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ABSTRACT

STATISTICAL METHODS FOR ANALYSIS OF 
CANCER CHEMOPREVENTION EXPERIMENTS

by
Stephen Michael Kokoska

University of New Hampshire, May, 1984 
The experimental systems studied in this dissertation

are designed to investigate the effect of diet on incidence
rates of cancer. These investigations involve the chemical
induction of tumors in experimental animals in order to test
the chemopreventative effects of various substances. Both
tumor number and rate of tumor development are important in
evaluating the effects of a chemopreventative agent. This
is made difficult, when multiple tumors occur, by the confounding
of the number of induced tumors and their time of detection.
This confounding occurs because experiments are terminated
before all induced tumors have been detected. Fewer tumors
observed in one treatment group, as compared to another, may
be the result of a decreased number of induced tumors, a
slowing of tumor growth rate, or both. Current statistical
procedures do not consider this factor and therefore, do not
reliably discriminate between these biologically different
possibilities.

This study provides the cancer researcher with statistical

vii



procedures which directly address this problem of confounding 
of tumor number and detection time distributions. The method 
of maximum likelihood is used to simultaneously estimate the 
parameters characterizing these two confounded distributions.
In order to compare treatments the likelihood ratio test is 
used to detect overall group differences and a technique is 
described to isolate which factor(s) (tumor number and/or 
rate of development) is(are) contributing to a group difference. 
Numerical results are used to discuss the sensitivity of the 
estimation procedure subject to changes in the experimenter 
controlled variables in order to design more accurate and 
efficient experiments and better utilize resources.

viii



CHAPTER I

INTRODUCTION AND BACKGROUND 

Description of Experiments

The experimental systems studied in this dissertation are 
designed to investigate the effect of diet on incidence rates 
of cancer. These investigations involve the use of animal 
tumor models in order to test the chemopreventative effects 
of vitamin A, selenium, and other substances. Experimental 
animals are randomly assigned to treatment or control diets 
before or after exposure to a carcinogen depending on the 
focus of the experiment. Among the response variables used 
to compare treatments are the number of induced cancers and 
the rate at which they develop.

Throughout this study the term tumor is used to mean 
malignant tumor or cancer. We distinguish two types of 
animal tumor models that involve the chemical induction of 
cancers in laboratory animals. An experimental system is of 
type A if both the number of tumors per animal and their 
times to detection are available. Examples of such are 
experimental skin and mammary tumor systems. Type B systems 
are those which require that an animal be sacrificed in order 
to estimate its induced tumor burden. In such experiments 
only the number of induced cancers and an upper bound on their 
detection times is available for use in comparing treatments. 
Included among this type of experimental system are those
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involving cancers of the liver, kidney, and lung.
An effective chemopreventative agent should decrease the 

number of tumors per animal and/or retard the tumor growth 
rate. Current statistical procedures for treatment comparisons 
do not account for the confounding of tumor number and cancer 
growth rate parameters. As a result the experimenter cannot 
reliably discriminate between a chemopreventative agent which 
decreases the number of induced tumors and one which slows 
their rate of development. This study is intended to provide 
the cancer researcher with statistical procedures which 
directly address this problem of confounding by developing, 
testing, and implementing methods of simultaneous assessment 
of tumor number and growth rate parameters in experiments of 
type A and B.

Statement of the Problem

Both tumor number and rate of tumor development are 
important in evaluating the effects of a chemopreventative 
agent on experimentally induced neoplasia. This is made 
difficult, when multiple tumors occur, by the confounding of 
the number of induced tumors and their time of detection.
This confounding occurs because experiments are terminated 
before all induced tumors have been detected. Fewer tumors 
observed in one treatment group, as compared to another, may 
be the result of a decreased number of induced tumors, a 
slowing of tumor growth rate,or both. Current statistical 
test procedures do not consider this factor and therefore,
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do not reliably discriminate between these biologically 
different possibilities.

To illustrate this confounding problem, Figure 1 exhibits 
the effects of changes in the number of tumors and rate of 
tumor development on the tumor incidence curve (describing 
the proportion of tumor bearing animals) and, T,-q , the time 
of 50% tumor incidence. We define X and y to be the mean 
number of induced tumors and the mean time to tumor detection 
(which is related to the rate of tumor development), 
respectively. A reduction in induced tumors can seem to shift the 
incidence curve to the right without a change in rate of 
tumor development. However, if the number of induced tumors 
is unchanged, and the rate of tumor development slows, a 
similar shift can occur. The statistical tests "described below 
are intended to discriminate between these two actions and 
provide a more accurate analysis of experiments of this nature.

The objectives of this study are;
1) to develop procedures for the joint estimation of tumor 

number and parameters related to tumor growth rate for 
each experimental treatment group,

2) to develop procedures for comparison among experimental 
treatment groups in order to evaluate the significance of 
treatment effects,

3) to investigate the influence of experimental parameters 
including
a) frequency or duration of examination intervals,
b) duration of experiment,
c) number of animals per treatment group



4

Figure 1 

Graph (a)

Percent 
Incidence

100
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(1 )
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Graph (b)
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Figure 1: In graph (a) curve (1) has parameters X=5, y=100 
and curve (2) has parameters A=1.32, y=100. The 
growth rate parameters remain constant but a decrease 
in the number of induced tumors shifts the incidence 
curve to the right. Note the increase in T,. _ from 
50 to 95. bU
In graph (b) curve (1) is unchanged but curve (3)
has parameters A=5, y=210. Here the number of 
induced tumors remains fixed, and a change in the
growth rate parameters causes a similar shift in
the incidence curve.
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in order to design more accurate and efficient experiments 
and better utilize resources.

The Model

The mathematical model characterizing type A and type B 
experimental systems is based on a two-stage theory of tumor 
development which represents the carcinogenic process by a 
combined initiation and promotion stage and a progression, or 
development, stage. It is assumed the carcinogen initiates a 
susceptible cell with the potential for neoplastic growth.
If the cell is promoted, it expresses that potential and loses 
its ability to control growth and cell division. Thus a 
single, previously normal, cell is promoted to the neoplastic 
state. In the progression stage, the clone arising from a 
promoted cell develops into a clinically detectable cancer.

Let the random variables M and T denote the number of
promoted tumors per animal in a given treatment group and the
time to detection of a randomly selected tumor on that animal,

2respectively. Let y^ and be the mean and the variance of 
the random variable M, respectively, and let F(t) be the 
cummulative distribution function (cdf) of the random variable 
T. Let J(t) be the number of observed tumors per animal at 
time t. The following theorem demonstrates the dependence of 
the number of detectable tumors at time t upon the mean number 
of promoted tumors and the detection time distribution.

Theorem 1.1 J(t) has mean y^Fft) and variance

(0M ' V F2(t) + PMF(t) '
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Proof Let PM (s) be the probability generating function
for the random variable M, the number of promoted tumors per
animal. Since J(t)jM=m ~ B(m,F(t)) then

00

PJ(t)(s) = E ( s J(t)) = I E(sJ(t)|M=m)*P(M=m)
m=0

oo
= I (sF(t ) + 1 - F(t))m *P(M=m) 

m=0

= PM (sF(t) + 1 - F(t) ) (1 )
Therefore

E(J(t)) = Pj(t)(1) = P^(l)P(t)

= E(M)F(t) = vMF(t)

and
Var (J( t ) ) = PjJt )(D + E (J (t ) ) - E2 (J (t ) )

= P^'(l)F2 (t) + yMF(t) - y2F2(t )

= <°M - >*„ + + MMF(t) - li2F 2 (t)

= loM " > V F2(t) + >*Mp <t>
Using equation (1) we have the following theorem 

concerning the distribution of J(t).
Theorem 1.2 If M is distributed as a Poisson random 
variable with parameter X then J(t) is distributed as a 
Poisson random variable with parameter XF(t).
Proof
p _ cX(sF(t) + 1 - F(t) - 1 ) _  X F (t )(s-1)
J(t)'S J _ e  ~ e

which is the probability generating function for a Poisson
random variable with parameter XF(t).
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Suppose the M promoted tumors of a given animal are 
detected at times T^,...,T . The animal's tumor-free time, 

is defined .to be the minimum of the set {t ^,...,Tm }.
The expected proportion of tumor bearing animals in a given 
treatment group at time t, or incidence I(t), can now be 
calculated.

I(t ) = P(T(1) < t) = P(J(t) > 0)

= 1 - P(J(t) = 0)

= 1 - pj(t)(0>
= 1 - PM (1-F(t>) (2)

Equation (2) .further illustrates the confounding of tumor 
number and detection time parameters. A change in the 
incidence rate may be caused by a change in number of promoted 
tumors, the detection time parameters, or both.

Current Statistical Procedures

In this section we use the previous results concerning 
J(t) and the incidence rate to demonstrate that existing 
statistical tests for treatment comparisons in experiments 
of type A and B do not distinguish between a change in the 
mean number of induced tumors and/or a change in the rate 
of tumor development. We consider an experiment of type A 
and assume that each of the animals of a treatment group 
survives until the end of the experiment.

Let t* denote the length of the experiment and JN(t*) 
denote the number of tumors detected on animal i during the
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experiment. Then, from Theorem 1.1, J\(t*) has mean y^F(t ).
The comparison of mean number of tumors across treatments is 
usually based on likelihood ratio tests [1,2] or on t-tests 
or ANOVA using the transformed values /J\(t*) [3]. In
comparing two groups corresponding to treatments 1 and 2, the 
parameters being compared are y^F^(t*) and t*), not
y^ and

Tumor incidence rates are frequently used in a comparison 
of treatments. The 2x2 chi-square test is the most common 
test used to compare tumor incidence. However, since I(t) 
has the form of equation (2), in such comparisons both the 
mean number of promoted tumors and the detection time 
distribution influence the results of the comparisons.

Tumor latency generally refers to the rate of tumor 
development. The methods of survival analysis, based on 
tumor-free-times, are also frequently used to compare 
treatments [4,5]. One measure of tumor latency is the median 
tumor-free-time, defined by the equation

I(t5Q) = P(J(t5Q) > 1) = 1 - PM (1 - F(t5Q)) = 1/2 .
Clearly, t,-g depends strongly on the distribution of M as 
well as the cdf F(t).

Suppose an animal has M promoted tumors with detection 
times T^,...,Tm and ordered times T ^ j,...,T^ j . Both the 
ordered times and the "gap times" (duration between ordered 
detection times) can be used to test for differences among 
treatments [6,7,8]. These tests, however, have two major 
drawbacks: (a) while they test for differences among treatments,
the two basic mechanisms underlying such differences (tumor
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promotion and tumor development) are still confounded. For 
example, as increases the "gaps" will tend to decrease as 
if the rate of development was increasing. In addition (b), 
the number of tumors and or "gaps" considered is determined 
by the group with the fewest tumors. This can result in the 
exclusion (from such tests) of a large proportion of the 
actual tumor detection time data.

As outlined above, the chemical induction of multiple 
tumors on experimental animals complicates the analysis of 
the experiments. In contrast to survival experiments, where 
an organism can die only once, the number of censored tumor 
observations - is unknown. Analyses based on multiple-failure 
times also suffers from the confounding of the number of 
tumors and their detection times during an experiment of 
finite duration and from the need to exclude a (possibly) 
large proportion of the observed detection times. These 
difficulties have led to the statistical procedures developed 
in this dissertation which explicitly acknowledge and represent 
the confounding inherent in experiments of type A and B.

Dissertation Overview

In type A and B experimental systems the number of 
induced tumors is, generally, well-described by a Poisson 
distribution. The Gamma family supplies a wide range of 
possible distributions and these are used to characterize the 
tumor detection times. Given these underlying distributions, 
the joint likelihood of observed samples can be calculated.

The method of maximum likelihood is used to estimate the
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parameters characterizing the two confounded distributions - 
the number of tumors and the detection time distribution 
parameters. The likelihood equations for both type A and B 
experiments are derived and the estimators for tumor number 
and parameters related to tumor growth rate are studied. For 
type A experiments the existence of a unique solution to the 
likelihood equations is proven. For type B experiments the 
existence of an essentially unique solution to the likelihood 
equations is shown to be true as the number of observations 
increases. By applying the invariance principle for maximum 
likelihood estimators the mean time to tumor detection is 
also estimated. In order to construct confidence regions for 
the true value of the mean number of promoted tumors per 
animal and the mean time to tumor detection, the variance- 
covariance matrix for the corresponding estimators is derived. 
This also enables the experimentor to conduct simple hypothe
sis tests concerning these parameters.

The statistical techniques developed provide insight 
into designing more efficient experiments. For experiments 
of type A computer simulations are used to test the robustness 
over distributional assumptions of the estimators for the 
mean number of promoted tumors and the mean time to tumor 
detection. Analytical methods detail the sensitivity of the 
estimators to the number of animals per group, length of 
experiment, and frequency of examination intervals.

The likelihood ratio test is used to assess the statisti
cal evidence in support of Hq (all animals in two treatment 
groups come from the same population) versus H (these twod
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groups arise from different populations). This analysis 
first examines the difference between treatment groups in 
terms of the parameters considered simultaneously. Once a 
significant difference is established between treatment groups, 
further statistical tests are outlined which enable the 
experimenter to detail along what dimensions the differences 
occur.



CHAPTER II

ONE SAMPLE PROBLEM - ESTIMATION OF PARAMETERS

Introduction

In this chapter the objective is to estimate, using the
sample from a type A or B experiment, the value of the
parameters characterizing the distributions of M, the number
of promoted tumors per animal, and T, the time to tumor
detection. M is assumed to have a Poisson distribution with
expected value X, and T is assumed to be distributed as a
Gamma random variable, T(a,3), with expected value a3 and

2variance equal to aS . The parameters of interest are X , 
the mean number of promoted tumors per animal, a and 3, 
parameters related to the tumor growth rate, and their product 
jj=a3r the mean time to tumor detection.

The Method of Maximum Likelihood

The method of maximum likelihood is a constructive pro
cedure for obtaining point estimates and can be used to 
estimate the population parameters X, a, 3* In addition, when 
the sample size is large the resulting estimators have certain 
desirable properties. We begin by recalling the definition 
of the likelihood function of a sample.

Definition Let the random variables X.,...,X have a------------  I n

joint probability mass function (pmf) or probability density 
function (pdf) f(x|©) where x=(x^,...,xn ) is the vector of

12
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observations and the parameter 0=(0^,...,0^)eftc: fRm . The 
likelihood function L(x|0) of the sample is the joint 
probability(density) of the observations as a function of the 
parameter 0.

The method of maximum likelihood selects as estimates
A  A

®l'"‘*'®m t l̂ose values of the 0^'s that maximize the
A

likelihood function. That is we choose 0 (if it/they exist(s)) 
such that

A

L(x|0) > L (x | 0) OeQ.

First we consider the case of n independent observations
taken from the same distribution and one unknown parameter 0.
To find the maximum likelihood estimate for 0, we form the
likelihood function L(xI0)=f(x.|0)*•*f(x |0) where f(x|0)— — 1 n
may be a pmf or pdf. We assume x=(x^,...,xn ) is the vector 
of observations, 0eft=[a,b]t R f the support of f(x|0) is 
independent of 0, and L>0. We select the maximum likelihood

A

estimate 0, the value of 0 which maximizes the function L(x|0).
The likelihood function often contains complicated 

products and is therefore difficult to work with. In this 
case it is easier to work with the natural logarithm of L,
In L, rather than L itself. Since In L is a monotonic

A

function of L, finding 0 which maximized In L is equivalent
to maximizing L itself.

In the more general case, n independent observations are
taken from the same distribution with m unknown parameters.
These m parameters must be estimated simultaneously. The
notion of maximum likelihood is the same, we must select a
set of admissible values of the parameters 0.,...,0 whichi m
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make the likelihood function an absolute maximum. The 
following theorem, stated in Kendall and Stuart [9], 
formalizes this concept.

