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NOMENCLATURE

(1) Nomenclature for Chapter two 

Notations

a ■ depth of equivalent rectangular stress block, a- f3C.

Ag “ gross area of section, square Inch.

Ase = equivalent area of one end steel

A ■* area of the steelst
C “ ^  £) distance from extreme compression fibre to neutral axis.

C = force In concrete, kipsc
C = a factor relating the actual moment diagram to an equivalentm

uniform moment diagram.

Ec “ modulus of elasticity of concrete, PSI

E - excentriclty of design load parallel to axis measured from thecc
centroid of the section.

E ■ modulus of elasticity of steel, PSIs
El = flexural stiffiness of compression members.

f  a specified compressive strength of concrete, PSI, can be foundc
by experimental tests for the specified concrete samples.

f » E e ■ the steel stress at any point In the ring, ksis s s
F “ the net force in the steel ring, kipss
F F . =■ the forces acting in the steel ring, kipsS 1Z••• 84
fy * ESy ■* specified yield strength of the steel, PSI

g - a  constant

gfc “ the length of the equivalent steel side, in (rectangular

cross-section)

= or the mean diameter of the steel tube, in (cylindrical 

cross-section)

vi
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* or the outside diameter of the cross-section ,in 

h *» the thickness of equivalent steel ring ,in (cylindrical C-S)

hj ■ the thickness of side steel strip ,in (rectangular C-S)

h2 " the thickness of end steel strip ,in (rectangular C-S)
Ig ■ moment of inertia of gross concrete section about the

centroidal axis, neglecting the reinforcement.

1 = moment of inertia of the equivalent steel ring about thes
centroidal axis of the member cross-section.

K » effective length factor for compression member

KL = effective length of column.

Kj ” Pi “ 0.85 - 0.05 (f^ - 4) ■ a factor

K ■ C/H, a factoru
K t = the depth of the compressed area, measured from the extreme

fiber on the compression side

Kjk t = the depth of the equivalent rectangulr stress block.

M = the moment of the compression forces in the concrete about thec
gravity axis of the section, K.lb.in

■ total net moment in the cross-section, K.lb.in

M = net moment in the equivalent steel ring, K.lb.ins
M M , = the momentb acting in the steel ring, Klb.insi,... s4
M - the ultimate moment, K.lb.inu
P = nominal load of the cross-section, kipso
P = critical load, kipscr
P„ » total net load in the cross-section, kipsN
P = Ultimate load, kipsu
P = the ratio of the total area of steel to the gross area of the 

concrete section.

vii
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t " the length of the cross-section, in 

w ■ the width of the cross-section, In

Greek Letters

Pj = a factor - 0,85 for strength < 4000 PSI

» 0.85 - 0.05 (f^ -4) for strength 4000 PSI 

f) = shape factor - 0.7854 for circular section.

8^ = ioad factor ” t'le ratio oî maxiraum design dead load moment to

maximum design total load moment, always positive.

6 “ moment magnification factor for column

e “ ultimate concrete compressive strain » 0.003u
e = strain at yield in outermost steel

y

e “ strain in outermost tension steels
0 = a variable angle

<(> « strength reduction factor

(2) Nomenclature for Chapter four 

Notations

c specific heat (J/kg°C)

f compressive strength of concrete at temperature T (MPa)c
f’ cylinder strength of concrete at temperature T (MPa)c
f1 cylinder strength of concrete at room temperature (MPa)CO
f strength of steel at temperature T (MPa)

f yield strength of steel at room tempeature (MPa)

h coefficient of heat transfer at fire exposed surface (W/m2°C)

k thermal conductivity (W/m8C)

K effective length factor

L unsupported length of column (m)

viii
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p point

T temperature (°C)

X coordinate

y lateral deflection of column at mid-height (m

z coordinate

Greek letters

a coefficient of thermal expansion

A increment

/2Ah
g

mesh width (m)

e emissivity, strain (m)

\ heat of vaporization (J/kg)

P density (kg/m3), radius of curvature (m)

a Stefan-Boltzmann constant (W/m2K**)

t time (h)

4> concentrtion of moisture (fraction of volume)

X curvature of column at mid-height (m- *)

Subscripts

0 at room temperature

c of concrete

f of the fire

m at the points m in column

max maximum

min minimum

n at the points n in a row

L left of the x-axis

R right of the x-axis

lx
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p pertaining to proportional stress-strain relation

s of steel

T pertaining to temperature

w of water

Superscripts 

j at t - jAt

(3) Nomenclature for Chapter five 

Notations

c specific heat (Jkg-1<>C-1)

f compressive strength of concrete at temperature T (MPa)c
f' cylinder strength of concrete at temperature T (MPa)

f^o cylinder strength of concrete at room temperature (MPa)

f strength of steel at temperature T (MPa)

f yield strength of steel at room temperature (MPa)

h coefficient of heat transfer at fire exposed surface (W m-2oC-1)

k thermal conductivity (W m-1°C-1)

K effective length factor

L unsupported length of column (m)

Mj number of points P in radial direction

Ni number of elements in tangential direction

P point

T teperature (®C)

x coordinate

V volume of water in an element (m3)

y lateral deflection of column at mid-height (m)

z coordinate

x
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Greek letters

a coefficient of thermal expansion

A increment or difference

A5 mesh width (m)

e emissivity, strain (m m-1)

\ heat of vaporization (J kg-1)

P density (kg m~3)

a Stefan-Boltzmann constant (W m-2 K-1*)

t time (h)

♦ concentration of moisture (fraction of volume)

X curvature of column at mid-height (m- *)

Subscripts

0 at room temperature

c of concrete

f of the fire

m.Mj at the points m, Mj in radial direction

max maximum

min minimum

n,N1 at the points n, Nj in tangential direction

L left of the x-axis

R right of the x-axis

P pertaining to proportional stress-strain relation

s of steel

T pertaining to temperature

w of water

Superscripts

j at t - j At

xi
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ABSTRACT

FIRE RESISTANCE OF CONCRETE-FILLED 

AND REINFORCED CONCRETE COLUMNS 

By

MOHAMED EL-SHAYEB 

University of New Hampshire, May 1986

In order to calculate the fire resistance of a building 

component, it is necessary to know the temperature history of the 

component during exposure to fire. In this dissertation a numerical 

method is described for calculating the temperature field in 

fire-exposed columns. The procedure is based on a finite difference 

method for calculating the temperature history of concrete-filled square 

steel and cylindrical reinforced concrete columns. Two mathematical 

models and their related computer programs for these columns are 

presented in this dissertation.

Furthermore, the Division of Building Research of the National 

Research Council of Canada, is now carrying out extensive experimental 

studies on building columns. These studies include the testing of 

various columns under fire conditions. The data obtained from these 

tests will be used to determine the validity of the new models. In 

order to perform these tests the maximum allowable load must be known. 

Two mathematical models and their related computer programs to calculate 

the maximum allowable load of various column cross-sections are also 

presented in this dissertation.

xxi 1 i
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Columns are the most critical structural elements In a building In 

that their collapse can lead to the loss of the entire structure. 

Therefore, the performance of building columns In fire has long 

attracted considerable attention In various countries. The conventional 

method of obtaining Information on this subject Is by standard fire 

resistance tests. The possibility of making realistic theoretical 

estimates has been hampered by two factors: (1) the lack of knowledge

concerning thermal properties of the commonly used protecting materials 

at elevated temperatures and certain rheologlcal properties of steel, 

and (2) the complexity of the mechanism of heat flow, especially through 

physico-chemically unstable solids.

The first of these difficulties is not so serious now as it was 

10-15 years ago. During the past decade Information has accumulated on 

the thermal and rheologlcal properties at elevated temperatures of many 

important building materials, among them steel and concrete. The 

difficulties related to the complexity of heat flow analysis have also 

been greatly reduced by having the calculations performed by high-speed 

computers. Thus many fire performance problems that not long ago had to 

be solved by experiment can now be solved by numerical techniques. Fire 

resistance of a structural member may be defined as Its ability to 

withstand exposure to elevated temperatures without loss of Its 

load-bearing function.
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In previous publications by the Division of Building Research, some 

numerical techniques have already been described for the calculation of 

the temperature history of various one- and two-dimensional 

configurations typically employed in walls and floors, and of the 

deformation history of steel supporting elements, such as beams, joints, 

etc. In this thesis, the mathematical models that have been developed 

to calculate the maximum allowable load and fire resistance for various 

columns are described.

1.2 Literature Review

The fire resistance ratings for reinforced concrete columns in most 

North American Building Codes are mainly based on test results obtained 

from 1920. Since that time, design procedures have changed and the 

safety factor has decreased indicating a need for revision of these 

ratings. In view of this, studies on the fire resistance of reinforced 

concrete columns were started a few years ago at the Division of 

Building Research of the National Research Council of Canada.

The purpose of these studies was to obtain, by calculation, 

information on the fire resistance of columns as a function of 

significant parameters such as load intensity, slenderness of the column 

and cover thickness on the steel reinforcement. Several laboratories 

are now engaged in studies related to the prediction of the fire 

resistance of structures by calculation. In the past the fire 

resistance of columns was determined by empirical methods based on fire 

tests. Calculation of fire resistance was not possible, mainly because 

of insufficient knowledge of the thermal and mechanical properties of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-3-

concrete at elevated temperatures and the lack of a suitable method for 

calculating the temperature distribution In columns.

In the last decade knowledge of material properties at the 

temperatures met with In fires has Increased significantly. In 

addition, methods have been developed that enable accurate calculations 

of the temperature history of concrete and steel columns [1,2],

When temperature distribution in a column and the relevant material 

properties are known, the strength of the column can be calculated at 

any time during a fire by the well established methods used for columns 

not exposed to fire. From this information the decrease In strength 

because of the fire may be determined as a function of time. Under a 

given load, usually equal to the dead load plus the design live load, 

the time to failure or fire resistance can be determined.

Computer calculations of fire resistance can be obtained quickly 

and relatively inexpensively (less than 1% of the time and cost Involved 

in testing). At present the Division of Building Research of the 

National Research Council of Canada is conducting studies to develop 

mathematical models for the calculations of the fire resistance of 

various column constructions, including reinforced concrete columns and 

concrete-filled steel columns. The studies are carried out jointly with 

the North American Concrete and Steel Industries.

In these studies, twenty mathematical models for the predictions of 

the fire resistance of different column constructions need to be 

developed. So far, four mathematical models for protected steel, square 

reinforced concrete, rectangular reinforced concrete and concrete-filled 

cylindrical colums have been developed [1,2,3].
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1.3 Objectives of the Present Research

This research Is a part of a large Joint project sponsored by the 

National Research Council of Canada, the Portland Cement Association and 

by members of the Canadian Steel Construction Council. The main 

objectives of this research Is to develop the following models:

a. Mathematical models for determining the maximum allowable load 

for rectangular or square concrete-filled and cylindrical 

concrete-filled columns.

b. Mathematical model for determining the fire resistance of 

concrete-filled square steel columns.

c. Mathematical model for determining the fire resistance of 

reinforced concrete cylindrical steel columns.

1.4 Layout of the dissertation

The dissertation consists of seven chapters followed by a list of 

references and six appendices.

Chapter one provides a general Introduction to the fire resistance

of columns. Describes the objectives, scope and layout of this

dissertation as mentioned above.

Chapter two presents a mathematical model to calculate the maximum

allowable load of columns of various cross-sections.

Chapter three deals with the heat transfer theory and the finite 

difference method for solving Parabolic Partial Differential Equations.

Chapter four describes a mathematical model to calculate fire 

resistance of concrete-filled square steel columns. In this model, heat 

transfer equations have been solved by using a finite difference method.
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The effect of moisture has been taken into consideration. Finally 

strains and stresses in steel and concrete have been determined.

Chapter five describes a mathematical model to calculate fire 

resistance of reinforced concrete cylindrical columns.

Chapter six gives output results of these computer programs and a 

discussion of these results.

Chapter seven presents a summary of the entire work as well as a 

list of the conclusions drawn.
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CHAPTER 2

MAXIMUM ALLOWABLE LOAD FOR CONCRETE-FILLED COLUMNS

2.1 Introduction

A part of the joint studies between the National Research Council 

of Canada, the Portland Cement Association and the Canadian Steel 

Construction Council consists of fire tests on building columns. These 

tests are carried out for the determination of the effect of fire on the 

strength of loaded columns. The data obtained from these tests will be 

used to verify the validity of the mathematical models that have been 

developed for the prediction of the fire resistance of the columns 

[3,4,5].

In order to begin the test the maximum allowable load had to be 

known. The mathematical models for various cross-sections for 

concrete-filled columns have not been developed yet. Also, computer 

programs for calculating the test load or the maximum allowable load for 

reinforcing concrete columns are not available to the Division of 

Building Research of the National Research Council of Canada. Therefore 

It was necessary to develop these mathematical models and computer 

programs.

Since the strength of axially loaded members depends strongly on 

the compression strength of concrete; the steel/concrete area ratio, and 

the shape of the column cross-section [3,4,5,6], the maximum allowable 

load constantly changes. This involves long and complicated hand work 

calculations, which requires a lot of time and energy, full of chances 

of errors. Therefore it is necessary to develop a computer program for 

each mathematical model.
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Mathematical models for various concrete-filled steel columns 

Figure (2.1), have been developed for calculating the maximum allowable 

load. A computer program for each of these mathematical models have 

been written.

There are two theories for designing building columns, working 

stress design and ultimate strength design. Recently, the latter was 

recommended by the American Concrete Institute. This theory is a 

procedure of design with a margin of safety against collapse. The basic 

assumptions for this theory are given.

2.2 Assumptions

The basic assumptions for the ultimate strength design theory are 

[7 to 15]

(1) Plane sections before bending remain plane after bending.

(2) No slip, I.e. perfect bond between steel and concrete.

(3) Tensile strength of concrete Is negligible ” 0).

(4) Strain In the concrete is proportional to the distance from 

the neutral axis.

(5) The maximum ultimate concrete strain at failure, e = 0.003.' ' u
Failure Is not precisely a definable point, Figure (2.2).

(6) The ultimate tensile stress in the steel does not exceed f .y
(7) The maximum compressive stress in the concrete » 0.85 f^.

(8) The stress-strain curve for the steel is bilinear,

Figure (2.3).

The steps used to develop the first mathematical model will be 

explained in the following section.
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FIRST MATHEMATICAL MODEL 

CONCRETE-FILLED RECTANGULAR STEEL COLUMNS 

The general formulation of the mathematical model for 

concrete-filled columns Figure (2.1a), will be explained in this 

section.

2.3 Load Factor

The load factor is a safety factor used in the design of building

columns, taking into account the variability of the dead and live loads

as expressed in the following formula [7 to 11J:

Load Factor - D +—  ̂ - (2.1)
1.4D

where:

D ■ Dead load 

L “ Live load » 0.4 D

1.4 » a factor of safety for dead load which is considered sufficient

to take into account any miscalculation in the design due to 

dead load greater than the dead load anciticpated.

1.7 “ a factor of safety for live load taking into consideration 

unexpected earthquake or large amount of snowfall.

2.4 The Ratio B,-----------d
The ratio ft, is the ratio of maximum factored dead load moment to d
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maximum factored total load moment. It is always positive between zero 

and one. It is inverse to the load factor of Equation (2.1) as 

indicated below:

p -----------   (2.2)
1.4 D + 1.7 L

where:

L » 0.4 D

2.5 Concrete Modulus (E )  c—
The modulus of elasticity E (PSI) for normal weight concrete mayc

be taken according to the American or the Canadian Standards [7,8] as:

E * 57000 /f' (2.3)c c

where:

f' = specified compressive strength of concrete, psi c

2.6 Flexural Stiffness (El)

The flexture stiffness of compression columns can be expressed as

[7,8]:

(E I /5) + E I 
E I „ _ J L J -----------------------------------(2.4)

1 + Pd

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-13-

where:

El «• flexural stiffness of compression columns

E » modulus of elasticity of concrete In psi » Equation (2.3).c
I = moment of inertia of gross concrete section about the g

centroidal axis, including structural steel.

Eg * modulus of elasticity of steel in psi, where Eg for

non-prestressed steel (may be taken as 29 x 10® psi)

X » moment of Inertia of reinforcement or structural steel about se
the centroidal axis of column cross-section 

(3̂ « as defined in Equation (2.2).

2.7 Critical Load

The critical load for the specific column according to the American 

Concrete Institute (ACI) or the Canadian Standard Association is 

[7 to 10]:

P - 2 - ^  (2.5)
cr (KL)2

where:

P - critical load cr
El =■ as defined in Equation (2.4).

K « effective length factor for compression column

L - the length of compression column

or (KL) ■* effective length of compression column
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2.8 Capacity Reduction Factor (ifr)

The capacity reduction factor <t> provides for the possibility of the 

concrete or reinforcing steel being of less strength than required and 

for the possibility of members being under strength due to Inaccuracies 

or mistakes In construction. The values of this factor depends on the 

Importance of the member and the mode of anticipated failure. The 

following values for $ shall be used [6,7,8]:

4) - 0.70 (2.6)

2.9 Critical Load with Reduction Factor ($)

The capacity reduction factor <t> must be considered In calculating 

the critical load as follows:

P(cr) " * (2*7)U r ; 4> (KL)2

2.10 Concrete Stress and Strain

The relationship between concrete compressive stress distribution 

and concrete strain may be assumed to be rectangular, trapezoidal, 

parabolic, or any other shape that results in prediction of strength in 

substantial agreement with results of comprehensive tests. The above 

requirement may be considered satisfied by an equivalent rectangular 

concrete stress distribution defined by the following [Figure A-l, 

Appendix A]:

(a) Concrete stress of 0.85 f^ shall be assumed uniformly
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dlstrlbuted over an equivalent compression zone bounded by 

edges of the cross-section and a straight line located 

parallel to the neutral axis at a distance a » (Pi)c from the 

fiber of maximum compressive strain [Appendix A).

(b) Distance c from fiber of maximum strain to the neutral axis 

shall be measured in a direction perpendicular to that axis 

[Figure A-6, Appendix A].

(c) Factor ^  shall be taken as the following [Appendix A]:

0.85 for r  < 4000 psi (2.8)

P, - 0.85 - (
f ’ -c 4000

1000
-) x 0.05 for f' > 4000 psi (2.9)

2.11 Minimum Eccentricity

A minimum eccentricity "e" is required. This Insures that if a 

column is not perfectly concentrically loaded (as is normally the case) 

a certain moment capacity can be maintained by the column. The American 

Concrete Institute states that the minimum eccentricity for a concrete 

column is [8,9]:

e - 0.6 + 0.03 H (2.10)

while the Canadian Standard Association states:

e - 15 + 0.03 H (2.11)
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where:

e = eccentricity, in or mm 

H = column width, in or mm.

2.12 The Nominal Load

According to the North American Standards, for steel structure, 

design axial load strength at zero eccentricity (4>Po) will be taken as

[7,8]:

$P - 0.85 f'(A -A ) + f A (2.12)o c g st y st

where:

<{> ■ strength reduction factor, Equation 2.6

?o » axial load at zero eccentricity

0.85 f1 ■ the concrete compressive strength [Appendix A] c
A a gross area of section 
g
A _ ■ total area of steel st
f - yield strenth of steely

2.13 Column Cross-Section

The concrete-filled column cross-section as illustrated in 

Figure 2.4, where:

h - thickness of constructed steel wall (in)

w =* total width of column cross-section (in)

t ■ total length of column cross-section (in)
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2.14 Forces, Moments and Neutral Axis Location

To calculate the forces and the moments In the steel and concrete, 

the neutral axis location with respect to the gravity axis of the 

cross-section must be Identified. The neutral axis location has the 

following significance [8,9,11,12]:

a. The part of the column cross-section located above the neutral 

axis usually Is subjected to compression.

b. The part of the column cross-section located under the neutral 

axis Is normally subjected to tension.

In order to calculate forces and moments In the cross-section of 

columns, assuming various locations for the neutral axis for each of 

these positions, the total forces and the total moments, which column 

cross-section can resist must be calculated.

2.15 Case One. Figure 2.5

The strain in the steel In the compression side Is less than the 

yield strain, l.e:

e' < e (2.15)s y

The strain In the steel In the tension side is greater than the yield 

strain, i.e.:

e > e (2.16)s y
where:

e “ strain In the tension steel s
e^ = strain in the compression steel
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e » yield strain of the steely
From the strain diagram shown in Figure (2.5), the following 

relations can be obtained:

a - K u + |  (2.17)

where:

( a - | ) - ^  (2.18)eu

4  - a (2.19)

y - g - a - 0 (2.20)

es “ ey ?  (2*21>

f' f
Since e' = and e “ •=£, then Equation (2.21) becomes 8 L y b

fs ■ fy I  (2-22)

2.15.1 Forces in side steel

From the strain diagram Figure (2.5), the following forces can be 

derived:
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f'
F . = (— ) (at)(2h) (2.23)si 2

Fs2 “ (^1)(Pt)(2h) (2.24)

Fs3 “ ( f y ) ( )(2h) (2.25)

2.15.2 Forces In End Steel

Also, from the strain diagram Figure (2.5), the following forces 

can be derived:

F , - f' • A - f' • h (w-h) (2.26)s5 s se s

F , = f • A - f  • h (w-h) (2.27)s6 s se s

Then, the total force in side and end steel, F is:

F = F .  - F 0 - F ,  + F . - F ,  (2.28)st si s2 83 s5 s6

2.15.3 Forces in Concrete

From the concrete stress block demonstrated in Figure (2.6), the 

net force in concrete is:

C - 0.85 f'(pK t)W (2.29)c c u
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where:

C = the net force in concrete c
0.85 f1 ■ the concrete compressive strength [Appendix A] c

pKyt = the depth of the equivalent rectangular stress block 

W “ the width of column cross-section

2.15.4 Total Force in Steel and Concrete

The total force in steel and concrete can be obtained from 

Equations (2.28) and (2.29) as given below:

P -  F + C (2.30)N st c

where:

P„ » total force in steel and concrete N
F » total force in steel st
C =■ total force in concrete c

2.15.5 Arms of Forces

The arms of forces of side and end steel are as follows:

'siy . « t (<|» + —  a) (2.31)
3

ys2 -  P -  <0 ( 2 . 3 2 )

y - t(I+ p -*) (2.33)SJ 2

y , - (2.34)so 2
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s6
gt
2

PK t t u
yc -  --------c 2 2

(2.35)

(2.36)

2.15.6 Moments In Steel

The net moment In steel M Is:s

M “ F y + F y + F y , + F y + F , y t (2.37)st si si s2 s2 s3 s3 sS'sS s6 s6

2.15.7 Moments In Concrete

The net moment in concrete M is:c

MC “ Vc (2.38)

2.15.8 Total Moments in Steel and Concrete

The total net moment in steel and concrete M^ can be obtained from 

Equations (2.37) and (2.38) as:

M„ » M . + M (2.39)N st c

By using capacity reduction factor $ in Equations (2.30) and 

(2.39), the final net load and moment indicated below are representing 

one point ( <t>MN) located in the interaction diagram:

*PN " * ( Fst + CJ  (2 ,40 )
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^  - * fMst + M j  (2.41)

Similarly, by selecting various locations for the neutral axis and 

repeating the calculations as in case one, other points (4>^i #1^) can 

be obtained as indicated in [Appendix B].

2.16 Interaction Diagram

When concrete-filled columns are subjected to numerous loads and

thus different moments being generated the resulting data can best be

interpreted by the interaction diagram. This diagram plots the applied

load verses moment

Therefore the obtained coordinates of $P„ and 4M„ from the variousN N
locations of the neutral axis can be fitted together to construct the 

interaction diagram as Indicated in Figure (2.7) [13,14,15].

In Figure (2.7), one observes that the curve generated comes to a 

peak at point (b). This point is known as the "balance point, Appendix 

A”. It occurs when the strain in the extreme compression fiber reaches 

0.003 and the stress in the longitudinal steel reaches its yield point 

[13,14,15].

Point (a) represents a concentrically loaded member (Pq , Mu = 0.0). 

The portion of the curve represented by (ab) pertains to that range of 

small eccentricity in which failure is initiated by crushing of the 

concrete. The portion (be) represents that range in which failure is 

initiated by yielding of the tension steel.

2.17 The Ultimate Load and the Ultimate Moment

a. Construct the quadratic equation which represents the
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interaction diagram by using the points calculated

previously. The load and moment in this quadratic equation are 

unknown. From the subroutine fit polynomial (Appendix C), the quadratic 

equation is:

where:

C^, Cj and are constants

b. The linear equation relating the load Pu and the moment M with 

the eccentricity e is:

By solving the quadratic equation (2.42) and the linear equation (2.43), 

the load PN and the moment can be obtained.

2.18 Validity of P;]

a. Check the validity of the obtained value of the ultimate load 

P with comparison of the critical load (P ) as follows:

4M n - Cl + c2(*PN ) + c3U P N )2 (2.42)

u

if (2.44)

then, the value of the ultimate load (P„) is valid, then takeN
(2.44')
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then, the value of the ultimate load (P^) is invalid and an iteration 

process must be applied until equation (2.44) Is satisfied.

b. Calculate the moment magnification factor 6 from the following 

formula [8]:

C
6 . ---!!----- (2.46)

P
1 u<t)Pv cr

where:

6 - moment magnification factor for columns

C » a factor relating the actual moment diagram to an m
equllvalent uniform moment diagram and equal to 1.0

P^ =« the ultimate load, from Equations (2.42) and (2.43)

<)>P = critical load, from Equation (2.7).cr

d. Then, the required ultimate moment can be calculated:

M„ - P„(e x 6) (2.47)N N

2.19 Test Load

A final calculation is required to determine the test load or 

maximum allowable load:

Factored Axial Load (ifP..) 

Load Factor
Max. Allowable Load ■ ---------------------- —  (2.48)
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where:

Load Factor can be found from Equation (2.1).

The formulation of the mathematical model of concrete-filled 

cylindrical steel columns will be the same steps as followed for the 

above one, except for the forces and moments derivations. Therefore, 

the forces and moments formulation for the following mathematical model 

will be presented.
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SECOND MATHEMATICAL MODEL

CONCRETE-FILLED CYLINDRICAL STEEL COLUMNS

2.20 Column Cross-Section

In order to calculate forces and moments In the cross-section of 

columns, assuming various locations for the neutral axis, for each of

these positions obtain the total forces and the total moments In which

the cross-section can resist. From Figure (2.8): 

h « thickness of steel pipe 

t - outside diameter of steel pipe 

gt « middle diameter of steel pipe 

r » 5. ■ ratio of steel thickness h to the outside diameter of steel

pipe

Assume any arbitrary position for the neutral axis location, draw 

the strain diagram as indicated In Figures (2.9) and (2.10), the 

following identities can be derived:

COS0 - —  (—  - h - K t)/«! - (l-2r-2K )/g
1 gt/2 2 u 2 u

01 - cos"1(l-2r-2Ku)/g (2.49)

CO8 02 "
- hi - PC 

(| - h )
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(i- - h ) - pc -1 L (2.50)02 “ C08 £ - h )

„ E e eV _s _y m _y ^
K t E e eu 8 u u

V - <|» • K t (2.51)

A V + W (4-Kut) + (| - h - I t)
CO8 0 -   -------------------------

3 gt/2 gt/2

t/2 - K t(l-i),)-h
0 - cos [-------- ] (2.52)
3 gt/2

V-w w-V (t/2 " h “ Ku0  " ("',Kut> COS 0 “ COs(180-|()) “ -C08<t> --------- ---- "   -
4 gt/2 gt/2 gt/2

, t/2 - h - K t - i(K t
0 - cos (-----------  li-) (2.53)
4 gt/2

g = 1 - {?• (2.54)

One may also note from Figure (2.9) that the differential of arc 

length for the steel ring Is given by the expression:
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ds -(££) d9 (2.55)
2

By observing the strain diagram for the steel and concrete, and

defining the steel stress at any point In the ring as fg, the yield

stress for the steel as f , the maximum strain In the concrete as e andy’ u
the yield strain In the steel as one can derive the general 

expression for f as follows:

fs Z 2^ (C080 " cos0i)
f V 4> K ty u

gf (cos0 - cos 6, )
f - [_Z i_] < f (2.56)
s 2Ku<|) y

2.21 Net Force In the Steel Pipe

The net force In the steel pipe can be obtained by summing the 

forces about the gravity axis. In the derivations compressive forces 

are positive and tension forces are negative. The coordinate y Is 

measured positive upward from the gravity axis, so tension forces cause 

positive moment when considering the portion of the section below the 

gravity axis.

Considering only one half of the steel ring shown In Figure (2.9), 

the net force In the steel can be obtained as:

st 2i>8l + F„9 - F^  - F, Js2 s3 s4 - (2.57)
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e3 ex e4

Fst " *C/ fy*dAs + f fsdAs ~ * V V  / fy ' dAs 1 (2*58)

From Figure (2.9) and Equation (2.55);

dA = h • ds - h ^  d0 (2.59)
2

By substituting Equations (2.56) and (2.59) into (2.58), we can 

determine the values of the integral forces as follows:

F . - f h Q  0, (2.60)
31 y 2 3

2f h g t
F „ - — ------ [(BinO.-slnS.) - (0.-0.) cos0 ] (2.61)
8Z 4 (|> K ^ u

f h g t
Fgj “ — ------ [(sinO^-sin©^) - (0^-0 )̂ co80^] (2.62)

4 ill K ^ u

F - f h SL (n - 0 ) (2.63)a4 y 2 4

Finally, by substituting Equations (2.60) to (2.63) into (2.57), we 

can obtain the total force in the steel pipe
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2.22 Net Moment in the Steel Pipe

Consequently, we will follow the same steps mentioned above for the 

net moment of the steel forces about the gravity axis of the 

cross-section. The net moment may be obtained by summing up all of the 

Individual element of the differential moment by integration:

dM ■ dF • y s s

or (2.64)

(2.65)

or

where:

y - j- cos 6 (2.67)

Performing the integrals of Equation (2.66), yields:

2 2
M , - f h &7-S- sine, si y 4 3 (2.68)

[■| (01-93)+|- (8in261-8in2e2)-cosei(8in91-sin0.j) ] (2.69)
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[•i (sin20^-sin20^)-cos0^(sin0^-sin0^) ] (2.70)

2 2
•f h sin0 (2.72)

By substituting Equations (2.68) Into Equation (2.65), the total 

moment In the steel pipe can be obtained.

2.23 Forces In Concrete

Figure (2.10) indicates half of the concrete cross-section with the 

stress block diagram. From this figure we can derive the concrete force 

as follows:

Therefore, the force in the concrete ignoring any effect of tension

x - (—  - h)sin0 
2

(2.73)

y » (—  - h)cos0 
2

(2.73)

dy - -(- - h)sin0 d0 
2

(2.74)

will be:
(t/2)-h

(0.85 f1) x dy c (2.75)
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At y 0 - e„ (2.76)

At y ■ t/2 - h , 0 - 0 (2.77)

If we substitute the values of x, dy and integral limits from 

Equations (2.72), (2.74), (2.76) and (2.77) Into Equation (2.75) and 

perform the integration, then the net force in the concrete will be:

C - 0.85 f' (- - h) 2 (0.-8ln0,cose.) (2.78)c c 2 i l l

2.24 Net Moment in Concrete

From Figure (2.10), the net moment of the compression force in the 

concrete about the gravity axis of the section will be:

(t/2 )-h
M - 2 / (0.85 f') x y dy (2.79)c c

yl

By substituting the values of x, y, dy and Integration limits from 

Equations (2.72), (2.73), (2.74), (2.76) and (2.77) into Equation 

(2.79), then, perform the integration yields:

3 s n̂
M “ 1.7 f' (—  - h )  - (2.80)
c c 2 3

From the above equations, the total net force and moment can be 

found, using the capacity reduction factor ($), the load and moment

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-40-

(i))PN , ifiMjj) of a point located on the Interaction diagram can be 

obtained.

Similarly, by selecting various other locations for the neutral 

axis and repeating the calculations same way as for the above one, other 

points can be obtained for constructing the Interaction diagram.

2.25 Computer Program

A comprehensive computer program for the previous two mathematical 

models and for various column cross-sections has been written. The 

computer output results and discussions will be presented In Chapter 

six. The Input data for the six various cross-sections and the computer 

program list are given In Appendix C.
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CHAPTER 3

HEAT TRANSFER THEORY AND FINITE DIFFERENCE FORMULATIONS

3.1 Introduction

Heat transfer to an object from gases and furnace walls may be 

divided into heat transfer by convection and heat transfer by radiation. 

The quantity of heat received per unit area, unit time, and unit 

temperature difference between object and surroundings, depends on many 

factors [16]. The most important are: temperature, composition,

velocity of the gases, the thickness of the layer of gases between 

furnace walls and objects, the proportion between surface area of the 

object and inner surface of the furnace, and the emisslvlty of the 

furnace walls and object.

The exchange of heat between the gases in a furnace, the furnace 

walls, and an object, may be described as follows:

The gases are continuously transferring heat to walls and object, 

so that both attain a temperature dependent on the quantity of heat 

supplied to them.

The better the walls are insulated and the lower their thermal heat 

capacity, the higher their temperature will be. Thus through radiation 

more heat will be transferred from the walls to the object. Heat 

transfer may also be increased by enlarging the volume of the gases 

transferring heat to walls and object, because a thicker layer of gases 

gives more radiation [52]. A higher heat transfer may also be obtained 

by increasing the emissivity of the gases.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-42-

3.2 Heat Transfer by Convection

According to the existing information, the amount of heat 

transferred by convection to an object is less than 10 percent of the 

radiative heat [17]. It is known that above a certain level of the 

coefficient of heat transfer, which is easily obtained in fires and 

furnaces, the temperature of the surface of the exposed object (T^) 

will be very close to the temperature of the environment (T^) [18,19]. 

hen the heat transferred by convection is:

Q - h (T. - T . ) (3.1)xconv f ob

where

Q - heat transferred by convection conv
h » coefficient of heat transfer 

Tj » fire temperature

T , « surface temperature of the object ob
In this region changes of the order of 10% will have little effect 

on the surface temperature and thus on the temperature in the exposed 

object. Therefore, to simplify the heat transfer model, the convective 

heat transfer will be neglected in this study.

3.3 Heat Transfer by Radiation

Furthermore, it will be assumed that the radiative heat transfer to 

the exposed object is approximately that of a black body. As explained 

subsequently, this assumption will cause only a small error.

In an actual fire, heat is received from luminous flames, which

have a high emlsslvity. If the thickness of the flames is sufficient,
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the emissivity may reach values of about 0.9 or higher, and thus 

approaches that of a black body. For the same reason as In the case of 

convection, an error of the order of 10 percent in the radiative 

transfer will have little effect on the surface temperatures of the 

exposed object if the heat transfer Is high. The high heat transfer 

from fires Is simulated in furnaces by making them large, so that the 

flames have sufficient thickness, and by selecting furnace wall 

materials that produce wall temperatures close to the flame 

temperature.

Thermodynamic considerations show that an Ideal radiator, or black

body, will emit energy at a rate proportional to the fourth power of the

absolute temperature of the body. When two bodies exchange heat by

radiation, the net heat exchange Is then proportional to the difference 
4in T . Thus:

qR - a A(T* - T*) (3.2)
“8 2where a is Stefan-Boltzman constant with the value of 5.67 x 10 w/m

k \  Equation (3.2) is called the Stefan-Boltzman law of thermal

radiation, and it applies only to black bodies.

It is stated that a black body is a body which radiates energy 
4according to the T law. We call such a body black because black

surfaces, such as a piece of metal covered with carbon black,

approximate this type of behavior. Other types of surfaces, like a

glossy painted surface or polished metal plate, do not radiate as much

energy as the black body; however, the total radiation emitted by these
4

bodies still generally follows the T proportionality. To take account
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of the "gray" nature of such surfaces we Introduce another factor Into 

Equation (3.2), called the emissivlty e, which relates the radiation of 

the "gray" surface to that of an ideal black surface. In addition, we 

must take into account the fact that not all the radiation leaving one 

surface will reach the other surface since electromagnetic radiation 

travels in straight lines and some will be lost to the surroundings. We 

therefore introduce two new factors in Equation (3.2) to take into 

account both of these situations, so that:

q R “ ef eQb o A (T J “ Tj) (3.3)

where is the emissivlty factor for the black body which is the main

source of heat and e ^ is the emissivlty for the gray body which is the

object.

3.4 Heat Transfer by Conduction

The heat transferred by conduction in a column exposed to fire 

depends on the thermal properties of the concrete and steel at high 

tempertures.

3.4.1 Thermal Properties

Temperature rise in a column is determined by two properties of the 

concrete, thermal conductivity and thermal capacity. The latter is 

often given in the combination pc, where p is the density of the 

concrete and c the specific heat. In addition to the above-mentioned 

thermal properties, another property, absorptivity, may influence
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temperatures. Absorptivity determines the portion of radiation incident 

on the exposed surface that will be absorbed by the concrete.

The thermal properties of concrete depend on the thermal properties 

of both the cement paste and the aggregate. Investigations [20] show 

that the thermal properties of cement paste are not subject to large 

variations; the thermal properties of aggregates, however, can vary over 

a wide range and have, therefore, a substantial influence.

It is common to make a distinction between siliceous and calcareous 

aggregates. Analysis, however, of a large number of tests on concrete 

blocks made with aggregates provided from regular production of five 

major Canadian producers showed no conclusive differences in the fire 

resistances of siliceous and calcareous concretes [21]. Results were 

similar for a series of tests on columns performed in Germany [22]. On 

the other hand, tests carried out in the U.S.A. on slabs [23] and 

columns [24] showed that the fire resistances of specimens made with 

calcareous aggregate are appreciably greater than those made with 

siliceous aggregate.

An important factor in determining the thermal properties of 

concrete is the molecular structure of the aggregate. For example, 

crystalline materials have higher conductivity than amorphous materials. 

It is probable that the amount of material in the aggregate that 

undergoes endothermlc reactions (dehydration, decomposition and 

transformation) upon heating also has great Influence on the thermal 

properties of the aggregate. In siliceous aggregates, for example the 

presence of quartz, which transforms from a-quartz into 0-quartz at 

about 1000°F, will cause an Increase in the specific heat of the 

aggregate. In calcareous aggregates, the presence of magnesite and
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dolomite, which dissociate at temperatures of 650 and 1350'F 

respectively, will affect the thermal properties of the aggregate.

During dissociation, heat is absorbed so that the presence of magnesite 

and dolomite should be beneficial for the fire resistance of the column.

Its effect on the thermal properties, however, is not yet known

precisely [25].

