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ABSTRACT

ECOLOGY OF GRACILARIA TIKVAHIAE MCLACHLAN 

(GIGARTINALES, RHODOPHYTA) IN THE 

GREAT BAY ESTUARY, NEW HAMPSHIRE.
By

Clayton Arthur Penniman 

University of New Hampshire, September, 1983

The reproductive phenology, growth and variation of 

chemical composition of Gracilaria tikvahiae from the Great 

Bay Estuary, N.H. were evaluated. A major objective was an 

analysis of the chemical composition, particularly agar 
content and properties, of plants separated into 

reproductive categories. The net photosynthetic responses 

of G. tikvahiae to several irradiance, temperature and 

salinity regimes were determined.

Gracilaria tikvahiae plants from the Great Bay Estuary 

were vegetative throughout most of the year. However, 
discrete maxima of tetrasporic and spermatangial plants 

occurred during June-July and for cystocarpic plants during 

July-August. The i_n situ growth of Gracilaria tikvahiae was 

highest during June-September, with maximum rates of 

11%/day. The growth cycle of G. tikvahiae plants was most



strongly correlated with water temperature. Seasonal- 

variations of surface irradiance and dissolved inorganic 
nitrogen were not related to the growth cycle of 

G. tikvahiae.

Gracilaria tikvahiae had annual cycles of ash, dry 

weight, carbohydrate, agar, carbon, nitrogen and

phycoerythrin contents. In contrast, little variation in

protein, phosphorus or chlorophyll occurred. The changes in 

tissue carbon, nitrogen, carbohydrate and agar had summer 

minima and winter maxima. However, the ash content was 

maximal in summer and lowest during winter. The total

tissue nitrogen of G. tikvahiae did not decrease below 2% of

dry weight. No significant differences in chemical 
composition were noted between reproductive stages. The 

agar content of Gracilaria tikvahiae varied between 7% 

(summer) and 23% (winter). The gel strengths and
3,6-anhydrogalactose content of G. tikvahiae agar were 

highest in the summer. There were no significant 

differences in 3,6-anhydrogalactose, sulfate, ash content, 
gel strength or viscosity between agar, extracted with 

hydroxide pretreatment, from cystocarpic or tetrasporic 
plants.

xvii



The net photosynthesis of Gracilaria tikvahiae was
-2 -1light-saturated at 200-600 jjE*m *s , but it was not

-2 -1inhibited at'1440 p E ’m *s . G. tikvahiae had increasing

net photosynthetic rates from 5° to 25°C. Maximum net
o ophotosynthesis occurred between 25 and 35 C, while rates 

decreased at 37.5°C. The net photosynthetic responses at 
25° and 30°C were stable after acclimation times of one to 

four days, but declined after three days at 35°C.

tikvahiae has a euryhaline net photosynthetic response 
between 5 g/kg and 40 g/kg.

xvii i
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ECOLOGY OF GRACILARIA TIKVAHIAE MCLACHLAN 
(GIGARTINALES, RHODOPHYTA) IN THE 
GREAT BAY ESTUARY, NEW HAMPSHIRE.

PART I.

REPRODUCTIVE PHENOLOGY AND GROWTH.



1.1 INTRODUCTION

The cosmopolitan genus Gracilaria is widely used as a 

source of the phycocolloid agar (Michanek 1975, Mathieson 
1982). In North America several projects have been 

conducted to determine the aquaculture potential of various 

Gracilaria species (Edelstein et cil̂ . 1976, 1981, Edelstein 

1977, C. Bird et a_l. 1977a, Ryther et al. 1979, Lindsay and 

Saunders 1979, 1980, Saunders and Lindsay 1979). The latter 

investigations have demonstrated rapid growth rates of some 

Gracilaria species under various artificial conditions. 

However, less is known of G. tikvahiae1s growth, as well as 

its reproductive phenology, i_n situ (Taylor 1975, C. Bird et 

al. 1977b).

Growth studies of several Gracilaria species indicate 

that maximum growth or standing crop coincides with seasonal 
temperature and/or irradiance maxima, at least in temperate 

habitats (Conover 1958, Edwards and Kapraun 1973, C. Bird et. 

a l . 1977a, 1977b, Rosenberg and Ramus 1981, 1982). In 

particular, i_n situ growth rates of G. tikvahiae compare 
favorably with those determined in aquaculture (see Table 

1-V). The seasonality of reproduction coincides with 
growth/standing crop maxima for G. tikvahiae (C. Bird ert 

al. 1977b) and G. verrucosa (Jones 1959a, 1959b). In

2
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contrast, no similar coincidence was shown for 

G. bursapastoris and G. coronopifolia (Hoyle 1978).

Gracilaria tikvahiae (N. Bird et al_. 1977) ,

G. verrucosa (Ogata et al_» 1972, C. Bird et al_. 1982) and 
G . foli ifera (McLachlan and Edelstein 1977) have isomorphic 

triphasic life histories of the Polysiphonia-type (Dixon 

1973). However, seasonal field collections of these 

seaweeds have generally found substantial deviations from 

the life histories in culture (N. Bird 1975, 1976, C. Bird 

et a l . 1977a). Jones (1959a) noted that spermatangial 

plants of G. verrucosa were much less common than either 
tetrasporic or cystocarpic plants in Great Britain. In 

contrast, Gracilaria (verrucosa type) in British Columbia 
(Whyte et al. 1981) and some populations of G. tikvahiae in 

the Canadian Maritimes (C. Bird et al_. 1977b) had a 

preponderance of tetrasporic plants. However, one attached 

population of G. tikvahiae from Barrachois Harbour (Nova 

Scotia) apparently conforms to the life history demonstrated 

in culture (N. Bird 1976).

The present report represents one section of a project 

concerning the ecology of Gracilaria tikvahiae within the 

Great Bay Estuary (N.H.). The current paper describes the 
in situ growth and reproductive phenology of G. tikvahiae 

within the Great Bay Estuary. A portion of this research 
was summarized previously (Penniman 1977) with the plant 

referred to as Gracilaria foli ifera (Forsskal) Boergesen.



However, the alga has subsequently been designated 
Gracilaria tikvahiae (Chapman ejt al_. 1977, McLachlan 

al. 1977, Edelstein et al. 1978, McLachlan 1979).



1.2 METHODS

Attached plants of Gracilaria tikvahiae were collected 

randomly by SCUBA divers between 2 m to 4 m below mean low 

water at Cedar Point (43° 7.68' N, 70° 51.67' W) , Thomas 

Point (43° 4.93' N, 70° 51.92' W) and Nannie Island (43° 

4.13' N, 70° 51.83' W) within the Great Bay Estuary (Figure 
1-1). Monthly collections were made from May 1976 to 
October 1977. Ice cover during January and February 1977 

prevented collection at Nannie Island. Individual plants 

from each collection were sorted by reproductive status 

(i.e. vegetative, cystocarpic, spermatangial or 

tetrasporic). The categories indicated only the presence of 

the reproductive structures but did not necessarily indicate 
reproductive potential. Each sample was rinsed briefly in 

tap water, drained, blotted dry and its fresh weight 

determined. The samples were dried at room temperature in 

moving air; then dried for 48 hr at 60°C iji v a c u o ; and 

reweighed. The proportion of each reproductive category was 

expressed as the percent of the total dry weight per 

individual collection. The dried plant material was 
chemically analyzed (Parts 2 and 3).

5
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The growth of Gracilaria tikvahiae plants collected at 
Thomas Point was measured at Adams Point (43° 5.48* N, 70° 

51.93' W) with three methods. First, twenty apical 
fragments (1-2 g fresh wt) were placed in a 0.125 inch nylon

mesh bag subdivided into twenty separate compartments. The

bag was suspended horizontally on a 0.75 inch PVC pipe frame 
(1 m x 1 m) maintained by flotation at a constant depth of 1
m in approximately 5 m deep water. In the other two

enclosure methods, the plants were tethered to cement blocks 
placed at -1.0 m, to maximize irradiance and ensure that 

emersion did not occur. Two sets of twenty plants were 

attached to the blocks; one set was enclosed in individual 

net bags similar to those described previously, while the 

remaining set of twenty plants was tied to the blocks by 

monofilament lines. All of the growth experiments were 
conducted on the eastern shore of Adams Point (Figure 1-1).

Monthly growth rates were measured as increases in 

fresh weight and calculated in terms of percent growth/day 

by the following formula:

G = [(Wt/WQ )1/t - 1] x 100

where G=percent increase in fresh weight/day, W Q=initial 

weight, and W fc=weight after t days (Hoyle 1978) . The plants 

were cleaned of epiphytes weekly, pruned to minimize 

shelf-shading, or replaced when necessary during each 

monthly weighing. Growth in the floating net bags was 

measured from April 1978 to August 1979. The two other
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treatments, also initiated in April, were terminated after 
October 1978 due to plant fragmentation and loss as a result 
of wave action during autumn storms.

The values for hydrographic and water nutrient 
chemistry data used in this study were obtained from a 

baseline hydrographic survey of the Great Bay Estuary 

(Emerich Penniman et £l_. 1983) . The water samples for the 

latter study were taken during ebb tide from 0.0, -1.2 and 

-4.0 m at locations adjacent to the study sites used in the

Gracilaria investigation (Figure 1-1). Dissolved inorganic
+ — — 3 —nutrients (i.e. NH^ -N, NO^ -N, NO2 -N, and PO^ -P) were

analyzed using Technicon Autoanalyzer methods (Glibert and
Loder 1977) . Surface irradiance values, measured with an
Eppley model PSP pyranometer, were obtained from data

collected by the N.H. State Climatologist located at Durham,
N.H. (G. Pregent, personal communication). A factor of 0.5

was used to approximate PAR (i.e. photosynthetically active

radiation) from the total daily solar irradiance values

(Szeicz 1974).

The average seasonal curves for the hydrographic and 

water chemistry data (May 1976 to October 1977) were 

analyzed by periodic regression techniques (Hackney and 

Hackney 1977, 1978). The periodic regression model 

contained a harmonic term:

y^ = a^ + a^cos (27!r/12x^) + a2sin (2tt7'12x^) +
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where y^ is the dependent variable; a^, a^, a^ are 
constants; x^ is the independent variable (i.e. a time 

series) , and e^ is the residual term. Statistical analyses 

of growth rates were performed using a similar periodic 
regression model. The periodic regression analyses were 

conducted with a routine (BMD04R) from the BMD package 

(Dixon 1977). Correlations between growth rates and 

environmental parameters were calculated with MINITAB (Ryan 

et a)L. 1976) and SPSS (Nie et al_. 1975) . The plant tissue 

chemistry data used in correlations with growth rates are 

from 1976-1977 (Part 2).



1.3 SITE DESCRIPTION

The Great Bay Estuary (New Hampshire-Maine) extends 

from the mouth of the Piscataqua River in Portsmouth, to 

Little Bay, then past Furber Straits into Great Bay. The 

Estuary also includes the tidewater portions of the seven 

rivers which drain into the basin (Figure 1-1). Tides are 

equal-semidiurnal, with a vertical range of 2.0-3.0 m 

(National Ocean Survey 1982). The Estuary is well-mixed by 
tidal currents that may exceed 100 cm/s in certain areas 

(Swenson et al_. 1977) .

The distribution of Gracilaria tikvahiae within the 
Estuary is primarily limited to Little and Great Bays (Hehre 

and Mathieson 1970, Mathieson et al. 1981). Perennial, 
subtidal populations of G. tikvahiae occur at each of the 
four study sites (Figure 1-1). Most of the plants are 

attached individuals between -1 to -4 m. Although the 

bottom at these sites is generally composed of mud/silt, 

other substrata, such as bivalve shells (particularly 

Crassostrea virginica) , rocks and sunken logs, are present. 

The algal flora associated with Gracilaria at these sites 

has been described by Mathieson et al. (1981).
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The water temperatures at Cedar Point, Thomas Point and 

Nannie Island (collection sites) from May 1976 to October
1977 and at Adams Point (growth study site) from April 1978

to August 1979 varied from a winter low of -1.9°C to a
summer high of 25°C (Figures 1-2 and 1-4). Salinities

varied from 8 g/kg during spring runoff to maximum values of

32 g/kg (Figures 1-3 and 1-5). The temperature and salinity

regimes at Cedar Point, Thomas Point and Nannie Island were

similar during May 1976 to October 1977 (Figures l-2a and

l-3a). A regression model (Table 1-1) calculated for the

average seasonal cycle of temperature at Cedar Point, Thomas

Point and Nannie Island (Figure l-2b) had a significant
2periodic component (R =91.7). However, the average annual

cycle of salinity (Figure l-3b) did not conform as closely
2to the periodic model (R =44.0) due to episodic spring 

runoff.

The monthly values of NH^+-N and (NO-^+NC^- ) -N at Cedar 

Point, Thomas Point and Nannie Island are variable, although 

distinct seasonal fall-winter maxima and summer minima are 
apparent (Figure 1-6). Minor summer increases in ammonium 

levels were evident during 1976 and 1977. A comparable 

cycle of dissolved inorganic nitrogen occurred during April

1978 to August 1979 at Adams Point (Figure 1-8) . The

seasonal cycles of NH^+-N, ( N O ^ + N C ^ - ) -N and total dissolved
inorganic nitrogen (i.e. the sum of the two former
components) at Cedar Point, Thomas Point and Nannie Island

2have significant periodic components, R =56.8, 73.3 and
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11.2, respectively (Table 1-1). Dissolved phosphate
concentrations at Cedar Point, Thomas Point and Nannie

Island varied between a June low near 0 ug-at P/L to a
January high of 2 ug-at P/L (Figure 1-9). The low seasonal

variation of dissolved phosphate (Figure l-9b) was reflected 
2in the low R (34.3) of the periodic regression model (Table

1-1). Similar reduced seasonal variation in phosphate was

present at Adams Point during April 1978 to August 1979.

Total surface irradiance at Durham (N.H.), approximately 7.5

km from Adams Point, for the period April 1973 to July 1979,
-2 -1varied from summer highs of 600 c a l ’cm ‘day to winter 

lows of 150 cal*cm-^*day”^ (Figure 1-11).



1.4 RESULTS

REPRODUCTIVE PHENOLOGY

Vegetative plants dominated the populations at Cedar 

Point, Thomas Point and Nannie Island from September to May, 

while the maximum abundance of reproductive plants occurred 

during June to August for 1976 and 1977 (Figures 1-12 to 

1-15). Tetrasporic plants had a discrete reproductive 
periodicity with maxima in June-July, decreasing to 

negligible amounts throughout the remainder of the year 

(Figures 1-12 to 1-15). Cystocarpic plants had maximum 

abundance during June-August, while lesser amounts occurred 

during other times (Figures 1-12 to 1-15). Cystocarps 

observed during the winter to early spring probably 

represented residual structures that had released their 

carpospores. The refractory nature of the cystocarps 
themselves, relative to the tetrasporangial or spermatangial 
sori, explains their persistence. During 1976 the maximal 

abundance of both cystocarpic and tetrasporic fronds 

occurred progressively later at Nannie Island, Thomas Point 
and, finally, Cedar Point; however, this temporal difference 

was not observed in 1977.

12
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Plants with spermatangial sori (i.e. of the textorii- 

type sensu Yamamoto 1975) were not identified until May 

1977. However, during the period they were observed, 

spermatangial plants had a distinct reproductive periodicity 
similar to both the tetrasporic and cystocarpic thalli. 

Spermatangial fronds were most abundant during June-July (of 

1977) at all three sites (Figures 1-12 to 1-14) .

Cystocarpic plants occurred in greater amounts than 

spermatangial plants during the summer of 1977 when both 
phases were collected (Figures 1-12 to 1-15). In general 

the proportion of each reproductive phase was similar for 

corresponding collections at the three sites (Figure 1-15).

GROWTH

The growth rates of Gracilaria tikvahiae at Adams Point 

were maximal during June to August (Figure 1-16). There was 

a significant periodic component of the seasonal growth 

cycle and there were significant differences between the 

enclosure treatments (Table l-II). The growth of plants 

tethered to cement blocks at -1.0 m was significantly 
greater than those held in mesh bags (SNK, p<0.05). One 
exception in July was due to an anomalous decrease in growth 

of the tethered plants, perhaps due to storm/wave-induced 

fragmentation.
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The differences in growth rates between the three 

methods suggest some differential shading due to the net 

enclosures. Also the net bags may have protected crustacean 

grazers and therefore increased their numbers in the bags 

relative to the tethered plants. However, little evidence 

of grazing was observed for any plant in the three 

treatments. While the bags probably shaded the enclosed 

plants to some degree, loss due to fragmentation was 

decreased by enclosure. The tethered plants, however, were 

subject to considerable fragmentation which may have 

contributed to the July depression of growth. Plants in 

mesh bags held 1.0 m below the water surface had zero growth 
rates from December 1978 to April 1979. Growth increased 

during May to July in 1979 as in 1978. The maximum growth 

rates coincided with the period of maximum reproduction.

Growth (as arcsine transformed % fresh weight/day in
2-1.0 m mesh bags) was highly correlated (r =0.914) with

temperature (Table l-III). Surface irradiance was
substantially less correlated with growth as a single factor 

2(r =0.580) or thru partial correlation with temperature held
2constant (rGL#T=-0.460; r G L .T =0.212, p=0.057). Inorganic 

nitrogen (as NH^+-N, (NO^'tNC^'") -N or total dissolved 

inorganic nitrogen) was negatively correlated (r=-0.455, 

-0.607, and -0.589, respectively) with growth. Correlations 
with dissolved inorganic nutrients did not increase when a 

one month lag was introduced to the nutrient data 

(i.e. growth versus the previous month's dissolved nutrient



15

concentrations). Plant tissue carbon, nitrogen, and 
phosphorus were all negatively correlated with growth, while 
ash content was positively correlated with growth rate 

(Table l-III). Relationships between plant tissue chemistry 
and dissolved nutrients will be addressed in Part 2.

A multiple correlation model (Table 1-IV) was 

constructed for growth using the factors listed in Table 

l-III. Factors were added to the model such that each 
partial F-value was significant at p<0.05. Thus,

3_temperature and dissolved PO^ -P accounted for 96.3% of the 

variance in the seasonal growth data with no significant 

contribution from any other factor in Table l-III or 

respective interaction terms.

i



1.5 DISCUSSION

In contrast to other Gracilaria populations that are 

dominated by loose or entangled individuals (Taylor 1975,

N. Bird 1976, C. Bird ej: aL. 1977b, Goldstein 1981),

G. tikvahiae within the Great Bay Estuary (New Hampshire) 

occurs primarily as attached plants. The rapid currents in 

the Estuary (Swenson et ajL. 1977) may not allow development 

of extensive, unattached G. tikvahiae populations.

Similarly, although certain G. tikvahiae populations in the 

Canadian Maritimes are entangled in Mytilus edulis byssi, no 

similar association occurs in the Great Bay Estuary.

While vegetative Gracilaria tikvahiae plants 
predominated for most of the year in the Great Bay Estuary, 

there were distinct reproductive maxima. Tetrasporophytes 

were dominant in June-July of both years. Similarly, 

cystocarpic plants were at a maximum in June-August.

Although not observed until the second year of the study, 

spermatangial plants were most common during June-July 
(1977) . Cystocarpic and tetrasporic plants had 
approximately equal biomass, while lesser amounts of male 

plants were observed. Such information provides putative 

evidence that G. tikvahiae within the Great Bay Estuary has 
a classical Polysiphonia-type life history, as described in

16
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vitro (N. Bird et al̂ . 1977). However, the reduced amounts 

of spermatangial versus cystoscarpic plants in the present 
investigation suggest a deviation from a 1:1 female:male 

ratio.

Reproductive patterns similar to those in the Great Bay 

Estuary have been observed in an attached population of 

Gracilaria tikvahiae from Barrachois Harbour, Nova Scotia 

(N. Bird 1975, 1976). In contrast, several unattached 

populations of the same species in the Canadian Maritimes 

have a predominance of tetrasporophytes, with reduced levels 

of gametophytes (N. Bird 1976, C. Bird e_t â L. 1977b) . The 
dominance of tetrasporophytes has been attributed to a 

greater longevity of diploid than gametophytic plants in the 

detached state (C. Bird et a_l. 1977b) . Gracilaria verrucosa 
in the Menai Straits (U.K.) has a reproductive cycle (Jones 

1959a) comparable to G. tikvahiae in the Great Bay Estuary. 

In Ceylon G. verrucosa has a similar reproductive cycle to 

G. verrucosa in the Menai Straits (Durairatnam 1965) . 

Reproductive plants of G. verrucosa occur throughout the 

year in Manila Bay, with reduced numbers of spermatangial 

relative to cystocarpic and tetrasporic plants (Trono and 

Azanza-Corrales 1981) . Isaac (1956) found populations of 

G. verrucosa (as G. confervoides) in South Africa that were 

reproductive throughout the year, with more cystocarpic than 
tetrasporic plants, and no male plants recorded. In 
contrast G. edulis, G. foliifera and G. corticata from India 

had a predominance of tetrasporic relative to gametophytic
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plants (Draamaheswara Rao 1973, 1975).