Theorem 2.1 Let f(x|0) be a pmf or pdf such that
0=(0^,...,0^)eft 5 Rm where ft is a connected open set, and
the following regularity conditions are true;
a) the support of f(x|0) is independent of 0,
b) 0 may take on any value in ft,
c) the likelihood function has continuous second partial 

derivatives.
Then the necessary conditions for a local extrema of the 
likelihood function are 

91n L (xI 0)
90i

0 i=l,...,m ( 3 )

and for a solution to (3) to be a local maximum, the 
matrix

N ( 0) =
32ln L(x|0)

90.30. i 3
i=l,...,m , j=l,...,m (4)

must be negative definite.
Theorem 2.1 does not imply the existence of a solution 

to the system of equations in (3). It is also possible that 
two or more solutions to (3) yield the same maximum value of 
the likelihood function. In order to state a uniqueness 
theorem we will need the following definitions.

Definition A statistic is a function of observable 
random variables - with no unknown parameters.

We will use the following as a definition of jointly
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sufficient statistics. The alternate definition reduces to
a condition (equation (5)) on the likelihood function.

Definition Let S, ,...,S, be statistics based on the --------------  ,1 k
random sample X. , . . . ,X . Then S-.,...,S, are jointly sufficientjl n  i. Jc
statistics for the estimation of the parameters 0^,...,0 if 
the likelihood function can be factored into two nonnegative 
functions

L(x|0) = g(sj0)h(x) (5)
where g(s|0) is a function of s = ( ,...,s^) and 0 and h(x) 
is independent of 0.

Assume the likelihood function can be factored as in (5)
then

In L (x | (3 ) = In g(sj0) + In h(x) (6)
Taking partial derivatives of (6) with respect to 0^ and
calculating the system of equations defined in (3) we note
that the partial derivative of In h(x) with respect to 0^
is 0. So the system in (3) contains only £3 and 0. Therefore
all the information relevant to 0 is contained in the
statistics s.,...,s. . The number of sufficient statistics 1 k
is a determining factor in establishing uniqueness of a 
solution to (3).

Theorem 2.2 Suppose the log likelihood function has the
k

form In L(x|0)=B(0) + h(x) + I Q.(0)R.(x) where
j=l -*

0=(0^, . . . , 0 ^ ) IRm . Let Q° denote the interior of the 
range of the 1-1 transformation c:0 -*• If there

A A

exists a solution, 0, to (3) such that c(0)eQ° and the 
regularity conditions hold, and the number of sufficient 
statistics k equals m, then 0 is the unique maximum 
likelihood estimate.
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The proof, found in Kendall and Stuart [9], consists of
A

showing that the matrix N(0) of (4) is negative definite if
A

0 is a solution to (3). However, under the regularity 
conditions,there must be a minimum (or saddle point) between

A

any two maxima. Since N(0) is negative definite, there can 
be only one maximum. Therefore, in this case joint sufficiency 
ensures that the likelihood equations have a unique solution 
and that this solution is a maximum of the likelihood function.

If there are more sufficient statistics than unknown 
parameters Theorem 2.2 does not guarantee the existence of a 
unique solution to the likelihood equations. However, under 
very general conditions the joint maximum likelihood estimators 
converge in probability, as a set, to the true value of the 
parameter 0 , (see Kendall and Stuart [9]). Therefore, given

A /S

two maximum likelihood estimators 0^ and Q_̂ • then they are
/N A

essentially the same in the sense that the difference (0^ - 0^) 
converges in probability to 0.

Properties of Maximum Likelihood Estimators

Assuming the regularity conditions on the joint distribution 
of the sample, the maximum likelihood estimators have several 
desirable statistical properties [9],

Property 1 As a function of the sample size, n, the 
maximum likelihood estimators for the parameters 0^,...,0m 
are asymptotically unbiased. The maximum likelihood estimators 
converge in probability to the population parameters

910'* * *,0mo*
Unbiased estimators are frequently compared using the
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magnitude of their variances.
Definition Among estimators that are asymptotically 

unbiased, an estimator with minimum variance in large samples 
is called an efficient estimator, or simply efficient.

Property 2 The maximum likelihood estimators for 

®l'*'*'®m are effi-c;i-ent estimators.
Property 3 The maximum likelihood estimators are 

asymptotically multivariate normally distributed with 
variance-covariance matrix Z equal to the inverse of the 
information matrix where

32ln L (x|0) -1
Z(0) = 1(0) = [ -E {  gg-gg  }] i , j = 1 , . . . , HI

i j

Often we are interested in estimating functions of the 
parameters not just the parameters themselves.
We have the following theorem [20].

A  A

Theorem 2.3 If on the basis of a given sample
are maximum likelihood estimates of the parameters

A A  A / \

then g-j_ (0-j_ r . • • #©m ) f • . . ,g (0-̂ » . . . , 0 ) are maximum likelihood
estimates of ĝ  ̂( 0^ , . . . , 0^) , . . . ,gm ( 0^ , . . . , 0 ) if the
transformation from 0.,...,0 to g g  is one-to-one.1 m 31 ^m
If the estimates of 0^,...,0m are unique, then the 
estimates of are unique.
Given the more general transformation Qi> • • • rQm * • */gk

where the g^1s are continuous we use the notion of the previous 
theorem to find estimates of g^,...,g^. We define the maximum

A  A

likelihood estimates of g^,...,g^. to be g^(0^,...,0^),...,
A A

q, (0.,...,0 ). The variance-covariance matrix of the maximum ^k 1' ' m
A A  A

likelihood estimator Y=(g^,...,gk ) can now be approximated.
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Theorem 2.4 Let X =(0.,...,0 ) be a vector of maximum------------ _ i m
likelihood estimators for the parameters

• . tvariance-covariance matrix Z. Let Y =(g^,...,9^) be a
vector of functions of 0 ,...,0^ such that the partial

A A A

derivatives of g. , i=l,...,k , exist. Let Y =(gn , . .. ,g, )1 I K
be the vector of maximum likelihood estimators for the 
functions Then the variance-covariance matrix

A

for Y can be approximated by

„ §3. v $3t~ d0 L d0

where the matrix

=d0

39]
90̂

3g}
aeT

9gn
90.m

3g,
90.m

Proof Bury [10].

The Maximum Likelihood Estimators

In this section we apply the general concepts about 
maximum likelihood estimators to the specific mathematical 
model characterizing type A and type B experiments. We will 
assume the following;
1) the number of promoted tumors per animal, M, has a

Poisson distribution with parameter X, (X >̂ 0 ) . Therefore 
the pmf for the random variable M is
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P(M=m) = p (m; A ) = — m=0,1,2 9 • • •

2) the time to detection, T, of a randomly selected tumor has 
a Gamma distribution with parameters a and 3 (a>0, 8>0). 
Therefore the pdf for T is

which is the incomplete Gamma function evaluated at t/8,
3) in type A experiments all animalsrsurvive until the end of 

the experiment t*,
4) tumor promotion is independent,
5) tumors grow independently.

Type A Experiments

We first consider the estimation of the mean number of 
promoted tumors and the detection time parameters which are 
related to the rate of tumor development in experiments of 
type A. By Theorem 1.2, J(t*) has a Poisson distribution

f (t ; a , 8 ) 1 ta-l e“t/8 
8a T(a)

t>0

0 otherwise

where r(a) is the Gamma function evaluated at a,
CO

r ( a ) = J" x a e x d xo
and the cdf for T is given by

t ,
F(t;a,8) = /   ---o 8 T(a)

y°t 1 e dy
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with parameter AF(t*;a,B). Therefore, the probability of 
observing m tumors in a randomly selected animal, given the 
length of the experiment is t*, is given by

p(m|t*) = e—  ■-*■* *'-] ? A > m^ 1 m!

Now we consider the likelihood function for an entire
treatment group. Let nu, i=l,...,n be the number of observed
tumors in animal i. Let t . ., j=l,...,m. be the time tol j i
detection of tumor j in animal i. The likelihood of observing
m. tumors in animal i with tumor times t . t .  can be i ll im.l
derived as follows.

L. (A,a,3) = P(M=m.)*f(t.. 11*)••*f(t. |t*)l i l l '  im ■l

m • , / r>x ^ ^ . / 3

= e~XF(t*;ay3)(AF(t*;a,3)) 1 j=l Bar(a) ^ __________
m. ! m.

F(t*;a,B) 1

The likelihood function for the entire treatment group 
is calculated by multiplying the individual animal likelihood 
functions together. Therefore

n
L( A ,a, B ) = II L. ( A,a, 3 ) 

i=l 1

mi i  -t. ./Bm ]t ^ e
= 5? e ~ X F ( t * ; a , g ) ( A F ( t * ; a , B ) ) 1 i=l Ba r(a) _ _ _ _ _ _ _

• m .  1 m .
1 F (t * ;a ,B ) 1

Let K=m-^!***mn ! , then L(A,a,B) simplifies to



21

n
( I m. )

-nXF(t*;a,0)x i=l 1 n mi , — t . ./0
L( A,a, 3) = --------------------   n n t?.1 e ^  (7)

/ v  ̂ i=i j=l
K ( 3aT (a )) 1

A A A

We seek estimates A,a,B that maximize the likelihood 

function L(A,a,B)* In this case, it is simplier to work with 

In L(A,a,B) rather than L(A,a,B) itself. Therefore, taking 

the natural logarithm of both sides of (7) we have

n
In L(A,a,B) = -nAF(t*;a,B) + ( I  m.)ln A - In K

i=l 1

n n
-( I m . )aln B - ( I m . ) In T(a) 

i=l 1 i=l 1

m .  m .n i n i
+ (a-l) I I In t. . - \ I I t. . 

i=l i=l ^  B i=l j=l ^ (8 )

We will refer to equation (8) as the likelihood function for
A A A

type A experiments. Before solving for A,a,B the following 
theorem guarantees there is a unique maximum for (8).

Theorem 2.5 Given a likelihood function of the form in 
(8) for a group of animals in a type A experiment, there 
exists a unique solution to the likelihood equations and 
this solution yields a maximum for the likelihood function.

' A  . . A  A

Proof We seek a maximum likelihood estimate (A,a,B)e^=
{(A,a ,B) |A>0 , a>0, B>0}. The regularity conditions hold, so 
left to show is
1) the presence of at least one maximum at some point in ft,
2) the sufficiency of three statistics.
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To make certain a maximum exists on the set Q, we note the
following. Holding all other parameters constant L(A,a,8)-*0

n
as \+°°, or as a->OT, or as and as A-*0 ( i m.^0), or as

i=l 1
a->-0f or as B^O. Thus L(A,a,B) is small outside some compact 
subset of S2 and therefore a maximum exists. Now let

n mi n mi
S-, = I rn. s7 = I I In t. . , and s = I i t . . .
1 i=l 1 '  ̂ i=l j=l X3 J i=l j=l 13

Then In L(Afa,3) in (8) can be written as

In L(A,a,3) = -nAF(t*;a,3) + s^(ln A - aln 8 - In F(a))

S3+ s2 (a-l) - ^  - In K (9)

Equation (9) is in the required form and the number of 
sufficient statistics is equal to the number of unknown 
parameters. Thus by Theorem 2.2 a unique maximum exists for 
the likelihood function.

Next, we calculate the system of likelihood equations 

which must be solved simultaneously to yield the maximum
A A A

likelihood estimates A,a ,8*

-~-ln ^ X'a '3 ) = -nF (t* ; a, 8 ) + s1/A = 0 (10)

Therefore X - nF(t*!cB) (11)

3 In L ( A, a , 8 ) , 3F(t*;a,6) . . .  „ ------- = -nA    - s^In p - s^ia; + s2=0 (12)

(where i|; (a) = ^ l n  T(a) is the digamma function)
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91n L(A,g,3)
3B

3F(t*;g ,3)
33

as 1 s
3 + (13)

3
Substituting equation (11).into equations (12) and (13) and 
simplifying, we have

Equations (14) and (15) contain only the parameters a 
and Br but cannot be solved explicitly. Due to the complexity 
of this system, a computer algorithm was developed for their 
solution. The IMSL subroutine ZSPOW [11], which solves a 
system of non-linear equations, was used. Once the estimates
/N A

a and 3 have been calculated, the maximum likelihood estimate
A  A  A

A is found by substituting a and 3 into equation (11).

Type B Experiments

In experiments of type B, only the number of observed 
tumors per animal and an upper bound on their detection times 
is available for analysis. At any time during the experiment 
an animal must be sacrificed in order to determine its tumor 
count. Therefore, the likelihood function for type B 
experiments is slightly different.

Let J(t^) be the number of observed tumors per animal 
at time t^. We again assume that J(t^) has a Poisson 
distribution with parameter AF(t^;g,3). Thus the probability

~S1 3 F (t * ;g ,3) 
F (t * ;a ,3) 3a - s^(ln 3 + (a ) ) + s2 = 0 (14)

and

g S1 3F(t*;g ,3)
F(t*;g,3) 33 - a3s^ + s^ = 0 (15)
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of observing m tumors in a randomly selected animal at time 
t^ is given by

e -XF(ti;a,B)(XF(t B))m 
p (m  11± ) = -------------------------------

We consider the likelihood function for an entire
treatment group. Let r^ be the (non-random) number of
animals sacrificed ar time t. , i=l,...,k. Let m . . ,x ' ' ij
j=l,...,r^ be the number of observed (or estimated) tumors
in rat j sacrificed at time t^. The likelihood of observing 
iik j tumors in animals sacrificed at time t^ is given by

Li (X,a,e). = P(Mil=mil, . . . ,Mir =mir |T=t± )
i i

" " J------------ 5T - T  13=1

The likelihood function for the entire treatment group is 
the product of each likelihood function corresponding to a 
different sacrifice time. Thus,

L(A,a,3) = II L . (A,a,B) i=l

k ri ,lfi,
= n n ----------- s— >--- 1---------

1=1 :=i i:
A A A

Once again we seek estimates A,a, 3 that maximize the 
likelihood function L(A,a,3) and find it is simplier to work 
with In L(A,a,B) rather than L(A,a,B)* Taking the natural 
logarithm of both sides of equation (16) and simplifying
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we have
k ri k ri

In L(A,a,3) = In A [ I m. . + I I m. .In F(t.;a,3)
i=l j=l 13 i=l j=l 13 1

k k ri
I r.F(t.;a,B) - I I ln(m..!) (17)

i=l 1 1 i=l j=l 13

We will refer to equation (17) as the likelihood function
for a type B experiment.

We consider whether the likelihood function for a type B
experiment has a unique maximum. Let the statistics s,s,,...,s,JL K.
be defined by

ri k
si = I m . . and s = I s

j=l 13 i=l 1

Then the likelihood function can be written as
k k

In L(A,a,3) = sin A + £ s^lnF(t^;a ,3) - A £ r^F(t^;a,3)
i=l i=l

k ri
- I  I ln(m. .!)i=l j=i

The likelihood function satisfies the regularity conditions 
and is decreasing (assume s^O) outside some compact subset of 
fl={(A,a,B)| A>0, a>0, 3>0}. Thus, a maximum likelihood estimate 
is a solution to the system of equations defined in (3) and 
more than one maximum likelihood estimate may exist. However, 
in experiments of type B, any maximum likelihood estimator 
converges in probability to the true value of the parameter.
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Thus, any two maximum likelihood estimators are essentially 
the same in the sense that their difference converges in 
probability to zero. We assume n, the number of animals in 
the group, is large and we seek the maximum for the likelihood 
function in experiments of type B.

We derive the system of likelihood equations as defined 
in (3) that must be solved simultaneously to yield the maximum

A A A

likelihood estimates \,a,0.

3 1 n L ( A / O t f 6 ) _ S  V -n / _ n \ r\ t -i r\ \ -----------r “ I r^F(t. ;a,B) = 0  (18)
i=l

so that •

S________ (19)
A k

I rj_F (t . ; a , B ) 
i=l

3 In L (X,a ,B ) 
3a

r e 3F(t,;a,B) L s. ±_____
i=l 3a F (t± ;a ,B )

- X I 
i=l
k 3F(t . ;a ,B )

l 3a = 0 (2 0 )

31n L (A ,a ,B) y 3F(ti ;a,B) l
9 0 i=l 1 36 F (ti;a ,3)

k 3F(t . ;a ,B )
- \ l lr i— h —  = ° (21)



27

Substituting equation (19) into equations (20) and (21), 
and simplfying we have

k s . r . s 3F (t . ; a , 3 )
i=l(p(ti;a,6) * ] ** = ° (22)' I r.F(t.?a,3)j=l 3 3

k s. r.s 3F(t.;a,3)
• L (F(t.;a,B) k ) 33 = 0 (23)

I r -F (t .; a , 3 ) 
j=l 3 3

Equations (22) and (23) contain only the parameters a 
and 3r however they cannot be solved explicitly. By using

A /V

a computer supplied algorithm, a and 3 can be calculated,
A A  A

then X is found by substituting a and 3 into equation (19).