The values of the material properties and physical constants for

concrete and steel are given below [3]:

3.4.2 Concrete Properties

Thermal capacity of concrete (J m“3oC~^)

for 0 < T < 200°C, p c - (0.005T + 1.7) x 106 (3.4)c c

for 200°C < T < 400°C, p c - 2.7 x 106 (3.5)c c

for 400°C < T < 500°C, p c - (0.013T - 2.5) x 106c c (3.6)

for 500°C < T < 600°C, p c - (-0.013T + 10.5) x 106c c (3.7)

for T > 600°C p c - 2.7 x 106' r>c c (3.8)

Thermal conductivity of concrete (W m~loC-1)

for 0 < T < 800°C k - -0.00085T +1.9 (3.9)c

for T > 800°C k - 1.22 (3.10)c
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Coefficient of thermal expansion

a - (0.008T + 6) x 10~ 6 (3.11)c

3.4.3 Steel Properties

Thermal capacity of steel (J m-3oC-1)

for 0 < T < 650°C, pgca - (0.004T + 3.3) x 106 (3.12)

for 650°C < T < 725°C, pgca - (0.068T - 38.3) x 106 (3.13)

for 725°C < T < 800°C, p c - (-0.086T + 73.35) x 106 (3.14)8 S

for T > 800°C, p c - 4.55 x 106 (3.15)8 8

Thermal conductivity of steel (W nf^C- *)

for 0 < T < 900°C, kg - -0.22T + 48 (3.16)

for T > 900°C, kg - 28.2 (3.17)

Coefficient of thermal expansion

for T < 1000°C, ag - (0.0.004T + 12) x IQ" 6 (3.18)

for T > 1000°C, a - 16 x 10“ 6 (3.19)8
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3.4.4 Water Properties (J m-3oC-1)

Thermal capacity

p c - 4.2 x 10- 6 (3.20)w
Heat of vaporization (J kg-1)

\ - 2.3 x 106 (3.21)w

3.4.5 Physical Constants

a =• Stefan-Boltzmann constant: 5.67 x 10-8 W/m 2°k** (3.22)

Eg = emissivlty of fire: 1 (3.23)

e = emissivlty of steel: 0.9, e - emissivlty of concrete » 0.9 (3.24)s c

Due to the variability of thermal properties mentioned above and 

the assumptions mentioned in reference [2 ], the equation used for heat 

transfer by conduction for column cross-section is [Appendix Dj:

h  <3* 25>

Equation (3.25) is unsteady state partial differential equation of 

parabola in two variables x and z. Also in the above equation, the 

thermal conductivity (K) and the thermal capacity (pc) are functions of 

temperature.
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In order to apply Equation (3.25) to predict temperature 

distribution of columns cross-section, a numerical solution is required. 

The finite difference method will be used for this purpose.

3.5 Finite Difference Method

It is true that of numerous problems in the physical sciences and 

engineering that, even if the differential equations governing the 

physical phenomena can be formulated mathematically, the analytical 

solution of the resulting equations is beyond the reach of pure 

mathematics. A useful line of attack in such problems is to solve the 

equations for particular cases by numerical methods. Further, it is 

often found that even when a general solution to the differential 

equations is known it proves to be very difficult and tedious to 

translate the general solution into particular results for a particular 

problem. Therefore not only are numerical methods essential in problems 

which will not yield to any other method of solution but they are also 

often the best means of obtaining a particular solution even when a 

general solution can be found by analytical methods.

There exist a large number of different numerical methods for 

solving partial differential equations, the most Important of which is 

the method of finite differences. Finite difference methods were 

discussed in the 1920's, but only in recent years, with the development 

of high-speed computing machines, have these methods been appllied in 

practical problems on a large scale. Although digital computers perform 

just the same operations as can be performed by hand, their speed and 

capacity make it possible to deal with problems whose solution is not 

feasible by hand calculation.
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Finite difference methods seeks to replace the differential 

equation by algebraic equations which give relations between values of 

the dependent variable and proximate values of the Independent variable 

or variables. The numerical solution then consists of solving a series 

of simultaneous algebraic equations to give values of the dependent 

variable corresponding to a number of discrete points throughout the 

domain of interest.

3.6 Finite Difference Approximation to Derivatives

3.6.1 Functions of a Single Variable

When a function T and its derivatives are single-valued and 

continuous functions of t, Figure (3.1), then by Taylor's theorem 

[26,27,28,29]:

. t) , < « ( " ,  . < M i  (lil, . (i5) ♦ ... (3.26)
dt 2 dt2 Q 6 dt3 Q

and

,1-1. tJ - <it> («) + <“>2 (iil) - (iil) * ... o.27)
dt Q 2 dT2 Q 6 dt3 Q 

Addition of these expansions gives:

TJ+1 + 1J “1 - 2T* + (At) 2 ( ^ )  + 0( At) ** , (3.28)
dt2 Q Q

where O(At)1* denotes terms containing fourth and higher powers of (At).

Assuming these are negligible in comparison with lower powers of At it 

follows that,
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dt2 Q (At)2
1 5 ,  . _ L  [tJ+1 - 2TJ + TJ-1] (3.29)

with a leading error on the right-hand side termed the trancation error 

of order (At)2.

The right-hand side of Equation (3.29) is the finite-difference 

analog to a second derivative, with a truncation error of a second 

order. In such a case the analog is said to be second order correct.

On subtracting Equation (3.27) from Equation (3.26) and neglecting 

terms of order (At)2, the following can be obtained:

The right-hand side of Equation (3.30) is the second order correct 

analog to the first derivative.

Equation (3.30) clearly approximates the slope of the tangent at 

point Q by the slope of the chord AB, and is called a central-difference 

approximation. One can also approximate the slope of the tangent at Q 

by either the slope of the chord OB, giving the forward-difference 

formula:

or the slope of the chord AQ, giving the backward-difference formula,

(3.30)
dt Q 2(At)

(3.31)
dt Q At

(3.32)
dt Q At
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Both Equations (3.31) and (3.32) can be written down immediately 

from Equations (3.26) and (3.27) respectively assuming the second and 

higher powers of (At) to be negligible. This shows that the truncation 

error in these forward and backward-difference formula are both 0(At), 

and the formula are said to be first order correct analog.

3,6.2 Functions of Several Variables

A procedure similar to the one described above applies when T is a 

function of more than one independent variable. If the Independent 

variables are x and y, and the x-y plane is subdivided into sets of

equal rectangles of sides equal Ax and Ay as shown in Figure (3.2), then

that the coordinates (x,y) of the representative mesh point Q 

[26 to 30] are:

x - m(Ax), y - n(Ay)

where m, n are Integers and the values of T at Q is denoted by:

Tq - T[m(Ax), n(Ay)] - T(m,n) 

Then from Equation (3.29),

3x2 (m,n)
(3.33)

with a truncation error of order (Ax)2. Similarly,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



- 5 4 -

A

m, (n+1)

Q

(m-1), n m,n (m+1), n

'm, (n-1)

A y
f

A x, 6------------------ , *

0 m- 1  m m + 1 R x*

j  j  J

F I G U R E  3 . 2

F I N I T E  D I F F E R E N C E  N O T A T I O N S  FOR A 

R E C T A N G U L A R  ME S H

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-55-

|r52T ^  _ T(m,n+1) 2T(m,n) + T(m,n-1 ) (3.34)
by2 (m,n) (Ay)2

with a truncation error of (Ay)2. 

Also from Equation (3.30),

and

j-ST ̂  m T(ni+l),n ^ m - p . n  (3.35)
Ax (m,n) 2(Ax)

ÂT ̂ ^ ____m , (n—1 ) ^
3y (m,n) 2(At)

3.6.3 Finite Difference Expressions for Irregular Boundaries

When the boundary of the region Is not such that a network of 

rectangles can be drawn so that the boundary would coincide with the 

nodes of the mesh, one must proceed differently at points near the 

boundary. In the general case of a group of five points whose spacing 

in nonuniform, arranged in an unequal-armed star as shown in 

Figure (3.3), if distances OB and 0D are represented by S(Ax) and e(Ay) 

respectively than by Taylor's theorem

t  -  t  - ( E )  (4» ) .  r ^ i  . < « !  -  £ ! )  lE l !  o .37)
A (0) dx (0) Ax2 (0) 2 Ax3 (0) 6

and

T - I ♦ (” ) S(Ax) * (ifl) 0.38)
B (0) Ax (0) ax2 (0) 2 ax3 (0) 6
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By multiplying Equation (3.37) by S, and adding to Equation (3.38) 

the following expression is obtained for the second derivative of T with 

respect to x.

ay* (0) (Ay) 2 e(l+e)

The right-hand sides of Equations (3.39) and (3.40) are the 

first-order correct analogs to the second derivatives.

To get an expression for the first derivative, Equation (3.37) is 

multiplied by (-S2) and then added to Equation (3.38), so that:

It should be noted that the above analogs to the first derivatives are 

second order correct.

2[STA - (1+S)TQ + Tb ]
(3.39)

3x2 (0) (to)2 S(l+S)

Similarly, f ) can be expressed as:
ay2 (0)

2[eTc - (i+e)TQ + Tp]
(3.40)

Tb - (1—S2) TQ - S2Ta
(3.41)

3x (0 ) S(1+S)(to)

In a similar manner

(3.42)
ay (0) e(l+e)(Ay)
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3.6.4 Numerical Solution of Parabolic Partial Differential Equations 

The numerical solution by finite difference for the two-dimensions 

heat-transfer partial differential Equation (3.25) will be as explained 

below [30]. Considering the following equation:

—  (K — ) + ~  (K — ] - pcC— ) (3.25)
3x 3x (m,n) 3y By (m,n) a t (m,n)

Then consider the two-dimension body divided into increments as shown in 

Figure (3.4-A). The subscript m denotes the number of raws, and the 

subscript n denotes the number of columns. Within the solid body the 

differential equation which governs the heat flow is Equation (3.25).

Consider the x-direction Figure (3.4-B), the finite difference 

expression representing the first term of the partial differential 

equation (3.25) is:

5- (K3 
3x 3x

3 - fc3 IrWi.n+ir |rWi,n-|)
(m,n) Ax

(3.43)

Where the superscript j at time (t) « j(At) 

but:

i T3 - T3|K3 | B (m-l,n+l) (m,n) ^  4 4)
3x (m-|,n+i) (m-i,n+i) Ax

and

{K3 ®T_} - K3 T<mfn3.,.~ ^ n + M - Q  (3.45)
3x (m+i,n-|) (m+i,n-{) Ax
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Al8 0 , the variable conductivity K is:

K-'
(m-i,n+|)

K/ i j.i \ + v(ra-l,n+l) (m,n) (3.46)

and

1C*
(m+i,n-i)

^  + k| ,(m+1,n-l) (m,n) (3.47)

Substituting Equations (3.46), (3.47) into Equations (3.44), (3.45), we 

get:

jKJ BT̂ i - K̂(m-l,n+l) + K(m,n) ̂ T(m-l,n+l) ^m.n) i (3>48)
Ax

, .,s + k-! * r*a  ~  “  —  —

Sx (m-i,n+i) 2

vi{Rj  ̂(m+l,n-l) (m,n)^  (m,n) (m+l,n-l)  ̂ (3.49)
5x (m+i,n-i) 2 Ax

Substituting Equations (3.48), (3.49) into Equation (3.43) yields:

aiS*!L (KJ SSL)
3x dx (m,n) (Ax)2

K/ -i + K/  ̂1 ^ (m-l,n+l) (m,n)
-  T* ) 

(m-l,n+l) (m,n)

+ ( (m+1»n~1.)--------- ^ t3 - r* )} (3.50)
2 (m+l,n-l) (m,n)
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In a similar way one can get finite difference scheme for the 

second term of the left-hand side of Equation (3.25) as follows:

<L (RJ
6y 9y

j j
. _L_ [(K(m+l.n+l) * ^m.n)^  _ ^

(m,n) (Ay)2 2 (m+l,n+l) (m,n)

+ ('

ic4 , ,. + k} .(m-l,n-l) (m,n) X T 3 T3 )}
(m-l,n-l) (m,n)

(3.51)

Also, the right-hand side of Equation (3.25) can be found from equation 

(3.31) as follows:

pc AT
at

. (p.9.).3- [tJ+1 _ tJ
(m,n) At (m,n) (m,n)

(3.52)

Substituting Equations (3.50), (3.51) and (3.52) into Equation

(3.25) yields to the finite difference equation equivalent to Equation

(3.25) as:

At
J

■jJ+l .jJ
(m,n) (m,n) (pc)J (Ax)‘

(m,n)
(T3 - T3 )
(m-l,n+l) (m,n)

+ K,(m-l,n+l) (m,n)

+ c
K(m+l,n-l) * Nm.n)^ ^

-  T3 )] 
(m+l,n-l) (m,n)
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1 |-̂K(m+l,n+l) + K(m,n) î TJ _ ^
(Ay)2 2 (m+l,n+l) (ra,n)

+ fK(m-l,n-l) + K(n.,n))(Tj _ TJ )]} (3>53)
2 (m-ltn-l) (m,n)

In the special case where Ax - Ay, Equation (3.53) becomes:

lJ+1 - T* , At ^ K(m-l,n+l) * K(m,n) ̂  ^  ^
(m,n) (m,n) , J  , ^ 2  2 (m-l,n+l) (m,n)

(m,n)

+ (■K(m,fl»n~1) + _ TJ )
2 (m+l,n-l) (m,n)

+ (■K('"-fl-.n+1) + K(tn,n) i(-Tj _ ^  )
2 (m+l,n+l) (m,n)

+ (• (m-l,n-l)----(m,n) ̂ Tj _ TJ (3.54)
2 (m-l,n-l) (m,n)

Equation (3.54) Is the final form of the finite difference

approximation of Equation (3.25). This obtained equation will be 

applied for the solutions of fire resistance of columns.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



- 6 3 -

CHAPTER 4 

THIRD MATHEMATICAL MODEL 

FIRE RESISTANCE OF CONCRETE-FILLED SQUARE STEEL COLUMNS

4.1 Introduction

The mathematical models and the computer programs which have been 

developed to calculate the maximum allowable load for various columns 

cross-sections [31,32,33,34], In Chapter one, will be used for column's 

experimental tests. The purpose of these experimental tests Is to 

validate the mathematical models of fire resistance of columns 

[2,3,4,5].

In this Chapter, the calculation of fire resistance of a 

concrete-filled square steel columns, for which no method exists at 

present, Is developed. The various steps in the construction of the 

mathematical model to calculate temperatures, deformations and strength 

of the column are presented. A computer program for this model has been 

written.

4.2 Temperatures in Column

The column temperatures are calculated by using the finite 

difference method [35]. The method of driving the heat transfer 

equations and calculating the temperatures In objects exposed to heat is 

described In detail In Chapter three.
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4.3 Division of Cross-Section Into Elements

The cross-sectional area of the column Is subdivided into a number 

of elements, arranged in a triangular network Figure (4.1). The 

elements are square inside the column and triangular at the surface.

For the inside elements, the temperature at the centre is taken as 

representative of the entire element. For the triangular surface 

elements, the representative points are located on the centre of each 

hypotenuse.

Because only columns with square cross-sections (and four axis of

symmetry) will be considered, it is possible to calculate the

temperature distribution in only one-eighth of the cross-sectional area

of the column as illustrated in Figure (4.2). In Figure (4.1), in an

x-z coordinate system, a point P has the coordinates x » (m-l)Ah andm,n g
z » (n-l)Ah .

g

4.4 Temperature Calculations

It will be assumed that the columns are exposed on all sides to the 

heat of a fire whose tmeperature course follows that of the standard 

fire described in References [36, 37], This temperature course can be 

approximately described by the following expressions:

T^ ** 20 + 750 [l - exp(-3.79553^t)] + 170.41*^ (4.1)

where t is the time in hours and T^ is the fire temperature in °C at 

time t » jAt.
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4.5 Equations at Fire/Steel Boundary

The temperature rise In each element can be derived by making a

heat balance for It, I.e. by applying the parabolic unsteady state,

partial differential Equation (3.25) and Its numerical solution Equation 

(3.54) Into the region. Also, the heat transfer by radiation to the 

surface boundary elements must be considered as follows:

4,5.1 Heat Transfer by Radiation

This heat which has been given by Equation (4.1) will be

transmitted from the fire to an elementary surface region, R^ n by

radiation. For the flre/steel boundary, the heat transmitted by 

radiation along the boundary A-B (see Figure 4.3) during the period jAt 

< t < (j+l)At for a unit height of the column can be found as explained 

in Chapter three as:

« R - Aes * efes r(T}+ 273)4 - + 273)*] (4.2)

where:

q » heat transfer by radiation, J/(m.hr)R
A ■ surface area of the flre/steel boundary element es

I.e. A - 2(Ah )(1.0), m es g
a » Stefan-Boltzman constant, J/(hr.m2.K1>)

Cj, eg m as defined In Equations (3.22) to (3.24), dlmensionless.

» fire temperature, K1*

4.5.2. Heat Transfer by Conduction

From the surface region R. . along the boundary line A-B as(m,n;
Illustrated In Figure (4.3), heat Is transfer by conduction to the two 

neighboring regions, and n+i)* T '̂̂ s *leat can '3e
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obtained by applying Equation (3.25) and its numerical solution as 

follows:

a <vaT, Am a cv aT> „ aT
ftx ̂Kftx ̂ ft* (Kft* ) “ pc ftt

for fire/steel boundary:

<3- 25>

The two terms of the left-hand side of Equation (3.25), represent 

the heat transfer by conduction. From Equations (3.50), (3.51) and

(3.25) it can be found:

i L ^ a r 1 _ 1 ^ K(m+l,n-l) * K(m,n) _TJ j
5x dx L  s (Ax)2 2 (m+l,n-l) (m,n)(m,n)

(4.3)

4 . 1/̂  4.14J
a_fKjaTJ J _ 1 ^  (m+1 ,n+l) (m,n) ^
8z 9z l(m,n) (Az)2 2 (m+l,n+l) (m,n)

(4.4)

From Figure (4.1), it can be obtained:

Ax m Az » Ah (4.5)
g

and (A ) c . - i(2Ah )(Ah ) - (Ah )2 (4.6)e f/8 g g g

Using Equations (4.3) to (4.6) into the left-hand side of Equation

(3.25) yields:
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1___ ^(m+l.n+O^Qn.n) _ ,jJ ^
(Ah^)2 2 (m+l,n-l) (m,n)

+K^
+ ( <“+l.n-l) (m .n>)(TJ -,J )}(Ah )2 (4.7)

2 (m+1,n-l) (m,n) g

Equation (4.7) Is the finite difference method representation for 

the parabolic unsteady state partial differential Equation (3.25).

4.5.3 Sensible Heat

During exposure, heat may be generated within the elements of the

column cross-section, because of material decomposition. It Is also

possible that heat is absorbed because of dehydration or transformation

processes In the material. If Q is the rate of heat generation (+) or

absorption (-) per unit volume, then heat gain or loss in an elementary

region R, . for a time period At can be found by applying Equation (m,n)
(3.52). Then the sensible heat absorbed by the element in this period 

Is [Appendix E].

ldt 'AB Q x -ST
AT
at

J +1 . xJ
(m,n) (m,n)(p C ) * (A ) ('

8 s (m,n) e (m,n) At
(4.8)
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where:

&E
^aT^AB " ^eat a'5Sor')ê  or t*le rate change In energy or the

sensible heat along the boundary line AB, J/(m.hr)

fp C ). . « thermal capacity of steel, J/(m3C°)'*8 s (m,n) J

fA ). , » volume of an element located at the flre/steele (m,n)
boundary,

4,5,4 Final Equation for Fire/Steel Boundary

Flre/steel boundary equation can be obtained by adding all heat 

gained and losses as follows:

qR ~ <lc “ (— ) (4*9)
(fire->m,n) (m,n-*m+l,n-l) 8t AB. .

+(m,n->m+l,n+l)

9ESubsltutlng the values of qR , qc and from Equations (4.2), (4.7)

and (4.8) Into Equation (4.9) and rearranging, the following heat 

balance for an elementary region n)*9:

A aePe [ M  + 273)*♦ - (T̂  .+ 273)1*] -es f 8 f ' K (m,n) ' J

KJ, . ,| ^  (m+1,n-l) (m,n)^ - ) + 
(m+l,n-l) (m,n)
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K̂(m+l,n+l) * K(m,n)^ Tj _
2 (m+l,n-l) (m,n)

tJ+1 _ tJ
(p C ) (-(m,n)---- (Ah )2 (4.10)
8 8 , .  At g(m,n)

Because the heat must flow downhill on the temperature scale, a

minus sign must be Inserted Into the above equation. The temperature

. at the time (j+l)At for an elementary region R, can be (tn,n) (m,n;
obtained by rearranging equation (4.10) as follows:

■r*+1 - +  —----
(m.n) (ra,n) (P8C8)ra>n (Ahg)2

^ Ks(m+l,n-l) + ^(m.n) ^  j
2 (m+l,n-l) (m,n)

+ j-Ks(m+ltn+l) + Ks(m,n)j|-Tj _ ^  j
2 (m+l,n+l) (m,n)

+ (Aes * + 273 ^  - ^(m.n) + 273^ >  (4*U )

Equation (4.7) Is the general heat balance equation for any point In the 

flre/steel boundary region.
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4.6 Equations for Inside Steel Region

In the same way as for elementary regions at the outer boundary, 

the temperature Inside steel region can be calculated by writing heat 

balance equation for the Inside elementary regions. For the elements In 

the steel, Figure (4.4), except for the boundary elements, the 

temperature rise at time t - (j+l)At, is given by:

Tj+1 - T1 + - - - - - - - - - - - - - -
(m.n) (m,n) (pgC a )3(m>n) <Ahg )2

^ Ks(m-l,n-l) * Ks(m,n)j ^  ]
2 (m-l,n-l) (m,n)

+  [ a(i"-D.n+l) s ( m , n ) j|-Tj _ ^  j
2 (m-l,n+l) (m,n)

+ f 8(<n+1»n~1) s(m,n) jj-̂ J _ ^  j
2 (m+l,n-l) (m,n)

Kd , .. ..v + KJ
+ [ 12 _ TJ ] }  ( 4 . 1 2 )

2 (m+l,n+l) (m,n)

4.7 Equations for Steel/Concrete Boundary

For the elements at the boundary between the steel and concrete as 

Illustrated in Figure (4.5) the temperature rise at time t - (j+l)At 

is:

Tj+1 - T1 + At
(m,n) (m,n) [(P8Ca)j(m>n) + <PcCc>d(m>n) + (p^m,..) )](^ g)2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



- 7 4 -

S = STEEL ELEMENT
( m, n)

FIRE/STEEL

BOUNDARY

STEEL REGION

STEEL/

CONCRETE

BOUNDARY

CONCRETE REGION

F I G U R E  4 . 4

I N S I D E  STEEL R E G I O N

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



- 7 5 -

{m-1 , n - l )

S = STEEL ELEMENT 

C = CONCRETE ELEMENT STEEL/CONCRETE

( m, n) BOUNDARY

FIRE/STEEL

BOUNDARY

STEEL REGION

STEEL/
CONCRETE
BOUNDARY

CONCRETE REGION

F I G U R E  4 . 5

S T E E L / C O N C R E T E  B O U N D A R Y

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-76-

K-*, , , N + K-'^ 3(m-l,n-l) 8(m,n)j|-Tj _ ^  j
2 (m-l,n-l) (m,n)

+ |~ s(m-l,n+l) 8(m,n)-||-Tj _ TJ j
2 (m-l,n+l) (m,n)

+ j-Kc(m+l,n-l) * Ke(m,n) j|-Tj _ ^  j
2 (m+lfn-l) (m,n)

j j
+ ^(m-t-l.n+l) + Kc(m,n) j|-̂ j _ ^  jj (4a3)

2 (m+l,n+l) (m,n)

where:

(m,n) - the concentration of moisture content

A.8 Equations for Inside the Concrete Region

For the elements in the concrete as illustrated in Figure (4.6), 

except for the elements at the boundary between the concrete and steel, 

the temperature rise at time t - (j+l)At, is given by:

■jJ+1 . tJ At

(m,n) (m,n) [(PcCc><n,n) + ( W ^ m . n )  ̂  V !

||-Kc(m-l,n-l) + ^(m.njjj-̂ J _ ^  j
2 (m-l,n-l) (m,n)

J J
+ j-Kc(m-l,n+l) + Kc(m,n) ^  j

2 (m-l,n+l) (m,n)
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+ [-Kc(ni+l,n-l) * Kc(m,n) jjy) _ ^  -j
2 (m+l,n-l) (m,n)

+ [Kc(m+l,n-H) ~ Kc(m,n)̂ Tj _ ^  (4>J4)
2 (m+l,n+l) (m,n)

4.9 Stability Criterion

In order to ensure that any error existing in the solution at some 

time level will not be amplified in subsequent calculations, a stability 

criterion has to be satisfied which, for a selected value of Ah^, limits 

the maximum of the time step (At). Following the method described in 

reference [35], it can be derived that for the fire-exposed column the 

criterion of stability is most restrictive along the boundary between 

fire and steel. It is given by the condition:

2(Ah )2(p C )
At < --------2----8..A 1*t[>- (4.15)

4K . . + 4(Ah )hs(max) g max

where the maximum value of the coefficient of heat transfer during
6 2exposure to the standard fire (h ) is approximately 3 x 10 J/m h°Cmax

[2].
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4.10 Effect of Moisture

The effect of moisture In the concrete elements Is taken Into 

account by assuming that In each element, the moisture starts to 

evaporate when the temperature of the element reaches 1008C (212°F). 

During the period of evaporation all the heat supplied to an element Is 

used for evaporation of the moisture, until the element Is dry.

4.11 Initial Moisture at Steel/Concrete Boundary

The Initial moisture content for a steel/concrete boundary element 

Is:

v - (volume of moisture content for the concrete element) mc
» (volume of the element) (concentration of moisture)

- [2(ih x Ah ) x 1.0](<(>)s s

v - (Ah ) 2<(> (4.16)
c g

4.12 Initial Moisture Inside Concrete Elementary Region

The Initial moisture content for an element Inside the concrete 

region Is:

v - [4(iAh x Ah ) x l . o U  - 2(Ah ) 24> (4.17)
mc 8 8 g

4.13 Change In the Volume of the Moisture Content at Steel/Concrete 

Boundary

From a heat balance equation, It can be derived that, per unit 

length of the column, the volume of the moisture content AVm,n
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evaporated at the time t « (j+l)At from a concrete element located at 

the steel/concrete boundary, Figure (4.5), as the following:

where:

q “ q + qy (4.18)
c(m-l,n-l-*m,n) c(m,n-Mn+l,n-l) (m,n)
+(m-l ,n+l-*n,n) +(m,n->m+l ,n+l)

qc = heat transfer by conduction

qv “ the heat used for evaporization of the moisture

the subscripts - (m-1),(m+l),(n-l),(n+1),(m,n) is for the prescribed 

elements.

In the above equation, the heat used for evaporization, qv can be 

derived as:

q - (heat used for evaporization)(change in moisture content)
v(m,n)

*3+1 - * 3 rm,n tn*ns“ V O.-H-.J I ■'• % -  (Pw\,) ( - = ^ ------- (4 *19)(m,n) At

By substituting the value of qfi from Equation (4.13) and the value of

q from Equation (4.19) into Equation (4.18) and rearranging, the
V(m,n)

moisture concentration in an element at the steel-concrete boundary, at 

the time t ■ (j+l)At is:
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*J+1 - ^  + ------& -------
m.n m,n PwV Aexl-0)m ,n

vj ^
||- B(m-l.n-l) _TJ j

2 (m-l,n-l) (m,n)

^s(m-l),n+l) * Ks(m,n) j|~Tj -  ] 
(m,n)

c(m,n) ][Tj
(m+l,n-l)

-  T5 ] 
(m,n)

K- + K-jc(m+l,n+l) c(m,n) It'P - TJ
(m+l,n+l) (m,n)

)]} (4.20)

where:

Ag - 2(*AhgxAhg) - (Ahg)2

And since,

v/+1 x " [*/+1 \ K A xl*°) (4.21)(m,n) Ly( m , n ) e  'm,n

Vj, . - [<̂  JfA xl.Ol „ (4.22)(m,n) Ly(m,n)n  e 'm,n

By substituting Equations (4.21), (4.22) Into Equation (4.20), the 

change In the volume of moisture content at the steel-concrete boundary 

Is:
if j +

VJ+1 „ VJ + At ||- a(m-l.n-l) s(m,n) ^  -j
m,n m,n Pw\j 2 (m-l,n-l) (m,n)
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]iy - T1 ]
(m-l,n+l) (m,n)

+ j-Kc(rc+l,n-l) + Kc(m,n)j|-Tj _ ^  j
2 (m+l,n-l) (m,n)

+ |-Kc(ni-H,n+1)Kc.(m̂ n) jj-Tj _ TJ jj (4<23)
2 (m+l,n+l) (m,n)

4.14 Change In the Volume of the Moisture Content of Inside Concrete 

Region

In a similar manner, the moisture concentrate In an element Inside 

the concrete region at the time t “ (j+l)At can be derived by using 

Figure (4.6) and Equations (4.14) to (4.22) which Is given by:

*J+1 -  ■ At+
n,n m,n (py^KA^l.O)

^ c(m-l.n-l) + c(m,n) _ TJ
2 (m-l,n-l) (m,n)

+ j-Kc(n-l.n+l) + ^c(m,n) j
2 (m-l,n+l) (m,n)

+ [~Kc(m+l.n-1) + ^c(m,n) j
2 (m+l,n-l) (m,n)

+ |~Kc(m+l,n+l) * Kc(m,n) _ TJ (4>24)
2 (m+l,n+l) (m,n)
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Consequently, the change in the volume of moisture content at the 

inside concrete region is given by:

VJ+1 „ VJ + At jj-Kc(m-l,n-l) + Kc(m,n) jjy _ .jJ j
m,n m,n pw\y 2 (m-l,n-l) (m,n)

+ [-Kc(m-l,n+l) + Kc(m,n) jjy) _ ^  j
2 (m-l,n+l) (m,n)

+ |-Kc(m+l,n-l) + KcCm,n)j|-Tj _ rjJ ]
2 (m+l,n-l) (m,n)

K*̂ +
+ [  c m̂ »n.) ][TJ - T3 ]} (4.25)

2 (m+l,n+l) (m,n)

4.15 Auxiliary Equations

To calculate the temperatures of the elementary regions along the 

lines of symmetry A-C and B-C as illustrated in Figure (4.2), the 

temperature has to satisfy the following symmetry conditions:

along line A-C:

T^+1 . - tJ+1 (4.26)(m,1) (m,3)

and along line B-C:

» qJ+l (4 27)
(m+l,N-m+2) (m,N-m+l) v '

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-84-

Wit h the aid of Equations (4.1) to (4.27), and the relevant 

material properties given in Chapter three, the temperature distribution 

in the column and its surface can be calculated for any time [t - 

(j+l)At] if the temperature distribution at the time j At is known. 

Starting from a temperature of 20"C (68“F), the temperature history of 

the column can be calculated by Equations (4.1) to (4.27).

4.16 Calculation of Strength During Fire

Mechanical Properties

The most important mechanical properties that determine the

strength of concrete-filled square steel columns are compressive

strength (f^)» modulus of elasticity (Ec) and ultimate strain (eu ) of

the concrete, and the yield strength (f ) and modulus of elasticity (E )y s
of the steel. A survey of the literature (18) shows that the variation 

of these properties with temperature is Influenced by a large number of 

factors. The compressive strength of concrete at elevated temperatures 

is affected by the rate and duration of heating, the size and shape of 

the test specimen, and the loading during heating.

During exposure to fire the strength of the column decreases with 

the duration of exposure. The strength of the column can be calculated 

by a method based on load-deflectlon analysis which in turn is based on 

a stress-strain analysis of cross-sections 138J. In this method, the
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columns, which are fixed at the ends during the tests, are Idealized as 

pin-ended columns of reduced length KL (Figure 4.8). The load on the 

test columns is Intended to be concentric. To represent imperfections 

in the columns, an Initial deflection yQ » 2.5 mm (0.1 in.) is assumed.

The calculation of the strains, stresses, loads and moments for 

each element of the column cross-section due to temperature change for a 

triangular network, Figure (4.2), is quite difficult. The main reason 

of this difficulty is the temperature representatives of the triangular 

elements located at the fire/steel boundary (line A-B) which can cause 

difficulty for stress calculations. Therefore the triangular network 

should be transfer to square network,

4.17 Transformation Into Square Network

To simplify the calculation of the deformations and stresses in the 

column, the triangular network is transformed into a square network. In 

Figure (4.7) a quarter section of this network, consisting of square 

elements arranged parallel to the x- and z-axis of the section, are 

shown. The width of each element of this network is Ah . The

temperatures, deformations and stresses of each element are represented 

by those of the center of the element. The temperature at the center of 

each element is obtained by averaging the temperatures of the elements 

in the triangular network according to the relation:

g

(TJ )
m,n square triangular

(4.28)
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where the subscripts 'square' and 'triangular' refer to the elements of 

the square and triangular network.

4.18 Assumptions

The curvature of the column is assumed to vary from zero at pin-end 

to mid-height according to a straight line relation, as illustrated in

Figure (4.8). For such a relation the deflection at mid-height (y), in

terms of the curvature ( y) of the column at this height, can be given 

by:

y - x f f l l ! .  (*.29)
12

For any given curvature (x)» and thus for any given deflection at 

mid-height, the axial strain is varied until the Internal moment at the 

midsection is in equilibrium with the applied moment given by the

product of load and total deflection. In this way a load deflection

curve can be calculated for specific times during the exposure to fire.

From these curves the strength of the column (its maximum load carrying

capacity) can be determined for each time. In the calculation of column 

strength the following assumptions were made.

1) The properties of the concrete and steel are as given in

Chapter three.

2) Concrete has no tensile strength.

3) Plane sections remain plane.

4) Initial strains in the column before the exposure to fire 

consists of free shrinkage of the concrete and creep. Because 

the shrinkage of the column during test normally compensated by
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filling the space at both ends of the column between the 

concrete and steel with a plaster, the shrinkage is assumed to 

be negligible.

Normally, the tests of the columns start after a preloading period 

of about one hour. The shortening of the column due to creep in this 

period is assumed to be negligible.

Based on these assumptions, the change of column strength during 

the exposure to fire was calculated. In the calculations the square 

network shown in Figure (4.7) was used. Because the strains and 

stresses of the elements are not symmetrical with respect to the x-axis,

the calculations of the strains and stresses were performed for both the

network shown and an identical network at the left of the x-axis. The 

force and moment in the section were obtained by adding the forces 

carried by each element and the moments contributed by them.

The equations used in the calculations of the strength of the 

column during the exposure to fire are given below.

4.19 Calculations of Strains, Stresses, Loads and Moments in Steel

4.19.1 Strains in the Steel

(a) Strain due to thermal expansion

The strain in an element of the steel due to the thermal expansion

is given by:

(et)s - ag(AT) (4.30)
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where:

(e_)c “ free strain due to thermal expantion of steel1 b
AT ■ temperature change of the element

- T - 20

a,, “ coefficient of thermal expansion of steel

- (0.004T + 12)xl0"6 for T < 1000°C

(b) Strain due to axial loading

For any given curvature x> and thus for any given deflection at 

mid-height y, the axial strain e is varied until the internal moment 

(due to temperature change) at the mid-section is in equilibrium with 

the applied moment given by the product

Load x (deflection + eccentricity)

where:

e = axial strain, is varied until equilibrium (4.31)

(c) Strain due to bending

If Z is the horizontal distance of the steel element to the a
vertical plane through the x-axis of the column section as illustrated 

in Figure (4.7) and p is the radious of curvature, then the strain due 

to bending of the column is:

(d) Total strain

Therefore, the total strain in an element of the steel can be given 

as the sum of Equations (4.30), (4.31) and (4.32). For the steel at the 

right of the x-axis the strain (e ) is given gy:
8  n
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For the steel elements at the left of the x-axls the strain (e ) is
8 L

given by:
Z

(e ) - -(eT) + c ~ —  (4.34)
8 L T S p

4.19.2 Stresses in the Steel

The stresses in the elements of the network are calculated using 

stress-strain relations given in references [2] and [3 ]. These 

relations can be derived from data provided by Ingberg and Sale [39], 

and Witteveen, Twilt and Bylaard [40], These relations Include the 

effect of creep at elevated temperatures and were obtained at heating 

rates approximately those that occur in a fire in actual practice. The 

relations have been generalized for other structural steels by assuming 

that, for a given temperature, the curves are the same for all steels, 

but the stress below with the stress-strain relation is linear, is 

proportional to the yeild strength of the steel. This is illustrated in 

Figure (4.9), where the stress-strain curves at 20°C (68°?) are shown 

for a steel with a yield strength of 250 MPa (36 psi) and for the steel, 

which has a yield strength of 345 MPa (64.3 psi). In Figure 4.10 the 

stress-strain curves of the steel are shown for various temperatures. 

These curves reflect that even at the very high temperature of 800°C 

(1472°F) the steel still possesses some strength and rigidity. The 

equations that describe the relation between the stress in the steel 

(fy), the strain (es) and the temperature of the steel (T) are as

follows [2,3]:
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for e < e 
s p

f(T,0.001) f » — — ’------  £ (A .35)
y 0.001 s

where e - 4 x 10-6fyo (4.36)P
and

f(T,0.001) - (50-0.04T) x [l-exp(-30+0.03T)^0.001)] x 6.9 (4.37)

With the aid of Equations (4.29)-(4.38) the stresses at mid-height 

in the steel can be calculated for any value of the axial strain (e), 

curvature (1/p) and temperature (T). From these stresses the load that 

the steel carries and the contribution of the steel to the moments can 

be derived.

4.19.3 Loads in the Steel

The total load that the steel carries can be calculated by the 

summation of the product of stress by the area for each element located 

in right and left side of the x-axis of the column cross-section as the 

following:

The total load in steel is:

for

f - f(T»°»001> 
y 0.001

e + f(T,(e -e +0.001)) - f(T,0.001)] (4.38)
P s p

N N

where:

(P ) - the total load that the steel can carry
8 T
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(f ) ■ the stress in the steel for an element located at
ySR e

right-side of x-axis (Figure 4.7).

(f ) ■ the stress in the steel for an element located at
ySL e

left-side of x-axis (Figure 4.7).

(A ) » the area of steel elements e

4.19.4 Moments in the Steel

The total moment due to the contribution of the total load carried 

by steel can be calculated by the summation of the product of stress by 

area by z coordinate of the steel for each element located in right and 

left side of the x-axis of the column cross-section as:

The total moment in steel is:

where:

(M ) » the total moment due to the contribution of the total
8 T

load carried by steel

(z ) » the Z coordinate for the steel element.8 e

4.20 Calculations of Strains, Stresses, Loads, and Moments in Concrete

4.20.1 Strains in the Concrete

In the same way as applied for steel, the strain in concrete
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causing stresses for elements at the right of the x-axis (Figure 4.7) 

can be given by:

'Vr --(V c + e + F  (4‘41)

and for elements at the left of the x-axls by:

<ec > L - - (V c  + e - T T  <4*42)

where:

(E,j)c - free strain due to thermal expansion of the concrete 

e - axial strain of the column

z ■ horizontal distance of the center of the element to the c
vertical plane through the x-axis of the column 

section 

p - radius of curvature

4.20.2 Stresses In the Concrete

The stresses in the elements are calculated using the stress-strain 

relations described In References [2 ] and [3 J. These relations were 

based on the work of Ritter [41] and Hognestad [12]. The relations have 

been slightly modified to take into account the creep of concrete at 

elevated temperatures. The modifications are based on results of work 

by Schneider and Haksever [42] and consist of a movement of the maxima 

In the stress- strain curves to higher strains with higher temperatures. 

