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ABSTRACT 

UNDERSTANDING THE EVOLUTION OF PATHOGENICITY WITHIN GEOSMITHIA 

By 

Taruna Aggarwal 

University of New Hampshire, September 2016 

 

Geosmithia morbida is a filamentous ascomycete that causes thousand cankers disease in the 

eastern black walnut tree. This pathogen is commonly found in the western US; however, 

recently the disease was also detected in several eastern states where the black walnut lumber 

industry is concentrated. G. morbida is one of two known phytopathogens within the genus 

Geosmithia, and it is vectored into the host tree via the walnut twig beetle. We present the first 

de novo draft genome of G. morbida (Chapter 2). It is 26.5 Mbp in length and contains less than 

1% repetitive elements. The genome possesses an estimated 6,273 genes, 277 of which are 

predicted to encode proteins with unknown functions. Approximately 31.5% of the proteins  in 

G. morbida are homologous to proteins involved in pathogenicity, and 5.6%  of the proteins 

contain signal peptides that indicate these proteins are secreted. 

 Additionally, the genomes of Geosmithia flava and Geosmithia putterillii were assembled 

and compared with G. morbida (Chapter 3). The G. flava assembly composed of 1,819 scaffolds 

totaling in 29.47 Mbp in length, and G. putterillii genome contained 320 scaffolds consisting of 

29.99 Mbp. Our results showed that all three Geosmithia species possess similar number of 

carbohydrate binding enzymes and proteases. We also constructed a Bayesian phylogeny that 

illustrates the evolutionary relationships between Geosmithia and other fungal species. Our 

phylogeny is consistent with topologies from previous studies.  

 Lastly, we identified genes under positive selection in G. morbida that could potentially 

contribute to pathogenicity. Our results showed 38 genes under selection in G. morbida; none of 



  xii 

which were under selection in G. clavigera. These findings indicate that species-specific 

mechanisms might be the driving force behind the evolution of pathogenicity in both of these 

beetle-vectored fungal pathogens.   
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Chapter 1 
Introduction 

 
1.1 Brief summary of fungal evolution 
 
Fungal species occupy diverse ecological niches that include both mutualistic and pathogenic 

relationships with their hosts. The latter niche is of particular interest because fungal pathogens 

cause severe economic and ecological damage that may be irreversible (Pennisi 2010, Fisher 

et al. 2012). For instance, Oerke (2006) ranked fungi high among the major pests and 

pathogens that collectively are responsible for 37% of rice and 27% of wheat crop losses 

worldwide. Fungal species are capable of infecting animals and plants alike, and they not only 

threaten wildlife and forest health, but also our global food supply (Fisher et al. 2012, Gurr et al. 

2011).    

 Fungal pathogens have evolved a variety of mechanisms for adapting to their host and 

to dynamic environmental conditions. These adaptations evolve as consequences of random 

mutations, which can sweep through populations if they render a fitness advantage to the 

pathogen. It is important to note that several factors drive the evolution of pathogenicity in fungi 

and no single mechanism is species specific. Two means that propel the appearance of novel 

traits pertaining to fungal pathogenicity are briefly discussed below and include mobile genetic 

elements and horizontal gene transfer. 

 Mobile genetic elements are influential drivers of adaptive evolution (Stukenbrock & Croll 

2014, Casacuberta & Gonzalez 2013). For example, de Jonge and colleagues (2013) recorded 

that specific strains of Verticillium dahliae possess lineage specific regions containing effector 

genes that are flanked by repetitive elements, such as retrotransposons. Additionally, the 

authors suggested that these repeat rich sequences also contribute to expression regulation 

because several genes located near these sequences displayed high expression levels during 

induced infection (de Jonge et al. 2013). Because V. dahliae is an asexual pathogen, 

chromosomal rearrangements allow advantageous mutations to occur that may alternatively 
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result from sexual recombination in sexually reproducing pathogens. Similar findings were 

uncovered by another study that determined lineage specific regions in Fusarium oxysporum 

represented four additional chromosomes compared to closely related species (Ma et al. 2010). 

These chromosomes were rich in transposons and genes such as putative effectors, necrosis 

and ethylene-inducing proteins and carbohydrate binding enzymes (Ma et al. 2010).  

 In addition to evolution driven by mobile elements, adaptions can also arise from 

horizontal gene transfer (HGT)—a phenomenon well established in prokaryotes (Koonin et al. 

