








APPENDIX C

EQUATIONS OF MOTION FOR PCC

Ue solve the coupled equations of motion, for the case of the 

parametric collective coordinate approach (PCC) for the collective 
coordinates A(t) and Xo(t). The equations are given by

XD =

b ( A  -  J-  A  )  = - f  ♦ - H  - 
V A  *  A 1 J 2 3A 2A*

Decoupling the equations, we get 
z

1 - (\ + Dc‘ ̂  .
2  Az‘ [ £  ■ & ]  •

or

b  I " i i i  -  j -  E s .  1 = - ( i - " * ' )  + «
L X .  2  J  2  2  y *

In order to eliminate the constant ( I ■* d  ")/Z take the time
derivative of both sides , then

b  [ X *  x „  ♦ X . V .  - x . x j  = X . X .  ( W )

or
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X 0 + [ ( • + < * V b ]  y „  =

which can be integrated to give

X .  = C, c o s  f jf +

where C, ^ are arbitrary constants

and dJ* = t_+_cx_

Integrating again we obtain

x . r o  = -£■ s i n  ( y  -r cot > ♦ c :

Inserting the solution back to the equation for Xo we have

b *• • • i ..2 i l • ̂X, Xo - -!■ X. -
2 a  a

—  s i n f ^ f + w O C j O )  c° ŝ ^ + w t v

- w t / '  iL S i n ( v . u t )  * C *  iSiL‘ sin (y r u tl) 
a a. v- uj1 u 2 cu 1

■ * * ✓ 1 /-z - b e ,  = * - C ' +  > c*.



APPENDIX D

SHAPE AMPLITUDE SOLUTIONS FOR LECC

In order to solve
. . 1  1 1 

+ OJ0 A  * C-i 4 A  + C} A

we try a solution in the form (see Landau [23 J >

A = A“’ AM  * A 0> f •  t

and
CO ^

CO = CaJo + ui + CO +

/ ■ >where n is the solution of the unperturbed equation

A * (*>o A =  ©
A<0A  s K, COS CO + K =constant

Insert A  = A * °  +■ A C°  =  K. coSOu-fc + A ^

in the initial equation and keep 0  £ A **'*J

*T*> * .CO j
A  + COo A  = 2 <Oc Uj K COSUJ± * Ct + Cj KcosttH

O)
2 2. 0Jo Uj K coscut + c,

2. 4 + Cz k /z + cosaoJt (czK/z)
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Cl)
Set CO a o to get rid of the resonance term

•• f t )  x  C O  ,  ^  . r  * i
A  + / \  = ' 2 -  + C*KCOSAW-fc

with solution 

f z ’i
/\ (+) = - C i l ^ C O S  iOJt

1 <*£ 6 oj£

^ . a (3)Going to

V * 3) z xci> CO ci) ci»> ci) 6)A  + A = 2 C i A  A  t CjA +aa)0co/\
_ .3 5 fi>

= c3 (c COSCD-t + 2 COc CO KCOSCJU-fc

t 2 c2 K COjOJ-t [ 2 C,* C2< . Ci kcoscotlL 2 CO/ 6 CO/ J
or ✓ T ’ ♦ «: A ° '  - f̂

 ^ 0  Oj/

Cl) * -i
+  K ♦  3 C , K / 4  CO SO J-t

+  C “ f z K / 6 c ° o  + Cj  * ? A / )  C 0 S 3 C * )t
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Looking for a solution in the form

r coŝ cot + r2
then

CO.
C O S  3 < a t

3 o>

and

Cz'i
- UU

CjCzK
Z 2.

