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ABSTRACT

EFFECTS OF ROTARY INERTIA AND SHEAR
DEFORMATION ON EXTENSIONAL VIBRATIONS
OF CONTINUOUS CIRCULAR CURVED BEAMS

by
MOHAMED EL-SAID SAID ISSA

University of New Hampshire, May, 1983

Thie dissertation is devoted to the dynamic analysis
.of continuous circular curved beams. The dynanic.stiffness '
matrlx is derlved for' the determlnatlon of natural fre-
quencies of contlnuous curved beams underg01ng in-plane
vibrations. The formulation of stiffness matrlx may be
widely applied to problems with various ceneideration of
Bernoulli-Euler Theofy, Rayleigh Theory and Timoshenko
Theory. Using this formulation for dynamic loading, the
fixed-end moment,lshear and thrusts for concentrated and
distributed loads have been derived. Two continuous
circular curved beams subjected to free and forced vibra-
fions are given to illustrate the application of tne pro-
posed method and fo show the effects of rotary inertia,
shear defofmation,“axial'deformation. frequency of the

applied load and the central angle of the arc on the beams.

Xiv



CHAPTER I
INTRODUCTION

Dynamic problems, which are of interest to the
structural engineer, play an important role in the fields
of civil, mechanical, and aerospace engineering. The
probiem of curved beams vibrating in the plane of initial
curvature of the arc has been discussed by many researchers.
In.1928 Den Hartog [1] introduced the Rayleigh-Ritz energy
method for finding the fundamental natural frequencies of
circular arcs with hinged and fixed ends. His work was
extended by Volterra and Morell [2, 3] for vibrations of
elastic arcs with hinged and fixed ends having the center
lines in the form of~cycioids, catenaries, and parabolas.
Both in-plane and out-of-plane vibrations were considered.
Waltking [4] investigated the effect of extension of the
central line on the flexural motion Qf a pinned circular
ring segment. Morley [ 5] presented an exact solution for
‘the thin ring along with the first ten modes for symmetrical
and anti-symmetrical vibrations. Using the basic equations
of motion given by Love [6], Archer [7] made a mathematical
study of the in-plane ilnextensional vibrations of circular
ring segments of small cross section with an additional
term to represent damping effects. Nelson [8], combining
the Rayleigh-Ritz technique and Lagrangian multipliers,

1
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obtained natural frequency équations in the form of infinite
series for in~plane vibrations of a simply supported ring
segment. Suzuki, Takahashi and Ishiyama [9, 10] have ob-
tained the natural frequencies and the mode shapes for
curved beams with variable curvatures, and a generalized
method for the analysis of free and forced in-plane vibra-
tions of a multispaﬁ circular curved frame was developed

by Wang and Lee [11, 12].

The elementary Bernoulli-Euler equation of motion
of beams used by the work mentioned above is derived on
the assumption that the deflections of beams are due %o
flexure only and that both rotary inertia and transverse
shear effects are neglected, it is considered adequate for
the usual engineering problems. However, for beams having
large cross'sectionél dimensions in comparison to their
lengths, and for beams in which higher modes are required,
the Timoshenko Theory [13], which takes into account these
two effects, provides a better approximate solution to the
actual beam behavior [29].

Considerable research has been devoted to study
the effects of rotary inertia and shear on straight beam
vibrations. Cheng [14] derived the dynamic stiffness
formulation in closed form for analyzing continuous beams
and frameworks. Cheng and Tseng [15] presented a dynamic
stiffness matrix formulation and computational procedures
for dynamic response of general plane beam=-column system.

In case of curved beams, Philipson [16] took into account
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the rotary inertia and shear effects on thin rings and
established equations for the radial and tangential dis-
placements., Seidal and Erdelyi [17] based on beam theory
to develop a method for studying the bending vibrations of
non-thin complete circular rings. The in-plane vibrations
of a circular ring including rotary inertia and shear
effects was investigated by Rao and Sundararajan [18]. Re=
cently, Wang and Guilbert [19] expanded Wang and Lee's
[11] generalized method for continuous circular curved
beams by including the effect of rotary inertia and trans-
verse shear deformation.

To the author's knowledge, no investigations have
been made for the free and forced extensional vibrations of
multispan circular curved beams including shear and rotary
inertia effects. In this dissertation, the dynamic stiff-
ness matrix is derived in terms of rotary inertia, radial
shear deformation, and bending deformation, The individual
parameter may be dropped when the appropriate deformation
is not considered., Therefore, the formulation of stiffness
matrix may be widely applied to various cases of Bernoulli-
Euler Theory, Rayleigh Theory, and Timoshenko Theory. Using
this formulation for dynamic loading, the fixed-end moments,
shear and thrusts for concentrated loads and distributed
loads have been derived. Numerical results of a three-
span circular curved beam are presented to show the effects
of central angle, axial deformation, transverse shear

deformation, and rotary inertia of the circular curved beam
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upon the natural frequencies of the curved beam. Also,
the effects of the frequency of the applied load, axial
deformation, transverse shear deformation, rotary inertia,
and the centrél angle of the arc on the Joint moments of

the circular curved beam are studied.



CHAPTER II

GENERAL DERIVATION

l. Assumptions

The following assumptions are presented into two

parts:

A. Basic assumptions

Qe

Displacements are limited to vibrations
within the original plane of curvature of
the circular curved member.,

The centroidal axis of the circular curved
member is considered to be extensional.

Linear stress-strain relations assumed.

B. Simplifing assumptions

=

b.

Plane cross sections remain plane after
deformation.

The density and cross section of the
member is constant.

The effect of damping upon the circular
curved member is neglected.

The vibrations of the circular curved
member are considered small. As a result,
the effect of high order differentials
are neglected.
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2. Basic Egquations of Motion

Consider-a circular curved beam element under-
going in-plane vibration as shown in Fig. 1. By taking
the equilibfium of the forces acting on that element in
radial and tangentiai directions and the moment about C,

give (the complete derivation is given in Appendix A)

oF , = - )

s + T fIlR

35 =

AL _F = 1
> F fIzR (1)
oM . =

” FR mIR |

where fIl is the inertia forde in the radial direction,

f12

rotary inertia, F the shearing force, T the axial force,

the inertia force in the tangential direction, m; the

M the moment, and 6 the angular coordinate.
The expressions for the inertia force and rotary

inertia are given as follows [31]:

32 )
T =-YA—B
Il at?
2
: 3%w.
f = YA — > (2)
12 at2
2
mp = T
ot D

Substituting equations (2) into equations (1) we

have



=]

=1
|

Figure 1.

f ds
i 11
A
T A& - =
Pl I i+ 2 g
— b ~ —— S
/ N 'f + % ds
oF .
+ asd
dle

Curved element subjected to positive
forces and moments



- . - m2
L+ 7= ur-d (3)
26 3t

- . 2
3T _ F = yar2Y (4)
a6 ot
oM , 3 2
M+ Fr=yIr 25 (5)

a6 ot
where u is the inward radial displacement, w the tangential
displacement'in the sense of increasing 6, R the mean
'radius of circular arc; t the time, A the cross sectional
érea. y the mass per unit volﬁme, I the moment of inertia
of cross sectibn, and ¢ slope due to bending.

