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ABSTRACT 

 

COMPUTATIONALLY EFFICIENT SPECIFICATIONS OF SPATIAL POINT PROCESS 

MODELS AND SPATIO-TEMPORAL GAUSSIAN MODELS:  COMBINING REMOTE 

SENSING DRIVERS WITH GEOSPATIAL DISEASE CASE DATA TO ENHANCE 

GEOGRAPHIC EPIDEMIOLOGY 

by 

Beth L. Ziniti 

University of New Hampshire, September, 2016 

 

In this dissertation, the flexibility of Bayesian hierarchical models specified using a latent 

Gaussian Markov Random Field (GMRF) are evaluated for use in analyzing large complex 

spatial and spatio-temporal data with the goal of contributing to an interdisciplinary effort of 

developing an eco-epidemiological model that quantifies the relationship between remotely 

sensed water quality and the incidence of ALS (Amyotrophic Lateral Sclerosis or Lou Gehrig’s 

Disease) over large areas such as Northern New England (NNE).  

In particular, a Log-Gaussian Cox Process (LGCP) specified by the logarithm of a GMRF 

on a regular lattice is shown to allow for simultaneous estimation of the spatial distribution of 

ALS risk and its relationship to remotely sensed water quality metrics. This approach improves 



 xiii 

on previous analyses of the dataset considered by explicitly accounting for the spatial uncertainty 

in determining locations of ALS “hotspots” needed in the estimation of the hotspots’ relationship 

to the water quality of lakes in NNE. 

Finally, since warming lake temperatures have been associated with more frequent 

cyanobacteria blooms (blue-green algae), which is a possible risk factor of ALS, a spatially 

varying coefficient model specified with an Extended Autoregression (EAR) latent process is 

used in an analysis of remotely sensed surface water temperatures of Lake Champlain. New 

interpretations of the EAR model are suggested and issues relating to its parameter’s 

identifiability are investigated.
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I INTRODUCTION 

 

The field of eco-epidemiology seeks to identify causes of spatial and temporal patterns in 

disease incidence and mortality at multiple scales and in relationship to the Earth’s changing 

ecologies (Susser, 2004). It is an emerging discipline but has roots at least as far back as 1854 

when Dr. John Snow used maps to link London England’s cholera outbreak to the contamination 

of the water supply in certain neighborhoods. Its questions lie at the intersection of diverse fields 

including epidemiology, geography, the environmental sciences, computer science, mathematics 

and statistics and require a collaborative effort in the collection and analysis of complex spatio-

temporal datasets.  

Spatio-temporal data contains measurements that are geographically and temporally 

indexed. These data generally follow the principle stated by the geographer Waldo Tobler, 

“Everything is related to everything else, but near things are more related than distant things.” In 

geographic space, the “near things” are measurements taken at a small Euclidean distance apart 

while in the time domain, the “near things” are measurements taken at a small time interval apart. 

In statistics, this concept is known as positive autocorrelation and is commonly modeled using a 

Gaussian Process. The Gaussian Process is characterized by a mean function and a covariance 

function. The mean function is generally interpreted to describe large-scale trends, while the 

covariance function describes the small-scale dependencies or autocorrelations. In the analysis of 
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count or binary data common in epidemiology and ecology, the Gaussian Process is often used in 

a hierarchical model as a latent process that drives the discrete outcome. 

 The advancement of remote sensing technologies, such as satellite imaging that include 

information from global positioning systems and timestamps, has greatly facilitated the 

collection of large environmental spatio-temporal datasets. In the area of public health, spatio-

temporal datasets have also become more available in recent years. The spatial and temporal 

scales of remotely sense datasets often vary by technology, while the scales of public health data 

vary for reasons of ethics and confidentiality. As the world populations become more connected 

and interdependent, and the need for research in eco-epidemiology grows, it becomes 

increasingly important to have methods to analyze spatio-temporal data that are flexible in their 

ability to combine data sources collected at various temporal and spatial scales, that are robust in 

the presence of abnormalities unrelated to the questions under study and computationally 

efficient for big data. Furthermore, for the purpose of decision/policy making, it is not enough 

that an analysis produces an answer, but it must be able to account for the uncertainty in its 

answer that comes from various sources such as measurement error, model specification and 

parameter estimation. 

 In statistics, a probability framework is used to make inference on the processes from 

which data are sampled and uncertainty is quantified by variance. This framework is particularly 

useful in the study of public health since although medical science can explain many of the 

biological mechanisms by which disease occurs, not all persons in contact with the suspected 

causes will become diseased. Thus, the statistical approach quantifies a person’s disease risk as 

their probability of contracting the disease and tests exposures to identify and quantify the ones 

that significantly modify a person’s risk (Waller & Gotway, 2004).  
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One disease that is not very well understood by medical science is the progressive 

neurodegenerative disease, Amyotrophic Lateral Sclerosis (ALS) also known as Lou Gehrig’s 

disease. Except in very few cases, ALS is fatal and has an expected survival time of 

approximately 3 years after onset (Noonan, White, Thurman, & Wong, 2005). ALS is also a rare 

disease with annual incidence rates varying spatially within the United States ranging from 1 to 

1.8 in 100,000 people, although studies have indicated that these rates have been increasing over 

time (Noonan et al., 2005). Incidence rates have been shown to be age and sex related with the 

highest incidence occurring for ages between 55-75 years and in males, but the change in 

incidence over time shows a diminished effect of sex (Noonan et al., 2005). The change in 

incidence however could be attributed to several factors including the aging population, 

improved diagnosis, and the creation of registries for more complete case ascertainment (Caller, 

Chipman, Field, & Stommel, 2013). Only between 5-10% of cases can be attributed to a genetic 

cause, while the rest known as sporadic ALS (sALS) are assumed to be the result of genetic 

susceptibility combined with environmental exposures (Noonan et al., 2005; Caller et al., 2013; 

Torbick, Hession, Stommel, & Caller, 2014). One exposure of particular interest is the presence 

of the neurotoxin, beta-methylamino-L-alanine (BMAA) produced by cyanobacteria (blue-green 

algae), which has been linked to the high incidence of ALS and Parkinson’s disease occurring in 

Guam during the early 1950’s (Caller et al., 2009; Caller et al., 2013; Torbick et al., 2014; 

Banack et al., 2015).  

ALS in Northern New England 

In Northern New England (NNE), which comprised the US states of Maine, New 

Hampshire and Vermont, several clusters of ALS, regions with higher ALS cases than would be 

expected, have been identified based on case event data for 1997 to 2009 that were aggregated to 
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the census block group level (Caller et al., 2013). Since ALS is a non-contagious disease, the 

presence of clusters in this region is likely due to environmental heterogeneity. In particular, at 

least one cluster occurs adjacent to a lake with frequent harmful cyanobacteria blooms and in 

which BMAA has been found in fish and filtered aerosol samples (Caller et al., 2009; Banack et 

al., 2015). Torbick et al. (2014) reanalyzed the case event data for this region aggregating at the 

census track level and also found similar clusters to those identified by Caller et al. (2013). The 

fact that each study arrives at a similar conclusion having used different aggregation scales for 

cluster determination gives strong evidence in favor of the existence of an environmental risk 

factor for ALS. Furthermore, Torbick et al. (2014) shows that cases close to lakes with poorer 

water quality had an increased chance of belonging to an ALS cluster. 

However, since there is no one coordinated medical system for the entire NNE region and 

no mandatory national ALS registry at the time of data collection, incomplete case ascertainment 

could be an issue for the ALS case dataset used in Caller et al. (2013) and Torbick et al. (2014). 

It is suspected that case counts in this dataset underestimate the risk of ALS in NNE during 

1997-2009, in particular for all of Maine, parts of southern New Hampshire that are close to 

Boston, Massachusetts and southwestern Vermont that are close to Albany, New York. Since the 

case ascertainment appears to vary spatially, the identified clustering may be an artifact of this 

ascertainment. In an Irish study where a nearly complete ascertainment was possible due to a 

national ALS registry, no high-risk ALS clusters were found (Rooney et al., 2014; Rooney et al., 

2015). Furthermore, the relationship between ALS risk and the water quality of lakes in the 

region is only based on the census track clusters, the larger of the two scales, and does not 

explicitly account for the spatial uncertainty of the clusters in the logistic regression used to 

estimate the effect of poor water quality exposure. 
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An alternate approach would restrict the study region to areas where nearly complete case 

ascertainment was possible and would use Bayesian Inference of a Log-Gaussian Cox Process 

(LGCP) (Møller, Syversveen, & Waagepetersen, 1998) to simultaneously estimate the spatial 

distribution of ALS risk and its relationship to the water quality of the region’s lakes.  

Furthermore, an aggregation scale chosen to approximate a continuous LGCP, along with the 

Markov Property assumption for spatial autocorrelation would allow for a computationally 

efficient estimation and yet sufficient approximation (Waagepetersen 2004; Lindgren, Rue, & 

Lindström, 2011; Diggle, Moraga, Rowlingson, & Taylor, 2013; Simpson, Illian, Lindgren, 

Sørbye, & Rue, 2016).  

Study Goals 

In this dissertation, the ALS case dataset discussed in Caller et al. (2013) and Torbick et 

al. (2014) is reanalyzed using Bayesian inference of a LGCP specified by the logarithm of a 

Gaussian Markov Random field (GMRF) on a regular lattice (grid). The modeled component of 

the LGCP intensity, which represents relative risk due to environmental heterogeneity, will 

include spatial random effects used to model small-scale autocorrelations and fixed effects of the 

region’s lake water quality used to model spatial trends. Two forms of GMRF spatial random 

effects will be compared, the Besag-York-Mollié model (Besag, York, & Mollié, 1991) which is 

a convolution of the intrinsic CAR and independent random effects, and the Leroux model (Lee, 

2011) which will be shown to have random effects equivalent to those of the Czado CAR (Czado 

& Prokopenko, 2008) and equivalent to the EAR model (Yuan, 2011) with smoothing 

parameter,𝜃 = 1. Although these two models are widely used in the statistical literature on 

disease mapping, there is little investigation of what effect varying spatial scales will have on the 

estimated parameters. In this dissertation, two scales will be compared. Furthermore, it has been 
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suggested that the use of these random effects models to account for spatial autocorrelations, 

may bias fixed effect estimations due to collinearities of the spatial random effects with the fixed 

effects (Reich, Hodges, and Zadnik, 2006; Hughes and Haran, 2013; Hughes, 2015).  However, 

this issue has only been demonstrated with the BYM model and not the Leroux model. Since the 

Leroux model is shown to be connected to the EAR model developed by Yuan (Yuan, 2011), this 

dissertation will investigate the effect of this issue with the EAR model. 

Fixed effects will be derived from the lake water quality data used by Torbick et al. 

(2014) which are measurements of satellite derived lake average secchi depth (SD in meters), 

total nitrogen (TN in micrograms per liter (ug/L)), and chlorophyll-a (Chl-a in ug/L) of lakes 

sized 6 hectares or more except for Lake Champlain, as well as satellite derived measures of 

phycocyanin (PC in ug/L) aggregated on various lake scales for all lakes sized 6 hectares or more 

including Lake Champlain. Lake aggregation scales include original Landsat measurement scale 

of 30-meter resolution pixels covering each lake, lake average, lake maximum, lake area 

weighted watershed average at the HUC12 and HUC10 scales, and the lake area weighted 

watershed maximum at the HUC12 and HUC10 scales. Lake Champlain includes a couple 

watersheds and so an entire lake average is not used for this lake, but instead local averages 

within the lake are considered based on these watersheds. In order to account for the spatial 

misalignment between the lake scales smaller than the watershed size and the residential 

locations (i.e. houses are not built in the water), the small lake scales are matched to the regular 

lattice summarizing case intensity using a few different deterministic approaches including a 

fixed distance water area-weighted average and an inverse distance water area-weighted average. 

Distances are calculated to the centroids of the cells in the lattice used to summarize case 

intensity. Since deterministic approaches of matching lake water quality metrics to the 
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summarized case intensity grid may underestimate the uncertainty in the effect of the exposure 

(Waller & Gotway, 2004, pp. 405-409), an exploratory analysis of spatial variability of the PC 

variable at the HUC12 scale will also be considered.  

To account for the incomplete cases ascertainment, different area boundaries will be 

considered.  The population at risk for the different area boundaries will be based on Census 

2000 population estimates. Although this does not account for changes that may occur in the 

population at risk over the 13-year period from 1997 to 2009, it represents the best available data. 

Furthermore, to avoid the spatial misalignment that would result from using Census block or 

Census track aggregation scales of the population at risk with the regular lattice chosen to 

summarized case intensity, the background population will be estimated from two modeled 

population products of the 2000 Census, SEDAC’s 1km resolution population product for the 

2000 US census (Seirup & Yetman, 2006) and ORNL’s LandScan 2000 1km resolution 

population product (LandScan 2000). The LGCP model parameters calculated using these two 

different backgrounds will be compared to check the sensitivity of these parameter estimates to 

small differences in the backgrounds.  

Finally, there exists some temporal misalignment between the water quality data and the 

ALS disease onset of case data.  The ALS disease onset for cases in this study occurred before or 

during the time period from 1997 to October of 2009 (Caller et al., 2013; Torbick et al., 2014). 

While, the lake average TN, SD and Chl-a were derived from Landsat images taken in late 

August and early September (days of year 242, 244, 248) for the years 2009 and 2010 (Torbick 

et al., 2014), and the PC metrics were derived from Landsat images taken in summers of 2014 

and 2015. The use of these water quality metrics may produce biased exposure estimates 

particularly if the spatial distribution of the water quality in this region was quite different at the 
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time of onset of the ALS cases. Little is known about the spatial distribution of the water quality 

in this region over time. There is recent evidence that lakes in this region have warmed and that 

the spatial distribution of the warming is heterogeneous (Smeltzer, Shambaugh, & Stangel, 2012; 

Torbick, Ziniti, Wu, & Linder, 2016). In order to address this concern, a general water quality 

metric, Trophic Status Index (TSI) is also considered as a fixed effect in the LGCP, aggregated 

over different years. In particular, the TSI metric is derived from Landsat images taken during 

the months of July, August and September between 2000 and 2005, and is averaged for four time 

periods, 2000 to 2001, 2002 to 2003, 2004 to 2005 and 2000 to 2005. Furthermore, a local 

analysis of the spatial distribution of lake skin temperature trends within Lake Champlain is 

considered. This investigation of temperature may be useful because there is evidence that 

warming temperatures have been associated with more frequent algal blooms (Paerl and 

Huisman, 2008, 2009). 

The dissertation’s chapters are organized as follows. Chapter II details terminology 

commonly used in the Epidemiological literature and details the expected counts estimation. 

Chapter III provides details about the ALS dataset and the metrics used for water quality. 

Chapter IV begins with an introduction to Bayesian Hierarchical models and estimation using 

Markov Chain Monte Carlo (MCMC) and Integrated Nested Laplace Approximation (INLA). 

Next is a brief introduction to Gaussian Process models and Spatial Point Process Models. This 

section ends with details about Gaussian Markov Random Fields. EAR Models from Hupper 

(2005) and Yuan (2011) are reviewed and the issue of collinearity between fixed effects and 

random effects is discussed. Chapter V outlines the use of computational grids for estimating 

ALS risk and also in the spatio-temporal modeling of Lake Champlain surface water 

temperatures. Chapter VI applies the BYM and Leroux models estimated via INLA and MCMC 
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to various scales and boundaries of the NNE region to investigate spatial clustering of cases. 

Results are compared with clusters found in Caller et al. (2013) and Torbick et al. (2014). In 

Chapter VII, BYM model fits are compared with non-spatial Bayesian Poisson regression model 

fits estimated using INLA in order to estimate exposure effects of lake water quality on ALS risk. 

Various scales of the exposures variables (PC, TSI) are considered and ranked by significance. 

Chapter VIII discusses two case studies of exposure modeling. The first applies the EAR model 

(Yuan, 2011) in a spatially-varying coefficient model similar to the one also discussed in Hupper 

(2005) to satellite derived lake skin temperatures of Lake Champlain between 1984 and 2011. 

The second case study applies the EAR model with smoothing parameter equal to 1 to the spatial 

distribution of HUC12 aggregated maximum lake phycocyanin (in ug/L) derived from Landsat 

images during the summers of 2014 and 2015. In Chapter IX, conclusions are discussed and 

Chapter X ends with suggestions for future research.  
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II BASICS OF EPIDEMIOLOGY 

2.1 TERMINOLOGY 

In Epidemiology, interest lies in comparing risk between individuals or groups of 

individuals with different exposures. Exposure is a general term. It can refer to demographic 

factors such as age and sex, activities such as smoking and swimming in polluted lakes or 

location information such as town of residence.  

When the spatial distribution of a particular disease is of interest, an epidemiologist will 

need to collect public health data in one of two forms, case event data or case count data. Case 

event data is a collection of geographically referenced points usually representing the residence 

of a disease case, while case count data is a collection of areal units such as census regions, 

administrative areas or zip codes with a count of the total disease cases having a residence 

location within the given areal unit. The two forms of data are related since case count data are 

spatially aggregated case event data. From a confidentiality point of view, spatially aggregated 

data is preferred since a map of exact case locations would still allow patient identification even 

when other identifying information such as patient name or social security number are not 

included in a dataset (Lawson, 2012). This is particularly true for rare diseases in rural areas. On 

the other hand, a relationship found between an exposure and the case counts on an areal unit 

that indicates an increased risk in the presence of the exposure may not exist or be the opposite 

(decreased risk with the exposure) when the exposure is analyzed with respect to the individual 
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cases. This is known as the ecological fallacy, which is another version of Simpson’s paradox in 

the analysis of contingency tables or a special case of the modifiable areal unit problem (MAUP) 

discussed in the geography literature and the change of support problem in the geostatistics 

literature (Waller & Gotway, 2004, pp. 29-31). Thus when the research question pertains to 

individual level risk and/or effects at small spatial scales such as effects of pollution sources on 

surrounding communities, case event data is preferred because the unit of study is the individual 

and not an areal unit (Lawson, 2012).  

From a modeling viewpoint, the distinction between the two types of spatial public health 

data, case event and case count, may be important dependent on other assumptions about the 

disease in question (Lawson, 2012; Waller & Gotway, 2004).  In general, case count data is 

modeled using the binomial distribution or when the case counts are divided by expected counts, 

i.e. transformed to standardized incidence ratios (SIR), they can be modeled using the Normal 

approximation, while case event data are best modeled using the Poisson distribution in a spatial 

point process. However, when the disease is rare, both case event data and case count data are 

modeled with a Poisson distribution (Waller & Gotway, 2004; Li, Brown, Gesink, & Rue, 2012). 

The justification for the use of a Poisson distribution for case count data when the disease is rare 

comes from the relationship between the Binomial and Poisson distributions. As the probability 

of disease decreases and the study population increases, such that their product approaches a 

fixed number, the binomial probability of x disease cases in a population of n, approaches the 

Poisson probability of x disease cases in a fixed region. Furthermore, when the disease is rare a 

Normal approximation for the standardized incidence ratios (SIR) can be poor since case counts 

are small or zero unless the aggregation scale is quite large in space or time (Li et al., 2012).  
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A risk ratio is a common method used to compare risk estimates between groups having 

different exposures, and it addresses relative risk, the multiplicative impact of exposure. When 

estimating risk, the epidemiology literature is very precise about the quantities calculated. In 

particular, the definition of risk includes a specified time period that is required in determining 

the probability a person contracts the disease in question (Waller & Gotway, 2004, p. 9). Further 

distinctions are made with respect to this time frame for both the numerator and denominator of 

risk ratios. In the numerator, when only people who contracted the disease within the specified 

time period are counted this is called incidence and is the preferred quantity of interest when the 

study question is about what exposures are related with disease onset. Prevalence is a count of 

the all the people having the disease within the specified time period who may of either 

contracted it during the time period or before. Prevalence will be related to exposures that effect 

both onset and duration. In some cases, it may be impossible to know the exact time a disease 

was contracted and only a prevalence count can be calculated, but for diseases that have a short 

duration, the prevalence will be close to the incidence (Waller & Gotway, 2004, pp. 8-9).  

The distinction between a rate and a proportion is defined by the quantity in the 

denominator of a risk ratio. In particular, a rate has a denominator that is the sum of the 

observation time for each person in the population at risk, while a proportion has a denominator 

that is the count of the population at risk. The population at risk fluctuates over time; people 

leave the study region; people die of unrelated causes and when people contract the disease in 

question, they no longer are part of the population at risk. For example, if 5 people make up a 

population at risk for a disease under study for 5 years, but 1 person contracts the disease after 1 

year, and 2 people die in car crash at 2 years, the denominator for the proportion will be 5 people 

but the denominator for the rate will be 1+2*2+(5-3)*5 = 15 person years. When studying large 



 13 

populations at risk in an observational setting, it may be impossible to determine how long each 

person remains in the population at risk.  However, when the disease is rare and/or the study 

period is short, proportions provide good approximations of rates (Waller & Gotway, 2004, pp. 

9-10). 

Standardized ratios are used to adjust raw ratios by removing the effect of known 

exposures not of interest for the study. For example, it is known that locations with higher 

population densities have more disease cases. Furthermore, some demographic factors such as 

age are known to correlate to disease occurrence. Disease occurrence is generally higher among 

older individuals than younger ones. Since a study population’s density and demographic 

composition will vary spatially, it is important to calculate standardized ratios when one is 

interested in comparing risks between individuals at different locations in order to make the 

ratios from the different locations comparable (Waller & Gotway, 2004, p. 11). The standardized 

incidence ratio (SIR) also known as the standardized mortality ratio (SMR) compares the number 

of disease cases observed in a study population to the number that would be expected based on 

demographic (age, sex, a known factor not of interest) specific rates from a standard population 

(Waller & Gotway, 2004, p. 15). A number of different standard populations are possible. For 

example, when comparing risks between locations A and B, one could define the standard 

population to be the population at location A, the population at location B, the sum of the 

populations at locations A and B, or the population at a location C. In general, one chooses a 

standard population that makes the most sense for the particular study question, but issues of cost 

and accuracy of available information about a certain population will also be deciding factors. 

