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ABSTRACT

EFFECTS OF ROTARY INERTIA AND SHEAR 
DEFORMATION ON EXTENSIONAL VIBRATIONS 
OF CONTINUOUS CIRCULAR CURVED BEAMS

i i
i

by (■'
MOHAMED EL-SAID SAID ISSA 

University of New Hampshire, May, 1983

This dissertation is devoted to the dynamic analysis 
of continuous circular curved beams. The dynamic stiffness 
matrix is derived for'the determination of natural fre
quencies of continuous curved beams undergoing in-plane 
vibrations. The formulation of stiffness matrix may be 
widely applied to problems with various consideration of 
Bernoulli-Euler Theory, Rayleigh Theory and Timoshenko 
Theory. Using this'formulation for dynamic loading, the 
fixed-end moment, shear and thrusts for concentrated and 
distributed loads have been derived. Two continuous 
circular curved beams subjected to free and forced vibra
tions are given to illustrate the application of the pro
posed method and to show the effects of rotary inertia, 
shear deformation,' axial deformation, frequency of the 
applied load and the central angle of the arc on the beams.

xiv



CHAPTER I

INTRODUCTION

Dynamic problems, which are of interest to the 
structural engineer, play an important role in the fields 
of civil, mechanical, and aerospace engineering. The 
problem of curved beams vibrating in the plane of initial 
curvature of the arc has been discussed by many researchers. 
In 1928 Den Hartog Cl] introduced the Rayleigh-Ritz energy 
method for finding the fundamental natural frequencies of 
circular arcs with hinged and fixed ends. His work was 
extended by Volterra and Morell [2, 3] for vibrations of 
elastic arcs with hinged and fixed ends having the center 
lines in the form of cycloids, catenaries, and parabolas. 
Both in-plane and out-of-plane vibrations were considered. 
Waltking C^J investigated the effect of extension of the 
central line on the flexural motion of a pinned circular 
ring segment. Morley [5J presented an exact solution for 
the thin ring along with the first ten modes for symmetrical 
and anti-symmetrical vibrations. Using the basic equations 
of motion given by Love [6], Archer [?] made a mathematical 
study of the in-plane inextensional vibrations of circular 
ring segments of small cross section with an additional 
term to represent damping effects. Nelson £8], combining 
the Rayleigh-Ritz technique and Lagrangian multipliers,

1



obtained natural frequency equations in the form of infinite 
series for in-plane vibrations of a simply supported ring 
segment. Suzuki, Takahashi and Ishiyama [9. 10] have ob
tained the natural frequencies and the mode shapes for 
curved beams with variable curvatures, and a generalized 
method for the analysis of free and forced in-plane vibra
tions of a multispan circular curved frame was developed 
by Wang and Lee C H »  12l.

The elementary Bernoulli-Euler equation of motion 
of beams used by the work mentioned above is derived on 
the assumption that the deflections of beams are due to 
flexure only and that both rotary inertia and transverse 
shear effects are neglected, it is considered adequate for 
the usual engineering problems. However, for beams having 
large cross sectional dimensions in comparison to their 
lengths, and for beams in which higher modes are required, 
the Timoshenko Theory Cl3_i» which takes into account these 
two effects, provides a better approximate solution to the 
actual beam behavior

Considerable research has been devoted to study 
the effects of rotary inertia and shear on straight beam 
vibrations. Cheng [l^J derived the dynamic stiffness 
formulation in closed form for analyzing continuous beams 
and frameworks. Cheng and Tseng [.151 presented a dynamic 
stiffness matrix formulation and computational procedures 
for dynamic response of general plane beam-column system.
In case of curved beams, Philipson C16U took into account



the rotary inertia and shear effects on thin rings and 
established equations for the radial and tangential dis
placements. Seidal and Erdelyi [l?] based on beam theory 
to develop a method for studying the bending vibrations of 
non-thin complete circular rings. The in-plane vibrations 
of a circular ring including rotary inertia and shear 
effects was investigated by Rao and Sundararajan [18]. Re
cently, Wang and Guilbert [19J expanded Wang and Lee's 
[11] generalized method for continuous circular curved 
beams by including the effect of rotary inertia and trans
verse shear deformation.

To the author's knowledge, no investigations have 
been made for the free and forced extensional vibrations of 
multispan circular curved beams including shear and rotary 
inertia effects. In this dissertation, the dynamic stiff
ness matrix is derived in terms of rotary inertia, radial 
shear deformation, and bending deformation. The individual 
parameter may be dropped when the appropriate deformation 
is not considered. Therefore, the formulation of stiffness 
matrix may be widely applied to various cases of Bernoulli- 
Euler Theory, Rayleigh Theory, and Timoshenko Theory. Using 
this formulation for dynamic loading, the fixed-end moments, 
shear and thrusts for concentrated loads and distributed 
loads have been derived. Numerical results of a three- 
span circular curved beam are presented to show the effects 
of central angle, axial deformation, transverse shear 
deformation, and rotary inertia of the circular curved beam
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upon the natural frequencies of the curved beam. Also, 
the effects of the frequency of the applied load, axial 
deformation, transverse shear deformation, rotary inertia, 
and the central angle of the arc on the joint moments of 
the circular curved beam are studied.



CHAPTER II

GENERAL DERIVATION

1. Assumptions 
The following assumptions are presented into two 

parts: ,

A. Basic assumptions
a. Displacements are limited to vibrations 

within the original plane of curvature of 
the circular curved member.

b. The centroidal axis of the circular curved 
member is considered to be extensional.

c. Linear stress-strain relations assumed.

B. Simplifing assumptions
a. Plane cross sections remain plane after 

deformation.
b. The density and cross section of the 

member is constant.
c. The effect of damping upon the circular 

curved member is neglected.
d. The vibrations of the circular curved 

member are considered small. As a result, 
the effect of high order differentials 
are neglected.

5



2. Basic Equations of Motion
Consider a circular curved beam element under

going in-plane vibration as shown in Fig. 1. By taking 
the equilibrium of the forces acting on that element in 
radial and tangential directions and the moment about C, 
give (the complete derivation is given in Appendix A)

fj2 the inertia force in the tangential direction, m^ the 
rotary inertia, F the shearing force, T the axial force,
M the moment, and 0 the angular coordinate.

The expressions for the inertia force and rotary 
inertia are given as follows [31]8

Substituting equations (2) into equations (1) we
have

(1)

where f ^  is the inertia force in the radial direction

(2)

mI



• EH

7

9M
8 S ds

* + If ds

Figure 1. Curved element subjected to positive 
forces and moments



where u is the inward radial displacement, w the tangential 
displacement in the sense of increasing e, R the mean 
radius of circular arc, t the time, A the cross sectional 
area, y the mass per unit volume, I the moment of inertia 
of cross section, and i|> slope due to bending,

■ Figure 2a shows the flexural vibration of an 
element for the Bernoulli-Euler beam, it is seen that tne 
x-axis is perpendicular to any beam cross section (abed). 
Figure 2b represents the effect of shear deformation on 
beam vibration by assuming that the beam cross section 
•remains plane after deformation, we notice that the cross 
sections are no longer perpendicular to the x-axis (i.e. 
Timoshenko beam). The shear deformation g can be expressed 
[33] by

e = <p - ip (6)
where <P is the total angle of the deflection curve of the 
beam.

