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ABSTRACT

SOLITARY WAVES AND 
NONLINEAR KLEIN GORDON EQUATIONS

by

Panagiotis A. Papadopoulos 
University of New Hampshire, Hay, 1988

We analytically study kink-antikink (K-K) collisions in the 

classical one spatial dimension and time phi-fourth field theory as an 

example of inelastic collisions between solitary waves. We use the 

linear eigenvalue collective coordinate approach to describe the system 

in terms of the separation distance between the kink and the antikink 

and the amplitude of shape vibrations generated on each kink as a result 

of the collision. By calculating the energy given to the shape 

vibrations as a function of the incoming velocity, we find the critical 

value of the initial velocity above which the two colliding kinks always 

separate after the collision. A model previously proposed to explain 

the two-bounce collisions in terms of a resonant energy exchange between 

the orbital frequency of the bound K-K pair and the frequency of shape 

vibrations is modified using our analytical results. We derive a 

(data-free) formula that predicts the values of the initial velocities 

for which resonance occurs. A generalized version of this modified 

model is shown to give good results when it is applied to K-K collisions 

in other similar field theories. In the Appendices Nonlinear Klein

viii



Gordon equations with solitary (travelling) wave solutions are reviewed 

and solved for particular cases. The solutions are related to soliton 

solutions of the sine-Gordon equation. Also the phi-fourth equation 

perturbed with a constant force and dissipation is solved, and finally, 

we present new kink-bearing integro-differential and nonlinear 

differential equations.



CHAPTER I

INTRODUCTION

Solitary Waves and Soli tons 

When a solution of a nonlinear field equation represents a 

localized wave of permanent form that travels with uniform velocity and 

no distortion in shape, we call it a solitary wave. If these solitary 

waves have in addition the property of retaining their shapes and 

velocities (asymptotically in time) even after collisions, we call them 

soli tons. By the term " localized " we mean that the energy density of 

these solutions at any finite time t is finite in some finite region of 

space and falls to zero at spatial infinity fast enough to be 

integrable. Since there is no distortion in shape as the wave 

propagates, the energy density should also move undistorted with 

constant velocity.

Despite the complexity introduced by the presence of the nonlinear 

terms in the field equations, there are a large number of such nonlinear 

equations or coupled field equations (when several fields are involved), 

which have solitary wave solutions and even soli tons[22].

Understanding some or all solutions of a set of classical 

relativistic nonlinear field equations could help to elevate the 

knowledge to quantum level and enable one to study the vacuum, the 

one-particle states, and other features of the corresponding quantum 

field theory. Solitary waves, as spatially localized nonlinear 

excitations, are found in a variety of natural systems from organic
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polymers to biological structures. Yet, despite the clear importance of 
these solitary waves, their interactions, which describe the dynamical 
properties of the system, are not well understood.

In this work we examine the interactions of solitary waves called 

kinks (K) and their spatial reflections called antikinks (K) in the 
non-integrable two (one space and time) dimensional classical theory. 
Since the major difference between solitons and solitary waves is that 
the latter can collide inelastically, we investigate K-K collision 
processes as an example of the inelastic scattering of solitary waves.

Previous Studies of Kink Collisions

Kink interactions in <p4 via collisions have been studied by 
several previous authors [1,2], numerically and, to some extent, also 
theoretically [2]. The results of numerical simulations [1] showed that 
when two kinks collide the interaction is inelastic and either the kinks 

exit the interaction region with some final velocity less than the 
initial velocity or they form a "bound state" and never separate . That 
demonstrates the fact that a kink is a solitary wave and not a soli ton. 
Whether we have trapping or liberation is determined by the.initial 

velocity. In fact above some value of the initial velocity Uc (the 
critical velocity), we always have inelastic scattering and below that 
value, trapping. The negligible presence of " radiation " in the whole 

process brings up the question of where did the energy go. It is then 
clear that fluctuation modes trapped in the kink were excited during the 
collision. An early theoretical model was given by Sugiyama [2] where a 

collective coordinate is introduced into the KR system, and an Ansatz 

solution, where kinks and their fluctuation modes are linearly
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superposed, is tested. He derives and approximately solves the
equations of motion and estimates the energy given to the internal modes
in terms of the probability to excite these modes from the ground state 
to higher states as result of the collision .

Even if we accept his initial setup of the problem, we find his 
calculations in disagreement with ours. In his effort to solve the 
complicated equations of motion he makes approximations that neglect 
terms essential to the physics of the problem. Also it is not clear how 
the energy of the fluctuation modes can be extracted from the final 

integral expression he derives. Nevertheless, in reference [1] the 
numerical and theoretical results were extended. The authors, looking 
below the critical velocity in narrow velocity ranges, find that it is 
possible for the kinks to even escape from the bound state and become
liberated. That was an unexpected result. In fact, the kinks bounce
back and forth before they are scattered away. As the initial velocity 
is increased (but still less than Uc), trapping and liberation 

alternates, up to the point where the initial velocity reaches the value 
Uc, above which the kinks always scatter inelastically. The 

contribution of radiation is still negligible.

In their attempt to explain the results they observe, they 
attribute the phenomenon to an energy exchange mechanism between the 

moving kinks and their fluctuation modes. A phenomenological model is 
proposed that predicts the observed results with reasonably good 

agreement. Yet, there is no complete theoretical method that leads to 
the numerical results.

It is the purpose of this thesis to examine in detail kink-antikink 

interactions via collisions and offer a theoretical approach that makes 

the comparison of theory to the (numerical) experiment clearer.
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Organization of the Dissertation
We start in Chapter II by introducing theory and the associated 

field equation. We are rescaling fields and coordinates, and the 
resulting field equation, free of parameters, is solved to give the kink 
and antikink solutions. Looking for hidden degrees of freedom we 
perturb the static kink solution around its equilibrium by adding a 

small,time-and space-dependent quantity y(x,t), to the unperturbed 
static kink. Putting this perturbed form of the kink solution in the 
field equation and linearizing in y we solve the resultant field 
equation for y and discuss the physical nature of each solution found 
(fluctuation modes ).

In Chapter III we introduce the collective coordinate approach as a 

possible way of studying kink collisions [3,4,5 ]. According to this
approach you assign a coordinate to each degree of freedom known from
the fluctuation modes and collectively describe the system by means of 
these collective coordinates. This is an approximate method since our 
system actually possesses infinite degrees of freedom, and the linear 
perturbation analysis can reveal only a few. Trying to decide how to 

insert these "collective" coordinates in the system we discuss two 

possible ways: The parametrical collective coordinate (PCC) and the
linear eigenfunction collective coordinate (LECC). In Chapter IV we 
adopt the latter one and extend the approach to include both kink and 
antikink. This form of the solution (with kinks and fluctuation modes 
linearly included), is then used in Chapter IV to describe kink

collisions. Upon using the lagrangian and the (assumed) Ansatz
solution, the equations of motion for the collective coordinates and the 

total energy of the system are derived. Calculating the energy in the 

shape modes as a function of the incoming kink velocity we determine the
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critical value of the initial velocity Uc above which a kink collision 

always ends up with reflection.

Chapter V is devoted to "linking" theory with the results of 

numerical simulations of kink collisions carried out by Campbell

et.al.[l]. We combine the results found in Chapter IV with a modified

version of the model the authors first proposed to explain their own

numerical results. This combination bridges the gap between theory and 

experiment and "liberates" the old model from the parameters Campbell 

had introduced in the model (determined from the data) and offers a 

better explanation of quantities not well understood before. As a final 

check we generalize our modified model and apply it to the Double 

Sine-Gordon and Modified Sine-Gordon field equations with success. We

conclude in Chapter VI with some remarks on the approximations made and 

procedure followed, and we end with some suggestions and directions for 

future work.

In the Appendices we list all the calculations made and the results 

of the integrations used.The general nonlinear Klein Gordon equation is 

studied for solitary (travelling) wave solutions which we relate through 

a transformation to the sine Gordon soliton solutions.We also give a 

parametric potential reducible to < p *  t cp , <f>* potentials for special
u

values of the parameter and the perturbed $  equation with dissipation 

and constant force term is solved. Finally we present new types of 

integrodifferential equations and differential equations which have kink 

type solitary solutions.



CHAPTER II

THE CLASSICAL PHI-FOURTH MODEL

Definition of the Model 

In what follows we will be working with the two-dimensional field 
theory described by the lagrangian density

(2-1) <L - T ( *  +}' * T  i A - i  $

^  , -A being positive parameters.
The resulting field equation from (2.1) is given by

(2.2) <j>tt - 4>„x * ««*' - * 4

Rescaling fields and coordinates (see Appendix A) we can eliminate the 
parameters and the field equation takes the final form

(2.3) - 4>XJ< „ 4> - T

with conserved total energy

< 2 . 4 ,  E "  S  ^- C O
Higher dimensional versions of this theory play a central role in 

the models of the spontaneous symmetry breakdown required in the unified 

theories of the electromagnetic and weak interactions [40-41]. The 
field equation (2.3) has static solution
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(2.5) cjp = + - t a n k  * ~ X g
\!z

Xo=constant
the solution with the positive sign plotted in fig.l will be called the 

kink (K) and the one with the negative sign the antikink (K).

Fig.l

* x

Note that a change in Xo merely shifts the solution in space. This is 
just a reflection of the translational invariance of the field equation. 

The other symmetries of the lagrangian under X -X and separately 
under are reflected in the relations which take on a
particularly simple form when Xo is chosen equal to zero.

(2.6)

The solitary wave properties of the solution can be seen by 
plotting the energy density (fig.2)

£ (x) - x  ( cb + j. ( 4>l- ,-j2 = x  sech x-Xo(2.7) * \ * 2 K M ^  2 yj-
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is clearly localized near Xo, and it resembles a " lump " of matter 
in the sense that is a static self-supporting localized packet of 
energy.

fig. 2

Given the static solution : since the system is Lorentz invariant 
and is a scalar field one needs only to transform the coordinate

variables to obtain a moving kink solution. This gives

(2.8) <£>(*,+ ) -tan ti x  -  X o  -  u - f c  
)/2 ( 1 - V*)

(2.9)

(where \u\ << 1 )

and corresponding energy density

€ ( x . O  * 1/2(1- u*) sech x- X o -
Vzo-u'T
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Notice that as a result of the motion the " lump " of matter has been 
squeezed in width; consequently, its amplitude has been increased. We 
can also see the particle-like behavior of the kink from the total 
energy expression

(2. 10)  E  5  d x  [  5* -  *  f  ^  ] =
-  CO

If we define the "mass" M of the kink to be the total static energy 
of the kink

CD

(2.11) M * Estacic = 5  Jx [ ^ /Z "
- CD

then £  = At />/l "bl

This is the same as the Einstein mass-energy equation for a particle. 
Therefore it is clear why in the quantum version of this theory the kink 
solution behaves like a particle state [22].
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Fluctuation Modes
In order to study how the kinks interact with each other in a 

collision it is important to know how a free static kink will react to a 
small perturbation in space and time. The kink, for instance, could 
absorb the disturbance and translate by a small quantity or could 
vibrate or emit "phonons". In order to study this, we place a static 
kink at the origin and add a small perturbation quantity y(x,t). Ve 
assume that the kink is able to absorb y(x,t) so that

(2 .12)

( kink solution )
is still a solution of equation. Substituting this in the full
equation

we find that y(x,t) must satisfy the equation

y
(2.13)

Since y(x,t) is assumed to be small, y(x,t) <  1, the nonlinear terms
in y can be neglected. This simplifies the equation to
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(2.14)
XX y C i - 3 -tomb -* )

Looking for y in the form

l W-fc

(2.15) y ( x.+ ) = « y f  *)

we finally end up with the eigenvalue problem

(2.16) Cx) + - 3 -IrCLnh JL j V s °

i k x
For IXI ** oo , y describes plane waves y  °* ^

2 2providing oj £ CU# - 2 % 2 and c» = X ♦ 2.

± K X

or
yen') oc €

X - *  +  C O
2 - 1 2  

GJ + X s Hproviding icu <r a

We are seeking solutions y(x) in the form

(2.17) y<*>
- KXe fo«>

Expand €(*) in terms of and its first derivative;
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-f(*) s a, -+anh + a, sechx. + a0
Vz * \fi

< i ,- a, -fcctnn _x_ + a. -tcxnhjL + a„
V T  a vT

= /\i ( c tanh Jl. + -tan/i x. + ca )̂
V \/T \{z /

We try the solution

- K X  z

yCx'i r N  e [c, t a n h J L  i a n h £  +
(2.18) y/z \/z J

(Where N is normalization constant.)

