, 6-31G(but not for UHF), Dunning-Hay (9s 5p)/[4s 2p], 

6-31G* and 6-31G** basis sets.

The Hartree-Fock energies for the geometry optimized CH2Li2 form 

are included in Table 17. The relative Hartree-Fock energies among 

three symmetries, but within the same theoretical model, are listed 

in Table 18. The relative Hartree-Fock energies of the singlet state 

vs. the triplet state within the same symmetry are given in Table 19. 

W ith all basis sets used in this work, the Hartree-Fock energy of the 

tetrahedral CH2Li2 (C2u) is always the lowest while that of the trans- 

planar form is the highest for both the singlet and the triplet states. 

W ithin the same symmetry, the Hartree-Fock energy of the triplet 

state is always lower relative to the singlet except with the minimal
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Table 17. Singlet and Triplet HF Energies For CH2Li2

Energy (a.u.)

Method Tetra Cis-planar Trans-planar

RHF/ST0-6G -53.683524 -53.660360 -53.599967
RHF/6-31G -53.820860 -53.808334 -53.752104
RHF/D95V -53.825441 -53.818013 -53.760191
RHF/6-31G* -53.830163 -53.820650 -53.759979
RHF/6-31G** -53.834654 -53.825404 -53.767306

UHF/STO-6G -53.654154 -53.640889 -53.597938
UHF/6-31G -53.847344 -53.843632 -53.770301
UHF/D95V -53.853047 -53.850712 -53.766440
UHF/6-31G* -53.860654 -53.856875 -53.778837
UHF/6-31G** -53.864283 -53.860691 -53.784728

ROHF/STO-6G -53.701280 -53.686580 -53.593329
ROHF/D95V -53.851045 -53.848727 -53.774497
ROHF/6-31G* -53.857031 -53.853532 -53.776743
ROHF/6-31G** -53.860708 -53.857391 -53.781102

f RHF for singlet
tUHF and ROHF for triplet
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Table 18. Singlet and Triplet HF Relative Energies For CI^Lij

Method Tetra

AEt

Cis-planar Trans-planar

RHF/STO-6G 0.0 14.5 52.4
RHF/6-31G 0.0 7.9 43.1
RHF/D95V 0.0 4.7 40.9
RHF/6-31G* 0.0 6.0 44.0
RHF/6-31G** 0.0 5.8 42.3

UHF/STO-6G 0.0 8.3 35.3
UHF/6-31G 0.0 2.3 48.3
UHF/D95V 0.0 1.4 54.3
UHF/6-31G* 0.0 2.4 51.3
UHF/6-31G** 0.0 2.3 49.9

ROHF/STO-6G 0.0 9.2 67.7
ROHF/D95V 0.0 1.5 48.0
ROHF/6-31G* 0.0 2.2 50.4
ROHF/6-31G** 0.0 2.1 50.0

^within the same method, in kcal/mol unit
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Table 19. Singlet and Triplet HF Relative Energies For CH2Li2 (2)

Method Tetra

AE*

Cis-planar Trans-planar

RHF/ST0-6G 113.4 125.7 115.9
RHF/6-31G 27.2 32.9 20.5
RHF/D95V 24.4 26.9 15.4
RHF/6-31G* 21.4 25.1 15.5
RHF/6-31G** 18.6 22.1 10.9

UHF/ST0-6G 131.9 137.9 117.2
UHF/6-31G 10.6 10.7 9.1
UHF/D95V 7.1 6.3 11.5
UHF/6-31G* 2.3 2.4 3.7
UHF/6-31G** 0.0 0.0 0.0

ROHF/STO-6G 102.3 109.3 120.1
ROHF/D95V 8.3 7.5 6.4
ROHF/6-31G* 4.6 4.6 5.0
ROHF/6-31G** 2.2 2.1 2.3

t within the same symmetry, in kcal/mol unit
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ST0-6G basis. Furthermore, the UHF wavefunction generally yielded 

lower energy than did the corresponding ROHF wavefunction.

The Hartree-Fock optimized geometries for all basis sets are pro­

vided in Tables 20 -  22. It was found that the singlet and triplet 

states do have quite different structures except for the case of the 

trans planar D2 fc CH2Li2 . In the case of the tetrahedral C2 ,, form, the 

bond length of C—Li in the triplet state is longer than that in the 

singlet state by about 0.1 A but the distance of Li—Li in the former is 

shorter than that in the latter by almost 1 A. Accordingly, the bond 

angle of H-C-Li in the triplet state is greater than that in the singlet 

state by around 10 degrees while the Li-C-Li bond angle is smaller 

by a range of 40 to 50 degrees. A similar trend of change in bond 

lengths and bond angles was also found in the cis planar C2v CH2 Li2 

but the Li-C-Li angle is smaller by about 30 degrees. For the case of 

the trans planar D2a CH2 Li2, the bond length of C—Li in the triplet 

state is longer than that in the singlet state by about 0.2 A, and the 

internuclear distance between the two lithium atoms is shorter,- not 

longer as found in the tetrahedral and cis planar CH2Li2 , -  by about
c _

0.4 A. The Mulliken net charges, as well as the dipole moments for 

the three forms of CH2 Li2 , are given in Tables 23 -  25. In all cases 

except for the STO-6G basis set, the carbon atom is always negatively 

charged, and the hydrogen and lithium atoms positively charged. The 

dipole moment for the singlet and triplet states of CH2Li2 with C 21, 

symmetry changed drastically from around 5 Debyes in the singlet to
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Table 20-1. HF Optimized Geometries For CHjLij

(tetra C2u)

Intemuclear Distances (A)

Method C—H C—Li H—H Li—Li H—Li

RHF/STO-6G 1.085 1.921 1.744 3.311 2.475
RHF/6-31G 1.101 1.970 1.789 3.321 2.542
RHF/D95V 1.102 1.983 1.795 3.340 2.552
RHF/6-31G* 1.100 1.974 1.769 3.399 2.533
RHF/6-31G** 1.100 1.972 1.769 3.399 2.531

UHF/STO-6G 1.086 2.032 1.730 3.066 2.657
UHF/6-31G 1.094 2.102 1.767 2.492 2.793
UHF/D95V 1.096 2.128 1.768 2.516 2.820
UHF/6-31G* 1.093 2.107 1.749 2.486 2.800
UHF/6-31G** 1.093 2.107 1.749 2.486 2.803

ROHF/STO-6G 1.085 2.043 1.724 2.292 2.752
ROHF/D95V 1.095 2.127 1.767 2.507 2.820
ROHF/6-31G* 1.092 2.107 1.748 2.485 2.804
ROHF/6-31G** 1.092 2.107 1.748 2.485 2.804
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Table 20.2. HF Optimized Geometries For CH2Li2

(tetra Ca„)

Bond Angles (°)

Method H-C-H H-C-Li Li-C-Li

RHF/STO-6G 106.9 107.4 119.6
RHF/6-31G 108.5 108.4 114.9
RHF/D95V 109.0 110.0 114.8
RHF/6-31G* 107.1 107.4 119.0
RHF/6-31G** 107.2 107.4 119.0

UHF/STO-6G 105.6 113.4 97.9
UHF/6-31G 107.6 118.4 72.7
UHF/D95V 107.6 118.5 72.5
UHF/6-31G* 106.3 118.9 72.3
UHF/6-31G** 106.3 118.9 72.3

ROHF/STO-6G 105.2 120.0 68.3
ROHF/D95V 107.5 118.6 72.2
ROHF/6-31G* 106.3 119.0 72.3
ROHF/6-31G** 106.3 119.1 72.3
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Table 21-1. HF Optimized Geometries For CH2Li2

(cis C2„)

Internuclear Distances (A)

Method C— H C—Li H— H Li— Li H— Li

RHF/STO-6G 1.104 1.737 1.713 2.626 1.890
RHF/6-31G 1.102 1.846 1.725 2.796 1.965
RHF/D95V 1.102 1.857 1.726 2.823 1.971
RHF/6-31G* 1.100 1.837 1.716 2.832 1.940
RHF/6-31G** 1.100 1.835 1.715 2.841 1.934

UHF/STO-6G 1.095 1.972 1.699 2.941 2.099
UHF/6-31G 1.097 2.060 1.737 2.453 2.353
UHF/D95V 1.097 2.085 1.737 2.472 2.381
UHF/6-31G* 1.095 2.058 1.723 2.451 2.359
UHF/6-31G** 1.095 2.058 1.723 2.451 2.359

ROHF/STO-6G 1.092 1.984 1.704 2.241 2.321
ROHF/D95V 1.097 2.082 1.737 2.467 2.375
ROHF/6-31G* 1.094 2.055 1.720 2.444 2.357
ROHF/6-31G** 1.094 2.055 1.720 2.444 2.357
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Table 21_2. HF Optimized Geometries For CH2Li2

(cis C2„)

Bond Angles (°)

Method H-C-H H-C-Li Li-C-Li

RHF/STO-6G 101.7 80.0 98.2
RHF/6-31G 103.0 79.2 98.5
RHF/D95V 103.1 79.0 98.9
RHF/6-31G* 102.5 78.3 100.9
RHF/6-31G** 102.4 78.1 101.4

UHF/STO-6G 101.8 80.9 96.4
UHF/6-31G 104.6 91.1 73.1
UHF/D95V 104.7 91.1 72.7
UHF/6-31G* 103.7 91.6 73.1
UHF/6-31G** 103.6 91.6 73.0