Referring to Fig. 2c the rotation due to tangential 
displacement and radial displacement are given, respec-



-*j * y ts

a, b

v
v+ <t>dx

dx

Figure 2a. Deformation of Bernoulli-Euler beam 
element showing x-axis perpendicular 
to cross sections.

dx

a , b
x

v + <ji dx

Figure 2b. Deformation of Timoshenko beam element 
showing shear deformation, x-axis are 
no longer perpendicular to cross 
sections.
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as

3 U 
3 S

Figure 2c. Deformation of curved element.
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tively, as

_ w
*1 ~ R • (7)

(u + 7“ ds) - u
_________if__________  _3U (8)

 ̂2 ~ as as

The total angle <j> between the deformed and un
deformed center line can be obtained from, equations (7) 
and (8) as

.* = *l + *2 = R <w + I#) (9)

From equations (6) and (9) one obtains

4 = 4 + 6  = | (w + |f) (10)

Equation (10) may be rewritten in terms of the 
shear angle as

6 = ^ (w + - Rip) (11)

Referring again to Fig. 2c, the extension of the 
element can be expressed as

de = ds, - ds = £(R - u)d0 + (w + —  ds) - w3 - Rde
9s

= (“ * - u) de (12)
00

The tangential strain and tangential force may be written, 
respectively, as

es = ^  = - (—  - u) (13)
ds R 99
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T = as . A = EA ( W

where ag is the tangential stress.
From the elementary theory of beams, the bending 

moments- and shear force are given, respectively, as follows

M _ II M  (15)
R 36

F = kAGB (16)

where E is the modulus of elasticity, k the shape factor 
of the curved member, G the shear modulus, and e_ the*3
tangential strain.

From equations (11) and (16), the following 
equation can be obtained:

- = kAG (_3u + w _ R )̂
R 30

Combining equations (1^) and (13) one obtains

T = —  (—  - u) (18)
R 30

Introducing equations (17) and (18) into equation 
(3) yields

kAG - r 2!) + M  (iw _ u ) = yAR (19)
R 30 2 30 30 R 30 31

Substituting now equations (17) and (18) into equation (4) 
we have



Finally, the substitution of equations (15) and (17) into 
equation (5 ) gives

^  ^  + kAG (—  + w - R4») = ylR (21)
r 39 at

Equations (19)» (20) and (21) constitute the 
equations of motion of extensional circular curved member 
undergoing free vibrations.

3* General Solution of the Equations of Motion
Assuming the beam is excited harmonically with a 

natural frequency o, and letting

w(0,t) = W(e) e

u(e,t) = U(e) elSt > (22)

*(e,t) = f(0) eiat

where i = and W(e), U(e) and f(0) are the normal 
function of w, u and respectively. Substituting 
equation (22) into equations (19), (20) and (21) and omit 
ting the common term e^ one obtains
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—  + R —  + RW - R2 4» + y IR v = 0 ( 25)
kAG d 0 • de kAG

The foregoing equations may be written, respectively, as

- (i + 4 ) —  + R —  +■ 4  a - b2- s2 u = o (2 6 ) 
de ■ r de de r2

^  - (1 + ~ )  - v/ + Rf + b2* s2 v/ = 0 (27)
r de r de

R • s2 + —  + W - R v p + R  . s2 * r2 * b2 V = 0 (28)
de2 de

where b, s and r are dimensionless parameters and are 
corresponding to the effect of bending deformation, shear 
deformation and rotary inertia, respectively. The ex
pressions for these non-dimensional parameters are given 
as follows j

b2 = rAR— Q?. (29)
El

s2 = — ^  (30)
kAGR

r2 = — ^2 (3D
AR ■

Equation (26), (27) and (28) represent three 
linear differential equations with constant coefficients
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and can be solved by the use of symbolic operator method.
Let the differential operator D be -̂ g, then

equations (26), (2?) and (28) become
2 2 

(-D2 + - b2 * s2 )U - (D + D)W + (RD)¥ = 0 (32)
r r

2 2
- (D + D)U + ( ^  °2 + 1°2 ' s2 * 1 )W + R'i' = 0 (33)

r r

DU + W + R (s2D2 - 1 + r2 * s2 * b2)^ = 0 (34)

Equation (33) may be rewritten as
2 2

RV = (D + ^2 °)U “ 1)2 + b2‘ s2 " 1)W (35)r r

Substituting equation (35) into equations (32) and (34) 
yields, respectively

(§£ d2 + - b2 * s2)U - ( 4  D + 4  D3 + b2 ’ s2D)W = 0 (36)
r r r r

(s2D^ + D3 + r2* s2 . b2D - D + s1*’ b2D)U -

S§ D2 + s'*. b2D2 + s'*- b V  - b2- s2 + r2 . s'*. b" 
r

- s2D2 - r2 * s2 . b2)W = 0 (37)

Solving equations (36) and (37) simultaneously



yields (See Appendix B for the complete derivation)

WVI + kx W IV + k2 w" + W = 0 (38)

UVI + k UIV + k2 U” + k3 U = 0 (39)

where

kx = 2 + 2b2 * r2 + b2 * s2

k2 = 1 - b2 + 2b^* r2, s2 + b2 - r^ - b2 * s2 + b^* r^

kj = b2 - b^* r2 * + t>2. r2 _ r2 + ^6  ̂ g2 _ ^1+̂

The solution of equation (38) may be expressed as

W(e) = e an e (*H)
n=l

where an (n = 1 ,2 ,. . . 6) are constants to be determined 
from the boundary conditions, and 5 ( n =  1 ,2 ,. . . 6 ) are
the roots of the characteristic equation of equation (38) 
and may be written as

?6 + kx ^  + k2 £2 + k3 = 0 (k2)

The solution of equation (39) can be written as

6 Sn eU ( e )  =  z z p s ( i+3)
n=l "

Substituting equations (^1) and (1+3) into equation (36) 
yields the relation between the constants a ’s and z's as
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follows:
zn an (^)

where

= S, + + t2 -r2 Cnxn
5 \ - b2 * r2 + 1

From equations (^3) and (^4) one obtains

U(e) = E ^  an e (4-6)
n=l

Introducing equations (̂ J-l) and (^6) into equation (35) 
yields

6
R y ( e) = z nan cn e (l+7)n=l

where

cn An ^ n + —2 An n̂ ~ T  ?n4  » , - 4 52 . b2. s2 + 1 (48)



CHAPTER III

DERIVATION OF DYNAMIC STIFFNESS OF 
CIRCULAR CURVED BEAM

Consider the in-plane vibration of a curved member 
having constant cross section subjected to translational 
and rotational displacements at the two ends A and B as 
shown in Fig. 3*

For harmonic vibrations, let

M( 0,t) = M( e) (49)

F(0,t ) = F(0) elfit (50)

T(0,t) = T (0) elfU (51)
where M, F and T are normal function of M, F and T, respec
tively.