Properties of the Estimators

In both type A and type B systems, the experimenter is 
interested in how a chemopreventative agent affects the number 
of promoted tumors per animal and the tumor growth rate. 
Therefore, he would like to estimate not only the number of 
promoted tumors per animal but also y=a3r the mean of the 
time to detection distribution. A larger mean time to 
detection is believed to indicate a slower tumor growth rate.
By applying Theorem 2.3, using the transformation A,a,B

2 A  A A

A,aB,aB , the maximum likelihood estimate for u is p=a3 and
A _ A  A  ^  ^2 2 2 io =aB estimates a , the variance of T. The maximum likelihood

✓S, .A 'A> ^

estimators X, y, and a are asymptotically multivariate normal, 
asymptotically unbiased, and efficient.

The estimation procedure, for experiments of type A and B, 
described above simultaneously considers the effects of
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turnor number and detection time. This procedure addresses the 
confounding problem as illustrated in Figure 1, as shown in 
the derivation of the mean and variance of J(t), and as shown 
in the calculation of the incidence rate. Instead of consider
ing only tumor number and estimating X, then tumor times and 
estimating , this estimation procedure provides the experimen
ter with a more complete description of a given treatment group.

A

X is an estimate of the mean number of promoted tumors per 
animal; the total number of tumors we would expect to see if 
the experiment were allowed to continue to infinity. Equation 
(11), the maximum likelihood estimator for X in experiments of 
type A, further illustrates the confounding of tumor number

A

and detection time parameters and the effect each has on X.
A

From equation (11) we see that X is a function of s^, the total 
number of observed tumors at time t*, and F(t*;a,8)/ the cdf 
for the time to detection distribution. As t*-*-00, then F(t*;a,B)

A

->1 so that X-*-ŝ /n = m, the sample mean of the observed tumors 
per animal. Since most experiments are terminated before all 
promoted tumors are observed, the point estimate for F(t*;a,8),

A ✓V

F(t*;a,B), is generally less than 1 which causes the estimate 
for X to be larger than m. Thus, the likelihood equations for 
experiments of type A illustrate the need to consider tumor 
number and detection time parameters simultaneously.

In experiments of type B, the maximum likelihood estimate
A

for X also illustrates the confounding problem. X is a function 
of s, the total number of observed tumors during the entire 
experiment, and F(t^;a,B)/ the cdf for the time to detection 
distribution at times t^, , . . . , t^. To demonstrate the effect



29

each has on X, we note the following;
1) if more(less) tumors are observed per animal at each time 

t., each s. increases(decreases), thus s increases(decreases)
A

and X increases(decreases),
2) if the rate of tumor development decreases(increases),

A  A A

F(t^;a,3) is less(greater) for each t^, therefore X
increases(decreases).
In the remainder of this study we restrict our analysis to

the two parameters X, and y=a8r the mean of the time to detection
distribution. We focus on y because, in contrast to a and 6,
it has a direct biological interpretation and with X, is one of
the two prime criteria for treatment comparisons in those
systems with which this study is most concerned. The variance,
2 2a =a8 , provides a natural second parameter for the description

of r(a,B). However, it is not commonly used for treatment
comparisons in these experiments. The biological significance

2of changes m  a across treatments is not obvious.
It would be desirable to conduct the analysis in terms of

2the two common parameters y and a . Direct reparametrization,
however, creates complications and inefficiencies in the
estimation routines which the natural parametrization avoids.
Therefore, we elect to base numerical estimation on X, a, and
8, to estimate y=aB, and to define treatment differences in

2terms of X and y. We omit further consideration of cr because
1) it is not of common interest, 2) it has a large sampling
variance, and 3) treatments which differ significantly in 

2terms of a would be inconclusive.



CHAPTER III

ONE SAMPLE PROBLEM - CONFIDENCE REGIONS AND HYPOTHESIS TESTS

Introduction

In type A and type B experimental tumor systems, we are 
most interested in estimating the parameter X , the mean 
number of promoted tumors, and the rate of tumor progression 
as manifest in y , the mean time to tumor detection. In this 
chapter we seek a 100(l-a')% confidence region for the actual 
value jj =(A,y). We continue to assume that detection times 
are described by the r ( a , $ )  distribution and so p=aB. A 
hypothesis test is also described for testing the simple 
hypothesis Hq : H=1L0 versus ^ e  alternate hypothesis Ha : U/yo .
We assume n (the number of animals in the group) is large and 
we use the fact that under regularity conditions, the estimators

A A A  A ^  A A

Y =(A,a,3) and X “= (X,]j) converge in probability to (A rOL r$ ) and 
(A ,y ) respectively.

Type A Experiments - Variance-covariance Matrix

.In order to construct a confidence region for (A,y) and/or 
conduct the hypothesis described above, we need the variance-

A

covariance matrix for the estimator X- We must first calculate 
the second partial derivatives of the log likelihood function 
In L(A,a,B), the expected value of each second partial derivative

A

with respect to 0, and the information matrix for Y. We will 
need the following lemma.

30



Lemma 3.1 Let X be an integer valued random variable with 
mean y^. Let Y^^^rY^,... be independent identically 
distributed (iid) random variables from a population with 
mean Assume X and Y^,Y2 rY^r-•• are independent. Then

X
E [ I Y. ] = y.y9 

j=l 3 1 Z

Proof
X 1 2

E [ I Y . ]=P(X=0)•0 + P(X=1)E[ I Y.] + P(X=2)E[ I Y.] + ... 
j=l 3 j=l 3 j = l 11

=P(X=0)* 0 + P(X=1)E(Y) + P(X=2)2E(Y) + ...

=E(Y )[P (X=0)•0 + P (X=1)•1 + P (X=2)•2 + ...]

=E(Y )E (X )

=yly2

The following corollary deals with the statistic 
that appears in the likelihood function for type A experiments. 

Corollary 3.2 Assume a type A experiment. Let M^,...,Mn 
be a random sample from a Poisson distribution with 
parameter AF(t*;a,|3). Let T^j, i=l,...,n , j=l,2,3,... 
be iid random variables from a Gamma distribution with 
parameters a and B. Assume NL, i=l,...,n, and T^j are 
independent and a and 3 are known. Define the statistic
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Proof
M.n 1 n

E(S,) = I E[ I T. .] = I E(M. )E(T. .)
* i=l j=l 3 i=l 1 13

= nXF (t*;a ,3)a3

Theorem 3.3 Assume a type A experiment. If A,a, and 3 
are known, then the asymptotic variance-covariance matrix,

A  A A A

for the maximum likelihood estimator Y =(A,a,3) is
Y

= — ptt V whereY n 11 1

111 =A [ F (t* ; a , 3 ) ( (~— ■ B } ' (a ) F (t* ; a , 3 ) ) (■— ( -f —
3az 33

[aF(t*;a,3)^[n9F(t*;a,3) 3F(t*;a,3)_
^2 3a 3 3

,32F(t*;a,3),F(t*;a,3)*»
v 3a3 3 3 n

(1-F(t*;a,3)+V|j, (a )F (t*?a,3) )
3a

■3F(t*;a.B)2,32F(t*;a.B).aF(t*;a,B).
9“ 3B2 B2

+F(t*;a,B)(-3-2F| ^ a -B).F(^ ;°-B))2 )]

and the entries v. . i,j=l,2,3 of the matrix V arei j J

1 9a 3 3 3

,92F(t*;a,3),F(t*;a,3)>2i 
' 9a9 3 3 ’ J



„ , r3F(t*;a,6),32F(t*;a,B),aF(t*;a,6)x
12 21" AL 9a 1 772 + 72 ’d p  p

3F(t*;a,B),32F(t*;a,B).F(t*;a,6)x1
36 3a3 6 6

.. — . r3F(t*;a,6),32F(t*;a,6).F(t*;a,6)x
13 31 3a ( 3^36 ~ 1  }

_3F(t*;a,B) ( 3 F (t* ; a , 6 )+l(j, (a )F (t*;a ,6))] 
33 3a2

v„=F(t*;a,B)(32^ -:-;a^ +3F(^ ^ - ^ )-3F< r ;a-B)2
22 36 6 93

v =v =- (F (t* • a23 32 -u  ̂  'a 'y M  3a36 6 ’

3F(t*;gy6) 3F(t*;g,B)x
3a 36

v ..=F(t*;a,6)('3 F(t*;°if3 ) i (a )F(t*;ay6) - ■
33 3a2 9a

Proof We proceed by calculating the second partial 
derivatives of In L(Xya,B). Let I^j , i,j=l,2,3 be the 
entries in the information matrix.

From ■-1—  ,a'3) = -nF(t*;a,B) + S1/X

we find;
2 .i n

3V
so that

i) 9 ) = -Sl/X:

*11 = <1/X2 )S(sx )

= (1/X2 )(nXF(t*;gy6)) = nF(t*;gy6)/X



... 32ln L(X,g,B) = 3F(t*; a , B ) 
' 3a3X 8a
so that

t = t - n 9F(t*;g,B) 12 21 n 8a

i i iM 92ln L(X,a,B) = 3F(t*;a f B)' 8B3X n 8B
so that

T = T - n 3F(t*;g ,B)J’13 31 n 8 B

From -9---|-(-X,ayB) = -n X — jp-* '■ -'-B- ■ - S, (In B + 3a 3a 1
we find;

±) 3.2ln„.La,»,B.) = . ,(o)
3a 3a 1

so that

I „  = n X 32p-t * ‘a ' ft } _ ^•(0t)E(S1 )
* 3a L

= nX(— - ip' (a )F (t * ;a ,B ) )
3a

... 3 2ln L ( X , a , B ) _ ,32F(t*;a,B) „ ,r
11' 3B3^ nA 3B3^ Sl/3

so that

*23 = *32 = + E( S 1 )/B

_ , ,3 2F (t * ;a ,B ) , F ( t * ; g , B ) >
“ nA( 3l3^ + ~  }

Prom ai.n„§lX,a ,B, . . fSi + I S
P

we find;

^(a) )

3
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i) 92 ln L(X,ot,B) _ n ^ 32F ( t * ; g f B ) + a g 2 g
3B2 3B2 B2 1 B3 3

so that

loo = n X -----  £ * 7 a-/-P.I _ a ECS, ) + --,E(S )
3B“ B B

= n ? ( 32F(t*;a,B) + a F ( t * ; a , B ) }
3B2 B2

The variance-covariance matrix is the inverse, I ^ , of
Y

the information matrix. Inverting the matrix I yields the 

desired result.
A . A A

Variance-covariance Matrix for X =(X,y)

We are interested in a confidence region for the actual 
value Xt=(X,y). Since the maximum likelihood estimator
r i ̂  r \ f x A A A

& =(X,y) = (X,aB) is a vector of functions of the parameters
A A

in Y, the variance-covariance matrix for X can be approximated
A

using Theorem 2.4. X also tends to a multivariate normal 
distribution and is an asymptotically unbiased estimator for 
the actual value (X,y).

Theorem 3.4 Assume a type A experiment. If X,a,B are 
known, then the approximate variance-covariance matrix

A A A

for the maximum likelihood estimator X =(X,y) is
X

S — rL- G
x "1*1

where |I| is the determinant of the information matrix
A

for Y, v^j are defined in Theorem 3.3, and the matrix G 
has as entries g^j , i,j=l,2 given by
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gll = V11 '22 B2v 22 + 2<xBv 23 + a 2v 33

g12 = = 6 V 1 -5 +  a v'21 12 13
Proof We are given that the variance-covariance matrix

for Y is Ea = n I rV . X is a maximum likelihood estimator for

X = (h1 (Xfa,B),h2 (A,a,3)) = (A,a6) = (A,y) 
Define the matrix H by

3h^(A,a,3) 3h^(A,a,B) 3h^(A,a,3)
3 X 3a 3 6

3h2(A,a,3) 3h2(Xfa/3) 3h2(A,af3)
H =

3 A 3a 33

so that

H
1 0 0
0 3 ol

Then by Theorem 2.4 the variance-covariance matrix Z*. can
X

be approximated by
Ea s H Ea Ht 
x y

1
o

o
3

0
a n I rV

1 0
0 3
0 a

n I
v 11 Bv21+av13

Bv21+av31 e2v22+a3v32+a6v23+0l2v33

Noting the symmetry of the matrix V yields the desired result, 
In chapter V we show, as a consequence of this theorem,

A

that the variance of A is proportional to A and the variance
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of y is proportional to 1/A. This is important in understanding 
why we get less accurate estimates of y for small A.

Type B Experiments - Variance-covariance Matrix

In type B experiments, the variance-covariance matrix 
, is slightly different. We proceed in the same way by

X
A

first deriving the information matrix for Y. Recall that the 
statistic is given by

r .1
S. = 7 M. . .
1 j=l ^

Then we have E(S^) = Ar^F(t^;a,ft). We can now calculate the
A

variance-covariance matrix for Y in a type B experiment.
Theorem 3.5 Assume a type B experiment. If A,a,8 are 
known, then the variance-covariance matrix, , for

A A A  Y

the maximum likelihood estimator Y =(A,a,8) is 

Z~ = jyj V where

r„. B F (t ; a , 8 ) 2

r . 3F(t . ;a,8 )( V ---- 1---- (----±1— L— ) 2 \
i=lF(ti ;a'e) 33

k 3F(t .;a ,8) k 3F(t.;a,8)
+2 (J / 1 ^  ’(J / 1 ’

k r. 3F(t.;a,8) 3F(t.;a,8)( y  i   i   i )
i=lF(ti ;ct/3) 3a 93
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k 3F(t. ;a,8 ) 9 k r. 3F(t.;a,3) 9
“ ((iI 1r i 33 5 (J i F T t 7 ^ 7 3 T ( 3a ) ]

k 3F(t. ; a , 3 ) 9 k r. 3F(t. ;a,3) 0

55------ 1 ^ ( V a . B ) *— SB------ > >

k k r. 3F(t.;a,3) 3F(t.;a,3) 9
H i iir iP ( t . !» , S ) ) ( j iF| t J a ,6)------- ----------- J  )2 ,)]

and the entries v . . , i,j=l,2,3 of the matrix V are

9 k r. 3 F (t .;a ,8 ) 9 k r. 3F(t.;a,3) 9
T U - X [lJ 1F(ti;. , 6 )1— 35 > x ^ p r q T J T B T ' — 55-------- > >

k r. 3F(t.;a,3) 3 F ( t . ; a , 3 ) 9_( y. i_ _ _ _ _ _ _ i_ _ _ _ _ _ _ _ i_ _ _ _ )2 ]
i=lF( t i ;a,B) 3a 9e

k 3 F (t . ;a,0) k r. 3F(t.;a,3) 9
v l 2 - ' 2 l - ^ (J 1ri— 1 5 -------)(J 1P ( V » . B ) (— 55------ > >

k r. 3 F (t .;a ,8) 3F(t.;a,3) k 3F(t.;a,3)
~ (i=iF (t^;a, 3 ) 3a 33 }(i=ir± 33 )]

k 3F(t .;a ,3) k r. 3F(t.;a,3) 3F(t.;a,3) 
V13=V31=X[ (iI1ri 3a } (. ^ F  (t± ; a , 3 ) 3a 33 )

k r. 3 F (t . ; a , 3 ) 9 k 3 F (t . ; a , 3 )
- ‘^ FttJa.B)*— 55------ ' i— 55------ n

k k r . 3 F (t . ;a,3) 9
^ ^ ^ i ^ i 701'3 ) ) 3 ) 33 } }

k 3F (t . ;a , 3 ) 9
~ (jiiri— 3®------’

I
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k k r. 3F(t.;a,3) 3F(t.;a,B)
V23=V32=“  ̂̂ iIiriF(ti ;af 6 ) ) ) 3a 33 )

k 3F(t.;a,B) k 3F(t.;a,B)
J i r± ^  1 (J / 1 ™  ’1

k k r. 3F(t.;a ,B ) 9
V33=(iIiriF(t;i-;a,e) (iI1F(ti ;a,B) ( 3a ) }

k 3F(t .;a f 6) 0 
_<J i ri 3a >

Proof We proceed by calculating the second partial 
derivatives of In L(A,a,S). Let 1 ^  , i,j=l,2,3 be the entries
in the information matrix.

