University of New Hampshire University of New Hampshire Scholars' Repository

Doctoral Dissertations

Student Scholarship

Spring 1985

HYDRODYNAMIC CHARACTERISTICS AND COAL COMBUSTION MODELING OF A HIGH VELOCITY FLUIDIZED BED (SOLIDS FRICTION FACTOR, TWO PHASE FLOW, PRESSURE PROFILE, FAST)

RONALD WAYNE BREAULT University of New Hampshire, Durham

Follow this and additional works at: https://scholars.unh.edu/dissertation

Recommended Citation

BREAULT, RONALD WAYNE, "HYDRODYNAMIC CHARACTERISTICS AND COAL COMBUSTION MODELING OF A HIGH VELOCITY FLUIDIZED BED (SOLIDS FRICTION FACTOR, TWO PHASE FLOW, PRESSURE PROFILE, FAST)" (1985). Doctoral Dissertations. 1445. https://scholars.unh.edu/dissertation/1445

This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact nicole.hentz@unh.edu.

INFORMATION TO USERS

This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted.

The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction.

- The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity.
- 2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed. For blurred pages, a good image of the page can be found in the adjacent frame. If copyrighted materials were deleted, a target note will appear listing the pages in the adjacent frame.
- 3. When a map, drawing or chart, etc., is part of the material being photographed, a definite method of "sectioning" the material has been followed. It is customary to begin filming at the upper left hand corner of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again-beginning below the first row and continuing on until complete.
- 4. For illustrations that cannot be satisfactorily reproduced by xerographic means, photographic prints can be purchased at additional cost and inserted into your xerographic copy. These prints are available upon request from the Dissertations Customer Services Department.
- Some pages in any document may have indistinct print. In all cases the best available copy has been filmed.

Breault, Ronald Wayne

HYDRODYNAMIC CHARACTERISTICS AND COAL COMBUSTION MODELING OF A HIGH VELOCITY FLUIDIZED BED

University of New Hampshire

PH.D. 1985

University Microfilms International 300 N. Zeeb Road, Ann Arbor, MI 48106

Copyright 1985

by

Breault, Ronald Wayne

All Rights Reserved

HYDRODYNAMIC CHARACTERISTICS AND COAL COMBUSTION MODELING OF A HIGH VELOCITY FLUIDIZED BED

By

Ronald W. Breault

B.S., Clarkson College of Technology, 1979 M.S., University of New Hampshire, 1982

A DISSERTATION

Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements of the Degree of

> Doctor of Philosophy in Chemical Engineering

> > May, 1985

ALL RIGHTS RESERVED 1985 Ronald W. Breault

This dissertation has been reviewed and approved.

Virendra K. Mathur

Dissertation Director, Dr. V. K. Mathur Professor Chemical Engineering

ST. Jak Chairman Department of Chemical Engineering Dr. S. S. T. Fan, Chairman Depa Professor Chemical Engineering

Shap Fara

Dr. I. H. Farag, Associate Professor of Chemical Engineering

Professor

Mathematics

Associate Professor of Mechanical Engineering

Mei, Mechanical Engineer, Morgantown Energy Technology Center United States Department of Energy

May 6, 1985 Date

DEDICATION

TO MARY BETH

ACKNOWLEDGEMENTS

The successful accomplishments of a graduate student are, to a large extent, attributed to the guidance of the research committee. I a m very fortunate to have a strong and dedicated committee. I extend special thanks to Dr. V. K. Mathur, my dissertation director, for his advice and encouragement. His supervision has been both spontaneous and stimulating. I also extend thanks to Dr. S. S. T. Fan and Dr. I. H. Farag of the Chemical Engineering Department, for their tutelage, patience, and inspiration. I thank Dr. L. D. Meeker of the Mathematics Department and Dr. M. R. Swift of the Mechanical Engineering Department for their special interest in my development, shown by their membership in this committee. I thank Dr. J. S. Mei of Morgantown Energy Technology, U. S. DOE for providing me with the opportunity to pursue this topic of research and his special efforts in the early stages of this work and at its completion.

A special tribute is due to the Department of Chemical Engineering, University of New Hampshire, for providing me with the facilities to conduct the experimental investigation.

I acknowledge the funding by Morgantown Energy Technology Center for the initial monies, that supported this work during the first year.

Finally, I acknowledge the ever present love and encouragement by my wife, Mary Beth.

٧

TABLE OF CONTENTS

				PAGE
DEI	DICA	TION		iv
ACI	(NOW	LEDGE	MENTS	v
TAR	BLE	0F C0	DNTENTS	vi
LIS	ST 0	F TAB	BLES	x
LIS	ST O	FIG	BURES	xiii
ABS	STRA	ст		xvi
CH/	PTER	2		
1.	INT	rodu	CTION	1
2.	0BC	IECTI	VES	6
3.	LIT	ERATI	URE REVIEW	7
	Α.	Hydn	rodynamics of Gas-Solid Flow in Circular Conduits	7
		A.1	Riser	7
		A.2	Standpipe	13
		A.3	Particle-Gas Disengaging Zone	14
		Α.4	Solids Eductor Zone	15
		A.5	Choking	15 ·
		A.6	Solids Mass Fraction Measurement	17
		A.7	Pressure Drop in High Velocity Fluidized Bed Systems	20
			A.7.1 Aerated Solids Flow	20
			A.7.2 Standpipe Flow	22
			A.7.3 Pneumatic Transport	23

			A.7.4	Riser Section	25
			A.7.5	Pressure Drop Across Orifice Plates	26
			A.7.6	Pressure Drop in Bends Due to Gas-Solid Flow	27
	Β.	Coal	Combus	tion	28
		B.1	Coal		28
			B.1.1	Coal Chemistry	28
			B.1.2	Coal Utilization Techniques	30
		8.2	Engine	ering Combustion Models	31
			B.2.1	Devolatilization	31
			B.2.2	Char Oxidation	35
				B.2.2.1 Heterogeneous Char Reactions	35
				B.2.2.2 Kinetics of Heterogeneous Char Oxidation	36
			B.2.3	Volatile Matter Oxidation	40
			B .2. 4	Soot Oxidation	40
	с.	Desu1	furizat	tion	41
4.	EXPE	RIMEN	TAL SET	-UP AND PROCEDURE	45
	4.1	Deta	ils of	the LFB System	47
	•	4.1.	1 Loop		47
		4.1.	2 Nozz	les	47
		4.1.	3 Aubu	rn Monitor	47
		4.1.	4 Diff	erential Pressure Measurement	49
		4.1.	5 Stri	pchart Recorder	50
		4.1.	6 Air	Supply	50
	4.2	Modi	ficatio	n to the Equipment	50

5.	EXP	ERIME	NTAL OP	ERATING CONDITIONS	52
6.			IAMIC EX ON MODE	PERIMENTAL RESULTS AND LING	56
	Α.			c Experimental Results and op Model	57
		A.1	Work W	ithout the Orifice Plate	57
			A.1.1	Selection of Nozzle Positions in the LFB	58
			A.1.2	Effect of Standpipe Height on Riser Void Fraction	58
			A.1.3	Effect of Air Flow Rate through Nozzles on LFB Performance	62
		A.2	Experi Nozzle	mental Work with Orifice Plate and N _O	63
			A.2.1	Effect of Orifice Plate	63
			A.2.2	Effect of Orifice Plate and Nozzle N_0	68
			A.2.3	Pressure Drop in the Rise of a High Velocity Fluidized Bed	73
			A.2.4	Pressure Profile in the LFB	89
	Β.	Comb	ustion M	fode1	102
		B.1		elocity Fluidized Bed Coal tion Model	106
		B.2		elocity Fluidized Bed rrization Model	114
7.	CONC	EPTU	AL DESIG	IN OF THE LOOP FLUIDIZED BED COMBUSTOR	118
	7.1	Ener	ngy Bala	ince	122
	7.2	Pres	ssure Pr	ofile	124
	7.3	Com	oustion	and Desulfurization	.126
	7.4	Disc	cussion	of Conceptual Design Predictions	132

52

viii

8.	CO	NCLUSIONS	134
9.	RE	COMMENDATIONS	138
10.	NO	MENCLATURE	141
11.	RE	FERENCES 1	145
APPE	END	ICES 1	151
	A	Hydrodynamic Data 1	152
	В	Computer Code 1	74
		B1 High Velocity Fluidized Bed Pressure Profile Model 1	75
		B2 High Velocity Fluidized Bed Coal Combustion Model 2	200
		B3 Overall Energy Balance Model 2	12
	С	Input Values for Conceptual Design 2	15

LIST OF TABLES

		Page
1.	Carbon Oxygen Reaction Rate Constants	39
2.	Equipment Dimensions	48
3.	Nozzle Flow Rates	54
4.	Particle Characteristics	55
5.	LFB Performance at Various Nozzle Flow Rates	59
6.	LFB Performance at Various Nozzle Flow Rate Combinations	60
7.	Absolute Average Percent Deviation Between Experimental and Predicted Pressure Drop	81
8.	Solids Friction Factor Correlations	86
9.	Absolute Average Percent Deviation Between Pressure Profile Model and Data	101
10.	HVFBC Model Assumptions	107
11.	Comparison of Predicted Estimates with Experimental Coal Conversion Data	113
12.	Proximate and Ultimate Analysis	123
13.	1000 kg/hr LFB Combustor Design Specifications	125
14.	LFB Combustor Pressure Drop Summary	128
15.	Comparison of Combustion Systems	133
A1	Void Fractions for Nozzle N_1 & N_3 and N_2 & N_3 Combinations	153
A2	Flow Rates Through N $_2$ & N $_3$ Combinations vs. Voidage for Sand Particles	154
A3	Flow Rates Through N ₂ & N ₃ Combinations vs. Voidage for Limestone Particles	155

х

		Page
A4	Flow Rates Through N $_2$ & N $_3$ Combinations vs. Voidage for Gypsum Particles	156
A5	Solids Mass Flux vs. Nozzle, N _O Flow Rate for Sand Particles	157
A6	Solids Mass Flux vs. Nozzle, N _O Flow Rate for Sand Particles	158
A7	Solids Mass Flux vs. Nozzle, N _O Flow Rate for Sand Particles	159
A8	Solids Mass Flux vs. Nozzle, N _O Flow Rate for Limestone Particles	160
A9	Solids Mass Flux vs. Nozzle, N _O Flow Rate for Limestora Particles	161
A10	Solids Mass Flux vs. Nozzle, N _O Flow Rate for Gypsum Particles	162
A11	Solids Mass Flux vs. Nozzle, N _O Flow Rate for Gypsum Particles	163
A12	Experimental Data for Pressure Drop in Riser for Sand Particles	164
A13	Experimental Data for Pressure Drop in Riser for Limestone Particles	165
A14	Experimental Data for Pressure Drop in Riser for Gypsum Particles	166
A15	Experimental Data for Sand Particles (Pressure Profile)	168
A16	Experimental Data for Limestone Particles (Pressure Profile)	169
A17	Experimental Data for Gypsum Particles (Pressure Profile)	170
A18	Height vs. Static Pressure for Sand Particles	171
A19	Height vs. Static Pressure for Limestone	172
	Particles	116
A20	Height vs. Static Pressure for Gypsum Particles	173

хi

			Page
C1	Input for Data	for OAEB.FOR	216
C2	Input Data for	HVFBPP.FOR	218
C3	Input Data for Provided by		222
C4	Input Data for	HVFBCC.FOR	223

xii

LIST OF FIGURES

		Page
1.	LOOP FLUIDIZED BED	3
2.	PRESSURE PROFILE IN HIGH VELOCITY FLUIDIZED BED SYSTEM	21
3.	HIGH VELOCITY FLUIDIZED BED EXPERIMENTAL UNIT	46
4.	MODIFIED LOOP FLUIDIZED BED	53
5.	LFB OPERATING REGIONS FOR NOZZLES, ${\rm N_1,\ N_2,\ AND\ N_3}$ RATES	61
6.	OPERATING REGION FOR NOZZLES N ₂ & N ₃ with orifice plate, o_p for sand particles	64
7.	OPERATING REGION FOR NOZZLES N2 & N3 WITH ORIFICE PLATE, $O_{\rm p}$ FOR LIMESTONE PARTICLES	65
8.	OPERATING REGION FOR NOZZLES N2 & N3 WITH ORIFICE PLATE, $O_{\rm p}$ FOR GYPSUM PARTICLES	66
9.	SOLID MASS FLUX VS. AIR RATE THROUGH NOZZLE, N _O FOR SAND PARTICLES	70
10.	SOLID MASS FLUX VS. AIR RATE THROUGH NOZZLE, N _O FOR LIMESTONE PARTICLES	71
11.	SOLID MASS FLUX VS. AIR RATE THROUGH NOZZLE, N _O FOR GYPSUM PARTICLES	72
12.	EXPERIMENTAL PRESSURE DROP IN THE RISER VS. PREDICTED WITH VAN SWAAIJ'S SOLIDS FRICTION FACTOR	76
13.	EXPERIMENTAL PRESSURE DROP IN THE RISER VS. PREDICTED WITH STEMERDING'S SOLIDS FRICTION FACTOR.	77
14.	EXPERIMENTAL PRESSURE DROP IN THE RISER VS. PREDICTED WITH REDDY AND PEI'S SOLIDS FRICTION FACTOR.	78
15.	EXPERIMENTAL PRESSURE DROP IN THE RISER VS. PREDICTED WITH CAPES AND NAKAMURA'S SOLIDS FRICTION FACTOR	79
16.	EXPERIMENTAL PRESSURE DROP IN THE RISER VS. PREDICTED WITH YANG'S SOLIDS FRICTION FACTOR	80

xiii

17.	EXPERIMENTAL PRESSURE DROP IN THE RISER VS. PREDICTED USING THE SOLIDS FRICTION FACTOR DEVELOPED BY THIS STUDY	90
18.	EXPERIMENTAL PRESSURE DROP IN THE RISER VS. PREDICTED USING THE SOLIDS FRICTION FACTOR DEVELOPED IN THIS STUDY FOR SAND AND LIMESTONE APPLIED TO GYPSUM	91
19.	PRESSURE PROFILE IN LFB FOR SAND PARTICLES	92
20.	PRESSURE PROFILE IN LFB FOR LIMESTONE PARTICLES	93
21.	PRESSURE PROFILE IN LFB FOR GYPSUM PARTICLES	94
22.	SIMPLIFIED LOOP FLUIDIZED BED FOR HVFBPP MODEL	96
23.	RISER CALCULATION FLOWCHART	98
24.	STANDPIPE CALCULATION FLOWCHART	99
25.	HVFBPP.FOR CALCULATION FLOWCHART	100
26.	PRESSURE PROFILE MODEL PREDICTION COMPARED TO THE DATE FOR SAND RUNS S1 AND S2	103
27.	PRESSURE PROFILE MODEL PREDICTION COMPARED TO THE DATA FOR LIMESTONE RUNS L1, L2, AND L3	104
28.	PRESSURE PROFILE MODEL PREDICTIONS COMPARED TO THE DATA FOR GYPSUM RUNS G1, G2, AND G3	105
29.	LOOP FLUIDIZED BED COAL COMBUSTION MODEL SYSTEM	108
30.	HVFBCC.FOR CALCULATION FLOWCHART	111
31.	MODEL TESTING PROCEDURE	112
32.	HIGH VELOCITY FLUIDIZED BED COMBUSTION DESULFURIZATION REACTION MODEL SCHEMATIC	115
33.	FLOWCHART FOR THE DESIGN OF A HVPBCC SYSTEM	119
34.	CONCEPTUAL LFB COAL COMBUSTION SYSTEM FOR 1000 kg/hr OF COAL FEED	120
35.	LOOP FLUIDIZED BED COMBUSTOR PRESSURE PROFILE	127
36.	COAL PARTICLE MASS FRACTION VS. HEIGHT IN THE LFB COMBUSTOR	129

Page

ixv

37.	COAL PARTICLE CONVERSION VS. HEIGHT IN THE LFB COMBUSTOR	130
38.	FRACTION OF SULFUR DIOXIDE REMOVED IN THE LFB COMBUSTOR	131

Page

ABSTRACT

HYDRODYNAMIC CHARACTERISTICS AND COAL COMBUSTION MODELING OF A HIGH VELOCITY FLUIDIZED BED

by

Ronald W. Breault

University of New Hampshire, May, 1985

A Loop Fluidized Bed (LFB) based on the fast fluidization concept is a novel method for effective solid-gas contact and can play an important role in coal combustion. It can be operated under pressure making it eminently suited for the production of high temperature gas from coal for operating gas turbines for power generation. The LFB can operate over a wide range of gas flow rates and coal can be introduced at various points without excessive pressure drops. Further, it is possible to capture higher amounts of sulfur dioxide due to the use of fine dolomite or limestone particles. This process can also be used for the smelting of mineral ores. However, the LFB concept is relatively new and data in the literature are scarce.

xvi

. J.

The LFB process is best described by considering the process to consist of four sections. These are: 1) riser, 2) disengaging zone. 3) standpipe, and 4) eductor zone. The riser section is the core of the LFB combustor. This is the zone where the majority of coal combustion and sulfur adsorption occurs. Operating in the fast fluidization regime, the LFB can utilize gas velocities several times the entrainment velocity with the solids exhibiting a high degree of backmixing. The backmixing increases the solids residence time. which allows for the utilization of larger coal particles in the LFB than in entrained combustors. The disengaging zone operates under principles similar to a cyclone, only that separation must occur in less than one complete pass of the gas. The fine particles follow the gas stream lines as the gas exits the loop into the primary cyclone. The larger particles are thrown to the outside of the loop and into the standpipe by centrifugal force. The standpipe has two regions of gas-solids flow: aerated and moving bed. The height of the moving bed plays an important role in creating a solid plug to prevent the gas from short circuiting up the standpipe. At the bottom of the standpipe is the eductor zone. Solids are entrained and conveyed through the loop by the gas entering the LFB.

In this study a bench scale loop fluidized bed has been designed, fabricated and installed. The unit has been operated using sand, limestone, and gypsum particles. The latter two solids are chosen because of their presence in the coal combustion process for

xvii

sulfur removal. Data have been collected to study the effect of particle size, particle density, air flux, and solid flux on fluidizing characteristics of the three solids.

The experimental set up is assembled in a pyrex brand glass pipe. The unit is provided with four steel nozzles for supplying air. The solid particles are fed manually to the LFB at the top of the standpipe. The particles traverse the standpipe in the packaged bed flow, entering the eductor zone. The particles are entrained in the high velocity gas stream at this zone. The flow rate is measured with four rotameters. The particles conveyed upwards travel through an Auburn solids fraction monitor. This monitor continuously determines the percent solids of the two-phase stream as it flows past. The pressure drop across the monitor is continuously monitored with a differential pressure transducer - indicator system. These instruments give analog outputs proportional to the corresponding variables. The analog outputs are recorded on a strip chart recorder. The solids and gas travel through the remainder of the riser and loop around the top via a bend. The gas exits while the solid particles are returned to the standpipe. The gas containing a small amount of solid particles flows through a cyclone and a bag filter; solids leave the loop through the cylone bottom. Pressure ports are provided approximately every 1/3 of a meter around the loop for pressure monitoring with water manometers.

Extensive data have been obtained to study the effect of particle size, particle density, air flux, and solids flux on fluidizing characteristics of sand, limestone, and gypsum. It is

xviii

found that solids flow behavior was sensitive to nozzle positions and air flow rates. Three dimensional plots have been prepared for predicting good operating regions for the LFB with respect to nozzle combination. air flow rate and riser solids fraction. Pressure drop data have been correlated with solids velocity and solids fraction to obtain a better solids friction factor equation than available in the literature. A computer program has been developed to predict the static pressure of every point in the LFB. The computer program predictions and the static pressure data show good agreement. Coal combustion and sulfur removal models for the LFB coal combustor have been developed. The predictions from these models agree with commercial data. A conceptual LFB coal combustor has been designed and the results have been compared with commercial coal combustion data. The LFB coal combustion process is found to provide better coal combustion and sulfur removal effectiveness than bubbling bed coal combustion and pulverized coal combustion with limestone injection processes.

1. INTRODUCTION

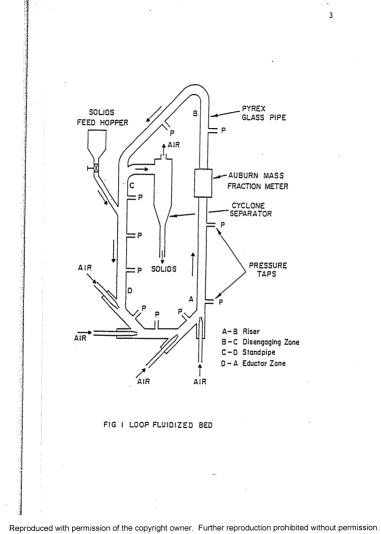
The U. S. has about one-third of the world's known coal reserves. The reserves which are mineable under present mining and economic conditions are estimated to be about 437 billion tons of which about 265 billion tons can be recovered. But coal is difficult to mine, expensive to transport and heavily polluting. The pollution is mainly due to the presence of mineral matter (ash) and sulfur which give rise to the formation of fly ash and sulfur dioxide. It is estimated that about 55 percent of our demonstrated coal reserves have more than one percent sulfur about to the used without the use of special equipment to reduce sulfur dioxide emissions.

Fossil energy research, development, and demonstration strategy is to develop a wide variety of coal utilization techniques that are clean, efficient, and conserve resources. Industry can then choose promising processes which will eventually be commercialized providing the energy needed for our continued economic growth and well being. The many processes and techniques of coal conversion have as a basic concept the transmutation of coal into forms acceptable to our transportation and heating equipment.

For nearly fifteen years considerable efforts have been made on the development of fluidized bed combustion of coal. This process holds a number of attractions, all stemming from the concept of maintaining low temperatures in the range of 1100°-1200°K in the combustion chamber. However, it is reported that one of the main

1

disadvantages of a fluidized bed combustion system is that turndown of combustion rate is difficult. Fluidized beds are not operable over wide ranges of loads.


A high velocity fluidized bed (HVFB) can operate over a wide range of gas throughputs. The gas rate may be reduced to such a degree that the bed becomes turbulent, or even enters the bubbling regime without losing uniformity of bed temperature. It is also claimed that in a HVFB coal might be introduced at fewer points without excessive pressure drop. Furthermore, it may be possible to capture higher amounts of sulfur dioxide due to the use of fine dolomite or limestone particles in a HVFB. A special case of the high velocity fluidized bed concept, recently developed at the Morgantown Energy Technology Center (METC), is the Loop Fluidized Bed (LFB).

All HVFB processes including the LFB are best described by considering the process to consist of four sections. These are: 1) the riser, 2) the disengaging zone, 3) the standpipe, and 4) the eductor zone.

The riser, as shown in Figure 1, is the core of the LFB combustor. This is the zone where the majority of coal combustion and sulfur adsorption occurs. Operating in the "fast fluidization" regime, the LFB can utilize gas velocities several times the entrainment (terminal) velocity with the solids exhibiting a high degree of backmixing. The backmixing increases the solids residence time, which allows for the high coal combustion efficiencies at the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2

lower temperatures in the LFB than in entrained bed combustors. Also, the backmixing gives rise to the uniformity of bed temperature.

The disengaging zone operates under principles similar to a cyclone which it replaces. The fine particles follow the gas stream and exit the loop into the primary cyclone. The large particles are thrown to the outside of the loop and return into the standpipe by the centrifugal force.

The standpipe has two regions of gas-solids flow: lean (aerated) and dense (moving) zones. The height of the moving bed plays an important role in creating a solids plug which prevents the gas from short circuiting up the standpipe.

At the bottom of the standpipe is the eductor zone. Solids are entrained and conveyed through the loop by the gas entering the LFB.

Circulating fluidized bed processes have been proposed recently to eliminate some of the problems encountered in conventional fluidized beds. The circulating fluidized bed is a transport reactor system in which the solid and gas go through many different flow regimes. The loop fluidized bed is one such circulating fluidized bed which is being considered for pressurized combustion of coal in the presence of a sulfur sorbent such as dolomite. No available model incorporates the flow phenomena with the kinetic operations of coal combustion and sulfur removal.

This study has been conducted to provide fundamental knowledge of the hydrodynamics in the LFB with special reference to the riser section which operates in the high velocity fluidization regime. Experimental data have been used for the development of mathematical

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4

models to predict the pressure profile in the LFB. Combustion and desulfurization mathematical models have been developed for the LFB combustor by modifying existing models currently available in the literature for conventional combustion systems. Finally, a conceptual design for the combustion of 1000 kg/hr of coal is provided to demonstrate the use of these models and to compare the results with the commercial data.

2. OBJECTIVE

The overall objective of this thesis is two fold. First to experimentally study the hydrodynamics of solid-air systems in a Loop Fluidized Bed (LFB) and to develop a model to predict the pressure profile in the equipment. Second, to develop a model for the coal combustion and sulfur removal taking place in a LFB. In order to achieve these objectives, the following tasks were established and completed.

 Review the literature on all aspects of gas-solid two phase flow, coal combustion, and desulfurization.

(2) Install a bench scale cold flow loop fluidized bed experimental unit with the necessary instrumentation.

(3) Conduct experimental studies of the flow characteristics of sand, limestone, and gypsum particles in the LFB with respect to the particle size, particle density, gas flux, solids flux, solids fraction and standpipe depth.

(4) Develop a mathematical model to predict the pressure profile in the LFB.

(5) Develop coal combustion and sulfur removal models in an LFB system.

(6) Provide a conceptual design of a loop fluidized bed combustor utilizing experimentally generated information and the developed models.

6

3. LITERATURE REVIEW

This chapter is divided into three major Sections A, B, and C that discuss the hydrodynamics of gas-solid flow in circular conduits, coal combustion, and coal desulfurization, respectively. Each section is further divided into sub-sections labeled as A.1, A.2, etc. These sub-sections present the details of these operations and processes.

A. Hydrodynamics of Gas-Solid Flow in Circular Conduits

The literature surveyed covered all aspects of gas-solid flow phenomena including all the flow regimes present in a HVFB and specifically the LFB. The literature reviewed is divided in several categories for reading convenience.

A.1 Riser

The rise section (Figure 1) of the LFB operates in the fast fluidization regime. The term "fast fluidization" was first used by Yerushalmi et al. [1] This fast fluidization term is used to describe the phenomena of dense strands and clusters moving to and fro, rising and falling, and forming and breaking apart, as the solid particles are conveyed through the riser. This mode of gas-solid contact has been primarily investigated at the City College,

7

Manhattan, New York, by J. Yerushalmi and co-workers [1, 2, 3, 4, 5, 6, 7, 8]. Theoretical studies have also been conducted by Matsen [9], and Gidaspow and co-workers [10, 11, 12].

Yerushalmi and co-workers [1, 2, 3, 4, 5, 6, 7] conducted investigations in three experimental set-ups: (1) a rectangular (two dimensional bed, (2) a three inch diameter bed, and (3) a six inch diameter bed. They developed a pressure drop correlation [7] based on the following assumptions:

- (1) all solid particles are densely packed clusters.
- (2) clusters are spherical.
- (3) there are no wall or acceleration effects.
- (4) clusters have a voidage equal to that at minimum fluidization.
- (5) clusters are discreetly distributed in the bed.

Based on these assumptions, the pressure drop per unit length can be described by the following equations:

$$\frac{\Delta P}{\Delta L} = (1 - \varepsilon_c) (1 - \varepsilon_{mf}) \rho_s g \qquad (1)$$

$$\frac{\Delta P}{\Delta L} = \frac{N}{A} \frac{1}{2} \rho_g \quad U_{c,s1}^2 \quad Cd_{s1} \quad \varepsilon_c^{-2n} \quad \frac{\pi}{4} \quad d_c^2 \qquad (2)$$

where:

$$Cd_{s1} = f(Re_{s1}) = f(\rho_g d_c U_{c,s1}/\mu)$$
 (3)

$$U_{c,s1} = \frac{G_g}{\rho_g e_c} - \frac{G_s}{\rho_s}$$
(4)

The index n in Equation (2) is called the Richard and Zaki index and describes the voidage in a fluidized bed. The index is developed for solid-liquid particulate fluidization and its value ranges from 4.65 to 2.4 for terminal Reynold's number less than or equal to 0.2 to greater than or equal to 500. The pressure drop obtained from these equations agrees with experimental data. The cluster voidage is essentially an adjustable parameter allowing the model to fit the data. Yerushalmi et al. [7] calculated the cluster diameter as a function of the solids concentration. The data fall about a single curve, obtained from the equations, showing good agreement between the experiment and the model.

Matsen [9] proposed a theory to describe: (1) bubbling fluidization, (2) pneumatic transport (3) choking, and (4) fast fluidization in a two phase solid-gas vertical up-flow system. The theory is based on the following assumptions:

(1) slip velocity is independent of the solids and

gas flow rates.

- (2) wall and accelaration effects are negligible.
- (3) all the particles are spherical and uniform in size.
- (4) slip velocity in the dense region can be expressed by the Equation (5).

The slip velocity between the solid and gas is an important parameter and is given by the relation

$$U_{s1} = \frac{G_g}{e\rho_a} - \frac{G_s}{\rho_s} \frac{1}{(1-e)}$$
(5)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9

for dilute suspensions, ϵ > 0.9. Equation (5) can be rearranged to obtain

$$\frac{G_{s}}{\rho_{s}} = \frac{1-\epsilon}{\epsilon} \left(\frac{G_{g}}{\rho_{q}} - \epsilon U_{s1} \right)$$
(6)

For dense phase, the solids velocity, G_S/ρ_S , can be estimated by the correlation presented by Matsen [13].

$$\frac{G_{S}}{\rho_{S}} = \frac{1-\epsilon}{\epsilon} \left(\frac{G_{g}}{\rho_{q}} - U_{mf} - \frac{\epsilon - \epsilon_{mf}}{1-\epsilon} U_{B} \right)$$
(7)

The bubble velocity, U_B in the case of small diameter vessels can be expressed as $U_B = 0.35 \sqrt{gD}$ [=] m/s. To estimate the solids velocity in the dilute region, Matsen proposed the following emperical equation to correlate the slip velocity with the voidage and terminal velocity (bubble velocity in this case).

$$\frac{U_{S1}}{U_{R}} = 10.8 \ (1-\epsilon)^{0.293}$$
(8)

for voidages, ε < 0.9997. Substitution of Equation (8) into (6) gives

$$\frac{G_{s}}{\rho_{s}} = \frac{1-\varepsilon}{\varepsilon} \left(\frac{G_{g}}{\rho_{g}} - 10.8 (1-\varepsilon) \right)^{0.293} \varepsilon U_{B}$$
(9)

Dividing both sides of Equations (7) and (9) by the bubble velocity gives the dimensionless equations given below.

For the dilute region:

$$\frac{G_{s}}{\rho_{s}U_{B}} = \frac{1-\epsilon}{\epsilon} \left(\frac{G_{g}}{\rho_{g}U_{B}} - 10.8 (1-\epsilon)^{-0.293} \epsilon\right)$$
(10)

For the dense region:

$$\frac{G_{S}}{\rho_{S}U_{B}} = \frac{1-\epsilon}{\epsilon} \left(\frac{G_{g}}{\rho_{q}U_{B}} - \frac{U_{mf}}{U_{B}} - \frac{\epsilon - \epsilon_{mf}}{1-\epsilon}\right)$$
(11)

Plotting $\frac{G_s}{\rho_s U_B}$ Vs. $\frac{G_g}{\rho_g U_B}$ in Equations (10) and (11) for constant values of voidage, Matsen obtained a series of curves representing two-phase vertical-up flow. The locus of intersection of the two equations for values of constant voidage is called the choking curve. If this series of curves is cross plotted, $\frac{G_s}{\rho_g U_B}$ Vs. $(1-\epsilon)$, with the solids velocity as a parameter, another series of curves resembling a single component vapor/liquid equilibrium diagram is obtained. Only one phase is present outside the envelope. Matsen suggested that this was the region of fast fluidization. Within the phase envelope, two phases can exist simultaneously; a dilute phase and a relatively more dense phase.

Gidaspow [10, 12] developed a one dimensional two-phase model based on an entropy production principle from non-equilibrium thermodynamics. He postulated that the internal energy of the system was a function of the usual single phase thermodynamic variables such as entropy, volume, mass and external potential. In addition,

Gidaspow postulated that the internal energy was also a function of the relative velocity (slip velocity) of the two phases. Gidaspow and Arastoopour [14] applied Gidaspow's model to the vertical pneumatic conveying situation with the following assumptions:

(1) flow is one dimensional.

(2) flow is isothermal.

(3) flow is in steady state.

(4) there is no phase change.

The gas continuity equation can be written as:

$$\frac{d}{dx} \left(\epsilon \rho_g U_g \right) = 0 \tag{12}$$

The solid continuity equation can be presented as:

$$\frac{d}{dx} \left((1 - \varepsilon) \rho_{s} U_{s} \right) = 0$$
(13)

The momentum equations are combined to give the following gas-solid mixture momentum equation:

$$(1-\varepsilon) \ \rho_{S} \ U_{S} \ \frac{d}{dx} (U_{S}) + \varepsilon \rho_{g} \ U_{g} \ \frac{d}{dx} (U_{g})$$

$$(14)$$

$$+g \left[\rho_{S} \ (1-\varepsilon) + \rho_{g}\varepsilon\right] = \frac{dP}{dx} - f_{W}$$

The equation which fully describes the slip velocity is given by:

$$\frac{1}{2} \frac{d}{dx} (U_{s1})^2 + \frac{3}{4} C_d \frac{\rho_g}{\rho_s} \frac{(U_{s1})^2}{d_p(s)^{2.65}} = g \qquad (15)$$

The voidage exponent is obtained from the familiar Richards and Zaki work. The drag coefficient, C_d , is stated to obey the relations:

$$C_{d} = \frac{24}{Re_{s1}} (1 + 0.15 Re_{s1}^{0.687}); Re_{s1} < 1000$$
(16)
$$C_{d} = 0.44; Re_{s1} > 1000$$

where Re_{s1} = $\rho_{g} d_{p} U_{s1}/\mu$

This model was applied to the data obtained by Yerushemi et al. for an assumed voidage. The model estimated $\frac{\Delta P}{\Delta L}$ to be in the range of 400 to 2000 kg/m²s² for values of solid mass flow between 40 and 200 kg/m²s. These estimates agree well with experimental data at low solids flow rates. The disagreement at high solids flux values is attributed to: (1) the error in the assumed void fraction value, (2) wall effects, (3) variance in cluster size, and (4) radial and tangential effects.

A.2 Standpipe

The experimental work conducted at the Morgantown Energy Technology Center [24] has shown that the quantity of solid particles in the standpipe affects the operation of the riser in the LFB. A considerable amount of research has been conducted on various regimes of standpipe flow [15, 16, 17, 18, 19, 20, 21, 22, 23].

The standpipe has both dilute phase as well as dense phase flow regions. The solid particles in the standpipe act as a solid plug keeping the gas from short circuiting up the standpipe. Since most of the mass is contained in the dense phase region, this section of the literature review has been confined to this flow regime.