We put into (2.16), equate terms, and we get the relations

c. = \ f l  K

The solution then reads

- K X

2 2 2
Cj «. «  = C0o r Z

(2.19)

wfx) = € AJ F-tanhji +\/z K 4ocnhk  + 1
<• v7 V? 3 J



This solution describes bound states 

I 2 IVI th K  t OJ - ^ and W  * 2,

For I X I — *-oo the solution is finite.

for X — 00 if the solution is finite, we must have

-fcanb-*. + VT k  ± a  n h - £ + * —  I — *
L v/z 'fi 3 J

Then

J" I _  v T  K .  +  2  K  -  > J
3 - 1  - 3V/^ < * ^ °

■c;n/zT 

/V^T

Therefore, there are two discrete bound states

-vr*
N T -tcxnt  _na  vr

(2.20) yCx) s € N £-to.nh*. + 2-tanhx. + 1

with eigenvalue O  and N  m ^  3/4
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(2.21) and k , I1 , i N
y  C * ) = N 2 (  t a n h x A F  + - ( a r t h x / f t )

with eigenvalue Cl) = f3/2) ^  and N  -  \ J 3 / 2 V T

co

y(*) is normalized as i y ^ d x - i
—  BO

2 2For the radiation modes ( W  > W. : 3 ), K is imaginary

and the solution gives

m ticx r i i* ^.yOO = _Qi e I 3 ianhjL - iie - i
3 I V T(2.22)

' 3 »\/T 4an/i jc T
VS" J

a a Z 
with CO " K  + 0Jo (i)# = V 2

Normalizing as
CD

S dx _£<*) yK»  x S c k - k ')
- Co

( j - ) 2  = 4TT [ * ( < * > ?  *

(for a different approach see Appendix B)
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Comments on the Fluctuation Modes

1. With C0 = 0 and

3 -\fz X 2
y C * }  - \ji^\fx € ( i a n l i ^ L  + m

can be written after some simple algebra, as

y r x - >  * s e c h ^ .  3 ^
V 2

where Ĉ> C »< } is the static kink solution

In terms of the initial assumed solution

1) = 4> (*y * y(x,±y

<fe( x 5  * t x fx) 

4> c * - p c  f

S kT - - C 3 / 2.VT y u

■£ank_x. } 
Vz

4> o >' o x

Thus the first type of small oscillation y(x) expresses the possibility 

that the kink will absorb a disturbance by translating its center of 

mass by a small amount r - ( 3 / 2  J ,/x
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without expending energy ( co = o), since the energy of the kink, as we 
have seen depends only on its velocity and not on its position. This 

result is expected since is translationally invariant in space
and an expansion around the kink gives a mode with 60 =0 , (known as the 

"Goldstone mode" in solid state and particle Physics), as a result of 

breaking the translational symmetry of the equation by placing the kink
at a definite location. In other words, having

= -tcxtn/i ( x  - X o ) / / 2

is equivalent to having

~ -ianh JL + y  ̂ x)

2. The second type of disturbance, with cv: ( 3 / 2 ) ^

i* \/57i { . z
VC*,*) = e € ( ianh JL * ianU ;
J  y x  vz U r x

Again we can rewrite ^  C x ? as

1  ̂ rxr i j= e *anhv|: s

This corresponds to a small disturbance of the kink and since it travels 
with the kink (recall that corresponds to a bound state), it can be 
thought of as a shape oscillation.
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3. The last type of fluctuation corresponds to the case where
the kink decays by emitting radiation. This kind of disturbance

2 iinvolves higher energies ( C O  - < + z  i  ) than the shape oscillations.
Thus, concluding, we have seen in our linear approximation that

there are at least three possible ways for the kink to react to a
t-

disturbance. It either translates or changes its shape slightly, or
radiates, or possibly any combination of those three ways.



CHAPTER III

COLLECTIVE COORDINATE DESCRIPTION OF A PERTURBED KINK

Introduction
If we knew an exact time dependent solution that involves two (or 

more than two) kinks, it would be easier to reveal the solitary wave 
properties of the kink. That is, we would learn how they interact when 

they come close, why they are unable to maintain their shapes after they 
collide, how their internal modes are coupled, and many other questions.
We don't have such an analytic multikink solution. Thus, any attempt to
study kink interactions must face the problem of approximating a 
solution.

The analysis of the previous section serves the purpose of
extracting as much information as possible and then uses this as a guide

to construct the solution. A well known method is the collective 
coordinate approach [4,5J. Here we isolate as many degrees of freedom 

as possible (in our case, among infinitely many) and through them 
collectively describe the system. As has been indicated, such degrees 
of freedom could be the rigid translation, shape oscillation and 
radiation modes of the kink.

The translational mode enters the solution by allowing the location 
of the kink, Xo , to become time dependent coordinate . Thus at first 
we write
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<3•1) 4 > c x , - t )  = t a n h  (  x  - X o £ t ) ; / / r

Any attempt to linearly superpose the full translational mode 

(2.20) would lead to "secular" terms (a perturbation whose effect 
increases in time), since (2.20) is related to the (translational)

symmetry of the system [1]. We ignore the radiation from the trial
solution for the following reasons: It takes more energy to excite
radiation compared to the other modes (remember eû  = 2 ); thus, it
will take a strong collision (high initial kink velocities) to excite 

the radiation and that would demand a relativistic treatment which would 
make the problem much more complicated. On the other hand, numerical 
simulations [1,2,7,8,16] and theoretical estimates [2,14] indicate that 
radiation is little excited in a perturbed kink. By definition a 
solitary wave is almost stable in external disturbances, and as one goes 
from solitary waves to soliton the stability is guaranteed. The 

presence of radiation with the dissipative character would weaken the 
stability of the kink too fast to explain its solitary behavior. For 
purposes which will become obvious as we proceed, we need to include 
mostly internal modes in which to store energy and not lose much energy, 

so that the total energy of the system remains constant. Certainly, it 

is idealistic to totally exclude radiation; we expect a small amount of 
energy to be lost if one recalls the inelastic character of the kink 

collisions. We shall account for this collectively later in our 
analysis.
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Parametric Collective Coordinate Approach 

We write the trial solution as

( 3 . 2 )  AC*) ) = t a n k  *  ~ XoC.l2
p ' V T A ( i )

where Xo(t) describes at any time the position of the kink relative to 
the origin and A(t) the variation of the kink width. Inserting (3.2) in 

the lagrangian density

+  * T  '  r  €  -  f  ( * - '

and integrating over all space to obtain
QO

L « S  +
-  a >

(3'3) - -i- AlXo -*■ _L b - — W  (a  +■
2  A  9  ' A  2  A

where is the mass of the kink and b= C—  " 1 ^
3 ^

From the lagrangian L, we use the Euler-Lagrange equations and obtain 
the equations of motion for Xo(t) and A(t)

Xo  = Of A

(3.4) fc> ( A  - \ s + 1- — X 0
A  A 1 2 2 A* M a

OC =constant
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A trivial solution is

X 0 • o

in terms of the full (trial) solution, this gives

J. . - i l x - C  - v-1
(3 5) %  = ^ “ n h  /—

, VI
which is an EXACT solution of the <p corresponding to a rigidly 
translating and Lorentz - contracted kink.

In Appendix C a general solution of the coupled system is found to
be

X oC°  = ^  C p  cot ) +

(3.6)
A C - O  = — L sin c ar + y * —01 Of Of

2 z . - where <*) o< + l /

£
.H- - X 6
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constants .

Inserting (3.6) in (3.2) the kink solution reads

r
x  * •  —  C O S  C ^ - r  ■  C i  f r  * C-i

t.Cu(3.7)
C c. s iriCx+CUi') t co Cj ) (cx ojY ‘ .

This solution represents a wobbling and translating isolated kink and it 
is not an exact solution of the field equation. Particular solutions 
have been found for Xo(t) and A(t) in references [1],[9] which are 
special cases of our general solution. The question is, however, how 
close we approximate the perturbed kink with the parametric approach. 
Any trial solution for a single kink, at least in first order, should 

give a static kink plus the shape (static) mode .
That is ,

V T(3.8)

(for static Xo).

if we let the parameter A in
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be close to its value, A=1 , for which <b is a kink (static)
^ P

-i
solution i.e A  «  * +  €  , £  <K 1

(3 9) 4* = ‘tanh x' *° + JL Cx- s«ch nilo +CJ(t)
Tp \ /T  v /r  VT

then <P (3.8) only when x=Xo

This shows that A(t) does not adequately describe shape oscillations, 
since the term TANH(X-Xo/V'2) SECH(X-Xo//2) is not present when 

4>P is expanded in powers of £ . I n  fact, A(t) here can describe 
the coupling of the continuum with the translational modes leading to a 
"wobbling" kink, since Xo(t) takes care of the translational modes and 
what is left are modes from the continuum. It is interesting to observe 
that the frequency of the wobbling kink

Oi js —  - - (/ +  (X ) 1 . 5 5  - (i+otJCOs
zr!- ,
6

a
where CO* = 2̂- (is the frequency of the shape modes,a. v

found in the previous section.)

From the equations of motion for Xo(t) and A(t) (3.A),
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when of = o we get the solution

Xo =constant= C

A f t )  = ± S in C + w t  :>

cos = ( 3 / 2 )
a y  =constant.

and <£>p = -tanh (x - c,>//5T

This is a static wobbling kink (breather) [12,13,] and shows the 
possiblity that a kink could absorb an external disturbance without 
moving in space but rather changing its shape harmonically in time. It 
may be an accidental similarity that the frequency ojs appears in this 
special case, since we have seen that A(t) intrduced in the kink's 
waveform doesn't account for the shape eigenfunction at least 

to d e e  ) . If the shape mode is excluded, since translational modes 

are absent (Xo= constant), we are forced to attribute the picture 
observed to the continuum. But the continuum starts from GO ?

Nevertheless the solutions we have found describing an approximate 
wobbling (moving or static) kink don't necessary indicate the existence 
of an exact wobbling kink solution. Rather the results express the 

sensitivity of the kink distributing its energy among its degrees of 
freedom and yet retaining its identity as a whole. For reasons that 

will be obvious as we proceed we need an approach that expresses the 
trial solution in terms of a kink and its discrete modes.
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Linear Eigenfunction Collective Coordinate Approach
Here we choose again Xo(t) (conected with the translational modes), 

to describe the position of the kink at any time and linearly add the 
shape oscillations in the solution. The trial solution then reads

A(t) now becomes the amplitude of the shape oscillation.

Then, a priori, the solution can answer where the kink is and how its 
shape is excited. Before we let two kinks collide we examine again the 
case of single kink with its shape modes excited.

Inserting (3.11) into the lagrangian density we get

(3.11)

(3.12)

1. I f we keep Cf C X® ,A)

• 2 . 2
CO, A

which gives



(3.13)

2 .

L

The

(3.15)

for A(t)

(3.16)

since
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A  4  G0S A  -  O

A i  X 0 =const.