S  C z  K 3 C 3 K  o Jc

« ov

Collecting terms ve have

Af+'J = *C C O S C a H  + 2 C, + c2 k_ _ c 2 K  COSZUJt
2 01 S' 'x6  c j „

- A -
2 3

£ i iL  *) C 0 S 3 t 0 t  
H  '



APPENDIX E

INTEGRAL CALCULATIONS - EVALUATION OF Xo(t)

By direct integration the explicit functions V[Xo(t>], K[Xo(t)J, 

Q[Xo(t)], C(Xo(t)],I[Xo(t)],F[(Xo(t)],U[Xo(t>] are as follows:

K  ( > 0  =   + n ? o  c h v T X o  + LjizH c h \ / z X o

shvrXo  s b 6/r X o  5 h V r  x  <»

+ M ow cbyiXo _ ? 5 6 _ ii3 M _

35 slnvzX* shn/rx* sb5v7Xo loshVxo

' ii  + vrx, ch\ZzXo/-Mi- + _256_
shvTXo \ sh‘y7Xo shZ\JiXo

+ <*16 _ \fzXof —  + 16*18
sh4\/rXo '  ̂ sb ŷ/iXo

4  _ l i i —  +  M / r  /  — S -L -

s h V r X *  s l i V r x *  s /t V i x *

3 M 5  __ +   +  _ 5 ____ \

5 shVzXo 11 sh4\TtXo <r sh2/z Xo
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" \/JL X 0 c h V T X 0 C  3-—N - u'’
7-5 3 5

sh v7x„ 2 sh?vrx. ^shVrx,

9 sh n
W  ( X ‘  f -  + <52-------  *

L 3 5  l i h ’ i / I K o

(H «?0 82 5

7 f 6
irb'v^Xo 5 h 4 / T X o

chi/TXo

sh Vz Xo sh y/rXo shi/j Xo
9 3  C h\/IX o  _  6l~2 ch\T2 X o  ̂ 6 7 S  chtfZXt,

sln^\/rXo s h V r X o  sH V zX o

+ 6 2 S _ - \  4

Shq\^Xo /

36 M 7 J iziS
shl/z Xo shVi Xo sliV?X*

x/TX, r—
\ shZ\

I*r
sh\/zXo S h / a X o

1 0 6 2

S h v T X o

6?5
8

s h > / T X o )
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Q O . )  

I ( X . )  =

C(x0)

F C * )  - 

+

U(X) =

_ I* - 6_co<,h V z X o + 6 (, + cb^VlX<Q
L 1/IX 0 Vz sh^yTXo

z l l L -  + h y „  c h  g y ,  

sh\Z?Xo sh*\/rXe

IT 3z w ianh x« sech^xa
v Z V 2 - \ f l  y z  ]

L yz & VT

7 ^  + h 2 k  -  25  ^  x .
3 2  ^  a  7 =-

HH \ r Z  I - 4 r  +  \/T X o  * - L
- t r h \ / l X o

_ 2 +  3 V z  X 0 + 2 V T X 0

~L<Xnk\fz Xo "i av) h v s x o  J
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All the above integrals have been checked numerically. The integrals 
Q,C,F are in disagreement with Sugiyama's corresponding integral 

calculations(2]. His calculations give

The function ll(Xo) physically represents the "potential" between 

the kink and the antikink, and I(Xo) describes the interaction of the 

kinks viewed as deformable particles. Q(Xo) represents the interaction 

of the shape modes between the individual kinks. The other functions 

describe the coupling of the different modes among kink and antikink.

Evaluation of Xo(t):

From equation (A.16) and for large separation distances Xo(t) one 

can approximate the motion of each kink in terms of the collective

+ V c o s e c h  VI Xo)
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coordinate Xo(t), by expanding U(Xo) and I(Xo) and solving the resulting 
equation. The contribution of I(Xo) for large Xo is very small compared 
to the leading coefficient of Xo(t), the constant M, therefore I(Xo) can 
be ignored simplifying equation (4.16) to

E-l / M X *  + O C X . )  = 2 M  -  £ M

Expanding U(Xo) for large Xo
r  - 2V z X o

UC^o) = [-2/3 + + 2VzX0( ±

-zvrx0 - zvzx0 -j
+ 6 e ) - (z + 3 V T X b}(i +He y j

E-2
_2vTXto 

= 2 M  - I 2 M  £

and inserting U(Xo) in E-l ve get

.2 - z V T X o
E-3 M X  o - i Z M f  = - £ M

Solving for Xo(t) we find

E-4 (*) ~
\[z n̂ [\/"5 smy/'zt (*

where 5*o is determined by the condition

Xo (* = <>) *o *  - °  z



APPENDIX F

SOLITARY WAVES AND NONLINEAR KLEIN GORDON EQUATIONS 

.4The <p equation is one among a large number of nonlinear 
equations which possess solitary wave solutions. In this Appendix we 