Leung et al. [18] have analyzed the flow of solids down a standpipe with a restriction (slide valve) at the bottom. Leung et al. [18] state that for packed moving bed flow, the slip velocity must be less than the minimum fluidized velocity.

$$U_{s1} < \frac{G_s}{\rho_s (1-e_{mf})} - \frac{G_g}{\rho_g e_{mf}} = U_{mf}$$
 (17)

Yoon and Kunii [19] developed the following pressure drop correlation for flow through a standpipe by modifying the Ergun Equation.

$$\frac{\Delta P}{\Delta L} = \frac{150 \ \mu \ (1-\varepsilon)^2 \ U_{S1}}{(\phi d_n)^2 \ \varepsilon^3} - \frac{1.75 \rho_g \ (1-\varepsilon) U_{S1}}{\phi d_n \varepsilon^3}$$
(18)

A.3 Particle-Gas Disengaging Zone

Published information related to the performance of the solidgas disengaging section of the LFB is limited. According to experimental studies conducted by Breault [24] at METC, using two different particle sizes ($\bar{d}_{
m p}$ = 265 µm and $\bar{d}_{
m p}$ = 170 µm) the solid particles remaining in the LFB had a larger particle size of approximately 320 µm. For the larger particles, the mass throughput

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(system elutriation rate) increased linearly from 1.8 to 2.2 x 10^{-4} kg/s with an increase in the gas velocity from 7.5 to 9.6 m/s. The smaller particles had a mass throughput equal to 3.1 x 10^{-4} kg/s at a gas velocity of 7.1 m/s.

A.4 Solids Eductor Zone

Published literature on the entrainment rate of solids is rather limited. In most studies solid particles are fed to solid-gas systems with mechanical devices. There is some similarity between the J-valve and the eductor zone in the LFB. The J-valves have been investigated by Knowlton and Hirsan [25] and Knowlton, Hirsan, and Leung [26]. These valves control the solid particle flow from a standpipe to a vertical pneumatic conveyor line. The performance of the J-valve is found to be dependent on the amount and position of injected aeration fluid [25, 26]. It is reported by Knowlton et al. [25, 26] and Singh [48] that the maximum solids flux was obtained when the solids in the standpipe were just at the fluidizing point.

A.5 Choking

The solid particle movement in the riser section of the LFB is termed "Fast Fluidization" by Yerushalmi et al. [1] or "non-slugging dense phase flow" by Leung [15, 18]. Leung defines choking as the point at which dilute phase flow in the riser section undergoes a sharp transition to a slugging dense phase flow. The gas velocity

under this condition is called the "choking" velocity. However, Matsen [9] defines choking as an abrupt transition from dilute phase flow to dense phase flow regardless of the nature of the dense phase.

It is important to know the conditions under which choking occurs so that a LFB can be designed to operate smoothly. Choking is found to be a function of gas properties, the solid properties, and the diameter of the riser [27]. Several investigators have developed mathematical correlations to predict the choking velocity [9, 27, 28, 29, 30, 31, 32, 33].

Matsen [9] presented a mechanism to describe the choking phenomena. He defined choking mathematically as the intersection of the dilute and dense phase solids mass flow relations given earlier, Equations (10) and (11). Choking is likely to occur when the design parameters place the operation of the riser within the phase envelope.

Leung et al. [28] developed a correlation to estimate the choking flow rate assuming that choking occurred over a narrow range of voidage and that the sl_1p velocity was equal to the terminal velocity. They obtained:

$$U_{c} = 32.3 \frac{G_{s}}{P_{p}} (1-\epsilon) + 0.97 U_{t}$$
 (19)

Yousfi and Gau [29, 30] reported that choking would occur when the Froude number based on particle diameter exceeded 140.

$$Fr = \frac{U_t^2}{g d_p} > 140$$
 (20)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Yang [31, 32] reported that choking would occur when the Froude number based on tube diameter was greater than 0.12.

$$Fr = \frac{U_t^2}{gd_t} > .12$$
(21)

Smith [33] investigated choking and found it to occur when the Froude number based on tube diameter obeyed the following relation.

$$Fr = (\varepsilon^{n-1} n (1-\varepsilon))^2 > .17$$
(22)

A.6 Solids Mass Fraction Measurement

One of the problems of studying any two-phase flow process is the inherent difficulties associated with measuring G_S , G_g , U_S and ethat are needed to fully understand the system. After investigating the different techniques used to obtain these quantities, the Auburn Monitor (used to measure the solids volume fraction) was chosen as the best available instrument for the purposes of this study. The monitor operates such that the flow is not obstructed during the measuring process. A rapidly rotating electric field establishes a uniform measuring system within the sensing volume. These advantages allow one to make sensitive and accurate measurements. Other techniques for measuring solids fraction are as follows:

 Determining the void fraction by weighing particles collected in the sampling pipe.

This technique requires that the flow be obstructed by some catch pot in the line, and that the process be stopped frequently in order to remove the sample.

- (2) Measuring the void fraction using a laser beam. Several techniques using lasers have been tried. Essentially, the laser establishes a control area, and the number of particles crossing the boundary is recorded as a function of time. It is reported that optical or acoustical devices did not generally give accurate estimates of the mean value in any cross-section [34].
- Determining the particle concentration using radioisotopes, and beta beams.

A counter is used to measure the time it takes a particle to travel a distance L. Problems with mixing and particle acceleration have been found. Problems also arise in storing these radiochemical tracers. Strict disposal techniques must be observed [35].

(4) Measuring the gas and solids velocities using a Laser Doppler Velocimeter (LDV).

The degree of attenuation is measured while particles cross a control volume, the source of light being a helium-neon laser. Though the LDV does not obstruct the flow, it is not considered suitable for turbulent flow measurements. The LDV set up is considerable expensive as well [36].

18

And the second se

(5) Determining the mass flow rate using a Micro-Motion (M/M) flow meter.

The M/M uses the coriolis force exerted by the two-phase flow moving through a U-tube. Because there is a sharp bend resulting from the U-tube, a large pressure drop is observed, and thus flow is obstructed [37]. The solids fraction is calculated from the equation of continuity.

The techniques described above have been used by various workers [34, 35, 36, 37, 38, 39] for estimating solids mass fraction and they have encountered some of the problems discussed earlier. The Auburn Monitor appears to eliminate these shortcomings. The monitor uses the capacitance of the system, which is found to be proportional to the volume fraction occupied by the solids. It measures the average dielectric constant of any two-phase nonconductive flow. The average dielectric constant, $E_{\rm avg}$, is related to the voldage, ε , by the following equation:

$$E_{avg} = \varepsilon E_{g} + (1-\varepsilon) E_{s}$$
(23)

which can be used for calculating the void fraction [38]. This quantity is read directly off the instrument. The accuracy of the monitor can be attributed to the fact that it finds the average value, E_{avg} , for a control volume. Since flow fluctuations are always present in a pneumatic transport system, the meter provides only an average value for the volume under study.

A.7 Pressure Drop in High Velocity Fluidized Bed Systems

The HWFB system which includes the solids circulation as well as the entrained flow section consists of several gas-solid flow regimes. These are aerated gas-solid down flow, aerated solids down flow and gas up flow, horizontal pneumatic transport, vertical pneumatic transport and standpipe flow. Research workers have modeled the pressure drop in each of these regimes as the sum of individual contributions due to the effects of acceleration, kinetic energy, potential energy and friction [40, 41, 42, 43, 44, 45, 46, 47, 48, 49]. These flow regimes are discussed as per Fig. 2.

A.7.1 Aerated Solids Flow. This is the region (section H-A) of aerated gas-solid down flow which exists in the LFB. The pressure drop for this regime of gas-solid flow can be represented by the sum of the potential energy and a frictional term.

$$\Delta P_{A-B} = \Delta P_{SPF} - \Delta P_{f} \qquad (24)$$

where

$$\Delta P_{SDE} = \rho_{e}(1-\epsilon) g\Delta Lsin\theta \qquad (25)$$

and

 $\Delta P_{f} = \frac{32\overline{\mu}U_{S}\Delta L}{d_{t}^{2}}$ (26)

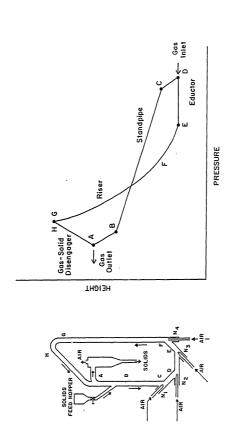


FIG. 2 PRESSURE PROFILE IN HIGH VELOCITY FLUIDIZED BED SYSTEM

$$Re = \frac{d_t \bar{\rho} U_s}{\bar{\mu}} < 1300$$

The sections A-B and C-D are regimes of aerated solid down flow and gas up flow. The pressure drop across these sections can also be represented by the sum of the potential energy and a frictional term.

$$\Delta P_{A-B} = \Delta P_{SPE} + \Delta P_{f}$$
(27)
or C-D

where ΔP_{SPE} and ΔP_{f} can be obtained from Equation (25) and (26), respectively.

A.7.2 Standpipe Flow. Standpipe flow (section B-C) has been extensively studied by various workers as discussed earlier in this report. The pressure drop through this section of the LFB can be modeled by:

$$\Delta P_{B-C} = \left(\frac{150\mu(1-\epsilon)^2 U_{S1}}{(\phi d_p)^2 \epsilon^3} + \frac{1.75\rho_g(1-\epsilon)U_{S1}^2}{(\phi d_p) \epsilon^3}\right) \Delta L$$
(28)

where the slip velocity is given by:

$$U_{s1} = \frac{G_s}{\rho_s(1-\varepsilon)} - \frac{G}{\rho_g \varepsilon} < U_{mf}$$
(29)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

......

A.7.3. Pneumatic Transport. The eductor is a region of horizontal pneumatic transport, section D-E. The pressure drop is modeled by summing contributions due to kinetic energy requirements and frictional resistance.

$$\Delta P_{E-F} = \Delta P_{SKE} + \Delta P_{f}$$
(30)

The pressure drop due to the particles kinetic energy is

$$\Delta P_{SKE} = U_S G_S$$
(31)

where

$$U_s = U_q - U_t$$

The pressure drop due to the frictional resistances is due to the gas and solids.

$$\Delta P_{f} = \Delta P_{GWF} + \Delta P_{SWF}$$
(32)

The pressure drop due to the gas frictional resistance can be expressed by the Fanning Equation:

$$\Delta P_{GWF} = \frac{2 f_g \rho_g U_g^2 \Delta L}{d_t}$$
(33)

where the friction factor can be estimated from the following equations:

$$f_g = \frac{16}{Re}$$
 Re = $\frac{\rho_g U_o d_t}{\mu} < 3 \times 10^3$ (34A)

$$f'_g = 0.791/Re^{0.25}$$
 3 x 10^3 < Re < 10^5 (34B)

$$f_g = 0.008 + 0.0552/Re^{0.237} 10^5 < Re < 10^8$$
 (34C)

The pressure drop due to the solids frictional resistance has been studied by a number of investigators. Two approaches are generally taken to express this effect. Rose et al. [42] obtained the solids frictional resistance term by modifying the gas frictional resistance:

$$\Delta P_{SWF} = \frac{\pi}{8} \left(\frac{f_p}{f_g} \right) \left(\frac{\rho_s}{\rho_g} \right) \left(\frac{G_s}{G_g} \right) \Delta P_{GWF}$$
(35)

The particle friction factor, f_p , is presented in a graphic form [42]. An alternative approach has been to use a modified Fanning Equation

$$\Delta^{P}_{SWF} = \frac{2f_{S} \rho_{S}(1-\varepsilon) U_{S}^{2} \Delta L}{d_{L}}$$
(36)

The solid friction factor, f_s , has been obtained by several researchers. Stemerding [43] found the solids friction factor to be:

Reddy and Pie [44] determined that the solids friction factor was given by:

$$f_s = .046(U_s)^{-1}$$
 (38)

Van Suaaij et al. [46] obtained the solids friction factor from experiments designed specifically for measurement of the shear stress at the wall due to the solids. The solids friction factor is given by:

$$f_s = .080(U_s)^{-1.22}$$
 (39)

Capes and Nakamura [47] obtained the following relation for the solids friction factor from their experimental study:

$$f_s = 0.048 (U_s)^{-1}$$
 (40)

Yang [45] reviewed the literature data and developed the following correlation for the solids friction factor:

$$f_{s} = \frac{0.01025 (1-\varepsilon)}{\varepsilon^{3}((1-\varepsilon) \frac{\text{Re}_{t}}{\text{Re}_{s}!}}$$

$$(41)$$

<u>A.7.4 Riser Section.</u> The riser portion (section F-G) of the high velocity fluidized bed has not been investigated in detail. However, it is assumed that the pressure drop can be expressed as the sum of

the individual contributions due to kinetic energy, potential energy, frictional resistance effects and cluster formation.

$$\Delta P_{F-A} = \Delta P_{SKE} + \Delta P_{SPE} + \Delta P_{f} + \Delta P_{c}$$
(42)

The pressure drops ΔP_{SKE} and ΔP_f can be determined from Equation (31) and (32), respectively. The solids velocity U_s used in Equations (31) and (32) is taken to be the time average velocity

$$\overline{U}_{S} = \frac{G_{S}}{\frac{1}{\rho_{c}(1-\varepsilon)}}$$
(43)

where $\overline{\rho_{s}(1-\epsilon)}$ is the time average apparent density in the riser. The potential energy term can be obtained from an equilibrium force balance and is expressed:

$$\Delta P_{SPE} = \overline{\rho_{s}(1-\varepsilon)} g \Delta L \qquad (44)$$

The pressure drop $\Delta P_{\rm C}$ due to solid cluster formation is actually caused by the continuous particle-gas frictional effects experienced by the solid particles as the clusters form and break apart. This pressure drop contribution is inclued in $\Delta P_{\rm CWF}$.

A.7.5 Pressure Drop Across Orifice Plates. Leung and Jones [17] have reviewed the data and models presented in the literature for gas-solid flow through orifice plates. They present the models:

rav.

$$\Delta P = \frac{G_s^2}{C_D^2 2(1-\varepsilon) \rho_s}$$
(45)

and

$$\Delta P = \frac{G_{s}^{2}}{C_{D}^{2} [\Lambda^{2} / (\Lambda^{2} - \Lambda_{0}^{2})] 2 (1 - \epsilon) \rho_{s}}$$
(46)

Predictions of the first equation agree with the extensive results by six investigators. The value of C_D ranges from 0.5 to 0.65. The second equation incorporates a term to account for the "non-trivial momentum of a loosely packed bed". The orifice discharge coefficient, C_D , ranges from 0.65 to 0.98. The values of C_D have been calculated using estimated flowing voidages thus providing the wider range in values. The momentum correction form is approximately 1.15 for an orifice/valve 50% open. The correction provided by this term is negated by the uncertainty in C_D . Leung and Jones recommend the use of Equation (45) for design and analysis.

A.7.6 Pressure Drop in Bends Due to Gas-Solid Flow. Kunii and Levenspiel [42] present an equation which predicts the pressure drop in bends due to gas-solid flow. This equation is used extensively in pneumatic transport. The pressure drop is given by

 $\Delta P = f_b \bar{\rho} U_0^2 \qquad (47)$

The bend friction factor, $f_b,$ is 0.375, 0.188, 0.125 for r_b/d_t equal to 2, 4 and 6+, respectively.

B. Coal Combustion

Coal is the world's most abundant resource. The United States has 437 billion tons of coal of which 265 billion tons is recoverable with current mining technology. To utilize coal in the most advantageous way, the chemical-physical make up of coal must be known thoroughly. Coal is a complex heterogeneous material. Coal and its use are being studied throughout the world to supply the ever increasing energy demand.

8.1 Coal

Coal is a complex, solid, heterogeneous material of carbon base, capable of supplying energy for heat and processing. The chemical and physical make-up of coal has been studied extensively and continues to be studied. Coal studies are usually divided into two areas - coal chemistry (chemical and physical make-up) and coal utilization (combustion, gasification, and liquification).

<u>-B.1.1 Coal Chemistry.</u> Coal is classified by rank and grade [50]. Coal rank is a method of expressing the progressive metamorphism of coal from lignite (low) to metaanthracit (high). There are four ranks of coal: (1) lignite; (2) subbituminous; (3)

bituminous; and (4) anthracite. Each rank has also been subdivided, based on ash free heating values for low rank coals and moisture-ash free fixed carbon content for high rank coals. The results of the subdivisions, lowest to highest rank are: lignite B, lignite A, subbituminous C, subbituminous B, subbituminous A, high volatile bituminous C, high volatile bituminous B, high volitile bituminous A, medium volatile bituminous, low volatile bituminous, semianthracite, anthracite, and metaanthracite. The heating value increases from 13,900 kJ/kg for lignite B to 34,900 kJ/kg for low volatile bituminous A and then decrease to 30,100 kJ/kg for metaanthracite. The fixed carbon content increases from 25% for lignite B to 90% for metaanthracite.

Coal is also classified by grade. The three factors which cause coal to have a low grade are: high ash content, low ash fusion temperature and high sulfur content. Sulfur is the primary constituent which lowers the grade and thus has been studied extensively. Sulfur in coal lowers the quality of iron and steel, causes corrosion and deposits and promotes air pollution. Sulfur ranges between 0.2% to 7.0% by weight, with the average being between 1% and 2%. Sulfur occurs as inorganic pyrite and marcasite (40% to 80%) with the balance contained in the organic structure. The highest sulfur coals are the bituminous coals of the Pennsylvanian age in the Appalachian, Illinois and Western Interior coal basins. The lowest sulfur coals are the subbituminous coals and lignites in the Rocky Mountain and Northern Great Plains Regions. These coal have less than 1% sulfur. The molecular structure of coal is not

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

completely known. Investigators (Solomon; Wisner; and Heredy and Wender [51]) have gathered information from infrared measurements, nuclear magnetic reasonances, ultimate and proximate analyses and prolylsis data to obtain models for the chemical structure of the organic back bone in coal. This organic back bone of coal is constructed of aromatic and hydro-aromatic units. Some of these units have various functional groups which cross link the units together. The planer nature of the aromatics gives the coal a layered consistency. The layers may be twisted to prevent a perfect laminate. The imperfection in the laminate creates pores which may house ash or other impurities. Low rank coals have about 90% of the carbon associated with five unit layers while high rank coals have about 90% of the carbon àssociated in 30 unit layers [50, 51, 52, 53].

30

<u>B.1.2 Coal Utilization Techniques.</u> Coal has been utilized principally by burning (combustion). Coal can also be gasified or liquified. Coal gasification has been conducted on a commercial scale in the past and to a limited extent currently, i.e., Sasol 1, 2 and 3 in South Africa. Coal liquefication has not been commercialized as yet.

Coal is combusted either in fixed bed stoker boilers, fluidized bed boilers, or in pulverized coal boilers [50, 51, 55]. Stoker boilers burn large pieces of coal at high temperatures [50]. Fluidized bed boilers burn coal with a particle size of 1,000 μ m at low temperatures to permit sulfur removal during combustion. A

45,500 kg/hr prototype fluidized bed is in operation at Georgetown University, Washington, D.C. Pulverized coal combustors burn particles of coal with a diameter less than 70 µm at high temperatures. Every major utility in the United States uses one of these techniques for coal combustion.

Many processes have been studied for coal gasification and liquefaction [55, 56, 57, 58]. The only commercial gasifiers are the Lurgi design - fixed bed, stokers.

B.2. Engineering Combustion Models

Coal combustion is envisioned to occur in three steps, sequentially and simultaneously. These steps or processes are devolatilization, char oxidation and gas phase oxidation of the volatiles. Engineering models for each process are discussed below.

<u>B.2.1 Devolatilization</u>. Coal devolatilization has been studied by many investigators and many models have been developed [50]. The models reviewed herein are limited to coal particles less than or equal to 100µm. These models are categorized as: (1) single reaction, (2) multiple parallel reactions, (3) multiple competing reactions, (4) complex schemes, and (5) schemes involving secondary char formation. These models vary from the very simple to the very complex. The details of these models are discussed below.

For the single reaction, coal +solid + volatile, the reaction rate models are simple and quite limited. Both an Arrhenius expression:

$$\frac{dV}{dt} = k(V_{\infty} - V)^{n}$$
(48)

and a non-Arrhenius expression

$$\frac{\mathrm{d}V}{\mathrm{d}t} = \mathrm{B}V_{\infty}/\mathrm{t} \tag{49}$$

have been developed. The order n in the Arrhenius expression has been estimated to be between 1 and 8 depending on the investigator. The non-Arrhenius expression neglects the observed temperature dependence on devolatilization.

The second category, multiple parallel reactions, are first order Arrhenius expressions. This category has been subdivided by Ubhayakar [50] into two sections, namely two first order Arrhenius models and multiple first order reactions with a statistical distribution of the activation energy. The devolatilization process is modeled by the first of these techniques by the following set of equations:

$$c_1 \stackrel{k_1}{+} s_1 + v_1$$

 $c_2 \stackrel{k_2}{+} s_2 + v_2$
(50)

where:

 $\frac{d C_{1, 2}}{dt} = -k_{1, 2} C_{1, 2}$ (51)

The second technique is described by the equations below:

$$\begin{array}{rcl} n & ki & n \\ \text{Coal} &= & \sum_{i=1}^{N} C_{i} &+ & \sum_{i=1}^{N} (S_{i} &+ & V_{i}) &+ & S &+ & V \\ & i = 1 & i = 1 \end{array}$$

where:

$$\frac{dV_i}{dt} = k_i \left(V_{i,\infty} - V_i \right)$$
(53)

$$k_s = A \exp \left(-E_s/RT\right)$$
(54)

$$\int_{0}^{\infty} f(E) dE = 1$$
 (55)

Equation (55) gives a complete statistical distribution of activation energy.

Multiple competing reaction models, the third category, are also used to express the devolatilization process. The reaction is expressed

$$\begin{array}{c} k_{1} & (1 - Y_{1}) \cdot \text{Char} + Y_{1} V_{1} \\ \hline \\ \text{Coal} & \overbrace{k_{n}}^{k_{1}} & (1 - Y_{2}) \cdot \text{Char} + Y_{2} V_{2} \\ & & (1 - Y_{n}) \cdot \text{Char} + Y_{n} V_{n} \end{array}$$
(56)

with two rate equations

$$\frac{d (coal)}{dt} = - \left(\sum_{i=1}^{n} k_i \right) Coal$$
(57)

and

$$\frac{dV}{dE} = \begin{pmatrix} r \\ s \\ i=1 \end{pmatrix} (ca)$$
(58)

Kobayashi [50, 51] used this model with n = 2. Smith and Smoot [51] applied this model in their pulverized coal combustion and gasification models with good success.

The fourth category, complex schemes, include the multiple consecutive parallel first order reaction:

and the parallel competing first order reaction:

Coal
$$\stackrel{k_1}{+}$$
 Activated Coal $\stackrel{k_2}{\underset{k_3}{\longrightarrow}}$ methane and ethane (60)

These two mechanisms are complicated, producing several intermediate and final products. A coal combustion model needs a simple, straight forward model of the devolatization process. These two models do not provide these criteria.

In the final category, schemes involving secondary char forming reactions, contains two models: (1) consecutive competing char forming reactions; and (2) parallel competing char forming reactions. These models are prohibitively complex for their inclusion in a combustor model. The first has seven reactions, producing seven product types while the second has n + 2 reactions and a statical distribution of activation energies.

The models presented above indicate that the fraction of volatile matter evolved is a function of both the temperature and the length of time for which devolatilization occurs. For bituminous coals, Kobayashi et al. [51] report that at a temperature of 1260°K and for a time of 200 millinseconds 30% of the coal is volatilized.

<u>B.2.2 Char Oxidation</u>. The devolatilization process produces a solid residue, char. The char consists of the fixed carbon and ash. In actuality, the char is a composite material containing carbon, hydrogen, sulfur, oxygen, nitrogen and ash. An ultimate analysis of the char shows that the fractions of each of these elements are in approximately the same ratios as in the parent coal. Char oxidation is a heterogeneous chemical reaction. Heterogeneous reactions have been studied extensively [42]. The reaction mechanism developed in those studies is discussed below.

B.2.2.1 Heterogeneous char reactions. Char consists of three elements: carbon, hydrogen and sulfur, which are oxidized. The general heterogeneous chemical reaction is expressed as:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

$$A_{gas} + bB_{solid} \stackrel{k}{\rightarrow} products$$
 (61)

Written in this manner, the reactions for carbon, hydrogen and sulfur become:

$$0_2 + 2C \rightarrow 2C0 \tag{62}$$

 $0_2 + C \rightarrow C0_2$ (63)

$$0_2 + 4H \rightarrow 2H_20$$
 (64)

$$0_2 + S \rightarrow S0_2 \tag{65}$$

This group of reactions is a simplification of possible reactions which have been researched and shown to exist in minor amounts [50].

Smith has reviewed the question as to which product is favored CO or CO_2 , and suggests that CO is the most likely [51].

B.2.2.2 Kinetics of heterogeneous char oxidation. Heterogeneous chemical reactions have been studied extensively. Levenspiel [59] has proposed a mechanism for gas-solid reactions which has withstood numerous investigations and applications. Heterogeneous reactions are envisioned to proceed by the following steps:

- Diffusion of reactant gas from the bulk fluid through the gas film surrounding the particle to the solid surface.
- (2) Penetration and diffusion of reactant gas through a blanket of ash (solid product) to the unreacted core.
- (3) Chemical reaction of reactant gas with solid at the reaction surface.
- (4) Diffusion of the product gas through the ash to the exterior surface of the particle.
- (5) Diffusion of the product gas through the gas film surrounding the particle to the bulk fluid.

One or all of these steps may be involved in the chemical reaction sequence. The step(s) which offer the greatest resistance to the propagation of the reaction is(are) called the rate controlling step(s). For reactions such as char oxidation in which a stationary ash layer is not formed, steps 2 and 4 have negligible resistances and can be neglected. The driving force for the product gas between the surface and the bulk fluid is in general quite large since the bulk contains little or no product gas. Thus, step 5 offers negligible resistance and is neglected.

The rate of chemical reaction for the general reaction with steps 1 and 3 controlling is given by:

$$R = \frac{dm_B}{d\tau} = \frac{A \ b \ M_B \ C_A}{\frac{1}{K_c} + \frac{1}{K_d}}$$
(66)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The two terms $\frac{1}{k_c}$ and $\frac{1}{k_d}$ are the chemical reaction resistance and the mass transfer resistance, respectively. The chemical reaction rate constant, k_c has been studied extensively for the carbon-oxygen raction [50, 51]. However, reaction rate constants for the hydrogenoxygen and sulfur-oxygen reactions are not available in published literature. The mass transfer coefficient, k_d has been studied extensively for a single particle in a fluid [42].

The reaction rate coefficient for the carbon-oxygen reaction has been well studied by investigators [51]. These investigators have used the conventional Arrhenious expression $k = A \exp (-E/RT)$ to model the effect of reaction temperature. Table 1 summarizes the values for the frequency factor A, and activation energy E, along with the type of coal char and particle size used in the experiment. As can be seen in Table 1, the type of coal char greatly influences the values of the frequency factor and activation energy.

The mass transfer coefficient is expressed:

$$k_{d} = \frac{Sh D}{dp}$$
(67)

The Sherwood Number, Sh, is modeled by:

 $Sh = 2 + 0.6 Re^{1/2} Sc^{1/3}$ (68)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Carbon-Oxygen Reaction Rate Constants, k_{p}

Type of Coal Char	Particle Size (µm)	Frequency Factor () cm ² s atm 0 ₂	Activiation Energy (<mark>kcal</mark>) (kgmol)
Bituminous 38 82 105	28	92	21,900
Non-swelling Bituminous	27 38	45.7 80.3	17,263 21,787
Swelling Bituminous	31 72	94.3 1000	23,463 35,194
Anthacites and Semi-Anthacites	23 thru 78	20.4	19,000
Flash Pyloysis Char	85	16.3	17,597
Petrolium Coke	-	15	19,000

The Sherwood Number or the mass transfer coefficient modeled by these equations shows good agreement with the experimental data and is an accepted approach to modeling the mass transfer resistance.

B.2.3 Volatile Matter Oxidation. Experimental information on the volatile oxidation rate has not been found in the literature. Experimental research in this area is needed to verify the theoretical predictions [50, 51]. Volatile product combustion times are estimated by considering only mass transfer resistances and chemical reaction rate resistances [52]. The burning time, assuming the volatiles to have a molecular weight of 100 and the coal to have a volatile fraction of 0.5, is 7 milli-seconds for a 50 m coal particle at 1273°K. If the mass transfer resistance is negligible. such that only the chemical reaction is considered and assuming the reaction rate to be that for CO going to CO2, the slowest step, the combustion time can be estimated. These assumptions provide only an order of magnitude value. The burning time for a 50 m particle and at 1273°K is 3.2 milli-seconds. These two burning time values are approximately the same, such that the volatile oxidation process is neither only diffusion controlled nor reaction rate controlled.

<u>B.2.4 Soot Oxidation</u>. The oxidation time for soot has been estimated [52]. For a soot particle with a 500Ű diameter the combustion time is 0.173s at a temperature of 1600°K [52]. Lee, Thring and Beer [52] obtained the following expression for the soot combustion rate:

q =
$$1.085 \times 10^4 P_{0_2} T^{1/2} \exp(-39300/RT) [=] \frac{g}{Cm^2 s}$$
 (69)

for 400A° soot particles.

C. Desulfurization

The introduction of the Clean Air Act has nurtured the development of sulfur dioxide removal processes. Both wet and dry techniques have been developed to date, with wet processes dominating the market. These processes are expensive to manufacture and operate. Dry processes such as limestone injection systems and fluidized bed coal combustion in a limestone bed are both being researched.

Dry sulfur dioxide removal processes utilize the following chemical reaction.

$$Ca0 + SO_2 + 1/2 O_2 = CaSO_4$$
 (70)

The reaction proceeds forward at temperatures up to 1500° K for sulfurdioxide concentrations approximately 3000 ppm [60]. The calcium oxide is generated by the calcination of limestone (CaCO₃) and dolomite (CaCO₃/MgCO₃). The calcium oxide and magnesium oxide obtained by calcination are both capable of sulfinating. Formulation of magnesium sulfate occurs at temperatures below 1110°K. However.

experimental evidences show the reaction to occur only slightly in the 700 to 970° K temperature range [60].

The sulfination reaction rate has been found to decay with time. This phenomenon is explained by the observation that pores are created in the stone structure by the calcination process. The actual decay in rate is attributed to the substitution of the much larger sulfurtrioxide molecule for the carbon dioxide molecule. Researchers have taken two approaches towards modeling this phenomenon. Some have used a simple exponential decay models [60, 61, 62] while others have used complicated grain models [63, 64]. The grain models are more theoretical in nature and probably describe the actual decay phenomenon as it truly is. However, the grain models' complexities limit their use in a combustion process model.

Lee et al. [61, 62] have developed a simple model based on two experimental parameters, which predicts the time decay quite well, and is discussed below. The rate of reaction is expressed by the product of the initial rate and an exponential decay term.

$$R = R_0 e^{-t/p}$$
 (71)

The exponential decay term contains the pore plugging time constant, $_{\rm p}$, which is taken as one third the pore plugging time.

$$p = \frac{t_p}{3}$$
(72)

The pore plugging time has been shown to be inversely proportional to the sulfur dioxide concentration, thus τ_n can be expressed by:

$$r_p = \frac{p^*}{C_{SO_2}}$$
(73)

where \textbf{P}^{\star} is the pure plugging constant. The initial rate $\textbf{R}_{0},$ is expressed by:

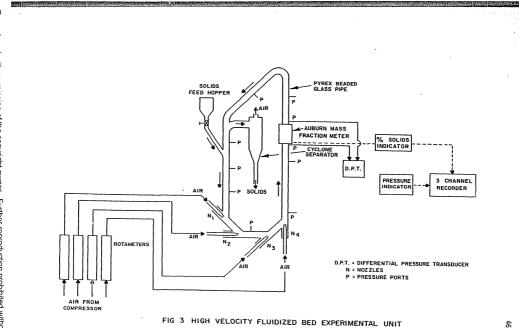
$$R_o = \frac{\pi \frac{d^3}{\rho}}{\delta} \rho_s k \, \text{Sn } C_{SO_2}$$
(74)

The group $\rho_{s}kSn$ is combined into one constant τ_{SF} which has been provided for a number of limestone and dolomite stones. Upon substituting, Lee et al. obtained the following equation:

$$R = \frac{\pi d_p^3}{6} - \frac{c_{SO_2}}{\tau_{SE}} e^{(-tC_{SO_2}/P^*)}$$
(75)

The only parameters needed from experimental data are P^{*} and τ_{SF} . Lee et al. has provided these data [61]. They conducted all their experimental work using 1000 μ m particles.

Borgwardt [60] has conducted extensive experimental studies on stone sulfination. He has modeled the reaction rate time delay phenomenon by modifying the conventional Arrhenious frequency factor. Borgwardt presented the following model:


$$R = \frac{n}{\rho_{s}} A_{o} e^{-\beta n'/w} e^{-E/RT} C_{SO_{2}}^{m}$$
(76)

44

He presents a method to obtain β , the exponential decay coefficient. However, the number of parameters is greater than those needed in the model by Lee et al. and typical values have not been provided.

EXPERIMENTAL SET-UP AND PROCEDURE

The experimental unit shown in Fig. 3 has been assembled from a 0.038 m (1-1/2 in) pyrex brand glass pipe. There are four nozzles, N_1 , N_2 , N_3 and N_4 located at the lower part of the loop which supply air at high velocity to fluidize the solid particles. Solid particles are placed in the feed hopper. These solids are fed manually to the LFB at the top of the standpipe through a ball valve. The particles traverse the standpipe as moving bed flow, entering the eductor zone. The particles are entrained in the high velocity air stream at this zone. The air is supplied from an Ingersoll-Rand compressor. The flow rate is measured with four Dwver rotameters. The particles conveyed upwards travel through an Auburn mass fraction monitor. The monitor continuously measures the percent solids of the two-phase stream as it flows past. The pressure drop across the monitor is monitored with a Validvne differential pressure transducer - indicator system. These instruments give analog outputs proportional to the corresponding variables. The analog outputs are recorded by a Cole-Palmer strip chart recorder. The solid particles ' and gas travel through the remainder of the riser and then loop around the top via a 135° bend and a 45° bend. The gas exits via a 135° bend while the solid particles return to the standpipe. The air containing a small amount of solid particles flows through a cyclone and a bag filter (not shown in figure); solids leave the loop through

the cyclone bottom. Pressure ports are provided approximately every 1/3 of a meter around the loop for pressure monitoring with water manometers.

4.1 Details of the LFB System

Each component in the LFB system is discussed in detail below.

<u>4.1.1 Loop.</u> The test loop is constructed out of a corning 0.038 m (1-1/2 in) glass process pipe. The glass pipe sections are connected to one another with one bolt couplings. The loop is capable of operating at pressures up to 120 kPa gauge and temperatures between 290°K and 480°K. Pressure taps have been provided to the glass pipe, so that the pressure can be monitored approximately every one-third of a meter. The detailed dimensions are given in Table 2.

<u>4.1.2 Nozzles</u>. The primary air nozzles, N_1 through N_4 , have been designed to connect directly to the glass loop reducing the dead zones. They are made of carbon steel and cut at 45° angles to promote smooth flow around the bend. Nozzle, N_0 is made of glass and permanently attached to the standpipe.

4.1.3 Auburn Monitor. The Auburn monitor consists of two separate units, the sensor spool and the electronics. The sensor spool is constructed from a heavy steel pipe which has an inner

Table 2

Equipment Dimensions

Diameter	0.038	m
Nozzle Diameter	0.0064	m
Riser Height	2.1	m
Standpipe Height		
Total	1.2 m	
Solids Level	0.5 to	1.0 m
Total Length (between lower upper loop)	2.3 m	

Pressure Port Number	Sand	Height, m Limestone and Gypsum
^P 1	0.0	0.0
P2	0.26	0.26
P ₃	0.36	0.61
P ₄	0.61	0.85
P ₅	1.46	1.46
P ₆	2.10	2.10
P ₇	2.05	2.05
P ₈	0.99	0.99
P ₉	0.35	0.35

11-2-6-4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

diameter of 0.038 m (1-1/2 in). Six individual sensor points are supplied around the spool. The electronics monitor the signals and analyze them to give an output voltage proportional to the voidage of the flowing suspension.