Substituting equations (22), (49), (50) and (51)
into equations (15), (17) and (3 ) and omitting the common
, ifit . , ,term e yields

«(e) = - °  (e) (52)

F( e ) = ^  [U’ (0) + W(0) - RY(e)] (53)R

T (0) = -f'(0) - YARn2 u(e) (5*0

Introducing equations (41), (46) and (47) into 
equations (52), (53) and (54) give

18



baba

ab

Figure 3. Positive displacements, forces and moments with common 
factor e1 ** omitted
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M(0) = - M
R2 n= 12 °n an ?n e

El ^F(e) = ^  s m a e
Rd n=l

(55)

(56)

where

T( 0) = - 2 d a e ^
R3 n=l n n (57)

m.n (58)

dn = mn 5n + b An (59)

and £n , cn , s and b are defined previously.
Referring again to Fig. 3# the boundary conditions

are
9a = y ( e = o)

eh = Y( 0 = a )

v = U(0) sin P - W(0) cosP a

= U(a) sin n + V/(a) cos n

h = U(0) cos p + W(0) sinp a

h^ = -U(a) cos n + W (a) sin n_

(60)

The bending moments and thrusts at both ends may 
be expressed as
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M = m ( 0 = 0)ao

Mba = “M(0 =a)

V , = F(0) si nP - T( 0) cos p ab

V. = F( a) s i n n  + T(a) cos n ba

H , = -F(0) cos p - T(0) sinp ab

H, = F(a) cos n - T (a) sin n. ba

(61)

Substituting equations (^1), (̂ +6 ) and (^7) into equation 
(60) yields

R6a =  ̂ an °nn=l
5n“

Reb = E , an cn en=l

v_ = sin p 2 An an - cosp z a
n=l
62

n=l

n=l n

 ̂Cl ^ E an uv = sin n 2 a„ A_ e + cos n 2 a„ e t n n -i nd n=i n=l

} (62)

h = cos p 2 a A + sin p 2 an 
a n=l n=l

?nah. = -cos n 2 q. x e + sin n 2 a„ e b n n i nn=l n=l
?na

Equations (62) may be rewritten in the following
forms:

[D] = [A] [X] (63)
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where

[D] =

—• -
R 0a al

R 9b a2

va

i—
i x i_i ii

a3

vb a4
ha a5

1
tr 

1 °
* a6

(64)

and [A] is given in Appendix C.
Substituting equations (55)* (56) and (57) into 

equation (6l) one obtains 
6

Mab _ _ El 2
~ r3 n=l cn n ^n

Mba = 
R

El 6 n 
„ 2 cn an n̂

n=l
5na

Vab
vt ^ El ^
”3 sinp s. an mn + 3  COSp an dn R-' n=l R-' n=l

Vb = SI Sinn E an mn en=l
cn“ El ~ 0 n *rv- — - cos n 2 d^ e

R-
6

_ ftn nn=l

Hab
6 6 

- -I COSP E a m + s -  sin p E an dn
p^ n=l R- n=l

?na
H.ba

ET ^n01 El (’n'^  cos n s a m e + — =■ sin n z a„ d„ e
R3 n n R3 n=l n n

(65)
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Equation (65) may be rewritten in the matrix form as

[P] = ^ [B] LX]
R

(66)

where

[F]

M

M.
ab/R

ba/R
Vab

ba
Hab
H.ba

(67)

and LB] is given in Appendix C and [x] is defined already.
Premultiplying equation (63) by [a]”1 , one obtains

-1[X] = [A] [D] (68)

Substituting equation (68) into equation (66) gives

(69)[F] = ^  [B] [A] [D]
R

Equation (69) may be rewritten as

[F] = Ls] [D] (70)

where [S], the dynamic stiffness matrix for a curved 
member, directly relates the end moments and thrusts to 
end rotations and deflections. [S] is given by

[S] = SI [B] [A]'1 (71)



CHAPTER IV

A SINGLE CIRCULAR CURVED BEAM FIXED AT ENDS

I . Dynamic Concentrated Load 
The circular curved member shown in Fig. ^ is 

subjected to a dynamic concentrated load at any point C. 
The two segments, AC and CB will be considered as free 
bodies to determine the constants, an » given in equations 
(*J-1), (^6) ■ and (W  .

Consider first arc AC as a free body. The use of 
Fig. 5 and equations (^1), (^6) and (^7) will give the 
following matrix equations, where displacements at the 
fixed-end A equals zero.

^Dq] “ [Aq] [XAC] 

where CAq] is given in Appendix D, and

(72)

LDn] =

1 
oCD 

L. . . V
uc a2
W c
0 ^XAC"*

a3

0 a5

\

o i i p o\ 1 
-

(73)

Also, the use of Fig. 5 and equations (55)• (56) 
and (57) will give the following matrix equation:

2^
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lAB
AB BA

AB
BA

Figure Fixed-end curved member under the
effect of a dynamic concentrated load 
with the common factor e1^’t omitted
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AB
AB

AB

180

Figure 5» Displacements, forces and ‘moments of 
arc AC

CB

BA

BA
'BA

Figure 6. Displacements, forces and moments of 
arc BC
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[Fill = ^  t B x ] [XA C ] 
RJ

(74)

where [B^U is given in Appendix D, and

m c a/r

~T1

F1 
F

[ F ^  =
M

T
a b /r
F
AB
F

(75)

AB

Consider next arc BC as a free body. The use of 
Fig. 6 and equations (41), (46) and (47) will give the 
following matrix equations, where displacements at the 
fixed-end B equal zero.

CD]_] = CA^U (76)

where LA^] is given in Appendix D, and

3
&I4.

(77)
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LDqli is defined previously.
Using Fig. 6 and equations (55)» (56) and (57) » 

the following matrix equation is obtained

[f 2] - ^  L_b 2] [x bc] (78)

where LB2] is given in Appendix D f and

[f 2] =

M
CB/R

2

-F

Mb a/r
F-TBA

FBA

Using static condensation method, equation (72) may be 
rewritten as

(79)

Dn

DII

LAll] LAi2J

^A21^ i-A22-

LACI

[ XACII_

(80)

From equations (80) we have
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[Dj] = L A ^ ]  LXACj ] + [A12] [XAC;i j ] (81)

CD Il] = C a 2 1 ] LXa c i J + CA22] tXACII-^ (8 2 ^

Solving equation (82) for CXACII] gives

[ X u ]  = iSjjl [Xj] (83)

where

[s 1 _iU = - D ^ I f 1 Ca21] (8*0

Substituting equation (83) into equation (81) yields

CxAd ]  = [Sj]'1 [Dj] (85)

where

LSjD = lA]_]_J + llAigD LSjjU (86)

From equations (83) and (85)» the following equation can 
be obtained:

t-XACII-l = (8^

where

tSIII] = C S n D  [Sj]'1 (88)
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and