Y ^  A W  = /40 c o s ( £ « - ^ 0  

>(„ = ^

If we keep all the nonlinear terms

2 3 1 i ^
f  K  ( M k - M sOO) - n  - ± UJS A - C 3A -CH A

where = mass of the Kink =

M s  CA~) =  e, A + c2 a

resulting equations of motion are: for Xo

X D ( / M K ♦ =constant= of

A +  Cti5 A =

A + <*>> A = * 3- 3 c, ̂  - 4 C. A f— 2 
2 6*

> >  Ms , (A the above equation becomes
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• • x 3
A + A = 3 A -  ̂ CH A

(3.i n
z r 2 2+ [ C, + 2 c4 /\ j f3 - 2 M s/ M k + 3 AIs /A1* J

or 2 i t X / 3/ \  +  C J „  / \  =  C ,  +  C A  A -+ c a  A
where

2 2 r z 1CJc = GJS + I ci ~ c, / M k -SL

/
c2

= /-3C,Cj + 3

V A1k a
* . c,_

A1k 1' Al*
/ 3 c , « V ^ aik

/
c 3 = f 6 c* c* ̂ IA1<

2

a j * a i :

We shall seek the solution as series of successive approximations. 
Following Landau [23J (see Appendix D) the solution reads

Xo = * / (  a-i* * c2 ^ + 7
(3.18) , « / 2. 2

» JtCOS^-t + (> c ' + K C  )/2 0J,

- 1 /9 0)o c  <4* 4 C3 K/H ) co S3 cot

6 co/
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where

CO = CJo - j~ c/c4# K /wo2 J - [s a 2
K //A «*’ ]

/ 2

Again ue see the "wobbling" behaviour of the kink and the presence of 
sinusoidal shape disturbances, as expected i.e for A small, from (3.18)

( 3 . 1 9 )  X „  _  «  c ,  +  Q r ( A c * t )

where Cf(A~) are higher orders of A(t). If radiation modes were 
included, the trial solution would become

0 .20) = -fcanh * ’-Xpfl*
1 \T2~

+ ~La.nh *~ sech > ~V " 2 ~  V T
Ia> e J/ O ,  * o



CHAPTER IV

KINK-ANTIKINK COLLISIONS 

Introduction
In this Chapter, using the linear eigenfunction collective 

coordinate approach (LECC) to describe two colliding and perturbed kinks 
(K-K), we derive the equations of motion and the total energy of the 
system which in turn we use to examine theoretically the results of 

numerical simulations of kink collisions carried out by Campbell and his 
coauthors!1].

First we examine the trapping of a kink and antikink in a bound 

state. We find that as a result of the impact the shape modes are 
turned on, absorbing an amount of energy Esh at the expense of the 
kinetic energy of the kinks. As the kinks are scattered away, having 

less kinetic energy than it takes to overcome their mutual attraction, 
they reach some maximum separation distance Xo(t) and return to collide 

again unable to completely separate. We approximate Xo as a function of 

time and kink's initial velocity and we plot Xo vs time for three 

different incoming velocities. Estimating Esh as a function of the 

initial velocity we determine the critical value of the initial velocity 

Uc above which kinks can "afford" the shape disturbance and separate. 

After the trapping is explained and Uc is determined we comment on 

previous similar calculations!2] and point out similarities and 

differences. We unfold the details as we proceed.
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Collective Coordinate Equations of Motion 
Let us consider the case where a kink collides with an antikink .In 

the center-of-mass frame, we assume a trial solution of the form [2,3)

c|>Cx(-fc? = *tanh * * _ -tan/i ±
V T  n/T

(4.1) + A (±) j/ Cxt Xo<*>) - BC-+) y$Cx - Xo<")

S dK a K 6 y e <*. k) + ctK e yVx,io

where y # , ^  are the eigenfunctions of the shape and radiation 

modes respectively, eqs, (2.21),(2.22). This solution describes two 
kinks (i.e a kink and antikink) moving in opposite directions with 
velocities +Xo(t) separated by a distance 2Xo(t). The fluctuation modes 
are present and are controlled by the amplitudes A, B, CL*

The constant -1 is added to satisfy the kink boundary conditions

(4.2) as ^  ' * ” °°
OL — » ©

<J>X C X, -t ) O

At first we shall neglect radiation completely; we will discuss how

radiation affects the collision process later. Observing that kinks and 

antikinks are spatial images of each other, we see that it is not

necessary to introduce a separate notation for the amplitudes A(t) and

B(t) since the effect of an impact should be equally shared by both kink

and antikink. Therefore we shall assume A=B and the final form of the
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Ansatz reads .

cWx.-t) s "tanh * * c- - -fcanh x~' V T  \ZT“
- I * AC-t) \lzr=F t a n h  sech

(4.3) v r  v r

Upon substitution of 4>cx,t) into the lagrangian density, eq.(2.1) we 

obtain the lagrangian of the system

—  n i •1 * *
L - [m  * i X 0 - U(x~') * A(t) - A

( 4 . 4 )  2  V i . *

- iU(X.1 Aft) * iFfxOdft)
.1 Z *

+ QfX'o)/^*) + K C X . l A + A CCxo'iA <*)X0

where we are keeping terms up to second order in A(t),A(t),Xo<t)

rand C CXo) = J  d x  -fo(K- X.7 -f̂ Cx * X.)
-co

W  e zfz /3 f the kink mass
CD

T f X ' o ^ O  a ^  d x  f 0 ^ V x  -  XoC-fc>)
-oo
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<4-5> wfx.«)) * S' fmCK-X., -l]

- i f f “ * *•’ ]J fjf x **■ >
CD

F Cx.wO ■ 5  J* |Vff. ” *X>]-££V*-x.>)
“ CO L

--f, [ i < * + X . > ]  -  - 1]  f3 f x  +X'*)

c o  r -  f
KCXo***) s ~ S f3Cx + x°'} f3cx-x*)

—to L

t 4X [-• o) ♦- f ^ r x c x + ) c . ) f 5rx-x.?

l/(Xeo>) = S  [iffo****0'

* ^ (Vo ̂  * *o > - fD <r *- xe) - i]j
09

Q  Cx.‘«) r - _5 dx fj (-‘X.) f,
-CD

f0 C?) * -fcanh

* * C * 7 = V z Tt  + a . n h  f 2 / r r ;  S € c h C 2 //x>

f, CH) = (e*. o l/ 4
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and primes denote differentiation with respect to Xo. The explicit 

expressions for all integrals are given in the Appendix E. The 
functions F(Xo), C(Xo), Q(Xo) are in disagreement with similar 

calculations made by Suguyiama [2J. All of the functions have been 
checked numerically, and their plots are shown in figures (4-10). From 
the lagrangian the total energy of the system is given by

£  s K m  * k l  * U('x. )J * j"Q O O  » iJ a  

(*■6) , /\m  L ‘ , 1 WOO - K(*.)j - 2 F(x°)A(*)
+ 3 C  (X O  A  X o

and the resulting equations of motion from

i i k  . ik :o X.; - A M
3x0;

for Xo i = Xo^t)

(4.8)

x /
X 0<*> + 31CX.')] * Xo IfX.)

- l A c ^ F C * o') - .m*qVx.) + ^A(,+>crxo) - o

for X 0; = /4
1 / * * A(*)[ 1*0 (x-lj * A I*) Q (*<•) Xo (t) - Ffx.) *■ C (X.) X.
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+ cCXo) Xo + /\ct) , z MCx,) - £(*.)] = °

Far from the interaction area (large Xo(t)), the functions K, V, F, 
C, Q, I exponentially go to zero (see fig. 4-10), and the equations of 

motion reduce to

X„ • O
(4.10) .. ^A  + cos /\*o

x; =constant

A C t ) =

As expected, we obtain two free kinks moving in opposite directions with 

constant velocities and harmonically oscillating shapes . For small Xo 
as the kinks collide with each other, equations of motion are not 
correct to give an analytic description of what is happening. The kinks 

interact in a strong nonlinear manner and start to recover their 
identity as Xo(t) increases. For intermediate separation distances, it 
is interesting to observe that the equation of motion for Xo(t) ignoring 
A(t) terms reads

<411> X e ( m +1( xo))
1 9 Xo

This describes a Newtonian-like particle of variable mass (M+I) in a 
potential U(Xo) (see fig.8). Thus, as the kink approaches the antikink 

it speeds up under the influence of the attractive potential and 

similarly it slows down after the collision until it reaches a constant 
velocity as U(*«) —* 2M and UOt*)-* 0 I (*•)-* 0

To examine this further we expand U(Xo) for large Xo and obtain



Page 35

(see Appendix E)

(4.12) -2Yz X«<■*>
V ( x 9<*>)

which gives an "effective potential"

(4.13) U,e f f UrXo) - lfC») * -I* M  e
•2^2 X 0(f)

In terms of the separation distance 2Xo this is a Yukawa-like 

potential with range 1/ which is the inverse of the lowest frequency 
of the continuum. We can gain some insight into this if we crudely 
think of kinks as the source of mesons (radiation) trapped in the 
reflectionless potential U= 2-3sech(X/ t/2 ) eq. (2.16) as shown below

R

K K

Figure 3

Then the kinks interact via meson exchange through the range R, 

resulting in the attractive forces we have seen before. R estimated
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from the uncertainty principle, is given by

A E A i  « fi • i
^  R oc 1 /m

R =

where m is the mass of the continuum starting from m= 'fl . For weak 

binding, since the kinks spend most of their time far from each other, 

only the lowest frequency is necessary to account for the attractive 

forces, and that is what we see in the attractive effective potential 
-12M exp(-2Xo/2 ).
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Energy in Shape Oscillations.
If we think of kinks as extended deformable, particles with only

two degrees of freedom (namely, the rigid translation and shape

oscillation) moving in an attractive potential, the simplest reasoning
to account for a capture is an energy transfer from the kinetic energy
of the moving kinks to the shape modes. As a result of this energy
"loss" kinks do not have enough energy to escape from the potential and

are trapped. On the other hand, if before the collision the kinks have
enough kinetic energy to excite the shape modes, (at the time of the
collision), and still have enough energy remaining to move back through

the potential, we have reflection. To support this hypothesis we
calculate Esh as a function of Ui and then equate Esh with the initialakinetic energy (of kink and antikink) MUi. The value of Ui satisfying

this equation determines the maximum velocity Uc below which we have
capture and above which we have reflection.

The total energy of the system, eq. (4.6)

E * [m  * HXp) ] k\ t V ( X o)

+ [q CX.) ♦ i] A W  * A  Ct) [oj* * a

-  ^ F ( X c ) A C t )  + s l C M

a  E k  * E s h  

E k = Xo + U(x.)
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Where we identify , the energy of the kinks (including
interaction and free of shape oscillations A=0) and Esh the energy taken 
to excite the "shape modes" of the kink. We assume . Before we

find Esh we want to know how A(t) behaves as a function of time. From 

our previous analysis ( see eq.3.15) we expect A(t) to have sinusoidal 
behavior. To prove this we examine the equation of motion for A(t):

We observe that all the functions above are functions of Xo which in 

turn is a function of time. In order to solve this equation we need an 
analytic expression for Xo(t). As a first approximation, we set

(4.14)

- F O

E E - E
(4.15) ■tot K.

with
to* ini*

The above equation gives

(4.16) X o C - O
AM ~ U(XO - M  6 //Z

A1 * X  CX*)
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2 2
where M£ =Esh - MUi represents the binding energy for Esh >MUi and the

afinal kinetic energy for Esh < MUi. We are interested in the first 

case. Expanding U(Xo) and I(Xo) for large Xo and integrating the above 

equation (see Appendix E), we get

(4.17) X "“ } ^  [ i f f  sIn i/ze- C+

Where we have considered £ as constant with respect to time since

(£«l t weak binding), and kinks spend most of their time far from the
scattering region where we have seen A(t) obeys the equation of a 
harmonic oscillator. On the other hand, any time variation will hardly 
affect the leading term in (4.16), the constant 2M. Equation (4.16) 
numerically integrated for Xo(t) is found to be in good agreement with
(4.17) as can be seen in Fig. 12. Inserting (4.17) in the equation of

motion for A(t), eq.(4,14) and numerically solving it, we find that

indeed A(t) has sinusoidal behavior as can be seen in Figure 13.

Next we need to calculate Esh. For this we need A(t) and Xo(t) 

which means that we have to solve the equations of motion 
eq.(4.8),(4.9). We will show that there is an easy way to calculate Esh 

without solving the complicated coupled system of equations of motion . 

The equations of motion read

(4.8)
A  iC(x.) - A Q C M  -JAFtX.) CM + ICx.*)

+ UtXo)]*1 xt I(X.) - a V z W - io- col/
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A ( i + C O  + A Q ' X o  + A C “ J ^ i W - K )  + c  X B + c'xl -F  =o

(4.9)

The term ( 2 lV~K + c*3* ) plotted in Fig. 10, is approximately a
<“ J - /constant with respect to Xo therefore ( {2 W-fc + to* J-><? )» and the 

above equations become

A ic -aV- 1AF = - ♦ x;! -O']
(4.18)

A  C / + Q )  + A Q ' X o  + A f ^  + i W - K ) *  - | } \  + c / Vo -

upon substitution of (4.16) in (4.18) all the functions are expressed in

terms of Xo(t) and £ then (4.18) becomes

A  (2 c) - A Q - 2 A F  = §, fXo)
(4.19) '

A ( i t Q )  + A C q 'X-) § / x . )

where

,  1 , 0 0  

- [ e x .  ♦ CX* - F J = i. ( X.)

