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ABSTRACT

RISK AND UNCERTAINTY 

by

PAUL SNOW

Univers ity  o f New Hampshire, May, 1985

The conventional theory o f decision making under r is k  re lie s  on 

axioms tha t re f le c t  assumptions about people's subjective a tt itudes  

towards wealth. The assumptions are u n ve r i f ia b le ,  and the axioms are too 

re s t r ic t iv e .  They fo rb id  some decision rules tha t a p laus ib ly  ra tiona l 

decision maker ("DM") could f in d  useful.

A new method, at once less re s t r ic t iv e  and less dependent upon 

subjective assumptions, motivates expected u t i l i t y  techniques by 

assuming tha t a DM wishes to place an upper l im i t  on the p ro b a b i l i ty  o f 

ru in . A l l  bounded-above, increasing functions defined over a su itab le  

domain can serve as u t i l i t y  functions.

Now, DM can evaluate lo t te r ie s  according to th e i r  buying p r ices, 

useful i f  one plans to withdraw cap ita l from r is k .  DM can r igorously  

d is tinguish "once in a l i fe t im e "  lo t te r ie s  from ordinary gambles; 

th a t 's  helpful when facing A l la is '  problem. Also, DM can e xp lo it  

p a r t ia l  knowledge of state p ro b a b i l i t ie s  w ithout choosing a rb i t ra ry  

point estimates fo r  a l l  uncertain odds. That helps to resolve problems 

tha t combine elements o f both r is k  and uncerta in ty , l ik e  E llsberg 's .

The new method allows DM to do everything permitted under the 

old axioms, and more besides, w ith fewer and less ambitious assumptions.



CHAPTER I

THE RECEIVED THEORY OF EXPECTED UTILITY

The von Neumann-Morgenstern Axioms 

Suppose a decision maker ("DM") faces a choice among two or more 

gambles. A gamble or lo t te ry  is a set o f outcomes and an associated 

set o f p ro b a b i l i t ie s .  The outcomes are mutually exclusive and exhaustive. 

An outcome is e ith e r  a capita l trans fe r to (or from) DM, or another 

lo t te ry ,  or a choice among lo t te r ie s .  Note tha t a trans fe r o f wealth fo r  

certa in may, when convenient, be viewed as a lo t te ry  with a s ingle 

outcome whose p ro b a b i l i ty  is  one.

Assume that DM knows a l l  o f the gambles tha t are ava ilab le  when 

a choice must be made. Assume also tha t DM knows a l l  o f the possible 

outcomes in each ava ilab le  gamble. Except in Chapter V, DM w i l l  also 

know a l l  o f the p ro b a b i l i t ie s .  Although lo t te r ie s  may be continuous 

random processes, the examples pursued here w i l l  generally be d iscrete 

lo t te r ie s ,  binomial or m ult inom ia l.

Von Neumann and Morgenstern [98] proposed a system o f axioms that 

counsel DM to make one's choice in the fo llow ing way. DM should choose 

some increasing function U() . The domain of JJ(J_ shall be amounts o f 

money, e ith e r changes in wealth (sometimes called the "pr izes" o f the 

lo t te ry )  or else the to ta l wealth DM w i l l  a t ta in  a f te r  the lo t te ry  is 

completed. Whether one uses to ta l wealth or changes in wealth is a 

matter o f convenience.

For each outcome o f each gamble, DM evaluates the chosen function . 

Then, fo r  each gamble, DM computes the average o f the U() values

1
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offered by the gamble. One selects fo r  play tha t gamble w ith the 

highest expected value of U() .

The U() function is called a " u t i l i t y  func tion ". The advice

given by the von Neumann and Morgenstern axioms is succ inctly  summarized 

as "maximize expected u t i l i t y . "

Several authors have offered restatements o f the o r ig ina l 

von Neumann and Morgenstern work. The same theorems can be proven from 

many versions o f the underlying axioms. Fishburn [33] reviews many 

proposed systems. The discussion to fo llow  is adapted from Baumol's [6] 

restatement.

Some conventions are needed. The capita l le t te rs  k through £  w i l l  

denote lo t te r ie s .  The lower-case Latin and Greek le t te rs  .a through d

and a and w w i l l  denote amounts o f money. The lower-case le t te rs  £, £,

and £  w i l l  denote p ro b a b i l i t ie s .

The discussion w i l l  concern lo t te r ie s  with at most two outcomes, 

so the fo llow ing notation su ff ices . Read "(p : a, b)" as "the lo t te ry  

which o ffe rs  a p ro b a b i l i ty  £  of ge tting  £  and a complementary chance,

1 -  £ , o f receiving b̂ instead". The outcomes may themselves be lo t te r ie s ,  

e.g.g. "(p: A, B)" or "(p : (q: a, b), ( r :  c, d ) ) " .  Degenerate lo t te r ie s ,  

l ik e  "(1 : a, ?)" w i l l  be w r i t te r  simply as amounts fo r  ce r ta in , in th is  

case, £.

Two re la tionsh ips between lo t te r ie s  need to be defined. The s tr in g  

"A |> B" means th: t  i f  DM owned B, then one would accept A in i t s  place. 

More compactly, one might say tha t A is weakly prefered to B. The s tr in g  

"A |= B" means A |> B and B |> A, tha t is ,  DM is in d i f fe re n t  between 

lo t te r ie s  A and B.

Between money amounts, the usual symbols >, and = have th e i r  

ordinary meanings. When lo t te r ie s  are compared to amounts fo r  ce r ta in ,
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the lo t te ry  re la t ion a l symbols, |> and |= w i l l  be used.

The axioms are now given. The names assigned are the ones most

frequently  encountered in the l i te ra tu re .

The t r a n s i t i v i t y  axiom holds tha t fo r  any three lo t te r ie s  A, £  

and £, i f  A |> B and B |> C, then A |> C.

The co n t in u ity  axiom holds tha t fo r  any three amounts £ , £  and 

c such tha t a >_ b _> c, there ex is ts  exactly one p ro b a b i l i ty  £  such tha t 

(p: a, c) |= b.

The independence axiom holds tha t fo r  any four lo t te r ie s  A, £, £

and £  such tha t A |= C and B |= D, and fo r  any p ro b a b i l i ty  £:

(p: A, B) |= (p: C, D).

The p ro b a b i l i ty  dominance axiom holds tha t fo r  any two amounts a_ 

and £  such tha t a >_ b, and fo r  any two p ro b a b i l i t ie s  £  and £, p £  q

implies and is  implied by (p: a, b) |> (q: a, b).

F in a l ly ,  the compound p ro b a b i l i ty  axiom holds tha t fo r  any two 

amounts £  and £  and fo r  any three p ro b a b i l i t ie s  £, £  and _r,

(p: (q: a. b ), ( r :  a, b ) ) |= (pq + r  - pr: a, b).

From the co n t in u ity  axiom, note tha t i f  a < w are two amounts,

then fo r  every x_ such tha t a £  x <_ u>, there is  a function U(x) such tha t 

(U(x): a), a )  |= x.

I f  DM accepts the axioms and U() is  defined as above, then we

claim the fo llow ing . I f  amounts a_, £ , c_ and £  belong to the closed

in te rva l bounded by a and w, and i f  £  and £  are p ro b a b i l i t ie s ,  then

(p: a, b) |> (q: c, d) i f  and only i f  pll(a) + ( l-p )U (b ) £

qU(c) + ( l-q )U (d ).

In words, one lo t te ry  is  weakly preferred to another i f  and only 

i f  i t  o ffe rs  a t least as great an expected u t i l i t y  as the a lte rn a t ive .
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The proof is n o ta t io n a lly  tedious, but conceptually simple. 

Suppose tha t (p: a, b) |> (q: c, d). By the d e f in i t io n  o f U() and the 

con tinu ity  axiom,

a |= (U(a): to, a )  

b |= (U(b): to, a )

. . .  et cetera.

So, by the independence axiom,

( p :  ( U ( a) :  to, a ) ,  (U(b): u>, a ) )  |= ( p :  a, b)

and (q: (U(c): u>, a ) ,  (U(d): to, a ) )  |= (q: c, d)

So, by t r a n s i t i v i t y ,

(p: (U(a): to, a ) ,  (U(b): to, a ) )  |>

(q: (U (c): to, a ) ,  (U(d): to, a ) )

Each side of th is  preference re la t io n  can be s im p li f ie d  by using the

compound p ro b a b i l i ty  axiom; the sense o f the preference w i l l  be

preserved by t r a n s i t i v i t y .  Thus, we a rr ive  at

(pU(a) + ( l-p )U (b ) : to, a )  |>

(qll(c) + ( l -q )U (d ):  to, a )

And, by p ro b a b i l i ty  dominance,

pU(a) + ( l-p )U (b) > qU(c) + ( l-q)U(d) 

which is the required expected u t i l i t y  expression.

The proof o f the im plica tion  in the other d ire c t io n  is s im ila r .  

The same steps and axioms are applied in reverse order, s ta r t in g  with 

the expected u t i l i t y  inequa lity  and leading to the lo t te ry  preference 

statement.

The re su lt  generalizes read ily  to more than two lo t te r ie s  and

more than two outcomes. By selecting a  small enough and <o large enough,

a l l  money lo t te r ie s  o f in te re s t  can be covered.
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The axioms provide DM l i t t l e  guidance in se lecting a p a r t ic u la r  

u t i l i t y  function. S t i l l ,  anyone who accepted the axioms would conclude 

that the ru le by which lo t te r ie s  are chosen ought to be based on 

maximizing the expected value of some u t i l i t y  function .

The axioms impress many people w ith th e i r  immediate p la u s ib i l i t y .  

For example, a decision ru le  that wasn't t ra n s i t iv e  would be somewhat 

strange, as Tullock [94], among many others, has pointed out.

Suppose DM s t r i c t l y  preferred lo t te ry  A to lo t te ry  £, and s t r i c t l y  

preferred £  to _C, and also s t r i c t l y  preferred C_ to A. I f  DM were w i l l in g  

to pay even a token amount to e f fe c t  each o f the exchanges implied by 

these preferences, then DM would provide a r is k - f re e  income to anyone 

who owned the three lo t te r ie s .  The lucky owner could c o l le c t  a t o l l  as 

DM moved from C_ to B_ to £  and then back to £ , where presumably the 

cycle could be repeated. This s i tu a t io n  is often ca lled "the money pump".

The con t inu ity  axiom's substantive imposition is tha t there be a 

spe c if ic  stable re la tionsh ip  between lo t te r ie s  and amounts fo r  ce r ta in . 

One could imagine tha t i f  the three amounts re ferred to by the axiom 

were close together, then the uniqueness o f  the p ro b a b i l i ty  could be 

defeated by "rounding e rro rs " .  For example, $ 1.97 might be in d i f fe re n t  

in practice to (p: $ 1.96, $ 1.98) fo r  any £  between .5 and .6, say.

Even so, th is  has l i t t l e  p ractica l import i f  the reference values, the 

alpha and omega chosen by DM, are widely separated.

P rob ab il i ty  dominance seems especia lly  in l in e  w ith common sense.

I f  two lo t te r ie s  have the same outcomes, but d if fe re n t  p ro b a b i l i t ie s ,  

why wouldn't anyone want the lo t te ry  tha t gives more weight to the 

be tte r outcome?

Compound p ro b a b i l i ty  is  also stra ightforward . Two prospects tha t
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have the same outcomes and the same p ro b a b i l i t ie s  are in d i f fe re n t  to 

one another, regardless o f how the p ro b a b i l i t ie s  are described in the 

formulation o f the decision problem. The axiom does have content. I t  

puts outside o f the theory those problems where the pleasures or pains 

o f gambling are an issue. For example, the attractiveness o f  an 

evening's entertainment a t the Salle Privde in Monte Carlo does not 

depend so le ly  on the prizes and th e i r  p ro b a b i l i t ie s .  Gambling fo r  sport 

is not the subject under discussion.

The independence axiom is d i f fe re n t  from the others, however. As 

Samuel son [74] notes, the axiom does not appear e x p l ic i t l y  in 

von Neumann and Morgenstern' s system. Malinvaud [54] shows tha t i t  is 

contained im p l ic i t l y  in th e i r  d e f in i t io n  o f a u t i l i t y  function. 

Regardless o f how the axiom is introduced in to  the log ica l system, 

however, i t  plays a crucia l ro le . As Machina [53] puts i t ,  " I t  is  the 

independence axiom which gives the theory i t s  empirical content by 

imposing a re s t r ic t io n  on the functional form of the preference 

func tion ."  (Emphasis is in the o r ig in a l . )

The axiom has not received anything l ik e  universal acceptance. 

A l la is  [1] is  perhaps the best known o f i t s  c r i t i c s .  Manne [55] argues 

by analogy to various physical mixture systems that the axiom is ,  at 

best, not in t u i t i v e ly  obvious. Wold [99] finds the axiom unsatis factory 

based on his analysis o f r isk less  preferences. McClennen [58] reviews 

the various arguments put forward in favor o f independence and reports 

himself to be unswayed.

On the other hand, some authors, notably Savage [79] and Raiffa 

[67], view independence as an ob liga to ry  a t t r ib u te  o f ra tiona l decision 

making under r is k .  Throughout th is  d isse rta t io n , there w i l l  be several
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opportunities to examine the independence axiom in some depth. For now, 

we simply note the existence o f controversy.

Von Neumann and Morgenstern developed th e ir  theory o f  choice 

under r is k  to support a theory o f  s tra teg ic  play in games. An important 

application of the theory concerns "zero sum" games with two players. 

"Zero sum" means what one player wins, the other player loses, so tha t 

the sum o f the amounts won and lo s t  is zero. S tra te g ic a lly ,  i t  means 

tha t the Dlayers are s t r i c t  competitors of one another; they w i l l  not 

co-operate. Chess is a c lass ic  example o f a two-person zero-sum game.

To avoid re p e t i t io n ,  hereafter "game" w i l l  mean "zero-sum game" unless 

otherwise stated.

A two-person game can be represented as a matrix o f  pay-o ffs , as:

1 2 3

1 $20 $36 $25

2 $35 $32 $30

The two players are Row and Column. In th is  example game, Row has two

options and Column has three. I f  Row plays i t s  option 1 and Column plays

i t s  option 1, then Column pays Row $20. I f  Row plays 1 and Column plays

2, then Column pays Row $36, and so on. The players make th e i r  moves

without knowledge o f the o ther's  move.

This p a r t ic u la r  game has a solu tion in a certa in  sense. I f  Row

plays i t s  option 2, then Row receives at least $30. The other move

guarantees only $20, although $36 is possible. I f  Column plays i t s

option 3, i t  need pay no more than $30 regardless o f  what Row does.

Column's other options expose i t  to possible l i a b i l i t i e s  o f $35 and $36,

although a lo w e r - th a n - th ir ty -d o l la r  l i a b i l i t y  is possible.

I f  Row plays i t s  "maximin" move (option 2), the one tha t y ie lds
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the "best worst" outcome, and Column plays i t s  "minimax" move (option 3), 

the one that y ie lds  the "best worst" outcome from i t s  po in t o f  view, 

then $30 changes hands.

This is  a so lu tion in the fo llow ing sense. I f  one player plays 

i t s  "best worst" move and the other player does not, "defects" as i t  

were, then the defecting player does worse than i t  could have done by 

playing i t s  own "best worst" option. Only i f  both players defect can 

one (and only one) defecting player do be tte r than the guaranteed 

le v e l .

Note tha t th is  so lu tion  is stable in that i f  one player announced 

i ts  in ten tion  to play i t s  "best worst" move, then the other player 

could not p r o f i t  from th is  knowledge beyond what i t  would gain anyway 

by playing i t s  own "best worst" move. By con tras t, announcing any other 

strategy would allow the opponent to p r o f i t .

Although most analysts would accept tha t Row should play 2 and 

Column should play 3, a t least some do not f in d  th is  so lu tion 

sa t is fa c to ry . Ellsberg [25], in a c lass ic  paper, is put o f f  by a 

strategy where a player moves so le ly  to get out o f  the game with the 

least possible damage. In a memorable image, he compares a minimax 

player to someone forced in to  a duel against one's w i l l .  Ellsberg o ffe rs  

no be tter so lu t ion , however, and much o f  what he finds unsatis factory 

may be a tt r ib u te d  to the assumption of radical opposition between the 

players.

Not a l l  game matrices have a solu tion in the sense ju s t  discussed. 

Consider, fo r  example, the matrix
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1 2 

1 $80 $20

2 $40 $100

Row's maximin move is to play 2. Column's minimax move is  1.

Note, however, tha t i f  Row knew tha t Column intended to play i t s

minimax s tra tegy, Row would play 1 instead of to get $80 instead o f 

$40.

The sa lie n t  d iffe rence between th is  matri.. and the la s t  one is 

tha t the ce ll  which contains the maximin value ^2, 1) does not coincide 

w ith the ce ll containing the minimax value (1, x). I t  had long been 

known tha t when the minimax and maximin ce l ls  do not coincide, then at

least one player had the option to defect and do be tte r than i t s  own

"best worst" outcome, i f  the other player d id n ' t  defect.

Von Neumann [97] noted tha t every matrix game, regardless of 

whether i t s  minimax and maximin ce lls  coincide, has a so lu tion in the 

fo llow ing weaker sense. For each player, there is a stra tegy, the "optimal 

mixed s tra tegy", which assigns to each move a p ro b a b i l i ty  o f being 

played, such tha t the other player cannot do be tte r on average than to 

play i t s  own optimal mixed stra tegy. I f  a player announces tha t i t  w i l l  

pursue i t s  optimal mixed s tra tegy, then the other player can do no be tte r 

on average than i t  would have done by playing i t s  optimal mixed strategy.

For example, suppose in the game ju s t  discussed, Row assigns to 

each of i t s  two moves a p ro b a b i l i ty  o f one-half. That is ,  i t  selects 

i t s  move by f l ip p in g  a coin. Whichever way column plays, i t  e f fe c t iv e ly  

faces a lo t te ry  based upon Row's coin f l i p .  The expected value o f th is  

lo t te ry  is

3s($80) .+ %($40) = h( $20) + Js($100) = $60
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The s itu a t io n  is symmetric. I f  Column assigns i t s  move 1 a 

p ro b a b i l i ty  o f two-th irds and move 2 a p ro b a b i l i ty  o f one-th ird , i t  

imposes a $60 average value lo t te ry  on Row. Neither player can impose a 

lo t te ry  whose average value is more favorable to i t s  in te res ts .

To explore th is  re su lt  fo r  matrix games with an a rb i t ra ry  number 

o f options fo r  each p layer, von Neumann used the theory o f l inea r 

programming. The theory is  applicable since each player exercises 

control by choosing p ro b a b i l i t ie s .  The figu re  o f m erit, the guaranteed 

average value, is  l in e a r  in the p ro b a b i l i t ie s  chosen. Von Neumann 

showed tha t the decision problem faced by Column is the dual o f the 

problem faced by Row. This insures tha t the value guarantees 

atta inab le  by each player are equal in magnitude.

More recently , other authors have used techniques other than l in e a r 

programming to obtain s im ila r  re su lts ,  fo r  example, Vi 1kas [96] and 

T i js  [93].

One a tt ra c t io n  o f the von Neumann approach is  tha t i t  re la tes the 

game problem to a widely understood and practiced optim ization technique. 

An in te res ting  counterpoint to von Neumann's resu lts  is offered by 

Dantzig [22], who showed tha t every l in e a r  programming problem can, in 

p r in c ip le ,  be represented as a matrix game. On a more prac tica l plane, 

a succinct survey o f von Neumann's and others' resu lts  in the 

application of l in e a r  programming to games can be found in Berge and 

Ghouila-Houri [8].

As sa t is fy in g  as the von Neumann re su lt  was, i t  had one serious 

flaw. A player might not pre fer one lo t te ry  over another simply on the 

basis o f expected money value. I f  a decision ru le  could be devised 

tha t selected lo t te r ie s  based on the average value of some function o f
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the pay-o ffs , then the o r ig in a l von Neumann theorem and i t s  l inea r 

programming proof would be preserved. Expected u t i l i t y  is  such a ru le .

Thus, the axiomatic system discussed e a r l ie r  provided 

von Neumann with what he needed to claim a la rge r kind o f genera lity  

fo r  his so lu tion to the matrix game. As a theore tica l advance, axiomatic 

u t i l i t y  had shown i t s  power.

McClennen [57] notes tha t the in troduction  o f  u t i l i t y  theory does 

not resolve reservations about minimax stra teg ies generally, such as 

those in E llsberg 's  " re luc tan t d u e l l is t "  paper [25]. McClennen finds 

nothing in  the u t i l i t y  axioms that leads the player to seek such a 

so lu t ion . Roth [71] agrees, and explores some additional assumptions, 

complementary to the u t i l i t y  axioms, tha t do lead to minimax-style 

play in  two-person games.

To apply the axioms to p rac tica l problems, DM must choose a 

p a r t ic u la r  u t i l i t y  function . The axioms themselves, however, require 

only tha t the function be increasing in i t s  argument. That is ,  i f  the 

function is  d i f fe re n t ia b le ,  then the sign of the f i r s t  de riva t ive  is 

pos it ive .

I f  the function is twice d i f fe re n t ia b le ,  then the l i k e ly  sign of 

the second de r iva tive  can also be specified .

Adopt the convention tha t an arc o f an increasing function is  

convex i f  i t s  second de riva tive  is  p o s it ive ,  concave i f  the second 

deriva tive  is  negative. To p icture the convention, a concave function is 

concave when viewed from below.

DM is  said to be risk-averse i f  fo r  any lo t te ry  one would prefer 

to receive the actuaria l value o f the lo t te ry  fo r  certa in  ra ther than to 

undergo the lo t te ry .  The antonym o f risk-averse is r isk -seek ing .
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Anecdotal evidence suggests tha t most people are unw ill ing  to 

play f a i r  gambles, those whose expected money value is zero, at least 

not fo r  large stakes. I f  so, then most people would seem to be r is k -  

averse.

I f  DM were always risk-averse, and wished to choose lo t te r ie s  

according to the axioms, then DM's u t i l i t y  function would be everywhere 

concave. This can be shown by Jensen's ine qua lity .  I f  U() is any 

concave u t i l i t y  function , then fo r  any lo t te ry ,  the expected U() value 

o f the lo t te ry  is less than the U() value of the lo t te r y 's  expected 

pay-o ff. Thus, the average pay-o ff fo r  sure is preferred to the lo t te ry .

The proof o f  Jensen's inequa lity  is s tra ightforward and can be 

found in many textbooks, e.g. DeGroot [24, chapter 7].

The re s t r ic t io n  on DM's choice o f a u t i l i t y  function implied by 

Jensen's inequa lity  s t i l l  does not come close to choosing a p a r t ic u la r  

function . The choice o f a u t i l i t y  function might be simple i f  i t  were

possible to say what the function measures about i t s  argument, i f

anything.

Bernoulli [9 ] ,  in a work tha t r >*edates von Neumann and Morgenstern 

by two centuries, suggested an expected u t i l i t y  decision ru le  without 

the benefit o f  axioms. Bernoulli advised taking the logarithms o f one's 

a fte r-p la y  wealths and computing the expected value o f those logarithms. 

The lo t te ry  with the highest expected logarithm ic value is  chosen.

Bernoulli argues tha t th is  wealth-dependent u t i l i t y  did measure 

something about i t s  argument. He believed tha t the "marginal 

sa t is fa c t io n "  o f any increase in one's wealth is inversely proportional 

to the current size o f one's fortune. That is ,

dE is  proportional to 1/w
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where "dE" is the in fin itesm a l increase in "sa t is fa c t io n "  (emolumenturn 

was B e rn o u ll i 's  Latin term) from an in fin itesm a l increase in wealth, 

and w is one's current wealth. The to ta l sa t is fa c t ion  from a given 

fortune, then, is  the in tegra l of th is  in fin itesm a l sa t is fa c t io n , or 

log(w).

B e rn ou ll i 's  idea tha t people's a f fe c t iv e  rewards from possessing 

wealth is non-linear appears to have wide acceptance in the economics 

l i te ra tu r e .  Von Neumann and Morgenstern seem to embrace th is  notion, 

and assert tha t one's preferences among gambles are re lated to the 

re la t iv e  strength o f one's fee lings fo r  the various prizes.

I t  is  as i f  a lo t te ry  o ffe r in g  a f i f t y - f i f t y  chance of $50 and 

$100 i t s e l f  conveyed a sa t is fa c t io n  tha t was, in some subjective way, 

midway between the sa t is fa c t io n  afforded by $50 and that afforded by 

$100. That is  generally taken to be d i f fe re n t  from the sa t is fa c t io n  o f 

$75.

Arguments such as these re ly  heavily on subjective a tt itudes  

presumed, but not proven, to e x is t  which nevertheless allow precise 

mathematical computations to be carried out. B la t t  [10] f inds such an 

enterprise inherently  fa u l ty .

Less sweepingly, i f  the foundation of decision-making were tha t 

people have complicated a tt itudes  about money, then there would seem to 

be l i t t l e  that an engineer could contribute to the discussion.
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The Kelly  Rule

Kelly [45], an engineer, motivated a decision ru le  tha t is 

ind is tingu ishable  from B e rn o u ll i 's  advice to maximize the logarithms 

o f one's a f te r-p la y  wealth. The Kelly ru le  is  not in any way based on 

the assumption tha t the logarithm measures any a t t itu d e  tha t DM 

might have about wealth. Rather, Kelly shows tha t choosing lo t te r ie s  

with th is  decision ru le maximizes one's exponential rate o f cap ita l 

growth, assuming in d e f in i te  play and in f in i t e  d i v i s i b i l i t y  o f wealth.

Neither assumption is  true. DM is mortal. Transferable wealth is ,  

in general, quantized, e.g. in do lla rs  and cents. As a prac tica l matter, 

however, DM might adopt the assumptions as reasonable approximations.

I f  so, then tha t adoption and assent to the goal o f maximizing the rate 

of cap ita l growth are the only subjective elements in the Kelly theory.

To see how logarithm ic u t i l i t y  accomplishes i t s  optim ization of 

cap ita l growth ra tes, suppose that DM has the opportunity to choose an 

amount to hazard on the fo llow ing wager. There is  a p ro b a b i l i ty  £  tha t 

the amount wagered w i l l  be lo s t  and a complementary p ro b a b i l i ty  £  = l - £  

tha t the same amount w i l l  be added to DM's wealth. The wager is 

ava ilab le fo r  endlessly repeated play w ith no minimum and no maximum 

stakes. DM can vary the stakes on each play.

Suppose fu r th e r  tha t DM wishes to maximize one's exponential 

cap ita l growth ra te . Let _N be the number o f times the gamble is  played,

C_ be DM's cap ita l a f te r  _N plays and £  be DM's i n i t i a l  ca p ita l.  The 

exponential growth rate o f cap ita l is  defined as the l im i t  as IN goes to 

i n f i n i t y  of

One is  free to choose any base fo r  the logarithm, since the po licy  which

L
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a tta ins  the maximum fo r  one base does so fo r  a l l  bases.

Suppose tha t DM bets some constant f ra c t io n  f_ o f one's current

cap ita l on each play. A fte r  N_ plays, le t  W be the number o f times DM has

won and y  be the number o f times DM has lo s t .  C learly, DM's wealth 

is
C .= 1(1 + f ) w( l  - f ) L 

Divide through the equation by l_ and N_, and take the logs and l im i t

1 F C "1 W L
lim  N log J-y^  = l im  y  1 og(1 + f )  + y  log( 1 - f )

In the frequen tis t view o f p ro b a b i l i ty ,  the l im i t  o f £  over N as N

approaches i n f i n i t y  is  ju s t  the p ro b a b i l i ty  o f winning, cj_. S im i la r ly ,  

the l im i t  o f L_ over is ju s t  £.

So, we may rewrite  the expression on the r ig h t  as: 

p lo g ( l  - f )  + q 1og(1 + f )  

and we recognize the expression on the l e f t  as the exponential growth 

ra te. Therefore, to maximize the growth rate while playing a f ixed 

f ra c t io n  o f one's wealth on each play, choose f_ so as to maximize 

expected logarithm ic u t i l i t y .

Breiman (16, 17] extended K e lly 's  re s u l t ,  showing tha t logarithm ic 

u t i l i t y  asym ptotica lly optimized the cap ita l growth rate in more general 

sequences o f gambles. Bell and Cover [7] showed that logarithm ic u t i l i t y  

is optimal fo r  two competitors who t r y  to amass the greatest winnings in 

the course o f a f i n i t e  contest.

The Kelly de riva tion  o f logarithm ic u t i l i t y  can be distinguished 

from B e rn o u l l i 's  on grounds other than K e l ly 's  avoidance o f  hedonic 

assumptions. Nothing in  B e rn o u ll i 's  analysis depended on "long run" 

arguments. The pleasure or pain, so to speak, afforded by a lo t te ry  did 

not depend on i t s  ever being repeated. DeGroot [24] points out tha t
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modern axiomatic u t i l i t y  is also assumed to hold fo r  "one time" 

gambles. I f  a lo t te ry  is to be taken repeatedly, then the sequence 

ought to be viewed as a large composite gamble. Samuelson [75, 76] 

notes tha t trea ting  a long sequence o f gambles as one composite gamble 

w i l l  generally lead to decisions d i f fe re n t  from those advocated by 

Kelly. Thorp [92] makes much the same po in t, but takes th is  as something 

o f an argument in favor o f adopting logarithm ic u t i l i t y .

By contrast to the axiomatic theory, the Kelly approach depends on 

re p e t i t io n .  I t  is only in the long-run sense (indeed, an in f in i te - ru n  

sense) tha t the exponential growth rate is optimized.

The logarithmic u t i l i t y  function is disesteemed by some authors 

regardless o f whether i t  is  derived from K e lly 's ,  B e rn o u l l i 's  or 

anyone e lse 's  arguments. The d i f f i c u l t y  tha t these c r i t i c s  perceive is  

tha t the logarithm is an unbounded func tion , both above and below. To 

understand why th is  would be thought to be a defect requires a digression 

on the c lassic St. Petersburg Paradox.

The paradox was propounded by Nicholas Bernoulli (cousin to Daniel, 

the author o f logarithm ic u t i l i t y ) .  Suppose one were o ffe rred  the 

fo llow ing gamble by a casino. One w i l l  f l i p  a coin u n t i l  i t  comes up 

heads. I f  i t  is  heads on the f i r s t  f l i p ,  then the casino w i l l  pay the 

player $2; i f  on the second f l i p ,  $4, and on the n-th f l i p ,  2n do lla rs . 