These curves are shown in Figure (4.11) for a concrete with a cylinder
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strength of 28 MPa (4 ksl). The equations that describe these curves 

are as follows [2,3]:

for < < . f - K  [l - C**', ° ) ) <••«)

for *„ > . «c - U  - ) I <*•«>max
where

f* - f' If T < 450°C (4.45)C CO

f' - f' [2.011 - 2.353 If T > 450°C (4.46)
c 00 1000

e - 0.0025 + (6.0T + 0.04T2) * 10“6 (4.47)max

In these equations

f =• compressive strength of concrete at temperature T c
f' =» cylinder strength of concrete at temperature T c

f^o “ cylinder strength of concrete at 20°C (68°F)

e ■ strain of the concrete c
e - strain corresponding to maximum stress, max

With the aid of Equations (4.41)-(4.47) the stresses In each of the 

concrete elements at midsection can be calculated for any value of the 

axial strain (e) and curvature (1/p). From these stresses the load that 

the concrete carries and the contribution of the concrete to the moments 

can be derived.
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4.20.3 Loads In the Concrete

In the same way as applied for steel, the total load in the 

concrete can be given:

!pJ t  ' 2t ", <fcR>. <V. * \  (fcL>, <*.>.! (4'4<>e»l e-1

where:

(p^)^ = the total load which can be carried by concrete

ff „) ■ the compressive strength of the concrete for an elementv cR e
located at right-side of x-axls 

ff ) - the compressive strength of the concrete for an elementUL G
located at left-side of x-axls

(A ) » the area of concrete element.v c e

4.20.4 Moments In the Concrete

In the same way as applied for steel, the total moment In the 

concrete Is:

(Kjl - 2[ J (f0K)a (*c). (!c). - I (f^). <4C), <-Zc).] <*.«>
e“l e=l

where:

(Mc >t - the total moment due to the total load carried by 

concrete,

(Z ) - the Z coordinate for concrete element,c e
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4.21 Computer Program

A comprehensive computer program for this mathematical model has 

been written. The program output results and discussions Is presented 

In Chapter six. The program list and the input data used are presented 

in Appendx E.
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CHAPTER 5 

FOURTH MATHEMATICAL MODEL 

FIRE RESISTANCE OF CYLINDRICAL REINFORCED CONCRETE COLUMNS

5.1 Introduction

The calculation of fire resistance of a cylindrical reinforced 

columns, for which no mathematical model exists at present, is 

discussed. Details of the mathematical model to calculate temperatures, 

deformations and strength of the column are presented. A computer model 

program has been developed. Some of the output results will be 

discussed in Chapter six.

5.2 Temperatures of Column

The column temperatures are calculated by using the finite 

difference method. The method of deriving the heat transfer equations 

and calculating the temperatures in objects exposed to heat is described 

in detail in Chapter three.

5.3 Cross-Section Identities

The cross-sectional area of the column is subdivided into a number 

of concentric layers. From Figure (5.1), the following identities can 

be derived:

5.4 Identities for Fire/Concrete Boundary Layer

RQ - (M - D A S  (5.1)
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where:

Rg » outer radius of the column cross-section

M - total number of layers

» the thickness of fire/concrete boundary layer and the 

layer at the centre of the column 

A5 - the thickness of the layers except the flre/concrete 

boundary and the centre layers.

Rx - (M - |) A5 (5.2)

where:

■ Inner radius of the boundary layer

(A ) - 2*R - 2n(M-l)A£rs , o (5.3)

where:

A = surface area of the boundary layer located on the rs
longitudinal surface of the colum

2itRQ x 1.0 - [2n(M-l)ACj x i.o

By substituting R^ and R^ from Equations (5.1) and (5.2) into the 

above equation yields:

4 2
(5.4)
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where:

- cross-section area of the boundary layer 

« mean perimeter *

5.5 Division of Cross-Section Into Elementary Layers

The cross-sectional area of the column Is subdivided Into a number

of concentric layers (M). As Illustrated In Figure (5.1), the outer

layer of concrete, which Is exposed to fire, has a thickness of |(A5). 

The thickness of the last concrete layer at the centre Is also |(A5).

The thickness of all other layers In the cross-section Is A£.

5.6 Temperature Calculations

It is assumed that the entire surface of the column Is exposed to 

the heat of a fire whose temperature course follows that of standard 

fire described in ASTM-E119 [36J. This temperature course can be 

described by the following expression:

T^ - 20 + 750 [l-exp(-3.79553*^t") J + 170.41/t (5.5)

where t Is the time In hours and T^ is the fire temperature in °C at 

time t » jAt.

5.7 Equations of Fire/Concrete Boundary

The temperature rise in each layer can be derived by making a heat 

balance for It, i.e. by applying the linear unsteady state partial 

differential equation and its numerical solution, for each layer.
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A180, the heat transferred by radiation to the surface boundary layer 

must be taken into account. The heat balance for the fire/concrete 

boundary layer is as follows.

5.7.1 Heat Transfer by Radiation

Heat will be transmitted from the fire to a surface layer by 

radiation represented by Equation (5.5). For the fire/concrete 

boundary, the heat transmitted by radiation to the boundary surface 

layer (see Figure 5.1) during the period jAt < (j+l)At for a unit 

height of the column is as follows:

q R ■ (ArJ  a efec[(T{ + 273)“ - (tJ_j + 273)“], where m - 2

or

q - 2n(M-l)A£ ° e e  [ M  + 273)“ - (T^ + 273)“] (5.6)R r c r  m-l

5.7.2 Heat Transfer by Conduction

From Figure (5.1), heat is transferred from point 1 to point 2 in 

the radial direction of the cross-section. This heat is dependent on 

the radial direction (r) and temperature (T) and does not depended upon 

any angle. This means that the required unsteady state partial 

differential equation is a function of (r) and (T) as derived below:

The three-dimensional partial differential equation in cylindrical 

coordinates is [52J:

„ &2T K 5T K S2T &2t n &T ,,K   + --R- + -------+ K   - Pc t—  (5.7)
&r2 r2 5z *
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Equation (5.7) has three-dimensional cylindrical coordinates r, $ and z 

with constant thermal conductivity K.

As mentioned above, for this mathematical model, the heat 

transferred is dependent on the radial direction r. Thus, the terms 

include <t> and z in Equation (5.7) must be cancelled to obtain the 

following Equation:

6 2T . K 6T „ a i  ( 5 m 8 )

dr'.2 r W  HC 'St

Also, if the constant thermal conductivity (K) in Equation (5.8) 

is a variable then:

I r l ^ S x V f / c 1 - <>•’>r

Equation (5.9) is a linear unsteady state partial differential 

equation. This equation wil be solved by difference methods at various 

boundary conditions for this mathematical model.

From Figures (5.1) and (5.2), the difference method solution for 

the left-hand side of Equation (5.9) is analogous to the Equations 

(3.43) to (3.51) as follows.

9„ ” tr ) J* (Kh

i tK-'r 3^}  , - tK^r 3^}  ,[1_ or m-1 OrJm-tj ^  ^
r. 4? r f/cA -s—
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 ~ T  ^  (V f / c (5,10)

1 dTFrom Figures (5.1) and (5.2), the value of (KJr - g p at the 

fire/concrete boundary layer la equal to zero because there Is no heat 

conduction at the surface of the column, then:

lKJr g ) m_ i - 0 (5.1D

(KJ) + (Kj)
(K ) , - ------  DLl (5.12)ra-t ^

(r) . - R, (5.13)m-t a

>. (t1),, - (T*)
(®I) -   H (5.14)
dr m-i A?

Using Equations (5.4) and (5.11) to (5.14) Into Equation (5.10) yields 

the following finite difference equation:

, . [ i  _» (*it »£)j ( s ,
c r dr dr A r f/c

2*(M - f) ~  (K)J + (K)J (T^) , - (TJ)4 2  m m-1 r u ____m-l_______iin j
r. ,A& 2 m-i ASA (— j)

(5.15)
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Frora Equation (5.15 and Figures (5.1) and (5.2), the following can be 

found:

rA - (M - |) A5 (5.1)

r . - RX - (M - 1) A6 (5.2)m -t *

Using Equations (5.1) and (5.2) Into Equation (5.15) yields:

I*

2*(m4)<4^- (KJ) + (Kj) ,
 4 - 2—  [-- E------------- E ll_  (M -  2  J A5

_ 5 (A&)2 2 2^  r  i

(T1) . -(T1)
(. E ll E )j (5.16)

A5

Rearranging Equation (5.16), the final heat conduction equation at 

the flre/concrete boundary Is:

(, j . ( I i . (Klr 5£)j
c A r Ar 9r A

2n[((KJ)m *- - 1)(TJ - tJ )J (5.17)
2 2 m-1 m
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5.7.3 The Sensible Heat:

The heat gain or loss In the fire/concrete boundary layer shown In 

Figure (5.1), because of heat generation or absorption Is for a time 

period At can be obtained by applying the right-hand side of Equation 

(5.9) as follows:

5.7.A The Final Equation for Fire/Concrete Boundary

Using Equations (5.6), (5,17) and (5.18) to get the final equation 

for the boundary as follows:

A
- (PC SI) (A )

6t . r f/c A

-  [ (p C + p c ^  J (------ j s k )  [2 *(m  - 1 )  < M > 2 j
c c , w w m-1 Atm-1 4 2

(5.18)

where

(p Cj) , » thermal capacity of concrete, J/m3,,cc c m-1
P C  ■ thermal capacity of water, J/m3ocw w

■ concentration of moisture (volume fraction)m-1
« the temperature at time t ■ (j+l)At, °cm-1

. ■ the temperature at time t - jAt, °c m-1
At - time In hours

Ag » the width of the layer, m
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^  lr^Kr'5r^Ar)f/ĉ  “ ^ pCT5Ê (V f / c  ̂

{[2n(M-l)^]tr ef Ef[(T^ + 273 )** - ( T ^  + 273 )** ]}-

2n[((k >ln + (K-)m~1) (m-2)(tJ - )]
2 2 m-1 m

XJ+1 - T1
rrP c 1J + p c ^  ](— --- !Hli)[21t(M-^)(M  ] (5.19)

c c m-1 w c m-1 At 4 2

Rearranging Equation (5.19), the temperature at the time

(j+l)At for the flre/concrete boundary layer la:

r*+1 - tJ + ______________*5____________
m_1 m-1 (M-2)[p C )•* . + p C 0*' h Lhc c ;m-l Hw w y m-1J z

{(M-1) A5aefec[(T^ + 273)1* - ( T ^  + 273)q]

- (. m  1  jhL)(m-2)(tj - t j )] (5.20)
2 2 ra-1 m

Equation (5.20) can be rewritten In other form which Includes the

volume of the moisture . instead of moisture concentration ^  . asm-1 m i
follows:
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j + 1 j  ________________________ At________________________

V l " fp c 1* ) (» - !  m l  ♦  i - 5  *>
c c m-1 4 2 2n 4 2 m-1

{(M-1) A ^ e fec[(Tj + 273 )‘*-(T^_1+273)*♦]

(K1) + (K)^ , , 2  , ,
-(----1!!------ !!!—L) (M-'— ) (T̂  - T J )] (5.21)

2 2 m-1 m

But, from Equation (5.4), it can be obtaines:

i “ [(A ) . x 1.0] x ^  .m-1 L11 r,, •'m-l J T m-1f/c

* IT1 [2n(M-l)(A^)i. X 1.0] X <t>j
m-1 4 2 m-1

then Equation (5.20) in terms of moisture volume V^_j becomes:

tJ+1 - qJ + ________________^
™-i ®_i r; m T T i  pj?,(p c )j VJ

c c m-1 4 2 2n m-1

{(M-l) A5aefEc[(TJ + 273)‘‘-(tJ_1+273)1*]

(Kj) + (K)^ . , . .
(----2----- 2-JL) (M->—) (T - TV*)] (5.22)

2 2 m-1 m
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5.8 Equations at Inside Concrete Region

The identities and the heat balance for the layers in the concrete, 

except for the layer at the boundary and the centre layer will be as 

follows:

5,8.1 Identities at Inside Concrete Region:

By observing Figure (5.3) the following identities can be derived:

R » R - —  - (m-1) AE where m ■ 2 m o « (5.23)

using Equation (5.1) Into Equation (5.23) yields

R - Tm - m - ilAF,
m  '• J (5.24)

where:

M » Is the number of layers

m = Is the layer number

(5.25)

using Equation (5.24) in Equation (5.25) yields

Rm_l - [M - m + i ]A5 (5.26)

Then, the cross-section area of the m*"*1 layer is:

fA ) = mean perimeter x AEr m
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(A ) - 2n (R|n + AC (5.27)
r m 2

Using Equations (5.24) and (5.26) into (5.27) yields:

(Ar)m - 2n(M - m)AC2 (5.28)

where

fA ) « The cross-section area for layer inside thev r m
concrete region Figure (5.2)

5.8.2 The Heat Transfer by Conduction

The heat transfer by conduction through a layer at point can be 

found by applying Equation (5.9) and its numerical solution to the 

concrete layers except for the layer at the boundary and the centre 

layer.

From Figures (5.3) and (5.4), the difference method solution for 

the left-hand side of Equation (5.9) is analogus to the Equations (3.43) 

to (3.51) as follows:

4 fKJr — I hfj r — J
q „ [!!_ (KJr ^-)] = -  1 3r 'm-| - 1 ar W |
c r dr dr m r ACm

 —  [(Kd ) (r) (-^1 -(KJ) (r) (-^-) ] (5.29)
r (AC) m-i m-i dr , m+i m+i dr ,m m-i m+t

From Figures (5.3) and (5.4), it can be found:
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(m + 1 /2 ) (m - 1 / 2 ) ( m - 1 )

F I G U R E  5 . 4

E N L A R G E D  S CA L E  FOR P O I N T S  P,  P.  . A N D  P.  . .  OF
( m  +  1 )  ( m )  ( m - 1

F I GUR E  5 . 3
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(Kj) + (KJ)
(KJ ) - ----  —  (5.30)

m-i 2

(Kj ) + (Kj)
(K ) =- ------- —  (5.31)

m+i 2

(T3 ) - (T3 )
=_____m~1_______1!1 (5.32)

3r m-i AS

(1J) _ (xj)
(H) -  —  (5.33)
3r m+i ^

r ■ ■ R . (5.34)m-i m-1

r , ” R (5.35)m+i m

Using Equations (5.30) to (5.35) into Equation (5.29) yields to the 

following finite difference equation:

qc " [F3F ^ 3r 3F“^ m

. (K3) + (K3 ) , (T1) -  (T3)1 m m-1 m—1
r (AS) 2 m-i ASm

(K ) + (K ) ., (T3) - (T'3)
- (----1!!------ 2i!)(r )(----5-------!Ii})} (5.36)

2 m+i AS
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From Equations (5.24) to (5.26) and Figures (5.3) and (5.4) the 

following can be determined:

< v t >  * ] «
(5.37)

m-1 [m - m - i ]A5 (5.38)

From Equations (5.37) and (5.38), r can be obtained:m

(r ,,) + (r ,)
r - S Z l  2 ± -  - [M - m]A5 (5.39)
m 2

Substitution of Equations (5.37) to (5.39) into Equation (5.36) 

yields:

„ - [1_» - J L  - ■ * » )(!> - tJ)
c r 5r dr m (A£)^ 2 M - m m-1 m

- ( m+1 m) (M ~ m ~ 1 ) ( Tj - TJ )} (5.40)
2 M - m m m+1

5.8.3 The Sensible Heat

Similarly, as applied for Section 5.6.3, the sensible heat absorbed 

by the mi*1 layer inside the concrete region in a time period At 

is:
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r9El nr
m5F " p atm

T3**' - T3
L(p C )j + P C 4̂  j(-2----- — ) (5.41)

c c w w m Atra

Using Equations (5.40) and (5.41) Into Equation (5.9) yields:

l/j 1 I/J I/J J. I/J
_1 m-1 m ĵ M - m + _ tJ ) _ ( m+l m j
(A5)2 2 M - m m-1 m 2

tJ +1_ qv)
(M ~ ~ ^ X t3 - T3 )} - t[(p C )J + p C fl^H—  -) (5.42)

M - m m m+1 c c m w w m At

Rearranging Equation (5.42), the temperature T3+3 at the time 

(j+l)At for an m1-*1 layer Inside the concrete region can be 

obtained:

Tj+1 = I3 + ------— A j -------T ---- -ICM - m +
(H-n)l(p C )3 + P„CJ3 J(A5)2 c c ra w w in

-  T i )  -  (H -  -  -  -  R ^ ) )  ( 5 . 4 3 ,

Equation (5.43) can be rewritten In another form which includes the

volume of the moisture V3 Instead of moisture concentration G3 asm m
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follows:

At

But

T3"*̂ m T3 + ----------------1 m P C  ,
(pcCc]J(M - m) (A5)2 + (2*)(M-m)<£ (Afi)2

i (m  - m + *)(-4 : L L b ) (TJ - T3 )
2 m-1 m

- (M - m - l)r +1 + K" )(Tj - R3 )} (5
2 m m+1

V3 - [(a ) x l.oK*3 )m r mm

- [2* r(A5) (l.O)J(^)m m

- [2n(M-m)(A5)2(1.0)j(<t^)

V3 - [2n(M-m)4iJ (A5)2J (5.m m

By substituting Equation (5.45) into its Equation (5.44), then 

Equation (5.44) in terms of moisture volume V3 becomes

K3 +K3
ij+1 - T1 + -----------i i ------„  t(M - m +m m  . P

(p„cJ3(Mm)(A5)2 + V3

.44)

45)
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m-1 m 2 m m+1

5.9 Equations For The Centre Concrete Layer

Similarly as before, by applying Equation (5.9) and Its numerical 

solution to the centre layer as follows:

5.9.1 Heat Transfer by Conduction:

From Figures (5.5) and (5.6), the difference method solution for 

the left-hand side of Equation (5.10) Is analogous to the Equations 

(3.43) to (3.51) as follows:

c r 8r 3r M r,M-i A5
2

 --- L(Kj) (r) (— ) - (KJ) (r) (— ) J (5.46)
(r) , . AE M-i M-i 3r M-i M M 3r MM~t

From Figures (5.5) and (5.6), it can be found:

(5.47)

(Kj)
M-i

(KJ )m  + (KJ >m - i (5.48)
2

(r) (5.49)
M-i 2
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•  M - l

m = 2

F I G U R E  5 . 5

THE C O N C R E T E  LAYER AT THE C E N T R E  O F  THE  

C R O S S - S E C T I O N
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F I G U R E  5 . 6

E N L A R G E D  S CALE FOR P O I N T S  PM A N D  PM _ 1 OF  

F I G U R E  5 . 5
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(M ,  _ <TV l  - (T\

“ °

Using Equations (5.47) to (5.51) Into (5.46) yield: 

dT̂« - r1 d r^r d T ii
qc r̂ W ■ r

I r<K\ t < K V l , , 4 E  . " V l ' " 1’.,,£ M Pl-I Pl̂ j

(KJ ) + (KJ)
,. q - — L_ r --------^ l [ ( T j) - (TJ) 1

c (AE)2 2 M-l M

5.9.2 The Sensible Heat:

The heat absorbed by the centre layer M In a time period At

f9E> _ 9T3
M m pC tfF“

tJ+i _ iJ
[ f p  c  ) j  +  p c ^  ]C— -------------- )

c c M w w M At

5.9.3 The Heat Balance Equation of the Centre Layer

M m  - ( A

(5.50)

(5.51)

(5.52)

Is:

(5.53)
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“  <5- “ >

Using Equations (5.52) and (5.53) into Equation (5.54) yields

— i—  r<K >M + (K )m~1 ][(Tj) - (Tj) ]
(AE)2 ‘ 2 M-l M
4

T 1+1 -
■ [(p C )J + p C *J ](— ----- -) (5.55)

c c M w w m At

Rearranging Equation (5.55), the temperature TjJ^ at the time 

(j+l)At for the centre layer can be determined:

tJ+1 = T3 + At____________

(Kj)u + (Kj)K
{[____-______ ±±][(TJ ) - (TJ) } (5.56)

2 M-l M

Equation (5.56) can be rewritten in another form which includes the 

volume of the moisture V^_j instead of moisture concentration ^  as 

follows:
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t;j +1  -  T J +  A t

(kj)m + (KJ)M_. . ,
L “ -----------—-J [(T  ) -  (T ) Jl[[----»-------—  J[(TJ) - (T ) J} (5.57)

2 M-l M

But: v j  - [(Ar JM x 1 . 0 j ( ^ )

By substituting the value of into Equation (5.57), the final 

equation in terms of moisture volume is:

M
________ At__________
fo c ^  + Pw°w VJc c M + H T "  M

(KJ )U + (KJ ) M . , ,
[ M------------——J[(T^) -  C ^) J}

2 M-l M
(5.58)

5.10 Stability Criterion

In order to ensure that any error existing in the solution at some 

time level will not be amplified in the subsequent calculations, a 

stability criterion has to be satisfied; for a selected value of A?, 

this limits the maximum time step At. Following the method described in 

reference 1.35J, it can be derived that for the fire-exposed column the 

criterion of stability is most restrictive along the boundary between 

fire and concrete it is given by the condition
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max

( p ' L ,  <AF’>2 (5.59)
max AS)

where (p C ) . is the minimum value of the heat capacity of the steel, c c min
K the maximum value of its thermal conductivity and h the maximum max max
value of the coefficient of heat transfer to be expected during the 

exposure to fire. The Units for these quantities are:

5.11 Effect of Moisture:

The effect of moisture in the concrete i3 taken into account by 

assuming that in each layer the moisture starts to evaporate when the 

temperature reaches 100“C. In the period of evaporation, all the heat 

supplied to a layer is used for evaporation of the moisture until the 

layer is dry. To calculate the change in the moisture content, first 

the initial moisture has to be calculated.

5.12 Initial Moisture at Fire/Concrete Boundary Layer:

The total volume of moisture in the fire/concrete boundary layer

is:

Volume of the moisture - (volume of the layer)(concentration of 

moisture)

f p C 1 , t / 3 o c c min = J/mJc

K - J/mhc°max

K - J/m2hc°max
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V . = r ( A  (1.0) ](<t>) (5.60)m-l r t / c

where:

V = Volume of moisture content with the first layer where m * 2m-l
(Ar) ^ c » the area of fire/concrete boundary layer

<|> = concentration of moisture.

Using Equation (5.A) into Equation 5.60 yields

Vm-1 “ W M " 4) (AF)2 (5*61)

5.13 Initial Moisture at Inside Concrete Layer

The total volume of moisture content for a layer inside the 

concrete region is:

V = [(A ) (1.0)] U )  (5.62)m L r m J

where:

(A ) ■ the area of the concrete layer m, where m ■ 2.r m
Using Equation (5.28) into Equation (5.62) yields

V - f2n(M - m)(AF,)2 (1.0) ](♦) (5.63)m

where:

M » is the total number of layers
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m =* is the layer number, m-2

5.14 Initial Moisture for the Centre Concrete Layer;

The total volume of moisture content for a concrete layer at the 

centre Is:

VM = [(A^m (1.0)]($) (5.64)

where:

(A )., =* the area of the centre concrete layer and M Is the total r M 1

number of layers

From Figure (5.5),

(V m " (5‘65)

Using Equation (5.65) Into Equation (5.64) yields:

VM - (1.0)]$ (5.66)

5.15 Change In the Volume of the Moisture Content In Fire/Concrete 

Layer

From a heat balance equation, it can be derived that, per unit

length of the column, the volume of moisture content (AV .), evaporatedm-l
In time At from the concrete layer at the boundary between fire and 

concrete as follows:
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where:

(q ),^/ .. ” The heat transfer from the fire to the fire/concreteR f+(m-l)
boundary layer by radiation, — , Equation (5.6).m* nr

(q )/ “ The heat transfer by conduction from layer (m-l) toc (ra-lJ'Tn
layer m, J/(m.hr), Equation (5.18), where ra » 2

(q ) = The heat used for evaporizatlon of the moisturev m-l
content of layer (m-l), This heat of

evaporizatlon will continue until the layer becomes 

dry, then the heat used to raise the layer 

temperature Is called the sensible heat.

5.15.1 Heat of Evaporizatlon

The heat of evaporizatlon can be calculated as follows:

(q ) , ■ (water density) (heat of vaporization) (volume of thev m-l
layer) (Change of moisture concentration with respect 

to time)

(*J+1 - ♦*) .
(q ) -  (P ) (*  )(A )  —  (5.68)

w w r , Atv m-l ra-1
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Using Equation (5.4) into (5,68) yields:

(q ) - (P ><X ) L2n(M— ) (5.69)
v ra-1 u w 4 2 At

Using Equations (5.6), (5.17) and (5.69) into Equation (5.67) 

yields:

[2n(M-l)A&Joe e [(rl + 273)** " (T̂  . + 273) **] - r e t  ra-1

(KJ) + (KJ ) , , , ,
2 « [ ( -------------------- e ! ) ( m - 2 ) ( tJ -  t  ) J

2 2 m-l m

♦ <p „ ,l2.(̂  ,<«>!] i £ ! L i £ u 1
w w 4 2 At

(5.70)

Then, the moisture concentration in the layer at the fire/concrete 

boundary at the time t « (j+l)At is given by:

<p-,+1 = 4̂  + ------ — -----— t(M-l) A?ae e [cr* + 273)4 - (TJ + 273) **J
m-l m-l , , 5.(AS)^ f c f m-lP a  — ;----

w w 4 2

(KJ) + (K)J . , , ,
- [(--- =----- 2l!)(M— )(T̂  - TJ)j} (5.71)

2 m-l m

Using Equations (4.23) and (4.24) into Equation (5.71), the volume 

of the moisture is:
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VJ+1 - vj + {(M-l) AF,cre e [(TJ + 273) ** - (T1 + 273) *♦]
m-l m-l f c f m-lm-l

- [f-
(KJ) + (KJ)m iJ E I K m^ ct3 - tj ]} (5.72)

2 2 m-l m

5.16 Change In the Volume of the Moisture Content for a Concrete Layer

Inside Concrete Region

The volume of moisture content (AV ), evaporated In the time Attn
from a layer Inside the concrete, I.e. not located at the flre/concrete 

boundary as follows:

q̂c\ra-l)->(m) q̂c^(m)+(m+l) + q̂v\m)

or ^ qĉ (m-l)-»ra q̂c\ra+(m+l) (5.73)

where:

q̂c \m)+(m+l) ’ 18 deflned by EqUatl0" (5‘A0)
And the heat used for evaporizatlon (q ) can be given asv in

AJ+1 - J
( q  )  .  ( p  ) ( X  ) ( * ----------------U (5.74)
v m w w At m

Using Equations (5.40) and (5.74) Into Equation (5.73) yields:

m
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j j
(±Z!i)(Tj - TJ ) - (( K .)m+1 +- (K )m) ^ :Wli)(TJ - Tj ) (5.75)
M-m m-l m 2 M-m m m+1

Then, the moisture content for the layer at Inside concrete region 

at the time t - (j+1)At is given by:

... . M  (Kj) . + (KJ)
J +1 _ J  + ________& ________ {( m 1_______2)
m

( K3 ) + ( K3 )
(M-m+i ) (T3 - T 3 ) - ( ----— ---------------------T3 )} (5.76)

m-l m 2  m m+1

Using Equations (4.23) and (4.24) into Equation (5.76), the volume 

of the moisture is:

V3 + 1  = v3 + 2lt(At) {(( )m~1  ^l(M-m+i )(T̂  - T3 )
m m p \ 2 m-l mw w

(KJ) , + (K3) , ,
- (  ^(M-m-iK^-T3 )} (5.77)

2 m m+1

5.17 Change in the Volume of the Moisture Content for the Centre 

Concrete Layer:

The volume of moisture content (AV„), evaporated in the time AtM
from the centre layer is as follows:
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where:
(q ) is defined by Equation (5.52)
C (M-l)+M

And the heat used for evaporizatlon (q )w can be given as:V M

(q ) - (p )(X )(1J.+.L _ ^ )  (5.79)
v M w w At M

Using Equations (5.52) and (5.79) into Equation (5.78) yields:

, (Kj )M + (KJ)M , . . J + l  J_ L _  [____“_______— ][(t)J - fT)3 ] - p \ (♦- ♦ ) (5.80)
(Ag)2 2 M-l M w w At M

Then, the moisture content for the center layer at the time t » 

(j+l)At is:

*J+1 - + _____£ ----- [----” —  IK?1) - (T1 ) 1 (5.81)
M M , ,(l£)2, 2 M-l M

pwXw(— ZT“ 1

Using Equations (4.23) and (4.24) into Equation (5.81) yields:

VJ + tt(At)
M p \ 'w w

(Kj)„ + (KJ)m_, ,
[----  ^ [ ( T 1) - (T ) ] 

M-l M
(5.82)
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5.18 Strength of Column

5.18.1 Division of Cross-Section Into Annular Elements

To calculate the deformation and stresses In the column, the cross

sectional area of the column is subdivided Into a number of annular

elements (Figure (5.7). In Figure (5.7) the arrangement of the elements

is shown In a quarter section of the column. The arrangement of

elements In the three other quarter sections is Identical to this. In

radial direction the subdivision Is the same as that shown in Figure

(5.1), where the cross-section is divided into concentric layers. In

tangential direction each quarter layer is divided Into elements.

The temperature representative of an element Is assumed to be that at

the centre of the element. This can be obtained by talcing the average

of the temperatures at the tangential boundaries of each element,

previously calculated with the aid of Equations (5.1)-(5.82).

Thus for an element P in the cross-section except for the m,n
reinforcement, the representative temperature is:

. T3 , + T3
(t3 ) - (-^ 21] . (where m » 2)iayer (5.83)
m,n annular 2 layer

and if the location of the reinforcement at the centre of an element

P , the representative temperature is: m,n

(t3 ) , - (t3 . ), (5.84)m,n annular Relnfor. layer
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where the subscripts annular and layer refer to the annular elements 

shown in Figure (5.7) and the element layers shown in Figure (5.1).

Similarly it is assumed that the stresses and deformations at the 

centre of an element are representative of the whole element.

5.18.2 Assumptions

In the calculation of column strength the following assumptions 

were made.

1) The properties of the concrete and steel are as given in Chapter 

three.

2) The influence of the presence of reinforcing steel on the temperature 

may be neglected. Thus the column, from a thermal point of viw, may 

be treated as consisting entirely of concrete. The temperature of 

the steel is assumed to be equal to the temperature in the column

section at the location of the center of the steel.

3) Concrete has no tensile strength.

4) Plane sections remain plane.

5) Initial strains in the column before the exposure to fire consists of 

free shrinkage of the concrete and creep. Because the shrinkage of 

the column during test normaly is compensated by filling the spaces 

at both ends of the column between the concrete and steel with a

plaster, the shrinkage is assumed to be negligible.

The tests of the columns are usually started after a preloading 

period of about one hour. The shortening of the column due to creep 

during this period is assumed to be negligible. The initial creep can 

be eliminated by selecting the length of the shortened column as the
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reference length from which the axial strain of the column during the 

test is measured.

Based on these assumptions, the change of column strength during 

exposure to fire was calculated. In the calculations the network of 

annular elements shown in Figure (5.7) was used. Because the strains 

and stresses of the elements are not symmetrical with respect to the 

x-axis, the calculations were performed for both the network shown and 

an identical network at the left of x-axls. The load that the column 

can carry and the moments in the section were obtained by adding the 

loads carried by each element and the moments contributed by them.

The equations used in the calculation of the strength of the column

during exposure to fire are given in Chapter four.

5.19 Calculations of Strains, Stresses, Loads and Moments in Steel and

Concrete:

Follow the same method explained previously in Chapter four.

5.20 Computer Program:

A comprehensive computer program for this mathematical model has 

been written. The computer output results and discussions will be

presented in Chapter six. The program list and the input data are 

presented in Appendix F.
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CHAPTER 6 

RESULTS AND DISCUSSIONS

6.1 Introduction

In this Chapter, numerical examples representing the output of the 

mathematical models of Chapters two, four and five are given. In these 

examples, the Influences of various parameters are discussed.

6.2 Maximum Allowable Load Results:

The mathematical model of cylindrical concrete-filled columns has

been selected to Illustrate the Influence of the column cross-section

area, concrete strength and the steel wall thickness on the load and

moment resistance of these columns.

Figure (6.1) represents the Interaction diagrams for various

cross-section area with diameters of 8 in, 10 in, 12 in, 14 in and 16

in. It is clear from these Interaction diagrams that, the Increase of

the cross-section area will increase the values of the load and moment

that the column can resist.

Figure (6.2) represents the Interaction diagrams for various values

of concrete strength (f') l.e of 3, 5, 7, 9 and 12 Kpai. Fromc
Figure (6.2), it can be seen that the Increasing of the value of 

concrete strength (f^) will result in increasing the load and moment 

values that the column can resist.

Figure (6.3) represents the interaction diagrams for various steel 

wall thickness of 0.125 in, 0.250 in, 0.750 in, 1.0 in and 1.25 in. Its 

clear from Figure (6.3) that the increase of the steel wall thickness
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will result in increasing the load and moment values that the column can 

resist.

6.3 Fire Resistance Results

The Influence of fire temperature on the temperatures history of 

the steel and concrete are presented for square concrete-filled steel 

and cylindrical reinforced concrete columns. Also, the influence of the 

cross-section area and the number of reinforcing bars for cylindrical 

reinforced concrete columns are studied.

Figure (6.4) represents the temperature/time relation for the 

surface of the steel and concrete for concrete-filled square steel 

column has (12 in x 12 in) cross-section and 1.0 in steel wall 

thickness.

Figure (6.5) represents the temperature/time relation for the 

surface of concrete and for the reinforcing bars for cylindrical 

reinforced concrete column (12.0 in) diameter with (8) reinforcing 

bars.

It is clear from Figures (6.4) and (6.5) that the heat transferred 

from the fire to the steel and concrete is in accordance with the 

classical solution of the unsteady state partial differential equation 

[37J. This proves the validity of the numerical solutions which have 

been explained in detail in Chapters four and five.

Figure (6.6) represents the total load/fire resistance 

relationships of cylindrical reinforced concrete columns of 12,0 in,

14.0 in and 16.0 in diameters with 8 reinforcing bars. From this 

Figure, it can be seen that fire resistance of a column will increase by 

increasing the cross-section area of the column.
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Figure (6.7) represents the total load/fire resistance 

relationships of cylindrical concrete columns for various number of 

reinforcing bars namely for 6, 9 and 12 bars. This Figure shows that 

the fire resistance of a column will increase with increasing number of 

reinforcing bars. The influence of the number of bars on the fire 

resistance, however, is relatively small in comparison with the 

influence of the size of the column cross-section.

6.4 Discussions

6.4.1 The Maximum Allowable Load Mathematical Models

The application for the mathematical models of the maximum 

allowable load allows check the effects of many variables. For example 

if the cross-section area is varied, the effect of this on the 

interaction diagram could be seen. Since the computer programs of these 

mathematical models are written to run using either the American or the 

Canadian Standards, a flexibility is allowed for and once again 

variations can be observed in the interaction diagram calculations.

6.4.2 The Fire Resistance Mathematical Models

The variation of the cross-section area shown in Figure (6.6) has 

more influence on the fire resistance than the variation of the number 

of reinforcing bars shown in Figure (6.7). However, the predicted fire 

resistance of these mathematical models do appear to be of the right 

order of magnitude based on general experience. It is however, fully 

acknowledge that experimental experience is needed before the 

sensitivity of these models can be assessed.
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CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS

7.1 Original Research Contributions

The development of the four mathematical models and their related

computer programs, for which no methods exist at present, are the main

original contributions of this dissertation. These mathematical models 

can be summarized as follows:

(1) Maximum allowable load for concrete-filled rectangular steel 

columns.

(2) Maximum allowable load for concrete-filled cylindrical steel 

columns.

(3) Fire resistance of concrete-filled square steel columns.

(4) Fire resistance of cylindrical reinforced concrete columns.

In addition computer programs, have been developed for the essential 

need of the National Research Council of Canada. These computer 

programs are:

(5) Maximum allowable load for rectangular reinforced concrete columns.

(6) Maximum allowable load for cylindrical reinforced concrete columns.

7.2 Conclusions

7.2.1. Maximum Allowable Load Mathematical Models:

The computer models for the maximum allowable load of columns were 

run with various input data and the results of the loads were 

considerably affected by the following parameters:
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(a) Dimension of the cross-section of the column.

(b) Compressive strength of concrete.

(c) Steel wall thickness.

7.2.2 Fire Resistance Mathematical Models:

(1) In the past the fire performance of building component could be 

determined only by experimentation. Recent developments, in 

particular development of numerical techniques and better 

knowledge of material properties at elevated temperatures, have 

made it possible to solve many fire performance problems by 

calculation. Calculation has the advantage that it is for less 

expensive and time consuming than performance tests.

(2) The two mathematical models of fire resistance, section 7.1, 

describes a procedure based on a finite difference method for 

prediction of the temperature history of concrete-filled and 

reinforced concrete columns.

(3) The finite difference method described in this dissertation is 

also suitable for the prediction of temperatures In solid 

concrete columns, beams and walls. It can also be used for the 

calculation of temperatures of any system In which a perfect 

conductor or well-stirred fluid Is enclosed in an encasement; 

for example, water-filled hollow steel columns or beams exposed 

to a radiative heat source of varying temperature.

(4) The computer models for the fire resistance of concrete-filled 

and reinforced concrete columns were run with various Input 

data and the main features of the results are as follows:
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(a) fire resistance Increases markedly with cross-sectional 

area.

(b) fire resistance increases with the increase of the number 

of the reinforcing bars.

7.3 Recommendations for Future Research

The following recommendations are suggested as a sequel to this 

study:

(1) In addition to the two mathematical models for the prediction of the 

temperature history of columns, which have been presented in this 

dissertation by using the finite difference method, the following 

work is further required:

(a) Experimental tests to validate the two models.

(b) Computer output results need sensitivity analysis for various 

input parameters.

(c) The two mathematical models can be rebuilt by using the finite 

element and boundary element methods. A comparison can then be 

made between them and the finite difference method used in this 

dissertation which may lead to improvement in the accuracy of 

theoretical results.

(2) The four Computer models for the maximum allowable loads especially 

for concrete-filled, require an extensive computer output analysis 

for various input data parameters. The results will be sufficiently 

abondant and valuable to publish a complete text book for mechanical 

and civil design engineers.

(3) The computer model for fire resistance of concrete-filled square 

steel columns presented in this dissertation requires a modification 

for rectangular cross-section columns.
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(4) The mathematical models of the maximum allowable load and fire

resistance for various column structures of square, rectangular and 

circular cross-sections need to be developed. These models could be 

developed for eccentric and concentric loaded columns, i.e. more 

than sixty mathematical models are available for further research. 

The various construction of these columns are as follows:

(a) Reinforced-concrete-filled steel columns.

(b) Concrete-filled steel columns with outer surface insulation.

(c) Reinforced-concrete-filled steel columns with outer surface 

insulation.

(d) Air-filled steel columns with outer surface insulation.

(e) Square or rectangular frame combined from four columns.
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APPENDIX A

A.1 ULTIMATE STRENGTH DESIGN THEORY

It Is a procedure of design with margin of safety against collapse.

It's basic assumptions are [6, 7, 8]:

(a) Plane sections before bending remain plane after bending.

(b) Strain in the concrete is proportional to the distance from the 

neutral axis.

(c) Tensile strength of concrete is neglected in flexural 

computions.

(d) No slip, i.e. perfect bond between steel and concrete.

(e) The maximum ultimate concrete strain at failure e = 0.003.u
(f) The maximum compressive stress in the concrete C^ “ 0.85f\

(g) The ultimate tensile stress in the reinforcement does not exceed 

fy
(i) The modulus of elasticity of the reinforcing steel ■ 29 x 106 

psi

(1) The compressive stress distribution in the concrete (fc) niay be well 

researched and decumented curve as a rectangular, trapezoidal or 

parabola [12 ]. These three cases are presented in Figure (A—1).