As with G. tikvahiae, both G. verrucosa and 

G* £oiii£Qra follov; a Polysiphonia-type life history in 
culture (Ogata et al. 1972, McLachlan and Edelstein 1977,

C. Bird e_t al. 1982) . Hoyle (1978) observed that 

G. coronopifolia and G.bursapastoris were reproductive 

year-round in Hawaii, the former having significantly more 
male than female plants and both species having greater 

numbers of tetrasporophytes than gametophytes. Several 

populations of Gracilaria in British Columbia (Saunders and 

Lindsay 1979, Bunting et al. 1980, Whyte et al. 1981) had 

variable reproductive phenologies. Specifically, attached 

populations of Gracilaria (verrucosa type) produced all 
three reproductive phases but tetrasporic plants were most 
abundant (Saunders and Lindsay 1979, Whyte et a l . 1981). In 

contrast, intertidal beds of Gracilaria sp., without 

holdfasts and entangled in Mytilus edulis byssi, lacked 

gametophytes and had a spring maxima of tetrasporophytes 
(Saunders and Lindsay 1979) . The taxon formerly designated 

as G. verrucosa in British Columbia differs in chromosome 

number from plants of this species collected at the type 

locality in Great Britain (C. Bird et aJL. 1982) . Thus, 

references to G. verrucosa in British Columbia should not be 

equated with the taxon in Great Britain.
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As outlined above, Gracilaria may have a wide range of 
in situ life history strategies, depending upon the taxon 
and specific habitat characteristics. The variations from 

in vitro theoretical life histories (Ogata et al_. 1972,
N « Bird et al^ 1977, C. Bird et a]L. 1982, McLachlan and 

Edelstein 1977) are similar to those of other red algae 

throughout their ranges (Dixon 1973). Reports of the 
predominance of tetrasporophytes or the limited occurrence 

of spermatangial plants may reflect very specific 
microhabitat requirements of each reproductive phase 

(Mathieson and Burns 1975, Norall et al_. 1981), differences 

in the longevity of the observable reproductive structure 

(Kapraun 1978) , or the difficulty of identifying male plants 
(Ngan and Price 1980). In general unattached populations of 

Gracilaria, including G. tikvahiae, have reproductive 

patterns characterized by the absence of a particular 
phase(s) or at least a pronounced inequality of phases 

(Causey et al^ 1946, Stokke 1957, Edwards and Kapraun 1973, 

C. Bird et al̂ . 1977b, Saunders and Lindsay 1979) . In 
contrast, attached populations such as those in the Great 

Bay Estuary seem to conform more closely to a Polysiphonia- 

type life history i_n situ.

The seasonal growth of Gracilaria tikvahiae in the 

Great Bay Estuary is limited to May-September. In contrast, 

the plant's growth is restricted to three months in 
Barrachois Harbour, Nova Scotia, with senescence in late 

August (N. Bird 1976) . The maximum growth rate of tethered
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plants at -1.0 m in the present study was 11%/day in 
June-July (avg. 7.5%). Although comparisons between single 

plant measurements and mass culture growth rates are 

difficult, due to differences in plant density, it is 

apparent (Table 1-V) that the in_ situ growth rates of 

G. tikvahiae in the Great Bay Estuary are comparable to 
those recorded under various aquaculture regimes.

Gracilaria tikvahiae in New England and the Canadian 

Maritimes appears to be restricted to relatively shallow 
embayments where summer temperatures are sufficiently high 

to support growth (i.e. greater than 15°C). Such a 

distribution leads to a coincidence of maximum growth/ 

standing crop with seasonal maxima of temperature and 

irradiance (Conover 1958, N. Bird 1975, C. Bird et a l .

1977a). Stokke (1957) reported that G. verrucosa 

populations in Norway were absent from open coastal 

locations and restricted to protected warm embayments. Kim 

and Humm (1965) and Causey £t aJL. (1946) reported that the 

growth of G. foliifera and G. verrucosa was limited to warm 

water periods. Similarly Rosenberg and Ramus (1981, 1982) 

measured maximum growth of G. foli ifera in North Carolina 
during periods of maximum temperature and irradiance.

The growth of Gracilaria tikvahiae in New Hampshire was 
highly correlated with water temperature. In culture the 

growth of G. tikvahiae is limited to temperatures greater 

than 12°C (Edelstein et a l . 1976, N. Bird et al. 1979).
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However, results from the present study indicate that growth 
can occur at slightly lower temperatures (i.e. 10°C), at 

least within the Great Bay Estuary. Growth was less 

correlated with surface irradiance than water temperature. 

However, the use of surface irradiance may not be 

representative of iji situ values for a turbid estuary. 

Lindsay and Saunders (1980) and Whyte et aJL. (1981) have 

shown that the growth/standing crop of Gracilaria in British 

Columbia is correlated with irradiance rather than seawater 

temperature. Similarly, Hansen (1977) found a positive 

correlation between growth and irradiance for Iridaea 

cordata, but no relation with ambient temperature, dissolved 

nitrogen nor phosphate. LaPointe e_t al_. (1976) found no 
correlation between either temperature or irradiance and 

growth with Gracilaria in a flow-through aquaculture system. 

LaPointe (1981) also found no correlation between dissolved 
inorganic nitrogen and growth of cultured G. foli ifera, but 

there was a strong correlation with irradiance. However, as 

the cultures were maintained at 25°C in these experiments, 

the temperature may have been suboptimal.

As would be expected for a euryhaline plant such as 

Gracilaria tikvahiae, little correlation was apparent 

between salinity and growth (Table l-III). Because 

G. tikvahiae populations in the Great Bay Estuary are 
perennial, the plants must tolerate annual salinity 

variations from 8 g/kg to 32 g/kg. N. Bird et ajL. (1979) 

found the growth of G. tikvahiae in culture was greatest at
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20 g/kg to 40 g/kg. Although G. tikvahiae in the Great Bay 
Estuary tolerates low salinities, most growth occurs 

(primarily due to temperature limitations) during periods of 

higher salinities (i.e. 25 g/kg to 32 g/kg). In contrast 

G. verrucosa tends to be less tolerant of low salinities, 

while G. foliifera is more euryhaline (Kim and Humm 1965) . 

Although LaPointe (1981) found a relatively strong negative 
correlation between growth and ash content of G. foli ifera 

(i.e. r=-0.85), a positive correlation of similar magnitude 

was found in the present study between _in situ growth of 

G. tikvahiae and ash content (Table l-III) .

In the present study, the seasonal growth cycles of 

Gracilaria tikvahiae appeared to be unrelated to the cycle 

of dissolved inorganic nitrogen and plant tissue nitrogen, 
as indicated by the negative correlations of these factors 

(Table l-III). The growth of G. tikvahiae (as G. foli ifera) 

in flow-through cultures was saturated at 1.0-1.5 jjM 
dissolved inorganic nitrogen (DeBoer eit al. 1978) . In the 

present growth study, ambient total dissolved inorganic 

nitrogen declined below this concentration only during July, 
August and November 1978. As temperature and light may 

limit growth in November, the only period when nitrogen may 

have been limiting was during July-August 1978.

Consideration of nitrogen limitation strictly in terms of 

ambient concentrations is simplistic, as water motion can 

act to enhance nutrient availability at suboptimal 

concentrations (Conover 1968, Gerard and Mann 1979, Parker
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1981, 1982, Gerard 1982c). Given the rapid tidal currents 

in the Great Bay Estuary (Swenson et al_. 1977) , nitrogen 
depletion probably would not occur within the Gracilaria 
beds below concentrations detected in the water column. As 

demonstrated by Ryther e_t £l_. (1981) , Gracilaria has the 

capacity to rapidly assimilate and store quantitites of 
nitrogen sufficient to support growth for two weeks in 

nutrient-depleted water. The latter phenomenon may 

contribute to the lack of correlation between growth and 
water nitrogen concentrations (Gerard 1982b, LaPointe and 

Tenore 1981).

LaPointe and Ryther (1979) have shown that Gracilaria 

tikvahiae tissue carbon/nitrogen (weight) >10 indicated 

nitrogen-limited growth. As C/N ratios of natural 

populations of G. tikvahiae show substantial seasonal 

variation (see Part 2), the specific values given by 
LaPointe and Ryther (1979) for cultured material probably 
have little direct application to ^n situ plants. However, 

in the present growth study, C/N increased to >10 only 

during July-August, and C/N did not correlate strongly with 

growth. LaPointe and Tenore (1981) stated that tissue C/N 

values will be related to growth only when nitrogen contents 

are growth-limiting. Finally, the lack of correlation with 

water nitrogen and growth may be a reflection of the 

inadequacy of a monthly measurement of dissolved nitrogen 
reflecting the dynamic nutrient conditions found in an 

estuary. However, this sampling strategy would have no
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bearing on tissue nitrogen versus growth relationships.

Hanisak (1982) found that 2% was the critical internal 
nitrogen concentration for Floridian Gracilaria tikvahiae 

(i.e. the growth of plants with less than 2% nitrogen would 
be nitrogen-limited). At no time did the nitrogen content 

of G. tikvahiae plants from the Great Bay Estuary decline 

below 2%. Thus, it would appear that G. tikvahiae within 

the Great Bay Estuary is rarely limited by ambient nitrogen 

availability. Rosenberg and Ramus (1981, 1982) reported 

growth rates of G. foli ifera in a flow-through culture 

system were correlated with dissolved inorganic nitrogen. 

However, the plants used were from the intertidal zone but 

examined in a continuously submerged state. In addition 

"ambient" nitrogen concentrations in their culture tanks 
were substantially higher than corresponding jln situ levels, 

due to ammonium enrichment from animals colonizing the 

seawater pipes. The maximum total plant nitrogen measured 
by Rosenberg and Ramus (1982) was only one-half of that 

found in the present study (i.e. 1.4% vs. 2.8%-4.2%).

Single factor (i.e. simple) correlations inferred a 

strong positive relationship between temperature and growth. 

Further development of this bivariate correlation gave a 

multiple correlation model including the factors temperature 

and dissolved reactive phosphate (Table 1-IV). No other 
factor (of those listed in Table l-III) added significantly 

to the multiple correlation model. The model therefore
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reflects a high dependency of i_n situ growth on temperature, 
as well as the temporal uncoupling of growth from other 

factors such as surface irradiance and dissolved inorganic 

nitrogen. The inclusion of dissolved phosphate in this 

model is of interest. Limitation of marine algal growth is 

generally attributed to nitrogen rather than phosphorus, 

particularly in open ocean and coastal areas (Ryther and 

Dunstan 1971, Topinka and Robbins 1976, Chapman and Craigie 
1977, Hanisak 1979a, 1979b, 1982, Chapman and Lindley 1980, 

Gagne and Mann 1981, DeBoer 1981, Rosenberg and Ramus 1982, 

Gerard 1982a, 1982b). However inner estuarine sites may 

have phosphorus or nitrogen limitation depending upon season 
or individual runoff events (Wallentinus 1979, Anderson et 

a l . 1981) . Absolute amounts of dissolved nitrogen and 

phosphorus as well as ambient N/P must be known (Waite and 
Mitchell 1972, Kautsky 1982).

While dissolved inorganic nitrogen concentrations 
within the Great Bay Estuary were higher than in many other 

coastal areas where macroalgal nutrient limitation has been 

studied (Chapman and Craigie 1977, Asare 1979, Chapman and 

Lindley 1980, Gagne and Mann 1981, Gerard 1982a, 1982b), 

large fluctuations occurred during the study period. 
Phosphate concentration was relatively stable, and changes 

in available N/P (water) were primarily due to differences 

in nitrogen concentration. The inclusion of dissolved 

phosphate in the multiple correlation model suggests a need 
for further study of growth-limiting nutrients in estuarine
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areas. Harlin and Thorne-Miller (1981) working with 
Gracilaria tikvahiae in Ninigret Pond (Rhode Island) found 

the greatest increase in standing crop after i_n situ 

phosphate enrichment, relative to nitrate or ammonium 
additions. However, none of their standing crop changes 

were statistically greater than in the control area. 

Similarly, Cladophora glomerata in the Baltic Sea was 
phosphorus-limited in some seasons (Wallentinus 1979) .

While phosphorus may limit macroalgal growth in some 
estuarine/brackish habitats, comparisons are restricted due 

to site-specific nutrient variations and species-specific 

responses to nutrient concentrations (Prince 1974, Harlin 

and Thorne-Miller 1981, Kornfeldt 1982). Furthermore, it is 
difficult to relate growth limitation in the present study 

to dissolved inorganic phosphate concentrations because of 

the lack of strong seasonal variation in dissolved 

phosphate, little seasonal variation in plant phosphorus 

content, and a low correlation between dissolved phosphate 

and plant phosphorus. Although most emphasis has been 

placed on nitrogen limitation of marine macroalgal growth, 

it would seem valuable for a further evaluation of the 

interactions between ambient dissolved nitrogen and 

phosphorus, growth, and plant tissue chemistry, particularly 

of estuarine species.



1.6 SUMMARY

1). Gracilaria tikvahiae in the Great Bay Estuary displayed 

discrete summer reproductive maxima for cystocarpic, 

spermatangial and tetrasporic stages.

2). Cystocarpic plants occurred in slightly greater amounts 
than did spermatangial plants during the reproductive 

p eriod.

3). Growth of Gracilaria tikvahiae was limited to warm 

water periods in the Great Bay Estuary (i.e. May - 

September).

4). Growth rates of Gracilaria tikvahiae in the Great Bay 

Estuary correlated most highly with water temperature 

and dissolved inorganic phosphate via a multiple 

correlation model.

5). Growth of Gracilaria tikvahiae was unrelated to 

seasonal variations in dissolved inorganic nitrogen. 

Ambient nitrogen concentrations rarely limit growth of 

G. tikvahiae in the Great Bay Estuary.

27
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Table 1-1. Regression (periodic model) analyses of variance 
tables for average annual cycles of hydrographic and 
water nutrient parameters in the Great Bay Estuary.

a) Temperature

source df MS F

periodic
regression 2 12795.68 2369.6 ***

residual 429 5.40

R 2= 9 1 .7

b) Salinity

source df MS F

periodic
regression 2 4119.88 165.3 ***

residual 421 24.93
R2= 4 4 .0

c) NH.+-N4
source df MS F

per iodic 
regression 2 317.88 93 mg ***

residual 143 3.39

R2= 5 6 .8
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Table 1-1. (continued.)

d) (N03"+N02")-N
source df MS F

periodic 
regression 2 894.90 198.2 ***

residual 144 4.52

R2= 7 3 .3

e) Total dissolved inorganic nitrogen

source df MS F

periodic 
regression 2 2202.16 247.9 ** *

residual 146 8.90

R2= 7 7 .2

f) PO 3"-P 4
source df MS F

periodic 
regression 2 6.89 38.2 * * *

residual 146 0.18
R2=3 4 .3

*** p<0.001
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Table l-II. Regression (periodic model) analysis of
variance table of growth rates (arcsine transformed) at 
Adams Point, April 1978 to October 1978.

source df MS F

periodic 2 1809.1 373.5 ***

treatment 2 396.7 81.9 ** *

interaction 4 10.0 2.1 ns

residual 312 4.84

R2= 7 4 .7

*** p<0.001
ns p>0.05
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Table l-III. Correlations of growth (arcsine transformed) 
with environmental parameters and corresponding plant 
tissue chemistry.

2Factor r r p
(xlOO)

Temperature 0.956 91.4 0 . 0 0 0

Salinity 0.584 34.0 0.009

Irradiance 0.761 58.0 0 . 0 0 0

(NH4+ )-N -0.455 20.7 0.044

(no3“+no2")-n -0.607 36.8 0.008

DIN -0.589 34.6 0.010
p o ,3'-p4 0.315 9.9 0.126
Plant-C -0.854 72.9 0 . 0 0 0

Plant-N -0.840 70.6 0 . 0 0 0

Plant-P -0.733 53.7 0.001
Plant-C/N 0.729 53.1 0.001
Plant-Ash 0.910 82.9 0 . 0 0 0

(Factors are: temperature and salinity - water; irradiance - 
surface irradiance; N H 4+- N , (NO3“+ N 0 2“)-N, P 0 43“-p - water; 
DIN - total dissolved inorganic nitrogen; plant-C, plant-N, 
plant-P, plant-ash - % composition of C, N r P and ash as dry 
weight; plant-C/N - weight ratio.)
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Table 1-IV. Multiple correlation model of growth (arcsine 
transformed) with environmental parameters and 
corresponding plant tissue chemistry.

2Step Factors R R
(xlOO)

1 Temperature 0.956 91.4
2 Temperature 0.981 96.3

P 0 . 3 - - P4

(Factors were added to the model to satisfy p<0.05 of F of 
partial SS for each added factor. No other factors listed 
in Table l-III, as well as all interactions, increased the 
model significantly with respect to this criterion. Both 
models were significant at p<0.001.)
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Table 1-V. Comparative growth rates for Gracilaria species 
both in situ and in culture.

Species 

G. tikvahiae

G. tikvahiae

G. tikvahiae

G. tikvahiae

G. tikvahiae

. tikvahiae 

. "chorda"

G. foliifera

G. foliifera

G. verrucosa

Location %/day

Hill River, 5
P.E.I.

Pomquet Harbour, 7.1
N.S.

Ninigret Pond, 2.9
R. I .

culture, N.S. 16.5

culture, N.S. 14

culture, N.S. 24
culture, B.C. 3.0

culture, N.C. 5

culture, Ireland 13.7

G. "foliifera" culture, W.H.O.I. 14

G. "verrucosa" culture, Israel 7.5

G. "verrucosa" culture, B.C.

Menai Straits, 
U.K.

G. bursapastoris culture, Hi.

G. coronopifolia culture, Hi.

G. bursapastoris culture, Hi.

G. coronopifolia culture, Hi.

5.8

10

2.7 
1.5 

8.3

7.8

Source 

Taylor 1975

C. Bird ej: al 
1977a

Asare 1979

N. Bird ej: a l .
1979
Edelstein 
et a l . 1976

N. Bird 1975
Bunting et a l .
1980

Rosenberg & 
Ramus 1982

Guiry & Ottway
1981

DeBoer ej: a l . 
1978
Friedlander & 
Lipkin 1982

Saunders & 
Lindsay 1979
Jones 1959b

Hoyle 1978

Hoyle 1978
Hunt et a l . 
1982
Hunt ej: a l . 
1982



gure 1-1. Map of the Great Bay Estuary (New Hampshire- 
Maine) showing location of collection and growth study 
sites. Cedar Point (CP), Adams Point (AP), Thomas 
Point (TP) and Nannie Island (NI).
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Figure 1-2. Water temperatures (°C) at collection sites 
from May 1976 to October 1977. a) Cedar Point 
(octagons), Thomas Point (triangles) and Nannie Island 
(squares). b) Average (+2 SE) of the three sites.
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Figure 1-3. Salinities (g/kg) at collection sites from May 
1976 to October 1977. a) Cedar Point (octagons), 
Thomas Point (triangles), and Nannie Island (squares). 
b) Average (+2 SE) of the three sites.
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Figure 1-4. Water temperatures (°C) at Adams Point from
April 1978 to August 1979. Error bars indicate +2 SE.
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gure 1-5. Salinities (g/kg) at Adams Point from April 
1978 to August 1979. Error bars indicate +2 SE.
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Figure 1-6. Dissolved inorganic nitrogen concentrations 
(jug-at N/L) at collection sites from_May 1976 to 
October 1977. a) N H 4+-N and b) (NO3~ + N O 2~ )-N at Cedar 
Point (octagons), Thomas Point (triangles) and Nannie 
Island (squares).
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gure 1-7. Average dissolved inorganic nitrogen
concentrations (ng-at N/L) of the three collection 
sites from May 1976 to October 1977. NH^+-N 
(octagons), (N03~+N02~)-N (triangles), and total 
inorganic nitrogen (squares) . Error bars indicate +2, 
SE.
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Figure 1-8. Dissolved inorganic nitrogen concentrations 
(ug-at N/L) at Adams Point from April 1978 to August 
1979. NH4 -N (octagons) , (NC>3“+NC>2_ )-N (triangles) and 
total inorganic nitrogen (squares). Error bars 
indicate +2 SE.
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3_Figure 1-9. Dissolved P04 -P concentrations (jug-at P/L) 
collection sites from May 1976 to October 1977. a) 
Cedar Point (octagons), Thomas Point (triangles) and 
Nannie Island (squares). b) Average (+2 SE) of the 
three sites.
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3_Figure 1-10. Dissolved P04 -P concentrations (jug-at P/L) 
at Adams Point from April 1978 to August 1979. Error 
bars indicate +2 SE.
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gure 1-11. Total surface irradiance (cal*cm" 
(octagons) and PAR (triangles) at D u r h a m , 
April 1978 to July 1979.
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gure 1-12. Reproductive phenology of Gracilaria tikvahiae 
at Cedar Point from May 1976 October 1977. Percent 
composition of each stage as percent of total 
individual collection biomass; vegetative (octagons) , 
cystocarpic (triangles), spermatangial (diamonds) and 
tetrasporic (squares) plants.
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Figure 1-13. Reproductive phenology of Gracilaria tikvahiae 
at Thomas Point from May 1976 to October 1977. 
Vegetative (octagons), cystocarpic (triangles), 
spermatangial (diamonds) and tetrasporic (squares) 
plants. Percent composition as described for Figure 
1-12.
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gure 1-14. Reproductive phenology of Gracilaria tikvahiae 
at Nannie Island from May 1976 to October 1977. 
Vegetative (octagons), cystocarpic (triangles) , 
spermatangial (diamonds) and tetrasporic (squares) 
plants. Percent composition as described for Figure 
1-12.
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gure 1-15. Average (+1 SE) reproductive phenology of 
Gracilaria tikvahiae for the three collections sites 
from May 1976 to October 1977. Vegetative (octagons) , 
cystocarpic (triangles), spermatangial (diamonds) and 
tetrasporic (squares) plants. Percent composition as 
described for Figure 1-12.
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Figure 1-16. Growth rates of Gracilaria tikvahiae at Adams 
Point from April 1978 to August 1979. Tethered plants 
(squares), plants in net bags tied to blocks 
(triangles) , plants in net bags at -1.0 m (octagons). 
Growth measured as percent increase in fresh weight per 
day (mean +1 SE) .
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ECOLOGY OF GRACILARIA TIKVAHIAE MCLACHLAN 
(GIGARTINALES, RHODOPHYTA) IN THE 
GREAT BAY ESTUARY, NEW HAMPSHIRE.

PART 2.

VARIATION IN CHEMICAL COMPOSITION.