When the study question is related to determining if spatial clusters of disease cases exist, a 
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common approach is to use the combined population from all sub-regions within the study region 

as the standard population.  

2.2 ALS EXPECTED COUNTS 

The denominator of the standardized incidence ratio (SIR) is called the standardized 

expected counts, which represent the number of the cases expected in the study population if the 

study population contracts a disease at the same rate as the standard population (Waller & 

Gotway, 2004, pp. 14-15). The question of interest for risk of ALS in Northern New England 

(NNE) is if the spatial distribution of ALS has clusters (or hot spots). Thus the standard 

population for the calculation of expected counts is defined to be the collection of all sub-regions 

under study. Since the ALS dataset being used in this analysis is suspected to underestimate the 

risk for the entire NNE region, different boundary areas for the sub-regions under study are 

considered. These include the boundary area of all NNE, the boundary area of just the states of 

Vermont and New Hampshire (VTNH) and the boundary area covered by all Vermont counties 

except for Bennington and all New Hampshire counties except for Cheshire, Hillsborough, 

Rockingham, and Strafford (VTNH_rmcty). These boundary areas are pictured in Figure II-1. 

 

 
Figure II-1. Boundary areas of the study region are in gray; NNE (right); VTNH (middle); VTNH_rmcty (left). 
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Since the onset of ALS is age and sex related (Noonan, White, Thurman, & Wong, 2005), 

expected ALS cases in the study population will depend on the age/sex specific rates in the 

standard population. Noonan et al. (2005) defines 12 age/sex classes given as M & 0-44, M & 

45-54, M & 55-64, M & 65-74, M & 75-84 and M & 85+, F & 0-44, F & 45-54, F & 55-64, F & 

65-74, F & 75-84 and F & 85+, where M stands for male and F stands for female. Thus three sets 

of age/sex specific rates, one for each of the boundary areas, are calculated as follows: 

𝑟𝑖 =
∑ 𝑂𝑖(𝑥)𝑎𝑙𝑙 𝑥

∑ 𝑛𝑖(𝑥)𝑎𝑙𝑙 𝑥
, 

where 𝑖 = 1, 2, … , 12 is the identifier for one of the 12 age/sex classes defined by Noonan et al. 

(2005), 𝑥 represents one of the sub-regions within a boundary area, 𝑂𝑖(𝑥) is the number of 

observed ALS cases in sub-region 𝑥 having age/sex class 𝑖, and 𝑛𝑖(𝑥) is the total population at 

risk in sub-region 𝑥 having age/sex class 𝑖. Following the calculation of the age/sex specific rates, 

the standardized expected counts for each sub-region 𝑥 are calculated as: 

𝐸(𝑥) = ∑ 𝑛𝑖(𝑥) ∗ 𝑟𝑖 

𝑎𝑙𝑙 𝑖

.        [𝟐. 𝟐. 𝟏] 

Note that the above standard population rates differ slightly from the rates used in both 

Caller et al. (2013) and Torbick et al. (2014) who use the sex specific direct-age adjusted rates 

that Noonan et al. (2005) calculates for motor neuron disease mortality over the entire United 

States for the time period 1994-1998. The method described in this analysis more explicitly 

corrects for the effect of age since the sex specific rates of Noonan et al. (2005) are direct-age 

adjusted to the age distribution for the entire United States that may different from the age 

distribution of Northern New England.  
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A caveat is that the age of diagnosis is not available for the dataset used in this analysis, 

and the observed age class counts are based on the case’s age at year 2000 determined from the 

case’s date of birth. Furthermore, several cases are missing date of birth or sex values. Counts of 

observed cases by age and sex class with the missing values also separated are shown in Table 

II-1. 

Table II-1. Observed ALS case counts by age/sex class and boundary area 

 sex age NNE VTNH VTNH_rmcty 

1 F 0 - 44 28 20 15 

2 F 45 - 54 60 44 29 

3 F 55 - 64 63 49 34 

4 F 65 - 74 60 43 26 

5 F 75 - 84 39 22 16 

6 F 85+ * * * 

7 F unknown 61 31 23 

8 M 0 - 44 63 42 22 

9 M 45 - 54 96 65 36 

10 M 55 - 64 79 54 34 

11 M 65 - 74 88 62 51 

12 M 75 - 84 41 31 23 

13 M 85+ * * * 

14 M unknown 68 43 32 

15 unknown unknown * * * 

16 Totals 762 516 347 

*Values less than 10 are suppressed for privacy reasons. 

 

In order to estimate the age/sex specific rates, cases with missing data were not excluded but 

added to the known data in such a way as to keep the proportions of the known data fixed. For 

example, consider the case of adding female cases of unknown age to those female cases with 

known age. Let 𝑁(𝑦) represent the number of 𝑦, and 𝑃(𝑦|𝐴) represent the probability of 𝑦 given 

A. The following expression describes the procedure for calculating total female and age class 

counts from both the known ages and unknown ages: 
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𝑁(𝑎𝑔𝑒𝑖 & 𝐹) + 𝑃(𝑎𝑔𝑒𝑖|𝐹) ∗ 𝑁(𝑢𝑛𝑘𝑛𝑜𝑤𝑛 𝑎𝑔𝑒 & 𝐹) 

𝑤ℎ𝑒𝑟𝑒   𝑃(𝑎𝑔𝑒𝑖|𝐹) =  
𝑁(𝑎𝑔𝑒𝑖 & 𝐹)

∑ 𝑁(𝑎𝑔𝑒𝑖 & 𝐹)𝑎𝑙𝑙 𝑖
. 

The modified case counts by age/sex and boundary area used to estimate age/sex specific rates 

are given in Table II-2.  

 

Table II-2. Modified observed ALS case counts by age/sex class and boundary area 

Age/sex class NNE VTNH VTNH_rmcty 

F & 0-44 34.71 23.37 17.80 

F & 45-54 74.38 51.41 34.42 

F & 55-64 78.10 57.26 40.36 

F & 65-74 74.38 50.24 30.86 

F & 75-84 48.35 25.71 18.99 

F & 85+ * * * 

M & 0-44 74.68 49.00 26.17 

M & 45-54 113.80 75.83 42.82 

M & 55-64 93.65 63.00 40.44 

M & 65-74 104.32 72.33 60.66 

M & 75-84 48.60 36.17 27.36 

M & 85+ * * * 

    

total 762 516 347 

*Values less than 10 are suppressed for privacy reasons. 

 

The sub-regions 𝑥 of the study area from [𝟐. 𝟐. 𝟏] are defined in Caller et al. (2013) as 

census block groups and the 𝑛𝑖(𝑥) values are the 2000 Census block group population counts by 

sex. In Torbick et al. (2014) sub-regions 𝑥 are defined as census tracts and the 𝑛𝑖(𝑥) values are 

the 2000 Census tract population counts by sex. In this study, the sub-regions are 1km by 1km 

square grid cells, for which there are 221232 cells covering all of Maine, New Hampshire and 

Vermont and the 𝑛𝑖(𝑥) values are derived from two gridded population products at a 1km 

resolution representing the region’s population by the 12-age/sex classes at the year 2000.  One 
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of the gridded population products is provided by the Socioeconomic Data and Applications 

Center (SEDAC) (Seirup & Yetman, 2006) and the other is a product of OakRidge National 

Laboratory (ORNL) called LandScan (LandScan 2000). 

 SEDAC’s 1km population product is lightly modeled meaning Census 2000 block counts 

were disaggregated using one data layer, while ORNL’s LandScan product uses more data layers. 

ORNL’s LandScan 2000 population product is also based off of population values of the 1990 

Census projected to the year 2000. Given the difference in input variables used to model the 

populations between the two organizations, there is also a slightly different meaning to the 

population locations for each. SEDAC’s population estimates were modeled using nighttime 

lights and so represent nighttime population locations while LandScan represents daytime 

populations (What Are the Differences Between GPW, GRUMP and Landscan? 2015). Neither of 

the SEDAC or LandScan 2000 1km population products are available by the age/sex classes 

defined in Noonan et al. (2005). Thus a simple approach that assumes demographic 

characteristics are constant at the census block level was used to apply the age/sex class totals 

from the 2000 Census at the census block level. Although this assumption may not be true for 

large census blocks, this represents the best-known available data.  

 First, age/sex class proportions were calculated for each 2000 Census block within the 

NNE region. Then the shape file of Census 2000 block polygons was rasterized to a 20-meter 

resolution lattice with the same extent and origin as the 1km SEDAC lattice and all lattice cells 

with centroid in the same polygon received the age/sex count from that polygon. The 20-meter 

resolution was chosen since this was the smallest width or length dimension of any of the census 

block polygons. Rasterized census block age/sex proportions made up a 12-layer raster brick, 

where each layer contained the proportion of each census block population belonging to a 
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specific age/sex class. This 20-meter resolution raster brick was then aggregated to a 1km 

resolution by averaging the proportions in each layer separately. For a 1km cell falling 

completely inside a census block, the 1km cell would have the same value as all the 20-m cells. 

For 1km cells intersecting several census blocks, the proportion represents an area-weighted 

average of proportions from different census blocks, and finally if regions with no population 

were included in the 1km cells, these regions were excluded in the average calculation. After 

age/sex proportions were aggregated to the 1km resolution, the 12 layers were summed in order 

to verify each cell had a value of either 1 (at least one of the age/sex classes is present) or 0 (no 

population).  Each of the age/sex class proportion layers was then multiplied by the population 

counts for each SEDAC and LandScan 2000 separately. The LandScan 2000 global lattice at 

1km resolution cropped to the NNE region had a slightly different origin than SEDAC’s NNE 

1km population raster. Thus, population counts from the LandScan 2000 were resampled to 

match the SEDAC lattice.   
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Table II-3. Comparison of total population counts by age/sex class for all of NNE 

 Age/sex class Census blocks SEDAC LandScan 

1 F & 0-44 971469 826144.9408 837851.9386 

2 F & 45-54 236326 252879.8987 258295.7725 

3 F & 55-64 146905 177108.8892 178379.3266 

4 F & 65-74 115673 135658.4292 139148.6193 

5 F & 75-84 85539 93696.24544 97578.34566 

6 F & 85+ 37291 32589.75896 33682.87883 

7 M & 0-44 979005 845637.6616 853779.2156 

8 M & 45-54 234088 252396.0614 259875.2447 

9 M & 55-64 142861 170199.82 173161.5455 

10 M & 65-74 99533 124757.9363 126240.4717 

11 M & 75-84 56594 67465.08834 68286.85924 

12 M & 85+ 14252 14499.35824 14502.82532 

13 Total Female 1593203 1518078.162 1544936.881 

14 Total Male 1526333 1474955.926 1495846.162 

15 Total (after) ------------ 2993034.088 3040783.044 

16 Total (before) 3119536 3119535.991 3145258 

 

Total population counts by age/sex class for the entire NNE region are summarized in the 

Table II-3. Rows 15 and 16 compare the total population estimate by SEDAC and LandScan 

2000 before proportions were applied and afterward. Before proportion were applied the SEDAC 

total population for NNE matches the Census 2000 count, while the LandScan 2000 count is 

slightly larger. Recall, LandScan 2000 counts were developed before the 2000 US census was 

complete and is thus based on projections from the 1990 US census. After the proportions were 

applied, both the total populations for SEDAC and LandScan 2000 decrease. This is likely due to 

spatial uncertainty in locations without populations. Age/sex class differences between the 

Census blocks totals and calculated values for SEDAC and LandScan 2000 show that calculated 

values are less than Census values for both sexes younger than 45 and greater than Census values 

for both sexes older than 44 with the exception of females older than 84. It is important to note 

that all these estimates, Census 2000, SEDAC and LandScan 2000 contain some unquantifiable 
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uncertainty about the true population in this region for this time. However, by using two different 

estimates of expected counts, the effect of estimates can be partially quantified.  
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III DESCRIPTION OF ALS CASE AND EXPOSURE DATA 

3.1 NNE ALS CASE DATA 

The ALS case datasets discussed in Caller et al. (2013) and Torbick et al. (2014), 

included case data collected from medical records at Dartmouth Hitchcock Medical Center 

(DHMC) and the Muscular Dystrophy Association (MDA) of Northern New England. Both 

studies report a thorough data collection quality control process that only included cases having 

year of diagnosed (or in some cases year of MDA registration) between January 1997 and 

October 2009 and who had a primary address in Northern New England (NNE). The collected 

information about each case included age at diagnosis, side of symptom onset, year of diagnosis, 

year of death, family history, dwelling address at time of diagnosis, and in some instances 

historical dwelling addresses (Caller et al., 2013; Torbick et al., 2014).  Note that given the 

uncertainty with some of the times of diagnosis, this data is more likely a representation of ALS 

prevalence, however since life expectancy for ALS patients is short, the prevalence will be close 

to the incidence.  

In the current analysis, only the variables date of birth, sex, and longitude/latitude 

coordinates for an approximate dwelling address at time of diagnosis were made available from 

the ALS case dataset used in Caller et al. (2013) and Torbick et al. (2014) for reasons of 

confidentiality. The dataset originally included 772 cases and also included two other columns, 

one with notes indicating additional information about the longitude/latitude coordinates and the 
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other with a color-coding of red, yellow, or none. Location information was missing (missing 

coordinates and location notes) for 8 of the 772 cases. Thus these 8 cases were excluded, and a 

total of 764 cases were used in the analyses that follow.   

There are some additional uncertainties present in the 764 cases used in the following 

analyses that could have biased some results. In particular, location notes were only recorded for 

22 of the remaining 764 cases of which 9 gave a town name and the other 11 indicated an error 

message. Since the cases with a town name note were missing longitude and latitude coordinates 

needed for summarizing the data on the computational grid, these cases were assigned a set of 

coordinates using the geocode function in the R package ggmap, which makes use of Google 

Maps (Kahle & Wickham, 2013). Unique town names were available for 7 of the 9 cases and 

these were assigned to town centroids, while the other 2 were assigned to a town hall location 

and a public library location within the town respectively. This procedure does add spatial 

uncertainty for distances less than the town aggregation level. Furthermore, 4 of the 764 cases, 

only contained 2 unique date of birth, sex and location combinations. Since, these are likely 

duplicate cases, in the analysis of ALS within the VTNH boundary, 2 of these 4 cases were 

removed, giving a total of 762 cases considered. Despite the uncertainties in the ALS case data 

used for the following analyses, the author believes the data are sufficient for the goals outlined 

at the beginning of this dissertation. 

3.2 EXPOSURE METRICS FOR WATER QUALITY 

There are several hypothesized routes by which people may be exposed to BMAA, the 

neurotoxin produced by cyanobacteria (blue-green algae) that is suspected to be a risk factor for 

ALS. These include drinking water, water sport activities such as swimming and boating, 

aerosolization of cyanobacteria blooms, and dietary exposure from eating seafood (Caller et al., 
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2013). In Northern New England, there are over 6,000 water bodies that could pose as a possible 

exposure source. Given the costs, both in time and money, of traditional water quality 

assessment needed for these over 6,000 water bodies, the use of satellite remote sensing 

technology is a viable alternative. The choice of a particular satellite sensor depends on the goals 

of the application since the spatial and temporal resolutions as well as the spectral sensitivity 

vary between different technologies. This application requires a fine spatial resolution with 

sufficient spectral sensitivity to derive metrics related to cyanobacteria for the entire NNE region. 

Torbick et al. (2014) show that the Landsat Thematic Mapper is a useful tool for deriving 

cyanobacteria related water quality metrics at 30 meter resolution pixels covering all lakes sized 

6 hectares or more in NNE, through the use of band ratio regression techniques calibrated with 

in-situ lake sampled measurements.  

3.2.1 Torbick et al. (2014) Water Quality Metrics  

The water quality metrics used by Torbick et al. (2014) to explain census tract based ALS 

cluster membership include secchi depth (SD in meters), total nitrogen (TN in micrograms per 

liter (ug/L)), and chlorophyll-a (Chl-a in ug/L), and were derived from Landsat images taken in 

late August and early September (days of year 242, 244, 248) for the years 2009 and 2010.  Lake 

averages of these metrics were calculated for all lakes sized 6 hectares or more, which included a 

total of 4453 lakes for which 3298 were found in Maine, 925 in New Hampshire, and 230 in 

Vermont. The average for Lake Champlain however was not included since it is located at the 

very western boundary of NNE and is likely not well represented by one average value due to its 

size (Torbick et al., 2014).  

 



 25 

 

 
Figure III-1. Distribution of lake average SD, TN and Chl-a satellite derived metrics for all 4453 lakes in NNE 

greater than 6 hectares. Top: Metric boxplots of all lakes; Bottom: Metric histogram of non-outliers values only. 

 

The box plots in Figure III-1 show that some of the satellite derived SD, TN and Chl-a 

metrics have values outside the range of observed in-situ measurement values of these metrics 

(values beyond red line). In particular, values of SD greater than 69 meters, TN greater than 30 

ug/L and Chl-a greater than 200 ug/L were marked as outliers as these values are highly 

improbable for lakes in NNE. In general, both TN and Chl-a values have a positive skew (bottom 

of Figure III-1), and in general are positively correlated (Figure III-2): lakes with low average 

Chl-a values also have low average TN values.  
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Figure III-2. Late Summer 2009/2010 snapshot values of lake average secchi depth, total nitrogen, and chlorophyll-

a for lakes sized 6 hectares for more across Northern New England 

Torbick et al. (2014) reports that these metrics show most water bodies in NNE over 6 

hectares are considered healthy waters for this late summer 2009/2010 time snapshot, while only 

about 4% would be considered nutrient-rich lakes in which frequent and intense algal blooms 

would be likely to occur. Maps in Figure III-2 show a spatial distribution of these water quality 

metrics with the warmer colors (red/orange) indicating poorer water quality. In particular, in the 

right most map, lakes colored orange have Chl-a values that the World Health Organization 

(WHO) would classify as a moderate acute health risk and lakes colored red have Chl-a values 

that classify as a high acute health risk according to their guidelines for recreational waters 

(Guidelines and Recommendations 2016). 

 

3.2.2 Phycocyanin (PC) Metric 

Another satellite-derived metric used in this study that is related to the presence of 

cyanobacteria is phycocyanin (PC in ug/L). Phycocyanin is generally positively correlated with 

Chl-a and TN and negatively correlated with SD. This metric however is thought to be more 

closely related than Chl-a, TN and SD to the amount of BMAA to which the population is 
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exposed since phycocyanin is a pigment of the cyanobacteria that produce the BMAA. Although, 

there is evidence for a disparity between the presence of cyanobacteria and the toxins it produces, 

which is not well understood as there is little mechanistic understanding related to why and when 

cyanobacteria produce toxins (Loftin et al., 2016).  

The PC metric used in this study represents a late summer 2014/2015 snapshot of the 

amount of PC (ug/L) in all 30 meter water pixel covering all lakes sized 6 hectares or more 

(Figure III-3).  

 

Figure III-3. Late Summer 2014/2015 Snapshot Representation of the amount of phycocyanin for each 30m water 

pixel for all lakes sized 6 hectares or more in Northern New England 
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 Lake averages of these pixel PC values range from about 0 to 1200 ug/L with the 

majority of lake averages below 10 ug/L (Figure III-4). 

      

Figure III-4. Lake average phycocyanin (ug/L) for 4867 lakes sized 6 hectares or more across Northern New 

England based on Landsat derived metric at 30 meter resolution pixels. 

 

3.2.3 Tropic Status Index (TSI) Metric 

Trophic Status Index (TSI) is an ordinal metric used by ecologists to classify water 

bodies based on their varying amounts of nutrients and is an indicator of water health (Carlson 

1977). Generally, an entire water body is given one classification, however for large water 

bodies with spatially varying amounts of nutrients, sections of the water body may be classified 

differently. Index values are 1: oligotrophic, 2: mesotrophic: 3: eutrophic and 4: hypereutrophic, 

where eutrophic and hypereutrophic water bodies contain the most nutrients. These lakes are 

most likely to experience frequent and intense algae blooms, while oligotrophic lakes are clear 

and good sources of drinking water. A number of metrics may be used to classify the trophic 

status of a water body including amounts of total nitrogen, total phosphorus, abundance of algae, 

total chlorophyll-a, and secchi depth. 



 29 

This study considers a TSI metric based on secchi depth derived from the spectral bands 

of Landsat Thematic Mapper calibrated using in-situ secchi depth measurements from lakes 

across the Continental United States that were included in the National Lake Assessment 2007.  

This TSI metric gives a classification for each 30-meter water pixel covering all lakes in 

Northern New England sized 6 hectares or more for the particular day and year of a Landsat 

overpass. A lake classification for a particular day and year is based on the mode (most common) 

classification of all 30-meter water pixels within a given lake. Due to its size, a lake 

classification was not given to Lake Champlain. Lake classifications based on Landsat images 

taken during the months of July, August and September (JAS) for the years between 2000 and 

2005, were then used to calculate JAS classifications for the time periods, 2000 to 2001, 2002 to 

2003, 2004 to 2005 and 2000 to 2005. JAS classifications were determined by using the median 

classification of all 50% cloud free Landsat overpass dates within the specified time period for 

each lake. The JAS 2000-2005 TSI lake classifications for lakes (n=5,809) across NNE are 

shown in Figure III-5. The three other time period lake classifications are compared to the JAS 

2000-2005, where blue colors indicate a clearer classification than the one for 2000-2005 and red 

colors indicate a murkier classification than the one for 2000-2005.  
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JAS 2000-2005 Lake TSI 

 

2000-2001 TSI Difference 

 
2002-2003 TSI Difference 

 

 

2004-2005 TSI Difference 

 

 
Figure III-5. JAS 2000-2005 TSI lake classifications compared with the early period 2000-2001 classification, the 

middle period 2002-2003 classification and the late period 2004-2005 classification. 

Landsat overpass dates vary by location in NNE because Landsat has a square footprint 

of about 180km and requires 12 frames to create wall-to-wall maps of TSI across all NNE. 