consider the family of the nonlinear Klein-Gordon equations (NLKG)
Ifwhich <p belongs to, and we derive the solitary wave solutions of some 

member equations of this category. We use special transformations and 
Euler's substitutions to solve the NLKG equations which in general have 
solutions expressed in terms of elliptic integrals. It is interesting 

that all the solitary solutions found are expressed in terms of the 
hyperbolic tangent kink solution [TANH( X  )] of the equation (the 

simplest one) which in turn as we show in Appendix G can be expressed in 
terms of the sine-Gordon soli ton solution. We consider the nonlinear 

Klein Gordon equation (NLKGE) given in the general case by

□  4) + <3 U C 4 > )  _  o

3 tp

(where U(+) is a positive function of cf> ).

We are interested in travelling wave solutions <P(l) where

z  -  x  t u t  

O - v 1 ) " 1

Then in terms of the K-G equation can be integrated once to give
X

+ constant
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Going further and demanding that the energy be finite and the solution 
localized in space, we set the constant equal to zero so that if <$*• 

are the roots of U(<J>) = 0, then our solutions (see Appendix A) should 

satisfy the boundary conditions

-» t CD °t o o -)
Thus what we are left to examine is the first order ordinary 
differential equation

Z L  = u o )

We let U(<J>) be a polynomial of y\ degree in

and study some particular combinations of which generate
solitary waves.

1. If U<4) is a second degree polynomial in we get the

inhomogeneous K-G equation

D  <t> + Ct = constant

which has general solution in the form

= constant + plane waves



Page 107

For U a third degree polynomial in

=  cte + a.( cf> r a t 4 > +  <J>‘

d 4> r _

? -i //if a .  + a # 4> + <|jV  ctj 4>? ]

If ' are t*le roots °f the polynomial U( 4  ), then

d
[ f  <(. -  u .,-) ( <J> -  to ,-)  f  <t> -U ),-)]

'/z = ±  1 / 2

The transformation 136J

gives s
4* " 60, - 0U 3

r  v > T  °
[ ( - a *  ) C . - k V ) ]  *

VJ, ^  U>%
U7, > Ui,
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In the case where OJz = CO(

Z
K = 1s ou.-u^

c|> = w , )  - u_>3 "tocnh j( V v r «?]

This is a solitary wave as can be seen in the figure below.

. UJ

If one , searching for internal modes, uses the same analysis as in 

Chapter II he finds that the system doesn't possess bound states.



Page 109

2. U(4») is a fourth degree polynomial in : The solution
is given by

Nj <>-aJ,-)

( Again OJ =1, h are the roots of U(^) = 0 ) 

By means of the transformation

zZ - f (*Z±!i , K ,
\ I \<p - ujx j   — ----

the above integral becomes

if : = tU y , then K  = 1

2  = co+b | 1 
2  »  f c w h
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(Notice that in the above integral for 2, if g  is a solution then t/£ 

is a solution too).

In terms of 2 the solutions read

l> (KX, + ) =

w, f - Cjq j _ -th 5
L CU, - ujm J_______

] _ 4  h r '
L 6J, - 04, J

U>
b> < K *rfc) =

, /  ̂ - ufz co+h |
I M I

[
Cut~ OJc, 

Uf, - UJW
- c o + h  j

. .  CJi
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For the case when U has two double roots:We write the potential as

(JO) =. c + if')1

or to make it more general ,

Z 2 2.
D O )  = ^  C a * p 4> +<ir

Providing  ̂^ t îe so^ut ôn is given by

t) = - JL ± \! tf-HciK tanh
T aot aa

where 5  = f ( X ? U  + - *»)

[zCi-v')]"2-

MThis is a shifted kink. The <p kink solution is a special case with

£ = 0 

a  = 1

y = -1 

£ = 1

As we expect there is only one bound state corresponding to the
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shape modes and its value depends on the constants at , j3 , £  
If two of the roots are zero:

U(<p) * / c <P' iC4>

and

4 > v f?  -to/) - tox')

The Euler substitution [36] 

will give the solution

z
Ui,ujz Ci - -tanb  l V z )

< K x , + ' >  =

C w.tij, - 2 V<M ujj +ocr? b 5 V2 1
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when LO(-5 lOi then <J> = 1. aj, {i ± + a n h  5 \Tz )

and again the shifted kink solution is recovered.