2.1 INTRODUCTION

Recently the mariculture of the red alga Gracilaria 
tikvahiae McLachlan, and closely related species, have been 
extensively studied (LaPointe et al̂ . 1976, Whyte and Englar 

1976, 1979c, DeBoer and Ryther 1977, Ryther et al. 1979, 

LaPointe and Ryther 1978, Lindsay and Saunders 1979, 1980, 

Mathieson 1982) , to assess their potential as sources of the 

phycocolloid, agar, and for methane production (Ryther et_ 

a l . 1979, Mathieson 1982). In conjunction with these 

studies, analyses of the chemical composition of the 
aquacultured populations have been conducted (LaPointe and 

Ryther 1978, 1979, DeBoer 1979, K. Bird et al. 1981, 1932, 

LaPointe 1981).

The relations between several chemical components and 

various environmental factors have been investigated in 

several aquacultured and i_n situ populations of Gracilaria 

(C. Bird et a l . 1977, Penniman 1977, Hoyle 1978a, 1978b, 

DeBoer 1979, K. Bird £t al̂ . 1981, Rosenberg and Ramus 1981, 

1982a, 1982b). By manipulating temperature, irradiance, or 

dissolved nutrients, a seaweed aquaculturalist may control 

the composition (and perhaps the specific properties of 

individual components) of the seaweed crop (LaPointe and 

Ryther 1979, LaPointe 1981). There is an inverse
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relationship between tissue nitrogen (or protein) and carbon 

(or carbohydrate) in several aquacultured and natural 
populations of seaweeds (Butler 1931, 1936, Neish and 

Shacklock 1971, Dawes et al_. 1974, Mathieson and Tveter 

1975, 1976, Durako .and Dawes 1980, LaPointe 1981). However, 
exceptions to this correlation have been reported (C. Bird 

et a l . 1977, Penniman 1977) .

Recent studies have also demonstrated differences in 

growth rates (Edelstein 1977, Edelstein et al_. 1976) and 

chemical composition (McCandless et al_. 1973, 1975, Hosford 

and McCandless 1975, Pickmere e_t £l. 1975, Waaland 1975,

Doty and Santos 1978, Kim and Henriquez 1979) between 

hapioid and diploid plants of an individual seaweed species. 

For example, a segregation of carrageenan fractions occurs 

between cystocarpic and tetrasporic stages of several 

gigartinalean algae (i.e. kappa-carrageenan in gametophytes 
and lambda-carrageenan in tetrasporophytes) (McCandless et 

a l . 1973, 1975, Hosford and McCandless 1975, Pickmere et: 

a l . 1975, Waaland 1975) . Proposals have been advanced 

suggesting the aquaculture of isolated reproductive stages 

of seaweeds to produce specific fractions of carrageenan 
(Shacklock et: al_. 1973, Mathieson 1982), heretofore only 
available via costly fractionation procedures. Some 

Gracilaria species may exhibit differences in the absolute 

content of agar between the reproductive phases (Kim and 

Henriquez 1979, Whyte and Englar 1979b, Whyte £t 1981).

However, Penniman (1977) presented preliminary data
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suggesting that Gracilaria tikvahiae (as G. foliifera) 

populations within the Great Bay Estuary (New Hampshire), 
did not show any differences in agar yield between 

reproductive phases. Similar results have been published 
for GU_ coronopifolia, G. bursapastoris (Hoyle 1978a) and 

Eucheuma spp. (Dawes £t aJL. 1977) . The current paper 

expands preliminary conclusions (Penniman 1977) regarding 

the content and seasonal cycles of several major chemical 

components of G. tikvahiae. Analyses of the physical and 

chemical properties of the agar from G. tikvahiae are 

presented in Part 3.

It should be emphasized that there is considerable 

confusion regarding the taxonomy of Gracilaria, both 

worldwide, and along the East Coast of North America 

(Chapman et aJL_. 1977, McLachlan ejb al_. 1977, McLachlan 1979, 

Hoek 1982). Thus, McLachlan (1979) combined all of the 

previously recognized taxa of Gracilaria in the geographic 
range of New Brunswick-Nova Scotia to New Jersey under the 

name Gracilaria tikvahiae. Between New Jersey and the 

Caribbean, confusion still remains as to the identities of 

closely related Gracilaria taxa (the source of much of the 

algal biomass used in several aquaculture projects).



2.2 METHODS

Gracilaria tikvahiae plants were collected monthly by 

SCUBA divers from May 1976 to October 1977 at three sites 
(i.e. Cedar Point, Thomas Point, and Nannie Island) in the 

Great Bay Estuary. See Part 1 for a description of these 

sites.

Immediately after collection, apical tips were excised 
from the plants for pigment analyses. Algal samples from 

each station were sorted into vegetative, cystocarpic, 

tetrasporic and spermatangial material. All phases were not 

present in each monthly collection (see Part 1). Each 

sample was prepared as follows; (1) it was rinsed briefly in 
tap water, (2) a fresh weight was determined after blotting 

excess moisture with Kimwipes, (3) the sample was dried at 

room temperature in moving air, (4) the sample was dried 
further in a vacuum oven at 60°C for 48 hr, (5) and a dry 

weight was determined. The dry samples were ground to pass 

through a 40-mesh screen using a Wiley mill, dried again in 

a vacuum oven, and stored in dessicators. The samples were 

subsequently analyzed as described below. With the 
exception of the pigment analyses, all the following 

procedures were conducted on dry, ground samples sorted as 

to reproductive status.
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DRY WEIGHT

A dry/fresh weight ratio, expressed as percent dry 

weight, was calculated for each Gracilaria tikvahiae sample. 

The fresh and dry weights were determined as described 

above.

ASH

The ash content of portions of each Gracilaria sample 
was determined. Triplicate portions (0.10-0.25 g) were 

combusted in porcelain crucibles for 48 hr at 500°C in a 

muffle furnace.

AGAR

The agar extraction techniques employed generally 
followed the method described by Kim (1970). The amount of 

algal material used for each extraction did not exceed 30 g. 

Replication of the agar extractions was limited by the 

amount of plant material available from each collection (for 

each reproductive stage). Gracilaria samples were 

pretreated with 5% sodium hydroxide (3:1, vol of NaOH:dry wt 

Gracilaria) and heated for 3 hr at 80°-90°C. The samples 

were then rinsed with distilled water (24:1, vol water:dry 

wt Gracilaria) at 10°C to remove excess NaOH, and then 

drained. A second equal volume of water was added to the 

samples and the pH was then adjusted to 6,0 with 1.0N 

hydrochloric acid. The mixture was heated at 90°-100°C and
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stirred for 1.5 hr to extract the agar. Diatomaceous earth 

and calcium chloride dihydrate (to aid filtration) were 
added to the extraction (1 :1, wt filter aidrdry wt 

Gracilaria; 0.02:1, wt C a C ^ *2H20:dry wt Gracilaria) . The 

agar solution was filtered in a pressure bomb through 

Whatman #2 filter paper. The solid residue (filter cake) 

was re-extracted at 90°-100°C for 30 min and then filtered. 

The two filtrates were combined, allowed to cool and gel, 
and then frozen. After 8-10 hr, the frozen agar filtrates 

were thawed and excess water was separated from the 

insoluble agar by squeezing in a nylon cloth. The agar was 
washed twice in 85% isopropanol (24:1, vol isopropanol:dry 

wt Gracilaria) , then dried in. vacuo at 60°C for 48 hr, and 

ground in a Wiley mill to pass through a 40-mesh screen. 
Subsequent analyses of these agar samples are reported in 

Part 3.

CARBOHYDRATE

Soluble carbohydrates were extracted from triplicate 

portions (5-10 mg) of dry, ground Gracilaria samples in 15 

ml of hot 5% trichloroacetic acid for 2 hr. After 

centrifugation, aliquots of the solutions were analyzed for 
carbohydrate content by the phenol-sulfuric acid method of 

Dubois et a_l_. (1956) , using D-glucose as a standard.

Absorbances were measured at 490 nm in 1.0 cm pyrex cuvettes 

with a Beckman DBG spectrophotometer.
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PROTEIN

Triplicate 10-25 mg portions of each Gracilaria sample 

were analyzed for protein content. Each replicate was 
homogenized in 10 ml of 1.0N NaOH using a Ten Broeck grinder 

and then allowed to extract for 8-10 hr. Aliquots (0.5 ml) 

of the homogenates were neutralized with 1.0N HC1 and 

subsequently analyzed for protein content by the Folin 

phenol method (Lowry et £l_. 1951) as described by Umbreit £t 

a l . (1972). Absorbances were measured at 750 nm in 1.0 cm 
pryrex cuvettes, using a Beckman DBG spectrophotometer. 

Bovine serum albumin (Fraction V, Sigma Chemical Co.) was 

used as a protein standard.

CARBON AND NITROGEN

Total carbon and nitrogen contents of dry, ground 

Gracilaria samples were measured in duplicate on a 

Hewlett-Packard model 185 elemental analyzer. Cystine was 

used as a standard. Carbon and nitrogen analyses were 

performed on all eighteen monthly collections from Thomas 

Point, but only for three-month intervals on samples from 
Cedar Point and Nannie Island due to financial limitations.

PHOSPHORUS

The phosphorus content of triplicate ashed portions 

(50-200 mg) of Gracilaria samples was determined. The ashed 

material was dissolved in 25 ml of 10% HC1 by heating at



83

90°-100°C for 1.5 hr. Aliquots of digests were analyzed for 

ortho-phosphate with the molybdate-ascorbic acid method 
(Golterman 1970). Absorbances were read at 665 nm in 4.0 cm 
pyrex cuvettes with a Beckman DBG spectrophotometer.

CHLOROPHYLL a AND PHYCOERYTHRIN

The chlorophyll a content of ten, fresh, apical tips 

(25-75 mg fresh wt) of Gracilaria tikvahiae was determined 

on each monthly collection, prior to sorting into 
reproductive groups. The fresh weights of the plant tips 

were measured and the chlorophyll was extracted by grinding 

in 12 ml of 90% acetone, using a Ten Broeck homogenizer, 
over ice, for 1.5 min. The samples were kept for 2 hr at 

4°C in the dark to allow further chlorophyll extraction, and 

then centrifuged. Absorbances of the supernatants were 

measured at 750 and 665 nm in 4.0 pyrex cuvettes on a 

Beckman DBG spectrophotometer. The chlorophyll a content 

was calculated, after correction for the 750 nm turbidity 

reading, with the extinction coefficient, E=87.67 (Jeffrey 

and Humphrey 1975).

The phycoerythrin content of six, replicate, fresh, 

apical tips of Gracilaria tikvahiae was determined on each 

monthly collection from November 1976 to October 1977. The 

plant tips were homogenized as described for chlorophyll; 

however, the solvent used was 10 ml of 0.1M (pH 6.5) 

phosphate buffer (Moon and Dawes 1976). The extracts were
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centrifuged and the pellet re-extracted as described above. 

The absorbances of each supernatant (i.e. first and second 

extraction) were measured at 750 and 565 nm in 4.0 cm 
cuvettes on a Beckman DBG spectrophotometer. Phycoerythrin 

content was calculated, after correction for the 750 nm 
turbidity reading, with the absorption coefficient, A=81.0 

(O'hEocha 1971). The phycoerythrin content for each plant 

tip was determined by adding the measurements of the two 

extractions.

Concurrent with the pigment analyses, ten, fresh, 

apical tips from each collection were weighed (fresh w t ) , 

dried Ĵ n vacuo at 60°C for 48 hr, and reweighed (dry wt) .

The percent dry weights were then used to express pigment 

concentration as mg chlorophyll (or phycoerythrin) per gram 

dry weight algal material.

STATISTICAL ANALYSES

The chemical components of Gracilaria tikvahiae were 

plotted for the eighteen month period of the investigation. 

Missing points indicate either the lack of a specific 
reproductive phase for that month or the inability to sample 

due to ice cover (i.e. January-February 1977 at Nannie 

Island). The seasonal curves were analyzed by fitting 

periodic regression equations to the data. The model for 

the periodic regression analyses contained a harmonic term, 
as follows:
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y . = an + a, cos (277/12x .) + a_sin (2rr/12x .) + e.1 0 1 l 2 l i

where y^ is the dependent variable (i.e. a chemical 
component), aQ , a^, a2 are constants, x i is the independent 

variable (i.e. a time series), and e^ is the residual term 

(Hackney and Hackney 1977, 1978). The model is appropriate 
for analyses of data that vary periodically through time.

It has the advantage of being simpler mathematically than 

techniques such as time-series autocorrelation analysis 

(Williams et al_. 1981) and is conceptually more straight

forward than equations of higher degree (i.e. greater than 

third) polynomials (Hackney and Hackney 1977).

A multiple regression model was developed that included 

the harmonic function and a term to represent the 

reproductive phase of the algal samples (i.e. cystocarpic or 
tetrasporic) as main effects and the respective interaction 

terms. The multiple regression analysis of variance allowed 

tests of significance for a seasonal periodic component as 

well as those differences in chemical composition due to 

reproductive phase. Only the differences between 

cystocarpic and tetrasporic plants were examined because 

vegetative plants could be either haploid or diploid. 

Although the data for male plants were included in the 

seasonal graphs, no statistical comparisons were made by 

regression methods since male plants were collected 
infrequently. The regression model was used to analyze the 

dry weight, ash, agar, protein, carbohydrate, carbon,
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nitrogen, and phosphorus data. The samples of Gracilaria 
tikvahiae from the three collection sites (i.e. Cedar Point, 

Thomas Point, and Nannie Island) represented replicates.

The full regression model was not used to analyze data on 

pigment content as the samples were not separated into 

distinct reproductive groups. All regressions and ANOVA 

were performed with MINITAB (Ryan et al̂ . 1976) , SPSS (Nie j2t 
a l . 1975) and/or the BMD04R routine from the BMD statistical 

package (Dixon 1977). Correlations between plant tissue 

chemistry and environmental data were calculated with the 
SPSS statistical package (Nie e_t a_l. 1975) . All regression 

and correlation analyses were performed on arcsine 

transformed data (Sokal and Rohlf 1981).



2.3 RESULTS

DRY WEIGHT

Similar cycles of low dry weight values of Gracilaria
tikvahiae in the summer increasing to maximum values in the

winter were apparent at all three sites (Figure 2-1). There

were no consistent differences between vegetative,

cystocarpic, tetrasporic and spermatangial phases during the

eighteen month period (Figure 2-2). Analysis of variance
(Table 2-1) showed a significant interaction between the

main effects (i.e. the periodic effect and the effect of
2reproductive phase). The regression model had an R =72.4

(p<0 .001) .

ASH

High values of ash content in Gracilaria tikvahiae 

(40% - 50%) occurred during both summers, while lower 

percent ash (24% - 32%) occurred during the winter (Figure 

2-3). Average values (i.e. reproductive phases averaged 

over the three sites) illustrated in Figure 2-4 show the 

seasonal trends analyzed in Table 2-1. The regression model 

explained 69.2% of the variation in ash content. The effect 

of reproductive phase (i.e. cystocarpic or tetrasporic) was

87

/



83

not significant, but the main effect for the periodic term 

was highly significant (Table 2-1).

AGAR

The agar contents of vegetative, cystocarpic, tetra
sporic and spermatangial Gracilaria tikvahiae plants at the 
three sites were low during the summer (Figure 2-5). The 

values for the summer of 1976 (7% - 18%) were lower than 

during 1977 (12% - 20%) . Similar cycles were apparent at 
all three stations. Regression analysis of variance of the 

average agar content (Figure 2-6) showed a significant 

interaction term (Table 2-1). There were no absolute 

differences in agar content between cystocarpic and 

tetrasporic plants (Figure 2-6), but rather a seasonal shift 

with tetrasporic plants attaining maximum agar content 

earlier than cystocarpic plants.

CARBOHYDRATE

The seasonal variation of total soluble carbohydrate 

content in vegetative, cystocarpic, tetrasporic and 
spermatangial plants of Gracilaria tikvahiae showed similar 

trends at the three sites (Figure 2-7). Low values of 24% - 
30% were present during both summers, while winter levels 

generally exceeded 40%. Each phase exhibited a similar 
cycle of soluble carbohydrate content (Figure 2-8).

Analysis of variance showed no significant difference in

/
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carbohydrate content between cystocarpic and tetrasporic
2plants (Table 2-1). The regression model (R =59.6) gave a 

highly significant seasonal component (pCO.OOl).

PROTEIN

The protein content of Gracilaria tikvahiae was

relatively constant throughout the year with the exception

of slightly lower protein levels in June-July of both 1976

and 1977 (Figure 2-9). The trend was apparent at all three

stations. With few exceptions, the protein levels varied

from 10% to 13% of dry weight. The average protein values
had no strong seasonal cycle nor any differences between

reproductive groups (Figure 2-10). The trend is emphasized
2in the regression model by the low R (14.1) and by the lack 

of any significant difference between cystocarpic and 

tetrasporic plants.

CARBON

The total carbon levels in Gracilaria tikvahiae plants 

from Thomas Point (Figure 2-11) had a seasonal cycle of low 

summer (25% - 30%) and high winter values (32% - 37%). No 
consistent differences were evident between the four 

reproductive phases. The data for Cedar Point and Nannie 

Island are not illustrated; however they are included in the 
regression analysis of variance (Table 2-1). Regression 

ANOVA showed no significant differences between cystocarpic
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and tetrasporic phases (Table 2-1). There was a highly 

significant (p<0 .001) periodic component to the regression 

model (R^=61.9).

NITROGEN

Summer values of total tissue nitrogen of Thomas Point

Gracilaria tikvahiae plants were 2.0% - 2.5%, while winter

levels were 3.5% - 4.0% (Figure 2-12). Nitrogen
measurements were made on plants from Cedar Point and Nannie

Island at three-month intervals (as with total carbon
measurements). While these data are not illustrated, they

were used in the regression analysis of variance. No

consistent differences in nitrogen content due to

reproductive phase were apparent (Figure 2-12) . Comparison

by regression ANOVA of cystocarpic and tetrasporic plants

for nitrogen content, indicated no significant differences

between these stages (Table 2-1). The regression model 
2(R =66.8) indicated a highly significant seasonal component. 

PHOSPHORUS

The seasonal trends of tissue phosphorus content for

Gracilaria tikvahiae within the Great Bay Estuary varied
between 0.2% and 0.4% of dry weight (Figure 2-13).

Regression ANOVA showed no significant differences in
phosphorus content (Figure 2-14) between cystocarpic and

2tetrasporic plants (Table 2-1). There was a low R (22.8)
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for the overall regression model, indicative of the lack of 

a strong seasonal cycle in phosphorus content.

COMPONENT RATIOS

The C/N, C/P and N/P ratios (on both weight and atomic 
bases) for Thomas Point plants are illustrated in Figure 

2-15. The C/N ratios were low during the fall to spring 

(8-10, by weight) and higher in the summer (12-14, by 

weight) at Thomas Point (Figure 2-15a). The C/P ratios were 

quite variable, with no consistent seasonal trends (Figure 
2-15b). The values primarily reflect variation in carbon 

content since phosphorus was rather stable. Figure 2-15c 
illustrates the N/P ratios for the four reproductive groups 

at Thomas Point. Lower (9-12, by weight) and higher (12-15, 

by weight) values of N/P were seen in summer and winter, 

respectively. Carbohydrate/protein ratios (Figure 2-16) 

varied from low summer (1.5-3.5) to higher winter values 

(3.5-4.2).

CHLOROPHYLL a AND PHYCOERYTHRIN

Chlorophyll content (mg/g dry wt) had little
seasonality (Figure 2-17) and no consistent differences

between stations. The lack of a strong seasonal variation
2was supported by the low R of the periodic regression 

models fitted to the chlorophyll data for the three stations 

(Table 2-1I).
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Phycoerythrin content was analyzed for twelve months 
(November 1976 - October 1977) at Cedar Point, Thomas Point 

and Nannie Island (Figure 2-18). Low summer and high winter 

values of phycoerythrin were evident (Table 2-II).

CORRELATION ANALYSES

Correlations between Gracilaria tikvahiae tissue 

composition and various hydrographic and nutrient parameters 

were calculated (Tables 2-III and 2-IV). Ash content was 

negatively correlated with all tissue components (Table 

2-III). However, ash content was positively correlated with 
temperature and salinity (Table 2-IV)- All other chemical 

components were negatively correlated with both temperature 

and salinity. Total tissue nitrogen and protein were 

positively correlated with dissolved inorganic nitrogen 

(Table 2-IV). In contrast, tissue phosphorus was not 

significantly correlated with ambient dissolved phosphate. 
Tissue nitrogen and carbon were more strongly correlated 

than protein and carbohydrate (Table 2-III) . Chlorophyll 

and phycoerythrin content were strongly positively 

correlated.

t
L



2.4 DISCUSSION

Although much information is available on the chemical 

composition of Gracilaria tikvahiae and related species in 

culture (DeBoer and Ryther 1977, DeBoer et â L. 1978, D'Elia
and DeBoer 1978, LaPointe and Ryther 1978, 1979, K. Bird et

a l . 1981, 1982, LaPointe 1981, Ryther et aJL. 1981, Rosenberg 

and Ramus 1982a, 1982b), relatively little is known 
concerning the composition of the same plants from _in situ 

populations (DeLoach et aJL̂ . 1946, Kim and Humm 1965, C. Bird 

et a l . 1977, Asare 1979). The results of the present study 
indicate substantial seasonal changes in the chemical 

composition of G. tikvahiae populations within the Great Bay 

Estuary. In addition they point to relationships between 

various components and environmental parameters, that are 

not necessarily the same as those seen in culture (LaPointe 

and Ryther 1979, LaPointe 1981).

There was a marked seasonal variation in the percent

dry weight of Gracilaria tikvahiae plants. The annual cycle 

of percent dry weight of G. tikvahiae in the Great Bay 
Estuary was comparable to that described for the same 
species in Pomquet Harbour, Nova Scotia (C. Bird et 

a l . 1977). The changes in dry weight were negatively 

correlated with the seasonal growth cycle of G. tikvahiae.