Furthermore, approximately 10 to 11 Landsat overpass dates are possible in a given year. 

However, the number of images available for each lake will vary by location because adjacent 

Landsat orbit paths overlap resulting in additional observations of some lakes and cloud cover 

also varying by day and location will result in less observations for other lakes. Overpass 
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frequency and day of year variability by location for each of these time periods is shown in 

Figure III-6 and Figure III-7 respectively.  

2000-2005 (all years) 2000-2001 (early) 

  
2002-2003 (middle) 2004-2005 (late) 

  
Figure III-6. Number of 50% cloud free Landsat overpasses by lake for each time period 

 

The variability in cloud-free overpass dates and frequency may explain some of the variability in 

TSI values between time periods, but more research is need to fully characterized the effects of 

the irregular sampling pattern on the TSI spatial variability across NNE. However, almost half 

the lakes (n=2813) have the same classification for all time periods and only about 6% of lakes 

(n=330) vary by 2 or 3 classes. 
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2000-2005 (all years) 2000-2001 (early) 

  
2002-2003 (middle) 2004-2005 (late) 

  
Figure III-7. Average time of month for all 50% cloud free Landsat overpass dates by lake for each time period. 

 

3.2.4 Lake Champlain Surface Water Temperatures  

Lake water temperature is a central driver regulating lake ecology. Recent studies suggest 

temperatures are increasing in many inland lakes (Schneider & Hook, 2010; Smeltzer, 

Shambaugh, & Stangel, 2012; Torbick, Ziniti, Wu, & Linder, 2016). These temperature increases 

are suspected to increase the frequency, magnitude, and duration of cyanobacterial harmful algal 

blooms. Understanding the spatio-temporal dynamics of lake temperature change may provide 
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valuable insight in how other ecological processes vary within the lake, including the 

development and duration of algal blooms.   

Lake Champlain is the largest lake in the NNE region for which there exists several 

valuable long-term water temperature records and thus is an ideal candidate for a case study of 

the spatio-temporal dynamics of lake temperature change. In a previous study, temperature data 

from two water monitoring programs, a survey by early limnologists E.B Henson and M. Potash 

from the University of Vermont from 1964 to 1974 and the Long-Term Water Quality and 

Biological Monitoring Program on Lake Champlain supported by the Lake Champlain Basin 

Program from 1992 to 2009, were analyzed showing that August mean surface water 

temperatures of Lake Champlain rose by 1.6-3.8 degrees Celsius between 1964 and 2009 

(Smeltzer et al., 2012). Furthermore, this increase was statistically significant for 8 out of the 10 

sampling sites considered. It is likely that the temperature trends at nearby sites exhibit positive 

spatial autocorrelation and that trends could be calculated with less uncertainty, if this 

autocorrelation is included in the calculation. The limited number of sites in this previous study 

however do not provide sufficient information to make this modeling useful. On the other hand, 

Landsat Thermal Imagery can be used instead since the spectral bands provide satellite-derived 

measurements of water temperature for a 31-year period from 1984 to 2014 in a 30 by 30 meter 

uniform gridded format covering the entire lake.  

For this case study, surface water temperatures derived from Landsat images calibrated to 

in-situ water measurements were collected for the months of July, August, and September (JAS) 

for the investigation of the summertime spatio-temporal temperature trends within Lake 

Champlain. Only Landsat images of path row tile 014029, which covers most of Lake Champlain 

except for the very narrow southern section were included and the JAS metric was chosen to 
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represent temperatures in which algae most commonly bloom.  Two Landsat satellites were in 

operation during the 31-year period, each having a 16-day interval between images. Landsat LT5 

captured images during the years 1984 to 2012 and Landsat LE7 began collecting in 1999 with 

an 8-day collection offset to Landsat LT5 (Figure III-8).  

 

Figure III-8. Sampling Pattern of Landsat LT5 and LE7 for mostly cloud free images of path row tile 014029 over 

Lake Champlain 

Although the two satellites cumulatively captured a total of 270 images of tile 014029 during this 

period, only 114 of these images could be used to calculate water temperatures due to poor image 

quality and/or extensive cloud cover. Also day of year sampling patterns vary from year to year. 

In particular no samples before day of year 200 are available for years before 1999, and the 

sampling frequency is very sparse or nonexistent for years after 2011. Furthermore, average lake 

temperatures exhibit a systematic quadratic variability by day of year for the July to September 

collection months (Figure III-9).  
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Figure III-9. Average lake satellite-derived surface water temperatures of Lake Champlain from 1984-2014 by day 

of year 

Thus, to control for trend bias due to the sparse and irregular sampling pattern and due to the day 

of year variability, only images taken between day of year 195 and 244 and for years before 2012 

were used for spatio-temporal trend estimates. This gave a total of 63 time points over the 27-

year period from 1984 to 2011.  

Satellite derived temperatures also have the potential for more noise than in-situ 

measured temperatures due to varying atmospheric conditions.  Figure III-10 shows that there are 

a number of outlier values, particularly lower outliers, in the satellite-derived temperatures of 

Lake Champlain compared with in-situ buoy measured temperatures.  

 
Figure III-10. Satellite-derived surface water temperatures of Lake Champlain from 1984-2011 for days of year 195 

to 244 vs. buoy in-situ water temperatures from 1992-2013 for days of year 195 to 244 and depths below 4 meters. 

(Gray line at 16 degrees Celsius.) 
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Cloud masking algorithms are used to remove effects from clouds, but when there are conditions 

of light haze, these algorithms can be ineffective, resulting in low values. For example, Figure 

III-11 shows the satellite-derived temperatures for year 1989 on day of year 230 next to a 

Landsat image of the section of lake near St. Albans Bay for the same day. Satellite derived 

temperatures values are between 10 and 16 degrees Celsius for the same location the image 

shows hazy cloud cover. 

 

 

 

 

Figure III-11. Satellite-derived surface water temperatures of Lake Champlain and Landsat image near St. Albans 

Bay for Year 1989 and Day of Year 230 

 

In order to remove the effect of temperatures estimated when conditions of light haze were 

present, a low temperature threshold was chosen to be 16◦C, and temperatures less than 16 were 

marked as missing.   
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IV STATISTICAL MODELS 

4.1 BAYESIAN INFERENCE FOR HIERARCHICAL MODELS 

In Bayesian statistics all quantities of interest are considered random and are modeled as a 

probability distribution, which, when conditioned on data lead to a posterior distribution by 

applying Bayes’ theorem (Gelman, Carlin, Stern, & Rubin, 2004).  

 

Through a sequence of hierarchical specification that applies repeated conditioning, a 

more complex yet realistic likelihood can be defined. For example, uncertainty in the data can be 

specified conditionally on a process, which, in turn, can be specified conditionally on parameters 

for which uncertainty is captured in prior distributions (Cressie & Wikle, 2011). This framework 

of repeated conditioning is known as a Bayesian hierarchical model. 

Bayes’ Theorem (Simple model) 

Let Y represent the data,  

 the parameter or quantity of interest,  

and P(..) the probability function or density, then: 

𝑃(𝜃|𝑌) =
𝑃(𝑌|𝜃)𝑃(𝜃)

∫ 𝑃(𝑌|𝜃)𝑃(𝜃)𝑑𝜃
∝ 𝑃(𝑌|𝜃)𝑃(𝜃) 

 

𝑃(𝜃|𝑌) is the posterior distribution. 

𝑃(𝑌|𝜃) is the data likelihood. 

𝑃(𝜃) is the prior distribution of the quantities of interest. 
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In the analysis of spatial public health data in the form of case event data, the most 

appropriate model is a spatial point process (Simpson, Illian, Lindgren, Sørbye, & Rue, 2016). 

An Inhomogeneous Poisson Process (IPP) is a spatial point process that is useful for modeling 

clustering of cases having a non-contagious disease, where the clustering would result from 

environmental heterogeneity instead of case interactions because the IPP assumes independent 

counts in non-overlapping areas have a Poisson distribution conditional on a spatially varying 

intensity, 𝚲, (mean number of points per square area) (Diggle 2013). In particular, the spatially 

varying intensity of an IPP used for disease event data is assumed to factor into a deterministic 

component,𝑬, representing the background population of people at risk and a modeled 

component representing relative risk due to environmental heterogeneity (Lawson 2012). When 

the modeled component is also stochastic, the IPP is known as a Cox process (Diggle 2013). A 

Log-Gaussian Cox Process (LGCP) is a particularly flexible yet tractable Cox Process that uses 

the logarithm of a Gaussian Process (GP) to model the relative risk component of the intensity 

function (Møller, Syversveen, & Waagepetersen, 1998). A Bayesian hierarchical model for the 

LGCP is specified with the data layer having the disease counts, 𝑶, follow a Poisson distribution, 

a process layer specified by the logarithm of a Gaussian Process (GP) and the prior layer 

Bayes’ Theorem (Hierarchical Models) 

Let Y represent the data,  

Z a latent process, 

 the parameters,  

and P(..) the probability function or density, then: 

𝑃(𝜃, 𝑍|𝑌) ∝ 𝑃(𝑌|𝑍, 𝜃)𝑃(𝑍|𝜃)𝑃(𝜃) 

where 𝑃(𝑌|𝑍, 𝜃) is the probability distribution of the data layer,  

𝑃(𝑍|𝜃) is the probability distribution of the process layer 

and 𝑃(𝜃) is the probability distribution of the prior layer. 
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specified by non-informative or weakly informative distributions for the parameters of the 

Gaussian Process.  

Bayesian Hierarchical Log Gaussian Cox Process 

           Data layer 

           

 

               Process layer 

 

 

                            Prior layer 

 

𝑶 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝚲)  

 
log(𝚲) = 𝑿𝜷 + 𝝎 + log (𝑬)  

𝝎 ~𝐺𝑃[0, 𝜎2𝑹(𝝓)]  

 
𝜷, 𝜎2, 𝝓 are given non-informative distributions 

 

 

A similar hierarchical model can be defined for spatial environmental data. When the 

data represent a continuous process such as temperature, the data layer is specified with the data 

following a Normal distribution, which depends on a mean parameter and a variance parameter. 

The process layer is specified with the mean parameter from the data layer as following a 

Gaussian Process and then the prior layer includes non-informative or weakly informative 

distributions for the parameters of the Gaussian Process. 

Bayesian Hierarchical Gaussian Process  

           Data layer 

           

 

               Process layer 

 

           Prior layer 

𝒀 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝝁, 𝜎𝑦
2)  

 

𝝁 = 𝑿𝜷 + 𝝎  

𝝎 ~𝐺𝑃[0, 𝜎𝜔
2 𝑹(𝝓)]  

 
𝜎𝑦

2, 𝜷, 𝜎𝜔
2 , 𝝓 are given non-informative distributions  

 

For high-dimensional parameter models, such as the hierarchical model, the normalizing 

constant of the posterior distribution, which is the denominator ∫ 𝑃(𝒀|𝜽)𝑃(𝜽)𝑑𝜽, is difficult to 

compute and/or may not have an analytical solution.  Modern Bayesian data analysis thus relies 

on Markov Chain Monte Carlo (MCMC) simulation or numerical approximations such as 
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Integrated Nested Laplace Approximation (Rue, Martino, & Chopin, 2009) to obtain samples 

from the posterior distribution. 

MCMC is an iterative sampling method that draws samples from approximate 

distributions, called transition distributions, which through the use of a Markov Chain are 

improved with each iteration and eventually converge to a target distribution which is the 

posterior distribution of the hierarchical model (Gelman et al., 2004, pp. 285-287). The transition 

distribution at any one time, 𝑡, depends only on the previous time, 𝑡 − 1. This is the defining 

characteristic of the Markov property. When the transition distribution is defined in such a way 

that the Markov chain is ergodic, there exists a steady state distribution. Furthermore, the 

transition distribution can be defined so that this steady state distribution is the posterior 

distribution.  For analysis, the beginning samples of the chain are discarded as warmup or burn-

in samples since these samples are not drawn from the converged distribution (Gelman et al., 

2004, pp. 294-295). In practice, it is not known how many iterations are needed before the chain 

converges to a steady state. Thus it is common to choose a large number of samples ahead of 

time and to discard a fixed number for warmup. Convergence is then verified by various methods 

such as running multiple chains simultaneously with different starting values and then comparing 

their post warmup samples using the Gelman-Rubin statistic, which calculates the ratio of the 

between chain variability to the within chain variability. Values of the Gelman-Rubin statistic 

that are close to 1 indicate the chains have converged (Gelman & Rubin, 1992). 

One general class of methods for constructing the transition distribution of a Markov 

chain that leads to an arbitrary posterior distribution is known as Metropolis-Hastings (Hastings 

1970). In this approach, after choosing starting values,𝜽0, proposal values for the next iteration, 
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𝜽∗, are drawn from a jumping distribution 𝐽𝑡(𝜽∗|𝜽𝒕−𝟏) and then the next values, 𝜽𝑡, 𝑡 = 1,2, … 

are determined by an acceptance rule: 

𝜽𝑡 = {
𝜽∗    𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦  min (1, r)

𝜽𝑡−1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                
 

where 

𝑟 =
𝑝(𝜽∗|𝑦)/𝐽𝑡(𝜽∗|𝜽𝑡−1)

𝑝(𝜽𝑡−1|𝑦)/𝐽𝑡(𝜽𝑡−1|𝜽∗)
 

If the jumping distribution is symmetric, as is the case for the Normal and Uniform distributions, 

then 𝐽𝑡(𝜽∗|𝜽𝑡−1) = 𝐽𝑡(𝜽𝑡−1|𝜽∗) and 𝑟 simplifies to  

𝑟 =
𝑝(𝜽∗|𝑦)

𝑝(𝜽𝑡−1|𝑦)
 

This was an assumption used in the original Metropolis algorithm (Metropolis, Rosenbluth, 

Rosenbluth, Teller, & Teller, 1953). Note that 𝑝(𝜃𝑡|𝑦) is the posterior distribution, which is 

always known up to a normalizing constant and the ratio of 
𝑝(𝜽∗

|𝑦)

𝑝(𝜽𝑡−1
|𝑦)

 does not depend of this 

normalizing constant. In cases where the full conditional posterior distribution 𝑃(𝜃𝑖|𝜃−𝑖, 𝑌) of 

the parameter 𝜃𝑖 is known, where 𝜃−𝑖 denotes all 𝜃 except for 𝜃𝑖, the parameters can be sampled 

directly. This individual direct sampling is known as Gibbs sampling (Gelman et al., 2004, pp. 

287 -288). If the unknown parameters can be circularly sequenced so that for each parameter in 

the sequence the full conditionals are known, then the Gibbs sampler lends itself for a sequential 

framework of individual parameter updating which has become the core of MCMC.  If for any 

parameter in the sequence, the full conditional is not known, a Gibbs sampler step is replaced by 
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the more general Metropolis (Hastings) step.  This is generally referred to as "Metropolis within 

Gibbs" MCMC. 

The use of a jumping distribution in the Metropolis Hasting algorithm and the Gibbs 

Sampler results in a random walk Markov Chain. When attempting to sample from a hierarchical 

distribution, the behavior of a random walk Markov Chain can be quite undesirable as it may not 

efficiently explore the posterior distribution and samples may retain significant autocorrelations. 

There are a number of remedies suggested in the literature such as running the chain much longer 

than would be necessary to reach a desired Monte Carlo error threshold, and then to thin the 

chain, throwing out every nth sample (Gelman et al., 2004, pp. 291-308). 

An alternative to a random walk Metropolis, is to use Hybrid or Hamiltonian Monte 

Charlo (HMC), which instead of using a jumping distribution, uses Hamiltonian dynamics to get 

a proposal value. In order to use Hamiltonian dynamics, extra “momentum” variables are 

introduced and the leapfrog method is generally used to approximate the system (Neal 2011). 

Since the leapfrog method is time reversible, after the proposal values, 𝜽∗, are obtained, the next 

values of the Markov chain, 𝜽𝑡, 𝑡 = 1,2, … can be determined as in the original Metropolis 

algorithm (Metropolis et al., 1953) by the acceptance rule: 

𝜽𝑡 = {
𝜽∗  𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 min(1, 𝑟)            

𝜽𝑡−1   𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − min (1, 𝑟)
 

where 

𝑟 =
𝑝(𝜽∗

|𝑦)

𝑝(𝜽𝑡−1
|𝑦)

  . 

MCMC designed using HMC can converge to the steady state distribution with less 

iterations and posterior samples will have much less autocorrelations than MCMC designed 
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using random walk Metropolis, provided careful tuning of the step size and number of steps for 

the leapfrog algorithm is implemented (Neal 2011). However, Hoffman and Gelman (2014) have 

developed an implementation of HMC called the No-U-Turn Sampler (NUTS) that eliminates 

the need to preset the number of steps and adaptively selects the step size making it useful for 

ready-to-use software available to general practitioners. The No-U-Turn Sampler is the default 

sampler available in the recently developed Stan software (Stan Development Team 2016).  

For hierarchical models having a data layer defined by a probability distribution of the 

exponential family and a process layer defined by a Gaussian Markov Random Field, a 

numerical approximation known as Integrated Nested Laplace Approximation (INLA) can be 

used for very fast estimation of the posterior marginal distributions, which in the cases of non-

Gaussian data probability distributions have no closed form solution (Rue et al., 2009). The Log-

Gaussian Cox Process is such an example. INLA estimates the marginal posterior distributions 

𝑃(𝑧𝑖|𝒚) = ∫ 𝑃(𝑧𝑖| 𝜽, 𝒚)𝑃(𝜽|𝒚) 𝑑𝜽 

and 

𝑃(𝜃𝑗|𝒚) = ∫ 𝑃(𝜽|𝒚)𝑑𝜽−𝒋 

by obtaining a Laplace approximation for 𝑃(𝜽|𝒚), a Laplace approximation for 𝑃(𝑧𝑖| 𝜽, 𝒚) and 

then using these approximations in a numerical integration (Rue et al., 2009). This is 

computational fast because 𝜽 has few dimensions and the Gaussian Markov Random Field’s 

precision matrix is sparse.  A Laplace approximation uses the Gaussian density to approximate 

an integral (Gelman et al., 2004, pp. 341-342). There is debate about whether in practice INLA 

or MCMC is better for Bayesian posterior model estimation (Taylor & Diggle, 2014). However, 
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opponents of INLA still agree INLA can be particularly useful for model selection when many 

candidate models are available for consideration (Diggle, Moraga, Rowlingson, & Taylor, 2013). 

4.2 INTRODUCTION TO GAUSSIAN PROCESSES 

A Gaussian Process, 𝐺𝑃(𝜃), is a real-valued function having domain 𝜃 ∈ ℝ𝑑, where in 

the analysis of spatio-temporal data 𝑑 = 3, such that for any {𝜃𝑛| 𝑛 ∈ ℕ}, 𝒀 =

[𝐺𝑃(𝜃1) … 𝐺𝑃(𝜃𝑛)] has a 𝑛-dimensional multivariate Normal distribution with probability 

density function 

𝑓(𝒙) = (2𝜋)−
𝑛

2|𝜮𝑛𝑥𝑛|−
1

2 𝑒𝑥𝑝 {−
1

2
(𝒚 − 𝝁)′𝜮−1(𝒚 − 𝝁)}  

where 𝛴 is required to be positive definite (Rasmussen & Williams, 2006).  

The Gaussian Process is characterized by a mean function 𝐸[𝐺𝑃(𝜃)] and covariance 

function 𝐶𝑜𝑣[𝐺𝑃(𝜃1, 𝜃2)]. The mean function is generally interpreted in the spatio-temporal 

context to describe large-scale space-time trends, while the covariance function describes small-

scale dependencies or autocorrelations, although trends and autocorrelations are not necessarily 

mutually exclusive properties. For example, with the right set of basis functions 𝑔𝑛(𝑿) that span 

the spatio-temporal domain, the variability of the observed process 𝒀 can be explained by the 

mean function 𝐸[𝐺𝑃(𝜃)] = ∑ 𝑔𝑛(𝑿)𝑛  and a simple covariance function 

𝐶𝑜𝑣[𝐺𝑃(𝜃𝑖 , 𝜃𝑗)] = {
0   𝑖 ≠ 𝑗

𝜎2  𝑖 = 𝑗
, 

 which implies the space-time locations 𝜃 are independent conditional on the basis functions. In 

this case, the probability density function simplifies to a product of 𝑛 univariate Normal densities, 

and this is the widely used multiple linear regression model. On the other hand, the same 
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observed process 𝒀 can be explained by a constant mean function 𝐸[𝐺𝑃(𝜃)] = 𝜇 and a complex 

covariance function 

𝐶𝑜𝑣[𝐺𝑃(𝜃𝑖 , 𝜃𝑗)] = {
𝜌𝑖𝑗𝜎𝑖𝜎𝑗    𝑖 ≠ 𝑗

𝜎𝑖
2           𝑖 = 𝑗

, 𝑤ℎ𝑒𝑟𝑒 𝜌𝑖𝑗 = 𝜌𝑗𝑖 . 

This second method implies the interpretation that the process is generated chiefly by the 

dependence structure, and this is a form of non-parametric regression (Rasmussen & Williams, 

2006, pp. 2).  

In practice, simplifying assumptions are needed for the mean function and/or the 

covariance function in order for estimation from observed data to be possible, and the choice 

between modeling the mean or the covariance is often based on the scientific theory about how 

the data are likely generated. In the spatio-temporal context where data commonly exhibit 

positive spatial and/or temporal correlations, it is common to model some or all of the variation 

in the covariance function, and even when much of the variation can be explain by predictor 

variables in the mean function, prediction can be improved by not assuming an independent 

covariance function. 