For the proper operation of the Auburn monitor, the following precautions must be taken [38]:

- (1) Particles/solids should be bone dry.
- (2) Gas bubbles should not be present. These bubbles may distort the electric field lines near the sensing electrodes.
- (3) Temperature and pressure should not exceed 623°K and 10,000 kPa (1500 psig), respectively. These thermodynamic variables for this study are at room temperature and atmospheric pressure.

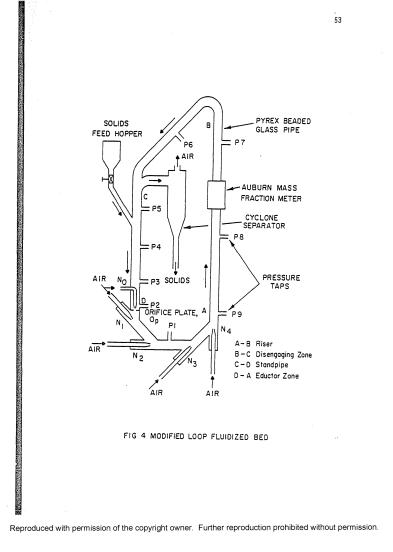
<u>4.1.4 Differential Pressure Measurement</u>. The differential pressure across the Auburn monitor is obtained via a Validyne differential pressure transducer (model DP45). Model DP45 is capable of measuring pressure drops as low as 0.0055 m (0.22 in) H₂0. The signal generated by the transducer is sent to a Validyne model CD12 transducer indicator. The indicator also supplies a 0 to 10 VDC analog output proportional to the differential pressure.

4.1.5 Stripchart Recorder. The analog output supplied by the Auburn monitor and the Validyne transducer indicator is recorded by Cole-Parmer three channel laboratory stripchart recorder model K-8373-30. The recorder has 22 speeds, ranging from 1 cm/hr to 1800 cm/hr. The full scale reading of each channel can be independently set at one of ten ranges, 1 mv to 5 V. The channel is also supplied with a 10:1 attenuator allowing voltages up to 50 V to be recorded.

<u>4.1.6 Air Supply</u>. Air is supplied from an Ingersol-Rand model T30 two stage compressor. The compressor is capable of supplying 1.15 m^3/min (40 scfm) at 346 kPA (50 psi). An 0.31 m^3 (80 gallon) receiving tank is provided to reduce pressure fluctuations. Also, the compressor system is supplied with constant speed control to reduce the receiver pressure fluctuations.

4.2 Modifications to the Equipment (Standpipe)

During the experiments it was observed that the flow rate through the air nozzles was not adequate to keep the solids properly fluidized. Consequently, higher capacity rotameters and manometers were installed.


The solid mass flux in the LFB was found to be relatively insensitive to the gas mass flux. This inability to regulate the solid mass flux was considered to be a severe limitation. In most studies [1, 2] on recirculating fluidized beds the solid mass flux was regulated with a slide valve. Considering the mechanical problems associated with valves in high temperature environments, an alternate solution was sought. A review of the literature on

standpipe flow revealed that air injected at the bottom of a standpipe above an orifice plate could vary the solid mass flux (18, 40, 41]. Thus, it was decided to modify the standpipe with an orifice plate and air injection system to regulate the solids mass flux.

5. EXPERIMENTAL OPERATING CONDITIONS

With the modifications discussed earlier there are a total of five nozzles, N₀ through N₄, in the experimental LFB test unit as shown in Figure 4. These may be operated at different flow combinations. Each nozzle has a specific function. N₀ regulates the solids mass flux, to be discussed later. Nozzles N₁ and N₂ provide solid transportation through the LFB. Nozzle N₃ reduces the saltation in the eductor section (horizontal to vertical bend towards the riser). Finally, nozzle N₄ provides gas mass flow control and is used in conjunction with nozzles N₀, N₂ and N₃.

Experiments are carried out using the operating conditions listed in Table 3. The solids used in this study are sand, limestone and gypsum particles. Limestone and gypsum have been chosen since these will be present in an HVFB coal combustion system. The characteristics of these solids are presented in Table 4.

Table 3

Nozzle Flow Rates

Temperature 298°K			
Pressure	10-50 kPa Gauge		
Nozzle Air Velocity	Air Volume		
N ₁ 0 - 237 ms ⁻¹	0 - 7.5 x $10^{-3} \text{ m}^{3}\text{s}^{-1}$		
N ₂ 0 - 237 ms ⁻¹	0 - 7.5 x 10 ⁻³ m ³ s ⁻¹		
N ₃ 0 - 118 ms ⁻¹	0 ~ 3.8 x $10^{-3} \text{ m}^3\text{s}^{-1}$		
N ₄ 0 - 118 ms ⁻¹	0 - $3.8 \times 10^{-3} \text{ m}^3 \text{s}^{-1}$		
N ₀ 0 - 49 ms ⁻¹	0 - 1.58 x $10^{-3} \text{ m}^3\text{s}^{-1}$		
Superficial Velocity in Riser	3.9 - 7.6 ms ⁻¹		

Particle Characteristics

	Sand	Limestone	Gypsum
Average size (µm)	300	452	296
Particle density (kg/m 3)	2575	2737	2244
Bulk density (kg/m ³)	1455	1394	1104

Size Distribution

(Bachard

Mesh	d(µm)	Sand	Wt. Fraction Limestone	Gypsum
-16 + 18	1090	-	0.03	0.11
-18 + 30	800	0.20	0.33	0.28
-30 + 40	510	0.26	0.40	0.16
-40 + 50	360	0.23	0.16	0.12
-50 + 60	275	0.09	0.03	0.05
-60 + 80	215	0.11	0.02	0.10
-80	110	0.11	0.04	0.18

6. HYRODYNAMIC EXPERIMENTAL RESULTS AND COMBUSTION MODELING

The overall objectives of this investigation have been to study the hydrodynamic characteristics of a loop fluidized bed system and to develop coal combustion and desulfurization models using the fast fluidization principle. In order to accomplish these objectives the investigation has been conducted in two parts. In the first part, an experimental cold flow bench scale unit was designed and assembled as discussed in Chapters 4 and 5. This experimental investigation is undertaken to obtain pressure drop data for the development of a model predicting the hydrodynamics of the high velocity fluidized bed system. The experimental results and discussion of this study are presented in Section A.

In the second part of this thesis, the development of coal combustion and desulfurization models for the LFB combustor has been undertaken. These models include the conversion of carbon, sulfur and hydrogen contained in the coal particle as a function of the combustor length. The net sulfur dioxide gas evolved by combustion less the sulfur dioxide absorbed in the calcium sorbent is also estimated as a function of the combustor length by the model. It may be mentioned here that no experimental work was conducted on LFB the combustion process. However, the HVFB combustion model developed has been applied to the bubbling fluidized bed combustor and the pulverized coal combustor. The predicted results are compared against the literature values for these systems.

The following chapter gives the conceptual design of a LFB combustor for processing coal. The use of the models developed in this chapter is demonstrated in designing the LFB combustor unit. The results from the designed unit are compared with the results from existing combustion systems.

A. Hydrodynamic Experimental Results and Pressure Drop Model

The objective of the experimental investigation has been essentially to study gas-solid flow characteristics in a Loop Fluidized Bed. The experiments have been conducted in an experimental set-up as discussed earlier. Initial experiments have been conducted without the use of an orifice plate and nozzle N₀ in the standpipe. These experiments helped in fixing nozzle positions and studying their effect on LFB performance. An orifice plate and nozzle when introduced in the standpipe reduced the void fraction (increased the solid throughput) in the riser section. The major part of this study has been conducted using the standpipe with the orifice plate.

A.1 Work Without the Orifice Plate

and the second second second second

Experiments have been conducted to study the gas-solid flow characteristics in the LFB. The data from these experimental runs are to define good operating regions for the system. A good operating region is that when the LFB can be operated at various flow rates through the nozzles with no slugging in the standpipe, choking

in the riser, or significant saltation in the eductor. The main emphasis of the work has been to study the solids flow behavior in the riser since it is in this zone that coal combustion and $\rm SO_2$ removal would occur.

<u>A.1.1 Selection of Nozzle Positions in the LFB</u>. The initial experimental efforts are directed to study the effect of air flow rate through nozzles (N₁ through N₄ as shown in Figure 4) on the flow characteristics of sand-air system circulating through the loop. The equipment dimensions, nozzle flow rates, and particle characteristics are presented in Tables 1, 2 and 3. Experiments are conducted injecting air through nozzles individually as well as in combinations. The results are presented in Tables 5 and 6. When conducting experiments with individual nozzles, the best results are obtained with nozzle, N₂ with an air flow rate of 6.2 x 10^{-3} m³/s. The void fraction could be reduced to 0.98 by decreasing the air flow rate to 4.4 x 10^{-3} m³/s Using a nozzle combination N₂ and N₃ the void fraction could be further reduced to 0.975. A reduction in void fraction means an increase in solid content which is one of the desired objectives.

A.1.2 Effect of Standpipe Height on Riser Void Fraction. Efforts have been made to decrease the riser void fraction and thus increase the solids flow content through the riser by controlling air flow rate through the nozzles. It is found that standpipe height for the nozzle combinations studied restricted the extent to which the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 5

LFB Performance at Various Nozzle Flow Rates

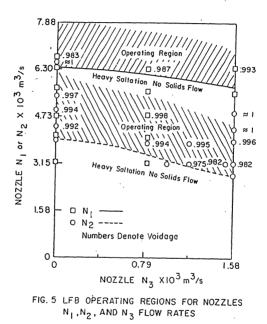
Nozzle	<u>Air Rate (m³s⁻¹)</u>	<u>e*</u>	Eductor		Riser	Standpipe
Ч	7.5×10^{-3}	0.99	No Saltation		No Mixing	Steady
	6.7 x 10 ⁻³	0. 985	Solids Saltation in N ₃ -N ₄ Region		Good Mixing	Bubbling
	6.5×10^{-3}		NO SOLIDS	FLOW		Slugging
N2	7.5×10^{-3}	0.99	No Saltation		No Mixing	Steady
	6.2×10^{-3}	⁰ . 985	No Saltation		Good Mixing	Steady
	4.4×10^{-3}	0.98	Saltation in N ₃ -N ₄ Region		Good Mixing	Steady
	4.0×10^{-3}		NO SOLIDS	FLOW		Slugging
N ₃	All Gas Flows		NO SOLIDS	FLOW		
N4	All Gas Flows		NO SOLIDS	FLOW		

*In riser section

59

and the second second second second

Non- second second second second second


Table 6

LFB Performance for Various Nozzle Flow Rate Combinations

Nozzles	<u>Air Rates (</u>	$m^{3}s^{-1}$)	<u>*</u>	Eductor	Rise	<u>er</u>	Standpipe
	lst	<u>2nd</u>					
N ₁ & N ₂	4.17×10^{-3}						
	to	to 1.57 x 10 ⁻³		NO SOLIDS	FLOW		Slugging
N ₁ & N ₃	7.5×10^{-3}	0.9 x 10 ⁻³	o. 98	Saltation in N ₃ -N ₄ Region	Good	d Mixing	Steady
	7.0 x 10 ⁻³	⁰ .9 x 10 ⁻³		NO SOLIDS	FLOW		Slugging
	7.0×10^{-3}	1.8 × 10 ⁻³	0.98	Saltation in N ₃ -N ₄ Region	Good	d Mixing	Steady
N ₂ & N ₃	5.0×10^{-3}	0.9 x 10 ⁻³	0, 99	Saltation Over Entire Eductor (1/4 Pipe fill	Good ed)	d Mixing	Steady
	4.13 x 10 ⁻³	0.9 × 10 ⁻³	0.985	Same	Si	ame	Same
	3.12×10^{-3}	1.8 × 10 ⁻³	0.98	Same	Sa	ame	Same
	3.12×10^{-3}	1.3×10^{-3}	0.975	Same	Si	ame	Same

*In riser section

CONTRACTOR OF A CONTRACTOR OF A

void fraction could be reduced in the riser section. The experimental results agree with the estimated void fraction values from the mathematical equation proposed by Singh [48].

A.1.3 Effect of Air Flow Rates Through Nozzles on LFB Performance. Experiments using the nozzle combinations N₁ & N₃ and N₂ & N₃ were conducted. The data are presented in Table A1 of Appendix A. In Fig. 5 flow rates through nozzles N₁ and N₂ are plotted against flow rates through nozzle N₃. Void fractions are also indicated at appropriate points. The operating regions are shown by the hatch lines for the two nozzle combinations N₁ & N₃ and N₂ & N₃. It is seen that the operating region for nozzle combination N₁ & N₃ is narrower (smaller range in voidage) than for nozzle combination N₂ & N₃. The LFB can be operated satisfactorily with any flow rate combination within these operating regions.

The LFB, as stated above, can be operated with a stable gassolid flow for a number of nozzle flow rate combinations. However, the performance of nozzle combination N₂ & N₃ is found to be superior as it gave higher solids flux and solids loading over a wide range of air flow rates. Nozzle combinations of N₂, N₃ and N₄ can be used when a constant gas flux through the riser is required. This combination does not provide gas-solid flow with a low voidage due to extra air flow through nozzle N₄. However, the gas mass flux through the riser can be better regulated with the nozzle combination N₂, N₃ and N₄ due to the use of nozzle N₄.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A.2 Experimental Work with Orifice Plate and Nozzle No.

In an effort to achieve a better regulation of solid mass flux, an orifice plate and a nozzle at the bottom of standpipe have been introduced as discussed earlier. Experiments are conducted to study the effect of the orifice plate and nozzle on solids flux. Three orifice plates with diameters 0.013 m (0.5 in), 0.019 m (0.75 in), and 0.025 m (1.0 in) are used.

<u>A.2.1 Effect of Orifice Plate</u>. The use of the orifice plates with diameters 0.013 m (0.5 in) and 0.019 m (0.75 in) resulted in a flow through the riser with void fractions greater than 0.99 which are much higher than desired. The use of the 0.025 m (1.0 in) orifice plate reduced \Box would fractions to 0.975 which is the same as that obtained using no orifice plate. However, this orifice plate considerably helped in regulating the solids mass flux. It should be noted that the standpipe nozzle, N₀ is not used in these experiments.

The experimental data using the 0.025 m (1.0 in) orifice plate and nozzle combination N_2 & N_3 are presented in Table A2 of Appendix A. These data are plotted on a three dimensional diagram in Fig. 6. The three dimensional figure provides better estimates of the void fraction than can be obtained from a plot similar to Fig. 5. The operating region is the <u>surface</u> ABEFGHH' contained within the cube ABCD-A'B'C'D'. Nozzle N_3 flow rates are plotted along C'D' and those of nozzle N_2 are plotted along C'B'. The voidage is plotted along BB'. Nozzle N_2 flow rates are labeled as lines of constant flow rate. These lines are HH', GG', FF', EE' and II'. Nozzle N_3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

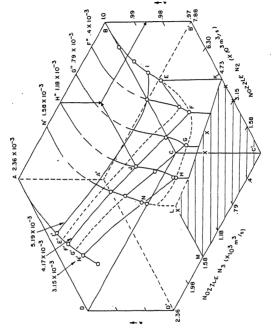


FIG. 6 OPERATING REGION FOR NOZZLES NZ & N3 WITH ORIFICE PLATE, Op (4-0.025m) FOR SAMD PARTICLES

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

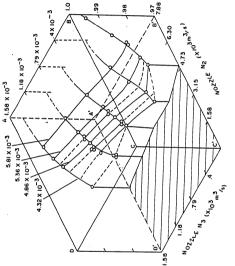
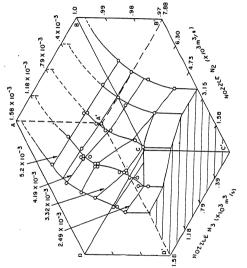



FIG. 7 OPERATING REGION FOR NOZZLES N₂ B, N₃ WITH ORIFICE PLATE, OP (d • 0.025m) FOR LIMESTONE PARTICLES

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Í

er neuen in seren halte hierer bonnen versionen fan de bester der sterken in het interenter bieden bereite ber

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

flow rates are also labeled as lines of constant flow rate on the surface. These lines are $H^{\prime}A$, NN', HH', GG', FF' and EB.

Using Figure 6, the voidage can be estimated at any point in the operating region, say point J at the nozzle flow rates $N_2 = 4.17 \times 10^{-3} \text{ m}^3/\text{s}$ and $N_2 = 1.18 \times 10^{-3} \text{ m}^3/\text{s}$, performing the following steps:

- (1) On the plane ABB'A' draw a line parallel to BB' at the desired flow rate of nozzle N₂, say 1.18 x 10^{-3} m³/s.
- (2) Draw a line from point J parallel to CB to intersect the line constructed in Step 1.
- (3) From the intersection point of these two lines, draw a line parallel to AB to intersect BB'.
- (4) Read the voidage off BB'.

The area C'KLM (hatch lines) indicates nozzle flow rate combinations of N_2 & N_3 for which no flow could be obtained. The region of low void fraction and high solid mass flux is the surface EFGHJ and is of the most practical importance.

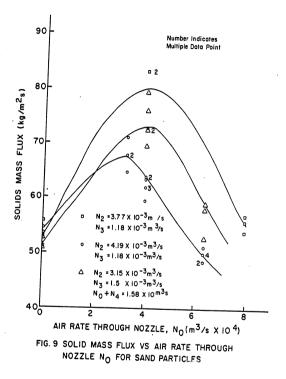
Similar data are also taken for the limestone and gypsum particles. These data are presented in Tables A3 and A4 of Appendix A, respectively. The operating regions for the limestone and gypsum particles are shown in Fig. 7 and 8. These regions are different for the three solids, however the general characteristics are the same. The actual differences are discussed in the following two paragraphs.

The operating region of limestone originates at larger air flow rates through nozzle N_2 than for sand. The use of nozzle N_3 does not have the marked effect in reducing the voidage in the limestone-air system as in the case of sand-air since the void fractions are lower

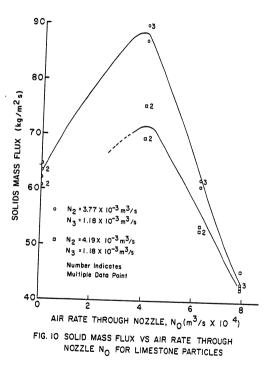
over the entire operating region. Furthermore, the region of high mass flux and low void fraction labeled EFGHJ on Figure 6 is much flatter for the limestone system. This increases the ease of operating the system in this high solid mass flux and low void fraction region. The operating region originates at larger air flow rates through nozzle N_2 since the limestone particles are both larger and more dense than the sand particles. The void fraction is lower for the entire operating region for the same reasons. The gas velocity in the riser provided by the flow through nozzles N_2 and N_3 is not sufficient to convey the heavier limestone particles through the riser at the same velocity as it does for the sand. Thus, for the similar solids flux values, the void fraction will be lower for limestone than for sand particles.

The operating region for gypsum is more similar to that for sand than for limestone. The minimum air flow rate through nozzle N_2 is lower for gypsum than for either sand or limestone particles. This is due to the lower density of gypsum. The high solids and flux low void fraction region is shaped very similar to that of sand. Considering the particle size and density for three solids, it is considered that the particle size is more responsible than the particle density for the steepness of this portion of the operating region.

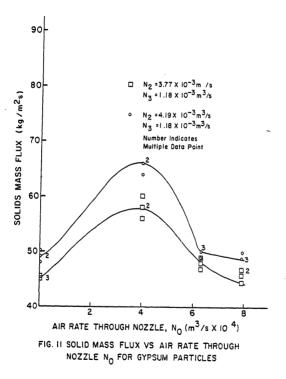
A.2.2 Effect of Orifice Plate and Nozzle N₀. Experiments for sand particles are conducted using nozzle N₀ with each of the three orifice plates. The use of nozzle N₀ with air flow rates in the


Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

range of 0 - 1.58 x 10^{-3} m³/s could regulate solid mass flux for each of the three orifice plates. The flow rates through nozzle N₀ greater than 1.18 x 10^{-3} m³/s could completely stop the solid mass flux for the 0.013 m (0.5 in) and the 0.019 m (0.75 in) orifice plates. However, the solids mass flux could not be completely stopped for the 0.025 m (1 in) orifice plate probably because of the large orifice diameter. Also, the use of nozzle N₀ with no orifice plate resulted in no solids mass flow.


Data for solids mass flux vs. air flow rates through nozzle N₀ for the two nozzle combinations N₂ & N₃ and N₂, N₃ & N₄ are presented in Tables A5, A6 and A7 of Appendix A. These data are plotted as solid mass flux vs. air flow rate through nozzle N₀ in Fig. 9. The solids mass flux vs. air flow rate through nozzle N₀ in Fig. 9. The solids mass flux is approximately 53 kg/m²s (10.8 lb/ft²s) when no air is supplied through nozzle N₀ (i.e., N₀ = 0). As the air flow rate through nozzle N₀ is increased, the solids mass flux for all three flow combinations passes through a maximum. For example, the solid mass flux for the N₂, N₃ & N₄ combination increased 40% from 52 kg/m²s (10.6 lb/ft²s) to 73 kg/m²s (15.2 lb/ft²s) for an increase in nozzle N₀ air flow rate from zero to 0.394 x 10⁻³ m³/s (50 SCFH). The solids mass flux then decreased for further increases in nozzle N₀ flow rate. The solid loading, solids mass flux divided by gas mass flux, correspondingly increased from 7.75 to 11 and then decreased to 4.8 as the flow rate through nozzle N₀ increased.

Similar experiments have also been conducted using limestone and gypsum particles (Tables A8, A9, A10 and A11 of Appendix A). The data are presented in Fig. 10 and 11. In both cases solid mass flux


Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

could be increased by the use of nozzle N₀. In all three cases solid flux appears to peak at an air flow rate through nozzle N₀ equal to approximately 4 x 10⁻⁴ m³/s. A further increase in flow rate through nozzle N₀ sharply decreases the solid flux, negating the nozzle effect altogether at a flow rate of about 8 x 10⁻⁴ m³/s. It should be noted that useful effect of nozzle N₀ in the case of limestone is eliminated at a lower value of about 6 x 10⁻³ m³/s as compared to other two solid particles. Limestone has the highest solid density and largest particle size which are considered responsible for this behavior.

A.2.3 Pressure Drop in the Riser of a High Velocity Fluidized Bed. The riser is the key section of a high velocity fluidized bed combustor, since it is in this regions that coal combustion and sulfur removal occurs. The riser operates in the fast fluidization mode which lies between the regimes of pneumatic transport and fluidized bed flow. No suitable model representing the flow behavior and pressure drop in this region is available in the literature. Many investigators [42, 43, 44, 45, 46, 47] have proposed additive pressure drop models based on the Bernoulli force balance. In these models, the total pressure is considered to be the sum of the pressure drop contributions from the solids and gas kinetic energy changes, the solid and gas potential energy changes, the solids and gas interphase friction, the particle-particle friction, and the solids and gas wall friction. These mathematical models are represented in the most general form by the equation:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

$${}^{\rm AP}T = \Delta {}^{\rm P}SKE + \Delta {}^{\rm P}GKE + \Delta {}^{\rm P}SPE + \Delta {}^{\rm P}GPE + \Delta {}^{\rm P}SGF$$
(77)
+ $\Delta {}^{\rm P}SSF + \Delta {}^{\rm P}SWF + \Delta {}^{\rm P}GWF$

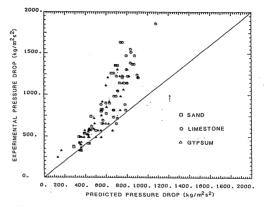
The high velocity fluidized bed will in general be operating in steady state fashion. Therefore the changes in solid and gas kinetic energy are zero. The resulting equation for the pressure drop is then becomes:

$$\Delta P_{T} = \Delta P_{SPE} + \Delta P_{GPE} + \Delta P_{SGF} + \Delta P_{SSF} + \Delta P_{SWF} + \Delta P_{GWF}$$
(78)

The first two terms on the right in Equation (78) are the solid and gas potential energy changes, commonly referred to as the solids and gas head, respectively. The third term ΔP_{SGF} represents the interphase solid and gas frictional losses. The fourth term ΔP_{SSF} represents the solid-solid particle interaction frictional losses. To date these two terms, third and fourth, have been considered negligible when compared to the head terms and wall frictional losses. The fifth and sixth terms represent the solids-wall and gas-wall frictional losses have been extensively studied for pneumatic transport, however, no uniformly agreed upon single model exists for this term. The gas-wall friction factor is usually modeled by the familiar Fanning Equation.

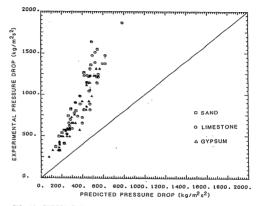
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pressure drop data are obtained for the riser section using sand, limestone and gypsum particles in order to develop a mathematical model for this section. These measurements are made across the Auburn Monitor to simultaneously obtain accurate solid fraction data as well (Tables A12, A13 and A14 of Appendix A).

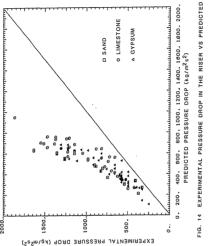

To illustrate the deficiency of existing gas-solid flow models to predict the pressure drop in HVFB flow a comparison of the predicted results using the mathematical models obtained from the literature and the experimental data is made. In general, these models are represented by the equation:

$$\Delta P_{T} = \Delta P_{SPE} + \Delta P_{GPE} + \Delta P_{GWE} + \Delta P_{SWE}$$
(79)

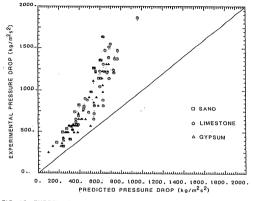
The solid potential energy loss term, ΔP_{SPE} , is obtained from Equation (44). The gas potential energy loss term, ΔP_{GWF} is obtained from Equation (44) by substituting $\rho_{g}\epsilon$ for $\rho_{s}(1 - \epsilon)$. The solids wall friction loss, ΔP_{SWF} , is obtained from Equation (36) with the solids wall friction factor obtained from Equation (37) through (41). The gas wall frictional loss, ΔP_{GWF} , is obtained from Equation (33).


The predicted pressure drop values for each model are plotted against the corresponding experimental values in Figures 12, 13, 14, 15 and 16. The absolute average percent deviation (AAPD) between the model predictions and the experimental data range from 23.78 to 58.67 percent as shown in Table 7. Klinzing [49] reviewed the existing

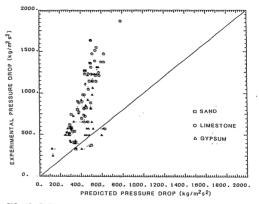
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



WITH VAN SWAAIJ'S SOLIDS FRICTION FACTOR



WITH STEMERDING'S SOLIDS FRICTION FACTOR


WITH REDDY AND PEI'S SOLIDS FRICTION FACTOR

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

WITH CAPES AND NAKAMURA'S SOLIDS FRICTION FACTOR

WITH YANG'S SOLIDS FRICTION FACTOR

Table 7

Absolute Average Percent Deviation Between Experimental

	Sand	Limestone	Gypsum
Van Swaaij	29.58	28.67	23.78
Stemerding	58.67	56.53	55.10
Reddy and Pie	41.51	41.37	37.95
Capes and Nakamura	45.05	43.15	40.93
Yang	43.31	52.41	40.31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

literature data and models proposed by seven investigators. He found that the deviation in experimental pressure drop vs. predicted pressure drop was between -30% and +50%. The percent deviation in most of the models in Table 7 agree with this error range.

The AAPD for the predicted pressure drop using the correlation by Van Swaaij et al. range from 23.78 for gypsum to 29.58 for sand particles. The error magnitude is quite reasonable considering the application of this model outside the region for which it was originally developed. However, the plot of the experimental data versus the predicted values by this model (Fig. 12), shows the agreement to be acceptable below 600 kg/m²s², but unacceptable above this value. The large deviation at high pressure drop between the data and the model predictions is due to the inadequacy of the solids friction factor model to account for the solid-solid particle interaction, the solid-gas interaction and the effect of solids fraction.

The AAPD in the predicted pressure drop using the correlation developed by Stemerding [43] range from 55.11 for gypsum to 58.67 for sand particles. The experimental data is plotted against the predictions in Fig. 13. As can be seen, the model always under predicts the observed pressure drop. By comparing Fig. 12 to Fig. 13, the effect of solids velocity can be clearly seen. The use of a constant solids friction factor gives unacceptable pressure drop predictions.

The pressure drop predictions using the solid friction factor correlation developed by Reddy and Pei [44] are plotted against the

experimental data in Fig. 14. The AAPD ranged from 37.95 for gypsum to 41.51 for sand. The friction factor correlation has the same form as that by Van Swaaij et al. except that the proportionality constant is approximately 40% lower in this model. As a result, the error is larger. The resemblance of Fig. 14 to Fig. 12, and the associated AAPD for both correlations strengthens the concept of the inverse proportionality of the solids friction factor with solids velocity.

Capes and Nakamura [47] obtained a correlation for the solids friction factor which stated that the solids friction factor was inversely proportional to the solids velocity raised to the 1.22 power. The AAPD for this correlation ranged from 40.93 for gypsum to 45.05 for sand. The experimental data are plotted against the predictions in Fig. 15. The proportionality constant for this model and that by Reddy and Pei is approximately the same. The larger APPD for this correlation suggests that raising the power of the solids velocity term is inappropriate.

The correlation by Yang was developed using data available in the literature. Yang's model incorporates the solids fraction and the slip velocity. The experimental data versus the predictions are plotted in Fig. 16. The AAPD ranged from 40.31 for gypsum to 52.41 for limestone particles. The agreement at low pressure drop values is acceptable. The error increases greatly for experimental pressure drops in excess of 500 kg/m²s². The agreement at low pressure drops suggest that solids friction factor should be a function of the slip velocity, and the solids fraction as well as the solids velocity. The values of solids fraction and slip velocity are unavailable in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the literature from which Yang developed the model. It is possible that greater error was introduced due to erroneous estimates of these values.

The large deviation between the predictions and the experimental data suggests that the existing models are not correctly describing the physical phenomena occurring in high velocity fluidization. High velocity fluidization is a special case of gas solid transport. High velocity fluidization is the term used to describe the phenomena of dense strands and clusters moving to and fro, rising and falling, and forming and breaking apart, as the particles are conveyed through the riser. The pressure energy losses associated with such a flow behavior must be greater than those losses due to solids transported pneumatically where the solids flow in stream lines with very little or no interaction between the particles. The frictional pressure drop terms which incorporate the losses due to the complicated flow phenomena in HVFB's are: (1) ΔP_{SWF} (the solid wall friction); (2) APSSE (solid-solid friction); and (3) APSGE (solid-gas friction). The effect of these three terms has been neglected in the past. This omission would cause erroneous estimates of the solids fraction and solids velocity. The solids fraction would be estimated higher than it actually is, while the solids velocity would be lower than it Errors in the estimates of these parameters have not caused is. serious problems when the equipment is used only to transport solids. However, the solids fraction and solids velocity are very critical parameters in the high velocity fluidized bed combustion of coal. The pressure losses due to APSWE, APSSE and APSSE must be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

considered when modeling solids-gas reacting flow systems. The solid wall frictional pressure loss is the only one of these three terms which has been studied to date.

The effects of each of the above terms on the total pressure drop have not been separated. These are combined into one term, the solids frictional loss term, which is modeled by the friction factor approach. This term has principally been considered to be only wall friction. The solids frictional loss term will be influenced by the solids velocity, the solids fraction, and the gas-solid slip velocity. It is expected that increasing the solids velocity would decrease the frictional losses as is the case for gases. Increasing the solids fraction should increase the friction factor since more solids are available for collision. Similarly, increasing the slip velocity should increase the friction factor since greater drag will be exterted on the particles. The solids friction factor models available in the literature and the effects of the above parameters on the friction factor are shown in Table 8.

Table 8 shows that only the model developed by Yang [45] even considered the effect of the solids-fraction on the solids friction factor. Yang's model predicts the expected increase in the solids friction factor for an increase in the solids fraction. The models by Yan Swaaij et al. [46], Reddy and Pie [44], and Capes and Nakamura [47] predict the expected decrease in the solids friction factor for an increase in solids velocity. The Stemerding [43] and Yang [45] models do not consider the effects of solids velocity. The only

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Solids Friction Factor Correlations

	Effects of Increasing Solid Solid Slip						
Investigation ^a	Mode1	Fraction	Slip Velocity	Velocity			
Van Swaaij et al.	f _s = .08/Us	no effect	decrease	no effect			
Stermerding	f _s = .003	no effect .	no effect	no effect			
Reddy & Pei	$f_s = .046/Us$	no effect	decrease	no effect			
Cape & Nakamura	$f_s = 0.48/Us^{1.22}$	no effect	decrease	no effect			
$Y_{ang} b f_{s} = \frac{0.0}{\epsilon^{3}} $	11025 (1-ε) Re _t 1.021 (1-ε) Re _{sL})	increase	no effect	increase			

^a all taken from [28]

^b taken from [46]

model which considers the influence of the slip velocity on the solids friction factor is by Yang. This model predicts the expected increase in the solids friction factor for an increase in the slip velocity. The solids friction factor models are in disasgreement when extrapolated to the conditions of high velocity fluidization, namely solids velocity equal to Im/s, solids fraction equal to 0.003, and slip velocity equal to 5m/s. As seen from Table 7 solids friction factors differ widely for these models. Disagreement of such magnitude eliminates all possibility of using these equations to develop correlations for predicting losses due to solid-solid and solid-gas effects. Therefore, the model developed for predicting the overall pressure drop due to the solids frictional effects has not considered these two losses separately but included them in the solids-wall frictional term.

The developed mathematical model is presented in Equation (80)

$$\Delta P_{SF} = \Delta P_{SWF} + \Delta P_{SSF} + \Delta P_{SGF}$$
(80)

The pressure loss ΔP_{SF} is modeled by a Fanning type equation similar to that used by previous investigators. Equation (80) becomes:

 $\Delta P_{SF} = 2 f_{S} U_{S}^{2} \rho s(1 - \epsilon) \Delta L/d_{t}$ (81)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The solids friction factor, f_s in the above equation is a function of the solids velocity, the solids fraction, and the slip velocity. The slip velocity contributes primarily to the term describing the solidgas losses, which are assumed to be negligible. Thus, the solids friction factor is expressed:

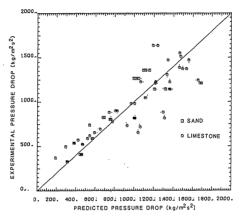
$$f_s = a U_s^b (1-\varepsilon)^c \varepsilon^d$$
 (82)

Information from the literature and experimental data from the present study have been used to estimate values of the constants "a", "b", "c" and "d". The model for the solids friction factor by Van Swaaij et al. predicts that the solids friction factor varies inversely with the solids velocity $(f_s \propto U_s^{-1})$. Since this model provides the best agreement with the present experimental data for pressure drop (See Table 6) the value of "b" is taken as -1.0. The Ergun Equation in the viscous dominated region of packed bed flow states that the solids friction factor is proportional to $(1 - \varepsilon)/c^3$. Thus, the values of "c" and "d" are taken to be 1.0 and -3.0, respectively. Therefore, the solids friction factor is represented by:

$$f_{s} = a (1 - \varepsilon) / U_{s} \varepsilon^{3}$$
(83)

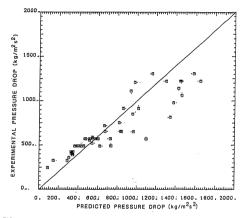
This leaves only one unknown constant "a". The sand and limestone data are used to determine "a", by a least squares regression

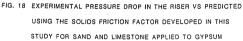
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

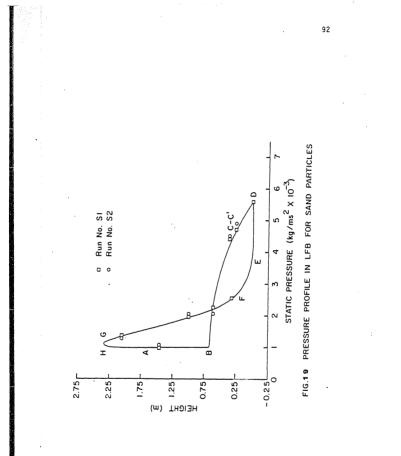

technique. The regression estimated a value of "a" to be 12.2 which resulted in the AAPD for sand and limestone to be 17.266 and 16.312, respectively (Fig. 17).