The expected value o f th is  gamble is  in f i n i t e .  The p ro b a b i l i ty  tha t the 

f i r s t  heads occurs on the n-th f l i p  is  2“ n. The average pay-o ff is  

therefore
•© k >

Z  ( 2 " n ) ( 2 n ) = Z  1
n 3 X  n - i

The paradox was offered as a counter-example to the view o f Pascal

and Fermat that lo t te r ie s  should be valued according to th e i r  average
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pay-offs. The value o f the St. Petersburg game is  not in f in i t e ,  even 

though i t s  expected pay-o ff is .  That is ,  no DM would pay much, and 

especia lly  not an a r b i t r a r i l y  large amount, fo r  the p r iv i l ig e  o f playing 

the game. Conversely, i f  DM found oneself l ia b le  to o f fe r  the game to 

someone else, DM wouldn't pay much to be r id  o f the ob liga tion .

This l e f t  open the question of how DM ought to order lo t te r ie s .  

Daniel Bernu lli noted tha t his logarithmic u t i l i t y  resolved the paradox.

The engineer Fry [38] pointed out in 1928 that the paradox was 

defective: the gamble simply cou ldn 't be realized. A fte r some f i n i t e  

number o f t a i l s ,  the casino would be bankrupt. Tne pay-o ff, therefore, 

was f i n i t e .  In fa c t ,  the reader can eas ily  calcu late that even i f  the 

casino were fabulously wealthy, the expected value o f the pay-off is  

puny. For example, a b i l l io n - d o l la r  casino could withstand only about 

t h i r t y  t a i l s  or so, and thus the average pay-o ff achievable is  about 

t h i r t y  do lla rs .

Barring commerce w ith an unbounded d iv in i t y  (a 20th Century bar 

more than an 18th Century one), the paradox simply doesn't a r ise , ever. 

Surpris ing ly  enough, one can f in d  quite recent discussions o f the 

paradox in the economic l i te ra tu re .  Samuelson [77] provides a h is to r ic a l 

overview and an in troduction  to the recent discussions. Shapiey [82, 83] 

and Aumann [4] engage in a l i v e ly  exchange of recent (1977) vintage.

I f  one does not accept the Fry viewpoint, there is a d i f f i c j l t y  

with any unbounded u t i l i t y ,  e ith e r above or below. Although Berno 1: s 

suggestion solves the o r ig in a l paradox, one can change the pay-of ‘ 

schedule so tha t i t  r ises fa s te r  than 2n , fa s t  enough to make the 

logarithm or any unbounded u t i l i t y  diverge. Arrow [2] shows that th ir

contradicts the conventional con tinu ity  axiom.
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Suppose that a DM with an unbounded u t i l i t y  function faces three 

prizes. Prize "A" is the St. Petersburg problem, generalized so that 

DM's u t i l i t y  diverges. Prize "B" is $2 and prize "C!l is  SI. C learly, 

the worth o f prize is somewhere between that o f /\ and £. The 

con tinu ity  axiom requires, therefore , tha t there be some p r o b a b i l i t y ^  

such tha t DM believes (p: A, C) |= B. There i s n ' t :  fo r  a l l  f i n i t e  £  

the expected u t i l i t y  value o f the lo t te ry  is in f in i t e .

Arrow's po in t,  o f course, depends on the a b i l i t y  to rea lize  the 

gamble. In a fasc inating  1974 exchange, Arrow [3] rebuts Ryan's [73] 

assertion tha t i t  is  "h igh ly  improbable" that an unbounded-util ity DM 

would ever face any p rac tica l d i f f i c u l t y .

Thorp [92], in a review o f K e lly 's  work, finds no reason to re je c t  

logarithm ic u t i l i t y  in such arguments. One could also note tha t even i f  

the gamble could be rea lized , Arrow's log ica l objection need not daunt 

any fo llow e r o f Ke lly , since Kelly did not use the con tinu ity  axiom to 

obtain his u t i l i t y  decision ru le .

The Kelly deriva tion  does not depend on any o f the von Neumann- 

Morgenstern axioms. Of course, by choosing lo t te r ie s  so as to maximize 

an increasing function o f one's c a p ita l ,  DM would behave consis tently  

with the axioms whether or not one accepted them in p r in c ip le .

A generally neglected part o f K e lly 's  work, however, s t r i c t l y  

v io la tes the usual u t i l i t y  axioms and does so in a r e a l is t ic  context.

The v io la t io n  again involves the con t inu ity  axiom, th is  time the 

im plica tion  of the axiom tha t the u t i l i t y  function be unique fo r  each 

DM.

Kelly recommended the logarithm ic u t i l i t y  ru le  only fo r  sequences 

where DM could re - invest the winnings. Kelly considered another
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s i tu a t io n . Suppose DM's spouse allowed the wagering o f a f ixed sum 

each week, but not reinvestment. (Ke lly  wrote "w ife" instead of "spouse", 

but he was w r i t in g  in a simpler time.)

Obviously, exponential growth by gambling does not arise in th is  

s i tu a t io n . Under the circumstances, then, DM ought to bet the en tire  

allowable sum on the prospect tha t y ie lds  the highest expected monetary 

value, or else re fra in  from gambling i f  no pos it ive  average-value 

gamble is  ava ilab le . This advice assumes unending play, and assumes tha t 

DM wishes to eventually overtake in to ta l winnings anyone who divides 

the allowable sum d i f fe re n t ly .

Choosing the prospect with the highest expected monetary value

is  ind is t ingu ishab le  from maximizing expected l in e a r  u t i l i t y .

The l in e a r  u t i l i t y  function is

U(x) = ax + b, where a > 0

I t  is  a simple matter to extend K e lly 's  analysis one step fu r th e r.

Suppose DM's spouse allowed DM to p a r t ic ip a te  in two gambling sequences.

One sequence would s ta r t  with some fixed sum chosen by the spouse and 

DM would be allowed to husband (so to speak) the sum with reinvestment. 

The other sequence would be based on an earmarked sum pe r io d ica lly  

refreshed, but no reinvestment would be permitted.

I f  DM accepted K e l ly 's  advice, then DM would select some gambles

by the logarithm ic u t i l i t y  function and others by the l in e a r. This 

behavior would be inconsistent with the von Neumann-Morgenstern axioms. 

Even so, the Kelly DM is acting ra t io n a l ly  in the p la in  language sense 

of the word. DM acts to fu r th e r  a chosen ob jective which is i t s e l f  not 

fa c ia l ly  unreasonable w ith in  the constra ints placed on one's behavior 

by circumstances.



20

The Friecbian-Savage Problem

Milton Friedman and Leonard Savage [36, 37] sought to in fe r  from 

people's behavior in r isky  decisions what a tt itudes  people held towards 

d if fe re n t  leve ls o f  income or wealth.

The decision phenomenon tha t a ttrac ted  these authors' a tten tion  

was the commonplace observation that often the same ind iv idua l w i l l  buy 

both lo t te ry  t icke ts  and insurance p o l ic ie s . P a rt ic ip a t ion  in r e a l - l i f e  

lo t te r ie s  is  risk-seeking in that the price o f the t ic k e t  exceeds the 

actuaria l value o f the prizes. Insurance purchases are risk-averse: 

the buyer o f insurance pays more than the actuaria l value o f the r is k  

in order to be r id  o f i t .

Risk-seeking behavior under conventional u t i l i t y  is  associated 

with a convex u t i l i t y  curve (second de r iva tive  p o s it iv e ) .  Risk-averse 

behavior is  associated w ith a concave curve (negative second de r iva t ive ) .  

Thus, a DM who subscribed to the conventional axioms and who was r is k -  

averse fo r  large losses (and so bought insurance) and risk-seeking fo r  

large gains (and so bought lo t te ry  t ic k e ts )  might have a curve composed 

of both concave and convex segments.

Suppose tha t the u t i l i t y  value o f a sum measured the psychic 

sa t is fa c t ion  tha t the sum afforded to DM. The f i r s t  de riva tive  at tha t 

point could be in te rpre ted as the "marginal u t i l i t y "  o f the wealth sum. 

That is ,  i t  would be a measure o f the increase in sa t is fa c t io n  tha t 

would be realized by a small increase in wealth s ta r t in g  at tha t po in t.

I f  the u t i l i t y  curve were concave, then the marginal u t i l i t y  o f wealth 

would be decreasing as wealth increased.

The avoidance o f f a i r  bets, then, could be in te rpre ted as a kind of 

psychological phenomenon. A f ixed  increase in wealth would provide less
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additional sa t is fa c t io n  than the decrease in sa t is fa c t io n  entailed by 

a loss o f equal magnitude. A f a i r  bet, then, would be less than f a i r  

in average sa t is fa c t ion  offered.

By the same lo g ic ,  the purchase o f lo t te ry  t ic ke ts  fo r  more than 

th e ir  actuaria l value would not be made v o lu n ta r i ly  unless there were 

increasing marginal u t i l i t y  o f  wealth fo r  the prizes.

Friedman and Savage hoped to counter the preva il ing  assumption of 

everywhere-decreasing marginal u t i l i t y  of wealth by studying r is k -  

seeking behavior.

Friedman and Savage l is te d  f iv e  features o f decision-making under 

r is k  which they f e l t  conformed w ith everyday experience. These were 

(1) la rger incomes are prefered to smaller ones, (2) low income people 

are w i l l in g  to buy lo t te ry  t ic k e ts ,  (3) low income people were w i l l in g  

to buy insurance, (4) points 2 and 3 are true simultaneously, and 

(5) lo t te r ie s  ty p ic a l ly  have more than one pr ize .

The la s t  statement seems a l i t t l e  out o f place. The ra tiona le  is 

tha t the lo t te ry  operator selects the prize s truc tu re  o f the lo t te ry .  

Presumably, the operator chooses the prize s truc tu re  tha t makes the 

t icke ts  most a t t ra c t iv e .  Thus, the d iv e rs i ty  o f  prizes might correspond 

to some widespread a t t r ib u te  o f r is k - ta k in g  among the customers. A fte r 

a l l ,  except fo r  i t s  ro le  in helping to se ll t ic k e ts ,  the operator 

doesn't care what the prize s truc ture  is .  The operator's  surplus 

depends only on the prize to ta l .

Friedman and Savage then construct a u t i l i t y  curve fo r  income 

levels that is  consistent with a l l  f iv e  statements. Statement 1 requires 

only that the curve be increasing. Statements 2 through 4 can be achieved 

by a concave section fo r  losses and a convex section fo r  gains.
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I f  th a t 's  a l l  there was to the curve, then statement 5 would not 

be s a t is f ie d .  Lottery operators would s tr iv e  fo r  the biggest prize 

possible to get the most value from the convex segment. The way to get 

the biggest p r ize , o f course, is  put a l l  the prize money in to a single 

pri ze.

Since tha t doesn't seem to happen, Friedman and Savage reason 

tha t there is another concave section fo r  very high values. Their f in a l 

curve, then, has concave arcs a t the high and low ends with a convex 

tra n s i t io n  in between.

Markowitz [56] does not f ind  th is  e n t i re ly  sa t is fa c to ry . He notes 

tha t most people re je c t  f a i r  bets except fo r  very small stakes. The 

Friedman-Savage curve places a convex segment a t moderate leve ls o f 

income. I f  tha t were r ig h t ,  then f a i r  bets would be widely acceptable 

fo r  non-neglig ib le stakes.

Markowitz's remedy is a curve w ith not two, but three in f le c t io n  

points. His curve p lo ts  u t i l i t y  against wealth with the o r ig in  at DM's 

"customary" level o f wealth. "Customary" is often the same thing as 

simple current wealth. The d is t in c t io n  concerns wagering episodes tha t 

involve the accumulation o f many small changes in wealth. The curve 

does not have to be redrawn a f te r  each bet.

Markowitz finds a convex segment fo r  small increases in wealth, 

allowing f a i r  bets and even le s s - th a n - fa ir  bets fo r  small stakes. There 

is a concave segment fo r  small losses based on psychological l i te ra tu re  

showing tha t people bet more conservatively when they are behind.

Really large losses have a convex segment; apparently people in 

Markowitz's view pre fe r to gamble on a huge loss ra ther than to take a 

merely big loss fo r  sure. F in a l ly ,  fo r  large gains there is a concave
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segment. The curve is bounded above and below to avoid complications 

o f the St. Petersburg kind.

In Markowitz's theory, the shape o f the curve is  esse n t ia l ly  the 

same fo r  the r ich  and the poor, although the in f le c t io n  points are 

located fa r th e r  apart fo r  the r ich .

The Markowitz curve does not explain the same phenomena as the 

Friedman-Savaqe. The d iv e rs i ty  o f prizes observation is  consistent w ith 

Markowitz, a t the expense o f not explaining why one o ffe rs  big prizes 

at a l l .

Nevertheless, Markowitz and Friedman-Savage agree tha t people's 

choices under r is k  are d i f f i c u l t  to reconcile w ith the decreasing 

marginal u t i l i t y  hypothesis.

Several authors wrote in rebutta l to defend the notion of 

decreasing marginal u t i l i t y .  Kwang [49] argued tha t many large purchases 

were in d iv is ib le ,  e .g . ,  one cannot buy h a lf  o f a Mercedes automobile. 

Perhaps, then, one's preference fo r  wealth consisted of several concave 

sections jo ined at d is c o n t in u it ie s  that correspond to new consumption 

opportun it ies . The slope would steepen at each d isco n t in u ity ,  but 

concavity would prevail from there to the next d isco n t in u ity .  The 

neighborhood o f a d isco n t in u ity  is  convex in Kwang's scheme, even though 

a l l  the constituent curves are concave.

Other suggestions fo r  introducing local convexities in the 

presumed-to-exist u t i l i t y  curve include Richardson's [68], based on 

the increased costs of planning tha t become necessary when wealth 

changes. Flemming [35] argues that "big t ic k e t "  consumer durables cost 

th e ir  buyers more than they are worth the ins tan t a f te r  they are bought, 

when they become "used" goods.
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Hakansson [40] introduces convex borrowing constra ints which 

a l te r  a concave u t i l i t y  function so tha t i t  resembles the Friedman- 

Savage shape. Kim [47] gets s im ila r  resu lts  based on assumptions about 

ind iv idua ls ' borrowing and saving in te re s t  rates.

Experimental v e r i f ic a t io n  o f  these suggestions, despite th e i r  

ingenuity, seems remote. For example, Kwang's suggestion would not be 

f a ls i f ie d  by a u t i l i t y  curve that was everywhere convex. A well informed 

consumer might f in d  new buying opportun it ies a t every wealth leve l.

Some economists th ink  tha t people's gambling behavior does not 

reveal th e i r  preferences fo r  wealth per se, but rather an amalgam of 

wealth preferences and supers tit ions  about p ro b a b i l i t ie s .  Yaari [100] 

suggests tha t people buy both insurance and lo t te ry  t icke ts  because they 

tend to overestimate the p ro b a b i l i t ie s  of remote events. Thus, one 

simultaneously insures against the u n l ike ly  hazard and s tr ive s  to win 

the a l l  but unatta inable p r ize .

Rosett [70] points out tha t the assumption o f systematically 

biased p ro b a b i l i ty  estimates in no way rules out convex wealth preferences. 

Indeed, there is  a theory tha t e x p l ic i t l y  combines both.

Kahneman and Tversky [43, 44, 95] doubt tha t conventional u t i l i t y  

theories can ever be reconciled w ith the evidence about r isky  decisions 

obtained in  psychological experiments. They put forward th e ir  own theory 

o f decision under r is k  which they ca ll  "Prospect Theory". Their system 

includes a u t i l i t y - l i k e  function to describe DM's a tt itudes  towards 

prizes and "decision weights" which are s im i la r  to , but not the same as, 

p ro b a b i l i t ie s .  The decision weights d i f f e r  from p ro b a b i l i t ie s  in the 

way suggested by Yaari, i . e . ,  small p ro b a b i l i t ie s  have exaggerated 

weights.
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I f  the Kahneman-Tversky view p reva ils , then the Friedman- 

Savage program fo r  measuring subjective a tt itudes towards wealth 

founders. In p r in c ip le ,  perhaps, the effec ts  o f  p ro b a b i l i ty  biases 

and wealth preferences could be sorted out. In p rac tice , however, 

there was such a d iv e rs i ty  o f expert opinion when only the shape o f 

one curve was in doubt, i t  is un like ly  that in te rp re t in g  phenomena 

with two unknown curves w i l l  lead to consensus.

An especia lly  in te res t in g  point is raised by Raiffa [67, chap. 4]. 

He thinks tha t wealth u t i l i t y  curves with convex portions are common.

He recommends tha t DM "a l te r "  any convex portions, as fo r  example, by 

drawing a s tra ig h t l in e  tha t " f i l l s  in " any convexity. By th is  expedient, 

he seeks to avoid the d i f f i c u l t y  o f taking un fa ir  gambles. I f  R a if fa 's  

advice were taken, however, DM's "true" preferences fo r  wealth could not 

be in fe rred  from gambling behavior. Any choice experiment with such a DM 

would f in d  a weakly concave u t i l i t y  curve, thus seeming to confirm a 

generally decreasing marginal u t i l i t y  fo r  wealth. In fa c t ,  some other 

in te rp re ta t io n  would be c loser to the tru th .

R a iffa 's  concerns are s t r i c t l y  normative; he does not espouse the 

conventional u t i l i t y  on the basis o f any descrip tive  considerations at 

a l l .  Raiffa seeks an account o f how one ought to behave, not how one 

does behave i f  ignorant o f the normative p r inc ip les .

The advice to avoid un fa ir  gambles is p laus ib ly  a be tte r prescrip 

tion  than to "do what you feel l ik e "  i f  what you feel l ik e  is  taking 

un fa ir  gambles. I t  does not p a r t ic u la r ly  matter to Raiffa  tha t behaving 

in such a fashion might mask one's fee lings , even though those fee lings 

are fo r  Raiffa the foundation o f u t i l i t y  theory.

Of course, an even stronger position can be i ferred from K e lly 's
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work. A u t i l i t y  decision ru le  simply need not depend on DM's a tt itudes  

about a p a r t ic u la r  lo t te r y 's  prizes. A ll that matters is what the 

decision ru le  accomplishes fo r  DM in the long run.

The logarithm ic u t i l i t y  advocated by Kelly is  everywhere concave. 

However, the cancavity has nothing to do with any p o s s ib i l i t y  of 

decreasing marginal subjective u t i l i t y  o f wealth. DM may in fa c t  be 

insa t iab ly  and boundlessly greedy and adopts logarithmic u t i l i t y  because 

i t  promises the most money in the end. Despite i t s  concavity, logarithm ic 

u t i l i t y  is the perfection of greed ra ther than i t s  denial.

Of course, the p a r t ic u la r  assumptions and objectives used by 

Kelly do not exhaust the long-run considerations tha t may in te re s t  

d if fe re n t  DM's. For example, the assumption of in f i n i t e  d i v i s i b i l i t y  o f 

capita l turns out to "assume away" a problem tha t may be o f  great 

concern.

I f  DM chooses lo t te r ie s  by logarithm ic u t i l i t y ,  one w i l l  never 

r is k  one's e n t ire  c a p ita l .  That is because the logarithm o f zero is 

minus i n f i n i t y ,  and w i l l  outweigh any f i n i t e  gain whatsoever. So, i f  

wealth is  i n f i n i t e l y  d iv is ib le ,  then DM w i l l  never run out o f cap ita l 

or opportun it ies to invest i t .  That is ,  DM w i l l  never be ruined.

In real l i f e ,  o f  course, wealth is quantized. O rd in a r i ly ,  there is 

some smallest amount o f wealth that can be transfe rred , and therefore a 

smallest amount tha t can be a prize in a lo t te ry .  Also, long before DM 

is reduced to playing fo r  pennies, one w i l l  probably f in d  tha t the va r ie ty  

o f investment prospects ava ilab le fo r  n ickels and dimes is  much poorer 

than tha t ava ilab le  fo r  do lla rs . So, even i f  DM places a shiny new penny 

in one's w a lle t so as to "never go broke", the assumed-to-be unending 

sequence o f gambles could very well end fo r  lack o f other players.
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The next chapter concerns decision rules tha t deal w ith the end 

o f play by a run o f advers ity . I t  shows how DM can choose lo t te r ie s  in  

such a way as to constrain the p ro b a b i l i ty  o f ever losing a l l  (or 

nearly a l l )  o f  one's c a p ita l .

Like the Kelly  re s u lts ,  ru in -constra in ing  rules do not depend on 

the de ta ils  o f DM's a tt itude s  towards the prizes. The long-term 

implications o f the decision ru le  motivate i t s  adoption. Also l ik e  

the Kelly re su lts ,  the ru les developed in the next chapter are generally 

consistent with the von Neumann-Morgenstern axioms. That is ,  they involve 

maximizing the expected value o f  a p a r t ic u la r  u t i l i t y  function.

Although the curve in question is concave, tha t concavity ne ither 

supports nor refutes the decreasing marginal u t i l i t y  o f wealth hypothesis. 

However much DM esteems a large fortune, one won't a t ta in  that fortune 

i f  one is  ruined f i r s t .  The adoption o f a ru in constra in t en ta i ls  no 

shortage of sa t is fa c t io n  in  great wealth, but merely a r e a l is t i c  

a t t i tu d e  about what may be required to achieve i t .



CHAPTER II

THE GAMBLER'S RUIN AND EXPECTED UTILITY

Exponential U t i l i t y  and Ruin Constraints

Fe lle r [29] and Epstein [28] summarize the standard resu lts  

concerning the p ro b a b i l i ty  o f ru in when playing a multinomial game 

repeatedly in independent t r i a l s .

Suppose a gambler with i n i t i a l  cap ita l w plays the fo llow ing 

gamble. Let (a, b, . . . )  be the d is t in c t  pr izes, integer amounts o f money 

that are added to or subtracted from the p layer's  c a p ita l .  Let 

(p, q, . . . )  be the associated p ro b a b i l i t ie s  o f  receiving each o f the 

prizes, mutually exclusive and exhaustive. Assume tha t the player w i l l  

keep any and a l l  winnings "a t r is k "  and w i l l  play in d e f in i te ly  or u n t i l  

a l l  o f the i n i t i a l  cap ita l is lo s t ,  i . e .  the player is ruined.

Fe lle r showed tha t the p ro b a b i l i ty  o f ever being ruined 

in the repeated play o f such a gamble is  bounded above by

r w

where £  is non-negative and no greater than one and is  a so lu tion  o f  the 

cha rac te r is t ic  equation

1 = pra + qr*3 + . . .

In the special casi where the prizes are ( -1 , +1) and the probabi

l i t i e s  are (p, 1-p11 where p is  greater than one-ha lf, F e lle r  shows tha t 

the p ro b a b i l i ty  o f ruin w i l l  be exactly  where r_ is

r  = (1 - p)/p 

which solves the ch a ra c te r is t ic  equation.

To explore the Dound f o r  o ther  cases, c a l l  she expression th a t

28
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appears on the right-hand side o f  the c h a ra c te r is t ic  equation the 

"cha rac te r is t ic  polynomial". Assume tha t i t  has no fewer than two terms 

and tha t the exponents o f each term are d is t in c t .

By inspection, the polynomial has a de riva t ive  everywhere on the

"clopen" un it  in te rva l (zero exclusive to one in c lu s ive ) .

I f  the lo t te ry  is  a pure gain, then a l l  the exponents in the

cha rac te r is t ic  polynomial are non-negative. Since they are d is t in c t ,  

at least one must be p o s it ive .  So, the polynomial is s t r i c t l y  increasing 

fo r  a l l  pos it ive  _r. Since the polynomial is  one when r. = 1, there is  no 

solution o f the c h a ra c te r is t ic  equation on the open un it  in te rv a l.  The 

pure gain ch a ra c te r is t ic  polynomial is  less than one everywhere on the 

open un it  in te rv a l.

A s im ila r  argument shows tha t i f  the lo t te ry  has only non-positive 

prizes, then the ch a ra c te r is t ic  polynomial is  s t r i c t l y  decreasing fo r  

pos it ive  r., and so the ch a ra c te r is t ic  equation can 't have a solu tion on 

the open un it  in te rv a l.  The ch a ra c te r is t ic  polynomial is  greater than one 

on that in te rv a l .

Henceforth, we consider only those ch a ra c te r is t ic  polynomials with 

at least one pos it ive  and one negative exponent. The negative exponent 

terms give the polynomial a r b i t r a r i l y  large po s it ive  values fo r  r_ ju s t  

greater than zero. At the other end o f the un it  in te rv a l ,  the value of 

the polynomial is one. Notice tha t the slope at r. = 1 is  equal to the 

expected monetary value o f the gamble:

ap + bq + . . .

Thus, near r. = i f  the lo t te ry  is  favorable, then the polynomial 

approaches one from below, i f  unfavorable, then from above and i f  f a i r ,  

then "head on".
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In order fo r  the de riva tive  to change sign on the clopen un it  

in te rv a l ,  i t  must pass through zero since the second deriva tive  

exists everywhere on the in te rv a l .  I f

0 = apra - '*’ + bqr*3- -̂ + . . .

then

0 = apra + bqr*3 + . . .

The expression on the r ig h t  has the same exponents as the o r ig ina l 

ch a rac te r is t ic  polynomial. This new expression can be viewed as the sum 

of two parts. One part is  s t r i c t l y  increasing and comprises the non

negative exponent terms. The other pa rt,  made up o f the negative exponent 

terms, is  s t r i c t l y  increasing, but negative. C learly , these two parts 

can "cross" in absolute value (and so the sum o f the parts is zero) at 

most once on the clopen u n it  in te rv a l.

From th is ,  we see tha t there is no so lu tion on the open un it

fo r  an unfavorable game. The ch a ra c te r is t ic  polynomial would have to 

approach the so lu tion from above, and then change d ire c t ion  at least

twice to approach the so lu tion  at r  = 1 also from above.

A f a i r  game uses i t s  only zero f i r s t  de r iva t ive  on the clopen 

in te rva l a t r  = 1. Thus, i t  lacks a solu tion on the open in te rv a l .

Note tha t th is  behavior implies tha t i f  _r is  less than one by 

a f i n i t e  amount, the ch a ra c te r is t ic  polynomial fo r  f a i r  and unfavorable 

gambles a t tha t r_ is greater than one.

The only p o s s ib i l i t y  fo r  an open un it  in te rva l so lu tion  o f the 

cha rac te r is t ic  equation is  the favorable game. Since the favorable 

gamble's polynomial approaches one from above fo r  small r. and approaches 

one from below at _r = 1, there must be exactly one so lu tion on the open 

un it in te rv a l.
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This implies tha t the cha rac te r is t ic  polynomial is  greater 

than one fo r  £  = 0 to the solu tion (exc lus ive), and less than one 

fo r  r. between the so lu tion  and one.

By an appeal to the one-dimensional random walk with an absorbing 

b a rr ie r  corresponding to ru in , Fe lle r [29] sorts out the physical 

meaning o f the algebraic so lu tions. For the f a i r  and unfavorable games, 

eventual ru in  is ,  indeed, ce rta in . For the favorable case, the 

p ro b a b i l i ty  of ru in  is not ce r ta in , and so one ignores the formal 

so lu tion at r = 1 and uses that unique solu tion in the open un it 

in te rv a l ,  assuming tha t the gamble is  not pure-gain, o f course.

Generally, solving the cha rac te r is t ic  equation requires numerical 

techniques. Fortunate ly, the behavior o f the cha rac te r is t ic  polynomial 

ju s t  discussed allows the search fo r  a so lu tion to proceed e f f ic ie n t ly  

on a computer.

Unfavorable, f a i r  and pure-gain gambles are t r i v i a l .  For other 

favorable games, an estimated solu tion can be checked qu ick ly  fo r  

whether i t  is  too high or too low. I f  the cha rac te r is t ic  polynomial 

evaluated at the estimate is greater than one, then the estimate is 

too low; i f  less than one, too high.

Note tha t the same consideration tha t leads to e f f ic ie n t  searches 

fo r  numerical solutions also provides a quick check fo r  whether a 

lo t te ry  has a p ro b a b i l i ty  o f ru in greater than some chosen benchmark 

value.

Suppose, then, tha t a DM begins to play with cap ita l w and has 

chosen a maximum to le rab le  p ro b a b i l i ty  of ru in  R^. To check whether, a 

gamble exceeds tha t maximum level fo r  in d e f in i te  play, one simply 

evaluates i t s  ch a ra c te r is t ic  polynomial a t r  = R. I f  the polynomial
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value is not greater than one, then e ith e r the lo t te ry  is pure gain 

or the ru in  so lu tion is  not greater than _R. E ither way, the gamble 

has sa t is f ie d  the chosen constra in t on the ruin p ro b a b i l i ty .  I f  the 

polynomial value a t  r  = R is  greater than one, then the lo t te ry  is 

e ith e r f a i r ,  or unfavorable, or favorable but with a ru in p ro b a b il i ty  

higher than the maximum to le rab le  value. In any event, the gamble f a i l s  

to s a t is fy  the constra in t.

In actual decision problems, one contemplates playing several 

d i f fe re n t  gambles ra ther than one gamble repeatedly forever.

Consider the lo t te ry  with outcomes (a, b) and p ro b a b i l i t ie s  

(p, q) and a second lo t te r y  with outcomes (c, d) and p ro b a b i l i t ie s  

(s, t ) .  Let the p ro b a b i l i t ie s  be such that

1 _> pRa + qR*3

and 1 >_ sRc + tR^

In words, the in d e f in i te -p la y  ru in p ro b a b i l i ty  o f playing e ith e r  lo t te ry  

alone is w ith in  the R^ constra in t.

The compound gamble tha t consists o f one play o f the f i r s t  lo t te ry  

followed by an independent play o f the second lo t te ry  has outcomes 

(a+c, a+d, b+c, b+d) and p ro b a b i l i t ie s  (ps, p t,  qs, q t ) .  The character

i s t i c  equation o f  the compund lo t te ry  is

1 = psra+c + p t ra+c* + qsr*3+c + q t r ^ 1̂

or 1 = (p ra + q r ^ ) ( s rc + t r 1̂)

When the ch a ra c te r is t ic  polynomial is evaluated at JR, both quantit ies 

in the parentheses are no greater than one, so th e i r  product must be no 

greater than one.