2001). Though speculated to be uncommon, HGT does occur in eukaryotes including fungal 

species (Mehrabi et al. 2011, Fitzpatrick 2011). For example, Friesen and colleagues (2006) 

demonstrated that a gene called ToxA—encoding for a host-specific toxin—was horizontally 

transferred from one wheat fungal pathogen (Stagonospora nodorum) to another (Pyrenophora 

tritici-repentis). The predicted gene in both species was 99.7% similar at the nucleotide level, 

and a large 11 kb segment flanking ToxA in both fungi was also highly conserved (Friesen et al. 

2006).  

 Another study used phylogenomic analyses to reveal HGT of 20 gene families from fungi 

to oomycetes and a single HGT from an oomycete to fungal lineage (Richards et al. 2011). 

These genes have putative functions in plant cell wall degradation, nutrient uptake, and 

suppression of plant immune response molecules (Richards et al. 2011). Numerous studies 

have illustrated the occurrence of HGT events in other fungal pathogens, such as Alternaria 

alternata (Hatta et al. 2002, Akagi et al. 2009), Fusarium oxysporum (Ma et al. 2010), and 

Fusarium solani (Temporini & VanEtten 2004, Coleman et al. 2009). The precise processes that 

aid in HGT are not fully understood; however, anastomosis is hypothesized to be involved in 

HGT events (Mehrabi et al. 2011, Fitzpatrick 2011, Xie et al 2008). Anastomosis is the fusion of 

vegetative hyphae that can result in exchange of genetic material between two different mycelia 

(Webster & Weber, 2007).  
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 The mechanisms driving evolution in fungi are not limited to the two aforementioned 

means (mobile genetic elements and HGT) rather, they also include random mutations, sexual 

recombination, and epigenetics (Raffaele & Kamoun 2012). Furthermore, evolutionary changes 

are a product of multiple concomitant mechanisms. This thesis aims to provide insight into the 

evolution of fungal pathogenicity in relation to these existing proposed mechanisms by using 

genus Geosmithia as a model system. The study species is Geosmithia morbida, a bark beetle 

vectored fungal pathogen that infects eastern black walnut trees.    

1.2 Coevolution of bark beetles and their fungal symbionts 
 
Bark beetles belong to the subfamily Scolytinae and are vital forest insects that frequently 

associate with one or more fungal species. Beetles and fungi play ecologically significant roles 

in nutrient cycling; however they also can become pathogenic and cause extensive damage to 

conifers as well as hardwoods (Goheen & Hansen 1993, Paine et al. 1997). While both 

ambrosia and bark beetles associate with symbiotic fungal partners, mycophagy (fungi feeding) 

is common among ambrosia beetles and is rare among bark beetles that prefer to reproduce 

and feed on the nutrient-rich phloem. Nevertheless, four bark beetle genera, including 

Dendroctonus, are known to be mycophagous (Harrington 2005). The Dendroctonus genus 

harbors many of the most destructive and economically important conifer pests (Goheen & 

Hansen 1993, Harrington 2005). For instance, D. frontalis (southern pine beetle), D. jeffreyi 

(Jeffrey pine beetle), D. brevicomis (western pine beetle), and D. ponderosae (mountain pine 

beetle) are major forest insect pests in North America that associate with mutualistic fungi 

(Coyle et al. 2015, Otrosina et al. 1997, Six & Paine 1997, Owen et al. 1987).    

The mountain pine beetle (MPB) historically has been found from central British 

Columbia to northern Mexico and from the pacific coast to southwestern regions of South 

Dakota (Safranyik et al. 2010). MPB primarily attacks lodgepole pine; however, they are capable 

of invading ponderosa, sugar, and western white pines. As warmer temperatures increase due 

to climate change, this beetle is beginning to migrate into eastern parts of both Canada and the 
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United States, including the Rocky Mountains in Colorado (Carroll et al. 2003, Meddens et al. 

2012). MPB are estimated to have caused pine tree mortality in areas greater than 5.1 and 3.4 

million hectares in British Columbia (2001-2010) and the western US (1997-2010), respectively 

(Meddens et al. 2012).  

MPB interacts symbiotically with various ophiostomatoid fungi; however, the most 

threatening among these species is an ascomycete fungus—Grosmannia clavigera—that 

greatly hastens host death (Plattner et al. 2008, Tsui et al. 2012). Much is known about the 

ecology, population structure, genomics and detoxification methods of G. clavigera (Tsui et al. 