. FPigure 2a shows the flexural vibration of an
element for the Bernoulli-Euler béah, it is seen that tne
x-axis is perpendicular to any beam cross section (abecd).
Figure 2b represents the effect of shear deformation on
beam vibration By aséuming that the beam cross section
‘remains plane after déformation, we notice that the cross
sections are no longer perpendicular to the x-axis (i.e.

Timoshenko beam). The shear deformation g can be expressed

[33] by

B=¢ - (6)
where ¢ is the total angle of the deflection curve of the
beam.
Referring to Fig. 2c¢ the rotation due to tangential

displacement and radial displacement are given, respec-



Figure 2a.

Deformafion of Bernoulli-Euler beam

element showing x-axis perpendicular
to cross sections.

L dx

= 1

Figure 2b. Deformation of Timoshenko beam element

showing shear deformation, x-axis are

no longer perpendicular to cross
sections.



Figure 2c.

10

Deformation of curved element.
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tively, as

i

6 =K (7)

by = 9 = U (8)

The total angle ¢ between the deformed and un-
deformed center line can be obtained from equaticns (7)

and (8) as

=0k by = 2 (w2 (9)

From equations (6) and (9) one obtains

1 5
¢=w+s=§(w+a—§) (10)

Equation (10) may be rewritten in terms of the

shear angle as

—-l .a_u._s‘

Referring again to Fig. 2c, the extension of the

element can be expressed as

de = ds1 -ds = [(R - u)de + (w + 2w ds) - w] - Rdoe
s

o (aw _
= (ae u) de (12)

The tangential strain and tangential force may be written,

respectively, as

ss=i-=§<ﬂ-u> (13)

ds a6
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T =05 « A= EAg (14)

wnhere o4 is the tangential stress.
From the elementary theory of beams, the bending

moments. and shear force are given, respectively, as follows:

M= - &L 3 (15)
R 206
F = kAGS (16)

where E is the modulus of elasticity, k the shape factor

of the‘curved member, G the shear modulus, and es;the'

tangential strain.
From equations (11) and (16), the following

equation can be obtained:

;- KAG (ou

F = + w - Ry) (17)
R 20

Combining equationé (14) and (13) one obtains

7= EA (W _ ) (18)
R 90

Introducing equations (17) and (18) into equation

(3) yields
KAG ,3°u , W BY EA (0w 22y
KAG (__5 + & - R &)+ 22 (22 - u) = YAR 5 (19)
R 90 36 36 R 96 : 9t

Substituting now equations (17) and (18) into equation (&)

we have
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2
EA(BW_BU.)_

2
. EAG (3u , \ _ Ry) = vyAR — (20)
R 00

00 R 90 ot

Finally, the substitution of equations (15) and (17) into

equation (5) gives

2 2
E—a—g+kAG(39-+w-Rw)=yIRi—% (21)
20 96 ot

oy

Equations (19), (20) and (21) constitute the
equations of motion of extensional circular curved member

undergoing free vibrations.

3. General Solution of the Equations of Motion

Assuming the beam is excited harmonically with a

natural frequency Q and letting
iot
W(e) e

u(e,4) = U(e) eF (22)

Qt

w(e,t)

p(e,t) = v(e) et

where i = J-1 and W(e), U(s) and ¥(8) are the normal
function of w, u and ¥, respectively. Substituting
equation (22) into equations (19), (20) and (21) and omit-

. it .
ting the common term e , one obtains

5 ‘ 2 2
-l e By g At E oy LR o (23)
de kG de de kG kG
2, 2.2
B asw _ (1 + E_) au _ W + Ry + R 9 Ww=20 (24)

kG d6° kG de el
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2 2

2
BL Aoy, R Uy gy - r2y+ IR 2 v =g (25)
KAG de° .  de KAG

The foregoing equations may be written, respectively, as

2 2 2

Al -+ H Mg Sy -p?sZu=0  (26)
daed o ds r

2 2 2
S -1+ Wy ry+p®sPu=o (27)
r dse r ds .
o 42y | 4u 2 2 .2
R « s — + == + W - Ry + R . 8 r<e b* ¥ =0 (28)
ae e - -

where b, s and r are dimensionless parameters and are
corresponding to the effect of bending deformation, shear
deformation and rotary inertia, respéctively} The ex-~
pressions for these'non—dimensional parameters are given

as follows:

4 2
ET :
s2 = __ELE (30)
kAGR
rf = L5 (31)

Equation (26), (27) and (28) represent three

linear differential equations with constant coefficients
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and can be solved by the use of symbolic operator method.
Let the differential operator D Dbe %3, then
equations (26), (27) and (28) become

2 2
(-D% + 5= - p2. s2)U - (D+ & D)W + (RD)Y = O (32)
2 2
r r
g2 s? o 2 2
- (D + =5 D)U + (= D® + b™* s% - 1)Ww + RY = 0 (33)
r r
DU + W + R (s%D% = 1 + r2. s2. p3)¥v = 0 (34)

Equation (33) may be rewritten as

2 5
RY = (D + 2= D)U - (§§ D% + b
I‘Z r

2. 52 - 1)w (35)

Substituting equation (35) into equations (32) and (34)

yields, respectively

2 2 2 2
(§§ D2 + §§ - b2 s2)U - (§§ D + 55 D2 + b° s2D)w = 0 (36)
r r r r

2 2 2
(82D3 + 57. D3 + rz. 52- b2D - _8_2_ D+ s * bZD)U - (5_2' Du
r r r
- 2 2
55 0% + s vPD? - s* v - v2e 2+ p2. M.t
r
- ¢%p% - 2. 52, v¥w = 0 (37)

Solving equations (36) and (37) simultaneously
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yields (See Appendix B for the complete derivation)

VI

W

W (38)

0
o

IV "
+ kl W + k2 w + k3

VI

Utk UM 4k, U+ kg U= 0 (39)

1

where

= 2 + 2b%. r? + b2, s°

ky =
ky = 1 - b2 + 2 r2. 52 + b2, r2 - p2. 52+t LY
ky = b2 - b r2. 82 + p2. r2 - . p2 + b0 M 52 - o,

The solution of equation (38) may be expressed as

6 £ 0
W(e) = 3 a, e (41)
n=1
where a, (n=1,2,. «+ . 6) are constants to be determined
from the boundary conditions, and & (n=1,2,. . .« 6) are

the roots of the characteristic equation of equation (38)

and may be written as

The solution of equatiocn (39) can be written as

U(e) = £ 2z_ e (43)
n=1

Substituting equations (41) and (43) into equation (36)

yields the relation between the constants a's and z's as

b

X

-/
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follows:

2 = A, ap (L4ls)

where

R .

§2 - b2 p2 41 - (5

n

A

n
n

From equations (43) and (44) one obtains

6 6,0

u(e) = zl Mo oa, e : (46)

n= ‘

Introducing equations (41) and (46) into equation (35)

yields
6
£_0
Ry(e) = = n
a, Cp © (47)
n=1
-where
2 2
- S S 2 2, .2
ch® Mt =3 M G-l sT L (48)



CHAPTER III

DERIVATION CF DYNAMIC STIFFNESS OF
CIRCULAR CURVED BEAM
Consider the in-plane vibration of a curved member
having constant cross section subjected to translational
and rotational displacements at the two ends A and B as
shown in Fig. 3.