ROHF/STO-6G 102.2 94.5 68.8
ROHF/D95V 104.7 91.5 72.7
ROHF/6-31G* 103.6 91.6 73.0
ROHF/6-31G** 103.6 91.6 73.0
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Table 22. HF Optimized Geometries For CH3Li3 

(trans D3/,)

Intemucle&r Distances (A)

Method C—H C—Li H—H Li—Li H—Li

RHF/ST0-6G 1.067 1.804 2.135 3.608 2.096
RHF/6-31G 1.067 1.943 2.134 3.886 2.217
RHF/D95V 1.069 1.957 2.137 3.914 2.230
RHF/6-31G* 1.065 1.936 2.131 3.872 2.210
RHF/6-31G** 1.064 1.934 2.128 3.868 2.208

UHF/STO-6G 1.069 2.009 2.137 4.019 2.276
UHF/6-31G 1.065 2.118 2.129 4.237 2.371
UHF/D95V 1.067 2.150 2.134 4.300 2.400
UHF/6-31G* 1.063 2.117 2.126 4.235 2.369
UHF/6-31G** 1.064 2.117 2.129 4.234 2.370

ROHF/STO-6G 1.066 2.000 2.132 3.997 2.265
ROHF/D95V 1.065 2.144 2.129 4.288 2.393
ROHF/6-31G* 1.062 2.130 2.124 4.260 2.331
ROHF/6-31G** 1.061 2.105 2.124 4.209 2.357
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Table 23. Mulliken Net Charges and Dipole Moments 

For CHjLij (tetra Ca„)

Net Charge Dipole Moment

Method C H Li (Debye)

RHF/STO-6G -0.20 0.03 0.07 3.3096
RHF/6-31G -0.87 0.10 0.33 5.4244
RHF/D95V -1.13 0.14 0.43 5.6473
RHF/6-31G* -0.77 0.12 0.26 5.1853
RHF/6-31G** -0.65 0.08 0.25 5.1841

UHF/STO-6G -0.20 0.04 0.06 0.2723
UHF/6-31G -0.76 0.13 0.25 1.0678
UHF/D95V -0.90 0.14 0.31 0.9857
UHF/6-31G* -0.68 0.14 0.20 1.0732
UHF/6-31G** -0.58 0.09 0.20 1.0620

ROHF/STO-6G -0.19 0.03 0.07 1.0215
ROHF/D95V -0.90 0.14 0.31 0.9542
ROHF/6-31G* -0.69 0.15 0.20 1.0540
ROHF/6-31G** -0.58 0.09 0.20 1.0432
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Table 24. Mulliken Net Charges and Dipole Moments

For CHjLi3 (cis Cj^)

Method

Net Charge 

C H Li

Dipole Moment 

(Debye)

RHF/STO-6G -0.26 0.04 0.09 1.8201
RHF/6-31G -0.86 0.08 0.35 4.4877
RHF/D95V -0.96 0.13 0.41 5.0556
RHF/6-31G* -0.69 0.13 0.22 4.3164
RHF/6-31G** -0.58 0.07 0.22 4.3015

UHF/ST0-6G -0.22(0.40) 0.04(-0.03) 0.07(0.12) 1.1692
UHF/6-31G -0.76(0.24) 0.10(-0.03) 0.28(0.06) 1.4001
UHF/D95V -0.84(0.23) 0.11(-0.02) 0.31(0.05) 1.2083
UHF/6-31G* -0.68(0.21) 0.14(-0.02) 0.20(0.06) 1.4596
UHF/6-31G** -0.56(0.21) 0.08(-0.02) 0.20(0.06) 1.4430

ROHF/STO-6G
ROHF/D95V
ROHF/6-31G*
ROHF/6-31G**

-0.22(0.04)
-0.84(0.04)
-0.68(0.04)
-0.57(0.04)

0.08(0.00)
0.11(0.00)
0.14(0.00)
0.09(0.00)

0.03(0.13)
0.31(0.06)
0.20(0.06)
0.20(0.06)

1.5512
1.2190
1.4957
1.4847
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Table 25. Mulliken Net Charges and Dipole Moments

For CH2Li2 (trans C2„)

Method

Net Charge 

C H Li

Dipole Moment 

(Debye)

RHF/ST0-6G -0.34 0.15 0.02 0.0000
RHF/6-31G -1.09 0.26 0.29 0.0000
RHF/D95V -1.33 0.28 0.39 0.0000
RHF/6-31G* -0.92 0.27 0.19 0.0000
RHF/6-31G** -0.79 0.23 0.12 0.0000

UHF/ST0-6G -0.29(0.43) 0.14(~0.04) 0.01(0.09) 0.0009
UHF/6-31G -0.94(0.27) 0.27(-0.03) 0.20(0.08) 0.0125
UHF/D95V -1.16(0.25) 0.28(—0.03) 0.29(0.02) 0.0010
UHF/6-31G* -0.85(0.25) 0.28(-0.03) 0.14(0.08) 0.0140
UHF/6-31G** -0.64(0.25) 0.20(-0.03) 0.12(0.09) 0.0001

R0HF/ST0-6G
ROHF/D95V
ROHF/6-31G*
ROHF/6-31G**

-0.30(0.00)
-1.14(0.05)
-0.85(0.03)
-0.72(0.05)

0.14(0.00)
0.30(0.00)
0.28(0.00)
0.24(0.00)

0.01(0.10)
0.27(0.06)
0.20(0.07)
0.13(0.06)

0.0293
0.0635

7
0.0016
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1 to 1.5 Debyes in the triplet state. Due to the T>2h symmetry, the 

trans planar form of CH2 Li2 shows a zero value of the dipole moment 

in both the singlet and triplet state. The total overlap populations in 

Tables 26, 27 and 28 show that the accumulation of charge between 

two lithium atoms increases with the decrease in the Li-C-Li bond 

angle.

3.2.2 M CSCF-CASSCF Calculations

The MCSCF-CASSCF calculations were carried out with three types 

of basis sets: the Dunning-Hay contracted (9s 5p)/[4s 2p], 6-31G* 

and 6-31G**. For all three types of symmetry of the singlet state, the 

complete active space consisted of

• 3 inactive orbitals

• 8 active orbitals

while for the triplet state it was

• 3 inactive orbitals

• 9 active orbitals

For the latter case, the active subspace was constructed in the sense 

of the spin-unrestricted consideration, that is, electrons with different 

spin were assigned to different spatial orbitals.
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Table 26. Mulliken Overlap Analyses For CH2Li2 

(tetra C2w)

Overlap Population

Method C—H C—Li H—H Li—Li H—Li

RHF/STO-6G 0.74 0.66 -0.04 -0.27 -0.05
RHF/6-31G 0.68 0.67 -0.08 -0.29 -0.04
RHF/D95V 0.68 0.66 -0.08 -0.26 -0.04
RHF/6-31G* 0.68 0.74 -0.08 -0.29 -0.04
RHF/6-31G** 0.70 0.74 -0.08 -0.30 -0.04

UHF/STO-6G 0.75 0.43 -0.05 0.00 -0.05
UHF/6-31G 0.70 0.30 -0.08 0.27 -0.02
UHF/D95V 0.67 0.22 -0.07 0.46 -0.03
UHF/6-31G* 0.72 0.38 -0.07 0.28 -0.03
UHF/6-31G** 0.74 0.38 -0.07 0.27 -0.03

ROHF/STO-6G 0.76 0.44 -0.05 0.25 -0.05
ROHF/D95V 0.68 0.22 -0.07 0.46 -0.03
ROHF/6-31G* 0.72 0.38 -0.08 0.25 -0.03
ROHF/6-31G** 0.75 0.38 -0.08 0.24 -0.03
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Table 27. Mulliken Overlap Analyses For CH2Li2

(cis C3„)

Overlap Population

Method C—H C—Li H—H Li—Li H—Li

RHF/STO-6G 0.69 0.61 -0.03 0.30 0.06 -0.09
RHF/6-31G 0.62 0.64 -0.03 0.22 0.01 -0.05
RHF/D95V 0.56 0.67 -0.03 0.17 0.00 -0.08
RHF/6-31G* 0.61 0.77 -0.01 0.27 0.00 -0.09
RHF/6-31G** 0.62 0.77 -0.00 0.27 0.00 -0.08

UHF/STO-6G 0.71 0.41 -0.04 0.10 0.00 -0.07
UHF/6-31G 0.68 0.27 -0.05 0.42 0.00 -0.04
UHF/D95V 0.65 0.21 -0.05 0.45 -0.01 -0.04
UHF/6-31G* 0.67 0.37 -0.04 0.46 0.00 -0.04
UHF/6-31G** 0.65 0.37 -0.04 0.46 0.00 -0.05

ROHF/STO-6G 0.36 0.18 -0.02 0.03 0.00 -0.03
ROHF/D95V 0.66 0.21 -0.05 0.45 0.00 -0.03
ROHF/6-31G* 0.68 0.38 -0.04 0.46 0.00 -0.04
ROHF/6-31G** 0.70 0.38 -0.04 0.46 0.00 -0.04
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Table 28. Mulliken Overlap Analyses For CHjLi2

(trans D3h)

Overlap Population

Method C—H C—Li H—H Li—Li H—Li

RHF/ST0-6G 0.72 0.64 -0.03 -0.44 0.04
RHF/6-31G 0.70 0.64 -0.04 0.00 0.03
RHF/D95V 0.70 0.64 -0.03 -0.05 0.02
RHF/6-31G* 0.66 0.75 -0.04 -0.03 0.04
RHF/6-31G** 0.70 0.74 -0.05 -0.03 0.05

TJHF/STO-6G 0.73 0.41 -0.03 -0.31 0.02
UHF/6-31G 0.71 0.30 -0.02 0.03 0.01
UHF/D95V 0.71 0.23 -0.03 0.13 0.01
UHF/6-31G* 0.69 0.37 -0.03 0.04 0.02
UHF/6-31G** 0.65 0.37 -0.04 0.03 0.02

ROHF/STO-6G 0.65 0.42 -0.03 -0.31 0.02
ROHF/D95V 0.73 0.23 -0.03 0.07 0.00
ROHF/6-31G* 0.71 0.26 -0.03 0.02 0.03
ROHF/6-31G** 0.74 0.38 -0.04 0.04 0.02
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The MCSCF optimized energies are presented in Tables 29 -  30. 