2012, DiGuistini et al. 2011, Wang et al. 2012). Although important, G. clavigera is not the only 

bark beetle-associated fungus that is phytopathogenic. Another emerging bark beetle pest in the 

United States is Pityophthorus juglandis (walnut twig beetle) that carries the pathogenic fungus, 

Geosmithia morbida to Juglans species (Montecchio & Faccoli 2014). Geosmithia morbida is 

the causal agent of Thousand Cankers Disease that was originally detected in J. nigra (eastern 

black walnut) (Kolarik et al. 2011) and the focal species of this research.          

1.3 Thousand Cankers Disease 

Thousand Cankers Disease (TCD) is caused by the aggressive feeding of the walnut twig beetle 

(WTB) and its fungal partner, Geosmithia morbida (Tisserat et al. 2009). As the disease 

progresses, large necrotic cankers form in great numbers on branches and tree trunks; hence 

the name Thousand Cankers Disease (Tisserat et al. 2009). TCD was first documented in 

Colorado in 2001 when several eastern black walnuts were experiencing elevated levels of tree 

mortality (Tisserat et al. 2009). The black walnut is native to the eastern US, but it is planted 

throughout the western part of the country as a decorative tree.  

To date, the disease has been detected in 16 states in the US (Figure 1.1) and parts of 

Europe (Tisserat et al. 2009, Montecchio & Faccoli 2014, Hadziabdic et al. 2014, Juzwik et al. 

2016, Zerillo et al. 2014, RugmanJones et al. 2015, ThousandCankersDisease.com). 

Furthermore, G. morbida has been isolated from three wingnut species (Pterocarya fraxinifolia, 
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P. rhoifolia and P. stenoptera), English walnuts (J. regia) in California, and butternut (J. cinerea) 

in Oregon (Serdani et al. 2013, Yaghmour et al. 2014, Hishinuma et al. 2016). Currently, 

infected tree removal is the only proposed method of mitigating the dispersal of TCD. The 

urgency to develop more effective regulatory mechanisms warrants a better understanding of 

this disease and its vector complex, which comprises the walnut twig beetle and the pathogenic 

fungus, Geosmithia morbida (ThousandCankersDisease.com).   

1.4 Population distribution of Geosmithia morbida 

G. morbida is a filamentous fungus (Ascomycota: Hypocreales) that was first described by 

Kolarik and colleagues (2011). Although G. morbida primarily causes tree mortality in J. nigra, 

various other Juglans species, such as J. californica, J. cinerea, J. regia, and J. major, are also 

susceptible to G. morbida based on greenhouse inoculation studies (Utley et al. 2013). The G. 

morbida population distribution in the US is best described as four highly diverse genetic 

clusters spanning three geographic regions (Zerillo et al. 2014, Figure 1.2). The source of G. 

morbida is unknown; however it is clear that the fungus is native to North America and some 

hypotheses have been proposed about its origin. Firstly, it has been postulated that WTB and 

G. morbida might be native associates of J. major (Arizona walnut tree indigenous to 

southwestern US), and a host shift from Arizona walnut to a more naïve eastern black walnut 

took place (Zerillo, et al. 2014). The beetle was recovered from J. major in 1896; whereas, WTB 

or G. morbida were not detected in J. nigra stands until 1959 in the western US (Cranshaw 

2011). Though plausible, this hypothesis regarding a host shift was discounted by Zerillo and 

colleagues (2014) due to the lack of most common haplotypes in central Arizona and New 

Mexico regions (Figure 1.2). This suggested that G. morbida haplotypes from J. major are not 

ancestral to G. morbida populations found throughout other parts of the US. Another 

hypothesized origin of G. morbida is J. californica, which may be the native host of WTB and G. 

morbida. Two of the most common haplotypes, namely H02 and H03, were identified in 
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California and also found in other regions (Figure 1.2). This implied that California populations of 

J. californica might be the source populations hosting WTB and G. morbida (Zerillo et al. 2014).  

 Despite the lack of strong evidence explaining the origin of TCD epidemics in the US, it 

is likely that the disease spread is a consequence of anthropogenic activities and movement of 

infested wood (Zerillo et al. 2014). Black walnut trees are highly prized for their lumber quality, 

with the approximate market value of black walnuts in the US being over $5 billion (USDA-

APHIS 2009). In addition, California alone provides 99% of the English walnuts consumed in the 

US. Therefore, limiting the expansion of TCD into the central and eastern walnut plantations is 

critical both to the maintenance of the walnut industry and to the central hardwood forest 

ecosystem health. To this end, our work aims to understand the evolution of pathogenicity within 

Geosmithia morbida, which will provide insight into TCD dispersal and the development of more 

effective control methods.  