From 3-n ^ ,a,Bl = (S/A) - I r iF ( t i ;a,B)
k
I

i=l

we find;

i) 32ln L ( A , a , B ) _ _s/ ^ 2 
3 A2

so that

k
In  = (1/AZ )E(S) = (1/AZ )( I AriF(ti ;a,B)

i=l

k
= (1/A)( I r .F{t.;a,B) 

i=l 1 x

■ i \ 32ln L(A,a,3) v 3F(ti;a,B)
1 3a3A j j = \ '

so that

k 3 F (t .;a,B )i  =  i  =  y r ----- —iio 1ov L .•12 21 i=! 1
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3 2F (t .; a , 3 )3 ln_L (A ,_a_, 3.) = j* S.(-— f
3 3“ i=l 33“ F(ti;o,3)

3F(t± ;a,3)2 1 k 32F(ti;a,3)
3B F2 (ti ;a,3)) i=l 1 332

so that
k r. 3F(t.;a,3)2

T23 ^^FU^-cuS) 36

Inverting the information matrix yields the desired result.
In type B experiments, we are also interested in constructing 

a confidence region for the actual value (A,y). We approximate
A A A

the variance-covariance matrix for the estimator X =(A,y) 
using the same method as in Theorem 3.4.

Theorem 3.6 Assume a type B experiment. If A,a,3 are 
known, then the approximate variance-covariance matrix,

A  A  A

, for the maximum likelihood estimator X =(A,y) is
X
Z~= JYJ- G where |l| is the determinant of the 
X

A

information matrix for Y and the matrix G has as entries

gij , i ,j—1,2 given by

*11 = v n gl2 = g21 3vi2 + avl3

g22 = g2v22 + 2a3v23 + 06 V33
and the v . . ' s ID are defined in Theorem 3.5
Proof See Theorem 3.4.

A  t  A,  A

The maximum likelihood estimator X =(A,y) in both type A 
and type B experiments is, asymptotically, a bivariate normal 
random variable with approximate variance-covariance matrix
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E~. Therefore, a confidence region for the true value (A,y)
X

can be described and simple hypothesis tests can be conducted.
However, the variance-covariance matrix E~ contains A,a,8,

X
the unknown values of the parameters we are trying to estimate. 
When the sample size n, the number of experimental animals

A

per group, is large, the variance-covariance matrix for X 
may be approximated by substituting the maximum likelihood

A A A

estimates A,a,8 into E~ for A,a,8- This approximate variance-
X
A  A.

covariance matrix for £ will be denoted E~.
X

Confidence Regions

The vector of parameters that we wish to estimate, (A,y),
4- +has a set of possible values in IR x R . Therefore, we

would like to determine an. entire region of plausible values
in addition to the maximum likelihood point estimate. This
leads to the need for a confidence region. We will need the
following result from multivariate statistics.

Theorem 3.7 Let X be p-variate normal with mean y and
nonsingular variance-covariance matrix E. Define
Q=(X-ja)tE 1 (X-Ji) - Then Q is distributed as a chi-square,
2X , random variable on p degrees of freedom.

Proof Tatsuoka [12].
A

We apply this result to the maximum likelihood estimator X-
A

Corollary 3.8 Let X be the maximum likelihood estimator
t A-i 2for jj=(A,y). Then (X-Jj) E~ has approximately a x

X
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distribution on two degrees of freedom.
A

Proof We have already seen that X is approximately
bivariate normal with mean jj=(A,y), and approximate variance-
covariance matrix Za . Applying Theorem 3.7 yields the

X
desired result.

Let R be a region in two-space defined by

R = { xeR2 | (x-jj)tzl1 (x-ij) < Xo(ct') } (24)
X

2where X2 â '̂  1S iOO(l-a') percent point of the chi-square
distribution with two degrees of freedom. Then the following 
is true;

A

1) the probability that XeR is equal to 1-a1,
2) the region R contains ji, since the quadratic form in (24) 

is equal to 0 at _y_,
3) R is a region bounded by an ellipse.

A  A  A

In practice we obtain a point estimate x=(A,y), but would 
like a region of possible values for (A,y). The objective is 
to manipulate the quadratic form in Corollary 3.8 to produce

A A

a region centered at the maximum likelihood estimate (A,y).
Rearranging the first and last vector of this quadratic form 

~ tA-lyields (jj-X) (lL-X) which is also approximately a chi-square 
X

distribution on two degrees of freedom.
Thus, we define a region E in two space to be

E = { yelR2 | (]j-x) (y-x) £ x?^') }•
X

This defines a random region having an ellipse as boundary.
A

The location of the center x is random. The probability is 
1-a' that this random ellipse contains the true value jj, so



44

that in the long run, 100(l-a')% of the samples will generate 
an ellipse that will cover jj.

Hypothesis Tests

Next, we consider the general hypothesis test concerning 
the population mean jj=(X,y). It is based on the multivariate 
result in Theorem 3.7. Recall that the maximum likelihood

A

estimator X is asymptotically bivariate normal, is an 
asymptotically unbiased estimator for jj, and has approximate

A

variance-covariance matrix Z~. The null hypothesis can be
X

stated in the form H : u = u = (X ,u ) where u is a fixedo — —o o o —o
2 'point in IR , the null value of the parameter. Under the

~ t~-l ~null hypothesis (X~_u0 ) Z~ (X~Ji0 ) has approximately a chi-
X

square distribution with two degrees of freedom. This leads 
to the following test procedure.

V  n = Ho
Ha : ^ * Jio

2 ~ t^-1 ATest statistic: y = (x-u ) (x-u )A — o — o
2 2Rejection region: x 2l X2 â '̂

In chapter V we apply the theoretical results obtained 
here to a specific experimental tumor system of type A.



CHAPTER IV

TWO SAMPLE PROBLEM 

Introduction

In this chapter we discuss a method for comparing the 
effects of two different treatments (diets) on the mean 
number of promoted tumors and the mean time to tumor detection. 
A diet supplemented by an effective chemopreventative agent 
should decrease the number of promoted tumors per animal and/or 
decrease the rate of tumor development, therefore increasing 
y, the mean time to detection. Given two treatment groups we 
first obtain, through the estimation procedure described in

A A A

Chapter II, the maximum likelihood estimates X,a,(3 for each 
group. Then we determine if there is a statistically

A A A

significant difference between the two vectors (X^,a^,3^)
A A A

and ( X2 , (*2 , B2 ) •
The initial test procedure described here is designed to 

detect overall group differences. Once a difference between 
groups is established, further statistical analysis is used 
to detail which factor(s) (number of promoted tumors, mean 
time to tumor detection) is(are) contributing to the overall 
difference. The test procedures are based on the Likelihood 
Ratio Principle.

The Likelihood Ratio Test

Suppose group 1 and group 2 are random samples of sizes
45
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and n r e s p e c t i v e l y ,  and that both samples arise from 
a density function f(y;0), where 0 may be a vector of unknown 
parameters. The null hypothesis (Hq ) specifies that all 
observations come from the same population. The alternate 
hypothesis (H ) specifies that these two groups come from

cl

different populations. We must calculate the likelihood of
the observed sample under the null and alternate hypotheses.
The observed data is used to estimate all unknown parameters
by the method of maximum likelihood under either hypothesis.
Under Hq , the likelihood of the sample is a pooled likelihood
assuming the two groups are actually observations from the
same population. Under H , the likelihood of the sample becomesa
the product of the separately estimated group likelihoods.

A

Let L (H ) denote the likelihood function assuming H is o o
true, with all unknown parameters replaced by maximum likelihood

A

estimates. Similarly, let L(H ) denote the likelihood functiona
assuming H is true, with all unknown parameters replaced a
by maximum likelihood estimates. A likelihood ratio test is

A  A

based on the ratio L (H )/L(H ).o a
A A

We define r=L(H )/L(H ). A likelihood ratio test ofo a
Hq : the two groups arise from the same population (or O^©^)
versus H : the two groups arise from different populations a
(or 0-^02) uses r as a test statistic. The rejection region 
is determined by r<k, where k is selected so that the 
significance level is at a predetermined value. The value of
r is bounded by 0<r<l. If r is close to zero, this indicates
that the likelihood of the sample appears to be very small
under Hq . Equivalently, this suggests that the observations
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arise from different populations.
The likelihood ratio test does not always produce a test

statistic with a known probability distribution. However, if
the sample sizes n^ and are large, then the distribution
of r can be approximated.

If we assume the density function f(y;0) satisfies the
regularity conditions, then -21n r converges in distribution,
as n->co to a chi-square random variable [2]., In general, the
number of degrees of freedom associated with this chi-square
random variable is equal to the number of parameters or
functions of parameters assigned specific values under Hq .
In this case of comparing two groups, we have 0^=02 under
Hq . Hence the number of degrees of freedom equals the dimension
of the vector 0. Therefore, when the sample sizes are large,

2we use a x table for finding regions with a fixed significance
level. In this hypothesis test for comparing two groups, the

2  ̂  ̂test statistic is x =-21n r where r=L(H )/L(H ), and theO  3.

Type A Experiments - Likelihood of the Sample

In this section we apply the previous results about the
likelihood ratio principle to type A experiments involving
two treatment groups. Let m ^  , i=l,2 , j=l,...,n^ be the
number of observed tumors for animal j in group i. Let t ^ ^
k=l,...,m.. be the time of detection for tumor k in animal 

1J
j in group i. On the basis of these observed values we wish 
to test Hq : the vector of parameters (A,a,0) is the same for
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both groups; versus Ha : the vectors are different.
A A A

Let X^,qu,8^ be the separately estimated maximum
A A A

likelihood estimates for X,a,8 in group i. Let X ,a ,8P P P
be the pooled maximum likelihood estimates. The likelihood 
of the sample under Hq is given by

A  A A

0 -n.X F(t*;a ,8 ) TSil n. m . . * . . .'I2 e i P P P a x id a -1 “t..k/Bl (h  )= n  - - - *- - - - - - - - - - E—  n n t p e 13k p
i=l s .. ~ s., j=l k=l -*

K.B p 1 r(a ) 111MP p

where K. = m.,!••*m..!x xl xd

n .x
and s .. = T m. .

11 jii ^  •

The likelihood of the sample under H& is the product of the 
separately estimated group likelihoods. Therefore

A  A  A

-n, XnF(t*;ai ,3, ) TS11 n, m, . " . .e l l  l'Ml'X, 1 Id a-,-1 -t, /B-,L(H ) = [----- *-------------  —  n n e i:|K i]
~ou s., , /v s.-, j=l k=l -*

K181 T(a1)

n0X0F(t*;a0/8o)^s„1  ̂ ^2 , 21 ri- nirt ■ . , >n
e  0 3 *^9 9 - i V / $ 9[- - - - *- - - - - - - - - - - - - - n n t 2 e 2:k 2 ]

~a9s91 ~ s„, j=l k=l J
k 2b2 r(a2 )

Type B Experiments - Likelihood of the Sample

In this section we derive the likelihood of the sample
under Hq and for a type B experiment. Let r^^ , i=l,2 ,
j=l,...,k^ be the number of animals sacrificed in group i
at time t. .. Let m. , k=l,...,r. . be the number of observed xd XDk xd
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tumors in rat k sacrificed at time t ^ . in group i.
A A A

Again, let A^,ou,3- be the separately estimated maximum
A A A

likelihood estimates for A,a,3 in group i and ^p'ap'^p

be the pooled maximum likelihood estimates. The likelihood 
of the sample under Hq is given by

k r- _ X rSF ( t i i V ;an' e n ) " * ~ ik2 ki rij e P iDk p p (a F (ti . -a ,3 )) :
l ( h ) = n n n ------------------- — ^ ^ — 2— 2------

i=l j=l k=l ijk‘

The likelihood of the sample under H is the product of thed
separately estimated group likelihoods. Therefore

~ i i 3 p,  13k i i / .  p ,  . m p  \ \  IDAl (h ) = [ n n ®_ _ _ _ _ _ _ _ _ _ _ _ _ _ 1 A iF t t i j k ,ai f^ i ])
a j=l k = l  m n ' ]J lj k

k  t  ^  ? F  ( 1 9  - i k ' r 3  9  ) /n ^  m „2 2 j e 2 Z3K 2 (A 9F (t . a9,30) ) 3
[ n n  — 2lk 2 2--------]
j=l k=l 2jk *

Comparing Treatments

On the basis of the observed values in a type A or type 
B experiment, we wish to compare two treatments. The general 
test procedure is;
Hq ; the two groups arise from the same population

H : the two groups arise from different populationsci

oir  ̂ ^2' a2 ' ̂ 2 ̂
~  / s yv

Test statistic: x = ~21n r where r=L(H )/L(H )O  cl
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2 2Rejection region: x >. X3(al)
2 2If X > X3(a ') we reject the null hypothesis at the a

level of significance and conclude that the two groups are 
probably different. This statistical test serves as a starting 
point for comparing treatment groups. Once a group difference 
is established a technique, discussed later in this chapter, 
is needed to determine along what dimensions the differences 
occur.

Asymptotic Power of the Likelihood Ratio Test

In this section we outline a general method for estimating 
the power of a likelihood ratio test, then apply these results 
to the likelihood ratio test for comparing two groups. Recall, 
under the regularity conditions, the maximum likelihood
estimator 0 is asymptotically multivariate normal, is an 
asymptotically unbiased estimator for _y[ and has asymptotic 
variance-covariance matrix £ defined by

Suppose we conduct a likelihood ratio test as described
previously with H : 0=0 and H : 0x0 . Kendall and Stuart c * o — —o a — —o
[9] discuss the asymptotic distribution of the likelihood 
ratio statistic associated with this test. Under the 
regularity conditions we have

-1 32ln L(x|0)
Z -E(

L(Hq )
= exp { -i(0-0o )tZ 1(0-0Q ) }r

L(na )

so that
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-21n r = (0-0 )tZ 1(0-0 )— —o — —o
In the likelihood ratio test, if there are p constraints in
the null hypothesis, then -21n r is asymptotically distributed

2as a non-central x distribution with p degrees of freedom 
and non-centrality parameter

I = (0-0 )tZ_1(0-0 )— —o — —o
2When Hq i s  true, i=0 and -21n r reduces to a central x  

distribution with p degrees of freedom.
This result enables us to calculate the asymptotic power 

function of the likelihood ratio test. Suppose there are p 
constraints in the null hypothesis and we calculate the non
centrality parameter I . The asymptotic power of the 
likelihood ratio test is given by

I
TT = / . 2 dX 2

(p» 0 )
2 i ,» A (p,&)X r ~  a\(a') ^

'2 2 .where X/ n  is the non-central x distribution with p v p , x,)
1 2degrees of freedom and non-centrality parameter a, and x^p o)^a '̂

2is the lOO(l-a') percent point of the central x distribution.
Kendall and Stuart use an approximation to the non-central 

2X distribution so that the asymptotic power becomes
CO

” “ f,p+i . 2, ,,dx .2 
' ■ ^ ’V a ’ <p +5T2I>

2 2 where Xp 1S the central x distribution with p degrees of
2freedom and x (a1) is the lOO(l-a') percent point. The degrees P

of freedom in this approximation can be fractional. Therefore
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interpolation in the tables for x is often necessary.
We assume a type A or a type B experiment is conducted.
A  | A  A  / \  A  |   ̂ A A A

Let Y^= ( A-̂ , a-̂ , 3-̂ ) and Y_2~^2,a2'^2^ t*10 vectors °f maximum
likelihood estimators for the mean number of promoted tumors 
per animal and the time to detection parameters in groups 1 
and 2 respectively. Assume n^ and n t h e  number of animals

A A

per group, are large. We have that and Y2 are approximately
multivariate normal, approximately unbiased estimators, with 
approximate variance-covariance matrices equal to the inverse 
of their respective information matrices.