The re s u lt  generalizes read ily  to more than two lo t te r ie s  and more 

than two outcomes per gamble. Thus, i f  the p ro b a b i l i ty  o f ruin for. each
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independent gamble in the sequence is  bounded by some R^, then the 

sequence as a whole is  bounded by R)̂ .

Another way to motivate th is  re su lt  is to view some en t ire  

sequence as the play o f random samples from the set o f a l l  lo t te r ie s  

w ith an in d e f in i te -p la y  ru in  p ro b a b i l i ty  less than or equal to R^. To 

avoid the complications o f in f i n i t e  sets, imagine tha t the actual 

sequence is generated from a large, but f i n i t e ,  "pre-sample" set, and 

that plays w i l l  be drawn from th is  set with replacement.

Let the p ro b a b i l i ty  tha t the j - t h  gamble is presented be p ( i ) 

and the ch a rac te r is t ic  polynomial o f the i - t h  gamble be P( i ) . The 

cha rac te r is t ic  polynomial fo r  in d e f in i te  play o f th is  compound gamble 

is
I p ( i ) P ( i )
i

Since a l l  o f  the P( i ) are no greater than one, then the polynomial is 

no greater than one.

Sequences can be constructed, o f course, where the overa ll ru in 

p ro b a b il i ty  w i l l  s a t is fy  some constra in t even though ind iv idua l gambles 

w ith in  the sequence exceed the l im i t .  To construct such sequences 

requires information about the re la t iv e  frequencies o f the gambles to 

be encountered.

In the discussion to come, i t  is assumed tha t such frequency 

information is unavailable. So, to s a t is fy  a constra in t on the ruin 

p ro b a b il i ty  in an in d e f in i te  sequence of independent gambles, DM w i l l  

select those gambles tha t are in d iv id u a l ly  to le rab le  fo r  in d e f in i te  

play.
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Choice and the P rob ab il i ty  o f Ruin

Several authors have suggested ways in which the p ro b a b i l i ty  o f 

ruin might be used by DM’ s in choosing among ava ilab le  lo t te r ie s .

Both Borch [13, 14] and Roy [72] have recommended using the p ro b a b i l i ty  

o f ru in as an ob jec tive , i . e . ,  the decision ru le  they proposed is to 

minimize the ru in p ro b a b i l i ty .  Ferguson [32] has explored p a r t ic u la r  

circumstances where th is  advice has h e u r is t ic  value. As a general ru le ,  

however, i t  has implications tha t are apt to d is tu rb  most DM's.

Under such a ru le , any pure gain, no matter how nearly unrenumer- 

a t ive , would be preferred to every lo t te ry  with a f i n i t e  p ro b a b i l i ty  o f 

any loss, regardless o f how lu c ra t ive  the gamble, how small the potentia l 

loss or how remote the p ro b a b i l i ty  o f sustaining i t .

The minimization approach does have the advantage tha t i t  can be 

formulated as an expected u t i l i t y  ru le . Roy presents th is  re su lt  by 

appeal to a u t i l i t y  defined on events ra ther than on amounts o f money. 

Roy's u t i l i t y  function assigns a value o f one to the event tha t ru in 

does not occur and a value of zero to the event tha t i t  does. Zero-one 

u t i l i t i e s  do have some uses in operations research problems, but one 

senses tha t Roy o ffe rs  th is  p a r t ic u la r  u t i l i t y  in  a pro forma way. He 

does not pursue analysis with i t .

Borch observes tha t the p ro b a b i l i ty  o f  su rv iva l,  the complement o f 

the p ro b a b i l i ty  o f ru in , can be viewed form ally  as the expected value of 

some increasing function of the prizes offered in a gamble. Thus, a 

decision ru le  which maximized the p ro b a b i l i ty  o f surviva l (and a_ 

f o r t i o r i  minimized the p ro b a b i l i ty  o f ru in ) is  an expected u t i l i t y  

ru le in the conventional sense.

There is  a d i f f i c u l t y  w ith t ie s .  Every pure gain would have an
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expected u t i l i t y  value o f  one, and every unfavorable lo t te ry  would have 

a u t i l i t y  value o f zero. Borch proposes resolving the la t t e r  t ie s  by 

maximizing the expected survival time, i t s e l f  in te rp re tab le  as an 

expected u t i l i t y .

Assuming tha t DM is  unw il l ing  to prefer any pure gain to every 

r isky  gamble, the p ro b a b i l i ty  o f  ru in is ruled out as an ob jective . 

Perhaps i t  would be more p rac tica l to use the p ro b a b i l i ty  o f ru in as 

a constra in t.

Telser [91] suggests maximizing the expected monetary value of 

gambles subject to a ru in constra in t. Baumol [5] proposes a related 

c r i te r io n .  He explores maximizing the expected monetary value subject 

to  a constra in t on the p ro b a b i l i ty  tha t one's return f a l l s  below some 

selected value, not necessarily a ru in  leve l.  Pyle and Turnovsky [65] 

have studied the Telser and Baumol ru le s , along w ith others that they 

describe as " s a fe ty - f i r s t "  approaches. They f in d  tha t although there are 

circumstances in which such rules can be restated as expected u t i l i t y  

maxims, in other circumstances the restatement is stra ined or impossible.

Snow [88] has shown tha t a decision ru le  ind is t ingu ishab le  from 

maximizing expected exponential u t i l i t y  can be derived from a constra in t 

upon the p ro b a b i l i ty  o f ru in . The exponential u t i l i t y  has the form

U(x) = 1 - e_;vx

where A is  a pos it ive  constant and >< can be e ith e r  the prizes in the 

gamble being evaluated, or else the a f te r-p la y  wealths.

Suppose that DM s ta r ts  w ith i n i t i a l  cap ita l w and has chosen a 

maximum to le rab le  p ro b a b i l i ty  o f ru in which is s t r i c t l y  less than 

one. Suppose fu r th e r  tha t DM resolves to accept any favorable lo t te ry  

tha t comes along in preference to the status quo ( i . e .  a prize o f  zero
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fo r  ce r ta in ) ,  provided tha t the lo t te ry  has a to le rab le  p ro b a b i l i ty  of 

ruin in in d e f in i te  play. This spec if ica t ion  is a b i t  redundant, since 

any lo t te ry  tha t s a t is f ie s  the constra in t is  necessarily favorable.

Only favorable lo t te r ie s  have an in d e f in i te -p la y  p ro b a b i l i ty  of ruin 

less than one.

Now suppose tha t DM has the opportunity to buy, fo r  a p r ice , the 

lo t te ry  with in teger money prizes (a, b, . . . )  and associated p ro b a b i l i 

t ies  (p, q, . . . ) .  The maximum buying pr ice o f th is  lo t te ry  is the 

largest number, B_, such tha t the lo t te ry  (a-B, b-B, . . . )  and p ro b a b i l i t ie s  

(p, q, . . . )  is  preferred by DM to a prize o f zero fo r  certa in .

For our DM, th is  occurs when the ch a ra c te r is t ic  equation 

1 = pRa_B + qRb-B + . . .

is  sa t is f ie d .

Any price greater than _B would drive the ch a ra c te r is t ic  polynomial 

greater than one, ind ica ting  a ru in so lu tion greater than JR, and so 

v io la t in g  the constra in t.  Since the constra in t is s a t is f ie d  at B_, 

the diminished buying price lo t te ry  is acceptable in preference to zero.

A quick way to turn the buying price equation in to  an expected 

u t i l i t y  formula is  to make the fo llow ing additional assumption. Suppose 

tha t DM believes tha t the minimum s e l l in g  p r ice , or "c e r ta in ty  equivalent" 

as the minimum s e l l in g  price is  often ca lled , o f a lo t te ry  should equal 

i t s  maximum buying pr ice . In tha t case, the B_ found from the above 

cha rac te r is t ic  equation would be DM's ce r ta in ty  equivalent fo r  the 

o r ig ina l (a, b, . . . )  lo t te ry .

One can then rewrite  the c h a rc te r is t ic  equation by m u lt ip ly ing  

both sides by R^:

RB = pRa + qRb + . . .
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I f  B_ is the ce r ta in ty  equivalent fo r  the (a, b, . . . )  lo t te ry ,  then 

the rewritten  ch a ra c te r is t ic  equation defines the u t i l i t y  function

U(x) = -Rx

The minus sign makes the function increasing in i t s  argument. The 

rewritten equation says

U (certa in ty  equivalent) equals the 

expected value o f U(prizes)

In p a r t ic u la r ,  the rew ritten  equation defines the exponential u t i l i t y  

function. The parameter, A ,  of the usual form o f  tha t function can be 

found by solving

Note tha t i f  DM is t ra n s i t iv e  in exchange preferences and has the 

ordinary preference among amounts of money fo r  certa in  (the more, the 

b e t te r ) ,  then DM w i l l  p re fe r the lo t te ry  w ith the highest ce r ta in ty  

equi valent.

The log ic  is s tra igh tfo rw ard . DM is w i l l in g  to se ll  a lo t te ry  

(exchange the lo t te ry  fo r  money) a t the minimum s e l l in g  p r ice , the 

ce rta in ty  equivalent. A sum o f  money can be viewed form ally  as a lo t te ry  

with one p r ize . That said, i t ' s  easy to show th a t t r a n s i t i v i t y  fo r  a l l  

lo t te r ie s  leads DM to order lo t te r ie s  by th e i r  ce r ta in ty  equivalents.

The equa li ty  of buying and s e l l in g  prices is a well-known necessary 

a t t r ib u te  o f a conventional exponential u t i l i t y  decision ru le . I f  DM 

accepts the usual axioms and is r isk-averse, i . e . ,  the ce r ta in ty  equi

valent of any r is ky  lo t te ry  is  s t r i c t l y  less than i t s  expected money 

value, then the equa lity  of buying and s e l l in g  prices is s u f f ic ie n t  fo r  

adoption o f the exponential u t i l i t y .  See Kemeny and Thompson [46].

Pfanzagl [63] motivates a po licy  o f equal buying and s e l l in g  prices
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independently o f other p r in c ip les  o f choice. He observes tha t the gamble 

with prizes (a+c, b+c) w ith p ro b a b i l i t ie s  (p, q) is  in every respect 

identica l to the lo t te ry  (a, b) with the same p ro b a b i l i t ie s ,  combined 

with a simultaneous side-payment o f £.

He reasons, therefore, that the ce r ta in ty  equivalent o f the 

(a+c, b+c) lo t te ry  ought to be exactly £  greater than the ce r ta in ty  

equivalent of the (a, b) lo t te ry .  Pfanzagl ca l ls  th is  proposition the 

Consistency Axiom.

I f  the Consistency Axiom holds, then in the case where (a-c, b-c) 

with p ro b a b i l i t ie s  (p, q) is equivalent to zero, the lo t te ry  (a, b) w ith 

the same p ro b a b i l i t ie s  is  equivalent to £. In other words, the buying 

and se ll in g  prices fo r  the (a, b) lo t te ry  are the same.

Although the Consistency Axiom has some in tu i t i v e  appeal, i t  may 

be worthwhile to derive an exponential u t i l i t y  ru le  w ithout appeal to 

axioms at a l l .

K e lly 's  motivation o f a logarithmic u t i l i t y  ru le ,  discussed in the 

la s t chapter, did not depend on any o f the usual axioms. Of course, when 

applying logarithm ic u t i l i t y ,  one conforms to the behavior implied by 

the axioms.

The Kelly deriva tion  has much to recommend i t s e l f  in an engineering 

context, since the decision ru le  follows from maximizing an a r t icu la te d  

ob jective. Except fo r  assenting to tha t ob jective in the f i r s t  place 

(and accepting some approximations), no subjective a tt itudes  o f DM need 

to be considered.

Suppose, then, tha t DM derives the buying price equation based on 

an acceptance of the in d e f in i te -p la y  ru in assumptions, but balks at 

adopting any o f the conventional u t i l i t y  axioms or Pfanzagl's Consistency
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Axiom. DM can s t i l l  use the buying price furnished by the equation as 

a guide to choice among gambles.

Let the "net buying pr ice" be the buying price that appears in 

the equation, minus any costs ac tua lly  incurred by DM to acquire the 

gamble.

I f  the net buying price is po s it ive , then DM can withdraw that 

amount o f cap ita l from r is k  and s t i l l  experience a p ro b a b i l i ty  o f ru in 

no greater than the acceptable constra in t le ve l.  The withdrawal can be 

made regardless o f  the outcome of the lo t te ry .

The reason why th is  is  so echoes Pfanzagl's argument fo r  his 

axiom. The combination o f the withdrawal (and payment of any costs) 

followed by a play o f the lo t te ry  is in every way identica l to a play 

o f the lo t te ry  w ith a l l  o f  i t s  prizes diminished by the amount 

withdrawn (and costs).

In d e f in i te ly  repeated play o f th is  diminished lo t te ry  has a 

p ro b a b i l i ty  o f ru in  equal to the chosen constra in t leve l.

In general, DM w i l l  not be playing the same lo t te ry  in d e f in i te ly .  

Rather, DM w i l l  be playing a sequence of d i f fe re n t  independent gambles 

which, a f te r  the withdrawal, w i l l  each have a ru in  p ro b a b i l i ty  equal 

to the constra in t le ve l.  The sequence as a whole, therefore, w i l l  have 

a ru in p ro b a b i l i ty  o f the chosen value, as was shown e a r l ie r .

Thus, a po licy  o f choosing lo t te r ie s  according to th e ir  net 

buying prices w i l l  maximize the spendable income tha t DM can surely 

rea lize  from th is  in d e f in i te ly  sustainable program o f r isky  investment. 

" In d e f in i te ly  sustainable" means tha t there is  a pos it ive  p ro b a b i l i ty  

tha t DM's cap ita l w i l l  never be wiped out, no less than the complement 

o f the chosen ru in  cons tra in t.  This is a p lausib le basis fo r  choosing
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among gambles.

The s itu a t io n  of a DM facing a forced choice among unacceptable 

gambles is s im ila r .  Here, choosing the lo t te ry  w ith the highest net 

buying pr ice , i . e . ,  the one with the smallest absolute value negative 

"p r ice " ,  minimizes the outcome-independent amount o f cap ita l tha t must 

be raised to maintain the chosen ru in  p ro b a b i l i ty .

The buying price equation shows the e f fe c t  o f withdrawing the same 

amount o f money from r is k  regardless of the outcome of the lo t te ry .  This 

is not the only strategy fo r  making withdrawals tha t s a t is f ie s  the 

ru in p ro b a b i l i ty  cons tra in t.

For example, in a pure gain lo t te ry ,  one could withdraw a l l  o f  the 

prize money gained as soon as the outcome is known. Under th is  scheme, 

there is  no p o s s ib i l i t y  o f ru in in in d e f in i te  play.

In general, DM can choose amounts (X(a), X(b), . . . )  fo r  the 

lo t te ry  with prizes (a, b, . . . )  and p ro b a b i l i t ie s  (p, q, . . . )  in any 

way tha t pleases DM so long as

U(0) <_ pU(a-X(a)) + qU(b-X(b)) + . . .  

where U() is  the ru in -constra in ing  u t i l i t y  function . That is ,  as long 

as the ru in  constra in t is  s a t is f ie d ,  one can schedule withdrawals in 

any o f several ways.

The question o f what schedule y ie lds  the "best" withdrawal 

pattern is  a complicated one. There is  a temptation to view the problem 

as a choice among lo t te r ie s .  The general withdrawal scheme o f  the la s t  

paragraph o ffe rs  a £  chance of withdrawing X(a), a £  chance o f taking 

out X(b), and so on.

Comparing th is  w ith some other pattern o f withdrawal, e.g. an 

amount B fo r  ce r ta in , reminds one of a choice between lo t te r ie s .
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There is a c ruc ia l d iffe rence between withdrawal plans and 

lo t te r ie s ,  however. Money tha t is won but not withdrawn is nevertheless 

s t i l l  in DM's possession. The choice is not between having B_ or having 

the outcome of the (X(a), X(b), . . . )  lo t te ry .  The choice concerns only 

which o f DM's pockets w i l l  receive the money won in the real lo t te ry .

One d is t in c t io n  o f the buying price withdrawal plan is tha t i t  

does not depend on the outcome of the lo t te ry .  Another way to charac

te r ize  i t  is  as the maximin withdrawal scheme, that is ,  one which 

maximizes the minimum amount withdrawn, consistent w ith the constra in t.

The proof o f th is  is easy. Suppose

U(0) = pU(a-B) + qU(b-B) + . . .

Let (X(a), X(b), . . . )  be some other withdrawal scheme. Suppose the 

minimum o f the X's is greater than B_. Then, o f course, a l l  the X/s are 

greater than B̂. Since U() is  an increasing function , then

U(0) > pU(a-X(a)) + qU(b-X(b)) + . . .  

since each term's argument o f U() is  smaller the corresponding argument 

in the buying p r ice  equation. In words, the chosen constra in t is  not 

met.

S im ila r ly ,  the buying price is  the minimax withdrawal plan among 

those plans which ju s t  s a t is fy  the constra in t.  Suppose

U(0) = pU(a-X(a)) + qU(b-X(b)) + . . .

Then B_ must be no more than the greatest X_- Otherwise, the buying price

equation won't be s a t is f ie d .  That is

U(0) > pU(a-B) + qU(b-B) + . . .

Again, the sense o f  the inequa lity  is  assured by the term-by-term

comparison o f  the arguments o f U() .

The resu lts  obtained in th is  section may be o f both p rac tica l and
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theore tica l in te re s t  to those who do subscribe to the usual axioms.

A fte r a l l ,  nothing said here is a reason not to adopt those axioms i f

DM wants to do so.

As noted before, the conventional axioms provide l i t t l e  guidance 

fo r  the actual se lection o f a spec if ic  u t i l i t y  function. In practice , 

assessing a DM's u t i l i t y  function is often an arduous task.

Raiffa [67, chapter 4] describes the usual method fo r  assessing a 

u t i l i t y  function .

The assessor e l i c i t s  the sub ject's  preferences among several 

hypothetical gambles, p lo ts  the resu lts  and t r ie s  to f i t  a smooth 

curve to them. I f  no close f i t  is  obtained, another round o f questions 

ensues. The in terv iew  continues u n t i l  a "reasonable" curve is drawn.

Many rounds may be needed.

Meyer and P ra tt [60] demonstrate tha t i f  the subject can provide 

even a few constrain ing features o f the shape of the function , then 

progress can come more qu ick ly . N atu ra lly , progress comes even more 

qu ick ly  i f  the functiona l form o f the sub ject's  u t i l i t y  curve is  known

in f u l l  to the assessor.

I t  is possible fo r  a DM who accepts the usual axioms to know tha t 

one's u t i l i t y  curve must be exponential. I t  suff ices tha t DM be r is k -  

averse and also assent to  Pfanzagl's Consistency Axiom.

Interviewing about hypothetical gambles is s t i l l  required to 

establish the parameter that determines the ind iv idua l u t i l i t y  function . 

I t  is  possible, even l i k e ly ,  tha t DM's f i r s t  round o f responses might 

might not allow a close f i t  to any exponential curve, so repeated 

rounds o f questions may s t i l l  be required.

As shown in th is  section, however, whether DM knows i t  or not, an
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e x p o n e n t ia l -u t i l i ty  DM w i l l  accept a l l  favorable gambles in preference 

to the status quo unless the in d e f in i te ly  repeated play o f the gamble 

en ta i ls  a ru in p ro b a b i l i ty  tha t exceeds some value re lated to the 

sought-after exponential parameter.

I f  DM knows how much cap ita l one is w i l l in g  to put at r is k  and 

can set a constraining p ro b a b i l i ty  o f ru in ,  then the exponential u t i l i t y  

parameter can be solved fo r  a n a ly t ic a l ly .  Preferences among spec if ic  

gambles need not be explored. The v ir tu e  o f  tha t fa c t  in th is  context 

has nothing to do with a desire to avoid s u b je c t iv i ty ,  but ra ther 

concerns only the tedium involved in dealing w ith many hypothetical 

questions.

Note that the ru in  level o f  cap ita l loss has no p r iv i l ig e .  DM could 

be asked to constrain the p ro b a b i l i ty  o f ever losing any large amount o f 

money. The mathematics leading to the buying price equation w i l l  be the 

same.

For the avowedly "long run" DM, the ru in level does have a 

p a r t ic u la r  s ign if icance: i t  is  the amount o f  advers ity  tha t prevents DM 

from reaching the "long run". Even fo r  the long-runner, o f course, 

analysis could be based on the loss o f any large sum. I t  is th is  

f l e x i b i l i t y  tha t allowed a certa in  vagueness about the d e f in i t io n  o f 

cap ita l a t r is k .
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Power Law U t i l i t y  and Ruin Constraints

Suppose that instead o f playing the same gamble repeatedly, DM 

plays the fo llow ing sequence o f gambles. At each play, DM's pre-play 

ca p ita l ,  _x, is  m u lt ip l ie d  by a pos it ive  fac to r chosen from among 

( l+ (a /x ) ,  l+ (b /x ) ,  . . . )  w ith associated p ro b a b i l i t ie s  (p, q, . . . ) .  At 

each step, the cash prizes (a, b, . . . )  are adjusted p roport iona lly  to 

DM's current cap ita l so tha t the ra tios  (a /x , b/x, . . . )  are constant 

throughout the series.

A fte r any number o f plays, DM's cap ita l w i l l  be the product o f 

the i n i t i a l  cap ita l w and the factors associated with each o f the 

prizes received. The logarithm o f DM's c a p ita l ,  therefore, w i l l  be the 

sum o f log(w) and the logarithms o f the prize factors received.

In terms o f logarithms, DM's wealth is undergoing an add it ive  

random walk analogous to the random walk that arises from repeated play 

of a gamble w ith constant absolute prizes.

There are some differences between the random walks. The f i r s t  is  

that DM's cap ita l w i l l  never reach zero the way that the repeated 

proportional game has been set up. As in the Kelly analysis, there is 

no p o s s ib i l i t y  o f ru in . Nevertheless, DM can establish some minimal level 

of cap ita l and designate adversity to tha t level as " ru in " .  I t  is 

computationally convenient to set that level a t one un it  o f currency, 

e.g. one cent or one d o l la r  or whatever units the prizes w i l l  be paid in . 

The logarithm of the ru in  level is thus zero.

DM can then formulate the ru in problem as the p r o b a b i l i t y  tha t the 

sum o f the logs o f  the prize factors received is - log (w ), where w is the 

i n i t i a l  cap ita l expressed as a m u lt ip le  o f the un it  chosen as the ru in 

leve l.
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The second concern is tha t the p r izes ' logarithms are generally 

not integers. The deriva tion  of the ch a ra c te r is t ic  equation fo r  the 

additive random walk was fo r  integers. I f  one proceeds by analogy 

to the additive case w ith logarithm ic steps, then an element o f 

approximation is introduced.

This is o f l i t t l e  concern, since the logarithms can be treated 

as i f  evaluated to some f ixed  decimal precis ion. Thus, to whatever the 

chosen precision is ,  one has an " in teger" representation. Since the 

object o f the exercise is to obtain a bound, th is  convention should be 

e n t i re ly  sa t is fa c to ry .

That noted, DM can proceed by analogy to the add it ive  random walk

case. The p ro b a b i l i ty  tha t the logarithm o f DM's wealth w i l l  ever f a l l

to zero, s ta r t in g  from log(w) and playing the sequence o f proportional

gambles described e a r l ie r  is  no more than

r log(w)

where r. is  the so lu tion  o f the ch a ra c te r is t ic  equation

1 = p r l o g ( l+ ( a / x ) )  + q r l o g ( l+ ( b / x ) )  +

The bound would be an exact so lu tion  fo r  the p ro b a b i l i ty  o f ru in 

i f  the i n i t i a l  wealth were an integer power o f an in teger base,

w = nm

and the prize fac tors  were and 1/n, w ith the p ro b a b i l i ty  o f the be tte r 

outcome being greater than one-half. This is ju s t  the logarithm ic 

equivalent o f the add it ive  lo t te ry  w ith symmetric u n it  prizes. The 

integer base assures tha t the prizes could ac tu a lly  be exactly  paid as 

the game unfolded.

Returning to the general case, assume tha t DM has chosen some 

constraining p ro b a b i l i ty  o f ru in  R^°9(w), pos it ive  and less than one.
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A lo t te ry  sequence has an acceptable p ro b a b i l i ty  o f ru in  in in d e f in i te  

play i f

1 >_ pRlo 9 (1+(a /x ))  + qRlo g ( l+ (b /x ) )  + _

Note that since R is a constant between zero and one (exc lus ive), 

there is some pos it ive  a such that

R = e“ A

so tha t we can rewrite  the expressions in _R tha t appear in the 

cha rac te r is t ic  polynomial as

Rl o g ( l + ( a / x ) ) = e-A lo g ( l+ (a / x ) )

= (1 + ( a / x ) ) - A 

Thus, the ch a ra c te r is t ic  polynomial te s t  can be w r it te n  as

1 _> p ( l  + (a /x ) )~ A + q(1 + ( b / x ) ) " A + . . .

I f  P_ is the chosen constra in ing p ro b a b i l i ty  o f  ru in ,  then i t  is

easy to solve fo r  x given w:

R l o g ( w )  = W-A = p

so, A = - ( lo g (P ) / lo g (w ))

Just as in the add it ive  case, i t  is  easy to show tha t i f  each 

proportional gamble in a series has an acceptable p ro b a b i l i ty  o f ru in 

fo r  in d e f in i te  proportional p lay, then so does the series as a whole.

The ch a ra c te r is t ic  polynomial te s t  can be recast as a power-law 

u t i l i t y  expression. For a pr ize  z_, the power-law u t i l i t y  is

U(z) = - (x  + z ) " A

where £  is DM's cap ita l and lambda is  a pos it ive  constant. The minus sign

makes U() an increasing function o f i t s  argument.

In the conventional u t i l i t y  theory, a lo t te ry  is preferable to the 

status quo i f  and only i f  i t s  expected u t i l i t y  exceeds the u t i l i t y  o f  a 

prize o f zero fo r  c e r ta in ,  U(0). This condition may be w r i t te n :
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- X  p ( i ) (x + a ( i ) )~A > -x~A 
i

where the p( i ) 1s are the gamble's p ro b a b i l i t ie s ,  the a ( i ) 1s are the

cash pr izes, and the summation is taken over a l l  the prizes.

Dividing both sides o f th is  inequa lity  by -x~A gives

X. p ( i ) (x + a ( i ) ) " A /  x~A < 1
i

which s im p lif ie s  to a form o f the ch a ra c te r is t ic  polynomial te s t :

21 p( i )(1 + ( a ( i ) / x ) ) " A < 1 
i

The sum on the l e f t  is  ju s t  the ch a ra c te r is t ic  polynomial. Since i t  is 

less than one, the constra in t is s a t is f ie d .

Thus, whenever a lo t te ry  is acceptable in the conventional 

expected power-law u t i l i t y  sense, the chosen ru in  constra in t is s a t is 

f ie d ,  and so the lo t te ry  is acceptable in tha t sense, too.

Note tha t maximizing th is  u t i l i t y ' s  expected value is not 

equivalent to minimizing the p ro b a b i l i ty  o f ru in . To implement a 

minimizing ru le  would have the same l im ita t io n s  in proportional play 

tha t i t  faced under simple additive play. A small gain fo r  certa in 

would always be chosen over a luc ra t ive  and safe, but not p e rfe c t ly  safe, 

gamble.

Now suppose tha t DM wishes to se lect lo t te r ie s  in such a way as 

to constrain the p ro b a b i l i ty  o f ru in enta iled  by those choices. DM has 

two s tra teg ies , one based on an exponential re la t io n  and the other based 

on the power law.

Both approaches are equally good at enforcing the constra in t. Thus, 

DM's choice between them must depend on other fac to rs . One way in which 

the two stra teg ies d i f f e r  is how d i f fe re n t  lo t te r ie s  become acceptable 

(or not) as wealth changes. To explore th is  d if fe rence , one can use facts
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that are known about the exponential and power-law u t i l i t y  functions.

An important source of knowledge about u t i l i t y  functions 

generally is  the theory o f " r is k  aversion functions" developed by 

Arrow [2] and P ra tt [64],

Let U() be any tw ic e -d if fe re n t ia b le  increasing function. The r is k  

aversion function fo r  U() is  defined as

r (x )  = -U "(x ) /U '(x )

The argument .x is  the to ta l wealth or c a p ita l ,  ra ther than prizes or 

changes in  wealth.

Arrow and P ra tt  showed tha t i f  the r is k  aversion function is 

decreasing in wealth, then the s e l l in g  price of a given lo t te ry  

approaches the lo t te r y 's  ac tuaria l value ever more c losely as DM gets 

r icher.

Behaviora lly , then, favorable lo t te r ie s  tha t are unacceptable at 

lower wealth tend to become acceptable as wealth increases, i f  the 

r is k  aversion function is  decreasing. Increasing r isk  aversion has the 

opposite, and somewhat q u izz ica l,  character. The wealth ier DM becomes, 

favorable lo t te r ie s  are apt to become unacceptable even though they 

were acceptable when DM was poorer. Constant r is k  aversion means tha t 

any lo t te ry  tha t is  acceptable at one level o f wealth is acceptable 

at any other.

The a t t r ib u te s  o f a lo t te ry  tha t are held the same in the preceding 

discussion are the p ro b a b i l i t ie s  and the absolute pr izes, i .e .  changes 

in DM's wealth.

I t  is  easy to v e r i fy  tha t the exponential u t i l i t y ,  U(x) = 1 - e ' x , 

has constant r is k  aversion, s p e c i f ic a l ly

r (x )  = X
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The reader can also re ad ily  v e r i fy  tha t the wealth-domain version 

o f the power-law u t i l i t y  function ,

U(x) = x "A A > 0

has a r i s k  aversion func t ion

r ( x )  = 1 /  (x(A + 1)) 

which i s ,  by inspec t ion ,  decreasing in _x-

A related quantity  is  the proportional r is k  aversion function .

I t  is  defined as

r* (x )  = xr(x)

The in te rp re ta t io n  of the proportional r is k  aversion function is 

analogous to tha t o f  the ordinary (or "absolute") r is k  aversion function . 

Suppose one varies the prizes in a gamble as DM's wealth changes 

p ropo rt iona lly  to the current wealth.

Decreasing proportional r is k  aversion means tha t some gambles that 

were unacceptable at lower wealth become acceptable when scaled up with 

higher wealth. Increasing proportional r is k  aversion means ju s t  the 

opposite: some gambles tha t were acceptable at low wealth become 

unacceptable when scaled up with higher wealth. Constant proportional 

r is k  aversion means tha t gambles acceptable at any wealth level are 

acceptable a t a l l  others i f  the prizes are scaled p ropo rt iona lly .