A.2 STRESS-STRAIN IN CONCRETE COLUMN

The shape of the stress curve is approximately the standard

cylinder test curve, turned sides away as indicated in Figure (A-2).
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The strain and actual stresses diagrams are Indicated In Figure (A-3) 

[43, 44j.

STUSSI (1932)

It Is not necessary to know the exact shape. It Is only necessary 

to know the following [45, 46]

(a) Total compression force C

(b) The location of the force C

• The constants K3, K2 and K3 :

From Figure (A-4), the total compressive force C Is:

C - f c b av

K, f c b1 max

K: K3 fc c b

C - KjK3f c.b

where:

f  -  K i K 3f '  av c

c.b ■» compression zone area on the cross-section

A.3  • WHITNEY STRESS B L O C K  [45]

(a) He stabllshed empirical values of K i ,  K 2 and K 3

(b) He pushed for stress block approach
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(c) He tested columns and verified that the stress block approach 

could be used for columns.

A.4 • WHITNEY'S RESULTS 1.45J

(a) He made tests on standard concrete cylinders

(b) Assuming that the average curve can be applied for compression 

zone in failure

(c) He checked the average curve with flexural tests, it was valid, 

see Figure (A-5)

(d) The values of the constants were:
f

(c) K3 = -p—  =■ Slower rate of loading in conventional 
c

structure than standard cylindrical test

K3 = 0.85

depth to C Kg CKo m —  ------- f —-—* c c

For f' < 4000 psi c

K2 - 0.425

For f' > 4000 psi c

f' - 4000 
R2 ■ °*45 - (- 1000— ] °*05
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/„x ,, _ average stress _ fan ? Q<S) Ki - ■■ ■- - ~ , see tig.max. stress fmax

For f* * 4000 psi c

K: - 0.85

For f' * 6000 psi c

f' - 4000 
“ °-85 “ < Cioob - } °*05

A.5 • STRESS BLOCK [l2, 45j

From Figure (A-6 ), the total compressive force C can be obtained

as:

Stress block depth « a «* 2K2C ■ Pic

For f' < 4000 psi Pi ■ 0.85c

f' - 4000
For f' > 4000 psi Pi “ 0.85 - (— ------- J 0.05

c 1000

Force C ■ Kj • K3 • b

- 0.85 f' a b c

/. C - [0.85 f^J stress block area (a.b)
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A.6 BALANCE POINT AND BALANCED CONDITIONS: [n ]

• Balance Point:

The balance point can be defined as the point at which the maximum 

moment should occur and is defined as, "under the simultaneous action of 

the load and the corresponding moment the concrete will reach its 

limiting strain (0.003) simultaneously with the tension steel reaching 

its yield stress f̂ .

By looking into Figure (A-7) we can assume that:

- the balanced steel ratio at the balanced conditions:

c =■ eu - 0.003

es

s
pb " bd

From strain diagram:

, by substituting the value of E
d f

■=£ + 0.003L
8

8

Es = 29 x 106 psi
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c = d(-- ^ 0 .— — ) balance point
£ + 87000 y

• Balanced Conditions:

From the stress diagram:

C = 0.85 f' b a c

C = 0.85 f̂, b 

A T “ As • fy

but, we have Compressive force (C) - Tensile force (T)

0.85 f' b pxC

0.85 p! —  b (— °‘°03d— ) ** p • b • d
fy f b

■=£ + 0.003 Gs

„ „ fc , 0.003 ip = 0.85 p, —  f--------------)
b f f

y -Shfes * 0-003

.*. p ■ 0.85 pi —  (------- — ) balanced condition
b fy 87000 + fy

At the balanced conditions, a sudden failure would occur with less

alarming deflection, because the rotation of the cross section per unit
e e

longitudinal distance or i-8 relatively small. Therefore when
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Che amount of steel io kept significantly less than that In the balanced 

condition, neutral axis moves upward (to satisfy C » T). In this case 

the rotation of the cross-section per unit distance would become larger, 

and failure would not occur suddenly.

A.7 DOUBLY REINFORCED CROSS-SECTION [48, 49, 50 J:

If the cross-section Is reinforced from both sides as indicated In 

Figure (A-8), the

0.85 f' (a*b - A') + f' A 1 c s s s

0.003 8700087000
d fy/Eg + 0.003 fy + 87000

From the above equations:

T - C

as fy - o.85 r  (prbc - a;) + f; A^

P bd fy - 0.85 f' (Pi’bC - P'*bd) + f' P'bdC 8b
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i.e. the exact balanced ratio is:

0 - 8 5  ~  ( p ^ )  -  P ’ } +  P ’
fs
fy

if fy i «6i Ty
1.0

then, the approximate balanced ratio is:

P '  + 0.85
f' c
fy
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APPENDIX B

CALCULATIONS OF THE TOTAL LOAD AND MOMENTS 

FOR RECTANGULAR CONCRETE-FILLED

In this Appendix, the total load (<t>PN) and the total moment ( 

have been calculated for four positions of the neutral axis. These 

calculation have been applied for rectangular or square concrete-filled 

columns [31, 32j.

B.l RECTANGULAR CONCRETE-FILLED COLUMNS:

The forces in side steel, in end steel, total load and total 

moments have been calculated for the following neutral axis locations:

CASE 2, FIGURE B.l

The strain in the steel in compression side is greater than the 

yield strain, i.e.

e' > e s y

The strain in the steel in tension side is greater than the yield 

strain, i.e.

e > e s y
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s y

cn CN
NEUTRAL AXIS

GRAVITY AXIS CO

CN

cn

TENSION SIDE: € > €

E B . 1
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IDENTITIES

Forces In Side Steel: 

F. - fy (\t)(2h)S 1
Fs2 = (|^-)(pt)(2h)

Fs2 "
Fg5 - (fy(Mt)(2h)

Forces In End Steel:

Fs7 fy [h(w-h)]

Fs8 fy [h(w-h)]

ARMS 13F FORCES

ysl = (4 + p + l)t

ys2 = <4 p - 4)t

ys3 “ 4 p - 4)t

ys5 ’ 4  + p - 4)t

ys7 “ gt/2

ys8 “ gt/2

yc “
pk t

t/2 - —j—
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TOTAL LOAD AND TOTAL MOMENTS

PM * F ► + cN 8t c

N si s2 s3 s5 s7 s8 c

Ms “ F ,Y , + F si si s2
Mc a C • Y c c

mn
M_ + M S C

" *PN a * (Fst + Cc)

* *m n = ♦ <Mg + Mc

CASE 3. FIGURE B.2

The strain In the steel in compression side Is greater than the 

yield strain, I.e.:

e' > e S y
The strain In the steel In tension side is less than the yield 

strain, i.e.:

e < e S y

IDENTITIES

" 2
i, Rg - ku - ■=•

w » <J> + p — &  

6 . 1 - w
=* fy
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G R A V I T Y  A X I S

CN
CO
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CN

o>

T E N S I O N  S I D E :  € ,  < €

F I G U R E  B . 2
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Forces In Side Steel:

F , - fy (6t)(2h) si

Fs2 “ <’r><Pt><2h>

Fs3 ■ (fy |)<'t,t)(2h)

Forces In End Steel:

F = fyfh(w-h)] sb

Fs7 “ (fy f  >th(w-h>l

ARMS OF FORCES

y3l “ (W + I *  

ys2 " (W " T )fc 

ys3 " (4  ♦ + P " W)t 

ys6 “ gt/2 

ys7 “ gt/2
p k  t

yc = t / 2 - ^ H _

TOTAL LOAD AND TOTAL MOMENTS

p», ■ F _ + C N st c

* PN “ Fsl + Fs2 - Fs3 + Fs6 “ Fs7 + Cc

MS = FslYsl + Fs2Ys2 + Fs3Ys3 + Fs6Ys6 + Fs7Ys7
M - C • Yc c c
M = M + MN s c

/• *PN » * <F8t + Cc>

/. 4>Mn - «|>(Ms + Mc)
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CASE 4. FIGURE B.3

The neutral axis falling outside the cross-section causes 

compression only for the total cross-section.

The strain In the steel of the compressed cross-section Is greater 

than the yield strain, i.e.:

S' > Eys 1

IDENTITIES

n -  ku + *  -  g

p - K  + R - i - P

I -  P -  n 

e - |  + p
T|

ES " ** *

f8 - fy J

Forces In Side Steel:

F . - fy (0t)(2h)Si

fs2 “ <*fyTr>(p-T|)t(2h)

fs3 "

Forces In End Steel:

Fs6 “ fy[h<w_h>J
f s 7  “  f y ?  [ h ( w _ h ) - l
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THE NEUTRAL AXIS FALLING OUTSIDE THE CROSS-SECTION CAUSES 

COMPRESSION O N LY FOR THE TOTAL CROSS-SECTION: 7

F,

CN

O) F,s1
GRAVITY AXIS

CO
F,

CN
F,CJ)

F

NEUTRAL AXIS

i
Co
I

F I G U R E  B . 3
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ARMS OF FORCES

ysl - (j - P)t

ys2 - (P + 5/3)t

cn09 - (P + 5/2)t

ys6 “ gt/2

CD “ gt/2 
t Pkut

yc “ 1  ~ 2

TOTAL LOAD AND TOTAL MOMENTS

PN " Fst + Cc

- PN “ Fsl + Fs2 + Fs3 + Fs6 + Fs7 + Cc
M “ F .Y - F - Y - F , Y _  + F , Y , - F , Y ,  S si si s2 s2 s3 s3 s6 s6 s7 s7
M “ C * Y c c c

mn -  Ms + Mc

* *PN - *(Fst + CC)
/. <t>M„ - * (M + M )N s c

CASE 5, FIGURE B.4

Consider the steel Is from high strength steel. The strain In the 

steel In compression side is less than the yield strain, i.e.

e' < e s y

The strain in the steel In tension side is less than the yield 

strain, i.e.
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CN
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e < e s y

IDENTITIES

oc - K + £  u 2

\ - * - K - R u

g - a 

fy Q 

fyQ’

Q'
pe Er U 8
K f u y

Q' (kA K h
K f u y

Forces In Side Steel:

F . = (*fyQ')(ott)(2h) s 1
F ■* (ifyQ)(pt)(2h) 82

Forces In End Steel;

F - (fyQ')[h(w-h)] 

Fs5 - (fyQ)[h(w-h)]
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ARMS OF FORCES

ysl a (■§ a + \)t

ys2 m (| p - \>t

ys4 a gt/2

ys5
a gt/2
t PK tv u

yc 2 “ 2

TOTAL LOAD AND TOTAL MOMENTS

PN - F _ + C st c

* PN = F , - F - + F . si s2 s4 - F . + C s5 c
Ms . f Y + F Y si si s2 s2 + F Y . + F _Y . s4 s4 s5 s5
M - C *Yc c c
M = M + M N 8 c

" *PN " *(Fst + V  
/. 4>Mn - <(>(Ms + Mc)

CASE 6, FIGURE B.5

• The neutral axis falling outside the cross-section causes 

compression only for the total area of the cross-section.

Also, the steel is from high strength steel.

• The strain In the steel of the compressed cross-section is less 

than yield strain, i.e.:

IDENTITIES
i. ^a = Ku + j  - g
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H IG H  STRENGTH STEEL A N D  NEUTRAL AXIS FA LLIN G

OUTSIDE THE CROSS-SECTION: € ' < €

CN CN n

cn CN

GRAVITY AXIS

CD

NEUTRAL AXIS

F I G U R E  B . 5

S T R A I N  D I A G R A M  O F  THE STEEL A N D  C O N C R E T E  F O R  C O  N  C R ET E - F  I LLE D 
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Forces In Side Steel;

F , - (f )(gt)(2h)Si s
f1 - fs

Fg2 - (-1 -2 ---)(gt)(2h)

Forces In End Steel:

Fs3 “ CfyQ’ ) [h(w-h>]

F , - (fyQ)rh(w-h)] 

ARMS OF FORCES

y8l = 0.00

ys2 = gt/3

ys3 - gt/2

ys4 “ gt/2
t

yc " 1

TOTAL LOAD AMD TOTAL MOMENTS
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si s2 s3 s4

fl4̂M = F ,Y . + F „Y + F , Ys4 s si si + F sY
M = C • Y c c c
M = M + M N s c

'* *PN " *(Fst + V
- *(m + m )N S C

s5 s5
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APPENDIX C.l

C.l MAXIMUM ALLOWABLE LOAD DATA INPUT AND SYMBOLS 

Symbols Used In Input Data 

IMP A counter used to specify whether Imperial or metric units are

being used.

ISEC A counter used to specify whether the cross section is square, 

rectangular or circular.

IOPN A counter used to specify whether the cross section is

reinforced or concrete-filled.

H The length of the cross section

WIDTH The width of the cross section

DG Is a constant which if multiplied by the length H will give the

distance between the two ends of the reinforcement.

THICK The thickness of the wall of the steel concrete-filled.

DIAB The diameter of the steel bar.

IBARS Number of bars for two side of reinforcement.

IBARE Number of bars for one end of reinforcement.

FC Strength of the concrete.

FY Yield strength of the steel.

COEFDL Coefficient dead load.

COEFLL Coefficient live load.

LL Live load

K Slenderness coefficient

AOC-O Tells Canadian Standard

A0C"1 Tells American Standard
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IEXIT A counter to stop the program or to continue.

The Counters 

ITYPE ■ 0 Tied column, <(>“0.7

ITYPE = 1 Spiral column, <(>“0.75

IMP “ 0 Metric units

IMP = 1 Imperial units

ISEC “ 1 Square reinforced or filled

ISEC “ 2 Circular reinforced or filled

ISEC = 3 Rectangular reinforced or filled

I0PN ■ 1 Square, rectangular or circular reinforced

I0PN = 2 Square, rectangular or circular filled

IEXIT = 0 Stop

IEXIT “ 1 Continue
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APPENDIX C.2

READ (5,3)

3 FORMAT (315)

Input Data 

Case One, Figure C.l 

Square Reinforced 

IMP ISEC

1 1

IOPN

1

READ (5,5)

5 FORMAT (3D12.6)

H WIDTH DG

0.16000D 02 0.16000D 02 0.70313D 00

READ (5,6) DIAB IBARS

6 FORMAT (D12.6.2I5) 0.10000D 01 2

IBARE

3

READ (5,5) FC FY

5 FORMAT (4D12.6) 0.50000D 01 0.60000D 02

READ (5,7) COEFDL COEFLL LL K AOC

7 FORMAT (4D12.6,15) 0.14000D 01 0.17000D 01 0.40000D 00 0.10000D 01 1

READ (5,3)

3 FORMAT (115)

IEXIT

0

1

(to stop)

(to continue)

Case Two
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READ (5,3)

3 FORMAT (315)

- 192 -

Square Concrete-Filled, Figure C.2

IMP

1

ISEC

1

IOPN

2

READ (5,5)

5 FORMAT (3D12.6)

H WIDTH THICK

0.16000D 02 0.16000D 02 0.25000D 00

READ (5,5) FC FY

5 FORMAT (2D12.6) 0.50000D 01 0.60000D 02

READ (5,7) COEFDL COEFLL LL K AOC

7 FORMAT (4D12.6,15) 0.14000D 01 0.17000D 01 0.40000D 00 0.10000D 01 1

READ (5,3) IEXIT

3 FORMAT (115) 0 (to stop)

1 (to continue)

Case Three 

Rectangular Reinforced, Figure C.3

READ (5,3) IMP ISEC IOPN

3 FORMAT (315) 1 3 1

READ (5,5) H WIDTH DG

5 FORMAT (3D12.6) 0.18000D 02 0.16000D 02 0.61457D 00

READ (5,6) DIAB IBARS IBARE

6 FORMAT (D12.6.2I5) 0.10000D 01 2 3
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FY

5 FORMAT (4D12.6) 0.50000D 01 0.60000D 02

READ (5,7) COEFDL COEFLL LL K AOC

7 FORMAT (4D12.6,15) 0.14000D 01 0.17000D 01 0.40000D 00 0.10000D 01 1

READ (5,3)

3 FORMAT (115)

IEXIT

0 (to stop)

1 (to continue)

READ (5,3)

3 FORMAT (315)

Case Four

Rectangular Concrete-Filled, Figure C.4

IMP

1

ISEC

1

IOPN

2

READ (5,5)

READ (5,7)

WIDTH

COEFDL COEFLL

THICK

5 FORMAT (3D12.6) 0.18000D 02 0.16000D 02 0.25000D 00

READ (5,5) FC FY

5 FORMAT (2D12.6) 0.50000D 01 0.60000D 02

LL K AOC

7 FORMAT (4D12.6,15) 0.14000D 01 0.17000D 01 0.40000D 00 0.10000D 01 1

READ (5,3)

3 FORMAT (115)

IEXIT

0

1

(to stop)

(to continue)
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READ (5,3)

3 FORMAT (315)
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Case Five 

Circular Reinforced, Figure C.5

IMP

1

ISEC

3

IOPN

1

ITYPE

0

READ (5,5)

5 FORMAT (2D12.6) 0.18000D 02

DG

0.70313D 00

READ (5,6) DIAB

6 FORMAT (D12.6.2I5) 0.10000D 01

NBARE

8

READ (5,5) FC FY

5 FORMAT (5D12.6) 0.50000D 01 0.60000D 02

READ (5,7) COEFDL COEFLL LL

7 FORMAT (4D12.6,15) 0.14000D 01 0.17000D 01 0.4000D 00 0.1000D 01

READ (5,3)

3 FORMAT (115)

IEXIT

0 (to stop)

1 (to continue)

Case Six

Circular Concrete-Filled, Figure C.6 

READ (5,3) IMP ISEC IOPN

3 FORMAT (315) 1 2 2

READ (5,5) H THICK

AOC

1
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5 FORMAT (5D12.6) 0.18000D 02 0.25000D 00

READ (5,5) FC FY

5 FORMAT (2D12.6) 0.50000D 01 0.60000D 02

READ (5,7) COEFDL COEFLL LL K AOC

7 FORMAT (4D12.6,15) O.UOOOD 01 0.17000D 01 0.40000D 00 0.10000D 01 1

READ (5,3) IEXIT

3 FORMAT (115) 0 (to stop)

1 (to continue)
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WIDTH =16"

IBARS = 2 'O

I BARE = 3

FI GURE C . 1 

SQUARE R E I N F O R C E D

WIDTH =16"

VZZZZZZZZT^

THICK 

= 0.25

F I G U R E  C . 2

S Q U A R E  C O N C R E T E - F I L L E D

H = 18

13.37'2.3125
2.315"

2.3125

IBARS = 2

2.315
I BARE = 3

_ WIDTH -  2(2.3125) _ 1 2 - 2  (2.3125) 

D G _ WIDTH 12

= 0.61457

F I G U R E  C . 3

R E C T A N G U L A R  R E I N F O R C E D
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WIDTH = 16"

THICK 
= 0.25'

F I G U R E  C . 4

R E C T A N G U L A R  C O N C  R ET E- F  I L LE D 

WEARS = 8

THICK 
= 0.25'

F I G U R E  C . 5 F I G U R E  C . 6

C I R C U L A R  R E I N F O R C E D  C I R C U L A R  C O N C  R E T E- F  I L L E D
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APPENDIX C. 3 

THIS PROGRAM HA S BEEN DEVELOPED BY:
**************** V***********************
* MOHAMED EL-SHAYEB *
* DEPARTMENT OF MECHANICAL ENGINEERING *
* UNIVERSITY OF NEW HAMPSHIRE * 
****************************************

**************************** 
“ M A I N  P R O G R A M * *  
****************************

...THIS PROGRAM CALCULATES THE MAX. ALLOWABLE LOAD FOR 

...REINFORCED CONCRETE COLUMNS WITH SQUARE , CIRCULAR 

...OR RECTANGULAR CROSS SECTION

...DEFINITION OF SOME VARIABLES USED IN THIS PROGRAM:
AOC = IS AN OPTION TO SPECIFY WHERE AMERICAN OR 

CANADIAN STANDARDS ARE USED.
AOC = 0 CANADIAN STANDARDS FOR CALCULATING THE

COMPRESSIVE STRENGTH OF COLUMNS ARE USED.
AOC = 0 CANADIAN STANDARDS FOR ECCENTRICITY ARE USED.
AOC = 1 AMERICAN STANDARDS FOR CALCULATING THE 

MAXIMUM ALLOWABLE LOAD ARE USED.
AOC = 1 AMERICAN STANDARDS FOR ECCENTRICITY ARE USED.
IMP : IS AN OPTION USED TO SPECIFY WHETHER IMPERIAL 

OR METRIC UNITS ARE BEING USED 
IF IMP = 0 : USE METRIC UNITS
IF IMP = 1 : USE IMPERIAL UNITS
ISEC : IS AN OPTION TO SPECIFY SHAPE OF CONCRETE SECTION 
IF ISEC= 1 : SQUARE SECTION IS USED 
IF ISEC= 2 : CIRCULAR SECTION IS USED
IF ISEC= 3 : RECTANGULAR SECTION IS USED
IOPN : IS AN OPTION USED TO SPECIFY TYPE OF CONCRETE SECTION 
IF IOPN - 1 : REINFORCED CONCRETE SECTION IS REQUIRED 
IF IOPN = 2 : FILLED CONCRETE SECTION IS REQUIRED
ITYPE : IS AN OPTION TO SPECIFY WHETHER SPIRAL OR TIED COLUMN 
IF ITYPE = 0 : TIED COLUMN
IF ITYPE # 0 : SPIRAL COLUMN
NCPT = IS AN OPTION TO SELECT THE NUMBER OF C POINTS TO BE

FITTED IN THE INTERACTION DIAGRAM , COULD BE 28 OR ANY 
OTHER NUMBER.

TEMP = TEMPORARY CONSTANTS 
TEMP1= TEMPORARY CONSTANTS
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c.A .... UNITS CONVERSION
c
c. FROM METRIC TO IMPERIAL FROM IMPERIAL TO METRIC
c
c MM * 0.0393700---  IN IN / 0.0393700---  MM
c MPA * 0.1450000---  KSI KSI / 0.1450000---  MPA
c KN / 4.4457090--- KIPS KIPS* 4.4457090------ KN
c KN-M/ 0.1129101-----K-IN K-IN* 0.1129101-----  KN-M
c
c H = THE LENGTH OF THE CROSS SECTION OF THE COLUMN
c WIDTH =THE WIDTH OF THE CROSS SECTION OF THE COLUMN
c DG = THE DISTANCE BETWEEN CENTRE LINES OF UPPER AND LOWER STEEL
c PERST = PERSENTAGE OF REINFORCEMENT
c FC B THE COMPRESSIVE STRENGTH OF CONCRETE
c FY D= THE YIELD STRENGTH OF REINFORCEMENT
c ES = MODULUS OF ELASTICITY OF REINFORCEMENT
c EC = MODULUS OF ELASTICITY OF CONCORETEc BETA = FACTOR USED TO CALCULATE A (WHERE A IS THE DEPTH OFc THE CONCRETE STRESS BLOCK)c EPSI = D D D DU = ULTIMATE STRAIN AT THE OUTER FIBERS OF CONCRETEc EPSY a YIELD STRAIN OF THE REINFORCEMENTc EPSI a DRAT10 BETWEEN EPSY AND EPSU ( =0.003 )
c C a KU*H = DISTANCE FROM EXTREME COMPRESSION FIBER TOc NEUTRAL AXIS
c CM a DISTANCE FROM EXTREME COMPRESSION FIBER TO NEUTRALc AXIS BUT IN METRICc PN a NET LOAD WHICH LIES ON INTERACTION DIAGRAM*KIPS)c PNM a SAME AS ABOVE (KN)c MN a NET MOMENT ON INTERACTION DIAGRAM(K-IN)c MNM a SAME AS ABOVE (KN-M)c PHIMN a NET MOMENT MULTIPLIED BY SAFETY FACTOR
c PHIMNM= SAME AS ABOVE (KN-M)c PHIPN a NET LOAD MULTIPLIED BY SAFETY FACTOR (KIPS)
c PHIPNM= SAME AS ABOVE (KN )c IG a GROSS MOMENT OF INERTIA (M**4)c IS a STEEL MOMENT OF INERTIA (M**4>c LOADF a LOAD FACTOR DEFINED AS (= (1.4D + 1.7D/1.4D)c WHERE DftL ARE DEAD AND LIVE LOADSc KL a EFFECTIVE LENGTH OF COLUMN <IN )c KLM a SAME AS ABOVE <M )c MU a MOMENT WHICH LIES ON INTERACTION DIAGRAM AND IS PARTc OF THE MAXIMUM ALLOWABLE LOAD (K-IN)c MlIM a SAME AS ABOVE (KN-M)c DIAB a DIAMETER OF THE REINFORCEMENT <IN )c I BARS a NUMBER OF SIDE REINFORCEMENT BARS (TWO SIDES)c I BARE a NUMBER OF END REINFORCEMENT BARS (ONE SIDE >c COEFDL COEFFICIENT OF DEAD LOAD (=1.4)
c COEFLL COEFFICIENT OF LIVE LOAD (=1.7)c LL a LIVE LOAD
c K a SLENDERNESS COEFFICIENT* FOR MOST CASES = 1.0)c HOWEVER IT IS VARIABLE
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C AST = AREA OF ONE STEEL BAR
C ASTT = TOTAL AREA OF STKrL < = (IBARS + 2.0*IBARE)*AST)
C ECC = ECCENTRICITY
C PO LOAD AT WHICH MOMENT IS ZERO (LIES ON INTERACTION DIAGRAM)
C PC CRITICAL LOAD (FROM EULER'S FORMULA)
C BT SHAPE FACTOR ( = 1.0 - FOR SQUARE OR RECTANGULAR SECTION)
C < = 0.7854 - FOR CIRCULAR SECTION)

IMPLICIT REAL*8(A-H,0-Z>
C

COMMON/MATPR/PERST,FC,FY,ES,EC
COMMON/DIMEN/H,DG,WIDTH
COMMON/CONST/BETA,EPSI,BT,KU
COMMON/REINF/ASS,ASE,ASTT,DIAB,IBARS,IBARE,NBARS
COMMON/SIKNS/THICK1.THICK2,THICK

C DIMENSION PN(30),C< 30),PNM<30>,PHIPN(30),PHIMN< 30)
DIMENSION PHIMNM(30),PHIPNM(30),CM(30)

C REAL IS,IG,LOADF,MN<30>,MNM(30>,KLM,KL,LL,MU,MUM,K 
INTEGER AOC,COEMUM,COEMUN,COEPUM,COEPUN 

110 CONTINUE
READ(5,3) IMP,ISEC,IOPN,NCPT,ITYPE 

3 FORMAT!515)
IF(ITYPE .EQ. 0) PHI = 0.70 
IF(ITYPE .NE. 0) PHI = 0.75 
PI = 3.1415926540 
IF(ISEC - 2) 8,9,8

...READ DATA FOR SQUARE OR RECTANGULAR SECTION
8 IF(IOPN - 1) 11,11,13

...CASE OF REINFORCED CONCRETE SECTION ( SQUARE OR RECTANGULAR)
11 READ(5,5) H,WIDTH,DG

READ(5,6) DIAB,IBARS,IBARE 
IF<ISEC.EQ.3) GO TO 19 
GO TO 63 

19 CONTINUE
TEMP = WIDTH 
WIDTH = H H = TEMP
DG = (H - WIDTH*( 1.0 - DG))/H 

63 CONTINUE
AST = PI*(DIAB/2.0)**2 
ASS = IBARS*AST 
ASE = IBARE*AST 
ASTT = ASS + 2.0*ASE 
NBARS = IBARS + 2*IBARE 
THICK1 = ASS/(2.0*DG*H)
THICK2 = ASE/(WIDTH - H*(1.0 - DG))
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AG = H*WIDTH 
PERST = ASTT/AG 
GO TO 17

...CASE OF FILLED CONCRETE SECTION!SQUARE OR RECTANGULAR)
13 READ(5,5) H,WIDTH,THICK 

IF(ISEC.EQ.1) GO TO 44 
TEMP = WIDTH
WIDTH = H 
H = TEMP 

44 CONTINUE
DG = (H-THICK)/H
ASE = THICK*!WIDTH - THICK)
ASS = 2.0*DG*H 
ASTT = ASS + 2.0*ASE 
AG = H*WIDTH 
PERST = ASTT/AG 
GO TO 17

...READ DATA FOR CIRCULAR SECTION 
9 IF!IOPN - 1) 14,14,16 

...CASE OF REINFORCED SECTION! CIRCULAR)
14 READ!5,5) H,DG 

READ!5,6) DIAB,NBARS
AST = PI*!DIAB/2.0)**2 
ASTT = NBARS*AST 
THICK = ASTT/!PI*DG*H)
AG = PI*H**2/4.0 
PERST = ASTT/AG 
GO TO 17

..CASE OF FILLED SECTION (CIRCULAR)
16 READ(5,5) H,THICK

DG = (H - THICKl/H 
Dl = H
D2 = H - 2.0*THICK 
ASTT = PI*(D1**2 - D2**2)
AG = PI*H**2/4.0 
PERST = ASTT/AG

17 CONTINUE 
READ!5,5) FC.FY

5 FORMAT!5D12.6)
6 FORMAT!D12.6,215)
READ!5,7)COEFDL,COEFLL,LL,K,AOC

7 FORMAT!4D12.6,15)
IF!IMP .EQ. 1) GO TO 10
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-C...UNITS CONVERSION FROM IMPERIAL TO METRIC 
IF(IOPN .EQ. 1) DIAB = nrAB*0.03937 
H = H*.03937
DG = DG*.03937
FC = FC*.I4S
FY = FY*.145

10 ES = 29000.0
KL = 150.0 * K

C...CALCULATIONS OF MINIMUM ECCENTRICITY 
IF(AOC - 0)12,12,15 

C...ECCNTIRICITY ACCORDING TO CSA
12 ECC = 0.1*H

IF (ECC .LT. 0.984252) ECC = 0.984252 
EC = (5000*SQRT!FC/0.145))*0.145 
GO TO 18

C...ECCENTRICITY ACCORDING TO ACI 318-83
15 ECC = 0.6 + 0.03*H

EC = <57000.OMDSQRT!1000.0*FC)>1/1000.0
18 CONTINUE

IF(ISEC .EQ. 1 .OR. ISEC .EQ. 3) BT - 1.0 
IF(ISEC .EQ. 2 )
WRITE<6,109)

109 FORMAT! 1H1)
IF<ISEC.EQ.1.AND.IOPN.EQ.1)
IF<ISEC.EQ.1.AND.IOPN.EQ.2)
IF<ISEC.EQ.2.AND.IOPN.EQ.1)
IF<ISEC.EQ.2.AND.IOPN.EQ.2)
IF(ISEC.EQ.3.AND.IOPN.EQ.1)
IF(ISEC.EQ.3.AND.IOPN.EQ.2)
GO TO 39

36 IF(AOC .EQ. 1) WRITE(6,31>
IF<AOC .EQ. 0) WRITE<6,41>
GO TO 39

37 IF(AOC .EQ. 1) WRITE!6,33)
IF(AOC .EQ. 0) WRITE(6,43)
GO TO 39

38 IF(AOC .EQ. 1) WRITE!6,35)
IF(AOC .EQ. 0) WRITE<6,45>

39 CONTINUE
30 FORMAT!5X,’MAX. ALLOWABLE LOAD FOR SQUARE REINFORCED COLUMN',/5X,’**** ********* **** *** ****** ********** ******’,//)
31 FORMAT!5X,'MAX. ALLOWABLE LOAD FOR SQUARE FILLED COLUMN',/

5X,’**** ********* **** *** ****** ****** ******',/
20X,'ACCORDING TO ACI 318-83',/

. 20X,'********* ** *** ******',//)
32 FORMAT!5X,'MAX ALLOWABLE LOAD FOR CYLIND. REINFORCED COLUMN',/ . 5X,’*** ********* **** *** ******* ********** ******>,//)
33 FORMAT!5X,'MAX ALLOWABLE LOAD FOR CYLIND. FILLED COLUMN',/. 5X,'*** ********* **** *** ******* ****** ******•,/

20X,'ACCORDING TO ACI 318-83',/• 20X,********** ** *** ******',//)

BT = 0.7854

WRITE(6,30) 
GO TO 36 
WRITE!6,32) 
GO TO 37 
WRITE(6,34) 
GO TO 38
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34 F0RMAT15X,’MAX ALLOWABLE LOAD FOR RECT. REINFORCED COLUMN*,/• 5X>**** ********* .* *** ***** ********** *******,//)
35 F0RMAK5X, ’MAX ALLOWABLE LOAD FOR RECT. FILLED COLUMN1,/• 5X#•*** ********* **** *** ***** ****** ******’,/

20X,’ACCORDING TO ACI 318-83’,/• 20X*********** ** *** *******,//)
41 F0RMAK5X,’MAX. ALLOWABLE LOAD FOR SQUARE FILLED COLUMN’,/. 5X,’*** ********* **** *** ****** ****** * * * * * * * t /

10X,’ACCORDING TO THE CANADIAN STANDARDS’,/• 10X,********** ** ... ******** **********,//)
43 FORMAT!SX,’MAX. ALLOWABLE LOAD FOR CYLIND. FILLED COLUMN’,/5X, * * * * * ********* **** *** ******* ****** ******’,/

10X,’ACCORDING TO THE CANADIAN STANDARDS’,/. 10X,********** ** *** ******** *********',//)
45 F0RMAT(5X,’MAX. ALLOWABLE LOAD FOR RECT. FILLED COLUMN’,/5X,’**** ********* **** *** ***** ****** ******’,/

1OX,’ACCORDING TO THE CANADIAN STANDARDS’,/• 10X,’********* ** *** ******** **********,//)
WRITE<6,24>

24 F0RMAT(20X,’SECTION DIMENSIONS’,/
20X,******** **********’,//)

HCONV = H*25.40 
IF<ISEC - 2) 20,21,20

20 WIDTHC = WIDTH*25.40
WRITE!6,22) HCONV,WIDTHC,H,WIDTH

22 F0RMAT15X,’DIMENSIONS OF THE SECTION ARE ......... *,
D12.3,’*',D12.3,’ MM’,’!’,D12.3,’*’,D12.3,’ IN)’>

GO TO 29
21 WRITE!6,23) HCONV,H
23 F0RMAT15X,’DIAMETER OF THE CIRCULAR SECTION IS ..... ’,

D12.3,’ MM’,’(’,D12.3,* IN)’)
29 CONTINUE

IF!IOPN .EQ. 2) GO TO 25
DIABM = DIAB/0.03937
DH = DG*H
DHM = DH /0.03937
WRITE!6,26> DIABM,DIAB,DHM,DH,NBARS,PERST

26 FORMAT!5X,’DIAMETER OF BAR .......... ........  =’,
D12.3,’ MM’,’!’,D12.3,» IN)’,/
5X,’DISTANSE BET. CENTER LINES OF END STEELS. =’,
D12.3,’ MM’,’< *,D12.3,’ IN)’,/
5X,’NUMBER OF BARS ...................  =’,15,/
5X,’X OF STEEL....................... =’,D12.3>

GO TO 28
25 THICKM = THICK*25.40 

DH = DG*H
DHM = DH*25.40 
WRITE!6,27) THICKM,THICK,DHM,DH

27 F0RMAT!5X,’THICKNESS OF THE STEEL SECTION ......  =’,
D12.3, ’ MM’,’(’,D12.3,’ IN)’,/
5X,’DISTANCE BET. CENTER LINES OF STEEL SEC. =’,
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D 1 2 . 3 , ’ M M * , ’ ( ’ ,D12.3,’ IN)’,//)
28 CONTINUE

KLM = KL/0.039370 
WRITEC6,S0) KLM,KL,K

50 F0RMAT !5X,’EFFECTIVE LENGTH OF COLUMN-KL . . . . . . . .  = ’,
D 1 2 . 3 , ’ M M * ,' ( ’,D12.3,* IN)’,/

5X, M N O T E  K ASSUMED = ’.D12.3,’)’ ,//)
WRITE!6,55)

55 FORMAT! 20X,'MATERIAL PROPERTIES',/
• 2 0 X , '******** **********',//)
FCM = FC/0.I450
FYM = FY/0.1450
ECM =  EC/0.1450
ESM = ES/0.1450
WRITE<6,56) ECM,EC,ESM,ES,FCM,FC,FYM,FY

56 FORMAT!5X,'CONCRETE MO DU L U S - E C. . . . . . . . . . . . . . . . .  =',
D 1 2 . 3 , ’ M P A ' , ’,D12.3,' KSI)',/
5X,'STEEL M O D U L U S - E S. . . . . . . . . . . . . . . . . . . .  = ’ ,
D 1 2 . 3 , * M P A ' , ’,D12.3,’ KSI)',/
5X,'COMPRESSIVE STRENGTH OF C O NCRE TE-F C =',
D 1 2 . 3 , ’ M P A ' , ’ ,D12.3,' KSI)',/
5X,'YIELD STRENGTH OF S T EEL- FY. . . . . . . . . . . .  =',
D 1 2 . 3 , ’ M P A ’,'(',D12.3,' K S I ) ’)

C
IF(I0PN .EQ. 2 .AND. AOC .EQ. 0) GO TO 71

C
ECCM = ECC/0.03937 
IF(AOC-O) 65,65,66

65 WRITE!6,68) ECCM,ECC
68 F0RMAT!5X,'MIN. ECC. ACCORDING TO C S A . .<ECC=0.1*H), . ,

D 1 2 . 3 , ’ M M  ’,’1 ’ ,D12.3,’ IN)’)
GO TO 70

66 WRITE(6,69) ECCM,ECC69 FORMAT!5X,'MIN. ECC. ACCORDING TO ACI 3 1 8 - 8 3 . . . . .  =',
D 1 2 . 3 , ’ M M  ',’<',012.3,' IN)’)

C NOMINAL LOAD AT ZERO ECCENTRICITY
70 PO = 0.85*FC*!AG-ASTT) + FY*ASTT 

LOADF = < COEFDL+COEFLL*LL)/COEFDL 
WRITE!6,75) LOADF75 FORMAT<5X,'LOAD FACTOR.< ( 1.4*D+1.7*L)/1.4*D>. . . . . .  = ’ ,D12.3,//)

...MOMENTS OF INERTIA CALCULATIONS TO GET CRITICAL LOAD 
IF!ISEC - 2) 51,52,51 

...MOMENTS OF INERTIA FOR RECTANGULAR OR SQUARE REINFORCED SECTION
51 IF!IOPN - 1) 53,53,54 
53 DH s DG*HIS = (THICK1*DH**3/12.0>*2.0 ♦ <ASE*!DH/2.0)**2.0)*2.0 

IG = WIDTH*H**3/12.0
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GO TO 57
CC...MOMENTS OF INERTIA FOR RL.. T ANGULAR OR SQUARE FILLED SECTION 
C 54 DH = DG*HIS = 2.0*(THICK*DH**3/12.0) + 2.0*<ASE*(DH/2.0)**2>

IG = WIDTH*H**3/12.0 
GO TO 57

CC...MOMENTS OF INERTIA FOR CIRCULAR REINFORCED OR FILLED SECTION 
C 52 DH = DG*H

D1 = DH + THICK 
D2 = DH - THICK 
IS = PI*(D1**4 - D2**4)/64.0 
IG = PI*H**4/64.0 

57 CONTINUE
BD = 1.O/LOADF
El -- (<EC*IG)/5.0 + ES*IS)/( 1.0 + BD)

C...CRITICAL LOAD CALCULATIONS 
PC = PI**2*EI/(KL**2)
CALL INTDG(C,PO,PHIPN,PHIMN,NCPT,PHI,ISEC,IOPN,ITYPE)
CALL M A XLD( PHIP N,PH I M N ,E C C ,P C ,C ,L O A D F ,P H I ,N C P T )
GO TO 72