The second Euler substitution [36|

z 2C - ± C4>-t*0

gives the solution
x

. cu, ufz ( 1 - t ccnh f vT )
<P * ----------------------------------------

C uj, - ojz -tanh § X/zT )
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when uj. —> UJX 4> = =constant

The third Euler substitution
__________ Z

-  ( Cpt - V u j , UJL ) 00, CJZ > o

gives

? 5 \/ Zuj'UJ* ] 2-4. _ I t*j, +ujt _ e

2  V  tv, tcli

when Ou,-*UJ, 4* ~ ± to, shifted kink and antikink.

For a physical application of this case see reference [37] where 
the authors studying a classical nonlinear scalar field coupled by the 

Yukawa interaction to a fermion field end up with a field equation 

described by a fourth degree polynomial which gives the three solutions 

found before.

3. U(4> is a sixth degree polynomial in $ :

case one:
(Pl . * , * v i

that is the case where we have two roots zero and two double roots.

The solution from
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C  <1* . t

V t w

is given by

cx * I «** /cos h [ s m h " e * S e f l

f  t ' * / c o s h
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Second case : two roots are zero

z /
Letting cf> —> and performing again Euler's substitutions,

providing > O we find

'/*
r  LU, LOx ( I - -iex-n h§V^*V*7T )

- t

+ Ui2 T 2 V ou, t̂a." ^ S

4>x . ±
1 -  4 a . n h  C iV T Z v ^ T j )  

cj,- u;z - f c c m h  C ^ n / T ^ ^ T L ' )
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and the trivial constant solutions

= O  » GO j * UJj

for to, — > CO2

V  ( I ±
z*

//z

4>„ - »  ±  w..

For physical applications (solid state,quantum field theory) of the 
16q» theory see references [32,33,34,35,36].

4. Parametric sixth degree in ^  potential. 

We introduce the parametric potential

»< +  > -  7T ( I 4 C ) *-'] £0-‘ <<I>J
1 4 6As c goes from -1 to 1, U describes tf> , <j> , ĉ> i potentials 

respectively
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u w = ^ o ± 4 > r

11(40 = 7 7  (V -  0 c = o 4>

■U O )  - £  (m * - i) Y c  - *1 4>

(The constant 1/4 could be replaced in general by some constant C which 

would change the argument of the solution from "5 to "? 2C)
If one considers as constant, as ^  goes to zero U describes

the sine-Gordon equation.

The parametric potential U can also be written as

U O ) = ~  cos c/z ef> - ij Sinc/2 + <p coscj

Solving the corresponding field equation

a<p +  ^ v W  = o  
3<t>

for travelling wave solutions we get
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C O S  c_ —-—  Jf, [a sinc/z 4 cose <#►]
n (t- 2 cose) p I I —

[A cos c/i <#> - 1 J

2in c
c i -

2
2 COSC ) C O S C /

*]

S. U= A .  / +1p+l

the solution is given by

%  Cx.-t) =

V

t (»- P) I / a a

p *  i 1

and is not a solitary wave. It is interesting to observe that the same 

equation has n-1 solutions for each value of p (with p^l),given by

. ? iJ-
4P n  * (2- l / n " ) X H n  / P-»

C l -  p) CL
K x - O C * * t j

th-i
i-p
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6. For U= J. a*') t*le solitary solution is given by

<pCx,*) =■ a + a n
'In

Similarly for U=

= ( - - s L i y 7"  r  ±  ,/m

Concluding we have seen that the solitary wave solutions of NLKGE 
considered in this Appendix are all expressed in terms of TANH (^ ) 
which happens to be the solution of the equation. One might ask:

Are these solutions related (except the fact that they belong to the 

same family NLKGE) in some way that all can be derived from a general 
solution which is expressed in terms of the &  solution?

if
In Appendix G we try to relate the <p kink with the sine*Gordon 

soliton in order to understand better the relationship between solitary 

waves and their cousins, solitons.