At this point ve use the information about A(t). The sinusoidial 

behavior of A(t) eq.(3.15) suggests that there are time(s) t and 

coresponding Xo(t) for which A(t)— as A(t) approaches its maximum
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For this Xo eq.(4.19) gives

A  2 t - 2 A  F  = I, ( x * )

(4.20)

Solving (4.20) algebraically for A and A in terms of Xo the energy is
♦found from eq(4.6) with A=0

(4.21)

as a function of Xo and 

Fixing £ and plotting Esh vs Xo we find that Esh has maximum (for 
A=0) at Xo=1.03 for various values of £ . Since

£ = ^5H C Xo g »-03) _ ^
(4.22) ^  or

u, = E-jh/ M  - e

for each pair (Esh[Xo, £ ], £ ) there corresponds one Ui. For =0 the 
critical velocity is determined by Uc =• [Esh/M]. The results are 
plotted in Fig. 14. Using eq.(4.21),(4.20) we find Uc= 0.22 a 15%

deviation from the numerical results of Campbell et.al. (Uc= 0.2598)
and Uc =0.30 (Sugiyama). Considering the nonlinearity of the problem

and the collective form of the solution, this represents excellent
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agreement.

Comments
To the best of our knowledge the first theoretical approach which 

determines the critical velocity was given by Sugiyama [2J. He uses a 
linear eigenfunction collective coordinate approach (LECC) with 

different shape amplitudes A(t) and B(t) for the Kink and the antikink 
which later in his calculations come out to be identical. Estimating 
radiation to be very small he neglects radiation terms in his Ansatz and 

derives the same form of lagrangian (4.4) as ours when A=B. We have 

checked all the functions involved in the lagrangian both analytically 
and numerically and we have found F,Q,C listed in his Appendix(the only 
ones he makes available) in disagreement with ours (see Appendix E). As 
he proceeds in his analysis he approximates eq.(4.16) by

(4.23) X* ct) f - IfCx*! 
M  t ICX.)

where he actually sets £ =0 . Even if £ is small compared to the

total energy Ef setting £ =0 eq.(4.23) approximates Xo for free

kinks and one can't use Xo to describe trapped kinks as he later does. 
On the other hand the presence of £ in the expression for Xo

determines the dependence of the separation distance Xo from the initial 

velocity Ui which as we shall see in the next section controls the most

important feature of kink collisions: the bouncing of the kinks.
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With £ =0, Xo becomes independent of Ui and since A*A(Xo,t), Esh=f(A) 
the energy in the shape modes becomes independent of Ui which is not the 
case. As he proceeds in his analysis he divides the spatial region of 

Xo in two parts according to, if Xo >1 or Xo<l. He does not explain why 
he is choosing this particular value of Xo for which, as we have shown, 
the shape amplitude takes its maximum value. Then he approximates the 

equations of motion for the shape amplitudes by

i f A  t Qft-f CXe ) = f dt
( 4 . 2 4 )  . .  i

/\ +  W; A  * ° * 1

Where he neglects terms proportional to A and B as too small to be 

considered. We disagree with this approximation since continuity at 

Xo=l , where according to his assumptions Q,C,F vanish, the above 

equations of motion fail to bridge the two regions. With Xo=l one gets

A  = °  x ^ i

<‘-25> A  + 4  A  X.

After he solves the above equations of motion he relates the amplitudes 
A and B before and after each collision (at Xo=l) in terms of creation 

and annihilation operators and derives an integral expression for the 

total energy in the shape modes Esh in terms of the transition 

probability of finding the kinks from the initial ground state into a 

final excited state. He plots Esh vs initial velocity Ui (for which we
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fail to "see" how Ui was introduced in his calculations) and from 
Esh=MUi he determines Uc=0.25 in agreement with his numerical 
simulations where he finds Uc=0.3. From his plot of Esh vs Ui (see Fig. 

11) we observe Esh to be dangerously increasing function of Ui which 
disagrees with both our analytical results and Campbell's 
simulations(see Fig. 15) and possibly indicates the error involved in 

the assumptions argued before.

Figure 11
Regardless of the validity of Sugiyama's analysis, our goal in this 

section was to estimate Uc using a much simpler approach with care taken 

to avoid regions in Xo(t) for which the Ansatz is not believed to work 

accurately. Our results indicate that we have succeeded although an 

exact expression for A(t) would approximate Esh closer to its real 

value. Campbell et.al.'s work, on which we will refer to frequently in 

the next section, is only able to estimate Uc numerically.
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CHAPTER V

KINK BOUNCING 

Introduction

Even if one expects for incoming kink velocities less than Uc a 
kink collision always to end up with trapping numerical simulations[l] 

have shown this is not the case. In fact for certain initial velocities 

less than Uc the kinks bounce twice before they finally separate. In 
reference [1] the bouncing of the kinks was explained via resonance 
energy exchange between shape and translational modes. It was proposed 

that the first impact turns on the shape modes which removes enough
kinetic energy from the moving kinks, resulting in the trapping of the
kinks in their mutual attractive potential. Separating to a maximum 

distance Xo they turn back to collide again for a second time. If the
time it takes for the kinks to cover this maximum distance and come back
satisfies a certain time condition for which the second impact turns off 

the shape vibrations, the translational modes can reabsorb the energy 

stored in the shape modes giving enough energy to the kinks to escape. 

Heuristic arguments combined with numerical data enable the authors of 

reference [1] to derive an equation which relates the time between 
collisions and initial velocities and predict the values of the initial 
velocities for which "resonance" occurs.

In what follows we provide theoretical arguments that support the 
model and liberate the final equation from the data dependent 

parameters. First we calculate the time between collisions and then
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derive the resonance time condition. Equating times we get an 
expression which predicts the observed initial velocities leading to a 

resonance. Free of unknown parameters the model is generalized and 

applied with success to modified sine Gordon and double sine Gordon 
field equations as a final check of its validity.

■t
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Time Between Collisions

Since the energy stored in the shape modes is small, the binding of 

the kinks in the attractive potential is very weak* Therefore we expect 
the kinks to spend most of their time far from the interaction area. 

Then we can use the expression derived previously for large Xo(t) (see 
Fig. 16-18)

The initial velocity contained in the constant £ =(Esh/M-Ui) 

controls how far the kinks separate before they turn back to collide 
again. The more initial kinetic energy available the farther they 

separate (for the same time). Xo(t) has maximum when

therefore the total time between the first and second collisions is 
given by

where S0 is determined from Xo(t=0).
2

(4.27) yjl £ (’ * * * • ) TT / 2

(4.28) T

setting X.£t-*o)>o gi ves

1(4.29) thus
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Resonance Condition 

We have seen that (at least outside the interaction area) the 

amplitude A(t) of the shape modes is harmonically changing in time 
eq.(3.15). Thus with

(4.30) /""5 , i v V t vY = A  60 V zTf -tanh seen xzJz
v v T

* • I
and A  + A  writing

tOJf « -'tut *(4.31) A(*) = 5 e ■* $ e = SCt) + 5 CO

(where S=S(t=0) is a complex constant and A(t) is real)

Esh is given by

E,■SH

(4.32)
I r iui-k ■* 7*

= -r j[iw*se -iM.se J
>s [ s e  + 5 e J

-j*
co

= a <4 SCO SCt) - a <4 I S |1

and the total shape energy for both kinks

p  = ii co, I 5 w  I(4.33) L s h  5 1
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We make the assumption that this energy is given shortly after the first 

impact and fast enough that we can write

(4.34) S  ^  S  Ct)
«f+ P<f

with p , or complex constants.
The above equation relates the constant amplitude (S) just before and
just after each collision. In reality p is a function of time and

Xo, and expresses the weak coupling of the internal modes among
themeslves. We actually assume that p can be written as

(*'35> f> (t) = f [ I + ) ]

wi th f <**,+) representing all the extra terms that we take to vanish 
fast enough in time that we can approximate

=constant

Adopting primes (') to denote the constant amplitude S(t) right after 

each collision we write

(4.36) S Ct> * * SCT) + p

where T is the moment of the collision.

If the first collision takes place at t= Tt
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5 (T,) = Of SCT.) * p
thus

/ v (+-T.) ,* )A Ct) = foe SCT,) + p)e + (** SCt.) *p) €

Before the first collision the shape oscillation is not excited, that 
is,

for t < T,  SC*)  =0 , then

^ 1 + * -i UJS t
A  c-t) = 5 e + s e  =o ^  5 = o

for all t 5 TJ

Continuity at 7̂  demands

^ 7 + =  t ; )  * A ( + - T i )  = °  ]
| P* - P

S ( z )  = O J ps tljpl

p  is pure imaginary

and S  (T,) = P  at t = T,

; co, r-t - 7: >
and for later times t S  C + ) = P  ^

At t= T2 kinks come back to collide again :
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S (T.) > =r S C TO t p
is the constant amplitude right after the second impact. Since the 
field equation possesses time-reversal invariance, if we go backwards in

time S interchange with 5

transformation is to work

Thus if the initial

( 5 Crz ■) J = £  c Ti ) or

<X I S CTi') * p J + p - S CTt) or

/<*/ =1

OC p* + p S O

(0(1 = I

O f p  + p  = o

Thus //

S ft ) = SCt^) p - p f p e
i to , (T, - T i  )

Similarly at t= 7j if a third collision occurs

/It
5 (TO ■{'[

and so on for the n collision

5 1 +
r ("In r 1 (T».|-

e [ ■ + « f

(4.37)
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• • r rL-r,) 3

For the ^  kinks (experimentally) we have only two collisions. If the

i , >/. 2energy Esh= 4cJs{S { is to be zero

n "s (Tz - T, )
I

must vanish. Then

CTl“T,') 
e =- o

or the time between collisions must be

TT /CO,

But this time was found, from eq.(4.28), to be

therefore,

C m +  0 tt/cUj + o.h = 7r/\/zr

(4.38) £  = E j h  f U ; ) / A l  - U-
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(an + s ) TT/oJi = -nr/y/TT

where S  =1.15
So far we have neglected radiation for two reasons: First, because

the numerical simulations [1] indicate that the energy carried by the

radiation modes is not very important in the collision process (see
Figure 15 from reference 11]) and second any attempt to include
radiation modes y c teq. (2.22), in the trial solution will make the

resulting equations of motion very difficult to solve and the crucial

assumption we have made namely, conservation of total energy, wouldn't

go along with the dispersive character of the continuum if it was to be
included. However, since the sum of translating and "wobbling" kinks is

q
not an exact solution of the equation (at least in our

approximation), the shape modes will decay in second order in the 

expansion + y( x,t) around the K or K. This energy (if
we accept the energy exchange mechanism) will be given back to the 

translational modes of the K and K. further weakening the binding. We 

collectively account for this retransfering of the energy from the 
internal modes to the translational mode (while they are still trapped), 
by rewriting the binding energy as

£  f*\ — £  CL

where cl is a constant, and (l-Cl)M€ collectively describes the 

effect of the decay radiation. If radiation created at the time of the 

first impact (prompt radiation) is present, cl describes both 

prompt and decay radiation and doesn't have to be less than 1. For
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we neglect prompt radiation and CL is expected CL < lf 
then from eq. (4.38) we have

(  2 H  + 1.15) TT
\Tia. VTEuT)

(4.39)

c ^ n +  | . I 5 ) J L  = J2L- 1 —

PO, ul=o ^  4 ^

+ 1.15 )JI -
to.

since EjCu-yO  - o .2j 6 is given from

(4.40) 0 . 21 6  + IJ5 ) j/i. *  _1_ > t
^  \fcL

the smallest integer n which satisfies this equation is n=2 and a=.599 

Vith CL determined, the initial incoming velocities for which 
bouncing occurs are given by (4.41)

C4-. 4-1) =  Ejh t u i )  _ 1 - 2 5

C m + u s ) 2
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Resonance Velocity Windows
The data reveals that there exists a small velocity range centered

at each Uf for which we still have "resonance", Campbell et. al.

call these velocity ranges " windows In order to understand these
/#

windows better we go back to 5 CT*.-) and let

^ 3 C Tz - T, ) - ( 2. hir + tt") i £/z
-  ^  2.*d I T  +  t t )  ±. A T  IZ

We want to know what 3 must be so that (see eq. (4.37))

l " I* , l t  'Wt C T a-T.) I 2| s CTZ)| = I pi ji + e J = \p\l

which means £"sh ~ ^
wasn't transfered back to the translational modes, and the second impact 

left the energy in the shape modes unaffected. Inserting o in S  (Ti) 
we find

I i Oinir + i) t 3/2 | *
1 = • + e

or

sin 3/4 = i  ** d  -

then OJ tA T  = 3  with

AT = iX AU 
3 v
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(4.42)