To check this model, the pressure drop data for the gypsum-air system are plotted versus the model predictions in Fig. 18. The agreement is quite acceptable with an AADP of 20.389.

<u>A.2.4 Pressure Profile in the LFB.</u> Pressure measurements for sand particles are taken at pressure ports P_1 through P_9 as shown in Fig. 4. The pressure at the gas inlet to the LFB (pressure port P_1) is the highest, while the pressure at the gas outlet (pressure port P_5) is the least compared to any other point in the LFB. This means that the gas entering the LFB has two paths that it may take enroute to the exit. The gas flow up the standpipe creates a pressure drop equal to that produced by the gas-solid flow through the riser.


Experiments for pressure measurements in the LFB for sand, limestone, and gypsum particles at various solid flux, air flux including flow rate through nozzle N_0 , solids fraction in the riser, and standpipe height have been conducted. The operating data are listed in Tables A15, A16 and A17 of Appendix A. The corresponding pressures at various LFB pressure ports are presented in Tables A18, A19 and A20 of Appendix A.


The pressure profiles (static pressure vs. loop height) for sand, limestone and gypsum particles are presented in Fig. 19, 20 and 21. These agree with the theoretical concept shown in Fig. 2. The profiles for all three solid particles exhibit the same general



USING THE SOLIDS FRICTION FACTOR DEVELOPED

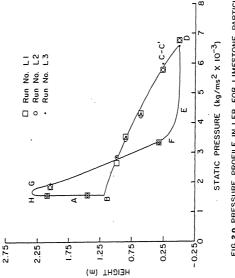


FIG. 20 PRESSURE PROFILE IN LFB FOR LIMESTONE PARTICLES

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

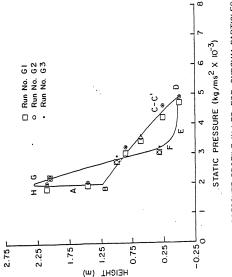


FIG.21 PRESSURE PROFILE IN LFB FOR GYPSUM PARTICLES

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

behavior. Static pressure at point D (solids entrance to horizontal bottom loop) varies from 5000 to 6700 kg/ms^2 . This variation is considered due to the effect of operating parameters in general and solids fraction in the riser in particular. The static pressure variation at point A is considered due to down stream pressure drop in the cyclone and bag filters. The vertical B position is the height of the solids in the standpipe which is controlled by the amount of solids charged to the system.

A model is developed to construct the pressure-height profile based on the physical and operating parameters in the HVFB. The model is based on pressure drop correlations for the various flow regimes from the literature. Pressure drop for the riser in the high velocity fluidized bed is estimated by the model developed in Chapter 6, Section A.2.3.

The HVFB is simplified for the model development, and is shown in Fig. 22. The simplification involves primarily the air nozzle system. The model developed utilizes only one nozzle through which all air is introduced to the HVFB. As shown later, this simplification greatly reduces model complexity without sacrificing the accuracy of the model.

The model consists of two parts. These are a riser section ABCDEFGH as shown in Fig. 22, and a standpipe section AJ'JIH as indicated Fig. 22. The portion, ABCDEFGH of the HVFB consists of a horizontal pneumatic transport section, a 90° bend, the riser, a 135° bend, and an angled pneumatic transport section. The correlations which represent each of these sections have been previously

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

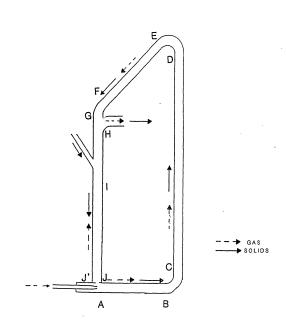
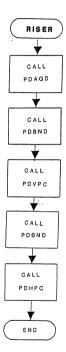



FIG. 22 LOOP FLUIDIZED BED MODELED BY HVFBPP

discussed. These equations have been rearranged and incorporated in a subroutine RISER to predict the pressure at the points of interest. The subroutine RISER calls subroutines written for each section. The subroutines and the main program are presented in Appendix B. A calculation flow chart of subroutine RISER is presented in Fig. 23.

The portion, AJ'JIH, of the HVFB consists of the following sections: an aerated solids flow section, an orifice, a standpipe, and an aerated solids flow section. The equations used have previously been discussed in Chapter 3, Section A. They are arranged to predict the pressure at the points of interest. The subroutines for estimating the pressure in the standpipe are assembled in a Subroutine STNDPP (<u>STANDPIPE</u>) (Appendix B). The calculation flow chart is presented in Figure 24.

The flow chart for the HVFB flow model HVFBPP (High Velocity Fluidized Bed Pressure Profile) is presented in Fig. 25. The Subroutines RISER and STNDPP develop the height versus static pressure plot as shown in Fig. 2, 19, 20 and 21. The data for sand, limestone and gypsum particles at three values of gas mass flux (low, medium and high) are compared with the predicted pressure profile using the model. The AAPD values are presented in Table 9. The AAPD ranges from 4.90 for limestone runs L1, L2 and L3 to 21.33 for sand runs S9, S10 and S11. It should be noted that only two groups of data have AAPD values exceeding 10. This deviation is possibly due

FIG. 23 RISER CALCULATION FLOWCHART

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

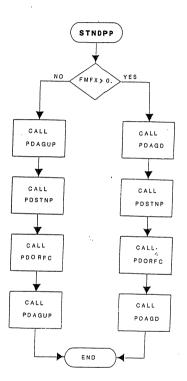
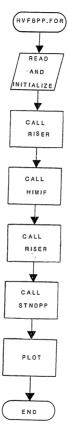



FIG. 24 STNDPP CALCULATION FLOWCHART

and then a beginning

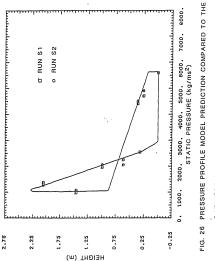
Tabl	e	9
------	---	---

Absolute Average Percent Deviation Between

Pressure	Profile	Mode1	and Data
----------	---------	-------	----------

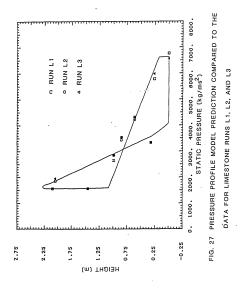
					Sand ^(a)		Limestone ^(b)		Gypsum ^(c)			
Gas	Flux			R	uns	AAPD	 Runs		AAPD	 Ru		AAPD
Low				S	9		L 6			G	7	
				S	10	21.33	L 7		6.22	G	8	6.81
				S	11		i 8			G	9	
Mediu	m			S	1		L 1			G	4	
				S	2	6.25	L 2		4.80	G	5	13.31
							L 3			G	6	
High				S	18		L20			G	1	
				S	19	6.99			7.62	G	2	5.59
				S	20					G	3	
(a)	Run nı	umbers	as	per	Table	A15						
(b)	Run nı	umbers	as	per	Table	A16						
	-											

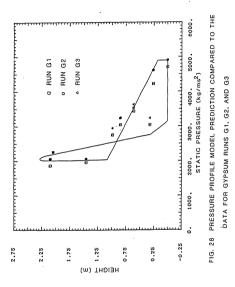
(c) Run numbers as per Table A17


to plugging of the pressure ports, P_3 and P_4 . Elimination of poor data at these ports considerably reduces the error.

The predicted static pressure by the model for sand runs S1 and S2 are plotted in Fig. 26 along with the experimental data points. The largest error (horizontal deviation between points and line) is seen to be in the standpipe with the experimental values being low. The riser prediction agrees well with the data. The model prediction for limestone runs L1, L2 and L3 are shown with the experimental data in Fig. 27. The deviation is divided evenly between the standpipe and the riser, showing very good agreement with an AAPD of 4.90. The model pressure predictions for gypsum runs G1, G2 and G3 are shown in Fig. 28 along with the data. The predicted values show deviations similar to those of the limestone runs.

B. Combustion Model


The coal combustion model for the loop fluidized bed combustor is discussed in two sections. The first section describes the coal oxidation model. It provides mass data for various species (i.e. C, H,) in the coal at any height in the LFB combustor. The respective species conversion rates are also generated. The second section describes the desulfurization model used to estimate the sulfur dioxide retained in the limestone/dolomite particles.


The combustion model is extrapolated to bubbling fluidized bed coal combustion and to pulverized coal combustion to check its validity since no experimental data is available for the LFB. The

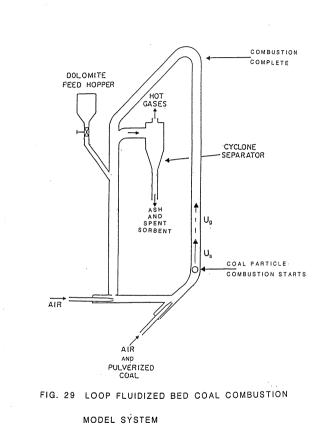
DATA FOR SAND RUNS S1 AND S2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

predicted exit values of coal conversion efficiency and sulfur removal from both the models are compared against literature data for circulating fluidized beds, pulverized coal combustors and bubbling fluidized bed coal combustors [50, 51, 56, 67, 68, 69].

B.1 High Velocity Fluidized Bed Combustion Model

The High Velocity Fluidized Bed Combustor burns pulverized coal in the presence of calcium carbonate such that sulfur can be captured from the gaseous products in the reactor, thus eliminating downstream clean up. High velocity fluidized bed combustion can be considered as to occur between pulverized coal entrained flow combustion and bubbling fluidized bed combustion. A good model for the HVFBC when reduced to these two extreme cases by suitable changes in particle size and temperature should predict satisfactory results.


The combustion model developed in this thesis is quite simple. The assumptions made in the development of the model appear to contradict each other. However, initially the complexity of the process requires a simple model.

One of the objectives of this thesis has been to develop a model which would predict coal combustion efficiency for the design of commercial HVFBC units. The assumptions used in the development of this model are summarized in Table 10. The process is assumed to occur as shown in Fig. 29. A coal particle consisting of fixed carbon, hydrogen, sulfur and ash moves through the riser at a velocity, $U_{\rm g}$.

Table 10

HVFBC Model Assumptions

- 1. Plug flow
- 2. Uniform spherical coal particles
- 3. Coal-char particle traveling at velocity U_s and flux $G_{s,c}$
- 4. Gas flowing at velocity Us and flux Ga
- 5. The relative velocity between the coal and gas is U_{s1}
- The gas temperature of the coal particle is equal to the surrounding gas at temperature T
- The temperature of the combustor is determined by quantity of excess air needed to operate it at the specified temperature T
- 8. Volatile products are instantaneously oxidized into H₂O and CO₂
- Nitrogen, oxygen, volatile products, and moisture are instantaneously released from the coal-char particle
- Hydrogen and sulfur oxidation rate constants are assumed equal to the carbon oxidation rate constant.

This results in a slip velocity U_{s1} , equal to the gas velocity less the solids velocity, controlling mass transfer of oxygen to the

Based on the assumptions listed in Table 10 the following oxidation reactions take place in the combustion system:

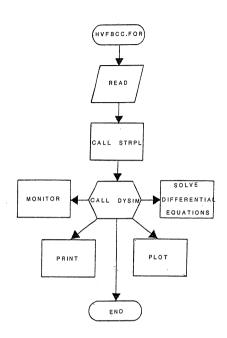
$$0_2 + 2C \rightarrow 2C0 \tag{84}$$

$$0_2 + 4H + 2H_20$$
 (85)

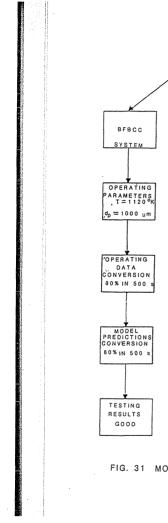
 $0_2 + S \rightarrow S0_2 \tag{86}$

The coal combustion HVFB process will take place as shown in Fig. 29. Pulverized coal will be fed pneumatically through nozzel N_2 which is located at the bottom of HVFB. The coal will combust as it flows with the limestone through the riser section in the high velocity fluidized bed. Combustion will be complete by the time the coal particles reach the 135° bend at the top of the riser. The ash and spent sorbent will flow through the remainder of the system and exit with the gas to the cyclone.

The differential equations resulting from the earlier stated assumptions have been developed in Section 3, and are presented below as Equations 87, 88 and 89.


$$\frac{d_{mc}}{dt} = \frac{\left(\frac{m}{m} - A\right) \phi_{C} M_{C}^{C} C_{0}}{\frac{1}{k_{c} c_{c}} + \frac{1}{k_{d} c_{0}}}$$
(87)

$$\frac{dm_{s}}{d_{t}} = \frac{\left(\frac{m_{s}}{m} A\right) \phi_{s} M_{s} C_{0}}{\frac{1}{k_{c,s}} + \frac{1}{\frac{1}{k_{d,0_{2}}}}}$$
(88)
$$\frac{dm_{H}}{d_{t}} = \frac{\left(\frac{m_{H}}{m} A\right) \phi_{H} M_{H} C_{0}}{\frac{1}{k_{c,H}} + \frac{1}{\frac{1}{k_{d,0_{2}}}}}$$
(89)


110

Equation 87 represents the rate of carbon oxidation (loss) with time. The term $\frac{m_c A}{m}$ represents the mass weighted area of the particle available for carbon conversion. Similarly, Equations 88 and 89 are for sulfur and hydrogen oxidation, respectively. These differential equations have been assembled in a computer model HVFBCC.FOR (High Velocity Fluidized Bed Coal Combustion). This model makes use of a program called DYSIM developed by Farag [72] to solve a set of equations using a fourth order Runge and Kutta method. The flowchart is presented in Fig. 30.

The program HVFBCC.FOR has been run for high velocity fluidized bed coal combustion, bubbling fluidized bed coal combustion (BFBCC), and pulverized coal combustion (PCC) as per scheme shown in Fig. 31. The computer program and the input data are discussed in Appendixes 2 and 3. The results for these three cases and experimental data from the literature are presented in Table 11. The predicted percent conversions by the HVFBCC.FOR for the BFBCC and PCC show close agreement with the experimental data. Use of this model for designing LFB or other once through coal combustors is recommended.

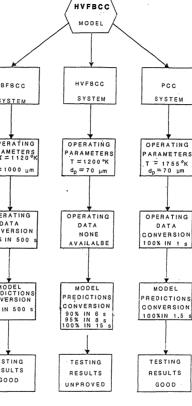


FIG. 31 MODEL TESTING PROCEDURE

Ta	b1	e	11

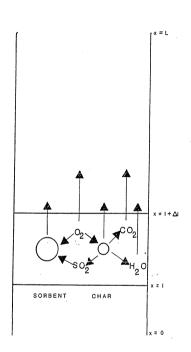
Comparison of Predicted Estimates with Experimental Coal Conversion Data

Paramater		HVFBCC	BFBCC [51]	PCC [51]
Data				
Particle Size	(µm)	70	1,000 m	70
Residence Time	(s)	8	500	1
Temperature	(°K)	1200	1120	1755
Conversions	(%)	-	80	100
Predicted % Coal C by the HVFBCC Mode		95	80	100 (residence time 1.5s)

B. 2 High Velocity Fluidized Bed Desulfurization Model

A fluidized bed, whether bubbling or high velocity can be used for its unique ability to remove sulfur dioxide from coal combustion products during the combustion process. The bubbling fluidized bed desulfurization process has been modeled extensively [62, 63, 64, 65, 66, 67]. On the other hand the high velocity fluidized bed desulfurization process has been modeled for the first time as part of this thesis. This model for sulfur removal is developed using Equation 88 for sulfur dioxide production during coal combustion.

The coal desulfurization is considered to occur in the riser of the HVFB as shown in Figure 32. The net rate of sulfur dioxide formation at any position is expressed by the relation:


Net		Total		Rate	
Rate	=	Rate	-	of	(90)
of		of		S02	
SO2		S02		Absorption by	
Generation		Formation		Stone Particles	

The rate of sulfur oxidation has been developed in Chapter 6 Section B.1 and is:

$$\frac{dm_{S}}{dt} = \frac{\left(\frac{m_{S}}{m} - A\right) \phi_{S}}{\frac{1}{k_{c,S}} + \frac{1}{k_{d,0_{2}}}} = R_{SOX}$$
(88)

for a single coal particle. The total rate of sulfur oxidation is:

$$R_{SOXT} = R_{SOX} N_{PC}$$
(91)

FIG. 32 HIGH VELOCITY FLUIDIZED BED COMBUSTION AND DESULFURIZATION REACTION MODEL SCHEMATIC

where ${\tt N}_{PC}$ is the number of coal particles in the cylindrical volume $\pi d_+^2 \Delta L/4.$ The number of coal particles can be expressed as:

$$N_{PC} = \frac{(Volume in Consideration)(Volume Fraction of Coal)}{(Volume of One Coal Particle)} (92)$$

$$= \frac{3}{2} \frac{d_t^2 \Delta L(1 - \varepsilon)_C}{2}$$

The kinetic model developed by Lee et al. [66, 67] is used to simulate the desulfurization process since it is both simple and accurate. The SO_2 rate adsorption for a single stone particle, R_{SBNT} has been discussed in Chapter 3, Section C and is:

$$R_{SBNT} = \frac{\frac{\pi}{5} d_{pSBNT} M_{SO_2} C_{SO_2} e^{\tau/\tau p}}{\tau_{SF}}$$
(93)

The total rate of SO_2 adsorption is obtained by multyplying the adsorption rate of one particle by the number of limestone particles, $N_{\rm nSRNT}$, in the volume under consideration.

R_{SBNTT} = R_{SBNT} N_{PSBNT}

dpc

The number of limestone particles is calculated as:

N_{pSBNT} = (Volume in Consideration)(Volume Fraction of Sorbent)(94) (Volume of Sorbent Particle)

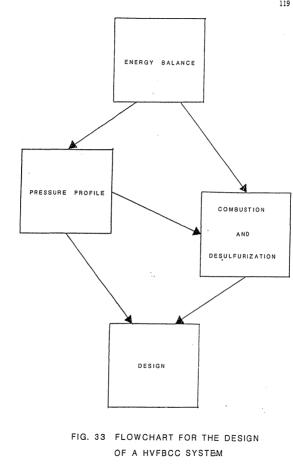
In mathematical symbols this becomes:

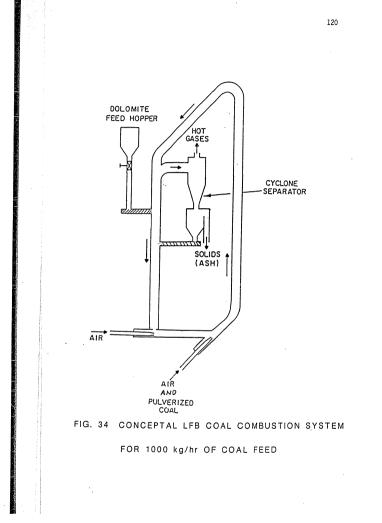
$$= \frac{3}{2} \frac{d_t^2}{d_{PSBNT}^3} \Delta L (1 - \epsilon)_{SBNT}$$
(95)

In order to solve Equation (93) for the mass of sulfur dioxide adsorbed, the concentration of sulfur dioxide is estimated from the following equation:

$$C_{SO_2} = \frac{m_{SO_2}}{M_{SO_2} U_g \Delta t - \frac{\pi d_t^2}{4}}$$
(96)

This equation has been added to the Combustion Model HFBCC.FOR. The model predicts the fraction of the total sulfur dioxide that is removed from the coal combustion process. The verification of this model is discussed in the next chapter.


7.0 CONCEPTUAL DESIGN OF THE


LOOP FLUIDIZED BED

The hydrodynamic experimental results and the models developed earlier have been used to design a conceptual LFB combustor with a coal feed rate of 1000 kg/hr operating at 1200°K and 405 kPa. This is about the size of one pulverized coal burner within a commercial furnace unit. The conceptual design is obtained using three computer programs as shown in Fig. 33. The first program determines the gas flow rate from the overall energy balance for the specified coal flow rate and combustion temperature. The second program calculates the pressure profile in the LFB equipment from the model developed based on the experimental data in Chapter 6. The third program calculates the percent coal conversion and sulfur removal from the models developed earlier.

The conceptual LFB combustor is shown in Fig. 34 and operates as follows:

- Fresh limestone enters the standpipe through a screw feeder located above the solids flux regulator (orifice plate and air injector nozzle).
- (2) The limestone calcines and flows down the standpipe with the recirculating solids.
- (3) The rate of circulation is regulated by the rate of air flow through nozzle N_0 and orifice at the bottom of the standpipe.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

- (4) The primary air from nozzle N₁, entrains the solid sorbent particles and conveys them through the eductor.
- (5) The secondary air and coal are introduced by nozzle N_2 .
- (6) Combustion and desulfurization occurs in the riser. The length of the riser is estimated by the combustion model to insure that 85% sulfur removal and 95% carbon conversion are achieved.
- (7) The gas and entrained fines exit to a cyclone.
- (8) The spent solids and ash exit the process through the hopper overflow.
- (9) The fines containing unburned coal and unused sorbent are reinjected to the standpipe for additional conversion of each.

This chapter discusses various aspects of the conceptual design, namely: (1) energy balance, (2) pressure profile, (3) combustion and desulfurization, and (4) comparison of the predicted data with existing commercial bubbling fluidized bed coal combustors, pulverized coal combustors, and circulating fluidized bed coal combustors. No efforts have been made towards sizing auxiliary equipment cyclone, compressor screw feeders, etc.). The design shows only the feasibility of the LFB combustion process when compared to other commercial coal combustors.

7.1 Energy Balance

The overall energy balance is obtained using the program OAEB.FOR (Over All Energy Balance). This program estimates the necessary solid flux and gas flux in the LFB combustor for the specified operating temperature. The needed input consists of the desired coal flow rate, heat of combustion, physical properties of the coal, thermal efficiency (% heat loss through walls), coal proximate and ultimate analyses, species molecular weights, heat of calcination, physical properties of sorbent, physical properties of air, combustor diameter, the solids loading (solids flux to gas flux ratio), and the calcium/sulfur molar ratio in the feed streams. This design is based on bituminous coal from the Blacksville No. 8 mine and the Pittsburgh No. 8 bed. The ultimate and proximate analyses values are presented in Table 12.

The program OAEB.FOR calculates the gas flux from the energy balance equation:

$$G = \frac{(1-n)m_{C}^{2}(-\Delta H_{C}) - (m_{C}^{2}Cp_{C} + \frac{m_{SBNT}}{s_{SBNT}})(Ts - 300) - m_{SBNT}^{2}(-\Delta H_{CAL})}{\frac{\pi_{d}}{2}}$$
(97)
$$Cp_{A}^{2}(Ts - 300) (\frac{-\Delta H_{C}}{4})$$

The first term in the numerator of Equation (97) is the net energy released during coal combustion. The difference (1-n) represents the energy fraction not lost through the walls. The second term in the numerator represents the sensible energy needed to raise the coal and limestone to the combustion temperature. The third term accounts for

Moisture-Ash Eroo

Table 12

Proximate and Ultimate Analyses

Proximate Analysis

		weight %
Volatile matter		35.2
Fixed carbon		51.5
Moisture		1.74
Ash		11.56
	Total	100%

Ultimate Analysis

		Weight %
Carbon		82.4
Hydrogen		5.5
Sulfur		1.4
Oxygen		7.6
Nitrogen		3.1
	Total	100%

 $\Delta H_{c} = -24000 \text{ kJ/kg}$

the energy used in calcining the limestone. The denominator is the product of the thermal capacity of the air and the flow area. The solids flux is obtained from the following expression:

$$Gs = \left(\frac{Gs}{G}\right) G \tag{98}$$

The solids loading (Gs/G) is provided as input to the program, this enables the solids mass flux to be calculated from Equation (98).

The LFB combustor design data as specified (lengths, diameters, loading, etc.) are given in Table 13. The information contained in Tables 12 and 13 is used as input to the program OAEB.FOR. The program estimates the solids mass flux and gas mass flux to be 63.76 and 7.97 kg/m²s, respectively. A program listing is provided in Appendix B. The program input is presented in tabular form in Appendx C.

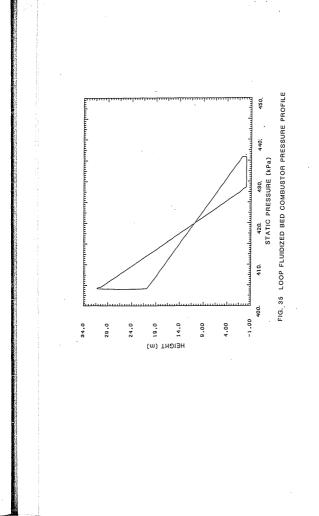
7.2 Pressure Profile

The pressure profile model developed earlier is utilized to estimate the energy consumption associated with circulating the solids in the LFB combustor. The application of this model to the LFB combustor is an extrapolation of only the solids friction factor correlation. This is only a small part of the overall pressure profile model and should not effect the results significantly. The remaining sections of the model are from the literature and used extensively in solid circulating systems by the petroleum industry. The equipment dimensions used by the model are listed in Table 13.

Table 13

1000 kg/hr LFB COMBUSTOR DESIGN SPECIFICATIONS

Riser Height	30.0	m
Standpipe Dense Bed Height	20.0	m
Gas Exit Height	25.0	m
Overall Height	32.0	m
Riser Diameter	1.0	m
Standpipe Diameter	1.0	m
Gas-Solid Disengaging Zone Diameter	1.0	m
Eductor Diameter	0.25	m
Orifice Diameter	0.75	т
LFB Exit Pressure	405.0	kPa
Maximum LFB Pressure Drop	50.0	kPa
Solids Loading	8.0	
Ca/S Molar Ratio	2.0	
Coal Flow Rate	0.278	kg/s

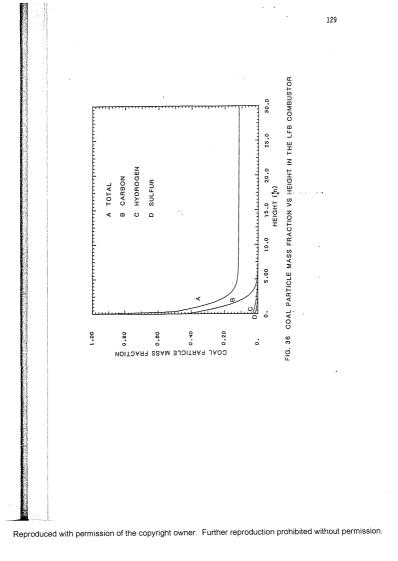

The solids and gas mass flux values have been estimated by the overall energy balance.

The pressure profile output is shown in Fig. 35. The pressure drop across the loop is 32 kPa. The pressure drop across each section of the loop is summarized in Table 14.

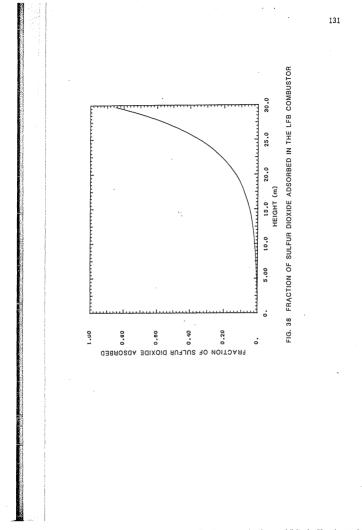
7.3 Combustion and Desulfurization

The combustion and desulfurization models are used to obtain the riser height such that a minimum of 90% carbon conversion and minimum of 85% sulfur removal are obtained in one pass as discussed later. The model also estimates the particle weight fraction, solid species weight fraction, and the associated conversion values of carbon, hydrogen and sulfur at each point along the length of the riser. The sulfur dioxide conversion to calcium sulfate at each point along the length of the riser is also given as output from the model. The input to the combustion and sulfur removal program HVFBCC.FOR is presented in tabular form in Appendix C.

The program HVFBCC.FOR is run to obtain the riser length which meets the carbon conversion and sulfur removal criteria. The coal conversion is found to be +99% and the sulfur removal is 86% for a riser length of 30 m. The pressure profile is acceptable since the sulfur removal is greater than 85%. If the conversion criteria had not been met with the equipment dimensions listed in Table 13, these values, particularly the riser height, would have to be changed and the pressure profile and conversion programs rerun. The weight a coal particle changes with riser height is shown in Fig. 36. The



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


Table 14

LFB COMBUSTOR PRESSURE DROP SUMMARY

Overall Pressure Drop	32.0	kPa
Eductor	7.5	kPa
Riser	24.0	kPa
Gas-Solid Disengaging Zone	0.5	kPa
Standpipe	32.0	kPa

130 FIG. 37 COAL PARTICLE CONVERSION VS HEIGHT IN THE LFB COMBUSTOR 30.0 25.0 C HYDROGEN 20.0 B CARBON SULFUR 15.0 20 HEIGHT (m) A TOTAL 0 10.0 5.00 0.20 0.40 1.00 0.80 0.00 . COAL PARTICLE CONVERSION

associated particle conversion is shown in Fig. 37. Approximately 100% carbon conversion is found to occur at a height of 8 m. The percent sulfur removed is presented in Fig. 38 as a function of the riser height. It is seen that 86% of the sulfur dioxide is absorbed in the sorbent at a height of 30 m.

7.4 Discussion of Conceptual LFB Design Predictions

The conceptual design has been provided to illustrate the use of the models developed in this thesis. The predicted estimates are compared with published date for the following: (1) the Lurgi Chemie and Huttentechnik Gmblt semi-industrial circulating fluidized bed plant at the Lurgi Research Center, (2) the Battelle multisolids fluidized bed pilot plant, (3) typical pulverized coal combustors with both wet and dry sulfur removal processes, and (4) the Georgetown University fluidized bed coal combustor, Washington, D. C. The predicted and published data are summarized in Table 15. It is seen from Table 15 that the LFB combustor is comparable to the other circulating fluidized processes. It also has much better carbon conversion than the BFBCC and better sulfur removal abilities than the PCC with limestone injection.

Table 15

Comparison of Combustion Systems*

	LFB		Circulati		P	CC	
Paramater	Model Prediction	Lurgi Data	Lurgi**	Battelle Multi Solid	Limestone Injection	Unit Scrubbers	Georgetown BFBCC
Carbon Conversion (%)	+99	+96	+99	95-99	+99	+99	80 w/o recycle
SO ₂ Removal (%)	85	85	+90	85	<50	+90	85
NO _x Commissions (ppm)	-	90-100	100-200	<100	300-600	-	300-400
Gas Velocity (m/s)	5-8	-	5-8	9	3-4	-	1
Coal Residence Time (s)	30	-	20-30	5-14	1	-	-
Coal Size µm	<70	240	300	1-1/2" x 0	70	<70	1000
Sorbent Size µm	300	240	300	1000	<70	1000	1000
Temperature °K	1200	1173	1173	1170	2000	2000	1120

* References [50, 51, 56, 67, 68, 69]

** Estimated for a commercial unit

8.0 CONCLUSIONS

During the past few years considerable efforts have been made on the research and development of fluidized bed combustion of coal. This technology holds a number of attractions all stemming from the concept of maintaining low temperatures in the range of 1100 to 1200°K in the combustion chamber. However, a fluidized bed cannot be operated over a wide range of velocity.

A high velocity fluidized bed can operate over a wide range of gas throughputs. A special case of this high velocity fluidized bed concept recently was develped at the Morgantown Energy Technology Center, Morgantown, West Virginia, in the Loop Fluidized Bed (LFB). In this system a mixture of powdered coal and dolomite or limestone flows in a loop at high velocity. The sulfur dioxide generated is absorbed by the fine dolomite or limestone particles. The fluidizng medium (air) is injected into the system at a high velocity through a set of nozzles.

In this study a bench scale loop fluidized bed made of pyrex glass has been designed, fabricated, and installed. The LFB has been operated using sand, limestone, and gypsum particles. Data were obtained to study the effect of particle size, particle density, air flux, and solids flux on fluidizing characteristics of the above mentioned solid particles. A correlation is developed to describe

134

the pressure drop in the riser. A computer model is developed to predict the pressure profile in the LFB for a particular geometry and flux values. Computer models representing the combustion and desulfurization processes in HVFB systems have also been developed. Our major findings are as follows:

- Flow characteristics of sand, limestone, and gypsum in LFB are sensitive to nozzle positions and nozzle air flow rates.
- (2) Introduction of an orifice plate and nozzle at the bottom of the standpipe assists in the solids flow regulation and in increasing the solids mass fraction in the riser section.
- (3) An LFB is considered to be operating in a satisfactory manner when there is no slugging in the standpipe, choking in the riser or significant saltation in the eductor. There is a 'good operating region' for various nozzle flow rates and solids fractions. Three dimensional plots have been prepared for sand, limestone, and gypsum particles that can be used for predicting operating condition of the LFB with respect to nozzle combination, flow rate and void fraction. Good operating regions are shown in these plots.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

- (4) The data on sand and gypsum show that the pressure drop in the riser increases with solid density for the same particle size.
- (5) The pressure drop in the riser section of a HVFAB can be expressed by the sum of the individual energy loss items:

$$\Delta P = \Delta P_{SPF} + \Delta P_{GPF} + \Delta P_{SF} + \Delta P_{GWF}$$

(6) The pressure drop due to the solids frictional losses can be modeled by a Fanning type of equation:

$$\Delta P_{SF} = \frac{2 f_{s} (1-\epsilon) U_{s}^{2} \Delta L}{d_{+}}$$

(7) The solids friction factor, f_s, can be expressed by the equation:

 $f_s = 12.2 (1-\varepsilon)/U_s \varepsilon^3$

(8) The pressure profile model represented by the computer program HVFBPP.FOR correctly predicts the relation between the equipment geometry, solids mass flux, gas mass flux, solids fraction and pressure drop at each point in the LFB.

- (9) The coal combustion model contained in the computer program HVFBCC.FOR provides good estimates of the carbon conversion for a wide range of processes from the BFBCC to the PCC.
- (10) The sulfur removal model contained in the computer program HVFBCC.FOR predicts sulfur removal values comparable to experimental data from other circulating fluidized bed combustors.
- (11) The LFB combustor has better carbon conversion than BFBCC and better sulfur removal than PCC with limestone injection.
- (12) The LFB combustor is an acceptable alternate to the Lurgi and Battelle processes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9.0 RECOMMENDATIONS

This study has been confined to the: (1) design, fabrication, installation of the bench scale cold flow LFB, (2) collection of experimental data with respect to solid flow characteristics and pressure drop in the loop, and (3) development of pressure drop, pressure profile, coal combustion and sulfur removal models. The data collected have been presented in tabular, graphical, and mathematical forms.