APPENDIX G

. MARE KINKS OF <£> AND SOLITONS OF SINE GORDON EQUATION RELATED ?

Ve have seen (Chapter III) that for certain incoming velocities the 
energy exchange mechanism allows two colliding kinks to behave (almost) 

as solitons since they are scattered with (almost) no loss of energy as 
a result of the resonance energy exchange between the shape and 
translational modes. We examine the possibility of expressing the kink 

solution of equation in terms of the soliton solution of the
sine Gordon equation.
We consider the general case

G-i n<p 3 a  - P P *

Looking for travelling wave solutions in the form

^ 4 > ( f )
' V 1 -  U1 /

the above equation can be written as

G-2 -  ^ «<|> - p<j>5

Let

g-3 cjj = tto sirttts/2

where satisfies the field equation

(G-4) X3 itf = i ^  s i m y
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and
~ T A sin 4/

✓ v Jt y C =constants
( ± A c o  s y + c )  A

From eq. (G-2) upon using (G-3) and (G-5)

” c o s ^  ~ *inljr rri ̂  ] ~ Cfcyyi 5 V -  p m  5ini)/

i  +  v n  X  s u n  W / z .  1 m - A  -  s i n  )  + >T̂ C -  acw q 

■> i t- pvy» 5 m  I+//2 - o

Thus

p = ± 2 A /  ►vi*

G-7

a  : i 3 A / 2  4 ^/z

therefore
<p =  -m sirup /2.

and is the solution of

M'l/i = (± A C O 54/ + O

(with ^ + ̂  t o s y  + O  positive for real solutions)

(GO) or

G-6
I  = 2.
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S
For ^  equation Q  =1 , £ =1 then from G-7

G-8
A  = ± 2ZL

C = 2  rn /  2.

and the solution becomes

<p s  i n  5 m  ly / z
G-9

t  X  c o s i y  + c  = ^ 5  / Z

The solution for any m is given in general, in terms of the elliptic 

integrals. For the special case one obtains

^  i
= (2" ) and -Wi r -t I ^  A  =Z. &.

for yvt r £  I

and

G-10

± 5 / v ?
(̂  = ± Sin I 2 k n  e  - tt/zf ]
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which is the kink-antikink solution of eq. as can be seen below.

For A = 1 C

4> C*,*fc ^ -  ±  vTz S  m  2 -hatvn €

which is an imaginary solution of the ^ equation.

Thus summarizing the results :

U i.
For the general ^  equation q  _ £  <£
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there exists a transformation

4> = m n  $ m w /2

where

□  Ly = ~i s in

or ^ , c =constants

= ± Z A C O S + 2 C * _ ■* ± Ut
C  i - v  j

which gives the travelling wave T-W solutions of the general equation, 
in terms of the known T-W solutions of the sine-Gordon eq. G-6. For 

the special case CL =1, |5=lf \ = "t <■ one finds the kink solution of 

the (pure) equation (G-10) and an imaginary solution (G-ll).

Thus we conclude that it may be useful to view a kink as a 
perturbed soli ton and the solitary properties of a kink as due to 
soliton properties left after the perturbation. It starts off as a 
soli ton

<(>= s m ^ / 2  «  V / 2  (for small ^  )

and develops as a solitary wave. The result is not surprising since for 
small the s-G equation reads

o y  = ± A  C - v*/* * ■ + • * • • )
ii

and the powers of <f> equation are recovered
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0  <i> = cxcp - P4>*

LjTherefore one might think of cp1 equation a s-G one which has been 
disturbed by external force F, such that

014/ = - A

and the effect of F(x,t) is to neutralize all higher terms above
HSimilarly if one perturbs the 4* by some external force , it might be 

possible to find solitons. Extending the logic to more solitons we 
might say that N interacting solitons may form a kink or solitary wave 

For instance the coupled equations below

O  - <p rj'-t-i') s in iy/2 - (y% + v*) S M  *v/i ~ j

D  V  -*■ S»vi y  - O

z ,
have running solutions

n

One can see, that for small tf\ 4* ~ [I WI
the solitary solution is described by N interacting solitons.