In order to calculate the approximate power of the 
likelihood ratio test for comparing these two groups, we first

A  A /S

define the vector S_=Ŷ  - . Then the following is true;
A

1) the random variable is approximately multivariate
normal and is approximately an unbiased estimator for the 
difference

X1 "  X2 
al “ a2 
61 “ ^2

2) since Y^ and Y^ are independent, the variance-
A

covariance matrix for S_ is given by = Z-, +
£

The null hypothesis and alternate hypothesis in the 
likelihood ratio test for comparing two groups can now be 
rewritten as
H : 6 = 0-. - 0~ = 5 = 0 o — — 1 — 2 —o —
H : 6 jf 0a — —
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Since there are three constraints in the null hypothesis, the 
asymptotic power of this test is given by

00

f A  ' 2TT = J .O dx2 * ( 3 S )•v (nt1 ) v ' 1X (3,0) 101 ;
where

6 6
and can be approximated by

OD
71 ~ J" TJ-O 9 ^ X,3 + 1 ' 2, , » A n 2 

(3+2Jl)x3(a ) (3 + 3T2£)

Using these theoretical results, power tables corresponding 
to a specific type A experimental system are presented in 
Chapter V.

Isolating Group Differences

Once the hypothesis test for comparing two treatment 
groups is conducted, there are two courses of action 
depending on the conclusion. If we fail to reject Hq we 
conclude there is no support for a difference in tumor number 
or detection time parameters. However, if there is statistical 
evidence to support the conclusion of an overall group differ
ence, then we would like to know if this difference is due to a 
change in the mean number of promoted tumors and/or a change 
in the rate of tumor development as manifest in the mean time 
to tumor detection.

We assume a type A or a type B experiment is conducted
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A  , A  A  A At tand let Xi = ( , y-̂ ) and t*le vectors °f maximum
likelihood estimators of the mean number of promoted tumors
per animal and the mean time to tumor detection in groups 1
and 2 respectively. If n^ and n^, the number of animals per

A  A

group, are large, then we have that X-̂  and X  ̂ are approximately 
bivariate normal, approximately unbiased estimators with

A A

approximate variance-covariance matrices and •
In order to determine which factor, tumor number and/or 

detection time, is contributing to an overall group difference,
/ \  A  A

we begin be defining the difference vector D = X-̂  " '
Then the following is true;

A

1) the random variable D is approximately bivariate normal
and is approximately an unbiased estimator for the difference 
in means

Xl X2

Ul - u2

2) since X-̂  and are independent, the approximate variance-
/ \  A A A

covariance matrix for D is given by = £ + £» .
D

Next we apply Theorem 3.7 from multivariate statistics 
and we have

t "  -

Z* (D-jj~) (25)
D D D

has approximately a chi-square distribution on two degrees 
of freedom. This result leads to one method for obtaining 
simultaneous confidence intervals for the differences 
and The inclusion or exclusion of zero in these
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confidence intervals indicates which response(s) has(have) 
probably led to the rejection of the vector hypothesis.
The following theorem is used to illustrate one method for 
constructing simultaneous confidence intervals.

Theorem 4.1

D

In order to prove this theorem we will need the following 
lemma.

Lemma 4.2

then sup Z(a) = c^ where c^ is the largest eigenvalue

D
To find the supremum of this expression, we take the derivative 
with respect to the vector a and set the result equal to zero.

for all vectors a] = 1-a (26)

Let U

D

a

-1 tof the matrix E~ ( D-jj~ •)
D D D

Proof Ma) may be written as 
t ~ ~ ta (D-y~)(D-u~) a 

D D

I A A , A A , /-V
(a E~a) ( 2 (D-jj~ ) (D-jj )̂ a)-(at (D-ii-) (D-ju~) a) (2E-a) 

D D D D D DD
t 2 (a E~a)

D
0 (27)
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t ~Dividing both numerator and denominator by a Z^a and using
D

the definition of Z, equation (27) reduces to
A  A  A

2[ (D-jjxv) )fca - &Z~a]
D D D

  = 0
ta Z~a 

D
This is equivalent to solving

A A  A

[ (D-p~) (D-y-)11 - &Z~]a = 0 . (28)
D D D
''-lAssuming Z~ exists, premultiply both sides of equation (28)
D

by it to obtain

[ Z”1 (D-]j~ ) (D-ji~ ) -  ill]a = 0 (29)
D D D

where I is the identity matrix.
Equation (29) is of the form (A - 5,1 )v = 0 and has as a

solution the eigenvalues and associated eigenvectors
of the matrix A. Therefore, let c^ be the largest eigenvalue

~_1 ~ tfor £/> (D-_y~ ) ( D-jj~ ) then for any eigenvector a corresponding 
D D D m

to c we have m
t " t

t t v  - t--------=----=---- 1
a Z-a -m p-m

t~ a Z~c a —m m—m
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Strictly speaking, equation (29) represents only a 
necessary condition for maximizing Jl(a). We should examine 
the second order derivative of M a )  with respect to a in 
order to prove that the solution to (29) yields a maximum. 
However it is a common multivariate result that equation (29) 
is a sufficient as well as necessary condition for maximizing 
Ma) [12].

Proof of Theorem 4.1 Rewriting equation (26) we have

sup
P[ a

t t ■a ( D-jĵ  ) (D-]ja ) a
D D
tv a 2/va

D

< Xn(a ')] = l"a '

which is true if and only if 
2P[Cl _< X2 â ' ^  = I-06' where c^ is defined in the Lemma,

«-->■ P [ tr 2 ~ ̂ ( D-jja ) ( D-jj ~ ) t < x^(a')] = 1-a'
O D D

4-~_1 ~ p«--* P [ tr (D-jja) 2 a (D-jja ) _< x9 (a 1 ) ] = 1-a1
D D D

^  P[ (D—jjA)t2“1 (D-p~) < Xo(a')] = 1-a'
D D D

which is true from equation (25). Since these statements are 
if and only if, working in the other direction proves the 
theorem.

Manipulating the inequality inside the probability 
statement in equation (26) we have that

tD ± /  Xo ( a ' ) / afc2X9I a '}/ a
D

are endpoints for 100(l-a')% confidence intervals generated
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by different choices of the vector a. The probability that
all such intervals are simultaneously true is 1-a'. In 
practice, we are interested in the two vectors a^ = (1,0) 
and a^ = (0,1). The endpoints of the two simultaneous 
confidence intervals for and ,J1-,J2 reduce to

( A i — X 2 ) ±  o 11
and

(Pl-U2 ) ± A l l o t ’ ) c22

(30)

(31)

where cr.̂  and cr22 are the square roots of their respective
entries in the matrix Since only two confidence

D
intervals are calculated, the full power of Theorem 4.1 is
not being utilized. Thus, the probability that the two
confidence intervals are simultaneously true might be
greater than 1-a'.

An alternate method for constructing simultaneous
confidence intervals for ^ “^2 and ^i-,Jl2 :*'s described below.

t~For any vector a we can standardize the random variable a D 
and make the following probability statement

tn t a D - a ja/
D

a E a 
~ D~

< za'/2 = 1 - a (32)

where za i/2 denotes the 100(1-a') percent point of the
standard normal distribution. The inequality within the
probability statement in equation (32) can be expanded so
that a 100(l-a')% confidence interval for has as

D
endpoints
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/ t"a D ± z , / a £~aa ’/2 -  R ~

The probability that this random interval contains the true
value is 1-a1. We are interested in the random variables

D
generated by the vectors a^ and a T h u s ,  the simultaneous 
100(l-a')% confidence (Bonferroni) intervals for anĉ
]il~U2 have as endpoints

U l"X2) * Za*/4 all (33)
and

A A  A

(ul"p2) 1 za '/4 °22 • <34)

These two methods produce joint confidence intervals for
the random variables of interest. The only difference is
the length of the intervals, determined by /  (a ') versus
Za'/4* T^0 sma -̂*-er these two quantites dictates which
set of confidence intervals is used. A comparison is shown 
in Table 1 for common critical values.

Table 1

V / 4
.1 1.96 2.15
.05 2.24 2.45
.025 2.495 2.72
.01 2.81 3.03
.005 3.025 3.26

Critical values for given a 1

Table 1 indicates that the second method described for 
constructing joint confidence intervals should be used in 
this case where we are interested in estimating intervals
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for only two values, anc  ̂ 1J1-,J2 *
If there is statistical evidence in support of an overall 

group difference, we use these joint confidence intervals 
to isolate the parameters (tumor number and/or detection 
time) contributing to the difference. If zero is contained 
in either interval, (33) or (34), then we conclude at the 
a'% joint significance level that the mean number of promoted 
tumors and/or the mean time to tumor detection are not different. 
If zero lies outside an interval, this is evidence of different 
means, probably contributing to the overall group difference.
If there is an overall group difference, but both confidence 
intervals contain zero, then we conclude that neither parameter 
alone is causing the difference. The overall difference 
between the two treatment groups may be the result of the 
simultaneous action of both parameters or a difference in 
the variance of the time to detection distributions.



CHAPTER V

NUMERICAL RESULTS - TYPE A EXPERIMENTS 

Sensitivity of the Estimation Procedure

The experimenter controls several variables which directly 
affect the cost of an investigation and influence the estimation 
procedure. The frequency of examination intervals, the duration 
of the experiment, and the number of animals per group are 
all determined prior to the experiment. In this section we 
examine the effects of these variables on the accuracy of 
the estimation procedure for type A experiments in order to 
design more efficient experiments and better utilize resources. 
Type B experiments will be considered in a later work.

We specialize to the particular type A experiment with 
which we are familiar, the mammary tumor system as developed 
by Gullino [15] and modified by Thompson and Meeker. Dr. 
Thompson's experiments involve the chemical induction of 
mammary tumors in Sprague-Dawley rats by the carcinogens 
1-methyl-l-nitrosourea (MNU) or 7,12 dimethylbenz (a) 
anthracene (DMBA). After exposure to a carcinogen, the 
mammary glands of the experimental animals are palpated 
regularly and the times of appearance and locations of the 
induced tumors are noted. At the termination of the experiment 
(usually 120-180 days after carcinogen exposure) the animals 
are sacrificed and all tumors are removed and classified

61
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histopathologically.
After exposure to a direct acting carcinogen, experimental 

animals in this mammary system typically begin to exhibit 
palpable tumors 20-50 days later. Once the onset of tumors 
begins, animals are examined regularly for the detection of 
new tumors. Substantial time and resources are expended in 
this process in order to accurately determine the time to 
appearance and location of each cancer.

Clearly more frequent examination yield more accurate 
estimates of the underlying distribution parameters. However, 
examining animals every day (or ideally - continuously) is 
physically (and financially) impossible. In the mammary 
tumor system described above, animals are examined twice 
weekly, or approximately once every three days. This frequency 
of examinations makes it more difficult to estimate the under
lying continuous (Gamma) distribution characterizing the 
time to appearance of tumors.

Since we assume that the detection time distribution is 
continuous, the probability of detecting two or more tumors 
at the same time is zero. However, animals are not examined 
continuously, therefore several tumors are often detected at 
each examination time. Preliminary computer simulations 
suggest that examining animals every three days still provides 
adequate data for accurately estimating the underlying 
continuous distribution.

The analytical method we will use to evaluate the 
sensitivity of the estimation procedure subject to changes 
in the experimenter controlled variables involves calculating
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the area of the 95% confidence ellipse centered at (A,y).
This area is not directly dependent on the frequency of 
examination intervals. However, computer simulations indicate 
that, as examination intervals increase, the accuracy of the 
estimation procedure decreases.

If the termination date of an experiment is extended, more 
data can be collected, therefore the underlying distributions 
can be more accurately estimated. However, lengthy experiments 
are costly. Thus, we seek a balance between the length of the 
experiment and accuracy of estimation. We will examine the 
sensitivity of the estimation procedure to duration of 
experiments.- For a fixed set of distribution parameters, if 
the estimation procedure continues to be as accurate even when 
the duration of the experiment is shortened, savings in time 
and resources will result.

The number of animals per group is also set by the 
investigator prior to the experiment. The care and feeding 
of extra animals is expensive while additional animals may 
increase the accuracy of the estimates of the mean number of 
promoted tumors and mean time to detection only marginally.
Dr. Thompson's experiments typically have 20-25 animals per 
group. We will examine the effect of number of animals per 
group on the accuracy of the estimation procedure.

Several of the theorems stated in this study are based 
on asymptotic properties. In experiments of type A, we also 
note the direct dependence of the variance-covariance matrix

A A

of the estimator X =(A,y) on n - the number of animals in the
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group. Therefore, fewer animals per group may result in a 
breakdown of our model assumptions and certainly larger 
confidence regions for the true value _ŷt=(A,y). Once again 
we seek a balance between the number of animals per group 
and the accuracy of the estimation procedure.

Method of Evaluation

In this section the method used to test the sensitivity of the 
estimation procedure is presented. Suppose 0 is a p-variate

A

normal unbiased estimator for the parameter 0, and suppose 0 
has variance-covariance matrix Z. As we have seen before, the 
region defined by

R = { 0e IRP | (0-0)tZ_1(0-0) < Xp(a') }

is a 100(l-a')% confidence region for the true value of 0_.
We would like to have the volume of this confidence region,
an indication of accuracy, as small as possible. To calculate

2 2the volume, we let c =Xp(a ')' then the volume of the region 
is given by

volume = kpC^ | E |

where k = 2 ttP//2/( pT (p/2 ) ) ,

r(z) denotes the gamma function evaluated at z, and 
I Z | is the determinant of the matrix Z [13].

If there are any experimental parameters that effect Z we 
would like to design the experiment so that the volume, or 
equivalently |z|, is a minimum.

Next, we apply this result to obtain the area of a
A  . A A

confidence ellipse about the point estimate x =(A,y).
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Theorem 5.1 Assume a type A experiment, A,a,3 known, and
A . / \  yA.•ha 100(l-a')% confidence ellipse about the point x =(A,y)

is defined by
E = { xe R2 | (x-x)1̂ - 1 (x-x) < Xo(a') } .

X
Then the area of this confidence ellipse is given by 

I TrXp ̂ a '  ̂ , 1 1/2
area = n n r i —  |G|

where = — rVrG is the variance-covariance matrix
A

for X and |I| is the determinant of the information
A

matrix for Y as defined in Theorem 3.3.
Proof From the previous result we have

/  p p i 1 / 2
area = k2 (/ x2(a ') ) 1 r 

e t t t g

Since k_ = 2tî  / (2r (2/2)) = tt and G is a 2x2 matrix, then

2 , 1 W ,1 1 * 2 »1/2 | _ | 1/2area = ttx2 («’)((— j j j ) ) |G|

1 ) . - 11/2
= s - m —  'G i

Since the area of the confidence ellipse is inversely 
proportional to n, we can attain a desired level of accuracy 
by selecting a large enough n. We will examine the gain in 
accuracy for each additional animal.

Theorem 5.2 Assume a type A experiment, A,a,3 known, and
A   ̂  A  /A

a 100(l-a')% confidence ellipse about the point x =(A,y) as 
as defined in the previous theorem. Then the area of the
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confidence ellipse is independent of X.
Proof The area of the confidence ellipse is given by

I TIX2 (ct' ) 11/2
area = n T i l   lQ l

To show this is independent of X, we need only consider the
terms that contain X,a,B ~ |l| and \g \ ^ ^ . From Theorem 3.3
and Theorem 3.4 we have the following;
1) j 1 1 = Xh(a,B,t*) where h is a function of only a,3, and t*,
2 )

G =
,2 x g 11 xg 12
Xg 21 '22

where the gj_j's are functions of only a, 6, and t* 
Therefore,

. /0 ,. 2 .2 ,1/21/2 (X <311922 X g12g21
Xh(af3/t*)

(gllg22 g12g21)
1/2

h (a f 3 * t* )
which is independent of X. Therefore the area of the 
confidence ellipse is determined by a,6 ft*, and n.

From the factorization of |l|, we can write the area of 
the confidence ellipse as

Xgll g12
1 2, , . area = - T̂X2 (a, )

g 21 9 2 2 j/X

1/2

(35)

where g|j , i,j=l,2 is a function of a,3, and t* only. If 
the parameters a,3, and t* remain fixed, as X increases the 
shape of the confidence ellipse changes but the area is
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constant. The variance of X is proportional to X and the
A

variance of y is inversely proportional to X. As X increases,
A

we expect more variability in the estimator X, however, more 
tumors per animal allow a better estimate of y.