This study accomplished the objective as specified. However, during the course of this investigation the following subject areas have been found as being theoretically and experimentally deficient and further research work is recommended:

(1) The pressure drop due to solids frictional effects is considered to be the sum of solid-wall, solid-solids, and solid-gas frictional losses. Experiments should be directed towards obtaining a better understanding of these phenomena and to develop separate mathematical relationships. The experiments should make use of the Auburn solids fraction monitor used in this study and the wall shear stress measurement instrument as used by van Swaaig et al.

- (2) The fundamental mechanism for cluster formation should be investigated. This may be accomplished by developing a force balance equation for a few particles in close proximity flowing with the gas. Lift theory may be used to demonstrate how a low pressure region could develop between the particles due to higher gas velocities, thus forcing the particles to form clusters. A high speed photographic technique similar to that used by Reddy and Pei [44] may provide experimental verification of the theory.
- (3) The formation of clusters and the phenomena of choking are directly related. Experimental investigations have revealed that choking does not occur in large diameter lines. This leads one to infer that there is a maximum cluster size. A theory to predict the maximum cluster size should be developed. This may be approached in the same manner as discussed above and use similar photographic techniques to verify it.
- (4) There are no data available for coal combustion in an LFB unit. Experimental work is highly recommended on a process research unit.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

- (5) Based on coal combustion experimental data the mathematical models developed to predict percent combustion and sulfur removal profiles in the riser section can be verified and modified if necessary.
- (6) Models to predict the gas composition and local temperature in a LFB should be developed and incorporated into the coal conversion and sulfur removal computer code.
- (7) Work on the development of scale-up procedures should be undertaken to design a commercial coal LFB combustor.
- (8) Economic feasilbility of a commercial LFB unit for coal combustion should be investigated.

10.0 NOMENCLATURE

A	cross sectional area, m ²
В	empirical constant equation 49
С	concentration, k ₈ mo1/m ³
Cd	drag coefficient
¢D	orifice discharge coefficient
Cp	specific heat, Kcal/kg°K
d	diameter, m
dc	cluster diameter, m
D	diffusivity, m ² /s
E	dielectric constant
f	friction factor
Fr	Froud number
g	gravitational constant, 9.807 m/s ²
G	mass flux, k _a /m ² /s
k	chemical reaction rate constant
k _d	mass transfer coefficient, m/s
WL	transport length, m
m	sulfination reaction order
m•	mass flow rate, kg/s
́м	molcular weight, k _g /k _g mol
n	Richard and Zaki index, devolatilization reaction order
N	cluster number
Р	pressure , kg ^{/ms²}
	141

ΔP	pressure	drop,	k _q /ms ²	
----	----------	-------	---------------------------------	--

P* poor plugging constant

q soot reaction rate

r radius

Re Reynolds number

s solid devolatilization product, surface area, m²

Sh Sherwood number

Sc Schmidt number

t time, s

U velocity, m/s

V volatile matter

w sample weight, k_g

Y Volatile fraction

Greek Letters

- € voidage
- e angle of inclination
- μ gas viscosity, kg/ms

apparent viscoity, kg/ms

- spherocity
- ρ density, kg/m³
- ρ density of mixture, kg/m³
- τ_w shear stress at wall, kg/ms²

- τ time constant
- β empirical constant

n efficiency, effectiveness factor

Subscripts

A	air
b	bend
В	bubble
с	chemical, cluster
CAL	calcination
f	friction
GKE	gas kinetic energy
GPE	gas potential energy
GWF	gas-wall friction
i	equation index
mf	minimum fluidization
0	superficial
þ	particle, poor plugging
PE	potential energy
s1	slip
SF	solids friction, sulfination
SGF	solids-gas friction
SKE	solids kinetic energy
SPE	solids potential energy

SSF solids-solids friction

SWF solids-wall friction

t terminal, tube

T total

infinite time

11.0 REFERENCES

- Yerushalmi, J., M. J. Gluckman, R. A. Graff, S. Dobner, and A. M. Squires, "Production of Gaseous Fuels from Coal in the Fast Fluid Bed", Fluidization Technology. Vol. II, ed. D. L. Kearns, Hemisphere Publishing Corp., Washington, D. C., 1975, 437.
- Yerushalmi, J. and N. T. Cankurt, "High Velocity Fluid Beds", Chemtech, Sept., 1978, 564.
- Yerushalmi, J. and N. t. Cankurt, "Further Studies of the Regimes of Fluidization", Powder Technology, 24, (1979), 187.
- Yerushalmi, J., "Circulating Fluidized Bed Boilers" Fluid Processing Technology, 5 (1/2), 1981, 25.
- Yerushalmi, J., D. H. Turner, and A. M. Squires, "The Fast Fluid Bed", Ind. Eng. Chem. Pro. Des. Dev., Vol. 15, No. 1, 1976, 47.
- Yerushalmi, J., A. M. Squires, and R. A. Graff, "Studies Toward Improved Techniques for Gasifying Coal", Final Report to National Science Foundation, Grant GL-34286A-1, 1976.
- Yerushalmi, J., N. T. Cankurt, D. Geldart, and B. Liss, "Flow Regimes in Vertical Gas-solid Contact Systems", AIChE Symposium Series, No. 172, Vol. 74, 1976, 1.
- Squires, A. M., "Application of Fluidization Beds in Coal Technolgy", Alternate Energy Sources, ed. J. P. Hartnett, Hemisphere Publishing Corp., Washington, D. C., 1976, 59.
- Matsen, J. M., "Mechanism of Choking and Entrainment", Powder Technology, 32, 1982, 21.
- Gidaspow, D., "Hyperbolic Compressible Two-Phase Flow Equations Based on Stationary Principles and Fick's Law", Proceedings of the Two-Phase Flow and Heat Transfer Symp. Workshop, Oct. 1976, Hemisphere Publishing Corp., Vol. 1, 1978, 133.
- Gidaspow, D., and H. Arastoopour, "A Comparison of Four Unequal Velocity Models - Flow of a Slurry Through a Venturi Meter", Proceedings of the Two Phase Flow and Heat Transfer Symposium, Oct. 1976, Hemisphere Publishing Corp., Washington, D.C., 1978, 133.

145

- Gidaspow, D., "Fluid-Particle Systems", Proceedings of NATO Advanced Study Institute, Hemisphere Publishing Corp., Vol. 1, 1975, 115.
- Matsen, J. M., "Flow of Fluidized Solids and Bubbles in Standpipes and Risers", Powder Technology, 7, 1973, 93.
- Arastoopour, H., and D. Gidaspow, "Analysis of IGT Pneumatic Conveying Data and Fast Fluidization Using a Thermohydrodynamic Model", Power Technology, 22, 1979, 77.
- Leung, L. S., "The Ups and Downs of Gas-Solid Flow A Review", Fluidization, ed. J. R. Grace and J. M. Matsen, Plenum Press, N. Y., 1960, 25.
- Judd, M. R., and P. N. Rowe, "Dense Phase Flow of a Powder Down a Standpipe", Fluidization, ed. J. F. Davidson and D. L. Kearns, Cambridge University Press, 1978, 110.
- Leung, L. S. and P. J. Jones, "Coexistance of Fluidized Solids and Packed Bed Flow in Standpipes", Fluidization of J. F. Davidson and D. L. Kearns, Cambridge University Press, 1978, 116.
- Leung, L. S., P. J. Jones, and T. M. Knowlton, "Analysis of Moving-Bed Flow of Solids Down Standpipes and Slide Valves", Powder Technology, 19, 1978, 7.
- Yoon, S. M., and D. Kunii, "Gas Flow and Pressure Drop Through Moving Beds", Ind. Eng. Chem. Pur. Des. Dev., Vol. 9, No. 4, 1970, 559.
- Eleftheriades, C. M. and M. R. Judd, "The Design of Downcomers Joing Gas-Fluidized beds in Multistage Systems", Powder Technology, 21, 1978, 217.
- Takahashi, H. and H. Yanai, "Flow Profile and Void Fraction of Granular Solids in a Moving Bed", Powder Technology, 7, (1973), 205.
- Spink, C. D. and R. M. Neederman, "Gravity Discharge Rate of Fine Particles from Hoppers", Powder Technology, 21, 1978, 245.
- Singh, B., "The Role of a Standpipe as a Feeding Device in Pneumatic Conveying", Pneumotransport 4, California, 1978, E1-1.
- Breault, R. W., "Loop Fluidized Bed Flow Studies", Report submitted to Morgantown Energy Technology Center, U. S. Department of Energy, Sept. 1983.

- Knowlton, T. M. and I. Hirsan, "The Effect of System Parametes on the Operation of Dense Phase Vertical Lift Lines and J-Valves." Pneumotransport 5, London, April 1980, E3.
- Knowlton, T. M. and I. Hirsan, and L. S. Leung, "The Effect of Aeration Tap Location on the Performance of a J-Valve", Fluidization, Cambridge University Press, 1978, 128.
- Leung, L. S., "A Quantitative Flow Regime Diagram for Vertical Pneumatic Conveying of Granular Solids", Pneumotransport 5, London, 1980, A3, 35.
- Leung, L. S., R. J. Wiles, D. J. Nicklin, "Correlation for Predicting Choking Flow Rates in Vertical Pneumatic Conveying", Ind. Eng. Chem. Pro. Des. Dev., Vol. 10, No. 2, 1971, 183.
- Yousif, Y. and G. Gau, "Aerodynamique de L'Ecoulement Verticle de Suspensions Concentress Gas-Soliuds - I. Regimes d'Ecoulement et Stabilite Aerodynamique", Chem. Eng. Sci., Vol. 29, 1974, 1939.
- Yousif, Y. and G. Gau, "Aerodynamique de L'Ecoulement Verticle Suspensions Concentress Gas-Solids - II. Chute de Pression et Vitesse Relative Gas-Solids", Chem. Eng. Sci., Vol. 29, 1974, 1947.
- Yang, W. C., "Mathematical Definition of Choking Phenomenon and Mathematical Model for Predicting Choking Velocity and Choking Voidage", AIChE J., Vol. 21, No. 5, 1975, 1013.
- Yang, W. C., "A Criterion for 'Fast Fluidization'", Pneumotransport 3, Bath, England, 1976, E5-4999.
- Smith, T. N., "Limiting Volume Fractions in Vertical Pneumatic Transport", Chem. Eng. Sci., Vol. 33, 1978, 745.
- Riethmuller, M. L., and L. Lourenco, "Particle Number Density Measurement in a Gas-Solid Partickle Flow", Pneumotransport 5, London, 1980, X10.
- Lech, M., "Some Aspects of Radiosotopic Measurement of Concentration of Mass Flow of Powder", Pneumotransport 5, London, 1980, EV.
- Tsuji, Y., Morikawa, Y., "LDV Measurements of an Air-Solid Two-Phase Flow in a Horizontal Pipe", J. Fluid Mech., Vol. 120, 1982, 385.
- Moley, S. R., Mathur, M. P., Klinzing, G. E., "Analysis of Dense Phase Fine Coal Pneumatic Systems", DOE/PETC/TR-8216, 1982.

- Operations manual for the Auburn Monitor (Model No. 1090) Instrument Auburn, International of Danvers, Mass. Co., 5th ed., 1982.
- Mathur, M. P., and G. E. Klinzing, "Measurement of Pneumatic Transport of Pulverized Coal", presented at Symposium of Instrumentation and Control for Fossil Fuels, San Francisco, CA 1981.
- de Jong, J. A. H. and Q. E. T. J. M. Hoelon, "Aerated Solids Flow Through a Vertical Standpipe Below a Pneumatically Discharged Bunker", Powder Technology, Vol. 7, 1975, 197.
- de Jong, J. A. H. and Q. E. T. J. M. Hoelon, "Concurrent Gas and Particle Flow During Pneumatic Discharge from a Bunker Through an Orifice", Powder Technology, Vol. 12, 1975, 201.
- Kunni, D. and O. Levenspiel, 'Fluidization Engineering', Krieger Publishing Co., Huntington, NY, 1977.
- Stemerding, S., "The Pneumatic Transport of Cracking Catalyst in Vertical Risers", Chem. Eng. Sci., Vol. 17, 1962, 599.
- Reddy, K. V. S. and D. C. T. Pei, "Particle Dynamics in Solids-Gas Flow in a Vertical Pipe", I&EC Fund., Vol. 8, No. 3, 1969, 490.
- Yang, W. C., "A Correlation for Solid Friction Factor in Vertical Pneumatic Conveying Lines", AIChE Journal, Vol. 24, No. 3, 1978, 548.
- Van Swaaij, W. P. M., C. Buurman, and J. W. von Breusel, "Shear Stresses on the Wall of a Dense Gas-Solid Riser", Chem. Eng. Sci., Vol. 25, 1970, 181.
- Capes, C. E. and K. Nakamura, "Vertical Pneumatic Conveying: An Experimental Study with Particles in the Intermediate and Turbulent Flow Regimes", Can. J. Chem. Eng., Vol. 51, 1973, 31.
- Singh, B., "Lean Phase Vertical Pneumatic Conveying of Particulate Material - An Analysis of the Pressure Drop in the Non-Accelerating Zone", Chemeca 77, 1977, 315.
- Klinzing, G. E., "Vertical Pneumatic Transport of Solids in the Minimum Pressure Drop Region", Ind. Eng. Chem. Pro. Des. Dev., Vol. 18, No. 3, 1979, 404.
- Elliot, M. A., ed. "Chemistry of Coal Utilization Second Supplementary Volume", John Wiley, NY, 1981.
- Smoot, L. D. and P. J. Smith, "Combustion and Gasification of Coal, Char and Coal/Water Mixtures" Course Notes, 1982.

148 ·

- Field, M. A., D. W. Gill, B. B. Morgan, and P. G. W. Hawksley, "Combustion of Pulverized Coal", British Coal Utilization Research Association, Cheney and Sons, Leatherhead, 1967.
- Smoot, L. D. and D. T. Pratt, ed., "Pulverized-Coal Combustion and Gasification", Plenum Press, NY, 1979.
- 54. Gamble, R. L., "Operation of the Georgetwon University Fluidized Bed Steam Generator", The Proceedings of the Sixth International Conference on Fluidized Bed Combustion, 1980, 307.
- Breault, R. W., "The Economic and Technical Feasibility of a Solar-Coal Hybrid Gasification System", M. S. Thesis, University of New Hampshire, 1980.
- Mathur, V. K., "Coal Power Its Promises and Problems", Energy Sources, ed. L. H. Klotz, University of New Hampshire, 1980.
- Ruethur, J. A., "Direct Coal Liquifaction Processes", ASC Meeting, 1983.
- Mathur, Y. K., "Liquifaction of Bituminous Coals Using Dispoable Ore Catalyst and Hydrogen", Final Report, Contract DE-AC22-810C41035, 1982.
- Levenspies1, 0., "Chemical Reaction Engineering", John Wiley & Sons, NY, 1972.
- Borgwardt, R. H., "Kinetics of the Reaction of SO₂ with Calcined Limestone", Environmental Science and Technology, Vol. 4, No. 2, 1970, 59.
- Lee, D. C. and C. Georgakis, and J. L. Hodges, "Modeling SO₂ Emissions from Fluidized Bed Coal Combustors", Chem. Eng. Sci., Vol. 35, 1980, 302.
- Lee, D. C. and C. Georgakis, "A Single, Particle Size Model for Sulfur Retention in Fluidized Bed Coal Combustors", AIChE Journal, Vol. 27, No. 3, 1981, 476.
- Wen, C. Y. and M. Ishida, "Reaction Rate of Sulfur Dioxide with Particles Containing Calcium Oxide", Environmental Science and Technology, Vol. 7, No. 8, 1973, 703.
- Hartman, M. and R. W. Coughlin, "Reaction of Sulfur Dioxide with Limestone and the Grain Model", AIChE Journal, Vol. 22, No. 3, 1976, 490.

- Beisswenger, H., G. Daradimos, K. Janssen and V. Peterson, "Use of Circulating Fluidized Bed as High Temperature Reactor for Endothermic and Exothermic Processes", Ger. Chem. Eng., Vol. 4, 1981, 285.
- Nack, H., R. D. Litt, and B. C. Kim, "Multisolid Fluidized-Bed Combustion", CEP, 1984, 41.
- Battelle Memorial Institute, "Battelle's Multisolid Fluidized Bed Combustion Process", Summary Report on the Status of Development and Commercialization, 1982.
- Goetz, G. M. Micolli, and D. Eskinazi, "Fireside Consequences of Furnace Limestone Injection for S0₂ Capture", ASME paper 84– JPGC-APC-10, Joint Power Generation Conference, 1984.
- LaRue, A. and A. Liang, "Furnace Limestone Injection Technologies to Reduce SO₂", ASME paper 84-JPGC-FO-11, Joint Power Generation Conference, 1984.
- Farag, I. H., fortran program DYSIM.FOR, University of New Hampshire
- Farag, I. H., Fortran programs STPRL.LFOR and RGRID1.FOR, University of New Hampshire.
- 72. Farag, I. H., Fortran program HIMIF.FOR, University of New Hampshire.

APPENDIX A

HYDRODYNAMIC DATA

のの法法にないない

Void Fractions fo	r Nozzle N ₁ & N ₃ and N	2 & N ₃ Combinat
	ates (x 10 ³ , m ³ /s)	Voidage
Nl	N3	
3.14	N <u>3</u> 0 0 0	no flow
3.93 4.72	0	no flow no flow
5.50	0	no flow
6.29 6.67	0 0	no flow 0.983
3.14	0.79	no flow no flow
3.53 4.72	0.79 0.79	no flow
5.50 6.29	0.79 0.79	no flow 0.987
5.50	1.58	no flow
6.88	1.58	0.993
N ₂	N ₃	Voidage
3.14 3.93	0 0	no flow no flow
4.32	0	0.992
4.87 5.50	0 0	0.994 0.987
6.37	0	~]
3.14	0.79	no flow 0.994
3.93 4.72	0.79 0.79	0.998
3.14	0.99	no flow
3.14	1.19	0.975 0.995
3.93	1.19	
3.14	1.50	0.982
2.75 3.14	1.58	no flow 0.982
3.93	1.58	0.996
4.32 4.80	1.58 1.58	~1 ~1

Table A 1 Void Fractions for Nozzle N1 & N3 and N2 & N3 Combinations

Table A 2

Flow Rates Through $\rm N_2~\&~N_3$ Combination vs. Voidage for Sand Particles

Orifice Plate: 0.025 m

Nozzle and Flow	Rates (x 10 ³ m ³ /s)	Voidage
Nozzle and Flow N2 3.14 4.17 4.56 5.19 5.50 6.45 4.17 4.56 5.19 3.73 3.14 3.77 4.17 3.14 3.14 3.14 3.14 3.14 3.14 3.14 3.14 3.14 3.14 3.14 3.14 3.14 3.14 3.14 3.14 3.14 3.17 4.17 5.19	Rates (x 10 ³ m ² /s) N 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.39 0.39 0.79 0.79 0.79 1.18 1.18 1.57 1.57 1.57 2.36 2.36 2.36 2.36	Voidage no flow 0.992 0.994 0.997 0.997 0.997 0.997 0.990 no flow no flow 0.975 0.981 0.981 0.986 0.982 0.982 0.982 0.984 0.995

Table A3

Flow Rates Through N $_2$ & N $_3$ Combination vs. Voidage for Limestone Particles

Orifice Plate: 0.025m

Voidage

Nozzle and Flow Rates (x 10³ m³/s)

<u>N2</u>	<u>^N3</u>	
4.86	0.0	0.981
5.36	0.0	0.982
5.81	0.0	0.984
5.81	0.0	0.984
6.45	0.0	0.989
7.62	0.0	0.995
4.32	0.39	0.976 0.978
4.86 5.36	0.39 0.39	0.978
5.81	0.39	0.985
4.32	0.79	0.980
4.66	0.79	0.981
4.66	0.79	0.981
4.86	0.79	0.983
5.20	0.79	0.984
5.20	0.79	0.984
5.36	0.79	0.985
5.81	0.79	0.988 0.979
4.18 4.18	1.18 1.18	0.978
4.18	1.18	0.978
4.32	1.18	0.983
4.66	1.18	0.986
4.66	1.18	0.986
4.66	1.18	0.986
4.86	1.18	0.986
5.20	1.18	0.987
5.20	1.18	0.987
5.36	1.18	0.988 0.990
5.81 3.76	1.18 1.57	0.983
4.86	1.57	0.990
5.36	1.57	0.992
5.81	1.57	0.993

Table A4

Flow Rates Through N $_2$ & N $_3$ Combination vs. Voidage for Gypsum Particles

Orifice Plate: 0.025 m

Nozzle and Flow	<u>Rates (x 10³ m³/s)</u>	Voidage
N ₂	N ₃	
		0.978 0.987 0.991 0.993 0.980 0.980 0.980 0.980 0.982 0.992 0.982 0.992 0.993 0.982 0.992 0.993 0.994 0.994 0.994 0.994 0.994 0.995 0.980 0.980 0.980 0.980 0.980 0.991 0.995 0.991 0.992 0.994
2.90 2.90 3.32 3.32 3.77 4.19 4.66 5.20	1.58 1.58 1.58 1.58 1.58 1.58 1.58 1.58	0.981 0.980 0.991 0.985 0.990 0.994 0.993 0.995

Solids Mass Flux vs. Nozzle, N $_0$ Flow Rate for Sand Particles

Orifice Plate: 0.025 m

$N_2 = 4.18 \times 10^{-3} \text{ m}^3/\text{s}$ Flow Rates, $N_0 (\times 10^4 \text{ m}^3/\text{s})$	N ₃ = 1.18 x 10 ⁻³ m ³ /s <u>Solids Mass Flux (kg/m²s)</u>
0.0	53.7
3.2	54.7 67.7 64.7 71.0
3.94	67.7 63.3 61.9 63.9 63.9 63.9 61.9 61.7
6.29	59.2 48.3 48.5 50.2 51.2 50.2 50.2 50.2
	50.2

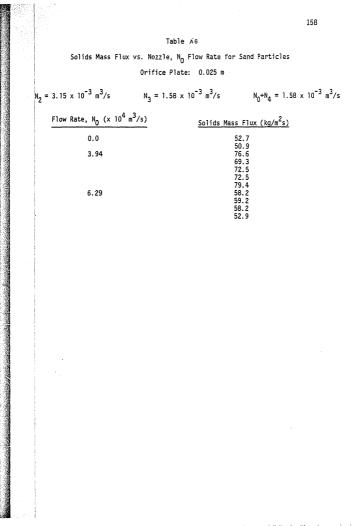


Table A.7 Solid Mass Flux vs. Nozzle, N_{O} Flow Rate for Sand Particles Orifice Plate: 0.025 m $N_2 = 3.76 \times 10^{-3} \text{ m}^3/\text{s}$ $N_2 = 1.18 \times 10^{-3} m^3/s$ Flow Rates, N₀ (x $10^4 \text{ m}^3/\text{s}$) Solids Mass Flux (kg/m²s) 0.0 56.0 51.1 52.9 3.94 83.1 83.1 72.8 7.90 57.1 53.9 48.5

Table A8 Solids Mass Flux vs. Nozzle, N_{O} Flow Rate for Limestone Particles Orifice Plate: 0.025 m $N_3 = 1.18 \times 10^{-3} \text{ m}^3/\text{s}$ $N_2 = 4.19 \times 10^{-3} m^3/s$ Flow Rates, N₀ (x $10^4 \text{ m}^3/\text{s}$) Solids Mass Flux (kg/m³/s) 63.4 63.4 60.6 64.8 0.0 60.6 62.0 87.1 3.9 89.9 89.9 89.9 87.1 87.1 62.0 6.3 60.6 62.0 62.0 42.9 7.9 42.9 42.9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

160

	-	Table A	9		
Solids Mass Flux vs.	Nozzle,	N _O Flow	Rate	for Limestone	Particles
	Orifice	Plate:	0.025	m	
$N_2 = 3.77 \times 10^{-3} m^2$	³ /s			N ₃ = 1.18 × 10) ⁻³ m ³ /s
Flow Rate, N ₀ (1 10^4 m^3	5)		Solid	s Mass Flux (k	(g/m ² s)
0.0 3.9				No Flow 69.7 75.4 75.4	
6.3				69.7 53.6 52.6	
7.9				52.6 42.2 42.9 45.6	

Table A10 Solids Mass Flux vs. Nozzle, N_O Flow Rate for Gypsum Particles

Orifice Plate: 0.025 m $N_2 = 4.19 \times 10^{-3} m^3/s$ $N_3 = 1.18 \times 10^{-3} \text{ m}^3/\text{s}$ Flow Rates, N₀ (x $10^4 \text{ m}^3/\text{s}$) Sclids Mass Flux (kg/m²s) 0.0 50.2 49.1 48.0 49.1 3.9 66.9 66.9 66.9 64.9 49.1 50.2 50.2 50.2 49.1 6.3 7.9 49.1 50.2 49.1

Table	A	1	1
-------	---	---	---

 $\sim c_{\rm s}$

AND RIGT

The state of the second se

Solids Mass Flux vs. Nozzle, ${\rm N}_{\rm O}$ Flow Rate for Gypsum Particles

Orifice Plate: 0.025 m $N_2 = 3.77 \times 10^{-3} \text{ m}^3/\text{s}$ $N_2 = 1.18 \times 10^{-3} m^3 s$ Flow Rates, $N_0 (x \ 10^4 \ m^3 s)$ <u>Solids Mass Flux (kg/m²s)</u> 0.0 45.1 45.1 45.1 46.0 3.9 58.1 60.1 58.1 56.6 48.0 49.1 6.3 47.0 49.1 47.0 46.0 47.0 7.9 44.2 35.6

Table /	12
---------	----

	Solid Fraction	<u>Solid Flux (kg/m²S)</u>	<u>Gas Flux (kg/m²S)</u>	$\Delta P/\Delta Lg (kg/m^3)$
	0.003	44.6	7.19	37.9
	0.005	50.2	6.26	33.3
1	0.005	50.2	6.26	33.3
	0.005	48.3	6.26	33.3
	0.005	44.6	6.35	50.5
	0.006	52.7	6.68	54.8
	0.006	50.9	6.68	54.8
	0.007	53.9	5.93	41.7
	0.007	56.0	5.93	41.7
	0.007	57.1	5.93	41.7
	0.009	72.5	6.68	84.1
	0.009	74.4	6.68	84.1
	0.009	48.8	5.94	75.5
	0.012	53.7	5.54	82.0
	0.012	54.7	5.54	82.0
	0.015	61.7	5.89	128.9
	0.015	59.2	5.89	128.9
	0.015	64.4	5.89	128.9
	0.016	72.8	5.52	116.6
	0.016	83.1	5.52	116.6
	0.016	83.1	5.52	116.6
	0.018	52.9	5.12	138.3
	0.018	51.1	5.12	138.3
	0.018	56.0	5.12	138.3

Experimental Data for Pressure Drop in Riser for Sand Particles

Experimental Data for Pressure Drop in Riser for Limestone Particles

	Solid Fraction	<u>Solid Flux (kg/m²S)</u>	<u>Gas Flux (kg/m²S)</u>	<u>ΔΡ/ΔLg (kg/m³)</u>
	0.005	80.4	7.85	58.2
	0.007	82.1	7.60	66.7
	0.000	78.2	7.14	70.8
	0.008	43.7	5.48	53.3
	0.008	44.0	6.55	53.3
	0.009	47.0	5.73	63.3
	0.009	50.7	6.49	60.0
	0.009	42.8	6.32	60.0
	0.010	42.9	6.32	60.0
	0.010	73.5	6.62	79.1
	0.010	80.5	7.20	91.7
	0.011	83.6	6.64	74.8
	0.011	68.0	4.07	91.7 100.0
	0.012	78.2	6.74	100.0
	0.012	82.9	6.80 5.89	90.0
	0.013	42.9 77.4	6.55	66.7
	0.013	79.7	6.55	73.3
	0.013 0.014	64.1	5.99	83:3
	0.014	64.8	5.99	83.3
	0.014	65.6	5.99	83.3
	0.014	71.5	6.22	125.0
	0.015	78.8	6.34	125.0
	0.015	78.9	6.39	125.0
	0.016	79.7	6.15	83.3
	0.016	78.5	6.15	90.0
	0.016	61.3	6.16	106.6
	0.016	62.0	6.16	106.6 133.3
	0.016	82.0	5.98	124.7
	0.016	84.6 62.3	5.98	166.7
	0.017	66.4	5.67	166.7
	0.017 0.017	75.4	5.82	150.0
	0.018	79.7	5.92	154.2
	0.018	78.7	5.52	141.3
	0.019	72.7	5.00	157.9
	0.019	64.1	5.59	116.4
	0.019	64.8	5.59	116.5
	0.019	88.5	5.91	123.3
	0.019	89.9	5.91	123.3
	0.019	87.1	5.91	126.6
	0.019	52.9	6.06	123.3 157.9
	0.021	63.4	5.50	150.0
	0.022	62.7	5.50 5.50	139.9
	0.022	61.3 72.4	6.22	190.0
	0.028	/2.4	0.22	
1				

Experimental Data for Pressure Drop in Riser for Gypsum Particles

	Solid Fraction	<u>Solid Flux (kg/m²S)</u>	<u>Gas Flux (kg/m²S)</u>	$\Delta P/\Delta Lg (kg/m^3)$
	0.002	15.9	6.65	25.0
	0.002	13.6	6.22	33.3
	0.005	49.1	5.51	33.3
	0.005	53.1	6.92	36.7
	0.006	49.1	5.92	43.3
	0.006	44.8	6.55	41.7
	0.006	44.2	6.15	43.3
	0.006	48.0	5.51	40.0
	0.006	49.1	5.51	40.0
	0.006	64.9	6.16	50.0
	0.007	65.9	5.75	58.2
	0.007	61.9	5.35	50.0
	0.007	40.4	6.49	50.0
	0.007	44.8	6.40	50.0
	0.008	44.7	5.99	50.0
	0.008	77.0	5.61	58.2
	0.008	37.6	6.06	50.0
	0.009	42.2	5.03	58.3
	0.009	50.2	5.51	58.3
	0.009	49.3	6.32	56.7
	0.009	67.6	4.79	50.0
1	0.010	74.4	5.20	50.0
	0.010	73.6	5.12	58.2 60.0
	0.010	46.0	5.08 5.49	60.0
- 1	0.010	46.0	5.59	60.0
	0.010	46.0 46.0	5.89	58.3
	0.010	49.9	6.16	58.3
	0.010 0.010	45.1	5.08	53.3
	0.010	79.8	4.71	66.5
	0.011	45.1	5.08	58.3
	0.011	45.1	5.08	58.3
	0.012	47.7	5.11	73.3
	0.012	68.5	5.91	66.7
	0.012	48.3	5.73	66.7
	0.013	76.1	4.31	66.5
	0.013	58.9	3.48	76.7
	0.015	74.4	5.04	58.2
1	0.017	40.6	4.62	93.3
1	0.018	76.1	4.69	83.1
i	0.019	38.7	4.60	113.3
	0.019	40.1	4.62	86.7
	0.020	40.9 .	4.62	93.3
	0.020	40.9	4.62	93.3
	0.020	38.1	4.19	123.3
	0.020	71.2	4.28	116.4
1	0.020	73.6	4.32	108.1 124.7
İ	0.020	72.8	4.61	99.8
	0.021	62.5	3.78	33.0
. 1				

Continued

Solid Fraction	<u>Solid Flux (kg/m²S)</u>	<u>Gas Flux (kg/m²S)</u>	$\Delta P/\Delta Lg (kg/m^3)$
0.022 0.022 0.023 0.023 0.023 0.075	76.1 62.5 66.9 49.1 34.2	3.88 4.19 4.20 4.68 3.77	129.7 124.7 133.3 126.7 133.3

Experimental Data for Sand Particles

(Pressure Profile)

Rum Number 51 52 53 54 55 56 57 58 59 510 511 512 513 514 515 516 517 518 519 520	Solids Mass Flux (kg/m ² -) 53.7 54.7 59.2 64.4 48.3 44.6 44.6 44.6 56.0 51.1 52.9 83.1 56.0 51.1 52.9 83.1 52.9 83.1 52.9 83.1 52.9 83.1 55.0 55.0 55.0 2 50.2	Total Air Mass Flux (kg/m ² .) 5.54 5.89 5.89 5.89 5.89 5.89 5.89 5.26 6.36 7.19 5.12 5.12 5.12 5.52 5.52 5.52 5.52 5.52	Nozzle, No Air Mass Flux (kg/m ² ,) 0 0.35 0.35 0.72 0.82 0 0 0 0.45 0.40 0.40 0.40 0.40 0.81 0.81 0.81 0.81 1.14 1.14	Solids Fraction in Riser 0.12 0.015 0.015 0.005 0.005 0.003 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.016 0.016 0.016 0.016 0.007 0.007 0.007 0.005 0.005 0.005	Standpipe Height (m) 0.70 0.75 0.75 0.75 0.75 0.75 0.75 0.75			

Experimental Data for Limestone Particles

(Pressure Profile)

Run Number	Solids Mass Flux <u>(kg/m²)</u>	Total Air Mass Flux <u>(kg/m².)</u>	Nozzle, N _O Air Mass Flux <u>(kg/m².)</u>	Solids Fraction <u>in Riser</u>	Standpipe Height (m)
L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14 L15 L15 L17	64.1 64.8 65.6 77.4 79.7 63.4 62.3 79.7 79.7 79.7 64.1 64.8 88.5 89.9 87.1 61.3 61.3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.019 0.014 0.014 0.013 0.021 0.021 0.021 0.016 0.016 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019	0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90
L18 L19 L20	42.9 42.9 50.7	6.32 6.32 6.49	0.79 0.79 0.95	0.009 0.010 0.0 [°] 9	1.20 0.95 1.00
	. •				

Experimental Data for Gypsum Particles

(Pressure Profile)

Run G1 G2 G3 G4 G5 G6 G7 G8 G9	Solids Mass Flux (kg/m ² ⁻) 49.1 48.0 49.1 45.1 45.1 45.1 45.1 45.1 40.9 40.9	Total Air Mass Flux (kg/m ² .) 5.51 5.51 5.51 5.08 5.08 5.08 4.62 4.62 4.62 4.62	Nozzle, No Air Mass Flux (<u>kg/m²</u>) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Solids Fraction in Riser 0.005 0.006 0.016 0.011 0.011 0.019 0.020 0.020	Standpipe Height (m) 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.9

Tabrke, ⊱A18

Height vs. Static Pressure for Sand Particles

. 32	4	6.			2550	2556	2746	2844	2746		5502	1/65	1275	3727	3432	3825	2422	3531	3236		0007	2550	2550	2550	2550	2550
66.	å	8			1965	2059	2059	2039	2059	1007	1001	13/3	1275	2550	2550	2940	2648	2548	2844	0150	2	2158	2256	2354	2158	2250
2.05	٩,			0101	5/51	C/71	1079	1177	1079	1070	0201	6/01	////	1471	1471	1471	1569	1765	1569	1765		Cd/1	1765	1961	1765	1961
2.10	P _E		~	1		1	,	,	,		•			186	833	186	1275	1373	1373	1471		13/3	1471	1765	1765	1863
1.46	Å		c Pressure	190	02.01	101	C8/	785	785	785	883	0201	270	186	186	186	1275	1275	1275	1471	1272		14/1	1863	1667	1863
.61	P.4		Static	2256	2059	2007	2001	883	2354	1961	1961	2022		5/51		1111	3825	3138	3040	2746	2746		0407	2648	2354	2452
. 36	P3			4413	4511			•	,	4119	3138	,	1044	1407	0507	8017	8614	114	4119	3236	3138	0000		04/7	2/46	2648
.26	P_2			4707	4904	6178	0003	0000	C/+0	480S	3727	6963	5108		100		4467	1144	190/	4119	4021	4021	2000	0000	. 4555	3334
0	ľ			5590	5590	6767	6671	17273		RROC	3727	2746	5982	6080	6976			1000	1000	1212	4413	4413	36.20	2000	6700	3121
Height, m	Pressure Port No.	Run Number		SI	S2	S3	S4	55	9.5	5 [15	58	S9	510	115	512	112	010	112		010	S17	518	619	000	