1.5 Thesis objectives 

 The central aim of this research is to determine the molecular mechanisms contributing 

to the evolution of pathogenicity within Geosmithia morbida. In order to meet this aim, we first 

sequenced, assembled and annotated a reference genome of G. morbida. We also 

characterized the G. morbida genome relative to two other fungal pathogens, Fusarium solani 

and Grosmannia clavigera (Chapter 1). Next, we identified genes under positive selection in G. 

morbida, and we compared the predicted protein models in G. morbida with two other 

Geosmithia species and their closest sister taxa within the order of Hypocreales. Lastly, we 

performed phylogenetic analyses to identify the evolutionary relationship between Geosmithia 

species and other species in the order Hypocreales (Chapter 2). 
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1.6 Tables and figures 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.1. Map illustrating TCD distribution in the United States as of April 2015. The 
lined states depict regions where TCD has been confirmed and quarantine has been 
issue in the tan shaded areas. The states that are lined and tan shaded represent areas 
where disease was detected and quarantine was issued (www.thousandcankers.com).  
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Figure 1.2. Map illustrating Geosmithia morbida haplotype distribution in the United 
States. The callouts correspond to three grouped geographic regions (blue=NW_AZ, 
central CA, northern CA and CO, TN; green=central AZ; red=southwestern CA, OR_WA, 
southern CO). The shaded wedges in each pie chart represent four genetic clusters 
(1=blue; 2=red/brown; 3=yellow; 4=green) (Zerillo et al. 2014).  
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Chapter 2 
De novo genome assembly of Geosmithia morbida, the causal agent of thousand 

cankers disease 
 

2.1 Introduction  

Studying molecular evolution of any phenotype is now made possible by the analysis  of large 

amounts of sequence data generated by next-generation sequencing platforms. This is 

particularly beneficial for the study of emerging fungal pathogens, which are progressively 

recognized as a threat to global biodiversity and food security. Furthermore, in many cases their 

expansion is a result of anthropogenic activities and an increase in trade of fungal-infected 

goods (Fisher et al. 2012). Fungal pathogens are capable of evolving rapidly in order to 

overcome host resistance, fungicides, and to adapt to new hosts and environments. Whole 

genome sequence data are useful in identifying the mechanisms of adaptive evolution within 

fungi (Stukenbrock et al. 2011, Gardiner et al. 2012, Condon et al. 2013). For instance, 

Stukenbrock et al. (2011) investigated the patterns of evolution in fungal pathogens during the 

process of domestication in wheat using all aligned genes within the genomes of wheat 

pathogens. They found that Zymoseptoria tritici, a domesticated wheat pathogen (formerly 

known as Mycosphaerella graminicola), underwent adaptive evolution at a higher rate than its 

wild relatives, Z. pseudotritici and Z. ardabiliae (Stukenbrock et al. 2012). The study also 

revealed that many of the pathogen’s 802 secreted proteins were under positive selection. A 

study by Gardiner et al. (2012), identified genes encoding aminotransferases, hydrolases, and 

kinases that were shared between Fusarium pseudograminearum and other cereal pathogens. 

Using phylogenomic analyses, the researchers demonstrated that these genes had bacterial 

origins. These studies highlight the various evolutionary means that fungal species employ in 

order to adapt to specific hosts, as well as the importance of genomics and bioinformatics in 

elucidating evolutionary mechanisms within the fungal kingdom.  
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 Many tree fungal pathogens associate with bark beetles in the family Scolytinae (Six & 

Wingfield, 2011). With climate change, beetles and their fungal symbionts can invade new 

territory and become major invasive forest pests on a global scale (Kurz et al. 2008, Sambaraju 

et al. 2012). A well-known example of an invasive pest is the mountain pine beetle and its 

symbiont, Grosmannia clavigera that has affected approximately  3.4 million of acres of 

lodgepole, ponderosa, and five-needle pine trees in Colorado alone since the outbreak began in 

1996 (Massoumi Alamouti et al. 2014, Colorado State Forest Service 2015). Another beetle pest 

in the western US, Pityophthorus juglandis (walnut twig beetle), associates with several fungal 

species, including the emergent fungal pathogen Geosmithia morbida (Tisserat et al. 2009, 

Kolarik et al. 2011).  