AU; * 2 / co, il
31+

T = T  -  - = = = =
'K'io.S93 \Zf,Cu, |/m - u,1

which gives

4 U :
U; ( a n  + u s ) *
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Comments
Strictly speaking in order to understand the energy exchange

between the shape and translational mode one needs an exact time 

dependent expression for the shape amplitude A(t) which will describe 

the shape disturbance at any time and particularly at the times when 

kinks collide. Unable to have at our disposal such an expession for A, 

in this section we have adopted the basic idea of Campbell's model which
assumes that the effect of the impact on the kinks can be described by

the relation [1J

s' = CL, s * $  + P
( CL, » a t i p  complex constants )

S
and $  t 5 complex amplitude just before and just after each
collision. Campbell et.al. in their effort to determine the constants

use information from their numerical simulations. Wishing to avoid the
/

use of the data we have modified the above relation by writing S as

/

S = a  S + p

and demanding in addition to time reversal invariance, continuity of the 

shape amplitude at the time of each collision. Following our analysis 
we have derived eq. 4.39

tt (in-rr + £ )  -n-*____________________

VTH ( e,cu,)/m  -u’)"'2
«r= 3.6

which is equivalent to Campbell's
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£ 2 n  * l)IT
CO c / 7 “  s i t. \ //z

\J 3 a ( u< - u,- )

and to the equation which best fits the data results

(2 IT) +■ 5/tt)TT t t *
S' a  3 . 3

Campbell determines CL from the data by first plotting the

final kinetic energy versus the initial velocity U; assuming

2MUf - f MU; 0 .,
2For U,’ close to {Jc he sets a°d from the data he finds

that

2 X 1 I vut = ( U; - V. ) a,

is well described with Of,=0.84

Assuming smooth continuation between the binding energy ( U < U c ) 

and the outgoing kink velocity for Ut- > Ut he lets the binding energy to 
be

M e  = ) a
or

£ * ( u *  - U * ) a

and approximates Ot a Gl =0.84 therefore n/ST = 0.916
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Our method gives \ZcZ =0.773 which is in an excellent agreement 

with the numerical one v/H = .74 . In our analysis we were able to 

understand the phase shift S as + where 5"0 is determined

by

*„co . I n t e  sin </Tz~C-t + $ ’. )j
(4.43)

at t= 0

We can't take the value of S 0 seriously since (4.43) is valid for
large Xo and any short range approximation is not to be trusted.

However, So was surprisingly found close to what it should be and 

offers an explanation of the origin of which the old model fails to 
explain.

We also, through eq.(4.40) explain the minimum number of full
oscillations, n>3 for which resonance was observed. In Fig. 20 (taken 
from reference [1J) the two large spikes in each picture correspond to 

the two K-K reflections, while the bumps between the spikes correspond 

to the sum of the tails of the shape waveforms centered on the kink and 

antikink. The number of bumps as one moves from one picture to another 

is increasing by one and is given by N=2-n where n is the number of 
complete shape oscillations with n>2 exactly as was predicted by (4-40). 
Above the critical velocity the big bump to the right disappears as the 

kinks reflect to infinity and never come back to collide again.

The crucial assumption of conservative enrergy exchange between the 

internal modes is confirmed in Figure 19 where the ratio of the 

(time-averaged) kink speed after a K-K collision to the initial velocity
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is plotted as a function of the initial velocity. From the plot (taken

from reference [1]) one can see the (relatively) elastic nature of the
reflections below the critical velocity Uc.

The new information we get from our analysis is the presence of
xEsh(Ui)/M in formula (4.41) instead of Uc. For Ui close to Uc and from

the plot of Esh vs Ui (Fig. 14) we see that Esh/M is well approximated

by Uc.

In table 1. the predicted (by the model) values of the resonance
velocity windows Ui and their center (Ui) are compared with those

found numerically. The table is taken from Campbell et. al. where he

uses eq. (4.41) and (4.42) to predict Ui and <£>Ui respectively, withx
the term Esh/M approximated with Uc. The agreement, especially for 

initial velocities close to Uc, is remarkable.
However a more accurate description of ETjH which in turn means

an exact expresion for A(t), would lead to higher precision in
predicting Ui directly from

f a n  5/rr> J L  = 3 -   ----------   ■— % -
COs Ou>o [ e - U; )

Nevertheless our results are "data free" analytical ones and our
goal was to show that the model can be analytically formulated to

predict the experiment. Its validity is checked in the next section for 
more kink-bearing field equations where kink collisions lead to
resonance.
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Fig. 19 The ratio of the (time-averaged-see section 4 )  kink 
speed after a KK collision to the initial speed, as a function of 
the initial velocity. Note the relatively elastic nature of the 
reflections below Vv (Fran reference 1 )
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Table IA -tabulation o f (he range, center, and width In initial velocity o r  the reflection window* observed in 4* K K  
collisions. T he last three colum ns give respectively, the theoretically predicted value o r the window center and 
-two quantities which o u r theory predicts to  be constant. In the last two columns v ■  center o f  w indow and
An»widlh (Taken from reference 1)

Sm » n - 2 Range or a Center Width PredictedCenter
(v* —•r*K2n -*■ 1)* Av(2h 4 I)1

1 0,1926 — 0.2034 0.1980 0.0109 0.1990 139 0.742 0.2241 -0-2301 0.2265 0.0048 0.2250 1.31 3.503 0.2372 -0.2316 0.2384 0.0025 0.2370 1.29 3.334 0.2440 - 0.2454 0.2447 0.0015 0.2437 1.29 3.305 0 24HI -0.2490 0.24855 0.0010 0.2478 1.29 3.386 0.2507 - 0.2513 0.2510 0.0007 0.2505 1.30 3.447 0.2525 - 0.2529 0.2527 0.0005 0.2524 1.31 3.48 0.2538-0.2541 0.25395 0.0004 0.2538 1.33 3.79 0.2549 — 0.2550 0.2549 0.0003 0.2548 1.33 4.3
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Generalized Model.
Going back to the formulas we have derived, eq. (4.12) , (4.15) we 

see that for separation distances far from the interaction region 

conservation of energy reads

.1 - 2 CJ# X.CO
M  X 0 <+> - A e 3 2M-£M

(4.44)

Where A is the amplitude of the effective potential

-2 COc XoCt)
V .tt -  A e

and 0Jo the lowest frequency of the continuum.
Solving (4.44) for the general case with A, CJ0 unknown we get

(4.45)
= ~£ro [ V f

S', V3k"
In terms of w* , A the expression which relates times between collisions

(4.38) and small oscillations reads

(4.46) anir . rr .
V5 T - u f

The L.H.S was derived for the general case independent of the details of 

the original field equation. The R.H.S depends on the structure of the 

kinks. That is Esh, Uc, OJ, , GJy , 5* are different for different 

types of kinks. We try the generalized model for the cases of the
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parametrically modified-sine-Gordon (MSG) and double-sine-Gordon(DSG) 

theories, where double resonances were (numerically) observed in kink 
collisions!17,26]. For these theories the scalar field satisfies an 
equation of the form

D  4* + — — ----  ( - S i r u p /z + -oo<fj<oo DSG
• +■ IM n I

, 3
^  ^ "* ~ cos^'iCt *r + ircos4) ^SD

- i <. r <. i

We check the models using the formula which predicts the center of the 

resonance velocities, eq.(4.38)

(4.38) 2 "  TT * Si
O).

co*'/5: [Es

Since Esh, to be determined, requires solving the equations of motion
a

for each theory, we appproximate Esh with MUc= Esh since the dependence 

of Esh(Ui) on Ui is very weak and the variation of Esh from Ui is small 
(see plot Esh vs Ui ) 
then

2n 1T * S' -n- 1

Knowing (Jjf , U£, Ut ; ^  we estimate >/ct as follows:
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At first we neglect radiation (thus ct, = 1). For Ui=0 no resonance n 
must be the integer before n+1 for which resonance occurs.

An TT + 5

W s COo Uc

( i n  TT + } co0 u c / a J s rr = i

The value of n which comes closest to satisfying this equation is 
chosen. Then to account for radiation we insert CL

2 n,,;,, tt + 5" _ -rr

c° s u c \Ta
solving for Ct

OL =
. -2

(  z n  +  S / 7 Q  gUqUc 

<Us .

If Cl < 1 we have more decay than prompt radiation

If Ct > 1 (which means prompt radiation is stronger) the

kinks are bound stronger.

The assumption that the effective potential has the assumed form of 
eq. (4.44) has been checked in references[17,26J. Using the values they 

have found for Uc, CO, , tot , &  and applying eq. (4.46) we
summarise the results in Table 2.
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s Uc cOs R
(parameter)

«/a(p) ^(d) n

DSG

| 3.99 

1

.359 . 866 .8409 -1.0 0.82 0.86 n>l

1| 3.40 .2305 1.0 .69204 1.2 0.95 1.0 n>l

1
MSG |

| 1.60 . 175 1.222 1.1205 - 1.38 1.0 n>2

1 1.70 .2925 1.66 1.1675 - 0.94 1.34 n>l

TABLE 2. Application of the generalized model to DSG and MSG equations.

where /a (p) is the predicted value of the parameter a using our model 

and v'a (d) is the parameter a found from the data. The results would be
Xmore accurate if we knew E(Ui). Using E(Ui=0) instead ofrfJc in (4-38), 

we would be able to describe the parameter a more accurately. We would 

also like to point out that for the last predicted value in Table 2 the 

old model[l] fails completely to approximate the parameter a.



CHAPTER VI

CONCLUSIONS AND DIRECTIONS FOR FUTURE WORK.

In this thesis we have studied kink interactions via collisions. A 

kink (K) from the "left" collides with the spatial reflection of itself, 
the antikink(K), coming from the "right". Ve have seen that as long as 

K and K are far enough apart and the interaction is very weak, the 

particle-like nature of the kinks dominate and the picture is described 

by two particles of mass M moving in opposite directions with constant 
velocities. As the kinks come closer, their internal structure starts 

to unfold. The kinks interact via their internal modes resulting in an 
attractive effective force accelerating the particle-like kinks towards 

each other. It is almost impossible (at least in our approach) to

account analytically for what is happening when the kinks actually meet. 
Perhaps one needs to include more terms in the solution (radiation 
modes) and keep higher order coupling terms in the lagrangian. Somehow 

(for certain initial velocities) all the energy released on the impact 

is given back to reform the kink-pair (that's the beauty of the solitary

essence of the kinks) and far from the interaction region ve see again

two particles scattered inelastically with their wave-like properties 
present by means of shape disturbances riding on the particle. Even if 

the energy taken to create these shape disturbances is very small

compared to the initial total energy of the kinks (2M), it is enough to

trap the pair for initial velocities less than Uc as our calculations 

have shown. That was one of our goals, to calculate the energy in the
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shape modes and show why the kinks are trapped for certain velocities 

below Uc. (Campbell's calculations require the critical velocity be 

estimated from the data).