The power-law u t i l i t y  func tion 's  proportional r is k  aversion is 

constant:

r * (x )  = xr(x ) = 1 /  ( a + 1)

The exponential u t i l i t y  function displays increasing proportional r is k  

aversion:

r * (x )  = x r(x ) = Ax 

Arrow-Pratt r 's k  aversion theory is  a handy tool fo r  theorem
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proving and fo r  exploring the properties o f  selected u t i l i t y  functions. 

Armed w ith the resu lts  o f the Arrow-Pratt analys is, we can q u a l i ta t iv e ly  

characterize the d iffe rence between the power-law and the exponential 

ru in -con s tra in t schemes.

The exponential method does not adapt i t s  selections based upon 

changing wealth. I f  a lo t te ry  was unacceptable fo r  play at the i n i t i a l  

cap ita l le v e l,  then i t  remains unacceptable even a f te r  cap ita l has 

doubled or t r ip le d .  I t  remains unacceptable even i f  DM would take the 

lo t te ry  had the program began at the current wealth.

That is ,  even i f  the p ro b a b i l i ty  o f accepting the gamble 

in d e f in i te ly  from now on does not lead to an unacceptable p ro b a b i l i ty  

o f ru in , th is  does not re h a b i l i ta te  the lo t te ry .

Conversely, i f  DM has suffered adversity and capita l is  now 

considerably less than i t  was o r ig in a l ly ,  nevertheless, a l l  the gambles 

that were acceptable in the beginning remain acceptable. No account is 

taken tha t ru in  has become considerably more l ik e ly .

The power-law method is somewhat more adaptive. As cap ita l 

increases, a lo t te ry  whose money stakes were o r ig in a l ly  too r isky  may 

become acceptable. The ru le  is not to t a l l y  adaptive, however. At any 

f i n i t e  increased c a p ita l ,  there are going to be lo t te r ie s  whose ruin 

p ro b a b i l i ty  fo r  in d e f in i te  play from now on would be acceptable, but 

which w i l l  be re jected anyway.

The power-law becomes more conservative, in a sense, as r isk  

cap ita l increases. Even though higher stakes gambles are taken as wealth 

r ises , the maximum to le rab le  p ro b a b i l i ty  o f ru in  from any higher capita l 

is  less than the i n i t i a l  value.

The exponential ru le  grows more conservative, too. Indeed, th is
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behavior is not confined to the exponential and power-law ru les. I t  is 

a ch a ra c te r is t ic  o f any ru in -constra in ing ru le  tha t is  "myopic", tha t 

allows in d e f in i te  play and tha t obeys the "dominance p r in c ip le " .

Let us say tha t a ru le  is ru in-constra in ing i f ,  fo r  a l l  values o f 

cap ita l above ru in , the maximum to le rab le  p ro b a b i l i ty  o f ru in is less 

than one. By "myopic", we mean that the ru le does not make assumptions 

about what lo t te r ie s  w i l l  be offered to the DM beyond those cu rren tly  

being evaluated. By allowing in d e f in i te  play, we mean tha t a t every 

f i n i t e  wealth level greater than ru in , the ru le allows a pos it ive  

p ro b a b il i ty  of loss to be accepted. This, in tu rn , implies tha t one 

always bears some p ro b a b i l i ty  o f ru in .

Obedience to the dominance p r in c ip le  imposes some common sense on 

the decision ru le . A ru le  that obeys the dominance p r in c ip le  

w i l l  always accept any lo t te ry  or series of lo t te r ie s  whose worst outcome 

is  to a rr ive  a t a level o f cap ita l no lower than the pre-play ca p ita l.  

S im ila r ly ,  a ru le  tha t obeys the dominance p r in c ip le  w i l l  always re je c t

a lo t te ry  or series o f  lo t te r ie s  whose best outcome is  to a t ta in  a capi

ta l no higher than the pre-play leve l.

I t  is easy to see tha t a myopic, in d e f in i te -p la y ,  dominance- 

obedient decision ru le 's  maximum to le rab le  p ro b a b i l i ty  o f ru in  w i l l  be 

non-increasing in wealth.

Let P(x) be the maximum to le rab le  p ro b a b i l i ty  o f  ruin under such 

a ru le at cap ita l x.• Suppose there were some cap ita l level > x such 

that P(y) > P (x).

Since the ru le  is  myopic, we cannot ru le  out the p o s s ib i l i t y  tha t 

DM w i l l  be offered the g i f t  lo t te ry  o f y - x fo r  sure a t cap ita l x_.

By dominance, DM w i l l  accept the g i f t ,  but then DM w i l l  bear the probabi-
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l i t y  o f ru in P(y) > P (x ). Thus, P(x) is not the maximum to le rab le  

p ro b a b i l i ty  o f ru in  fo r  a l l  sequences acceptable under the ru le  s ta r t in g  

from .x. That is a con trad ic tion .

Further, there must be some £  > x_ such tha t P(y) < P (x). By the 

in d e f in i te  play assumption, DM is  w i l l in g  to bear some r is k  o f ruin 

from _x. By dominance, DM w i l l  only take such a r is k  i f  there is  some 

p ro b a b i l i ty  o f doing be tte r than x.

Suppose fo r  a l l  > _x, P(y) = P (x). Then, DM embarks from x on a 

sequence of gambles which y ie lds  some p ro b a b i l i ty  £  o f  ru in , some 

p ro b a b i l i ty  £  o f doing less well than x,  but not so bad as ru in , and 

some p ro b a b i l i ty  l -£ -£  o f  doing be tte r than x.

The p ro b a b i l i ty  o f ru in a t ru in is  necessarily one. The to le rab le  

ruin p ro b a b i l i ty  between £  and ruin is no less than P(x) by the non

increasing ruin p ro b a b i l i ty  resu lts  ju s t  shown. By hypothesis, fo r  values 

greater than _x, the maximum to le rab le  p ro b a b i l i ty  o f ru in is P (x). 

Assuming as always independent p lay, the maximum to le rab le  p ro b a b i l i ty  

o f ru in from _x is greater than P (x ) , since i t  is no less than

p + qP(x) + ( l-p -q )P (x )

We recognize that as the weighted average o f  P(x) < 1, and one. Since

we can always construct a sequence where £  is p o s it ive ,  the expression 

is greater than P(x) fo r  some acceptable sequence. That is  also a con

t ra d ic t io n ;  P(x) emerges as not the maximum to le rab le  ru in p ro b a b i l i ty .

To summarize, a sensible decision ru le  tha t places a non

t r i v i a l  constra in t on the p ro b a b i l i ty  of ru in has a maximum to le rab le  

p ro b a b i l i ty  o f ru in tha t is  nowhere increasing, and above every level 

of c a p ita l ,  somewhere decreasing in  ca p ita l .

I f  DM adopts such a ru le , then as r is k  cap ita l increases, one w i l l
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ine v itab ly  be at r is k  o f re jec t ing  lo t te r ie s  whose "from now on" 

ru in p ro b a b i l i t ie s  are equal to the ru in p ro b a b i l i t ie s  that were 

acceptable at the beginning o f the program. Note that th is  has 

nothing to do with any subjective desire fo r  increased caution as the 

loss in question escalates.

One is  s t i l l  l e f t  w ith the question o f how DM might choose 

between two d i f fe re n t  lo t te ry  selection approaches which have the 

same p ro b a b i l i ty  o f ru in but d i f fe re n t  behavior as DM's wealth changes. 

The instantaneous bound on the p ro b a b i l i ty  o f ru in ,  ju s t  introduced as 

P (x), provides some useful ins igh ts .

I t  is easy to see tha t th is  instantaneous bound is  simply 

P(x) = Rx x >_ 0

fo r  the exponential decision ru le , and

P(x) = x“ A x i l  ^

fo r  the power law. (Remember tha t the domains o f these two functions 

d i f f e r  at the low end by one u n i t . )

For purposes o f comparison, l e t  the i n i t i a l  p ro b a b i l i ty  o f ru in  

be the same under each ru le ,

w"A = Rw

Both stra teg ies have a value o f one a t th e i r  respective and nearly 

iden tica l leve ls o f ru in . Both s tra teg ies ' bounds asymptotically 

approach zero as cap ita l approaches i n f i n i t y .  Both bounds are s t r i c t l y  

decreasing in cap ita l over the en t ire  range between ru in  and in f i n i t y .

One thing tha t distinguishes the curves is  the speed w ith which 

the instantaneous p ro b a b i l i ty  o f ru in  bound climbs in the event o f 

adversity and t r a i l s  o f f  under the happier circumstance of prosperity . 

Let us discuss the contrast in the neighborhood of the i n i t i a l  ca p ita l .
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To aid in discussing the bounds about w, i t  is  helpfu l to note

the fo llow ing id e n t i t ie s :

r x  = p ( w ) X / W

and x“ x = p(w) 1°9 (x ) / ' log(w)

where P(w) is the common i n i t i a l  p ro b a b i l i ty  o f ru in . These fo llow

immediately from

P(w) = Rw 

and P(w) =

By inspection, fo r  large w, changes in _x w i l l  have much sharper

impact on the ra t io  o f _x and w then on the ra t io  o f th e ir  logarithms.

Thus, moderate adversity causes a much smaller enhancement o f the r is k -  

o f- ru in  bound fo r  the power-law ru le  than fo r  the exponential. 

Conversely, moderate success m itigates the ru in bound much more fo r  the 

exponential than fo r  the power law.

This behavior ought not to be surpris ing . By playing the same 

gamble repeatedly regardless o f current c a p ita l ,  the exponential ru le

commits DM to play at a modest scale compared to risen resources, and

yet be a "high r o l le r "  under advers ity .

In contrast, the more dynamically adaptive power-law ru le

continuously adjusts the scale o f gambles taken to re f le c t  current 

resources.

Another way to th ink  o f  a l l  th is  fo llows. Assuming tha t DM is free 

to decline unfavorable gambles, then cap ita l w i l l ,  on average, tend to 

increase under e ith e r stra tegy as play unfolds. The exponential ru le  

tends to " f ro n t  load" more o f  the to ta l  ru in r is k  o f  the program in to  

the early plays.

I f  DM survives the f i r s t  several plays, then chances are tha t one
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has accumulated additiona l ca p ita l.  So, the rea fte r ,  ru in is re la t iv e ly  

remote under an exponential regime. Adversity on a handful o f  early 

plays exposes the program to great danger.

The power law is more fo rg iv ing  of early  advers ity , but early 

success does not so nearly guarantee perpetual success.

These observations do not r ise  to the level o f  p rescrip t ion . The 

overall p ro b a b i l i ty  o f ru in  is  the same under e ith e r  approach. One DM 

might prefer to get the "sweaty palms" phase o f the program out o f the 

way early . Another DM might be persuaded to endure some suspense in 

return fo r  the a b i l i t y  to place more o f one's cap ita l at productive r is k  

la te r  on.



CHAPTER III

UTILITY-LIKE DECISION RULES

Power-Law Buying and S e ll ing  Price Rules

Suppose tha t a ruin-conscious DM chooses to constrain one's 

p ro b a b i l i ty  o f  ru in using an expected power-law u t i l i t y  decision ru le . 

Based upon what has been developed so fa r ,  DM can d is tingu ish  between 

lo t te r ie s  tha t s a t is fy  some chosen ru in constra in t and those which do 

not. This is only a p a r t ia l  ordering. I t  does not t e l l  DM which o f two 

acceptable lo t te r ie s  is the "be tte r"  one.

I f  DM accepts the conventional u t i l i t y  axioms, then one could 

(indeed, must) adopt as a decision ru le  the maximization o f  the expected 

value o f  the chosen u t i l i t y  function.

On the other hand, the form of the power-law u t i l i t y  function has 

been derived in such a way tha t DM need not make any commitment to the 

usual axioms. Thus, the ruin-conscious DM is at l ib e r ty  to impose any 

ordering one pleases on gambles, once the prospects tha t s a t is fy  the 

chosen constra in t have been id e n t i f ie d .

For example, one could fo l low  Telser [91] and choose among feas ib le  

lo t te r ie s  according to th e i r  expected monetary values.

Another p o s s ib i l i t y  rests on the observation tha t fo r  at least one 

type o f lo t te ry  there is a na tura l, uncontroversial ordering. The 

category is  amounts fo r  ce r ta in , and the ordering ru le  is "the more, the 

be tte r" .

One approach, then, to the ordering o f r isky  gambles is to see 

whether such gambles can be re lated to amounts fo r  ce r ta in . I f  so, then

56
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perhaps r isky  gambles could be ordered according to th e i r  fo r -c e r ta in  

re la t ives .

Conventional u t i l i t y  theory suggests two main techniques fo r  

re la t in g  amounts fo r  certa in  to r isky  gambles. One way is  via the 

theore tica l s e l l in g  p r ice . The s e l l in g  p r ice , S_, is  the number that 

sa t is f ie s

U(S) = 2  p( i )U( a( i )) 
i

That is ,  the amount o f money whose u t i l i t y  value is  the same as the 

expected u t i l i t y  value o f the lo t te ry .

Selecting the gamble with the highest s e l l in g  price is in every 

way iden tica l to se lecting the gamble w ith the highest expected u t i l i t y  

value, since

S = U-1 ( X  p ( i )U (a ( i ) ) )  
i

where IT * ( ) is  the inverse o f  U() . Because U() is  an increasing function , 

so is i t s  inverse. So, the highest s e l l in g  price belongs to the highest 

expected u t i l i t y  gamble.

The other main re la t ionsh ip  between r isky  gambles and amounts fo r  

certa in is the buying p r ice . The buying price is the amount, B̂, tha t 

sa t is f ie s

U(0) = 2  p( i ) U( a( i ) - B) 
i

That is ,  the amount which, when subtracted from each o f the prizes, 

leaves a lo t te ry  which DM values the same as the status quo.

I t  has already been shown tha t the buying price has some 

operational meaning w ith in  the ru in -co n s tra in t framework. I t  is the most 

that a ruin-conscious DM would pay to obtain the gamble. I t  is  also an 

amount ava ilab le fo r  withdrawal from r is k  without v io la t in g  the
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chosen con tra in t.

To s im p lify  the discussion, one can drop the e a r l ie r  section 's 

d is t in c t io n  between the "net" buying price and the simple buying price. 

Assume tha t a l l  lo t te ry  prizes are quoted net o f any costs o f 

acqu is it ion .

I f  the u t i l i t y  function is the exponential, then the buying price 

and the s e l l in g  price are the same. For the power law, the reader can 

ve r ify  tha t and S^will generally d i f f e r  (except fo r  amounts fo r  sure).

Krantz, Luce, Suppes and Tversky [48] show th a t,  fo r  u t i l i t i e s  

where the prices d i f f e r ,  the ordering o f lo t te r ie s  based on the buying 

price w i l l  be d if fe re n t  from that based on the s e l l in g  p r ice . The two 

orderings are d is t in c t  and w i l l  lead to d i f fe re n t  choices. Nevertheless, 

there are many noteworthy s im i la r i t ie s  between the two orderings.

The buying price and the s e l l in g  price agree in sign fo r  a l l  

u t i l i t i e s ,  so the two rules select the same lo t te r ie s  in preference to 

the s ta tus gu£.

To see that the prices agree in sign, consider any u t i l i t y  func

t ion  VO. I f  the buying price is zero, then

V(0) = 2  p( i ) V(a( i ) - 0 ) = 2  p ( i ) V ( a ( i ) )  
i i

The prices agree, therefore , at zero. I t  is  t r i v i a l  to confirm the

agreement fo r  other signs, using the agreement at zero and the increasing

nature of V() .

Another s im i la r i t y  between the buying and s e l l in g  price rules is 

the avoidance o f mixed stra teg ies fo r  se lecting lo t te r ie s  under r is k .

That is ,  the maximum buying price or s e l l in g  pr ice obtainable among a 

group o f  lo t te r ie s  cannot be increased by creating a composite gamble 

among the a lte rna tives .
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This is simple to show fo r  the s e l l in g  pr ice . One uses the 

equivalence o f the maximum s e l l in g  price with the maximum expected 

u t i l i t y .

Suppose DM faces two or more a lte rna t ive  gambles. Rather than

choose the one w ith the highest expected u t i l i t y ,  DM creates a compound

gamble which one hopes w i l l  have an even higher expected u t i l i t y  (and

hence, higher s e l l in g  p r ice ) .

Suppose tha t DM creates the compound gamble by assigning to the

i - t h  gamble the p ro b a b i l i ty  q ( i ) o f being selected. The expected u t i l i t y

o f the compound gamble is

£  q ( i ) tthe expected u t i l i t y  o f the i - t h  gamble] 
i

That is  simply the weighted average of the ava ilab le  expected u t i l i t i e s ,  

and i t s  value cannot exceed that o f i t s  highest-valued constituent.

Thus, the s e l l in g  price o f  the compound gamble can 't  be higher than 

that o f  the h ig h e s t-se l l in g -p r ice  constituent.

To prove the corresponding re su lt  fo r  the buying price requires a 

s l ig h t ly  more oblique argument.

Suppose V () is any u t i l i t y  function and B_ is  the buying price 

assigned to some lo t te ry  by V() . Consider the function

F(z) = V(z-B)

F () is  i t s e l f  a u t i l i t y  func tion , being increasing in i t s  argument. The

expected value o f the F - u t i l i t y  is  V(0) fo r  any lo t te ry  whose buying

price under the V - u t i l i t y  is  B_. That is ,

V(0) = Z p( i )V(a( i ) - B) = r  p ( i ) F ( a ( i )) 
i i

I t  is easy to see tha t any lo t te ry  whose buying price under V() is  less

than B^will have an expected F - u t i l i t y  less than V(0_). Any lo t te ry  whose
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buying price under V (, is  more than ^  w i l l  have an expected F - u t i l i t y  

greater than V(O).

Maximizing F - u t i l i t y  is not equivalent to choosing lo t te r ie s  

according to th e i r  V -u t i1i t y  buying prices. The F - u t i l i t y  merely 

establishes a threshold mark tha t sorts lo t te r ie s  in to  three categories 

based on whether th e i r  V -u t i1i t y  buying prices are bigger than, smaller 

than or equal to IB. The ordering o f  lo t te r ie s  w ith in  the f i r s t  two 

categories w i l l  generally be d i f fe re n t  under F - u t i l i t y  from the ordering 

by th e i r  V - u t i l i t y  buying prices.

Thus, F - u t i l i t y  is not a surrogate fo r  the selection o f lo t te r ie s  

by th e i r  V - u t i l i t y  buying pr ices, but i t  is a handy tool fo r  proving 

theorems about buying p rice  ru les. Although i t  is  not ob liga to ry  to do 

so, one can "normalize" the F - u t i l i t y  by redefin ing i t  as

F(z) = V(z - B) - V(0)

The subtraction of the constant V(0) does not change the ordering of

lo t te r ie s  under expected F - u t i l i t y .  I t  makes the threshold te s t  value 

zero instead o f V (0).

Suppose now tha t B_ is the greatest V - u t i l i t y  buying price 

ava ilab le among the ind iv idua l lo t te r ie s  facing DM. I f  a mixed strategy 

could produce a composite gamble w ith a higher buying p r ice , then the

F -u t iT i ty  would be greater than zero.

Zero, however, is the expected F - u t i l i t y  o f  the highest buying 

price lo t te ry  among the a lte rn a t ive s . I t  has already been shown tha t 

a mixed strategy cannot increase the expected u t i l i t y  value o f any 

choice beyond what is  o ffered by the h ig hes t-expe c ted -u t i l i ty  lo t te ry .  

Since the F - u t i l i t y  o f any mixed strategy is at most zero, i t s  ^ - u t i l i t y  

buying price is  at most B_.
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One s tra ightforward argument in favor of the buying price ordering 

is  tha t i t  corresponds to a fa m il ia r  notion of one thing being better 

than another. One is  usually w i l l in g  to pay more fo r  the preferred 

object.

I f  DM is o f an axiomatic turn o f mind, then there is Pfanzagl's 

[63] Consistency Axiom. Recall that th is  axiom holds tha t i f  a l l  the 

prizes in a lo t te ry  are changed by the addition o f a constant, £ , then 

the value o f the lo t te ry  to DM changes by c_.

As explained in an e a r l ie r  section, the foundation o f th is  axiom 

is tha t a lo t te ry  with prizes (a, b, . . . )  is in every way identica l to 

the lo t te ry  w ith prizes (a-c, b-c, . . . )  combined with a simultaneous 

side payment o f £. Since the two contingencies are ind is t ingu ishab le , 

Pfanzagl would assign the same value to them.

I t  does not necessarily fo l low , however, tha t the value of the 

combination o f the diminished lo t te ry  and the side payment is  the sum 

o f  the values attached to the diminished lo t te ry  and the payment 

separately.

An adherent of the conventional u t i l i t y  theory would argue that 

the side payment increases DM's wealth. I f  one's u t i l i t y  function were 

wealth-dependent, then the value assigned to the diminished lo t te ry  

would be d i f fe re n t  depending on whether one's pre-play wealth were some 

value _x or x + £.

One need not appeal to psychological preferences to make th is  

argument. Consider the ruin-conscious DM who does not make any withdrawal 

from one's c a p ita l .  Suppose tha t at cap ita l x,  the diminished lo t te ry  

ju s t  s a t is f ie d  the chosen constra in t. Thus, the value o f the diminished 

lo t te ry  at x is zero.
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At an increased cap ita l l ik e  _x + £ , the same diminished lo t te ry  

might be less ruinous and so might no longer be valued at zero. The 

value o f the diminished lo t te ry  and the side payment, therefore , would 

be greater than the sum o f  the values o f each component alone.

Although Pfanzagl's axiom is in t u i t i v e ly  pleasing, there is no 

log ica l d i f f i c u l t y  in v io la t in g  i t  in the way ju s t  discussed. I f  DM 

accepts the conventional axioms, then the expected u t i l i t y  value of the 

o r ig ina l (undiminished) lo t te ry  evaluated at cap ita l x_ would be the 

same as that o f the diminished lo t te ry  evaluated at x + c, since

U(x + a) = U(x + c + a - c) 

fo r  a l l  lo t te ry  prizes a_.

In words, DM imputes the same value to the undiminished lo t te ry  

as to the combination o f the diminished lo t te ry  and the side payment. 

That value, however, simply i s n ' t  the sum o f the two components.

Thus, the recognition that a lo t te ry  is  the same as a diminished 

lo t te ry  cum side payment does not compel the acceptance of Pfanzagl's 

axiom. Some additional assumptions are needed, e .g . ,  tha t the side 

payment and the diminished lo t te ry  can be valued independently o f one 

another. Or, to use a term sometimes encountered in the economics 

l i te ra tu r e ,  tha t the diminished lo t te ry  and the side payment lack 

"complementarity".

Acceptance o f th is  assumption seems qu ite  reasonable i f  DM intends 

to withdraw a sum from r is k .  The money withdrawn is then unavailable to 

the capita l account to influence the evaluation o f  the diminished gamble.

I t  is easy to imagine tha t such a DM might make the fo llow ing 

sequence o f swaps. The undiminished lo t te ry  is exchanged fo r  i t s  buying 

price and a su itab ly  diminished lo t te ry .  The value o f the diminished
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lo t te ry  to DM is zero, and DM would give i t  away i f  allowed to do so.

Such a give-away would leave DM with no lo t te ry ,  and only the buying 

price o f the f i r s t  lo t te ry  to show fo r  the two transactions.

In e f fe c t ,  then, DM has sold the o r ig ina l lo t te ry  fo r  i t s  buying

price. Thus, the real s e l l in g  price o f a lo t te ry  fo r  DM is not the

the quantity  which is  conventionally dubbed the s e l l in g  p r ice , but ra ther

the buying pr ice . One could simply dub the buying price "the pr ice" fo r

such a DM.

Contrast th is  with DM's behavior i f  one subscribes to the conven

tional expected u t i l i t y  ordering. I t  is a standard re su lt  o f the Arrow- 

P ra tt theory tha t the conventional s e l l in g  price is  greater than the 

buying price fo r  positive-va lued lo t te r ie s ,  assuming that DM's u t i l i t y  

function is decreasingly risk-averse.

Under a conventional u t i l i t y  ordering, then, DM would be unw il l ing  

to trade a gamble whose pos it ive  buying price is B_ in order to receive 

B. fo r  certa in . DM would be unw il l ing  to trade the lo t te ry  fo r  any amount 

less than the theore tica l se l l in g  price.

I f  DM intends to withdraw the buying price o f  lo t te r ie s  from r is k ,  

then adopting a s e l l in g  pr ice ordering w i l l  lead to qu izz ica l choices.

Suppose DM faced a choice between a gamble whose buying price is 

B_ and some amount P_ fo r  ce r ta in , where £  is greater than the buying 

price but less than the conventional s e l l in g  price o f the gamble.

Under a buying pr ice ordering, o f course, DM would se lect P_ fo r  

certa in and enjoy the higher consumption tha t th is  choice allowed. With 

a se ll in g  price ordering, DM would choose the r isky  gamble, even though 

i t  offered a lower consumption value and a diminished lo t te ry  whose 

worth DM places at zero (and would give away i f  one could).
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A s im ila r  contrast between the buying price and s e l l in g  price 

orderings occurs when the DM must make a forced choice among unacceptable 

gambles. As noted before, fo r  an unacceptable lo t te r y ,  the buying price 

is the outcome-independent amount whose absolute value, i f  added to 

one's c a p ita l ,  maintains the chosen ru in  constra in t despite the gamble.

A standard re su lt  o f the Arrow-Pratt theory is tha t fo r  

unacceptable gambles and decreasingly risk-averse u t i l i t i e s ,  the se l l in g  

price is less than the buying pr ice .

Suppose tha t DM faced a choice between a gamble whose negative

buying price is IB and the penalty fo r  sure, where Pjs absolute value

is between tha t of the buying and s e l l in g  prices.

I f  DM selects the gamble, then one need ra ise only the absolute 

value o f B_ to keep the ru in-constra ined investment program "on track".

A buying-price orderer would select the gamble.

Under a s e l l in g  price selection ru le , the penalty fo r  certa in  is

selected, even though more money has to be raised to repa ir the damage.

To sum up th is  section, the buying price is a computationally 

trac tab le  way to re la te  a r isky  gamble to an amount o f money fo r  sure.

I t  leads to an ordering which, although d i f fe re n t  from the conventional 

expected u t i l i t y  ordering, shares some a t t ra c t iv e  features w ith tha t 

conventional ordering.

Although the buying price ordering is  not uniquely " ra t io n a l"  in 

the sense that i t  alone confcrms to the objectives tha t a reasonable 

person might en te rta in , i t  i i  arguably at least as ra tiona l as the 

conventional u t i l i t y  ordering. TI s especia lly  i f  DM intends to make 

outcome-independent withdrawals fram capita l using the buying price as 

a guage o f what is permissible w ith in  the constra in t on ru in .
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The Buying Price and the Independence Axiom

Recall from the f i r s t  chapter the statement o f the independence 

axiom. For any four lo t te r ie s  A, £, £  and £, i f  A is  equivalent to £  

and £  is equivalent to £ , then fo r  any p ro b a b i l i ty  £ , the compound 

gamble tha t gives a £  chance o f  _A and a complementary chance of £  is 

equivalent to the compound gamble w ith the same p ro b a b i l i t ie s  o f £  and £.

The independence axiom is highly thought o f by many, but not a l l ,  

decision analysts. As S lovic and Tversky [87] describe the esteem in 

which the axiom is held, "Many decision theoris ts  believe tha t the axioms 

o f ra tiona l choice are s im i la r  to the p r inc ip les  o f  log ic  in the sense that 

no reasonable person who understands them would wish to v io la te  them."

A large part o f th is  esteem is the central ro le  played by the 

independence axiom in the conventional development o f expected u t i l i t y  

decision ru les. I f  the axiom did not hold, then the log ica l foundation

o f conventional expected u t i l i t y  rules would buckle.

As shown in the la s t  section, and in the e a r l ie r  work o f Kelly , 

some expected u t i l i t y  decision rules can be developed w ithout reference 

to the independence axiom. Whether DM subscribes to the axiom or not, 

certa in u t i l i t i e s  w i l l  guide DM to choose gambles in such a way as to 

accomplish goals chosen by DM.

"Axiom-free" motivation o f u t i l i t y  functions would be especia lly  

in te res t in g  i f  i t  allowed DM to do things with u t i l i t y  functions tha t 

would not be possible under the conventional axioms.

One such th ing has already been discussed. DM may, fo r  good reason, 

choose to order gambles according to th e ir  buying pr ices , prices defined 

in terms o f  a u t i l i t y  function .

As explained in Snow [89], unless the u t i l i t y  function is l in e a r
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or exponential, the buying price ordering w i l l  v io la te  the independence

axiom. Thus, use o f  the axiom to derive the buying price equation would

lead to con trad ic tion  i f  DM wished to use the buying price ordering.

To see tha t the buying price ordering v io la tes the axiom, le t  V() 

be some u t i l i t y  function other than the l in e a r  or the exponential. For 

defin iteness, assume tha t V () displays decreasing r is k  aversion.

Actua lly , any departure from constant r is k  aversion, the exclusive 

domain of the l in e a r  and exponential functions, would do.

Let A be a lo t te r y ,  (q: a l ,  a2) in our e a r l ie r  notation fo r  two- 

outcome lo t te r ie s .  The lo t te ry  o ffe rs  money prize al_with p ro b a b i l i ty  £  

and money pr ize  a2_ w ith  p ro b a b i l i ty  l -£ .  Let the buying price of _A be 

some pos it ive  number £.

Let d̂ be the buying price o f the lo t te ry  (p: c, 0), where £  is  not

zero and not one, and £  is  the buying pr ice  o f  <A, as ju s t  defined.

C learly, d̂ is  po s it ive  and less than £.

I f  the independence axiom held fo r  the buying price ordering, then

the buying pr ice o f the lo t te ry  (p: A, 0) would be _d. I t  is  not. Let us

assume fo r  the sake o f proof by con trad ic tion  tha t the buying price o f

the (p: A, 0) lo t te ry  is  d_.