 Reports of tree mortality triggered by G. morbida infections first surfaced in 2009 (Kolarik 

et al. 2011), while the fungus was described as a new species in 2011 (Tisserat et al. 2009). 

This fungus is vectored into the host via P. juglandis and is the causal agent of thousand 

cankers disease (TCD) in Julgans nigra (eastern black walnut) (Zerillo  et al. 2014). This walnut 

species is valued for its wood, which is used for furniture, cabinetry, and veneer. Although J. 

nigra trees are planted throughout western US as a decorative species, they are indigenous to 

eastern North America where the walnut industry is worth hundreds of millions of dollars 

(Rugman-Jones et al. 2015,  Zerillo et al. 2014). In addition to being a major threat to the 

eastern populations of  J. nigra, TCD is of great concern because certain western walnut 

species including J. regia (the Persian walnut), J. californica, and J. hindsii are also susceptible 

to the fungus according to greenhouse inoculation studies (Utley et al. 2013).   

 The etiology of TCD is complex because it is a consequence of a fungal-beetle 

symbiosis. The walnut twig beetle, which is only known to attack members of genera Juglans 

and Pterocarya, is the most common vector of G. morbida (Kolarik et al. 2011). Nevertheless, 

other beetles are able to disperse the fungus from infested trees (Kolarik et al. 2007, Kolarik & 

Jankowiak, 2013). As vast numbers  of beetles concentrate in the bark of infested trees, fungal 
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cankers form and coalesce around beetle galleries and entrance holes. As the infection 

progresses, the phloem  and cambium discolor and the leaves wilt and yellow. These 

symptoms are followed by branch dieback and eventual tree death, which can occur within three 

years of the initial infection (Kolarik et al. 2011). Currently, 15 states in the US have reported 

one or more incidences of TCD, reflecting the expansion of WTB’s geographic range from its 

presumed native range in a few southwestern states (Rugman-Jones et al. 2015). Additionally, 

TCD has also been found in Europe where walnut species are planted for timber (Montecchio & 

Faccoli 2014).  

 To date, G. morbida is one of only two known pathogens within the genus Geosmithia, 

which consists of mostly saprotrophic beetle-associated species (the other pathogen is  G. 

pallida) (Lynch et al. 2014). The ecological complexity this vector-host-pathogen system exhibits 

makes it an intriguing lens for studying the evolution of pathogenicity. A well-assembled 

reference genome will enable us to identify genes unique to G. morbida that may be utilized to 

develop sequence-based tools for detecting and monitoring epidemics of TCD and for exploring 

the genomic features of Geosmithia species, which may help explain the evolution of 

pathogenicity. Here, we present a de novo genome assembly of Geosmithia morbida. The 

objectives of this study are to: 1) assemble the first, high-quality draft genome of this pathogen; 

2) annotate the genome to better understand the genomic composition of Geosmithia species; 

and 3) briefly compare the genome of G. morbida to two other fungal pathogens for which 

genomic data are available: Fusarium solani, a root pathogen that infects soybean, and 

Grosmannia calvigera, a pathogenic ascomycete that associates with the mountain pine beetle 

and kills lodgepole pines in North America.  

2.2 Methods 

2.2.1 DNA extraction and library preparation 
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DNA was extracted using the CTAB method as outlined by the Joint Genome Institute for 

Genome Sequencing from lyophilized mycelium of G. morbida (isolate 1262, host: Juglans 

californica) from southwestern California (Kohler & Francis 2015). The total DNA concentration 

was measured using Nanodrop, and samples for sequencing were sent to Purdue University 

Genomics Core Facility in West Lafayette, Indiana. DNA libraries were prepared using the 

paired-end Illumina Truseq protocol and mate-pair Nextera DNA Sample Preparation kits with 

average insert sizes of 487 and 1921 bp, respectively. These libraries were sequenced on the 

Illumina HiSeq 2500 using a single lane with a maximum read length of 101 bp.  