A11

C1 e

A^ s

510

5l9
c2 e

a 2 e

c20

^0

S20

e
C30

Z f

ZjQ

12

Ci, e

\  e
5^0

e
Z^Q

°6 0
?6e

A ̂  e 

S50

^5e
a 6 e

56 0

21

XACI

—

C1 c2 c3 c5 c6

1—1 2 3 9 A22 a5 a6

1 1 1 1 1 1

—  — 1

al V R 9 C
0

a2 ' XACII = a5 • DI " Uc - DII = 0

_a3. a 6 W c _ 0

' (89)
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Applying the same manipulation to equation (76) gives

DI

I—1i—1
KI _1
1

[Ai2] XBCI

3 11.

i

^ 2 i ^  , ^ 2 2 ^ XBCII

(90)

From equation (90) one has

(91)

Ex b c i  ̂ “ CSj] [Oj] (92)

where

LSj i ] - -CA22] Ca 21-̂ (93)

LSj] - [ A ^ ]  + [A12J LSj j ] (9*0

From equations (91) and (92), the following 
equation can be obtained:
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IIIJ L^x- (95)
where

CsTTT] = [ § „ ]  [Sj]'1 (96)

and

"22

"°1 °2 °3

i
o o

v_
n c6

* 1 1 = *2 b '^12 = \  a5 A6

1 1 i 1 l 1

'C1
ix*

e
Z2t.

°2 9

1
-e-

CDo

* 21 X1 e *2 e X3 e
£

_e 1* (2i>
e e _

ci, e e
S5<f>

$5<P

c, e «6+

a6 e

) (97)

— — —

al

XBCI 52 XBCII *5
«■»

_a3_ a6

and Dj and are defined already.
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gives
The dynamic equilibrium at point C from Fig. k

m c a + % b = 0
R R

-T1 + = P cos( p + 0 )

- F2 = P sin( p + 0 )

(98)

Introducing equations (7^) and (78) into equation 
(98) yields

tXA <3 + ^  EX B C ] = tTT] (99)

where

[TT] = P

0

cos( p + 0 ) 

sin( p +0 )

(100)

and [Bj ] and [B2] are given in Appendix E, and LXAC3 and 
[XBC] are defined previously.

Combining equations (85) and (87). one obtains

Cx a c 3 =

1
1—

1 
X
 

>
 o H
 1__

1

1 1
1—

1 
in

M
 1__

1 1

1
1

I—
1  hH 

H
 

O
 

< 
Xt—1 

.... ..............1

.... 
. 

}

1—
1 M

 
M

 
M

 
W

 
1 __1

1

[d t] (ioi)

Similarly, from equations (92) and (95) the follow
ing equation can be obtained



3^

-̂XBC^

l Xb c i ^

1
n
 

m 
i

M 1_1 1
1

l XBCII^ _Csm ]

[Dt] (102)

Substituting equations (101) and (102) into 
equation (99) yields

[Dj] = [Z]"1 [TT] (103)
where

1
1 --

-1 CO M 1 _1 1 M . 
l i

1—
1 

C/3
1 

M
 1_1 1 h-J

...
... 

1

[ Z ]  = [ B ^ +  [ B 2 ]
1

1—
1 M
 

M
 

1—1 
CO 
1 _

1
1 1

1—
1 

CQ
I 

M
 

M
 

M
 1_1

i..
.

(10*0

and COjl* CTj are defined already, 
Therefore,

CDl]

[Dn ]

[Z]'1 [TT]

0
0
0

(105)

Finally, [XA q ] and [XRn] can be obtained by multiply-LBC
ing equation (72) and (?6) by [A^] 1 and LA2H \  respec
tively. The results are:

Lxac] = [Aj T 1 [d x] (106)
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[XBC] = [Ag]-1 [D]_] (107)

Referring again to Figures 5 and 6, the fixed-end 
reaction may be determined by using equations (78) and 
(82), and the results are

6 ^F ET
MAB = ~ 72 s cn an 5n n=l

F El ^n^
MBA ’ P  A  ^

(108)

VAB FAB SinP “ TAB C0SP ^3 n=\  an

(m sinp + d cosp) n n

F F F FT
VBA = FBA sinn + TBA COSrl = ^3 Z an e

(mn sin n - dR cos n)

HAB pFAB
F- F,- cosp - T.„ sinp - ^  l aAJ3

_ EI
R3 n=l ”n

(-m cos p + dn sinp)

HBA = PBA 003 " - TBA Slnn = p  nE=1 sn e

(m^ cosn + dn sinn)

(109)

II. Dynamic Distributed Load
(a) Equations of Motion

Consider the in-plane vibration of a curved element 
as shown in Fig. 7. Following the same derivation as given
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c . o  n i n i m  i i  n ~ i  p(t)

dsY A

ds
ds

ds
T

ds3 S

de

Figure ?. Element of a curved member subjected 
to forces, moments and load
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in Appendix A, the equations of motion are

—  + T + PR = YAR -My (110)
36 3t

^  - F = yAR (111)
36 3t

^  + FR = YlR ̂ 4  {112)
36 at

Introducing equations (17) and (18) into equation
(110) yields

M G  i£u + 1 + EA) 3w _ ]fikG ML _ M  u _ yAR _ pR = o
R 30 R 30 30 R at

(113)
Substituting equations (17) and (18) into equation

(111) one has

EA - — (EA + kAG) —  - —  w + kAG^ - yAR = 0 (11*0
R 30 R 30 R ^

Substituting of equations (15) and (17) into equation
(112), the following equation is obtained

^  + kAG —  + kAG w - kAGR^ - YIR = 0 (115)
R 30 30 at

(b) General Solution of the Equation of Motion
For the harmonic vibration assumes
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w( 8,t ) = w( 0) iftte

u(0,t) = u(e) inte

<p(d f t ) = ¥(0) iftte

P(t) = ifttP e
a. u

where ft is the natural circular frequency of n mode and 
W, U, ¥, p are normal function of w, u, ip and P, respec
tively.

Substituting equation (116) into equations (113), 
(11^) and (115). and using symbolic operator method, one 
obtains

(-D2 + ~  - b2 * s2 )U - (D + ~  D)W + (RD)'i' - s2 * = 0
r r El

(117)
2 2

- (D + — ■ D)U + (~- D + b2 * s2 - 1)W + R¥ = 0 (118)
r2 r2

DU + W + R(s2D2 - 1 + r2 - s2 * b2 )V = 0 (119)

where s, r and b are defined previously.
Solving equations (117). (118) and (119) simultane

ously

WVI + kjW17 + k2w" + k3W = 0 (120)

UVI + k-j_U^ + k2U + k-̂ U = k̂ , (121)
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where
k^ = (b2 * r2 - r^* b^* s2 + r^* b2) (122)

and k^, k2* and k^ are defined already.
The solution of equation (120) is again given by 

equation (4-1).
Equation (121) is a non-homogeneous sixth-order 

linear differential equation with constant coefficients, 
its general solution takes the form of

U(e) = U (e) + Up (123)

where Up is a particular solution of equation (121) and
U (e) is the complementary solution which is the solution 0
of the homogeneous part and is given by equation (46).