C
71 CONTINUE

C
C... CALCULATE THE COMPRESSIVE RESISTANCE OF FILLED SECTION 
C ACCORDING TO THE CANADIAN STANDARDS
C

CALL FLDCN(ISEC,K,KL)
C

72 CONTINUE 
READ(5,3> IEXIT 
I F U E X I T  .EQ. 0) GO TO 61 
GO TO 110

61 CONTINUE 
STOP 
END

C
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

SUBROUTINE INTDG<C,PO,PHIPN,PHIMN,NCPT,PHI,ISEC,IOPN,ITYPE)0 ********************************************cC . ..THIS SUBROUTINE CALCULATES THE NET LOADS (PN) AN D THE NET MOMENTS 
C <MN> WHICH CONSTRUCT THE INTERACTION DIAGRAM 
C

IMPLICIT REAL*8(A-H,0-Z)
C CO MMON /MATPR/PERST,F C ,F Y ,E S ,EC 

CO MMON/DIMEN/H,D G ,WIDTH
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COMMON/CONST/BETA,EPSI,BT,KU 
COMMON/S IKNS/THICK1, TI! V 2, THICK

C DIMENSION C<30),CM(30),PN<30),PHIPN<30),PHIMN<30)
DIMENSION PHIPNM< 30), PHIMNM< 30),PNM< 30)

C
REAL KU,MN(30),MNM(30)
EPSU = 0.003 
EPSY = FY/ES

CC...PN AND MN VALUES AT POINT-2 (POINT-2 LIES ON PN-AXIS)
C...LETC = INFINTY

C(NCPT) = 0.IE 08 
PN(NCPT) = PO 
MN(NCPT) = 0.0

C
C...CALCULATE THE VALUE OF BETA ( A = BETA*C ,WHERE A IS THE DEPTH 
C OF THE CONCRETE STRESS BLOCK, AND C IS THE N.A. LOCATION)
C

BETA = 0.8S - 0.05*<INT(FC-4.0))
IF(BETA .LT. 0.65) BETA = 0.65 
IF<FC .LE. 4.0) BETA = 0.85

C
C... LOCATION OF BALANCE POINT AND OTHER POINTS ON THE DIAGRAM 
C

NCPT1 = NCPT-1 
IF<IOPN - 1) 30,30,40

C
C...CASE OF REINFORCED CONCRETE COLUMN 
C

30 D = H-(H-DG*H)/2.0
C(l) = (EPSU/< EPSU + EPSY))*D 
GO TO 50

C
C...CASE OF FILLED CONCRETE COLUMN 
C

40 D = DG*H - THICK/2.0
C<1) = D*(EPSU/(EPSU + EPSY)) + THICK

C
50 CONTINUE

DO 119 I=2,NCPT1 
C(I) = I*H/10.0 

119 CONTINUE
DO 120 I=1,NCPT1
IF<IOPN .EQ. 1) KU = C<I)/H
IF(IOPN .EQ. 2) KU = <C<I) - THICK)/H
IF(ISEC - 2) 10,20,10

C
C...CALCULATE PN AND MN FOR SQUARE OR RECTANGULAR SECTION 
C

10 CALL FMSQ(I,C,PN,MN,IOPN)
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GO TO 120
...CALCULATE PN AND MN FOR CIRCULAR SECTION

20 CALL FMCR(I,C,PN,MN,IOPN)
120 CONTINUE

...MULTIPLY A L L  INTERACTION VALUES BY PHI<=0.7,=0.75 FOR TIED AND SPI)
DO 410 1 = 1 ,NCPT 
PHIPN(I) = PN(I)*PHI 
PHIMN(I) = MN(I)*PHI

410 CONTINUE
DO 420 1 = 1 ,NCPT 
PHIPNM(I) = P H IPN!11*4.445709 
PHIMNM(I) = PH I M N ! 1 1*0.1129101 
PNM!I> = P N d l  *4.4457090
MNM(I) = MN(II *0.1129101
CM(I) = C(I) *25.40

420 CONTINUE 
WRITE! 6,430)

430 FORMAT!1H1,35X,’*** INTERACTION DIAGRAM VALUES ** *’ ,/• 3 5 X , ************************************#//)
WRITE!6,450)

450 FORMAT! 1 IX ,’N.A.LOCATION',31X,’U L T . MO MENT *,35 X,’ULT. LOAD*,/
. 1 IX ,**************,31X,************,3 5X,’** **»* ***’,/

17X,*C*,41X, *M N*,42X,*PN’//)
WRITE!6,469) C M ! 1),C<1 ) ,MNM<1 ) ,MN<1 ) ,PNM!1 ) ,PN(1)

469 FORMAT! D1 2 . 3 , * M M < *.D12.3,'IN) BAL. PT. ’.D12.3,' K N M * ,
.*;(*,D12.3,*K-IN)*,10X.D12.3,* K N ’,*;< *,D 12.3,»KIPS)*) 
WRITE!6,46S)

468 FORMAT!/)
DO 460 1=2,NCPT
IF!I .EQ. NCPT ) G O  TO 455
WRITE!6,465) C M ! I >,C<I),MNM(I),MN(I) ,PNM<I),PN<I)

465 FORMAT!D12.3 , *MM(*,D12.3,* IN )’,10 X.D12.3,* K N M ’
,D12.3,*K-IN)’,10 X.D1 2.3,’ K N ’,’;<’,D12.3,’K I P S ) ’ )

GO TO 460
455 WRITE!6,453) M N M ! I ),MN!I),PNM!I),PN<I)
453 FO RMAT!10X,****INFINITY***’,16 X.D1 2.3,’ K N M ’ ,’j! ’,D12.3,’K - I N ) ’,

.10X.D12.3,’ K N * ,’;!’,D12.3,’K I P S ) ’)
GO TO 460

460 CONTINUE
IF!ITYPE .EQ. 0 ) WRITE!6,470>
IF!ITYPE .NE. 0 ) WRITE!6,471)

470 FO RMAT !1H1,//,42X,’PHI = 0.70 !TIED C O L U M N ) ’ )
471 FO RMAT !1H1,//,42X,’PHI = 0.75 (SPIRAL COLUMN)*)

WRITE!6,480)
480 FORMAT!///,11X,’N.A. L O CATI ON’,31X,’MOD. M O M E N T ’,33X,’MOD. LOAD*,
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• 1IX#’************** f31X 1*************,3 3 X , ’** *******’,
,17X,*C*,37X,’ 'IMN(KNM)’,34X,’PHIPN(KN)*,/)

WRITE(6,469) CM(1»,CC . HIMNMt1>,PHIMN<1),PHIPNM<1>,PHIPN<1) 
WRITE(6,468)
DO 490 I=2,NCPT 
IF(I .EQ. NCPT) GO TO 485
WRITE*6,465) CM<I),C<I),PHIMNM<I),PHIMN*I),PHIPNM!I),PHIPN*I)
GO TO 490

485 WRITE<6,453) PHIMNM*I),PHIMN*I),PHIPNM* I),PHIPN*I)
490 CONTINUE 

RETURN 
END
*******************************
SUBROUTINE FMSQ<I,C,PN,MN,IOPN) 

c *******************************
C
C...THIS SUBROUTINE CALCULATES THE NET LOADS AND THE NET MOMENTS 
C WHICH CONSTRUCT THE INTERACTION DIAGRAM 
C
C D  = DISTANCE FROM EXTREME COMP. FIBER TO THE CENTROID OF 
C TENSION REINFORCEMENT
C DPRIME = H - D 
C
C...ASS = TOTAL AREA OF SIDE STEEL 
C...ASE = AREA OF ONE END STEEL 
C...THICK1 = THICKNESS OF SIDE STEEL STRIP 
C...THICK2 = THICKNESS OF UPPER AND LOWER STRIPS 
C...RINF = ANY NUMBER GREATER THAN H 

IMPLICIT REAL*8<A-H,0-Z)
C

COMMON/MATPR/PERST,FC,FY,ES,EC
COMMON/DIMEN/H, DG,WIDTH
COMMON/CONST/BETA,EPSI,BT,KU
COMMON/SIKNS/THICK1.THICK2,THICK
COMMON/REINF/ASS,ASE,ASTT,DIAB,IBARS,IBARE,NBARS

C
DIMENSION PN(30),C(30)
REAL MN(30),KU,MS,MC,MR
PI = 3.141592654
FR3 = 0.00
FR4 = 0.00
FR5 = 0.00
FR6 = 0.00
FR8 = 0.00
FR9 = 0.00
FRIO = 0.00
R = THICK/H
EPSU = 0.003
EPSY = FY/ES
DPRIME = H*<1.0 - DG1/2.0
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IF(IOPN .EQ. 1) D = H*<1.0 + DG)/2.0
IF<IOPN .EQ. 2) D = H - THICK/2.0
RINF = 10000.0

C...ALFA AND BTA ARE CONSTANTS 
BTA = EPSY*KU/EPSU
IF(IOPN - 1> 71,71,72

71 ALFA = <2.0*KU - 1.0 + DG1/2.0
GO TO 73

72 ALFA = KU + R/2.0
73 CONTINUE

IF<IOPN .EQ. 1) GO TO 74
IF(IOPN .EQ. 2) GO TO 75

74 IF(C(I> .LE. RINF .AND. C < II .GE. D) GO TO 80 
IF<C<I) .LE. H .AND. C<I> .GE. DPRIME) GO TO 70 
GO TO 120

75 IF<C<II .LE. RINF. AND. C(I) .GE. D) GO TO 80
IF(C(I) .LE. H) GO TO 70
GO TO 120

70 CONTINUE
...CHECK UPPER AND LOWER YIELD TO SPECIFY THE CASE NUMBER <1,2,3,0R5>

ROH = DG - ALFA
Q = ROH*EPSU*ES/(KU*FY)
QP = ALFA*EPSU*ES/( KU*FY)
IF(Q .LE. 1.0 .AND. QP .LE. 1.0) GO TO 50
IF(Q .GT. 1.0 .AND. QP .LE. 1.0) GO TO 10
IF(Q .LE. 1.0 .AND. QP .GT. 1.0) GO TO 30
IF(Q .GT. 1.0 .AND. QP .GT. 1.0) GO TO 20

80 CONTINUE
IF(IOPN .EQ. 1) GO TO 81 
IF(IOPN .EQ. 2) GO TO 82

81 QP = ALFA*EPSU*ES/( KU*FY)
GO TO 83

82 QP = (ALFA + DG)*EPSU*ES/(KU*FY>
83 CONTINUE

...CHECK YIELD TO SPECIFY THE CASE NUMBER (4 OR 6)
IF(QP .GT. 1.0) GO TO 40 
IF(QP .LE. 1.0) GO TO GO 

10 CONTINUE
... THE FOLLOWING SIX CASES CALCULATE THE NET LOADS AND THE NET MOM 

MOMENTS FOR DIFFERENT SIX ARBITRARY LOCATIONS FOR THE N.A.

A*************
C A S E  ONE 
**************
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C... THE LOCATION OF THE N.A. CAUSES TENSION REINFORCEMENT REACHES 
C ITS YIELD STRENGTH WHILE COMP. REINFORCEMENT DOES NOT.
C IF(IOPN .EQ. 1) GO TO 11 

IF(IOPN .EQ. 2) GO TO 12
11 ALFA = <2.0*KU - 1.0 + DG1/2.0 

BTA = EPSY*KU/EPSU
PSI = (1.0 - 2.0*KU)/2.0
GAMA = DG - BTA - ALFA
GO TO 13

12 ALFA = KU + R/2.0
BTA = KU*EPSY/EPSU
PSI = DG/2.0 - ALFA
GAMA = DG - ALFA - BTA

13 CONTINUE
...FORCES IN THE SIDE STEEL

FSP = FY*ALFA/BTA
FS1 = FSP/2.0*2.0*THICK1*ALFA*H
FS2 = FY/2.0 *2.0*THICK1*BTA *H
FS3 = FY *THICK1*GAMA*H*2.0

...FORCES IN END STEEL
FS5 = ASE*FSP
FSB = ASE*FY

...FORCE IN CONCRETE
CC = 0.85*FC*BETA*KU*H*WIDTH

...CORRECTIONS DUE TO DISPLACED CONCRETE
IF(IOPN .EQ. 2) GO TO 14
FR4 = 0.85*FC*ALFA*THICK1*H*2.0
FRS = 0.85*FC*ASE
FRIO = 2.0*THICK1MKU*H - BETA*KU*H)*0.85*FC

14 CONTINUE
...TOTAL NET LOAD

PN(I) = FS1 - FS2 - FS3 + FSS - FS6 + CC - FR4 - FR5 + FRIO
,..ARMS OF FORCES

YS1 = HMPSI + 2.0*ALFA/3.0)
YS2 = H*(2.0*BTA/3.0 - PSI)
YS3 = H*(GAMA/2.0 + BTA - PSI)
YS5 = DG*H/2.0
YS6 = YS5
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YC = H/2.0 - BETA*KU*H/2.0
YR4 = H*(ALFA/2.0 + PSI)
YR5 ~ YSS
YR10 = H*<1.0 - KU*(1.0 + BETA))/2.0

CC...MOMENTS IN STEEL AND CONCRETE 
C MS = FS1*YS1 + FS2*YS2 + FS3*YS3 + FS5*YS5 + FS6*YS6

MC = CC*YC
CC...CORRECTION MOMENT DUE TO DISPLACED CONCRETE 
C MR = FR4*YR4 + FR5*YR5 - FR10*YR10
C
C...TOTAL NET MOMENT 
C

MN<I) = MS + MC - MR 
GO TO 110 

20 CONTINUE
C
C
c **************
C  C A S E  T W O
C  **************

c
C...THE LOCATION OF THE N.A. CAUSES BOTH TENSION AND COMP. REINFORCEMEN 
C REACH THEIR YIELD STRENGTH 
C

IF(IOPN .EQ. 1) PSI = <1.0 - 2.0*KU)/2.0
IF<IOPN .EQ. 2) PSI = (DG/2.0 - KU - R/2.0)
RMU = DG/2.0 - BTA + PSI
RLMDA = DG/2.0 - BTA - PSI

C
C...FORCES IN THE SIDE STEEL 
C

FS1 = 2.0*THICK1*RLMDA*H*FY 
FS2 = 2.0*THICK1*BTA *H*FY/2.0
FS3 = 2.0*THICK1*BTA *H*FY/2.0
FSS = 2.0*THICK1*RMU *H*FY

C
C...FORCES IN END STEEL 
C

FS7 = ASE*FY
FS8 = ASE*FY

C
C...FORCE IN CONCRETE 
C

CC = 0.85*FC*BETA*KU*H*WIDTH
C
C...CORRECTIONS DUE TO DISPLACED CONCRETE 
C
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IF<IOPN .EQ. 2) GO TO 21
FR4 = 2.0*THICK1*RLMDA*H*0.85*FC
FR6 = 2.0*THICK1*BTA *H*0.85*FC
FR9 = 0.85*FC*ASE
FRIO = 2.0*THICK1*(KU*H - BETA*KU*H)*0.85*FC

21 CONTINUE
C
C...TOTAL NET LOAD 
C PN(I) = FS1 + FS2 - FS3 - FS5 + FS7 - FS8 + CC 

- FR4 - FR6 - FR9 + FRIO
C
C...ARMS OF FORCES 
C

YSl = <PSI + BTA + RL MDA/ 2.0)*H
YS2 = <2.0*BTA/3.0 + PSI)*H
YS3 = <2.0*BTA/3.0 - PSI)*H
YS5 = (RMU/2.0 + BTA - PSI)*H
YS7 = D G * H / 2 .0
YS8 = D G * H / 2 .0
YC = H/2.0 - BETA*KU*H/2.0
YR4 = YSl
YR6 a (BTA/2.0 + PSI)*H
YR9 = YS7
YR10 = H*(1.0 - K U * ( 1.0 + BETA))/2.0

C
C...MOMENTS IN STEEL AND CONCRETE 
C

MS = FS1*YS1 + FS2*YS2 + FS3*YS3 + FS5*YS5
+ FS7*YS7 + FS8*YS8 

MC = CC*YC
C
C...CORRECTION MOMENT DUE TO DISPLACED CONCRETE 
C

MR = FR4*YR4 + FR6*YR6 + FR9*YR9 - FR10*YR10
C
C...TOTAL NET MOMENT 
C

MN<I) = MS + MC - MR
GO TO 110

C
30 CONTINUE

C
C
C ******************
C  C A S E T H R E E
C ******************c
C... THE LOCATION OF THE N.A. CAUSES COMP. REINFORCEMENT REACHES 
C ITS YIELD STRENGTH WHILE TENSION REINFORCEMENT DOES NOT.
C
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C...FORCES IN THE SIDE STEEL 
C D = H*<1.0 + DG)/2.0

IF(IOPN .EQ. 1) PHI = D/H - KU 
IF<IOPN .EQ. 2) PHI = DG - KU - R/2.0 
OMEGA = PHI + BTA - DG/2.0 
DELTA = DG/2.0 - OMEGA 
FS = FV*PHI/BTA

C
C...FORCES IN THE SIDE STEEL 
C FS1 = 2.0*THICK1*DELTA*H*FY

FS2 = 2.0*THICK1*FY*BTA*H/2.0
FS3 * 2.0*THICK1*PHI*H*PHI/BTA*FY

C
C...FORCES IN END STEEL 
C

FSB = ASE*FY
FS7 = ASE*FY*PHI/BTA

C
C...FORCE IN CONCRETE 
C

CC = 0.85*FC*BETA*KU*H*WIDTH
C
C...CORRECTIONS DUE TO DISPLACED CONCRETE 
C

IF<IOPN .EQ. 2) GO TO 31 
FR4 = 2.0*THICK1*DELTA*H*0.85*FC
FR5 = 0.85*FC*BTA*H*2.0*THICK1
FR8 = ASE*0.85*FC
FRIO = 2.0*THICK1*<KU*H - BETA*KU*H)*0.85*FC

31 CONTINUE
C
C...TOTAL NET LOAD 
C

PN(I) = FS1 + FS2 - FS3 + FS6 - FS7 + CC - FR4 - FR5 - FR8
+ FRIO

C
C...ARMS OF FORCES 
C

YSl = (OMEGA + DELTA/2.0)*H
YS2 = (OMEGA - BTA/3.0>*H
YS3 = (2.0*PHI/3.0 + BTA - OMEGA)*H
YS5 = (OMEGA - BTA/2.0)*H
YS6 = DG*H/2.0
YS7 = YS6
YC = H/2.0 - BETA*KU*H/2.0
YR4 = YSl
YR5 = YSS
YR8 = YS6
YR10 = H*(1.0 - KU*(1.0 + BETA))/2.0
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CC . ..MOMENTS IN STEEL AND CONCRETE 
C MS  = FS1*YS1 + FS2*YS2 + FS3*YS3 + FS6*YS6 + FS7*YS7

MC  = CC*YC
M R  =  FR4*YR4 + FH5*YR5 + FR8*YR8 - FR10*YR10

CC...TOTAL NET MOMENT 
C MN( I) = MS + MC - MR

GO TO 110
40 CONTINUE

C
C
c ****************
C.... C A S E  F O U R
0 ****************c cC...THE LOCATION OF THE N.A. CAUSES COMP. IN BOTH REINFORCEMENT 
C <C0MP. REINFORCEMENT RE ACHE S YIELD WHILE TENSION DOES NOT)

D  = H*(1.0 + DGJ/2.0
IF(IOPN .EQ. 1) GO TO 41 
IF<IOPN .EQ. 2) GO TO 42

41 ET A = KU - (1.0 + DG)/2.0
ROH = KU - 0.50 - BTA
GO TO 43

42 ET A = KU + R/2.0 - DG
ROH = KU + R - 0.50 - BTA

43 CONTINUE
ZETA = BT A - ETA
S E TA = DG/2.0 + ROH
FS = FY*ETA/BTA

C
C...FORCES IN THE SIDE STEEL 
C FS1 = 2.0*THICK1*SETA*H*FY

FS2 = ZETA*FY/(2.0 * B T A ) *2.0* THIC K1*(BT A - ETA)*H
FS3 = ET A/BTA*FY*ZETA*H*2. 0*THICK1

C
C...FORCES IN END STEEL 
C

FSB = ASE*FY
FS7 = ASE*ETA/BTA*FY

C
C...FORCE IN CONCRETE 
C

A  = BETA*KU
IF(A .GE. 1.0) A = 1 .0
CC  = 0.85*FC*A*H*WIDTH

C
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C...CORRECTIONS DUE TO DISPLACED CONCRETE 
C IF(IOPN .EQ. 2) GO TO 44 

FR4 = 2.0*THICK1*SETA*H*0.85*FC
FR5 = 0.85*FC*ZETA*H*2.0*THICK1
FR8 = ASE*0.85*FC
FR9 = ASE*0.85*FC
IF(BETA*C(I) .GE. D) GO TO 44 
FRIO = 2.0*THICK1*(KU*H - BETA*KU*H)*0.85*FC

44 CONTINUE
C
C...TOTAL NET LOAD 
C PN( I ) = FS1 + FS2 + FS3 + FS6 + FS7 + CC - FR4 - FR5 - FR8

- FR9 + FRIO
C
C . ..ARMS OF FORCES 
C

YSl =  (SETA/2.0 -ROH)*H
YS2 = (ROH + Z E T A / 3 .0)*H
YS3 = (ROH + Z E T A / 2 .0)*H
YS6 = DG*H/2.0
YS7 = YS6
YC = H/2.0 - A * H / 2 .0
YR4 = YSl
YRS = YS3
YR8 = YS6
YR9 = YS7
YR10 = H * < 1.0 - K U * < I .0 + B E T A ) 1/2.0

C
C...MOMENTS IN STEEL AND CONCRETE 
C M S  = FS1*YS1 + FS6*YS6 - FS2*YS2 - FS3*YS3 - FS7*YS7

MC = CC *YC
M R  = FR4*YR4 - FR5*YR5 ♦ FR8*YR8 - FR9*YR9 + FR10*YR10

C
C...TOTAL NET MOMENT 
C

MN(I) =  MS + MC - MR
IF(MN(I> .LT. 0.00) M N ( I ) = 0.00
G O  TO 110

C
C

50 CONTINUE
C
C
C ****************
C   C A S E  F I V E
C ****************
cC...THE LOCATION OF THE N.A. DOES NOT CAUSE YIELD IN THE REINFORCEMENT
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C IN BOTH SIDES!ONE SIDE IS UNDER TENSION AND THE OTHER UNDER COMP.) 
C IF(IOPN .EQ. 1) GO TO 51 

IF<IOPN .EQ. 2) GO TO 52
51 ALFA = KU - <<1.0 - DG)/2.0>

RLMDA = <1.0 - 2.0*KU)/2.0
GO TO 53

52 ALFA = KU + R/2.0
RLMDA = 0.50 - KU - R

53 CONTINUE
ROH = DG - ALFA
Q = ROH*EPSU*ES/(KU*FY)
QP = (< 2.0*KU - 1.0 + DG)/2.0)* < EPSU*ES/< KU*FY >)
FSP = FY*QP
FS = FY*Q

...FORCES IN THE SIDE STEEL
FS1 = THICK1*H*QP*FY*ALFA
FS2 = THICK1*H*Q *FY*R0H

...FORCES IN END STEEL
FS4 = QP*FY*ASE
FS5 = Q *FY*ASE

...FORCE IN CONCRETE
CC = 0.85*FC*BETA*KU*H*WIDTH

...CORRECTIONS DUE TO DISPLACED CONCRETE
IF<IOPN .EQ. 2) GO TO 54
FR3 = 0.85*FC*2.0*THICK1*ALFA*H
FR6 = 0.85*FC*ASE
FRIO = 2.0*THICK1*<KU*H - BETA*KU*H)*0.85*FC

54 CONTINUE
...TOTAL NET LOAD

PN<I) = FS1 - FS2 + FS4 - FS5 + CC - FR3 - FR6 + FRIO 
..ARMS OF FORCES

YSl = <2.0*ALFA/3.0 + RLMDA)*H
YS2 = <2.0*R0H/3.0 - RLMDA)*H
YS4 = DG*H/2.0
YS5 = YS4
YC = H/2.0 - BETA*KU*H/2.0
YR3 = <ALFA/2.0 + RLMDA)*H
YR6 = YS4
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YRltr = H*( 1.0 - KU*( 1.0 + BETA))/2.0
CC...MOMENTS IN STEEL AND CONCRETE 
C MS = FS1*YS1 ♦ FS2*YS2 + FS4*YS4 + FSS*YS5

MC = CC*YC
MR = FR3*YR3 + FR6*YR6 - FR10*YR10

CC...TOTAL NET MOMENT 
C MN( I) = MS + MC - MR

GO TO 110
60 CONTINUE

C
C
Q **************
c . . . .  C A S E S I XC A*************
c 
cC...THE LOCATION OF THE N.A. DOES NOT CAUSE YIELD IN THE REINFORCEMENT 
C IN BOTH SIDES(BOTH SIDES UNDER COMP.)
C

IF(IOPN .EQ. 1) GO TO 61
IF(IOPN .EQ. 2) GO TO 62

61 ALFA * KU - (1.0 + DG)/2.0
Q * ALFA*EPSU*ES/( KU*FY)
QP = <(2.0*KU - 1.0 + DG)/2.0)*EPSU*ES/(KU*FY)
GO TO 63

62 ALFA = KU + R/2.0 - DG
Q a ALFA*EPSU*ES/(KU*FY)
QP a <2.0*KU ♦ R)*EPSU*ES/<2.0*KU*FY)

63 CONTINUE
FS a FY*Q
FSP a FY*QP

C
C...FORCES IN THE SIDE STEEL 
C

FS1 = FS*DG*H*THICK1*2.0
FS2 a (FSP - FS)/2.0*DG*H*2.0*THICK1

C
C...FORCES IN END STEEL 
C FS3 a FSP*ASE

FS4 a FS *ASE
C
C...FORCE IN CONCRETE 
C A a BETA*KU

IF(A .GE. 1.0) A=1.0 
CC = 0.85*FC*A*HWIDTH
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CC...CORRECTIONS DUE TO DISPLACED CONCRETE 
C IF<IOPN .EQ. 2) GO TO 64 

FR5 = 0.85*FC*DG*H*THICK1*2.0
FR6 = 0.85*FC*ASE
FR7 = 0.85*FC*ASE
IF<BETA*C(I> .GE. D) GO TO 64 
FRIO = 2.0*THICK1*!KU*H - BETA*KU*H)*0.85*FC

64 CONTINUE
C
C...TOTAL NET LOAD 
C PN( I) = FS1 + FS2 + FS3 + FS4 + CC - FR5 - FR6 - FR7 + FRIO
C
C...ARMS OF FORCES 
C YSl = 0.00

YS2 = DG*H/6.0
YS3 = DG*H/2.0
YS4 = YS3
YC = H/2.0 - A*H/2.0
YR5 = 0.00
YR6 = YS2
YR7 s YS3
YR10 = H*( 1.0 - KU*!1.0 + BETA)1/2.0

C
C...MOMENTS IN STEEL AND CONCRETE 
C

MS = FS1*YS1 + FS2*YS2 + FS3*YS3 - FS4*YS4
MC = CC * YC

C
C...CORRECTION MOMENT DUE TO DISPLACED CONCRETE 
C MR = FR5*YR5 + FR6*YR6 - FR7*YR7 - FR10*YR10
C
C...TOTAL NET MOMENT 
C

MNU) = MS + MC - MR
IF(MN(I) .LT. 0.00) MN<I) = 0.00

C
110 GO TO 140 
120 WRITE!6,130)
130 FORMAT!5X,'S0MTUING WRONG YA MOHAMMAD')
140 CONTINUE 

RETURN 
END

Cc *******************************
SUBROUTINE FMCRII(C,PN,MN,IOPN)C *******************************
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CC . ..THIS SUBROUTINE CALCULATES THE TOTAL FORCE AND MOMENT 
C...IN A  REINFORCED CIRCULAR CONCRETE SECTION 
C IMPLICIT REAL*8<A-H,0-Z>
C CO MMON /MAT PR/P ERST,F C ,F Y ,E S ,EC 

COMMON/DIMEN/H.DG,WIDTH 
COMMON/CONST/BETA,EPSI,BT,KU 
CO MMON/SIKNS/THICK1,THICK2,THICK

C REAL KU,MS,MC,MR,MN(30)
REAL MS1.MS2.MS3.MS4 
DIMENSION PN(30),C(30)
PI = 3.1415926 
EPSY = FY/ES 
EP SU = 0.003 
EPSI = EPSY/EPSU 
R = THICK/H
H K  = H * K U
H 2  = H/2.0
FR = 0.00
M R  = 0.00

CC...CALCULATIONS OF THE VALUES OF SETAS <S1 = S E T A 1 ,..ITC)
C

IF(IOPN .EQ. 1) Q1 = (1.0 - 2.0*KU)/DG
IF(IOPN .EQ. 2) Q1 = (1.0 - 2.0*R - 2.0*KU)/DG
IF(DABS(Q1) .GT. 1.0. A N D  . HK .GT. H2) SI = PI
IF(DABS(Q1) .GT. 1.0. AN D . HK .LT. H2) SI = 0.00
IF(DAB S(Q1) .LT. 1.0) SI = DACOS(Ql)
IF(IOPN .EQ. 1) Q2 = (1.0 - 2.0*BETA*KU>
IF(IOPN .EQ. 2) Q2 = (1.0 - 2.0*R - 2.0*BETA*KU)/(H - 2.0*R> 
IF(DABS(Q2) .GT. 1.0. AND . HK .GT. H2) S2 = PI
IF(DABS(Q2> .GT. 1.0. AND . HK .LT. H2) S2 = 0.00
IF(DABS(Q2) .LT. 1.0) S2 = DAC0S(Q2)
IF(IOPN .EQ. 1) Q3 = (1.0 - 2.0*KU*<1.0 - EPSI))/DG
IF(IOPN .EQ. 2) Q3 = (1.0 - 2.0*KU*(1.0 - EPSI) - 2.0*R)/DG
IF(DABS(Q3) .GT. 1.0. AN D . HK .GT. H2) S3 = PI
IF(DABS(Q3) .GT. 1.0. AN D . HK .LT. H2> S3 = 0.00
IF(DABS(Q3) .LT. 1.0) S3 = DAC0S(Q3)
IF<IOPN .EQ. 1) Q4 = (1.0 - 2.0*KU*<1.0 + EPSI))/DG
IF(IOPN .EQ. 2) Q4 = (1.0 - 2.0*R - 2.0*KU*<1.0 + EPSI))/DG
IF(DABS(Q4) .GT. 1.0. AND . HK .GT. H2) S4 = PI
IF(DABS(Q4) .GT. 1.0. AN D . H K  .LT. H2) S4 = 0.00
IF(DABS(Q4) .LT. 1.0) S4 = DAC0S(Q4)
Q5 = (1.0 - 2.0*BETA*KU)/DG 
IF(DABS(Q5) .GT. 1.0. AND . H K  .GT. H2) S5 = PI
IF(DABS(Q5) .GT. 1.0. AN D . HK .LT. H2) S5 = 0.00
IF(DABS(Q5> .LT. 1.0) S5 = DAC0S(Q5)

C
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C...CALCULATE THE NET FORCE IN THE STEEL RING(FS)
C

CONST1 = PERST*BT*H*H/( 2.0*PI)
C0NST2 = DG*FY/< 2.0*KU*EPSI)
C0NST3 = FY*THICK*DG*DG*H/(4.0*EPSI*KU)
IF(IOPN .EQ. 1) GO TO 10 
IF(IOPN .EQ .2) GO TO 20

C
C...CASE OF REINFORCED SECTION 
C

10 FS1 = C0NST1*FY*S3
FS2 = C0NST2*(DSIN(S1)-DSIN(S3) - DC0S(S1)*(S1-S3))*C0NST1
FS3 = C0NST2MDSIN< S4)-DSIN( SI) - DC0S(S1)*<S4-S1))*C0NST1
FS4 = C0NST1*FY*<PI-S41
GO TO 30

C
C . ..CASE OF FILLED SECTION 
C

20 FSi = FY*THICK*DG*H*S3/2.0
FS2 = C0NST3*<DSIN(S11-DSIN(S31 - DC0S(S1)*(S1-S3))
FS3 = C0NST3*(DSIN(S4)-DSIN(S1) - DC0S(S1)*(S4-S1)1
FS4 = FY*THICK*DG*H*(PI-S4)/2.0

C
30 FS = 2.0*(FS1 + FS2 - FS3 - FS41

C
C...CALCULATE THE NET MOMENT IN THE STEEL RING(MS)
C

C0NST4 = FY*PERST*BT*DG*H**3/(4.0*PI1 
C0NST5 = C0NST4*DG/< 2.0*KU*EPSI)
C0NST6 = FY*THICK*DG*DG*H*H/4.0 
C0NST7 = CONST6*DG/(2.0*EPSI*KU)
IF(IOPN .EQ. 1) GO TO 40 
IF<IOPN .EQ. 2) GO TO SO

C
C...CASE OF REINFORCED SECTION 
C

40 MSI = C0NST4*DSIN(S31
MS2 = C0NST5*((S1-S31/2.0 - <DSIN(2.0*S1)-DSIN(2.0*S3) 1/4.0

- DC0S1S1)*(DSIN<S1>-DSIN<S3>>>
MS3 = C0NST5*((S4-S11/2.0 - (DSIN<2.0*S41-DSIN(2.0*Slll/4.0

- DC0S(S1)*(DSIN<S4)-DSIN(S11)1 
MS4 =-C0NST4*DSIN< S4)
GO TO 60

C
C...CASE OF FILLED SECTION 
C

50 MSI = C0NST6*DSIN(S31
MS2 = CONST7*<<S1~S3)/2.0 * (DSIN(2.0*S11-DSIN(2.0*S311/4.0

- DCOS(SI 1*<DSIN< SI 1-DSIN(S3111
MS3 = C0NST7*((S4-S11/2.0 + (DSIN<2.0*S41-DSIN(2.0*S1))/4.0

- DC0S(S1)*(DSIN(S41 - DSIN<S1111
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MS4 =-C0NST6*DSIN!S4)
60 MS = 2.0*(MS1 + MS2 + MS3 + MS4)

...CALCULATE THE NET FORCE IN CONCRETE
IF(IOPN.EQ.1) GO TO 70 
IF<IOPN.EQ.2) GO TO 80

...CASE OF REINFORCED SECTION
70 PC = 0.2125*FC*H*H*(S2 - DSIN(S2)*DC0S<S2))

G O  TO 90
...CASE OF FILLED SECTION 
80 PC = 0.85*FC*<H/2.0 - THICK)**2*(S2 - DSIN(S2)*DCOS(S2))

...CALCULATE THE NET MOMENT IN CONCRETE
90 CONTINUE

IF(IOPN .EQ. 1) GO TO 100 
IF(IOPN .EQ. 2) GO TO 110

...CASE OF REINFORCED SECTION
100 MC = 0.85*FC*!H*DSIN!S2)>**3/12.0

GO TO 120
...CASE OF FILLED SECTION
110 MC = 1.7*FC*(H/2.0 - THICK)**3.0*DSIN<S2>**3/3.0
120 IF(IOPN .EQ. 2) GO TO 130
...CALCULATE THE CORRECTION FORCE DUE TO DISPLACED CONCRETE!FR» 

(R5 AND R6 ARE CONSTANTS)
R5 = PERST *H*H*BT*S5/PI 
RS = 0.85*FC
FR = R5*R6

...CALCULATE THE CORRECTION MOMENT DUE TO DISPLACED CONCRETE!MR) 
!R7 AND R8 ARE CONSTANTS)
R7 = PERST*H**3*BT*DG*DSIN(S5)/PI 
R8 = 0.425*FC
MR = R7*R8

..TOTAL NET LOAD AND NET MOMENT
130 PN!I) = FS ♦ PC - FR 

MN!I) = MS + MC - MR 
RETURN 
END
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C
c * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

SUBROUTINE MAXLD< P H I P N ,P H I M N ,E C C ,P C ,C ,L O A D F ,P H I ,NCPT > 
c * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
CC...SPECIAL CASE OF MINIMUM ECCENTRICITY WHICH OCCURES ON 
C  INTERACTION DIAGRAM
C IMPLICIT REAL*8(A-H,0-Z)

DIMENSION PHIPNI50),PHIMN(50),XP<50>,Y P <50) ,CF<10),C(50)
REAL LOADF,MU,MC.MMN,MUM

CC...ASSIGN COORDINATES TO ARRAYS XP A N D  YP.
C

JCOUNT = 1
Y P ( 1) = PHIMN(l)
XP<1> = P H I P N < 1)

CC...OBTAIN POINTS (TO BE FITTED) ABOVE THE BALANCE POINT 
C

DO 10 1=2,NCPT
IF(C(I) .LT. C( 1)) GO TO 10
DIF1 = PHIPN(I) - PHIPN(I-l)
DIF2 = PHIMN(I) - PHIMN(I-l)
IF<DIF1 .EQ. 0.00 .AND. DIF2 .EQ. 0.00) G O  TO 10 
JCOUNT = JCOUNT + 1 
XP(JCOUNT) = PHIPN(I)
YP<JCOUNT) = PHIMN(I)

10 CONTINUE
C
C...NPFIT = NUMBER OF POINTS TO BE FITTED 
C

NPFIT = JCOUNT + 1 
XP(NPFIT) = PHIMN(NCPT)
YP(NPFIT) = PHIPN(NCPT)

C
C FIT DA TA POINTS TO A  QUADRATIC EQUATION AN D DETERMINE
C THE COEFFICIENT OF THIS EQUATION.
C

CALL FITPOL(XP,YP,NPFIT,CF)
C
C...SOLVE THE INTERACTION DIAGRAM EQUATION WITH THE ECC. EQUATION 
C

PPN =(ECC-CF(2 ) -DSQRT((CF< 2)- E C C )**2-4*CF< 3 ) * C F < 1)))/(2.0*CF< 3)) 
PHIPC = PHI*PC
IF(PPN .GE. PHIPC) PPN = P H I P C - 1 .0 
IRANGE = INT(PPN-XP<1))

CC...INDEX IS A N  INDICATOR TO STOP ITERATION ONCE TEST LOAD IS OBTAINED 
C

INDEX = 0
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DO 60 1=1,IRANGE
IF<INDEX .EQ. 1) GO TO 60
PPN = PPN - 1.0
DELTA = PHIPC/<PHIPC - PPN)
MC = DELTA*ECC*PPN
MMN = C F ( 1) + CF(2)*PPN + CF!3)*PPN**2
IF<MC .GT. MMN) GO TO 60 
PU = PPN
MU = MC
TLOAD = PU/LOADF
INDEX = 1

60 CONTINUE
PCM =  PC*4.445709 
WRITE!6,775)775 FORMAT!//,20X,’*** MA XIMU M ALLOWABLE LOAD CALCULATIONS ***»,/
. 2 0 X , *********************************************’,//)
WRITE<6,780) PCM,PC