Tables 31 and 32 show the MCSCF optimized geometries. It can be 

seen from these that there is a drastic change in bond angles. For both 

the tetrahedral and cis planar forms, the bond angle of Li-C-Li in the 

triplet state is much smaller than that in the singlet state by more than 

50 degrees while the H-C-Li bond angle in the triplet state is larger 

than that in the singlet state. The latter difference is not very large: 

10 to 13 degrees. In terms of the bond length, lengthening of the C— 

Li and H—Li and shortening of Li—Li is observed in the triplet state 

for both the tetrahedral C2l) and cis planar C2v forms. For the case of 

the trans planar D2fc form, lengthening of the C—Li, H—Li as well as 

Li—Li distances is found in the triplet state. The Mulliken overlap 

population analysis in Table 33 confirms the changes in geometries 

described above. The C—Li and Li—Li overlap population changes 

accordingly. It was found that there is an obvious accumulation of 

positive charge between two lithium atoms in the triplet state for 

the tetrahedral and cis planar CH2Li2. The Mulliken net charge and 

dipole moment are included in Table 34. This shows that the singlet 

state is more polarized than the triplet state.

Tables 35 -  37 provide the coefficients of the first three most im­

portant configurations in each of these wavefunctions. For the case 

of all singlet states, the ground state configuration has the largest co­

efficient and thus is dominant in the MCSCF wavefunction. For the 

case of the triplet states, the contributions to the MCSCF wave
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Table 29. Singlet and Triplet MCSCF Energies For CHjLij

Singlet

Method Tetra Cis-planar Trans-planar

MCSCF/D95V
MCSCF/6-31G*
MCSCF/6-31G**

-53.927323 -53.920768 
-53.930761 -53.921600 
-53.934920 -53.926007

-53.819658
-53.825164
-53.832463

Triplet

Method Tetra Cis-planar trans-planar

MCSCF/D95V
MCSCF/6-31G8
MCSCF/6-31G**

-53.926215 -53.924066 
-53.931691 -53.927742 
-53.934978 -53.931207

-53.842219
-53.845785
-53.849954
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Table 30. MCSCF Relative Energies For Cl^Lis (kcal/mol)

Basis

Singlet Triplet

Tetra Cis Trans Tetra Cis Trans

D95V 0 . 0 4.1 67.6 0.7 2 . 0 53.4
6-1G* 0 . 6 6.3 6 6 . 8 0 . 0 2.5 53.9
6-31G** 0.04 5.6 64.3 0 . 0 2.4 53.3
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Table 31. MCSCF Optimized Geometries For CHjLi2

Internuclear Distances (A)

Symmetry Basis Multiplicity C—H C—Li H—H Li—Li H—Li

D95V Sing. 1.123 2 . 0 2 0 1.839 3.348 2.607
6-31G* Sing. 1.116 2 . 0 1 1 1.813 3.379 2.590

Tetra
6-31G** Sing. 1.115 2.008 1.813 3.375 2.589

D95V Trip. 1.123 2.162 1.808 2.530 2.874
6-31G* Trip. 1.114 2.139 1.785 2.502 2.851
6-31G** Trip. 1.114 2.139 1.783 2.501 2.850

D95V Sing. 1.125 1.887 1.783 2.814 2.014
6-31G* Sing. 1.119 1.871 1.770 2.810 1.976 2.999
6-31G** Sing. 1.118 1.867 1.768 2.825 1.978 2.985

Cis
D95V Trip. 1.125 2.106 1.777 2.485 2.416 3.202
6-31G* Trip. 1.117 2.081 1.758 2.456 2.396 3.171
6-31G** Trip. 1.116 2.082 1.756 2.458 2.395 3.170

D95V Sing. 1.091 1.964 2.182 3.927 2.246
6-31G* Sing. 1.084 1.938 2.168 3.876 2 . 2 2 0

Trans
6-31G** Sing. 1.082 1.933 2.164 3.867 2.216

D95V Trip. 1.089 2.159 2.178 4.410 2.417
6-31G* Trip. 1.084 2 . 1 1 0 2.167 4.314 2.414
6-31G** Trip. 1.081 2.130 2.164 4.260 2.389
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Table 32. MCSCF Optimized Geometries For CH3Li3 (Part 2)

Symmetry Basis Multiplicity H—C—

Bond Angle (°) 

H H—C—Li Li—C—Li

D95V Sing. 109.9 108.8 111.9
6-31G* Sing. 108.8 108.5 114.4

Tetra
6-31G** Sing. 107.3 108.6 114.4

D95V Trip. 107.3 118.6 71.6
6-31G* Trip. 106.4 119.0 71.6
6-31G** Trip. 106.3 119.0 71.6

D95V Sing. 104.9 79.1 96.5
6-31G* Sing. 104.6 79.2 97.4

Cis
6-31G** Sing. 104.5 78.5 98.3

D95V Trip. 104.4 91.7 72.3
6-31G* Trip. 103.9 91.8 72.3
6-31G** Trip. 103.7 91.6 72.4
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Table 33. Mulliken MCSCF Overlap Analyses For CH3Lia

Overlap Population (A)

Symmetry Basis Multiplicity C—H C—Li H—H Li—Li H—Li

D95V Sing. 0.65 0.63 -0.08 -0.32 -0.04
6-31G* Sing. 0.65 0.67 -0.08 -0.33 -0.04

Tetra
6-31G** Sing. 0.67 0.67 -0.08 -0.35 -0.04

D95V Trip. 0.64 0.25 -0.08 0.45 -0.03
6-31G* Trip. 0.67 0.39 -0.08 0.17 -0.03
6-31G** Trip. 0.69 0.39 -0.08 0.16 -0.03

D95V Sing. 0.55 0.65 -0.03 0.25 -0.09 0.00
6-31G* Sing. 0.58 0.71 - 0 . 0 1 0.35 -0.07 0.00

Cis
6-31G** Sing. 0.59 0.71 - 0 . 0 1 0.35 -0.07 0.00

D95V Trip. 0.61 0.25 -0.05 0.47 -0.04-0.01
6-31G* Trip. 0.63 0.40 -0.04 0.48 -0.04 -0.01
6-31G** liip . 0.65 0.40 -0.04 0.48 -0.04 -0.01

D95V Sing. 0.65 0.63 -0.04 -0.13 0.03
6-31G* Sing. 0.62 0.73 -0.05 -0.08 0.04

Trans
6-31G** Sing. 0.65 0.73 -0.05 -0.08 0.05

D95V Trip. 0 . 6 8 0.25 -0.03 0.05 - 0 . 0 1

6-31G* THp. 0.67 0.35 -0.03 0 . 0 0 0 . 0 2

6-31G** Trip. 0.69 0.35 -0.04 0 . 0 1 0 . 0 2
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Table 34. Mulliken MCSCF Net Charges For CH3Li2

Symmetry Basis Multiplicity

Overlap Population (A) 

C H Li

Dipole Moment 

(Debye)

D95V Sing. -0.90 0 . 1 1 0.34 5.2231
6-31G* Sing. -0.59 0 . 1 0 0 . 2 0 4.9348

Tetra
6-31G** Sing. -0.48 0.05 0.19 4.9553

D95V Trip. -0.77 0 .1 1 0.27 0.9344
6-31G* Trip. -0.56 0 .1 1 0.17 1.0447
6-31G** Trip. -0.47 0 . 1 1 0.17 1.0130

D95V Sing. -0.76 0.04 0.34 4.4215
6-31G* Sing. -0.50 0.16 0.09 3.7945

Cis
6-31G** Sing. -0.43 0.05 0.16 3.7887

D95V Trip. -0.72 0.08 0.28 1.2657
6-31G* Trip. -0.56 0 .1 1 0.17 1.5444
6-31G** Trip. -0.46 0.06 0.17 1.5194

D95V Sing. -1.18 0.23 0.34 0.0000
6-31G* Sing. -0.80 0.23 0.17 0.0000

Trans
6-31G** Sing. -0.70 0.18 0.17 0.0000

D95V Trip. -0.96 0.25 0.23 0.0000
6-31G* Trip. -0.73 0.24 0 . 1 2 0.0000
6-31G** Trip. -0.62 0 . 2 0 0 . 1 1 0.0000
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Table 35. The First Three Most Important CSFs 

in the MCSCF Wavefunction For tetra CHjLij

Singlet Triplet

Basis First Second Third First Second Third

D95V 0.96 0 . 1 1 0 . 1 0 0.54 0.54 0.42
6-31G* 0.96 0 . 1 1 0 . 1 0 0.55 0.52 0.45
6-31G** 0.96 0 . 1 1 0 . 1 0 0.54 0.54 0.43