2.2.2 Preprocessing sequence data 

To assess the quality of our data, we ran FastQC (v0.11.2) (https://goo.gl/xHM1zf) (Andrews 

2015) and SGA Preqc (v0.10.13) (https://goo.gl/9y5bNy) on our raw sequence reads (Simpson 

2013). Both tools aim to supply the user with information such as per base sequence quality 

score distribution (FastQC) and frequency of variant branches in  de Bruijn graphs (Preqc) that 

aid in selecting appropriate assembly tools and parameters. The paired-end raw reads were 

corrected using a Bloom filter-based error correction tool called BLESS (v0.16) 

(https://goo.gl/Kno6Xo) (Heo et al. 2014). Next, the  error corrected reads were trimmed with 

Trimmomatic, version 0.32, using a Phred threshold of 2, following recommendations from 

MacManes (2014) (https://goo.gl/ FFoFjL) (Bolger et al. 2014). NextClip, version 1.3.1, was 

leveraged to trim adapters in the mate-pair read set (https://goo.gl/aZ9ucT) (Leggett et al. 

2014).  

2.2.3 De novo genome assembly and evaluation 

The de novo genome assembly was constructed with ALLPaths-LG (v49414) 

(https://goo.gl/03gU9Z) (Gnerre et al. 2011). The assembly was evaluated with  BUSCO 

(v1.1b1) (https://goo.gl/bMrXIM), a tool that assesses genome completeness based on the 

presence of single-copy orthologs (Simao et al. 2015). We also generated length-based 

statistics for our de novo genome with QUAST (v2.3) (https://goo.gl/ 5KSa4M) (Gurevich et al. 
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2013). The raw reads were mapped back to the genome using BWA version 0.7.9a-r786 to 

further assess the quality of the assembly (https://goo.gl/ Scxgn4) (Li & Durbin 2009). 

2.2.4 Structural and functional annotation of G. morbida genome   

We used the automated genome annotation software Maker version 2.31.8 (Cantarel et al. 

2008). Maker identifies repetitive elements, aligns ESTs, and uses protein homology evidence 

to generate ab initio gene predictions (https://goo.gl/JiLA3H). We used two  of the three gene 

prediction tools available within the pipeline, SNAP and Augustus. SNAP was trained using gff 

files generated by CEGMA v2.5 (a program similar to BUSCO) (Parra et al. 2007). Augustus 

was trained with Fusarium solani protein models (v2.0.26) downloaded from Ensembl Fungi 

(EnsemblFungi 2015). In order to functionally annotate the genome, the protein sequences 

produced by the structural annotation were blasted against the Swiss-Prot database, and target 

sequences were filtered for the best hits (Swiss-Prot 2015). A small subset of the resulting 

annotations was visualized and manually curated in WebApollo v2.0.1 (Lee et al. 2013). The 

final annotations were also evaluated with BUSCO (v1.1b1) (https://goo.gl/thTGzH).  

2.2.5 Assessing repetitive elements profile  

To assess the repetitive elements profile of G. morbida, we masked only the interspersed 

repeats within the assembled scaffolds with RepeatMasker (v4.0.5) (https://goo.gl/ TXrbr3) 

(Smit et al. 1996) using the sensitive mode and default values as arguments. In order to 

compare the repetitive element profile of G. morbida with F. solani (v2.0.29) and G. clavigera 

(kw1407.GCA_000143105.2.30), the interspersed repeats of these two fungal pathogens were 

also masked with RepeatMasker. The genome and protein data of these fungi were downloaded 

from Ensembl Fungi (EnsemblFungi 2015).  

2.2.6 Identifying putative proteins contributing to pathogenicity 

To identify putative genes contributing to pathogenicity in G. morbida, a BLASTp search was 

conducted for single best hits at an e-value threshold of 1e-6 or less against the PHI-base 

https://goo.gl/thTGzH


  19 

database (v3.8) (https://goo.gl/CEEVY0) that contains experimentally confirmed genes from 

fungal, oomycete and bacterial pathogens (PHI-base 2015). The search was performed using 

the same parameters for F. solani and G. clavigera.  To identify the proteins that contain signal 

peptides, we used SignalP (v4.1) (https:// goo.gl/JOe5Dh), and compared results from G. 

morbida with those from F. solani and G. clavigera (Peterson et al. 2011). Lastly, to find putative 

protein domains involved in pathogenicity in G. morbida, we performed a HMMER (version 

3.1b2) (Finn et al. 2011) search against the Pfam database (v28.0) (Finn et al. 2014) using the 

protein sequences as query. We conducted the same search for sequences of 17 known 

effector proteins, then extracted and analyzed domains common between the effector 

sequences and G. morbida (https://goo.gl/Y9IPZs).  