The external field can also be written in terms of , and be such 

that the transformation <f> = sint'f'/Z) makes it vanish. For instance
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the coupled equations

2
^  = a c f> ~

+ 4> (<P*~ ( A<l>\ 4>*)cf>h

(_ ----------w--------
F^x,-t )

^ t t  ' % V  =  - *  s i n q ;

have solutions

<J> s  v n  s I vi ly / i

A = 2 Cc - >cos"/] 
“lth * = r ;  ’ & =  e j .  .

?  = ’' t u t
C i -  is '

If one use the same transformation (G-3)

= m sin ( W/2)

to solve
C3<f> ■* occp - p>cp
a  i|/ =  - A  s m y
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and not restricting the solution to running waves , one finds

f O  if/ ) ijVz - -L $/n if/2 ( VjJ ) = a  s»nM//2 - pwsiwv

The condition for the transformation G-3 to work is
2. 7.

%  -  ^
which for non travelling wave solutions will relate the two independent

variables x,t for any if/ solution. Wishing, still to relate the two

equations for the general case we are forced to introduce another term
qto the R.H.S of <p which will cancel the undesired term. Then

D<f> = CX <p - P Cp* - ±- ( V * - %  ) m  Stn y / z

tn If/ = - A  smyj

or in terms of the field

atf> = Q <j> -  p<j>* -  4, (<tf. <p*

Q  if. * - .A strtty

For the pure 4* equation ot = f£ =1
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this gives m= ± |  ̂=-1

and <f> = ■+ CoSty/2

where is any solution of the s-G equation.

Thus if we choose the soliton-antisoliton scattering solution

/ S i n h  U+X" \ . zci/zVfx,+)» H + a *  ( — 0-sb -) .

^ =  ±  C O S f* / s h j H X  
' u c h  x  y

notice that as t — poo \y - S* S =soliton + antisoliton

then = i  [cos Cs)cos (s') - sin(s)sinCs)]
C+ ~P +o>) L



Page 130

Even if the transformation fails to connect <f> and s-G for exact time

dependent solutions, it does not necessarily mean there is no such

transformation, or for that matter exact time-dependent solutions
(jof Ip . Here we were hoping that expressing the solution in terms of 

the knowing solutions of the sine-Gordon equation we would be able to 

solve <J>4 for the general case as we did for the case of running wave
solutions. Nevertheless we have seen that a kink and a s-G soliton are

related.

The need for introducing the extra term into R.H.S of (G-12), 
relating the two field equations through this transformation, perhaps 

indicates that the "secrets" of the solitary properties of the 4* kink 

could be understood better by perturbing the <fy eq. and expressing 
the solution in terms of s-G solutions. The hyperbolic type kink

solution is not the only one which has the soliton solution of s-G built 

in. If one takes for instance the <p̂  field equation (see Appendix F) 
where the potential is given by

1 . 2 ^ 2 2 2 \ 1C a. - p <P i

he finds that the solution can be written in terms of as

<p~ 2L s

-*y/s H - t a r t  C
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Similarly the NLKG equation with potential (see A-F)

u= - L  ty1 ( 4*”  - o T  )
3. T V

has solution

M * r  _l a ”*! I /m -1
4> -  cx s m  l - t  a n  -e j

expressed also in terms of , and so they do all the NKG equations

.Hwhich have their solution expressed in terms of kink.



APPENDIX H

.4cp EQUATION WITH DISSIPATION

qWe have shown that the 4> equation has a general travelling wave 
solution given by elliptic functions and the kink solitary solution is a 
particular case of the elliptic parameters (see Appendix G). It is

uinteresting to see if the same method would allow one to solve the cp 
problem if one adds a term proportional to the first derivative of time. 
Then the field equation reads

H-l □  cf> - = °

(where p is a real parameter)

Looking again for running solutions (G-l), and s-Gordon equations 
transformed to ODE

H'2 ~ - o

H-3

where again
1  a (X *  U + 1 C  - ( X  *  U +  ) )C S

O

Integrating H-3 and chosing the integration constant to be x/s 
one finds
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Relating and ij/ by the transformation

H-5 4> = w  sin 14//z -1- »t

and upon using H-4 equation H-2 gives

2 vn A S m  if'/z - Sin q//2 ± p^v-r> \TX /<T

+ V Y  7 n  \/X S i n i f / 2  -  w »  - w i  S ivn vj//z

1 3 x  1
+  v n  S IVI iy/2. +■ w  (  1 +  3  S i n  t w z  + 3  S l v i i j//2 ) o