For harmonic vibrations, let

M(o,t) = M(p) e F (49)
F(o,t) = F(o) e™"F (50)
F(o,t) = T(0) et"" (51)

where M, F and T are normal function of M, F and T, réspec-
tively.

Substituting equations (22), (49), (50) and (51)
into equations (15), (17) and (3) and omitting the common

term eth yields

Me) = - L v' (o) (52)
F(8) = Egg [U' (&) + w(e) - R¥(e)]  (53)
T(e) = -F'(g) - YARQZ Uu(e) (54)

Introducing equations (41), (46) and (47) into

equations (52), (53) and (54) give

18



Figure 3.

Positive,%isplacements. forces and moments with common
factor el®' omitted

6T



6 E B
M(8) = - -;% 2. %n?%nfn® i (55)
n:
6 £,.6
F(e) = E% El m, a, e n (56)
6 £.9
T(e)=--§—§— zldnanene (57)
n= .
where
m, = M En * 1 - cy . (58)
SZ
dp = mp &n * b* An S (59)

and £,, Cps S and b are defined previously.
Referring again to Fig. 3, the boundary conditions

are
)

o6 _ = vy(o8 0)

"

0 ::‘Y(e

o)

v, = U(0) sin ¢ - W(0O) cosr
> (60)
vy, = U(a) sin n + W(a) cosn
ha = U(0) cos p + W(O) sinp
hb = =U(aj cosn + W(a) sin nJ

The bending moments and thrusts at both ends may

be expressed as
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My = M(e = 0) )

Mba = =M(6 =a)

"V = F(0) sinp - T(O0) cos p

ab
(61)

-Vba = F(a) ?inn + T(a) cos n

Hop = -F(0) cos p = T(0) sinp

Hpy = F(a) cos n - T(a) sin n./

Substituting equations (41), (46) and (47) into equation
(60) yields - |

6 7
Re_ = & a_ ¢ ' '
a n=] B n
R6 6 Enoc
= I a_c,.e
b n=1 non
6 6
v =s8inp £ A, a, = CcOSp ¢ a
a n=1 o © n=1 n1
6 €0 & £ > (62)
v. =sinn I a, A, e +cosn I a e
b n=1 n=1
6 6
h =cosp I a_ XA + sinp I ap
a n=1 ©* 0 n=1
6 Enot. ] 6 é’-;no(,
hb = =Cc0S N Z a, A, e + Sin g LI a_ e
n=1 n=1 " .,

forms:

(bl = (a] [x] (63)
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where
Rea al
Reb a,
B Va a3
LDl = , [x] = | (64)
Vb aL“
ha a5
hy, ag
L - - -

and [A] is given in Appendix C.
~Substitdting equations (55), (55) and (57) into

equation (61) one obtains

6 ~
M - EI by
%b C R n=1 °n ®n ‘n
My, _ EI 6 En®
ba = 3 T n &n En e
R R n=1
6 6
EI . EI
= — 4 ==
Vab R3 sinop nil a, M, R3 coS p nil an dn
6 6
EI . Ena Ena
W) = = ginn ¢ a, m - = cosn ¥ a_d_e
ba R3 -y nn r3 n=] R 1
6 6
EI BT
H = = == ¢cosp I a_m_ + = sinp I a
ab R n=1 " R n=1 * 0
£.Q 6 En®
Hba = E% cosn Z a m_ e n + EL sinn I ap dn e
R R n=1

(65)
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Equation (65) may be rewritten in the matrix form as
[F] = % (8] [x] (66)
R

where

Mav/R

Mba/R

B Vab ‘ ~
LF] = . (67)
Vba

‘Hab

Hba

and [B] is given in Appendix C and [X] is defined already.

Premultiplying equation (63) by [A]-l, one obtains
-1
[(x] = (4] " (D] (68)
Substituting equation (68) into equation (66) gives

[F] = £ (5] (a17F 0] (69)
R

Equation (69) may be rewritten as
Cr] = [s] (D] (70)

where [S], the dynamic stiffness matrix for a curved
member, directly relates the end moments and thrusts to

end rotations and deflections. [SJ] is given by

[s] = g% (8] [a]7t (71)



CHAPTER IV
A SINGLE CIRCULAR CURVED BEAM FIXED AT ENDS

I. Dynamic Concentrated Load

The circular curved member shown in Fig. 4 is
subjected to a dynamic concentrated load at any point C.
The two segments, AC and CB will Be considered as free
bodies to determine the constants, a, given in equations
(41), (46) and (47). |

Consider first arc AC as a free body. The use of
Fig. 5 and equations (41), (46) and (47) will give the
following matrix equations, where displacements at the

fixed~-end A equals zero.

[Dy] = [a1] [x,c] (72)

where [A;] is given in Appendix D, and

_Rec_ o]
Ue a2
w a
0= | o] Doed - ai (73)
0 a5
L0 L2 ]

Also, the use of Fig. 5 and equations (55), (56)

and (57) will give the following matrix equation:

24
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Figure 4. Fixed-end curved member under the
effect of a dynamic concentrated load
with the common factor el%% omitted
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i

Figure 5. Displaceménts. forces and momeénts of
arc AC

|
i

Figure 6. Displacements, forces and moments of
arc BC :
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LF1] = E%

;— [Blj [XAC] (74)

where [By] is given in Appendix D, and
- -

Mop/R

[F,]1 = | (75)

AB

AB

Consider next arc BC as a free body. The use of
Fig. 6 and equations (41), (46) and (47) will give the
following matrix equations, where displacements at the

fixed-end B equal zero.

EDlj = EAgj [XBC] (76)

where [A2] is given in Appendix D, and
’—_ —
21
é.2

[x5.] = 0 (77)
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[D;] is defined previously.
Using Fig. 6 and equations (55), (56) and (57),

the following matrix equation is obtained

[Fp] = % [8,] [Xpcl (78)

where EBZJ is given in Appendix D, and

~— -t

MCB/R

[F,] = (79)

L —
Using static condensation method, equation (72) may be

rewritten as

T o ; - <] r 7

S R I I (80)
!