2.3 Results and discussion 

2.3.1 Data processing  

A total of 28,027,726 paired-end (PE) and 41,348,578 mate-pair (MP) reads were generated 

with approximately 109x and 160x coverage, respectively (Table 2.1). Of the MP reads, 67.7% 

contained adapters that were trimmed using NextClip (v1.3.1). We corrected errors within the 

PE reads using BLESS (v0.16) at a kmer length of 21. After correction, low-quality reads (phred 

score < 2) were trimmed with Trimmomatic (v0.32) resulting in 99.75% reads passing. In total, 

16,336,158 MP and 27,957,268 PE reads were used to construct the de novo genome 

assembly.  

2.3.2 Assembly features  

The G. morbida de novo assembly was constructed with AllPaths-LG (v49414). The assembled 

genome consisted of 73 contigs totaling 26,549,069 bp, which is comparable to certain other 

Ascomycetes such as Acremonium chrysogenum and Ustilaginoidea virens with genome sizes 

of 28.6 and 30.2 Mbp, respectively. The largest contig length was 2,597,956 bp, and the NG50 

was 1,305,468 bp. The completeness of the genome assembly was assessed using BUSCO, a 

tool that scans the genome for the presence of single-copy orthologous groups present in more 
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than 90% of fungal species. Of 1,438 single-copy orthologs specific to fungi, 98% were 

complete in our assembly, and 4.3% were duplicated BUSCOs. Only one ortholog was missing 

from the genome (Table 2.2). We used BWA to map the unprocessed, raw MP and PE reads 

back to the genome to further evaluate the assembly, and 87% of the MP and 90% of the PE 

reads mapped to our reference genome.  

2.3.3 Gene annotation  

The automated genome annotation software Maker v2.31.8 was used to identify structural 

elements in the G. morbida assembly generated by AllPaths-LG. Of the  total 6,273 proteins 

that were predicted, 5,996 had protein-homology evidence in the Swiss-Prot database and only 

277 (4.41%) of the total genes encoded for proteins of unknown function. Even though the total 

of 6,273 proteins is lower than the average number of 11,129 genes in Ascomycota, this 

number is within the range of the 4,657 and 27,529 coding genes within the phylum (Mohanta & 

Bae 2015). The completeness of the functional annotations was evaluated using BUSCO, and 

95% of the single copy orthologs were present in this protein set and only 7% were duplicated 

BUSCOs.  

2.3.4 Repetitive elements  

Repetitive elements represented 0.81% of the total bases in G. morbida. The genome contained 

152 retroelements (class I) that were mostly composed of long terminal repeats (n = 146) and 

60 DNA transposons (class II). In comparison, the genomes of G. clavigera and F. solani 

contained 1.14 and 1.47%, respectively. G. clavigera possesses 541 retroelements (0.79%) and 

66 DNA transposons (0.04%), whereas the genome of F. solani is comprised of 499 (0.54%) 

and 515 (0.81%) retroelements and transposons, respectively. The larger number of repeat 

elements in F. solani may explain its relatively large genome size—51.3 Mbp versus G. 

clavigera’s 29.8 Mbp and G. morbida’s 26.5 Mbp (Table 2.3).  

2.3.5 Identifying putative pathogenicity genes  

We blasted the entire predicted protein set against the PHI-base database (v3.8) to identify a list 
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of putative genes that may contribute to pathogenicity within G. morbida, F. solani, and G. 

clavigera. We determined that 1,974 genes in G. morbida (31.47% of the total 6,273 genes) 

were homologous to protein sequences in the database. For F. solani and G. clavigera, there 

were 4,855 and 2,387 genes with homologous PHI-base proteins. 

2.3.6 Identifying putative secreted proteins  

A search for the presence of putative secreted peptides within the protein sequences of G. 

morbida, F. solani and G. clavigera showed that approximately 5.6% (349) of the  G. morbida 

sequences contained signal peptides. Of the 349 sequences containing putative signal 

peptides, only 27 encoded proteins of unknown function. Roughly 8.8 and 6.9% of the proteins 

of F. solani and G. clavigera possess signal peptides. Secreted proteins are essential for host-

fungal interactions and are indicative of adaptation within fungal pathogens that require an array 

of mechanisms to overcome plant host defenses. Even though the precise means by which 

fungal proteins are trafficked into the host are unclear, secreted proteins are known to be 

essential for the translocation of fungal proteins into the host cells (Petre & Kamoun 2014). For 

instance, race 1 strains of Verticillium dahliae, a common cause of vascular wilt disease in 

plants, secretes a protein called Ave1 that induces host immunity response suggesting this 

protein is crucial for virulence (de Jonge et al. 2012). Another example of a secreted protein is 

Ecp6 in fungal pathogen Cladosporium fulvum that prevents chitin-activated detection by the 

host plant (de Jonge et al. 2010).  