The requirement of positive definiteness for the covariance function limits the types of 

covariance functions one can use. In general, the choice of covariance function is motivated by 

the form of the observed data. When modeling spatial data observed at irregular point locations 

known as geostatistical data, it is common to calculate an empirical variogram, which compares 

the value of the measured variable to pairwise distances between locations at which it was 

measured. The variogram is then used to choose a particular covariance function from a list of 

functions known to satisfy the positive definiteness requirement. The most widely used class of 
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geostatistical covariance functions is the Matérn class (Stein 1999), which under the assumptions 

of stationarity and isotropy is defined as: 

Cov(ℎ) =
𝜎2

𝛤(𝜈)2𝜈−1
(𝜅ℎ)𝜈𝐾𝜈(𝜅ℎ), ℎ ≥ 0 

where ℎ = ‖𝜃𝑖 − 𝜃𝑗‖ , 𝜈 > 0 is a smoothing parameter, 𝜅 > 0 is a range parameter and 𝐾𝜈(∙) is 

the modified Bessel function of the second kind. The exponential covariance function is a special 

case of the Matérn when 𝜈 =
1

2
, and the Gaussian or squared exponential covariance function is a 

special case as 𝜈 →  ∞. Stationarity is the assumption that dependency is a function of distance 

alone, and isotropy is the assumption that dependency is not a function of direction. These are 

common assumptions when other variables are used in the mean function to describe large-scale 

spatial trends. However, for examples of non-stationary spatial covariance functions see 

Sampson and Guttorp (1992), Higdon (1998), Nychka, Wikle and Royle (2002), and Paciorek 

(2006). 

When spatial data are observed at regular locations on a grid or as aggregated spatial 

units such as administrative districts known as areal data, Gaussian Markov Random Fields 

(GMRF) are commonly used to model the dependency structure (Rue & Held, 2005).  

Definition (Rue & Held, 2005, pp. 21-22): 

A GMRF is a random vector 𝒙 having a multivariate Normal distribution with mean vector 𝝁 and 

positive definite precision matrix (inverse of the covariance matrix) 𝑸, where 𝒙 is indexed by a 

set 𝒱 = {1, … , 𝑛} containing the vertices of an undirected labeled graph 𝐺, and 𝑄𝑖𝑗 ≠ 0 when 

{𝑖, 𝑗} ∈ ℰ for 𝑖 ≠ 𝑗. ℰ is the set of two element subsets of 𝒱 called the set of edges in the labeled 

graph 𝐺.  



 47 

Thus, the dependence structure of a GMRF is determined by the edges ℰ in the graph 𝐺. In 

particular, by the defining the neighbors of the vertex 𝑖 as:  

𝑛𝑒(𝑖) = {𝑗 ∈ 𝒱 ∶ {𝑖, 𝑗} ∈ ℰ} 

the conditional distribution of 𝑥𝑖 ∈ 𝒙 given 𝒙−𝑖, which denotes all 𝑥 ∈ 𝒙\𝑥𝑖 is as follows: 

𝑃(𝑥𝑖|𝒙−𝑖) = 𝑃(𝑥𝑖|𝒙𝑛𝑒(𝑖)). 

In general the edges are defined so that the dimension of 𝒙𝑛𝑒(𝑖) is much smaller than the 

dimension of 𝒙−𝑖, and the conditional distributions give a convenient and computationally 

simplified form of specifying the GMRF for Bayesian estimation using a Gibbs sampler MCMC. 

The conditional specification of the GMRF was pioneered by Besag (1974) and is 

commonly referred to by the name conditional autoregression or CAR model. One of the most 

commonly used CAR in hierarchical models is the intrinsic conditional autoregression (ICAR) 

model (Besag & Kooperberg, 1995). It has been used extensively in disease mapping 

applications where the data follow a Poisson distribution. One reason for the use of these models 

in disease mapping is that standardized incidence ratios (SIR) may be unstable when estimating 

risks of rare diseases and/or diseases is small populations and spatial models enable the pooling 

of many SIR’s thus overcoming the small populations (or small area) problem (Waller & Gotway, 

2004, pp. 97). In particular the conditional distributions of the ICAR model are specified as: 

𝑥𝑖|𝒙−𝑖 ~ 𝑁𝑜𝑟𝑚𝑎𝑙 (�̅�𝑛𝑒(𝑖) ,
𝜎2

𝑑𝑖
  ) 

where �̅�𝑛𝑒(𝑖) is the mean of the neighbor vector 𝒙𝑛𝑒(𝑖) and 𝑑𝑖 is the number of neighbors or the 

dimension of 𝒙𝑛𝑒(𝑖). Thus the ICAR smooths an unstable SIR with an average of the neighboring 

regions’ SIRs. The joint distribution implied by the conditional distribution of the ICAR is 
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however improper because the covariance matrix is only semi-positive definite (singular matrix), 

but it can still be used in a hierarchical model because when combined with the data likelihood, it 

leads to a proper posterior. In particular, the ICAR’s distribution is proper for a 𝑛 − 1 

dimensional multivariate normal distribution, and so the interpretation is that the ICAR models 

the residuals. Another model commonly used in disease mapping applications known as the 

Besag-York- Mollie (BYM) is a convolution of the ICAR with independent random effects, 

where the ICAR models spatial clustering and the independent random effects model region 

wide heterogeneity (Besag, York, & Mollié, 1991).  

A proper conditional autoregression (CAR) model can be specified when modeling areal 

data in a non-hierarchical model. A common specification for a proper CAR generalizes the 

ICAR model by introducing a parameter 𝜌, which is often restricted to [0,1). Thus 𝜔 is a proper 

CAR if 

𝜔 ~ 𝑁(𝝁, 𝜎2𝑸−1) 

𝑸 = 𝑫 − 𝜌𝑨                                                   [4.2.1]  

where 𝑁( ) denotes the 𝑛-dimensional multivariate Normal distribution, 𝑨 is the 𝑛 by 𝑛 

adjacency matrix defined by the graph 𝐺, and 𝑫 is the diagonal 𝑛 by 𝑛 matrix of row sums of 𝑨 

(Besag & Kooperberg, 1995). The restriction of 𝜌 to [0,1) is generally used because positive 

spatial correlation is more common in real-world applications. Recall positive spatial correlation 

is when data at close locations are more alike. Alternatively 𝜌 < 0 implies data are negatively 

correlated, meaning dissimilar values are close together, which is rarely seen in practice.  

However, the restriction of 𝜌 to [0,1) is not necessary for Q to be nonsingular. In fact, it is 
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sufficient that 𝜌 ∈ (
1

min 𝝀
,

1

max 𝝀
) where 𝝀 is the vector of eigenvalues for 𝑫−1𝑨 (Banerjee, Carlin, 

& Gelfand, 2004, p. 80).  

4.3 COMPUTATIONAL EFFICIENCY ISSUES 

In the analysis of spatial public health data, the distinction between the form of Gaussian 

process used, Matérn covariance function for case event data versus Gaussian Markov Random 

Field for case count data, comes in whether the intensity function is believed to be continuous or 

piecewise constant. This distinction is blurred however since a continuous function can be 

approximated by a piecewise constant function. For example, Li et al. (2012) note that the 

Besag-York-Mollié (BYM) model is a special case of the LGCP where the log-intensity is 

modeled as a piecewise constant function on the areal units. Li et al. (2012) further note that if 

the areal units are meaningful to the disease in question the BYM model would be a sufficient 

parameterization of the LGCP. However, when the areal units are unrelated to the disease in 

question, as is often the case, the assumption of the constant intensity within the arbitrary 

aggregation units may be poor. Furthermore, since spatial structure for the BYM model is 

dependent on a graph 𝐺 defined by the boundaries around the arbitrary regions, the overall 

estimated spatial properties of the process may be poor (Wall 2004). It is for these reasons, Wall 

(2004) recommends the use of a spatial structure that is a function of distance, which would be 

the case with a LGCP having a Gaussian Process with Matérn covariance function. 

However, when fitting a LGCP with a distance based covariance function over a large 

spatial extent, model estimation suffers “the Big-N problem” (Banerjee, Gelfand, Finley, & Sang, 

2008), which is the computational bottleneck created from the covariance matrix inversion 

calculation that takes 𝑂(𝑛3) flops, when 𝑛, representing the number of spatial locations, is large. 
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Diggle et al. (2013) recommends the use of a computational grid (regular lattice) in combination 

with spectral decomposition of the covariance function to speed estimation. Diggle et al. (2013) 

demonstrates the use of this computational grid to aggregate case event data and to change the 

aggregation of case count data using the data augmentation step proposed by Li et al. (2012) in a 

number of applications ranging from tree density estimation to a spatio-temporal model for 

gastro-enteric disease (food poisoning) risk prediction. Waagepetersen (2004) justifies the use of 

the regular lattice and shows that the approximate posterior expectations of the LGCP converge 

to exact posterior expectations when lattice cell sizes tend to zero. However after further study of 

the discretization resolution effects on the posterior expectations, Waagepetersen (2004) cautions 

that in practice a given discretization should be interpreted with care and researchers should test 

a few different grid resolutions. To determine an appropriate resolution in practice, Diggle et al. 

(2013) recommends the use of minimum contrast estimates to obtain a preliminary estimate of 

the spatial variability of the disease process and then to choose a resolution that is smaller than 

the disease process spatial variability but still large enough to be computationally feasible.  

When the spatial extent is very large and the spatial variability very small, one may not 

be able to reach a sufficient compromise in the choice of a grid resolution. Decreasing the 

number of locations in the grid is not however the only method to deal with “the Big-N problem”. 

In fact the computational bottleneck of the distance based LGCP is more importantly related to 

the structure of covariance matrix of the GP. As long as the covariance matrix is sparse (many 

zero’s in off diagonal elements), parameter estimation can still be computational feasible even 

for a large number of locations.  

One advantage of GMRF models over general geostatistical models is that the likelihood 

calculation does not require the inversion of the covariance matrix since the precision matrix 
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(inverse of the covariance matrix) is modeled directly and because of the Markov Property, 

which informally states that a value at one location only depends on its neighbors and not all 

other locations, the precision matrix of the GMRF is sparse. Furthermore, Lindgren et al. (2011) 

show that the stochastic partial differential equation having a GP with the Matérn covariance 

function as an exact solution, has a finite element method weak solution which is equivalent to a 

GMRF. Since the Matérn covariance function is the most popular covariance function used for 

modeling GPs this is a very useful result. Thus, by using a regular lattice to aggregate disease 

cases in combination with a specification of the GMRF as given in Lindgren et al. (2011), one 

can have a faster estimation than if a distance based covariance function is used, particularly 

since INLA is a estimation method that can be used with these models (Rue et al., 2009), and the 

result will not give the undesirable properties demonstrated by Wall (2004). 

 

4.4 GAUSSIAN MARKOV RANDOM FIELDS FOR SMOOTH PROCESSES 

Pettitt, Weir and Hart (2002) make use of the computational advantage in using GMRF 

models to define a proper CAR for irregularly spaced spatial data, the PWH CAR. The data 𝒛 =

(𝑧1, 𝑧2, … , 𝑧𝑛)′ observed at locations {𝑠1, 𝑠2, … , 𝑠𝑛} is said to be distributed PWH CAR if 

𝒛 ~ 𝑁(𝝁, 𝜎2𝑸−1 ) 

𝑸 = 𝑰 + |𝜙|𝑫 − 𝜙𝑨 = {

𝑰 − 𝜙(𝑨 − 𝑫),   𝜙 > 0,
𝑰,                           𝜙 = 0,

𝑰 − 𝜙(𝑨 + 𝑫),   𝜙 < 0,
 

where 𝑁( ) denotes the 𝑛-dimensional multivariate Normal distribution, 𝑰 is the 𝑛 by 𝑛 identity 

matrix, 𝑫 is the diagonal 𝑛 by 𝑛 matrix of row sums of 𝑨 , and 𝑨 = [𝛾𝑖𝑗] is an 𝑛 by 𝑛 matrix. 

The elements of 𝑨 are defined by  
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𝛾𝑖𝑗 = {
𝛾(𝑑𝑖𝑗),    𝑖 ≠ 𝑗,

0,            𝑖 = 𝑗,
                                                                  [4.4.1] 

where 𝑑𝑖𝑗 denotes the Euclidean distance between locations 𝑠𝑖 and 𝑠𝑗 and 𝛾: [0, ∞) → [0, ∞) is 

continuous and non-increasing on [0, 𝛿) and zero on [𝛿, ∞), where 𝛿 > 0 (2002). Since 𝑑𝑖𝑗 = 𝑑𝑗𝑖  

and 𝛾(𝑑𝑖𝑗) ∈ ℝ, the matrices 𝑨 − 𝑫 and 𝑨 + 𝑫 have an eigenvalue decomposition. Let the 

eigenvalue decomposition of 𝑨 − 𝑫 be 

𝑨 − 𝑫 = 𝑬𝚲𝐄′ 

and then  

𝑰 − 𝜙(𝑨 − 𝑫) = 𝑰 − 𝜙𝑬𝚲𝑬′ = 𝑬(𝑰 − 𝜙𝚲)𝑬′ 

and thus the PWH CAR not only avoids the covariance matrix inverse calculation by directly 

specifying the precision matrix, but also simplifies the calculation of the covariance matrix’s 

determinant, which is also needed for the likelihood calculation. This is because the determinant 

of Q is the product of its eigenvalues, 𝜻, which can be calculated as 

휁𝑖 = {

1 − 𝜙𝜆𝑖,   𝜙 > 0,
1,                𝜙 = 0,
1 − 𝜙𝑣𝑖 ,   𝜙 < 0,

 

where 𝝀 are the eigenvalues of 𝑨 − 𝑫 and 𝒗 are the eigenvalues of 𝑨 − 𝑫. 

The PWH parameterized CAR can be further adjusted for computational efficiency 

through the use of a pre-whitening transformation as defined in Linder (2001), where the PWH 

CAR is used to model average March 1990 air temperatures measured at irregularly spaced 

stations located in the Beaufort region of the pan-arctic and then to spatially interpolate these 

temperatures to a fine grid over the entire region. When data are assumed to exhibit positive 

spatial autocorrelation, the precision matrix of PWH CAR simplifies to: 

𝑸 = 𝑰 − 𝜙(𝑨 − 𝑫) 
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where 𝜙 ∈ [0, ∞), which can be alternatively represented by its eigenvalue decomposition. 

𝑸 = 𝑬(𝑰 − 𝜙𝚲)𝑬′ 

The eigenvectors, columns of 𝑬, contain the spatial structure of the data, i.e. represent the data’s 

patterns of spatial clustering at different scales (Paciorek 2013; Hughes & Haran, 2013), and are 

not dependent on the parameter 𝜙. Thus applying a linear transformation of the data 𝒛 =

(𝑧1, 𝑧2, … , 𝑧𝑛)′ defined by 𝑬′ removes the spatial structure 

𝑬′𝒛 ~ 𝑁(𝑬′𝝁, 𝜎2𝑬′𝑸−1𝑬 ) 

𝑬′𝑸𝑬 = 𝑬′𝑬(𝑰 − 𝜙𝚲)𝑬′𝑬 = (𝑰 − 𝜙𝚲) 

𝑬′𝒛 ~ 𝑁(𝑬′𝝁, 𝜎2(𝑰 − 𝜙𝚲)−1 ) 

and allows for fast estimation of the model parameters (Linder 2001).  

Although this pre-whitening transformation significantly speeds the estimation of the 

PWH model parameters, the initial calculation of the eigenvalue decomposition for 𝑸 would 

require significant memory resources and calculation time for a very large number of locations. 

However, when the neighbor structure of the data can be mapped to a torus, 𝑄 will be circulant 

and the Fast Fourier Transform can be used to remove the spatial structure from the data (Rue & 

Held, 2005; Hupper 2005; Yuan 2011). Techniques for mapping a neighborhood structure from 

an irregular region to a torus known as circulant embedding are beyond the scope of this 

dissertation but the interested reader can find more details in (Wood & Chan, 1994), (Stroud, 

Stein, & Lysen, 2016), and (Guinness, Fuentes, Hesterberg, & Polizzotto, 2014). 

Despite the computational advantages of the PWH CAR that can be used for both 

geostatistical and areal data, it has been criticized for being too simplistic for use in many 

geostatistical data applications and for being restrictive (Lindgren et al., 2011; Paciorek 2013; 

Czado & Prokopenko, 2008). In particular, Paciorek (2013) shows that distance based CARs 
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such as the PWH CAR poorly represent very smooth spatial processes in comparison to the 

second-order CAR defined by Rue and Held (2005, pp.  114-116) despite the inclusion of more 

neighbors at farther distances. Furthermore, Czado and Prokopenko (2008) argue that the PWH 

CAR is restrictive because as 𝜙 → ∞, the conditional variance of 𝑧𝑖|𝑧−𝑖 approaches 0. 

Alternatively, when the precision matrix of the PWH CAR is modified to: 

𝑸 = 𝑰 + |𝜓|(𝑫 − 𝑰) − 𝜓𝑨 

where 𝜓 =
𝜙

1+𝜙
∈ (−1,1), the conditional variance of 𝑧𝑖|𝑧−𝑖 approaches 

𝜎2

𝑑𝑖
 as 𝜙 → ∞ (2008).  

Note that is the same conditional variance implied by the ICAR.  

 Czado and Prokopenko (2008) use the modified PWH CAR in a hierarchical model with 

data layer defined by a binary distribution. However, a similar model known as the Leroux CAR 

(Lee, 2011) has been used when the data layer is defined by the Poisson distribution in the 

disease mapping literature. In this case, 𝜓 ∈ [0,1) and the precision matrix becomes: 

𝑸 = (1 − 𝜓)𝑰 + 𝜓(𝑫 − 𝑨) 

Lee (2011) argues that the Leroux CAR is better than the BYM since it only uses one set of 

random effects but still allows for a combination of spatial dependence implied by the ICAR and 

spatial independence. 

Both the inability to model smooth processes and the restrictive conditional variance of 

the PWH CAR can be remedied in one parsimonious two-parameter model proposed by Hupper 

(2005) and improved by Yuan (2011), called the Extended Autoregression (EAR). The data 𝒛 =

(𝑧1, 𝑧2, … , 𝑧𝑛)′ observed at locations {𝑠1, 𝑠2, … , 𝑠𝑛} are said to have an EAR distribution if 

𝒛 ~ 𝑁(𝝁, 𝜎2𝑸−1 )                                                [4.4.2]  

𝑸 = [𝑰 − 𝜓(𝑨 − 𝑫 + 𝑰)]𝜃 
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where 𝑨, 𝑫,  and 𝑰 are defined as in the PWH CAR, and 𝜓 is defined as in the modified PWH 

CAR (Yuan, 2011). 

Additionally, the modified PWH CAR (Czado and Prokopenko, 2008) is a special case of 

the EAR when 𝜃 = 1, thus the EAR retains the computational advantages available in the PWH 

CAR, such as the computational efficient form for the determinant of the precision matrix and 

the pre-whitening transformation defined in Linder (2001). Furthermore, since the modified 

PWH CAR (2008) is equivalent to the Leroux CAR (Lee, 2011), the Leroux CAR is also a 

special case of the EAR when 𝜃 = 1. Thus, the EAR’s precision matrix can also be thought of as 

a linear combination of spatial independence and spatial dependence as defined by the ICAR. 

Hupper (2005) showed the EAR model when defined for data that are observed on a 

regular lattice where 𝛿 = 1 and 𝛾(𝑑𝑖𝑗) = 1 is useful for modeling smooth processes. In 

particular, Hupper used the EAR to model spatially varying temporal trend components in a 

hierarchical model for an application of gridded river runoff data from the pan-Artic region. The 

principal goal of her analysis was to determine locations within the larger region that had 

significant changes in river runoff over time, while also accounting for spatial correlations 

between nearby locations that may exhibit extreme smoothness. When compared with a by pixel 

simple linear regression approach and a hierarchical model with intercept and trend components 

specified with a PWH CAR prior, the hierarchical model with EAR specified intercept and trend 

components estimated more regions with a significantly positive or negative change. 

Yuan (2011) further investigates the properties of the EAR when defined for data that are 

observed on a regular lattice where 𝛿 = 1 and 𝛾(𝑑𝑖𝑗) = 1. Yuan (2011, p. 93) showed that the 

EAR model is equivalent to the higher-order CAR given by Rue and Held (2005, pp.  114-116) 
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when defined on a torus. Yuan (2011, pp.  95-96) further showed that there is an identifiability 

issue between the EAR smoothing parameter 𝜃 and the EAR interaction parameter 𝜓, which is 

similar to the identifiability issue found in geostatistical models using a Matérn class covariance 

between the range 𝜅 and smoothing parameter 𝜈 (Zhang, 2004). In order to deal with this 

identifiability issue, Yuan (2011) proposes a new EAR called the intrinsic EAR (IEAR) model, 

similar to ICAR (Besag & Kooperberg, 1995), which is an EAR model with 𝜓 = 1. The 

precision matrix for the IEAR is then as follows: 

𝑸 = [𝑫 − 𝑨]𝜃 

where 𝑨, and 𝑫, are defined as in the EAR (Yuan, 2011). Like the ICAR, the IEAR is an 

improper distribution, but proper in 𝑛 − 1 dimensions, and can only be used as a latent process in 

a hierarchical model.  

Yuan (2011, pp.  96) notes that in the case of space-time data such as in the application 

considered by Hupper (2005) the repeated spatial measurements at different times would be 

sufficient to resolve the identifiability issue between the smoothing and interaction parameters of 

the EAR. However, when the EAR model is used as a latent process for spatial random effects in 

addition to other regression parameters, the spatial random effects are collinear with the 

regression parameters, and inference on the regression parameters may be unreliable. This 

follows from an argument given by Reich et al. (2006) who showed that when ICAR spatial 

random effects are used in additional to regression variables, the spatial random effects will be 

collinear with the regression variables. Consider the case of the intensity function in the process 

layer of a LGCP used to model disease case counts:  

log(𝚲) = 𝑿𝜷 + 𝝎 + log (𝑬) 
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Furthermore recall that the precision matrix in the EAR model can be written as the eigenvalue 

decomposition: 

𝑸 = 𝑬(𝑰 − 𝜓𝚲)𝜃𝑬′ 

where  

𝑬𝚲𝐄′ = 𝑨 − 𝑫 + 𝑰 

The process layer can then be written as 

log(𝚲) = 𝑿𝜷 + 𝑬(𝑬′𝝎) + log (𝑬) 

where 𝑬 can be thought of as the design matrix for the transformed random effects 𝑬′𝝎. Then 

since the columns of design matrix 𝑬 are 𝑛 orthogonal eigenvectors that span the space of ℝ𝑛, 

the columns of 𝑿 are linear combinations of the columns of 𝑬, i.e. 𝑿 and 𝑬 are collinear. 