Dy | [apyd ) Cagpd) R4

From equations (80) we have
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[Dr] = [A11] Dxperd + LAr2d [Xperrd] (81)

[Dy7d = [apyd Cxperd + LAzl [Xyerrd (82)
Solving equation (82) for [XACII] gives

[X;;] = [Syqd [%] - (83)
where

[S7] = - EAzzj'i [an] (84)
Substituting équatioﬁ (83) into equation (81) yields

[Xpord = [31]-1 D] (85)
where

[Sp] = [Agp] + [ag0] [Sg1] (86)

-From equations (83) and (85), the following equation can

be obtained:
[Xyoprd = OSpqpd [Dgd (87)

where

[SIII] = [SII] [SIj-l (88)



and

11

12

21

ACT

ACII ~

30

£6©

Cy

w
c

* TII

6

\ (89)
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Applying the same manipulation to equation (76) gives

— — —

Dy [A17] | [Agpl XgeT

R e - - (90)

Drr (A, ¢ [agpd XpeIT

— vt e - b

From equation (90) one has
[Xpeppd = [577] LXpgqd (91)

-1 -

[XBCI] = Eélj [DI] (92)
where

[S;7] = -LAze] ™" [dp] (93)

E§I] = [Kll] + EKlzJ [éII] (94)

From equations (91) and (92), the following

equation can be obtained:



where

and

1

11

BCI

I}

32

[xgcrrd = 51777 (071

(51113 = C5¢1] [513-1

1

21

=i

22

A |

W

w1

’ XBCII

'512 =

m W
=

0y

and DI and DII are defined already.

(95)

‘;(97)
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The dynamic equilibrium at point C from Fig. 4

gives
R R‘
-Tl +"I'2 = P cos(p+6) > (98)
Fl’-’F2 = P sin(p+6)

Introducing equations (74) and (78) into equation
(98) yields”
[B,] [x,,] + [B,] [xpo] = [71] (99)
where
0
LTT] =P cos(p +6) (100)

sin{(p + 0 )

- p—

and [ﬁl] and [52] are given in Appendix E, and [X,-] and
[Xgo] are defined previously.

Combining equations (85) and (87), one obtains
7 i -1
[Xpe1d [s;]

—— —

[Xpcd = = (o] (101)

| [Xyer1d | Sprrd |

Similarly, from equations (92) and (95) the follow=-

ing equation can be obtained
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[Xged = = [p;] (102)

55{13(:1’:[]_l [Sy11d

L

Substituting equations (101) and (102) into

equation (99) yields

[p;] = [zt [7r] (103)
where :
NESE (5,070
Lz] = [By] + [B,] (104)
[Sprrd | (Sy11]

and [DI], [T] are defined already.

Therefore,
_ 1 -
Lzl (rrl
[p;]
[Dy1= |----f= |-=----- (105)
PDII% 0
0
] 0

Finally, [X,c] and [Xgg] can be obtained by multiply-
ing equation (72) and (76) by [Al]-l and [Azj_l, respec-

tively. The results are:

[Xpcd = EAl]'l (D, ] (106)
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-1
[Xged = Lay]l ™ [y (107)
Referring again to Figures 5 and 6, the fixed-end

reaction may be determined by using equations (78) and

(82).'and the results are

6 N
F ET
M o == I C, 8, &
AB Rg n=1 n %n °n
(108)
6 £n0 '
F E1 n
M = == L ec_a. & e _
F F - F EI 6 2
VAB = FAB sinep - TAB cosp = ;3 njl an .
(mn sinp + dn cosp)
F __F . . _F _EI .- _tn¢
VBA = FBA sinn + TBA cosn = R3 La,e .
(mn sinn - d, cosn) ' (109)
HF = - FF cosp - TF sinp = EL ?' a .
AB AB "°°P T "aB RZ np=1 B
(—mn cosp + dn Sinp)
6 £.,0
F = F - F 3 = -El 2 n .
HBA FBA coSsSn TBA sinn R3 nil a, ©
(m_cosn + d, sinn) »

II. Dynamic Distributed Load

(a) Equations of Motion

Consider the in-plane vibration of a curved element

as shown in Fig. 7. Following the same derivation as given
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N N N N 6

2
YA i—% ds
A ot
=W
- 2 YI —— ds
M vA2Eas |y 3t
' - A 4 ds
- F /
T T
| T, oF
F+ 5 ds
R

de

Figure 7. Element of a curved member subjected
to forces, moments and load

mlEﬂ

mll"il
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in Appendix A, the equations of motion are

@
xj)

22 4 T+ PR = vaR 3 (110)
o6 ot
3T = 2w
2 - F = YAR 3 (111)
a6 2t

- 3M = 32 ¥
£ + FR = YIR =3 (112)

Introducing equations (17) and (18) into equation

(110) yields

2 2, -
KAG 27 L (1pg + Ba) ¥ - jpc - By L rSH - FrR =0

R 96 R 06 00 R 3t

(113)
Substituting equations (17) and (18) into equation
(111) one has

2 2
2 kA
EA——%’--£(EA+1{AG)ﬁg"-——QW'*'kAGw-YAR-?—%:O (114)

R 30 R a8 R ot

Substituting of equations (15) and (17) into equation

(112), the following equation is obtained

2 2 .
E—i’—%+mcﬂ+mcw-kAGRw-YIR—a—g-=O (115)
R 96 a0 ot

(b) General Solution of the Equation of Motion

For the harmonic vibration assume:
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. M
w(o,t) = W(g) e?

u(e,t) = u(e) e®®
(116)

b(o,t) = ¥(o) et

- 2 Q
B(t) = p et K

vy

th mode and

where @ is the natural circﬁlar frequency of n
W, U, ¥, p are normél function of w, u, ¥ and P, respec-
tively.

Substituting equation (116) into equations (113),

(114) and (115), and using symbolic operator method, one

obtains
2 2 b
(-D% + =5 - b2+ s2)U - (D + 25 D)W + (RD)Y - s2. £&- =9
r r EI
(117)
2 2
- (D+ 3= D)u + (§5 D+ b% s2 = 1)W + Ry = 0 (118)
r2 r
DU + W + R(s%D2 - 1 + r2. s2. p2)¥v = 0 (119)

where s, r and b are defined previously.
Solving equations (117), (118) and (119) simultane-

ously

VI IV ”" _
W + kW + koW o+ k3w =0 (120)

Iv

1}
=~
=
&
=

UV 4 Ut # U+ kgU (121)
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where

ku = (b2- ré - r“- b”- s2 + r“- b2) (122)

and k,, k,, and k3 are defined alfeady.

The solution of equation (120) is again given by
equation (41).

Equation (121) is a non-homogeneous sixth-order
linear differential equation with constant coefficients,

its general solution takes the form of
u(e) = U_(8) + Up (123)

where Up is a particular solution of equation (121) and
Uc(e) is the complementary solution which is the solution
of the homogeneous part and is given by equation (46).

By inspection of equation (121), its particular

solution is

I
Up = (%4) PRC (124)

Thus, the general solution of equation (121) can be
written as
6

i
voag e ™+ Ky, PR (125)
n=1 k3 EI

oo

u(e) = (

Substituting equations (41) and (125) into equation
(118) leads to

6 Ep @
R¥(8) = = a, cp e (126)

n=1

where c, are given by equation (48).
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(¢) Fixed-end Moments and Thrusts

Consider the circular curved member subjected to

a harmonic uniformly distributed load as shown in Fig, 8.