By inspection of equation (121), its particular 
solution is

up = <ii) e s ! d24)
k^ El

Thus, the general solution of equation (121) can be 
written as

6 ^n9 k,U(e) = ( z An an e ^ 1 + %  . 2 L )  (125)
n=l k^ El

Substituting equations (41) and (125) into equation
(118) leads to

6 cn eR'i'(e) = z an cn e (126)
n=l

where cn are given by equation (48).
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(c) Fixed-end Moments and Thrusts
Consider the circular curved member subjected to 

a harmonic uniformly distributed load as shown in Fig. 8.
Introducing equations (41), (125) and (126) into 

equations (52), (53) and (54) give

El v _ _ r ~Cn6M( 9) = - —  2 c a 5
R n=l

(127)

F( e) = £4 2 m an e (128)
RJ n=l

TTT ^ ?n9 2 leiT( 0) = - —  ‘ £ d a e - pR(l + b * Jt) (129) 
R3 n=l n n k3

The boundary conditions for both ends "A" and "B" 
being fixed are

U( 9 = 0) = 0, U( e = a ) = 0
W( 0 = 0) = 0, W( 9 = a) = 0 ) (130)
¥( 0 = 0) = 0, 4>( 0 = a ) = 0

The system of equations resulting from the intro
duction of equations (41), (125) and (126) into equations 
(130) can be expressed as

[TT] [X] = - (5it) £2^ [F] (131)
k3 El

where
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mi i i-n i"n i i nn nn peiat

AB

BAAB
AB BA

BAAB BA
BAAB

Figure 8. Fixed-end curved member under the
effect of uniformly distributed load
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LF] =

1
0
0
1
0
0

(132)

and [[TT] is given in Appendix F and LX] is defined pre
viously.

Premultiplying equation (131) by' LTT] 1 will yield

[X] = - (£*L) [t t ]’1 [f ]
k3 El

(133)

Introducing equation (133) into equations (127)# 
(128) and (129) yields the fixed-end bending moments and 
thrusts at ends "A" and "B" due to a harmonic uniformly 
distributed load as follows:

MAB

„F _

°A pR

MBA = °B PR

VAB = FAB sinp - TI b 003 p = TA PR

VBA = FBA Sinn + TBA C0Sr> = tB PR’BA

HI b  = - FI b  003 P - T I b  S l n p  = £A  P R

(13^)

(135)

(136)

(137)

(138)

HBA = FBA C0S n - TBA Sinn = eB PR (139)



where

a = (^) L C C ]  [TT]-1 [F] (140)A k-*3

a-o = (^) [c 5 e 59] [TT]"1 [F] (141)
. k3

T A  = - ( ^ 4 ) sinp L m ]  [TT]-1 [F] - ( ^ )  cosp [ d ]  [TT]"1 [F] 
k3 k3

+  c o s p  (1 +  b2 * ^4) (142)
k.

Tg “ ” (— ) sinn [m e^9 ] [TT] 1 [F] = (^£) cosn [d e^9 ] [TT]
k3 k3

[F] - cosn (1 + b2 - Sit) (143)
kr,

zk = (^t) cosp [m] [TT]*1 [F] - (ii±) sinp [d] [TT]"1 [F] 
k3 k3

+ sinp (1 + b^‘ ^t) (144)

s- = cosn [m e^9] [TT] 1 [f] - (^t) sinp [d e^9] [TT]~
k3 k3
[F] + sin n (1 + b2 - 5ft) (145)

k3

and [c ?], [c 5 e ?9] f [m], [d], [m e^9], [d e?9] and [TT] 
are given in Appendix F.



CHAPTER V

INEXTENSIONAL VIBRATIONS

1. Derivation of the Equations of Motion
Assuming the centroidal axis of the curved member 

to be inextensional, equation (13) becomes

90
Substitution of equation (146) into equation (17)

yields

F = —  ( 2 ~  + w - Ri|>) (147)
R 96

Eliminating T from equations (3) and (4) and 
employing equation (145) gives

Substituting equation (147) into equation (148)
yields

(146)

YAR ( |- w p - “90 9t 91
(148)
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Combining equations (15) and (147) with equation 
(5) gives

El 32^-S-S- + kAG (-Mf + w - Rip) = yIR
R 30 39' 3t

32^ (150)

Equations (149) and (150) constitute the equations 
of motion of circular curved member undergoing inextensional 
free vibrations.

2. General Solution of the Equations of Motion
Assume that the curved member is excited harmonically 

with a natural frequency and let,

ifttw(9,t) = W ( 9) e'

9 , t ) =  V ( 9 )  e l f i t  > (151)

u( 0,t ) = U( 0) eiflt

Using the same procedure as shown in Chapter II, we have

:33WVI + k1;L WIV + k22 W" + k^7 W = 0 (152)

where
„ . . 2 2 , 2 2 k ^  = 2 + b r + b s

v  - - 1 + 0  -v-2  2  , 2 2  k 2  , , 4 2 2k£2 - 1 + 2 b r - b s - b  + b r s

2 2 2 , 4 2 2
33 ~ + b r  - b r s

(153)

The solution of equation (152) may be expressed 
by equation (41) as



5 SneW ( 0) = E an e (15*0
n=l

and the solution of v(e) can also be expressed by equation 
( W  as

6 5ne
Rvid ) = E qn an e (155)

n=l

From equations (1^6) and (15*0 one has

6 Sn6U(0) = W ( 0) = 2 ?n an e (1^6)n=l
where

_ + 5^ (1 + 2s^ + b^s^) + (1 + - b^s^)qn = n n

(1 + s2 - b2r2s2 ) (15?)

and an , £n , b, r and s are defined already.

3. Derivation of Dynamic Stiffness Matrix
Referring to Fig. 3 and following the same proce

dure as shown in Chapter II, we obtain
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where
Zn = b2 (S2 - r2) - eg (1 ->■ b2 (r2 + s2 )) - (l61)

(1 + S2 - b2r2s2)

Using the boundary conditions given by equations 
(60) and (61) one has

[D] = [e ] [X] (162)

LF] = LC] [X] (163)
R

where [D] and [X] are defined by equation (64), and matrices
[E] and [c] are given in Appendix G.

Premultiplying equation (162) by [E] 1 and substi
tuting into equation (163) yields

[F] = ^  [C] [E]"1 [d] = [ss] [D] (164)
R

where Css] is the dynamic stiffness matrix of inextensional 
curved member and is given by

[ss] = ^  [C] [e ]”1 (165)

4. Fixed-end Moments and Thrusts 
Referring again to Fig. 4 and following the same 

approach as given in Chapter IV, one obtains

[Dx] = [E-l] [Xac] (166)

[pl] = ^  LCjl [xAC] (16?)

[D1] = [E2] [Xbc] (168)



where [D^], 11^2^* L^AC^ and are defined by-
equations (73), (75), (79), (73) and (77), respectively.

Matrices [Ej], and CCgH are given in
Appendix H.

Using the dynamic equilibrium and the continuity 
at point c, finally the fixed-end moment may be ,expressed 
in the same form as equation (108) and (109).