Writing th is  assumption as an equation,

(1) V(0) = p(qV(al-d) + ( 1-q)V(a2-d)) + ( l-p )V (-d )

and, because d_ is  the buying price o f  (p: c, 0),

(2) V(0) = pV(c-d) + ( l-p )V (-d )

but, since £  is the buying price o f (q: a l ,  a2),

(3) V(0) = qV(al-c) + (l-q )V (a2-c)

Because V() is  decreasingly r is k  averse, i f  one adds £  - d_, a 

pos it ive  quan tity , to each o f the prizes in (3), one can apply the re su lt
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of P ra tt [64] to derive the inequa lity

V(c-d) < qV(al-c+c-d) + ( l-q)V(a2-c+c-d) 

or V(c-d) < qV(al-d) + ( 1-q) V(a2-d) 

but tha t contradicts the equa lity  of the right-hand sides of (1) and (2). 

A s im ila r  proof could be made fo r  an increasingly r isk-averse u t i l i t y  

function.

The buying price ordering generally v io la tes the independence 

axiom, as ju s t  shown. The buying price ordering nevertheless appears to 

be a ra tiona l choice fo r  at least some DM1s . Thus, the independence axiom 

appears not to a necessary a t t r ib u te  o f ra t io n a l i t y  fo r  decision making 

under r is k .

I ts  v io la t io n  o f the independence axiom sets the buying price 

ordering apart from the conventional s e l l in g  price ordering. Yet, we 

have seen tha t the two price-based orderings share many a t t r ib u te s .

To delve deeper, note f i r s t  tha t the buying price equation, l ik e  

the s e l l in g  price equation, is l in e a r in the p ro b a b i l i t ie s .  H is to r ic a l ly , 

in te res t in decision rules tha t are l in e a r in the p ro b a b i l i t ie s  goes 

back to Pascal and Fermat and the simplest " u t i l i t y "  ru le : order gambles 

by expected monetary value.

More recently , in te re s t in  l in e a r - in - th e -p ro b a b i l i t ie s  rules has 

stemmed from the so lu tion o f two-person zero-sum games by l in e a r  

programming techniques. S p e c if ic a l ly ,  the root is  von Neumann and 

Morgenstern' s [98] generalization o f von Neumann's [97] re su lt  tha t every 

matrix game has a so lu tion in the "saddle po int" sense discussed in the 

f i r s t  chapter. A saddle po int so lu t ion , that is ,  "on average".

I f  two players have u t i l i t y  functions U() and V() such tha t 

U(x) = -V(-x)
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then each player faces a l in e a r  programming problem which is the dual o f 

the other p layer's  problem.

This re s u lt ,  due to von Neumann and Morgenstern, has long been 

known fo r  the conventional s e l l in g  price ordering. I t  can also be shown 

that the same re su lt  holds i f  each player orders lo t te r ie s  by th e i r  

buying prices based on u t i l i t y  functions U() and V() tha t are complemen

tary in the sense described in the la s t  paragraph.

Assume that U() is  the u t i l i t y  function o f the maximiner and tha t 

th is  DM is playing Row. Row wishes to assign p ro b a b i l i t ie s  to i t s  

stra teg ies to maximize the minimum buying p r ice , ava ilab le  among the 

resu lt ing  lo t te r ie s .

This problem obviously has a so lu t ion . Applying brute force, one 

could guess a t r i a l  so lu t ion , diminish a l l  the prizes in the game matrix 

by tha t amount, evaluate the U() value o f each c e l l ,  and solve the usual 

l in e a r programming problem. I f  the worst column lo t te r y 's  expected 

U() value is U(0), then the so lu tion is found. I f  the worst expected 

u t i l i t y  is  bigger than U(0), then guess a bigger B_; i f  smaller, then 

guess smaller. Repeat u n t i l  a so lu tion is  found.

Consider now the F - u t i l i t y  function introduced e a r l ie r ,

F(z) = U(z-B) - U(0)

I f  the prizes in  the o r ig in a l lo t te ry  are replaced by th e i r  F - u t i1i t y  

values ( fo r  the correct B_), then the maximin expected F - u t i l i t y  value to 

Row is zero.

I f  Column now seeks i t s  so lu tion o f the F - u t i l i t y  m atrix , i t  f inds 

a minimax value o f zero. That is the content o f the von Neumann and 

Morgenstern theorem.

I f  one minimaxes expected F (z ) , one maximins expected -F(z)
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when faced with the F - u t i l i t y  matrix. We can w rite  -F(z) as

-U(z-B) + U(0)

Since U() and V() are complementary,

-F(z) = V(-z+B) - V(0)

One can define a new u t i l i t y  function

G(z) = V(z+B) - V(0)

and thus w rite

- F ( z )  = G ( - z )

Note tha t G() is the u t i l i t y  function tha t assigns an expected 

u t i l i t y  o f zero to lo t te r ie s  with V - u t i l i t y  buying prices equal to 

and pos it ive  expected u t i l i t i e s  to those with greater buying prices.

That the maximin value o f the ^ - u t i l i t y  evaluated at the "negative" 

prizes (a c tu a l ly ,  minus one times the prizes offered to Row) is zero 

allows the conclusion th a t the buying price o f the maximin gamble is

li-
Thus, the theore tica l d u a l i ty  o f the opponents' strategy problems 

in two-person games holds fo r  buying price decision makers. E ither 

player can guarantee oneself a buying price regardless o f  what the other 

player does. The guaranteed buying prices offered to the two players 

are equal in magnitude and opposite in sign. This p a ra l le ls  the 

s itua tion  under conventional u t i l i t y ,  where the s e l l in g  prices guaranteed 

to the opponents are also equal in magnitude and opposite in sign.

The independence axiom is not necessary, there fore , fo r  matrix 

games to have dual solutions fo r  the adversaries.

Note tha t the p rac tica l import o f the dual analysis o f games is 

l im ite d . I f  U() is  a concave function , then i t s  complement must be 

convex, as can be confirmed by d i f fe re n t ia t in g  the defin ing re la t io n
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twice:

V(x) = -U(-x)

V"(x) = -U "(-x)

Since U "() is  negative everywhere (by the concavity o f U() as assumed), 

V"() is  pos it ive  everywhere, and so V() is convex.

Generally, one would be surprised to f in d  a g loba lly  risk-seeking 

opponent is a game. More l i k e ly ,  both players w i l l  have u t i l i t y  curves 

that are concave. The problems faced by the opponents, therefore , w i l l  

lack the compelling symmetry afforded by d u a l i ty .

This d i f f i c u l t y  is shared by both buying price and s e l l in g  price

rules.

The p rac tica l po in t is  tha t the buying-price DM who plays a matrix 

game and who is  in ignorance o f the opponent's u t i l i t y  function can 

employ what is widely regarded as the optimal strategy fo r  th a t circum

stance. That is ,  DM can play a maximin strategy.

Instead o f maximining the s e l l in g  p r ice , however, DM maximins the 

buying p r ice . The v ir tu e  o f the strategy is the same in e ith e r case. DM 

can impose a f lo o r  on the worst lo t te ry  ("worst" according to DM's 

decision c r i te r io n )  tha t the other player can f o is t  on DM.

The independence axiom, therefore , is  not necessary fo r  the 

pursu it o f game theory along very nearly conventional l in e s . No more 

than i t  is  a necessary a t t r ib u te  o f r a t io n a l i t y ,  no more than i t  is 

necessary fo r  motivating u t i l i t y - l i k e  decision functions in the f i r s t  

place.

That said, the independence axiom can be recommended as a s im p li

fy ing assumption in the in te re s t  of computational convenience. When the 

buying-price DM solves a game, one must generally guess a t r i a l  so lu t ion ,
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solve a diminished matrix by l in e a r  programming, adjust one's guess as 

needed and repeat u n t i l  the desired precision is atta ined. The se l l in g -  

price DM need solve only one matrix and q u it .

Beyond games, the independence axiom also imparts convenience in 

the so lu tion o f complex decisions under r is k .  These problems are 

characterized by lo t te r ie s  whose pay-offs are not re s tr ic te d  to prizes 

or other lo t te r ie s ,  but can include opportun it ies to choose among 

fu r th e r  lo t te r ie s .

In the conventional theory, DM solves such problems by the so- 

called "average and fo ld  back" algorithm. One locates those choices 

which, i f  o ffe red, involve deciding between amounts fo r  certa in  or 

lo t te r ie s  w ith money prizes only. DM calculates how one would decide 

i f  such a choice were offered.

Under conventional expected u t i l i t y ,  one can then ignore any 

sequelae o f a decision tha t a re n 't  chosen. What had been a decision 

in the o r ig in a l formulation of the problem becomes e ith e r  an amount fo r  

certa in  or a simple lo t te ry .

DM can repeat the process u n t i l  one faces a s ing le decision 

juncture w ith two or more options. A f u l l  descrip tion o f the algorithm 

is found in Raiffa  [67],

As discussed in Snow [89], the method works because o f the indepen

dence axiom. I t  doesn't work fo r  buying-price decision makers. Such 

problems can s t i l l  be solved. Again, one guesses a buying pr ice fo r  the 

en tire  complex decision, solves the problem using the appropriate 

F - u t i l i t y ,  adjusts one's guess and repeats.

Abandonment o f the independence axiom causes more work fo r  DM. As 

a s im p lify in g  assumption, then, the axiom has considerable power.
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Bounded U t i l i t i e s  and Ruin Constraints

The two special u t i l i t y  functions developed so fa r  i l lu s t r a te  

tha t expected u t i l i t y  decision rules need not be based upon the con

ventional axioms. DM's desire to place a bound on one's p ro b a b i l i ty  o f 

ru in  can lead to rules ind is t ingu ishab le  from the maximization of 

conventional expected u t i l i t y .  DM's ru in consciousness can also be used 

to motivate u t i l i ty -b a s e d  decision rules tha t are somewhat d i f fe re n t  

from the conventional ones, namely buying price orderings.

Both functions, the exponential and the power-law, serve equally 

well to place a bound on the ru in  p ro b a b i l i ty .  The choice between them 

turns on the s tra te g ic  im plica tions o f th e i r  d i f fe re n t  shapes.

S im i la r ly ,  both the buying price and s e l l in g  price orderings 

comport w ith  the goal o f a ru in  constra in t. The choice between them is 

a matter o f  whether DM wishes to rea lize  income from one's r isky  

investment, or prefers to accumulate cap ita l instead.

In th is  section, the reperto ire  o f ava ilab le shapes fo r  ru in - 

constrain ing u t i l i t y  functions w i l l  be subs tan t ia l ly  broadened.

To s im p li fy  the discussion, a l l  the u t i l i t y  functions in th is  

section w i l l  be viewed as functions o f DM's to ta l c a p ita l ,  ra ther than 

as functions o f the prizes offered by lo t te r ie s .

From the axioms presented in the f i r s t  chapter, the most obvious 

re s t r ic t io n  on a conventional u t i l i t y  function is tha t i t  be s t r i c t l y  

increasing. Arrow [2, 3] argued tha t a conventional u t i l i t y  function 

must also be bounded above and below, although his p rescrip t ion  is not 

un iversa lly  accepted.

The class o f  ru in -constra in ing  u t i l i t y  functions turns out to be 

less r ich  tha t the set o f a l l  increasing functions, but r iche r than
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Arrow's u t i l i t y  functions, since i t  doesn't matter whether or not the 

function is bounded below. Recall tha t ne ither the exponential nor the 

power-law functions already derived is  bounded below.

To explore the class o f ru in -constra in ing  u t i l i t y  functions, one 

must take care to properly designate what level of cap ita l constitu tes 

ru in . A ru in  level o f zero, fo r  example, turned out to be a poor choice 

fo r  the power-law u t i l i t y ,  since the fun c t ion 's  value at zero is minus 

in f i n i t y .  A ru in level o f one cap ita l un it y ie lded more sensible re su lts .

Generalizing th is  experience, suppose tha t V () is an increasing 

function. Let £  be some number such tha t V() is defined and f i n i t e  fo r  

a l l  real numbers greater than or equal to £. Suppose tha t £  is chosen 

as the ru in level of c a p ita l .

In order tha t V () constrain the p ro b a b i l i ty  o f  ru in  to a value 

other than one when used as a u t i l i t y  func tion , i t  is  both necessary and 

s u f f ic ie n t  tha t V () be bounded above. N a tu ra lly , the concept o f a 

constra in t upon the ru in p ro b a b i l i ty  only makes sense fo r  cap ita l values 

greater than £, the chosen ru in  level o f  ca p ita l .

To show su ff ic ie n cy , suppose V() is bounded above. Let z_ be the 

least upper bound o f V() . Define the function U() as

U(y) = -vb0 - v(g)
z - V(g)

where ^  is  any element o f the domain o f  V () . C learly , U() is an : 

increasing function w ith U(g) = 0, bounded above by one. The function 

U() may be in te rpre ted as a u t i l i t y  function . Since U() is obtained from 

V() by an increasing l in e a r  transformation, i t  is a standard re su lt  that 

U() and V() are s t ra te g ic a l ly  equivalent. That i s ,  the buying and s e l l in g  

prices o f any lo t te ry  are the same under both u t i l i t i e s .
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Define the function  R() as

R(y) = 1 - U(y)

where once again, is any element o f the common domain o f U() and V() .

The function R() is  s t r i c t l y  decreasing with R(g) = 1, bounded below by

zero.

Suppose DM embarks on an ind e f in ite -d u ra t io n  program o f p a r t i c i 

pation in r is ky  gambles with i n i t i a l  cap ita l w, which is s t r i c t l y  greater 

than £. Suppose fu r th e r  tha t DM plays only tnose gambles that are 

acceptable under the usual expected u t i l i t y  conventions w ith U() , and 

hence V() , as one's u t i l i t y  function.

Assume tha t a l l  the gambles are independent t r i a l s ,  although the 

stakes may vary with current cap ita l i f  that is allowed by the u t i l i t y  

function.

I f  DM makes no withdrawals from capita l (nor deposits any new 

c a p i ta l ) ,  then Snow (90] shows tha t the p ro b a b i l i ty  tha t DM's cap ita l 

ever f a l l s  to £  or lower, i .e .  the p ro b a b i l i ty  o f ru in , is  not greater

than R(w), which is  less than one.

The proof is  by induction . F i r s t ,  i t  is  shown tha t fo r  a l l  

greater than £ , no s ing le  gamble which o ffe rs  a p ro b a b i l i ty  greater than 

R(w) o f f a l l i n g  in cap ita l from x to £  in one play is acceptable.

A gamble which o ffe rs  a f te r -p la y  levels o f cap ita l (a, b, . . . )  

with p ro b a b i l i t ie s  (p, q, . . . )  is  acceptable at capita l x̂  i f  and only i f

U(x) <_ pU(a) + qli(b) + . . .

The lo t te ry  whicn gives a p ro b a b i l i ty  r  > R(x) o f f a l l i n g  to _g_

and a complementary p ro b a b i l i ty  o f  r is in g  to some other cap ita l _h > £

has expected u t i l i t y

rU(g) + ( l - r )U (h )
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which is less than 1 - R(x) since U(g) = 0, U(h) < 1 and 

1 - r_ < 1 - R(x). But U(x) = 1 - R(x), so

U(x) > rll(g) + ( l - r )U (h )  

and the lo t te ry  is  unacceptable.

Note tha t we need not be concerned about the p o s s ib i l i t y  o f a f te r 

play capital less than £. C learly, a lo t te ry  o ffe r in g  a p ro b a b i l i ty  of 

a rr iv ing  at £  or less which exceeds R(x) w i l l  be unacceptable, too.

This demonstration with a two-outcome lo t te ry  generalizes read ily  

to gambles with more outcomes.

Next, one considers sequences o f acceptable lo t te r ie s .  A sequence 

can be b u i l t  in a t re e - l ik e  way. The root o f the tree is the f i r s t

acceptable gamble that DM faces. For each o f i t s  outcomes, there is a

successor lo t te ry  to be played from the new level o f cap ita l.  The

outcomes o f  these lo t te r ie s  each have th e i r  own successors, and so on,

as ' ong as DM's cap ita l is  greater than An outcome tha t leaves DM 

with capita l o f £  or lower has no successor; DM is ruined.

Let the 1ength o f a sequence o f lo t te r ie s  be one more than the 

greatest number o f  successors to the o r ig ina l lo t te ry  along any path 

through the " t re e " .

Suppose tha t one has such a sequence o f length _N that s ta r ts  from 

capita l w and which has terminal cap ita l levels (a, b, . . . )  including 

£. The p ro b a b i l i t ie s  o f ending up at each of the possible terminals are 

determined by the acceptable lo t te r ie s  tha t make up the sequence. Let r. 

be the p ro b a b i l i ty  o f f in is h in g  the sequence at _g_.

Since each component lo t te ry  is acceptable, the compound 

proD ab il i ty  property o f expected u t i l i t y  requires that

U(w) <_ pU(a) + qU(b) + . . .  + rU(g)
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where (p, q, . . . )  are the various p ro b a b i l i t ie s  o f the non-ruinous 

outcomes.

One then constructs a sequence o f length _N + 1 from th is  

acceptable N-sequence. To each term ina l, except append acceptable 

lo t te r ie s  (L (a), L(b), . . . ) .  These y ie ld  new terminal cap ita l levels 

(a 1, b ' ,  . . . )  with overall p ro b a b i l i t ie s  from the root o f the tree

(p 1, q 1 , . . . ) .  Let rj_ be the new p ro b a b i l i ty  o f ending up at £.

Since a l l  the additional lo t te r ie s  are acceptable, 

p 'U (a ')  + q 'U (b ')  + . . .  + r 'U (g) £  

pU(a) + qU(b) + . . .  + rU(g) _> U(w) = 1 - R(w)

But since U() is  bounded above by one, i f  r^. > R(w) then a l l  the other 

primed p ro b a b i l i ty  terms must sum to less than 1 - R(w). I f  so, then 

with U(g) = 0, the expected u t i l i t y  o f the sequence o f length N_ + 1 

would be less than tha t o f the sequence o f length N_. This cannot be,

since the longer sequence was derived from the shorter by the addition

o f acceptable lo t te r ie s .

Thus, we may conclude that a bounded-above u t i l i t y  function V() 

w i l l  su itab ly  bound the p ro b a b i l i ty  o f ru in , since V() accepts the 

same lo t te r ie s  as U() .

Necessity is re la t iv e ly  simple: i t  is  s tra ightforw ard to show 

tha t an unbounded u t i l i t y  w i l l  not bound the p ro b a b i l i ty  o'" ru in to be 

less than one.

Let T () be an increasing function tha t is  not bounded above, which 

is defined fo r  a l l  x_ >_ £  or fo r  a l l  x_ between £  and whatever f i n i t e  

argument, i f  any, leads to an in f i n i t e  value o f  T () . Without loss o f 

genera lity , le t  T(g) = 0.

For any p ro b a b i l i ty  P less than one, there is some cap ita l level _h



77

such tha t DM would accept the lo t te ry  which o ffe rs  a P_ p ro b a b i l i ty  o f £  

and a complementary chance o f a tta in ing  _h. One can f ind  _h by w r it in g  

the expected u t i l i t y  equation

T(w) = PT(g) + ( l-P)T(h)

T(h) = T(w) /  (1-P) 

h = T"1 [ T(w) /  (1-P) ]

Since T () is  increasing and unbounded, the inverse (or be tte r)  ex is ts . 

Thus, T() o ffe rs  no upper bound on the p ro b a b i l i ty  o f ru in  besides one.

Returning to bounded u t i l i t i e s ,  Snow [90] goes on to show tha t R(w) 

is the least upper bound on the p ro b a b i l i ty  o f ru in in the sense that 

fo r  any pos it ive  _r < R(w), there e x is t  sequences acceptable to DM whose 

p ro b a b il i ty  o f  ru in is a t least _r.

I t  suff ices to show that there is an ind iv idua l lo t te ry  acceptable 

to DM whose one-step p ro b a b i l i ty  o f ru in is r_. C learly , the in d e f in i te  

play p ro b a b i l i ty  o f ru in fo r  a sequence cannot be less than the proba

b i l i t y  of a t ta in ing  £  on the f i r s t  t r i a l .

We construct an acceptable two-prize lo t te ry  which gives £  with 

p ro b a b il i ty  £  and a complementary p ro b a b i l i ty  o f some other cap ita l level 

h_. We seek ĥ such that

U(w) = rU(g) + ( l - r )U (h )

Since U(g) = 0

h = IT 1 [ U(w) /  ( 1-r) ]

= I f 1 [ ( l-R(w) ) /  (1 - r )  ] 

and since _r < R(w), the la s t  functional argument is less than one, so the 

inverse (or be tte r) e x is ts ,  i f  U() is  defined as before.

I f  the u t i l i t y  function is  re a l ly  defined over a l l  cap ita l levels 

at or above £ , then the required _h may be an unatta inably large amount.
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This can be remedied by re laxing the requirement that V() be defined 

fo r  a l l  x not less than £. I t  is enough tha t i t  be defined fo r  a l l  x. 

between £  and some number h^ ( in c lu s iv e ) ,  where ĥ _ is the largest 

a tta inab le  amount o f ca p ita l.
" f t

The upper bound on V() becomes z_ = V(h ) . The u t i l i t y  function U()

can be obtained from V() by the same formula as before.

This h i  assumption does not a f fe c t  the proof tha t R(w) is  an upper 

bound on the p ro b a b i l i ty  of ru in .

I f  the assumption is adopted, then a l l  increasing functions 

defined and f i n i t e  on the specified £  to h i  in te rva l become bounded.

The value R(w) remains a least upper bound on the ruin p ro b a b i l i ty ,  

but now i t  becomes possible to rea lize  a one-step lo t te ry  w ith r_ = R(w) 

as the p ro b a b i l i ty  o f  a t ta in in g  £, since the value o f the inverse o f U()

at one w i l l  be h i  Thus, DM would accept a lo t te ry  tha t gives £  with

p ro b a b i l i ty  R(w).

Of course, DM would require a complementary p ro b a b i l i ty  o f ge tting  

h*. Since by assumption, h i  is the greatest cap ita l level a tta inab le , th is  

lo t te ry  w i l l  be DM's la s t ,  win or lose, a t least fo r  a while !

Turning to other concerns, note tha t since R(w) is  an upper bound 

on the p ro b a b i l i ty  o f ru in , U(w) may be in terpreted as a lower bound on 

the p ro b a b i l i ty  o f su rv iva l.

Note also tha t the i n i t i a l  cap ita l is not the only cap ita l level 

fo r  which ru in and surviva l p ro b a b i l i t ie s  have meaning. For a l l  x. 

at or above £  (through the highest a tta inab le  cap ita l le v e l) ,  U(x) and 

R(x) bound the surviva l and ruin p ro b a b i l i t ie s  fo r  a program c f  r isky  

investment once the cap ita l level o f x. is  atta ined.

Bounded u t i l i t i e s  o f fe r  only one way to achieve an upper bound on
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the p ro b a b i l i ty  o f ru in . I t  is  possible to construct sequences tha t 

include "unacceptable" gambles and yet which have, over a l l ,  an 

acceptable p ro b a b i l i ty  o f  ru in .

The usefulness o f a bounded u t i l i t y  approach is tha t i t  bounds the 

ruin p ro b a b i l i ty  "m yop ica lly " , that is ,  without knowledge o f what gambles 

w i l l  be offered in the fu tu re .

The class of ru in -constra in ing  u t i l i t y  functions is broad indeed.

To apply the expected u t i l i t y  technique, DM must select a p a r t ic u la r  

u t i l i t y  function.

I f  DM assents to the usual axioms and is known to pre fe r a p a r t i 

cu lar fam ily  o f well-behaved functions (exponential, power law, e tc . ) ,  

then the application o f  the ru in bounding technique is s tra igh tforw ard .

Otherwise, the selection o f a spec if ic  u t i l i t y  curve requires the 

choice o f a shape fo r  the curve as well as a to le rab le  ru in constra in t.

A widely used guide to the behavioral implications of various shapes is  

the Arrow-Pratt [2, 64] r is k  aversion theory.

Another possible c r i te r io n  is the way tha t the p ro b a b i l i ty  o f  ruin 

changes as cap ita l varies. The q u a l i ta t iv e  differences between the power- 

law and the exponential curves have already been discussed in th is  l ig h t .

S t i l l  another way to approach the shape question is to study the 

p ro b a b i l i ty  o f f a l l in g  from one wealth level to another, fo r  s ta r t in g  

points other than the i n i t i a l  wealth and destinations other than u lt im ate  

ru in .

This re f le c ts  common sense. Just as DM might be concerned about the 

p ro b a b i l i ty  o f ru in , so, too, one might be concerned about the chances 

o f disastrous, but less than ruincus, adversity. Or, one might be 

concerned tha t once a p a r t ic u la r  level o f wealth is a tta ined, one is  not
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unduly at r isk  o f losing a lo t  o f  i t  back.

Let U() be a u t i l i t y  function normalized as before: bounded above 

by one and with U(g) = 0. I f  s and d̂ are capita l levels such that 

d_ i r  less than or equal to _s, but not less than £, and £  is in the 

in te rva l over which U() is we ll-de fined , then the p ro b a b i l i ty  o f f a l l in g  

from s to c once s is atta ined is no more than

while playing acceptable gambles. The proof is  the same as tha t fo r  w and 

£. Of course, i f  s_ = w and d̂ = £, then the bound is the same as tha t 

proved e a r l ie r ,  1 - U(w).

This generalized bound can be exploited to f ind  u t i l i t y  curves tha t 

accomplish patterns o f  ru in  constra ints desired by DM. For example, 

suppose DM wished that the maximum p ro b a b i l i ty  o f ever f a l l in g  back from 

ar.y attained wealth level by a fixed absolute amount be constant. That 

is ,

be constant fo r  a l l  a tta inab le  _d and constant a_. I t  is  easy to confirm

that the exponential u t i l i t y  w i l l  serve.

I f  DM were concerned about the p ro b a b i l i ty  o f ever f a l l in g  from

any attained capital by a f'^.ed proportion l/_a, wnere a_ > 1, and wishes

a constant bound on tha t prospect, then DM wants a u t i l i t y  where

1 - U(ad)
~1 - U(d)

is constant. The power law obeys that requirement.

Rather than these global patterns, DM might be in terested in 

constraining the p ro b a b i l i ty  o f a t t r i t i o n  Detween selected pairs o f  _s 

and d values.

1 - U
1 - U
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Thus, the power o f  expected u t i l i t y  rules to constrain the 

p ro b a b i l i ty  o f adversity not only provides a ra tiona le  fo r  expected 

u t i l i t y  maximization outside the conventional axioms, i t  may also help 

DM to select a sp e c if ic  curve.



CHAPTER IV

DECISIONS INVOLVING GOALS

Ruin in Two-Barrier Random Walks

There may be some amount o f money beyond which DM declines to 

apply the same decision ru le  fo r  lo t te r ie s  tha t served a t lower levels

o f c a p ita l .  This may be because the amount in question is  a goal of

the investment program: i t s  attainment was why DM undertook to accept 

r isks .

Maybe the amount is  simply so big that DM wishes to reserve the

prerogative to change investment goals, or a t least pause to see

whether new objectives might be tte r f i t  DM's favorably a lte red  circum

stances.

Another p o s s ib i l i t y  arises when the decision ru le  is  not beirn 

ed personally by DM, but rather by _n cger.-*- The agent, who maj 

be another uman being or perhaps a computer program, acts on DM's 

behalf, maybe without supervision by DM. DMs chosen decision ru le  may 

serve as a convenient way fo r  DM to give o b jec t ive ly  v e r i f ia b le  guide

lines about how the agent ought to handle DM's a f fa i r s .

In such a case, tnere might be any number o f reasons why DM might 

prefer tna t the grant o f agency power be l im ited  in scope ra ther than 

p len ipo tentia ry .

S t i l l  another p o s s ib i l i ty  is  tha t the decision ru le  may have a 

tendency to "break down", or give less sa tis fac to ry  performance as 

capita l increases. The exponential u t i l i t y  decision ru le ,  fo r  instance, 

plays the same gambles a t great values o f cap ita l as at the o r ig in a l

82
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cap ita l.  Luce and Raiffa [50] f ind  th is  in s e n s i t iv i ty  to changing wealth 

un like ly  to be desired by DM's. Krantz, Luce, Suppes and Tversky [48] 

note that the exponential function is bounded above, but is both 

unbounded and rap id ly  decreasing below. For gambles w ith substantia l 

gains and losses, then, "unreasonably large" gains are needed to compen

sate fo r  re la t iv e ly  small losses. Otherwise, gambles w ith sm a ll- to - 

moderate losses would be unacceptable.

This behavior may make good sense fo r  a ruin-conscious DM with 

moderate means. I t  may make less sense a f te r  substantia l gains have 

occured, but the exponential w i l l  continue to do the " r ig h t  th ing" long 

a f te r  the need has passed.

Since the exponential curve is concave, i t  w i l l  r e s t r i c t  DM to 

favorable lo t te r ie s .  Thus, barring ru in ,  cap ita l w i l l  tend to increase 

over time. As already discussed, the "from now on" p ro b a b i l i ty  o f  ru in 

w i l l  f a l l  o f f  rap id ly  w ith increasing c a p ita l .  So, i f  DM plays long 

enough, then one may be refusing gambles tha t are n e g l ig ib ly  ruinous a t 

current cap ita l leve ls , however foolhardy (or in tre p id )  the same gambles 

might have been when DM began the program o f r isky  investment.

DM does not necessarily have to do anything about th is  possible 

problem. " In d e f in i te ly "  does not have to mean forever. I t  can be in te r 

preted simply as DM's desire to play a certa in  strategy u n t i l  DM decides 

to play another.

There is no reason at a l l  why, on any given day, DM could not 

simply end the current program and begin to play another, i t s e l f  subject 

to in te rrup tion  whenever DM subsequently pleases.

On the other hand, the theore tica l machinery is ava ilab le  fo r  DM 

to set a f ixed upper wealth l im i t  to the o r ig in a l program, i f  DM so
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chooses. In the discussion to come, such an upper wealth l im i t  w i l l  be 

called a "goal" or "horizon".

Up to now, DM's cap ita l has been modeled as a random walk on a 

s ingle dimension w ith one absorbing b a rr ie r  at ru in . The model can 

eas ily  be extended to add a second absorbing b a rr ie r  a t the goal leve l. 

With such a tw o-barr ie r model, DM w i l l  be in terested in the p ro b a b i l i ty  

of being ruined before reaching the goal.

Two b a rr ie r ,  one dimensional random walks have long been objects 

of theore tica l in te re s t .  Suppose a player s ta r ts  with cap ita l w, a ru in 

level £  which is less than w and a goal £  which is bigger than w. Let 

P(w,G) be the p ro b a b i l i ty  o f f a l l in g  from w to £  before a tta in in g  £.