Collecting terms one gets the system of equations 

vn - 2 A 1

+ //X

v Z2 A - I + — 0

H-6

which has solution

'Wi = ± »/z
H-7 A = I /v*

± / C 1 “ U l ) //4 a */\rr

Solving for 4> from H-4 and substituting in H-5 the solution to

H-l reads

H-8
± X  

a Sin I 2 t a n *  e
x ± if (&") -i+Xo
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(where x„ is constant determined by (p (*=+3 a))

and describes a shifted kink(antikink) solution.

From H-7 one finds that the velocity of the kink is function of the

parameter p and is given by

H-9 u(p)
•/z.

For negative p (dissipation) the solution reads

4> (x ,+)  ~ ± j
$4.0

S i n(w - s i
+ 1

and for positive ^

P » ® is,n I 1-tan £ v  •

/ x+v« * lu(fiih)

The kink solutions are indeed a surprise. Perturbing 
Hthe <p equation, by introducing the extra term in G-l, one does not 

expect to find kink solutions. From the linear picture once 

dissipation is introduced in the system the solution gets distorted and 

dies out as a result of the energy loss. The nonlinear picture differs 

remarkably from that and the damping term only shifts the (kink) 

solution, restricting the kink to move with certain velocities depending 

on the amplitude p  of the dissipation introduced in the system. 

Thus in a physical system where energy loss is present (water waves)
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only kinks which satisfy (H-8) are expected to be observed. The 
question is how kinks supply this energy loss ( <0) or what happens to
the energy added ( £ >0) if this solution has any meanning at all. If

one perturbs the system further by adding a constant force term to <H—1)

4>++ - x * P  4>+ - 4>

using the transformation 
H - 10 < P s W )  S i n \|//2. -#■
and working the same way as before fhe finds the system of equations

W> S 2- A
H-ll

z2 A - i + 3 k. - °
= k 6 - k ) - P.

,  2.
t u y  s

w, = K  = ± l/2

the previous solution is recovered. For / 0 from H-ll

2 z-WO = 2>> - 1-3 K.
H-12

2 K. - £  K ? +  -  *

Solving H-12 for k (k < li/i/ for real m ) in terms of one can find
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m and from

\  '   —  a {  ( ”) vvl = \ /T X  *  f, f t )z

where the solutions of k are given by

K, = S +  T

+  4- '/t C s - t ) 

it5 = -i. (Ts+t) --L v ^ C s - t )

wi th

The general wave solution of H-10 is then given by (H-9) where <y is 

the solution of s-G. Thus the method accounts for finding a solution of 

the cj> equation with both time derivative term and constant force.



APPENDIX I

NEW EQUATIONS WITH KINK SOLUTIONS

It is interesting to mention that in our study of solitary waves we 
have found new nonlinear equations which do not belong to the family of 

the nonlinear Klein-Gordon equations since they can not be written in 
the form

a * *  0
3  4

1. The first one is given by the equation

1-1 =  + *  +  +  £

where £ , 5" are constants ,and has solution

1-2

If one attempts to find the bound states for this equation by letting

d> = <j> + y  as in Chapter II , he finds that the number of bound ©
states depends on the values of the constants £, , &  .We don't know
if 1-1 can describe any physical system. If it does, then in addition 

to the kink solution one has the possibility of fixing the number of 

bound states by choosing the amplitudes £. , of the disturbances. 

This number reduces to two bound states when d,e are both zero ( ).
Again one could check numerically if the resonance energy exchange
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between the bound modes works here too.

2. We also have found that the integrodifferential equations

1-3
□ 4> = 4*- +■ t x J-fc ■+ £  S  4>+

i-4 o<j> = 4>'4> + £u<j) + i <p"

have kink-like solutions given by

cjj - -fccmh 2 (x± V't)
for H-3

$  - -tomlo x ± V *

y  2 6  - )
for H-4

Again we don't know what physical system can be modeled by the

above equations. In this notice we just list the new equations and
emphasize that they have kink solutions.
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