CHAPTER VI

NUMERICAL EXAMPLES

Example 1: A three-span symmetrical circular curved beam
of constant cross section undergoing in-plane vibration as 
shown in Fig. 9 is analyzed for natural frequencies.

The boundary conditions are

vA = vB = vr = vn = 0 ; h A = h-R = hn = hn = 0 (170)'B D B

and the conditions of dynamic equilibrium at A, B, C and 
D give

m a b  ■ 0

m b a  + m b c = 0 

m c b + m c d = 0

m d c = 0

(171)

J
due to symmetry, Figures k and 9 give

p = n (172)

Since the beam has three identical spans, we have

[S]a = [S]b = [S]c = [S] ; [A]a = [A]b = [A]c = [a ] ,

[B]a = [B]b = [B]c = [B] (173)

From equations (170) and (171) one has

Lj-9



Figure 9« A three-span circular curved beam



m a b / r
,

m b c/ r m c d/ r

m b a/ r m c b /r m d c/ r

VAB VBC ' VCD
. M b  =

IIo
i—ii __

j

VBA VCB VDC

h a b h b c h c d

h b a r 
» o bd

i

h d c

Using equation (70) we can write

[F]a = [S] [ D ] a  . C F ] b = [S] [ D ] b , [F]c = £S] [ D ] 0 (176)

Introducing equations (17*0 and (175) into equations (176) 
gives
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MCB + ?!CD = s21 9bR + (Sxl + S22) 0cR + s12 9Dr = 0 
R R

M-2£ = S21 9CR + S22 6DR = 0 
R

Equations (177) may be rearranged in the following matrix 
form:

[F1X] = [Si] [DX1] = [0] (178)

where

[Fi j ] =

m a b /r

(Mb a/ r )+ ( % c/ r )

(m g b/ r )+(m c d/ r )

M.d c / r

'11 *12

S21 (S11+S22^ *12

0

0

0

*21 ^Sll+S22) S12

0 S21 S22

> (179)
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9AR

[ D n ]  -
e B R

e C R

eD R

Equating the determinate of the stiffness matrix 
[Si] in equation (178) to zero yields the following frequency 
equation:

S11 S 12 0

1—1 CM
m

(S H + S 22 ) S 12

0 S 21 (s U + s 2 2 ) Si 2

0 0 S 21 S 22

= 0 (180)

Equation (180) is the frequency equation and will 
be used to find the natural frequencies of the curved beam.

For a given beam, the values of r, s and a are 
known and the frequencies can be determined from equation 
(180). In order to show the effects of rotary inertia and 
shear deformation on the natural frequencies of the beam, 
the cross section of the beam is assumed to be a rectangle. 
The shear coefficient k for a rectangular section can be 
computed from the following expression given by Cowper[20]

k = 10 (1 +li ) 
12 + 11y (181)



where y, the Poisson's ratio, equals to 0.3 for steel.
From equations (30) and (31) one has

s£ _ E_ (182)
r2 kG

The relation between modulus of elasticity and 
modulus of rigidity is given by [27]

G = ---    (183)
'2 (1+y) .

Substituting equations (181) and (183) into
equation (182) and setting y = 0.3, we obtain

■ s = I .75 r (18*0

A computer algorithm has been written to find the 
elements of equation (180), and then to evaluate the 
determinant, based upon input values for the frequency 
parameter b, the rotary inertia parameter r and the central 
angle a .

Using this algorithm, the values of b were obtained 
for a = 60°, 120° and 180°. The first four modes of vibra
tion, with r varying from 0 to 0.10, are shown in Fig. 10.
Figures 11 and 12 and in Tables 1, 2 and 3 show the effect
of extensional deformation on the natural frequencies of 
the beam for a = 60° and 180°, respectively. A comparison 
of natural frequencies for the beam having a rectangular 
section and a 2^ W= 110 section can be found in Fig. 13 and 
in Table 4. •
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Table 1. Effect of extensional deformation on natural
frequenci

r 1

EaJL ocj 

2
.001 33.62 38.31
0.01 33-37 36.74
0.02 32.62 36.24
0.03 31.49- 34.93
0.04 30.11 33.78
0.05 28.58 31.55
0.06 26.99 29.40
0.07 25.42 27.36
0.08 23.90 25.4-5
0.09 22.47 23.72
0.1 21.12 22.13

is for a = 60°

ional

3 4 1
47.83 75.04 33.62
4-5.7 0 72.62 33-38
4-3.19 70. 80 32.63
4-0.95 68.00 31.50
38.53 64.82 30.12
35-95 60.10 28.59
33-16 54.60 27.00
30.35 48.00 25.54
27.93 41.83 24.01
25.52 35-99 22.66
23.63 32.28 21.31

Inextensional

2______ 3______ 4
•CO 1—1 4 7. 0̂00 75. 04

36. 85 4-5.74 73. 00
36. 35 4-3.55 71. 25
35. 08 41. 81 68. 54
34. 00 39. 53 65.50

•1—1 82 36. 90 61. 90
29. 80 34. 51 57. 10
27. 85 32. 01 51. 28
26.01 29. 52 4-5. 01
23. 80 27. 00 40. 00
22. 63 25. 02 35. 90
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Table 2. Effect of extensional deformation on natural 
frequencies for a = 180°

r 1

Extensional

2 3 4 1

Inextensional 

2 3 4
.001 2.2 7 2.77 6.92 7.63 2.2 7 2.77 6.92 7.63
0.01 2.26 2.76 6.91 7.60 2.26 2.76 6.91 7.61
0.02 2.26 2.75 6.86 7-53 2.26 2.75 6.87 7.55
0.03 2.25 2.74 6.78 7.42 2.25 2.74 6.80 7.45
0.04 2.23 2.71 6.67 7.27 2.24 2.71 6.71 7.32
0.05 2.21 2.68 6.53 7.08 2.22 2.68 6.59 7.16
0.06 2.19 2.64 6.38 6.87 2.20 2.65 6.46 6.99
0.07 2.17 2.60 6.20 6.63 2.18 2.61 6.32 6.80
0.08 2.14 2.55 6.01 6.38 2.15 2.56 6.17 6.60
0.09 2.11 2.51 5.75 6.12 2.12 2.52 5.91 6.40
0.1 2.07 2.45 5.50 5.75 2.09 2.47 5.68 6.05
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Table 3. % Effect of axial deformation on the natural
frequencies

a — 60°

r mode

a = 18(

r

D°

mode
.001, .01, .02, 
.03, .04, .05,
.06, .07, .08, 
.09, .1

1
.001, .01, .02, 
.03, .04, .05, 
.06, .07, .08, 
.09, .1

1

w  .001, .01, .02 
1/0 .03, .04, .05
or

less

2
.001, .01, .02, 
.03, .04, .05, 
.06, .07, .08, 
.09, .1

2

.001, .01, .02
3

.001, .01, .02, 

.03, .04, .05,

.06 3

.001, .01, .02
4

.001, .01, .02, 

.03, .04 4

.001, .01, .02 

.03, .04, .05, 

.06, .07, .08, 

.09, .1
1

.001, .01, .02, 
, .03, .04, .05, 

.06, .07, .08, 

.09, .1
1

.001, .01, .02, 

.03, .04, .05,
10% .06, .07, .08,

.09, .1or '