I f  DM takes only gambles tha t are ju s t  f a i r  (expected money value 

o f zero) in independent t r i a l s ,  then P(w,G) is easy to f in d  a n a ly t ic a l ly .  

One can appeal to Coolidge's [21] re s u lt  tha t any series o f f a i r  gambles 

is  i t s e l f  a f a i r  compound gamble.

That is ,  the random walk is equivalent to a lo t te ry  o f fe r in g  the 

ru in capita l o f £  with p ro b a b i l i ty  P(w,G) and the goal cap ita l o f £  with 

the complementary p ro b a b i l i ty .  Ignoring "overshoot" (the p o s s ib i l i t y  tha t 

the la s t gamble in the sequence takes DM below £  or above £ ) ,  in order 

fo r  the compound gamble to be f a i r ,

P(w,G)g + ( 1 - P(w,G) )G = w

Or,

P(w,G) = (G - w) /  (G - g)

For more general lo t te r ie s ,  the computation o f an exact ru in 

p ro b a b i l i ty  is  more d i f f i c u l t .  F e l le r  [29] reviews many o f  the standard 

two-barrier resu lts  and techniques.

For the DM who doesn't know the actual gambles to be faced, a bound
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on the p ro b a b i l i ty  o f ru in  before a tta in ing  the goal may be useful.

Some care in specify ing what is to be bound is needed.

The worst case p ro b a b i l i ty  o f ru in from w before a tta in in g  _G 

using a u t i l i t y  decision ru le  is R(w), the bound without considering 

the goal. The reason is tha t perhaps no gamble w i l l  be offered that 

gives the cap ita l level £  as an outcome; perhaps only gambles tha t 

o f fe r  £  and cap ita l values very much la rger than G^will be seen.

To capture the idea o f  a goal with a u t i l i t y  ru le ,  one must modify 

the u t i l i t y  function so that fo r  a l l  x > G, U(x) = U(G). The thought is 

tha t once (1 is  atta ined or exceeded, a new u t i l i t y  function w i l l  be 

adopted. The constant u t i l i t y  function arc w i l l  never be used fo r  decision 

making once Ĝ is  achieved. I t  serves only to assure tha t no greater r is k  

o f ru in is taken in pu rsu it  o f  prizes bigger than G_ than is taker in 

pursu it o f  Ĝ i t s e l f .

The modified u t i l i t y  curve can be rescaled so tha t the new curve, 

TO , stands to the old func tion , U() , '  as

T(x) = U(x) /  U(G) fo r  x _< G 

= 1 fo r  x > G

Clearly, T(G) = 1, and i f  U() is  normalized so tha t U(g) = 0, then 

T(g) = 0, too.

By the same arguments as in the las t chapter, the o ro b a b i l i ty  o f 

fa l l in g  to £  from w before a tta in ing  G^will be no more than 1 - T(w).

I f  we define

Q(x) = 1 - T(x)

then, in terms o f

R(x) = 1 - U(x)

we may w rite
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Q(x) = 1 - T(x)

=  1

=  1 -

U(x
U(G 

1 - R(x
1 -  RG

or q(x) .
This same re su lt  could be motivated in a d i f fe re n t  way i f  i t  were 

known tha t Ĝ, i f  i t  were attained at a l l ,  would be attained exactly  w ith 

out overshoot. I f  Q(w) were the worst possible p ro b a b i l i ty  o f ru in from 

w without a t ta in in g  Ĝ, then

R(w) = Q(w) + ( 1 - Q(w) )R(G)

In words, the in d e f in i te  play bound must be the sum o f the p ro b a b i l i ty  

bounds c t two mutually exclusive and exhaustive events. E ither one is 

ruined before a tta in ing  G, or else one a tta ins  G and is  ruined the rea fte r . 

Assuming, as always, independent t r i a l s ,  the p ro b a b i l i ty  o f the la t t e r  

compound event w i l l  be the product o f i t s  constituents.

With the above equation motivated, s tra ightforward algebraic 

rearrangement y ie lds  the expected

n /.., _ R(w) - R(G)
Q(w) — r -  R ( t r r

Note that i f  there were no overshoot, i t  would be unnecessary to modify 

the u t i l i t y  curve in any way. Provision fo r  overshoot resu lts  from the 

decision ru le 's  myopia; overshoot is  ju s t  one more a t t r ib u te  o f the 

gambles to be faced about which DM is assumed to be ignorant.

In p rac tice , i f  R(6) is  very nearly zero anyway, then there is 

l i t t l e  cause to modify the u t i l i t y  curve, overshoot or not. For example, 

in the exponential case, R(G) is very much less than R(w) even i f  G_ is 

only moderately bigger than w. Since U(G) is very nearly one when R(G)
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is very nearly zero, the u t i l i t y  curve hardly needs tc be rescaled. With 

or without the rescale, Q(w) w i l l  be close to R(w).

In the exponential case, the in troduction of a horizon goes a long 

way towards resolving the objection tha t the decision ru le  doesn't adjust 

well to changes in wealth. Come the horizon, i f  i t  ever does, DM simply 

resolves to re th ink the en tire  program. In the meantime, the existence 

o f the goal leaves the form and the parameter of the u t i l i t y  curve a l l  

but unchanged, even with a rescale.

Of course, there is  nothing to prevent a DM who to le ra tes a certa in 

in d e f in i te -p la y  p ro b a b i l i ty  o f ru in from adopting a horizon, but not 

recomputing one's decision ru le  at a l l .  Taking such a step is  not so 

empty o f content as i t  might at f i r s t  appear.

I f  the ru le  is  being executed autom atica lly , e ith e r by an unsuper

vised personal agent or by machine, then there is  a foreseeable circum

stance where DM might want to ensure tha t one is  consulted fo r  fu r th e r  

in s tru c t io n s .

That circumstance concerns the a v a i la b i l i t y  o f lo t te r ie s  so favor

able as to cons titu te  "once in a l i fe t im e "  opportun it ies. The next 

section explores tha t p o s s ib i l i t y  at greater length.

In any event, ruin-oounding u t i l i t y  decision rules can eas ily  be 

adapted to include an upper l im i t  on the wealth range over which they 

operate. This d istinguishes such rules from conventional expected u t i l i t y  

rules tha t lack any provis ion fo r  such l im i ts .
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Goals and the Allan's Problem

A lla is  [1] asked several "very prudent" people about th e i r  

preferences in two gambling choice problems. In th is  r e te l l in g ,  the 

amounts o f money are stated in m il l ions  o f d o l la rs ;  in the o r ig in a l 

the amounts were hundreds o f  m il l ions  o f  French Francs.

The f i r s t  choice problem is  to decide between taking one m i l l io n  

do lla rs  fo r  certa in  (option A), or else taking a lo t te ry  tha t o ffe rs  a 

ten percent chance of f iv e  m i l l io n  d o l la rs , an eighty-n ine percent 

chance o f one m i l l io n  d o l la rs ,  and a one percent chance o f no change in  

wealth (option B).

The second problem is to choose between two lo t te r ie s .  One o ffe rs  

an eleven percent chance of receiving one m i l l io n  do lla rs  against an 

e ighty-nine percent chance o f no winnings (option C). The other o ffe rs  

a ten percent chance o f ge tt ing  f iv e  m i l l io n  do lla rs , and a complementary 

chance o f winning nothing (option D).

A l la is  reports tha t the m a jority  of his respondents (he does not 

report the number o f subjects involved, but tha t doesn't re a l ly  matter 

much) p re fe r A to B in the f i r s t  problem, i . e . ,  the m i l l io n  do lla rs  fo r  

sure, and pre fer D to C in the second problem, i . e . ,  the more lu c ra t ive  

expected monetary value lo t te ry .

These choices cannot be reconciled with the maximization o f any 

conventional expected u t i l i t y .  I f  Vj_)_ is a u t i l i t y  function , the 

preference fo r  A over B would ind icate

V (l)  > . 89V(1) + . 10V(5) + .01V(0) 

where the arguments o f V () are given in m il l io n s . We can rearrange th is  

inequa lity  to read

.11V(1) > . 10V(5) + .01V(0)
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The preference fo r  D over C, however, betokens

. 10V(5) + .90V(0) > . l lV ( i )  + . 89V(0)

This inequa lity  can be rearranged to read

. l i v e  1 )  <  . 10V ( 5 )  +  . 0 1 V ( 0 )

which contradicts the e a r l ie r  inequa lity  derived from the other 

expression of choice.

A l la is  in te rp re ts  these resu lts  as evidence o f a preference fo r  

ce r ta in ty  over chance, a t least when large sums o f comparable size are 

involved. A l la is  finds such a preference ra t io n a l ly  defensible.

Tversky and Kahneman [95] report s im ila r  resu lts  w ith s l ig h t ly  

more complicated te s t  gambles and much more modest sums o f money ( t h i r t y  

and fo r ty - f iv e  d o l la rs ) .  They concur that there is a "c e r ta in ty  e f fe c t"  

o f the sort tha t A l la is  describes.

Morrison [61] in te rp re ts  the A l la is  respondents' motivation some

what d i f fe re n t ly .  He points out tha t someone who has the choice between 

A and B ac tua lly  f inds oneself in the same position as someone who owns 

one m il l io n  do lla rs  in assets and faces the choice o f remaining at the 

status quo (option A) or running a one percent chance of los ing i t  a l l  

in order to get a ten percent chance at an additional four m i l l io n  

do lla rs  (option B).

Although Morrison does not pursue the po in t, his argument has 

much the same f la v o r  as Pfanzaal's [63] Consistency Axiom. There is  some 

sense, indeed, in which declin ing an amount in order to get a lo t te ry  is 

the same as buying the lo t te ry  fo r  the amount.

In any event, Morrison does not t r y  to reconcile the conventional 

axioms to the A l la is  re su lt .  Rather, Morrison suggests tha t new axioms 

might be devised to account fo r  asset changes that stem from having the
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option to ncrease one's wealth fo r  certa in . Krantz, Luce, Suppes and 

Tversky [48] note in passing some o f  the d i f f i c u l t i e s  such axioms might 

encounter in p rac tice , in the course of th e i r  discussion of Pfanzagl's 

axiom.

Borch [15] takes an unusual approach to the A l la is  problem. He 

argues tha t the respondents are mistaken in an especia lly  subtle sense. 

Very l i k e ly ,  the rec ip ien t o f a m i l l io n  do lla rs  under option A w i l l  not 

spend i t  a l l ,  but ra ther w i l l  invest most o f the money in secu rit ies  

with good growth po ten tia l and l i t t l e  r is k .  In other words, they w i l l  

invest in a lo t te ry  very much l ik e  the one that they turned down.

Savage [79] and Raiffa [66] both report th ink ing hard and long 

about the A l la is  problem, in tim a ting  that they might have chosen in the 

"forbidden" way p r io r  to deeper re f le c t io n .  In the end, though, both of 

these champions o f  the conventional axioms would choose according to - 

what else? - the conventional axioms.

In the course o f th e i r  th ink ing , both men conclude tha t i t  is the 

independence axiom tha t is under p a r t ic u la r  attack in the A l la is  

s i tu a t io n . A la te r  argument advanced by Raiffa [67], based on an idea 

by Robert S ch la ife r ,  c la r i f ie s  the ro le o f the independence axiom.

Suppose tha t DM is take part in a compound lo t te ry .  The lo t te ry  

o ffe rs  an e ighty-n ine percent chance o f some undisclosed pr ize , X_, and 

an eleven percent chance o f DM receiving one's choice between two 

options. The options are one m i l l io n  do lla rs  fo r  certa in and, in the 

a l te rn a t iv e , a second 'o t te ry  tha t o ffe rs  a ten-elevenths chance of 

ge tting  f ive  m i l l io n  do lla rs  against a one-eleventh chance of no change 

in wealth.

I f  the independence axiom holds, then the decision between the
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m il l io n  fo r  sure and the second lo t te ry  does not depend on the value of 

X_. Thus, DM could state one's choice regardless of what _X happens to be.

Suppose DM chooses the m i l l io n  do lla rs . I f  X. turned out to be one 

m i l l io n  do lla rs , then the compound lo t te ry  would o f fe r  one m i l l io n  

do lla rs  fo r  ce r ta in , ind is t ingu ishab le  from option A in the A l la is  prob

lem. I f  _X is zero, then the compound lo t te ry  o ffe rs  an eighty-n ine 

percent chance o f zero and an eleven percent chance o f one m i l l io n .

That's A l la is 1 option D.

By s im ila r  arguments, the choice of the second lo t te ry  causes the 

compound lo t te ry  to o f fe r  prizes and p ro b a b i l i t ie s  ind is t ingu ishab le  

from options B and C, depending upon X.

Thus, by choosing in the compound lo t te ry ,  DM seems to be binding 

oneself to consistent choices in A l la is 1 s i tu a t io n . Since the compound 

p ro b a b i l i ty  axiom is  an inauspicious point to a ttack, the controvers ia l 

assumption appears to be tha t DM can choose without knowing the value of 

X. That assumption hinges on the independence aAiom.

The A l la is  problem and other evidence gathered from psychological 

experiments (see, fo r  example, MacCrimmon [51]) suggested tha t many 

people tended to behave in  ways tha t were inconsistent with the conven

t iona l axioms. Writers on the subject came to d is tingu ish  between the 

p rescr ip t ive  aspects o f u t i l i t y  theory and the cescr ip tive  aspects.

T:.at £ theory f a i l s  to describe how people ac tu a lly  behave, many 

would argue, has no bearing on i t s  status as a p rescrip t ion  o f how people 

ought to behave.

The A l la is  problem is o f no special moment fo r  the rLin-conscious 

buying price DM under most u t i l i t y  functions. Such a DM's choices do not 

conform to the independence axiom anyway. In p a r t ic u la r ,  tha t the buying
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price o f the three-outcome lo t te ry  o f option B is less than a m i l l io n  

do lla rs  does not impose a re s t r ic t io n  on the buying prices of options 

C and D.

An e x p o n e n t ia l -u t i l i ty  DM, however, does conform to the axioms, 

even when using a buying price ordering. As discussed e a r l ie r ,  however, 

an e x p o n e n t ia l -u t i l i ty  DM has an incentive to adopt a horizon. With 

that horizon in place, DM's choices may no longer conform to the usual 

axioms.

Any DM, in fa c t ,  who incorporates a horizon in to  one's decision 

ru le  may make the "forbidden" choices in the A l la is  problem on account 

o f the d isco n t inu ity  so established. The a v a i la b l i l i t y  o f the m i l l io n  

do lla rs  fo r  certa in  may cause DM's wealth to exceed the range over which 

one's ins truc t ions  are held to obtain.

This assumes tha t DM's horizon is lower than the lo f t y  f igu re  o f 

one m il l io n  d o l la rs ,  and that DM adopts the convention tha t the upper 

horizon is exceeded whenever the worst outcome o f any option is no less 

than the chosen f igu re .

That assumed, i t  is  in te res ting  to note that the goal seems more 

properly to v io la te  the compound p ro b a b i l i ty  axiom than the independence 

axiom. In R a iffa 's  compound example lo t te r y ,  DM may indeed select the 

m i l l io n  fo r  certa in regardless o f the value o f X_.

What DM might deny is tha t a s i tu a t io n  where c.e can achieve a 

goal fo r  ce r ta in , given tha t one reaches tha t decision junc tu re , is  not 

d i f fe re n t  from another s itu a t io n  where one ca n 't .  This, despite the 

equa lity  o f the u ltimate outcomes and th e i r  p ro b a b i l i t ie s .

The behavior in question presents no theore tica l problem fo r  a DM 

whose decision ru le  is  not based on axioms. For the ruin-conscious
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rules coupled with goals, the benavior may even i l lu s t r a te  a desirable 

" f l e x i b i l i t y "  unattainable under r ig id  axiomatic schemes. Even an 

innocuous-seeming axiom l ik e  compound p ro b a b i l i ty  can, in exceptional 

circumstances, ru le out a course o f action tha t is  not obviously o ffen

sive to  reason.

Even so, the in tu i t iv e  appeal o f the compound p ro b a b i l i ty  axiom is 

such tha t DM might be dubious about v io la t in g  i t  frequently . The nature 

of a goal, however, provided that i t  is set high enough, is tha t i t s  

influence w i l l  be f e l t  only in frequently .

I f  the upshot o f goal attainment is tha t one's agent simply checks

with DM about what to do, then compound p ro b a b i l i ty  may not even be 

vio la ted.

In any event, the " f l e x i b i l i t y "  o f the axiom-free ruin-conscious 

approach is l im ite d , and i t  ought to be. Probably, DM almost always wants 

to conform to the axiom's teachings. The operative word is  "almost".

S t i l l ,  i f  DM does encounter a s itua tion  where one would l ik e  to v io la te  

the axiom fo r  whatever reason, DM can do so w ithout eroding the log ica l 

foundations o f  the decision ru le .

The A l la is  s itu a t io n  i l lu s t ra te s  an in te res ting  reason fo r  adopting 

a goal. Some prospects, i f  they arise at a l l ,  are inherently  so rare as 

to render arguments based upon repeated play s i l l y .  How often can DM 

expect to be offered the choice between a m il l io n  do lla rs  and a lo t te ry  

with an even higher expected money value and no p o s s ib i l i t y  of loss?

I f  there is  such a thing as a "once in a l i fe t im e "  opportun ity , then 

perhaps DM ought not to be bound to tre a t such an event as ju s t  another

quotidian r isky  venture. I f  anything, the simple wealth horizon method

introduced here may not go fa r  enough in f lagging exceptional o f fe rs .
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Exceptions are the bane of ru les. I t  is easy fo r  the designer o f

a broadly applicable system to relegate exception-handling to the realm

of the " i r r a t i o n a l T h e  recognition o f exceptions in evaluating

lo t te r ie s ,  however, goes back as least as fa r  as Bernoulli [9 ].

Bernoulli allowed tha t his t id y  system o f wealth preferences would 

break down fo r  a prisoner who needed a certa in f ixed  sum fo r  ransom. 

B ernou ll i ,  with no axioms to defend, was content to leave such exceptions 

to stand apart.

Less melodramatically, basketball coaches w i l l  spend most o f any 

game pursuing high percentage shots. In the f in a l  four seconds o f the 

seventh game o f a championship series and down by three po in ts , things 

are d i f fe re n t .  The coach whose players took the easy two-point lay-up 

that the other team is only too happy to concede would be f i re d .  The long 

shot from th ree-pc in t land is  the only way to go.

Neither B e rn ou ll i 's  prisoner nor the hapless coach are necessarily 

outside the ambit c f  conventional u t i l i t y  theory. One could assess a 

special u t i l i t y  function that placed a numerl:al value on personal free 

dom, or tha t was a function of more than one var iab le , say po in ts , time 

to play and d e f ic i t  to make up.

Raiffa [67] goes beyond these p o s s ib i l i t ie s  in suggesting a special 

u t i l i t y  fo r  confirmed A l la is  "v io la to rs " .  Raiffa suggests tha t a kind o f 

" d i s u t i l i t y "  of having t r ie d  and los t could be assessed against the zero 

outcome, beyond whatever value the status quo might have in i t s  own 

r ig h t .  This is much the same idea as Morrison's [61], discussed e a r l ie r ,  

except tha t Raiffa would keep the ex is t ing  axioms while Morrison would 

not.

Formally, R a iffa 's  suggestion seems l ik e  i t  might preserve the
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axioms in the face o f an A l la is  v io la t io n .  A fte r a l l ,  B e rn ou ll i 's  

prisoner and the hapless coach i l lu s t r a te  tha t,  in p r in c ip le ,  things 

other than money can appear as the arguments o f a u t i l i t y  function . 

Nevertheless, R a iffa 's  suggestion fa i l s  to accomplish his in ten tion .

I f  one admits the p r in c ip le  that the u t i l i t y  function can depend 

on other prizes and th e i r  p ro b a b i l i t ie s ,  then R a iffa 's  own compound 

lo t te ry  argument founders. As in the case where goals are allowed, the 

compound p ro b a b i l i ty  axiom appears to be the one v io la ted . Presumably 

in the second lo t te ry ,  an "opporrunity conscious" DM would avoid the 

one-eleventh chance o f the "enhanced" zero regardless o f  the value o f _X- 

Yet the same DM w i l l  probably make inconsistent choices in the A l la is  

problem as o r ig in a l ly  presented.

A ctua lly , R a iffa 's  suggestion could eas ily  be expanded to embrace 

buying price ru les.

The buying price is ,  a f te r  a l l ,  a function of a l l  the prizes in a 

lo t te ry  and th e i r  p ro b a b i l i t ie s .  For general u t i l i t y  functions, use of 

buying price rules leads to v io la t io n  o f the independence axiom.

The axioms w i l l  not to le ra te  u t i l i t y  functions tha t take account 

of the other prizes in  a lo t te ry  w ithout un rave lling . U t i l i t y  functions 

need not be re s tr ic te d  to the money involved in an outcome, but they 

can 't turn on im p l ic i t  q u a l i t ie s  o f the a lte rna t ive  outcomes, l ik e  

"regre t" at not having gotten one o f those a lte rna t ives .

I t  appears, then, tha t Morrison's analysis is closer to the mark 

than R a if fa 's .  The necessary advice of the conventional axioms in the 

A l la is  problem is to se lect e ith e r  A and C, or else B and D. An axiom

a t ic  system tha t supported the "v io la to rs "  would have to be d if fe re n t  

from the conventional one.
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That's in te re s t in g ,  because indisputably ra tiona l people have 

managed to disagree about the correct course of action in the A l la is  

problem fo r  about t h i r t y  years now. Thus, any claim tha t the usual 

axioms embody necessary a t t r ib u te s  o f ra tiona l behavior under r is k  

l ie s  open to question.

Such a claim seems indispensable to the pos it ion  tha t the usual 

axioms ought to be adopted on p rescrip t ive  grounds by everyone. A l la is '  

o r ig in a l report, being descrip t ive , does not re fu te  such p resc r ip t ive  

claims.

The debate that his report spawned, however, does leave room fo r  

ra t io n a l ly  founded doubt about the status o f the axioms as normative 

imperatives.

The decision rules developed in th is  d isse rta tion  are ne ither 

descrip tive nor p re sc r ip t ive . Rather, they simply provide means whereby 

a DM might formulate some pr inc ip les  o f  choice in a manner su itab le  fo r  

algebraic implementation. A DM who wished not to take account o f the 

p ro b a b i l i ty  o f ru in ,  e.g. a fo llower o f Kelly , v io la tes no canon o f 

ra tiona l behavior.

What, i f  anything, DM wishes to accomplish by taking r is ky  gambles 

is DM's business. A mechanical procedure fo r  se lecting lo t te r ie s  can be 

judged by whether or not i t  does in fa c t fu r th e r  some ob jective selected 

oy DM.

I t  is  not c lear tha t anyone other than DM can judge the chosen 

ob jectives. Even DM's judgement about the objectives might change in  the 

face o f "once in a l i fe t im e "  opportun it ies, as A l la is '  problem suggests.
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Bands, Barriers and the Dividend Problem

A prac tica l problem, a lb e it  one that w i l l  be heavily idealized in 

analysis, tha t involves ru in  and horizons o f a so rt arises in the 

fo llow ing way. Suppose a corporation is the decision maker facing r is k .

I f  the corporation prospers, then i t  can accumulate c a p ita l ,  or pay 

out some o f  i t s  earnings as dividends.

Whatever is paid out reduces the store o f cap ita l tha t protects 

against a run o f advers ity . On the other hand, the stockholders, and 

ce r ta in ly  the government, are apt to in s is t  on some pay-outs. Both are 

in a posit ion to enforce th e ir  preference on management.

The class o f problems subsumed under the ru b r ic  o f "the dividend 

problem" involves s t r ik in g  some balance between the wish to produce 

income and the wish to ensure that the engine tha t produces the income 

survives.

Shubik and Thompson [84, 85] study such "games o f economic 

surv iva l" in the l ig h t  o f an assumption tha t the corporate decision maker 

seeks to maximize the discounted present value o f the fu ture  pay-outs.

That is ,  one maximizes the present value, V_, o f a stream o f payments, 

x ( i ) , where the j_'s run from one to T_ and index equally spaced periods 

in the fu tu re , using a per period discount rate o f d_, a l l  re la ted as:

T
V = X . - ( D d 1 

i = l

As the authors note, maximizing th is  quantity  "might even involve 

the eventual ru in o f the f irm  as part o f the optimal p o l ic y " .

I t  is  not d i f f i c u l t  to conjecture why tha t might be so. In d e f in i te ly  

sustained exponential growth in the f i rm 's  earnings may be u n re a l is t ic .

I t  might not even be a very good approximation.
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I t  is one thing fo r  Kelly to speak o f sustained exponential growth 

in the l im ited  capita l o f  a mortal gambler over the a l1-too -short active 

lifespan one can expect. On the much la rger scale o f  real corporations, 

with no pressing l im i ts  on a f i rm 's  active l i f e ,  unending exponential 

growth is  a t a l l  order.

Absent exponential growth, the con tr ibu tion  o f earnings fa r  in the 

future is  ne g lig ib le . Even w ith exponential growth, the rate o f growth 

cannot s l ip  below the reciprocal o f the discount fa c to r ,  else the fa r  

future also becomes n e g lig ib le .

In e ith e r  case, one would expect the f irm  to s a c r if ic e  those remote 

earnings, i .e .  su ffe r ru in , in the in te re s t o f boosting more nearly 

present and more heavily weighted earnings, i f  discounted present value 

is the ob jective .

Growth assumptions aside, however, the pay-out strategy studied by 

Shubik and Thompson renders eventual ru in  asymptotica lly certa in . Their 

strategy is to choose some cap ita l level _N. At the end o f each time 

period, i f  the f i rm 's  cap ita l exceeds _N, then the surplus is paid out and 

the f irm  enters the next time period with cap ita l equal to N_.

The best the company can hope fo r  is to s ta r t  each period with 

cap ita l and avoid ru in u n t i l  the next period. The p ro b a b i l i ty  o f  ruin 

doesn't f a l l  to zero unless the f ir in  manages to play pure gains exclu

s ive ly . I f  the f irm  does survive, then i t  repeats i t s  exposure to ru in 

in the next period, and so on.

I f  the p ro b a b i l i ty  o f  ru in  fo r  a single period is constant, ca ll 

i t  _R, and assuming the gambles faced in d i f fe re n t  periods are independent 

t r i a l s ,  then the p ro b a b i l i ty  o f surv iv ing n_ periods is

(1 - R)n
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Unless JR = 0, the l im i t  o f th is  expression as n̂ approaches i n f i n i t y  is 

zero.

Eventual ru in  using the Shubik and Thompson " re f le c t in g  b a rr ie r"  

pay-out strategy w i l l  be esse n tia l ly  ce r ta in , unless in each period 

the f irm  plays more conservatively than in the la s t .  Since the f i rm 's  

capita l doesn't increase, conservatism must involve accepting safer and 

safer gambles. Unless the universe is so ob lig ing  as to in d e f in i te ly  

o f fe r  gambles tha t are both progressively safer and progressively more 

lu c ra t ive ,  the f i rm 's  growing conservat sm w i l l  erode earnings.

The c r i te r io n ,  however, does no: allow s a c r i f ic e  o f  earnings fo r  

safety. R e a l is t ic a l ly ,  then, the f irm  is doomed.

Pessimistic or not, re f le c t in g  b a rr ie r  po l ic ie s  are a n a ly t ic a l ly  

trac tab le . I t  is  no surprise , therefore , tha t they are qu ite  popular in 

the l i te ra tu re .  Gerber [39], fo r  example, explores the s im i la r i t y  

between the dividend problem and certa in  inventory control models. He 

analyzes several s i tu a t io n s , a r r iv in g  at so lu tions in numbers aided by 

the well-behavedness o f b a r r ie r  methods.

Gerber also explores another trac tab le  pay-out scheme: the "band" 

s tra teg ies. In a band stra tegy, instead of one threshold value fo r  pay

outs in a l l  periods, there are several. At the end o f  a given period, 

the f irm  determines the highest value on i t s  l i s t  o f thresholds tha t has 

been exceeded. For each threshold, there is an associated lower cap ita l 

value that is  between i t s  associate and the next lower threshold.

Once the f irm  determines the highest threshold tha t has been 

exceeded, i t  d is tr ib u te s  cap ita l to reduce i t s  wealth to the associated 

lower c a p i ta l .

In the p a r t ic u la r  cases studied by Gerber, there is some highest
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threshold, a f in a l  b a rr ie r .  The l im i t in g  behavior o f  these s tra teg ies, 

therefore, u lt im a te ly  converges to that o f the simpler b a rr ie r  case: 

essen tia lly  certa in ru in .

The present value c r i te r io n  may represent ra t iona l behavior fo r  some 

firm s, even though i t  gives l i t t l e  weight to surviva l considerations.

There are companies, however, tha t must take surviva l in to  account in 

order to a t t ra c t  business in the f i r s t  place. Insurance companies have 

both a moral ob liga tion  and an economic incentive to avoid bankruptcy.

A v is ib ly  shaky company would have d i f f i c u l t y  s e l l in g  p o l ic ie s ,  to say 

nothing of passing regulatory scru tiny .

De F in e t t i  [23] has analyzed re f le c t in g  b a r r ie r  s tra teg ies con

sidering not only the present value o f pay-outs but also the expected 

survival time o f the company. The choice o f pay-out stra tegy s t i l l  

renders eventual ru in ine v ita b le , but some e f f o r t  is  expended to post

pone the event, even at some cost in earnings. Borch [11, 12] has 

elaborated on and generalized de F in e t t i 's  resu lts .

Borch proposes e ith e r  maximizing the expected present value o f 

dividends subject to a constra in t on the minimum expected surviva l time, 

or combining the two expectations in to  a weighted ob jective to be 

maximized, e.g.

alog(V) + ( l-a ) log (D ) 

where V_ is the expected present value o f the dividends, £  is the expected 

l i fe t im e  and a is  some constant between zero and one selected by the 

corporation or by i t s  government regulators.

E ither approach advanced by Borch is f a i r l y  simple to implement 

numerically. Both _V and _D can eas ily  be tabulated fo r  various combina

tions of i n i t i a l  cap ita l and b a rr ie r  c a p ita l ,  given su itab le  estimates
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o f the random processes by which income is  realized and, in the case o f 

insurance companies, claims are paid.