Table 36. The First Three Most Important CSFs

in the MCSCF Wavefunction For cis CHjLi2

Basis

Singlet Triplet

First Second Third First Second Third

D95V 0.96 0.07 0.07 0.78 0.58 0.05
6-31G* 0.96 0.13 0.08 0.76 0.61 0.04
6-31G** 0.96 0 . 1 2 0.08 0.74 0.64 0.04
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Table 37. The First Three Most Important CSFs ex 

in the MCSCF Wavefunction For trans CH2Li2

Basis

Singlet Triplet

First Second Third First Second Third

D95V 0.98 0 . 1 0 0.07 0.91 0.29 0 . 1 1

6-31G* 0.98 0 . 1 0 0.07 0.97 0.07 0.07
6-31G** 0.98 0 . 1 0 0.07 0.98 0.09 0.06
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functions from these three most important configurations -  espe­

cially from the first two in the tetrahedral C21, and the cis planar C2V 

forms -  are rather close. The obvious trend is that the bigger the 

contribution from highly excited states the lower is the energy of the 

MCSCF wavefunction.

3.2.3 CISD Calculations

With all, not just valence, electrons included in a correlation energy, 

CISD/6-31G* geometry optimization calculations show that for the 

three forms of the singlet states of the dilithiomethane molecule the 

tetrahedral-like C21, structure is the lowest in energy, then the cis 

planar C2,, is 4.5 kcal/mol above the former, the trans planar D2/1 form 

again is the most unfavorable in energy, by 45 kcal/mol higher than 

the lowest one.
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Chapter 4

D iscussion

4.1 D ilit  h ioacety len e

4.1.1 Hartree-Fock Structures

The Hartree-Fock optimized (equilibrium) structures for linear C2 Li2 

with all basis sets employed are in close accord. The change in the 

C—C and C—Li bond lengths, if any, does not exceed 0.1 A. For 

the planar bridged structure, the C—C bond length is insensitive to 

the basis set. The Li—Li distance is quite short (3.59 A) with the 

minimal STO-6G basis but much longer (3.95 A) with the Dunning- 

Hay (9s 5p)/[3s 2p] basis. In both forms of C2 Li2, the RHF/6-311G 

equilibrium structures are identical to those obtained with the 6-31G* 

representation.

The Hartree-Fock results suggest that the presence of p and d func­

tions on lithium atoms (unoccupied in the free atom) has little effect 

on the C—C skeleton of the planar bridged structure of dilithoacety-
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lene molecule over the linear form. The C—Li distance in the former, 

[1.904 A with STO-6G and 2.072 A with D95V (Dunning-Hay basis)], 

is significantly longer than that in the linear alternative which is 1.811 

A with STO-6G and 1.903 A with D95V basis.

The Hartree-Fock optimized energies for both the linear and planar 

bridged forms of dilithioacetylene are basis set dependent. The addi­

tion of d functions plays an important role in stabilizing the bridged 

structure of C2 Li2 . The mechanism through which the d functions 

affect the stability of dilithioacetylene molecule might also be the so- 

called “Basis Set Superposition Effect” (BSSE) [77,31]. For the C2 Li2 

molecule, the lithium atom is an electron-deficient element and does 

not contain any 2p electron in the ground state. In the 6-31G* basis 

representation, six d functions are assigned to each of four atoms in­

cluding lithium in addition to 2p functions which are unoccupied in 

lithium atom. Therefore, the 2p electrons of carbon atoms are able 

to “borrow” excess basis functions from lithium. In other words, the 

d functions of lithium atoms could extend into the vicinity of carbon 

atoms. This leads to a lowering of the energy of the C2 Li2 molecule. 

Due to the D2 h symmetry of the planar bridged form, each carbon 

atom is directly interacting with two lithium atoms, not one as in the 

linear form of C2 Li2 - Thus, it is altogether natural that the bridged 

structure would benefit more from extra d functions of lithium than 

does the linear one. In this work, the d function superposition effect 

(DFSE) is examined. Both the planar bridged and linear form of di-
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lithioacetylene are calculated with a modified 6-31G* basis in which 

there are no d  functions assigned to lithium atoms. The energy gain 

due to the d  function superposition effect, AEd f s e ,  Is defined as

A E  =  i? (6 -3 1 C « ) i  — ^ ( 0 - 3 1  G*)2 (4-1)

where is the RHF energy with the conventional 6-31G* basis
set (the RHF/6-31G* energy listed in Table 2), and E^-sig*), is the en­
ergy obtained with the modified 6-31G* basis described above. Table 
38 shows clearly the following result

(A E o F S E ) B r i d g e d  > ( ^ E p F S E ) l i n e a  r ( 4 . 2 )

If A E d f s e  is substracted from the RHF/6-31G* in Table 2, the dif­

ference between the linear and planar bridged form of C2Li2 would be

reduced to 3.7 kcal/mol. The d  function superposition effect (DFSE) 

implies that for an electron-deficient element such as lithium the 

Hartree-Fock calculation with d  function-augmented basis set should 

have this effect taken into account. Accordingly, among other things, 

the RHF geometry for these types of molecules might not be very 

reliable.

4.1.2 M CSCF Structures

Compared with the RHF optimized structures o f  C2Li2 (see Table 3 ) ,  

the multiconfiguration CASSCF geometry optimization generally



Table 38. The d Function Superposition Effect (DFSE)

For C2Li2

Linear Planar Bridged D2h

(6-31G*)i (6-3lG*)a DFSE (6-31G*)i (6-3lG*)a AE£fse

RHF -90.550953 -90.548765 0.7 -90.561614 -90.555682 3.7

1 The conventional 6-31G* basis
2 The 6-31G* basis without the d functions for lithium
3 in kcal/mol
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leads to an increase in the C—C bond length in the range of ca. 

0.2 -  0.5 A  for dilithioacetylene molecules (see Table 7).

The general structure of the electron correlation effect can be de­

duced from Table 39 which shows the occupation numbers of the active 

orbitals in MCSCF wavefunctions. Adding together the occupation 

numbers for each row, which corresponds to an active subspace, gives 

a number very close to 10; the number of the valence electrons in C2 Li2. 

Therefore, an overall description of the MCSCF-CASSCF wavefunc­

tion can hardly be written in terms of doubly-occupied orbitals. It 

can be seen that the increase in the optimized C—C bond lengths of 

the linear structure of C2 Li2 (see Table 7) is accompanied by a de­

crease in the occupation numbers of the 1ttu orbital. That number is 

3.886 in the 196 CFSs space and reduced to 3.867 in the 19404 CFSs 

space with STO-6G basis; it is 3.881 in the 196 CSFs space and is 

reduced to 3.863 in the 19404 CSFs space with 6-31G basis; and it is 

3.894 in the 196 CSFs space reduced to 3.885 in the 5292 CSFs space 

with 6-31G* basis. The l7ru orbital in the linear form of C2 IU2 well 

represents the 7r orbitals between carbons. For the case of the bridged 

C2 Li2 , the C—C bond lengths are not affected basically by the change 

in the occupation numbers in the 4aff and 1&3U orbitals. The electron 

correlation tends to make the C—C bond lengths in the linear C2 LI2 

very close to the counterparts in the planar bridged one; that is es­

pecially true with the 6-31G and 6-31G* basis sets. For those active 

orbitals that correspond to the virtual orbitals in the RHF wave-
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Table 39-1. Occupation Numbers For the Active Space in C al^

(n„ =  7, 196 CSFs)

Bridged 3flj 24ju 26iu 4a„ l& 3u 3iiu 5og

STO-6 G 2 . 0 0 0 1.998 1.992 1.924 1.924 0.080 0.080
6-31G 2 . 0 0 0 1.997 1.991 1.933 1.933 0.073 0.073
6-31G* 2 . 0 0 0 1.997 1.990 1.937 1.937 0.069 0.069

Linear 3 <Tg 3 <7U 4 1 ttu Ittu 4 <ru 5<rfl

STO-6 G 2 . 0 0 0 1.997 1.986 1.943 1.943 0.068 0.064
6-31G 2 . 0 0 0 1.997 1.985 1.941 1.940 0.070 0.066
6-31G* 2 . 0 0 0 1.996 1.986 1.948 1.946 0.065 0.060
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Table 39_2. Occupation Numbers For the Active Space in CjL^

(n„ =  8 , 1176 CSFs)

Bridged 3 dg 2  bju 2  6 ltl 4a, 1̂ 3u 3&iu 5a, 1&30

STO-6 G 1.999 1.991 1.975 1.924 1.924 0.081 0.081 0.026
6-31G 1.999 1.992 1.977 1.935 1.935 0.071 0.071 0 . 0 2 1

6-31G* 1.996 1.991 1.983 1.939 1.939 0.066 0.066 0.018

Linear 3 <Tg 3<ru 4<r, 1 ttu l7Tu 4 eru 5 aa iTTg

STO-6 G 1.999 1.988 1.963 1.943 1.938 0.068 0.068 0.032
6-31G 1.999 1.988 1.964 1.941 1.940 0.070 0.068 0.031
6-31G* 1.999 1.988 1.967 1.947 1.946 0.064 0.061 0.027
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Table 39-3. Occupation Numbers For the Active Space in CjLij