93
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While there were no significant differences in percent dry 

weight between cystocarpic and tetrasporic plants in the 

present study, Whyte and Englar (1979b) and Whyte et. 

a l . (1981) found large differences between these stages in 
Gracilaria from British Columbia. The latter two studies 

gave absolute values of percent dry weight (7% - 20%) 

similar to those for G. tikvahiae in the Great Bay Estuary. 

In contrast, Lindsay and Saunders (1980) found lower dry 

weight values (5% - 9%) in aquacultured G. verrucosa from 

British Columbia, with a cycle of high winter and low summer 

values. The lower values probably were due to the removal 

of surface salts, since the latter samples were rinsed in 

freshwater after partial drying, rather than while still 

fresh. Gracilaria chorda from British Columbia had percent 

dry weight values (8% - 11%) with the seasonal trend of low 

winter and higher summer values the opposite of that for

G. verrucosa (Lindsay and Saunders 1980). Similar dry 

weight values as those in the present study were reported by 

Hoffman (1978) for natural populations of G. verrucosa in 

Florida; as well as by LaPointe and Ryther (1979) with 

aquacultured G. foliifera populations in Florida. The 

values of percent dry weight for G. tikvahiae in the present 
study are comparable to those for other gigartinalean 
species; Hypnea musciformis (Durako and Dawes 1980),

Eucheuma nudum (Dawes et a_l. 1974, 1977, Dawes 1982) , and
E. isiforme (Dawes et al. 1974).
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The ash content of Gracilaria tikvahiae had a seasonal 

cycle of winter lows (25% - 30%) increasing to 35% - 50% in 
the summer. C. Bird et al_. (1977) showed a similar seasonal 

trend for G. tikvahiae in Pomquet Harbour, Nova Scotia, 

although the seasonal amplitude was less than in Great Bay 
plants. There were no significant differences between 

cystocarpic and tetrasporic plants with respect to ash 

content. The ash content of G. tikvahiae in the present 

study was comparable to that of other Gracilaria species 
(Whyte and Englar 1976, 1979c, 1980b, Hoffman 1978, LaPointe 

and Ryther 1979, LaPointe 1981). Yang (1982) reported 

values of 6.2% - 13% ash in G. verrucosa from Taiwan which 

are substantially lower than those for G. tikvahiae in the 

present study. Gracilaria corticata from India showed 

little seasonal variation of ash content (Sumitra- 

Vi jayaraghavan e_t al_. 1980) . Several species of Eucheuma 

had ash contents generally less than 25%, with little 
seasonal variation (Dawes et. al_. 1977, Dawes 1982). Hypnea 

musciformis (Durako and Dawes 1980) also had a seasonally 

stable ash content of approximately 45%. Although Munda and 

Kremer (1977) and Munda and Garrasi (1978) have demonstrated 

a strong relationship between media salinity and ash content 

for several fucoids, there was a relatively low positive 
correlation between ash and jLn_ situ salinity for Great Bay 

G. tikvahiae. Ash content is only a variable approximation 
of the inorganic content of algal material due to agar 

liberating sulfuric acid in amounts dependent upon the
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associated cations, as well as volatilization of chloride 

(Larsen 1978) .

Under aquaculture conditions, Gracilaria foliifera had 
an ash content of 35% - 60% (LaPointe and Ryther 1979, 
LaPointe 1981) . The ash content of natural populations of 

G. tikvahiae in the Great Bay Estuary was positively 

correlated with growth (r=0.91, see Part 1), but LaPointe 

(1981) found a negative correlation of similar magnitude 

(r=-0.85) between ash and growth for G. foliifera in 

aquaculture. The same contrast was true for ash and C/N 

content in the present study (r=0.70) versus G. foliifera in 

aquaculture (r=-0.99) (LaPointe and Ryther 1979). Morgan 

and Simpson (1981) discuss the relationship of increasing 
ash contents with low growth rates in aquacultured Palmaria 

palmata, the opposite of the trend with G. tikvahiae. The 

nitrogen and ash contents for £. palmata were negatively 

correlated.

The protein content in Gracilaria tikvahiae showed 
little seasonal variation. Similarly, the protein contents 

of Sargassum pteropleuron (Prince and Daly 1981) and 

Eucheuma spp. (Dawes et cil_. 1974) showed reduced annual 
variation. Insoluble nitrogen in Laminaria longicruris from 
the St. Lawrence Estuary also exhibited minimal annual 

changes (Anderson et aĵ . 1981) , probably due to high 
dissolved nitrogen concentrations. The protein content in 

New Hampshire populations of G. tikvahiae was higher than
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similar populations of Chondrus crispus (Mathieson and 

Tveter 1975) and Gigartina stellata (Mathieson and Tveter

1975). The comparatively low protein content in C. crispus 

(Mathieson and Tveter 1975) may be a reflection of storage 

of organic nitrogen as L-citrullinyl-L-arginine (which would 
not be measured by Lowry protein analyses) rather than as 

protein (Laycock and Craigie 1977). In contrast to the 

present study, C. Bird e_t al_. (1977) found a large seasonal 

cycle of protein content (i.e. as Kjeldahl-nitrogen x 6.25) 
in G. tikvahiae from Pomquet Harbour, Nova Scotia. Since 

many seaweeds have the ability to accumulate intracellular 

pools of inorganic nitrogen (Chapman and Craigie 1977, Asare 

1979, Rosenberg and Ramus 1982a, Gagne et_ £l_. 1982, K. Bird 

et a l . 1982), low molecular-weight nitrogen compounds 

(Laycock and Craigie 1977, Laycock et_ £l_. 1981, Rosenberg 

and Ramus 1982a), as well as high molecular-weight nitrogen 

compounds (e.g. protein), the use of total tissue nitrogen 
(or Kjeldahl-nitrogen) times a factor (6.25) to estimate 

protein content is probably erroneous (Harrison and Mann 

1975, Gaines 1977, Rice 1982). In view of this confusion, 

the protein estimates for G. tikvahiae by C. Bird e_t 

a l . (1977) may be higher, due to the inclusion of amino 

acids, etc., than if the values had been determined by 
standard Lowry protein methodology.

In contrast to the lack of an annual cycle in protein 

content, total tissue nitrogen in Gracilaria tikvahiae had a 

large seasonal cycle, with low summer and high winter
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values. The internal nitrogen content paralleled ambient 
dissolved inorganic nitrogen in the Great Bay Estuary 

(r=0.74), similar to the relationship for several other 

macroalgae (Asare 1979, Wheeler and North 1981). In Great 
Bay G. tikvahiae populations a combination of factors may 

allow the plants to maintain internal nitrogen at levels 

greater than 2% of dry weight: (1) relatively high dissolved
inorganic nitrogen concentrations in the Great Bay Estuary 

(see Part 1), (2) rapid currents (Swenson £t al̂ . 1977) that 

enhance diffusive transport, (3) storage of internal 
nitrogen reserves (Ryther et a]L. 1981) , and (4) a high 

affinity for absorption of dissolved nutrients (DeBoer e_t 

a l . 1978, D'Elia and DeBoer 1978). Asare (1979) found a 

seasonal cycle of total tissue nitrogen for G. tikvahiae and 
Neoagardhiella baileyi in Ninigret Pond, Rhode Island, 

similar in phase to Great Bay G. tikvahiae. However, his 

nitrogen values were substantially lower than those for 

G. tikvahiae in the present study. The differences may be 

due to: (1) dissolved inorganic nitrogen concentrations in

the Great Bay Estuary are generally greater than those in 

Ninigret Pond (Asare 1979) and (2) the rapid currents in the 

Great Bay Estuary (>20 cm/s during flood and ebb tides in 

the Great Bay, Swenson e_t £l^. 1977) would enhance algal 

nutrient uptake (Conover 1968, Parker 1981, 1982, Gerard 

1982c) . Although Asare (1979) does not describe current 
regimes in Ninigret Pond it is unlikely that they would be 

comparable to those in the Great Bay Estuary (see Harlin and
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Thorne-Miller 1981). Also, Asare studied unattached 
G. tikvahiae and therefore the prior hydrographic and 
nutrient conditions to which they had been exposed were 

unknown. Hoyle (1978b) measured the seasonal cycles of 

total nitrogen content of Hawaiian plants of 

G. coronopifolia and G. bursapastoris which, although 

similar to those of G. tikvahiae, had absolute values 
one-half those in the present study. Ambient dissolved 
nitrate was much reduced (Hoyle 1978b) compared to the Great 

Bay Estuary. Rosenberg and Ramus (1982a) cultured

G. foliifera in tanks with flowing-seawater over a fourteen 
month period; their values of total tissue nitrogen were 

much lower than Asare's (1979) or the present study. The 

dissolved inorganic nitrogen concentrations in the tanks 

used by Rosenberg and Ramus (1982a) were lower than in the 

Great Bay Estuary or Ninigret Pond (Asare 1979) .

Comparison of the tissue chemistry of natural 

populations versus aquacultured plants may not be advisable 

as the latter regimes may introduce conditions which would 

not occur ijn situ (e.g. simultaneous elevated temperature 
and dissolved inorganic nitrogen). The apparent luxury 

consumption of nitrogen in conjunction with relatively high 

dissolved inorganic nitrogen concentrations may decrease the 

correlation of total tissue nitrogen with dissolved 

inorganic nitrogen and of tissue nitrogen with growth rate. 

Thus, it would appear to be necessary to examine the 

response of an alga b'ith in situ and in culture
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(e.g. aquaculture tanks, etc.) to adequately describe its 

potential physiological responses.

Tissue nitrogen in Gracilaria tikvahiae was inversely 
related to ambient salinity in the Great Bay Estuary. The 

latter relationship corresponds with that demonstrated for 

several brown algae (Munda 1977, Munda and Kremer 1977,

Munda and Garrasi 1978) .

The seasonal pattern of total tissue nitrogen for 
Gracilaria tikvahiae paralleled changes in total carbon and 

soluble carbohydrate. The correspondence was reflected by 

the high correlation of nitrogen with carbon and 

carbohydrate (i.e. r=0.80 and r=0.65, respectively).

Several studies have indicated the opposite pattern 

(i.e. low winter and high summer values of carbohydrate 

content) in Hypnea musciformis (Durako and Dawes 1980), 

Chondrus crispus (Butler 1936) , and Eucheuma nudum (Dawes et 
a l . 1977) . Carbohydrate content was seasonally stable in 

New Hampshire Gigartina stellata (Mathieson and Tveter 1976) 

but had an erratic cycle in Chondrus crispus (Mathieson and 

Tveter 1975) . Carbohydrate and total nitrogen were 
inversely related in aquacultured Palmaria palmata (Morgan 

and Simpson 1981). The pattern exhibited by Gracilaria 

tikvahiae for carbon and carbohydrate may be a reflection of 

the Great Bay Estuary being relatively nitrogen-rich as 
compared with conditions in many of the aforementioned 

studies (Dawes et al. 1974, Mathieson and Tveter 1975,
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1976) . C. Bird et: al_. (1977) discuss a pattern of 

carbohydrate and protein variation in G. tikvahiae from 
Pomquet Harbour, Nova Scotia similar to that in Great Bay 

populations. In Nova Scotian plants both carbohydrate and 

protein contents exhibited summer lows and winter highs.

Neither protein, carbohydrate, carbon, nor nitrogen 

showed significant differences between cystocarpic and 

tetrasporic plants in Gracilaria tikvahiae. Similarly,

Dawes et al_. (1977) found no differences in protein nor 

carbohydrate contents between cystocarpic and tetrasporic 

samples of several Florida Eucheuma species.

The C/N (by weight) in actively growing Gracilaria 

verrucosa (Niell 1976) was similar to that in G. tikvahiae. 

In Great Bay G. tikvahiae, C/N (by atoms) frequently rose 

above ten, which was determined to indicate nitrogen-limited 

growth for G. foliifera in aquaculture (D'Elia and DeBoer

1978) . However, the tissue nitrogen content never decreased 

below the 2% value determined by Hanisak (1982) as 

indicating growth-limiting conditions in G. tikvahiae.

Gordon et al_. (1981) found a similar critical nitrogen 
content of 2.1% for the estuarine green alga Cladophora 

albida. Hanisak (1979b) has shown that plant tissue 

nitrogen analyses are generally better indications of 

growth-limiting internal nitrogen concentrations than are 
C/N data, as the latter values are dependent on both carbon 

and nitrogen metabolism (Gordon et al. 1981). Hanisak
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(1979b) found that the critical tissue nitrogen content of 

Codium fragile was 1.9% of dry weight. In Rhode Island 
populations of the same species, an annual cycle of 0.75% 

nitrogen (summer) to 3.72% (winter) indicated changes from 

nitrogen-limitation to luxury nitrogen-storage (Hanisak 

1979b).

Further support for the fact that Great Bay populations 

of G. tikvahiae were not nitrogen-limited, arises from a 
comparison of the high summer dissolved inorganic nitrogen 

concentrations in the Great Bay Estuary (Part 1) relative to 

other coastal (Ryther and Dunstan 1971, Wheeler and North 

1981) or estuarine (Hanisak 1979a, Asare 1979) sites where 

seasonal plant nitrogen and carbon cycles have been 

examined. Cultured G. verrucosa from British Columbia 

(Lindsay and Saunders 1980) had an average nitrogen content 

of 3.5% - 4.0% (as well as C/N = 8-11) and did not appear to 

be nitrogen-limited at this internal nitrogen concentration. 
Parker (1982) indicated that nitrogen uptake in nitrogen- 

limited G. tikvahiae was saturated at a current velocity of 

7.5 cm/s. As shown by (Swenson et â L. 1977) current 
velocities in the Great Bay Estuary are generally much 

greater than this value. Gerard (1982a, 1982b) demonstrated 

that nitrogen starvation was probably rare for southern 
California populations of Macrocystis pyrifera due to the 
plants' nitrogen-storage abilities and to periodic upwelling 

and terrestrial runoff of nitrogen-rich water.
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Morgan and Simpson (1981) found an inverse relationship 

between growth rate and tissue nitrogen content with 
Palmaria palmata grown under conditions where nitrogen was 

not limiting. Similar relationships between growth and 

nitrogen content were present for Great Bay Gracilaria 
tikvahiae as well as similar populations from Pomquet 

Harbour, Nova Scotia (C. Bird ê t aJL. 1977). Yoder (1979) 

discussed differences between nutrient-limited and 

light-limited growth and stated that high tissue nitrogen 

indicated either adequate nitrogen and fast growth, or low 

growth and nitrogen conservation.

The annual cycle of agar content in Great Bay 

Gracilaria tikvahiae corresponded with total carbon and 

soluble carbohydrate, with summer minima and winter maxima. 

Similar patterns were seen in aquacultured Gracilaria from 

British Columbia (Lindsay and Saunders 1979). In contrast, 
Hoyle (1978b) found a winter minimum of agar content for

G. coronopifolia. Asare (1979), working in Rhode Island, 

found no overall annual cycle for agar in G. tikvahiae nor 

carrageenan in Neoagardhiella baileyi. His findings may 

have resulted from the use of drift plant material (Asare 

1979) . New Hampshire populations of Chondrus crispus showed 

a seasonal cycle of carrageenan content with high summer and 

low winter-spring values (Fuller and Mathieson 1972, 

Mathieson and Tveter 1975) . Several tropical 
carrageenophytes, Hypnea cervicornis, H. chordacea,

H. nidifica (Mshigeni 1979) and an agarophyte Gelidiella
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acerosa (Thomas et al_. 1975, 1978) showed cycles of 

phycocolloid content similar to Great Bay G. tikvahiae♦ The 
agar yields for N.H. G. tikvahiae were similar to those of 

several other Gracilaria species (Young 1974, Hoyle 1978a, 
1978b, Lindsay and Saunders 1979, 1980, Whyte and Englar 
1979a, 1981, Abbott 1980, K. Bird et a l . 1981, Yang 1982). 

Agar content of G. verrucosa (as G. confervoides) from 

Beaufort, North Carolina varied between 20% - 35% with the 

highest yield occurring during the summer (DeLoach et 

a l . 1946) . Kim and Humm (1965) found the agar content of 

North Carolina G. foliifera to be twice that of N.H.

G. tikvahiae.

A comparison of agar yields between different species 
(e.g. Rama Rao 1977, Durairatnam 19S0) is limited by 

differences in extraction techniques, seasonal variation in 

agar content (if only single measurements are made), 

possible seasonal variation in agar extractability (DeLoach 

et a l . 1946) , as well as possible confusion of Gracilaria 

species. It should be noted that agar extraction using an 

alkaline modification procedure (as in the present study) 

may cause somewhat reduced agar yields (versus no alkaline 

step) with G. verrucosa, G. sjoestedtii (Durairatnam and 

Santos 1981), and G. tikvahiae (Young 1974) but not for 
G. foliifera (Matsuhashi and Hayashi 1972).

/
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No differences in magnitude of agar content were noted 
between reproductive stages of Great Bay Gracilaria 

tikvahiae♦ In contrast, Kim and Henriquez (1979), Whyte and 

Englar (1979b) and Whyte et al_. (1981) have observed 
differences in agar yield between various reproductive 

stages of G. verrucosa. However, none of these differences 

were confirmed statistically. Hoyle's (1978a) study with 
Hawaiian G. coronopifolia and G. bursapastoris supports the 

lack of agar yield differences between reproductive stages, 

as observed in the present study for G. tikvahiae. Further 
comparisons of the agar composition from G. tikvahiae are 

presented in Part 3.

The seasonal variations of agar yield for Great Bay 
Gracilaria tikvahiae were not inversely related to either 

nitrogen or protein content, as compared to the carrageenan 

or agar and protein levels in natural populations of 

Gigartina stellata (Mathieson and Tveter 1976) , Chondrus 

crispus (Mathieson and Tveter 1975) , Hypnea musciformis 

(Durako and Dawes 1980), G. coronopifolia or

G. bursapastoris (Hoyle 1978b) or of aquacultured C. crispus 

(Neish and Shacklock 1971), Neoagardhiella baileyi (DeBoer

1979), or G. foliifera (DeBoer 1979, K. Bird £t £ l . 1981). 
Liu et al_. (1981) and Yang (1982) found a negative 
correlation between, temperature or light, and agar content 

in pond-cultured G. verruocsa in Taiwan. Similar 

relationships occurred in the present study. The yield of 

agar from Ghanian G. dentata (John and Asare 1975) was
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greatest during periods of maximum growth, as well as for 

carrageenan in Hypnea musciformis and H. valentiae (Rama Rao 

and Krishnamurthy 1978) . The opposite relationship 'was 
evident for Great Bay G. tikvahiae. Carrageenan content of 

aquacultured Hypnea musciformis was inversely related to 

growth (Guist et a_l. 1982). Thus, there would appear to be 

contrasts between species with a positive relationship 

between growth and phycocolloid (or carbohydrate) content 

and those species where the opposite relationship holds (as 

in the present study). Whether the differences result from 

various factors limiting growth (e.g. nutrients, irradiance, 

temperature, etc.) remains to be studied.

There was little seasonal variation in Great Bay 

Gracilaria tikvahiae tissue phosphorus content. Few other 

studies of annual variation in macroalgal tissue phosphorus 

are available for comparison (Wort 1955, Young and Langille 

1958, Wallentinus 1975, Whyte and Englar 1980a). The 

seasonal variation of phosphorus content in Macrocystis 

integrifolia and Nereocystis leutkeana ranged from 0.3% to

1.3% (Wort 1955), which was higher than in Great Bay

tikvahiae. In contrast, the percent phosphorus content 

of Chondrus crispus in Nova Scotia ranged from 0.22% to 

0.34% (Young and Langille 1958), similar to the data in the 

present study. Gordon e_t al̂ . (1981) determined that the 

internal phosphorus content limiting growth in estuarine 
Cladophora albida was 0.33%. In the present study summer 

phosphorus levels in G. tikvahiae fell below this value.
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However, comparisons between species with respect to 

physiological parameters such as critical internal nutrient 

concentrations are tenuous. Supplemental phosphate 

additions in a Rhode Island coastal lagoon (Harlin and 
Thorne-Miller 1981) resulted in greater increases in 

standing crop with G. tikvahiae, than either additional 

nitrate or ammonium. Further research of i_n situ phosphorus 

requirements of G. tikvahiae and other estuarine seaweeds is 

desirable.

The N/P atomic ratios of Great Bay Gracilaria tikvahiae 

were always higher than 16, the value representative of 

oceanic phytoplankton (Redfield 1958). Wallentinus (1975) 
found that N/P atomic ratios were generally greater than 15 

for Cladophora g lomerata in the Baltic Sea. However due to 

the wide variation of N/P in macroalgae (Imbamba 1972, 
Kornfeldt 1982, Kautsky 1982), little information regarding 

nutrient limitation can be derived from this ratio alone.

The chlorophyll â content of Great Bay Gracilaria 
tikvahiae showed relatively little seasonal variation. The 

values were generally higher than those measured by 

Rosenberg and Ramus (1982b) for G. foliifera populations 

from Beaufort, North Carolina. The phycoerythrin content of 

Great Bay G. tikvahiae had low summer and high winter 

values. Gracilaria verrucosa from the Adriatic Sea had a 

similar annual cycle of phycoerythrin content (Kosovel and 

Talarico 1979) as found in the present study; the latter
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authors also found a negative correlation between 

phycoerythrin and chlorophyll content. In contrast, 

phycoerythrin and chlorophyll content in N.H. populations of 

G. tikvahiae were positively correlated (r=0.86). The 
chlorophyll content in Floridian G. verrucosa (Hoffman 1978) 
was similar in magnitude to values in the present study. 

Chlorophyll content was more variable in Florida populations 

of Sucheuma isiforme (Moon and Dawes 1976) than the Great 
Bay populations of G. tikvahiae. Moon and Dawes (1976) also 

found an annual cycle with summer maxima for both 

chlorophyll and phycoerythrin content in ID. isiforme, 

opposite to the present results. Although Rosenberg and 

Ramus (1982b) found a cycle of phycoerythrin content for 

G. foliifera similar to the present study, their absolute 

values were lower. The range of pigment values in Great Bay 

G. tikvahiae was similar to those for phycoerythrin and 
chlorophyll contents in several Porphyra species (Oohusa et 

a l . 1977, Amano and Noda 1978).