As a consequence of the previous theorem and equation (35) 
we can write the area of the confidence ellipse in the 
following way. If a and 3/ and hence y and a, are known, 
we have

area = ^ $(y,a,t*)

where $(y,a,t*) = ttx̂  (a ' ) (̂ {1^22 ~ g12g21) ' (36)
n is the number of animals in the group and t* is the
length of the experiment.
Suppose t* is fixed and the experimenter has prior 

knowledge about y and a. Then the number of animals per 
group can be selected to specify the area of the confidence 
ellipse. If we choose area=A^, then selecting n >_ $(y,a,t*)/A^ 
ensures a confidence region no larger than A^.

In order to examine the sensitivity of the estimation 
procedure subject to changes in the experimental parameters 
n and t* we need a reference point of accuracy.

Definition Assume a type A experiment, a and 3 known.
If the length of the experiment is t*, then the normalized 
number of animals in the group for a 100(l-a')% confidence 
ellipse is defined to be

/$(y,a,t*) if $(y,a,t*) is a perfect square
n = - o

[/$(y,a ,t*)] + 1 otherwise
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where $ is defined in equation (36) and [x] is the greatest 
integer function.

Definition The normalized area is given by

Ao = no
The reasoning for these definitions is as follows.

Assuming a and B are known and t* is fixed, the area of the 
confidence ellipse is a decreasing function of n, Therefore, 
each additional animal increases the accuracy of the estimation 
procedure. However, the gain in accuracy reaches a point of 
diminished returns when adding an additional animal to the 
group decreases the area by an amount less than one. This 
is the point on the curve A(n)= ̂  $(y,a,t*) where the slope
is equal to -1. Taking the first derivative of A(n) and
setting it equal to -1 yields

A '(n ) = - — 2 $(y,CT,t*) = -1 
n

so that n = /$(y ,a ,t*)
Since we want the normalized number of animals to be a whole 
number, we use the greatest integer function in the definition. 
We round up to ensure the slope of A(n) at nQ is greater than
or equal to -1.

In order to discuss the sensitivity of the estimation 
procedure, we assume the length of the experiment to be 180 
days. For a fixed m ,ct, we select as a reference point A*, 
which is the normalized area for t* equal to 180 days. 
Additionally we assume the significance level is .05.

Tables 2-11 display the accuracy of the



Table 2
t*
120 135 150 165 180 195 210

15 2.10 1.90 1.78 1.71 1.67 1.64 1.
16 1.97 1.78 1.67 1.60 1.56 1.54 1.
17 1.86 1.68 1.57 1.51 1.47 1.45 1.
18 1.75 1.58 1.48 1.42 1.39 1.37 1.
19 1.66 1.50 1.40 1.35 1.32 1.29 1.
20 1.58 1.43 1.33 1.28 1.25 1.23 1.
21 1.50 1.36 1.27 1.22 1.19 1.17 1.
22 1.43 1.30 1.21 1.17 1.14 1.12 1.
23 1.37 1.24 1.16 1.11 1.09 1.07 1.
24 1.31 1.19 1.11 1.07 1.04 1.02 1.
25 1.26 1.14 1. 07 1.03 1.00 .98
26 1.21 1.10 1.03 .99 .96 .95 m
27 1.17 1.06 .99 .95 .93 .91 m
28 1.13 1.02 .95 .92 .89 .88 m
29 • 1.09 .98 .92 .88 .86 .85
30 1.05 .95 .89 .85 .83 .82 m
31 1.02 .92 .86 .83 .81 .79
32 .99 .89 .83 .80 .78 .77
33 .96 .86 .81 .78 .76 .75 *
34 .93 .84 .78 .75 .74 . 72 .
35 .90 .81 .76 .73 .71 .70 •
Accuracy of the estimation procedure
Table entries are A(nft*)/A*
y=80, a=30 U

62
52
43
35
29
21
16
10
06
01
97
93
90
87
84
81
78
76
74
71
69



15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
Ac
Ta:
y=

t*
120 135

Table 3 

150 165 180 195 210
2.35 2.01 1.83 1.74 1.67 1.64 1.62
2.21 1.89 1.72 1.63 1.56 1.53 1.52
2.08 1.77 1.62 1.53 1.47 1.44 1.43
1.96 1.68 1.53 1.45 1.39 1.36 1.35
1.86 1.59 1.45 1.37 1.32 1.29 1.28
1.76 1.51 1.38 1.30 1.25 1.23 1.21
1.68 1.44 1.31 1.24 1.19 1.17 1.16
1.60 1.37 1.25 1.18 1.14 1.12 1.10
1.53 1.31 1.20 1.13 1.09 1.07 1.06
1.47 1.26 1.15 1.08 1.04 1.02 1.01
1.41 1.21 1.10 1.04 1.00 . 98 .97
1.36 1.16 1.06 1.00 .96 .94 .93
1.31 1.12 1.02 .96 .93 .91 .90
1.26 1.08 .98 .93 .89 .88 .87
1.22 1.04 .95 .90 .86 . 85 .84
1.18 1.01 .92 .87 .83 .82 .81
1.14 .97 .89 .84 .81 .79 .78
1.10 .94 .86 .81 .78 .77 .76
1.07 .91 .83 .79 .76 .74 .74
1.04 .89 .81 .77 .74 .72 .71
1.01 .86 .79 .74 .71 .70 .69
cy of the estimation procedure
entries are A(n,t*)/A*
a=30 u



Table 4
t*
120 135 150 165 180 195 210

15 2.70 2.17 1.90 1.75 1.67 1.62 1.59
16 2.53 2.03 1.78 1.64 1.56 1.52 1.49
17 2.38 1.91 1.68 1.55 1.47 1.43 1.41
18 2.25 1.81 1.58 1.46 1.39 1.35 1.33
19 2.13 1.71 1.50 1.38 1.32 1.28 1.26
20 2.02 1.63 1.43 1.31 1.25 1.21 1.19
21 1.93 1.55 1.36 1.25 1.19 1.16 1.14
22 1.84 1.48 1.30 1.20 1.14 1.10 1.09
23 1.76 1.41 1.24 1.14 1.09 1.06 1.04
24 1.69 1.36 1.19 1.10 1. 04 1.01 1.00
25 1.62 1.30 1.14 1.05 1.00 .97 . 96
26 1.56 1.25 1.10 1.01 .96 .93 .92
27 1.50 1.21 1.06 .97 .93 .90 .89
28 1.44 1.16 1.02 .94 .89 .87 .85
29 1.40 1.12 .98 .91 .86 .84 .82
30 1.35 1.08 .95 .88 .83 .81 .80
31 1.31 1.05 .92 .85 .81 .78 . 77
32 1.26 1.02 .89 .82 .78 .76 .75
33 1.23 .99 .86 .80 .76 .74 .72
34 1.19 .96 .84 .77 .74 .71 .70
35 1.16 .93 .81 .75 .71 .69 .68
Accuracy of the estimation procedure
Table entries are A(n,t*)/At
y=100, a=30



Table 5
t*
120 135 150 165 180 195 210

15 3.13 2.38 2.00 1.79 1.67 1.60 1.56
16 2.94 2.23 1.88 1.68 1.56 1.50 1.46
17 2.76 2.10 1.77 1.58 1.47 1.41 1.38
18 2.61 1.98 1.67 1.49 1.39 1.33 1.30
19 2.47 1.88 1.58 1.42 1.32 1.26 1.23
20 2.35 1.78 1.50 1.35 1.25 1.20 1.17
21 2.24 1.70 1.43 1.28 1.19 1.14 1.12
22 2.14 1.62 1.36 1.22 1.14 1. 09 1.07
23 2.04 1.55 1.31 1.17 1.09 1.04 1.02
24 1.96 1.49 1.25 1.12 1.04 1.00 .98
25 1.88 1.43 1.20 1.08 1.00 .96 .94
26 1.81 1.37 1.15 1.03 .96 .92 .90
27 1.74 1.32 1.11 1.00 .93 .89 .87
28 1.68 1.27 1.07 .96 .89 .86 .84
29 . 1.62 1.23 1.04 .93 .86 .83 .81
30 1.57 1.19 1.00 .90 .83 .80 .78
31 1.52 1.15 .97 .87 .81 .77 .76
32 1.47 1.11 .94 .84 .78 .75 .73
33 1.42 1.08 .91 .82 .76 .73 .71
34 1.38 1.05 .88 .79 .74 .71 .69
35 1.34 1.02 .86 .77 .71 .68 .67
Accuracy of the estimation procedure
Table entries are A(n,t*)/A*
U=110, a=30 U



Table 6
t*
120 135 150 165 180 195 210

15 4.54 3.17 2.27 1.94 1.73 1.64 1 .
16 4.26 2.97 2.13 1.81 1.63 1.54 1 .
17 4.01 2.79 2.01 1.71 1.53 1.45 1 .
18 3.78 2.64 1.90 1.61 1.44 1.37 1 .
19 3.58 2.50 1.80 1.53 1.37 1.29 1.
20 3.40 2.38 1.71 1.45 1.30 1.23 1 .
21 3.24 2.26 1.62 1.38 1.24 1.17 1 .
22 3.10 2.16 1.55 1.32 1.18 1.12 1 .
23 2.96 2.07 1.48 1.26 1.12 1.07 1 .
24 2.84 1.98 1.42 1.21 1.08 1.02
25 2.72 1.90 1.36 1.16 1.04 .98
26 2.62 1.83 1.31 1.12 1.00 .95 •
27 2.52 1.76 1.26 1.08 .96 .91 •
28 2.43 1.70 1.22 1.04 .93 .88 •
29 2.35 1.64 1.18 1.00 .90 .85 #
30 2.27 1.58 1.14 .97 . 87 .82
31 2.20 1.53 1.10 .94 .84 .79 m
32 2.13 1.48 1.07 .91 .81 .77
33 2.06 1.44 1.03 .88 .79 .74
34 2.00 1.40 1.00 .85 .76 .72
35 1.95 1.36 .97 .83 .74 .70 •

Accuracy of the estimation procedure
Table entries are A(n,t*)/A*
y=120, a=30 U

58
48
39
32
25
19
13
08
03
99
95
91
88
85
82
79
76
74
72
70
68



Table 7
t*
120 135 150 165 180 195 210

15 2.52 2.28 2.17 2.05 1.93 1.90 1.83
16 2.36 2.14 2.03 1.92 1.81 1.78 1.71
17 2.22 2.01 1.91 1.81 1.71 1.68 1.61
18 2.10 1.90 1.81 1.71 1.61 1.58 1.52
19 1.99 1.80 1.71 1.62 1.53 1.50 1.44
20 1.89 1.71 1.63 1.54 1.45 1.43 1.37
21 1.80 1.63 1.55 1.46 1.38 1.36 1.30
22 1.72 1.55 1.48 1.40 1.32 1.30 1.25
23 1.64 1.49 1.41 1.34 1.26 1.24 1.19
24 1.57 1. 42 1.35 1.28 1.21 1.19 1.14
25 1.51 1.37 1.30 1.23 1.16 1.14 1.10
26 1.45 1.31 1.25 1.18 1.12 1.10 1.05
27 1.40 1.27 1.20 1.14 1.07 1.06 1.01
28 1.35 1.22 1.16 1.10 1. 04 1.02 .98
29 1.30 1.18 1.12 1.06 1.00 .98 .94
30 1.26 1.14 1.08 1.03 .97 .95 .91
31 1.22 1.10 1.05 .99 .94 .92 .88
32 1.18 1.07 1.02 .96 .91 .89 .86
33 1.14 1.04 .99 .93 .88 .86 .83
34 1.11 1.01 .96 .90 .85 .84 .81
35 1.08 .98 .93 .88 .83 .81 .78
Accuracy of the estimation procedure
Table entries are A(n,t*)/Ai
y=80, 0=40 U



Table 8
t*
120 135 150 165 180 195 210

15 2.79 2.44 2.20 2.07 1.93 1.88 1.83
16 2.61 2.29 2.06 1.94 1.81 1.77 1.72
17 2.46 2.15 1.94 1.82 1.71 1.66 1.61
18 2.32 2.03 1.83 1.72 1.61 1.57 1.52
19 2.20 1.93 1.73 1.63 1.53 1.49 1.44
20 2.09 1.83 1.65 1.55 1.45 1.41 1.37
21 1.99 1.74 1.57 1.48 1.38 1.35 1.31
22 1.90 1.66 1.50 1.41 1.32 1.28 1.25
23 1.82 1.59 1.43 1.35 1.26 1.23 1.19
24 1.74 1.53 1.37 1.29 1.21 1.18 1.14
25 1.67 1.47 1.32 1.24 1.16 1.13 1.10
26 1.61 1.41 1.27 1.19 1.12 1.09 1 . 06
27 1.55 1.36 1.22 1.15 1.07 1.05 1.02
28 1.49 1.31 1.18 1.11 1.04 1.01 .98
29 1.44 1.26 1.14 1.07 1.00 . 97 .95
30 1.39 1.22 1.10 1.03 .97 .94 .91
31 1.35 1.18 1.06 1.00 .94 .91 .85
32 1.31 1.14 1.03 .97 .91 .88 .86
33 1.27 1.11 1.00 .94 .88 .86 .83
34 1.23 1.08 .97 .91 .85 .83 .81
35 1.19 1.05 .94 .89 .83 .81 .78
Accuracy of the estimation procedure
Table entries are A(n,t*)/A*
U=90, a=40



Table 9
t*
120 135 150 165 180 195 210

15 3.17 2.63 2.31 2.12 2.00 1.92 1.8616 2.97 2.47 2.17 1.99 1.88 1.80 1.7417 2.79 2.32 2.04 1.87 1.76 1.69 1.6418 2.64 2.19 1. 93 1.77 1.67 1.60 1.5519 2.50 2.08 1.83 1.68 1.58 1.51 1.47
20 2.37 1.97 1.73 1.59 1.50 1.44 1.40
21 2.26 1.88 1.65 1.52 1.43 1.37 1.33
22 2.16 1.79 1.58 1.45 1.36 1.31 1.27
23 2.06 1.71 1.51 1.39 1.30 1.25 1.21
24 1.98 1.64 1.45 1.33 1.25 1.20 1.16
25 1.90 1.58 1. 39 1.27 1.20 1.15 1.12
26 1.83 1.52 1.33 1.23 1.15 1.10 1.07
27 1.76 1.46 1.28 1.18 1.11 1.06 1.03
28 1.70 1.41 1.24 1.14 1.07 1.03 1.0029 1.64 1.36 1.20 1.10 1.03 .99 .9630 1.58 1.31 1.16 1.06 1.00 .96 .93
31 1.53 1.27 1.12 1.03 .97 .93 .9032 1.48 1.23 1.08 1.00 .94 .90 .87
33 1.44 1.20 1.05 .97 .91 .87 .8534 1.40 1.16 1.02 .94 .88 .84 .82
35 1.36 1.13 .99 .91 .86 .82 .80
Accuracy of the estimation procedure
Table entries are A(n,t*)/A*
y=100, c=40 U



Table 10
t*
120 135 150 165 180 195 210

15 3.72 2.96 2.51 2.25 2.07 1.95 1.
16 3.49 2.77 2.35 2.11 1.94 1.83 1.
17 3.28 2.61 2.21 1.98 1.82 1.72 1.
18 3.10 2.47 2.09 1.87 1.72 1.62 1.
19 2.94 2.34 1.98 1.77 1.63 1.54 1.
20 2.79 2.22 1.88 1.69 1.55 1.46 1.
21 2.66 2.11 1.79 1.61 1.48 1.39 1.
22 2.54 2.02 1.71 1.53 1.41 1.33 1.
23 2.43 1.93 1.63 1.47 1.35 1.27 1.
24 2.32 1.85 1.57 1.40 1.29 1.22 1.
25 2.23 1.78 1.50 1.35 1.24 1.17 1.
26 2.15 1.71 1.45 1.30 1.19 1.12 1.
27 2.07 1.64 1.39 1.25 1.15 1.08 1 ;
28 1.99 1.58 1.34 1.20 1.11 1.04 1.
29 1.92 1.53 1.30 1.16 1.07 1.01
30 1.86 1.48 1.25 1.12 1.03 .97
31 1.80 1.43 1.21 1.09 1.00 .94
32 1.74 1.39 1.17 1.05 .97 .91
33 1.69 1.34 1.14 1.02 .94 .89
34 1.64 1.31 1.11 .99 .91 .86
35 1.59 1.27 1.07 .96 .89 .84 •
Accuracy of the estimation procedure
Table entries are A(n,t*)/Ai
y=110, a=40 U

87
75
65
56
48
40
34
28
22
17
12
08
04
00
97
94
91
88
85
83
80



Table 11
t*
120 135 150 165 180 195 210

15 4.27 3.30 2.65 2.30 2.07 1.92 1 .
16 4.01 3.09 2.49 2.15 1.94 1.80 1 .
17 3.77 2.91 2.34 2.03 1.82 1.70 1 .
18 3.56 2.75 2.21 1.91 1.72 1.60 1 .
19 3.37 2.60 2.09 1.81 1.63 1.52 1 .
20 3.20 2.47 1.99 1.72 1.55 1.44 1 .
21 3.05 2.36 1.89 1.64 1.48 1.37 1 .
22 2.91 2.25 1.81 1.57 1.41 1.31 1 .
23 2.79 2.15 1.73 1.50 1.35 1.25 1 .
24 2.67 2.06 1.66 1.43 1.29 1.20 1.
25 2.56 1.98 1.59 1.38 1.24 1.15 1 .
26 2.47 1.90 1.53 1.32 1.19 1.11 1 .
27 2.37 1.83 1.47 1.28 1.15 1.07 1.
28 2.29 1.77 1.42 1.23 1.11 1.03
29 - 2.21 1.71 1.37 1.19 1.07 .99
30 2.14 1.65 1.33 1.15 1.03 .96
31 2.07 1.60 1.28 1.11 1.00 .93 •
32 2.00 1.55 1.24 1.08 .97 .90 •
33 1.94 1.50 1.21 1.04 .94 .87 •
34 1.89 1.46 1.17 1.01 .91 .85 •
35 1.83 1.41 1.14 .98 .89 .82 •
Accuracy of the estimation procedure
Table entries are A(n,t*)/Ai
y=l20, a=40

82
71
61
52
44
37
30
24
19
14
09
05
01
99
94
91
88
85
83
80
78
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estimation procedure subject to changes in the number of 
animals in the group and the length of the experiment. For 
fixed y and a, each table has as entries A(n,t*)/A* where 
A(n,t*) is the area of the 95% confidence ellipse for a 
given n and t* and A* is the normalized area for a 95% 
confidence ellipse for t*=180 days.