(n„ =  9, 5292 CSFs)

Bridged 3ag 2  b3u 2 &iu 4 ag l& 3u 3&iu 5 a„ l& 3g 1^ 2  g

STO-6 G 1.991 1.980 1.975 1.921 1.921 0.083 0.083 0.025 0 . 0 2 0

6-31G 1.992 1.980 1.977 1.936 1.936 0.069 0.069 0 . 0 2 0 0 . 0 2 0

6-31G* 1.992 1.981 1.978 1.940 1.940 0.065 0.065 0.019 0.019

Linear 3 <Tg 3<ru 4<rg l7T„ 1 ttu 4<ru 5 <Tg I t tb Iff,

STO-6 G 1.998 1.982 1.959 1.937 1.935 0.070 0.070 0.039 0 . 0 1 0

6-31G 1.998 1.982 1.961 1.939 1.933 0.070 0.068 0.037 0 . 0 1 1

6-31G* 1.998 1.983 1.964 1.946 1.939 0.065 0.061 0.033 0 . 0 1 1
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Table 39-4. Occupation Numbers For the Active Space in C2 Li2

(na = 10, 19404 CSFs)

Bridged 3fl g 26ju 25i« 4 ag l&3u 3l»iu hag 1^3 g 1620 2bzu

STO-6 G 1.988 1.976 1.972 1.919 1.912 0.085 0.082 0.031 0 . 0 2 1 0.013
6-31G
6-31G* 1.990 1.977 1.976 1.939 1.931 0.066 0.065 0.023 0 . 0 2 0 0.013

Linear 3 <Tg 3<ru 4ag 1jt„ 1 7 Tu 4tru 5 <Tg ItTg i T T p 27Tu

STO-6 G 1.988 1.981 1.957 1.934 1.933 0.072 0.070 0.039 0 . 0 1 1 0.005
6-31G 1.989 1.977 1.975 1.935 1.928 0.070 0.069 0.025 0 . 0 2 0 0 . 0 1 1

6-31G* 1.995 1.980 1.980 1.946 1.945 0.064 0.058 0.018 0.008 0.006
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functions, the sum of their occupation numbers increases with the 

increase in the size of the active space. The electrons in these “vir­

tual” orbitals also influence the energy of the MCSCF wavefunctions, 

although not in a large and consistent manner. Table 40 shows their 

occupation numbers along with the relative energy in the MCSCF/6- 

31G* wavefunctions. Except for the 19404 CSFs space of the linear 

C2 Li2 the sum of the “virtual” occupation numbers increases with the 

size of the active space, so does the MCSCF optimized energy differ­

ence between the linear and the bridged forms. For the linear C2 Li2 in 

the 19404 CSFs space, the sum of the “virtual” occupation numbers 

was reduced below the corresponding sum in the 5292 CSFs space. 

This reduction may contribute to an almost zero value of the MCSCF 

energy difference.

Table 41 presents the weights of the first three most important 

configurations in the MCSCF-CASSCF wavefunctions for the linear 

and bridged C2 Li2 - Here the weight is given as EC?, where the C 2 are 

the coefficients of configuration functions in a MCSCF wavefunction, 

and the sum is over all CSFs. All of the C*s for the three configurations 

are shown in Table 8. These three CSFs correspond to the ground 

state configurations as follows (the active space only):

•  Linear C2Li2: {lvg)2 (l^u)2 f a g ) 2 f a u)2 f a g)2 (3eru)2

(4<rff)2 (1ttu)4

• Bridged C2Li2: f a g ) 2 (262u)2 (2ag)2 (16lu)2 (3a9)2 (262u)2

(26lu)2(4a,)2 (163u)2
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Table 40. "Virtual” Occupation Numbers in the

MCSCF/6-31G* Wavefunction For CsLia

Numbers Sum of the Occ. Num. L i n e a r - B r id g e d

of CSFs Linear Bridged kcal/mol

196 0.125 0.138 4.9
1176 0.152 0.160 -2 . 1

5292 0.170 0.168 -7.3
19404 0.154 0.187 -0.4
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Table 41. Weights of The First Three Most Important CSFs 

in the MCSCF Wavefunctions For CaLi2

Number of Linear Planar Bridged

Basis Configurations First Second Third First Second Third

6 6 94.1 2 . 0 1.4 94.1 1.4 1.4
196 92.2 2.3 1.7 94.1 1.4 1 . 2

STO-6 G 1176 88.4 2.3 2 . 0 86.5 6.3 1.4
5292 86.5 3.2 1.7 84.6 6 . 8 1.4
19404 82.8 4.8 2.3 84.6 6 . 8 1 . 2

6 6 94.1 1.7 1 . 2

196 92.2 2 . 0 1.4 94.1 1.7 1.4
6-31G 1176 86.5 7.3 1.4 81.0 14.4 1 . 2

5292 84.6 5.8 1 . 2 77.4 13.0 1 . 2

19404 90.1 1.4 1.4

6 6 94.1 1.4 1 . 2 94.1 1.4 1 . 2

196 94.1 1.7 1.4 94.1 1.4 1.4
6-31G* 1176 84.6 7.3 1.4 90.3 3.2 1 . 2

5292 86.5 4.8 1 . 2 86.5 5.3 1 . 2

19404 90.3 1.4 1 . 2 92.2 1.4 1 . 0

t using the optimised geometry in 5292 CSF space
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These are the dominant configurations in all MCSCF wavefunc­

tions for C2 IU2 but their weights are generally reduced with the in­

crease in the number of CSFs, and so are the sum of the weights 

of these three most important configurations except for the MC- 

SCF(19404 CSFs)/6-31G wavefunction. When the active subspace 

changes from 5292 CSFs to 19404 CSFs, the total weights of these con­

figurations in that wavefunction are increased (instead of decreased), 

In particular, the weight of the first one, the ground state configura­

tion, is increased by almost 5 percent while the weight of the second 

one is decreased by about the same amount. This implies a decrease 

of an electron correlation effect in the MCSCF/6-31G wavefunction, 

and might contribute to the observation that the MCSCF relative en­

ergy decreases sharply from 18.5 kcal/mol at the 5292 CSF subspace 

to almost zero at the 19404 CSF subspace. A similar change can be 

found in the MCSCF(19404 CSFs)/6-31G* wavefunction (see Table 

40). It is not clear why increasing the size of the active space actually 

leads to less, not more, energy difference.

RHF/6-31G* and MCSCF(1176 CSF’s)/6-31G* calculations with­

out geometry optimizations were also carried out on several distorted 

planar bridged C2 Li2 molecules, in which the angle of Li—C—C is 

changed and the C—C bond is nolonger kept perpendicular to the 

Li—Li “bond”. Figure 2 shows an energy pathway between the linear 

Do,h and the planar bridged T>2h forms. One can see from this figure 

that there is a quite flat energy pathway. Although the energies for
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these distorted forms were not obtained from optimized structures, 

it is not expected this will alter the qualitative description of the C2 Li2 

energy surface.

4.2  D ilith io m eth a n e

4.2.1 Hartree-Fock Structures

The Hartree-Fock optimized energy differences shown in Table 18 indi­

cate that the tetrahedral C2W structures appear to be energy-favorable 

in both the singlet and triplet states. As illustrated in Table 19 the 

dilithiomethane molecule is predicted to have a triplet ground state 

at all but STO-6G minimal basis set.

The C—Li bond lengths in CH2 Li2 decrease in going from the tetra­

hedral (1.97 -  1.98 A) to the trans planar (1.93 -  1.95 A) to the cis 

planar (1.83 -  1.85 A). For the tetrahedral and cis planar forms of 

the CH2 Li2 molecule, the drastic change in structure occurs in the 

Li-C-Li and H-C-Li bond angles, especially the Li-C-Li angles be­

tween the singlet and triplet states. The difference for the latter is 

more than 40 degrees. Due to the spatial arrangement of the cis pla­

nar form of CH2Li2 (see Figure 3), the cis planar isomer might have 

a “homoaromatic” bonding in the sense that a three-center (Li, C,

83



H
tetrahedral ( Singlet) cis-planar

\  _ - u

/  u

tetrahedral c Triplet) cis-planar

U  C  U

H

trans-planar

Figure 3. Optimized Geometries For CH2 Li2



and Li) 7r bond exists among the two lithium atoms and the central 

carbon. This is revealed by the Li—Li and C—Li Mulliken overlap 

populations shown in Tables 27 and 28. For both triplets an electron is 

removed from a Li-C-Li orbital of 7r type (symmetry bi) and placed 

in a Li—Li a  bonding orbital (symmetry ai). this results in quite 

a reduction of the Li-C-Li angle in both triplets and singlet forms, 

and three-membered rings are formed. The C—Li bond lengthenings 

reflect the removal of an electron from the 7r bonding orbital.

4.2.2 M CSCF Structures

One thing is quite clear in terms of the MCSCF energy (see Table 30): 

since the tetrahedral-like C2„ always has the lowest energy for both the 

singlet and triplet states, therefore the structure of the ground state 

for dilithiomethane molecule must be in the tetrahedral C2V geometry. 