Wallentinus (1975) found significant correlations 

between chlorophyll content and both tissue nitrogen and 

phosphorus in Baltic Sea populations of Cladophora 

glomerata. No similar correlations were apparent in 

G. tikvahiae. The phycoerythrin, but not chlorophyll 

content, of Great Bay G. tikvahiae was significantly 

correlated with total tissue nitrogen (r=0.70). High 

pigment content of Great Bay G. tikvahiae was paralleled by 

high tissue nitrogen. Similar patterns were noted in

I
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G . foliifera from North Carolina (Rosenberg and Ramus 

1982b). LaPointe (1981), K. Bird et al. (1982) and Ryther 
et al_. (1981) have hypothesized that the phycobilins in 

G. tikvahiae may act as storage sites for nitrogen as well 
as being accessory pigments. Elevated pigment levels 

(i.e. darker thalli) have been observed in aquacultured 

plants of Palmaria palmata under low temperature and low 

light as well as high temperature and high light regimes 

(Morgan and Simpson 1981).

As noted earlier there have been few parallel 

comparisons of aquacultured and natural populations of 

seaweeds and few conclusions can be drawn regarding varying 

chemical composition(s) under these contrasting regimes. 

Whyte and Englar (1976, 1979c) compared the composition of 

Gracilaria populations from natural and aquaculture 

conditions; even so, their study did not include adequate 

controls, as only pre- and post-aquaculture samples were 

examined and no concomitant changes in the natural 

population were followed during the experiment. Guist ^t 
a l . (1982) examined ĵn situ and aquacultured Hypnea

musciformis in Florida and found parallel seasonal changes 

of carrageenan content. While there are inherent 
differences between studies of native and cultured algae, 

the contrasting results from the present study and those of 

aquacultured G. foliifera (LaPointe and Ryther 1979, 
LaPointe 1981) suggest the need for more parallel 

investigations. Furthermore, comparisons of natural and



110

cultured populations may be inappropriate as combinations of 

conditions produced in culture (e.g. high temperature and 

elevated dissolved inorganic nitrogen) may never occur 

simultaneously in the field. Discrepancies may also arise 

due to physiological or biochemical differences between 
coastal and estuarine populations of similar or closely 

related macroalgae.

In summary, Great Bay populations of Gracilaria 

tikvahiae had marked seasonal cycles of several chemical 

components. Most of these cycles included summer minima and 

winter maxima (i.e. agar, carbohydrate, carbon, nitrogen, 

phycoerythrin and dry weight), and were the opposite of the 

plant's growth cycle. In contrast, ash content, showed an 

annual cycle with summer maxima and winter minima 

(i.e. similar to growth). The contrasts between these 

opposite cycles could cause attenuation or depression of 
relationships between individual components since the ash 

content included such a large proportion of the dry weight 
of the alga. There were no significant differences in 

magnitude between cystocarpic and tetrasporic plants in all 

components studied. In addition there were no consistent 

differences in composition between reproductive and 

vegetative plants.



2.5 SUMMARY

1). Cystocarpic and tetrasporic plants of Gracilaria 
tikvahiae from Great Bay showed no differences in the 

various chemical components (i.e. dry weight, ash, 

agar, carbohydrate, protein, carbon, nitrogen, and 

phosphorus).

2). A strong seasonal cycle was apparent for dry weight, 

ash, agar, carbohydrate, carbon, nitrogen and 

phycoerythrin contents for Great Bay Gracilaria 

tikvahiae, but not for protein, phosphorus and 

chorophyll contents.

3). All of the aforementioned components of Great Bay 

Gracilaria tikvahiae, except for ash and chlorophyll, 

were significantly, positively correlated with ambient 

water temperature.

4) . The total tissue nitrogen content of Great Bay
Gracilaria tikvahiae did not decrease below 2% 

determined to be the growth-limiting concentration for 

this species (Hanisak 1982).

Ill



112

5). The carbon and nitrogen (and agar and nitrogen) 

contents of Great Bay Gracilaria tikvahiae were 

positively correlated.

L
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Table 2-1. Regression (periodic model) analyses of variance 
tables for individual chemical components of Gracilaria 
tikvahiae with comparisons between cystocarpic and 
tetrasporic stages.

a) Dry weight
source df MS F

periodic 2 175.9 104.08 ***

stage 1 2.00 1.19 ns

interaction 2 11.94 7.07 **

residual 85 1.69

R 2=72.4 ***

b) Ash

source df MS F

periodic 2 506.2 92.37 ***

stage 1 6.52 1.19 ns

interaction 2 13.23 2.41 ns
residual 85 5.48

R 2= 6 9 .2 ***

far

source df MS F

periodic 2 173.8 23.78 ***

stage 1 3.52 0.48 ns

interaction 2 25.18 3.44 *

residual 74 7.31
R 2=42.6 ** *
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Table 2-1. (continued.)

Carbohydrate

source df MS F

periodic 2 344.2 59.76 * * *

stage 1 11.85 2.06 ns

interaction 2 6.65 1.15 ns

residual 84 5.76

R2=5 9.6 ** *

Protein

source df MS F

periodic 2 7.26 6.28 ***

stage 1 0.71 0.61 ns

interaction 2 0.34 0.29 ns

residual 84 1.16

R 2= 14.1 *

Carbon
source df MS F

periodic 2 36.48 34.09 ***

stage 1 1.88 1.76 ns

interaction 2 0.13 0.12 ns

residual 43 1.07

R 2=61.9 ** *
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Table 2-1. (continued.)

Nitrogen

source df MS F

periodic 2 223.4 42.88 ***

stage 1 2.52 0.48 ns

interaction 2 1.39 0.27 ns

residual 43 5.21

R2=66.8 ***

Phosphorus
source df MS F

periodic 2 87.60 11.70 ***

stage 1 1.60 0.21 ns

interaction 2 4.26 0.57 ns

residual 84 7.49

R2= 22.8 ***

*** p<0.001 
** 0 .001<p<0.01
* 0.05<p<0.01
ns p>0.05
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Table 2-II. Regression (periodic model) analyses of variance 
tables for pigment content of Gracilaria tikvahiae,

a) Chlorophyll
source df MS F

periodic
regression 2 52.71 4.04 *

residual 45 13.03

R2= 1 5 .2

b) Phycoerythrin

source df MS F

periodic
regression 2 55.66 8.46 **

residual 32 6.58
R2= 34.6

** 0.001<p<0.01
* 0.05<p<0.01



Table 2-111. Correlation analyses between chemical components of Gracilaria tikvahiae.

dry wt ash agar c a r b o h . protei n c N P clil oro

ash - 0 . 8 0 1  
7 7 . 6  
* * *

r 2r xlOO 
P

agar 0 . 5 1 5  - 
2 6 . 5  
** *

0 . 5 9 3
3 5 . 2
* ft *

catboh. 0 . 0 0 6  - 
6 5 . 0  
* * *

0 . 8 4 4
7 1 . 2
* * t

0 . 5 9 9
3 5 . 9
ttt

prote i n 0 . 4 0 0  -
1 6 . 0  
* * *

0 . 5 4 5
2 9 . 7  
* * *

0 . 3 3 4
1 1 . 2  
* * *

0 . 2 7 2
7 . 4  

* * *

C 0 . 7 5 7  - 
5 7 .  3

0 . 8 9 9
8 0 . 8
m t

0 . 5 7 4
3 2 . 9  
* * *

0 . 8 3 3
6 9 . 4
* k *

0 . 5 6 4
3 1 . 8  
* * *

N 0 . 8 3 5  - 
6 9 . 7  
* * *

0 . 8 7 7  
7 6 . 9  
* * *

0 . 5 1 3
2 6 . 3
* t *

0 . 6 4 9  
4 2 . 1  
* * *

0 . 7 6 6  
5 8 . 7  
* * *

0 . 7 9 7
6 3 . 5
k k k

P 0 . 5 9 2  - 
3 5 . 0  
* * *

0 . 6 1 0  
3 7 . 2  
* * *

0 . 3 1 1
9 . 7

* t *

0 . 3 0 9
9 . 5

* * t

0 . 6 1 2
3 7 . 5
* t *

0 . 6 1 1
3 7 . 3
k k k

0 . 8 2 1
6 7 . 4
k k k

chloro. - 0 . 0 4  7 - 
0 . 2  
ns

0 . 1 1 5  
1 . 3  
ns

0 . 1 5 2
2 . 3
ns

0 . 0 0 2
0 . 0
ns

0 . 0 7 8
0 . 6
ns

0 . 2 8 9
8 . 4
k

0 . 1 5 8
2 . 5
ns

0 . 1 4 5
2 . 1
ns

phycoe. 0 . 4 9 1  - 
2 4 . 1  
* * *

0 . 5 5 5
3 0 . 8
tit

0 .  388 
1 5 . 1  

*

0 . 3 7 3
1 3 . 9

*

0 . 3 6 0
1 3 . 0

k

0 . 6 0 0
3 6 . 0
k k

0 . 7 0 4
4 9 . 6
k k k

0 . 5 0 9
2 5 . 9
k k k

0 . 8 5 8
7 3 . 6
k k k

C/ N - 0 . 6 9  3
4 8 . 0  
* * *

0 . 7 0 2
4 9 . 4
* * t

- 0 . 4 0 6
1 6 . 5
* k *

- 0 . 4 0 6  
1 6 . 5  
* **

- 0 . 7 4 8
5 6 . 0
k k k

- 0 . 5 1 6
2 6 . 6  
k k k

- 0 . 9 1 2
8 3 . 2
k k k

- 0 . 7 7 0
5 9 . 2
k k k

- 0 . 0 6 6
0 . 4
ns
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Table 2-IV. Correlation analyses between chemical components 
of Gracilaria tikvahiae and corresponding hydrographic 
and water nutrient chemistry data.

temp. salin. n h 4+ n° 3" DIN 3PO.4
dry wt -0.836 

69.8 *★ *
-0.287

8.2***
0.567
32.1***

0.687
47.1***

0.696
48.5***

0.210
4.4**

ash 0.802
64.4***

0.419
17.5***

-0.549
30.1 * **

-0.591
35.0***

-0.623
38.8***

-0.128
1.6
ns

agar -0.405
16.4***

-0.098
1.0
ns

0.284
8.1***

0.295
8.7***

0.300
9.0***

0.062
0.4
ns

carboh. -0.715
51.1 ** *

-0.314
9.8***

0.428
18.3***

0.557
31.1 * * *

0.550
30.2***

0.228
5.2**

protein -0.352
12.4***

-0.163
2.7***

0.420
17.6 * * *

0.279
7.8***

0.334
11.1***

-0.076
0.6
ns

C -0.753
56.7 * * *

-0.353
12.4***

0.546
29.8***

0.585
34.2 * * *

0.599
35.9 * ★ *

0.124
1.5
ns

N -0.825
68.1***

-0.456
20.8 * * *

0.682
46.5 * * *

0.683
46.6***

0.737
54.3***

-0.008
0.0
ns

P -0.448
20.0***

-0.331
11.0 * * *

0.366
13.4***

0.293
8.6***

0.353
12.5***

-0.025 
0.1 
ns '

chloro. -0.084
0.7
ns

-0.025
0.1
ns

0.159
2.5
ns

-0.071
0.5
ns

0.005
0.0
ns

0.094
0.9
ns

phycoe. -0.462
21.4**

-0.127
1.6
ns

0.544
29.6***

0.500
25.0**

0.590
34.8***

0.344
11.9*

C/N 0.689
47.4 * * *

0.413
17.1***

-0.603
36.4***

-0.584
34.1***

-0.639
40.9***

0.087
0.8
ns



119

Figure 2-1. Seasonal variation of percent dry weight of 
Gracilaria tikvahiae plants from Cedar Point, Thomas 
Point and Nannie Island. Vegetative (octagons), 
cystocarpic (triangles), spermatangial (diamonds) , and 
tetrasporic (squares) plants.
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Figure 2-2. Average seasonal variation (jvL SE) of percent 
dry weight of Gracilaria tikvahiae plants in the Great 
Bay Estuary. Vegetative (octagons), cystocarpic 
(triangles), spermatangial (diamonds) and tetrasporic 
(squares) plants.
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Figure 2-3. Seasonal variation of percent ash of Gracilaria 
tikvahiae plants from Cedar Point, Thomas Point and 
Nannie Island. Vegetative (octagons), cystocarpic 
(triangles), spermatangial (diamonds), and tetrasporic 
(squares) plants. Error bars indicate j+1 SE for 
analytical errors.
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Figure 2-4. Average seasonal variation (+1 SE) of percent 
ash of Gracilaria tikvahiae plants in the Great Bay 
Estuary. Vegetative (octagons), cystocarpic 
(triangles), spermatangial (diamonds), and tetrasporic 
(squares) plants.
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Figure 2-5. Seasonal variation of percent agar of
Gracilaria tikvahiae plants from Cedar Point, Thomas 
Point and Nannie Island. Vegetative (octagons), 
cystocarpic (triangles), spermatangial (diamonds), and 
tetrasporic (squares) plants. Error bars indicate +1 
SE for analytical errors.
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Figure 2-6. Average seasonal variation { + 1 SE) of percent 
agar of Gracilaria tikvahiae plants in the Great Bay 
Estuary. Vegetative (octagons), cystocarpic 
(triangles), spermatangial (diamonds), and tetrasporic 
(squares) plants.
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Figure 2-7. Seasonal variation of percent carbohydrate of 
Gracilaria tikvahiae plants from Cedar Point, Thomas 
Point and Nannie Island. Vegetative (octagons), 
cystocarpic (triangles), spermatangial (diamonds), and 
tetrasporic (squares) plants. Error bars indicate +1 
SE for analytical errors.
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gure 2-8. Average seasonal variation (_+l SE) of percent 
carbohydrate of Gracilaria tikvahiae plants in the 
Great Bay Estuary. Vegetative (octagons) , cystocarpic 
(triangles), spermatangial (diamonds), and tetrasporic 
(squares) plants.
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Figure 2-9. Seasonal variation of percent protein of
Gracilaria tikvahiae plants from Cedar Point, Thomas 
Point and Nannie Island. Vegetative (octagons), 
cystocarpic (triangles), spermatangial (diamonds), and 
tetrasporic (squares) plants. Error bars indicate +1 
SE for analytical errors.
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Figure 2-10. Average seasonal variation (+1 SE) of percent 
protein of Gracilaria tikvahiae plants in the Great Bay 
Estuary. Vegetative (octagons), cystocarpic 
(triangles), spermatangial (diamonds), and tetrasporic 
(squares) plants.
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Figure 2-11. Seasonal variation of percent carbon of 
Gracilaria tikvahiae plants from Thomas Point. 
Vegetative (octagons), cystocarpic (triangles), 
spermatangial (diamonds) , and tetrasporic (squares) 
plants. Error bars indicate _+l SE for analytical 
errors.



ca
rb

on

140

40

35

30

25

20
n J J A S O N D J F M A n J J A S a

Figure 2-11

/



141

Figure 2-12. Seasonal variation of percent nitrogen of 
Gracilaria tikvahiae plants from Thomas Point. 
Vegetative (octagons), cystocarpic (triangles), 
spermatangial (diamonds), and tetrasporic (squares) 
plants. Error bars indicate _+l SE for analytical 
errors.
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gure 2-13. Seasonal variation of percent phosphorus of 
Gracilaria tikvahiae plants from Cedar Point, Thomas 
Point and Nannie Island. Vegetative (octagons), 
cystocarpic (triangles), spermatangial (diamonds), and 
tetrasporic (squares) plants. Error bars indicate +1 
SE for analytical errors.
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Figure 2-14. Average seasonal variation (+1 SE) of percent 
phosphorus of Gracilaria tikvahiae plants in the Great 
Bay Estuary. Vegetative (octagons) , cystocarpic 
(triangles), spermatangial (diamonds), and tetrasporic 
(squares) plants.
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Figure 2-15. Seasonal variation of elemental ratios (by 
atoms and by weight) of Gracilaria tikvahiae plants 
from Thomas Point, a) Carbon/nitrogen, b) carbon/ 
phosphorus, and c) nitrogen/phosphorus. Vegetative 
(octagons), cystocarpic (triangles), spermatangial 
(diamonds), and tetrasporic (squares) plants.
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Figure 2-16. Seasonal variation of carbohydrate/protein 
ratios of Gracilaria tikvahiae plants from Thomas 
Point. Vegetative ("octagons) , cystocarpic (triangles) , 
spermatangial (diamonds) , and tetrasporic (squares) 
plants.
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e 2-17. Seasonal variation of chlorophyll content 
(mg/g dry wt) of Gracilaria tikvahiae plants from Cedar 
Point (octagons) , Thomas Point (triangles), and Nannie 
Island (squares). Error bars indicate +1 SE.



chlorophyll Cmg/g dry uiD
l\) O) 42k U\

~n
*->-

(Oc
1
(D
N)
I
*—1
\ l

<_
x>
CD
Q

D
C_

12
C_

J>

CO

Q

152



gure 2-18. Seasonal variation of phycoerythrin content
(mg/g dry wt) of Gracilaria tikvahiae plants from Cedar 
Point (octagons), Thomas Point (triangles), and Nannie 
Island (squares). Error bars indicate +1 SE.
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ECOLOGY OF GRACILARIA TIKVAHIAE MCLACHLAN 
(GIGARTINALES, RHODOPHYTA) IN THE 
GREAT BAY ESTUARY, NEW HAMPSHIRE.

PART 3.

VARIATION IN AGAR PROPERTIES.



3.1 INTRODUCTION

Agar is a heterogeneous, polydisperse phycocolloid with 

a backbone composed of alternating 1,3-linked B-D-galacto- 

pyranose and 1,4-linked 3,6-anhydro-a-L-galactopyranose 
residues (Guiseley 1968, Yaphe and Duckworth 1972,
McCandless 1981). The repeating, neutral disaccharide 

typifies the limit polysaccharide, agarose {Percival and 

McDowell 1967, Arnott et aJL. 1974, Guiseley and Renn 1977). 

However, the regular structure may be masked by a variety of 
side groups, including ester sulfate, methoxyl, pyruvic 

acid, and carboxyl residues (Hong £t al_. 1969, Duckworth £t 
a l . 1971, Duckworth and Yaphe 1971a, 1971b, Young et 

a l . 1971, Izumi 1972, Yaphe and Duckworth 1972, Guiseley and 

Renn 1977, McCandless 1981). Variations from the limit 

agarose molecule result in a wide range of agar 

polysaccharides with varied composition and properties, 

dependent upon the algal source (i.e. within the 

Rhodophyceae) of the agar and the specific extraction 

techniques employed (Yaphe and Duckworth 1972, Guiseley and 
Renn 1977). In general, three extreme structural types can 

be described for agar: (1) neutral agarose, (2) pyruvated 
agarose with little ester sulfate, and (3) galactans with 

much sulfate but no 3,6-anhydrogalactose or pyruvate
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(Duckworth and Yaphe 1971a, Yaphe and Duckworth 1972, 
McCandless 1981). In addition, Gracilaria agars, in 

particular, may contain large amounts of methoxyl residues 
as 6-0-methyl-D-galactose (Izumi 1972, Duckworth and Yaphe 

1971a).

Carrageenans are sulphated polysaccharides similar to 

agar in structure (Percival and McDowell 1967, Guiseley 

1968, McCandless 1981). In a variety of carrageenophytes, 

specific fractions of carrageenan have been shown to be 

restricted, within a given species, to individual haploid or 

diploid plants (McCandless et al_. 1973, 1975, Hosford and 

McCandless 1975, Pickmere et. 1975, Waaland 1975, Parsons

et al. 1977, McCandless 1981). For example, with Chondrus 

crispus, lambda-carrageenan is restricted to the tetrasporic 

stage, while kappa-carrageenan is limited to gametopnytes 

(McCandless et al_. 1973) . In contrast, species of Eucheuma, 

which contain either iota or kappa-carrageenan, do not show 

such ploidy level polysaccharide distinctions (Dawes e_t 

a l . 1977, DiNinno and McCandless 1978, Doty and Santos 1978, 

Dawes 1979).

Interest has arisen in chemical and/or physical 

property differences between the agar from haploid and 
diploid plants of Gracilaria species. Thus, while Kim and 

Henriquez (1979), Whyte and Englar (1979a), and Whyte et 
a l . (1981) have found differences in agar yield and gel

strength between cystocarpic and tetrasporic plants of
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G. verrucosa, Hoyle (1978a) did not find such differences in 
G. coronopifolia and G. bursapastoris. Penniman (1977) 

suggested that G. tikvahiae from the Great Bay Estuary, Mew 

Hampshire, did not show differences in agar yield between 
haploid and diploid plants. In the present paper, further 

data is presented concerning chemical and physical 

properties of agar from G. tikvahiae. Further, while 

information is available regarding the composition of agar 

from aquacultured G. tikvahiae (K. Bird et a_l. 1981) , much 

less is known of agar from natural populations of the same 
macroalga (Asare 1979, 1980).



3.2 METHODS

The methods used for collecting Gracilaria tikvahiae 
samples from the Great Bay Estuary and the subsequent agar 

extractions were described previously in Parts 1 and 2, 

respectively. In the present section, the methods used to 

analyze several physical and chemical properties of agar are 

outlined. Although most of the agar extractions employed an 

alkaline pretreatment stage (see Part 2), several 

extractions were performed without this step. A comparison 

of corresponding agar properties of samples extracted with 

and without alkaline pretreatment is described. All of the 
analyses were performed on G. tikvahiae agar samples as well 

as on a sample of Difco Bacto-agar used as an internal 
standard.