The second goal was to explain the bouncing observed, namely why 
the kinks even if they couldn't escape after the first impact come back 
to collide again and then escape. To explain this phenomenon we needed 

an analytical picture of what is happening at the time of the first 
impact. With our set up of the trial solution (4.2), even if ve were 

able to solve exactly the equations of motion (4.8),(4.9), we wouldn't 
be able to describe correctly the picture since the trial solution was 
built up to work outside the scattering area. In the absence of 
knowledge of what is happening for small separation distances, we use a 

modified version of Campbell's model to explain the transferring of 

energy from the translational modes to the shape modes. We idealize the 

effect of the impact on the kinks by assuming that each impact relates 

the amplitude of the small shape oscillations just before and right 
after a collision by a linear relationship of the form (4.36). This 
assumption enables us to relate the energy in the shape modes right 
after each collision in terms of what this energy was just before the 

collision. This is the mechanism of the energy exchange between the 

internal modes at the time of each impact. Knowing the energy in the 

shape modes from the equations of motion and the initial velocity of the 
kinks when they are far apart, we are able to find the binding energy of 
the kinks which in turn determines the time it takes for the kinks to 

collide twice. Relating this time with the time the model requires for 

the shape modes to retransfer their energy to the translational modes, 

we were able to predict the initial velocities for which the bouncing 

takes place. This mechanism namely that the kinks have the ability to
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exchange energy between translational modes and internal modes is not
i|

restricted only for the ^  theory or for that purpose only to kink, 

interactions. In nuclear physics, in time-dependent Hartree-Fock 
calculations the collisions of the individual nuclei viewed as "solitary 
waves" shows similar resonant energy exchange between their two internal 

modes [42]. The DSG, and MSG equations also show the same behavior. 
The interesting thing is that all these systems possess (at least) two 

internal modes which is consistent with the assumptions of the proposed 

model[l].
Nevertheless, after all the details are stripped away the question 

is how well we still understand the collisions. We have studied kink 
interactions for system, for which we don't even have an analytic 

multi-kink solutions (which may not exist). We have described linearly 

and collectively the system in addition to introducing a mechanism (of 
energy transfering) which is not directly related to the structure of 
the corresponding field equation. The model succeeds in predicting the

|f^  numerical experiments, and when is generalized predicts the

results of other theories too. The main reason for the effectiveness of
the proccedure followed is that we work with small velocities, thus

small binding energies which allow the kinks to spend most of their time 

far from the scattering region for which we know very little. This 

allows one to neglect higher nonlinear terms which are important only 

for small separation distances and concentrate on how most accurately to 
describe the solution for large separation distances where the coupling 

of the internal modes has already been washed out. The calculations 

were carefully chosen to be carried out in the region where the trial 

solution is trusted, and the "collective coordinates" (directed from the 

physics of the problem), were chosen to dominate in this region. The
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model which actually "links " the two regions doesn't analytically 
provide information on how these two regions are connected but rather 
collectively describes how the energy exchange takes place. Again the 
model works because of the solitary wave properties of the kink which 

allows it to retain its identity against small external disturbances. 
This allows the disturbance due to the collision to be absorbed fast 

enough that the actual time of interaction is very small compared to the 
time kinks spend far from the scattering region. The crucial assumption 

that the total energy is conserved, and only a small fraction of it is 
exchanged between the internal modes at each collision, is supported by 

the fact that radiation (thus, energy dissipation) is little excited in 

the collision process (see Fig.5). If one wishes to understand better 
what is happening when the kinks actually "meet", he has to revise the 
Ansatz solution. As we have seen from the Einstein-like energy 

expression (2.10) for the kinks, as the velocity increases the kink 
"reacts" by increasing its amplitude and decreasing its width. On the 

other hand due to the attractive effective potential, as the kinks come 

closer they start to speed up. We expect then the kinks' shape to 
suffer a big change for small separation distances, and it is therefore 

meaningless to include the shape eigenfunctions in the solution as too 

small to add any information about the kink which itself is a big local 
disturbance.

Intuitively, we suggest that one should replace the kinks and the 
shape modes in the trial solution (4.3) by

A(t,-Xo) TANH( X-Xo/B(t)) - A(t,Xo) TANH[X+Xo/B(t) ]
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where the collective coordinates A and B now describe changes in 

amplitude and width respectively. Adding radiation and keeping all the 
terms resulting from substituting the trial solution in the lagrangian 

one should get from the equations of motion A,B as functions of Xo and 

time. The coupling among A,B and radiation perhaps would explain the 
energy transferring. Even if radiation is not explicitly involved in 

the collision process for large Xo we believe it to be responsible for 
the interaction between the kinks. The excitation of the shape modes is 
a result of this interaction. For instance for the case of soli ton 

collisions a similar study shows that an effective potential [10]
similar to the kink type potential exists there too. Since the soli tons 
(of sine-Gordon) do not have internal "storage" for energy (no bound 

states) the energy exchange takes place between radiation and 
translation mode resulting for large Xo elastic scattering. For kinks 
which are not solitons, in our opinion the initial collision always 

excites both radiation and shape modes. The exchange of radiation

provides the interaction between the kinks and the shape oscillations 
and explains the inability of the kinks to scatter elastically. The

radiation energy is exchanged, not lost, this is why our results which 

did not include radiation explicitly were accurate. However , since a 

kink is a solitary wave and not a soli ton some decay energy is present 

and we have to account for this by the constant a in eq. (4.39).

It would be interesting for purposes of physical implications to 

have an experiment with more kinks involved. For instance one could 

first let a kink and antikink collide and as the pair is scattered one 

could send another pair with a kink from the "left" and antikink from 

the "right" to collide with the first, already, scattered pair. If the 

shape mode-translation coupling works, then one would have four kinks
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with their shape modes excited or if the initial velocities of each pair 
were properly chosen one could have possibly, resonances among the kinks 
of the two pairs. In solid state that could be used to control special 

properties of the kink, for instance increase the kinks' temperature by 
exciting its shape modes which in turn would affect other properties 

(i.e, conductivity) of the material as a whole. Also it would be 

interesting to perturb a pure soliton-like system by a kink source. For 
instance a soli ton of the s-G equation collides with an impurity which 
we take to be a kink. Will the soliton retain its identity after the 

collision in addition to exciting the kinks' shape? Or will there be 
capture ? If both retain their identity then it is possible that K-S is 
a solution of a very interesting nonlinear equation.

Nevertheless the problem of understanding the solitary properties 

of a kink is still open . The property of a kink's internal structure 
that makes the kink able to generally maintain its shape and act as a 

particle-like object is still not understood. We have just begun to 
scratch the surface.



APPENDIX A

DERIVATION OF THE 4> FIELD EQUATION AND KINK SOLUTION

Applying the variational action principle

oo
5  ^ ^  Jy oC C*,-t > = o

00

to the lagrangian

^  - _L + rr)3 <pZ - A- - 221.

we get

3.
X
K=l

d
dX|*

_d_
dx 3 **

i f - * * )d*

3L

* ( « . )

-

3 $

-  H i  
3<f>

= o

=, o

tt

For static solution ( ^  =0 ), this becomes
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■  + X X  = +  - A

or

- 4>,1<

choose the constant C so that

4>.x
OO)

+ constant

and minimizes the total energy

\f> / m  —* <J)

mn x — * X  '
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then

which

wi th

+ ' a
x ' a

4
6 4> X -  Xo

\ T T

gives

± i a n h  x - X.
V T

and

t -tanb J21 fx - X0 ) 
V2

corresponding moving (Lorentz boosted) solutions

4>Vx'+) = * iernh
I [jCi - v* >]'/l .

) = i -tanh .m  (/x - X 0 ) t U f
\ / 7
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In terms of the rescaled field <p , the field equation

becomes

4** '



APPENDIX B

FLUCTUATION MODES

Ve are solving equation (2-16) using a different approach, 
eigenvalue problem reads

Y + [  cjx + I -  3 - t a n h  x .  ]  Y -  o
J O X X  L y T

or

7 o x X  + [ ™  “ * + 3/coS h X/vt] X  * °

This type of problem is worked out by Landau [25], Keeping the 
notation, we identify

E * JL

^0 ~ ^ - | //2~

and with the substitutions

7. - s -  f  [-i jcosh Of X I of1 J

the equation reads

Wxx - £ 2 s or 4ar»h « x J + (Vs* + F ) w = o

The

same
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5 = sinhorx

let ting
'/z - . z£ = - E  / o(

we transform the above equation to a hypergeometric one

+ 1-s)^ * 1/2 J IV#+ J. W *  O

which has solutions

w. . - f - f  - 5 )

W ,  « V T  F  c - f  > - f - f  . Jl ,-s)

then
-S/i

y  = (  1 * X') v j ,

- S/ a
y  =  c ' i 5 vv,

are the even and odd solutions of y
In order that y  -> o as ?  00 > ^he parameters

1- - ±  
Z Z

must be negative integer or zero
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- + £_ ^ __i_ must be negative integer
i  z 2

respectively for each solution.

Thus for bound states

S - £ =  ~ ~2 * ~2 ̂  ' V'2 (̂ 1~> ~ *

^ “ 2 = - + \/ 1+14 J

- - / / 8 f M - z n ] z

where n takes positive integral values starting from zero. There are a 

finite number of levels determined by the condition £ > 0  i.e

< V ̂  1+iM) - J.
n  s o , i

for n = 0

Col ~ °

y = \/_l_ sech-2-
•• v < n / r  v t

for n = 1

(ju, =  3 / A

y -  ‘ VS ■t m b  H r



APPENDIX C

EQUATIONS OF MOTION FOR PCC

Ue solve the coupled equations of motion, for the case of the 

parametric collective coordinate approach (PCC) for the collective 
coordinates A(t) and Xo(t). The equations are given by

XD =

b ( A  -  J-  A  )  = - f  ♦ - H  - 
V A  *  A 1 J 2 3A 2A*

Decoupling the equations, we get 
z

1 - (\ + Dc‘ ̂  .
2  Az‘ [ £  ■ & ]  •

or

b  I " i i i  -  j -  E s .  1 = - ( i - " * ' )  + «
L X .  2  J  2  2  y *

In order to eliminate the constant ( I ■* d  ")/Z take the time
derivative of both sides , then

b  [ X *  x „  ♦ X . V .  - x . x j  = X . X .  ( W )

or
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X 0 + [ ( • + < * V b ]  y „  =

which can be integrated to give

X .  = C, c o s  f jf +

where C, ^ are arbitrary constants

and dJ* = t_+_cx_

Integrating again we obtain

x . r o  = -£■ s i n  ( y  -r cot > ♦ c :

Inserting the solution back to the equation for Xo we have

b *• • • i ..2 i l • ̂X, Xo - -!■ X. -
2 a  a

—  s i n f ^ f + w O C j O )  c° ŝ ^ + w t v

- w t / '  iL S i n ( v . u t )  * C *  iSiL‘ sin (y r u tl) 
a a. v- uj1 u 2 cu 1

■ * * ✓ 1 /-z - b e ,  = * - C ' +  > c*.
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SHAPE AMPLITUDE SOLUTIONS FOR LECC

In order to solve
. . 1  1 1 

+ OJ0 A  * C-i 4 A  + C} A

we try a solution in the form (see Landau [23 J >

A = A“’ AM  * A 0> f •  t

and
CO ^

CO = CaJo + ui + CO +

/ ■ >where n is the solution of the unperturbed equation

A * (*>o A =  ©
A<0A  s K, COS CO + K =constant

Insert A  = A * °  +■ A C°  =  K. coSOu-fc + A ^

in the initial equation and keep 0  £ A **'*J

*T*> * .CO j
A  + COo A  = 2 <Oc Uj K COSUJ± * Ct + Cj KcosttH

O)
2 2. 0Jo Uj K coscut + c,

2. 4 + Cz k /z + cosaoJt (czK/z)
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Cl)
Set CO a o to get rid of the resonance term

•• f t )  x  C O  ,  ^  . r  * i
A  + / \  = ' 2 -  + C*KCOSAW-fc

with solution 

f z ’i
/\ (+) = - C i l ^ C O S  iOJt

1 <*£ 6 oj£

^ . a (3)Going to

V * 3) z xci> CO ci) ci»> ci) 6)A  + A = 2 C i A  A  t CjA +aa)0co/\
_ .3 5 fi>

= c3 (c COSCD-t + 2 COc CO KCOSCJU-fc

t 2 c2 K COjOJ-t [ 2 C,* C2< . Ci kcoscotlL 2 CO/ 6 CO/ J
or ✓ T ’ ♦ «: A ° '  - f̂

 ^ 0  Oj/

Cl) * -i
+  K ♦  3 C , K / 4  CO SO J-t

+  C “ f z K / 6 c ° o  + Cj  * ? A / )  C 0 S 3 C * )t
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Looking for a solution in the form

r coŝ cot + r2
then

CO.
C O S  3 < a t

3 o>

and

Cz'i
- UU

CjCzK
Z 2.