Table. A.1.9

Height vs. Static Pressure for Limestone Particles

Height, m	0	. 26	.61	. 85	1.46	2.10	2.05	. 99	. 32
Pressure Port	P1	P2	P ₃	P4	P ₅	P ₆	P7	P.8	P.9
Run Number				Static	Pressure,	kg/mS ²		0	5
L14 L15 L16 L37 L18 L19	6767 6767 6571 6275 7453 8041 7944 7061 7061 7061 7061 7944 8336 8434 8434 8434 8434 8434 8434 84	5786 5786 5982 5492 6375 6963 6973 6473 6473 6473 6963 7061 8336 8140 8146 8146 6375 4511 4511	4315 4217 4315 4119 4707 4707 4707 4511 4511 4511 4511 4511 5394 5386 5786 5786 5786 55786 4805 3629 3727 3531	3531 3432 3531 3334 3923 3629 3923 3923 4315 4217 4904 4805 4207 4021 4207 4021 3236 3236 3236 2159	1569 1569 1569 1765 1765 1569 1569 1569 1765 1765 1667 1667 1667 1667 1667 1665 1667 1665 1665	1569 1569 1765 1765 1569 1569 1569 1765 1765 1765 1667 1769 1667 1569 1667 1569 1667 1569 1667 1569 1667 1565 1876 1961 1961 2158	1863 1863 1961 1863 2059 2059 2059 2158 2059 2158 2059 2059 2158 2059 2158 2059 2158 2158 2059 2158 2158 2158 2158 2158 2158 2159 2254 2354 2354	2648 2844 2746 2942 3334 4021 3531 3531 3531 3629 3629 3629 3629 3432 3236 3432 3138 3138 3138 3138 3040 2942 3640	3334 3334 3825 3727 4315 4707 4707 3923 4707 4707 4707 4707 4707 4707 3923 4707 4413 4413 3431 3629 3531 3629 3531 3627

172

Height vs. Static Pressure for Gypsum Particles

. 99 32 P. P. P.		2942 3236			
2.05 P ₇	2256	2256	2354 2452	2452 2550	2550 2550
2.10 P ₆ , kg/ms ²	1863	2059	1961	1961 2059	2059 2059
1.46 P ₅ c Pressure,	1961 2059	2059	1961	2156 2156	2059 2059
.85 P4 Stactic	3040 3236	3236 3531	3727	4217	4217 4021
. 61 P3	3432 3531	3629 4119	4119	4904	4904 4904
. 26 P_2	4217 4609	4609 5100	5198 5296	6178	6276 6276
o {	4707 4904	4904 5394	5492 5492	6473 6073	6571 6571
Height, m Pressure Port Run Number	61 62	G3 G4	G5 G6	67 G8	69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

173

APPENDIX B

COMPUTER CODE

「日本のの一日」の日日に見

のないのないのの

APPENDIX B1

HIGH VELOCITY FLUIDIZED BED PRESSURE PROFILE MODEL

00001 C----PROGRAM TO CALCULATE PRESSURE DROP AND PRESSURE PROFILE 00002 IN A HIGH VELOCITY FLUIDIZED BED COLD FLOW REACTOR С 00003 C 00004 c------VARIABLES USED IN THIS PROGRAM------00005 r 00006 С ABUSLP => ABSOLUTE VALUE OF THE SLIP VELOCITY, M/S 00007 С ANG => POINT OF CALCULATIONS IN BENDS, DEGREES 00008 с ANGLE => ANGLE OF TRANSPORT LINE . DEGREES 00009 С ANGSTP => ANGLE OF STAND PIPE .DEGREES 00010 С BNDAGL => BEND ANGLE , DEGREES С 00011 BNDL90 => BEND ANGLE LESS 90 , DEGREES 00012 С DEPRES => PRESSURE DROP IN FLUIDIZED BED OF HEIGHT H. KG/MS2 00013 С DP => PARTICLE DIAMETER, M 00014 С DP2 => PARTICLE DIAMETER SOUARED, M2 00015 С DPIN => PRESSURE DIFF IN CALC INLET PRESSURES, KG/M/S2 00016 С DT => TUBE INSIDE DIAMETER. M 00017 С FB => BEND FRICTION FACTOR 00018 С FDNSTY => FLUID DENSITY, KG/M3 FFXMN => MINIMUM FLUID FLUX EXPERIMENTAL. KG/M2S 00019 C 00020 С FG => FLUID FRICTION FACTOR 00021 С FMFX => FLUID MASS FLUX, KG/M2S 00022 C FMFX2 => FLUID MASS FLUX SOUARED. (KG/M2S)2 FS => SOLIDS FRICTION FACTOR 00023 С 00024 С FVSCTY => FLUID VISCOSITY, KG/MS 00025 с GFRFCT => FUNCTION FOR FLUID FRICTION FACTOR 00026 С GG => GRAVITATIONAL CONSTANT =9.807 M2/S 00027 с H => HEIGHT, M 00028 С HO => INITIAL HEIGHT GIVEN TO SUBROUTINES. M 00029 С IR => INPUT UNIT NUMBER 00030 С IPLO => OUTPUT UNIT NUMBER FOR PLOTTING 00031 C IW => OUTPUT UNIT NUMBER 00032 С MUBAR => APPEARENT VISCOSITY FOR MIXTURE, KG/MS 00033 c KPRINT => PRINT REGARDLESS OF AGREEMENT =1 00034 c KH1HO => =1. HEIGHT INCREASES FROM HO 00035 С =2. HEIGHT DECREASES FROM HO 00036 С KHVFBC => =1 HIGH VELOCITY FLUIDIZATION 00037 С =2 PNEUMATIC TRANSPORT 00038 С KTPFS => TYPE OF SOLIDS FRICTION FACTOR CORRELATION 00039 С = 1. STEMMERDING 00040 = 2, KONNO & SAITO 00041 2 = 3, VAN SWAAGI 00042 С = 4, REDDY & PIE 00043 С KTPTL => TYPE OF TRANSFER LINE 00044 С = 1, STRAIGHT SECTION, MAY BE ANGLED 00045 С = 2, BEND, XLNGHT=RADIUS, ANGLE=# DEGREES IN BEND 00046 C NC => NUMBER OF CALCLULATIONS FOR EACH SECTION 00047 С PO => PRESSURE AT EXIT TO SECTION, M OF H20 00048 С PXL => PRESSURE AT X IN SECTION, M OF H20 00049 С PINMX => PRESSURE AT FLUID ENTRANCE TO LOOP, M OF H20 00050 С PEXIT => PRESSURE AT FLUID EXIT FROM LOOP, M OF H20 00051 · C PRSTOL => TOLERANCE IN CALC INLET PRESSURES, KG/MS2 00052 С RBND => RADIUS OF BEND. M 00053 С RBOT => RBND/DT 00054 С SDNSTY => SOLIDS DENSITY.KG/M3 00055 С SFRFCT => FUNCTION TO PREDICT SOLIDS FRICTION FACTOR 00056 C SFXMX => MAXIMUM SOLIDS FLUX EXPERIMENTAL, KG/M2S

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

176

00057 C SFXMN => MINIMUM SOLIDS FLUX EXPERIMENTAL, KG/M2S 00058 SMFX => SOLIDS MASS FLUX, KG/M2S C 00059 С SMFX2 => SOLIDS MASS FLUX SQUARED, (KG/M2S) 2 SFRCTN => SOLIDS FRACTION 00060 С 00061 С SFRMX => MAXIMUM SOLIDS FRACTION 00062 С SNAGL => SINE OF ANGLE 00063 С SPRCTY => PARTICLE SPHEROCITY 00064 С SPRC2 => PARTICLE SPHEROCITY SQUARED 00065 С USLIP => SLIP VELOCITY, M/S 00066 X => POINT OF CALCULATION С 00067 С XHVCT1 => = 1./0.7 FACTOR CORRECTING PNEUMATIC TRANSPORT 00068 С EQUATION FOR HIGH VELOCITY FLUIDIZATION REGIME 00069 С XLNGTH => LENGTH OF EACH SECTION, M 00070 С XSTEP => STEP SIZE FOR CALCULATION IN EACH SECTION. M 00071 С XLBND => LENGTH OF BEND, M 00072 C VOID => VOIDAGE 00073 С VOIDPB => PACKED BED VOIDAGE 00074 C 00075 С С 00076 00077 С DIMENSION MAIN INPUT 00078 DIMENSION IDNT (15), DT (15), KTPTL (15), ANGLE (15), XLNGTH (15), VOID (15) 00079 DIMENSION SFRCTN (15), SP (75), XHIGHT (75) 00080 С 00081 с DIMENSION VARIABLES FOR STRPL.FOR ***PLOTTING*** 00082 DIMENSION LG (2), LGWR (4), NDEC (2), FDATA (3), XLBL (5), YLBL (2), 00083 1 DST (2), CRVLB (3) 00084 EXTERNAL DPINRS 00085 DOUBLE PRECISION FNAMI, FNAMO 00086 COMMON DT, DP, FDNSTY, ANGLE, FVSCTY, FDATA, GG, PINRSR, 00087 IHEXIT, IRO, IR1, IPLO, IW, PEXIT, SPRCTY, 00088 2SDNSTY, SMFX, XLNGTH, VOIDPB, SFRCTN, VOID 00089 DATA XLBL/'STATIC PRESSURE, KG/MS2 '/ 00090 DATA YLBL/' HEIGHT, M'/ 00091 DATA FDATA/'(1P7E11.4) '/.NFDATA/3/ 00092 С 00093 С ASK USER TO INPUT FILE NAME с 00094 С 00095 00096 С SPECIFY UNIT NUMBER TO BE USED FOR PLOTTING FILE 00097 С 00098 IR0 = 2200099 IW = 5 IPPM=20 00100 00101 1PL0=21 00102 CALL FLOPCL (IRO. IW. 3. FNAMI) 00103 CALL FLOPCL (IRO, IW, 1, FNAMI) 00104 с с OPEN FILE ON UNIT IR. AND PLOT FILE ON IPLO 00105 00106 c 00107 CALL FLOPCL (IPLO, IW, 3, FNAMO) 00108 CALL FLOPCL (IPLO.IW. 1. FNAMO) 00109 CALL FLOPCL (IPPM. IW. 1. 'PPMO.I') 00110 c 00111 GG=9.807 00112 С

	1.1		
	00113	С	READ VARIABLES FOR SIMULATION
	00114		READ (IRO, *) NC, NSCTNS
	00115		D0 100 I=1,NSCTNS
	00116		READ(IRO,*) IDNT(I),DT(I),KTPTL(I),ANGLE(I),XLNGTH(I),VOID(I)
	00117		SFRCTN (1) = 1VOID (1)
	00118	100	CONTINUE
	00119	С	READ SOLIDS PROPERTIES
	00120		READ (IRO, *) SMFX, SDNSTY, SPRCTY, TEMP. CPS, THCONS
	00121		READ (IRO, *) VOIDPB, DP
	00122	C	READ FLUID PROPERTIES AND FLOW RATE
	00123	С	***R SER***
	00124	~	READ (IRO, *) FMFXR, FDNSTY, FVSCTY, CPF, THCONF, TEMP
	00125	С	***STANDPIPE***
	00126	с	READ(IRO,*) FMFXSP,FDNSTY,FVSCTY,CPF,THCONF,TEMP READ PRESSURE OUTLET AND MAXIMUM PRESSURE AT INLET
	00128	C	READ PRESSURE OUTLET AND HAATHON PRESSURE AT INCET
	00129	с	READ VALUES FOR HIMIF.FOR
	00130	•	READ (IRO,*) ESTI,EST2,MAXIT,ERR
	00131	с	
	00132	Ċ	
	00133	С	
	00134	С	
	00135		DPMX=PINMX-PEXIT
	00136	С	· .
	00137	С	
	00138	С	
	00139	C	
	00140	c	
	00141 00142	с с	SET VALUES FOR PLOTTING
	00142	L	KSYMB=0
	00144		XMIN=400000.
	00145		XMAX=PINMX
	00146		YMIN=-1.0
	00147		YMAX=34.
	00148		L10=0
	00149		LG (1) =0
	00150		LG (2) =0
	00151		KSLG=-7
	00152		CYCLX=-6.8
	00153 00154		CYCLY=-5.8
	00155		NXLB=23 NYLB= 10
	00156		ROTA=0.0
	00157		LIN=1
	00158		NW=1
	00159		SZLT=0.12
	00100		SZPL=0.04
1	00161		DST(1)=0.06
	00162		DST (2) =0.06
	00163		LTK=0
į	00164		LPNT=1
	00165		INTCH=0
	00166		LRPT=2
	00167		LFM1=0
	00168		LWSL=0
1			

a subscription of the second

00169 LDATA=0 00170 LGWR (1) =0 LGWR (2) =1 00171 00172 LGWR(3) = 000173 LGWR(4) = 1LF811=1 00174 NDEC (1) =-4 00175 00176 NDEC (2) =-2 00177 KCOL=2 00178 JCON=1 NDPNT=-7 00179 00180 JCRVLB=0 00181 С 00182 CALL RISER (ANGLE, DT, FDNSTY, FMFXR, FVSCTY, FDATA, GG, 00183 1KH1H0, KHVFBC, H, H0, IR0, IR1, IPLO, IW, NC, PINRSR, PO, PXL. 00184 2PEXIT, HEXIT, SDNSTY, SMFX, SFRCTN, KTPFS, XLNGTH, VOID) 00185 С 00186 С С 00187 00188 С 00189 CALL HIMIF (FMFXSP, IT, MAXIT, EST1, EST2, DPINRS, ERR, IER, IRO, IW, FRT) 00190 IF(IER.EQ.1) GO TO 400 00191 WRITE (IW, 7500) IER 00192 GO TO 9999 00193 400 CONTINUE 00194 С 00195 REWIND IPLO 00196 REWIND IW 00197 С 00198 С 00199 С 00200 CALL STRPL (IPLO, IW, XMIN, XMAX, YMIN, YMAX, LIO, LG, KSLG, CYCLX, 00201 1 CYCLY, NXLB, NYLB, ROTA, LIN, NW, SZLT, SZPL, DST, LTK, LPNT, 00202 2 INTCH, LRPT, LFM1, LWSL, LDATA, LGWR, LF811, LWS1, LWS2, NDEC, KCOL, 00203 3 JCON.FDATA.XLBL.YLBL.NFDATA.NDPNT.JCRVLB.CRVLB) 00204 С 00205 С 00206 С WRITE VALUES ON PLOT FILE 00207 С CALCULATE PRESSURE PROFILE FOR GAS-SOLID CO-CURRENT FLOW SECTION: 00208 С 00209 999 CONTINUE 00210 WRITE (IW, 7900) PEXIT, HEXIT WRITE (IPLO, FDATA) PEXIT, HEXIT 00211 00212 С 00213 CALL RISER (ANGLE, DT, FDNSTY, FMFXR, FVSCTY, FDATA, GG, 00214 1KH1H0, KHVFBC, H, HO, IRO, IR1, IPLO, IW, NC, PINRSR, PO, PXL, 00215 2PEXIT, HEXIT, SDNSTY, SMFX, SFRCTN, KTPFS, XLNGTH, VOID) 00216 С 00217 С 00218 DUM=-999. 00219 WRITE (IPLO, FDATA) DUM, DUM 00220 С 00221 DUM=-4. WRITE (IPLO, FDATA) DUM, DUM 00222 00223 00224

179

00225 С CALCULATION FOR STANDPIPE GAS-SOLID FLOW PRESSURE PROFILE 00226 C 00227 C 00228 C 00229 C 00230 CALL STRPL (IPLO, IW, XMIN, XMAX, YMIN, YMAX, LIO, LG, KSLG, CYCLX, 00231 1 CYCLY, NXLB, NYLB, ROTA, LIN, NW, SZLT, SZPL, DST, LTK, LPNT, 00232 2 INTCH.LRPT.LFM1.LWSL.LDATA.LGWR.LF811.LWS1.LWS2.NDEC.KCOL. 00233 3 JCON.FDATA.XLBL.YLBL.NFDATA.NDPNT.JCRVLB.CRVLB) 00234 c 00235 WRITE (IW. 7900) PEXIT. HEXIT 00236 WRITE (IPLO, FDATA) PEXIT, HEXIT 00237 С 00238 С CALL STNDPP (DT, DP, FDNSTY, FMFXSP, FVSCTY, FDATA, GG, 00239 00240 1H.HO.IRO.IRI.IPLO.IW.NC.PO.PXL.SPRCTY. 00241 2PEXIT, HEXIT, SFRCTN, SDNSTY, SMFX, XLNGTH, VOIV, VOIDPB) 00242 С 00243 ADPIN=ABS (PXL-PXLCO) 00244 DPIN=(PXL-PXLCO)00245 9999 CONTINUE 00246 C 00247 С 00248 С 00249 С TERMINATE PLOT BY WRITING A -1 THEN CLOSE FILES 00250 С 00251 С 00252 DUM=-999. 00253 WRITE (IPLO, FDATA) DUM. DUM 00254 READ (IRO.*) EXNDTA 00255 IF(EXNDTA.EO.-2.) GO TO 1150 00256 DUM=-4. 00257 WRITE (IPLO, FDATA) DUM, DUM 00258 GO TO 1160 1150 CONTINUE 00259 00260 DUM=-1. 00261 WRITE (IPLO, FDATA) DUM, DUM 00262 GO TO 8888 00263 1160 CONTINUE 00264 1 IN=0 00265 LPNT=2 00266 1175 CONTINUE 00267 CALL STRPL (IPLO, IW, XMIN, XMAX, YMIN, YMAX, L10, LG, KSLG, CYCLX, 00268 1 CYCLY, NXLB, NYLB, ROTA, LIN, NW, SZLT, SZPL, DST, LTK, LPNT, 00269 2 INTCH, LRPT, LFM1, LWSL, LDATA, LGWR, LF811, LWS1, LWS2, NDEC, KCOL, 00270 3 JCON, FDATA, XLBL, YLBL, NFDATA, NDPNT, JCRVLB, CRVLB) 00271 KSYMB=KSYMB 00272 WRITE (IPLO, 8700) KSYMB 00273 С 00274 DO 1200 |=1,75 00275 READ (IRO, *) SP (1), XHIGHT (1) 00276 NPTEXP=1-1 00277 IF (SP(I).E0.-1) GO TO 1250 00278 IF (SP (1).E0.-2) GO TO 1285 00279 1200 CONTINUE 00280 1250 CONTINUE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

180

00281 DO 1300 I=1,NPTEXP 00282 WRITE (IPLO, FDATA) SP(1), XHIGHT(1) 00283 1300 CONTINUE 00284 DUM=-999. 00285 WRITE (IPLO, FDATA) DUM, DUM 00286 DUM=-4. 00287 WRITE (IPLO, FDATA) DUM. DUM 00288 KSYMB=KSYMB+1 00289 GO TO 1175 00290 1285 CONTINUE 00291 DO 1320 (=1.NPTEXP 00292 WRITE (IPLO, FDATA) SP(I), XHIGHT(I) 00293 1320 CONTINUE 00294 DUM=-999. 00295 WRITE (IPLO, FDATA) DUM. DUM 00296 DUM=-1. 00297 WRITE (IPLO, FDATA) DUM, DUM 00298 8888 CONTINUE 00299 WRITE (IPPM, *) SDNSTY, VOID (3), SMFX, DP, SFRCTN (3) 00300 WRITE (IPPM, *) FMFXR, FDNSTY, FVSCTY, CPF, THCONF 00301 WRITE (IPPM,*) XLNGTH (3), DT, XLNGTH (7), VOID (7), SFRCTN (7) 00302 С 00303 CALL FLOPCL (IPLO, IW, 2, FNAM) 00304 CALL FLOPCL (IRO, IW, 2, FNAM) 00305 CALL FLOPCL (IR1, IW, 2, FNAM) 00306 STOP FORMAT STATEMENTS 00307 С 00308 С 00309 7500 FORMAT (' ERROR, | ER= ',15) 00310 7900 FORMAT (1P7E11.4) 00311 8000 FORMAT (' PRESSURE DROP TOO LARGE, CHOOSE NEW SMFX & FMFXR') 00312 8100 FORMAT (' OLD SOLID & GAS FLUX ARE: ',2F12.4,' ENTER NEW DATA',\$) 8200 FORMAT (2F12.4) 00313 00314 8300 FORMAT (' PRESSURE DROP IN STANDPIPE TOO SMALL ', F12.4) 00315 8230 FORMAT (' GAS FLUX IN STAND PIPE TOO LARGE: ',F12.4) 8250 FORMAT (' ENTER NEW GAS FLUX: F12.4 ',\$) 00316 00317 8270 FORMAT (F12.4) 00318 8400 FORMAT (' GAS FLUX IS: ',\$) 8500 FORMAT (F12.4) 00319 00320 8700 FORMAT (15) 9000 FORMAT (2X, 'NPNTS=', 13, ' DPM=', F5.3, ' FO=', F6.3, ' F1=', 00321 00322 1 F5.2,2X,'W=',F7.2,' XK=', 1PE10.3) 00323 9050 FORMAT (1X,' 1',3X,' DP',5X,' PO',8X,'EK',8X,'XI', 00324 1 7X, 'P1', 7X, ' P2') 00325 9100 FORMAT (1X, 12, 1P6E 10.3) 00326 9150 FORMAT (2X, '. W/FO=', F8.2, 2X, ' FO=', OPF6.3, 2X, ' W=', F8.2) 00327 9250 FORMAT (2X, 'FO=', F6.3, 2X, 'F1=', F5.2, 2X, 'F2=', 1PE9.2, 00328 1 2X, 'W=', OPF7.2, 2X, 'FR.CONV=', F6.3) 9300 FORMAT (2X, ' FO=', F6.3, 2X, ' F1=', F5.2, 2X, 'F2 FROM P2 INTGRTN', 00329 00330 1 '=',F7.4,2X, 'FR.CONV.=',F6.3) 00331 9350 FORMAT (7A5, F5.3, F5.2, F5.2, F8.2) 00332 9400 FORMAT (20A5) 00333 9410 FORMAT (' IS DPIN SMALL ENOUGH, TYPE 1 IF YES,2 !F NO ',\$) 00334 9450 FORMAT (110) 00335 END

COMMON BLOCKS

/.COMM.	/ (+135)								
DT	+0	DP	+17	FDNSTY	+20	ANGLE	+21	FVSCTY	+40
FDATA	+41	GG	+44	PINRSR	+45	HEXIT	+46	IRO	+47
IR1	+50	I PLO	+51	IW	+52	PEXIT	+53	SPRCTY	+54
SDNSTY	+55	SMFX	+56	XLNGTH	+57	VOIDPB	+76	SFRCTN	+77
VOID	+116								

SUBPROGRAMS CALLED

HIMIF STNDPP STRPL RISER DPINRS FLOPCL SCALARS AND ARRAYS ["#" NO EXPLICIT DEFINITION - "%" NOT REFERENCED]

DST *DPMX *MAXIT XHIGHT *INTCH *NXLB *LIN *LRPT *DPIN *PRSTOL *ADPIN	1 25 32 40 157 165 172 216 223 230 235 242	*LFM1 *EST1 FNAMO *IER *L10 *KHVFBC YLBL *XMAX *FMFXR *PINMX *D0002	3 26 33 153 160 166 173 217 224 231 236 24 231	*CYCLY *YMAX *EXNDTA *LPNT *ERR *HO IDNT *KSLG *FRT *PXLCO *LWSL	4 27 35 154 161 167 175 220 225 232 232	KTPTL *JCRVLB *XMIN *CYCLX *VOIV *THCONF *NW *NPTEXP *SZLT *LWS2 *CPS	5 30 36 155 162 170 214 221 226 233 240	*FNAM *NYLB *H FNAMI *KCOL *JCON *LDATA *THCONS .S0003 .S0001	241
								.S0001	241
*DUM NDEC	252 263	*LWS1 *TEMP	253 265	*KH1H0 *PXL	254 254 266	*KSYMB *SZPL	245 255 267	LGWR XLBL *YMIN	246 256 270
*I *ROTA CRVLB	271 276 416	*KTPFS LG *LF811		*NSCTNS *EST2 *NFDATA	273 301 422	*1PPM SP *CPF	274 302 423		275 415

MAIN. [No errors detected]

00001	с	
00002	č	
00003	L.	SUBROUTINE FLOPCL (IUNIT, IW, KOPR, FNAM)
00004	с	SUBRUUTINE FEURUL (TUNTI, TW, RUFR, FNAN)
00004	CFLOPO	
		LIFUR
00006	C	
00007	С	THIS SUBROUTINE IS TO OPEN AND CLOSE A FILE ON DISK
00008	c	AND TO ASK USER TO INPUT FILE NAME FROM TTY
00009	С	
00010	С	IUNIT THE UNIT NUMBER USED FOR FILE 1/0
00011	С	IW IS THE OUTPUT UNIT NUMBER
00012	С	KOPR THE OPERATION TYPE DESIRED.
00013	C	KOPR=1 TO OPEN FILE,
00014	С	KOPR = 2 TO CLOSE FILE
00015	С	KOPR = 3 TO ASK USER TO ENTER INPUT FILE NAME AND THEN
00016	С	ECHO IT BACK TO TERMINAL
00017	C	FNAM NAME OF FILENOT MORE THAN 8 CHARACTERS. THIS NAME
00018	С	IS NOT NEEDED IN CLOSING THE FILE
00019	С	
00020		DOUBLE PRECISION FNAM
00021		DATA DSKZ/'DSK'/
00022		GO TO (50, 100, 150), KOPR
00023	50	CONTINUE
00024	c	
00025	Ċ	OPEN FILE AND WRITE A MESSAGE
00026	c	
00027		OPEN (UNIT=IUNIT.DEVICE=DSKZ.FILE=FNAM)
00028		WRITE (IW, 9000) IUNIT, FNAM
00029		GO TO 200
00030	100	CONTINUE
00031	C	
00032	č	CLOSE FILE AND WRITE A MESSAGE
00033	č	
00034	•	CLOSE (UNIT=IUNIT)
00035		WRITE (IW. 9050) IUNIT
00036		GO TO 200
00037	150	
00038	с.,	0000000
00039	č	ASK USER TO INPUT FILE NAME
00040	č	
00041	U I	TYPE 9100
00042		ACCEPT 9150,FNAM
00043		TYPE 9200,FNAM
00044	200	
00045	200	RETURN
00045	0000	FORMAT (' UNIT NO.',13,' IS USED TO OPEN FILE ',A10)
00048		FORMAT(' FILE ON UNIT', 13, ' IS CLOSED')
00047		FORMAT(' FILE ON UNIT', 13, 'IS CLOSED') FORMAT(' INPUT FILE NAME ',\$)
00049 00050		FORMAT (A10)
	9200	FORMAT (' INPUT FILE IS ',A10) END
00051		ENU

SCALARS AND ARRAYS ["*" NO EXPLICIT DEFINITION - "%" NOT REFERENCED] FNAM 1 *IW 3 *IUNIT 4 *KOPR 5 *DSKZ 6 TEMPORARIES .A0016 7

FLOPCL [No errors detected]

00001	C	
00002		SUBROUTINE PDVPC (ANGLE, DT, FDNSTY, FMFX, FVSCTY, FDATA, GG,
00003		1KH1HO,KHVFBC,H,HO,IRO,IR1,IPLO,IW,NC,PO,PXL,
00004		2SDNSTY, SMFX, SFRCTN, KTPFS, XLNGTH, VOID)
00005		DIMENSION FDATA (3)
00006	С	
00007	c	SUBROUTINE PDVPC PRESSURE DROP IN VERTICLE OR ANGLED PNEUMATIC
80000	С	TRANSPORT AND HIGH VELOCITY FLUIDIZATION
00009	С	
00010	С	
00011		SNANGL=SIND (ANGLE)
00012		SMFX2=SMFX**2
00013		FMFX2=FMFX**2
00014	С	
00015		XLE=0.2
00016		XLR=XLNGTH
00017		XLRLE=XLR-XLE
00018		FG=0.001
00019		US=SMFX/SDNSTY/SFRCTN
00020		FS=12.2*SFRCTN/US/V0!D**3
00021	С	
00022		PXL=P0
00023		H=HO
00024	С	
00025		XSTEP≖XLNGTH/NC
00026	С	
00027	С	HIGH VELOCITY FLUIDIZATION !!!!
00028		IF (KHVFBC.EQ.1) GO TO 100
00029		GO TO 200
00030	100	CONTINUE
00031		IF (ANGLE.NE.90.) GO TO 150
00032		HVCT1=1.
00033		GO TO 300
00034	150	WRITE (IW, 9000)
00035		GO TO 9999
00036	200	CONTINUE
00037	С	
00038	С	PNEUMATIC TRANSPORT THEN !!!!
00039		IF (ANGLE.GT.O.) GO TO 250
00040		WRITE (IW, 9100)
00041	250	CONTINUE
00042		HVCT1=1.
00043	300	CONTINUE
00044		DPKE=SMFX/SDNSTY/SFRCTN
00045		DO 400 I=1,NC
00046		X=XSTEP*FLOAT(1)
00047		IF (X.LT.XLRLE) GO TO 420
00048		DPKE= (SMFX2/SDNSTY/SFRCTN) * (XSTEP/XLE)
00049		GO TO 440
00050	420	CONTINUE
00051		DPKE=0.0
00052	440	CONTINUE
00053		PXL=PXL+(DPKE+XSTEP*(2*FS*SMFX2/SDNSTY
00054		1 /SFRCTN/DT+2*FG*FMFX2/FDNSTY/DT
00055		2 +SDNSTY*SFRCTN*GG))*HVCT1
00056		IF (KH1H0.EQ.2) GO TO 350

00057		H=H+SNANGL*XSTEP
00058		GO TO 375
00059	350	CONTINUE
00060		H=H-SNANGL*XSTEP
00061	375	CONTINUE
00062		WRITE (IW, 9200) PXL, H
00063		WRITE (IPLO, FDATA) PXL, H
00064	400	CONTINUE
00065		RETURN
00066	9999	CONTINUE
00067		FORMAT (' ERROR, HVF, ANGLE MUST EQUAL 90.0 ')
00068		FORMAT (' ERROR, VPC, ANGLE MUST EXCEED 0.0 ')
00069	9200	FORMAT (1P7E11.4)
00070		END

SUBPROGRAMS CALLED

SIND.

SCALARS AND ARRAYS ["*" NO EXPLICIT DEFINITION - "%" NOT REFERENCED]

*SFRCTN *XLRLE *DT *XLNGTH *FMFX2 *SNANGL *PXL	23 30 34	*VOID *H *HO %IRO *ANGLE *KH1HO *FS	2 6 13 24 31 35	%FVSCTY *XLE *DPKE *IPL0 .S0000 *US *1	32 36	FDATA *PO *X *XLR	21 26 33 37	*SMFX2 *KHVFBC *XSTEP *SMFX *GG %IR1 %KTPFS	
*NC	40	*FG	41	*SDNSTY	42	*FMFX	43		

TEMPORARIES

.A0016 44

PDVPC [No errors detected]

00001 SUBROUTINE PDHPC (DT, FMFX, FDNSTY, FDATA, FVSCTY, IRO, IR1, IPLO, IW 00002 1, HO, H, KTPFS, NC, PO, PXL, SMFX, SDNSTY, SFRCTN, XLNGTH, VOID) 00003 DIMENSION FDATA (3) 00004 С 00005 С SUBROUTINE PDHPC PRESSURE DROP HORIZONTAL PNEUMATIC 00006 С CONVEYING 00007 SMFX2=SMFX**2 00008 FMFX2=FMFX**2 00009 FS=0.0203 00010 XLE=1.7 00011 XLED=XLNGTH 00012 XLEDLE=XLED-XLE 00013 FG=0.001 00014 PXL=P0 00015 XSTEP=XLNGTH/NC 00016 DPKE=SMFX2/SDNSTY/SFRCTN 00017 DO 100 |=1.NC 00018 X=XSTEP*FLOAT(1) 00019 IF (X.LT.XLEDLE) GO TO 75 00020 DPKEST=(X**2.-(X-XSTEP)**2.)*DPKE/XLE**2. 00021 GO TO 85 00022 75 CONTINUE 00023 DPKEST=0. 00024 85 CONTINUE 00025 PXL=PXL+DPKEST+ 00026 XSTEP*(2*FS*SMFX2/SDNSTY/SFRCTN/DT+2*FG*FMFX2/FDNSTY/DT) 00027 WRITE (IPLO, FDATA) PXL, H 00028 WRITE (IW. 9000) PXL.H 00029 100 CONTINUE 00030 RETURN 00031 9000 FORMAT (1P7E11.4) 00032 END SCALARS AND ARRAYS ["*" NO EXPLICIT DEFINITION - "%" NOT REFERENCED] ***SFRCTN 1** %V01D %FVSCTY *IW 2 *SMFX2 2 *H *XLE 5 4 *DT 6 \$но *DPKEST 7 *DPKF 10 *FDNSTY 11 *XSTEP 12 *XLNGTH 13 \$1RO */PLO 14 FDATA 15 *SMFX 16 *FMFX2 17 .S0000 20 *P0 21 жX 22 \$1R1 *XLED 23 *PXL 24 *FS 25 *****1 26 **%KTPFS *XLEDLE 27** *NC 30 *FG 31 ***SDNSTY 32** *FMFX 33 TEMPORARIES .A0016 34 PDHPC [No errors detected]

00001 SUBROUTINE PDBEND (BNDAGL, DT, FMFX, FDNSTY, FDATA, HO, H, KH 1HO, 00002 11RO, IR1, JPLO, IW, NC, PO, PXL, RBND, SDNSTY, SMFX, SFRCTN, VOID) 00003 DIMENSION FDATA (3) 00004 С 00005 С SUBROUTINE POBEND PRESSURE DROP IN BENDS FOR GAS-SOLID FLOW 00006 С 00007 С RBND=XLNGTH 00008 BNDL90=BNDAGL-90. 00009 ANGSTP=BNDAGL/NC 00010 RBDT=RBND/DT 00011 XLBND=(3.1415/2+(3.1415/180.)*BNDAGL)*RBND 00012 PXL≈P0 00013 H=H0 00014 С 00015 XSTEP=XLBND/NC 00016 IF (RBDT.GT.2) GO TO 100 00017 c BEND FRICTION FACTOR FITTED EQUAL 1. 00018 FB=1. 00019 FB=0.375 С 00020 GO TO 200 00021 100 CONTINUE 00022 IF (RBDT.GT.6) GO TO 150 00023 FB=1. 00024 С FB=0.188 00025 GO TO 200 00026 150 CONTINUE 00027 FB=1. 00028 С FB=0.125 00029 200 CONTINUE 00030 DO 300 I=1.NC 00031 X=XSTEP*FLOAT(1) 00032 ANG=ANGSTP*FLOAT(1) 00033 PXL=PXL+(2.*FB*(SDNSTY*SFRCTN+FDNSTY*V01D)*(FMFX/FDNSTY)**2) 00034 ***XSTEP/XLBND** 1 00035 IF (BNDAGL.GT.90.) GO TO 250 00036 IF (KH1HO.EO.2) GO TO 350 00037 H=HO+RBND*SIND (ANG) GO TO 375 00038 00039 350 CONTINUE 00040 H=HO-RBND*SIND (ANG) 00041 375 CONTINUE 00042 GO TO 275 00043 250 CONTINUE 00044 H=H0+ (SIND (BNDAGL-ANG) -SIND (BNDAGL)) *RBND .00045 275 CONTINUE 00046 WRITE (IPLO, FDATA) PXL, H 00047 WRITE (IW, 9000) PXL, H 300 00048 CONTINUE 00049 RETHRN 00050 9000 FORMAT (1P7E11.4) 00051 END

and the second
SUBPROGRAMS CALLED

SIND.