3 ,6-ANHYDR0GALACT0SE

Triplicate portions (5-12 mg) of agar samples were 

dissolved by boiling in 100 ml distilled water. Aliquots of 

these solutions were then analyzed for 3,S-anhydrogalactose 
content with the methods of Yaphe and Arsenault (1965) as 

described by Craigie and Leigh (1978). D-fructose was used 

as a standard. Absorbances (555 nm) were measured in 1.0 cm 
pyrex cuvettes with a Beckman model 35 spectrophotometer.
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SULFATE

The ester sulfate content of the agar samples was 
measured with the procedures of Jackson and McCandless 

(1978) . Triplicate portions (10-20 mg) of agar samples were 

hydrolyzed in 1.0N HC1 in sealed tubes at 100°-105°C for 3 

hr. Aliquots of these digests were analyzed for sulfate 

content by measuring the turbidity produced following 

addition of barium chloride (Jackson and McCandless 1978) . 

Ammonium sulfate was used as a standard. Turbidity was 

measured in 1.0 cm pyrex cuvettes at 500 nm with a Beckman 

model 35 spectrophotometer. Several parallel sulfate 

analyses using a gravimetric technique, following 

precipitation of the hydrolyzed sulfate with barium 

chloride, were conducted to confirm the results of the 

turbidimetric analyses (Guiseley and Renn 1977). Sulfate 

analyses were performed on all eighteen monthly samples from 

Thomas Point but only on every third monthly sample from 

Cedar Point and Nannie Island (as described in Part 2,

Carbon and Nitrogen Methods).

PYRUVATE

An attempt was made to analyze the pyruvate content,
4 , 6-0-(1-carboxyethylidene)-D-galactose, of agar samples 

using the lactate dehydrogenase method (Duckworth and Yaphe 
1970). However, no pyruvate was detected in Gracilaria 

tikvahiae agar samples. Young (1974) did not detect
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pyruvate by this method in Nova Scotian G. tikvahiae agar. 

However, Duckworth et_ a_l_. (1971) and Young et al. (1971)

found 0.10% - 0.13% pyruvate in agar from this species. 
Craigie and Leigh (1978) mention difficulty obtaining stable 

absorbahce values with the lactate dehydrogenase method.

ASH

The ash content was measured in triplicate (25-50 mg) 
portions of agar samples. Each replicate was combusted in a 

porcelain crucible for 48 hr at 500°C in a muffle furnace.

GEL STRENGTH

2The gel strengths (g/cm ) of 1% gels of agar samples
2were measured with a 1.0 cm plunger on a Marine Colloids 

gel tester (Marine Colloids Division, FMC Corporation, 

Rockland, Maine). Gel strength is defined as the force 

required to fracture a 1% agar gel (Guiseley and Renn 1977) . 
The gels were prepared in 70 mm x 50 mm pyrex crystallizing 

dishes, then allowed to stand for 2 hr at 10°C. After 
inverting the gel in the crystallizing dish, gel strength 

was measured as described above. As each analysis required 

a rather large amount of agar (1.8 g ) , gel strengths were 

not determined on all agar samples.
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VISCOSITY

The viscosities of 1% solutions of triplicate portions 

of agar samples were determined. Measurements were made at 

65°C using a Brookfield model LVT with cone plate micro
viscometer (Brookfield Engineering Laboratories, Inc., 

Stoughton, Massachusetts). Viscosities were measured on 

selected samples as described previously under the sulfate 

m ethods.

STATISTICAL ANALYSES

The chemical and physical properties of agar from 

Gracilaria tikvahiae were plotted for the eighteen month 

period of study. Missing points indicate either the lack of 

analysis on a specific sample or the lack of collection due 

to ice cover (see Part 1).

The seasonal curves for the properties of agar from 

cystocarpic and tetrasporic plants were analyzed by a 

periodic multiple regression model (Hackney and Hackney 

1977, 1978) described in Part 2. As the periodic model for 

ash and viscosity data was not significant (p>0.05), the 

data were analyzed by two-way ANOVA via multiple regression. 
All regressions and ANOVA were performed using MINITAB (Ryan 

et a l . 1976) , SPSS (Nie et al_. 1975) and/or the BMD04R 

routine from the BMD statistical package (Dixon 1977) . 
Correlations between agar properties, plant tissue chemistry 

and environmental variables were calculated with the SPSS
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statistical package (Nie et al_. 1975) . All regression and 
correlation analyses were calculated with arcsine 

transformed data (Sokal and Rohlf 1981).



3.3 RESULTS

3 ,6-ANHYDROGALACTOSE

Variations in 3,6-anhydrogalactose content (Figures 3-1 

and 3-2) had a significant periodic component (Table 3-1), 

indicating a strong seasonal cycle, with winter-spring 
minima (34%) and summer maxima (48%) . There were no 

significant differences in 3,6-anhydrogalactose content 
between cystocarpic and tetrasporic plants (Table 3-1). The

3,6-anhydrogalactose content of a Difco Bacto-agar sample, 
used as an internal standard, was 45.02% (+0.02, SE-) .

SULFATE

Ester sulfate content of agar from Gracilaria tikvahiae 

varied from 3.5% to 5.8% (Figure 3-3). There was a 
significant annual cycle (Table 3-1) with high summer and 

low winter values, although some exceptions were apparent.

No significant differences in sulfate content were evident 

between cystocarpic and tetrasporic plants (Table 3-1). The 

Difco Bacto-agar internal standard had 2.86% sulfate (+0.06, 
SE) .
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ASH

Although there were monthly differences in ash content 
(Figures 3-4 and 3-5) , the variations did not follow a 

periodic cycle (Table 3-1). Ash values generally varied 

from 4% - 9% (Figure 3-5). There were no differences in ash 
content of agar from cystocarpic and tetrasporic Gracilaria 

tikvahiae plants. The ash content of the Difco Bacto-agar 

sample was 4.93% (j^O.04, SE) .

GEL STRENGTH

Gel strengths (Figure 3-6) of Gracilaria tikvahiae agar
samples were generally low from fall through spring (<160

2 2 g/cm ) and higher during the summer (>200 g/cm ) . There was

a significant periodic component to the seasonal variation

(Table 3-1). No significant differences in the annual cycle

were noted between agar from cystocarpic and tetrasporic

plants (Table 3-1). The gel strength of the Difco
2Bacto-agar sample was 159 g/cm (_+4.2r SE) .

VISCOSITY

The viscosities of 1% Gracilaria tikvahiae agar 

solutions (at 65°C) were between 5 and 20 centipoise. There 
was no regular periodic component to the annual variation 

(Table 3-1). However, differences between months were 

significant (Table 3-1). No significant differences in 

viscosities of agar from cystocarpic or tetrasporic plants
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were noted (Table 3-1). The viscosity of the Difco 

Bacto-agar sample was 3.2 cp (j^0.05, SE) .

CORRELATION ANALYSES

Simple correlations between Gracilaria tikvahiae agar 

properties and several parameters describing plant 

chemistry, growth, and environmental conditions are listed 

in Table 3-II. There was a significant negative correlation 

between 3,6-anhydrogalactose and ester sulfate content 

(r=-0.38) and between gel strength and ester sulfate 
(r=-0.25). A positive correlation was apparent between gel 

strength and 3,6-anhydrogalactose content (r=0.54). Agar 

yields were negatively correlated with 3,6-anhydrogalactose 

content (r=-0.48) and gel strength (r=-0.75), but positively 

correlated with sulfate (r=0.37). Total plant tissue 

carbon, nitrogen and phosphorus were all negatively 

correlated with 3,6-anhydrogalactose and gel strength (Table 

3— 11). Plant ash content and growth rate were positively 

correlated with both 3,6-anhydrogalactose and gel strength 

of Gracilaria tikvahiae agar (Table 3-II). Ambient water 

temperature was positively correlated with 3,6-anhydro

galactose (r=0.45), gel strength (r=0.41), and agar ash 

contents (r=0.27). The opposite relationship was apparent 

for these parameters and ambient total dissolved inorganic 

nitrogen (Table 3-II).
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COMPARISONS OF AGAR EXTRACTED WITH 
AND WITHOUT HYDROXIDE PRETREATMENT

Agar yields between parallel extractions with and 

without hydroxide pretreatment were generally comparable 

(Table 3-III). However, one sample (i.e. vegetative plants 
from Thomas Point, September 1976) had lower agar content 

when extracted with alkaline pretreatment. The 3,6-anhydro

galactose content of vegetative, cystocarpic and tetrasporic 

Gracilaria tikvahiae plants was greater in agar samples 

extracted with hydroxide pretreatment (Table 3-III). Agar 

ash and ester sulfate contents were consistently reduced 
after extraction with hydroxide pretreatment (than without 

this step). In contrast, gel strength was greater in 

hydroxide treated agar samples from vegetative and 
cystocarpic plants, but less in agar from tetrasporic plants 

(Table 3-III). Wi-th one exception (i.e. agar from 

vegetative plants collected at Thomas Point, September 

1976) , viscosities were always lower in agar extracted with 

hydroxide pretreatment.



3.4 DISCUSSION

The 3,6-anhydrogalactose and ester sulfate contents of 

agar from Great Bay Gracilaria tikvahiae varied seasonally. 

Asare (1979, 1980) found similar cycles for Rhode Island

G. tikvahiae agar. However, as his agar extraction 
techniques did not include a hydroxide pretreatment (as in 

the present study), comparisons between the two studies are 

inappropriate. It is interesting to note, however, that the 

sulfate values for Rhode Island G. tikvahiae (Asare 1979,

1980) were generally lower than those from the present 
study. The opposite would have been expected as hydroxide 

pretreatment (used in the present study) can remove 

6-O-sulfate from L-galactose, producing 3,6-anhydrogalactose 
(McCandless 1981). The increase in 3,6-anhydrogalactose and 
concomitant decrease in ester sulfate content from agar 

extracted with hydroxide pretreatment has been demonstrated 

with a variety of Gracilaria species (Hong et al_. 1969, 

Duckworth ej: al_. 1971, Tagawa and Kojima 1972, Young 1974, 

Whyte and Englar, 1976, 1979b, 1980).

No significant differences were apparent in the 
seasonal cycles of 3,6-anhydrogalactose or ester sulfate 

contents cystocarpic or tetrasporic plants of Great Bay 
Gracilaria tikvahiae. Whyte and Englar (1979a) and Whyte et

180
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a l . (1981) describe similar variations of these agar 

components in vegetative, tetrasporic and gametophytic 

plants of a Gracilaria species from British Columbia.

As mentioned by Asare (1979), it is apparent from the 

large seasonal variation in agar components, such as

3.6-anhydrogalactose or sulfate, that to adequately describe 

the composition of agar from an individual algal species, 

the annual cycle must be considered. The ranges of 
Gracilaria tikvahiae agar components are greater than 
differences between some Gracilaria species for these same 

components (Duckworth ej; jal_. 1971) . Thus, the values for

3.6-anhydrogalactose and ester sulfate content in Great Bay
G. tikvahiae are comparable to those for several other 

Gracilaria species (Hong et al_. 1969, Duckworth et al_. 1971, 

Whyte and Englar 1976, 1979a, 1979b, 1980, Whyte e_t a l .

1981) .

The ash content of agar in Gracilaria tikvahiae from 

the Great Bay Estuary varied between 4% and 9%. As would be 

expected there was a positive correlation between agar ash 

and sulfate contents. Accordingly, the ash content was 

lower in agar extracted with a hydroxide pretreatment step.

A similar observation was noted for several other Gracilaria 

species (Hong jet jal. 1969) .

The gel strengths of Great Bay Gracilaria tikvahiae 

agar were greatest during the summer. Seasonal variation in 

gel strength has been noted for other Gracilaria species
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(Kim and Humm 1965, Oza 1978, Lindsay and Saunders 1980,
Yang et al_. 1981, Yang 1982) . The range of gel strength 

values in the present study corresponded to other reports 

for G. tikvahiae (Duckworth et al_. 1971) . There were no 
differences in the seasonal cycles of gel strength between 

cystocarpic and tetrasporic plants of Great Bay 

G. tikvahiae. Such results agree with those of Hoyle 
(1978a) for Hawaiian G. bursapastoris and G. coronopifolia, 

but they contrast with the differences in gel strength 

between gametophytes and tetrasporophytes of Gracilaria 

sp. (Whyte and Englar 1979a, Whyte et 1981), and

£• verrucosa (Kim and Henriquez 1979). Comparisons between 
gels strength values of agar from various algal species are 

difficult due to the variety of extraction and gel strength 

techniques used (Yaphe and Duckworth 1972). In general, the 

gel strengths of Gracilaria tikvahiae agar are somewhat 

lower than for either G. verrucosa or G. sjoestedtii (Abbott 

1980, Durairatnam and Santos 1981). The agar of 

G. tikvahiae will form gels of comparable strength to those 
of the closely related species (C. Bird and McLachlan 1982) , 

G. bursapastoris (Hoyle 1978a, 1978b).

The annual cycle of gel strength for Great Bay 
Gracilaria tikvahiae was correlated with its 3,6-anhydro- 

galactose content. In contrast, K. Bird ej: £l_. (1981) found
two conflicting correlations between 3,6-anhydrogalactose 
and gel strength (i.e. r=-0.94 and r=0.23) in agars from two 

series of aquaculture experiments with G. tikvahiae. In
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accord with the results of Matsuhashi (1977) and K. Bird ejt 
a l » (1981) , there was a significant negative correlation

between gel strength and agar yield in Great Bay 

5.* tikvahiae. However, contrasting relationships between 
gel strength and total plant tissue nitrogen were evident 

between the present study (r=-0.55) and that of K. Bird et 

a l . (1981) . Furthermore, while sulfate was negatively

correlated with gel strength in the present study, the 

opposite relationship was reported by K. Bird et_ al_. (1981) . 
As discussed in Part 2, there appeared to be contrasting 

relationships between the responses of iji situ New Hampshire 

and aquacultured Florida populations of Gracilaria 

tikvahiae.

In the present study, hydroxide pretreatment during 

agar extractions increased the gel strength of agar from 

vegetative and cystocarpic plants, but decreased it in agar 

from tetrasporic plants. The differences between 

extractions with and without hydroxide pretreatment were 

generally within experimental error. Whyte and Englar 

(1980) observed that contrasting changes in gel strength of 

agars extracted with and without hydroxide pretreatment 

differed among the various morphotypes of British Columbia 
Gracilaria. Further research into these differences in 
Gracilaria tikvahiae agar is warranted, however. The 

increase in gel strength due to alkaline treatment during 
agar extraction is attributable to an increase in the 

agarobiose subunits in the agar molecules, thus enhancing
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the relative proportion of agarose (i.e. gelling) molecules 

(Yaphe and Duckworth 1972, McCandless 1981). The phenomenon 

is apparent with agar from a variety of Gracilaria species 

(Hong et al_. 1969, Matsuhashi and Hayashi 1972, Tagawa and 

Kojima 1972, Durairatnam and Santos 1981). As mentioned 

above, the opposite response (i.e. lower gel strength as a 

result of alkali modification) may occur, perhaps due to 

polymer degradation (Whyte and Englar 1980).

Agar viscosities varied substantially (i.e. 5 - 2 0  cp) . 

Viscosities did not differ significantly between agar from 

cystocarpic or tetrasporic plants of Great Bay Gracilaria 

tikvahiae. Whyte and Englar (1979a) and Whyte et £l_. (1981)

observed differences between the viscosities of gametophytic 

and tetrasporic British Columbia Gracilaria. The viscosity 

values in the present study are comparable to those of agar 

from other Gracilaria species (Young 1974, Whyte and Englar 
1976, 1979b). In general, viscosities were lower in agar 

extracted with hydroxide pretreatment. Similar changes in 

viscosities were observed for agar from British Columbia 
Gracilaria by Whyte and Englar (1976, 1979b). However,

Young (1974) found the opposite trend with agar from Nova 

Scotian G. tikvahiae.

In conclusion, Gracilaria tikvahiae agar (extracted 

with hydroxide pretreatment) had seasonal variations of
3,6-anhydrogalactose, ester sulfate, ash and gel strength. 

There were no significant differences in the annual cycles
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of these properties dependent upon the reproductive stage of 

the alga. The latter observation is in contrast to Kim and 
Henriquez (1979) , Whyte and Englar (1979a) and Whyte et 

a l . (1981), but it is in agreement with Hoyle (1978a). 

Therefore, ploidy level agar differences within Gracilaria 

appear to be restricted to individual species. In the 

closely related species G. tikvahiae and G. bursapastoris, 

no differences in agar composition are apparent between 

haploid and diploid individuals (present study, Hoyle 

1978a). However, in G. verrucosa (Kim and Henriquez 1979) 

and in other related species (Whyte and Englar 1979a, Whyte 

et a l . 1981) such differences in agar composition may be 
present.



3.5 SUMMARY

1). There were no significant differences in 3,6-anhydro
galactose, ester sulfate, ash, gel strength or 
viscosity between agar extracted (with hydroxide 

pretreatxnent) from cystocarpic and tetrasporic plants 

of Gracilaria tikvahiae from the Great Bay Estuary.

2). Gel strength and 3,6-anhydrogalactose were greatest 
during the summer, while sulfate content was greatest 
during the winter.

3). Sulfate content was inversely related to gel strength, 

while the opposite relationship held for gel strength 

and 3,6-anhydrogalactose.

4). Agar yield was negatively correlated with both gel 

strength and 3,6-anhydrogalactose content.
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Table 3-1. Regression (periodic model) and two-way analyses 
of variance tables for chemical and physical properties 
of Gracilaria tikvahiae agar with comparisons between 
cystocarpic and tetrasporic stages.

3 ,6-anhydrogalactose 
source df MS F

periodic 2 32.05 20.96 ***

stage 1 2.63 1.72 ns

interaction 2 2.12 1.38 ns

residual 72 1.53

R2 = 3 9 .2 ***

Sulfate
source df MS F

periodic 2 38.42 5.20 *

stage 1 20.50 2.77 ns

interaction 2 0.05 0.01 ns

residual 36 7.39

R 2= 2 6 .8 *

Ash

source df MS F

month 17 10.70 3.76 ***

stage 1 1.18 0.42 ns

interaction 10 2.93 1.03 ns
residual 46 2.84

R2= 5 3 .4 ***
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Table 3-1. (continued).

d) Gel strength

source df MS F

periodic 2 82.65 8.31 **

stage 1 17.62 1.77 ns

i nteraction 2 4.63 0.47 ns

residual 36 9.94

R2= 34.9 **

.scosity

source df MS F

month 17 18.63 3.44 **

stage 1 8.08 1.49 ns

interaction 7 2.83 2.83 ns

residual 14 5.42

R 2=7 6.8 ** *

*** p < 0 . 0 0 1  
** 0.001<p<0.01
* 0.05<p<0.01
ns p>0.05

(Note: ash and viscosity analyzed via two-way ANOVA multiple 
regression model, all other components analyzed via multiple 
regression ANOVA with periodic component.)
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Table 3-II. Correlation analyses between Gracilaria
tikvahiae agar properties, plant tissue chemistry and 
growth, and selected water hydrographic and nutrient 
parameters.

3,6-AG ow gel st vise. ash a agar

S 04 -0.385 
14.8 * * *

r2r xlOO 
P

gel st. 0.544 -
29.5***

0.254
6.5*

vise. -0.027
0.1
ns

0.272
7.4 * *

0.213
4.5
ns

ash a -0.121
1.5
ns

0.354
12.5***

0.032
0.1
ns

-0.133
1.8
ns

agar -0.47 6
22.7***

0.374 -
14.0 * **

0.746
55.7***

0.148
2.2
ns

-0.266
7.1***

C P -0.629
39.6***

0.044 - 
0.2 
ns

0.464
21.5 * * *

-0.085
0.7
ns

-0.065
0.4
ns

0.574
32.9***

N P -0.477 - 
22.7 ***

0.125 - 
1.6 
ns

0.553
30.6***

-0.050
0.3
ns

-0.167
2.8
ns

0.513 
26.3 * * *

PP -0.350 -
12.3 ** *

0.032 - 
0.1 
ns

0.470
22.1***

-0.052
0.3
ns

0.056
0.3
ns

0.311
9.7***

ash P 0.518
26.9***

0.036
0.1
ns

0.528
27.8***

0.058
0.3
ns

0.190
3.6**

-0.593
35.2***

growth 0.590
34.8 ** *

0.129
1.7
ns

0.515
26.5***

0.148
2.2
ns

0.278
7.7**

-0.476
22.6***
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Table 3-II. (continued.)