Discussion

In this section, a more accurate estimate means a smaller 
95% confidence ellipse for (A,y), and we assume y<t*.

Suppose a is fixed. As t* increases we gain more in 
accuracy if y is large. For a greater mean time to detection, 
we censor more data by terminating an experiment early and thus 
construct larger confidence regions. If t* is large, we observe 
more tumors, and thus generate more accurate confidence ellipses. 
For small y we gain little in accuracy as the length of the 
experiment is increased. Since few promoted tumors will 
appear late in the experiment, after y+2a days post carcinogen, 
longer experiments have less influence on the estimation 
procedure.

Suppose ct and t* are fixed. The accuracy is more 
sensitive to changes in n for large y. If the mean time 
to detection is large, we are censoring observations by 
ending the experiment at t* and basing our estimates on 
limited data. Additional animals in the group contribute 
more data with which we form a more accurate confidence 
ellipse. For smaller y, more promoted tumors are observed 
and extra animals contribute less to the estimation procedure.
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Suppose y is fixed. As t* increases, we gain more in 
accuracy if a is large. A large standard deviation indicates 
more spread in the time to detection distribution and thus 
a greater number of observable tumors late in the experiment. 
Accuracy is increased by allowing the experiment to continue, 
and observing more of the tail of the time to detection 
distribution. For small standard deviation, most of the 
promoted tumors are observed for fixed t* and longer 
experiments add little new information. Thus we gain less 
in accuracy as t* increases.

Suppose y and t* are fixed. By adding animals we gain 
more in accuracy if a is large. For large standard deviation, 
we are censoring more promoted tumors, thus extra animals 
furnish more data and generate more accurate estimates. For 
small standard deviation, most promoted tumors are observed, 
so increasing n adds little new information. Thus we gain 
less in accuracy for additional animals.

These tables illustrate the decreasing area of the 95% 
confidence ellipse as n increases. They also depict the 
trade off between n and t* in order to maintain a constant 
level of accuracy. We define the total animal days for an 
experiment to be the number of animals in the group multiplied 
by the length of the experiment. This is an approximate 
measure of the amount of resources necessary to conduct the 
experiment. Suppose the experimenter believes y=80 and 
a=30. If we use 25 animals for 180 days we have 4500 animal 
days. In order to maintain the same level of accuracy,
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Table 2 shows we could use 27 animals for 150 days. In this 
case we have 4050 animal days - a savings of 450 animal days. 
Similar calculations for fixed y,a, and initial n and t* 
reveal ways to lower the number of animal days per experiment.

Table 12 further illustrates how to select t*, the length 
of the experiment, and n, the number of animals per group, in 
order to minimize animal days while maintaining a specified 
level of accuracy in the estimation procedure. Given y and a, 
for each value of t* we use Tables 2-11 to select an n (thus 
determining animal days) in order to ensure the area of the 
confidence ellipse for (A,y) is at most A*.

Robustness of the Estimation Procedure

In order to derive the likelihood function for type A 
experiments and develop an estimation procedure, we assume 
the underlying parent distribution are Poisson (tumor number) 
and Gamma (time to detection). In this section we consider 
to what extent we are justified in using this estimation 
procedure when the underlying distributions are not Poisson 
and Gamma. In some experiments, the sample variance of the 
observed number of tumors per animal is greater than the 
sample mean number of observed tumors. Perhaps the number 
of promoted tumors may be better approximated by a negative 
binomial distribution. In addition, the Weibull distribution 
may, in some cases, describe the tumor appearance times more 
accurately than the Gamma distribution. We consider two 
experimental groups and examine how sensitive the estimation 
procedure is to departure from the assumptions of Poisson



Table 12

Mr a

t*
120 135 150 165 180 195 210

80, 30 3840(32) 3915(29) 4050(27) 4290(26) 4500(25) 4875(25) 5250(25)
90, 30 4320(36) 4185(31) 4200(28) 4290(26) 4500(25) 4875(25) 5250(25)

100, 30 4920(41 ) 4455(33) 4350(29) 4455(27 ) 4500(25) 4875(25) 5040(24)
110, 30 5640(47) 4860(36) 4500(30) 4455(27) 4500(25) 4680(24) 5040(24)
120, 30 8280(69) 6480(48) 5100(34) 4785(29) 4680(26) 4875(25) 5040(24)
80, 40 ' 4680(39) 4725(35) 4950(33) 5115(31) 5220(29) 5655(29) 5880(28)
90, 40 5040(42) 4995(37) 4950(33) 5115(31) 5220(29) 5655(29) 5880(28)

100, 40 5760(48) 5400(40) 5250(35) 5280(32) 5400(30) 5655(29) 5880(28)
110, 40 6720(56) 6075(45) 5700(38) 5610(34) 5580(31) 5850(30) 5880(28)
120, 40 7800(65) 6750(50) 6000(40) 5775(35) 5580(31 ) 5655(29) 5880(28)

For each combination of y, a, and t*f entries in the table are animal days 
(animal number in parentheses) necessary to. maintain the area of the confidence 
ellipse for (A,y) at A*.
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and Gamma distributions.
For the purpose of comparing the effects of different 

combinations of the underlying distributions we set the 
following parameters for two groups. For the type A mammary 
tumor system described above, a typical placebo group has 
parameters A-̂ =7, y-^=95, and cr^=40. Since an effective 
chemopreventative agent should decrease the number of promoted 
tumors per animal and/or slow the growth rate, we define 
X2=5, ^2“H O ,  an<3- 02=4O in our treatment group. In addition, 
we assume the length of the experiment is 180 days, the number 
of animals per group is 25, and animals are palpated once 
every three days.

We consider the following four combinations of tumor 
number and time to detection distributions;
1) Poisson - Gamma (P-G)
2) Poisson - Weibull (P-W)
3) Negative Binomial - Gamma (NB-G)
4) Negative Binomial - Weibull (NB-W).
In cases 3 and 4, where the number of promoted tumors is 
assumed to arise from a Negative Binomial distribution, we 
assume E(M)=X and Var(M)=2A.

For each experimental group and each combination of 
underlying distributions, computer simulations are used to;
1) randomly generate data from the appropriate combination 

of distributions,
2) estimate X and y assuming the underlying distributions 

are actually Poisson and Gamma,
3) test to see if (X,y) is included in the 95% confidence
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ellipse generated about the point estimate xt = (Afu).
In each of 50 trials, for a given group and a given 

combination of distributions, if the actual value (\,y) lies 
inside the confidence ellipse, we record a success, otherwise 
we record a failure.

For each group the relevant hypothesis is 
Hq : p-̂  = P2 = P3 = p^ where p^ is the probability of a

success for combination i
versus
H^: at least two of the p^'s are unequal.

In order to test this hypothesis, we construct a 4x2 
contingency table for each group ( the data is the result of 
computer simulations).

Placebo Group
Success Failure

P-G 48 2
43.5 6.5

P-W 43 7
43.5 6.5

NB-G 48 2
43.5 6.5

NB-W 35 15
43.5 6.5

Treatment Group
Success Failure

P-G 46 4
42 8

P-W 39 11
42 8

NB-G 41 9
42 8

NB-W 42 8
42 8

Expected frequencies are printed below observed frequencies.
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We are now able to conduct the following statistical tests. 
Placebo Group

V P1 = p2 = P3 = p4
H^: at least two of the p^'s are unequal

~ 4 2 (Obs. . - Exp. . )2
Test statistic: X = 1 1 -----^i=l j=i ExPij

2 2Rejection region: x >. X3(*05) = 7.815

X2 = .47 + .01 + .47 + 1.66 + 3.12 + .04 + 3.12 + 11.12 (37)
= 19.98

Therefore, we reject Hq (p<.005) at the .05 significance level. 
Treatment Group

X2 = .38 + .21 + .02 + 0 + 2 + 1.13 + .13 + 0 (38)
= 3.87

There are numerous combinations of length of experiment,
number of animals per group, frequency of examination
intervals, and distribution parameters one could consider.
However, assuming the underlying distributions are Poisson
and Gamma, these statistical tests are an indication that
the estimation procedure is fairly robust depending on the
distribution and experimental parameters. For the treatment
group above, the procedure developed produces estimates of
the vector (A,y) with equal accuracy for the four combinations.
For the placebo group, when the parent distributions are
Negative Binomial and Weibull, the probability of a success
decreases slightly. This combination of distributions

2contributes the most to the statistic x in equation (37) 
and thus the rejection of HQ . However, 70% of the time the
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true value (X,y) lies within the confidence ellipse constructed
/ \  A

about (A,u). In the placebo group with u^=95 and a^=40 
and the length of the experiment set at 180 days, most of the 
promoted tumors are observed by the experiment termination 
date. Therefore, the data generated from combinations 2,3, 
and 4 is expected to be discernably different from the data 
generated from Poisson and Gamma distributions. This may 
account in part for the decrease in the proportions of 
successes in combinations 2 and 4.

If in fact, it is demonstrated that a different pair 
(P-W, NB-G, NB-W) of distributions better describes a particular 
experimental system, the statistical methods developed here 
are still applicable. The assumptions concerning the 
underlying distributions can be altered and a new likelihood 
function can be derived. As discussed previously, even if a 
unique maximum likelihood estimator fails to exist, as the 
number of observations increases the difference of two 
maximum likelihood estimators converges in probability to 
zero.

Asymptotic Power

In Tables 13-24 we display the asymptotic power of the
likelihood ratio test for comparing two groups in a type A

2experiment as shown m  Chapter IV using the non-central x 
distribution. We assume a'=.05 and calculate the asymptotic 
power as a function of the number of animals per group and the 
length of the experiment. These Tables can be used to determine 
the number of animals per group needed to attain a certain 
power of the likelihood ratio test. For example we assume



t*
120 135

Table 13 

150 165 180 195 210

15 .11 .11 .12 .12 .12 .13 .13
16 .11 .12 .12 .13 .13 .13 .13
17 .12 .12 .13 .13 .14 .14 .14
18 .12 .13 .13 .14 .14 .14 .14
19 .12 .13 .14 .14 .15 .15 .15
20 .13 .14 .14 .15 .15 .15 .15
21 .13 .14 .15 .15 .16 .16 .16
22 .14 .15 .16 .16 .16 .17 .17
23 .14 .15 .16 .17 .17 .17 .17
24 .15 .16 .17 .17 .18 .18 .18
25 .15 .16 .17 .18 .18 .18 .18
26 .15 .17 .18 .18 .19 .19 .19
27 .16 .17 .18 .19 .19 .20 .20
28 .16 .18 .19 .19 .20 .20 .20
29 .17 .18 .19 .20 .20 .21 .21
30 .17 .19 .20 .21 .21 .21 .22

Asymptotic power
Placebo group parameters: A=7, y=95, ct=40 
Treatment group parameters: X=6f cr=40

Table 14
t*
120 135 150 165 180 195 210

15 .34 .38 .40 .42 .43 .43 .44
16 .36 .40 .43 .44 .45 .46 .46
17 .38 .42 .45 .47 .48 .48 .49
18 .40 .45 .47 .49 .50 .51 .51
19 .42 .47 .50 .52 .53 .53 .54
20 .44 .49 .52 .54 .55 .56 .56
21 .46 .51 .54 .56 . 57 .58 .58
22 .48 .53 .56 .58 .60 .60 .61
23 .50 .55 .58 .60 .62 .62 .63
24 .52 .57 .60 .62 .64 .64 .65
25 .54 .59 .62 .64 .66 .66 .67
26 .56 .61 .64 .66 .68 .68 .69
27 .58 .63 .66 .68 .69 .70 .71
28 .59 .65 .68 .70 .71 .72 .72
29 .61 . 66 .70 .72 .73 .74 .74
30 .63 .68 .71 .73 .74 .75 .76
Asymptotic power
Placebo group parameters: A=7, y=95 a=40
Treatment group parameters: A=5, y=95, a=4 0



t*
120 135

Table 15 

150 165 180 195 210

15 .72 .77 .81 .82 .84 .84 .84
16 .75 .80 .83 .85 .86 .87 .87
17 .78 .83 .86 .87 .88 .89 .89
18 .80 . 85 .88 .89 .90 .91 .91
19 .83 .87 .90 .91 .92 .92 .92
20 .85 .89 .91 .92 .93 .93 .94
21 .87 .91 .93 .94 .94 .95 .95
22 .88 .92 .94 .95 .95 .96 .96
23 .90 .93 .95 .96 .96 .96 .96
24 .91 .94 .96 .96 .97 . 97 . 97
25 .92 .95 .96 .97 .97 .98 .98
26 .93 .96 .97 .98 .98 .98 .98
27 .94 . 96 . 97 .98 .98 .98 .98
28 .95 .97 .98 .98 .99 .99 .99
29 .96 .97 .98 .99 .99 .99 .99
30 .96 .98 .99 .99 .99 .99 .99
Asymptotic power
Placebo group parameters: A=7, y=95, cr=40 
Treatment group parameters: A=4, y=95, a=40

Table 16
t*
120 135 150 165 180 195 210

15 .12 .12 .12 .12 .12 .12 .12
16 .12 .13 .13 .13 .13 .13 .13
17 .13 .13 .13 .13 .13 .13 .13
18 .13 .14 .14 .14 .14 .14 .14
19 .14 .14 .15 .15 .15 .14 .14
20 .14 .15 .15 .15 .15 .15 .15
21 .15 .15 .16 .16 .16 .15 .15
22 .15 .16 . 16 .16 .16 .16 .16
23 .16 .17 .17 .17 .17 .17 .16
24 .16 .17 .17 .17 .17 .17 .17
25 .17 .18 .18 .18 .18 .18 .17
26 .18 .18 .19 .19 .19 .18 .18
27 .18 .19 .19 .19 .19 .19 .19
28 .19 .19 .20 .20 .20 .19 .19
29 .19 .20 .20 .20 .20 .20 .20
30 .20 .21 .21 .21 .21 .21 .20

Asymptotic power
Placebo group parameters: A=7, y=95, a=40
Treatment group parameters: A=7, y=100, a=40
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t*
120 135