The issue of collinearity is a problem (as for non-spatial regression) when the goal of the 

study is scientific explanation because it causes variance inflation that may make important 

predictors appear insignificant. The ICAR and EAR model are not the only models with this 

disadvantage, as Hughes (2015) remarks that the argument used by Reich et al. (2006) could be 

used to show that any spatial random effects, ones with a proper CAR distribution or even a GP 

with distance based covariance function, are collinear with regression variables. Reich et al. 

(2006) note that the variance inflation will be particularly problematic in the Bayesian 

framework context if there is little smoothing from the prior distribution of the variance 

parameter 𝜎2 given in [4.4.2] and when columns of 𝑿 are nearly collinear with the columns of 𝑬 

associated with the smallest eigenvalues (𝑰 − 𝜙𝚲)𝜃. 

As an example, consider the relationship between an EAR process defined on the 4 by 4 

regular square lattice with 𝛿 = 1 and 𝛾(𝑑𝑖𝑗) = 1 and the common set of spatial regression 
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covariates including an intercept and the positive diagonal gradient. The eigenvalues of 𝑸 =

𝑬(𝑰 − 𝜓𝚲)𝜃𝑬′ when 𝜃 = 1 and 𝜓 = 0.5 range from 0.5 to about 4 (Figure IV-1) with three 

eigenvalues less than 1. The corresponding eigenvectors for these three smallest eigenvalues 

show the same spatial patterns as the spatial regression covariates. Thus variance inflation would 

be a problem here if the spatial regression covariates were of particular scientific interest. 

  

 

Eigenvalues of Q Eigenvectors of Q Spatial Regression Covariates 

Figure IV-1. Eigenvalues and Eigenvectors of EAR’s precision matrix Q compared with Spatial Regression 

Covariates 

As an aside, this example also helps to illustrate why the EAR process can model smooth 

processes. The smallest eigenvalues of Q (the precision) are the largest values of the variance-

covariance matrix, since these are inversely related. In particular, as the smoothing parameter 

𝜃 → ∞, the eigenvalues of Q less than 1 will approach 0, which means in the variance they will 

get very large, while the eigenvalues of Q greater than 1 will be diminished in the variance. 

Furthermore, the eigenvectors associated with the smallest eigenvalues of Q represent large-scale 

spatial variability, so as their corresponding eigenvalues become larger these will dominate the 

spatial correlation structure. This can be seen in the simulated mean 0 EAR process defined on 

the 10 by 10 regular square lattice with 𝛿 = 1 and 𝛾(𝑑𝑖𝑗) = 1 (Figure IV-2). 
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𝜃 = 1 (CAR) 𝜃 = 4 𝜃 = 8 

 
Figure IV-2. Simulated EAR process with mean 0 and 𝜓 = 0.5 for different values of 𝜃 

Given the collinearity between regression covariates and spatial random effects, one may 

simply prefer to use the regression covariates without the random effects when a scientific 

explanation of the regression parameters is of interest, but then regression parameters will be 

biased due to the spatial correlation in the data. In the case of the ICAR random effects, Reich et 

al. (2006) offers a solution that transforms the ICAR random effects in such a way that the 

random effects will smooth orthogonal to the regression covariates. Hughes and Haran (2013) 

improve on this transformation of the ICAR random effects to account for the structure of the 

underlying graph 𝐺 and further reduce the dimensions of the random effects to improve 

computational efficiency using MCMC.  Hughes (2015) notes that the use of the augmented 

linear predictor (transformation) in the case of the ICAR random effects cannot easily be used in 

an efficiently computationally way when a proper CAR (Besag & Kooperberg, 1995) is used. 

This is because in the proper CAR as defined by [4.2.1] the eigenvectors and not just the 

eigenvalues of the precision matrix depend on a parameter 𝜌. However, in the case of the PWH 

CAR (Pettitt et al., 2002), the modified PWH CAR (Czado & Prokopenko, 2008), and the EAR 

model (Hupper 2005; Yuan 2011), the eigenvectors do not depend on any of the precision matrix 

parameters, and thus the methods described in Reich et al. (2006) and Hughes and Haran (2013) 

could likely be extended to these models quite easily.  
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V SUMMARIZING DATA TO COMPUTATIONAL GRIDS  

5.1 COMPUTATIONAL GRIDS FOR ESTIMATING ALS RISK 

Following Diggle et al. (2013) a regular lattice (computational grid) is used to summarize 

ALS case counts across the NNE region. It is likely this aggregation scale will provide a better 

approximation of a believed continuous ALS risk function than the aggregations scales used by 

Caller et al. (2013), the census block group, and by Torbick et al. (2014), the census track, since 

the census unit aggregations are large in rural areas where there may be within census unit 

varying environmental heterogeneity due to the varying locations of lakes. A caveat in using the 

regular lattice computational grid is that properties of the background population used in the 

deterministic component of the spatially-varying intensity function are generally only available 

at census aggregation units (Diggle et al., 2013) that are spatially misaligned with the chosen 

computational grid. Diggle et al. (2013) notes that this can be somewhat avoided by using a 

modeled population product such as the Socioeconomic Data and Applications Center (SEDAC) 

available on 1km and 5km grids (Seirup & Yetman, 2006).  

In this study, two gridded population products at a 1km resolution representing the 

region’s population at the year 2000, one provided by the Socioeconomic Data and Applications 

Center (SEDAC) (2006) and the other a product of OakRidge National Laboratory (ORNL) 

called LandScan (LandScan 2000) are used to calculate the background population component of 
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the LGCP’s intensity function and are compared for model sensitivity due to small differences in 

the backgrounds. However, since a 1km resolution would require a 221,232 by 221,232 

adjacency matrix (the neighbor structure matrix) to be saved in memory, which was not possible 

on the 2.4 GHz Intel Core i5 with 16GB of memory used for the analysis, two coarser resolutions, 

one at a 4km resolution and another at a 8km resolution, are chosen, which attempt to balance 

computational efficiency with disease process spatial variability and confidentially concerns. 

The choice of the 4km resolution was based on crude preliminary values of Exponential 

covariance function parameters estimated (scale and variance) via minimum contrast following 

the recommendation of Diggle et al. (2013).  Minimum contrast estimates parameters by 

minimizing the squared discrepancy between the assumed parametric form of the point process’s 

second-order characteristics and a nonparametric estimate (Taylor, Davies, Rowlingson, & 

Diggle, 2015). Minimum contrast estimation was carried out using the function 

minimum.contrast() in the R package lgcp (Taylor et al., 2015). This function requires coordinate 

locations of case event data specified for a given border region. Longitude/latitude coordinates of 

the 764 cases across all NNE were re-projected so that distances between points would be 

calculated in meters and U.S. Census Tiger shapefiles of the states of Vermont, New Hampshire 

and Maine were combined to define the border region (U.S. Census Bureau, 2013). Furthermore, 

the function allows for a deterministic background intensity and for a transformation function to 

be applied to function in the contrast, and requires a choice of non-parametric estimator based on 

either the pair correlation function 𝑔 or Ripley’s 𝐾 function (𝐾) (Taylor et al., 2015). Estimates 

of the scale parameter (in km) are given in the last column of Table V-1 based on the two 

different non-parametric estimators, a deterministic background derived from a smoothed 

version of the ALS case locations, and a logarithm transformation. The deterministic background 
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of smoothed ALS case locations used the R function density.ppp() from the R package spatstat, 

in which Diggle’s edge correction can be used (Table V-1 column diggle) and a standard 

deviation of the isotropic Gaussian kernel density can be specified (Table V-1 column Dens 

sigma) (Baddeley et al., 2015). 

Table V-1. Minimum contrast estimates of the scale and variance parameters for the exponential covariance 

 Non-parametric estimator Dens 

sigma 

diggle scale variance Squared_discrepancy scaleKM 

1 𝑔 NA F 5756.645 3.2236 8589.15 5.7566 

2 𝐾 NA F 4393.622 3.9716 2239.08 4.3936 

3 𝑔 NA T 5460.953 3.3737 10298.32 5.4610 

4 𝐾 NA T 4084.108 4.2457 2655.43 4.0841 

5 𝑔 10000 T 906.600 2.8840 16885.42 0.9066 

6 𝐾 10000 T 33.792 13.4065 28706.61 0.0338 

7 𝑔 5000 T 4048.825 0.0000 33755.66 4.0488 

8 𝐾 5000 T 4048.825 0.0000 94667.43 4.0488 

9 𝑔 30000 T 2563.726 3.9791 11518.09 2.5637 

10 𝐾 30000 T 1543.303 5.7505 7795.49 1.5433 

 

Values of the scale parameter in this investigation mostly ranged from about 1km to 5km, and 

4km resolutions had the lowest squared discrepancy.  

The 8km resolution was chosen since it is double that of the 4km resolution and because 

it may better represent some of the spatial uncertainty in the case locations, particularly the 9 

cases that have only a town name location. These towns ranged in area from 6.2km2 to 157.7km2 

with a median square area of 66.3km2. 

Following the definition of the 4 and 8km resolution computational grids, the three 

boundary regions, NNE, VTNH and VTNH_rmcty (Figure II-1), where used to crop the grids in 

order to investigate the effect of low case ascertainment assumed for all of Maine, parts of 

southern New Hampshire and southwestern Vermont. Water quality metrics were matched 

deterministically to the computational grids using several scales. 
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5.1.1 NNE 8km Computational Grid 

In a first analysis, the boundary area is set to the entire NNE region and the relationship 

between ALS risk and a location’s closest lake average water quality metrics is explored. In this 

analysis, the two suspected duplicate cases are not removed. Thus there are a total of 764 cases 

that are first rasterized to counts on the 1km SEDAC lattice, and then aggregated (counts 

summed) to the 8km resolution computational grid. 

Expected counts for this analysis were based on the SEDAC background population 

estimates only. The general procedure for calculating the expected counts was as outlined in 

Chapter II section 2.2. However, Age/sex specific rates included two more cases in total than 

was shown in Table II-2, and the original Census 2000 block age/sex totals were used as 

denominators instead of the SEDAC estimate totals. These counts are summarized in Table V-2. 

Furthermore, in the calculation of SEDAC estimated age/sex specific population counts by 1km 

lattice cells, census block polygons were directly rasterized to the 1km lattice. It is expected this 

procedure resulted in more uncertainty in densely populated areas than the method described in 

Chapter II section 2.2 that first rasterized polygons to a 20m lattice. 
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Table V-2. Age/sex class case and population counts 

 Age/sex classes ALS cases Census 2000 

1 F & 0-44 34.71 971469 

2 F & 45-54 74.38 236326 

3 F & 55-64 78.09 146905 

4 F & 65-74 74.38 115673 

5 F & 75-84 48.34 85539 

6 F & 85+ * 37291 

7 M & 0-44 74.62 979005 

8 M & 45-54 114.90 234088 

9 M & 55-64 93.57 142861 

10 M & 65-74 105.42 99533 

11 M & 75-84 48.56 56594 

12 M & 85+ * 14252 

Total: 764 3119536 

         *Values less than 10 are suppressed for privacy reasons. 

 

In order to account for the spatial misalignment between the lake polygons used for 

summarizing average Chl-a, SD and TN, and the 8km resolution computational grid, a distance 

and direction (azimuth: degrees of angle with respect to North) are calculated from case to 

nearest lake point using the R package geosphere (Hijmans, 2015).  Then the lake average SD, 

TN and Chl-a at the nearest lake, and distance and direction to closest lake point are averaged for 

all cases within the same 8km grid cell. Lake Champlain was excluded from the possible closest 

lake points considered lake average values of Chl-a, SD and TN were not calculated for this lake. 

When more than one case occur in the same 8km grid cell, there is the potential that the 

relationship between ALS risk and water quality at this 8km resolution is opposite from their 

relationship at the individual case scale. Table V-3 summarizes the frequencies of lattice cells by 

case count. 
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Table V-3. Lattice cell frequency by ALS case count 

ALS case count Lattice cell count 

0 3205 

1 312 

2 64 

3 34 

4 18 

5 7 

6 – 7 7 

8 - 13 7 

Total 3654 

 

For cells containing 0 cases, the centroid is used to calculate distance and direction to closest 

lake point, and SD, TN and Chl-a values for these cells are the lake average for the lake closest 

to the cell centroid. The average distance to nearest lake for each cell is then log-transformed and 

the direction for each cell is transformed to a sine and cosine component. An illustration of the 

effect of averaging distances and directions is shown in Figure V-1. 

 
Figure V-1.  Illustration of direction aggregation effect (colors red, brown, green, blue, orange, pink purple 

represent locations and their nearest lake) 

 

The illustration includes 5 visible lake polygons colored red, pink, orange, blue and 

purple, as well as 2 lake polygons colored green and brown that fall outside the image extent. 

Locations closest to a given lake appear in the same color as the lake polygon. Case locations are 
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represented by dots and centroid locations are represented by crosses and by the origin of the 

small black arrows. Crosses appear to indicate cell centroids when the cell has a 0 case count. 

The small black arrows point in the direction of the closest lake based on the aggregation scheme, 

average of all case directions within cell to nearest lake or direction of cell centroid to nearest 

lake. In several cases, the averaged direction agrees with the direction of the individual locations. 

For example, in the third column of the third row, the closest lake (blue) of all the individual 

locations are to the west of the blue lake. However, in some cases such the first column of the 

second row, individual locations are closest to different lakes in different directions. Thus the 

interpretation of the southwest-pointing arrow does not necessarily agree with the directions of 

the closest lakes at the individual level. In regions with many lakes close in distance, the effect of 

the averaged direction to closest lake will likely not be a good approximation of individual level 

locations.  

When the closest lake to a given grid cell centroid with no cases had a least one metric, 

Chl-a, SD and TN deemed as an outlier, the grid cell was removed from further analysis. This 

procedure removed 13 cells giving a final count of 3641 lattice locations covering most of NNE, 

which is shown in Figure V-2.  
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Figure V-2. NNE region overlaid with 8km resolution lattice (black cells are 13 excluded cells) 

 

5.1.2 VTNH and VTNH_rmcty 4 and 8km Computational Grids 

For the analysis of the relationship between ALS risk and water quality within the 

boundary areas of VTNH and VTNH_rmcty, both the 4km and 8km computational grids are 

compared as well as two sets of expected counts, one based on the SEDAC background 

population estimates and the other on the Landscan 2000 background population estimates. The 

general procedure for calculating the expected counts was as outlined in Chapter II section 2.2. 

Unlike in the 8km NNE analysis, age/sex specific rate denominators were based on the SEDAC 

and Landscan population backgrounds for the specific boundary areas. Also, unlike in the 8km 

NNE analysis, census block polygons were rasterized first to the 20m lattice and then aggregated 

to the 1km lattice for the calculation of age/sex specific population counts by 1km lattice cells. 

Furthermore, the two suspected duplicate cases are removed. Thus there are a total of 762 cases 
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that are first rasterized to counts on the 1km SEDAC lattice, and then aggregated (counts 

summed) to a 4km and 8km lattice, along with the expected counts.  

Water quality metrics for the VTNH and VTNH_rmcty regions include various spatial 

aggregation scales of the PC metric and Lake TSI metric at 4 temporal resolution scales. Recall 

that PC metric is available at a 30m pixel resolution for surface water in lakes sized 6 hectares or 

more, while the Lake TSI metric is a value available at the lake scale for all lakes sized 6 

hectares or more except that Lake Champlain was excluded. The spatial aggregation scales used 

to summarize water quality exposure based on the PC metric and the 4 temporal Lake TSI 

metrics are described in Table V-4.  
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Table V-4. Aggregation Scales used to summarize PC in ug/L & Lake TSI 

Water Quality Metric Aggregation scale name Description 

PC 

huc10_max_pc Maximum of lake averages within the Hydrological Unit 

Code 12 (HUC10) boundary assigned to 4(8)km lattice 

cells if cell centroid also falls within HUC10 boundary 

huc10_mean_pc Mean of lake averages within the HUC10 boundary 

assigned to 4(8)km lattice cells if cell centroid also falls 

within HUC10 boundary 

huc12_max_pc Maximum of lake averages within the Hydrological Unit 

Code 12 (HUC12) boundary assigned to 4(8)km lattice 

cells if cell centroid also falls within HUC12 boundary 

huc12_mean_pc Mean of lake averages within the HUC12 boundary 

assigned to 4(8)km lattice cells if cell centroid also falls 

within HUC12 boundary 

pc4kmAVG Mean PC of all 30m lake pixels within a 4km radius of 

4(8) km lattice cell, when no lake intersects this radius a 

value of 0 is assigned. 

pc8kmAVG Mean PC of all 30m lake pixels within an 8km radius of 

4(8) km lattice cell, when no lake intersects this radius a 

value of 0 is assigned. 

pc10kmAVG Mean PC of all 30m lake pixels within a 10km radius of 

4(8) km lattice cell, when no lake intersects this radius a 

value of 0 is assigned. 

pc_idw6 Inverse distance weighted mean PC of 30m lake pixel 

centroids to each 4(8)km lattice cell centroid, where 30m 

cell centroids greater than a distance of 50km were not 

included. Weights were 
1

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒6. 

TSI 

lakeTSI_2000_4kmAVG 2000-2001 time period Area-weighted mean of lake 

TSI metric for each lake 

intersecting a 4km radius 

from the lattice cell centroid, 

when no lake intersects a 

lattice cell a value of 0 is 

assigned. 

lakeTSI_2002_4kmAVG 2002-2003 time period 

lakeTSI_2004_4kmAVG 2004-2005 time period 

lakeTSI_alltime_4kmAVG 2000-2005 time period 

lakeTSI_2000_8kmAVG 2000-2001 time period Area-weighted mean of lake 

TSI metric for each lake 

intersecting an 8km radius 

from the lattice cell centroid, 

when no lake intersects a 

lattice cell a value of 0 is 

assigned. 

lakeTSI_2002_8kmAVG 2002-2003 time period 

lakeTSI_2004_8kmAVG 2004-2005 time period 

lakeTSI_alltime_8kmAVG 2000-2005 time period 

tsi2000_idw6 2000-2001 time period Inverse distance weighted 

mean Lake TSI metric of 

30m lake pixel centroids to 

each 4(8)km lattice cell 

centroid, where 30m cell 

centroids greater than a 

distance of 50km were not 

included. Weights were 
1

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒6. 

tsi2002_idw6 2002-2003 time period 

tsi2004_idw6 2004-2005 time period 

tsialltime_idw6 2000-2005 time period 
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5.2 COMPUTATIONAL GRIDS FOR LAKE CHAMPLAIN SURFACE WATER TEMPERATURES 

A spatial varying coefficient model similar to the one used by Hupper (2005) is 

considered in the analysis of surface water temperatures of Lake Champlain, which were not 

used explicitly in the models relating ALS disease risk to the area’s water quality but provided as 

a case study of the spatio-temporal dynamics of how the water quality may be varying during the 

time period (1997-2009) under study of ALS risk. This application has a similar goal as the one 

discussed in Hupper (2005) in that there is interest in knowing if temperatures have significantly 

increased and if these increases are spatially varying within the lake. There is also interest in 

knowing if the entire study period (1984-2011) average temperatures significantly varies within 

the lake, since these variations might correlate well with cyanobacteria blooms and could be used 

as a cyanobacteria exposure proxy metric.  

This application introduces new challenges not present in the application considered by 

Hupper (2005). In particular, the original resolution of the data is too large (over 100,000 

locations) for the calculation of the precision matrix’s eigenvalue decomposition when using a 

2.4 GHz Intel Core i5 with 16GB of memory and a Fast Fourier Transform cannot be used in its 

place because the long narrow shape of Lake Champlain is not conducive to circulant embedding. 

Thus, following the approach Diggle et al. (2013) uses in the estimation of the LGCP to deal 

with computational challenges, a computational grid will be defined for the Lake Champlain 

temperature data. Since the estimation would likely depend on the resolution of the 

computational grid, two resolutions are compared, one at a 1080-meter resolution and another at 

a 2160-meter resolution. . Furthermore, missing data due to cloud cover could bias trend 

estimates. To account for this missing data, missing pixels are coded as 0 which is much smaller 

than expected summer Celsius water temperatures and then a regression variable will be 
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introduced that gives the percent of missing pixels within a given computational grid cell that is 

at a much larger user defined resolution.  

In order to choose the resolutions of the computational grid, a similar logic as Diggle et al. 

(2013) suggests for LGCP is applied. First a preliminary estimate of the spatial variability of the 

trend process and the average temperature process are estimated and then a computational grid 

resolution is selected that is smaller than the estimated variabilities yet large enough to be 

computationally efficient. In order to get a preliminary estimate of the spatial variability, by pixel 

least square regressions were estimated defined by: 

𝒚𝑖 = 𝛼𝑖 + 𝛽𝑖𝒕𝑖 

where 𝒚𝑖 is a vector of temperatures and  𝒕𝑖 is the corresponding vector of time points (in years) 

when the temperatures were measured for a given pixel 𝑖. Then variograms were calculated 

separately for the intercept parameters 𝛼𝑖 and the slope parameters 𝛽𝑖 for each pixel. Recall the 

variogram compares the pairwise distances between points (in this case pixel centroids) to the 

values of the least squares estimated intercept and slope parameters. Plots of the semivariance for 

each least squares estimated parameter are show in Figure V-3. After about 15km the intercept 

parameter values reach a sill and after about 5km the slope parameters reach a sill, which means 

a grid no larger than 5km can be used. Both the 1080m resolution grid and the 2160m resolution 

grid are less than 5km in resolution. 
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Intercepts 𝛼𝑖 Slopes 𝛽𝑖 

 
 

Figure V-3. Semivariance plots for each least squares estimated parameter 

The 1080m resolution grid includes 1217 cell locations covering Lake Champlain and the 2160m 

resolution grid includes 352 cell locations covering Lake Champlain. These grids are show in 

Table V-4. 