Introducing equations (41), (125) and (126) into

equations (52), (53) and (54) give

6 0
EI tn
M(6) = -=% I ¢c_a_ E_ e (127)
R2 n=1 o 00
6 E,.0
F(e) =21 3 m a e (128)
R“ n=1
6 £..0
T(8) = - EL 4 d a, e ol PR(1 + b2' Eﬂ) (129)
RJ n=1 k
The boundary conditions for both ends "A" and "B"
being fixed are
U(e= 0) = 0, U(6=a) = v
W(e=0) = 0, W(o=a) = (130)
¥y(e=0) = 0, y(e=a) =

The system of equations resulting from the intro-

duction of equations (41), (125) and (126) into equations

(130) can be expressed as
- Lo
[T7] [x] = - (=) PR (7]
k3 EI

where

(131)
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A A S S S I T

F
MAB
F F
F B F
AB &
\\\ | éﬁ‘.’ Upa
F / Y
F
vE BA F
p F AB VF BA
AB BA

OL

Figure 8. Fixed-end curved member under the
effect of uniformly distributed load



LF]

L2

1
(O

c O = O

- -

(132)

and [TT] is given in Appendix F and [X] is defined pre-

viously.

Premultiplying equation (131) by'[if]-l will yield

4 o .
[x] = - (¥4) PRY 7377 [F]

k3 EI

(133)

Introdgcing equation (133) into equations (127),

(128) and (129) yields the fixed-end bending moments and

thrusts at ends "A" and "B" due to a harmonic uniformly

distributed load

as follows:

2
9 PR
og PR
F : _ mf -
FAB sinp TAB COoS p
FF sinn+ T =
BA n By COSn <

(134)

(135)

T, PR (136)
15 PR (137)
e, PR (138)
ep PR (139)



k3

where
o, = (X&) [eg] [TT17F [F] (140)
k4
_ k £6 -—_=-1 _
og = (Rﬁ) [cg &1 (7T [F] (141)
53

= ~(5) sine [m] [TT17F [F] - (5%) cose [a] [TT1°F [F]

ks k3
+ cospe (1 + bl E&) (142)
ks
g = = (54) sinn [m %] [T117 [F] = (X4) cosn [a 597 [F7771
: k3 k3

LF] - cosn (1 + b2 E&) (143)

k

3

ep = (%) coso [m] [FT17F [F] - (%) sino [a] [F317" [F]

ks K3
+ sine (1 + b2+ Xu) (14k)
K
3
ey = ~(54) cosn [m 597 [T717L [F] - (¥4) sinn [d e8] [T7]°%
kg K5
[F] + sinn (Ll + b2- gi) (145)
3

and [c ], [c £ e%%], [m], [d], [m %], [d ¢%°] and (T7]

are given in Appendix F.



CHAPTER V
INEXTENSIONAL VIBRATIONS

1. Derivation of the Equations of Motion

Assuming the centroidal axis of the curved member
to be inextensional, equation (13) becomes
u =2 (146)
00
Substitution of equation (146) into equation (17)
yields

[+ 3]

Fo=EAG (ATW 4 | Ry) (147)

R 00

N

Eliminating T from equations (3) and (4) and

employing equation (145) gives
32F 5 M 32

—= + F = vAR ( - ) (148)
30 2 | 30 2 at2 at2

Substituting equation (147) into equation (148)

yields
L 2 2
R 006 L3 36
auw 32w
YAR ( - ) (149)
362 312 a2

Ly
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Combining equations (15) and (147) with equation

(5) gives
2 2 2
EL 2% 4 a0 (A% + w - RY) = vIR 2p (150)
R 20 06 ot

Equations (149) and (150) constitute the equations
of motion of circular curved member undergoing inextensional

free vibrations.

2. General Solution of the Equations of Motion

Aésume that the curved member is excited harmonically

with a natural frequency 2 and let,

. N
w(0,t) = W(6) L%t
Wo,t) = ¥(e) 17 > (151)
u(e,t) = U(e) eiQJc
-/

Using the same procedure as shown in Chapter II, we have

V1

' Iv " —

W + kll W + kop WY+ k33 W=20 (1s52)
where
"'\

kyp =2+ b2p? + p3s?
k,, = 1+ 2 b2r? - 252 - b2 4 pH*rls? (153)
k = b2 + b2r2 - burzsz

33 J

The solution of equation (152) may be expressed

by equation (41) as
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. 6 0
w(e) = I ap o°n (154)

n=1

and the solution of ¥(8) can also be expressed by equation
(47) as

6 EnP '
Ry(g) = ¢ a, &, © (155)
' n=1l

From equations (146) and (154) one has

, 6 End
Uu(e) =w (8) = = En 8p © (156)
g n=1
- where
82 % 4 g2 (1 4 282 + b2s¥) + (1 + s2 - b2k
qn = n n

(1 + 2 - p%r%?) (157)
and anps &ns b, r and s are defined already.

3. Derivation of Dynamic Stiffness Matrix

Referring to Fig. 3 and following the same proce-

dure as shown in Chapter II, we obtain

6 £..8
m(e) = - 5L 3 g a e, e (158)
R~ n=1
6

EI En®
F(8) === © 2Z_a, e (159)

R3 n=1 non

_ EL 6 2 Ene 6

T(8) = - 25 & a  (Zyp+b)E e (160)
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2 L

b2 (s - p2) - gg (1 + b2(r2 + s7)) - & (161)

(1 + SZ _ b2r282)
Using the boundary ccnditions given by equations
(60) and (61) one has
(D]

[F] = 25 [c] [x] (163)
R

Le] [x] (162)

t=

where [D] and [X] are defined by equation'(64), and matrices
[E] and [C] are given in Appendix G.
-1
Premultiplying equation (162) by [E] = and substi-

tuting into equation (163) yields
[F] = E% Cc] [EJ™ [D] = [ss] (D] (L164)

where [ss] is the dynamic stiffness matrix of inextensional

curved member and is given by

[(ss] = 5% [c] [e170 (165)

4, Fixed-end Moments and Thrusts

Referring again to Fig. 4 and following the same

approach as given in Chapter IV, one obtains

[Dy1 = [E{] [X,c] (166)

it
Wl

(Fq] LC1d [Xycd (167)

=

[D;] = LE,] [Xged (168)
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[F,] = -E—% [¢,] [Xpe] (169)
where [D1]1, [F1], [Fol, [Xpc] and [Xpcl are defined by
equations (73), (75), (79), (73) and (77), respectively.
Matrices [El]. [ClJ. [E2] and [Czj are given in
Appendix H. |
Using the dynamic equilibrium and the continuity

at point c, finally the fixed-end moment may be expressed

in the same form as equation (108) and (109).



CHAPTER VI
NUMERICAL EXANMPLES

Example 1l: A three-span symmetrical circular curved beam
of constant cross section undergoing in-plane vibration as
shown in Fig. 9 1is analyzed for natural frequencies.

The boundary conditions are

=0 (170)

|
o
oy
e
l
ol
td
]
o3
Q
I
o
o
|

and the conditions of dynamic equilibrium at A, B, C and

D give
Mg = 0
M + M = 0
BA BC (171)
Meg + Mgp = O
|
M.~ =0 %
DC |
J
due to symmetry, Figures 4 and 9 give
p =1 (172)

Since the beam has three identical spans, we have
[s], = [s), = [sl, = [s] s Lal, = [aly = (A, = [Ad
(Bl = [BJp = [B], = [B] (173)

1
]

From equations (170) and (171) one has

49



Figure 9.