Table 17 

150 165 180 195 210

15 .22 .22 .22 .21 .21 .21 .20
16 .23 .23 .23 .22 .22 .22 .21
17 .25 .24 .24 .24 .23 .23 .23
18 .26 .26 .25 .25 .24 .24 .24
19 .27 .27 .27 .26 .26 .25 .25
20 .28 .28 .28 .27 .27 .27 .26
21 .30 .30 .29 .29 .28 .28 .27
22 .31 .31 .30 .30 .29 .29 .29
23 .32 .32 .32 .31 .31 . 30 . 30
24 .34 .34 .33 .32 .32 .31 .31
25 .35 .35 .34 .34 . 33 .33 .32
26 .36 .36 .36 .35 .34 .34 .3327 .38 .37 .37 .36 . 36 . 35 .34
28 .39 .39 . 38 .37 .37 . 36 .36
29 .40 .40 .39 .39 . 38 .37 .37
30 .41 .41 .41 .40 .39 .39 .38
Asymptotic power
Placebo group parameters: \=7, y=95, cr=40 
Treatment group parameters: X=6, y=100, a=40

Table 18
t*
120 135 150 165 180 195 210

15 .49 .50 .51 .51 .51 .51 .51
16 .51 .53 .54 .54 .54 .54 .54
17 .54 .56 . 56 .57 .57 .57 .56
18 .57 .59 .59 .59 .59 .59 .59
19 .59 .61 .62 .62 .62 .62 .62
20 .62 .64 .64 .64 .64 .64 . 64
21 .64 . 6 6 .67 .67 .67 . 67 .67
22 .67 .68 .69 .69 .69 .69 .69
23 .69 .70 .71 .71 .71 .71 .71
24 .71 .72 . 73 .73 .73 . 73 .73
25 .73 .74 .75 .75 .75 .75 .75
26 .75 .76 .77 .77 . 77 .77 .77
27 .76 .78 .79 . 79 .79 .79 .78
28 .78 .80 .80 .80 .80 .80 .80
29 .80 .81 . 82 .82 .82 . 82 .82
30 .81 .83 .83 .83 .83 .83 .83
Asymptotic power
Placebo group parameters: X=7, y=95, a=40
Treatment group parameters: X=5, y=100, a=40



90

t*
120 135

Table

150

19

165 180 195 210

n 15 .81 .84 .85 .86 .87 .87 .87
16 .84 .86 .88 .89 .89 .89 .89
17 .86 .89 .90 .90 .91 .91 .91
18 .88 .90 .92 .92 .92 .93 .93
19 .90 .92 .93 .94 .94 .94 .94
20 .92 .93 .94 .95 .95 .95 .95
21 .93 .95 .95 .96 .96 .96 .96
22 .94 .95 .96 .96 .97 .97 .97
23 .95 .96 .97 .97 .97 .97 .97
24 .96 .97 .97 .98 .98 .98 .98
25 .97 .97 .98 .98 .98 .98 .98
26 .97 .98 .98 .99 .99 .99 .99
27 .98 .98 .99 .99 .99 .99 .99
28 .98 .99 .99 .99 .99 .99 .99
29 .98 .99 .99 .99 .99 .99 .99
30 .99 .99 .99 .99 .99 .99 .99
Asymptotic power
Placebo group parameters: A=7, jj=95, a=40 
Treatment group parameters: A=4, y=100, a=40

Table 20
t*
120 135 150 165 180 195 210

15 .38 .38 .36 .37 .37 .35 .34
16 .40 .40 .38 .39 .39 .37 .36
17 .42 .42 .40 .41 .42 .39 .39
18 .44 .45 .43 .43 .44 .41 .41
19 .47 .47 .45 .45 .46 .43 .43
20 .49 .49 .47 .48 .48 .45 .45
21 .51 .51 .49 .50 .50 .47 .47
22 .53 .53 .51 .52 .53 .49 .49
23 .55 .55 .53 .54 .55 .51 .51
24 .57 .57 .55 .56 .57 .53 .53
25 .59 .59 .57 .58 .58 .55 .54
26 .61 .61 .59 .60 .60 .57 .56
27 .63 .63 .61 .61 .62 .59 .58
28 .64 .65 .62 .63 .64- .61 .60
29 .66 .67 .64 .65 .66 .62 .61
30 .68 .68 .66 .66 .67 .64 .63
Asymptotic power
Placebo group parameters: \=7, y=95, ct=40
Treatment group parameters: A=7, y=105, a=40



Table 21
t*
120 135 150 165 180 195 210

15 .50 .49 .45 .44 .44 .42 .41
16 .53 .51 .48 .47 .47 .44 .43
17 .56 .54 .50 .50 .49 .47 .46
18 .58 .57 .53 .52 .52 .49 .48
19 .61 .59 .55 .55 .54 .51 .51
20 .63 .62 .58 .57 .57 .54 .53
21 .66 .64 .60 .59 .59 .56 .55
22 .68 .66 .62 .62 .61 .58 . 57
23 .70 .69 .65 .64 .64 .60 .59
24 .72 .71 .67 . 66 .66 .62 .61
25 .74 .73 .69 .68 .68 .64 .63
26 .76 .74 .71 .70 .69 .66 . 65
27 .78 .76 .72 .72 .71 .68 .67
28 .79 .78 .74 .73 .73 .70 .69
29 .81 .79 .76 .75 .75 .72 .71
30 .82 .81 .77 .77 .76 .73 .72
Asymptotic power
Placebo group parameters: \=1, y=95, u=40 
Treatment group parameters: X=6, y=105, o=40

Table 22
t*
120 135 150 165 180 195 210

15 .72 .71 .69 .68 .68 . 66 .66
16 .75 .74 .72 .71 .71 .69 .69
17 .78 .77 .75 .74 .74 .72 .72
18 .80 .80 .77 .77 .77 .75 .74
19 .83 .82 .80 .79 .79 .77 .77
20 .85 .84 .82 .82 .81 . 80 .79
21 .86 .86 .84 .84 .83 .82 . 81
22 .88 .88 .86 .85 .85 .84 .83
23 .90 .89 .87 .87 .87 .85 .85
24 .91 .90 . 89 .89 . 88 .87 .87
25 .92 .92 .90 .90 .90 .88 .88
26 .93 .93 .91 .91 .91 . 90 .89
27 .94 . 94 .92 .92 .92 .91 .91
28 .95 .95 .93 .93 .93 .92 .92
29 .96 .95 .94 .94 . 94 .93 .93
30 .96 .96 .95 .95 .95 .94 .94
Asymptotic power
Placebo group parameters: A=7, y=95, a=40
Treatment group parameters: X=5, y=105, a=40
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t*
120 135

Table

150

23

165 180 195 210

15 .71 .70 .70 .68 .68 .64 .60
16 .74 .73 .73 .71 .71 .67 .63
17 .77 .76 .76 .74 .74 .70 .66
18 .80 .78 .79 .76 .76 .72 .69
19 .82 .81 .81 .79 .79 .75 .72
20 .84 .83 .83 .81 .81 .77 .74
21 .86 .85 .85 .83 .83 .79 .76
22 .88 .87 .87 .85 .85 .81 .79
23 .89 .88 .88 .87 .87 .83 .81
24 .91 .90 .90 .88 .88 .85 .82
25 .92 .91 .91 .90 .90 .87 .84
26 .93 .92 .92 .91 .91 .88 .86
27 .94 .93 .93 .92 .92 .89 .87
28 .95 .94 .94 .93 .93 .90 .88
29 .95 .95 .95 .94 .94 .91 .89
30 .96 .95 .96 .95 .95 .92 .90
Asymptotic power
Placebo group parameters: A=7, y=95, c=40 
Treatment group parameters: A=7, y=110, a=40

Table 24
t*
120 135 150 165 180 195 210

15 .79 .76 .75 .71 .70 .66 .67
16 .82 .79 .78 .74 .73 .69 .66
17 .84 .81 .80 .77 .76 .72 .69
18 .86 .84 .83 .79 .79 .75 .72
19 .88 . 86 .85 .82 .81 .77 .74
20 .90 .88 .87 .84 .83 .79 .77
21 .92 .89 .89 .86 .85 .81 .79
22 .93 .91 .90 .88 .87 .83 .81
23 .94 .92 .91 .89 .88 .85 .83
24 .95 .93 .93 .90 .90 .87 .84
25 .96 .94 .94 .92 .91 .88 .86
26 .96 .95 .95 .93 .92 .90 .87
27 .97 .96 .95 .94 .93 .91 .89
28 .97 .96 .96 .94 .94 .92 .90
29 .98 • .97 .97 .95 .95 .93 .91
30 .98 .97 .97 .96 .96 .94 .92
Asymptotic power
Placebo group parameters: X=7, y=95, ct=40
Treatment group parameters: X=6, y=110, a=40
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the following;
1) the length of the experiment is 180 days,
2 ) the number of animals per group is the same,
3) the significance level for the likelihood ratio test 

is .05.
In addition, we suppose the experimenter has prior knowledge 
of the underlying group distributions. Suppose previous 
experiments indicate the placebo group's parameters are 
approximately A^=7, y^=95, a^=40, and that the chemopreventative 
agent which supplements the treatment group's diet slows 
tumor development. We theorize the treatment group parameters 
are X 6 , y2=105, CT2=40. Therefore, in order to estimate 
the number of animals necessary to attain a specified power, 
we consider Table 21. For the power of the test to be at 
least .70, the number of animals per group must be greater 
than or equal to 27.

These tables illustrate the effect n and t* have on the
asymptotic power of the likelihood ratio test for comparing
various treatment groups with a typical placebo group. In 
each of the cases considered, as n increases the asymptotic 
power of the test increases. One expects a similar relation
ship between t* and power to hold. In most of the cases con
sidered, as t* increases the asymptotic power of the test 
increases, however, for some treatment groups , for example 
Table 22, as t* increases the asymptotic power of the test 
decreases. This is counter-intuitive and is an interesting 
observation since it suggests that longer experiments do not
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necessarily ensure a greater probability of detecting overall 
group differences. In the cases of decreasing power as a 
function of increasing t*, overall group differences are more 
easily detected earlier in the experiment. As t* increases 
the underlying distributions, especially the continuous 
tumor time distribution, appear increasingly similar. Thus 
the asymptotic power of the likelihood ratio test decreases.

Example

In the paper by Thompson [14], the effect of the 
chemopreventative agent retinyl acetate on the number of 
induced tumors and tumor growth rate was studied. The study 
was undertaken in order to determine if continuous treatment 
with retinyl acetate is necessary to sustain mammary tumor 
inhibition. The study is a type A experiment, specifically 
a mammary tumor system using rats as experimental animals.
All rats received an i.v. injection of the direct-acting 
carcinogen MNU and animals were palpated for the detection 
of mammary tumors twice each week.

We apply the statistical techniques developed in this 
dissertation to the data compiled in that experiment. Group 
1 in Thompson's experiment was the placebo group. The 
animals in group 5 were tumor bearing at 60 days of age and 
received a diet supplemented with retinyl acetate throughout 
the experiment. The investigation was terminated 182 days 
after the injection of carcinogen.

The statistical techniques developed here produce the 
following estimates of the underlying distribution parameters;



95

Group 1 Group 5
A 7.632 6.234
A

a 5.367 5.589
/V

B 15.209 18.219
U 81.621 101.823

We conduct the following hypothesis test to check for an 
overall group difference.
Hq : groups 1 and 5 arise from the same population,

(A^«ot^,3^) (A^,ot^,3c^)
H : groups 1 and 5 arise from different populations,3.

Q  ys. /s

Test statistic: x = -21n r where r=L(H )/L(H )o a
2 2Rejection region: x 2. X3(-05) = 7.815

Carrying out the hypothesis test yields the test statistic 
2X =11.22. Therefore, we would reject the null hypothesis
(p~.01) at the .05 level and conclude the two groups arise
from different populations.

In order to determine which factor(s) is(are) contributing
to the overall group difference, we construct joint 95%
confidence intervals for the differences A.-A,. and u.-u,..I d I d

A  A A

(X1-X5 ) ± za ,/4 o1x = (7.632-6.234) ± (2.24)(1. 0886)
= 1.398 ± 2.4384 

Therefore, the confidence interval for A.-Ar is1  D
(-1.04, 3.836) .

A  A A

(y1-y5 ) ± za ,/4 a22 = (81 .621-101 .823) ± (2.24 ) (6.721 )
= -20.202 ± 15.055 

Therefore, the confidence interval for is
(-35.257, -5.147) .
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Since zero is included in the first confidence interval, 
we conclude at the 5 percent joint significance level that 
the mean number of promoted tumors per animal in groups 1 
and 5 are not different. However, the other 95% simultaneous 
confidence interval indicates different mean times to tumor 
detection. This analysis suggests that the mean time to 
detection, related to the rate of tumor development, contributes 
to the group differences. Thus, contrary to Thompson we 
conclude that retinyl acetate has significantly slowed the 
growth rate of promoted tumors in the tumor bearing animals 
as evidenced by the increase in the mean time to tumor 
detection.



CHAPTER VI

SUMMARY AND EXTENSIONS

This dissertation presents new methods for analyzing type 
A and type B experimental tumor systems. There are several 
related topics that can now be investigated. For both 
experiment types, the method of maximum likelihood is used to 
estimate the parameters characterizing the two underlying 
distributions - tumor number and time to detection. The 
likelihood equations are derived, however, they cannot be 
solved explicitly. An efficient computer algorithm is needed 
to accurately estimate the values of these parameters. A 
preliminary computer program is used to simulate experiments 
and to estimate the distribution parameters for the example 
in Chapter V. However, further work is necessary to provide 
the experimenter with an interactive program to accommodate 
raw data. This computer program should have the capacity 
to perform the following calculations;
1 ) summarize the experimental data, (sample means, medians, 

variances,...)
2 ) estimate the distribution parameters,
3) conduct simple one-sample hypothesis tests,
4) conduct a likelihood ratio test for the comparison of 

two groups, calculate the asymptotic power of the test, 
and isolate any group differences.
In analyzing type A experiments, one of the assumptions

97
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is that all animals survive until the end of the experiment.
This assumption is somewhat restrictive as often a few animals
die before the experiment is terminated. Current statistical
procedures offer no method for including these animals in the
subsequent analysis. Those animals that die early still
supply valuable data and should not be discounted. The
mathematical model characterizing type A experiments can
accommodate this problem by altering one assumption; assume
animal i survives until time t*. This leads to a new set of1
likelihood equations, variance-covariance matrix for the 
estimator, etc, which requires further study.

For each type of experiment, a better understanding of 
the effect of the frequency of examination intervals on the 
estimation procedure is needed. For experiments of type A, 
examining animals every three days may not be necessary in 
order to produce accurate estimates. Relaxing this restriction 
could save valuable time and resources. For type B experiments, 
there may exist a set of optimum times to sacrifice animals 
and thus maximize the accuracy of the estimation procedure. 
Having prior knowledge of the underlying distributions could 
lead to the selection of examination intervals that ensure 
accurate estimates.

The derivation of a cost function for experiments of 
this type would help the experimenter realize the optimum 
number of animals per group and length of the experiment. 
Although we have shown how sensitive the estimation procedure 
is to the number of animals per group and the length of the
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experiment, a cost function would lead to a "best" choice of 
these experimental parameters.

Further study is also needed regarding the comparison of 
two treatment groups. We suppose the following;
1) a fixed number of animals are available for experimentation,
2) the experimenter has prior knowledge about the underlying 

distributions for each group.
These assumptions may lead to an optimum way to divide the 
animals between the two groups. This animal distribution 
procedure would be used to maximize the power of the likelihood 
ratio test and enable the experimenter to better detect 
overall group differences.

Many type A and type B experiments involve the study of 
more than two treatment groups simultaneously. This 
dissertation provides a method for comparing any two groups, 
and isolating group differences. Further statistical methods 
are needed in order to compare three or more groups simul
taneously. This procedure should establish which pairs 
of groups contribute to an experiment difference, and which 
factors are causing the differences, while maintaining a 
constant significance level.

It may be possible to use sequential testing in experiments 
of this type in order to compare treatment groups. This 
would involve conducting a statistical test after each 
examination period. At each examination interval we could 
accept or reject the null hypothesis that the groups arise 
from the same population and terminate the experiment, or
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continue the experiment until the next examination time. 
This kind of statistical procedure provides the potential 
for saving additional time and resources.
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