The question remains: what is the multiplicity of the ground state for 

CH2 Li2 , singlet or triplet? The energy differences are either very small 

or not quite consistent in the way they vary. The MCSCF energy for 

the singlet state is lower with the Dunning-IIay (D95V) basis set but 

higher with both 6-31G* and 6-31G** basis sets.

Table 42 presents the occupation numbers for the active orbitals 

in all three forms of dilithiomethane molecules. One can see a similar 

change described previously in the Hartree-Fock structures. The first
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Table 42-1. Occupation Numbers For the Active Space in CHaLi2

Part. 1 (Singlet nB =  8, 1764 CSFs)

Basis 3ai lfci 4ai 2f>2 5ai 3b2 6 0 1 2 bi

Tetra
D95V
6-31G*
6-31G**

1.978
1.979
1.979

1.972
1.974
1.974

1.951
1.955
1.955

1.945
1.950
1.950

0.055
0.050
0.049

0.048
0.044
0.044

0.026
0.024
0.025

0.025
0.024
0.024

Cis
D95V
6-31G*
6-31G**

1.978
1.979
1.979

1.972
1.974
1.974

1.954
1.959
1.959

1.937
1.941
1.942

0.062
0.059
0.058

0.047
0.040
0.040

0.027
0.025
0.025

0.025
0.024
0.024

Basis 3ag 162u 26iu 1 63u 4afl 36i„ 262u 163j

Trans
D95V
6-31G*
6-31G**

1.999
1.999
1.999

1.982
1.983
1.983

1.976
1.975
1.975

1.962
1.965
1.965

0.035
0.031
0.030

0.026
0.026
0.026

0.018
0.017
0.017

0.002
0.005
0.005
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Table 42_2. Occupation Numbers For the Active Space in CH2Li2

Part. 2 (Triplet na =  8, 7650 CSFs)

Basis 3aj l&i 4ai 262 5ai 3 62 26i 6ai la 2

Tetra
D95V
6-31G*
6-31G**

1.978
1.980
1.980

1.972
1.974
1.974

1.970
1.973
1.973

1.001
l.OO'l
1.001

0.990
0.991
0.991

0.027
0.024
0.024

0.027
0.024
0.024

0.023
0.021
0.021

0.012
0.011
0.011

Cis
D95V
6-31G*
6-31G**

1.978
1.980
1.980

1.972
1.975
1.975

1.970
1.974
1.974

1.001
1.001
1.001

0.990
0.991
0.991

0.028
0.024
0.024

0.026
0.024
0.024

0.023
0.021
0.021

0.013
0 .0 1 1

0.011

Basis 3afl 162u 2&iu 1&3U 4a0 36j„ 2&2u l63fl U>2g

Trans
D95V
6-31G*
6-31G**

1.977
1.978
1.979

1.972
1.973
1.973

1.960
1.964
1.965

1.000
1.000
1.000

1.000
1.000
1.000

0.039
0.033
0.033

0.031
0.030
0.030

0.018
0.018
0.017

0.003
0.004
0.005
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most important configurations are:

•  Singlet: (3oi) 2 (l&i) 2 (4ai) 2 (2 b2)2

•  Triplet: (3ai) 2 (l&i) 2 (4ai) 2 (2 6 2 ) 1 (Sai) 1

The weights of the first three most important configurations in­

cluded in Table 43 show that there exist many low-lying triplet con­

figurations in the MCSCF wavefunctions, particularly in the MCSCF 

wavefunctions of the tetrahedral and cis planar CH2 Li2 . This causes 

a lowering in energy for the triplet states.

For both the C2 Li2 and CH2 Li2 molecules, the presence of Li 2p 

atomic orbitals in the MO’s may lead to many excited configurations 

which have relatively small energies ( relative to the ground state ). 

This will have two effects:

1. Such low-lying configurations will make a strong energy contri­

bution to a Cl or MCSCF wavefunction

2. Geometries may not be predicted reliably at the RHF level.

A similar behavior also was found in a related alkali-substituted acety­

lene, viz., for C2 Na2 molecule, the RHF/STO-6 G energy favors the 

planar bridged form over the linear form by about 2 0  kcal/mol.
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Table 43. Weights of First Three Most Important CSFs

in the MCSCF Wavefunction For CH2Lia

Singlet Triplet

Basis First Second Third First Second Third

D95V 92.2 1.2 1.0 29.2 29.2 17.6
Tetra 6-31G* 92.2 1.2 1.0 30.3 27.0 20.3

6-31G** 92.2 1.2 1.0 30.3 27.0 18.5

D95V 92.2 0.5 0.5 60.8 33.6 0.3
Cis 6-31G* 92.2 1.7 0.6 57.8 37.2 0.2

6-31G** 92.2 1.4 0.6 54.8 41.0 0.2

D95V 96.0 0.1 0.05 82.8 8.4 1.2
Trans 6 -3 1 G* 96.0 0.1 0.05 94.1 0.05 0.05

6-31G** 96.0 0.1 0.05 96.0 0.08 0.04
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Chapter 5 

Conclusions

5.1 D ilith io a cety len e

Which structure, linear or planar bridged, is “correct”? Theoretical 

optimized structures refer to isolated species; the most suitable ex­

perimental data involve measurements in dilute gas. In the absence 

of experimental gas phase structural data on the dilithioacetylene 

monomer, this question is hard to answer definitely. Calculations re­

ported in this study reveal a  large dependence of optimized geometries 

and energies on the basis set at the single determinant Hartree-Fock 

level of theory. The linear structure is favored over the planar bridged 

form in larger active multiconfiguration spaces at the MCSCF level. 

It seems reasonable to conclude

1. The dilithioacetylene molecule, C2 Li2 , has a rather flat potential 

energy surface;

2. The calculations do not conclusively favor either the linear or 

planar bridged forms
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3. However, at the MCSCF level with 6-31G* basis, larger active 

configuration spaces appear to favor the linear Doo/i form.

Not long ago, Jaworski et al. published a study of C 2 Li2 [33]. They 

carried out the Hartree-Fock (RHF)theory, Many-Body perturbation 

theory (MBPT) and Coupled Cluster theory (CCT) calculations with 

6-31G*, 6-311G* (contains five d functions), 6-311G* ( without sp 

shell on Li ) and regular 6-311G* ( i.e., six d functions) basis sets. 

Geometry optimizations were carried out at the HF level for both D 2 *. 

and and at the MBPT level for D2/1 and C2„ ( a bent doubly- 

bridged form) but not Qooh- Then higher-order energy corrections 

to the MBPT second-order energies with the regular 6-311G* basis 

were performed only on the D2 &. and C21,. Their HF relative energies 

with 6-31G* and the regular 6-311G* bases are almost identical to 

those reported in this work, which are about 6 - 7  kcal/mol and 

the bridged form is lower in energy. Their MBPT(2)/6-31G*, i.e., 

MP2/6-31G*, calculation found that the C2V form is lower in energy, 

which is in contrast with that calculated in the present work. Their 

higher-order corrections still favor the D2/1. Based on the above, they 

claimed that the planar bridged D2h structure is the configuration 

with absolute minimum in energy. Several remarks are made on their 

work as follows:

1. Their HF SCF results are very close to those from this work,

2. It is very hard to judge their MBPT results because
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•  there is no MBPT energy for the Dooft form provided in their 

work1

• they did not explain why the Doo* form was not included in 

their MBPT treatment

3. Comparing their MBPT(2) and higher-order corrections against 

the MP2, MP3, MP4SDQ, and MP4SDTQ results reported in 

this work, both reach the same conclusion, that is, D2*. is the 

minimum in energy.

4. Due to the nature of the MBPT and CCSD methods used by 

them and the fact that not enough data were provided, their 

conclusion is not convincing and still open to controversy.

MBPT as well as CCSD methods are not variational and the total 

electronic energy obtained using them can be lower than the true en­

ergy since they tend to overestimate the correlation energy, in certain 

cases, as much as 120 %, Therefore, a conclusion drawn solely from 

MBPT or MBPT-like energy is debatable.

5.2 D ilith iom eth an e

All Hartree-Fock (RHF, ROHF, UHF) and MCSCF calculations show 

that the tetrahedral-like C2W form always is the lowest in energy among
1Though Diach et al. show [78] that second-order correlation corrections to the 6-31G*(SCF) 

calculations favors the form by 9.6 kcal/mol.
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the three symmetries of tetrahedral C2 ,,, cis planar C2V and trans pla­

nar D2 ft for both the singlet and triplet states, so does the CISD/6- 

31G* calculations for the singlet state of the CH2 Li2 molecule. There­

fore it is reasonably certain that the dilithiomethane molecule has 

a tetrahedral- like C2ti ground state geometry. However, since this 

molecule does not show very strong preferences for the tetrahedral- 

like structure ( the energy difference between the tetrahedral and cis 

planar forms is very small, only a few kilocarlories per mole), a ques­

tion still remains: if the cis planar is not the ground state structure, 

then what could it be: a transition state?

A conclusive answer to the question of the ground electronic state is 

not possible,but it appears that the ground electronic state is not the 

trans planar Dih- For the cis planar form of CH2 Li2 , the triplet state 

is not much more stable than the singlet state. For the tetrahedral- 

like C2V form, it is difficult to assign the ground state configuration 

of CH2 Li2 even at the MCSCF CASSCF level of theory. The singlet 

and the triplet states are almost indistinguishable in energy.