A three-span circular curved beam

0¢
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94R 05R o R
eBR eCR GDR
(0] ° 1= 1 = % am
D = LD = , [D = (17
a 0 b ’ 0 ? 0
0 0 0
| 0 ] L0 L 0
M, o | Mo /o | M, ]
AB/R BC/R CD/R
Mpa/R Me/R | Mpe/r
VAB Ve Ve
(7], = e . Fl, = (175)
VA VeB | Vpe
Hy g Hpg Hop
HBA HCB HDC
_ i — | . 1

Using equation (70) we can write

(7], = [s1(p], . [F], = (1 (0], . (F], = (8] [D], (176)

Introducing equations (174) and (175) into equations (176)

gives
Mpp = Syp OaR * Spp 8pR =0 ]
R
MBA + MBC = Szl GAR + (Sll + s22) eBR + Slz OCR = O

R R

5 (177)
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Ycp + 2o = 5,7 ogR + (511 *+ Sp2) 0GR + Syp OpR = O
R R '

Mpe = =
—DC = S,57 8GR + Sy, 6pR = 0

R
Equations (177) may be rearranged in the following matrix
form:
[Fy1d = (817 [Dq;1] = (o] (178)
where
: )
MpB/R
(Mg, /R )+ (Mpc/R)
EFll] =
(MCB/R)+(MCD/R)
Mpe/r
Sll S1o 0 0
Sp1 (S11+S22) S12 0 > (179)
[(S1]=
0 S21 (S11+S22)  Syz
0 0 S21 S22
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. - P

Equating the determinate of the stiffness matrix

[S1] in equation (178) to zero yields the following frequency

equation:
S11 S12 0
S,p  (S11+S22) S12
= 0 (180)
0 S21 (S11%S22)  Si2
0 0 S21 S22

Equation (180) is the frequency equation and will
be used to find the natural frequencies of the curved beam,

For a given beam, the values of r, s and o are
known and the frequencies can be determined from equation
(180). In order to show the effects of rotary inertia and
shear deformation on the natural frequencies of the beamn,
the cross section of the beam is assumed to be a rectangle,
The shear coefficient k for a rectangular section can be
computed from the following expression given by Cowper[20]

10 (1 +u )
12 + 11up

k = (181)
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where u, the Poisson's ratio, equals to 0.3 for steel,

From equations (30) and (31) one has

(182)

"'SI(D
(\O) I AN]

E
kG

The relation between modulus of elasticity and
modulus of rigidity is given by [27]

¢ = —E— o (183)
"2 (1+wu) : - '

' Substituting equations (181) and (183) into

equation (182) and setting u = 0.3, we obtain
s = 1.75 r | - (184)

Alcomputer algorithm has been wfitten to find the
elements of equation (180), and then to evaluate the
determinant, based upon input values for the frequency
parameter b,‘the rotary inertia parameter r and the central
angle a.

Using this algorithm, the values of b were obtained
for o= 60°, 120° and 180°. The first four modes of vibra-
tion, with r varying from O to 0,10, are shown in Fig. 10.
Figures 11 and 12 and'in Tables 1, 2 and 3 show the effect
of extensional deformation on the natufal frequencies of
the beam for a’= 60° and 180°, reSpecti#ely. .A comparison
of natural frequencies for the beam having a rectangular
section and a 24 W= 110 section can be found in Fig. 13 and

in Table 4,
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120°
180°

bending deformation 'b’
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28.0
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;_-3:_ -:E:.i‘_iE e %g% i
L, OE = "‘T= -y % ___? f: 2nd
0.0 OOl 0.02 0.04 0. 06 .l

rotary inertia 'r’

Figure 10. Natural frequencies of a three-span
curved beam owing to rotary inertia
and shear deformation. & = central
angle.,
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68.0
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52.0
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o
=
O

36.O¢\§$“L~§“3L;

28.0

20.0 | | ]

.001 0.02 0,04 0.06 0.08 0.1
rotary inertia 'r’ ‘

Figure 11. Effect of extensional deformation on
natural frequencies of a three-span
curved beam for o = 60°
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Extensional

- - Tnextensional

lbl

bending deformation

001 0.02 0.04 0,06  0.08 0.1
E rotary inertia 'r’'

Figure 12. Effect of extensional deformation on
natural frequencies of 2 three-span
curved beam for « = 180
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by, |

. 001 0,02 0.04 0.06 0.08 0.1
rotary inertia 'r*
Figure 13. Effect of shape factors on natural

frequencies of a three-span curved
beam. o = 120°
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Table 1. Effect of extensional deformation on natural
frequencies for a = 60°

Extensional Inextensional

r 1 2 3 4 1 2 3

001 | 33.62 | 38.31 | 47.83| 75.04 | 33.62 | 38.31 | 47.83
0.01 | 33.37 | 36.74 45.76 72.62 | 33.38 | 36.85| 45.74
0.02 | 32.62 | 36.24 | 43,19 70.80 | 32.63 | 36.35| 43.55
0.03 | 31.49 | 34.93 | 40.95] 68,00 31.50| 35.08 | 41.81
0.04 | 30.11 | 33.78 | 38.53| 64.82 | 30.12 | 34.00| 39.53
0.05 | 28.58 | 31.55 | 35.95| 60.10 | 28.59 | 31.82| 36.90
0.06 | 26.99 | 29.40 | 33.16| 54.60| 27.00| 29.80 | 34.51
0.07 | 25.42 | 27.36 | 30.35| 48.00( 25.54 | 27.85| 32.01
0.08 | 23.90| 25.45 | 27.93| 41.83 | 24.01 | 26.01 | 29.52
0.09 | 22.47 | 23.72 | 25.52| 35.99 | 22.66 | 23.80 27.00

0.1 ]21.12} 22.13| 23.63| 32.28 | 21.31 | 22.63| 25.02

75.04
73.00
71.25
68.54
65.50
61.90
57.10
51.28

45,01

Lo,oo0
35.90
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Table 2. - Effect of extensional deformation on natural
frequencies for o = 180°

Extensional Inextensional

r 1 2 3 L 1 2 3 L
027 2-77 6-92 7'63

001 | 2.27| 2.77 | 6.92 | 7.63 | 2
0.0L| 2.26| 2.76 | 6.91 | 7.60 | 2.26 | 2.76 | 6.91 | 7.61
0.02| 2.26| 2.75| 6.86 | 7.53 | 2.26 | 2.75 | 6.87 | 7.55
0.03( 2.25| 2.78 | 6.78 | 7.u2 | 2.25 | 2.74 | 6.80 | 7.45
0.04| 2.23] 2.71| 6.67 | 7.27 | 2.24 | 2.71 ] 6.71 | 7.32