SCALARS AND ARRAYS ["*" NO EXPLICIT DEFINITION - "%" NOT REFERENCED]

*SFRCTN *BNDAGL *FDNSTY *SMFX *X *RBDT	6	*VOID *ANGSTP *XSTEP *XLBND %IR1 *BNDL90	14 17	*RBND *ANG %1R0 .S0000 *PXL *NC	24	*1W *DT *1PL0 *P0 *1 *SDNSTY	4 11 15 21 25	*H *HO FDATA *KH1HO *FB	5 12 16 22 26
*RBDT	27	*BNDL90	30	*NC	31	*SDNSTY	32	*FMFX	33

TEMPORARIES

.A0016 34 .Q0000 35

PDBEND [No errors detected]

00001 00002 00003 00004		SUBROUTIN 1H,HO,KH1H 2SMFX,SDNS DIMENSION	IO, I RO, I R TY, SFRCT	1, IPLO, I N, XLNGTH	W,NC,PO,		/SCTY,FD	ATA,GG,
00005	C C	SUBROUTIN			E DROP #	ERATED G	AS FLOW	UP
00007	С	XMUBAR=2.	5E-05*EX	P(30.70*	SFRCTN)			
00009 00010		PXL=PO H=H0						
00011	С							
00012		XSTEP=XLN						
00013		SNAGL=SIN						
00014		00 100 I=	P*FLOAT (0				
00016			L+XSTEP*		GG*SFRCT	N#SNAGI		
00017						RCTN/DT*	*2)	
C0018			H0.EQ.2)				-/	
00019		H=H+SN	AGL*XSTE	P				
00020		GO TO						
00021	50	CONTIN						
00022			AGL*XSTE	P				
00023 00024	75	CONTIN	UE IPLO,FDA					
00024			IW. 9000)		п			
00026	100	CONTINUE	18, 3000)	1				
00027		RETURN						
00028	9000	FORMAT (1P	7E11.4)					
00029		END						
SUBPROG	RAMS C	ALLED						
EXP.	SIND.							
SCALARS	AND AI	RRAYS ["*	NO EXPL	ICIT DEI	FINITION	- "%" N	DT REFER	ENCED]
*SFRCTN		%V01D		%FVSCTY		*IW	2	*SNAGL
*H	4	*DT	5	*H0	6	%FDNSTY		*XSTEP
*XLNGTH *ANGLE	14	\$1R0	15	*1PL0 *P0	11 16	FDATA	12	*SMF X
*XMUBAR		.\$0000 *X	22	% R1	10	*GG *PXL	17 23	*KH1H0 *!
ANC	25	*SDNSTY		%FMFX		AF AL	25	~1
TEMPORAF	IES							
. AOO 16	27	.00000	30					
PDAGUP	[No e	errors dete	ected]					

00001 SUBROUTINE PDAGD (ANGLE.DT.FDNSTY.FMFX.FVSCTY.FDATA.GG. 00002 1H.HO.KH1HO.IRO.IR1.IPLO.IW.NC.PO.PXL. 00003 2SDNSTY, SMFX, SFRCTN, XLNGTH, VOID) 00004 DIMENSION FDATA (3) 00005 С 00006 С SUBROUTINE PDAGD PRESSURE DROP AERATED GAS FLOW DOWN 00007 ċ 00008 XMUBAR=2.5E-05*EXP (30.70*SFRCTN) 00009 PXL=P0 00010 H=HO 00011 c XSTEP=XINGTH/NC 00012 00013 SNAGI =SIND (ANGLE) 00014 DO 100 |=1.NC 00015 X=XSTEP*FLOAT(1) 00016 PXL=PXL+XSTEP* (SDNSTY*GG*SFRCTN*SNAGL 00017 1 -32.*XMUBAR*SMFX/SDNSTY/SFRCTN/DT**2) 00018 IF (KH1HO.EO.2) GO TO 50 00019 H=H+SNAGL*XSTEP 00020 GO TO 75 00021 50 CONTINUE 00022 H=H-SNAGL*XSTEP 00023 75 CONTINUE 00024 WRITE (IPLO, FDATA) PXL.H 00025 WRITE (IW. 9000) PXL.H 00026 100 CONTINUE 00027 RETURN 00028 9000 FORMAT(1P7E11.4) 00029 FND SUBPROGRAMS CALLED EXP. SIND. SCALARS AND ARRAYS ["*" NO EXPLICIT DEFINITION - "%" NOT REFERENCED] ***SFRCTN 1** 2×010 %FVSCTY *IW 2 хH π'nΤ *H0 6 %FDNSTY 5 *XLNGTH 10 \$1R0 *IPL0 FDATA 11 12 *ANGLE 14 .SO000 15 *P0 16 *GG 17 *XMUBAR 21 *****Χ 22 2181 *PXI 23 *SONSTY 26 *NC 25 %FMFX TEMPORARIES .A0016 27 .00000 30 PDAGD [No errors detected]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

*SNAGE 3

*XSTEP

*SMFX 13

41

***** 20

7.

24

SUBROUTINE PDSTNP (DT.DP.FDNSTY.FMFXSP.FVSCTY.FDATA.GG. 00001 00002 1H.HO. IRO. IR1. IPLO. IW. NC. PO. PXL. SPRCTY. 00003 2SDNSTY, SMFX, XLNGTH, VOIDPB) 00004 DIMENSION FDATA (3) 00005 C 00006 SUBROUTINE POSTNP PRESSURE DROP IN STANDPIPES С 00007 с 00008 PXL=P0 00009 H≂HO 00010 С 00011 XSTEP=XLNGTH/NC 00012 SPRC2=SPRCTY**2 00013 0P2=0P**2 00014 USLIP=SMFX/SDNSTY/(1.-VOIDPB)-fMFXSP/FDNSTY/VOIDPB 00015 ABUS=ABS (USLIP) 00016 DEPPRS=SDNSTY*(1,-VOIDPB)*GG*XLNGTH 00017 VOID3=VOIDPB**3 00018 VOID1=1.-VOIDPB 00019 VOID12=V0101**2 00020 DO 100 1=1.NC 00021 X=XSTEP*FLOAT(1) 00022 PXL=PXL+XSTEP*(150.*V01D12*FVSCTY*ABUS/V01D3/SPRC2/DP2 00023 +1.75*V01D1*FDNSTY*ABUS**2/V01D3/SPRCTY/DP) 00024 H=H-XSTEP 00025 WRITE (IPLO, FDATA) PXL.H 00026 WRITE (IW. 9000) PXL.H 00027 100 CONTINUE 00028 IF ((PXL-PO).LT.DEPPRS) GO TO 500 00029 WRITE (1W, 9100) 00030 500 CONTINUE 00031 RETURN 00032 9000 FORMAT (1P7E11.4) 00033 9100 FORMAT (' ERROR, FMFX TOO LARGE, DPSP>PDF ') 00034 END SCALARS AND ARRAYS ["*" NO EXPLICIT DEFINITION - "%" NOT REFERENCED] *V01012 1 *FVSCTY 2 *DP *DP2 *1W 3 Ь 5 *SPRC2 6 *Н *DEPPRS 10 *VOIDPB 11 %DT *HO 12 *SPRCTY 13 *EDNSTY 14 *V01D3 15 *XSTEP 16 ***XLNGTH 17** \$1R0 *1 PL 0 20 FDATA 21 *SMFX 22 *ABUS 23 .S0000 24 *USLIP 25 *P0 26 20% 27 \$1R1 *Χ 30 *PXL 31 *V0(D1 32 *1 33 *FMFXSP 34 *NC *SDNSTY 36 35 TEMPORARIES .A0016 37 PDSTNP [No errors detected]

193 00001 SUBROUTINE PDORFC (CD, DO, DT, DP, FDNSTY, FMFXSP, FVSCTY, FDATA, GG, 00002 1H.HO. IRO. IRI. IPLO. IW.NC. PO. PXL. SPRCTY. 00003 2SDNSTY, SMFX, XLNGTH, VOIDPB) 00004 DIMENSION FDATA (3) 00005 c 00006 С SUBROUTINE PDORFC PRESSURE DROP IN ORIFACE 00007 С 00008 PXI ≃P0 00009 H=H0 00010 С 00011 CD=.7 00012 SFRCTN=1.-VOIDPB 00013 CD2=CD*CD 00014 DODT4 = (DO/DT) **400015 D02=D0*D0 00016 SMF X2=SMF X*SMF X 00017 PXL=P0+SMFX2/SDNSTY/SFRCTN/CD2 00018 WRITE (IPLO, FDATA) PXL, H 00019 WRITE (IW, 9000) PXL, H 00020 RETURN 00021 9000 FORMAT (1P7E11.4) 00022 FND SCALARS AND ARRAYS ["*" NO EXPLICIT DEFINITION - "%", NOT REFERENCED] *SFRCTN 1 %FVSCTY 2DP *IW *SMFX2 2 3 *H 4 *00 *D02 6 *VOIDPB 7 5 *DT 10 *HO 11 **%SPRCTY** %FDNSTY %XLNGTH %IRO *IPL0 12 FDATA *CD 13 14 *CD2 15 *SMF X 16 *DODT4 17 *P0 20 %GG \$1R1 *PXL 21 %FMFXSP %NC ***SDNSTY 22** TEMPORARIES .A0016 23 PDORFC [No errors detected]

194

00001 FUNCTION DPINRS (FMFXSP) 00002 DIMENSION IDNT (15), DT (15), KTPTL (15), ANGLE (15), XLNGTH (15), VOID (15) 00003 DIMENSION SFRCTN (15), FDATA (3) 00004 COMMON DT, DP, FDNSTY, ANGLE, FVSCTY, FDATA.GG.PINRSR. IHEXIT. IRO. IRI. IPLO. IW. PEXIT. SPRCTY. 00005 00006 2SDNSTY, SMFX, XLNGTH, VOIDPB, SFRCTN, VOID 00007 FMFX=FMFXSP 00008 NC = 1IF (FMFXSP.LT.O.) GO TO 1000 00009 00010 HO=HEXIT 00011 KH1HO=2 00012 P0=PEXIT CALL PDAGD (90.0, DT (6), FDNSTY, FMFX, FVSCTY, FDATA, GG, 00013 00014 1H, HO, KH1HO, IRO, IR1, IPLO, IW, NC, PO, PXL, 00015 2SDNSTY, SMFX, SFRCTN (6), XLNGTH (6), VOID (6)) 00016 P0=PXL 00017 H0=H 00018 CALL PDSTNP (DT (7) . DP. FDNSTY, FMFXSP. FVSCTY, FDATA.GG. 00019 1H.HO.IRO.IR1.IPLO.IW.NC.PO.PXL.SPRCTY. 00020 2SDNSTY, SMFX, XLNGTH (7), VOIDPB) 00021 11=8 00022 P0=PXL 00023 H0=H CD=2. 00024 00025 D0=.0254CALL PDORFC (CD, DO, DT (11), DP, FDNSTY, FMFXSP, FVSCTY, FDATA.GG. 00026 00027 1H,HO, IRO, IR1, IPLO, IW, NC, PO, PXL, SPRCTY, 00028 2SDNSTY, SMFX, XLNGTH (II), VOIDPB) 00029 KH1H0=2 00030 H0=H P0=PXL 00031 CALL PDAGD (90.0.DT (9) .FDNSTY.FMFX.FVSCTY.FDATA.GG. 00032 00033 1H.HO.KH1HO.IRO.IR1.IPLO.IW.NC.PO.PXL. 00034 2SDNSTY, SMFX, SFRCTN (9), XLNGTH (9), VOID (9)) 00035 DPINRS=PINRSR-PXL 00036 TYPE *, DPINRS 00037 G0 T0 2000 00038 1000 CONTINUE 00039 HO=HEXIT 00040 KH1H0=2 00041 PO=PEXIT 00042 CALL PDAGUP (90.0, DT (6), FDNSTY, FMFX, FVSCTY, FDATA, GG, 1H.HO.KH1HO.IRO.IR1.IPLO.IW.NC.PO.PXL. 00043 00044 2SMFX, SDNSTY, SFRCTN (6), XLNGTH (6), VOID (6)) 00045 H0=H P0=PXL 00046 00047 CALL PDSTNP (DT (7), DP, FDNSTY, FMFXSP, FVSCTY, FDATA, GG, 00048 1H,HO, IRO, IR1, IPLO, IW, NC, PO, PXL, SPRCTY, 00049 2SDNSTY, SMFX, XLNGTH (7), VOIDPB) 00050 11=8 00051 PO=PXI HO-H 00052 00053 CD=2. 00054 D0=.0254 00055 CALL PDORFC (CD, DO, DT (11), DP, FDNSTY, FMFXSP, FVSCTY, FDATA, GG, 00056 1H.HO. IRO. IR1. IPLO. IW.NC. PO. PXL. SPRCTY.

2SDNSTY, SMFX, XLNGTH (11), VOIDPB) 00057 00058 HO=H 00059 KH1HO=2 00060 PO=PXL 00061 CALL PDAGUP (90.0, DT (9), FDNSTY, FMFX, FVSCTY, FDATA, GG, 00062 1H, HO, KH1HO, IRO, IR1, IPLO, IW, NC, PO, PXL, 00063 2SMFX, SDNSTY, SFRCTN (9), XLNGTH (9), VOID (9)) 00064 DPINRS=PINRSR-PXL 00065 TYPE *. DPINRS 00066 2000 CONTINUE 00067 RETURN 00068 END

COMMON BLOCKS

/.COMM.	/(+135)								
DT	+0	DP	+17	FDNSTY	+20	ANGLE	+21	FVSCTY	+40
FDATA	+41	GG	+44	PINRSR	+45	HEXIT	+46	I RO	+47
IR1	+50	IPL0	+51	IW	+52	PEXIT	+53	SPRCTY	+54
SDNSTY	+55	SMFX	+56	XLNGTH	+57	VOIDPB	+76	SFRCTN	+77
VOID	+116								••

SUBPROGRAMS CALLED

PDSTNP	PDAGD	PDORFC	PDAGUP						
SCALARS	AND ARR	AYS ["*	" NO EXP	LICIT DE	FINITION	- "%" N	OT REFER	ENCED]	
%KTPTL *CD *PXL	4 11	*H *11 *FMFXSP	1 5 12	*D0 *P0 *NC	2 6 13	*HO *DP I NRS *FMF X	3 7 14	% I DNT *KH 1 HO	10
TEMPORA	RIES								
. A0016 . A0010 . A0002	23	. A0015 . A0007 . Q0000	24	.A0014 .A0006 .Q0001	25	.A0013 .A0005		. A0012 . A0004	

DPINRS [No errors detected]

195

00001 SUBROUTINE RISER (ANGLE.DT.FDNSTY, FMFXR.FVSCTY, FDATA.GG. 00002 1KH1HO, KHVFBC, H, HO, IRO, IR1, IPLO, IW, NC, PINRSR, PO, PXL. 00003 2PEXIT.HEXIT.SDNSTY.SMFX.SFRCTN.KTPFS.XLNGTH.VOID) 00004 С 00005 С 00006 С SUBROUTINE RISER TO CALCULATE THE P[RESSURE PROFILE 00007 C IN THE RISER SIDE OF THE HIGH VELOCITY FLUIDIZED BED 00008 С С DIMENSION ALL VARIABLES FOR SUBROUTINES CALLED 00009 00010 с 00011 С DIMENSION MAIN INPUT 00012 DIMENSION IDNT (15), DT (15), KTPTL (15), ANGLE (15), XLNGTH (15), VOID (15) 00013 DIMENSION SFRCTN (15), SP (75), XHIGHT (75) 00014 С DIMENSION VARIABLES FOR STRPL.FOR ***PLOTTING*** 00015 С 00016 DIMENSION LG (2), LGWR (4), NDEC (2), FDATA (3), XLBL (5), YLBL (2), 00017 1 DST (2), CRVLB (3) 00018 С FMFX=FMFXR 00019 00020 С PO=PEXIT 00021 00022 HO=HEXIT 00023 KH1H0=1 00024 11=1 00025 CALL PDAGD (ANGLE (11).DT (11).FDNSTY.FMFX.FVSCTY.FDATA.GG. 00026 1H.HO.KH1HO.IRO.IR1.IPLO.IW.NC.PO.PXL. 00027 2SDNSTY, SMFX, SFRCTN (11), XLNGTH (11), VOID (11)) 00028 KTPFS=1 00029 11=200030 RBND=XLNGTH(11) 00031 HO=H 00032 FMFX=FMFXR 00033 KH1H0=1 00034 PO=PXL 00035 CALL PDBEND (ANGLE (11), DT (11), FMFX, FDNSTY, FDATA, HO, H, KH1HO, 00036 11RO, 1R1, 1PLO, IW, NC, PO, PXL, RBND, SDNSTY, SMFX, SFRCTN (11), VOID (11)) 00037 KHVFBC=1 00038 KH1H0=2 00039 11=3 KTPFS=1 00040 00041 HO=H 00042 PO=PXL 00043 CALL PDVPC (ANGLE (11), DT (11), FDNSTY, FMFX, FVSCTY, FDATA, GG. 00044 1KH1H0, KHVFBC, H, HO, IRO, IR1, IPLO, IW, NC, PO, PXL, 00045 2SDNSTY.SMFX,SFRCTN(11),KTPFS,XLNGTH(11),VOID(11)) 00046 11=4 00047 KH1H0=2 00048 HO=H 00049 P0≈PXL 00050 CALL PDBEND (ANGLE (11), DT (11), FMFX, FDNSTY, FDATA, HO, H, KH1HO, 00051 11RO. IR1. IPLO. IW.NC.PO. PXL. RBND. SDNSTY. SMFX. SFRCTN (11), VOID (11)) 00052 KTPFS=1 00053 11=5 00054 HO=H 00055 P0=PXL 00056 CALL PDHPC (DT (11), FMFX, FDNSTY, FDATA, FVSCTY, IRO, IR1, IPLO, IW

1, HO, H, KTPFS, NC, PO, PXL, SMFX, SDNSTY, SFRCTN (11), XLNGTH (11), VOID (11))

00059		DPRSR=PXL-PEXIT
00060		PINRSR=PXL
00061	С	
00062		RETURN
00063		END

SUBPROGRAMS CALLED

00057

PDVPC PDHPC PDAGD PDBEND

SCALARS AND ARRAYS ["#" NO EXPLICIT DEFINITION - "%" NOT REFERENCED]

%DST ·		SFRCTN	1	VOID	2	*FVSCTY	3	%KTPTL	
*RBND	4	*!W	5	*HEXIT	6	%XHIGHT	•	*H	7
*KHVFBC	10	DT	ii ii	*PINRSR	12	*H0	13	%YLBL	
%I DNT		*PEXIT	14	*FDNSTY	15	XLNGTH	16	*1R0	17
*IPL0	20	*FMFXR	21	FDATA	22	*SMF X	23	*11	24
ANGLE	25	*P0	26	*GG	27	%LGW R		*KH1H0	30
%XLBL		*IR1	31	*DPRSR	32	%NDEC		*PXL	33
*KTPFS	34	ጄLG		%SP		%CRVLB		*NC	35
*SDNSTY	36	*FMFX	37						
TEMPORAF	RIES								
.A0016	40	.00000	41	. 0000 1	42	.00002	43	.00003	44

RISER [No errors detected]

	00001	С	
	00002	Ċ	
	00003		SUBROUTINE STNDPP (DT, DP, FDNSTY, FMFXSP, FVSCTY, FDATA, GG,
	00004		1H,HO, IRO, IR1, IPLO, IW, NC, PO, PXL, SPRCTY,
	00005		2PEXIT, HEXIT, SFRCTN, SDNSTY, SMFX, XLNGTH, VOIV, VOIDPB)
	00006	с	
	00007	ČC.	
	00008	c	SUBROUTINE STNDPP TO CALCULATE THE PRESSURE PROFILE IN
	00009	č	THE STANDPIPE SIDE OF THE HIGH VELOCITY FLUIDIZED BED SYSTEM
	00010	č	
	00011	č	
	00012	č	DIMENSION ALL VARIABLES NEEDED FOR ALL SUBROUTINES CALLED
	00013	č	DIMENSION MAIN INPUT
	00014	•	DIMENSION IDNT (15), DT (15), KTPTL (15), ANGLE (15), XLNGTH (15), VOID (15)
	00015		DIMENSION SFRCTN (15) . SP (75) . XHIGHT (75)
	00016	с	
	00017	č	DIMENSION VARIABLES FOR STRPL.FOR ***PLOTTING***
	00018	-	DIMENSION LG (2), LGWR (4), NDEC (2), FDATA (3), XLBL (5), YLBL (2),
	00019		1 DST (2), CRVLB (3)
	00020	С	
	00021	•	FMFX=FMFXSP
	00022	С	
	00023	č	
	00024	č	
	00025		IF (FMFXSP.LT.O.) GO TO 1000
	00026		11=6
	00027		HO=HEXIT
	00028		
	00029		KH1H0=2
	00030		PO=PEXIT
	00031		CALL PDAGD (90.0, DT (11), FDNSTY, FMFX, FVSCTY, FDATA, GG,
	00032		1H,HO,KH1HO,IRO,IR1,IPLO,IW,NC,PO,PXL,
	00033		2SDNSTY, SMFX, SFRCTN (11), XLNGTH (11), VOID (11))
	00034		11=7
	00035		PO=PXL
	00036		HO=H
	00037		CALL PDSTNP(DT(11), DP, FDNSTY, FMFXSP, FVSCTY, FDATA, GG,
	00038		1H,HO, IRO, IR1, IPLO, IW, NC, PO, PXL, SPRCTY,
	00039		2SDNSTY, SMFX, XLNGTH (II), VOIDPB)
	00040		11=8
-	00041		PO=PXL
	00042		HO=H
Į	00043		CD=2.
	00044		D0=.0254
	00045		CALL PDORFC(CD,DO,DT(II),DP,FDNSTY,FMFXSP,FVSCTY,FDATA,GG,
-	00046		1H,HO, IRO, IRI, IPLO, IW,NC, PO, PXL, SPRCTY,
1	00047		2SDNSTY, SMFX, XLNGTH (II), VOIDPB)
ì	00048		11=9
Į	00049		KH1H0=2
-	00050		HO=H
Ì	00051		PO=PXL
	00052		CALL PDAGD (90.0, DT (11), FDNSTY, FMFX, FVSCTY, FDATA, GG,
	00053		1H,HO,KH1HO, IRO, IR1, IPLO, IW,NC,PO,PXL,
	00054		2SDNSTY, SMFX, SFRCTN (11), XLNGTH (11), VOID (11))
	00055		DPINRS=PINRSR-PXL
	00056		GO TO 2000
1			

and the particular sector

00057 1000 CONTINUE 00058 С 11=6 00059 00060 HO=HEXIT 00061 KH1H0=2 00062 PO=PEXIT 00063 CALL PDAGUP (90.0, DT (11), FDNSTY, FMFXSP, FVSCTY, FDATA, GG, 00064 1H, HO, KH1HO, IRO, IR1, IPLO, IW, NC, PO, PXL, 00065 2SMFX, SDNSTY, SFRCTN (1i), XLNGTH (11), VOID (11)) 00066 11=7 00067 HO=H 00068 PO=PXL 00069 CALL PDSTNP (DT (11), DP, FDNSTY, FMFXSP, FVSCTY, FDATA, GG, 00070 1H, HO, IRO, IR1, IPLO, IW, NC, PO, PXL, SPRCTY, 00071 2SDNSTY, SMFX, XLNGTH (11), VOIDPB) 00072 PO=PXL 00073 HO=H 00074 CD=2. 00075 11=8 00076 DO=.0254 00077 CALL PDORFC (CD, DO, DT (11), DP, FDNSTY, FMFXSP, FVSCTY, FDATA, GG, 00078 1H, HO, IRO, IR1, IPLO, IW, NC, PO, PXL, SPRCTY, 00079 2SDNSTY, SMFX, XLNGTH (11), VOIDPB) 00080 11=9 00081 HO=H 00082 KH1H0=2 00083 PO=PXL 00084 CALL PDAGUP (90.0, DT (11), FDNSTY, FMFXSP, FVSCTY, FDATA, GG. 00085 1H, HO, KH1HO, IRO, IR1, IPLO, IW, NC, PO, PXL, 00086 2SMFX, SDNSTY, SFRCTN (11), XLNGTH (11), VOID (11)) 00087 DPINRS=PINRSR-PXL 00088 2000 CONTINUE 00089 RETURN 00090 END SUBPROGRAMS CALLED PDSTNP PDAGD PDORFC PDAGUP SCALARS AND ARRAYS ["*" NO EXPLICIT DEFINITION - "%" NOT REFERENCED] 2DST SFRCTN 1 VOID *FVSCTY 21 2 *DP 22 %KTPTL *IW *HEXIT 24 %XHIGHT 23 *H 25 26 *00 \$V01V *V010PB 27 DT 30 *PINRSR 31 *H0 32 **%YLBL** \$IDNT ***SPRCTY 33** *PEXIT 34 *FDNSTY 35 XLNGTH 36 *1R0 *IPL0 40 37 41 *CD FDATA 42 *SMFX 43 44 **%ANGLE** *11 *PO 45 *GG 46 ***DPINRS** 47 %LGWR *KH1HO 50 %XLBL *1R1 51 %NDEC *PXL 52 *FMFXSP 53 %LG **%SP** %CRVLB *NC 54 ***SDNSTY 55** *FMFX 56 TEMPORARIES .A0016 57 .00000 60 .00001 61 .00002 62 .00003 63 STNDPP [No errors detected]

APPENDIX B2

and and an a state of the set
HIGH VELOCITY FLUIDIZED BED COAL COMBUSTION MODEL

00001 PROGRAM TO FOLLOW THE COMBUSTION OF A COAL PARTICLE С 00002 AS IT FLOWS THROUGH THE HIGH VELOCITY FLUIDIZED BED COMBUSTOR С 00003 С 00004 С 00005 VARIABLE DEFINITION - UNITS С => AREA OF CARBON PARTICLE 00006 С Α 00007 С => FREQUENCY FACTOR FOR DEVOLATILIZATION A 1 80000 С => FREQUENCY FACTOR FOR DEVOLATILIZATION A2 00009 С AFC => FREQUENCY FACTOR FOR CARBON RXN RATE 00010 С AFS => FREQUENCY FACTOR FOR SULFUR RXN RATE -00011 С AFH => FREQUENCY FACTOR FOR HYDROGEN RXN RATE -00012 C CN02 => CONC. OF 02 IN GAS - KGMOL/M3 00013 С CDNSTY => COAL DENSITY - KG/M3 00014 C DP1 => DIAMETER OF PARTICLE AT EACH TIME STEP - M 00015 С DPC => DIAMETER OF PARTICLE FOR CALCULATION ~ M 00016 С DPSTN => DIAMETER OF SORBENT - M 00017 DIFFO2 => DIFFUSION COEF. FOR O2 - M2/S С 00018 С DT => DIAMETER OF COMBUSTOR - M С 00019 DT2 => DT*DT - M2 00020 С DPC3 => DPC*DPC*DPC - M3 00021 С DPSTN3 => DPSTN*DPSTN*DPSTN - M3 00022 С => ACTIVATION ENERGY FOR DEVOLATILIZATION - KCAL/KGMOL E 1 00023 C E2 => ACTIVATION ENERGY FOR DEVOLATILIZATION - KCAL/KGMOL 00024 С EPS => VOID FRACTION IN COMBUSTOR 00025 С EPS1 => SOLIDS FRACTION IN COMBUSTOR 00026 C EPSC => 1. - COAL FRACTION 00027 C EPSC1 => COAL FRACTION 00028 C EPSTN => 1. - SORBENT FRACTION 00029 С EPSTN1 => SORBENT FRACTION 00030 С EAC => ACTIVATION ENERGY FOR CARBON RXN - KCAL/KGMOL 00031 С EAS => ACTIVATION ENERGY FOR SULSUR RXN - KCAL/KGMOL 00032 C EAH => ACTIVATION ENERGY FOR HYDROGEN RXN - KCAL/KGMOL 00033 С F() => VALUE OF DERIVATIVE AT EACH TIME STEP С 00034 1 => CARBON 00035 C 2 => SULFUR 00036 C 3 => HYDROGEN 00037 C => GAS MASS FLUX FMFX 00038 C FDNSTY => FLUID DENSITY (GAS) - KG/M3 00039 C FLOARA => FLOW AREA - M2 00040 C GG => ACCELERATION OF GRAVITY - 9.807 M/S2 00041 C IR => INPUT UNIT NUMBER KINETIC DATA 00042 C IPLO => OUTPUT UNIT NUMBER PLOT MASS FRACTION 00043 С ۱W => OUTPUT UNIT NUMBER (WRITE) IPLOT => OUTPUT UNIT NUMBER PLOT COAL CONVERSION 00044 С 00045 С IPLT => OUTPUT UNIT NUMBER PLOT CONVERSION OF SO2 CASO4 С 00046 I PPM => INARPUT UNIT NUMBER FLOW DATA С н 00047 => DYSIM CALCULATION STEP SIZE С 00048 HPLOT => DYSIM PRINT INTERVAL C HPRNT => DYSIM PLOT INTERVAL 00049 00050 C METH => DYSIM CALCULATION METHOD С 00051 N => DYSIM NUMBER OF EQUATIONS 00052 C NTASK => DYSIM DIRECTOR 00053 C PHIC => STOIC COEFF. CARBON 00054 C PHIS => STOIC. COEFF. SULFUR 00055 C PHIH => STOIC. COEFF. HYDROGEN 00056 C PI => 3.141592

RGV => GAS CONSTANT VOLUME - M3ATM/KGMOLK 00057 С 00058 С RGE => GAS CONSTANT ENERGY - KCAL/KGMOLK 00059 С SMF X => SOLID MASS FLUX KG/M2S 00060 С SDNSTY => SOLID PARTICLE DENSITY - KG/M3 00061 С STNMFX => SORBENT MASS FLUX - KG/M2S 00062 С т => TIME - S 00063 С TG => GAS TEMP. - K 00064 С ΤS => SOLIDS TEMP. - K С 00065 TVOL => DEVOLATILIZATION TIME - S С 00066 TSF => SULFURIZATION TIME - S 00067 С TSFVOL => TSF/(0.001**3*P1/6.) - S/M3 С 00068 TF => FINIAL CALCULATION TIME - S 00069 С UG => GAS VELOCITY - M/S 00070 С US => SOLIDS VELOCITY -M/S С USLIP => SLIP VELOCTIY - M/S 00071 С 00072 VISC => VISCOSITY - KG/MS С WEVM 00073 => MASS FRACTION VOLATLIE MATTER PROXIMATE ANALYSIS 00074 С WFFC => MASS FRACTION FIXED CARBON PROXIMATE ANALYSIS С WFM 00075 => MASS FRACTION MOISTURE PROXIMATE ANALYSIS 00076 С WFA => MASS FRACTION ASH PROXIMATE ANALYSIS 00077 С WFC => MAF MASS FRACTION CARBON 00078 С WFH => MAF MASS FRACTION HYDROGEN 00079 С WFS => MAF MASS FRACTION SULSUR 00080 С WFO => MAF MASS FRACTION OXYGEN 18000 С WFN => MAF MASS FRACTION NITROGEN 00082 С X1 => ADJUSTED MASS FRACTION CARBON С 00083 X2 => ADJUSTED MASS FRACTION SULFUR 00084 С X3 => ADJUSTED MASS FRACTION HYDROGEN 00085 С xv => MASS FRACTION VOLATILES 00086 С XO => ADJUSTED MASS FRACTION OXYGEN 00087 С => ADJUSTED MASS FRACTION NITROGEN XN 00088 С XH2O => MASS FRACTION WATER 00089 С XVOL => TOTAL VOLATILE MASS FRACTION 00090 С XASH => MASS FRACTION ASH 00091 С XVOLHT => TOTAL VOLATILE MASS FRACTION FOR HIGH TEMPERATURE С 00092 XMASH => MASS OF ASH IN PARTICLE - KG 00093 С XMVOL => MASS OF TOTAL VOLATILES IN PARTICLE - KG 00094 C X() => MASS OF PARTICLE - KG 00095 С XI() => INITIAL X() 00096 С 1 => CARBON С 00097 2 => SULFUR 00098 c 3 => HYDROGEN С XMTOT 00099 => TOTAL MASS OF PARTICLE - KG С 00100 XMTOTI => INITIAL TOTAL MASS OF PARTICLE - KG 00101 С XK1 => DEVOLATILIZATION RATE CONSTANT 00102 С XK2 => DEVOLATILIZATION RATE CONSTANT 00103 С XKDC => MASS TRANSFER COEFF. 02 - M/S 00104 С XKRC => RXN RATE CONSTANT CARBON -00105 С XKRS => RXN RATE CONSTANT SULFUR -С 00106 XKRH => RXN RATE CONSTANT HYDROGEN -00107 С XL => CALCULATION HEIGHT - M 00108 С XLF => FINIAL HEIGHT OF COMBUSTOR - M 00109 С XMWTC => MOLECULAR WEIGHT CARBON - KG/KGMOL 00110 С XMWTS => MOLECULAR WEIGHT SULFUR - KG/KGMOL 00111 С XMWTO => MOLECULAR WEIGHT OXYGEN - KG/KGMOL 00112 С XMWTH => MOLECULAR WEIGHT HYDROGEN - KG/KGMOL

00113 С XMWTW => MOLECULAR WEIGHT WATER ~ KG/KGMOI 00114 C XHWSO2 => MOLECULAR WEIGHT SO2 - KG/KGMOL 00115 C XMWCAO => MOLECULAR WEIGHT CAO - KG/KGMOL 00116 С XMSO2G => MASS GENERATED SO2 - KG 00117 С XMSO2R => MASS SO2 REMOVED FROM GAS - KG 00118 С XMSO2 => MASS SO2 IN GAS - KG С 00119 XNCP => NUMBER OF COAL PARTICLES IN CALC. VOLUME 00120 C XNSTN => NUMBER OF SORBENT PARTICLES IN CALC. VOLUME 00121 С XSOX => EOUIVALENT MASS OF SO2 IN COAL - KG 00122 С XSOXI => INITIAL XSOX - KG 00123 С Y1 => DEVOLATILIZATION FRACTION 00124 С ¥2 => DEVOLATILIZATION FRACTION 00125 С 00126 С 00127 С 00128 С 00129 С DIMENSION ALL VARIABLES С 00130 00131 С USED FOR DYSIM 00132 DIMENSION XI (3) .Y (3) .X (3) .F (3) 00133 C 00134 С USED FOR STRPL.FOR 00135 DIMENSION LG (2), LGWR (4), NDEC (2), FDATA (3), XLBL (3), YLBL (3) 00136 1 ,YLBL3(4),YLBL2(3),DST(2),CRVLB(4) 00137 С 00138 С LIST ALL COMMON VARIABLES 00139 С 00140 C USED IN DYSIM 00141 COMMON N.METH.H.HPRNT.HPLOT.TF 00142 С 00143 C INITIALIZATION SECTION 00144 DATA FDATA/'(1P9E11.4) '/.NFDATA/3/ 00145 DATA XLBL/' LENGTH. M'/ 00146 DATA YLBL/' MASS FRAC. '/ 00147 DATA CRVLB/'TOT'.'CRBN'.'SLFR'. 00148 'HDGN'/ 1 00149 DATA YLBL2/' CONVERSION '/ 00150 DATA YLBL3/'CONVERSION OF SO2'/ 00151 1R=18 00152 JPL0=19 00153 IPL0T=20 00154 IPLT=21 00155 I₩=5 00156 IPPM=22 00157 NTASK=0 00158 GG=9.807 00159 P1=3.141592 00160 RGE=1.987 00161 RGV=0.08205 00162 N=3 00163 METH=3 00164 H=0.1 00165 HPRNT=0.5 00166 HPLOT=0.5 00167 XMS02G=0. 00168 C