At this point many basic questions concerning the ground state ge­

ometries and electronic states of dilithioacetylene and dilithiomethane 

remain unresolved. For instance, what is there about the lithium 

atom(s) which leads to such unusual geometries in the molecules in 

which it occurs? Furthermore, final resolution of the questions will 

almost certainly require the use of huge amounts of computer time, 

even if state-of-the-art supercomputers are used. The problem also
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remains: given the required computer time, just wliat theoretical ap­

proach is most likely to provide definitive solutions to the puzzles 

posed by lithiated hydrocarbon molecules?
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APPENDIXES



The Orbital S y m m etry  Assignment For Planar Bridged C2Li2

Basis Occupied Virtual

STO-6G
(AB){B2»)(Blrt)(Ag)
{Ab){B2u){B 1u)(Ab)
(B3u)

( S 1„)(As )(fl3,) (B J„)(fl,u)(B1„)
(J4 ,)(B l,)(B 3l,)(B 1,1)(B 3„)

6-31G

(Ab){B2u)(Ab)(B1u)
(Ab)(B2u)(B1u)(Ab)
(B3u)

(B i u) (4 ,) (B 3„)(B3,,)(B3„)(B3u) 
(B 1„ )(4 ,)(B 3,) ( j1 .)(B 3,) ( B 1„) 
(B3u)(B 3„ )(B ,,)(B 3,)(/1„)(B iu) 
(B 3fl)(,t1,)(B 3,,)(Bll,)(B3l,)(B!,I)
( 4 , ) ( b ,„)(b *,)

6-31G*

(Ab){B2u)(Ab)(B1u)
(Ab)(B2u)(B1v)(Ab)
(S 3u)

(B iu)(j40)(B3b)(B 1c)(B3u)(B1u)
(B a„)(34 .)(B 3,)(A ,)(B 3,) (B lu)
(B3t,)(B 3„)(Bll,)(B3, ) ( 4 r)(B I„)
(A .)(B 1„)(B1,) ( 4 ,) ( B 3„)(B1,)
(B 3„)(B3t,)(A ,)(B 3,) ( 4 , ) ( f l3„)
(■Bi. ) (B .u)(-4,KB3u)(B3,)(B ,„ )
( / l ,) (B 3t,)(B ,„)(B 3„)(B1„)(B3j)
(4 ,) (A u)(B3„ ) ( ^ ) ( B lt )(B3, )
(B 3J (B * .)( ,1 ,)
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The Orbital Symmetry Assignment For Linear C2Li2

Basis Occupied Virtual

( ° ‘u X £rffX7rflX*’flX’ruX 7r«)
STO-6G (<rJ ( ° ‘u ) (<rc ) K )

M
( ^ u X ^ J K X ^ J K )

( <̂ )(« p X * * X " a )( ,ri*X,ru)
( ^ ) ( ° -u ) ( ^ ) ( ir u)

6-31G M

M M M

M M M M
M

6-31G* (A „ X A B) (A u) ( A uX7ruX ^ )
(7rflX7rp)(£rf ) ( ^ X 7ru)(7Tu)

(<rfl)(0’u)(<ru)(AB)(A (F)(7ru)
(7Tu)(Au)(Au)(<rI,)(7rtf)(7rfl)
( ^ ) ( ff( ) ( ^ )
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The Orbital Symmetry Assignment For Tetra C H jL ij (Singlet)

Basis Occupied Virtual

D95V
(AxHAOfBaKAiMBj)
( A i )(B3)

The Electronic State is M i.

(A i )(B2)(A i )(B i )(A3)(B3)(A i ) (B2)(A i ) 
(■41)(5 1)(^ 3 )(5 2)(B2)(A i )(A1) (B i )(B 2) 
(B 1)(A1)(B j )(B 2)(A i )(A i )(B 1)

6-31G*

( A O tA r ^ K A O tB  0  
(* ) (* > )

The Electronic State is M i.

(A1)(B2)(A1)(B l )(A2)(B2) (A ,) (B 2)(A1) 
M 0 (B i )(B 2)(A2)(B2)(A i )(B i ) ( A 1)(B2) 
(A1)(B ,)(A 2)(A 1)(B2)(B1)(A2) (b 2)(a ,) 
(^ JfA iJ tB jJ tA iX B iJfB iJ fA i) (B2)(A i ) 
(A jJM O tBjJCA O tBO M O

6-31G+*

(AOMiHB,) ( * ) ( * ! )

The Electronic State is M i.

(A i )(B2)(A1)(B 1)(A2)(B2)(A1) ( B 2)(A1) 
(-Ai )(B i )(B2)(A2)(B2)(A i )(B i ) (A i )(B 2) 
(A1)(B1)(A2)(A 1)(B2)(B1)(A2) (B2)(A x) 
(B2)(A1)(B2)(B 1)(A ,)(B i )(A1) ( B 2)(A i ) 
(^ 2 ) (^ i ) ( 5 2)(A i )(B i )(B !)(B 2) (A2)(A i ) 
(A i )(B i )(A i )
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The Orbital Symmetries For Cis CHaLia (Singlet)

Basis Occupied Virtual

DH

Mi) Mi) Ma) MO (Ba)
Ml) Ml)

The Electronic State is *Ai.

(>1!) (B 3) Ml) Ma) Ma) Ml) Ml) 
(fl3) Ml) Mi) Ml) Ma) Ma) Ma) 
(A t)  (B 3 ) Ml) Ma) Ml) Ml) Ma) 
Ml) Ma) Ml)

6-31G*

Mi) Mi) M2) Mi) M2 ) 
Ml) Ml)

The Electronic State is 1A i .

Ml) Ma) Ml) Ma) Ma) Mi) MO 
Ma) MO Ml) Ma) Ml) Ma) Ma) 
Ml) Ma) Ml) Ml) Ma) Ml) Ma) 
MO Ma) Ml) Ma) Ma) Mi) (50  
Ma) MO MO MO M2) Ma) MO 
Ma) Ma) Ml) Mi) MO Ma) MO

0-31G**

MO Mi) M2 ) MO Ma) 
MO Mi)

The Electronic State is 1A\ .

(4!) (Ba) MO Ma) Ma) MO MO 
Ma) Mi) Ml) (5a) (50 Ma) Ma) 
MO Ma) MO (50 (5a) Ma) MO 
MO (5a) (SO Ma) (5a) (>10 MO 
Ma) MO MO MO (5a) (5a) MO 
(52) Ma) MO (50 MO Ma) MO 
MO M0 MO MO (5a) (>10
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The Orbital Symmetry Assignment For Trans CH2Li2 (Singlet)

Basis Occupied Virtual

DH

( Ag) ( Bl v ) (Ag) (A g) (A , ) ( B lu) (B 2„ ) (B3g) ( B 2g) (B3„) ( Ag) 
( B3u) (B 1u) (B 3b) (B lu){Ag) (B3g) (B3g) ( B lu) (B3u) (B 3„)

(Ag) (A9) (B lu ) (B 2„) ( B3u) (B3„) ( B l u ) 
( Ag) (Ag) ( B3u)

The Electronic State is 1A g.

0-31G*

(Ag)  (B iu ) (Ag) (Ag) (Ag) (B ,„ )  (B 2„) (B3g) ( B 2g) (B3„) (Ag)  
(B j„ ) (B lu) (B 3„) (Biu)(Ag)  (B3g) (B lu) (B 2a) (B 2„) (B3„)

(Ag) (Ag)  (B 3„) (fllu ) (Big)  (B3g) (B ltl) 
(A„) (B JJf) (Ag)  (B3o) (B 2„) (A9) (B 1u) 
(B3u) (A9) (B 2u) (A9) (B i „) (A9) (B 2„)
(B lu) (B l9) (B 3 j) (B3g) (Ag) (Ag) (Ag)

The Electronic State is 1A S.

6-31G**

(Ag)  (B lu) (A9) (Ag) (Ag) ( B in) (B 2„) (B3g) ( B 3g) (B3„) (Ag)
(B3u)  (B lu) (B3u) (5 i« )(A a ) (B3g) (B lu) (B 2i() (B 2k) (B 3b)

(A9) (Ag)  (B 2„) (B i„) (B i 9) (B3s) (B lu ) 
(Au) (B 2s) (Aa) (B3b) (B 2„) (A9) (B i„) 
(B3u) (A9) (B 2u) (A9) (B i „ ) ( ^ )  (B 2u) 
(B iu ) (B ifl) (B 3ff) (fl29) (A9) (B3„) (B 1b) 
(A9) (B 39) (B ,9) (B 3u) (Ag) (Ag)

The Electronic State is 1Ag.
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The Orbital Symmetry Assignment For Tetra CH3Li3 (Triplet)

Basis Occupied Virtual

Alpha Orbitals
( * , ) ( * ) ( * ) ( * ! ) ( * ! ) (B3 M i)(Ax (A2)(B3)(A x)(B 2) (Ax)(B x)
(Ax)(B2)(Ax) (Ax (A2)(B j (B»)(Al )(Al )(B i) (B a)M i)

(Ax M»)(Ai (Ax)(B,)
DH B eta Orbitals

(Ax)(Ax)(B2)(Ax)(i?i) (B2 (A i)(B i (Ax)(B2)(A2)M x) (b 2)(b 2)
M i) M i (Ax)(Ax (Aa)(Ba)(Ba)(Ai) (Ax)(Bi)