2

0.05| =2.21| 2.68| 6.53| 7.08 .22 | 2,68 6.59 | 7.16
0.06| 2.19] 2.64 | 6.38| 6.87 | 2.20 | 2.65| 6,46 | 6.99
0.07| 2.17| 2.60| 6.20( 6.63 | 2.18 | 2.61 | 6.32 | 6.80
0.08| 2.14| 2.55| 6.01| 6.38 | 2.15 | 2.56( 6.17 | 6.60
0.09| 2.11{ 2.51{ 5.75]| 6.12 | 2.12 | 2.52| 5.91 | 6.40
0.1| 2.07| 2.45] 5.50| 5.75| 2.09 { 2.47 | 5.68 | 6.05
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Table 3. % Effect of axial deformation on the natural
frequencies
0 = 60° o = 180°
r mode r mpde
,001, .01, .02, .001, .01, .02,
.03, .04, .05, 1 .03, .04, .05, 1
.06, .07, .08, . .06, .07, .08,
.09, .1 .09, .1
1% .001, .01, .02 .001, .01, .02,
° .03, .04, .05 2 .03, .04, .03, 2
or .06, .07, .08,
less .09, .1
.001, .01, .02 .001, .01, .02,
3 .03, .04, .05, 3
.06
nool, cOl, 002 uool' .Ol, 102' ' )
b .03, .04 n
.,001, .01, .02 .001, .01, .02,
.03, .04, .03, 1 .03, .04, .05, 1
.06, .07, .08, .06, .07, .08,
.09, .1 .09, .1
.001, .01, .02, .001, .01, .02,
003, IOL"’ 005, 2 003| lou‘p lo5’ 2
10% .06, .07, .08, .06, .07, .08,
or .09, .1 .09, .1
less 401, .01, .02, .001, .01, .02,
.03, .04, .05, 3 .03, .04, .05, 3
|06| -O?, 008, 006’ .O?. 108’
009' 'l 509' ol
.001, .01, .02, ,001, .01, .02,
.03, .04, .05, ly .03, .04, .05, L
.06, .07, .08, .06, .07, .08,
.00, .1 .09, .1
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4, Effect of shape factors on natural frequencies
for o« = 120°

Rectangular Section 24 w= 110
(k = 0.85) (k = 0.355)
r 1 2 .3 L 1 2 3 L

0.001| 6,93 | 8.08 | 10,41 17.50 | 6.93 | 8.08 ] 10.41 | 17.50
0,01 | 6.918.0510.37| 17.38 || 6.91 | 8,04} 10.34 | 17.37
0.02| 6.87 | 7.98 | 10.26| 17.03 | 6.86 | 7.981 10.14 | 17.00
0.03| 6.80 | 7.87 [ 10.04| 16.44|[ 6.78 7.78| 9.82| 16.35
0.04| 6,70 7.71 | 9.77{ 15.56| 6.66| 7.58| 9.42 | 15.43
0.05| 6.58] 7.52| 9.45| 14,38 6.53| 7.34| 8.96| 14,23
0.06| 6.44 1 7.31| 9.10| 13.01(| 6.37] 7.08| 8.48]| 12.90
0.07| 6.30| 7.08| 8.72| 11.66|| 6.20| 6.08] 8.00 | 11.62
0.08| 6.13| 6.84 | 8.33| 10.47]} 6.01| 6.52| 7.53| 10.50
0.09 5.96 6.59| 7.93| 9.46}| 5.82| 5.82| 7.09| 9.58
0.1 | 5.79| 6.34| 7.53| 8.61}|f 5.62| 5.97| 6.68| 8.78




Example 2: This example is intended to illustrate how the
moments at the interior supports of a continuous circular
curved beam are affected by rotary inertia, shear deforma-
tion, central angle, and axial deformation when subjected
to a concentrated dynamic load. The load is applied at the
center of an exterior span CD of the same three-span beam
considered in the previous example (see Fig. 14).

The boundary conditions are the same as those
given in equation (170).

From Fig. 14, the method of superposition gives

— F
— F )
where MFCD is the fixed-end moments for a concentrated load

acting on span C (Fig. 14), and MCD is the interior moment
from the condition given in Fig. 15b.

The conditions of dynamic equilibrium for this

case are
ﬁ
MAB = 0
Mw, + Mape = O
B BC
A > (187)
Meg ¥ Mgp = O
po—

Introducing equations (185) and (186) into

equations (187) yields
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Peiﬂt

Figure 14. A three-span curved beam subjected
to a dynamic concentrated load

Figure 15. Combined moments and forces of a
curged beam system with common factor
eliT omitted
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M, = O

M. 4+ M . =0

BA c
B (188)
- P

MCB + MCD + M cD =

I F —N

Mpe = Mpg =0 |

Referring to equations (177), equations (188) may be

written as

M, ~
= S11 0pR * Sy, 6pR = 0
M M

BA c _ . _
_E— + N So1 eAR + (Sll + SZZ)GBR + S12 eCR 0

> (189)

M M | | F

5 Mcp _ _ M

+ Spp 8gR + (S, + 5,,)8,R + 51, ;R &b

R R R
M F

DC _M
- Sp1 ScR * Spp R = _ﬁgg

/

Equations (189) may be rearranged in the following matrix

form:
[Dy;] = [5917 [Fpp) (190)
where
- -
| 0
[Fppd = F
| CD/R
F
- ™ ooe/r | (191)
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and [Dy7] and [S;] are defined already.
A computer algorithm has been written for finding
the unknown displacements %4, 9B, 6¢ and 6, from equation

(190) then the moment M
(176).

cp ¢an be evaluated from equations
The computer algorithm uses the following sub-
routines which are obtained from the IMSL library as

ZPOLR - This subroutine finds the roots of
the characteristic equation.

LEQ2C - This subroutine computes the inverse
of a complex matrix.

Using this algorithm the values of fnp, the moment
coefficient of Mgy, can be obtained for o = 60° , 120° and
v1800 with b varying from 0 to 100. The results are shown
in Figures 16, 17 and 18.

Figure 19 shows a comparison of joint moment for

the beam having different sections.
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CHAPTER VII
DISCUSSIONS AND CONCLUSIONS

The dynamic stiffness matrix formulation for
circular curved members of constant cross section, in-
cluding the effects of rotary inertia, transveréé shear
aeformation and axial deformation, has been presented in
tﬁis dissertation for the dynamic analysis of continuous
circular curved beams. Two 'examples of the three-span
circular cur&ed beam have been given to illustrate: the
application of the proposed method. In the first example,
.the beam is undergoing free vibrations. It can be seen
in Fig. 10 that the natural frequency decreases as the
value of the rotary inertia parameter r and the shear
deformation parameter s increase and the effect 1is greater
at smaller central zangle.

The effect of axial deformation on the natural
frequencies can be seen in Figures 11 and 12 and in Tables
1, 2 and 3 for two different values of central angle
(o= 60° and o= 180°)., It is observed that the effect of
axial deformation tends to decrease the natural frequencies
of the beam and becomes significant with increasing r and s.
This effect is more proncunced for higher modes and for

smaller angles. For example, in Fig. 11, when r = 0,04

71
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the natural frequency decreases by 0.033% and 1.03% for
first and fourth modes, respectively, and when r = 0.10
the natural frequency decreases by 0.89% and 10% for first
and fourth modes, respectively.. Similarly, in Fig. 12,
when r = 0.04 the natural frequency decreases by 0.44%
and 0.683% for first and fourth modes, respectively, and
when r = 0.10 the natural frequency decreases by 0.95%
and 4,96% for first and fourth modes, respectively.