1080m 2160m 

  
Figure V-4. Computational Grids used to model remotely sensed surface water temperatures of Lake Champlain 
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VI SPATIAL DISTRIBUTION OF ALS 

6.1 GOALS & ORGANIZATION 

An analysis of the spatial distribution of ALS risk was done with the goal of assessing the 

sensitivity of this distribution to the fixed components of the modeling framework as well as to 

provide a holistic comparison with the cluster analyses done by Caller et al. (2013) and Torbick 

et al. (2014) which were based on Local Moran’s I statistics (Waller & Gotway, 2004, pp. 236-

240). The components assessed for sensitivity included the boundary regions, NNE, VTNH, and 

VTNH_rmcty, the background populations, SEDAC versus Landscan 2000, the choice of 

aggregation scale resolution, 4km versus 8km and the choice of spatial random effects, BYM 

versus Leroux. Because of the large number of combinations possible from varying all fixed 

modeling components (3*2*2*2=24), a subset of 10 combinations was chosen with 

computational time in mind (shown in Figure VI-1). 

 
Figure VI-1. Fixed modeling component combinations used in estimation of ALS spatial distribution  

 

An exploratory approach is taken for this sensitivity analysis, where posterior 

probabilities of predicted SIR are plotted and visually compared. Furthermore, the deviance 

spatial random effects
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information criterion (DIC) for each model is calculated and compared (Spiegelhalter, Best, 

Carlin, & Van Der Linde, 2002). 

 

6.2 MODEL 

A Bayesian hierarchical model is used to estimate the spatial distribution of the ALS risk. 

The data layer of the hierarchical model is defined by case counts, 𝑶, in each lattice cell, which 

has a 4km or 8km resolution. These counts are modeled using a Poisson distribution having a 

spatially varying intensity, 𝚲.  

𝑶 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝚲) 

The process layer models the intensity as the logarithm of a GMFR using either BYM random 

effects (Besag, York, & Mollié, 1991) or Leroux random effects (Lee 2013) and includes a fixed 

offset of logarithmically transformed expected counts, 𝑬, based on one of the two background 

populations, SEDAC or LandScan 2000. Since some locations are estimated to have 0 expected 

counts due to very sparse population, all expected counts are augmented by a small number, 

1𝑒−9, in order to still include these locations in the analysis. The model is given as: 

log(𝚲) = 𝛽 + 𝝎 + log (𝑬 + 1𝑒−9) 

where 𝛽 represents the logarithm of the average risk for the entire region and 𝝎 are the random 

effects defined as: 

𝜔𝐵𝑌𝑀 = 𝝎 + 𝝐 

𝝐 ~ 𝑁(0, 𝜎2𝐼) 

𝝎 ~ 𝑁(0, 𝜏2[𝐷 − 𝐴]−) 

or as: 
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𝜔𝐿𝐸𝑅𝑂𝑈𝑋 = 𝝎 

𝝎 ~ 𝑁(0, 𝜏2[𝜌(𝐷 − 𝐴) + (1 − 𝜌)𝐼]−1) 

where 𝑁( ) denotes the multivariate Normal distribution, [ ]− denotes a generalized inverse, 

𝑨 is the 𝑛 by 𝑛 adjacency matrix defined by the graph of first order neighbors (N,S, E, W) on the 

regular lattice having either 4km or 8km resolution and boundary of NNE, VTNH or 

VTNH_rmcty, 𝑫 is the 𝑛 by 𝑛 matrix of row sums of 𝑨, 𝑰 is the 𝑛 by 𝑛 identity matrix, and 𝑛 is 

the number of lattice cells covering the region, which depends on both the resolution and 

boundary used.  The values for 𝑛 are summarized in Table VI-1. 

Table VI-1.  Number of lattice cells by boundary region and lattice resolution 

Boundary Lattice scale n 

VTNH 4km 5108 

VTNH 8km 1318 

VTNH_rmcty 4km 4231 

VTNH_rmcty 8km 1099 

NNE 8km 3641 

 

The spatial distribution of ALS for all NNE using BYM and Leroux random effect 

models were fit using the R package CARBayes (Lee, 2013), which uses a Gibbs sampler in 

combination with Metropolis Hasting step to run Markov Chain Monte Carlo (MCMC) in order 

to obtain samples from the posterior distribution. Package default prior distributions were 

selected for each model. For the variance parameters 𝜏2 and 𝜎2, the default prior was             

Unif (0, 1000). Chains contained 500 warm-up iterations followed by 10,000 iterations that were 

then thinned by 10 to decreases effects of autocorrelations due to poor mixing. This gave a total 

of 1000 posterior samples. 
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The other 8 model combinations that estimated ALS risk within Vermont and New 

Hampshire used only the BYM random effects and were estimated using the Integrated Nested 

Laplace Approximation (INLA) implemented in the R package INLA (Rue et al., 2009).  

 

6.3 ALS SPATIAL DISTRIBUTION IN NNE  

The mean posterior relative risk estimates for the NNE boundary are plotted in Figure 

VI-2. In general, there is little difference between the BYM estimates and the Leroux estimates 

in terms of the spatial distribution of the mean posterior relative risk estimates. Areas of high risk 

(orange/red) occur between the Vermont and New Hampshire border, along the Northern Maine 

coastline, and in the northwest section of Vermont. These areas correspond to the locations of 

identified clusters at the census block group scale and the census track scale (Caller et al., 2013; 

Torbick et al., 2014).  

 
Figure VI-2. Posterior relative risk mean estimates 

There is also large area of estimated low risk (blue) along the coastlines of New Hampshire and 

southern Maine. It is suspected this is due to an underestimate of case counts, as people in this 

region are likely to seek medical treatment in the Boston MA area hospitals. 
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6.4 ALS SPATIAL DISTRIBUTION IN VTNH VS VTNH_RMCTY 

The spatial distribution of ALS for the boundary regions of VTNH and VTNH_rmcty are 

shown in Figure VI-3 and Figure VI-4 respectively. Unlike Figure VI-2, which shows the mean 

posterior risk, these plots show the probability that the posterior risk is above a threshold value 

of 1.5. The interpretation of a relative risk of 1.5 is that there are 50% more predicted observed 

cases than would be expected. In further discussions, relative risk above 1.5 is defined as high 

risk.  The probabilities of locations being high risk are defined by Li et al (2012) as exceedance 

probabilities. Exceedance probabilities incorporate the estimated relative risk as well as its 

uncertainty and probabilities greater than 0.8 or 0.95 are considered notable (Li, Brown, Gesink, 

& Rue, 2012).  

 The region along the border of Vermont and New Hampshire has the highest 

probabilities of high risk for both the plots with boundary VTNH (Figure VI-3) and boundary 

VTNH_rmcty (Figure VI-4), although only for the boundary VTNH would the exceedance 

probabilities be notable. This was also the region of highest relative risk shown for the boundary 

NNE in Figure VI-2. In the VTNH plots, locations in northwestern Vermont also are shown to 

have higher probabilities of high risk and these correspond to locations in Figure VI-2, which 

have high relative risk estimates (2 to 5) based on the NNE boundary. The VTNH boundary plots 

show an area of very low probability of high risk in southern New Hampshire, which includes 

the counties of Strafford, Rockingham, and parts of Merrimack and Belknap counties. In the 

VTNH_rmcty boundary plots where Strafford and Rockingham counties are among the removed 

counties, the parts of Merrimack and Belknap counties with low exceedance probabilities in the 

VTNH boundary plots, still remain locations with low exceedance probabilities. Although, areas 
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of low exceedance probability cannot necessarily be interpreted as low risk areas, the NNE 

boundary plots show this same region to have a predicted low relative risk (less than 1). Since it 

was suspected that locations closer to Boston have lower case ascertainment, and that there are 

locations with lower risk/lower probabilities of high risk in each of the boundary area plots that 

are close to Boston, it appears even the smallest boundary area does not achieve the goal of only 

including regions not effected by missing cases. By comparing the probabilities in Figure VI-3 

and Figure VI-4, the regions of lowest probability near Boston could be better contained by a 

boundary defined by the major central highways (Route 3 between Nashua and Manchester and 

I93) and the northeastern borders of Belknap and Stafford counties. 

 

 
Figure VI-3. Probability Relative Risk is greater than 1.5 for VTNH by resolution scale and background population 
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While the overall spatial pattern of high risk and low risk appears the same between the 

three boundary regions of NNE, VTNH, and VTNH_rmcty, the significance of these patterns do 

appear to vary according to the choice in boundary. When comparing the VTNH boundary 

versus the VTNH_rmcty boundary, the VTNH boundary has more areas with higher exceedance 

probabilities and the highest exceedance probabilities are notable. In particular, in northwestern 

Vermont, locations have lower probabilities of high risk (0.1 to 0.3) when the VTNH_rmcty 

boundary is used compared to when the VTNH boundary is used (0.3 to 0.7).  

The overall spatial pattern between the plots with different background populations, 

LandScan 2000 versus SEDAC, is also very similar. Although, areas with high probabilities of 

risk greater than 1.5, appear slightly higher when the LandScan background population is used. 

In particular, locations in southeastern Vermont and southwestern New Hampshire have higher 

probability areas that extend to more areas when LandScan is used versus when SEDAC is used. 

When comparing the 4km resolution and the 8km resolution, 8km probabilities appear smoother, 

but the overall spatial pattern is quite similar.  
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Figure VI-4. Probability Relative Risk is greater than 1.5 for VTNH_rmcty using SEDAC by resolution scale; (left) 

4km and (right) 8km 

 

In terms of model fit as quantified by the DIC, the choice of boundary area and the choice 

of grid size resolution used for the computational grid have the most impact (Figure VI-5). Better 

fit (lower DIC) values are calculated for models with VTNH_rmcty as the boundary area and a 

computational grid having an 8km resolution. One reason that the 8km grid may fit better is that 

some of the case locations contained spatial uncertainty that may be better represented by the 

8km resolution scale. In particular, the 8 cases with only a town name that were placed at the 

centroid locations of the towns were found in towns with median size of 66.3km2. There is a 



 81 

minimal difference between DIC values for models using Landscan 2000 as the background 

population for expected counts versus those using SEDAC as the background population. 

 

Figure VI-5. Comparison of DIC values between the 8 models estimating the spatial distribution of ALS using 

different population backgrounds, different boundaries and different computational grid size resolutions. 
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VII ESTIMATING EXPOSURE EFFECTS 

In order to estimate the effect of the water quality metrics on the risk of ALS, regression 

variables are added at the process layer of the models described in Chapter VI. Recall the process 

layer in the ALS risk models was defined as: 

log(𝚲) = 𝛽 + 𝝎 + log (𝑬 + 1𝑒−9) 

where 𝝎 are the random effects defined as: 

𝜔𝐵𝑌𝑀 = 𝒈 + 𝝐 

𝝐 ~ 𝑁(0, 𝜎2𝐼) 

𝒈 ~ 𝑁(0, 𝜏2[𝐷 − 𝐴]−) 

or as: 

𝜔𝐿𝐸𝑅𝑂𝑈𝑋 = 𝒈 

𝒈 ~ 𝑁(0, 𝜏2[𝜌(𝐷 − 𝐴) + (1 − 𝜌)𝐼]−1) 

Thus in this model, 𝛽 is replace by 𝑿𝜷 where 𝑿 is the 𝑛 by 𝑝 matrix of regressors and 𝜷 is the 

vector of regression parameters of length, 𝑝. Different water metrics are used in 𝑿𝜷 for the 

boundary region NNE than for the boundary regions VTNH and VTNH_rmcty.  
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7.1  RELATIONSHIP OF WATER QUALITY TO ALS RISK OVER NNE  

7.1.1 Model 

The analysis for the boundary region NNE is provided to allow holistic comparison of the 

Bayesian hierarchical approach used in this dissertation to the methods discussed in Torbick et al. 

(2014). Furthermore, regression parameter estimates are compared between a model using BYM 

random effects to a model using Leroux random effects, which are equivalent to EAR random 

effects when 𝜃 = 1.  The grid size for these models is 8km and the background population is 

based on SEDAC. 

The metrics used for the NNE boundary region are similar to the ones used by Torbick et 

al. (2014), which include lake average Chl-a, SD and TN. Unlike in Torbick et al. (2014) where 

several area weighed distance averages of these metrics from the case locations, the model used 

here matches the grid locations to the values of these metrics at the nearest lake. For this reason, 

the regression additionally includes the variables logarithm of the distance to nearest lake point 

(smallest Euclidean distance between grid centroid and vertices of lake polygons), and the sine 

and cosine of the direction to nearest lake point. Thus the regression is: 

𝑿𝜷 = 𝛽0 + 𝛽1 ∗ 𝐶ℎ𝑙𝐴 + 𝛽2 ∗ 𝑆𝐷 + 𝛽3 ∗ 𝑇𝑁 + 𝛽4 ∗ 𝑙𝑜𝑔𝑑𝑖𝑠𝑡 + 𝛽5 ∗ cosdirect + β6 ∗ 𝑠𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 

The R package CARBayes (Lee, 2013), which implements MCMC, is used to fit these 

two models. For the regression coefficients 𝛽𝑖 the default priors are the non-informative Normal 

distributions with mean 0 and variance 1000, and for the variance parameters 𝜏2 and 𝜎2, the 

default priors are the Uniform distribution, Unif (0, 1000).  
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7.1.2 Results 

Both Leroux and BYM random effects lead to parameters estimates that agree with 

Torbick et al. (2014)’s conclusion that poorer water quality is associated with higher ALS risk. 

Although, the strength of the association depends on the random effects used, which may also be 

related to the collinearity between the regression variables and the random effects. The median 

as well as 95% credibility interval limits for the parameter posterior samples of each model are 

summarized in Table VII-1.  

Table VII-1. Summary of parameter posterior samples for BYM and Leroux 

models fit using CARBayes package in R with 1 chain having 1000 samples 
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Both models estimate a positive effect of average Chl-a on ALS risk, however the 

BYM’s estimate is smaller and its lower 95% credibility interval bound is 0. The odds ratios of 

these estimates when the average Chl-a is 1 ug/L and 100 ug/L are summarized in Table VII-2. 

The estimated odds ratio where the nearest lake has on average 100 ug/L of Chl-a for the BYM 

model means there is on average 4 times the number of cases as would be expected based on the 

background population and for the Leroux model means there is on average 6 times the number 

of cases as would be expected based on the background population. However, there is 

considerable uncertainty in these estimates, as these range from a 0% or 18% increase to 19 or 25 

times more cases as would be expected.  

          Table VII-2. Odds Ratios (OR) of average Chl-a effect on ALS risk based on BYM and Leroux models 

 Average Chl-A Median OR Lower 95% OR Upper 95% OR 

BYM 
1 ug/L 1.0149 1 1.0299 

100 ug/L 4.3929 1 19.1059 

Leroux 
1 ug/L 1.0185 1.0017 1.0327 

100 ug/L 6.2339 1.1853 25.0281 

The other metrics used for water quality, SD and TN do not have a significant effect 

based on these models. This differs from the results reported by Torbick et al. (2014) where TN 

and SD were more significant than Chl-a at predicting clustering membership. However, it could 

be that the TN and SD at the nearest lake point underestimate the exposure when many lakes are 

in close proximity, while the approach used by Torbick et al. (2014) averaged these water quality 

metrics for all lakes within a fixed distance from each case. Furthermore, this difference could be 

attributed to a number of other factors including, the different background population, census 

track versus 8km square aggregation scale used for summarizing ALS risk, and/or the two-stage 

model versus Bayesian hierarchical model.  
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As for the geographic variables considered in this analysis, both models suggest a 

significant negative effect of the cosine component of direction to nearest lake point on ALS risk 

(95% credibility interval bounds are both negative). The interpretation of this effect, as 

illustrated in Figure VII-1, is that 8km cells to the east of nearest lake points have higher average 

case counts than those on the west.  This could provide some additional evidence for the theory 

that cyanotoxins can become aerosolized and carried in the wind, since the principal wind 

direction is from west to east (Stommel, Field, & Caller, 2013; Murby & Haney, 2015). However, 

it could also be that more of the population in general lives on the eastern side of lakes, and/or 

this relationship is only true at the 8km scale and not the individual scale. Note that Lake 

Champlain was not included in this analysis. However, its inclusion may weaken the effect as it 

is found at the western boundary of the ALS case study region and only has grid cells to its east.  

 
Figure VII-1. Illustration of direction Effect 
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7.2 RELATIONSHIP OF WATER QUALITY TO ALS RISK OVER VTNH AND VTNH_RMCTY 

7.2.1 Model 

In the analysis of the relationship of water quality to ALS risk over VTNH, the two water 

quality metrics PC and Lake TSI are used at various spatial scales in separate models with the 

form of the regression added at the process level of the LGCP defined as: 

𝑿𝜷 = 𝛽0 + 𝛽1𝑋 

and the parameter estimates of these water quality metrics 𝛽1 are compared between several 

versions of the model with varied fixed modeling components. In particular, 16 versions of a 

model with a specific water quality metric are considered where the boundary is chosen to be 

either VTNH or VTNH_rmcty, the computational grid resolution is either 8km or 4km, the 

background population expected counts are based on SEDAC or LandScan 2000 and BYM 

random effects are used (regression_spatial) or are not used (regression_only). Since the PC 

metric is considered at 8 different spatial aggregation scales and the lake average TSI metric is 

considered at 3 different spatial aggregation scales and 4 different time aggregation scales, a total 

of 320 models are fit. Since many candidate models are considered INLA is used for parameter 

estimation instead of MCMC due to its fast estimation. Figure VII-2 provides a summary of the 

differences between each model. 
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Figure VII-2. Illustration showing the different fixed components of the model that are varied 

The goal of this analysis is two-fold. First we seek to identify if any of the spatial 

aggregation scales of the PC metric or the spatial temporal scales of the lake TSI metric have a 

significant effect despite differences between the models, and second we seek to explain the 

impact of the model differences on the model’s fit as measured by the DIC (Spiegelhalter, Best, 

Carlin, & Van Der Linde, 2002).  

 

7.2.2 Results 

In order to determine significance, percentiles of the regression coefficient’s marginal 

posterior distribution in each of the models are used to calculate p-values. For example, if the 

smallest positive percentile is the 5th percentile, then the p-value is less than 2*0.05 =0.1. All 

spatial aggregation scales of the PC metric and all but two space-time aggregation scales of the 

Lake TSI metric have at least one of the 16 models with a p-value less than 0.05 (Table VII-3), 

which is often considered as a statistically significant result. The two variables with little 
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evidence of a statistically significant relationship to ALS risk include the area weighted 8km 

average of Lake TSI for the middle time period 2002-2003 and area weighted 8km average of 

Lake TSI for the entire time period 2000-2005.  

Table VII-3: Summary of P-values for each variables 16 models 

Variable Scale Min Q25 Q75 Max Number of  
p-values under 0.05 

PC PC_idw6 0.01 0.01 0.0875 0.2 12 

PC PC8kmAVG 0.01 0.02 0.35 1 8 

PC PC_huc10_mean 0.01 0.0625 0.6 0.8 4 

PC PC_huc10_max 0.01 0.0625 0.6 1 4 

PC PC_huc12_mean 0.01 0.1 0.75 1 2 

PC PC10kmAVG 0.05 0.05 0.4 0.8 5 

PC PC4kmAVG 0.05 0.1 0.4 1 2 

PC PC_huc12_max_pc 0.05 0.125 0.6 1 3 

TSI TSI_2004_idw6 0.01 0.01 0.175 0.6 9 

TSI TSI_2002_idw6 0.01 0.05 0.55 0.8 5 

TSI TSI_2004_4kmAVG 0.01 0.0875 0.6 1 4 

TSI TSI_2002_4kmAVG 0.01 0.125 0.6 1 3 

TSI TSI_alltime_idw6 0.01 0.05 0.6 1 5 

TSI TSI_2000_idw6 0.01 0.2 0.75 1 3 

TSI TSI_alltime_4kmAVG 0.01 0.4 0.6 1 3 

TSI TSI_2000_8kmAVG 0.05 0.2 0.8 1 1 

TSI TSI_2000_4kmAVG 0.05 0.4 0.8 1 1 

TSI TSI_2004_8kmAVG 0.05 0.4 0.8 1 1 

TSI TSI_2002_8kmAVG 0.2 0.6 0.8 1 0 

TSI TSI_alltime_8kmAVG 0.4 0.6 1 1 0 

 

Since multiple versions of the same model are fit, it is possible to observe significant 

results by chance. In particular, for each separate variable, one would expect about 1 of the 16 

models to have a p-value less than 0.05 by chance. However, several of the variables have many 

more than 1 significant p-value, such as the inverse distance weighted average of PC, the 8km 

area weighted average of PC, and the inverse distance weighted average of Lake TSI for the later 

time period 2004-2005.When all models are considered together, one would expect 16 of the 320 
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models to have a p-value less than 0.05 by chance. However, the distribution of the p-values for 

all models shows that 75 of the 320 have a p-value less than 0.05, which is much larger than 

would be expected to occur by chance (Figure VII-3).  

 
Figure VII-3. Distribution of p-values for all 320 models 

Thus even when there are differences in the background population used for expected counts, 

differences in computational grid resolutions, differences in boundary areas and despite the 

difficulty of inference on fixed parameters when random effects are used, this analysis still 

shows that depending on the aggregation scale, the water quality metrics used here have a 

statistically significant relationship to the risk of ALS in Vermont and New Hampshire.  

Based on the distribution of p-values for each aggregation scale of PC and Lake TSI 

shown in Figure VII-4, the inverse distance weighted PC average is the most related water 

quality metric and aggregation scale to the spatial distribution of ALS risk.  