780 FO RMAT!5X,’CRITICAL L O A D - P C. . . . . . . . . . . . . . . . . . . = ’,
D 1 5.5,’ KN ! \ D 1 5 . 5 , ’ KIPS)')

WRITE!6,785) DELTA
785 FORMAT! 5X, ’MOMENT MAGNIFI CAT ION-DELTA. . . . . . . . . . . . = ’,D15.5>

PUM = PU*4.445709 
MU M = M U * 0 . 1129101 
WRITE!6,790) PUM.PU

790 FORMAT!5X,»FACTORED AXIAL L O AD-P U. . . . . . . . . . . . . .  = ’,
D1 5.5,’ KN ! ’,D15.5,’ KIPS)')

WRITE!6,795) MUM,MU
795 FORMAT!5X,’LOAD OCCURES A T  A  MOMENT O F . . . . . . . . .  = ’,

D 1 5 . 5 , * K N M ! ’ ,D15.5,’ K- I N ) ’)
TLOADM= TL0AD*4.445709 
WRITE!6,805) TLOADM,TLOAD

805 FORMAT!/, 5 X , ’TEST LOAD! MAX. ALLOWABLE L O A D ) . . . . . . . = ’ ,
D 1 5 . 5 , * KN ! ’,D15.5,* KI PS)’ )

RETURN
ENDC ********************************
SUBROUTINE FITPOL!XP,YP,NPFIT,CF) 
*********************************

...THIS SUBROUTINE FITS DATA POINTS TO A  QUADRATIC EQUATION USING 
LEAST SQUARE METHOD. THE FITTED EQUATION IS :

PHIMN =  C F ! 1) + CF!2)*PHIPN + CF!3)*PHIPN**2
IMPLICIT REAL*8!A-H,0-Z)
DIMENSION XP!50>,A!50,10 ),XY<10,10)
DIMENSION YP150),YA<50),CF!10)

C...NUMC = NUMBER OF COEFFICIENT OF THE FITTED EQUATION 
NUMC =  3 
DO 15 1=1,NPFIT 
XI = XP!I)
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X2 = X1*X1 
A( 1,1) = 1.00 
A< 1,2) = XI 
A<I,3) = X2 

15 CONTINUE
DO 20 1=1,NUMC 
DO 20 J=1,NUMC 
T1 = 0.00 
DO 25 K=1,NPFIT 

25 T1 = T1 ♦ A(K,I)*A(K,J)
20 XY(I,J) = T1 

DO 40 I=1,NUMC 
T2 = 0.00 
DO 45 K=1,NPFIT 

45 T2 = T2 + A!K,I)*YP!K)
40 XY!I,NUMC+1) = T2

CALL SOLV!XY,CF,NUMC)
...CALCUUTE THE FITTED VALUES OF THE VARIABLE 

DO 50 I=1,NPFIT 
T3 = 0.00 
DO 55 K=1, NUMC 

55 T3 = T3 +A(I,K)*CF!K)
50 YA<I) = T3 

C...CALCUUTE R-SQUARD VALUE 
A1 = 0.00 
A2 = 0.00 
A3 = 0.00 
DO 60 K=1,NPFIT 
AI = AI + !YP!K)-YA!K))**2 
A2 = A2 + YP(K)
A3 = A3 + YP!K)**2 

60 CONTINUE 
SSE = AI
YBS = !A2/NPFIT)**2 
SST « A3 - NPFIT*YBS 
RSQD = 1.00 - SSE/SST 
WRITE!6,200)
WRITE<6,201)
WRITE<6,101) CF(1),CF(2),CF<3)

101 FORMAT!//,5X,’THE EQUATION OF THE INTERACTION DIAGRAM CURVE s', 
//,5X,’PHIMN =*,5X,F10.5,»+*,5X,F10.5,'*PHIPN +»,5X,F10.5, 

'*PHIPN**2',//)
200 FORMAT!1H1)
201 FORMAT!//)

RETURN
ENDC ***********************
SUBROUTINE SOLV!A,DX,N) c ***********************
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...THIS SUBROUTINE IS USED FOR SOLVING SYSTEM OF EQUATIONS i 
0 A  ! * « >  = CB>

IMPLICIT REAL*8<A-H.O-Z)DIMENSION A ( 10 ,10),DX<10)
M  = N+l 
DO 21 1=2,N 
DO 21 J=I,N
RA = A ( J , 1- 1)/A!1-1,1-1)
DO 31 K=1,MA( J,K) = A ( J , K ) - R A * A ( 1- 1,K)

31 CONTINUE 
21 CONTINUE 

DO 41 1=2,N 
K=N-I+2
RA = A(K,M)/A(K,K)
DO 51 J=I,N 
L = N-J+l 

51 A(L,M) = A!L,M)-RA*A(L,K)
41 CONTINUE 

DO 61 1=1,N 
61 DX(I) = A ( I , M ) / A < 1,1)

RETURN 
END

C ***************************
SUBROUTINE FLDCN<ISEC,K,KL) c ***************************

C
C FLDCN = FILLED CONCRETE
C THIS SUBROUTINE FILLED CONCRETE (F L D C N ),CALCULATES THE COMPRESSIV
C RESISTANCE OF CONCRETE-FILLED COLUMNS ACCORDING TO THE CANADIAN
C STANDARDS FOR S Q U A R E ,RECTANGULAR AND CYRCULAR COLUMNS.
C
C RCON = RADIOUS OF CONCRETE!RC)
C RSTL = OUTSIDE RADIOUS OF STEEL!RS)
C ACON = A R E A  O F  CONCRETE!AC)
C ASTL = A R E A  O F  STEEL!AS)
C ICON = MO MENT OF INERTIA OF CONCRETE PART < IC)
C ISTL = MOMENT OF INERTIA OF STEEL PART < IS)
C RDGC = RA DIOUS OF GYRATION OF CONCRETE (SMALL R SUBSCRIPT C)
C  RDGS = RADIOUS O F  GY RATI ON OF STEEL !SMAAL R  SUBSCRIPT S)
C HCON = THICKNESS OF CONCRETE IN SQUARE OR RECTANGULAR SECTION
C WCON = WIDTH OF CONCRETE IN SQUARE OR RECTANGULAR SECTION
C SRTC = SLENDERNESS RA TIO OF CONCRETE !KL/SMALL R SUB. C)
C SRTS = SLENDERNESS RA TIO OF STEEL !KL/SMALL R SUB. S)
C LAMC = !LAMDA C) NONDIMENSIONAL SLENDERNESS RATIO IN COLUMN FORM.
C LAMS = <LAMDA <FOR STEEL) NONDIMENSIONAL SLENDERNESS RATIO IN
C COLUMN FORMULA
C  FCRC = !C PRIME SUBSCRIPT SMAAL R) COMPRESSIVE RESISTANCE OF
C CONCRETE ACTING A T  THE CENTROID OF THE CONCRETE AREA
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c IN COMPRESSION
c FCRS <C SUBSCRIPT SMALL R) FACTORED COMPRESSIVE RESISTANCE OF
c STEEL ACTING AT THE CENTROID OF THAT PART OF THE STEEL
c AREA IN COMPRESSION
c ROH = A CONSTANT = 0.02125-L/D)
c TUAC = TAW PRIME FOR CONCRETE , IS A CONSTANT
c TUAS = TAW FOR STEEL , IS A CONSTANT
c FCM = (TAW PRIME FOR CON.XC PRIME SUBSCRIPT SMALL R)
c B FACTORED COMPRESSIVE RESISTANCE OF CONCRETE .MODIFIED
c FSM = (TAW FOR CONCRETE)(C SUBSCRIPT SMALL R)
c = FACTORED COMPRESSIVE RESISTANCE OF STEEL .MODIFIED
c FCMM = FCM IN KILO-NETWON
c FSMM = FSM IN KILO-NETWON
c FCTL = C SUBSCRIPT SMALL RC = COMPRESSIVE FORCE OF A COLUMN
c UNDER SPECIFIED AXIAL LOAD
c PHI RESISTANCE FACTOR
L
c

IMPLICIT REAL*8(A-H,0-Z)
C O MMON /MAT PR/P ERST,F C ,F Y ,E S ,EC 
COMMON/DIMEN/H.DG,WIDTH 
COMMON/SIKNS/THICK1 ,THICK2,THICK

C REAL K, KL,ICON,ISTL.LAMC,LAMS 
PI = 3.141592654

C
C... PROPERTIES OF THE COLUMN CROSS-SECTION 
C

IFIISEC .EQ. 2 ) GO TO 10
IFIISEC .EQ. 1 .OR. ISEC .EQ. 3) GO TO 20 

10 CONTINUE
C
C CIRCULAR CROSS-SECTION 
C

RCON = H/2.0 - THICK
RSTL = H/2.0
ACON = PI*RCON**2
ASTL = PI*(RSTL**2 - RCON**2>
ICON = PI*RC0N**4/4.0 
ISTL = PI*(RSTL**4 - RC0N**4)/4.0 
RDGC = DSQRT(ICON/ACON)
RDGS = DSQRT<ISTL/ASTL)

C
GO TO 30

C
20 CONTINUE

C
C SQUARE OR RECTANGULAR CROSS-SECTION 
C

HCON = H  - 2.0*THICK 
WCON = WIDTH - 2.0*THICK
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ACON = HCON*WCON 
ASTL = H*WIDTH - ACON 
ICON = WC0N*HC0N**3/12 
ISTL = WIDTH*H**3/12.0 - ICON 
RDGC = DSQRT<ICON/ACON)
RDGS = DSQRT<ISTL/ASTI)

C 30 CONTINUE
C SRTC = KL/RDGC 

SRTS = KL/RDGS
LAMC = SRTC*DSQRT( FC/(EC*PI**2))
LAMS = SRTS*DSQRT(FY/<ES*PI**2>)

CC... FACTORED COMPRESSIVE RESISTANCE OF CONCRETE 
C TEMP = 1.0 + 0.25/LAMC**4.0 

TEMPI = DSt)RT(TEMP) - 0.50/LAMC**2 
FCRC = 0.85*0.67*FC*AC0N*TEMP1/LAMC**2

CC... FACTORED COMPRESSIVE RESISTANCE OF STEEL 
C IFILAMS .LE. 0.15) GO TO 40

IFILAMS .LE. 1.20) GO TO 50
IFILAMS .LE. 1.80) GO TO 60
IFILAMS .LE. 2.80) GO TO 70
FCRS = 0.90*ASTL*FY/LAMS**2 
GO TO 80 

40 FCRS = 0.90*ASTL*FY 
GO TO 80

50 FCRS = 0.90*ASTL*FY*(0.99 + 0.122*LAMS - 0.367*LAMS**2> 
GO TO 80

60 FCRS = 0.90*ASTL*FY*<0.051 + 0.801/LAMS**2>
GO TO 80

70 FCRS = 0.90*ASTL*FY*<0.008 + 0.942/LAMS**2>
C

80 CONTINUE
C
C... CALCULATION OF TAUC AND TAUS 
C

ROH = 0.02*125.0 - KL/H)
IF<(KL/H) .GE. 25.0) ROH - 0.00 
TAUS = 1.0/DSQRT<1.0 + ROH + R0H**2)
TAUC = 1.0 + 25.0*R0H**2*TAUS*FY/<(H/THICK)*0.85*FC)
FCM = TAUC*FCRC
FSM = TAUS*FCRS
FCMM = FCM*4.445709
FSMM = FSM*4.445709

C
C... TOTAL COMPRESSIVE RESISTANCE OF COLUMN 
C
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FCTL = FCM + FSM 
FCTLM = FCMM + FSMM 
WRITEI6,101)

101 FORMAT!///)
WRITE!6,102)

102 FORMAT!//,20X,’*** MAXIMUM ALLOWABLE LOAD CALCULATIONS ***’,/
, 20X,’A*******************************************’,//)
WRITE!6,100) FCMM,FCM,FSMM,FSM,FCTLM,FCTL

100 FORMAT! 5X,’FACTORED COMP. RESISTANCE OF CONCRETE =’,D15.5
,’KN ! ’,D15.5,’ KIPS >*/

5X,’FACTORED COMP. RESISTANCE OF STEEL....  =’,D15.5
,*KN 1 ’,D15.5,* KIPS >»,/

5X,’FACTORED COMP. RESISTANCE OF COLUMN =’,D15.5
,’KN ! ',015.5,’ KIPS )’)

RETURN
END
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APPENDIX D

DERIVATION OF PARABOLOIC UNSTEADY STATE 

PARTIAL DIFFERENTIAL EQUATION FOR CONDUCTION

7.2 Heat Transferred by Conduction

When a temperature gradient exists In a column, experience has 

shown that there Is an energy transfer from the hlgh-temperature region 

to the low-temperature region. We say that the energy transferred by 

conduction and that the heat-transfer rate per unit area Is proportional

to the normal temperature gradient [51, 52]
q dT X  ~  T55c

or q ■ -KA ̂  (D.l)

where:

q = the heat transfer rate (Watt/sec)

" the temperature gradient In the direction of the heat flow 

(°c)

K - thermal conductivity of the material Watt/mc°

The minus sign Is Inserted so that the second principle of 

thermodynamics will be satisfied, I.e. heat must flow 

downhill on the temperature scale.

Equation (D.l) Is called Fourier’s law of heat conduction.

If we consider a one dimensional system shown In Figure (D.l). If 

the system is In a steady state, I.e. If the temperature does not change 

with time, then the problem is a simple one and we need only integrate

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



•230-

‘■x +dx

F I G U R E  D .  1

E L E M E N T A L  V O L U M E  FOR  

O N E - D I M E N S I O N A L  HEAT  

C O N D U C T I O N  A N A L Y S I S
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Equation (D.l) and substitute the appropriate values to solve for the 

desired quantity. However if the temperature of the solid Is changing 

with time, the situation is more complex. We consider the general case 

where the temperature may be changing with time and heat sources not 

present within the body, for element of thicknss dx the following energy 

balance may be made (Figure D.l)
aw

Energy in left face “ Ax “ -KA -gj- (D.2)
dE qtchange in internal energy « pc(A.dx) (D.3)

Energy out right face, <lx+(jx can be obtained by expanding q^ in a 

Taylor series and retaining only the first two terms as a reasonable 

approximation:

'x+dx

- -KA

/. q ( D . A )

Combining Equations (D.2), (D.3) and (D.4) results:

x+dx
dE
di
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K  [«A.d» g ] pc(A.dx)-|£

5 9T ■> 9T
or (K H  “ pc dt (D.5)

Equation (D.5) is one-dimensional heat conduction equation. To treat 

more than one-dimensional heat flow we need only consider the heat 

conducted in and out of a unit volume in all three coordinate 

directions.

If we consider an infinitesimal control volume of dimensions fix, 6y 

and fiz which is oriented within a three-dimensional (x, y, z) coordinate 

system as in Figure (D.2). The considerations here will include the 

nonsteady condition of temperature variation with time t.

From Figure D.2, the energy balance yields [51,52],

. 9E
qx + qy + qz + qgen qx+sz + qy+dy z+dz "St" 

where:

„ . . 9T
qx ' _K dydz <5x

The heat flow out of the right face of the volume element can be 

obtained by expanding q^ in a Taylor series and retaining only the first 

two terms as a reasonable approximation:

qx+dx " qx + qx dx + *•'
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y

+dz

z

F I G U R E  D . 2

THE V O L U M E  E L E M E N T  FOR D E T E R M I N A T I O N  

OF THE H EA T  C O N D U C T I O N  E Q U A T I O N

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



- 234 -

or V d x  “ (Kdydz ®  + T S  (“Kdydz - S 1dx

Similarly:
. 5T

qy = “Kdxdz ^y

V d y - - [ * £ ♦  If (*£)*]«“ «

VA A 8T
\  " “Kdxdy -5?

Q1* . - - [ * £  + s ( K S ) dz > xdy

If per unit of time and space the quantity of heat q (x,y,z,x) is

generated, then the generation of heat in the volume element is:

q ■ q dxdydz gen M 1

The net heat flow into the volume element due to conduction

Klx “ V d x )  + (qy ~ qy+dy ) + (qz “ qz+d* )] and the heat generated
within the volume element [q ] together serve to increase the internalLMgenJ
energy of the volume element. Such an increase in the internal energy 

is reflected in the time rate of change in the energy storage in the 

volume element and can be written

= pc dxdydz (D.6)
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Therefore an energy balance can be made on the volume element to 

equate the time rate of change of the energy stored to the sum of the 

net heat flow into the element due to conduction and the heat generated 

within the element, yield to the following three-dimensional 

heat-conduction equation [51, 52] can be obtained:

where

pc - thermal heat capacity (J/m3-°c or Cd/cm3-°c)

t =• time

q = heat generated in the differential volume

x, y, z » Cartezlon coordinates

The thermal conductivity [k ] is defined as a measure of the energy 

transfer rate of the material, the higher the thermal conductivity, the 

greater the heat flow in a material.

The values of thermal conductivity [k ] and thermal capacity [pc] 
are known to vary with temperature in steel and concrete. Figures (D.3)

and (D.4) show the temperature dependence [53] of thermal conductivity

[k ], and heat capacity [c]. 
i*6« >

K - K(x,y,z,t), c - c(x,y,z,t)

So that Equation (D.6) is valid for isotropic, homogeneous media.

If the heat generated internally within an element is equal to zero 

hence the final differential equation for three dimensional heat flow 

per unit volume:
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®  o f f i + -k + i  (■£>-«* S  (D*8)

In building columns subjected to high temperatures, the thermal 

conductivity [k ] is temperature dependent. In order to Investigate the 

heat transfer and the stresses within a column, two-dimensional case of 

x-z coordinates will be considered. Therefore, the third dimension will 

be cancelled as indicated in Figure (D.5) and Equation (D.7) becomes 

[52, 53]

+ (D-9)

Equation (D.8) is the Parabolic Unsteady State Partial Differential 

Equation. This equation will be used to predict the temperature 

distribution for fire resistance of concrete-filled square steel 

columns as shown in Figure (D.5).
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APPENDIX E

THIS PROGRAM HAS BEEN DONE FOR THE NATIONAL RESEARCH 
COUNCIL OF CANADA BY:
MOHAMED EL-SHAYEB ,PH.D. STUDENT ,UNIVERSITY OF NEWHAMPSHIRE, 
DURHAM,NEWHAMPSHIRE,U.S.A.

-***********************- 

-*= MAIN PROGRAM =*- 
-***********************-

FIRE RESISTANCE OF CONCRETE-FILLED SQUARE STEEL COLUMN

IMPLICIT REAL*8(A-H,0-Z)
C0MM0N/NUMB3/INDIC,NUMB,NUM,NNN,MMM,IND 
COMMON/PROPR/PHI,EMIS,EPTOT 
COMMON/AREAS/AEND1,A E N D 2 ,A E N D 3 ,AEND4 
COMMON/NUMB2/NI1,NI2,NI3,NI4,IK1,IK2 
COMMON/DIMEN/THICK,H,DHG,DHE 
COMMON/NUMB1/NI,MI,IK
DIMENSION T J 1 ( 135,135),TJ(135,135),TT<135,135)
DIMENSION CAPC<135,135),CAPS(135,135),CONDC(135,135),

C O N D S < 135,135)
DIMENSION V < 135,135),DV!135,135)
DIMENSION EP CR(135,135),EPCL( 135,135),EPSR( 13 5,13 5),EPSL(135,135) 
DIMENSION FS R(135,135),FSL<135,135),FCR( 13 5,13 5),FCL(135,135) 
DIMENSION Z( 135,135),ASE( 135,135),ACE<135,135)
REAL MST,MCT,MT,KL

SYMPOLS DIFINITIONS
UNITS USED IN THIS PR OGRAM ARE : JOULE,METER,HOUR, 
DEGREE-CENTIGRADE AN D NETON
THICK =THICKNESS OF STEEL WALL
H  C O L U M N  WIDTH!WIDTH OF STEEL WALL + WIDTH OF CONCRETE) 
FYSO =YIELD STRENGTH OF STEEL A T  R O O M  TEMPERATURE 
FDCO =COMPRESSIVE STRENGTH OF CONCRETE A T  RO OM TEMPERATURE 
DX**2 =LENGTH OF TRIANGULAR DIVISION 

= { SQRT(DHG+DHG)}**2 = 2*DHG**2 
ECO = YO U N G ’S MODULUS OF CONCRETE 
MCI =THE BENDING MOMENT IN CONCRETE 
MSI = THE BENDING MOMENT IN STEEL 
EPST =TOTAL STRAIN!EPSILON) IN STEEL 
EPSH = SHRINKAGE STRAIN IN CONCRETE 
Z C O O R D I N A T E  OF ELEMENTS
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C ASE = AREA OF STEEL ELEMENTS
C ACE = AREA OF CONCRETE ELEMENTS
C COMAX= MA X CONDUCTIVITY OF ST EEL< KMAX)
C UNITS ARE: (J/H.M.K OR J/H.M.C )
C CAMIN= MIN THERMAL CAPACITY OF STEEL
C UNITS ARE: !J/M3.K OR J/M3.C)
C HMAX = MAX COEFFICIENT OF HEAT TRANSFERE
C UNITS ARE: (J/M2.H.K OR J/M2.H.C)
CC IWRITE = IS A N  OPTION FOR WRITING THE TEMPERATURE OR NOT
C IWRITE = 0 D O  NOT WRITE TEMPETURES
C IWRITE = 1 WRITE THE TEMPETURES
CC IEXIT = IS AN OPTION FOR STOP OR CONTINUE TO EXECUTE OTHER DATA
C IEXIT = 0 TO STOP EXECUTION
C IEXIT = 1 TO CONTINUE EXECUTION OTHER DA TA
CC EPCRC = CREEP STRAIN IN CONCRETE
C EPTOT= THE SUMMITION OF CREEP STRAIN AND SHRINKAGE STRAIN
C IN CONCRETE
C = EPCRC + EPSH
C 
C

107 CONTINUE
C
C READ STATMENTS 
C

R E AD(5 ,100) THICK,H,ECC,KL 
RE AD<5 ,100) TIMLIM,PERIOD,STTIME 
RE AD(5 ,100) EMIS,PHI,EPSH,EPCRC 
RE AD(5 ,100) COMAX,CAMIN,HMAX 
READ!5,100) FYSO.FDCO 
R E AD<5 ,106) IWRITE

C
100 FORMAT!6D15.6)
106 FORMAT!115)

C
C SET COUNTERS EQUAL ZEROS 
C

TIME = 0.00 
TF = 20.0 
ICO = 0 
ICOU = 0 
EPAXL= 0.00 
Y = 0.0001 
NU M = 0 
IND = 0 
INDIC= 0 
NUMB = 0 
MM M  = 0 
NNN = 0
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C
C EPT0T= EPSH+EPCRC
C CALL COORD(Z,ACE,ASE.NET)
C 6 F 0 R M A K 5 X ,  ’NET = ’ ,I5,»NI = ’,15)

DX2=2.0*DHG**2 
TWO = 2.0 
RT2=DSQRT(TW0)
TSTAB=DX2*CAMIN/(4.0 * C 0 M A X + 4 .0*DHG*HMAX)
NINT=1.0/< PE R10D *TST AB)+1 
DT = 1.0/(PERI0D*NINT)
WRITE!6,110)

110 FORMAT!1H1,19X,'FIRE RE SISTANCE',/
2 6 X , ’O F ' ,/
1OX,'CONCRETE-FILLED SQUARE STEEL COLUMN',/. 1O X # **************** ****** ***** * * ****’,//)

WRITE!6,120) H, THICK,ECC.KL
120 FORMAT!5X,'COLUMN WI D T H  ! H > . . . . . . . . . . . . . . . . . = ’,1D15.6,»( M ) »,

5 X , ’THICKNESS OF STEEL FRAME 1T HICK ). . . . = ',1D15.6,’!M )’ ,
5 X , ’ECCENTRICITY ( E C C ) . . . . . . . . . . . . . . . . = ’, 1D15.6, ’ 1M) ’,
5 X , ’EFFECTIVE LENGTH OF COLUMN ! K L >. . . . . = ’,1 D 1 5 . 6 , M M ) ’ >

WRITE!6,130> E M IS,P HI,COMAX,CAMIN,HMAX
130 F0RMAT!5X, ’EMISIV1TY ! E M I S ) . . . . . . . . . . . . . . . . . = ’,1D1S.6,/

5 X , ’MOISTURE CO NCENTRATION (PHI) . . . . . . = ’,1D15.6,/
5 X , ’MAX. CONDUCTIVITY OF STEEL ( C OMAX ) = ’,1D15.6,/
5 X , ’MIN. CAPACITY O F  STEEL (C AMIN). . . . . = ’,1D15.6,/
5 X , ’MAX. COEFFICIENT OF HEAT TR ANS. (HMA X).=’,1D15.G,//) 

WR ITE(6,140) FYSO,FDCO
140 F0RMAT(5X,'YIELD STREN. OF STEEL AT ROOM T E M P-- = ’,1D15.6,/

SX,'COMPR STREN. OF CONCR AT ROOM T E M P__ = ’,1D15.6,//)
WRITE(6,150) TIMLIM,PERIOD,DT

150 F0RMAT(5X, 'TIME LIMIT ( T IMLI M). . . . . . . . . . . . . . . = *,1D15.6,/
5 X , ' P E R I O D . . . . . . . . . . . . . . . . . . . . . . . . . = ', 1D15.6,/
5X, 'TIME INCREMENT ( D T ) . . . . . . . . . . . . . . . = », 1D15.6,//)

CALCULATION OF INITIAL TEMPERATURE AND INITIAL MOISTURE
CALL INITL(TJ1,TJ,V,NET>
IF(TIME .EQ. 0.00) G O  TO 300 

190 CONTINUE
ICO = ICO+1 
ICOU = ICOU+1 
TIME = ICO*DT
CALCULATION OF THERMAL PROPERTIES OF CONCRETE

MIP1 = MI+1 
DO 10 M=5,MIP1,2
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LI = NI+3-M 
N1 = 2
IF(NET .EQ. 1 .OR. NET .EQ. 4 > Nl=l 
DO 10 N=N1,LI,2

C CALL CONPR< M , N ,T J ,C A P C ,CONDC )
C 10 CONTINUE

DO 20 M=6,NI1,2 
LI = NI+3-M 
N1 = 1
IF(NET .EQ. 1 .OR. NET .EQ. 4) Nl=2 
D O  20 N=N1,LI,2

C CALL CO NPR(M , N ,T J ,C A P C ,C O N D C )
20 CONTINUE

CALCULATION OF THERMAL PROPERTIES OF STEEL
DO 11 M=1,S,2 
LI = NI+3-M 
N1 = 2
IF1NET .EQ. 1 .OR. NET .EQ. 4) NI = 1 
D O  11 N=N1,LI,2 
CALL STLPR < M ,N ,T J ,C A P S ,CONDS >

11 CONTINUE
DO 21 M=2,4,2 
LI = NI+3-M 
N1 = 1
IF(NET .EQ. 1 .OR. NET .EQ. 4) N1 = 2 
DO 21 N=N1,LI,2 
CALL STLPR(M ,N ,T J ,C A P S ,C O N D S )

21 CONTINUE
CALCULATION OF TEMPERATURE
CALL TE MPCSlNET,T I M E ,D T ,V ,C O N D C ,C O N D S ,C A P C ,C A P S ,T J ,T J 1,T F )
SET TJ A T  NEXT TIME STEP EQUAL TO TJ1 AT CURRENT TIME STEP
IF(NET .EQ. 1 .OR. NET .EQ. 4) G O  TO 30 
IF1NET .EQ. 2 .OR. NET .EQ. 3) G O  TO 40 

30 CONTINUE
D O  SO 1=1,NI,2 
LI = NI-I+3 
DO 50 J=1,LI,2 
TJ <I,J> = TJ1(I,J)

50 CONTINUE
DO 60 1=2,NI,2
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LI = NI-I+3 
DO 60 J=2,LI>2 
TJ <I,J) = TJ1<I,J)

60 CONTINUE 
GO TO 80 

40 CONTINUE
DO 70 1=1,NI,2 
LI = NI-I+3 
DO 70 J=2,LI,2 
TJ (I,J) = TJ1(I,J)

70 CONTINUE
DO 90 1=1,NI,2 
LI = NI-I+3 
DO 90 J=1,LI,2 
TJ < I, J> = TJltI.J)

90 CONTINUE 
80 CONTINUE

IF(ICOU - NINT) 190,300,300 
300 ICOU = 0

TIMEMI = TIME*60.0
IF(TIMEMI .LT. STTIME) GO TO 190

CALCULATE THE AVERAGE TEMPERATURES AT THE TRANSFORMED NET

CALL AVERG!TJ1,TT.NET)

1500 CONTINUE
ROH = <KL**2/12.0)/Y 
NUM = 0  
IND = 0 
INDIC = 0 
NUMB = 0 
MMM = 0  
NNN = 0 
EPAXL =0.00 

1510 CONTINUE

CALCULATION OF STRAINS,STRESSES,LOADS AND MOMENTS

CALL LO ADMS!TT,E P A X L ,Z ,A S E ,E P S R ,E P S L ,FS R,F S L ,R O H ,P S T ,M S T ,F V S O )
8 FORMAT!5X, 'MOMENT STEEL = ’, 1D15.6,5X, ’LOAD STEEL = M D 1 5 . 6 >  

CALL LOADMC !TT,E P A X L ,Z ,A C E ,E P C R ,E P C L ,F C R ,F C L ,R O H ,P C T ,M C T ,FDCO)
9 FO RMAT!5X,’MOMENT C O C R . = ’,1D15.6.5X,’LOAD COCR. = ’,1015.6) 

SUMMITION OF TOTAL LOADS AND MOMENTS
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PT = PCT + PST 
MT = MC T ♦ MST
CHECKING THE AXIAL STRAIN AND MAKE THE BALANCE BETWEEN THE 
EXTERNAL AN D INTERNAL MOMENTS
CALL CHECK!MT.PT.ECC.Y,EPAXL,TIME,TIMLIM,TIMEMI,TF,TT,
.P S T ,P C T ,M S T ,M C T ,E P S R ,E P S L ,E P C R ,E P C L ,F S R ,F S L ,F C R ,F C L ,ICHEK,IWRITE)
IF!ICHEK .EQ. 1) GO TO 190
IF!ICHEK .EQ. 2) GO TO 1500
IF!ICHEK .EQ. 3) GO TO 1510
READ!5 , 1 0 6 ) IEXIT
IF1IEXIT .EQ. 0) GO TO 108
GO TO 107

108 STOP 
END

********************************

SUBROUTINE COORD!Z,ACE,ASE.NET)
********************************

THIS SUBROUTINE CALCULATES THE COORDINATES AND AREAS OF 
THE ELEMENTS IN THE DIFFERENT NETWORKS FOR CONCRETE &  STEEL 
AL FAC= ALFA FOR CONCRETE 
INT = INTEGER
DHG = HA LF LENGTH OF THE DIAGONAL OF TRIANGULAR ELEMENT 
DHE = HA LF LENGTH OF THE DIAGONAL OF THE TRIANGULAR ELEMENT 

A T  END FOR EVERY NET

N D  = NUMBER O F  DIVISIONS OF LENGTH ! 2.0*DHG )
NI = NUMBER OF HORIZONTAL DIVISIONS OF LENGTH DHG 
MI = NUMBER OF VERTICAL DIVISIONS OF LENGTH DHG

IMPLICIT REAL*8(A-H,0-Z)
C 0 MM0N/AREAS/AEND1,A E N D 2 ,A E N D 3 ,AEND4 
C0MM0N/NUMB2/NI1 .NI2.NI3.NI4, IK1, IK2 
CO MMON/DIMEN/THICK,H ,D H G ,DHE 
C0 MM0N/NUMB1/NI,MI,IK
DIMENSION Z! 135,135),ACE!135,135),A S E ! 135,135) 
DHG = THICK/4.0 
ND = INT(H/(4.0*DHG))
DHE = H/ 2.0 - 2.0*ND*DHG
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IF< DHE .EQ. 0.00 ) GO TO 10
IF( DHE .EQ. DHG ) GO TO 20
IF< DHE .LT. DHG ) GO TO 30
IF< DHE • GT. DHG ) GO TO 40

C
10 CONTINUE

************************************************************ 
FIRST CASE (EVEN NUMBER OF TRIANGULAR ELEMENT>,NETWORK N0.1 
************************************************************

NET = 1
NI = 2*ND +
MI = NI - 1
IK = NI - 1
Nil = NI - 1
NI2 = NI - 2
NI3 = NI - 3
NI4 = NI - 4
IK1 = IK - 1
IK2 = IK - 2
DO 15 I = 1,IK 
DO 15 J = 1,IK 

15 Z<I,J> = (2*J - l)*DHG/2.0
AEND1 = AREA OF ELEMENT <1,3) FOR NETWORK1
AEND2 = AREA OF ELEMENT <2,2) FOR NETWORK1
AEND3 = AREA OF ELEMENT <3,3) FOR NETWORK1
AEND4 = AREA OF ELEMENT<14,2) FOR NETWORK1
AEND1 = DHG ** 2.0 
AEND2 = 2.0 * AEND1 
AEND3 = AEND2 
AEND4 = AEND2 
GO TO 50 

20 CONTINUE
*************** ******** ********* ******* ******** ************* 
SECOND CASE <0DD NUMBER OF TRIANGULAR ELEMENT).NETWORK NO.2 
************************************************************

NET = 2
NI = 2*ND + 2
MI = NI - 1
IK = NI - 1
Nil = NI - 1
NI2 = NI - 2
NI3 = NI - 3
NI4 = NI - 4
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IK1 = IK - 1 
IK2 = IK - 2

C
DO 25 I = 1,IK 
DO 25 J = 1,IK

r*
25 Z( I, J) = (2*J - 1) * DHG/2.0

t
c AEND1 s AREA OF ELEMENT (1,2) FOR NETW0RK2
c AEND2 = AREA OF ELEMENT (2,3) FOR NETW0RK2
c AEND3 = AREA OF ELEMENT (3,2) FOR NETW0RK2
c AEND4 AREA OF ELEMENT!13,2) FOR NETW0RK2
L

AEND1 = DHG ** 2.0
AEND2 = 2.0 * AEND1
AEND3 = AEND2
AEND4 = AEND2
GO TO 50

30 CONTINUE

******************************************************** 
THIRD CASE (EVEN NUMBER OF TRIANGULAR ELEMENT + FRACTION 

OF AN ELEMENT
********************************************************

NET = 3
NI = 2*ND + 2
MI = NI - 1
IK = NI - 1
Nil = NI - 1
NI2 = NI - 2
NI3 = NI - 3
NI4 = NI - 4
IK1 = IK - 1
IK2 = IK - 2
DO 35 I = 1,IK
Z(I, 1) = 01.50 *
DO 35 J = 2, IK

C
C
c
c
c
c

35 Z(I,J) = DHE + (2.0 * J - 3.0) * DHG/2.0
AEND1 = AREA OF ELEMENT (1,2) FOR
AEND2 = AREA OF ELEMENT (2,3) FOR
AEND3 = AREA OF ELEMENT (3,2) FOR
AEND4 = AREA OF ELEMENT<15,2) FOR
AEND1 = DHE * DHG
AEND2 = DHG ** 2.0 + DHG * DHE
AEND3 = 2.0 * AEND1
AEND4 = DHG * DHE + DHE ** 2.0

NETW0RK3
NETW0RK3
NETW0RK3
NETW0RK3
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GO TO 50 
40 CONTINUE

A***************************************A***************
FOURTH CASE (ODD NUMBER OF TRIANGULAR ELEMENT + FRACTION 

OF AN ELEMENT
********************************************************

NET = 4
NI = 2*ND +
MI = NI - 1
IK = NI - 1
Nil = NI - 1
NI2 = NI - 2
NI3 = NI - 3
NI4 = NI - 4
IK1 = IK - 1
IK2 = IK - 2
DO 45 I = 1, IK 
Z(I,1> = 0.5 * DHE 
DO 45 J = 2 , IK 

45 Z(I,J) = DHE + < 2.0 * J - 3.0 > * DHG/2.0

AENDI = AR EA OF ELEMENT (1,3) FOR NETW0RK4 
AEND2 = AR EA OF ELEMENT (2,2) FOR NETW0RK4 
AEND3 = AREA OF ELEMENT (3,3) FOR NETW0RK4 
AEND4 = AR EA OF ELEMENT( 14,2) FOR NETWORK4
AENDI = 0.5*DHG**2.0 + 0.5*DHE*DHG 
AEND2 = 2.0*DHG*DHE 
AEND3 = 2.0*AEND1 
AEND4 = DHG*DHE ♦ DHE**2 

50 CONTINUE 
NI5 = NI-5
GET THE AR EA OF STEEL AND CONCRETE ELEMENTS

IF ( NET .EQ. 1 .OR. NET .EQ. 2 ) GO TO 60 
IF ( NET .EQ. 3 .OR. NET .EQ. 4 ) GO TO 70 

60 CONTINUE
AREA OF STEEL ELEMENTS

DO 55 1=1,4 
DO 55 J = 1 ,IK 

55 A S E < I ,J)= DHG**2.0 
DO 56 1=5, IK 
DO 56 J=NI4,IK
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56 ASE(I,J)= DHG**2.0
CC AR EA OF CONCRETE ELEMENTS
C DO 57 1=5,IK 

DO 57 J=1,NI5
57 ACE(I,J) = DHG**2.0 

G O  TO 80
70 CONTINUE

CC AREA OF STEEL ELEMENTS
C A S E ( 1,1) = DHE*DHG

DO 72 1=2,4
A S E < 1,1) = A S E ( 1,1)

72 CONTINUE 
DO 75 1=1,4
DO 75 J=2,IK

75 ASE(I.J) = DHG**2.0
C

DO 76 1=5,IK 
DO 76 J=NI5,IK

76 ASE(I,J) = DHG**2.0
CC AR EA OF CONCRETE ELEMENTS 
C

DO 77 1=5,IK
77 A C E ( 1,1) = DHE*DHG 

DO 78 I = 5 , IK
DO 78 J = 2.NI5

78 ACE(I.J) = DHG**2.0 
80 CONTINUE

RETURN
END

C
c * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

SUBROUTINE INITL(TJ1,TJ,V,NET)
C *******************************
c
c  THIS SU BROUTINE CALCULATES THE INITIAL TEMPERATURES A N D  
C THE INITIAL MOISTURE CONTENT WITHIN THE CONCRETE REIGON
C AT ROOM TEMPERATURE
C

IMPLICIT REAL*8(A-H,0-Z>
CO MMON /ARE AS/A END1,A E N D 2 ,A E N D 3 ,AEND4 C0MM0N/NUMB2/NI1,NI2,NI3,NI4,IK1,IK2 
CO MMON /PRO PR/P HI,E M I S ,EPTOT 
C0MM0N/NUMB1/NI,MI,IK
DIMENSION T J K 135,135),TJ< 135,135),V( 135,135)
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MIP1 = MI+1 
NIP1 = NI+1

CC INITIAL TEMPERATURES 
C DO 10 I = l.NIPl

DO 10 J = l.NIPl
TJ <I,J> = 20.0 
TJ1(I,J> = 20.0 

10 CONTINUE
CC INITIAL MOISTURE 
C IF (NET .EQ. 1 .OR. NET .EQ. 4) GO TO 90

IF (NET .EQ. 2 .OR. NET .EQ. 3) GO TO 100
C
C N’S = IS THE COLUMN NUMBER
C M'S = IS THE ROW NUMBER
C PHI = IS THE MOISTURE CONCENTRATION
C V(M,N)=THE VOLUME OF THE MOISTURE FOR ELEMENT*M,N)
C =AREA OF ELEMENT(M.N) * UNIT THICKNESS * PHI