(b 3 M i)(Ax (BaJtAiMAxKBO
The Electronic State is 3B2.
Alpha Orbitals

(B3 M i )(Ax
(Ba)(Aa

(Aa)(Ba)(Ai)(B2) (Ax)(Bx)
(Ax)(Ba)(Ax) (Ax M a)(A i)(A x)M i) (B2)(Ax)

M i (B i )(A2 (Ax)M a)(Ai)(Aa) (B ,)(f la)
(Ax M OM * (B x)(A i)(A i)(A i) (B 3)(A2)
(Ax (B2)(Ax (Bx)(Ax)

6-31G* Beta Orbitals
( B 3 (A i )M x (Ax)(Ba)(Aa)(Ax) (Bz)(Bx)

(Ax) (b 3 (A i )(A x (B2)(A3)(B 2)(A1) (BOM x)
(b 3 (Bi)(Ax (B i)(A 2)(Ax)(B2) (Ax)(A2)
(b 3 (A i )(B2 (B |)(B a)(Bi)(Ax) (Ax)(Ba)
(Ax (Aa)(At (B2)(A i )(B 1)(A1)

The Electronic State is 3Bj.
Alpha Orbitals
M O M xHBj HAxKBx) (b 3 (Bx)(A, (A3)(B3) (A i )(B2) (A i)(B i)
(A x)(B3)(A,) (Ax (B3)(A2 (B2)(A i )(A i )(B») (B3)(A x)

Mi (B i )(A2 (Ax)(B3)(A i )(A2) (Ba)(Ba)
(Ax (B x)(B2 (B O fA O M .JM O  (Ba)(Aa)
(Ax (Bj)(Ax (Bx)(Bx)(Ba)(Aa) (Ax)(Aj)
M i (Ai)

6-31G** Beta Orbitals
(A xHAxKBj KAxK B x) (.b 3 (Ai)(Bx (A i)(B a)(A3)(A i) (B2)(B x)
M x) (b 3 (Ax)(Ai (Ba)(Aa)(fla)(A1) (BjJtAx)

(b 3 M i)(Ax (Bi)(Aa)(Ax)(B2) (A i)(A a)
(b 3 (A i)(«a (B i)(B a)(Bx)(A,) (Ax)(Ax)
( b 3 (Aa)(Ai (B2)(A x)(B i)M i) (Ba)(Aa)
(Ai (Ax)(Bx (Ai)

The Electronic State is 3B2.
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The Orbital Symmetries For Cis CH3Li3 (Triplet)

Basis Occupied Virtual

DH

Alpha Orbitals
(Al )(A I)(Ba)(A1)(Ba)
(AxKBiJfA,)

Beta Orbitals 
(A rJtA iX B jJtA O tB ,)
(Ai)

The Electronic State is 3Bi.

(Ba)(A 1)(B1)(Aa)(Ba)(A 1)(Ba) (A ,)(B r) 
(AI )(A a)(Ba)(Ba)(A 1)(Ba)(A i)(B i)(B a) 
(Ai )(B3)(A i )(A1)(B3)

(A1)(B a)(B1)(A1)(Aa)(B a)(A1) ( B a)(B 1)
(A i)(A 1)(Bi)(Aa)(Ba)(B a)(A1) ( B a)(A 1)
(Ba)(A 1)(B1)(Ba)(A 1)(A 1)(Ba)

6-31G*

Alpha Orbitals
(AOtAOtBaKAOfBa)
(A i)(B i)(A i)

Beta Orbitals 
(ArKAiKBaKAsKB,)
(Ai)

The Electronic State is 3B i.

(Ba)(A 1)(B1)(Aa)(B a)(A 1)(Ba) ( A 1)(B 1) 
(A i)(B a)(Aa)(Ba)(A 1)(Ba)(A1) (B ^ A * )  
(Ba)(B l )(Aa)(A1)(Ba )(Aa)(Ba) (B j)(A i) 
(A1)(B 2)(B,)(A1)(A 1)(B2)(A1) (Ba)(A a) 
(BOtAOfAxMBaKAr)

(A1)(B 2)(B1)(A1)(A2)(B2)(A1) ( B 2)(B 1) 
(A1)(A 1)(B2)(B ,)(A 2)(B2)(A1) ( B 2)(A 1) 
(B i)(A 1)(B2)(Aa)(B 1 )(Ai)(Ba) (A3)(B a) 
(A1)(B 1)(Ai)(B3)(B2)(A 1)(A1) ( B 2)(A 1) 
(Ba)(A a)(Bi)(A l )(A 1)(Ba)(Ai)

Alpha Orbitals
(A1)(A1)(Ba)(A1)(Ba)
(A1)(B 1)(A1)

(B2)(A l )(B1)(A2)(B2)(A 1)(B2) (A1)(B 1) 
(A1)(B a)(Aa)(Ba)(A 1)(Ba)(A1) (B i)(A i) 
(B2)(B 1)(A2)(A1)(B2)(A2)(B2) (B iK A r) 
(A1)(B 3)(Ai)(Ba)(A 1)(B a)(A1) ( B a)(A 2) 
(Bl )(A 1)(Ai)(Ba)(B 3)(B 1)(A3) (A i)(A j) 
(B2)(A i )

6-31G** Beta Orbitals 
(A i)(A 1)(B1)(A1)(Ba)
(A i )

The Electronic State is 3Bi.

(A i)(B 3)(B1)(A1)(A2)(Ba)(A1) (Ba)(B r) 
(Al )(A l )(B2)(Ba)(A2)(B2)(A1) (B2)(A i ) 
(B i)(A 1)(Ba)(Aa)(B 1)(A 1)(Ba)(A * )(B a) 
(A ,)(B 1)(A1)(Ba)(A 1)(Ba)(A1) (Ba)(A 0  
(B1)(A 2)(A j)(B i)(A 1)(B2)(B2) (B i )(A 2)
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The Orbital Symmetry Assignment For Trans CH2 L12 (Triplet)

Basis Occupied

Alpha Orbitals 

( * , . ) ( * „ ) (  A ,)

DH Beta Orbitals
(A t ) (B , . ) (A ,) (A f )
(Ba.) ( B „ )

The Electronic S tate ib 3B 3*.  
Alpha Orbitals 
(At)(2»,.)(A#)(A,)

6-31G* B eta Orbitals
(Af )(A§XBi.)(Af)
(B a .) ( B s .)

The Electronic S tate is 3B j». 
A lpha O rbitals
(Af)(B,.)(At)(A#)
(B*.XBi.)(Ba.)(A*)

6-31G** B eta Orbitals
(At XA,)(B ,.)(A ,)
(*.)(*.)

The Electronic S tate is 3B 3u .

Virtual

(B„.XB*.)(Ba.)(B 3f)(Ba<)(Af)(B ..)
(Af)(Ba-XBa.XBa.)(B,.)(Ba.)M.)
(Aa)(B iu )(B 2u)(B 3u)(B 3u) (B ^ ) (A !>)
(* .)(B i.)

(A t )(B ln )(B 3v)(B 3n)(B 3t)(B l!f)(A r )
(Bi.)(Bs«)(Af)(Ba#)(B*,)(B*-XA-) 
(Bj.)(At)(A,XB,.)(&-)(*-)(*-) 
(B lm) ( A , ) ( A , ) ( B i . )

(B,.XB*-)(Ba,)(B*,)(Ba.)(>»f)(B*.)
(A ,)(B a#)(B»*)(B»,K B..)(Ba.)(A .)
(Af )(BamXB„,XBa#)(Bi.XBar)(B ..)
(A.)(A#)(Ba«XB*-)(^sXBi.)(Ba.)
(AfXBa.)(A,)(Bi.)(AtXB*.)(B»-)
(Bi<XBat)(B»tXA#)(>».X )̂
(B1.)(A ,)(B*,)(Ba,XBi.XB*#)(Ba.)
(Af )(B,.XA ,)(Baf)(Bi .)(B a,)(B j.)
(B ,.)(A ,)(A t )(Ba.X B ..)(B a.X Btt )
(B,.X*-XBs,)(A,)(Ba.)(Ba.)(A.)
(B,.XBa.X^XB*.X^)(Bi.)(^)
(Ba0 (B i .) (B ..) (B a,X B 2,)(A ,)(A 9)
(A.)

(B ,.)(B a.)(B 3f)(Bl t )(Ba.)(A .X B .,)
(A#XBa,)(Bs,XB*s)(B„)(Bs.)(^)
(A#)(Ba.X B i.)(B 3()(B„)(B**)(Bis)
(A.)(Ai )(Ba.)(B a.) (^ ) ( B . .X B a.)
(BamX A .)(A .X B ..)(A f )(B i»)(B lm)
(Blf)(Ba<XBaf)(At)(Ba.)(Bi.X^)
(Baf)(Bl f )(Ba.)(A ,X A .)

(B 1.)(A f )(Ba.) (B af)(Blm)(Ba9)(Ba. )
(At )(B ,.)(A t )(Ba tXBa.XB*<XBS.)
(B i» )(^ fX ^X B a.)(B i.)(B 3 .)(B .,)
(B,.)(A.)(Ba,)(At)(Ba.)(Bi.X>l.)
(B ,.)(B a.)(A .)(B 2.)(A ,) (B ,.) (A a)
(Ba.) (B l.) (B i#XBaf)(BatXA( )(Bam)
(B lm)(Af )(Ba,) (B ,f )(Ba.) (A f )(A9)
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