Approximate 

P-value 

count proportion 

0.01 34 0.106 

0.05 41 0.128 

0.1 29 0.091 

0.2 37 0.116 

0.4 58 0.181 

0.6 56 0.175 

0.8 39 0.122 

1 26 0.081 

Total 320 1 
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Figure VII-4. Boxplots (distributions) of 16 p-values for each of the 20 variables 

The estimated effect of the IDW6 PC metric is positive (column ‘mean’ of Table VII-4), which 

means that higher amounts of PC are associated with higher prevalence counts of ALS in 

Vermont and New Hampshire. This is consistent with the results of Torbick et al. (2014), which 

showed poorer water quality is associated with ALS hotspot membership and provides further 

evidence in support of the hypothesis that neurotoxins produced by cyanobacteria are a risk 

factor for ALS.   
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Table VII-4. Marginal Posterior summaries of the coefficients for the 16 models that included PC IDW6 

Random 

Effect 
background boundary 

grid 

size 
mean 95% CI DIC 

p-

value 

none sedac VTNH 4km 0.0052 0.0020 0.0082 2563.4 0.01 

none landscan VTNH 4km 0.0040 0.0007 0.0071 2698.8 0.05 

none sedac VTNH_rmcty 4km 0.0065 0.0030 0.0099 1801.2 0.01 

none landscan VTNH_rmcty 4km 0.0052 0.0016 0.0085 1917.1 0.01 

none sedac VTNH 8km 0.0061 0.0024 0.0095 1587.0 0.01 

none landscan VTNH 8km 0.0053 0.0016 0.0087 1653.9 0.01 

none sedac VTNH_rmcty 8km 0.0062 0.0022 0.0098 1145.0 0.01 

none landscan VTNH_rmcty 8km 0.0056 0.0016 0.0092 1195.2 0.01 

BYM sedac VTNH 4km 0.0039 -0.0004 0.0079 2477.2 0.1 

BYM landscan VTNH 4km 0.0033 -0.0012 0.0076 2591.0 0.2 

BYM sedac VTNH_rmcty 4km 0.0071 0.0026 0.0114 1771.4 0.01 

BYM landscan VTNH_rmcty 4km 0.0066 0.0018 0.0113 1873.0 0.01 

BYM sedac VTNH 8km 0.0046 -0.0001 0.0090 1512.8 0.1 

BYM landscan VTNH 8km 0.0045 -0.0003 0.0090 1564.20 0.1 

BYM sedac VTNH_rmcty 8km 0.0060 0.0011 0.0106 1124.24 0.05 

BYM landscan VTNH_rmcty 8km 0.0059 0.0009 0.0107 1166.63 0.05 

 

More specifically, the effect of PC at the IDW6 aggregation scale for the model with the smallest 

DIC, can be specified in terms of an odds ratio for differing amounts of PC (Table VII-5). When 

there is 10 ug/L of IDW6 PC, the odds ratio is 1.06, meaning there is 6% increase in average 

ALS risk and when there is 100 ug/L of IDW6 PC the odds ratio is 1.83, which means there is an 

83% increase in average ALS risk. 

Table VII-5. Odds ratio of effect of PC IDW 6 when model includes BYM random effects, SEDAC expected counts, 

the boundary is VTNH_rmcty, and the grid resolution is 8km 

ug/L of PC OR 95% Confidence 

1 1.01 1.00  1.01 

10 1.06 1.01  1.11 

100 1.83 1.12  2.88 
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The Lake TSI metric aggregated for years 2004-2005 and using the spatial aggregation 

IDW6 is the next water quality metric that comes up with mostly significant p-values (Table 

VII-6).  

Table VII-6. Marginal Posterior summaries of the coefficients for the 16 models that included TSI_2004_IDW6 

Random Effect background boundary grid size mean 95% CI DIC p-value 

none sedac VTNH 4km -0.22 -0.38 -0.07 2565.0 0.01 

none landscan VTNH 4km -0.31 -0.47 -0.15 2689.8 0.01 

none sedac VTNH_rmcty 4km -0.08 -0.27 0.11 1812.3 0.6 

none landscan VTNH_rmcty 4km -0.18 -0.37 0.01 1920.9 0.1 

none sedac VTNH 8km -0.23 -0.39 -0.07 1588.8 0.01 

none landscan VTNH 8km -0.30 -0.46 -0.14 1647.9 0.01 

none sedac VTNH_rmcty 8km -0.18 -0.37 0.01 1150.2 0.1 

none landscan VTNH_rmcty 8km -0.28 -0.47 -0.08 1194.3 0.01 

BYM sedac VTNH 4km -0.15 -0.33 0.03 2480.0 0.2 

BYM landscan VTNH 4km -0.24 -0.43 -0.05 2590.9 0.05 

BYM sedac VTNH_rmcty 4km -0.12 -0.35 0.10 1779.2 0.4 

BYM landscan VTNH_rmcty 4km -0.24 -0.47 -0.01 1878.2 0.05 

BYM sedac VTNH 8km -0.14 -0.33 0.05 1515.7 0.2 

BYM landscan VTNH 8km -0.21 -0.40 -0.02 1565.6 0.05 

BYM sedac VTNH_rmcty 8km -0.22 -0.44 0.01 1125.2 0.1 

BYM landscan VTNH_rmcty 8km -0.31 -0.55 -0.08 1165.9 0.01 

 

The Lake TSI estimated effect is negative, which means lower values of Lake TSI are associated 

with higher ALS risk. Recall lower values of TSI indicate better lake water quality. This result 

contradicts the previous findings (Torbick et al., 2014). However other temporal aggregation 

scales of the lake TSI do not show the same significance, and it could be that this particular time 

aggregation does not represent typical summer lake water quality. Recall, that differences 

between the time aggregations may be related to the varying cloud-free satellite overpass dates. 

Furthermore, Lake TSI is a general water quality metric, which in this analysis is treated as a 

continuous variable, but is actually an ordered categorical variable. Figure VII-5 shows Lake TSI 
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for the 2004-2005 time period is mostly a contrast between a classification of 2 and 3. Thus more 

research is needed to determine the usefulness of this metric. 

 

 

 

 
Figure VII-5. Distribution of lake TSI 2004-2005 temporal aggregation; left is original lake aggregation scale; 

upper right is the histogram of TSI 2004-2005 values when aggregated to match 4km grid using IDW6 scale; lower 

right is the spatial distribution of the histogram values. 

In order to explain the impact of the model differences on the model’s fit as measured by 

the DIC, DIC values for all 320 models are compared by the different model components, 

background, boundary, grid size use of TSI or PC, and use of random effects (regression_only or 

regression_spatial). Figure VII-6 shows that the choice of grid size and boundary have the largest 

effect on the model’s DIC, with small DIC (better fit) occurring for models with boundary 

VTNH_rmcty and grid size of 8km. When the VTNH_rmcty boundary is chosen and the grid 
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size is 8km, there is little difference between models with the different background populations, 

models that used random effects and those that did not, and the variable choice.  

 
Figure VII-6. Comparison of DIC values between the 320 models estimating the effect of water metric regression 

variables on the spatial distribution of ALS using different population backgrounds, different boundaries, different 

computational grid size resolutions, different water metrics and using BYM or no spatial random effects. 
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VIII EXPOSURE MODELING 

8.1 SPATIAL DISTRIBUTION OF HUC12 MAX PC IN VT AND NH 

An analysis of the spatial distribution of the PC metric itself was done with the goal of 

determining if certain locations had higher than regional average PC and with the goal of 

exploring the spatial uncertainty of one of the spatial aggregation scales of PC. This analysis was 

only done for the MaxPC_huc12 variable before values were matched to the regular lattice used 

to summarize ALS disease risk. Figure VIII-1 shows a plot of the HUC12 boundaries 

intersecting with the state boundaries of Vermont and New Hampshire colored by the observed 

maximum lake average PC in ug/L. Log-transformed MaxPC_huc12 values were modeled using 

a Gaussian Process in a Bayesian hierarchical model. The data layer models the log-transformed 

MaxPC_huc12, 𝒚, as Normally distributed and in the process layer the mean of this Normal 

distribution is modeled using the EAR model with smoothing parameter 𝜃 = 1, which is 

equivalent to Czado’s CAR and the Leroux CAR. The model is specified by: 

data layer:     log(𝒚) ~ 𝑁(𝜷 + 𝝎, 𝜎2) 

𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑙𝑎𝑦𝑒𝑟:       𝝎 ~ 𝑁(𝟎, 𝑸−𝟏)  

𝑸 = [𝑰 − 𝜓(𝑨 − 𝑫 + 𝑰)]1 

where 𝑁() denotes the multivariate Normal distribution, 𝑨 is the 495 by 495 adjacency matrix 

defined by the graph of first order neighbors (those sharing a border) on the irregular lattice 
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defined by the HUC12 boundaries, 𝑫 is the diagonal 495 by 495 matrix of row sums of 𝑨, and 𝑰 

is the 495 by 495 identity matrix. 

 

Figure VIII-1.  HUC12 boundaries colored by Max lake average PC in ug/L (White areas do not contain any lakes 

sized a least 6 hectares.) 

 

The VTNH regional average MaxPC_huc12, 𝜷, is given a non-informative Normal prior with 

mean 4 and standard deviation 100. The variance parameter 𝜎 is given a half-cauchy prior, 

𝑐𝑎𝑢𝑐ℎ𝑦(0,5), following advice of Gelman et al. (2006). The 𝜓 parameter is transformed as 𝜙 =

𝜓

1−𝜓
 and given the prior, 𝑙𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(0, 1.6). 

The model is then fit using the Hamiltonian Markov Monte Carlo sampler available in the 

Stan software. Four chains were run for 5000 iterations after 5000 iterations of warm-up to give 

a total of 20,000 posterior samples. Model convergence was accessed using the Gelman-Rubin 

statistic (Rhat) (Gelman & Rubin, 1992).   
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Model predicted MaxPC_huc12 values at original data scale in micrograms per liter 

(ug/L) are shown in Figure VIII-2, along with 95% credibility interval bounds. HUC12 

boundaries including the southern section of Lake Champlain have the highest modeled 

MaxPC_huc12 values between 100-150 ug/L. However there is a large amount uncertainty in 

these estimates. In particular the HUC12 area including the northern section of Lake Champlain 

(Missiquoi Bay) has a slightly lower estimated value (between 50-100 ug/L) than the southern 

region, but both regions have similar uncertainty bounds, lower of less than 50 ug/L and upper 

between 300 - 400 ug/L. 

 
Figure VIII-2. Model predicted MaxPC_huc12 (left); Lower 95% credibility bound (middle); Upper 95% credibility 

bound (right) 

 

The distribution of the spatial random effect 𝝎 can be used to assess for regions with higher than 

average MaxPC_huc12 values. Figure VIII-3 shows the probabilities (percent of posterior 

samples of 𝝎) that any particular HUC12 boundary area’s spatial random effect was positive. 

The HUC12 boundary areas with the highest probabilities include parts of Lake Champlain. 
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Other higher probability regions include the area around Lake Winnipesaukee as well as along 

the western border between Vermont and New Hampshire. 

 
Figure VIII-3. Proportion of posterior spatial random effect samples greater than 0. 

 

8.2 SPATIO-TEMPORAL SURFACE TEMPERATURES OF LAKE CHAMPLAIN 

Since much remains unknown about spatial distribution of water quality over time, a case 

study of water temperature within Lake Champlain is investigated with the goal of determining if 

surface water temperatures vary within the lake, if the surface water temperatures have warmed 

since 1984 and if the amount of warming varies spatially within the lake. Warmer water 

temperatures are of interest because of their association with the frequency and extent of algae 

blooms (Paerl and Huisman, 2008, 2009). 

8.2.1 Model 

A Bayesian spatially varying coefficient model is used to analyze trends in the satellite-

derived surface water temperatures. The surface temperatures in tenths of degree Celsius,𝑦(𝑠, 𝑡), 

which are indexed by s, a location in Lake Champlain, and by t, a time point between mid-July to 
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late August (day of year 195 to 244) for years 1984 to 2011, form the data layer of the 

hierarchical model and are considered to be a realization of a continuous temperature process 

𝜇(𝑠, 𝑡) measured with Gaussian noise ε. Thus 

𝑦(𝑠, 𝑡) = 𝜇(𝑠, 𝑡) + 휀 

휀~𝑁(0, 𝜎𝜀
2) 

where 𝜎𝜀
2 is commonly referred to as a nugget in geostatistics. The spatial locations,{𝑠𝑖, 𝑖 =

1, 2, … , 𝑘}, form a regular lattice covering Lake Champlain where the temperature at a given 

point 𝑠𝑖 represents the average water temperature for the area of the lake covered by the lattice 

cell. Two lattice resolution are used, one at a 2160m resolution and the other at a 1080m 

resolution, 𝑘 = 352 for the 2160m case and 𝑘 = 1217 for the 1080m case. The time points 

{𝑡𝑖, 𝑖 = 1, 2, … ,63} are centered continuous year values. For example for a measurement taken 

during 1999 on day of year 219 is 𝑡𝑖 = 1999.6 − 𝑚𝑒𝑎𝑛(𝑦𝑒𝑎𝑟𝑠). 

We model the continuous temperature process 𝜇(𝑠, 𝑡) as  

𝜇(𝑠, 𝑡) = 𝛽1 ∗ 𝑝𝑐𝑙𝑜𝑢𝑑(𝑠, 𝑡) + 𝜔0(𝑠) + 𝜔1(𝑠) ∗ 𝑡 

where 𝛽1 is the mean difference in temperature due to missing data and {𝜔𝑖(𝑠), 𝑖 = 0, 1} are 

spatial random effects. In particular, 𝜔0(𝑠) are the spatially varying intercepts and 𝜔1(𝑠) are the 

spatially varying linear trend parameters. The spatial random effects {𝜔𝑖(𝑠), 𝑖 = 0, 1}, are 

modeled with an IEAR prior. Recall the IEAR is an improper prior defined by: 

𝜔𝑖(𝑠)~𝒩(𝟎, 𝜏𝑖
2𝑸−) ,   𝑓𝑜𝑟 𝑖 = 1, 2 

𝑸 = (𝑫 − 𝑨)𝜽𝒊 

where 𝑨 is a 𝑘 by 𝑘 matrix defined as in [4.4.1] with 𝛿 = 1 and 𝛾(𝑑𝑖𝑗) = 1, 𝑫 is the 𝑘 by 𝑘 

diagonal matrix of the row sums of 𝑨, and 𝜃𝑖 ∈ [0, ∞) is the smoothness of the spatial process 

with larger values indicating a longer range of spatial correlation. In particular recall that larger 
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values of 𝜃 increase the eigenvalues of the covariance matrix 𝑸−1greater than 1, which are 

associated with the eigenvectors describing large-scale spatial variability. For the 1080m lattice, 

the eigenvalues are plotted in order smallest to largest in Figure VIII-4.  

 
Figure VIII-4. Eigenvalues by ID for the matrix D-A when the 1080m lattice is used. 

Notice that eigenvalues 1 to 161 are less than 1, so inversely are greater than 1, and these are 

associated with the large-scale eigenvectors for which a few examples are shown in the top of 

Figure VIII-5. Conversely, eigenvalues 162 to 1217 will all be less than 1 in the inverse and 

these are associated with the small-scale eigenvectors for which a few examples are show in the 

bottom of Figure VIII-5. 
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Figure VIII-5.Example Eigenvectors of the Matrix D – A for the 1080m computational lattice. (Top: Large-scale 

spatial variability; Bottom: Small-scale spatial variability).  

 

To improve computational efficiency of the model parameter estimation the spatial 

structure was removed following a similar pre-whitening procedure as outlined by Yuan (2011). 

First an eigenvalue decomposition of the matrix (𝑨 − 𝑫 + 𝑰) is calculated: 

 𝑨 − 𝑫 + 𝑰 = 𝑬𝜦𝑬𝑻 

where 𝑬 is the orthonormal matrix of eigenvectors and 𝜦 is the diagonal matrix of eigenvalues. 

Since the first column of 𝑬 is associated with the 0 eigenvalue (IEAR is only semi-positive 

definite), it is removed to define the matrix used for pre-whitening 

�̃� = 𝑬[𝟏: 𝒌 , 𝟐: 𝒌]. 
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Then the data and missing pixel covariate values are pre-whitened. Pre-whitened data have the 

distribution: 

�̃�𝑇𝑦(𝑠, 𝑡)~𝑁(𝛽1 ∙ (�̃�𝑇𝑝𝑐𝑙𝑜𝑢𝑑) + �̃�𝑇𝜔0(𝑠) + �̃�𝑇𝜔1(𝑠) ∙ 𝑡, 𝜎𝜀
2) 

and the transformed spatially varying parameters have the distribution: 

�̃�𝑇𝜔𝑖(𝑠)~𝒩 (𝟎, 𝜏𝑖
2[𝑰 − �̃�]

𝜽𝒊
)  ,   𝑓𝑜𝑟 𝑖 = 1, 2 

where 𝑰 − �̃� is a diagonal matrix of size 𝑘 − 1 by 𝑘 − 1, with eigenvalues 𝜆𝑖 

, 𝑖 = 2, … , 𝑘. After model estimation, estimates of the spatially varying parameters are obtained 

from the back transformation: 

�̃�[�̃�𝑇𝜔𝑖(𝑠)] = 𝜔𝑖(𝑠) 

 

8.2.2 Results & Discussion 

Parameter estimation of the hierarchical model is carried out using the Hamiltonian 

Monte Carlo No-U-turn MCMC algorithm available in Stan in order to obtain samples from the 

posterior distribution (Stan Development Team 2016). The prior distributions used for the 

variance parameters 𝜎𝜀
2, {𝜏𝑖

2, 𝑖 = 1, 2}, and the smoothing parameters {𝜃𝑖 , 𝑖 = 1,2} along with the 

other details of the model are given in Appendix B. After four separate chains are run with 10000 

iterations and a warm-up of 5000 iterations for each chain is discarded, model convergence is 

accessed using the Gelman-Rubin statistic, Rhat (Gelman and Rubin, 1992).  

Posterior sample summaries for all parameters except the random effects are shown in 

Table VIII-1 for the 2160m resolution computational grid and in Table VIII-2 for the 1080m 

resolution computational grid. All Rhat values are 1 indicating the models have converged. Mean 

posterior parameter estimates are similar for the 2160m resolution and for the 1080m resolution. 
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However, the effective samples sizes for the process layer prior parameters are smaller for the 

1080m resolution than for the 2160m resolution. This indicates the sampler had some poor 

mixing and did not efficiently explore the posterior parameter distribution space.  

Table VIII-1.  Summary of posterior samples for model parameters (2160m grid) 

Level Parameter  Mean 95% Credibility Effective sample size Rhat 

Data 𝛽1 
-216.74 -217.2 -216.28 20,000 1 

𝜎𝑦 
9.27 9.18 9.35 20,000 1 

Random 

intercept 

𝜔0(𝑠)  

𝜃0 
1.54 1.32 1.77 2,050 1 

𝜏0 
3.32 2.93 3.77 2,738 1 

Random 

trend 

𝜔1(𝑠)  

𝜃1 
1.42 1.07 1.82 3,806 1 

𝜏1 
0.08 0.06 0.11 20,000 1 

 

Furthermore, parameters related to the random intercepts had the smallest effective sample sizes 

for both resolutions, and this could be related to collinearity issues between the pcloud regression 

parameter and the random intercepts.  

Table VIII-2.  Summary of posterior samples for model parameters (1080m grid) 

Level Parameter  Mean 95% Credibility Effective sample size Rhat 

Data 𝛽1 
-216.39 -216.65 -216.14 20,000 1 

𝜎𝑦 
10.03 9.98 10.09 20,000 1 

Random 

intercept 

𝜔0(𝑠)  

𝜃0 
1.53 1.39 1.66 700 1 

𝜏0 
4.13 3.85 4.44 1,014 1 

Random 

trend 

𝜔1(𝑠)  

𝜃1 
1.68 1.46 1.94 2,288 1 

𝜏1 
0.06 0.05 0.08 8,868 1 
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The model estimated late summer average surface water temperatures for 1984-2011 are shown 

in Figure VIII-6. Including the uncertainty estimates, these temperatures range from 21 to 25°C. 

These are based on a least squares estimated entire lake average of 22.5°C and the model 

estimated random intercepts. 

 

Figure VIII-6. Posterior Mean of Average Surface water temperatures (right) and 95% credibility interval (center 

and left) based on the 1080m resolution grid. 

. 

Based on these model estimates, surface water temperatures do vary within the lake. In particular, 

locations (red) where surface water temperatures are greater than lake average are shown in 

Figure VIII-7, and these include Missiquoi Bay, St. Albans Bay, and Mallets Bay, which are all 

known to have cyanobacteria blooms (Torbick & Corbiere, 2015). These locations correspond to 

the random intercepts having a marginal posterior distribution with a 2.5 percentile that is greater 

than 0.  The general spatial pattern is the same for the 2160m and the 1080m resolutions.  
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2160m grid 1080m grid 

  
Figure VIII-7. Locations of significantly warmer and significantly cooler than lake average surface water 

temperatures. 

It is possible that the in-situ average water temperatures are not warmer in these areas, 

but that the satellite derived temperatures are measured as warmer due to the presence of 

cyanobacteria blooms. In this case, temperature may be a good proxy metric from cyanobacteria 

bloom. For example, the satellite derived surface temperatures for day of year 227 and year 2008 

compared with the Landsat image are shown in Figure VIII-8. Temperatures of approximately 

30°C are measured for locations that are shown to have algae blooms in the Landsat image.  
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Figure VIII-8. Satellite-derived surface water temperatures of Lake Champlain and Landsat image near Missiquoi 

Bay for Year 2008 and Day of Year 227 

 

The spatial random slope parameters are estimated to be between -0.5 and 0.6 °C change 

per decade (Figure VIII-9). This range includes both the uncertainty bounds and the mean 

posterior values. Significantly increasing trends are found in the northern sections of the lake 

including Missiquoi Bay, but also near Shelburne Bay and South Lake.  
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Figure VIII-9. Posterior Mean of Temperature Trends (right) and 95% credibility interval (center and left) based on 

the 1080m resolution grid 

The significance of these trends depends on the chosen resolution, where more areas have higher 

significance for the 1080m resolution than the 2160m resolution (Figure VIII-10). However, 

since more locations are tested in the 1080m resolution, this could be a result of the multiple 

testing problem, where there is a greater chance to find significant results by chance.  