90 N1 = 1 
N2 = 2 
N3 = 5 
GO TO 110 

100 N1 = 2 
N2 = 3 
N3 = 4 

110 AREA = DHG**2
V(5,N1> = AEND3/2.0*PHI 
DO 85 N = N3.NI2.2

85 V(5,N) = AREA*PHI 
AREA = 2.0*DHG**2 
DO 86 M=6,MIP1,2 
LI = NI+2-M
DO 86 N = N2.LI,2
IF (N .EQ. N2) AREA = AEND2

86 V(M,N> = AREA*PHI 
AREA = 2.0*DHG**2 
DO 87 M=7,MI,2
LI = NI+2-M
DO 87 N = N1.LI.2
IF (N .EQ. Nl) AREA = AEND3

87 V(M,N) = AREA*PHI 
V(MI,2) = AEND4*PHI 
RETURN
END

CC ************************************
SUBROUTINE STLPR(M,N,TJ,CAPS,CONDS)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



o
u

o
o

o
o

u
o

u
u

o
 

u 
U 

o 
o 

o
u

o
o

o
u

o
u

o
u

o

- 251 -

************************************

STLPR = STEEL PROPERTIES

THIS SUBROUTINE CALCULATES THE THERMAL PROPERTIES OF THE 
STEEL AT DIFFERENT TEMPERATURE

CAPS(M,N) = THERMAL CAPACITY OF STEEL AT ELEMENT!M,N) 
CONDS(M,N)= THERMAL CONDUCTIVITY OF STEEL

IMPLICIT REAL*8(A-H,0-Z)
COMMON/NUMB1/NI,MI,IK
DIMENSION TJ(135,135),CAPS!135,135).CONDS!135,135)

IF!TJ!M,N) - 650.0) 20,20,22 
20 CAPS!M,N)=0.004D 6*TJ!M,N)+3.30D 6 

GO TO 23
22 IF!TJ!M,N) - 725.0) 24,24,26
24 CAPS(M,N) = 0.068D 06*TJ!M,N) - 38.30D 06 

GO TO 23 
26 IF(TJ(M,N) - 800.0) 28,28,30 
28 CAPS!M,N) = -0.086D 06*TJ!M,N) + 73.35D 06 

GO TO 23 
30 CAPS!M,N) = 4.55D 06
23 IF(TJ!M,N) - 900.0) 32,32,36
32 CONDS!M,N) = (-0.022*TJ(M,N) + 48.0)*3.60D 3 

GO TO 40 
36 CONDS!M,N) - 28.20D 0*3.60D 3 
40 CONTINUE 

RETURN 
END

***********************************

SUBROUTINE CONPR!M,N,TJ,CAPC,CONDC)

***********************************

CONPR = CONCRETE PROPERTIES

THIS SUBROUTINE CALCULATES THE THERMAL PROPERTIES OF CONCRETE 
AT DIFFERENT TEMPERATURE

CAPC = THERMAL CAPACITY OF CONCRETE 
CONDC = THERMAL CONDUCTIVITY OF CONCRETE

IMPLICIT REAL*8(A-H,0-Z)
DIMENSION TJ!135,135),CAPC(135,135),CONDC!135,135)
IF!TJ!M,N) - 200.0) 10,10,20 

10 CAPC!M,N) = 0.005D 06*TJ!M,N> + 1.70D 06
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GO TO 3 0  
20 IF(TJ(M,N) - 400.0) 40,40,50 
40 CAPC<M,N) = 2.70D 06 

GO TO 30 
50 IF(TJ(M,N) - 500.0) 60,60,70 
60 CAPC(M,N) a 0.013D 06*TJ<M,N> - 2.50D 06 

GO TO 30 
70 IF(TJ(M,N) - 600.0) 80,80,90 
80 CAPC(M.N) = -0.013D 06*TJ<M,N) + 10.50D 06 

GO TO 30 
90 CAPC(M,N) = 2.700 06 
30 IF(TJ(M,N) - 800.0) 100,100,110
100 C0NDC(M,N) = <-0.000625D 00*TJ(M,N) + 1.50>*3.60D 03 

GO TO 120 
110 C0NDC(M,N) = 1.0*3.60D 03 
120 RETURN 

END
******A******************************A*********************

SUBROUTINE T E MPOS(N E T ,T I M E ,D T ,V ,C O N D C ,C O N D S ,C A P C ,C A P S ,T J ,T J 1,T F )
***********************************************************

TEMPCS = TEMPERATURE IN CONCRETE AND STEEL

THIS SUBROUTINE CALCULATES THE TEMPERATURE CHANGES OF THE 
ELEMENTS FOR DIFFERENT TIME INTERVAL

IMPLICIT REAL*8(A-H,0-Z)
COMMON/DIMEN/THICK,H,DHG,DHE 
C0MM0N/NUMB2/NI1,NI2,NI3,NI4,IK1,IK2 
COMMON/NUMB1/NI, MI,IK 
COMMON/PROPR/PHI,EMIS,EPTOT
DIMENSION TJ1<135,135),TJ<135,135),V<135,135),DV<135,135) 
DIMENSION CAPC(135,135),CAPS<135,135),CONDC<135,135),
.CONDS(135,135)

ROHCW = THERMAL CAP. OF WATER (ROHWATER*CWATER)
ROLAM = ROHWATER*HEAT EVAPORATION OF WATER)
SBC = STEFAN-BOLTIZMAN CONSTANT0JOULE/<HOUR*M**2*(DEG. K)**4>!
TF = STANDERED FIRE TEMPERATURE
ROHCW = 4.20D 06
ROLAM = 2.30D 09
SBC = 5.670D-08*3.60D 03
U = DSQRT(TIME)
TF = 20.0 + 750.O M 1.0 - DEXP<- 3.79553*U>> + 170.41*U 

TEMPERATURE AT FIRE-STEEL BOUNDARY 

M = 1
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IF (NET .EQ. 1 .OR. NET .EQ. 4) GO TO 10 
IF (NET .EQ. 2 .OR. NET .EQ. 3) GO TO 20 

10 CONTINUE 
N1 = 3

C AEL = AREA OF THE ELEMENT
AEL = DHG**2.0 

C ASF = SURFACE AREA OF ELEMENT
ASF = 2.0*DHG*1.0 
GO TO 30 

20 CONTINUE 
N1 = 2
AEL = DHG**2.0 
ASF = 2.0*DHG * 1.0 

30 CONTINUE
DO 40 N = N1,NI,2
IF (N .EQ. N1 .AND. NET .EQ. 3) GO TO 50
IF <N .EQ. N1 .AND. NET .EQ. 4) GO TO 60
GO TO 70 

50 CONTINUE 
AEL = DHG*DHE 
ASF = 2.0*DHE*1.0 
GO TO 70 

60 CONTINUE
AEL = DHG**2.0/2.0 + DHE*DHG/2.0 
ASF = (DHG + DHE)*1.0

EQUATION OF TEMPERATURE CHANGES AT THE FIRE-STEEL BOUNDARY 
WHERE M = 1

70 CONTINUE
TJ1(M,N) = TJ(M,N) ♦ DT/<CAPS(M,N)*AEL)
.*((CONDS(M+l,N-l) + CONDS(M,N))/2.0*<TJ(M+1,N-1) - TJ(M,N)) 
.+ <CONDS(M+l,N+l> + CONDS(M,N))/2.0*(TJ(M+l,N+l) - TJ(M,N)) 
.+ ASF*SBC*EMIS*<(TF+273.01**4 - (TJ(M,N) +273.01**4))

40 CONTINUE

TEMPERATURE INSIDE STEEL REIGON

DO 110 M=2,4 
LI = NI+l-M
IF( NET .EQ. 1 .OR. NET .EQ. 4 > GO TO 80 
IF( NET .EQ. 2 .OR. NET .EQ. 3 ) GO TO 90 

80 CONTINUE 
N1 = 2
IF(M .EQ. 3) Nl=3 
AEL= 2.0*DHG**2 
GO TO 100 

90 CONTINUE 
N1 = 3
IF(M .EQ. 3) Nl=2 
AEL= 2.0*DHG**2
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100 CONTINUEDO 110 N =  N 1 , L I ,2IF< N .EQ. N1 .AND. NET .EQ. 3 ) AEL = D H G M D H G + D H E )
IF( N .EQ. N1 .AND. NET .EQ. 4 ) AEL = 2.0*DHG*DHE

CC THE AV ERAG E CONDUCTIVITY FOR A  POINTS LOCATED ON THE BOUNDARY
C LINE O F  THE STEEL - CONCRETE REIGON
C 
CC EQUATION O F  TEMPERATURE CHANGES FOR INSIDE STEEL REIGON AT M=2 
C TJ1(M,N) =  TJ(M,N> + DT/(CAPS(M,N)*AEL>

.*<<CO NDS(M - 1,N - 1) + CONDS( M,N))/2.0 * <TJ<M-1,N-1> - TJ<M,N>> 

.+ <CONDS(M+l,N-l) + CONDS( M,N>1/2.0 * <TJ<M+1 ,N-1> - TJ<M,N>> 

.+ (CONDS<M-l,N+l) + CONDS( M,N))/2.0 * <TJ<M-1,N+1) - TJ<M,N)> 

.+ (CONDS(M+l,N+l) + C0NDS(M,N))/2.0 * (TJ(M+1,N+1) - TJ<M,N))>
C 110 CONTINUE
CC TEMPERATURE AT STEEL-CONCRETE BOUNDARY
C

M  = 5
IF< NET .EQ. 1 .OR. NET .EQ. 4 I G O  TO 120 
IF< NET .EQ. 2 .OR. NET .EQ. 3 ) GO TO 130 

120 CONTINUE 
N1 = 3
AEL= 2.0*DHG**2 
GO TO 140 

130 CONTINUE 
N1 = 2
AEL = ?.0*DHG**2 

140 CONTINUE 
NI3 = NI-3 
DO 150 N=N1,NI3,2
IF< N .EQ. N1 .AND. NET .EQ. 3 ) AEL = 2.0*DHE*DHG
IF( N .EQ. N1 .AND. NET .EQ. 4 ) AEL = (DHG+DHE)*DHG
IF( TJ(M,N) .LT. 100.0 ) GO TO 160
IF( V(M,N> - O.OD 00 ) 170 , 160 , 180

170 V(M,N) = O.OD 00 
GO TO 160 

180 CONTINUE
C
C
C EQUATION O F  MOISTURE CHANGES A T  STEEL-CONCRETE BOUNDARY,M=3 
C

DV(M,N) = DT/ROLAM.*<<CONDS( M - 1,N - 1) + CONDS(M,N))/2.0*(TJ(M-l,N-l) - TJ(M,N)>
.t (C0NDC(M+1,N-1) + CONDC<M,N))/2.0*<TJ(M+l,N-l) - TJ(M,N)>
.+ (C0NDS(M-1,N+1) + CONDS(M,N))/2.0*<TJ(M-l,N+l) - TJ<M,N)).+ (C0NDC(M+1,N+1) + C0NDC(M,N))/2.0*<TJ(M+1,N+1) - TJ<M,N)>>
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V(M,N) = V(M,N) - DV(M,N)
T J H M . N )  = TJ(M,N)
G O  TO ISO 

160 CONTINUE
C
CC EQUATION OF TEMPERATURE CHANGES A T  STEEL CONCRETE BOUNDARY,M=3
C T J H M . N )  = TJ(M,N) + DT/(CAPS<M,N)*AEL + RO HCW* V(M, N>)

.*((C ONDS(M-l,N-1) + CONDS(M,N))/2.0*(TJ<M-1,N-1) - TJ<M,N>)

.+ <CONDC<M+l,N-1) + CONDC<M,N))/2.0*<TJ(M+1,N-1) - TJ<M,N))

.+ (C0NDS<M-1,N+1) + CONDS<M,N))/2.0*(TJ(M-1,N+1) - TJ<M,N)>

.+ (CONDCIM+l,N+1) + CONDC(M,N))/2.0*<TJ<M+1,N+1) - TJ<M,N)))
C

150 CONTINUE
C
C CALCULATION OF TEMPERATURE INSIDE THE CONCRETE REIGON 
C
C TEMPERATURE DISTRIBUTION FOR EVEN VALUES OF M
C

Nil = NI-1
D O  250 M=6,NI1,2
LI=NI-M+2
IF( NET .EQ. 1 .OR. NET .EQ. 4 ) GO TO 255 
IF( NET .EQ. 2 .OR. NET .EQ. 3 ) GO TO 256

255 Nl=2 
AEL=2.0*DHG**2 
G O  TO 257

256 Nl=3 
AE L=2.0*DHG**2

257 CONTINUE
D O  250 N=N1,LI,2
IFINET .EQ. 3 .AND. N .EQ. Nl) AE L=(D HE+D HG)*DHG 
IFINET .EQ. 4 .AND. N .EQ. NI) AEL=2.0*DHE*DHG 
IF(TJ(M,N) .LT. 100.0) GO TO 260 
IF(V(M,N) - O.OOD 00) 270 , 260 , 280 

270 V(M,N) = 0.00 
G O  TO 260

C
C EQUATION OF MOISTURE CHANGES INSIDE CONCRETE REIGON WHEN
C M  = EVEN NUMBER = 6,8,10,..
C

280 DV(M,N) = DT/ROLAM
.*(<C0NDC(M-1,N-1) + CONDC(M.N))/2.0*(TJ(M-l,N-1) - TJ(M,N)>
.+ (C O NDC< M+1,N — 1) + CONDC(M.N))/2.0*<TJ(M+l,N-l) - TJ(M,N))
.+ (C0NDC(M-1,N+1) + CONDC<M,N))/2.0*<TJ(M-l,N+1) - TJ<M,N))
.+ (C0NDC(M+1,N+1) + CONDC(M.N))/2.0*<TJ(M+l,N+l) - TJ(M,N)))

C
V(M,N) = V<M,N) - DV(M,N)
TJ1<M,N) = TJ<M,N)
G O  TO 250
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260 CONTINUE
C
C
CC EQUATION OF TEMPERATURE CHANGES INSIDE CONCRETE REIGON
C AT M  = EVEN NUMBER = 6 , 8,10 ,_ _ _
C T J H M . N )  = TJ(M,N) + DT/(CAPCIM,N)*AEL + R O HCW* VIM, N)>

.*<(CONDC<M - 1,N - 1) + CONDCI M,N))/ 2 .0* (TJ( M-1,N - 1) - TJ<M,N>>

.+ ICONDCIM+1 ,N-1) + CONDC<M,N))/2.0*(TJIM+1,N-1) - TJ<M,N>)

.+ ICONDCIM-1,N+1) + CONDC(M,N))/2.0*ITJIM-l,N+1) - TJ(M,N))

.+ <C0NDC(M+1,N+1) + CONDC<M,N>)/2.0*1TJIM+1,N+l) - TJ<M,N)))
250 CONTINUE

CC TEMPERTURE DISTRIBUTION INSIDE THE CONCRETE WHEN M  IS ODD 
C NI4=NI-4

DO 300 M=7,NI2,2 
LI=NI-M+2
IFINET .EQ. 1 .OR. NET .EQ. 4) G O  TO 310
IFINET .EQ. 2 .OR. NET .EQ. 3) GO TO 320

310 Nl=3
AEL=2.0*DHG**2 
GO TO 330 

320 Nl=2
AEL=2.0*DHG**2 

330 CONTINUE
DO 300 N=N1,LI,2
IFINET .EQ. 3 .AND. N .EQ. Nl) AEL=2.0*DHE*DHG
IFINET .EQ. 4 .AND. N .EQ. Nl) AEL=!DHE+DHG)*DHG
IF1TJIM.N) .LT. 100.0) GO TO 340 
IFIVIM.N) - 0.0) 350 ,340 ,360 

350 V(M,N) = 0.00 
GO TO 340

CC  EQUATION OF MOISTURE CHANGES INSIDE CONCRETE REIGON WHEN
C  M  = ODD NUMBER = 5,7,9,...
C

360 DVIM.N) = DT/ROLAM
.*!<C 0NDC(M-1,N-1) + CO NDCI M,N))/ 2 .0*1TJ I M - 1,N - 1) - TJIM,N)>
.+ ICONDCIM+l.N-l) + CONDCIM,N))/2.0*ITJIM+1,N-1) - TJIM,N)>
.+ ICONDCIM-1,N+1) + C0NDCIM,N))/2.0*ITJIM-1,N+1) - TJIM,N))
.+ ICONDCIM+l,N+l) + CONDCIM,N))/2.0*ITJIM+l,N+l) - TJIM.N)))
VIM.N) = VIM.N) - DVIM.N)
T J H M . N )  = TJIM.N)
G O  TO 300

C
C  EQUATION OF TEMPERATURE CHANGES INSIDE CONCRETE REIGON WHEN
C  M  = ODD NUMBER = 5,7,9,...
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340 T J H M . N )  = TJ(M,N) + DT /<CAPC(M,N)*AEL+ROHCW*V<M,N>>
. *<(CONDC(M-l.N-l) + CO NDC( M.N))/2.0*<TJ<M-l,N-1) - TJ<M,N))
.+ (CONDC(M+l.N-l) + CO NDC( M.N))/2.0*(TJ(M+l,N-1) - TJ(M,N>)
.+ (C0NDC(M-1,N+1) + CO NDC( M.N))/2.0*<TJ(M-l,N+1) - TJ(M,N))
.+ <C0NDC(M+1,N+1) + CONDC<M,N))/2.0*<TJ<M+1,N+1) - TJ<M,N)))

300 CONTINUE

BY USIG THE SPESIALITY OF THE SEMMETRY OF THE CROSS-SECTION 
ALONG THE A-C.D-C LINES,THE EOLLOWING AU XILA RY EQUATIONS CAN 
BE APPLIED IN ORDER TO FIND THE TEMPERATURE DISTRIBUTION IN 
THE TOTAL CROSS-SECTION

N=1
IF( NET .EQ. 1 .OR. NET .EQ. 4) Ml=l 
IF( NET .EQ. 2 .OR. NET .EQ. 3) Ml=2 
DO 380 M = M 1 , N I ,2 
T J H M . N )  = T J H M . N + 2 )

380 CONTINUE
DO 390 M=1,NII 

390 T J H M + 1  .NI-M+2) = T J K M . N I - M + l )
RETURN
END
***********************************************************

SUBROUTINE LOADMS(TT,EPAXL,Z,ASE,EPSR,EPSL,FSR,FSL,ROH,PST, 
MST.FYSO)

***********************************************************

IMPLICIT REAL*8(A-H,0-Z)C0MM0N /NUM B2/N I1,NI2,NI3,NI4,IK1,IK2 
COMMON/NUM B1/N I,MI,IK
DIMENSION E P T S < 135,135),EPSR(13 5,13 5),EPSL<135,135) 
DIMENSION T T < 135,135),ASE<13 5,13 5),Z(135,135) 
DIMENSION F S L < 135,135),FSR(135,135)
REAL MSR,MSL,MST
UNITS OF FYSO ARE : NET0N/M**2
EPSP =  4.0D-12*FYSO 
ONE = 0.001C CALCULATION OF STRAINS IN THE STEEL BOUNDARY 

C
DO 10 M=l,4 
D O  10 N=1,NI1
IF(TT(M,N) .GE. 1000.0) G O  TO 20 
IF<TT(M,N) ,LT. 1000.0) G O  TO 30 

20 CONTINUE
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ALFAS = 16.0D-06 
GO TO 40

30 ALFAS = (0.0040*TT(M,N) + 12.0 ) * 1 .00-06 
40 CONTINUE

EPST=THE TOTAL STRAIN IN THE STEEL
EPSR=THE STRAIN IN THE STEEL IN RIGHT SIDE OF THE SECTION
EPSL=THE STRAIN IN THE STEEL IN LEFT SIDE OF THE SECTION
EPAXL=THE STRAIN DUE TO THE AXIAL LOAD
Z(M,N)/R0H = THE STRAIN DUE TO BENDING,WHERE Z IS THE COORDIN.

EPTS e STRAIN DUE TO TEMPERATURE DIFFERENCE FOR STEEL 
= (ALFA FOR STEEL)(DELTA T)

EPSR = STRAIN IN STEEL IN RIGHT SIDE OF X-AXIS 
EPSL = STRAIN IN STEEL IN LEFT SIDE OF X-AXIS 
EPAXL= STRAIN DUE TO AX IAL LOAD 
Z/R0H= STRAIN DUE TO BENDING 
EPTS(M.N) = -ALFAS*(TT(M,N)-20.0>
EPSR(M.N) = EPTS(M.N) + EPAXL + Z(M,N)/R0H
EPSL(M.N) = EPTS(M,N) + EPAXL - Z(M,N)/R0H

10 CONTINUE
DO 50 M=5,NI1 
D O  50 N=NI4,NI1
IF(TT(M,N) .GE. 1000.0) GO TO 60 
IF(TT(M,N) .LT. 1000.0) GO TO 70 

60 CONTINUE
ALFAS = 16.0D-16 
GO TO 75 

70 CONTINUE
ALFAS=IS ALFA FOR STEEL

ALFAS=(0.0040*TT(M,N) + 12.0)*1.0D-06 
75 CONTINUE

EPTS(M,N) == -ALFAS*(TT(M,N)-20.0)
EPSR(M,N) = EPTS(M,N) + EPAXL + Z(M,N)/R0H 
EPSL(M,N) = EPTS(M,N) * EPAXL - Z(M,N)/ROH 

50 CONTINUE
CALCULATION OF STRESSES,LOAD AND MOMENTS
PSR=THE LOAD IN THE STEEL REIGON IN RIGHT SIDE 
PSL=THE LOAD O N  THE STEEL REIGON IN LEFT SIDE 
PST=THE TOTAL LOAD ON THE STEEL REIGON 
FSR=THE STRESS ON THE STEEL REIGON IN RIGHT-SIDE
FSL=THE STRESS ON THE STEEL REIGON IN LEFT-SIDE
MSR=THE MOMENT ON THE STEEL REIGON IN RIGHT-SIDE
MSL=THE MOMENT O N  THE STEEL REIGON IN LEFT-SIDE

PSR = 0.00 
PSL = 0.00
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MS R = 0.00 
MSL = 0.0

CC CALCULATION OF STRAINS & STRESSES IN FIRST TWO ROWS IN STEEL
DO 80 M = 1 ,4 
DO 80 N=1,NI1
F001=(50.0-0.04 *TT( M,N))*<1.0-DEXP< <-30.0+0.030*TT <M,N >)*
.DS Q R T (O N E )))*6.90D OG 
IF(EPSR(M,N) - 0.00) 90,100,100 

90 C=1.00 
GO TO 110 

100 C=-1.0
110 IF<DABS(EPSR(M,N))-EPSP) 120,120,130 
120 FSR(M,N)=C*F001*DABS(EPSR(M,N)1/0.001 

GO TO 135
130 F0 01M=(50.0-0.04*TT(M,N))*( 1 .0-DEXP( (-30.0+0.030*TT(M,N))*

.DS Q R T <DA BStE PSR( M,N )) - EPSP + 0. 001)))*6.90D 6 
FSR(M,N)=C*(F001*EPSP/0.001 + F001M - F O O D  

135 CONTINUE
PSR = PSR + FSR(M,N)*ASE<M,N)
MS R = MSR - FSR(M,N)*ASE(M,N)*Z(M,N)
IF(EPSL(M,N)-0.00) 140 , 150 , 150 

140 C=1.0 
GO TO 160 

150 C=-1.0
160 IF(DABS(EPSL(M,N))-EPSP) 170,170,180 
170 FSL(M,N) = C*F001*DABS(EPSL(M,N))/0.001 

GO TO 175
180 F0 01M=<50.0-0.04*TT(M,N))*<1.0-DEXP( (- 30.0+0.030*TT(M,N))* 

.DSQRT(DABS(EPSL(M,N)) - EPSP + 0 . 0 0 1 > ) )*6.90D 6 
FSL(M,N)=C*(F001*FPSP/0.001 + F001M - F O O D  

175 CONTINUEPSL = PSL + FSL(M,N)*ASE(M,N)
MSL = MSL + F S L ( M ,N )*ASE< M , N )*Z< M , N )

80 CONTINUE
CALCULATION O F  STRAINS & STRESSES IN LAST TWO COLUMNS OF STEEL
DO 190 M=5,NI1 
DO 190 N=NI4,NI1
F0 01=(50.0-0.04*TT(M,N))*(1.0-DEXP< <-30.0+0.030*TT(M,N))* 
.DSQRT(ONE)))*6.90D 06 
IF(EPSR(M,N) - 0.00) 200,210,210 

200 C=1.00 
GO TO 220 

210 C=-1.0
220 IF(DABS(EPSR(M,N))-EPSP) 230,230,240 
230 FSR(M,N)=C*F001*DABS(EPSR<M,N))/0.001 

GO TO 250
240 F0 01M=(50.0-0.04*TT(M,N))*(1.0-DEXP((-30.0+0.030*TT(M,N))*
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.DSQRT(DABS(EPSR(M,N)) - EPSP + 0 . 001) ))*6.90D 6 
FSR(M,N)=C*( F 0 0 1 *E P S P / 0 .001 + F001M - F O O D  
PSR = PS R + FSR(M,N)*ASE(M,N)
MSR = M S R  - FSR(M,N)*ASE(M,N)*Z(M,N)
IF(EPSL(M,N)-0.00) 250 , 260 , 260 

250 C=1.0 
GO TO 270 

260 C=-1.0
270 IF<DABS<EPSL(M,N))-EPSP> 280,280,290 
280 FSL(M,N) = C*F001*DABS(EPSL(M,N))/0.001 

GO TO 195
290 F001M=<50.0-0.04*TT(M,N)) * < 1 .0-DEXP((-30.0+0.030*TT<M,N)>* 

.DSQRT(DABS(E PSL( M,N)) - EPSP + 0.001)))*6.900 6 
FSL(M,N)=C*(F001*EPSP/0.001 + F001M - F O O D  

195 CONTINUE
PSL = PSL + FSL(M,N)*ASE(M,N)
MSL = MSL + FSL(M,N)*ASE(M,N)*Z(M,N)

190 CONTINUE
THE SUMMITION OF THE TOTAL LOADS AND MOMENTS

PST = <PSR+PSL)*2.0 
MST = (MSR+MSL)*2.0 
RETURN 
END

***********************************************************

SUBROUTINE LO A D M C l T T ,E P A X L ,Z ,A C E ,E P C R ,E P C L ,F C R ,F C L ,R O H ,P C T , 
MCT.FDCO)

***********************************************************

THIS SUBROUTINE CALCULATES THE LOADS AND THE MOMENTS IN 
THE CONCRETE REIGON OF THE CROSS-SECTION BY STARTING 
TO CALCULATE FIRST STRAINS,STRESSES,FORCES IN BOTH RIGHT 
AND LEFT-SIDES OF THE CRSS-SECTION.

IMPLICIT REAL*8(A-H,0-Z)
C0MM0N/NUMB2/NI1,NI2,NI3,NI4,IK1,IK2 
COMMON/PRO PR/P HI,EMIS,EPTOT 
C0 MM0N /NUM B1/N I,MI,IK
DIMENSION E P T C I 135,135),EPCR(135,135),EPCL( 135,135) 
DIMENSION F C R < 135,135),FCL(135,135)
DIMENSION TT( 135,135),ACE<135,135),Z(135,135)
REAL MCT 
NI5 = NI-5
CALCULATION OF STRAINS IN THE CONCRETE REIGON 

DO 10 M=5,IK
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DO 10 N= 1,NI 5
ALFAC = (0.0080*TT(M,N) + 6.0)*1.0D-06 
EPTC(M,N) = -ALFAC*(TT(M,N)-20.0)
EPCR(M,N) = EPTC(M,N) + EPAXL + EPTOT + Z(M,N)/ROH 
EPCL(M,N) = EPTC(M,N) + EPAXL + EPTOT - Z<M,N)/ROH 

10 CONTINUE
CC CALCULATION OF STRESSES IN CONCRETE REIGON
C FDCO = THE CYLINDER STRENGTH OF CONCRETE AT ROOM TEMP.
C (F-PRIME-C-O)
C FPC = THE CYLINDER STRENGTH OF CONCRETE AT TEMP. T
C (F-PRIME-C)
C PCT = 0.00 

MCT = 0.00 
DO 20 M=5,IK 
DO 20 N=1,NI5
EPMAX=0.0025+(6.0*TT(M,N)+0.04*TT(M,N)**2.0)*1.0D-06 
FPC = FD CO * ( 2 . 0 1 1-2.353*(TT(M,N)-20)/l000.0)
IFIFPC .GT. FDCO) FPC=FDCO 
IF(FPC .LE. 0.00) FPC=0.00 
IF(EPCR(M,N)-O.OOD 00) 30 , 40 , 40 

40 FCR<M,N)=0.00D 00 
GO TO 50

30 IF(DABS(EPCR(M,N))-EPMAX) 60,60,70 
60 FCR(M,N)=FPC*<1.0-(<EPMAX+EPCR(M,N))/EPMAX)**2)

GO TO 50
70 FC R(M, N)=F PC*(1.0- ((-E PCR( M,N)-EPMAX>/<3 . 0* EPMA X))**2) 

IF(FCR(M,N) .LT. 0.00) FCR(M,N)=0.00 
50 CONTINUE

IF(EPCL(M,N)-0.00D 00) 80,90,90 
90 FCL(M,N)=O.OD 00 

GO TO 100
80 IF(DABS(EPCL<M,N)l-EPMAX) 110,110,120 

110 FCL(M,N)=FPC*(1.0-(<EPMAX+EPCL(M,N))/EPMAX)**2)
GO TO 100120 FC L<M, N)=F PC*(1.0-1<-EPCL(M,N)-EPMAX)/(3.0*EPMAX) ) * * 2 )
IF<FCL(M,N) .LT. 0.00) FCL<M,N)=0.00 

100 CONTINUE
CC THE SUMMTION OF THE TOTAL LOADS AN D TOTAL MOMENTS IN THE
C  CONCRETE REIGON OF THE CROSS-SECTION
CC PCT=TOTAL LOAD IN CONCRETE
C  MCT=TOTAL MO MENT S IN CONCRETE REIGON
C PCT = PCT + 2.0*(FCR(M,N)+FCL(M,N))*ACE(M,N)

MCT = MCT + 2.0*<-FCR(M,N)+FCL(M,N))*ACE(M,N)*Z(M,N)
20 CONTINUE 

RETURN 
END
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C *****************************
SUBROUTINE AVERG(TJ1,TT,NET> 
*****************************

IN ORDER TO CALCULATE THE ST RAINS,STRESSES,LOADS AN D MOMENTS 
W E  HAVE TO TRANSFER THE DISTRIBUTED TEMPERATURES FROM TRIANG. 
ELEMENTS NETWORK TO SQUARE ELEMENTS NETWORK.THIS TRANSFORM. 
CAN BE DONE B Y  AVERAGING THE OBTAINED TEMPERATURE IN THE 
TRIANGULAR NETWORK.

IMPLICIT REAL*8(A-H,0-Z)
COMMON/NUMB1/NI,MI,IK 
DIMENSION T T ( 135,135),TJ1<135,135)
IF< NET .EQ. 1 .OR. NET .EQ. 4 ) GO TO 400 
IF< NET .EQ. 2 .OR. NET .EQ. 3 ) GO TO 480 

400 D O  420 M= l,IK ,2 
LI=IK+1-M 
D O  430 N=1,LI,2
AVERAGING THE TEMPERATURE

TTIM.N) =  ( T J K M + l ,N + l ) + TJl(M,N+2))/2.0 
KJ=IK+1-N
FROM SYMMETRY OF THE TRANSFORMED NET s 

430 TT(KJ,LI> = TT(M,N)
D O  440 N=2,LI,2
TT(M,N) =  (TJ1(M,N+1) + T J K M + l  ,N+2) 1/2.0 
KJ=IK+1-N 

440 TT(KJ.LI) = TT<M,N)
420 CONTINUE

D O  450 M=2,IK,2
LI=IK+1-M
DO  460 N=1,LI,2
TT(M,N) = <TJ1(M,N+1) + T J K M + l ,  N + 2 D / 2 . 0  
KJ=IK+1-N 

460 TT(KJ,LI) = TT(M,N)
IF(LI .EQ. 1) G O  TO 450 
D O  470 N=2,LI,2
TT<M,N) =  <TJ1(M+1,N+l) + TJl(M,N+2))/2.0 
KJ=IK+1-N 

470 TT(KJ,LI) = TT<M,N)
450 CONTINUE 

G O  TO 500 
480 CONTINUE 

IK=NI-1
D O  490 M=l,IK,2
Li=IK+l-M
DO  510 N=1,LI,2
TT(M,N) = (TJ1(M,N+1) + T J K M + l , N + 2 )  )/2.0 
KJ=IK+1-N
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510 TT<KJ,LI> = TT(M,N)
DO 520 N = 2 , L I ,2TT(M,N) =  <TJl(M,N+2) + T J K M + l , N + l ) ) / 2 . 0  
KJ=IK+1-N 

520 TT(KJ,LI) = TT<M,N>
490 CONTINUE

D O  530 M= 2,IK ,2
LI=IK+1-M
DO 540 N=1,LI,2
TT(M,N) = (TJl(M,N+2) + TJllM+1,N+l)>/2.0 
KJ=IK+1-N 

540 TT(KJ.LI) = TT(M,N)
IF1LI .EQ. 1) G O  TO 530 
DO 550 N=2,LI,2
TT(M,N) =  ( T J K M . N + l )  + T J K M + l , N + 2 )  )/2.0 
KJ=IK+1-N 

550 TT<KJ,LI) = TT(M,N)
530 CONTINUE 
500 CONTINUE 

RETURN 
END

***********************************************************

SUBROUTINE C H ECK! MT,P T,EC C,Y, E P A X L ,T I M E ,T I MLIM ,TIM EMI,TF,TT,
.P S T ,P C T ,M S T ,M C T ,E P S R ,E P S L ,E P C R ,E P C L ,F S R ,F S L ,F C R ,F C L ,IC HEK,IWRITE)

*********************************************************** 
IMPLICIT REAL*8<A-H,0-Z)
C0MM0N/NUM B3/I NDIC,N U M B ,N U M ,N N N ,M M M ,IND 
COMMON /NUM B2/N I1 ,NI2,NI3,NI4,IK1,IK2 
C0MM0N /NUM B1/N I,MI,IK
DIMENSION E P S R < 135,135>,EPSL<13 5,13 5),EPCR(135,13 5>,E PCL1135,135) 
DIMENSION F S R < 135,135),FSL<135,135),FCR(135,135),FCL<135,135) 
DIMENSION T T ( 135,135),ITYPE!135)
REAL MST,MCT,MT 
NI5 = NI-5
THIS SUBROUTINE IS CHECKING THE VALUE OF AXIAL STRAIN DUE 
TO THE AXIAL LOAD AN D TRY TO INCREASE IT O R  DECREASE IT 
UNTIL THE BE NDING IS BALANCED

ICHEK = 0 PECCY=PT*(ECC+Y)
IF(TIME-O.DO) 420,10,15 

10 FACT=2.D0
1F(ECC .LT. 0.004) FACT = 20.0 
G O  TO 20
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15 FACT = 1 0 . 020 IF<DA BS(M T-PE CCY) - 0.020+MT) 125,125,25
25 IF!NUMB - 1) 30,100,100
30 IF(NUM - 11 40,35,35
35 IF(DABS<MT-PECCY) - 0.020*MT> 125,125,100
40 IF<PT - 0.00) 45,45,55
45 IF(IND - 1) 50,55,55
50 EPAXL = EPAXL - 0.001/FACT 

G O  TO 1510 
55 IF1MT - 0.00) 115,00,60
60 IF<DABS(MT-PECCY) - 0.020+MT) 125,125,65
65 IF(MT - PECCY) 70,420,85 
70 IF(INDIC - 0) 420,75,80
75 EPAXL = EPAXL + 0.001/FACT 

IND = IND+1 
G O  TO 1510 

80 EPAXL = EPAXL + 0.0005/FACT 
NU M = NUM+1 
G O  TO 1510 

85 IF<IND - 0) 420,90,95
90 EPAXL = EPAXL - 0.001/FACT 

INDIC = INDIC+1 
G O  TO 1510 

95 EPAXL = EPAXL - 0.0005/FACT 
N U M = NUM+1 
G O  TO 1510 

100 IF(MT - PECCY) 105,125,110 
105 IFINNN .EQ. 1) GO TO 115

EPAXL = EPAXL + 0.0001/FACT 
NUMB = NUMB+1 
M M M  = 1 
G O  TO 1510 

110 IF(MMM .EQ. 1) G O  TO 115 
EPAXL = EPAXL - 0.0001/FACT 
NUMB = NUMB+1 
NNN = 1 
G O  TO 1510 

115 W R I T E I 6 , 120) NUMB
120 FORMAT!////,5X,'MOMENTS NOT BAL. WITHIN 2Z;NUMBER=',13)
125 W R I T E 1 6 , 130) TIMEMI
130 FO RMAT !//, 5X,' TIME. . . . . . . . . . . . . . = ’,3X,F7.1 ,3X,'MIN')

WR ITE!6,135) TF 
135 FORMAT!5X,'FIRE T E MPER ATUR E = ’,3X,F7.1 ,3X,»C»,//)

IF!IWRITE .EQ. 0) GO TO 147
WR ITE!6,146)

146 F O RMAT !5X,’NOTE : FOR STEEL ELEMENTS : ELEM. TYPE = 1',/ 
12X,'FOR CONCRETE ELEMENTS : ELEM. TYPE = 2',//) 

WRITE!6,145)
145 FORMAT!25X,'STRAINS & STRESSES IN STEEL',/
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25X,******** * ******** ** *****’,//,
5X,’ELEM. N0.*,3X,’ELEM. TYPE*,2X,*TEMP.<C)*,3X,* 
3X,*L. STRAIN*,3X,*R. STRESS*,3X,*L. STRESS*,/
5X,»---------' ,3X,»----------’ ,3X, *-------- ’ ,3X, *
3X, *---------’ ,3X,» ’ ,3X,»---------’,/
43X,’MM/M’,7X,’MM/M*,8X,’MPA’,8X,’MPA*,/)

DO 150 M=1,4 
DO 150 N=1,IK 
ITYPE!N) = 1
A = EPSR(M,N)*1.OD 03
B = EPSL(M,N)*1.0D 03
C = FSR(M,N)*1.0D-06
D = FSL(M,N)*1.0D-06
WRITE!6,155) M,N,ITYPE(N),TT(M,N),A,B,C,D 

155 FORMAT<5X,’<’,13,’,’,13,’)’,I8,6X,5D12.4> 
150 CONTINUE

DO 160 M=5,IK 
DO 160 N=NI4,NI1
A = EPSR<M,N)*1.0D 03
B = EPSL(M,N)*1.0D 03
C = FSR(M,N)*1.0D-06
D = FSL(M,N)*1.0D-06
WRITE!6,155) M,N,ITYPE!N),TT(M,N),A,B,C,D 

160 CONTINUE 
WRITE!6,165)

165 FORMAT!///,25X,’STRAINS & STRESSES IN CONCRETE*,/
• 2 5 X ******* * ******** ** *********f//,

5X,’ELEM. NO.’,3X,’ELEM. TYPE*,3X,’TEMP.(C)’,3X,’ 
3X,’L. STRAIN’,3X,’R. STRESS’,3X,’L. STRESS’,/
5X, ’--------* ,3X,-*--------- ’,3X, ’------ * ,3X, ’

i________i 3X,_*________’,3X, ’________’,/
! 43X,’MM/M’,7X,’MM/M’,8X,’MPA’,8X,’MPA’,/)
DO 170 M=5,IK 
DO 170 N=1,NI5 
ITYPE!N) = 2
A = EPCR!M,N)*1.0D 03
B = EPCL!M,N)*1.0D 03
C = FCR(M,N)*1.0D-06
D = FCL(M,N)*1.0D-06
WRITE!6,155) M,N,ITYPE!N),TT!M,N),A,B,C,D

C
170 CONTINUE

C
147 CONTINUE

C
WRITE!6,180)

180 FORMAT<///,25X,’LOADS & MOMENTS IN STEEL & CONCRETE’,/ 
25X,****** * ******* ** ***** * ********’,//)

C
A = PST*1.0D-03
B = PCT*1.0D-03

. STRAIN’
_  -I

. STRAIN*
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C = MST*1.0D-03
D = MCT*1.0D-03
E = PT*1.0D-03
F = MT*1.0D-03
WRITE(6,185) A,B,C,D,E,F

185 FORMAT!5X,’LOAD IN STEEL................ =’,1D15.6,’(KN >’,/
5X, ’LOAD INCONCRETE............. =’,1D15.6,’(KN )’,/
5X,'MOMENT IN STEEL................ =’,1D15.6, ’(KN-M)’,/
5X,'MOMENT INCONCRETE............. =’,1D15.6,’(KN-M)’,/
5X,'TOTAL LOAD.................... =’, 1D15.6, '(KN >',/
5X,'TOTAL MOMENT................. =’,1D15.6,’(KN-M>’,//>

C
A = PECCY*1.00D-03 
B = EPAXL*l.OOD 03
C = EPAXL*0.35D 04
D = Y*1.00D 03
WRITE(6,195) A,B,C,D

195 F0RMAT(5X, 'MOMENT!LOAD*(ECC + Y))........ = ’, 1D15.6,’(KN-M)’,/
5X,'RELATIVE AXIAL STRAIN......... = ’, 1D15.6, ’(MM/MM)’,/
5X,'TOTAL AXIAL STRAIN............ =’, 1D15.6,’(MM )’,/
5X,'LATERAL DEFLECTION AT MIDHIGHT. , 1D15.6,’(MM)’,//) 

IF(Y - 0.000099) 270,420,275
270 Y = Y + 0.00002 

GO TO 1500 
275 IF(MT - O.DO) 280,290,290 
280 IF(TIME - TIMLIM) 285,420,420 
285 Y = O.OOOIODO 

GO TO 190 
290 IF!Y - 0.0004D0) 295,300,300
295 Y = Y + 0.00005001DO 

GO TO 1500 
300 IF(Y - 0.0010) 305,305,310
305 Y = Y + O.OOOIOOIDO 

GO TO 1500 
310 IF(Y - 0.0020) 315,315,320
315 Y = Y + 0.00020010 

GO TO 1500 
320 IF(Y - 0.0100) 325,325,350
325 Y = Y + 0.00050010 

GO TO 1500 
350 Y = 0.000100

IF(TIME - TIMLIM) 190,190,420 
190 ICHEK = 1 

RETURN 
1500 ICHEK = 2 

RETURN 
1510 ICHEK =3 

RETURN 
420 CONTINUE 

RETURN 
END
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APPENDIX F

THIS PROGRAM HAS BEEN DONE FOR THE NATIONAL RESEARCH 
COUNCIL OF CANADA BY:
MOHAMED EL-SHAYEB ,PH.D. STUDENT .UNIVERSITY OF NEWHAMPSHIRE, 
DURHAM, NEWHAMPSHI RE, U. S. A.