The second example illustrates the same beam sub-
jected to forced vibrations. Since the joint’momenté are
very sensitive to the load frequency, thus the momenﬁ
coefficient f is calculatéd with the‘bending deformation b
being taken for every increment of 0,01, The numerical
results given in Figures 16, 17 and 18 show the effect of
rotary inertia, shear and axial deformation on the joinf
moments of the beam. From the curves shown‘in Fig. 16, it
is seen that the modes shift from the right to the left as
the central angle becomes larger, i.e., the member becomes
longer. Thié means as the central angle ¢ increases, the
same joint moment can be obtained at lower load freduency.
This phenomenon indicates that the dynamic stiffness of
the member decreases as the central angle increases. It is
also noticed, from Fig. 17, that the natural frequencies
decrease as r and s increase. This means as the rotary
inertia r increases, the same joint moment can be obtained
at lower load frequency. Thus for higher values of r and s,

resonance will occur at lower frequencies. Figure 18
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reveals that the effect of axial deformation is to give
the Joint moment at the lower frequency and this effect
becomes pronounced for higher modes.

As a result of the present study, the following

ma jor conclusions can be drawn:

1 - The natural frequency decreaées for increases
of rotary inertia and transverse shear defor-
mation. '

2 - The frequencies decrease when axial defor-
mation is taken into consideration. This
effect becomes significant with increasing
rotary inertia and transverse shear defor-
mation., It is more pronounced for higher-
modes and for smaller angles. L

3 - The effect of different shape factors on
the natural frequencies and moment
coefficients is insignificant and can be
neglected (Figures 13 and 19, Table by.

Although both free and forced vibrations have been

considered in the present study, future investigations
should involve other forced vibration such as non-harmonic
forced vibrations and continuous curved beams with variable
sections. The proposed method could be extended to the

analysis of non-circular curved beams.
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APPENDIX A,
DERIVATION OF THE EQUATIONS OF MOTION

Taking the differential element shown in Fig. 1
as a free body, we have

(I) Equilibrium of forces in the radial direction

-F cos a8 + 5 sin a8 _ fIl ds + (F + 3F ds) cos dse
, 2 2. 33 2
+ (T + 2L ds) sin LA

as 2

where ds is the arc length of the differential element.

de = dse and cos de ~ 1,
2 2 2

For small de, sin

Neglecting higher order terms and dividing through

by ds = Rd6, one obtains
—+T=fIlR (a)

(II) Equilibrium of forces in the tangential

direction
-F sin a8 _ T cos de _ fip ds - (5 4 2L ds) sin as
2 2 39S 2
+ (f + 2L ds) cos a8 - 0
3s 2

which yields
77



- F = fIz
20
(111)
M - (M + oM ds) + FR sin
o8
- T sin ds (R sin
2
- (T + o T ds) sin
s
- (T + 2T ds) cos
9s
which leads to
M . =
- ——+ -
FR mIR

de

N

l\)ICL
@

8

o (\)|Qo
@

™|

(b)

Equilibrium of moments about C

+ (ﬁ + 3F ds) R sin a8
98 2
- 8
) + T cos a@ (R - R cos gﬁ)
2 2
(R sin 2%
2
(R - R cos g—e) - mI=ds = 0

2

(c)



APPENDIX B
GENERAL SOLUTION OF THE EQUATIONS OF MOTION

'Equations (28) and (29) may be rewritten, respec-

* tively, as:

0

LU - LoW
1 2
- (d)
L3U = IyW = 0
where Lj, Loy, L3 and Ly are differential operators with the

following constant coefficients:

2 2 =~
r r
2 2
L, = =0+ 550+ v2. s2 D
- r r
>(e)
4 2
L,=5203 + & D3+ r2. 52, ¥2 D - &5 p + s+ b2 D
3 2 2
r r
PGNP L .2 .2 L .2 2 2 2
L, = 2= D" - 2= D2 + g¥. b€ D + s+ b° D - b°* s
L 2 2
r r
+ pl, sh, bLL - 32D2 - r2- s2., b2 -/

Apply the operator L3 to the first equation of (d) and the

operator L to the second equation of (d), one has

(LyLy - L3Lp)w = 0 (f)
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Also, apply the operators L, and L, to the first
and second equations of (d) gives:

(LLy ~ LpL3)U = 0 (g)

Substituting equations (e) into equation (f) yields:

2 2 2
- ¢S 2 s 2 2 S 4
(L1L4 - L3L2)W = (—E D + == - b~ s%) (—-2- D
| r r r
s? 2 b, 42 b, 1,2 p2 2, &2 b, L4
-5 D%+ st b D2 + s7+ D% D° - b°* 8% + r2. s*. b
r .
- 82D2 - r2~ s2. b2)w - (SZD3 + §§ D3 + r2' s2, b2 D
' r
2 2 2
-0+ s* b2 D) (35D + 5507+ v % Djw (h)
r r r
Equation (h) may be rewritten as:
4 L 6
(- %) D% + (-2 &5 - 2 5%+ b2 - b2 ) p'w
r r r
4 6 L
+ (550 0% - 2 O b - st b2 S5 b7 - S5 pte s*. r2) Doy
r r r

4
+ (- EE' b2 + 56, b4 - s“- b2 + bu- 54 - b6- 86- r?
r

+ bu' s¥. r)W = 0 (i)

Dividing equation (i) by - §§ gives:
r

6 L

€4+ (2 + 2v2. r2 + b0 52)
ds

(o3
Q.

+ (1 - b° +

2

3]

Q
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2 ¢ gt g4y 45 L (42

2 s2. r2- bL‘L + b2. r2 - SZ' b* + b r

52 re. bu + pfs p2.- bu' r2 + b6- ru' s2 - b’ r JW =0

Equation (j) may be rewritten as

VI v " | —
W + kl w + ky W + k3 wW=20 (k)

where ky, k; and kg are defined in equations (33).

The solution of equation (k) may be exﬁressed as:

6 End
w(e) = = a e (1)
n=1

Also, substituting equation (e) into equation (g) yields:

VI

U +klUIV+k2U + kg U =0 (m)

The solution of the equation (m) takes the form of:

6 End
u(e ) = nil Z, © (n)
Substituting equation (1) and (n) into equation
(29) yields the relation between the constants a's and z's

as follows:

2 £_ 0 2 £ 0 £ 0O
S 2 n S n 2, .2 n
] L 2Zp gn e + el )3 Z, © - b S Iz, © -
r r
2 £, 0 2 £..0
n s 3 n 2
== Lapip e -5 lay gp © - b s2 3 a, &pn ©
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or
z. = A_ a . (p)
where

g+ g3 + ber2 £ :

EZ - b2r2 + 1
n

Substituting equation (p) into equaticn (n) yields
6 3
U(e) = © 1Ay ap © n (r)

n=1 :

Introducing equations (1) and (r) into equations

(35) gives
6 £0
R¥(6) = = a c e (s)
n=1
where
2 2
— S S 2 2, 2
Cn—KnEn”' angn-_zgn-b s + 1 (t)
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