1080m grid 2160m grid 

  
Figure VIII-10. Locations with significantly warmer or cooler temperatures based on a p-value of 0.05 and 

confidence interval of 95%  
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The spatial pattern of higher probabilities of increasing trends is similar for both resolutions 

(Figure VIII-11).   

 The model also does estimate a few regions of significantly decreasing trends (Figure 

VIII-10), which contradicts previous studies of temperature trends in Lake Champlain (Smeltzer 

et al., 2012). However, these decreasing trends could be an artifact of the EAR model, since the 

eigenvectors represent high and low regions at multiple scales. For example, when there is an 

area of increase, the model also requires an area of decrease. For this reason, it would make more 

sense to add an overall lake trend and then the spatial random slopes would represents regions 

higher or lower than lake average. However, in the current approach this average trend is not 

identifiable, likely because of remaining collinearity issues between the fixed and random effects.

  

1080m grid 2160m grid 

  

Figure VIII-11. Probability of increasing trends 
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IX CONCLUSIONS 

 

In this dissertation, the ALS case dataset discussed in Caller et al. (2013) and Torbick et 

al. (2014) is reanalyzed using Bayesian inference of a LGCP, which includes spatial random 

effects specified by the logarithm of a GMRF on a regular lattice. The LGCP identifies locations 

of high risk within Northern New England determined using exceedance probabilities that 

correspond to the locations of ALS clusters or “hotspots” identified in Caller et al. (2013) and in 

Torbick et al. (2014). The issue of artifact clusters due to incomplete case ascertainment is 

investigated by considering three boundary regions, where the smaller regions attempt to remove 

locations where low case ascertainment is suspected. The significance of the high-risk areas 

decreases when these lower case ascertainment regions are removed, suggesting clustering may 

be an artifact of the case ascertainment. However, the smallest boundary region still includes 

areas with very low probability of high risk that are adjacent to the areas removed because of low 

case ascertainment. The estimation of clusters also depends on other fixed aspects of the model. 

In particular, the Irish study, which had nearly complete case ascertainment and did not find 

“hotspots”, modeled the cases aggregated by Ireland’s electoral divisions using a BYM model 

(Rooney et al., 2014; Rooney et al., 2015). However if the aggregation unit is not meaningful to 

the disease risk process, the BYM model may give poor or unexpected results (Wall 2004; Li et 

al., 2012). Therefore, in this dissertation, the effects of resolution choice of the regular lattice, the 

choice of background population, and the choice of spatial random effects (BYM versus Leroux) 
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are investigated in terms of model fit by comparing the DIC values of different models. It is 

shown that the resolution choice and boundary area choice have the largest impact on model fit, 

where the larger of the two resolutions and the smallest boundary area considered give the 

smallest DIC values. It is suspected that the larger resolution provides a better model fit because 

of the spatial uncertainty in some case locations that have only a town name. 

 For the estimation of the relationship between ALS risk and satellite derived metrics of 

the region’s lake water quality, the modeled component of the intensity for the LGCP is defined 

by the water quality metrics as regression parameters combined with spatial random effects. This 

specification improves on Torbick et al. (2014)’s analysis by explicitly accounting for the spatial 

uncertainty of ALS “hotspots”.  A further improvement in this dissertation is the inclusion of the 

PC metric, which is more closely related to the presence of cyanobacteria than the Chl-a metric, 

SD metric and the TN metric. In this specification, the Chl-a metric and the PC metric are found 

to be positively associated to ALS risk, which agrees with the conclusion in Torbick et al. (2014).  

However, the significance of these associations depends on several fixed components of 

the modeling framework. In particular, the use of random effects to account for spatial 

autocorrelations can create variance inflation in the fixed effects, meaning significant fixed 

effects may appear insignificant (Reich et al., 2006; Hughes & Haran, 2013; Hughes 2015). In 

order to deal with this difficulty as well as investigate the resolution choice of the regular lattice, 

the choice of background population, and the choice of spatial aggregation for the fixed effects 

on the significance of the fixed effects, Bayesian inference using INLA is carried out for 320 

different models that vary each of these components. For the random effects, half of the models 

included the BYM random effects and the other half did not include any spatial random effect. 

Despite model differences, it was found that the PC metric matched to the regular lattice using an 
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inverse distance weighted average between the centroid of the lattice cells and the centroids of 

the 30m pixels of PC covering the region’s lakes, has a significantly positive relationship with 

ALS risk in most model variations.  

This dissertation does not account for the temporal uncertainty in the PC metric, which is 

temporally misaligned to the case incidence times.  Instead another more general lake quality 

metric, TSI, is considered, which is more temporally aligned to the times of case incidence. 

Several space-time aggregation scales are considered for the TSI metric. However, the TSI 

metric is significant for fewer models than the PC variable and when it is found statistically 

significant, it has a negative association with ALS risk, which contradicts the PC analysis and 

results from Torbick et al. (2014).  However, there are several reasons that can account for this 

difference. In particular, only one of the time aggregation scales gives significant results and 

differences in time aggregations scales may be related to varying satellite overpass dates.  

Given the temporal misalignment difficulty, a space-time model of surface water 

temperatures is developed for Lake Champlain as a case study in order to provide ideas for future 

research, since warmer lake temperatures are associated with increased cyanobacteria blooms 

(Paerl and Huisman, 2008, 2009). This model makes use of the IEAR developed by Yuan (2011) 

and is shown to account for long range spatial autocorrelations by increasing the eigenvalues of 

the variance matrix that are associated with the eigenvectors explaining large-scale spatial 

patterns. The model estimates lake temperatures and lake temperature trends that vary spatially 

within the lake, where some of the trends are increasing while others are decreasing. It is 

suspected the decreasing trends are an artifact of the model since the large-scale spatial pattern 

contrasts regions of low and high values. Thus when an increasing trend is estimated, the model 
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forces a decreasing trend. This could be corrected by adding an overall lake trend fixed effect, 

but this results in identifiability issues. 
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X FUTURE WORK 

 

There are a number of areas of possible future work that could improve upon the analyses 

discussed in this dissertation, both in terms of the scientific questions related to water quality and 

ALS as well as in terms of statistical innovation.  

 For one, the relationship between water quality and ALS risk could be investigated in 

different regions. Of particular interest with respect to the NNE region would be to expand the 

boundaries to include areas of Quebec and upstate New York that are near the northern parts of 

Lake Champlain.  There seems to be little published studies about ALS in Quebec, except for 

one in the Saguenay region, which investigated ALS incidence between the years of 1985 and 

2009. Interestingly, this study shows that the incidence in this region is significantly higher for 

the last 5-year period of the study 2005-2009, and further notes that this region’s population is 

expected to be at high risk for genetic disorders related to the “founder’s effect”, but this study 

only found one case with a family history of ALS (Lareau-Trudel et al., 2013). Since the 

Saguenay region has a large lake, Lac St. Jean, a case study of the water quality space-time 

dynamics of this lake might provide some useful insights into the relationship between 

cyanobacteria exposure time and ALS onset, and thus improving upon the issues in this 

dissertation created from the temporal misalignment between the case incidence times and the 

water quality metrics. 
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 There are also a few alternatives to deal with the incomplete case ascertainment of the 

ALS dataset analyzed in this dissertation as well as in Caller et al. (2013) and Torbick et al. 

(2014). For one, an alternative subset of the region VTNH could be defined using major 

highways to delineate the section to remove.  Another alternative is to use the preferential 

sampling method describe in Diggle et al. (2010) and Simpson et al. (2016), which defines a 

function that takes values between 0 and 1 giving the percent of non-missing cases.  This 

function could be based on expert opinion or perhaps estimated based on the mortality rates of 

ALS for this region at the county level available from the Wonder CDC website. 

In terms of statistical innovation, this dissertation only compares differences between 

parameters in the LGCP based on two different resolutions of a regular lattice. However, 

Simpson et al. (2016) argues that using the triangulation method described in Lindgren et al. 

(2011) to construct the approximation of the GP and a second grid defined by connecting the 

centroids of the triangulation’s edges to estimate the intensity of the point process allows for a 

more flexible and second-order accurate approximation to a continuous intensity LGCP, where 

the regular lattice leads to an approximation that is only first-order accurate.  

Furthermore, this dissertation only considers deterministic functions at various scales to 

deal with the spatial misalignment between the water quality measurement locations and the 

computational grid locations used to summarize the case intensity. An alternative approach 

would spatially (and even better spatially and temporally) model the water quality metrics 

simultaneously with the ALS intensity using a version of the multivariate CAR (MCAR) such as 

the one used in Terres et al. (2015). Instead of a MCAR, a two-step model could be set up, where 

several (1000 or 10000) simulations from a spatial-temporal model of water quality could then 
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be used in the LGCP. This method would also give a more realistic measure of the uncertainty in 

the exposure effect (Waller & Gotway, 2004, pp. 400-409). 

Other statistical innovations could be developed specifically for the EAR model. For 

example, the methods described in Reich et al. (2006) and Hughes and Haran (2013) could likely 

be extended to the EAR and IEAR models since the eigenvectors of these models do not depend 

on any of the precision matrix parameters and this may resolve the collinearity issues that result 

when these models are used with fixed effects. Also, since the Leroux model is the same as the 

EAR model when 𝜃 = 1 and two recent papers have develop methods for estimating the Leroux 

model in INLA, these method could possibly be extended to estimating the EAR model in INLA 

(Lee & Mitchell, 2013; Ugarte et al., 2014). 
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APPENDIX A: R CODE FOR CHAMPLAIN ANALYSIS 

### Lake Champlain surface water temperatures 

### day of year 2000 to 239 

### resolution 2160m (24 times original 90m) 

 

### data preparpation steps 

 

library(rgdal);library(raster) 

 

## original data 

champ_rast=brick("Landsat_data/rasterChamp.tif") 

time = read.csv("Landsat_data/champlain_JAS_84-14_wtemp_bands.csv") 

 

 

# get location of just water 

percent_water=brick("cloud_percent.tif") 

percent_water[percent_water==0]<-NA 

percent_water[percent_water>0]<- 1 

waterarea=percent_water 

 

champ_rast=waterarea*champ_rast 

names(champ_rast)=paste(time$Year,time$DOY,sep="_") 

 

## subset data for day of year between 195 (~july 14) to 244(~aug 31) (about 50days)  

d195to244=which(time$DOY<195 | time$DOY>244) 

champ_rast_195to244=dropLayer(champ_rast,d195to244) 

time_195to244=time[-d195to244,c(3,4,5)] 

 

 

## remove values less than 16C  (5% of data for DOY 200 to 239) 

cloud=champ_rast_195to244 

 

cloud[cloud<160]<- 0   ## cloud is counter intuitive (1 means not cloud) 

cloud[cloud>=160]<- 1 

 

champ_rast_195to244[champ_rast_195to244<160]<- 0  ## threshold 

## resolution decreased 

champ2160=aggregate(champ_rast_195to244,fact=24,mean) 

champ1080=aggregate(champ_rast_195to244,fact=12,mean) 

 

 

#get number of cells averaged 

numcell2160=aggregate(waterarea,fact=24,sum) 

numcell1080=aggregate(waterarea,fact=12,sum) 

 

#get percent of average that is below 16 

num_not_cloud2160=aggregate(cloud,fact=24,sum) 

num_not_cloud1080=aggregate(cloud,fact=12,sum) 

 

percent_cloud2160=1-(num_not_cloud2160/numcell2160) 

names(percent_cloud2160)=names(champ2160) 

percent_cloud1080=1-(num_not_cloud1080/numcell1080) 

names(percent_cloud1080)=names(champ1080) 

 

#####  

ynames=names(champ1080) 

 

champ1080=champ1080*cell1080rm 

percent_cloud1080=percent_cloud1080*cell1080rm 

names(champ1080)=ynames 
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names(percent_cloud1080)=ynames 

 

champ2160=champ2160*cell2160rm 

percent_cloud2160=percent_cloud2160*cell2160rm 

names(champ2160)=ynames 

names(percent_cloud2160)=ynames 

 

## save as data 

 

cloud_per100_2160=as.data.frame(rasterToPoints(percent_cloud2160)) 

champ2160_pts=as.data.frame(rasterToPoints(champ2160)) 

 

#ncells=as.data.frame(rasterToPoints(numcell)) 

cloud_per100_1080=as.data.frame(rasterToPoints(percent_cloud1080)) 

champ1080_pts=as.data.frame(rasterToPoints(champ1080)) 

 

write.csv(cloud_per100_2160,file="cloud_per100_2160.csv") 

write.csv(champ2160_pts,file="champ2160_pts.csv") 

 

write.csv(cloud_per100_1080,file="cloud_per100_1080.csv") 

write.csv(champ1080_pts,file="champ1080_pts.csv") 

 

 

 

### Fitting EAR MODEL in STAN 

 

### champlain 2160m resolution 1984 - 2011 analysis with clouds as 0  

 

champ2160=read.csv("champ2160_pts.csv") 

names(champ2160)[1]="cellid" 

champ2160=champ2160[,-67]  ### removing year 2014 

 

clouds=read.csv("cloud_per100_2160.csv") 

names(clouds)[1]="cellid" 

clouds2160=clouds[,-67] 

 

### Getting Neighborhood matrix 

locs=champ2160[,2:3] 

distance=dist(locs) 

distance[which(distance>2160)]=0 

distance[which(distance==2160)]=1 

A=as.matrix(distance) 

d=(apply(A,1,sum))        

summary(as.factor(d)) 

### getting Eigenvalue decomposition of A-D+I 

svd=eigen(A-diag(d-1)) 

F_s=svd$vectors 

lam=svd$values 

 

 

## for fitting IEAR (could considered removing a few more to reduce dimension of 

"random effects") 

lam_star=lam[-1]    

F_s_star=F_s[,-1]   

 

### prewhitening data and covariates #ignores DOY variability 

temp=as.matrix(champ2160[,-c(1:3)]) 

cloudp=as.matrix(clouds2160[,-c(1:3)]) 

year=as.numeric(substr(names(champ2160[,-c(1:3)]),2,5)) + 

as.numeric(substr(names(champ2160[,-c(1:3)]),7,9))/365.25 

 

############## 

## rough OLS of all data pooled ignoring spatial variability 
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## use intercept and cp estimes for normal mean priors for fixed effects 

olsdat=data.frame(t=stack(champ2160[,-c(1:3)])[,1],cp=stack(clouds2160[,-

c(1:3)])[,1],yr=sort(rep(year-mean(year),352))) 

dim(olsdat) 

names(olsdat) 

olsfit1=lm(t~cp+yr,data=olsdat) 

summary(olsfit1) 

#################### 

 

temp=temp-summary(olsfit1)$coef[1,1]  ## center temp  

 

temp_w=t(F_s_star)%*%temp 

ones_w=t(F_s_star)%*%matrix(1,nrow=352,ncol=63) 

percent_missing_w=t(F_s_star)%*%cloudp 

years_w=t(F_s_star)%*%matrix(year-mean(year),nrow=352,ncol=63,byrow=TRUE) 

years=matrix(year-mean(year),nrow=351,ncol=63,byrow=TRUE) 

 

### preparing data for STAN 

N=dim(A)[1]-1   ## number of spatial random effects 

n=N*63 

temp_w=stack(as.data.frame(temp_w))[,1] 

ones_w=stack(as.data.frame(ones_w))[,1] 

percent_missing_w=stack(as.data.frame(percent_missing_w))[,1] 

years_w=stack(as.data.frame(years_w))[,1] 

years=stack(as.data.frame(years))[,1] 

cell=rep(1:N,63) 

data=c("N","n","temp_w","percent_missing_w","years","cell","F_s_star","lam_star") 

 

### running model in STAN 

library(rstan) 

rstan_options(auto_write = TRUE) 

options(mc.cores = parallel::detectCores()) 

 

ear_champ2160=stan(file="stan_model_July18_iear_cloudpercent_Champ_model.stan",data=da

ta,chains=4,iter=10000,control=list(adapt_delta=0.99,max_treedepth=20),refresh=500) 

 

 

### champlain 1080m resolution 1984 - 2011 analysis with clouds as 0 (any value less 

16C) 

champ1080=read.csv("champ1080_pts.csv") 

names(champ1080)[1]="cellid" 

champ1080=champ1080[,-67]  ### removing year 2014 

 

clouds=read.csv("cloud_per100_1080.csv") 

names(clouds)[1]="cellid" 

clouds1080=clouds[,-67] 

 

### Getting Neighborhood matrix 

locs=champ1080[,2:3] 

distance=dist(locs) 

distance[which(distance>1080)]=0 

distance[which(distance==1080)]=1 

A=as.matrix(distance) 

d=(apply(A,1,sum))        

summary(as.factor(d)) 

 

 

### getting Eigenvalue decomposition of A-D+I 

svd=eigen(A-diag(d-1)) 

F_s=svd$vectors 

lam=svd$values 

 

## for fitting IEAR (could considered removing a few more to reduce dimension of 
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"random effects") 

lam_star=lam[-1]    

F_s_star=F_s[,-1]    

 

### prewhitening data and covariates #ignores DOY variability 

temp=as.matrix(champ1080[,-c(1:3)]) 

cloudp=as.matrix(clouds1080[,-c(1:3)]) 

year=as.numeric(substr(names(champ1080[,-c(1:3)]),2,5)) + 

as.numeric(substr(names(champ1080[,-c(1:3)]),7,9))/365.25 

 

############## 

## rough OLS of all data pooled ignoring spatial variability 

## use intercept and cp estimes for normal mean priors for fixed effects 

olsdat=data.frame(t=stack(champ1080[,-c(1:3)])[,1],cp=stack(clouds1080[,-

c(1:3)])[,1],yr=sort(rep(year-mean(year),1217))) 

dim(olsdat) 

names(olsdat) 

olsfit1=lm(t~cp+yr,data=olsdat) 

summary(olsfit1) 

#################### 

 

temp=temp-summary(olsfit1)$coef[1,1]  ## center temp  

 

temp_w=t(F_s_star)%*%temp 

percent_missing_w=t(F_s_star)%*%cloudp 

years=matrix(year-mean(year),nrow=1216,ncol=63,byrow=TRUE) 

 

 

### preparing data for STAN 

N=dim(A)[1]-1   ## number of spatial random effects 

n=N*63 

temp_w=stack(as.data.frame(temp_w))[,1] 

percent_missing_w=stack(as.data.frame(percent_missing_w))[,1] 

years=stack(as.data.frame(years))[,1] 

cell=rep(1:N,63) 

 

 

data=c("N","n","temp_w","percent_missing_w","years","cell","F_s_star","lam_star") 

 

 

### running model in STAN 

library(rstan) 

rstan_options(auto_write = TRUE) 

options(mc.cores = parallel::detectCores()) 

 

ear_champ1080=stan(file="stan_model_July18_iear_cloudpercent_Champ_model1080.stan",dat

a=data,chains=4,iter=10000,control=list(adapt_delta=0.99,max_treedepth=20),refresh=500

) 
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APPENDIX B: STAN MODEL CODE FOR CHAMPLAIN ANALYSIS 

functions { 

   vector transform_znorm(vector znorm,vector lam,real theta,real sigma, int N){ 

   vector[N] eigen; 

   for(j in 1:N) eigen[j] <- (1 - lam[j])^(-theta/2); 

   return sigma * eigen .* znorm; 

  } 

} 

 

data { 

    int<lower=1> N;       // number of spatial random effects  (spatial locations - 1) 

    int<lower=1> n;                  // N*(number of time points) 

    vector[n] temp_w;          // Temp in CX10 after pre-whitening 

    vector[n] percent_missing_w;   // prewhitened 

    vector[n] years;           // just centered 

    int<lower=1> cell[n];                  // grid id number 

    matrix[N+1,N] F_s_star;                // eigenvectors of A-D+I (except for first eigenvector) 

    vector[N] lam_star;       // eigenvalues of A-D+I (except for lam=1) 

} 

 

parameters { 

    real beta_1;   // effect of missing values (missing values set to 0) 

    real<lower=1e-5> sigma_y;   

    real<lower=1e-5> sigma_z_0;   

    real<lower=1e-5> sigma_z_1;  

    real<lower=0> theta_0; 

    real<lower=0> theta_1; 

    vector[N] z_norm_0;                                    // standard normal 

    vector[N] z_norm_1;                                   // standard normal 

} 

 

 

model { 

vector[n] mu; 

vector[N] z_star_0; 

vector[N] z_star_1; 

beta_1 ~ normal(-226,100);                 // for 2160m used normal(-227,100); 

sigma_y ~ lognormal(2.5,0.75);           // for 2160m used lognormal(1,1.3)    

sigma_z_0 ~ lognormal(0,1);               // for 2160m used  lognormal(0.5,0.5) 

sigma_z_1 ~ lognormal(-1,1.5);           // for 2160m used  lognormal(0.5,0.5) 

theta_0 ~ lognormal(1,0.5);    

theta_1 ~ lognormal(1,0.5);  

z_norm_0 ~ normal(0,1); 

z_norm_1 ~ normal(0,1); 
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z_star_0 <- transform_znorm(z_norm_0,lam_star,theta_0,sigma_z_0,N); 

z_star_1 <- transform_znorm(z_norm_1,lam_star,theta_1,sigma_z_1,N); 

 

mu <- beta_1*percent_missing_w + z_star_0[cell] + z_star_1[cell].*years;  

temp_w ~ normal(mu, sigma_y); 

 

} 

 

generated quantities{ 

vector[N+1] omega_0; 

vector[N+1] omega_1; 

omega_0 <- F_s_star*transform_znorm(z_norm_0,lam_star,theta_0,sigma_z_0,N); 

omega_1 <- F_s_star*transform_znorm(z_norm_1,lam_star,theta_1,sigma_z_1,N); 

} 
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