-4^****************ft****-

-*= MAIN PROGRAM =*- 

-* * * * * * * * * * * * * * * * * * * * * * * —

FIRE RESISTANCE OF REINFORCED-CONCRETE CYLINDERICAL COLUMN 

SYMPOLS DIFINITIN

RO=OUTSIDE RADIOUS OF COLUMN CROSS-SECTION
RS=THE DISTANCE FROM THE CENTRE OF THE COLUMN TO THE REINFORCE. 
TR =TEMPERATURE OF THE REINFORCEMENT 
TT =AVERAGING TEMPERATURE 
NR=NUMBER OF THE REINFORCEMENT BARS 
KL=EFFECTIVE LENGTH OF COLUMN 
ECC=ECCENTRICITY 
ML=NUMBER OF LAYERS DIVISION 
NI=NUMBER OF SECTORS DIVISIONS 
EMI=EMMICITIVITY OF FIRE AND CONCRETE 
PHI=MOISTURE CONCENTRATION 
EPSH=SHRINKAGE STRAINS 
EPCRC=CREEP STRAINS 
TIMELIM=TIMELIMIT

IWRITE = IS AN OPTION FOR WRITING THE TEMPETURES RESULTS OR NOT 
IWRITE = 0 DO NOT WRITE TEMPETURES 
IWRITE = 1 WRITE THE TEMPETURES RESULTS 
IEXIT = IS AN OPTION FOR STOP OR CONTINUE TO EXECUTE 
IEXIT = 0 STOP EXECUTION AFTER THE CURRENT DATA 
IEXIT = 1  CONTINUE EXECUTION OTHER DATA PROVIDED

FYSO=YIELD STRENGTH OF CONCRETE AT ROOM TEMPERATURE 
FOCO=COMPRESSIVE STRENGTH OF CONCRETE AT ROOM TEMPARATURE 
RSCSM=(DENCITYIR)*SPECIFIC HEAT(C))MINIMUM FOR STEEL 

=MINIMUM THERMAL CAPACITY OF STEEL 
CONDSM=MAXIMUM CONDUCTIVITY F0RSTEEL=(KS)MAX.
HMAX=THE MAXIMUM COEFFICIENT OF HEAT TRANSFER AT FIRE EXPOSED 

SURFACE!J/M**2.HR.C)
TSTAB=DELTA TIME,TIME IN HOUR

=CAPACITY*DELTA ZETA**2/(MAX. CONDUCTIVITY+H(MAX.)*
DELTA ZETA

C =<J/M**3DEGREE C)*M**2/{<J/HM DEGREE C)+M(J/HM**2 DEG.C)
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C CONDCM=MAXIMUM CONDUCTIVITY OF CONCRETE=K,MAX.
C CAPACM=MAXIMUM CAPACITY OF CONCRETE
C =<ROH*C),FOR CONCRETE(MAX.)
C DT=DELTA T=TIMii INCREMENT
C ICO=COUNTER FOR TIME
C ICOU=
C EP=< EPSILON)=AXIAL STRAIN
C Y =THE INITIAL DEFLECTION OF THE CROSS SECTION AT MIDHIGHT
C OF THE COLUMN
C EPSTL=<EPSILON TOTAL),THE TOTAL STRAIN

IMPLICIT REAL*8(A-H,0-Z)
DIMENSION RR(40,20),THETA<40,20),ZC! 40,20),ACE!40,20) 
DIMENSION EPSR(20),EPSL< 20>,FSR< 20),FSL< 20)
DIMENSION EPCR<40,20),EPCL< 40,20),FCR< 40,20),FCL< 40,20)
DIMENSION CAPC < 40,20),CONDC(40,20),ZS< 20)
DIMENSION TT(40),TJ1(40),TJ(40),V(40)

C
COMMON/NUMB1/ML,NI,NR 
C0MM0N/NUMB2/M1,IR 
COMMON/DIMEN/RO,RS,DX,DIAMR,DX2 
COMMON/PROPR/PHI,EMIS,EPTOT 
C0MM0N/NUMB3/NUMB,NUM,INDIC,IND,NNN,MMM

C
REAL MCT,MST,MT,KL

C
107 CONTINUE

READ STATMENTS

READ(5,100) RO,KL,ECC 
READ(5,100) RS,DIAMR

100 FORMAT!5D15.6)
READ(5,101) ML,NI,NR

101 F0RMAT(3I5)
READ(5,100) EMIS,PHI,EPSH,EPCRC 
READ(5,100) TIMLIM,PERIOD,STTIME 
READ!5,100) COHAX,CAMIN,HMAX 
READ!5,100) FYSO.FDCO 
READ!5,106) IWRITE

106 FORMAT!115)

SET COUNTERS EQUAL ZEROS

TIME = 0.00 
TF = 20.0 
ICO =0 
ICOU =0 
EPAXL= 0.00 
Y =0.00002 
NUM =0
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IND =0 
INDIC=0 
NUMB =0 
MMM =0 
NNN =0
EPTOT = EPSH+EPCRC 
PI =3.1415926540D 00

C
C CALCULATION OF COORDINATES!CONCRETE AND STEEL)
C

CALL COORD!RR,THETA,ZC,ACE,ZS)
C
C
C TIME INCREMENT FOR STABLE SOLUTION (DELTA TAU)
C

TSTAB = DX2*CAMIN/(2.0*! COMAX + HMAX*DX))
NINT = 1.0/(PERIOD*TSTAB)+l 
DT = 1.0/!PERI0D*NINT>
WRITE!6,110)

110 FORMAT!1H1.19X,’FIRE RESISTANCE’,/
26X,’OF*,/
10X,’REINFORCED-CONCRETE CYLINDERICAL COLUMN’,/
10X,’******************* ************ ******>,//) 

WRITE!G,120) RO,RS,DIAMR,ECC,KL
120 FORMAT(5X,’OUTSIDE RADIUS OF COLUMN....... = ’, 1D15.6, MM) ’,/

5X,'DIST. FROM REINF. TO COLUMN C E N T E R . 1 D 1 5 . 6,’<M)’,/
5X,’DIAMETER OF REINFORCEMENT.......... = ’, 1D15.6, MM) ’/
5X,’ECCENTRICITY <ECC)................. =’, 1D15.6, ’ <M) ’,/
5X,’EFFECTIVE LENGTH OF COLUMN (KL) = ’, 1D1S.6, MM) ’)

WRITE!6,130) EMIS,PHI,COMAX,CAMIN.HMAX
130 F0RMAT!5X, ’EMISIVITY (EMIS).....................= ’,1D15.6,/

5X,’MOISTURE CONCENTRATION (PHI)........ =’,1D15.6,/
5X,’MAX. CONDUCTIVITY OF CONC. (COMAX) =’,1D15.6,/
SX, ’MIN. CAPACITY OF CONC. (CAMIN)...... = ’,1D15.6,/
5X,’MAX. COEFFICIENT OF HEAT TRANS.(HMAX). = *,1D15.6,//) 

WRITE(6,140) FYSO.FDCO
140 FORMAT!5X,’YIELD STREN. OF STEEL AT ROOM TEMP--- = ’,1D15.6,/

5X,’COMPR STREN. OF CONCR AT ROOM TEMP--- = ’,1D15.6,//)
WRITE!6,150) TIMLIM,PERIOD,DT

150 FORMAT! 5X, ’TIME LIMIT (TIMLIM).................. = ’,1D15.6,/
5X, ’PERIOD.............................. = ’, 1D15.6,/
5X, ’TIME INCREMENT (DT) = ’, 1D15.6,//)

C CALCULATION OF INITIAL TEMPERATURE AND INITIAL MOISTURE 
C

CALL INITL(TJ1,TJ,V)

IF(TIME .EQ. 0.00) GO TO 300 
190 CONTINUE

ICO = ICO+1 
ICOU = ICOU+1
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TIME = ICO*DT
C
C CALCULATION OF THERMAL PROPERTIES OF CONCRETE
C

CALL CONCPRtTJ,CAPC,CONDC)
C
C CALCULATION OF TEMPERATURE INSIDE CONCRETE REIGON
C
C

CALL TEMPC(TIME,DT,CONDC,CAPC,TF,TJ,TJ1,V>
C
C SET TJ AT NEXT TIME STEP EQUAL TO TJ1 AT CURRENT TIME STEP 
C

DO 60 1=1,ML 
TJ( I) = TJKI)

60 CONTINUE
C

IF(ICOU - MINT) 190,300,300 
300 ICOU = 0

TIMEMI = TIME*60.0
IFUIMEMI .LT. STTIME) GO TO 190

C
C CALCULATION OF AVEREGE TEMPERATURE
C
C IN ORDER TO CALCULATE THE STRAINS,STRESSES,LOADS AND MOMENTS
C FOR THE C-S OF THE COLUMN,WE HAVE TO FIND THE TEMPERATURE FOR
C THE CENTRE OF THE LAYER RING, TO DO THAT WE HAVE TO CONVERT
C THE TEMPERATURE DISTRIBUTION FROM ORIGINAAL NETWORK TO THE
C OTHER NETWORK BY AVERAGING THE TEMPERATURE
C

DO 400 1=1,Ml 
DO 400 J=1,NI 
TT(I)=(TJ<I)+TJ(I+1)1/2.0 

400 CONTINUE
C
C CALCULATION OF THE TEMPERATURES OF THE REINFORCEMENT
C

I = 1
IF(RS .LT. RO .AND. RS .GT. RR(I,1)) GO TO 43
IF<RS .EQ. RR(1,1)1 GO TO 47
DO 40 1=2,Ml
IF(RS .LT. RR(1-1,1) .AND. RS .GT. RR<I,1)) GO TO 43
IF(RS .EQ. RR(1,1)1 GO TO 47

40 CONTINUE 
43 TR = TT<I)

GO TO 50 
47 TR = <TT<I) + TT(1+1)1/2.0 
50 CONTINUE

C
C CALCULATION OF STRAINS,STRESSES,LOADS AND MOMENTS IN STEEL 
C
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1500 ROH=(KL**2/12.0)/Y 
NUM =0 
IND =0 
li\'H)IC=0 
NUMB =0 
MMM =0 
NNN =0 
EPAXL=0.00 

1510 CONTINUE 
C

CALL L0ADMS< TR,EPAXL,ZS,R0H,PST,MST,EPSL,EPSR,FSL,FSR,FYSO)
C

CALL LOADMC< TT,EPAXL,ZC,ACE,ROH,PCT,MCT,EPCR,EPCL,FCR,FCL,FDCO)

SUMMITION OF TOTAL LOADS AND MOMENTS

PT = PCT + PST 
MT = MCT + MST

CHECKING THE AXIAL STRAIN AND MAKE THE BALANCE BETWEEN THE 
EXTERNAL AND INTERNAL MOMENTS

CALL CHECK! MT,PT,ECC,Y,EPAXL,TIME,TIMLIM,TIMEMI,TF,TT,TR,
.PST,PCT,MST,MCT,EPSR,EPSL,EPCR,EPCL,FSR,FSL,FCR,FCL,ICHEK,IWRITE)

IF(ICHEK .EQ. !) GO TO 190
IF<ICHEK .EQ. 2) GO TO 1500
IF(ICHEK .EQ. 3) GO TO 1510

READ(5,106) IEXIT
IF(IEXIT .EQ. 0) GO TO 108
GO TO 107

108 STOP 
END

**************************************

SUBROUTINE COORD< RR,THETA,ZC,ACE,ZS >

***************************************

IMPLICIT REAL*8<A-H,0-Z)
DIMENSION RR<40,20>,THETA!40,20),ZC! 40,20),ACE! 40,20),ZS! 20>

C
COMMON/NUMB 1 /ML, NI, NR 
COMMON/NUMB2/M1,IR 
COMMON/DIMEN/RO,RS,DX,DIAMR,DX2
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PI = 3.1415926
M1=ML-1
DX = R0/M1
DX2 = DX*DX
BETA = PI/(2.0*NI)
DO 10 1=1,Ml 
DO 10 J=1,N1
RR(I,J) = R0-(1-0.50)*DX 
THETA(I.J) = (2*J-1)*BETA/2.0 
ZC(I,J) = RR(I,J)*DSIN(THETA(I,J)) 
ACE(I.J) = RR<I,J)*BETA*DX 

10 CONTINUE

CALCULATIONS OF THE COORDINATES OF STEEL

GAMA = 2.0+PI/NR 
IR = NR/2+1 
DO 20 i=:,ir
ZS(I) = RS*DSIN((I-1)*GAMA)

20 CONTINUE 
RETURN 
END

SUBROUTINE INITL(TJ1,TJ,V) 
**************************

IMPLICIT REAL*8(A-H,0-Z)
DIMENSION TJ1(40),TJ<40),V<40)

COMMON/NUMB1/ML,NI,NR 
C0MM0N/NUMB2/M1,IR 
COMMON/DIMEN/RO,RS,DX,DIAMR,DX2 
COMMON/PROPR/PHI,EMIS,EPTOT

PI = 3.1415926 
DO 10 1=1,ML 
TJ(11=20.OD 00 
TJ1(I>=20.OD 00 

10 CONTINUE

CALCULATION OF INITIAL MOISTURE CONTENT

AT FIRE-CONCRETE BOUNDARY

V(l) = PI*(ML - 1.25)*DX2**1.0*PHI 
DO 30 1=2,Ml

AT INSIDE CONCRETE REIGON
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V(I)=2.0*PI*<ML-I)*DX2*1.0*PHI 
30 CONTINUE

AT THE CENTRE OF THE COLUMN

V(ML) = 0.25*PI*DX2*1.0*PHI
RETURN
END

************************************************************

SUBROUTINE C0NCPR(TJ,CAPC,CONDC)

*************************************************************

TJ =TEMPERATURE OF THE ELEMENT AT TIME J(DELTA)T 
CAPC=THERMAL CAPACITY OF CONCRETE 
ML =NUMBER OF LAYERS DIVISION

IMPLICIT REAL*8<A-H,0-Z>
DIMENSION TJ(40),CAPC(40),CONDCI40)

COMMON/NUMB1/ML,NI,NR 
DO 10 1=1,ML 
IF(TJ(I)-200.0)20,20,30 

20 CAPC(I)=0.0050D 0G*TJ<I)+l.70 06 
GO TO 120 

30 IF(TJ(I>-400.00)40,40,50 
40 CAPC(I)=2.70D 06 

GO TO 120 
50 IF(TJ<I)-500.0)60,60,70 
60 CAPC(I)=0.0130D 06*TJ<I)-2.50D 06 

GO TO 120 
70 IF(TJ(I)-600.00)80,80,90 
SO CAPC( I )=-0.0130D 06*TJ( D  + 10.50D 06 

GO TO 120 
90 CAPC(I)=2.70D 06 
120 IF<TJ(I)-800.0)100,100,110
100 CONDCII)=<-0.00085D 00*TJ(I)+l.90D 00)*3.60D 03 

GO TO 10 
110 CONDCII)=1.220D 00*3.6D 03 
10 CONTINUE 

RETURN 
END

C
C
c -----------------------------------------------------------
c * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
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SUBROUTINE TEMPC< TIME,DT,CONDC,CAPC,TF,TJ,TJ1,V)

*************************************************************

THIS SUBROUTINE CALCULATES THE TEMPERATURE DISTRIBUTION FOR 
THE CONCRETE ELEMENTS

ROHW =(ROH)(LAMDA)=DENSITY OF WATER+HEAT OF VAPORIZATION 
CAPW =<ROH)(C )=THERMAL CAPACITY OF WATER 
SBC =STEFEN-BOLTZMAN CONSTANT 
U =SQRT(TIME)=SQARE ROOT OF TIME
TF =FIRE TEMPERATURE

IMPLICIT REAL*8(A-H,0-Z>
DIMENSION CAPC<40),CONDCI40),TJ(40),TJ1(40),V< 40),DV< 40)

COMMON/NUMB1/ML,NI,NR 
C0MM0N/NUMB2/M1,IR 
COMMON/DIMEN/RO,RS,DX,DIAMR,DX2 
COMMON/PROPR/PHI,EMIS,EPTOT

PI =3.141592654 
R0HW=2.30D 09 
CAPW=4.20D 06 
SBC =5.67D-08*3.60D 03 
U =DSQRT(TIME)
TF =20.0+750.0*11.0-DEXP(-3.79553*U))+170.41*U 

CALCULATION OF TEMPERATURES AT FIRE-CONCRETE BOUNDARY 

1=1
CHECK THE VOLUME OF THE MOISTURE 

V =VOLUME OF MOISTURE CONTENT
(DELTA)V=THE CHANGE IN MOISTURE DUE TO THE CHANGE IN TEMP. 

IN THE ELEMENTS

IF(TJ(I) .LT. 100.0) GO TO 100 
IF(V<I)-0.00) 10,100,20 

10 V<I)=0.00 
GO TO 100

C
20 DV(I)=2.0*PI*(ML-1)*DX*SBC*EMIS/ROHW*((TF+273)**4-<TJ(I)+273) 

.**4)*DT-2.0*PI*(ML-1.50)*DT/ROHW*(<CONDCI I)+CONDCI1+1))/2.0)

.*(TJ<I)-TJ(1+1))
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V( I )=V< I)-DV( I)
TJ1(I)=TJ(I)
GO TO 30

100 TJ111)=TJ11)+DT/(CAPC<I> *(ML-1.25)*DX2/2.0+CAPW*V(I)/(2.0*PI))
.*(DX*(ML~1)*SBC*EMIS*((TF+273)**4-(TJ(I)+273)**4)-I <CONDC(I) +
.CONDCI1+1>>/2.0>*IML-1.50)*(TJ(I>-TJ(I+l>>>

30 CONTINUE
C
C CALCULATION OF TEMPERATURE INSIDE CONCRETE REIGON 
C

DO 40 1=2,Ml
IF(TJ(I) .LT. 100.0) GO TO 200 
IF(V(I)-0.00) 50,200,60 

50 V<I>=0.00 
GO TO 200

C CALCULATE THE CHANGE IN THE MOISTURE VOLUME AT INSIDE
C THE CONCRETE REIGON
C

60 DV<I)=2.0*PI*DT/ROHW*< <ML-1+0.50)*< <CONDCII-1)+CONDCII>)/2.0)*
.(TJ<I — 1)-TJ<I))—<ML—I—0•50>*< (CONDCII)+CONDC(1+1))/2.0)*(TJ(I)- 
• TJII+1)))
VII)=V<I)-DV(I)
TJ1II)=TJII)
GO TO 40

C
C CALCULATE THE TEMPERATURE DISTRIBUTION INSIDE THE CONCRETE
C REIGON!NOT THE BOUNDARY)
C
200 TJ111)=TJ(I)+DT/ICAPCII)*(ML-1)*DX2+CAPW*V!I)/(2.0*PI))*

.11ML-1+0.5)*0.50*1CONDCI I-I)+CONDC<I))*(TJ(1-1)-TJ11)> —

. IML-1-0.50)*0.50*1CONDCII+1)+CONDC!I))*ITJ11)-TJ11+1> >)
C

40 CONTINUE
C
C CALCULATION OF TEMPERATURES AT THE CENTRE OF THE COLUMN C-S 
C

I=ML
IFITJII) .LT. 100.0) GO TO 300 
IFIVII)-0.00) 70,300,80

C
C CALCULATE THE CHANGE IN THE VOLUME OF MOISTURE I DELTA)V
C

70 V(I)=0.00
GO TO 300

80 DV! I)=PI*DT/< 2.0*ROHW)* I CONDCI ML-1)+CONDC!ML))*ITJI ML-1)-TJI ML)) 
VI I)=V( D-DVI I)
TJ1(I)=TJ(I)
GO TO 90

C
C CALCULATE THE TEMPERATURE DISTRIBUTION OF THE ELEMENTS
C
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300 TJ 1< ML)=TJ < ML)+DT/< CAPC(ML)*DX2/4.0+ROHW*V< ML)/PI)*
.0.50*(CONDC< ML-1)+CONDC< ML))* (TJ< ML-1)-TJ< ML)>

90 CONTINUE
C
C AVERAGING TEMPERATURE
C
C

RETURN
END

C
C
c
c ---------------------------------------------0 ************************************************************
c =============================================================

SUBROUTINE LOADMSITR,EPAXL,ZS,ROH,PST,MST,EPSL,EPSR,FSL,FSR,FYSO)

c *************************************************************
c ------------------------------------------------
c
C IR =NUMBER OF REINFORCEMENT BARS OF HALF SECTION
C NR =TOTAL NUMBER OF THE REINFORCEMENT
C

IMPLICIT REAL*8(A-H,0-Z>
DIMENSION EPSR( 20),EPSL<20),FSR< 20),FSL(20),ZS(20)

C
COMMON/NUMB1/ML,NI,NR 
C0MM0N/NUMB2/M1,IR 
COMMON/DIMEN/RO,RS,DX,DIAMR,DX2 
REAL MSR,MSL,MST

C
PI = 3.14159260 
EPSP = 4.0D-12*FYSO 
ONE = 0.001 
ASR = PI*DIAMR**2/4.0

C
C STRAINS IN THE REINFORCEMENT DUE TO TEMPERATURE 
C

IFITR .GT. 1000.0) TR=1000.0 
ALFAS = 0.004D-06*TR+12.OD-06 
EPTS = -ALFAS*(TR-20.0)

C
C SUMMITION OF TOTAL STRAINS
C

DO 10 1=1,IR
EPSR(I) = EPTS + EPAXL + ZS<I)/ROH 
EPSLII) = EPTS + EPAXL - ZS(I)/ROH 

10 CONTINUE
C
C CALCULATION OF STRESSES
C
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PSR=THE LOAD IN THE STEEL REIGON IN RIGHT SIDE 
PSL=THE LOAD ON THE STEEL REIGON IN LEFT SIDE 
PST=THE TOTAL LOAD ON THE STEEL REIGON 
FSR=THE STRESS ON THE STEEL REIGON IN RIGHT-SIDE
FSL=THE STRESS ON THE STEEL REIGON IN LEFT-SIDE
MSR=THE MOMENT ON THE STEEL REIGON IN RIGHT-SIDE
MSL=THE MOMENT ON THE STEEL REIGON IN LEFT-SIDE

PSR = 0.00 
PSL = 0.00 
MSR = 0.00 
MSL = 0.00

CALCULATION OF STRAINS & STRESSES IN FIRST TWO ROWS IN STEEL 

DO 80 M=1,IR

F001 =< 50.0-0.04*TR)*(1.0-DEXP<(-30.0+0.030*TR)*DSQRT<ONE)> > * 
6.90D 06

IF(EPSR(M) - 0.00) 90,100,100 
90 C=1.00 

GO TO 110 
100 C=-1.0
110 IF(DABS(EPSR<M))-EPSP) 120,120,130 
120 FSR(M) = C*F001*DABS<EPSR<M)1/0.001 

GO TO 135
130 F001M=(50.0-0.04*TR)*<1.O-DEXPl(-30.0+0.030*TR)*

.DSQRT(DABS<EPSR<M)) - EPSP + 0.001)))*6.90D 6 
FSR(M)=C*(F001*EPSP/0.001 + F001M - FOOD 

135 CONTINUE
PSR = PSR + FSR(M)*ASR 
MSR = MSR - FSR(M)*ASR*ZS(M)
IF(EPSL(M)-0.00) 140,150,150 

140 C=1.0 
GO TO 160 

150 C=-1.0
160 IF(DABS(EPSL(M))-EPSP) 170,170,180 
170 FSL(M) = C*F001*DABS(EPSL(M))/0.001 

GO TO 175
180 F001M=(50.0-0.04*TR)*<1.O-DEXPl(-30.0+0.030*TR)*

.DSQRTtDABS!EPSL(M)) - EPSP + 0.001)))*6.90D 6 
FSL(M)=C*<F001*EPSP/0.001 + F001M - FOOD 

175 CONTINUE
PSL = PSL + FSL(M)*ASR 
MSL = MSL + FSL(M)*ASR*ZS(M)

80 CONTINUE
MST = MSR + MSL 
PST = PSR + PSL 
RETURN 
END
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C
C -----------------------------------------------
C ************A************A*********************************A
c ===========================================================

SUBROUTINE LOADMC(TT,EPAXL,ZC,ACE,ROH,PCT,MCT,EPCR,EPCL,FCR,FCL, 
FDCO)

C =============================================================
c *************************************************************
C ------------------------------------------------------------
c
C MI =ML-I=NUMBER OF LAVERS DIVISIONS - 1
C NI =NUMBER OF SECTORS
C

IMPLICIT REAL*8(A-H,0-Z)
DIMENSION TT(40),ZC(40,20),ACE(40,20)
DIMENSION EPCR(40,20),EPCLl40,20),FCR< 40,20),FCL< 40,20>

C
COMMON/NUMB1/ML,NI,NR 
C0MM0N/NUMB2/M1,IR 
COMMON/PROPR/PHI,EMIS,EPTOT 
REAL MCT

C
C
C CALCULATION OF STRAINS IN THE CONCRETE REIGON
C

DO 10 M=1,M1 
DO 10 N=1,NI
ALFAC = <0.0080*TT<M) + 6.0>*1.0D-06 
EPTC = -ALFAC*(TT(M)-20.0)
EPCR(M,N) = EPTC + EPAXL + EPTOT + ZC(M,N)/ROH 
EPCL(M,N> = EPTC + EPAXL + EPTOT - ZC(M,N)/ROH 

10 CONTINUE
C
C CALCULATION OF STRESSES IN CONCRETE REIGON
C FDCO = THE CYLINDER STRENGTH OF CONCRETE AT ROOM TEMP.
C < F-PRIME-C-O)
C FPC = THE CYLINDER STRENGTH OF CONCRETE AT TEMP. T
C (F-PRIME-C)
C

PCT = 0.00 
MCT = 0.00 
DO 20 M=1,M1 
DO 20 N=1,NI
EPMAX = 0.0025 + <6.0*TT<M)+0.04*TT<M>**2.0>*1.0D-06 
FPC = FDCO*(2.011-2.353*(TT<M)-201/1000.0)
IF1FPC .GT. FDCO) FPC=FDCO 
IF(FPC .LE. 0.00) FPC = 0.00 
IF(EPCR(M,N)-O.OOD 00) 30,40,40 

40 FCR(M,N)=O.OOD 00 
GO TO 50

30 IF<DABS(EPCR(M,N))-EPMAX) 60,60,70
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GO FCR(M,N)=FPC*(1.0-((EPMAX+EPCR(M,N))/EPMAX)**2)
GO TO SO

70 FCR(M,N)=FPC*(1.0-<(-EPCR(M,N)-EPMAX)/(3.0*EPMAX>)**2)
IF<FCR(M,N) .LT. 0.00) FCR<M,N)=0.00 

50 CONTINUE
IF<EPCL(M,N)-0.00D 00) 80,90,90 

90 FCL(M,N)=0.0D 00 
GO TO 100

80 IF(DABS(EPCL(M,N)J-EPMAX) 110,110,120 
110 FCL(M,N)=FPC*<1.0-< <EPMAX+EPCL(M,N)>/EPMAX)**2)

GO TO 100
120 FCL<M,N)=FPC*(1.0—<(-EPCL(M,N)-EPMAX)/(3.0*EPMAX))**2)

IF(FCL(M,N) .LT. 0.00) FCL<M,N)=0.00 
100 CONTINUE

THE SUMMTION OF THE TOTAL LOADS AND TOTAL MOMENTS IN THE 
CONCRETE REIGON OF THE CROSS-SECTION

PCT=TOTAL LOAD IN CONCRETE 
MCT=TOTAL MOMENTS IN CONCRETE REIGON

PCT = PCT + 2.0*(FCR(M,N)+FCL(M,N))*ACE<M,N)
MCT = MCT + 2.0*<-FCR(M,N)+FCL<M,N))*ACE<M,N)*ZC(M,N)

20 CONTINUE 
RETURN 
END

***********************************************************

SUBROUTINE CHECKIMT,PT,ECC,Y,EPAXL,TIME,TIMLIM,TIMEMI,TF,TT,TR,
.PST,PCT,MST,MCT,EPSR,EPSL,EPCR,EPCL,FSR,FSL,FCR,FCL,ICHEK,IWRITE)
*********************************************************** 
IMPLICIT REAL*8(A-H,0-Z>
COMMON/NUMB 1/ML, NI, NR
C0MM0N/NUMB2/M1,IR
COMMON/DIMEN/RO,RS,DX,DIAMR,DX2
COMMON/PROPR/PHI,EMIS,EPTOT
C0MM0N/NUMB3/NUMB,NUM,INDIC,IND,NNN,MMM
DIMENSION EPSR<20),EPSL(20),EPCR(40,20),EPCL(40,20)
DIMENSION FSR(20),FSL< 20),FCR< 40,20),FCL< 40,20)
DIMENSION TT(40),ITYPE!40)
REAL MST,MCT,MT
THIS SUBROUTINE IS CHECKING THE VALUE OF AXIAL STRAIN DUE 
TO THE AXIAL LOAD AND TRY TO INCREASE IT OR DECREASE IT 
UNTIL THE BENDING IS BALANCED

ICHEK = 0
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PECCY=PT *(ECC+Y)
IF(TIME-O.DO) 420,10,15 

10 FACT=2.D0
IF! ECC .LT. 0.004) FACT = 20.0 
GO TO 20 

15 FACT = 10.0
20 IF(DABS(MT-PECCY) - 0.020*MT) 125,125,25
25 IF! NUMB - 1) 30,100,100
30 IF!NUM - 1) 40,35,35
35 IF(DABS<MT-PECCY) - 0.020*MT> 125,125,100
40 IF(PT - 0.00) 45,45,55
45 IFUND - 1) 50,55,55
50 EPAXL = EPAXL - 0.001/FACT

GO TO 1510 
55 IF1MT - 0.00) 115,60,60
60 IFIDABSlMT-PECCY) - 0.020*MT) 125,125,65
65 IF<MT - PECCY) 70,420,85
70 IF1INDIC - 0) 420,75,80
75 EPAXL a EPAXL + 0.001/FACT

IND = IND+1 
GO TO 1510 

80 EPAXL = EPAXL + 0.0005/FACT
NUM = NUM+1 
GO TO 1510 

85 IF(IND - 0) 420,90,95
90 EPAXL = EPAXL - 0.001/FACT

INDIC = INDIC+1 
GO TO 1510 

95 EPAXL = EPAXL - 0.0005/FACT
NUM = NUM+1 
GO TO 1510 

100 IF1MT - PECCY) 105,125,110
105 IF1NNN .EQ. 1) GO TO 115 

EPAXL = EPAXL + 0.0001/FACT 
NUMB = NUMB+1 
MMM = 1 
GO TO 1510 

110 IF(MMM .EQ. 1) GO TO 115 
EPAXL = EPAXL - 0.0001/FACT 
NUMB = NUMB+1 
NNN = 1 
GO TO 1510 

115 WRITE! 6,120) NUMB
120 FORMAT!////,5X,’MOMENTS NOT BAL. WITHIN 2X;NUMBER=’,13) 
125 WRITE!6,130) TIMEMI
130 FORMAT!//,5X, ’TIME = ’ ,3X,F7.1,3X, ’MIN’)

WRITE!6,135) TF 
135 F0RMAT!5X,’FIRE TEMPERATURE =’,3X,F7.1,3X,’C*,//)

IF!IWRITE .EQ. 0) GO TO 147
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WRITE16.146)
146 FORMAT!5X,’NOTE i FOR STEEL ELEMENTS : ELEM. TYPE = 1 

12X,’FOR CONCRETE ELEMENTS : ELEM. TYPE = 2*,//) 
WRITE!6,145)

145 FORMAT!25X,’STRAINS & STRESSES IN STEEL’,/
• 25X1******** * ******** ** ******t//f

5X,’BAR. NO.’,3X,’ELEM. TYPE’,3X,’TEMP.(C)’,3X,’R. 
3X,’L. STRAIN’,3X,’R. STRESS’,3X,’L. STRESS’,/
5X, ’ ’ ,3X,-’--------- ’ ,3X, ’--------’ ,3X, ’—
3X, ’---------’, 3X, ’-------- ’ ,3X, ’--------- ’,/
43X,’MM/M’,7X,’MM/M’,8X,’MPA’,8X,’MPA’,/)

DO 150 M=1,IR

ITYPE(M) = 1
A = EPSR(M)*1.OD 03
B = EPSL(M)*1.0D 03
C = FSR(M)*1.0D-06
D = FSL(M)*1.0D-06
WRITE!6,160> M,ITYPE!M),TR,A,B,C,D 

155 FORMAT!5X,’(’,13,’,’,13,’)’,I8,6X,5D12.4>
160 F0RMAT!9X,14,I8.5D12.4)
150 CONTINUE 

WRITE(6,165)
165 FORMAT!///,25X,’STRAINS & STRESSES IN CONCRETE’,/

• 25X,******** * ******** ** *********,//,
5X,’ELEM. NO.',3X,’ELEM. TYPE’,3X,’TEMP.<C)’,3X,’R 
3X,’L. STRAIN’,3X,’R. STRESS’,3X,’L. STRESS’,/
5X, ’ ’ ,3X,-’----------’ ,3X,-’--------’ ,3X, ’—
3X, ’ ’ ,3X,-’---------’ ,3X,-’---------’,/
43X,’MM/M’,7X,’MM/M’,8X,’MPA’,8X,’MPA’,/)

DO 170 M = 1,M1 
DO 170 N = 1,NI 
ITYPE(N) = 2
A = EPCR!M,N)*1.0D 03
B = EPCL!M,N)*1.0D 03
C = FCR(M,N)*1.0D-06
D = FCL!M,N)*1.0D-06
WRITE!6,155) M,N,ITYPE!N),TT<M),A,B,C,D 

170 CONTINUE
C
147 CONTINUE

C
WRITE(6,180)

180 FORMAT!///,25X,’LOADS & MOMENTS IN STEEL & CONCRETE’,/ 
• 25Xf****** * ******* ** ***** * *********#//)

A = PST*1.0D-03
B = PCT*1.0D-03
C = MST*1.0D-03
D = MCT*1.0D-03
E = PT*1.0D-03

STRAIN',
_____t

. STRAIN'
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F = MT*1.0D-03
WRITE(6,185) A,B,C,D,E,F

185 F0RMAT<5X,’LOAD IN STEEL............... = ', 1D15.6, MKN >',/
5X, ’ LOAD INCONCRETE.............= ', 1D15.6, MKN >’,/
5X, ’MOMENT IN STEEL............... =’, 1D15.6, MKN-M)’,/
5X,'MOMENT INCONCRETE............ =' ,1D15.6, MKN-M)',/
5X, ’TOTAL LOAD................... =’,1015.6,MKN )’,/
5X,'TOTAL MOMENT................. =' .1D15.6, MKN-M) ’,//)

C
A = PECCY*1.00D-03 
B = EPAXL*l.OOD 03
C = EPAXL*0.35D 04
D = Y*1.00D 03
1VRITE(6,195> A,B,C,D

195 FORMAT(5X, ’MOMENT(LOAD*(ECC + Y>)........ = ’,1D15.6, MKN-M)',/
5X,'RELATIVE AXIAL STRAIN......... =',1D15.6, MMM/MM) ’,/
5X,'TOTAL AXIAL STRAIN............ =\1D15.6,MMM )’,/
5X,'LATERAL DEFLECTION AT MIDHIGHT. .=’,1015.6, MMM)',//)

IF<Y - 0.000099) 270,420,275
270 Y = Y + 0.00002

GO TO 1500
275 IF(MT - 0.D0) 280,290,290
280 IFQIME - TIMLIM) 285,420,420
285 Y = O.OOOIODO

GO TO 190
290 IF(Y - 0.0004DO) 295,300,300
295 Y = Y + 0.00005001DO

GO TO 1500
300 IF<Y - 0.0010) 305,305,310
305 Y = Y + 0.0001001D0

GO TO 1500
310 IF(Y - 0.0020) 315,315,320
315 Y = Y + 0.00020010

GO TO 1500
320 IF<Y - 0.0100) 325,325,350
325 Y = Y + 0.00050010

GO TO 1500
350 Y = 0.000100

IF1TIME - TIMLIM) 190,190,420
190 ICHEK = 1

RETURN
1500 ICHEK = 2

RETURN
1510 ICHEK =3

RETURN
420 CONTINUE

RETURN
END
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