203

204

00169	С	OPEN INPUT AND OUTPUT FILES
00170	•	CALL OPCL (IR, IW, 1, 'HVFBC. IN')
00171		CALL OPCL (IPLO, IW, 1, 'HVFBC.PT')
00172		CALL OPCL (IPLT, IW, 1, 'HVFBC.SR')
00173		CALL OPCL (IPLOT, IW, 1, 'HVFBC.PL')
00174		CALL OPCL (IPPM, IW, 1, 'PPMO.I')
00175	С	
00176	č	
00177	č	READ HYDRODYNAMIC PARAMETERS AND EQUIPMENT SIZE
00178	č	DATA PROVIDED FOR HVFPPM.FOR
00179	•	READ (IPPM, *) SMFX, SDNSTY, EPS, DPSTN, EPS1
00180		READ (IPPM,*) FMFX,FDNSTY,VISC
00181		READ (IPPM,*) XLF, DT
00182	с	
00183	č	READ PROXIMATE AND MAF ULTIMATE ANALYSIS
00184	č	AND PHISICAL PROPERTIES OF COAL
00185	Ũ	READ (IR, *) WFVM, WFFC, WFM, WFA
00186		READ(IR,*) WFC,WFS,WFH,WFN,WFO
00187		READ (IR.*) CONSTY
00188	с	READ KINETIC INFO
00189	č	
00190	č	DEVOLATILIZATION RATE
00191	•	READ (IR, *) Y1, Y2, A1, A2, E1, E2, TVOL
00192	С	
00193	č	COMBUSTION RATE
00194	•	READ (IR, *) PHIC, PHIH, PHIS, AFC, AFH, AFS, EAC, EAH, EAS
00195		READ (IR, *) TS, TG, CNO2, DPC, DIFFO2
00196	С	
00197	č	DESULFURIZATION
00198	-	READ (IR. *) PSTR. TSF. XI S02G
00199	С	
00200	č	MOLECULAR WEIGHT
00201	-	READ (IR, *) XMWTC, XMWTH, XMWTS, XMWTO, XMWTW, XMWSO2, XMWCAO
00202	С	
00203	Ċ	FLOW RATE OF COAL AND STONE
00204		READ (IR, *) CR. STNR
00205	CC	
00206	С	
00207	С	PRELIMINARY CALCULATIONS
00208	С	
00209		DT2=DT*DT
00210		FLOARA=PI*DT2/4.
00211		US=SMFX*FLOARA/SDNSTY/EPS1
00212		UG≖FMFX*FLOARA/FDNSTY/EPS
00213		USLIP=UG-US
00214		TF=XLF/US
00215		EPSCI= (CR/FLOARA/SMFX) *EPSI
00216		EPSC=1EPSC1
00217		EPSTN1=EPS1-EPSC1*CDNSTY/SDNSTY
00218		EPSTN=1EPSTN1
00219		STNMFX=SMFX*EPSTN1/EPS1
00220		X1=WFFC*WFC
00221		X2=WFFC*WFS
00222		X3=WFFC*WFH
00223		XV≕WFVM
00224		XO=WFFC*WFO

Same allowed and a solution

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

									Sec. ly:		
00276 00277 00278 00279 00280	00272 00273 00274 00275	0026/ 00268 00269 00270 00271	00263 00264 00265	00260 00261 00262	00255 00256 00258 00258	00251 00252 00253 00254 C	 00244 00245 00246 5 00247 c	00238 00239 00240 00241 00241 00242	00234 00235 00236 c	00228 00229 00231 00232	00225 00226 00227
LTK=0 LPNT=1 INTCH=0 LRPT=2 LRPT=2	SZL-06.12 SZFL-0.06 DST (1) =0.06 DST (2) =0.06	NYLB3=13 R0TA9-0 L N=1 NM-4	CYCLX=-6.8 NXLB=11 NYLB= 12	L6(1)=0 KSL6=-7	XAINAE.0 YAINE.0 LIO-0	SOZREC-XNSTN/XMCGO/TSFVD/UG/H/FIORA INITIALIZE AND CALL STRPL.FOR SUBROUTINE SET VALUES FOR PLOTTING		X (2) =X2*CONSTY*P ! HDPC**3./6. X (3) =X3*CONSTY*P ! HDPC**3./6. XMOL=*VDU+CONSTY*P ! HDPC**3./6. XASH=XMSH*CONSTY*P ! #DPC**3./6. XSOX=X (2) #2.XXX	K1=A1*EXP(-E1/RGE/TS) K2=A2*EXP(-E2/RGE/TS) (1)=Y1*CDNSTV*P1*DPC***3	V/OL=X/+XA+XH+XH2O DPSTN3=DPSTN#+3 DPC3=DPCX+3 XNCP=3.+0T2+US+H*EPSCN1/2./DPC3 XNSTN=3.+0T2*US+H*EPSTN1/2./DPSTN3	XN-HFF CANFN XHASH-WFA XH20-WFH

205

1 1 297 6. -

63.64	14.1		206
1.20%	12		
	00281		LWSL=0
	00281		LDATA=0
- 1 ⁻	00283		LGWR (1) =0
	00284		LGWR (2) = 1
	00285		LGWR $(3) = 0$
	00286		LGWR(4) = 1
	00287		LF811=2
	00288		NDEC (1) =-2
	00289		NDEC (2) =-2
	00290		KCOL=2
	00291		JCON=1
	00292		NDPNT=-7
	00293		JCRVLB=2
	00294	с	
	00295		CALL STRPL (IPLO, IW, XMIN, XMAX, YMIN, YMAX, LIO, LG, KSLG, CYCLX,
	00296		1 CYCLY, NXLB, NYLB, ROTA, LIN, NW, SZLT, SZPL, DST, LTK, LPNT,
	00297 00298		2 INTCH,LRPT,LFM1,LWSL,LDATA,LGWR,LF811,LWS1,LWS2,NDEC,KCOL, 3 JCON.FDATA,XLBL,YLBL.NFDATA.NDPNT.JCRVLB.CRVLB)
	00290		3 JCON,FDATA,XLBL,YLBL,NFDATA,NDPNT,JCRVLB,CRVLB) JCRVLB=1
	00300		CALL STRPL (IPLOT, IW, XMIN, XMAX, YMIN, YMAX, LIO, LG, KSLG, CYCLX,
	00301		1 CYCLY, NXLB, NYLB2, ROTA, LIN, NW, SZLT, SZPL, DST, LTK, LPNT,
	00302		2 INTCH, LRPT, LFM1, LWSL, LDATA, LGWR, LF811, LWS1, LWS2, NDEC, KCOL.
	00303		3 JCON, FDATA, XLBL, YLBL2, NFDATA, NDPNT, JCRVLB, CRVLB)
	00304		JCRVLB=0
	00305		CALL STRPL(IPLT, IW, XMIN, XMAX, YMIN, YMAX, L10, LG, KSLG, CYCLX,
	00306		1 CYCLY, NXLB, NYLB3, ROTA, LIN, NW, SZLT, SZPL, DST, LTK, LPNT,
	00307		2 INTCH, LRPT, LFM1, LWSL, LDATA, LGWR, LF811, LWS1, LWS2, NDEC, KCOL,
	00308	•	3 JCON, FDATA, XLBL, YLBL3, NFDATA, NDPNT, JCRVLB, CRVLB)
	00309	с с	
i	00311	č	START CALLING DYSIM TO SIMULATE COAL COMBUSTION
i	00312	č	START CALETING DISTITIO STIDERTE CORE CONBUSTION
	00313	č	
	00314		IF (TS.LT.1350.) GO TO 7
	00315		XVOLHT= (Y1*XK1+Y2*XK2) * (1EXP (-TVOL*(XK1+XK2))) / (XK1+XK2)
	00316		X1=X1+XV-XVOLHT
	00317		XV=XVOLHT
	00318		XVOL=XV+XO+XN+XH2O
	00319 00320		XMVOL=XVOL*CDNSTY*PI*DPC3/6. X(1)= X1*CDNSTY*PI*PDC3/6.
	00320		X(1) = X(1) XI(1) = X(1)
and the second se	00322		XMTOTI=X1(1)+X1(2)+X1(3)+XMVOL+XASH
	00323	7	CONTINUE
	00324	с́	
	00325	10	CONTINUE
	00326		CALL DYSIM(T,X,F,NTASK,IW)
	00327		GO TO (50,100,150,200,250) NTASK
	00328	50	CONTINUE
	00329	C	NTASK=1
	00330	с 	MONITOR CALCULATIONS AT EACH TIME STEP
	00331 00332	55 C	CONTINUE
	00333		GO TO 10
	00334	с	
	00335	100	CONTINUE
	00336	c	NTASK=2
- C. 1			

00337 EVALUATE ALL DERIVATIVES XI =US*T 00338 00339 IF (T.GT.O.) XMVOL=0.0 00340 $XMT\bar{U}T=X(1)+X(2)+X(3)+XMVOL+XASH$ 00341 DP1=(XMTOT*6./P1/CDNSTY)**(1./3.) 00342 DPC=DP1 00343 RE=USLIP*DPC*FDNSTY/VISC 00344 SC=VISC/FDNSTY/DIFF02 00345 XKD02=(DIFF02/DPC) * (2.+0.6*RE**0.5*SC**0.33) 00346 XKRC=TG*RGV*AFC*EXP (-EAC/RGE/TS) /XMWTO 00347 XKRS=TG*RGV*AFS*EXP (-EAS/RGE/TS) /XMWTO 00348 XKRH=TG*RGV*AFH*EXP (-EAH/RGE/TS) /XMWTO 00349 A=P1*DPC**2. 00350 С 00351 F (1) =- A*PHIC*XMWTC*CN02*(X (1) /XMTOT) / (1./XKD02+1./XKRC) F (2) =- A*PHIS*XMWTS*CN02* (X (2) /XMTOT) / (1./XKD02+1./XKRS) 00352 F (3) =- A*PHIH*XMWTH*CN02* (X (3) /XMTOT) / (1./XKD02+1./XKRH) 00353 00354 00355 GO TO 10 00356 С 00357 150 CONTINUE 00358 C NTASK=3 с 00359 PRINT AT INCREMENTS OF HPRNT CALL PRNTA OR PRNTB 00360 C XL=US*T 00361 00362 XMS02R=XIS02G*EXP (S02RRC*T) 00363 XSOX=2.*XNCP*(XSS-X(2)) 00364 XMS02G=XMS02G+XS0X 00365 IF (T.GT.O.) GO TO 175 00366 XMS02=XMS02G-XMS02R 00367 GO TO 180 00368 CONTINUE 175 00369 XMS02=XMS02~XMS02R+XS0X 00370 180 CONTINUE 00371 XSS=X (2) 00372 IF (XMS02.LT.0.0) XMS02=0.0 CALL PRNTA (7, XL, X (1), X (2), X (3), XSOX, XMSO2R, XMSO2, XMSO2G, 0., 5) 00373 00374 IF (T.GT.O.) GO TO 190 00375 XS02=0.0 GO TO 195 00376 00377 190 CONTINUE 00378 XSO2=1.-XMSO2/XMSO2G 00379 195 CONTINUE 00380 WRITE (IPLT, FDATA) XL, XSO2 00381 00382 GO TO 10 00383 С 00384 200 CONTINUE 00385 С NTASK=4 00386 с USED FOR PLOTTING AT INTERVALS HPLOT 00387 XL=US*T 00388 DO 225 1=1,3 00389 Y(I)=X(I)/XMTOTI 00390 CONTINUE 00391 YMTOT=XMTOT/XMTOTI 00392 WRITE (IPLO, FDATA) XL, YMTOT, Y (1), Y (2), Y (3)

208

								200	
00393		00	226 1=1,	3					
00394				1X(I)/)	(1(1)				
00395	226	CON	TINUE						
00396				(1) +X (2) +	-X (3)) / ()	((1) + X)	(2) +X1 (3))	
00397				FDATA) XL					
00398	С			,,		,	1.07		
00399	L.	co -	0 10						
00399	с	GU							
00401	250	LUN	TINUE						
00402	c		NTAS						
00403	С			LATION FU	NISHEU				
00404			-999.						
0405				FDATA) DUM					
00406				, FDATA) DL					
00407				FDATA) DUM	1, DUM, DUM	I, DUM, DUM	I, DUM, DUM	I, DUM, DUM	l I
00408		DUM=							
00409				FDATA) DUM					
00410		WRIT	TE (I PLOT	,FDATA) DU	IM, DUM, DL	IM, DUM, DU	M, DUM, DU	IM, DUM, DU	м
00411				FDATA) DUM			, DUM, DUM	,DUM,DUM	i
0412		C/	ULL OPCL	(IPLO, IW,	2, HVFBC	.PT')			
0413		CA	LL OPCL	(IR, IW, 2,	'HVFBC.1	N')			
00414		CA	LL OPCL	(IPLOT, IW	.2.'HVFB	C.PL')			
00415				(IPLO, IW,					
00416		C/	LL OPCL	(IPLT, IW,	2. 'HVFBC	.PT')			
00417				(IPPM, IW,					
00418	9999		INUE	,		• /			
00419	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		TOP						
00420	с	-		AT STATE	MENTS				
00421	č		1 010	INT DIALE					
0422	° .	F	ND						
		-							
COMMON	BLOCKS								
	/ (+6)								
N	+0	METH	+1	н	+2	HPRNT	+3	HPLOT	+4
TF	+5								
UBPROG	RAMS CAL	LED							
PRNTA	OPCL	STRPL	EXP.	DYSIM					
CALARS	AND ARR	AYS_["*	" NO EXF	LICIT DE	FINITION	- "\$" N	OT REFER	ENCED]	
XASH	1	DST	2	*XMS02R	4	*XNCP	5	*E2	6
VISC	7	*XS02	10	*LFM1	ii ii	*CYCLY	12	*CR	13
PHIS	14 14	*TS	15	*AFS	16	*TSFVOL		*FLOARA	
XMWCAO		*WFC	22	*T	23	*YMAX	24	*JCRVLB	
CN02	26	*IW	27	*XK2	30	*EAC	31	*NYLB	32
XNSTN	33	*WFN	34	*XV	35	*RGE	36	*XMIN	
TG	33 40	*¥2	41	*** *P1	25 42	*E1	43	*NTASK	37 44
RE	45	*XMTOT	46	*XH20	47	*SC	50	*LPNT	51
CYCLX	52	*XMWTO	53	*NDPNT	54	*INTCH	55	*L10	56
XSOX	57	*XKRS	60	*EPSTN	61	*XMVOL	62	*NXLB	63
PSTR	64	*EPS1	65	*DT	66	*X3	67	*DT2	70

2	n	0
2	u	9

*KCOL	71	*LIN	72	*EPSC1	73	*Y1	74	YLBL	75
Y	100	*XMS02	103	*NW	104	*X0	105	*A2	106
*JCON	107	*DIFF02	110	*FDNSTY	111	*WF0	112	*LRPT	113
*XMAX	114	*STNR	115	*CDNSTY	116	*KSLG	117	*IPLO	120
XI	121	*LDATA	124	*S02RRC	125	*PHIC	126	*WFH	127
*XSOX1	130	*XMWTS	131	*EPSTN1	132	*SZLT	133	*XH20	134
*EAH	135	*XLF	136	*NYLB3	137	*XMWTC	140	*₩FA	141
FDATA	142	*X2	145	*WFS	146	*WFVM	147	*SMF X	150
*LWS2	151	*XVOL	152	*XKDO2	153	*XN	154	*XMWTH	155
*EAS	156	*A1	157	*A	160	*LTK	161	*IPLOT	162
.50002	163	*LWSL	164	*XMASH	165	*EPSC	166	*XIS02G	167
*AFC	170	*WFFC	171	.\$0001	172	*XVOLHT	173	. SOOOO	174
*USLIP	175	*XMWS02	176	*DPSTN	177	*GG	200	*TSF	201
LGWR	202	*STNMF X	206	*DUM	207	*LWS1	210	*IPLT	211
*XKRC	212	*NYLB2	213	*X1	214	*US	215	*PH1H	216
XLBL	217	*XMWTW	222	Х	223	*XMTOTI	226	NDEC	227
YLBL3	231	*DP1	235	*DPC	236	*SZPL	237	*YMIN	240
*XK1	241	*UG	242	*1	243	*DPSTN3	244	*WFM	245
*YMTOT	246	*IPPM	247	F	250	*XSS	253	*XMSO2G	254
*RGV	255	*ROTA	256	*DPC3	257	*EPS	260	LG	261
*XL	263	*TVOL	264	*PDC3	265	CRVLB	266	*XKRH	272
YLBL2	273	*LF811	276	*SDNSTY	277	*NFDATA	300	*FMFX	301
*AFH	302	*1R	303						

TEMPORARIES

.Q0000 304

MAIN. [No errors detected]

ļ	1		210	
į				
ļ	00001		THIS SUBROUTINE IS USED TO OPEN AND CLOSE FILES	
ļ	00002	C		
İ	00003	с		
ļ	00004	С	·	
ļ	00005		SUBROUTINE FLOPCL (IUNIT, IW, KOPR, FNAM)	
	00006	С		
	00007		CL.FOR	
	00008	С		
	00009	С	THIS SUBROUTINE IS TO OPEN AND CLOSE A FILE ON DISK	
ļ	00010	С	AND TO ASK USER TO INPUT FILE NAME FROM TTY	
ļ	00011	С		
i	00012	С	IUNIT THE UNIT NUMBER USED FOR FILE 1/0	
i	00013	С	IW IS THE OUTPUT UNIT NUMBER	
ļ	0001.4	С	KOPR THE OPERATION TYPE DESIRED.	
	00015	С	KOPR=1 TO OPEN FILE,	
ļ	00016	С	KOPR = 2 TO CLOSE FILE	
ļ	00017	c	KOPR = 3 TO ASK USER TO ENTER INPUT FILE NAME AND THEN	
	00018	ċ	ECHO IT BACK TO TERMINAL	
	00019		FNAM NAME OF FILE. NOT MORE THAN 8 CHARACTERS. THIS NAM	1F
	00020	č	IS NOT NEEDED IN CLOSING THE FILE	
	00021	č		
I	00022	-	DOUBLE PRECISION FNAM	
	00023		DATA DSKZ/'DSK'/	
	00024		GO TO (50, 100, 150), KOPR	
	00025	50		
ł	00026	c	CONTINUE	
ļ	00027	č	OPEN FILE AND WRITE A MESSAGE	
l	00028	č	OFEN THEE AND WRITE A RESORDE	
	00029	C C	OPEN (UNIT=IUNIT, DEVICE=DSKZ, FILE=FNAM)	
	00030		WRITE(IW.9000) IUNIT.FNAM	
	-00031-		- GO TO 200	
ļ	00032	100	CONTINUE	
	00033	c	CONTINUE	
ļ	00034	č	CLOSE FILE AND WRITE A MESSAGE	
ł	00035	č	CEOSE TTEE AND WATTE A TRESORDE	
į	00036	U U	CLOSE (UNIT=IUNIT)	
1	00037		WRITE (IW, 9050) IUNIT	
ł	00038		GO TO 200	
	00039	150		
	00040	c , jo	CONTINUE	
	00041	č	ASK USER TO INPUT FILE NAME	
	00041	c	NON OVER TO INFUT FILE MARE	
	00043	C C	TYPE 9100	
	00044		ACCEPT 9150, FNAM	
	00045		TYPE 9200, FNAM	
	00045	200	CONTINUE	
	00048	200	RETURN	
	00048	9000		
	00048			
	00050		FORMAT (' INPUT FILE NAME ',\$)	
	00051	9150	FORMAT (A10)	
	00052	9200	FORMAT (' INPUT FILE IS ',A10)	
	00053		END	

SCALARS AND ARRAYS ["*" NO EXPLICIT DEFINITION - "%" NOT REFERENCED] FNAM 1 *IW 3 *IUNIT 4 *KOPR 5 *DSKZ 6 TEMPORARIES .A0016 7

FLOPCL [No errors detected]

APPENDIX B3

OVERALL ENERGY BALANCE MODEL

			213
	00001	с	THIS PROGRAM IS USED TO OBTAIN THE GAS MASS FLUX
l	00002	č	AND SOLIDS MASS FLUX GIVEN THE DESIRED COAL FLOW RATE
ł	00003	č	THE PHYSICAL PROPERTIES FOR ALL COMPONENTS. THE HEAT
l	00004	č	OF REACTION FOR COMBUSTION AND CALCINATION. THE SOLIDS TO
l	00004	č	GAS MASS FLUX RATIO, AND THE CALCIUM TO SULFUR MOLAR RATIO
1	00006	č	GAS HASS FLOA RAITO, AND THE CRECION TO SUEFOR HULAR REATO
l	000007	c	
ł	00007	c	OPEN INPUT AND OUTPUT FILES
1		c	OPEN INPUT AND DUIPUT FILES
1	00009	L	18-10
ĺ.	00010		!R=19 I₩=5
İ.	00012		10=20
	00012		CALL OPCL (IR.IW.1.'OAEB.IN')
ļ	00014		CALL OPCL (IO, IW, 1, 'OAEB.OUT')
	00015	с	
l	00016	č	READ INPUT FROM GAEB.IN UNIT 19
	00017	č	
i	00018	•	READ (IR, *) CFR, DHCMB, CPC, TC, EFF
l	00019		READ (IR, *) WFVM, WFFC, WFM, WFA
1	00020		READ (IR, *) WFC, WFS, WFH, WFN, WFO
	00021		READ (IR, *) XMWTC, XMWTH, XMWTS, XMWTO, XMWTW, XMWSO2, XMWCAO, XMWSO4
l	00022	1	, XMWCA3
	00023		READ (IR, *) CPSTN, CASRTO, DHCLCN
	00024		READ (IR, *) CPA, FDNSTY, SFXGFX
	00025		READ(IR,*) DT
	00026	¢.	
l	00027	C	
İ.	00028		FLOARA=3.141592*DT*DT/4.
	00029		HTGEN= CFR*DHCMB
	00030		XMLFRS= CFR*(1WFA-WFM) *WFS/XMWTS
	00031		STNMFR=CASRTO*XMLFRS
i	00032	с	STNFR=STNMFR*XMWCA3
ļ	00034	c	CALCULATE THE NECESSARY AIR FLOW RATE TO CONDUCT
į	00035	č	COMBUSTION AT TEMPERATURE TC
	00036	č	
ì	00037	·	XMFLOA=(EFF*HTGEN-CFR*CPC*(TC-300.)-STNFR*DHCLCN
	00038	1	-STNFR*CPSTN* (TC-300.)) /CPA/ (TC-300.)
	00039		FMFX=XMFLOA/FLOARA
	00040		SMFX=SFXGFX*FMFX
	00041	С	
	00042	С	WRITE OUTPUT
Contract of the local division of the local	00043	С	
- Interest	00044		WRITE (10,9000) SMFX, FMFX
1	00045		WRITE (10,9050) CFR, STNFR
	00046	Û	
1	00047	с	
i	00048		STOP
1	00049	9000	FORMAT (5X, 'SOLIDS MASS FLUX, KG/M2S = ', 1PE12.4,
i	00050	1	
ł	00051 00052	9050 1	FORMAT(5X,'COAL FLOW RATE, KG/S = ',1PE12.4, /5X,'STONE FLOW RATE, KG/S = ',1PE12.4)
1000	00052	1	754, 510 ALL FLOW RATE, NG/S = $7, 19212.4$
i i	00055		2117
The second secon			
1			

SUBPROGRAMS CALLED

OPCL

ななないないのである

SCALARS AND ARRAYS ["*" NO EXPLICIT DEFINITION - "%" NOT REFERENCED]

*EF	F	1	*FLOARA	2	*XMWCAO	3	*WFC	4	*CFR	5
*1W		6	*XMFLOA	7	*WFN	10	*CPC	11	*XMWTO	12
*DТ		13	*XMLFRS	14	*CASRTO	15	*FDNSTY	16	*WF O	17
*DH	CÉCN	20	*WFH	21	*HTGEN	22	*XMWTS	23	*XMWTC	24
≭WF	A	25	*i0	26	*SMFX	27	*WFS	30	*WF VM	31
*XM	WTH	32	*CPA	33	*WFFC	34	*STNMFR	35	*XMWSO2	36
*XM	WSO4	37	*XMWCA3	40	*XMWTW	41	*STNFR	42	*SFXGFX	43
*WF	M	44	*TC	45	*DHCMB	46	*CPSTN	47	*FMFX	50
*(R		51								-

MAIN. [No errors detected]

APPENDIX C

INPUT DATA FOR CONCEPTUAL DESIGN

Table C1

INPUT DATA FOR OAEB.FOR

<u>Variable</u>	Variable Name	Value
Coal Flow Rate	CFT	0.28 kg/s
Heat of Combustion	DHCMB	24000 kJ/kg
Heat Capacity of Coal	CPA	1.13 kJ/kg °K
Coal Particle Temperature	тс	1200°K
Process Efficiency due to Radiation Losses	EFF	0.90
Volatile Matter in Coal	WFVM	0.352
Fixed Carbon in Coal	WFFC	0.515
Moisture in Coal	WFM	0.174
Ash in Coal	WFA	0.1156
Ultimate Carbon in Coal	WFC	0.824
Ultimate Sulfur in Coal	WFS	0.014
Ultimate Hydrogen in Coal	WFH	0.055
Ultimate Nitrogen in Coal	WFN	0.031
Ultimate Oxygen in Coal	WF0	0.076
Molecular Weight of Hydrogen	XMWTC	12.0 kg/kgmo1
Atomic Weight of Hydrogen	XMWTH	1.0 kg/kgmol
Molecular Weight of Sulfur	XMWTS	32.0 kg/kgmo1
Molecular Weight of Oxygen	XMWTO	32.0 kg/kgmol
Molecular Weight of Water	SMWTW	18.0 kg/kgmol
Molecular Weight of Sulfur Dioxide	SMWS02	64.0 kg/kgmol
Molecular Weight of Calcium Dioxide	SMWCAO	56.0 kg/kgmol

216

Table C1 INPUT DATA FOR OAEB.FOR (Continued

Variable	Variable Name	Value
Molecular Weight of Calcium Sulfate	XMWS04	13.0 kg/kgmol
Molecular Weight of Calcium Carbonate	XMWCA3	100 kg/kgmol
Heat Capacity of Limestone	CPSTIV	1.13 kJ/kg°K
Calcium to Sulfur Molar Ratio	CASRTO	2.0
Heat of Calcination	DHCLCN	1795 kJ/kg
Heat Capacity of Air	CPA	1.004 kJ/kg°K
Density of Combustion Gases	FDNSTY	1.17 kg/m ³
Solids Loading	SEXGFX	8.0
Riser Diameter	DT	1.Om

217

Table C2

INPUT USED BY HVFPPM.FOR

Variable	Variable Name	Value
Number of Calculation per Section	NC	50
Number of Sections in Loop	NSCTTVS	9
Identification for Section 1	IDNT (1)	GSD
Diameter	DT (1)	1.0 m
Straight or Bent Section	KTPTL (1)	1
Angle of Section to Horizontal	ANGLE (1)	45.0°
Length of Section	XLNGTH (1)	7.07 m
Voidage in Section	VOID (1)	0.999
Identification for Section 2	IDNT (2)	TBEND
Diameter	DT (2)	1.0 m
Straight or Bent Section	KTPTL (2)	2
Angle of Section Bend	ANGLE (2)	135.0°F
Radius of Section Bend	SLNGTH (2)	0.75 m
Voidage in Section	VOID (2)	0.999
Identification for Section 3	IDNT (3)	RISER
Diameter	DT (3)	1.0 m
Straight or Bent Section	KTPTL (3)	1
Angle of Section to Horizontal	ANGLE (3)	90.0°
Length of Section	XLNGTH (3)	30.0 m
Voidage in Section	VOID (3)	0.97
Identification for Section 4	IDNT (4)	LBEND
Diameter	DT (4)	0.25 m

Table C2 INPUT USED BY HVFPPM.FOR (Continued)

Variable	Variable Name	Value
Straight or Bent Section	KTPTL (4)	2
Angle of Section Bend	ANGLE (4)	45.0°
Radius of Section Bend	XLNGTH (4)	0.75 m
Voidage in Section	VOID (4)	0.999
Identification for Section 5	IDNT (5)	EDCT
Diameter	DT (5)	0.25 m
Straight or Bent Section	KTPTL (5)	1
Angle of Section to Horizontal	ANGLE (5)	0.0°
Length of Section	XLNGTH (5)	4.0 m
Voidage in Section	VOID (5)	0.999
Identification of Section 6	IDNT (6)	SPDL1
Diameter	DT (6)	1.0 m
Straight or Bent Section	KTPTL (6)	1
Angle of Section to Horizontal	ANGLE (6)	90.0°
Length of Section	XLNGTH (6)	5.2 m
Voidage of Section	VOID (6)	0.999
Identification for Section 7	IDNT (7)	SPDNS
Diameter	DT (7)	1.0 m
Straight or Bent Section	KTPTL (7)	1
Angle of Section to Horizontal	ANGLE (7)	90.0°
Length of Section	XLNGTH (7)	20.0 m
Voidage in Section	VOID (7)	0.5

Table C2 INPUT USED BY HVFPPM.FOR (Continued)

Variable	Variable Name	Value
Identification for Section 8	IDNT (8)	ORFC
Diameter	DT (8)	1.0 m
Straight or Bent Section	KTPTL (8)	1
Angle of Section to Horizontal	ANGLE (8)	90.0°
Length of Section	XLNGTH (8)	0.0 m
Voidage in Section	VOID (8)	0.5
Identification for Section 9	IDNT (9)	SPDL2
Diameter	DT (9)	1.0 m
Straight or Bent Section	KTPTL (9)	1
Angle of Section to Horizontal	ANGLE (9)	90.0°
Length of Section	XLNGTH (9)	0.75 m
Voidage in Section	VOID (9)	0.999
Solids Mass Flux	SMFX	63.76 kg/ms ²
Spherocity	SPBCTY	1.0
Solids Temperature	TEMP	1200°K
Solids Heat Capacity	CPS	1.13 kJ/kg
Solids Thermal Conductivity	THCONS	0.104 w/m°K
Packed Bed Voidage	VOID PB	0.5
Particle Diameter	DP	300 µ
Riser Gas Mass Flux	FMFXR	7.97 kg/m ² S
Gas Density	FDNSTY	1.17 kg/m ³
Gas Viscosity	FVSCTY	20 x 10 ⁻⁵ /kg/ms
Gas Heat Capacity	CTF	1.13 kJ/kg°K

Table C2 INPUT USED BY HVFPPM.FOR (Continued)

<u>Variable</u>	Variable Name	Value
Gas Thermal Conductivity	THCONF	0.026 w/m°K
Gas Temperature	TEMP	1200°K
Standpipe Gas Mass Flux	FMFXSP	02472kg/m ^{2S}
Exit Pressure	PEXIT	405 kPa
Maximum Inlet Pressure	PINMX	450 kPa
Height of Exit	HEXIT	26.06 m
Tollerance in Calculated Inlet Pressures	PRSTOL	100 Pa
Standpipe Gas Mass Flux Lower Esitimate	EST1	-0.20 kg/m ² S
Standpipe Gas Mass Flux Upper Estimate	EST2	1.8 x 10 ⁻² /kg/m ² S
Maximum Number of Iterations	MAXIT	100
Acceptable ERROR in Standpipe Gass Mass Flux	ERR	0.001

Table C3

INPUT USED BY HVFBCC.FOR PROVIDED BY HVFBPP.FOR

Variable	Variable Name	Value
Solids Mass Flux	SMFX	63764 kg/m ² S
Solids Density	SDNSTY	2500 kg/m ³
Voidage	EPS	0.97
Limestone Particulate Diameter	DPSTN	300 µm
Solids Fraction	EPSI	0.03
Gas Mass Flux	FMFX	7.97 kg/m ² S
Gas Density	FDNSTY	1.17 kg/m ³
Gas Viscosity	VISC	1.9 x 10 ⁻⁵ /mS
Riser Length	XLF	30.0 m
Riser Diameter	DT	1.0 m

Table C4 INPUT USED BY HVFBCC.FOR

Note of the second second second second second second second second second second second second second second s

<u>Variable</u>	Variable Name	Value
Volatile Motor Weight Fraction	WFVM	0.352
Fixed Carbon Weight Fraction	WFFC	0.515
Moisture Weight Fraction	WFM	0.174
Ash Weight Fraction	WFA	0.1156
Carbon Weight Fraction	WFC	0.824
Sulfur Weight Fraction	WFS	0.013
Hydrogen Weight Fraction	WFH	0.055
Nitrogen Weight Fraction	WFN	0.031
Oxygen Weight Fraction	WF0	0.076
Coal Density	CONSTY	1500 kg/m ³
Devolatilization Fraction 1	Y1	0.3
Devolatilization Fraction 2	Y2	1.0
Devolatilization Frequency Factor 1	A1	20000 s ⁻¹
Devolatilization Frequency Factor 2	A1	1.7 x 10 ⁷ s ⁻¹
Devolatilization Activation Energy 1	E1	25000 kcol/gmmol°K
Devolatilization Activation Energy 2	E2	40000 kcol/gmmol°K
Devolitilization Time	TVOL	1.0 S
Carbon Stoichiometric Coefficient	PHIC	2
Hydrogen Stoichiometric Coefficient	PH1H	4
Sulfur Stoichiometric Coefficient	PHIS	1
Carbon Activation Energy	EAC	23900 kcol/gmmol°K
Hydrogen Activation Energy	EAH	23900 kcol/gmmol°K

Table C4 INPUT USED BY HVFBCC.FOR (Continued)

	Variable	Variable Name	Value
Sulfur	Activation Factor	EAS	23900 kcol/gmmol°K
Carbon	Frequency Factor	AFC	920 s ⁻¹
Hydrog	gen Frequency Factor	AFH	920 S ⁻¹
Sul fur	Frequency Factor	AFS	920 S ⁻¹
Solids	Temperature	TS	1200°K
Gas Te	mperature	TG	1200°K
0xygen	Concentration	CN02	2.13 x 10 ⁻³ kgmol/m ³
Coal P	article Size	DPC	70 µm
0xygen	Diffusivity	DIFF02	2.6 x 10 ⁻⁵ m ^{2/S}
Pore P	lugging Constant	PSTR	0.209 S kgmol/m ³
Sulfin	ation Time	TSF	0.019 S
Initia	1 SO ₂ in Gas	X1502G	8.0 x 10 ⁻⁸ kgmol/m ³
Carbon	Molecular Weight	XMWTC	12.0 kg/kgmol
Hydroge	en Atomic Weight	XMWTH	1.0 kg/kgmol
Sulfur	Molecular Weight	XMWTS	32.0 kg/kgmo1
0xygen	Molecular Weight	ХМЖТО	32.0 kg/kgmo1
Water N	Molecular Weight	XMWTW	18.0 kg/kgmol
Sulfur	Dioxide Molecular Weight	XMWS02	64.0 kg/kgmol
Calcium	n Dioxide Molecular Weight	XMWCA0	56.0 kg/kgmol