3,6-a g SO,4 gel st. v i s e . ash a agar

temp. 0.451 0.099 0.411 0.016 0.267 -0.405
20.4 1.0 16.9 0.0 7.1 16.4
*** ns *** ns *** ***

DIN -0.422 -0.010 -0.398 -0.022 -0.270 0.300
17.8 0.0 15.9 0.0 7.3 9.0** * ns *** ns ** ***

P043" -0.253 0.154 0.089 0.140 0.094 0.0624 6.4 2.4 0.8 2.0 0.9 0.4
** ns ns ns ns ns

Factors are: agar components, 3,6-AG - % 3,6-anhydro
galactose, SO4 - % ester sulfate, asha - agar % ash; agar
properties, gel st. - gel strength (g/cm2) , vise, 
viscosity (cp); plant tissue chemistry, agar - % agar, C - 
total % carbon, Np - total % nitrogen, Pp - total % ”
phosphorus, ashp - % plant ash; growth - growth rate
(%/day); ambient hydrographic and water nutrient parameters, 
temp. - water temperature ( C ) , DIN - total dissolved 
inorganic nitrogen (ug-at N / L ) , PO4 - dissolved phosphate 
(ug-at P /L). For significance levels see Table 3-1.
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Table 3-III. Comparison of agar yields from Gracilaria 
tikvahiae plants from Thomas Point and associated 
composition and properties of corresponding extractions 
with and without hydroxide pretreatment.

vegetative cystocarpic tetrasporic

with no with no with no
OH" 0H~ OH" o h " OH" OH"

yield 18.24 < 2 6 . 9 3 (1) 12.52 < 1 3 . 0 2 (3) 13.09 > 1 1 . 5 7 (3) 

21.92 < 2 4 . 2 7 (2) 13.31 > 9 . 5 0 (4) 11.61 > 1 1 . 0 6 (4)
(%)

3,6-AG 42.93 > 38.80 43.62 > 40.70
( % )

41.16 > 36.41 43.93 > 41.36 44.33 > 43.44

S04 4.50 < 6.63 4.14 < 6.68 4.48 < 6.15
(%)

4.37 < 5.99 4.70 < 7.03 4.23 < 5.34

ash 5.62 < 8.00 4.59 < 7.03
(%)

4.24 < 6.82 4.36 < 8.42 4.41 < 5.96

gel st. 117 > 139 164 > 138 191 < 214
(g/cm2)

114 > 8 3  - - 214 < 259

vise. 19.4 > 13.6 5.2 < 42.9 14.5 < 28.7
(cp)

9.8 < 32.7 11.3 < 39.6 10.6 < 27.1

September 1976 collection 
September 1977 
June 1977 
July 1977

i



Figure 3-1. Seasonal variation of percent 3,6-anhydro- 
galactose content of agar from Gracilaria tikvahiae 
plants from Cedar Point, Thomas Point and Nannie 
Island. Vegetative (octagons) , cystocarpic 
(triangles), spermatangial (diamonds), and tetrasporic 
(squares) plants. Error bars indicate jvL SE for 
analytical errors.
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Figure 3-2. Average seasonal variation (+1 SE) of percent
3,6-anhydrogalactose content of agar from Gracilaria 
tikvahiae plants in the Great Bay Estuary. Vegetative 
(octagons), cystocarpic (triangles), spermatangial 
(diamonds) , and tetrasporic (squares) plants.

/
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Figure 3-3. Seasonal variation of percent ester sulfate
content of agar from Gracilaria tikvahiae plants from 
Thomas Point. Vegetative (octagons), cystocarpic 
(triangles), and tetrasporic (squares) plants. Error 
bars indicate +1 SE for analytical errors.
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Figure 3-4. Seasonal variation of percent ash content of
agar from Gracilaria tikvahiae plants from Cedar Point, 
Thomas Point and Nannie Island. Vegetative (octagons), 
cystocarpic (triangles), spermatangial (diamonds), and 
tetrasporic (squares) plants. Error bars indicate _+l 
SE for analytical errors.
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Figure 3-5. Average seasonal variation {+1 SE) of percent 
ash content of agar from Gracilaria tikvahiae plants 
from the Great Bay Estuary. Vegetative (octagons), 
cystocarpic (triangles) , spermatangial (diamonds) , and 
tetrasporic (squares) plants.
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2Figure 3-6. Seasonal variation of gel strength (g/cm ) of 
agar from Gracilaria tikvahiae plants from Thomas 
Point. Vegetative (octagons), cystocarpic (triangles) , 
and tetrasporic (squares) plants. Error bars indicate 
+1 SE for analytical errors.
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gure 3-7. Seasonal variation of viscosity (cp) of agar 
from Gracilaria tikvahiae plants from Thomas Point. 
Vegetative (octagons), cystocarpic (triangles), and 
tetrasporic (squares) plants. Error bars indicate +1 
SE for analytical errors.
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ECOLOGY OF GRACILARIA TIKVAHIAE MCLACHLAN 
(GIGARTINALES, RHODOPHYTA) IN THE 
GREAT BAY ESTUARY, NEW HAMPSHIRE.

PART 4.

PHOTOSYNTHESIS.



4.1 INTRODUCTION

The cosmopolitan red algal genus Gracilaria is an 
important source of the phycocolloid agar (Michanek 1975, 

Jensen 1979). Although it is currently not commercially 

exploited, Gracilaria tikvahiae McLachlan is a major 
component of the estuarine flora of the northwest Atlantic 

(Conover 1958, Edelstein et al_. 1967, Hehre and Mathieson 

1970, C. Bird et a_l. 1976, 1977b, Mathieson et al_. 1981). 

Several investigators have studied the growth of 

9.m tikvahiae in culture (N. Bird 1975, Edelstein et a l .

1976, 1981, Edelstein 1977, N. Bird et al_. 1979, Ramus and
van der Meer 1983) and in natural conditions (Taylor 1975,

C. Bird et a_l. 1977a, Edelstein et al_. 1981) , but few 

reports are available concerning its photosynthetic 

responses to environmental variables (Fralick and DeBoer

1977, Ramus and van der Meer 1983). At present the 

documented distribution of G. tikvahiae extends from Nova 

Scotia to New Jersey (Chapman et al̂ . 1977, McLachlan 1979), 

with its occurrence farther south being somewhat ambiguous 

(Hoek 1982).

Several photosynthetic studies of other Gracilaria

species have been conducted (Rosenberg and Ramus 1982) . Fo
example, Dawes et al. (1978) and Hoffman and Dawes (1980)
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found that Florida plants of G. verrucosa were tolerant of a 
broad range of irradiances, salinities, and temperatures in 

accordance with the p lants’ estuarine distribution. 
Similarly, Adriatic G. verrucosa (as G. confervoides) showed 

broad photosynthetic tolerance to temperature and salinity 

conditions (Simonetti £t a_l. 1970), The present research 

was initiated in order to describe the effects of quantum 
irradiance, temperature and salinity on the net 
photosynthesis of G. tikvahiae. The paper represents a 

portion of a study dealing with the seasonal growth, 

reproductive phenology, physiological ecology and chemical 
composition of G. tikvahiae from a northern New England 

estuary (see Parts 1-3).

In the Great Bay Estuary of New Kampshire-Maine, 
Gracilaria tikvahiae occurs predominantly at inner estuarine 

sites, attached in subtidal beds where sufficient substrata 

(e.g. rocks, sunken logs, bivalve shells) are available (see 

Part 1). In these habitats, the plants are exposed to a 

wide range of salinity (5-30 g/kg) and temperature 

(-1.9°-27°C) regimes, while available light may be limited 
by extreme turbidity changes (Emerich Penniman ejt a l .

1983). As these fluctuations may occur over a relatively 
short time (i.e. hours-days) similar acclimation periods 
were employed in this study.



4.2 METHODS

Plants of Gracilaria tikvahiae were collected by 

dredging between -2 to -4 m in a predominantly attached 
population at Thomas Point, Great Bay, N.H. (43° 4.93' N,

70° 51.92' W) , described in Part 1. The plants were held 

for 1-10 days under indirect, natural light at ambient 
temperature and salinity conditions in flow-thru seawater 

trays at the Jackson Estuarine Laboratory. Plants 

acclimated to winter and summer conditions were collected 
during January-March 1980 and July-September 1980, 

respectively. Plants used in Winkler dissolved oxygen 

experiments were collected in October-November 1980. In all 

experiments vegetative apical tips approximately 3 cm in 

length were excised with a razor blade and quickly wiped to 
remove contaminating epiphytes. The tips were 

preconditioned in 0.45 ju-filtered seawater in the dark at a 

temperature and salinity corresponding to the experimental 

run. All plant apices were preconditioned for 24 hr except 

those used in the temperature-acclimation experiments.

The photosynthetic responses of Gracilaria tikvahiae 

were measured manometrically with a Gilson differential 

respirometer (Model GRP-14) or with Winkler determinations 
(Strickland and Parsons 1972) of dissolved oxygen changes
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300 ml B.O.D. bottles. In the first instance, plant tips 
(avg. dry weight, 5.4 mg) were placed in manometric flasks 

with 5.0 ml artificial seawater (Instant Ocean) containing 

bicarbonate-carbonate buffer (Chapman 1962). A "carbon- 
dioxide buffer" solution (Umbreit e_t al_. 1972) was added to 

the center well (0.30 ml) and sidearm (0.25 ml) of each 
flask to maintain a 2% carbon dioxide atmosphere.

Manometric flasks (with plant apices) were attached to the 

respirometer, allowed to equilibrate with shaking (100 
cycles/min) at the experimental temperature for 60 min in 

the dark, and then exposed to light for 30 min. The 

manometric system was then closed and readings taken every 

15 min for. one hour. At the end of the photosynthetic run, 
the plant tips were removed from the flasks, blotted dry, 

and their fresh weights determined. Each tip was then 

halved. One portion was used to determine dry weight (80°C 
in vacuo for 24 h r ) , while the other piece was extracted 

with 90% acetone by grinding in a 25 ml Ten Broek 

homogenizer. After centrifugation, the chlorophyll content 

of this extract was determined with a Beckman DBG or Model 

34 double beam spectrophotometer. The chlorophyll a 

concentrations were calculated with the extinction 

coefficient (E=87.67) of Jeffrey and Humphrey (1975). All 

photosynthetic rates are net photosynthesis except when 

stated otherwise. Rates of net photosynthesis were 
expressed both per dry weight and per chlorophyll content.
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Illumination in the respirometer water bath was 

provided by fourteen 50 watt General Electric flood lamps, 

run at 140 volts with a Stafco transformer (model 2PE1010) 
set at its maximum (1.4 k v a ) . The setting allowed a 
somewhat higher maximum light intensity than 120 v. 

Irradiance was adjusted with variable numbers of nylon 
screens to approximate neutral density filters. Light was 

measured at the bottom of the manometric flasks with a 

Li-Cor model LI-185 quantum meter and a LI-1925 submersible 
quantum sensor and with a Weston foot-candle meter.

The net photosynthetic rates of winter- and summer-

acclimated tips of Gracilaria tikvahiae were measured under

a variety of light, temperature and salinity conditions.

Two light experiments were conducted with winter and summer
-2 -1plants over a quantum irradiance range of 6-1440 rE'ra *s

(20-5050 ft-c) at 15°C and 25°C. Similarly two temperature

experiments were run with salinities of 10 and 25 g/kg. Two

photosynthesis-salinity experiments were conducted at 10°C

and 25°C. All of the temperature and salinity experiments
-2 -1were performed with a quantum irradiance of 870 uE*m *s 

Individual plant apices were subjected to a single 

experimental combination of light, temperature and salinity 

conditions. In each manometric experiment 9-12 flasks were 
used.
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To test the interaction of pretreatment time and 
temperature on photosynthetic response, summer-acclimated 
apices were conditioned at 25°, 30° or 35°C for 0, 1, 2, 3 

or 4 days. The plants were conditioned in the dark in 

filtered 25 g/kg seawater, which was changed every 24 hr.

Net photosynthesis was then measured manometrically at 
temperatures corresponding to the pretreatment conditions 

and at 870 uE*m

A set of manometric experiments was conducted to detect

any possible diel variation in photosynthetic rate. Three

sets of plant apices, which had been held for 5 days in the
flow-thru seawater trays, were conditioned in 25 g/kg

filtered seawater at 25°C for 24 hr in the dark. The net
-2 -1photosynthetic rates at 870 uE*m *s were measured during 

the time periods: 0930-1030, 1230-1330, and 1530-1630.

A series of net photosynthetic measurements was made

using Winkler dissolved oxygen techniques. Autumn-
acclimated plants were conditioned as described previously,

and then placed in 300 ml glass-stoppered bottles filled

with 0.45 u-filtered seawater. The bottles were strapped to
the manometric flask supports in the respirometer water

bath. The intent of this design was to approximate the
manometric conditions, with respect to agitation, quantum
irradiance and temperature. Net photosynthetic rates

relative to quantum irradiance (at 25°C with 25 g/kg
-2 -1seawater) and temperature (at 870 nE*m *s with 25 g/kg



218

seawater) were evaluated. Five to six experimental bottles, 

each containing one plant tip, and two control bottles were 
used. Dissolved oxygen concentrations were measured on an 

aliquot of the seawater used to intially fill each bottle 

and on the contents of each bottle after four hours, when 

the plant tips were removed. The dry weights and 
chlorophyll contents of the apices were determined as 

described above. The average dry weight of the apices was 

0.013 g, a plant weight to bottle volume ratio of 0.04 g/L 

(Littler, 1979).

The effects of the initial oxygen concentration of the 

incubation medium on photosynthetic rates were determined. 

Four sets of eight bottles were used for this experiment, 
which was conducted in full natural sunlight (1750 

jjE*m ”^ * s"*̂ ") at 25°+l°C. Initial oxygen concentrations of

0.5, 7.9 and 14.6 ppm (corresponding to 6 , 110 and 200% 

saturation) were obtained by bubbling seawater with 

nitrogen, air and oxygen, respectively. Non-aerated 

seawater, 5.3 ppm oxygen (74% saturation), was also used.
The bottles were vigorously agitated by hand every 10 min. 

Oxygen concentrations before and after the photosynthetic 
run were determined as described above.

Analyses of variance, Student-Newman-Keuls multiple 

comparison of means and Student's t-tests were performed on 
arcsine transformed data (Sokal and Rohlf 1969, 1981) with 

the computer statistical packages SPSS (Nie et al. 1975) and
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MINITAB (Ryan et aJL 1976) . Tests of significance were 

performed at the p=0.05 level. The raw net photosynthesis- 
irradiance data were used to estimate values for the net 

photosynthetic rates at light saturation and the saturating 

quantum irradiances in th£ equation of Steele (1962) , as 

modified by Jassby and Platt (1976). The formula is as 

follows:

(-al/eP )
p = ale m for 0.<I.<P e/a

p = P for I>P e/am m —

(where P=gross photosynthetic rate, Pm =light saturated gross 
p.hotosynthetic rate, I=quantum irradiance, and alpha=slope,

i.e. a, of initial portion of light curve). The formula was 
chosen from the eight photosynthesis-light relationships 

described in Lederman and Tett (1981) as the one that best 

suited the present data. The model-fitting involved the 

simultaneous and independent estimation of the parameters P^ 

and alpha by using the Marquardt-Levenberg algorithm to 
minimize sums-of-squares (Knott 1979) . The advantages of 

this model-fitting procedure are described by Lederman and 
Tett (1981). As Jassby and Platt's equation applies to 

gross photosynthesis, the net photosynthetic rates measured 
in the present study were converted by adding a respiration 

value determined as the zero-light y-intercept of the linear 

regression of points representing the lowest three quantum 

irradiance values. Similarly compensation quantum 
irradiances were calculated as the intercept at P=0.
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Subsequent curve-fitting procedures used the adjusted data. 

However, final tabular and graphic displays were corrected 

to give original net photosynthetic rates.



4.3 RESULTS

QUANTUM IRRADIANCE

The net photosynthesis-irradiance responses of winter-

and summer-acclimated Gracilaria tikvahiae at 15° and 25°C

were measured by manometric techniques (Figure 4-1). An

analagous photosynthesis-irradiance relationship of

autumn-acclimated plants at 25°C was measured by Winkler

methods (Figure 4-2). The respiration rates (Table 4-1)

were calculated as the zero-light y-intercept of each

photosynthesis-irradiance curve. The initial slope (alpha)
and maximum net photosynthetic rate (P )/ simultaneously

estimated from each of the raw data sets using the

photosynthesis-irradiance equation of Jassby and Platt

(1976), are given in Table 4-1. The latter parameters were

used to plot best-fitting curves (Figures 4-1 and 4-2).

Light-saturated photosynthetic rates (Figure 4-1 and Table

4-1) were significantly higher for summer than winter plants

at 15° and 25°C, with the differences being greater at 25°C.

No significant 1 ight-inhibition was apparent at the highest
-2 -1quantum irradiance (1440 uE'rn *s ). The initial slopes of 

the four curves in Figure 4-la were similar. The responses 

were comparable whether the rates were expressed on a 

chlorophyll content or dry weight basis. Absolute
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chlorophyll content was significantly lower in winter 
(2.23+0.05 mg chlorophyll/g dry w t , mean +2 SE) than in 

summer plants (2,42^+0.06).

Using the net photosynthesis-irradiance data, expressed

in terms of chlorophyll content (Figures 4-la and 4-2) ,
saturation (I ) and compensation (I ) quantum irradiances s c
were calculated (Table 4-II). The saturation quantum
irradiances of winter and summer plants at 15°C , 298 and 

-2 -1216 juE*m *s , respectively, were not significantly

different. However, at 25°C the saturation quantum
-2 -1irradiance for winter plants (383 uE'rn *s ) was

-2 -1significantly less than for summer plants (583 uE'rn *s ).

Summer plants had a significantly greater I at 25° than

15°C; winter plants did not show such a difference. The

compensation quantum irradiances for winter and summer

plants, calculated by regression of the initial segment of
-2 -1each light curve, were 8 to 10 juE*m *s (Table 4-II). The 

photosynthesis-irradiance curve determined by the dissolved 

oxygen method (Figure 4-2) was similar to those determined 
manometrically. The Pm of the former was approximately 

one-half of the latter. The saturation quantum irradiance 

in the October plants measured with the Winkler techniques 
was intermediate to those of winter and summer plants. The 

value for I calculated in the October plants was 5 
uE *m-2 * s_;L (Table 4-II).
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TEMPERATURE

The net photosynthesis-temperature responses for 

winter- and summer-acclimated plants at 10 g/kg and 25 g/kg 

were similar regardless of whether the rates were expressed 

on a chlorophyll or dry weight basis (Figure 4-3) . The 
average chlorophyll content of winter apices (2.22+0.06 mg 
chlorophyll/g dry wt) was significantly lower than the value 

in summer tips (2.62+0.09). Winter and summer plants 

exhibited increasing photosynthetic rates from 5° to 25°C. 

With the exception of winter plants at 10 g/kg, the 

photosynthetic rates expressed on a chlorophyll basis were 

comparable from 25° to 35°C, as demonstrated by Student- 

Newman-Keuls multiple comparisons of means (Table 4-IIIa).

On a dry weight basis the responses were similar with 

maximum photosynthesis at 25° to 35°C, except in summer 

plants at 25 g/kg (Table 4-IIIb). The photosynthetic rates 

decreased dramatically at 37.5°C (Figure 4-3).

As shown in Figure 4-3, there were few seasonal 
differences in the net photosynthesis-temperature responses. 

Significant differences in rates (chlorophyll) were evident 
between winter and summer plants at 5°, 30°, 35° and 37.5°C 

in 10 g/kg and at 5°, 10° and 37.5°C in 25 g/kg. With rates 
expressed in terms of dry weight, there were no differences 
between winter and summer plants in 10 g/kg at any 
temperature. The only seasonal differences in 25 g/kg 

seawater were at 5° and 37.5°C (dry weight). Overall, there
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were no consistent differences in photosynthetic rates 
between winter and summer-acclimated plants.

The net photosynthetic rates (chlorophyll content) of 

winter-acclimated plants were significantly higher in 25 

g/kg than 10 g/kg seawater at all temperatures, except 5°, 

20° and 35°C (Figure 4-3a) . In contrast, the rates 
(chlorophyll) of summer plants in 25 g/kg were significantly 

greater from 20° to 37.5°C than in 10 g/kg. The differences 
were not as pronounced when photosynthetic rates were 

expressed per unit dry weight. Specifically, in winter 

plants the rates were higher in 25 g/kg at 30° and 37.5°C 

than in 10 g/kg and for summer plants they were higher in 25 

g/kg at 25° and 30°C.

The net photosynthesis-temperature response of 
Gracilaria tikvahiae measured by dissolved oxygen techniques 

was similar to that measured manometrically (Figure 4-4), 

although absolute rates were approximately one-half those 

shown in Figure 4-3. Overall the plant had a broad 

photosynthetic tolerance to temperature.

TEMPERATURE ACCLIMATION

The net photosynthesis of summer plants was not 
significantly different for acclimation times of zero to 

four days at 25° or 30°C (Figure 4-5). However, at 35°C the 

photosynthetic rates decreased significantly (SNK) after 
three days.
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SALINITY

The net photosynthesis-salinity responses of wincer- 

and summer-acclimated Gracilaria tikvahiae plants at 10° and 

25°C were similar whether photosynthesis was expressed in 

terms of chlorophyll (Figure 4-6a) or dry weight (Figure 
4-6b). The chlorophyll content of winter tips (2.26+0.07 mg 

chlorophyll/g dry wt) was significantly less than of summer 

tips (2 .49_+0 . 08) . There was a slight tendency for higher 
photosynthetic rates at salinities between 20 and 35 g/kg, 

particularly at 25°C. However a SNK comparison of means 

showed no consistent significant trend (Table 4 -IV).

Overall, G. tikvahiae has an extremely euryhaline 

photosynthetic response.

The net photosynthesis-salinity responses of Gracilaria 

tikvahiae were significantly greater at 25° than at 10°C in 

both winter and summer plants (Figure 4-6). When expressed 

on a chlorophyll basis, photosynthesis at 25°C was 

significantly greater for summer than winter plants at all 

salinities above 5 g/kg. Summer photosynthetic rates per 

unit dry weight at 25°C were greater than corresponding 
winter rates at all salinities. There were no significant 

differences between photosynthetic rates of winter and 
summer plants at 10°C for 5 g/kg to 25 g/kg. At 30 g/kg to 
40 g/kg winter plants at 10°C had higher rates than summer 
plants.
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TIME OF DAY

The net photosynthesis of Gracilaria (25°C, 25 g/kg,

870 juE *m-^ * s’"'*') measured during 0930-1030, 1230-1330 and 
1530-1630 hr is shown in Figure 4-7. Analysis of variance 

indicated no significant differences between the means for 

the three time intervals.

INITIAL OXYGEN CONCENTRATION

The net photosynthesis of Gracilaria tikvahiae as

measured by Winkler techniques decreased with increasing
intial dissolved oxygen concentration (Figure 4-8).

Analysis of variance showed that the differences were

significant. However, multiple comparison of means by the

SNK test (Table 4-V) showed that the rates of air-purged
samples were not significantly less than those in b^-purged

bottles. Thus, during the other experiments using dissolved

oxygen bottles, increases in oxygen concentration should not

have appreciably lowered photosynthetic rates. As this

particular experiment was performed in natural sunlight 
—  °  —1(1750 n E ’m “ *s ), with manual, intermittent agitation, it

should be noted that absolute rates are similar to those 

measured under incandescent light-saturated conditions with 

continuous, mechanical agitation.