2
.001, .01, .02, 
.03, .04, .05, 
.06, .07, .08, 
.09, .1

2

less .001, .01, .02, 
.03, .04, .05, 
.06, .07, .08, 
.09, .1

3
.001, .01, .02, 
,03, .04, .05» 
.06, .07, .08, 
.09, .1

3

.001, .01, .02, 

.03, .04, .05, 

.06, .07, .08, 

.09, .1

4
.001, .01, .02, 
.03, .04, .05, 
.06, .07, .08, 
.09, .1

4
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Table 4. Effect of shape factors on natural frequencies 
for a = 120°

Rectangular Section 
(k = 0.85)

1

24 W= 110 
(k = 0.355)

4r 1 2 ' ■ 3 4 2 3
0.001 6.93 8.08 10. in 17.50 6.93 8.08 10.41 17.50
0.01 6.91 8.05 10.37 17.38 6.91 8.04 10.34 17.37
0.02 6.87 7.98 10.24 17.03 6.86 7.94' 10.14 17.00
0.03 6.80 7.87 10.04 16.44 6.78' 7.78 9.82 16.35
0.0k 6.70 7.71 9.77 15-56 6.66 7.58 9.42 15.43
0.05 6.58 7.52 9.45 14.38 6.53 7.34 8.96 14.23
0.06 6.44 7.31 9.10 13.01 6.37 7.08 8.48 12.90
0.07 6.30 7.08 8.72 11.66 6.20 6.08 8.00 11.62
0.08 6.13 6. 84 8.33 10.47 6.01 6.52 7.53 IO.50
0.09 5.96 6.59 7.93 9.46 5.82 5.82 7.09 9.58
0.1 5.79 6.34 7.53 8.61 5.62 5.97 6.68 8.78
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Example 2 : This example is intended to illustrate how the
moments at the interior supports of a continuous circular 
curved beam are affected by rotary inertia, shear deforma
tion, central angle, and axial deformation when subjected 
to a concentrated dynamic load. The load is applied at the 
center of an exterior span CD of the same three-span beam 
considered in the previous example (see Fig. 1*0.

The boundary conditions are the same as those 
given in equation (170).

From Fig. 1*1-, the method of superposition gives

acting on span C (Fig. 1*4-), and is the interior moment 
from the condition given in Fig. 15b.

The conditions of dynamic equilibrium for this
case are

MCD " ^CD + ^ C D (185)

MDC ~ ^DC " M DC (186)

where is the fixed-end moments for a concentrated load

mBA + mBC “ 0 (187)

Introducing equations (185) and (186) into 
equations (187) yields



pg

rrfTtn

Figure 1^. A three-span curved beam subjected 
to a dynamic concentrated load

CD
MDC

i

777777

m:DC

Figure 15. Combined moments and forces of a 
e
curved beam system with common factor « m t  omitted
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MAB = 0

m b a  + m b c = 0

M + M + M = 0  CB CD CD

MD0 - M DC =' °

(188)

Referring to equations (177)» equations (188) may be 
written as

M
f  = S11 0AR + S12 9BR = °K

m b a ^ ,m bc
+ = S21 9AR + (S11 + S22)8BR + S12 6CR = 0R R

m rn
- f  * - f  = S2i V  + (S11 + S22)9CR + S12 9DR “ - ^

M
R

M r-jj-, jyiF
- f  - S21 ecR + S22 0DR = !_DC

(189)

Equations (189) may be rearranged in the following matrix 
forms

'11 22 -
(190)

where

-̂F22^ -M

0

0
F
c d/r

M d c /r (191)
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and CD]_3_] and are defined already.
A computer algorithm has been written for finding

the unknown displacements 0A> e-ĝ  0q and 0D from equation
(190) then the moment can be evaluated from equations
(176).

The computer algorithm uses the following sub
routines which are obtained from the IMSL library as

ZPOLR - This subroutine finds the roots of 
the characteristic equation.

LEQ2C - This subroutine computes the inverse 
of a complex matrix.

Using this algorithm the values of fQQt the moment 
coefficient of MqD , can be obtained for a = 60° , 120° and 
180° with b varying from 0 to 100. The results are shown 
in Figures 16, 17 and 18.

Figure 19 shows a comparison of joint moment for
the beam having different sections.



-p 120prH

t—1
CM 180

p-b-po ,»C\J| A  I
LS$\1-'f I

TTtV?if t3| c I
I M  F F  !! ô J I ¥
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Figure 16. Variation of fQ^ with b for r = 0.01
(b = bending deformation, r = rotary inertia, 
a = central angle)
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CHAPTER VII

DISCUSSIONS AND CONCLUSIONS

The dynamic stiffness matrix formulation for 
circular curved members of constant cross section, in
cluding the effects of rotary inertia, transverse' shear 
deformation and axial deformation, has been presented in ’ 
this dissertation for the dynamic analysis, of continuous 
circular curved beams. Two examples of the three-span 
circular curved beam have been' given to illustrate the 
application of the proposed method. In the first example, 
the beam is undergoing free vibrations. It can be seen 
in Fig. 10 that the natural frequency decreases as the 
value of the rotary inertia parameter r and the shear 
deformation parameter s increase and the effect is greater 
at smaller central angle.

The effect of axial deformation on the natural 
frequencies can be seen in Figures 11 and 12 and in Tables 
1, 2 and 3 for two different values of central angle 
( a = 60° and a = 180°). It is observed that the effect of 
axial deformation tends to decrease the natural frequencies 
of the beam and becomes significant with increasing r and s. 
This effect is more pronounced for higher modes and for 
smaller angles. For example, in Fig. 11, when r = 0. Oil-
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the natural frequency decreases by 0.033% and 1.03% for 
first and fourth modes, respectively, and when r = 0.10 
the natural frequency decreases by 0.89% and 10% for first 
and fourth modes, respectively. Similarly, in Fig. 12, 
when r = 0.04- the natural frequency decreases by 0.44% 
and 0.683% for first and fourth modes, respectively, and 
when r = 0.10 the natural frequency decreases by 0.95% 
and 4.96% for first and fourth modes, respectively.

The second example illustrates the same beam sub
jected to forced vibrations. Since the joint moments are 
very sensitive to the load frequency, thus the moment 
coefficient f is calculated with the bending deformation b 
being taken for every increment of 0.01. The numerical 
results given in Figures 16, 17 and 18 show the effect of 
rotary inertia, shear and axial deformation on the joint 
moments of the beam. From the curves shown in Fig. 16, it 
is seen that the modes' shift from the right to the left -as 
the central angle becomes larger, i.e., the member becomes 
longer. This means as the central angle increases, the 
same joint moment can be obtained at lower load frequency. 
This phenomenon indicates that the dynamic stiffness of 
the member decreases as the central angle increases. It is 
also noticed, from Fig. 17, that the natural frequencies 
decrease as r and s increase. This means as the rotary 
inertia r increases, the same joint moment can be obtained 
at lower load frequency. Thus for higher values of r and s, 
resonance will occur at lower frequencies. Figure 18
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reveals that the effect of axial deformation is to give 
the joint moment at the lower frequency and this effect 
becomes pronounced for higher modes.