The tables provide DM at a glance some sense o f what kinds of

expected l i fe t im e s  are ava ilab le . This should be he lpfu l in choosing a 

re a l is t ic  constra in t value. In a s im ila r  fashion, the tables can be 

combined w ith some "back o f  the envelope" ca lcu la tion  to select a 

l iveab le  weighting fa c to r  i f  the unconstrained ob jective approach is 

taken.

Segerdahl [81] contributed a discussion when Borch [11] was read 

before the Royal S ta t is t ic a l  Society of the United Kingdom in 1967. 

Segerdahl notes with evident displeasure tha t in the numerical example 

worked by Borch, the longest expected surviva l time considered was about 

s ix ty  years. Segerdahl then discusses a B r i t is h  insurance company that 

was founded in  1762 and was s t i l l  operating two centuries la te r .

Segerdahl concludes tha t the company's managers must have operated

on d i f fe re n t  p r inc ip les  than those presented in Borch‘ s paper. " I  do not

th ink they ere very sorry about th a t , "  writes Segerdahl, "nor are, I 

th in k ,  i t s  po licyho lde rs , employees or B r i t is h  l i f e  insurance as a 

whole."

Of course, the s ix ty  year f igu re  was offered as an i l l u s t r a t io n ,  

not as an exploration o f the l im i ts  of the p o s s ib i l i t ie s  offered by the 

technique. Borch himself made ju s t  th is  point in his rep lies to the 

discussion.

S t i l l ,  the general th ru s t o f Segerdahl's c r i t ic is m  retains i t s  

force. For ru in analysis to be of p rac tica l use to insurance under

w r i te rs ,  i t  ought to be possible to s t r ik e  a balance between dividends 

and solvency without accepting the in e v i t a b i l i t y  of ru in .
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One approach is to apply the buying price  concept developed 

e a r l ie r .  The buying price was shown to be an amount of cap ita l that 

can be withdrawn from r is k  at w i l l  w ithout v io la t in g  a chosen ru in 

constra in t.

Thus, the analyst can calcu la te a buying price fo r  the p o r t fo l io  

o f risks acquired during some period. This buying price is  then ava ilab le 

fo r immediate payment as a dividend. The ca lcu la t ion  can be repeated in 

future periods and the dividend paid w i l l  r e f le c t  those periods' on-hand 

capita l and the composition o f th e i r  p o r t fo l io s .

A 1 te rna tive ly , the analyst might p re fer a stable dividend. I f  one 

had a suitab le  model o f how the p o r t fo l io  would develop over time, then 

one could behave as i f  playing a compound gamble through time. Dividend 

po licy  can be based on the assumption tha t one is  playing th is  model 

rather than assessing each period 's dividend based on the pa rt icu la rs  of 

i t s  p o r t fo l io .

Other withdrawal s tra teg ies are ava ilab le , too. The buying price 

was shown to be a special case o f the withdrawal schemes possible w ithout 

v io la t in g  the chosen constra in t. So, the analyst might choose some 

other pattern o f withdrawals. For example, one could pay out "w ind fa l ls "  

when they occur, but otherwise maintain a steady dividend.

A f u l l  analysis o f the a lte rna tives  ava ilab le  would require a 

book unto i t s e l f .  Conceptually, though, implementing a ru in  constra in t 

by means o f a bounded u t i l i t y  function leads to simple solu tions of 

dividend-type problems.

One advantage o f the new approach is the a b i l i t y  to use d ire c t ly  

the r ich  ex is t ing  l i te ra tu r e  tha t applies u t i l i t y  functions to a 

wide va r ie ty  o f models o f investment p o r t fo l io  r isks and ob jectives.
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See, fo r  example, Hakansson [40], Merton [59], or Pyle and Turnovsky 

[6E3.

The observation tha t u t i l i t i e s  provide p ro b a b i l i ty  bounds in random 

walks allows a stra ightforward in tegra tion  o f  the research tha t has 

heretofore explo ited random walks (the work o f  Shubik and his successors) 

and the research tha t has concentrated on u t i l i t y  models (conventional 

p o r t fo l io  theory).

In te re s t in g ly  enough, what had appeared fo r  some time to require 

a two-barrier random walk model, the band and b a rr ie r  approaches to 

dividend po licy , ac tu a lly  requires only a sing le b a r r ie r ,  ru in ,  moael. 

Simpler models also arise because expected u t i l i t y  models are very 

trac tab le  compared to the ordinary techniques fo r  solving random walks.



CHAPTER V

UNCERTAINTY AND PARTIAL RISK

Received Theories o f Decisions under Uncertainty

Suppose tha t a money pay-off to DM depends on both an act chosen

by DM and an unknown state o f nature. Not only does DM act in ignorance

o f what the state o f nature is ,  DM does not even know the p ro b a b i l i t ie s  

o f the d i f fe re n t  states o f nature. DM does know a l l  o f  the possible acts,

a l l  o f the possible states o f nature, and the pay-o ff fo r  each pa ir o f

state and act.

Such problems are often called decisions under uncerta in ty , as 

d is t in c t  from decisions under r is k  in which the re levant p ro b a b i l i t ie s  

are known by DM.

The s im i la r i t y  between two-person games and decisions under uncer

ta in ty  is apparent. One often hears uncertain decisions characterized as 

"games against nature". A s im ila r  matrix format is often seen in games 

and uncertain decisions. For decisions, the rows are devoted to the 

various acts and columns to "nature's moves". In fa c t ,  one popular 

strategy fo r  solving decisions under uncerta inty is to fo llow  the mixed 

maximin strategy. That is ,  to force the problem in to  a lo t te r y  format 

the same way one would in a competitive game.

The mechanics of th is  approach is the same as ou tl ined  in the f i r s t  

chapter. The re su lt ing  l in e a r  programming problem can be solved w ith in  

the expected u t i l i t y  framework.

Although the maximin approach is widely accepted as optimal in 

games, i t  is not so generally accepted in decisions under uncerta in ty.

104
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The two s itua tions  are d i f fe re n t .  Nature is presumably not a 

ra t io n a l,  ca lcu la ting  player dedicated to the abasement o f DM. Were 

the p ro b a b i l i t ie s  o f the states to correspond to the minimax so lu tion , 

th is  would be a coincidence. The symmetry o f  the two-person game that 

gives the von Neumann-Morgenstern so lu tion  i t s  s ta b i l i t y  is ir re levan t 

to the analysis o f a game against inanimate nature.

Thus, i t  should come as no surprise tha t several authors have 

proposed solutions fo r  decisions under uncerta inty other than the maximin 

even though many o f these same authors endorse maximin fo r  use in games.

The fo llow ing review is compiled from Baumol [6 ] ,  Luce and Raiffa 

[50], and Epstein [28]. None o f  these sources claims to be exhaustive. 

Nevertheless, there is  close agreement among them in th e i r  choice of 

proposals fo r  discussion. What fo llows, then, is a survey o f the main

stream o f  decision analysis under uncerta in ty .

The simplest mainstream method is the pure strategy maximin. That 

is ,  choose the act whose worst outcome is  no worse than the worst outcome 

of any other act. I t  is  d i f f i c u l t  to f in d  much to say in favor o f th is  

p r in c ip le .

One knows from the game resu lts  tha t DM can pursue a mixed strategy 

tha t is  at least as good as th is  pure s tra tegy. "Good" is meant in the 

sense tha t DM would pre fer (o r be in d i f fe re n t  between) the worst lo t te ry  

o f the mixed strategy over the amount guaranteed by the pure strategy. 

Thus, any DM who saw merit in the pure s tra tegy maximin and who ordered 

lo t te r ie s  according to an expected u t i l i t y  or u t i l i t y - l i k e  ru le  would 

rather pursue the mixed strategy as a general ru le .

Note tha t one can formulate decision problems where both the pure 

and the mixed maximin s tra teg ies lead to the same action.
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Sometimes th is  recommended act may be hard to l iv e  w ith. Luce and 

Raiffa give the fo llow ing  example. The en tr ies are u t i l i t y  values.

SI S2

A1 0 100

A2 ' 1 1

The maximin ac t, whether mixed or pure, is  to choose act A2 with 

p ro b a b il i ty  one. Even i f  the entry at (A l, S2) were a m i l l io n  un its ,

the maximin act would s t i l l  be A2.

This matrix is an exce llent example in several respects. For one 

th ing, i t  dramatizes how nature may d i f f e r  from a competitive player.

No competitor is  ever going to oblige DM with a pos it ive  p ro b a b i l i ty  o f 

S2. Nature, on the other hand, doesn't care, and so might o f fe r  some 

chance of gaining tha t happy state.

Another v ir tu e  o f  the example is  tha t i t  encourages careful thought 

about the degree o f ignorance tha t one is assuming. The states SI and 

S2 are not things l ik e  " I t  w i l l  ra in tomorrow outside DM's home.", 

matters about which DM might have some notions as to th e i r  l ike l iho od .

I f  they were, then DM would have much incentive to bring to the problem 

some estimate, however crude, o f the p ro b a b i l i ty  o f ra in tomorrow.

That would make the problem too r i s k - l i k e ,  too much l ik e  a lo t te ry ,  

fo r  the current discussion. The states are things that DM knows nothing

about, l ik e  the proportion o f red ba lls  in  a sealed urn, and urn tha t

might not hold any red b a lls  (or might hold nothing e lse). One is 

de libera te ly  extreme eoout DM's ignorance. The point o f  a problem under 

uncertainty is  to f in d  the "best" act w ithout making any appeal to the 

state p ro b a b i l i t ie s  whatsoever.

That assumed,' i t  is  not obvious tha t choosing A2 is wrong. I t  is
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perhaps gaTnng that a conservative decision ru le  forecloses the big 

pay-off a ltogether, w ithout any assurance tha t nature would not be some

what forthcoming i f  given the chance.

For th is  reason, Savage [78] proposed the minimax "reg re t"  c r i 

te r ion . Savage's proposal en ta i ls  replacing each entry in the pay-off 

matrix with a "regre t" value. The regret is the absolute value o f the 

difference between the money entry in some ce ll  and the greatest entry 

in i t s  column. Thus, the regret values fo r  the la s t  example matrix would 

be

SI S2

a : i o

A2 0 99

One then chooses the act which has the smallest maximum entry in i t s  row, 

which in th is  example is  A l.

The thought behind the proposal is tha t DM seeks to protect against 

rueful fee lings tha t one might experience as a re s u lt  o f choosing A2 i f  

the true state o f nature turned out to be S2.

Chernoff [20] c r i t i c iz e s  Savage's proposal on three grounds. One 

objection turns on a technical axiomatic d i f f i c u l t y  w ith imputing any 

s ign if icance to the absolute d ifference between two u t i l i t y  numbers. On 

a less obscure note, Chernoff shows tha t the scheme is  in t ra n s i t iv e .

An act, say A2, may be optimal among acts A l, A2 and A3, while some 

other act, perhaps A3, is  optimal among A l, A2, A3 and A4. Thus, even 

though A4 is not chosen, i t s  presence changes the ordering o f  the other 

acts.

Perhaps most in te re s t in g ly ,  Chernoff reports the construction o f  

examples where a small advantage in one state outweighs a large advantage
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in another s ta te . This scores a te l l i n g  blow, since Savage proposed the 

method in order to avoid ju s t  such d i f f i c u l t i e s .

Hurwicz [41] adopts another approach to the conservatism o f  the 

maximin c r i te r io n .  He proposes a "pessimism-optimism" index. Under the 

Hurwicz proposal, one finds the best and worst outcomes fo r  each act. 

These are then combined in a weighted average, where the weights given 

to the two extreme outcomes are non-negative numbers that sum to one.

DM selects the act w ith  the greatest weighted average value.

Let a be the weight given to the worst outcome. The index values 

of the two acts in the example are

A l: o(0) + (l-ct)lOO 

A2: q( 1) + ( l - a ) l  = 1 

The higher the a, the more "pess im is tic " DM is ,  in Hurwicz's view. In the 

case where a = 1, the ru le  is  iden tica l to the oure strategy maximin.

I t  is  unclear what the basis o f DM's optimism or pessimism ought 

to be, since one has assumed away DM's use o f knowledge or estimates 

about the true state o f  nature.

Luce and Raiffa o f fe r  an in tu i t i v e  counterexample to the Hurwicz 

proposal, one w ith the same f la v o r  as the one they levy against maxi

min.

Consider the matrix

T1 T2 T3 T100

A3 0 1 1 •  •  • 1

A4 1 0 0 0

Both A3 and A4 have Hurwicz index values of 1-a, so DM would be i n d i f 

ferent between them. Yet, anyone who is  l i k e ly  to be disturbed by the 

Luce and Raiffa re jo inder to Savage may also be l ia b le  to prefer A3 over
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A4. There is no binding foundation fo r  such a fee ling  apart from the 

in formal, and by assumption uninformed, guess tha t one o f T2 through 

T100 is more l ik e ly  to occur than T l. There are so many more 

p o s s ib i l i t ie s .

I f  one is  persuaded that A3 is be tte r than A4, then th is  example 

can also be offered as a c r i t ic is m  o f the pure maximin c r i te r io n ,  since 

pure maximin is a special case of the Hurwicz.

Both Luce and R a if fa 's  account and Baumol's account suggest tha t 

Hurwicz may have had his tongue in his cheek when he offered th is  

pessimism-optimism index. Apparently, Hurwicz personally was qu ite  content 

with a = 1, i .e .  the pure maximin c r i te r io n .  The invention o f the index 

was, apparently, a d ry ly  humorous response to those who would characterize 

maximin as overly pess im istic .

Whatever the circumstances o f  i t s  invention may neve been, the index 

has found a place in the decision l i te ra tu re .

S t i l l  another proposed decision ru le  is  an old one, suggested in 

somewhat d i f fe re n t  contexts by Jacob B ernou ll i ,  Thomas Bayes and 

Pierre Simon de LaPlace. Suppose there are ji states o f nature, and that 

DM does not know th e i r  p ro b a b i l i t ie s .  I f  the states are mutually exclu

sive and exhaustive (one and only one among them w i l l  occur), then the 

ru le says tha t DM ought to assign to each state a p ro b a b i l i ty  o f  l/n_.

This ru le is often ca lled the "p r in c ip le  o f in s u f f ic ie n t  reason". When 

applied s p e c i f ic a l ly  to decisions under uncerta in ty, the ru le is  some

times called the Bayes-LaPlace c r i te r io n .

I f  DM adopts the method, then one formally turns any decision under 

uncerta inty in to  a decision under r is k .  In the recurring example, the 

p ro b a b i l i ty  o f SI would be assumed equal to tha t o f S2, one-ha1f  fo r
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each. DM would then view the game matrix as a choice between a lo t te ry  

o ffe r ing  equal chances of 100 or 0, and the degenerate lo t te ry  tha t 

offers a prize o f 1 fo r  sure. However DM would choose between these 

lo t te r ie s  i f  o ffered, so, too, would DM choose between the acts ac tua lly  

before one.

Note tha t i f  DM's decision ru le  avoids mixed s tra teg ies under r is k ,  

fo r  example, conventional u t i l i t y ,  then mixed s tra teg ies w i l l  be 

avoided under uncerta inty.

One real d i f f i c u l t y  with Bayes-LaPlace is tha t i t  is 

sensitive to the number o f d is t in c t  states in the problem. I t  is not 

always obvious how many states there are, or ought to be.

I f  a decision depends c ru c ia l ly  on whether or not i t  rains tomor

row, and one adopts th a t dichotomy as the descrip tion of the s ta tes, then 

the p ro b a b i l i ty  of ra in  is  assessed at one-half. I f  one is  planning a 

p icn ic , then one might equally be concerned tha t a windy day would be 

unsuitable. What are the states then?

On a "weather su itab le  or not" p a r t i t io n ,  there is an imputed f i f t y  

percent chance of the plans going awry. On a "sunny and not windy, rainy 

and not windy, windy" analys is , bad weather totes up to two th ird s .

Which is i t?

Note the f in e  d is t in c t io n  tha t can a r ise . DM is assumed to know a l l  

o f  nature's possible moves in any decision under uncerta in ty. I t  does not 

necessarily fo l low  from th a t,  however, th a t DM knows what the "na tu ra l" 

p a r t i t io n  o f those moves mignt be. The an a ly t ic  matrix with the f ixed 

and determined number o f  columns is  generally provided by DM, not by 

nature.

The ambiguities attendant to the use o f Bayes-LaPlace are well
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known. Nevertheless, Chernoff [20] proposed a set o f  axioms tha t lead 

uniquely to the adoption o f Baves-LaPlace. Although the conclusion is 

not widely accepted, the axioms continue to receive a tten tion . Subsets 

and modifications of the Chernoff axioms lead to other decision ru les.

The crucia l Chernoff axiom leading to Bayes-LaPlace is  based upon 

some unpublished work by Herman Rubin. The axiom concerns the fo llow ing 

s itua tion .

Suppose tha t DM faces two matrices. One has pay-offs tha t depend 

both on one's act and the state o f nature. The other m a tr ix 's  pay-offs 

depend only on the state o f nature, i . e .  each column is  a constant vector. 

D iffe ren t columns may have d is t in c t  constants. The states are the same 

fo r  both matrices.

DM w i l l  "play" one matrix or the other depending on some random 

event that is independent o f the act chosen. Rubin's axiom states tha t 

one's decision in the problem where one's act matters does not depend on 

the constant-column matrix.

Once the u n fa m il ia r i ty  o f the decision terminology wears o f f ,  the 

reader w i l l  remember having seen something l ik e  th is  before. Recall 

R a iffa 's  report o f S c h la i f fe r 's  analysis o f  the A l la is  problem. In tha t 

analysis, there was a compound lo t te ry ,  one o f whose outcomes was a prize 

fo r  certa in . The other outcome was a choice among lo t te r ie s .  I t  was 

asserted that the decision among the lo t te r ie s  ought to be independent 

o f the choiceless prize . Rubin's axiom is c le a r ly  a pa ra lle l construction 

fo r  uncertain decisions.

The next section w i l l  discuss Rubin's axiom a f te r  the development 

o f some theore tica l apparatus to pursue the analysis.

At the moment, i t  is safe to say tha t there is l i t t l e  consensus in
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the l i te ra tu re  about how to handle decisions under uncerta inty. This 

can hardly be su rp r is ing . There is  disagreement about how to handle 

decisions uncer r^'sk, and uncerta inty gives the analyst one less category 

o f information to use, the p ro b a b i l i t ie s  o f the states o f nature.

A token o f the current state o f disagreement was invented by 

John Mil nor, and quoted by Baumol [6 ].

Consider the fo llow ing  decision matrix.

S T U V 

A 2 2 0 1

B 1 1 1 1

C 0 4 0 0

D 1 3 0 0

Act A w i l l  be chosen by Bayes-LaPlace, act B by both the pure and mixed 

maximin, act C by the Hurwicz index fo r  any a less than one-ha lf, and 

act D by the minimax regre t c r i te r io n .

The e x is i t in g  techniques fo r  dealing with decisions under uncer

ta in ty  are thus shown to be incompatible and ir re co n c ila b le .

The resu lt ing  d iv e rs i ty  of opinion has at least one salutary 

e f fe c t .  In the absence o f  a single strong decision ru le  candidate compar

able to the conventional u t i l i t y  theory in the domain o f r is k ,  there may 

be less d i f f i c u l t y  in proposing tha t DM should se lec t a decision ru le 

based on what accomplishes most nearly the goals and aims one chooses.

The claim that an uncertain decision ru le  is "uniquely ra t io n a l"  or 

binding on a l l  DM's who aspire to ra t io n a l i t y  is less often heard than 

the corresponding claim fo r  r is k .
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Uncertain Mixtures o f Lotter ies and Maximin

Before pursuing decisions under uncerta in ty , consider the fo llow ing 

problem under r is k .  Suppose DM is a ruin-conscious buying price decision 

maker. DM faces repeated play o f a compound lo t te r y ,  a lo t te ry  whose 

prizes are also lo t te r ie s .  DM knows the id e n t i ty ,  the outcomes and the 

p ro b a b i l i t ie s  of each o f  the prize lo t te r ie s .

DM does not know the re la t ive  frequency o f these lo t te r ie s .

Assume that DM plays without memory, tha t is ,  DM cannot in fe r  the prob

a b i l i t ie s  as play unfolds. .Assume that DM w i l l  make withdrawals on each

play, before learning which prize lo t te ry  is  offered.

Thus posed, the problem is rather simple. Each lo t te ry  has i t s  own 

computable buying pr ice . I f  DM withdraws the buying price o f  the lo t te ry  

whose buying price is the smallest, then the ru in constra in t w i l l  be 

s a t is f ie d .

This assumes, o f course, tha t the least buying pr ice is p o s it ive .

I f  i t  i s n ' t ,  then no withdrawal plan can guarantee the sa t is fa c t io n  o f 

the ru in constra in t w ithout knowledge o f  the re la t iv e  frequency with 

which the lo t te r ie s  w i l l  be faced. DM would decline to play such a 

sequence i f  one could.

By the same reasoning, i f  the least buying price were p o s it ive ,  DM

would accept the sequence, but would not withdraw more than the least

price on each play. I f  one did withdraw more, then the s a t is fa c t io n  of 

the chosen ruin constra in t could not be guaranteed.

The argument generalizes to s itua tions  where d i f fe re n t  lo t te r ie s  

are ava ilab le on each play, ra ther than the same ones over and over. 

Suppose that instead o f the repeated play o f the same uncertain compound 

lo t te ry  whose prizes are known lo t te r ie s ,  DM faces a d i f fe re n t  compound
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uncertain mixture o f lo t te r ie s  on each play. Although DM knows the 

lo t te r ie s  offered at each play when tha t play takes place, DM does not 

know what lo t te r ie s  w i l l  be available on other plays.

Without information about the sequence o f compound lo t te r ie s  to be 

faced, nor information about the p ro b a b i l i ty  w ith which the po ten tia l 

lo t te r ie s  at each play w i l l  turn out to be the one ac tua lly  played, DM 

can s t i l l  sa t is fy  the chosen ru in constra in t. DM simply withdraws the 

least buying price among the lo t te r ie s  p o te n t ia l ly  ava ilab le .

The application o f these observations to decision making under 

uncertainty is s tra ightforward. Faced w itn a choice o f acts and a know

ledge o f th e i r  outcomes conditioned upon nature 's move, DM is in a 

position to create an uncertain mixture of lo t te r ie s .

Just as one does in two-person games, DM can assign p ro b a b i l i t ie s  

to each o f one's acts. That done, one faces a d i f fe re n t  lo t te ry  fo r  

each state o f nature. Since DM doesn't know the p ro b a b i l i t ie s  o f those 

states, but knows both the p ro b a b i l i t ie s  and pay-offs fo r  each possible 

lo t te ry ,  then DM does face an uncertain mixture of lo t te r ie s  as claimed.

DM already knows how to assign p ro b a b i l i t ie s  to one's act so as 

to obtain the greatest least buying pr ice . One uses the l in e a r  program

ming techniques discussed e a r l ie r  in connection w ith games.

A po licy  o f so behaving in a l l  decisions under uncerta inty allows 

DM to s a t is fy  one's chosen ru in constra in t,  even though DM does not know 

the substance o f fu ture  uncertain decisions.

One subtle ty  fo r  games against nature should be noted. Suppose the 

lo t te ry  that yie lded the least buying price happened to be a constant 

column. I f  th is  were a competitive game, then no problem would arise.

The constant column would be the best play fo r  the other player regard
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less o f  what Row did.

Against nature, however, i t  makes sense to ignore constant columns 

when selecting a stra tegy. Since any p ro b a b i l i ty  weighting o f  the acts 

doesn't change the pay-o ff i f  the constant " lo t te ry "  turns out to be the 

one o ffered, one should choose the weighting that y ie lds  the best price 

in case the constant column i s n ' t  the one DM has to face.

Even so, the buying pr ice of the decision problem as a whole would 

be that o f the constant column, i f  the column is the "best worst" lo t te ry  

fo r  DM.

In other words, DM should solve the game matrix in the usual way 

to get the buying price fo r  the uncertain prospect. To pick a stra tegy, 

one could delete a l l  constant columns and solve that matrix fo r  the 

actual weightings. This extra step is unnecessary unless a constant 

column were the unique (except fo r  other constant columns o f  the same 

value) least-buying-price  lo t te ry  in the f i r s t  step. Otherwise, the 

column won't change the sc lu tion  at a l l .

This m odification o f  the usual maximin approach brings the strategy 

in to  conformity with Savage's [79] independence or "sure th ing" p r in c ip le .  

As applied to decisions under uncerta inty, tha t p r in c ip le  holds tha t the 

presence o f a constant column ought not to a f fe c t  DM's stra tegy. The 

column may a f fe c t  the price under the proposed so lu tion procedure, but 

Savage d id n ' t  contemplate d i re c t ly  such e ffec ts  in his theory.

The recommendation to the ruin-conscious DM who uses a buying price 

ru le is  generally to fo l lo w  the mixed maximin ru le , w ith the m odification 

noted fo r  constant columns. I f  DM were ruin-conscious, but d id n ' t  fo l low  

a buying price ru le ,  then th is  advice would not necessarily hold.

The buying price ra t iona le  gives the worst lo t te ry  some ana ly tic
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importance. The ruin-conscious DM would want to be sure tha t the worst 

lo t te ry  s a t is f ie d  the cons tra in t,  but might not otherwise care about 

the worst lo t te r y 's  value i f  one were not generally guided by the 

buying pr ice .

S im ila r ly ,  i f  DM adopted a u t i l i t y - l i k e  buying price ru le , but not 

fo r  ruin constraining purposes, then the maximin advice might not apply. 

The worst lo t te ry  was emphasized because i t s  sa t is fa c t io n  o f the ru in 

constra in t ensured that a l l  the lo t te r ie s  were sa t is fa c to ry . I f  con

s t ra in t  sa t is fa c t io n  were not a consideration, then perhaps DM might use 

some other function o f  the available buying prices to make a se lection .

Indeed, i f  DM were ruin-conscious and used a buying price ru le ,  but 

d id n 't  ac tua lly  withdraw money from c a p ita l,  the ra t iona le  given here 

would be inapplicab le . That may be an important caveat. For example, when 

a constant column sets the buying p r ice , the modified strategy chosen 

dees not change the amount ava ilab le fo r  withdrawal. Thus, DM wouldn't 

be obliged to fo llow  maximin during the "second analysis" o f the matrix 

with i t s  constant columns removed.

In summary, the recommendation of maximin is sp e c if ic  fo r  a certa in  

kind o f DM with a certa in  kind o f ob jective . Other DM's are l e f t  to 

decide whether the mixed maximin comports with th e i r  goals or not.

In o ffe r in g  maximin at a l l ,  even in a s l ig h t ly  modified form, one 

must consider some objections tha t have Deen raised against the method's 

use in games against nature.

An observation frequently  found in the l i te ra tu re  is tha t maximin 

is unduly pessim istic . Sometimes, th is  is phrased gently , as a speculation 

about whether one should behave as i f  neutral nature were in d is t in 

guishable from an in te l l ig e n t  competitor.
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Other times, the objection is raised v i tu p e ra t iv e ly  with ad 

hominem overtones. Consider th is  sentence from Baumol [2, p. 581], 

"However, the maximiner is a fundamentally t im id  man who fears tha t his 

opponent (whether i t  be nature or another player) w i l l  always outguess 

him."

This is not a p re t ty  p ic tu re . In c id e n ta l ly ,  the " in a b i l i t y  to 

outguess" aspect o f the maximin strategy is often advanced as an argument 

in i t s  behalf in competitive games; see, fo r  example, Owen [62]. This 

a t t r ib u te  may re a l ly  be important in some games. However, maximin has 

t r a d i t io n a l ly  been advanced on other grounds. I ts  security  from invid ious 

inference ex is ts , but is  secondary in importance.

One might also po in t out tha t the opponent's desire to do DM bad 

is not central to maximin, e ith e r .  The competition assumption is a kind 

o f "cover story" tha t explains why the players don 't ju s t  agree on some 

course of action, as players are assumed to do in so-called co-operative 

games.

Maximin is a response to the players' lack o f  knowledge o f  what the 

other side w i l l  do, given tha t one cannot ask and expect to get a t ru th fu l  

answer.

Competition is  one way such a fa i lu re  to communicate might ar ise .

I f  asked about one's plans, a competitor would l i e .  In the memorable 

phrase o f Thomas Schelling [80, p. 219], "Any message worth sending is 

not worth reading."

Competition is only one way communication can f a i l ,  however. Nature 

doesn't l i e ,  but nature often doesn't answer our questions at a l l .  One 

can eas ily  imagine two human opponents f ind ing  themselves phys ica lly  

unable to communicate and so unable to co-ordinate th e i r  acts to  mutual
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benefit .  Neither wishes the other i l l ,  yet both might maximin.

I t  seems to matter l i t t l e  whether DM can 't ask because the other 

player w i l l  l i e ,  or because the "other player" simply doesn't answer.

In ne ither case does DM receive assurance o f co-operative behavior. In 

both cases, the best DM can do by one's own action is to establish a 

f lo o r  on the outcomes o f the encounter.

As fo r  t im id i ty ,  the ruin-conscious DM's a t t i tu d e  toward r is k  is 

not a l l  th a t d i f fe re n t  from a conventional u t i l i t y  DM who uses a concave 

curve. Each avoids r is k  in a systematic way, and there is  nothing 

obviously i r ra t io n a l  or over-emotional in such behavior. With maximin, 

a buying-price DM can gain an income and s a t is fy  a chosen ru in constra in t. 

Inferences about DM's emotional state seem out of place and ir re le va n t 

to the merits o f DM's unexceptional behavior.

Chernoff [20] c r i t ic iz e s  maximin from another vantage; he objects 

to the use o f random stra teg ies against nature on p r in c ip le .  Chernoff's 

balk reaches mixed s tra teg ies against a competitor, although without 

insistence in  tha t case.

B r ie f ly  summarized, Chernoff points out that a f te r  the "coin is 

tossed" to  se lect an ac t, one goes on to play a p a r t ic u la r  pure strategy. 

E ither one is in d i f fe re n t  among the possible acts, in which case the 

randomization is  superfluous, or else there is  an element o f delusion.

I f  one has a preference among the acts, one should take the best act and 

be done w ith i t .  Otherwise, DM may f in d  that the random procedure selects 

some other act, and so DM ends up performing that less prefered act.