S  C z  K 3 C 3 K  o Jc

« ov

Collecting terms ve have

Af+'J = *C C O S C a H  + 2 C, + c2 k_ _ c 2 K  COSZUJt
2 01 S' 'x6  c j „

- A -
2 3

£ i iL  *) C 0 S 3 t 0 t  
H  '



APPENDIX E

INTEGRAL CALCULATIONS - EVALUATION OF Xo(t)

By direct integration the explicit functions V[Xo(t>], K[Xo(t)J, 

Q[Xo(t)], C(Xo(t)],I[Xo(t)],F[(Xo(t)],U[Xo(t>] are as follows:

K  ( > 0  =   + n ? o  c h v T X o  + LjizH c h \ / z X o

shvrXo  s b 6/r X o  5 h V r  x  <»

+ M ow cbyiXo _ ? 5 6 _ ii3 M _

35 slnvzX* shn/rx* sb5v7Xo loshVxo

' ii  + vrx, ch\ZzXo/-Mi- + _256_
shvTXo \ sh‘y7Xo shZ\JiXo

+ <*16 _ \fzXof —  + 16*18
sh4\/rXo '  ̂ sb ŷ/iXo

4  _ l i i —  +  M / r  /  — S -L -

s h V r X *  s l i V r x *  s /t V i x *

3 M 5  __ +   +  _ 5 ____ \

5 shVzXo 11 sh4\TtXo <r sh2/z Xo
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" \/JL X 0 c h V T X 0 C  3-—N - u'’
7-5 3 5

sh v7x„ 2 sh?vrx. ^shVrx,

9 sh n
W  ( X ‘  f -  + <52-------  *

L 3 5  l i h ’ i / I K o

(H «?0 82 5

7 f 6
irb'v^Xo 5 h 4 / T X o

chi/TXo

sh Vz Xo sh y/rXo shi/j Xo
9 3  C h\/IX o  _  6l~2 ch\T2 X o  ̂ 6 7 S  chtfZXt,

sln^\/rXo s h V r X o  sH V zX o

+ 6 2 S _ - \  4

Shq\^Xo /

36 M 7 J iziS
shl/z Xo shVi Xo sliV?X*

x/TX, r—
\ shZ\

I*r
sh\/zXo S h / a X o

1 0 6 2

S h v T X o

6?5
8

s h > / T X o )
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Q O . )  

I ( X . )  =

C(x0)

F C * )  - 

+

U(X) =

_ I* - 6_co<,h V z X o + 6 (, + cb^VlX<Q
L 1/IX 0 Vz sh^yTXo

z l l L -  + h y „  c h  g y ,  

sh\Z?Xo sh*\/rXe

IT 3z w ianh x« sech^xa
v Z V 2 - \ f l  y z  ]

L yz & VT

7 ^  + h 2 k  -  25  ^  x .
3 2  ^  a  7 =-

HH \ r Z  I - 4 r  +  \/T X o  * - L
- t r h \ / l X o

_ 2 +  3 V z  X 0 + 2 V T X 0

~L<Xnk\fz Xo "i av) h v s x o  J
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All the above integrals have been checked numerically. The integrals 
Q,C,F are in disagreement with Sugiyama's corresponding integral 

calculations(2]. His calculations give

The function ll(Xo) physically represents the "potential" between 

the kink and the antikink, and I(Xo) describes the interaction of the 

kinks viewed as deformable particles. Q(Xo) represents the interaction 

of the shape modes between the individual kinks. The other functions 

describe the coupling of the different modes among kink and antikink.

Evaluation of Xo(t):

From equation (A.16) and for large separation distances Xo(t) one 

can approximate the motion of each kink in terms of the collective

+ V c o s e c h  VI Xo)
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coordinate Xo(t), by expanding U(Xo) and I(Xo) and solving the resulting 
equation. The contribution of I(Xo) for large Xo is very small compared 
to the leading coefficient of Xo(t), the constant M, therefore I(Xo) can 
be ignored simplifying equation (4.16) to

E-l / M X *  + O C X . )  = 2 M  -  £ M

Expanding U(Xo) for large Xo
r  - 2V z X o

UC^o) = [-2/3 + + 2VzX0( ±

-zvrx0 - zvzx0 -j
+ 6 e ) - (z + 3 V T X b}(i +He y j

E-2
_2vTXto 

= 2 M  - I 2 M  £

and inserting U(Xo) in E-l ve get

.2 - z V T X o
E-3 M X  o - i Z M f  = - £ M

Solving for Xo(t) we find

E-4 (*) ~
\[z n̂ [\/"5 smy/'zt (*

where 5*o is determined by the condition

Xo (* = <>) *o *  - °  z



APPENDIX F

SOLITARY WAVES AND NONLINEAR KLEIN GORDON EQUATIONS 

.4The <p equation is one among a large number of nonlinear 
equations which possess solitary wave solutions. In this Appendix we 

consider the family of the nonlinear Klein-Gordon equations (NLKG)
Ifwhich <p belongs to, and we derive the solitary wave solutions of some 

member equations of this category. We use special transformations and 
Euler's substitutions to solve the NLKG equations which in general have 
solutions expressed in terms of elliptic integrals. It is interesting 

that all the solitary solutions found are expressed in terms of the 
hyperbolic tangent kink solution [TANH( X  )] of the equation (the 

simplest one) which in turn as we show in Appendix G can be expressed in 
terms of the sine-Gordon soli ton solution. We consider the nonlinear 

Klein Gordon equation (NLKGE) given in the general case by

□  4) + <3 U C 4 > )  _  o

3 tp

(where U(+) is a positive function of cf> ).

We are interested in travelling wave solutions <P(l) where

z  -  x  t u t  

O - v 1 ) " 1

Then in terms of the K-G equation can be integrated once to give
X

+ constant
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Going further and demanding that the energy be finite and the solution 
localized in space, we set the constant equal to zero so that if <$*• 

are the roots of U(<J>) = 0, then our solutions (see Appendix A) should 

satisfy the boundary conditions

-» t CD °t o o -)
Thus what we are left to examine is the first order ordinary 
differential equation

Z L  = u o )

We let U(<J>) be a polynomial of y\ degree in

and study some particular combinations of which generate
solitary waves.

1. If U<4) is a second degree polynomial in we get the

inhomogeneous K-G equation

D  <t> + Ct = constant

which has general solution in the form

= constant + plane waves
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For U a third degree polynomial in

=  cte + a.( cf> r a t 4 > +  <J>‘

d 4> r _

? -i //if a .  + a # 4> + <|jV  ctj 4>? ]

If ' are t*le roots °f the polynomial U( 4  ), then

d
[ f  <(. -  u .,-) ( <J> -  to ,-)  f  <t> -U ),-)]

'/z = ±  1 / 2

The transformation 136J

gives s
4* " 60, - 0U 3

r  v > T  °
[ ( - a *  ) C . - k V ) ]  *

VJ, ^  U>%
U7, > Ui,
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In the case where OJz = CO(

Z
K = 1s ou.-u^

c|> = w , )  - u_>3 "tocnh j( V v r «?]

This is a solitary wave as can be seen in the figure below.

. UJ

If one , searching for internal modes, uses the same analysis as in 

Chapter II he finds that the system doesn't possess bound states.



Page 109

2. U(4») is a fourth degree polynomial in : The solution
is given by

Nj <>-aJ,-)

( Again OJ =1, h are the roots of U(^) = 0 ) 

By means of the transformation

zZ - f (*Z±!i , K ,
\ I \<p - ujx j   — ----

the above integral becomes

if : = tU y , then K  = 1

2  = co+b | 1 
2  »  f c w h
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(Notice that in the above integral for 2, if g  is a solution then t/£ 

is a solution too).

In terms of 2 the solutions read

l> (KX, + ) =

w, f - Cjq j _ -th 5
L CU, - ujm J_______

] _ 4  h r '
L 6J, - 04, J

U>
b> < K *rfc) =

, /  ̂ - ufz co+h |
I M I

[
Cut~ OJc, 

Uf, - UJW
- c o + h  j

. .  CJi
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For the case when U has two double roots:We write the potential as

(JO) =. c + if')1

or to make it more general ,

Z 2 2.
D O )  = ^  C a * p 4> +<ir

Providing  ̂^ t îe so^ut ôn is given by

t) = - JL ± \! tf-HciK tanh
T aot aa

where 5  = f ( X ? U  + - *»)

[zCi-v')]"2-

MThis is a shifted kink. The <p kink solution is a special case with

£ = 0 

a  = 1

y = -1 

£ = 1

As we expect there is only one bound state corresponding to the
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shape modes and its value depends on the constants at , j3 , £  
If two of the roots are zero:

U(<p) * / c <P' iC4>

and

4 > v f?  -to/) - tox')

The Euler substitution [36] 

will give the solution

z
Ui,ujz Ci - -tanb  l V z )

< K x , + ' >  =

C w.tij, - 2 V<M ujj +ocr? b 5 V2 1
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when LO(-5 lOi then <J> = 1. aj, {i ± + a n h  5 \Tz )

and again the shifted kink solution is recovered.

The second Euler substitution [36|

z 2C - ± C4>-t*0

gives the solution
x

. cu, ufz ( 1 - t ccnh f vT )
<P * ----------------------------------------

C uj, - ojz -tanh § X/zT )
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when uj. —> UJX 4> = =constant

The third Euler substitution
__________ Z

-  ( Cpt - V u j , UJL ) 00, CJZ > o

gives

? 5 \/ Zuj'UJ* ] 2-4. _ I t*j, +ujt _ e

2  V  tv, tcli

when Ou,-*UJ, 4* ~ ± to, shifted kink and antikink.

For a physical application of this case see reference [37] where 
the authors studying a classical nonlinear scalar field coupled by the 

Yukawa interaction to a fermion field end up with a field equation 

described by a fourth degree polynomial which gives the three solutions 

found before.

3. U(4> is a sixth degree polynomial in $ :

case one:
(Pl . * , * v i

that is the case where we have two roots zero and two double roots.

The solution from
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C  <1* . t

V t w

is given by

cx * I «** /cos h [ s m h " e * S e f l

f  t ' * / c o s h
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Second case : two roots are zero

z /
Letting cf> —> and performing again Euler's substitutions,

providing > O we find

'/*
r  LU, LOx ( I - -iex-n h§V^*V*7T )

- t

+ Ui2 T 2 V ou, t̂a." ^ S

4>x . ±
1 -  4 a . n h  C iV T Z v ^ T j )  

cj,- u;z - f c c m h  C ^ n / T ^ ^ T L ' )
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and the trivial constant solutions

= O  » GO j * UJj

for to, — > CO2

V  ( I ±
z*

//z

4>„ - »  ±  w..

For physical applications (solid state,quantum field theory) of the 
16q» theory see references [32,33,34,35,36].

4. Parametric sixth degree in ^  potential. 

We introduce the parametric potential

»< +  > -  7T ( I 4 C ) *-'] £0-‘ <<I>J
1 4 6As c goes from -1 to 1, U describes tf> , <j> , ĉ> i potentials 

respectively
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u w = ^ o ± 4 > r

11(40 = 7 7  (V -  0 c = o 4>

■U O )  - £  (m * - i) Y c  - *1 4>

(The constant 1/4 could be replaced in general by some constant C which 

would change the argument of the solution from "5 to "? 2C)
If one considers as constant, as ^  goes to zero U describes

the sine-Gordon equation.

The parametric potential U can also be written as

U O ) = ~  cos c/z ef> - ij Sinc/2 + <p coscj

Solving the corresponding field equation

a<p +  ^ v W  = o  
3<t>

for travelling wave solutions we get
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C O S  c_ —-—  Jf, [a sinc/z 4 cose <#►]
n (t- 2 cose) p I I —

[A cos c/i <#> - 1 J

2in c
c i -

2
2 COSC ) C O S C /

*]

S. U= A .  / +1p+l

the solution is given by

%  Cx.-t) =

V

t (»- P) I / a a

p *  i 1

and is not a solitary wave. It is interesting to observe that the same 

equation has n-1 solutions for each value of p (with p^l),given by

. ? iJ-
4P n  * (2- l / n " ) X H n  / P-»

C l -  p) CL
K x - O C * * t j

th-i
i-p
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6. For U= J. a*') t*le solitary solution is given by

<pCx,*) =■ a + a n
'In

Similarly for U=

= ( - - s L i y 7"  r  ±  ,/m

Concluding we have seen that the solitary wave solutions of NLKGE 
considered in this Appendix are all expressed in terms of TANH (^ ) 
which happens to be the solution of the equation. One might ask:

Are these solutions related (except the fact that they belong to the 

same family NLKGE) in some way that all can be derived from a general 
solution which is expressed in terms of the &  solution?

if
In Appendix G we try to relate the <p kink with the sine*Gordon 

soliton in order to understand better the relationship between solitary 

waves and their cousins, solitons.