As a result of the present study, the following 
major conclusions can be drawns

1 - The natural frequency decreases for increases
of rotary inertia and transverse shear defor
mation.

2 - The frequencies decrease when axial defor
mation is taken into consideration. This 
effect becomes significant' with increasing 
rotary inertia and transverse shear defor
mation. It is more pronounced for higher ■ 
modes and for smaller angles.

3 - The effect .of different shape factors on
the natural frequencies and moment 
coefficients is insignificant and can be 
neglected (Figures 13 and 19, Table ^).

Although both free and forced vibrations have been 
considered in the present study, future investigations 
should involve other forced vibration such as non-harmonic 
forced vibrations and continuous curved beams with variable 
sections. The proposed method could be extended to the 
analysis of non-circular curved beams.
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APPENDIX A.

DERIVATION OF THE EQUATIONS OF MOTION

Taking the differential element shown in Fig. 1 
as a free body, we have

(I) Equilibrium of forces in the radial direction

-F cos —  + T sin —  - fjj_ ds + (F + —  ds) cos —
9 s 2

+ (T + —  ds) sin —  = 0 
9s 2

where ds is the arc length of the differential element.
For small de, sin —  - —  and cos —  = 1.

2 2 2
Neglecting higher order terms and dividing through

by ds = Rd0, one obtains

* *  •

—  + T = fa  R (a)
90

(II) Equilibrium of forces in the tangential 
direction

•F sin —  - T cos —  - f..? ds - (T + ~  ds) sin —  
2 2 9s 2

+ (T + —  ds) cos —  = 0 
9s 2

which yields
77
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- F = fI 2 R (b)
30

(III) Equilibrium of moments about C

M - (M + —  ds) + FR sin —  + (F + —  ds) R sin —
3 s 2 3 S  2

- T sin —  (R sin — ) + T cos —  (R - R cos

(T + ~  ds) sin —  (R sin — ) 
3 s 2 2

(T + ~  ds) cos —  (R - R cos — ) - m ds 
3 s 2 2 !

which leads to

- —  + FR = m R (c)
36

= 0



APPENDIX B

GENERAL SOLUTION OF THE EQUATIONS OF MOTION

Equations (28) and (29) may tie rewritten, respec
tively, as:

L-iU - LoW = O')
> . (d >

L3U - Lî W, = 0J

where L]_, L2 » L3 and Lij, are differential operators with the 
following constant coefficients:

In  -  4  4  -  1>2 - s 2r r

L2 = ~  D + D3 + b2 - s2 D 
r r

}(e)Aj, 9 1. I
Ln = s2D3 + ^2 + r2, s2 . b2 D - ^  D + s^* b2 D

r r

Ljk = D2 + s^- b2 D2 + s^- b2 D2 - b2 * s2
r r

+ r2 • s^» b^ - s 2D2 - r2 • s2 » b2

Apply the operator L^ to the first equation of (d) and the
operator L^ to the second equation of (d), one has

(L]_L4 - l 3l 2 )w = 0 (f)

79
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Also, apply the operators and L2 to the first 
and second equations of (d) gives:

( L ^  - L 2L 3)U = 0 (g)
Substituting equations (e) into equation (f) yields:

(LxLZj. - L3L2 )W = D2 + - b2 - s2 ) (^|2 2 ' v 2 r r r

- ~  D2 + s^* b2 D2 + s^* b2 D2 - b2, s2 + r2 * s^* b^ 
r2

- s2D2 - r2 • s2 . b2 )W - (s2D3 + ^2 + r2 * s2. b2 D
r

- ~  D + s^* b2 D) D + ^  D3 + b2< s2 D)W (h)
r r r

Equation (h) may be rewritten as:

A h o  o < A  h(- ~ )  D W + (-2 ^  - 2 s • b2 - b2. S-) D W
r r r

+ b2 - 2 s6 * b^ - s^* b2 + b2 - ^  - b^* s^* r2) D2W
r r

T+ (- b2 + s^* b^ - s^» b2 + b^* s^ - b^* s^. r2

+ b^» s^» r2)W = 0 (i)
4sDividing equation (i) by - —  gives:

r

3-4 + (2 + 2b2 . r2 +• b2 ' s2 ) 3-4 + (1 - b2 +
d96 ifT
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2 s2* r2, + b2 * r2 - s2 * b2 + b^* r^) ~ % + (b2 -
de^

s 2 * r 2 .  ^  +  r 2 ,  ’c 2 . _  r 2  +  - ^ 6 ,  r ^ ,  s 2  _  =  o  ( j )

Equation (j) may be rewritten as

WYI + k-L W IV + k2 w" + k^ W = 0 (k)

where k^, k£ and kj are defined in equations (33)«
The solution of equation (k) may be expressed as:

6 £neW(e) = s an e (1)
n=l

Also, substituting equation (e) into equation (g) yields:

ftUVI + k1 UIV + k2 U + k^ U = 0 (m)

The solution of the equation (m) takes the form of:

6 5n e
U (0 ) = 2 zn e (n)n=l
Substituting equation (1) and (n) into equation 

(29) yields the relation between the constants a ’s and z's 
as follows:

s2 p ^ n 9 s^ ^ n 9 2 2 ^n 9
~~2 S Zn  ̂n e "t* ~ 2 S z n e - b • s 2zn e r r

s2 ? n 9 s2 3 ?n9 2 2 5 n91  En e - V s- s2 E a„ 5 n e = 0
r r

(o)



where

5n + ^  + b2r2 5An = _S 2-----  £ (q)
5 2 - b2r2 + 1 n

Substituting equation (p) into equation (n) yields

6 £n 0U(e) = z xn an e (r)
n=l

Introducing equations (1) and (r) into equations 
(35) gives

6 ?n6RY(e) = z an cn e (s)
n=l

where
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n953Ĉ oo932q- 
(u s o o 93-liuxs)9z ]̂

asoo932q+
( d s o o 9 3 + a u x s ) 9 z

oS;?a[usooSs2q.
(ll S 00b 5-U  u x s ) £ z ]

dSOo£-j2q +
( a  soo3 5 +aui s )£z

b \ji soo’t?3 2q- 
(u SOO+73 -u ut s )*7z]]

asoot732q+
(dSOO+73 +BUXS )*7Z

0̂ 3a 93 9b •V 0 *75 +7b

93 9b_ S  9b-

-  arauxs£lJ-,q +ot j - o
(u soo+uux s£s )Cz}

duxsC32q+ 
(dsoo-auxsCs )^z

DcsaCUS0°c s2q-(u sooC3-uuxs)Czr] 

dsoo^3j9+(dSOÔ +oUXŜ Z 
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