In other words, DM cannot re a l ly  play a mixture of acts, but must 

eventually play a pure stra tegy. Why not, Chernoff asks, play the best 

pure strategy in the f i r s t  place?
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The answer to th is  objection is to appreciate the d ifference 

between a preference among the acts fo r  th e i r  own sakes, and the long- 

run results  o f a po licy  tha t guides one's se lections. The ru in 

conscious maximiner employs a mixed strategy to get a more prefered 

lo t te ry  than tha t offered by any pure act. Any preferences or a tt itudes  

such a DM might have about the acts are not re levant to tne implementation 

o f  the chosen po licy .

Other analysts encounter real confusion about maximin when they 

read in to i t  the desire to make the safest play possible. McClennen 

[57], fo r  example, reports great d i f f i c u l t y  in try in g  to reconcile con

ventional u t i l i t y  theory with th is  presumed quest fo r  safe ty.

Analysis from the ruin-conscious perspective c la r i f ie s  the problem 

McClennen wrestles w ith. The maximiner need not be seeking the safest 

play; one can play maximin seeking merely an acceptably safe play. The 

reconc il ia t io n  of that ob jective with u t i l i t y  theory is s tra igh tfo rw ard : 

ruin constra ints can be achieved by bounded u t i l i t y  functions.

F in a l ly ,  one can reprise an e a r l ie r  objection to maximin: tha t an 

a r b i t r a r i l y  small advantage in one state o f nature can outweigh an 

a r b i t r a r i l y  large advantage in another.

In the f i r s t  place, there might not be a problem at a l l .  I f  DM did 

know the p ro b a b i l i t ie s  involved, i t  is  e n t i re ly  possible tha t the high 

pay-o ff act would be declined.

A lte rn a t iv e ly ,  the source o f the problem might not be the maximin 

strategy. A fte r a l l ,  the class o f decision problems under uncerta inty is 

an a r t i f i c i a l  one. I t  was created fo r  the exploration and creation o f 

ana ly tica l too ls . I t  is  in te n t io n a l ly  extreme in i t s  assumption about 

what DM doesn't know - not even a h in t about the cruc ia l p ro b a b i l i t ie s .
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Indeed, as Baumol [6] observes, the class is  also somewhat u n re a l is t ic  

in what DM does know - a l l  the possible acts and a l l  th e i r  possible out

comes. Perhaps the Luce and Raiffa re la t iv e  advantage example merely 

i l lu s t ra te s  how d i f f i c u l t  decisions can be i f  DM has no p ro b a b i l i ty  

information. This p o s s ib i l i t y  seems espec ia lly  p lausib le  in l ig h t  o f 

the irony that some of the methods proposed to remedy the defect them

selves f a l l  prey to s im i la r ly  qu izz ica l hypothetical problems.

S t i l l  another approach is to use under uncerta inty the same f l e x i 

b i l i t y  tha t DM has in problems under r is k .  In the la s t  chapter, i t  was 

shown that DM could, w ithout abandoning claims to ra t io n a l i t y ,  t re a t 

once-in-a-1 ifetime opportunities as exceptions. In fa c t ,  DM ought to 

an tic ipa te  tha t such exceptional circumstances might a r ise . This is 

especia lly so i f  one's r is k  taking ins truc t ion s  are to be executed w ith 

out supervision by a personal agent or by a machine.

DM can simply l im i t  the power o f one's agents to act when goal

sized pay-outs are at stake, and resolve such problems oneself. The 

general advice to play according to maximin is  unaffected, ju s t  as the 

general expected u t i l i t y  advice under r is k  was not scutt led  by the 

prospect o f exceptions.

In any event, i t  is time to take up Rubin's axiom again. The axiom 

arises in the fo llow ing s i tu a t io n . There is a lo t te r y  w ith two outcomes.

One outcome is  a pay-o ff matrix w ith constant columns, i . e .  DM's pay-off

does not depend on one's act. The other outcome is  a decision under 

uncertainty where one's act does matter. The ensemble o f states in both

matrices is the same. Rubin's axiom says tha t DM's choice in the " re a l"

decision problem doesn't depend on the other matrix.

Suppose we have two matrices:
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SI S2 SI S2

A1 w x A1 a b

A2 y z A2 a b

and a lo t te ry  th a t y ie lds  a £  p ro b a b i l i ty  o f  facing the matrix on the 

l e f t  and a complementary p ro b a b i l i ty  o f facing the matrix on the r ig h t .  

The in te res ting  case is where DM must choose among the acts w ithout 

knowing which matrix obtains.

Arguing from compound p ro b a b i l i ty ,  the problem can be recast in to  

a single m atrix:

SI S2

A1 (p: w, a) (p: x, b)

A2 (p: y , a) (p: z, b)

This ju s t  brings the lo t te ry  inside the uncertain decision. Assume tha t 

goal level pay-offs are not invo'ved, otherwise DM might not assent to 

the b lu rr in g  o f the d is t in c t io n  between choice junctures and chance.

That is ,  so DM w i l l  assent to the application of compound p ro b a b i l i ty .

I f  a. = b_ and i f  DM applies maximin to the matrix o f  expected u t i l 

i t y  values o f the ind icated lo t te r ie s ,  then the (a, b) matrix doesn't

a f fe c t  DM's choice. Each entry in the u t i l i t y  matrix is  a l in e a r  trans

form o f the corresponding u t i l i t y  fo r  the (w, x, y ,  z) m atrix .

Such special cases aside, i t  is  easy to show tha t the choice o f a_ 

and b_ w i11 a f fe c t  the p ro b a b i l i t ie s  assigned to the acts as DM applies

lin e a r programming to maximize the buying price o f  the prospect. Because

numbers which d i f f e r  beyond a l inea r transformation w i l l  appear in  the 

programming m atrix , d i f fe re n t  answers are to be expected.

This is not i r r a t io n a l .  The constant-column matrix re a l ly  does 

a f fe c t  the biggest withdrawal tha t can be made on the strength o f  the
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compound uncertain lo t te ry .

DM can use th is  fa c t  to advantage, since one's decision does not 

depend on preferences among parts o f the decision problem faced. Once 

again, the viewpoint o f long-run consequences leads to a d if fe re n t  

course o f action than what might be expected from preferences founded 

on the a t t r ib u te s  o f  ind iv idua l outcomes.

One may, therefore , re je c t  Rubin's axiom.

Although Chernoff's axiomatic system (which includes Rubin's) is 

a c lassic in the received theory, i t  is not the only attempt to ju s t i f y  

the p r in c ip le  o f in s u f f ic ie n t  reason ax iom atica lly .

Recently, Sinn [86] has offered a new motivation o f  the p r in c ip le .  

Sinn uses the ordinary independence axiom combined w ith a careful 

d e f in i t io n  of uncerta inty. Sinn's arguments are both elegant and 

ingenious.

Nevertheless, i t  has already been shown tha t a ruin-conscious DM 

need not accept the independence axiom. Thus, one need not adopt the 

p r in c ip le  o f in s u f f ic ie n t  reason on the arguments o f Sinn, e ith e r.

There is an irony in Sinn's work. His in ten tion  in l in k in g  the 

independence axiom and Bayes-LaPlace is  ev iden tly  offered to enhance the 

accep tab il i ty  o f the la t t e r .  Given the low esteem in which Bayes- 

LaPlace is held, however, the linkage may provide s t i l l  another argument 

against the independence axiom.
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The Ellsberg Problem 

Daniel Ellsberg [26] poses the fo llow ing decision problem. There 

is an urn w ith n inety colored ba lls  in i t .  T h ir ty  of the ba lls  are red, 

and each o f the other s ix ty  is e ith e r black or yellow. A single ba ll 

w i l l  be drawn from the urn at random. In the f i r s t  o f  two decisions,

DM may choose between two acts. The pay-offs are as fo llows:

30 - - 60 - -

red black yellow

I $100 0 0

I I  0 $100 0

F o rth e  second decis ion, suppose tha t the urn is  the same, but instead 

o f the matrix above, DM faced

30 - - 60

red black yellow

III $100 0 $100

IV 0 $100 $100

Ellsberg 's problem is  to specify which act DM should choose fo r  each 

matrix.

These decisions are intermediate between r is k  and uncerta inty. DM

knows something about the p ro b a b i l i t ie s ,  but not a l l  th e i r  values.

Ellsberg put the problem to several prominent decision th e o r is ts ,  

among them Paul Samuel son, Robert S ch la ife r , Howard Raiffa and 

Leonard Savage. Ellsberg ins truc ted his subjects not to apply th e i r  f u l l  

and considerable ana ly t ica l powers to the s i tu a t io n ,  but to give an 

in tu i t iv e  reply.

The spe c if ic  feature Ellsberg wished his subjects not to notice was 

that the two matrices are ide n t ica l except fo r  the "yellow" column. In



124

both cases, tha t column is constant over the acts, although w ith  d i f 

ferent constants in each case.

The reader may reca ll tha t under uncerta in ty , Savage's independence 

p r inc ip le  says tha t constant columns are i r re le va n t to DM's decision. 

Ellsberg shows tha t knowing the p ro b a b i l i ty  o f one state would not a l te r  

the application o f th is  axiom. Therefore, the consistent choices in the 

two decisions according to Savage's axiom are e ith e r  I and I I I  or else 

I I  and IV.

A b r ie f  argument w i l l  probably capture the force of the Savage 

position be tter than a bald appeal to the axiom.

One th ird  o f the ba lls  in the urn are red. Some unknown proportion 

o f the b a l ls ,  ca l l  i t  £ , are black, and some unknown proportion, ca ll i t  

£ , are yellow. The sum o f £  and £  is necessarily tw o-th irds . For sim

p l i c i t y ,  assume tha t DM decides the problems with l in e a r  u t i l i t y ,  i . e . ,  

according to average pay-offs under r is k .

The expected values o f  the various acts are:

I 1/3 o f  100 I I I  (1/3 + q) o f 100

I I  p o f 100 IV 2/3 o f 100

I f  I is be tte r than I I ,  then I I I  "must be" be tte r than IV in the fo llow ing 

sense. There is  no pa ir  o f values fo r  £  and £  so tha t the expected value 

o f I is  greater than tha t o f I I  and tha t the expected value o f IV is 

bigger than I l l ' s .  That is ,  i f  £  is less than one th i r d ,  then £  must be 

bigger than one th i r d ,  since the sum o f £  and £  is  exactly two th ird s .

Nevertheless, a very frequent pattern o f expert in tu i t i v e  response 

was Act I over Act I I  and Act IV over Act I I I .  When Ellsberg pointed out 

the d i f f i c u l t y ,  most, but not a l l ,  o f the experts amended th e i r  responses 

so as to conform to Savage's axiom.
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MacCrimmon [51, 52] reports s im ila r  resu lts  when a l ik e  problem 

was presented to business executives. I n i t i a l l y ,  the executives picked 

the options w ith  the known p ro b a b i l i t ie s  ( I  and IV), but a f te r  guided 

discussion many, but not a l l ,  changed to Savage-compatible choices.

Among those who f e l l  in to  E llsberg 's  " trap" and la te r  ex tr icated 

themselves was Howard Raiffa [66], Raiffa proposes the fo llow ing analysis.

Suppose DM prefered I over I I  and IV over I I I .  Raiffa then offers 

DM s t i l l  another decision matrix. A coin w i l l  be flipped and DM has two 

options. DM must make a decision before the coin lands.

Heads Tails 

Option A Act I Act IV

Option B Act I I  Act I I I

The en tr ies mean tha t DM w i l l  play the urn game with the indicated 

strategy.

Option A dominates Option B, and therefore should be prefered to 

i t  according to Raiffa . That is ,  DM prefers the outcome o f Option A 

regardless o f the s ta te  o f  the coin.

On the other hand, the two options are iden tica l probabi1i s t i c a l l y .  

Red, black or ye llow , DM has an ob jective f i f t y - f i f t y  chance o f $100 or 

zero under both options. Rather than prefering Option A to Option B, DM 

ought to be in d i f fe re n t  between them.

R a iffa 's  gamble is  simply another compound lo t te ry  o f the sort 

discussed in  connection w ith Rubin's axiom, and before tha t,  S ch la ife r 's  

analysis o f the A l la is  problem. The d i s t i l l e d  answer to a l l  is  the same: 

a ruin-conscious DM can have one set o f preferences among prospects and 

another set fo r  lo t te r ie s  invo lv ing those prospects.

The cruc ia l po int is  tha t such a DM is not bound by the indepen-
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dence axiom, and is therefore free to v io la te  i t .  DM would e r r  not to 

notice that R a if fa 's  o f fe r  set up a compound lo t te ry  in which options 

A and B are id e n t ic a l .  None o f th is  binds DM's preference in  other 

circumstances where the options faced are not id e n t ic a l.

The o r ig in a l theore tica l import o f E llsberg 's  experiment concerned 

what are called "sub jective p ro b a b i l i t ie s " .  Fishburn [34] surveys the 

many theories o f subjective p ro b a b il i ty .

The un ify ing  theme o f these theories is tha t DM is assumed to be 

able to make estimates o f  the p ro b a b i l i t ie s  o f  those events in a 

decision problem whose ob jective p ro b a b i l i t ie s  are unknown. Some theories 

(e.g. Je f f re y 's  [42]) attach p ro b a b i l i t ie s  to things tha t don 't have 

w e ll-sp ec if ied  ob jective p ro b a b i l i t ie s .  For example, one can discuss the 

p ro b a b i l i ty  tha t the State o f Pennsylvania has an area o f less than 

f i f te e n  thousand square miles.

Henceforth, we r e s t r i c t  our a tten tion  to events tha t have a w e ll-  

specified ob jec tive  p ro b a b i l i ty .

In the Savage theory [79], a popular one, these estimates are 

always what s ta t is t ic ia n s  ca l l  "po in t estimates".

Suppose a decision turned on some event, and DM estimated i t s  

p ro b a b i l i ty  as being between s ix ty  percent and eighty percent. Under 

the Savage theory, DM would s e t t le  on a single figu re  in tha t range, 

say seventy-five percent. Once se tt led  upon, analysis would proceed as 

i f  the p ro b a b i l i ty  were known to be seventy-five percent. No account 

would be taken o f  the range o f values from which DM selected th is  

p a r t ic u la r  f ig u re .

A fte r  the o r ig in a l analys is, DM could go back and perform a 

" s e n s i t iv i ty  ana lys is " , i . e .  one could t r y  d i f fe re n t  figures in the range
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of in te re s t and see whether the u ltimate decision would be d i f fe re n t  

with a d i f fe re n t  assumed p ro b a b i l i ty .  Often enough, i t  turns out that 

the optimal course o f  action is the same over a range o f possible 

estimates. I f  so, then one says tha t the optimal decision is insensi

t ive  to the estimate. I f  not, then perhaps DM might revise the guess. 

A fte r a l l ,  since i t  is  c ru c ia l ,  maybe one ought to th ink  about i t  some 

more and assess the p ro b a b i l i ty  c a re fu l ly .

E ither way, however, actions w i l l  u lt im a te ly  be chosen based upon 

a single value fo r  each estimated p ro b a b i l i ty .  There is  a sense, then, 

in which there are no decisions under uncerta inty fo r  Savage subjective 

p ro b a b i l i ty  adherents.

One always has some estimate o f the underlying p ro b a b i l i t ie s ,  even 

i f  only tha t o f the p r in c ip le  o f in s u f f ic ie n t  reason. The cruc ia l 

feature o f the Savage theory is  tha t one's behavior ought to be consis

ten t with those p ro b a b i l i ty  estimates, regardless o f any doubts or mis

givings about whether they are r ig h t .

I t  is  th is  feature tha t d istinguishes subjective p ro b a b i l i ty  from 

what would otherwise be an unremarkable engineering p rac tice : the pro

v is ional working estimate o f unknown quan tit ies . Where the engineer 

might take account o f how crude the estimate is in various ways, in c lu 

ding the refusal to use some estimates at a l l ,  the Savage s ta t is t ic ia n  

and DM would not.

I f  the i n i t i a l  m a jo rity  response in E llsberg 's  problem were defen

s ib le ,  th is  would be a problem fo r  Savage's subjective p ro b a b i l i ty  

theory. Of course, the observation tha t some people v io la te  the canons 

o f a theory does not impeach the normative q u a l i ty  o f the theory. The 

Ellsberg and MacCrimmon resu lts  document only a descrip tive  fa i lu re ,
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as argued by Roberts [69] in his review o f those resu lts .

Although Ellsberg did not at f i r s t  in s is t  on the ra t io n a l i t y  of 

the non-conforming choices, in a reply [27] to Roberts, he did. Other 

authors had by then jo ined the fray on normative grounds.

Fe llner [30, 31] argued tha t i t  is ra tiona l to "s lan t"  downward 

the estimate o f an uncertain p ro b a b i l i ty  as compared to a known prob

a b i l i t y .

This is an in te re s t in g  suggestion. I t  introduces in a formal way 

the notion o f a "fudge fa c to r " ,  an honorable h e u r is t ic  engineering 

practice o f ancient heritage. Brewer [18] endorses F e lln e r 's  basic posi

t io n ,  but cautions against i t s  use in s itua tions  l ik e  R a if fa 1s modifica

t ion  of E llsberg 's  problem.

The d i f f i c u l t y  tha t concerns Brewer is inconsistency. In the choice 

between acts I and I I ,  w ithout knowledge that I I I  and IV are ava ilab le , 

the m a jority  actor fudges the estimate of £, known to be between zero 

and tw o-th irds , so tha t i t  less than one th i rd .  In the choice between 

I I I  and IV, the same estimating procedure works against £  and puts i t  

less than one th i rd .

When a l l  four acts are considered together, the sum o f £  and £  as 

estimated by "s lan ting " is less than tw o-th irds . Since i t  is  a given of 

the problem that £  and £  sum id e n t ic a l ly  to tw o-th irds , th is  is a contra

d ic t io n .  R a iffa 's  m odification exposes th is  so rt o f contrad iction by 

deriv ing another con trad ic t ion . Of course, once one contrad iction is 

introduced in to  a log ica l system, the p o s s ib i l i t ie s  fo r  derived contra

d ic t io n  are endless.

In another context, Kahneman and Tversky [43, 95] explore many 

other s itua tions  where DMs' use o f inconsistent p ro b a b i l i ty  estimates



129

leads to s i l l y  resu lts .

In any event, Fe llner and Brewer evidently  resolved th e i r  d i f f e r 

ences and have w rit te n  together [19] o f th e i r  fundamental agreement.

One can discuss the Ellsberg problem without concern fo r  subjective 

p ro b a b i l i t ie s ,  but as a decision problem intermediate between r is k  and 

uncerta inty. In e v ita b ly ,  however, i f  a so lu tion is suggested that cannot 

be reconciled with independence, then a c o n f l ic t  w ith the Savage 

theory w i l l  a r ise .

I f  DM's decision ru le  depended on the independence axiom, then 

there might be a log ica l d i f f i c u l t y  in such a c o n f l ic t .  Savage's inde

pendence p r in c ip le  is  very s im ila r  to the conventional independence 

axiom described in Chapter I .

S t r i c t l y  speaking, one could hold to independence only under r is k ,  

and so be free to abandon i t  under uncerta inty. Even so, DM might have 

a hard time ju s t i f y in g  an ad hoc re jec tion  under one regime and not under 

the other. I f  one does base decisions on preferences among outcomes, then 

i t  seems plausib le to argue tha t s im i la r i t ie s  among options cannot i n f l u 

ence the differences between them. What bearing a knowledge o f the pro

b a b i l i t ie s  might have is hard to imagine.

Of course, the problem doesn't ar ise fo r  the ruin-conscious DM, nor 

fo r  the fo llower o f Kelly . The independence axiom was not assumed under 

r is k ,  and so no log ica l d i f f i c u l t y  arises i f  i t  is not assumed in any 

form under uncerta inty.

One way to avoid estimating the unknown p ro b a b i l i t ie s  is to apply 

the maximin technique. Indeed, in both of E llsberg 's  problems, the 

m a jority  in tu i t iv e  response is maximin.

Act I * s one-th ird  chance of getting the $100 is ,  by l ig h t  o f maxi-
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min, be tte r than the unknown, and therefore without guarantee, prob

a b i l i t y  o f the same amount under Act I I .  In the other problem, Act IV 

comes across be tte r than Act I I I  by a s im ila r  argument.

As in any other app lica tion  o f  maximin, what the p ro b a b i l i t ie s  

" re a l ly "  are never comes up.

In R a iffa 's  m od if ica tion , we recognize the choice between, in 

expected u t i l i t y  form:

A: .5 ( U(100)/3 + 2U(0)/3 )

+.5 ( U(0)/3 + 211 (100)/3 )

B: .5 ( pU(100) + (q + 1/3)U(0) )

+.5 ( (q + 1 /3)U(100) + pU(0) ) 

w ith £  plus £  equal to tw o-th irds . M u lt ip ly ing  the two expressions out, 

we see tha t they are id e n t ic a l ,  y ie ld in g

.5U(0) + . 5U(100)

A buying-price DM could frame a s im ila r  argument based on F - u t i l i t i e s .  

Since R a iffa 's  re su lt  holds fo r  any u t i l i t y ,  the buying-price DM is 

accomodated.

I t  would be convenient to have a general approach to problems where 

DM knows something, but not everything, about the state p ro b a b i l i t ie s .

In the Ellsberg problem, we ac tu a lly  proceeded by inspection rather than 

by ca lcu la t ion .

I f  we set out to apply maximin in the same way as we do under pure 

uncerta in ty , we s ta r t  operating on the columns. That won't do; the solu

t ion  depends on recognizing the re la tionsh ip  between two o f the columns.

Suppose DM knows the p ro b a b i l i ty  o f one or more states, but not a l l  

(or t r i v i a l l y ,  a l l  except one) and agrees to apply compound p ro b a b i l i ty .
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The easiest th ing to do is to recast the problem as a compound uncer

ta in ty .

One creates new states corresponding to the o r ig ina l states whose 

p ro b a b i l i t ie s  are unknown. In the new decision matrix, each entry is 

a lo t te ry .  The acts remain unchanged.

Each lo t te ry  entry y ie lds  fo r  the given act and the new state two 

sets o f outcomes. F i r s t ,  the lo t te ry  y ie lds  the outcomes o f the known- 

probaD ility  states with those known p ro b a b i l i t ie s .  Second, the lo t te ry  

gives a complementary p ro b a b i l i ty  of the outcome belonging to the act 

and the corresponding o r ig in a l s tate.

The procedure is hard to say and simple to i l lu s t r a te .  Suppose 

the o r ig ina l matrix were the foloowing.

SI S2 S3

A1 a b c

A2 d e f

Suppose fu r th e r  tha t DM knows that SI has a p ro b a b i l i ty  £ , but the other 

sta tes ' p ro b a b i l i t ie s  are unknown. The new matrix would be:

"S2" "S3"

A1 (p: a, b) (p: a, c)

A2 (p: d, e) (p: d, f )

I t  is  easy to see tha t th is  is a f a i r  restatement of the problem.

I f  compound p ro b a b i l i ty  obtains, then DM would be in d if fe re n t  between the 

o r ig ina l formulation and the new one. The notation "S2" is adopted to 

ind icate that the new state corresponds to the o r ig in a l £2, but is not 

identica l to i t .  Perhaps "S211 should be read "SI or S2".

Although the new state descriptions are not mutually exclusive, 

th is  presents no d i f f i c u l t y  in ca lcu la ting the relevant expected
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u t i l i t i e s .  I f  necessary, one can invent state descriptions fo r  the new 

states that are form ally  mutually exclusive.

In any case, the maximin solu tion o f the recast problem is simple. 

One replaces the lo t te r ie s  by th e i r  expected u t i l i t y  values (or appro

pr ia te  F - u t i l i t y  values) and proceeds by l in e a r  programming to f in d  the 

optimal mixed strategy.

S im ilar techniques can be used i f  DM's information about state 

p ro b a b i l i t ie s  is not a po in t estimate. For example, suppose DM knew a 

lower bound fo r  each o f the state p ro b a b i l i t ie s .  T r i v ia l l y ,  zero is a 

lower bound fo r  any p ro b a b i l i ty .  So, assume also tha t fo r  at least some 

states, DM knows a lower bound greater than zero.

Let the lower bound on the i - t h  state be 1 ( i ) . Define I  as one

minus the sum o f a l l  the s ta te 's  lower bounds. I f  L=0, then the problem

can be solved as an instance of r is k ;  the lower bounds must be the 

actual p ro b a b i l i t ie s .  I t  cannot be that JL is less than zero.

I f  _L is greater than zero, then define a new pseudo-state fo r  each 

o r ig ina l s ta te . Build a new matrix with these pseudo-states and the acts, 

which are unchanged. The en tr ies in the matrix are once again lo t te r ie s .

Each lo t te ry  entry has as i t s  prizes the row o f outcomes from the

o r ig ina l matrix. The p ro b a b i l i t ie s  o f  these outcomes vary from column to 

column.

In the column th a t corresponds to the j_-th o r ig in a l s ta te , the 

p ro b a b il i ty  o f the j_- th o r ig in a l outcome fo r  the row in question is 

1(j ) + L. A ll other p ro b a b i l i t ie s  are the applicable l ( i ) .

Thus, i f  the o r ig in a l matrix (with u t i l i t y  value en tr ies) were:
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SI S2 S3

A1 a b c

A2 d e f

then the new matrix would be the same size. I f  P ( i ) = l ( i ) + j_:

T1 T2 T3

A1 P (l)a  + l(2 )b  + l (3 )c  l ( l ) a  + P(2)b + l (3 )c  1 ( l)a  + 1(2)b + P(3)c

A2 P (l)d  + l(2 )e  + l ( 3 ) f  l ( l ) d  + P(2)e + 1(3 ) f  1( l ) d  + 1(2)e + P (3)f

This second matrix can be viewed as an ordinary unconstrained game 

against nature. Whatever the p ro b a b i l i t ie s  o f SI through S3 are, the 

same p ro b a b i l i t ie s  and pay-offs can be achieved by nature assigning 

p ro b a b i l i t ie s  between zero and one which sum to one to the pseudo-states 

T1 through T3.

That's beca.'se any vector o f p ro b a b i l i t ie s  fo r  the S's th a t s a t is 

f ies  the constra ints can be w rit ten

( P r (S l) , Pr(S2), Pr(S3) ) =

( 1(1), 1(2), 1(3) )

+ P r(T l) ( L, 0, 0 )

+ Pr(T2) ( 0, L, 0 )

+ Pr(T3) ( 0, 0, L )

Assuming, as usual, the a p p l ic a b i l i ty  of compound p ro b a b i l i ty ,  DM

w i l l  be in d i f fe re n t  between the two formulations o f  one's decision prob

lem. The solu tion o f the second matrix is  by ordinary maximin l in e a r  

programming.

I f  in addition to the lower bounds, DM knows the exact p ro b a b i l i ty  

of some states, then th is  additional information is easy to incorporate
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in to  the lower bound analysis.

The exact p ro b a b i l i t ie s  enter the ca lcu la tion  o f  as i f  they 

were mere lower bounds. No pseudo-states correspond to the known- 

p ro b a b il i ty  states. The lo t te ry  en tr ies fo r  the remaining columns simply 

acquire additional terms, in much the same way as seen in the e a r l ie r ,  

no-bound p a r t ia l  knowledge example.

I f  DM knows both an upper and a lower bound fo r  the state proba

b i l i t i e s ,  things are not qu ite  so neat. Nevertheless, one can easily 

solve such bounded l in e a r  programs using widely-avaiTable software 

l ib ra ry  routines.

One can imagine even more general kinds o f p a r t ia l  knowledge about 

state p ro b a b i l i t ie s ,  to be solved by appropria te ly  constrained 

programs.

In practice , th is  level o f genera lity  might be computationally 

tedious. Conceptually, though, i t  seems possible to un ify  the techniques 

fo r  r is k ,  uncerta inty and p a r t ia l  r is k .  A ll o f these can be viewed as 

programming problems.

In the r is k  case, the problem is  degenerate in tha t a l l  o f  nature 's 

p ro b a b i l i t ie s  are constrained to be what they are; there is only one 

column. At the other extreme, uncerta in ty, the only constra in t is that 

the column p ro b a b i l i t ie s  sum to one. In p a r t ia l  r is k ,  the intermediate 

case in th is  view, the constra in ts are somewhere in between.

A ll  o f  th is  suggests an important theore tica l po in t. There is no 

reason at a l l  why nature 's p ro b a b i l i t ie s  cannot be constrained to f a l l  

w ith in  a range, ra ther than fo rc ing DM to adopt a po int estimate. The 

resu lt ing  problem w i l l  be well-formed and w i l l  admit o f  a so lu tion .
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Conclusions

The conventional expected u t i l i t y  axioms described in the f i r s t  

chapter, while s u f f ic ie n t  to motivate an expected u t i l i t y  decision 

ru le , are unnecessarily r e s t r ic t iv e .  Other motivations e x is t ,  fo r  

instance, K e lly 's  capita l-growth arguments fo r  logarithm ic u t i l i t y .  

A lte rn a t iv e ly ,  DM's desire to place a constra in t on the p ro b a b i l i ty  of 

ru in can be used to motivate a va r ie ty  o f expected u t i l i t y  ru les , as 

discussed in  Chapters I I  and I I I .

This new approach frees the analyst from making ambitious and 

unverif iab le  asssumptions about DM's "cardinal value" fo r  wealth. At a 

p ractica l le v e l,  freedom from the axioms allows DM to pursue decision 

rules which are proh ib ited by the axioms even though they are pe r fe c t ly  

sensible. Thus, in Chapter I I I ,  we saw tha t DM could evaluate gambles 

according to th e i r  buying prices in contemplation o f withdrawing cap ita l 

from r is k .  In Chapter IV, we saw tha t DM could t re a t "once in a l i fe t im e "  

lo t te r ie s  as the exceptional opportun it ies tha t they p la in ly  are. In th is  

chapter, we saw tha t DM can use p a r t ia l  knowledge o f s tate p ro b a b i l i t ie s  

without pretending tha t one has exact po int estimates fo r  a l l  the 

uncertain p ro b a b i l i t ie s .  The difference between a t ig h t  estimate and a 

loose estimate can now receive e x p l ic i t  recognition in the analysis.

Risk and uncerta inty are ubiquitous features o f engineering 

systems design problems, ranging from safety and r e l i a b i l i t y  concerns 

to the f ro n t ie rs  o f a r t i f i c i a l  in te l l ig e n ce  "knowledge engineering".

Such problems are challenging enough without the added fe t te rs  o f overly 

re s t r ic t iv e  postulates tha t res t on speculative theories o f subjective 

personal values.
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