4.4 DISCUSSION

Gracilaria tikvahiae has a net photosynthetic tolerance
-2 -1to light intensities up to at least 1440 nE*m *s . In 

contrast other sublittoral seaweeds show some degree of 

photoinhibition of net photosynthesis at light intensities 

approaching ambient sunlight (Mathieson and Dawes 1974, 
Brinkhuis and Jones 1974, Mathieson and Norall 1975a, 1975b, 

Arnold and Murray 1980). Intertidal species, however, 

generally exhibit greater tolerance to full sunlight 

(Mathieson and Burns 1971, Brinkhuis et al_. 1976, King and 

Schramm 1976, Niemeck and Mathieson 1978, Chock and 

Mathieson 1979, Tseng et £l_. 1981). Fralick and DeBoer
(1977) showed that G. tikvahiae (as G. foliifera) could 

withstand light intensities up to 2500 ft-c, approximately 

one-half the maximum used in the present study. A related 

species, G. verrucosa from a Florida mangrove habitat showed 

no photoinhibition at 2000 ft-c (Dawes el: £l_. 1978) . 

Similarly, Hoffman (1978) found no significant depression of 
net photosynthesis in Ĝ . verrucosa from two northern Gulf of 

Mexico populations at light intensities up to 1800 ft-c. 

Ramus and Rosenberg (1980) and Ramus (1981) inferred that 
light inhibition occurred in G. foliifera at ambient light 

conditions, while Rosenberg and Ramus (1982) stated that
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-2 -1'light inhibition occurred at 600 uE*m 's for
shade-adapted G. foliifera from Beaufort, North Carolina.

The photosynthesis-light equation of Jassby and Platt

(1976) was used in the present study to calculate more
reliable values for compensation and saturation quantum

irradiances and for maximum photosynthetic rates than could
be visually estimated. Net photosynthesis in Gracilaria

-2 -1tikvahiae was light-saturated at 200-600 u E ’m *s 

(800-2000 ft-c), depending on the season and temperature.
The latter values corresponded to those determined for 

£• tikvahiae by Ramus and van der Meer (1983) and for 
G. foliifera (Rosenberg and Ramus 1982). The I„ data from

1 1 1 b

£• tikvahiae in the present study were similar to records 
for other subtidal red algae. For example, Chondrus crispus 

is light saturated at clOOO ft-c (Mathieson and Burns 1971),

while the I_ values for Ptilota serrata, Phyllophora3 , 1( _ r ,, 1 r - ni 1 r
-2 -1truncata, and Callophyllis cristata are 100-300 uE'm *s

(Mathieson and Norall 1975a) , versus 800-1000 ft-c for

Gracilaria verrucosa (Hoffman 1978) and 1000-1500 ft-c for
Hypnea musciformis (Dawes et _al. 1976). Intertidal species

exhibit saturation at comparable or slightly higher
irradiances. Gigartina stellata saturates at 2100 ft-c

-2 -1(Mathieson and Burns 1971), G. exasperata at 300 juE'm *s 
(Merrill and Waaland 1979) and Iridaea cordata at 150-250 

uE *m-2 * s-1 (Hansen 1977).
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The saturating quantum irradiances calculated for 
Gracilaria tikvahiae with the equation of Jassby and Platt 

(1976) corresponded more closely to visually estimated 
values of Arnold and Murray (1980) with several green 
seaweeds than those estimated by graphic interpolation of 

the linear intial slope of the light curve and the 

horizontal line through P^ (i.e. 1^). As many of the 

species described above are relatively optically opaque 

(sensu Ramus 1978) their photosynthesis-irradiance curves 
tend to approach saturation more gradually than those of 

thinner, more translucent plants.

Among others, King and Schramm (1976) , Dawes et 
al. (1976) and Durako and Dawes (1980) have found seasonal 

changes in I values for several seaweeds. In the present 

study, Gracilaria tikvahiae exhibited significantly greater 

I values for summer versus winter plants at 25°C; in 

addition the values for also changed seasonally.
Similarly King and Schramm (1976) , Dawes et aJL. (1976) , Moon 

and Dawes (1976), and Durako and Dawes (1980) found that Pm
was dependent upon season. With G. tikvahiae no significant 
differences in I values were found seasonally nor at 

different temperatures. In contrast, King and Schramm 
(1976) found reduced compensation intensities for winter 

plants. The compensation quantum irradiances measured in 

G. tikvahiae are similar to those listed from several green 
seaweeds (Arnold and Murray 1980) .
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The optimal temperatures of net photosynthesis in 

Gracilaria tikvahiae were between 25° to 35°C, with a marked 

decrease at 37.5°C. The latter response was similar for 

acclimation times up to three days; by four days at 35°C, 

photosynthesis declined. The temperature optimum shown here 

is higher than in several other New England estuarine algae. 

For example, Polysiphonia subtilissima and P. nigrescens 

have photosynthetic optima at 25° to 30°C (Fralick and 
Mathieson 1975) , while Ascophyllum nodosum and its detached 

ecad scorpioides have thermal optima of 15° to 25°C (Chock 

and Mathieson 1979) . Summer plants of Fucus vesiculosus 
var. spiralis (Niemeck and Mathieson 1978) had a temperature 

optimum comparable to G. tikvahiae. The photosynthesis- 

temperature response exhibited by G. tikvahiae in the 

present study is equivalent to that found by Fralick and 

DeBoer (1977) in southern New England populations. The 

cosmopolitan agarophyta G. verrucosa has a similar 

eurythermal photosynthetic response (Dawes et al_. 1973, 

Mizusawa et: al_. 1978) . In contrast the tropical genus 

Eucheuma has a more restricted thermal optimum of 

approximately 20° to 25°C for Caribbean (Mathieson and Dawes 

1974) and 30°C in Hawaiian species (Glenn and Doty 1981) , 
with photosynthesis declining at higher or lower 
temperatures.

No seasonal differences in temperature optima of net 
photosynthesis were observed in the present study of 

Gracilaria tikvahiae. In contrast summer-acclimated plants
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of Fucus spiralis, F. vesiculosus and F. vesiculosus 
var. spiralis can tolerate higher temperatures than winter 

plants (Niemeck and Mathieson 1978). Chondrus crispus 

(Mathieson and Norall 1975b), Hypnea musciformis (Durako and 

Dawes 1980), Phycodrys rubens, Callophyllis cristata and 

Phvllophora truncata (Mathieson and Norall 1975a) all have 

similar patterns. Higher absolute rates of net 
photosynthesis have been described in summer than in winter 

plants of Ascophyllum nodosum and its detached ecad 

scorpioides (Chock and Mathieson 1979) .

The effects of salinity on photosynthesis in macroalgae 

are complicated by both the ionic composition of the media 

and the length of the acclimation time (Gessner and Schramm 
1971, Yarish et al_. 1979, Dawes and McIntosh 1981). After a 

one day acclimation period in artificial seawater,
Gracilaria tikvahiae had a broad euryhaline net 

photosynthetic response. A slight trend of higher 

photosvnthetic rates at 25 g/kg to 35 g/kg was evident. 

Fralick and DeBoer (1977) found optimal photosynthesis for 

G. tikvahiae at salinities less than 30 g/kg. Several other 

estuarine and intertidal algae have a similar euryhaline 

tolerance (Mathieson and Burns 1971, Fralick and Mathieson 

1975, Dawes et al_. 1976, 1978, Niemeck and Mathieson 1978, 

Chock and Mathieson 1979, Yarish e_t al. 1979, Dawes and 

McIntosh 1981). In contrast subtidal coastal species are 

more stenohaline (Kjeldsen and Phinney 1972, Mathieson and 

Dawes 1974, Zavodnik 1975, Ohno 1976, Dawes et al. 1977).
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In the present study no seasonal differences were 

observed in relative salinity tolerance, although the 

absolute photosynthetic rates were greater in summer than in 

winter plants (at 25°C). In contrast Hypnea musciformis had 

lower salinity optima and higher absolute rates in winter 

versus summer plants (Dawes et aJL. 1976) . Bostrychia 

binderi had highest photosynthetic rates, at several 

salinities, in August-October (Davis and Dawes 1981).

As suggested previously there are difficulties in

interpreting photosynthesis-salinity results with media
prepared from diluted seawater (natural or artificial) .

Differences in carbon dioxide-bicarbonate concentrations

(Hammer 1969, Ohno 1976, Dromgoole 1978a) or cationic
2+ +composition, particularly Ca and K (Yarish et aJL. 1980, 

Dawes and McIntosh 1981), may modify the effects of salinity 

alone on net photosynthesis. In view of these limitations 

it is best to interpret such results in a relative rather 

than an absolute sense. In general Gracilaria tikvahiae has 

a net photosynthesis salinity tolerance over the range of 
salinity variations within the Great Bay Estuary (Emerich 

Penniman et al_. 1983). It also appears tolerant, at least 

briefly, of salinities approaching those of coastal water.

No diel variations in the photosynthetic rate of 

Gracilaria tikvahiae were detected in the present 
experiment. In contrast diel photosynthetic rhythms have 

been measured under constant conditions in several
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macroalgae (Terborg'n and McLeod 1967, Britz and Briggs 1976, 

Mishkind ej: al_. 1979, Kagevama et al_. 1979, Hoffman 1978, 

Hoffman and Dawes 1980, Ramus 1981) and microalgae (Humphrey 
1979, Harding et al_. 1981a, 1981b) . Field determinations 

have also demonstrated photosynthetic rhythms in seaweeds 

that were not coincident with irradiance cycles (Ramus and 

Rosenberg 1980, Hoffman and Dawes 1980). However, Blinks 
and Givan (1961) observed no daily photosynthetic rhythms in 

several intertidal algae. Sweeney (1963) attributes the 

latter results to measurements being made at suboptimal 

light levels. However, Harding et ad. (1981b) have 

demonstrated diel differences in the light-limited portion 

of the photosynthesis-irradiance curve of Pitylum 

brightwellii. Harding et al. (1981b) also observed a strong 

relationship between growth rate or growth phase in
D. brightwellii cultures and the amplitude of diel 

oscillations in light-saturated photosynthesis. Pronounced 

diel photosynthesis differences were present in rapidly 

dividing cells, whereas cells in the stationary phase showed 

little evidence of such a rhythm. Thus, differences in 

growth rate or age of algae may influence the amplitude of 
diel photosynthetic cycles. The apparent lack of a diel net 

photosynthetic rhythm in Gracilaria tikvahiae in the present 

study may be explained according to the findings of Harding 

et al. (1981b). That is, since the G. tikvahiae plants had 
been held in dim natural light and thus would have exhibited 

depressed growth rates, a minimal amplitude of a
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photosynthetic rhythm would be expected (sensu Harding et 

al. 1981b).

Net photosynthesis in Gracilaria tikvahiae decreased 
linearly with increasing intial media oxygen concentrations. 

A similar response was demonstrated for the brown alga 

Carpophyllum maschalocarpum (Dromgoole 1978b). Sensitivity 

of photosynthesis to dissolved oxygen levels has been 
demonstrated in other seaweeds. Inhibition occurred whether 

photosynthesis was measured as oxygen evolution (Downton et 

a l . 1976, Littler 1979) or carbon uptake (Black et al_, 1976, 
Hatcher est _al. 1977, Burris 1977, Gluck and Dawes 1980).

Some microalgae also have reduced photosynthetic rates at 

high oxygen levels (Beardall et al_. 1976, Burris 1977). 

Although Chaetomorpha showed the opposite trend of 

increasing photosynthetic rates with higher oxygen levels, 

this may have been an artifact of inconsistent chlorophyll 

extraction between treatments (Burris 1977). Gluck and 

Dawes (1980) found no increase in oxygen production in 
G. verrucosa under enhanced or lowered oxygen concentrations 

with various photorespiratory inhibitors.

The depression of photosynthesis with elevated oxygen 

levels may be due to a combination of oxygen enhanced 

respiration (Hough 1976, Downton et _al. 1976, Dromgoole 

1978b) at least up to oxygen levels that saturate dark 
respiration (Dromgoole 1978b), photorespiration (Tolbert 

1974, Burris 1977, Dromgoole 1978b), or a direct oxygen
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inhibition of gross photosynthesis (Dromgoole 1978b).

Ambient seawater oxygen concentrations may result in lowered 
in situ photosynthetic rates for Gracilaria tikvahiae in 

contrast to potential rates under artificially reduced 

dissolved oxygen levels. However, only small differences in 

photosynthetic rates would be apparent with respect to 
seasonal or diel dissolved oxygen changes (6-10 ppm) in a 

well-mixed estuary such as the Great Bay Estuary (Emerich 
Penniman et a l . 1983).



4.5 SUMMARY

1). The net photosynthesis of Gracilaria tikvahiae was
_2 -1light saturated at 200-600 uE*m s but it was not

-2. -1inhibited at quantum irradiances up to 1440 juE*m *s 

The values for I were dependent upon season and 

temperature.

2) . Net photosynthesis of Gracilaria tikvahiae increased

with increasing temperatures from 5° to 25°C. The 

rates at 25° to 35°C were equivalent. Net 

photosynthesis decreased markedly at 37.5°C.

3). Net photosynthesis of Gracilaria tikvahiae at 25° and 

30°C was relatively constant up to four days 
acclimation. However, by four days at 35°C, the net 

photosynthetic rate had declined.

4). Winter and summer plants of Gracilaria tikvahiae had a 

broad euryhaline net photosynthetic response (from 5 

g/kg to 40 g/kg) at 10° and 25°C.

236
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5). No diel variation in net photosynthesis of Gracilaria 
tikvahiae was observed with measurements made in the 

morning, early afternoon and late afternoon.

6). The rate of net photosynthesis in Gracilaria tikvahiae 

decreased linearly with increased dissolved oxygen 

levels,
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Table 4-1. Parameters calculated by data-generated model of 
Jassby and Platt’s (1967) photosynthesis-irradiance 
equation (Pm and alpha) and by linear regression (R). 
Net photosynthesis is expressed as a) nl 02*min"l*mg 
chlorophyll"-*-, b) ul C>2*min"l’g dry wt~l and c) mg 
0 2*min~-*-'mg chlorophyll"-*-; respiration values are in 
terms of g dry wt"l. Values are means with 95% 
confidence intervals in parentheses.

Experimental R alpha P
conditions

a) winter 15°C 4.2 0.37 (0.32-0.42) 40.6 (38.5-42.7)

25°C 8.4 0.56 (0.47-0.65) 78.9 (73.5-84.3)

summer 15°C 7.7 0.63 (0.54-0.72) 50.1 (47.4-52.8)

25°C 7.7 0.53 (0.46-0.60) 113.6(107.0-120.2)

b) winter 15°C 10.1 0.86 (0.76-0.96) 84.6 (81.0-88.2)

25°C 17.4 1.24 (1.05-1.43) 176.7(165.2-188.2)

summer 15°C 17.5 1.67 (1.44-1.90) 117.9(112.2-123.6)

25°C 17.6 1.03 (0.93-1.13) 287.5(273.2-301.8)

c) autumn 25°C 1.5 0.33 (0.28-0.38) 51.2 (48.0-54.4)
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Table 4-II- Compensation and saturation quantum irradiances
(uE’m~2 *s ■*•) for net photosynthesis-irradiance curves
in Figures 4-la and 4-2. Values are means with 95%
confidence interval for I .s

Experimental
conditions

I• c Is

winter 15°C 9.9 298 (251-345)
to <J1 O O 7.7 383 (310-456)

summer 15°C 7.9 216 (179-253)
25°C 9.1 583 (494-672)

autumn 25°C 4.8 422 (345-499)
(Winkler)
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Table 4-1II. Student-Newman-Keuls comparisons of means from 
net photosynthesis-temperature experiments (Figures 4-3 
and 4-4). Temperatures are in order of increasing 
magnitude of corresponding_mean photosynthetic rates 
(expressed as a) ul 02’min ^*mg chlorophyll 1, b) jul 
02*min- 1 *g dry w t”1 and c) mg O2 'min- ^*mg 
chlorophyll ■*-). Values underlined indicate means for 
those conditions are not significantly different at 
p < 0 .05.

Experimental Temperature (°C)
conditions

a) winter 10 g/kg 5 10 15 20 25 30 35

25 g/kg 5 10 15 20 25 35 30

summer 10 g/kg 5 10 15 20 25 30 35

25 g/kg 5 10 15 20 25 30 35

b) winter 10 g/kg 5 10 15 20 25 30 35

25 g/kg 5 10 15 20 35 25 30

summer 10 g/kg 5 10 15 20 30 35 25

25 g/kg 5 10 15 20 35 25 30

c) autumn 25 g/kg 5 10 15 20 35 25 30
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Table 4-IV. Student-Newman-Keuls comparisons of means from 
net photosynthesis-salinity experiments (Figure 4-6). 
Salinities are in order of increasing magnitude of 
corresponding mean photosynthetic rates (expressed 
as a) ill 02*min - ’mg chlorophyll"! and b) ul 02*min~!*g 
dry wt” ! ) . Values underlined indicate means for those 
conditions are not significantly different at p<0.05.

Experimental Salinity (g/kg)
conditions

a) winter 10°C 15 5 35 10 20 25 40 30

25°C 5 10 15 20 40 30 25 35

summer 10°C 40 5 35 10 30 15 25 20

25°C 5 10 40 35 15 20 25 30

b) winter 10°C 15 10 5 35 20 30 25 40

25°C 40 35 30 5 15 10 20 25

summer 10°C 40 30 10 35 5 15 20 25

25°C 15 10 40 30 5 20 25 35
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Table 4-V. Student-Newman-Keuls comparison of means from 
net photosynthesis-oxygen concentration experiment 
(Figure 4-8). Oxygen concentrations are in order of 
increasing magnitude of corresponding mean 
photosynthetic rates (expressed as mg O 2*min” •*■ *mg 
chlorophyll” -*-) . Values underlined indicate means for 
those conditions are not significantly different at 
p < 0 .05.

Initial oxygen concentration (ppm) 

(0^) (air) (ambient) (N2 )

15.1 7.89 5.29 0.46



Figure 4-1. Net photosynthesis (measured manometrically) 
versus quantum irradiance. Each point is the mean of 
9-12 replicates. Error bars indicate 95% confidence 
intervals. Best-fitting curve is drawn for each set of 
conditions using parameters in Table 4-1.
Photosynthesis is expressed as a) nl C>2*min"*l*mg 
chlorophyll” ^ and b) jul C^'min” -*-*g dry wt Summer
plants at 15 C (triangles) and 2£>°C (diamonds) , winter 
plants at 15 C (octagons) and 25 C (squares) .
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Figure 4-2. Net photosynthesis (measured by Winkler method) 
versus quantum irradiance at 25 C. Each point is the 
mean of 5-6 replicates. Error bars indicate 95% 
confidence intervals. Best-fitting curve is drawn from 
parameters in Table 4-Ic. Photosynthesis is expressed 
as mg 02*min”-*-*mg chlorophyll”-*- and as nl O2 ‘min”1 *mg 
chlorophyll” 1.
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Figure 4-3. Net photosynthesis (measured manometrically)
versus temperature (at 870 uE*m”2*s”^ , 25 g / k g ) . Each 
point is the mean of 9-12 replicates. Error bars 
indicate 95% confidence intervals. Photosynthesis is 
expressed as a) ul O^'min’-'-'mg chlorophyll-’̂- and b) nl 
02*min ■‘•'g dry wt . Summer plants in 10 g/kg 
(squares) and 25 g/kg (diamonds), winter plants in 10 
g/kg (octagons) and 25 g/kg (triangles).
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Figure 4-4. Net photosynthesis (measured by Winkler method) 
versus temperature (at 870 y E ’m ’^'s"^, 25 g/kg). Each 
point is the mean of 5-6 replicates. Error bars 
indicate 95% confidence intervals. Photosynthesis is 
expressed as mg C>2*min ^ ’mg chlorophyll”-*- and as ul 
(>2*min” l*mg chlorophyll *-.
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Figure 4-5. Net photosynthesis (measured manometrically)
for summer-acclimated plants in relation to acclimation 
time at 25° (octagons), 30° (triangles) and 35°C 
(squares) (at 870 uE*m“2*s- 1 , 25 g/kg). Each point is 
the mean of 9-12 replicates. Error bars indicate 95% 
confidence intervals. Photosynthesis is expressed as 
ill 02*min”^*mg chlorophyll*"^-.
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Figure 4-6. Net photosynthesis (measured manometrically)
versus salinity (at 870 nE'm-2 *s- 1 ) . Each point is the 
mean of 9-12 replicates. Error bars indicate 95% 
confidence intervals. Photosynthesis is expressed 
as a) ul 02*min“-1-*mg chlorophyll- -*- and b) ill 02*min” -1-*g 
dry wt“ l. Summer plants at 10°C (squares) and 25°C 
(diamonds), winter plants at 10°C (octagons) and 25°C 
(triangles).
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Figure 4-7. Net photosynthesis (measured manometrically) in 
relation to time of day (at 870 u E*m~^‘s"-*-, 25°C, 25 
g /kg). Each point is the mean of 9-12 replicates.
Error bars indicate 95% confidence intervals. 
Photosynthesis is expressed as ul 02*min“^*mg 
chlorophyll- -̂ . Time periods 1) 0930-1030, 2)
1230-1330, and 3) 1530-1630.



256

150

_C
o
CD£

120

90

C
“rH
£
CN

o

60

30

0 9 3 0 -
1030

1230-
1330

T i m e  o f  D a y

1530-
1630

Figure 4-7



Figure 4-8. Net photosynthesis (measured by Winkler method) 
in relation to initial dissolved oxygen concentration 
(at 1750 uE*m”2* s_l r 25°C, 25 g/kg) . Each point is the 
mean of 6 replicates. Error bars indicate 95% 
confidence intervals. Photosynthesis is expressed as 
mg 0- "min” -*-*mg chlorophyll ^ and as nl 07 *min” ^ ’mg 
chlorophyll"" .
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