APPENDIX G

. MARE KINKS OF <£> AND SOLITONS OF SINE GORDON EQUATION RELATED ?

Ve have seen (Chapter III) that for certain incoming velocities the 
energy exchange mechanism allows two colliding kinks to behave (almost) 

as solitons since they are scattered with (almost) no loss of energy as 
a result of the resonance energy exchange between the shape and 
translational modes. We examine the possibility of expressing the kink 

solution of equation in terms of the soliton solution of the
sine Gordon equation.
We consider the general case

G-i n<p 3 a  - P P *

Looking for travelling wave solutions in the form

^ 4 > ( f )
' V 1 -  U1 /

the above equation can be written as

G-2 -  ^ «<|> - p<j>5

Let

g-3 cjj = tto sirttts/2

where satisfies the field equation

(G-4) X3 itf = i ^  s i m y
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and
~ T A sin 4/

✓ v Jt y C =constants
( ± A c o  s y + c )  A

From eq. (G-2) upon using (G-3) and (G-5)

” c o s ^  ~ *inljr rri ̂  ] ~ Cfcyyi 5 V -  p m  5ini)/

i  +  v n  X  s u n  W / z .  1 m - A  -  s i n  )  + >T̂ C -  acw q 

■> i t- pvy» 5 m  I+//2 - o

Thus

p = ± 2 A /  ►vi*

G-7

a  : i 3 A / 2  4 ^/z

therefore
<p =  -m sirup /2.

and is the solution of

M'l/i = (± A C O 54/ + O

(with ^ + ̂  t o s y  + O  positive for real solutions)

(GO) or

G-6
I  = 2.
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S
For ^  equation Q  =1 , £ =1 then from G-7

G-8
A  = ± 2ZL

C = 2  rn /  2.

and the solution becomes

<p s  i n  5 m  ly / z
G-9

t  X  c o s i y  + c  = ^ 5  / Z

The solution for any m is given in general, in terms of the elliptic 

integrals. For the special case one obtains

^  i
= (2" ) and -Wi r -t I ^  A  =Z. &.

for yvt r £  I

and

G-10

± 5 / v ?
(̂  = ± Sin I 2 k n  e  - tt/zf ]
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which is the kink-antikink solution of eq. as can be seen below.

For A = 1 C

4> C*,*fc ^ -  ±  vTz S  m  2 -hatvn €

which is an imaginary solution of the ^ equation.

Thus summarizing the results :

U i.
For the general ^  equation q  _ £  <£
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there exists a transformation

4> = m n  $ m w /2

where

□  Ly = ~i s in

or ^ , c =constants

= ± Z A C O S + 2 C * _ ■* ± Ut
C  i - v  j

which gives the travelling wave T-W solutions of the general equation, 
in terms of the known T-W solutions of the sine-Gordon eq. G-6. For 

the special case CL =1, |5=lf \ = "t <■ one finds the kink solution of 

the (pure) equation (G-10) and an imaginary solution (G-ll).

Thus we conclude that it may be useful to view a kink as a 
perturbed soli ton and the solitary properties of a kink as due to 
soliton properties left after the perturbation. It starts off as a 
soli ton

<(>= s m ^ / 2  «  V / 2  (for small ^  )

and develops as a solitary wave. The result is not surprising since for 
small the s-G equation reads

o y  = ± A  C - v*/* * ■ + • * • • )
ii

and the powers of <f> equation are recovered
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0  <i> = cxcp - P4>*

LjTherefore one might think of cp1 equation a s-G one which has been 
disturbed by external force F, such that

014/ = - A

and the effect of F(x,t) is to neutralize all higher terms above
HSimilarly if one perturbs the 4* by some external force , it might be 

possible to find solitons. Extending the logic to more solitons we 
might say that N interacting solitons may form a kink or solitary wave 

For instance the coupled equations below

O  - <p rj'-t-i') s in iy/2 - (y% + v*) S M  *v/i ~ j

D  V  -*■ S»vi y  - O

z ,
have running solutions

n

One can see, that for small tf\ 4* ~ [I WI
the solitary solution is described by N interacting solitons.

The external field can also be written in terms of , and be such 

that the transformation <f> = sint'f'/Z) makes it vanish. For instance
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the coupled equations

2
^  = a c f> ~

+ 4> (<P*~ ( A<l>\ 4>*)cf>h

(_ ----------w--------
F^x,-t )

^ t t  ' % V  =  - *  s i n q ;

have solutions

<J> s  v n  s I vi ly / i

A = 2 Cc - >cos"/] 
“lth * = r ;  ’ & =  e j .  .

?  = ’' t u t
C i -  is '

If one use the same transformation (G-3)

= m sin ( W/2)

to solve
C3<f> ■* occp - p>cp
a  i|/ =  - A  s m y
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and not restricting the solution to running waves , one finds

f O  if/ ) ijVz - -L $/n if/2 ( VjJ ) = a  s»nM//2 - pwsiwv

The condition for the transformation G-3 to work is
2. 7.

%  -  ^
which for non travelling wave solutions will relate the two independent

variables x,t for any if/ solution. Wishing, still to relate the two

equations for the general case we are forced to introduce another term
qto the R.H.S of <p which will cancel the undesired term. Then

D<f> = CX <p - P Cp* - ±- ( V * - %  ) m  Stn y / z

tn If/ = - A  smyj

or in terms of the field

atf> = Q <j> -  p<j>* -  4, (<tf. <p*

Q  if. * - .A strtty

For the pure 4* equation ot = f£ =1
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this gives m= ± |  ̂=-1

and <f> = ■+ CoSty/2

where is any solution of the s-G equation.

Thus if we choose the soliton-antisoliton scattering solution

/ S i n h  U+X" \ . zci/zVfx,+)» H + a *  ( — 0-sb -) .

^ =  ±  C O S f* / s h j H X  
' u c h  x  y

notice that as t — poo \y - S* S =soliton + antisoliton

then = i  [cos Cs)cos (s') - sin(s)sinCs)]
C+ ~P +o>) L
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Even if the transformation fails to connect <f> and s-G for exact time

dependent solutions, it does not necessarily mean there is no such

transformation, or for that matter exact time-dependent solutions
(jof Ip . Here we were hoping that expressing the solution in terms of 

the knowing solutions of the sine-Gordon equation we would be able to 

solve <J>4 for the general case as we did for the case of running wave
solutions. Nevertheless we have seen that a kink and a s-G soliton are

related.

The need for introducing the extra term into R.H.S of (G-12), 
relating the two field equations through this transformation, perhaps 

indicates that the "secrets" of the solitary properties of the 4* kink 

could be understood better by perturbing the <fy eq. and expressing 
the solution in terms of s-G solutions. The hyperbolic type kink

solution is not the only one which has the soliton solution of s-G built 

in. If one takes for instance the <p̂  field equation (see Appendix F) 
where the potential is given by

1 . 2 ^ 2 2 2 \ 1C a. - p <P i

he finds that the solution can be written in terms of as

<p~ 2L s

-*y/s H - t a r t  C
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Similarly the NLKG equation with potential (see A-F)

u= - L  ty1 ( 4*”  - o T  )
3. T V

has solution

M * r  _l a ”*! I /m -1
4> -  cx s m  l - t  a n  -e j

expressed also in terms of , and so they do all the NKG equations

.Hwhich have their solution expressed in terms of kink.



APPENDIX H

.4cp EQUATION WITH DISSIPATION

qWe have shown that the 4> equation has a general travelling wave 
solution given by elliptic functions and the kink solitary solution is a 
particular case of the elliptic parameters (see Appendix G). It is

uinteresting to see if the same method would allow one to solve the cp 
problem if one adds a term proportional to the first derivative of time. 
Then the field equation reads

H-l □  cf> - = °

(where p is a real parameter)

Looking again for running solutions (G-l), and s-Gordon equations 
transformed to ODE

H'2 ~ - o

H-3

where again
1  a (X *  U + 1 C  - ( X  *  U +  ) )C S

O

Integrating H-3 and chosing the integration constant to be x/s 
one finds
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Relating and ij/ by the transformation

H-5 4> = w  sin 14//z -1- »t

and upon using H-4 equation H-2 gives

2 vn A S m  if'/z - Sin q//2 ± p^v-r> \TX /<T

+ V Y  7 n  \/X S i n i f / 2  -  w »  - w i  S ivn vj//z

1 3 x  1
+  v n  S IVI iy/2. +■ w  (  1 +  3  S i n  t w z  + 3  S l v i i j//2 ) o

Collecting terms one gets the system of equations 

vn - 2 A 1

+ //X

v Z2 A - I + — 0

H-6

which has solution

'Wi = ± »/z
H-7 A = I /v*

± / C 1 “ U l ) //4 a */\rr

Solving for 4> from H-4 and substituting in H-5 the solution to

H-l reads

H-8
± X  

a Sin I 2 t a n *  e
x ± if (&") -i+Xo



Page 134

(where x„ is constant determined by (p (*=+3 a))

and describes a shifted kink(antikink) solution.

From H-7 one finds that the velocity of the kink is function of the

parameter p and is given by

H-9 u(p)
•/z.

For negative p (dissipation) the solution reads

4> (x ,+)  ~ ± j
$4.0

S i n(w - s i
+ 1

and for positive ^

P » ® is,n I 1-tan £ v  •

/ x+v« * lu(fiih)

The kink solutions are indeed a surprise. Perturbing 
Hthe <p equation, by introducing the extra term in G-l, one does not 

expect to find kink solutions. From the linear picture once 

dissipation is introduced in the system the solution gets distorted and 

dies out as a result of the energy loss. The nonlinear picture differs 

remarkably from that and the damping term only shifts the (kink) 

solution, restricting the kink to move with certain velocities depending 

on the amplitude p  of the dissipation introduced in the system. 

Thus in a physical system where energy loss is present (water waves)
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only kinks which satisfy (H-8) are expected to be observed. The 
question is how kinks supply this energy loss ( <0) or what happens to
the energy added ( £ >0) if this solution has any meanning at all. If

one perturbs the system further by adding a constant force term to <H—1)

4>++ - x * P  4>+ - 4>

using the transformation 
H - 10 < P s W )  S i n \|//2. -#■
and working the same way as before fhe finds the system of equations

W> S 2- A
H-ll

z2 A - i + 3 k. - °
= k 6 - k ) - P.

,  2.
t u y  s

w, = K  = ± l/2

the previous solution is recovered. For / 0 from H-ll

2 z-WO = 2>> - 1-3 K.
H-12

2 K. - £  K ? +  -  *

Solving H-12 for k (k < li/i/ for real m ) in terms of one can find
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m and from

\  '   —  a {  ( ”) vvl = \ /T X  *  f, f t )z

where the solutions of k are given by

K, = S +  T

+  4- '/t C s - t ) 

it5 = -i. (Ts+t) --L v ^ C s - t )

wi th

The general wave solution of H-10 is then given by (H-9) where <y is 

the solution of s-G. Thus the method accounts for finding a solution of 

the cj> equation with both time derivative term and constant force.



APPENDIX I

NEW EQUATIONS WITH KINK SOLUTIONS

It is interesting to mention that in our study of solitary waves we 
have found new nonlinear equations which do not belong to the family of 

the nonlinear Klein-Gordon equations since they can not be written in 
the form

a * *  0
3  4

1. The first one is given by the equation

1-1 =  + *  +  +  £

where £ , 5" are constants ,and has solution

1-2

If one attempts to find the bound states for this equation by letting

d> = <j> + y  as in Chapter II , he finds that the number of bound ©
states depends on the values of the constants £, , &  .We don't know
if 1-1 can describe any physical system. If it does, then in addition 

to the kink solution one has the possibility of fixing the number of 

bound states by choosing the amplitudes £. , of the disturbances. 

This number reduces to two bound states when d,e are both zero ( ).
Again one could check numerically if the resonance energy exchange
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between the bound modes works here too.

2. We also have found that the integrodifferential equations

1-3
□ 4> = 4*- +■ t x J-fc ■+ £  S  4>+

i-4 o<j> = 4>'4> + £u<j) + i <p"

have kink-like solutions given by

cjj - -fccmh 2 (x± V't)
for H-3

$  - -tomlo x ± V *

y  2 6  - )
for H-4

Again we don't know what physical system can be modeled by the

above equations. In this notice we just list the new equations and
emphasize that they have kink solutions.
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