2.3.7 Identifying protein domains  

We conducted a HMMER search against the pfam database (v28.0) using amino acid 

sequences for G. morbida and 17 effector proteins from various fungal species. For  G. 

morbida, there were 6,023 unique protein domains out of a total of 43,823 Pfam hits. A total of 

17 domains, which comprised 1,000 hits, were shared between G. morbida and known effector 

proteins. The three most common protein domains in G. morbida with a putative effector 

function belonged to short-chain dehydrogenases (n = 111), polyketide synthases (n = 94) and 
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NADH dehydrogenases (n = 86).  

2.4 Conclusion 

This work introduces the first genome assembly and analysis of Geosmithia morbida, a fungal 

pathogen of the black walnut tree that is vectored into the host via the walnut twig beetle. The 

de novo assembly is composed of 73 scaffolds totaling in 26.5 Mbp. There are 6,273 predicted 

proteins, and 4.41% of these are unknown. In comparison, 68.27% of F. solani and 26.70% of 

G. clavigera predicted proteins are unknown. We assessed the quality of our genome assembly 

and the predicted protein set using BUSCO, and found that 98 and 95% of the single copy 

orthologs specific to the fungal lineage were present in both, respectively. These data are 

indicative of our assembly’s high quality and completeness. Our BLASTp search against the 

PHI-base database revealed that G. morbida possesses 1,974 genes that are homologous to 

proteins involved in pathogenicity. Furthermore, G. morbida shares several domains with known 

effector proteins that are key for fungal pathogens during the infection process.  

 Geosmithia morbida is one of only two known fungal pathogens within the Geosmithia 

genus (Lynch et al. 2014). The genome assembly introduced in this study can be leveraged to 

explore the molecular mechanisms behind pathogenesis within this genus. The putative list of 

pathogenicity genes provided in this study can be used for future comparative genomic 

analyses, knock-out, and inoculation experiments. Moreover, genes unique to G. morbida may 

be utilized to develop DNA sequence-based tools for detecting and monitoring ongoing and 

future TCD epidemics.  
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2.5 Tables and figures 

Table 2.1. Statistics for Geosmithia morbida sequence data. 
 

 
The values in bold are number of trimmed, error corrected and filtered reads that were used for 
the assembly. 
 

Table 2.2. Geosmithia morbida reference genome assembly statistics generated using 
QUAST (v2.3) 
 
Number of sequences 73 

Largest scaffold length 2,597,956 

N50 1,305,468 

L50 7 

Total assembly length 26,549,069 

GC% 54.31 

BUSCOs completeness  95% 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Paired-end Mate-pair 

Number of reads 28,027,726 27,957,268 41,348,578 16,336,158 

Average insert size (bp) 487 1921 

Average coverage  109x 160x 
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Table 2.3. Repetitive elements profile for Geosmithia morbida, Grosmannia clavigera and 
Fusarium solani. 
 

 G. morbida G. clavigera F. solani 
Genome size 26.5 Mbp 29.8 Mbp 51.3 Mbp 

% Repetitive element 0.81% 1.14% 1.47% 

% Retroelements 0.10% 0.79% 0.54% 

% DNA transposons 0.02% 0.04% 0.81% 

 
RepeatMasker (v4.0.5) was used to generate the above values. Genomic data for F. solani and 
G. clavigera were downloaded from Ensembl Fungi.  
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Chapter 3 
Understanding the Evolution of Pathogenicity within Geosmithia  

 
3.1 Introduction  

Geosmithia (Ascomycota: Hypocreales) is a newly described genus that largely contains 

saprotrophic beetle-associated fungal species (Kolarik et al. 2005, Kolarik et al. 2011). The 

genus was first proposed in 1979 for fungi that were formerly placed in genus Penicillium (Pitt 

1979). Geosmithia species are filamentous fungi that commonly associate with phloeophagous 

bark beetles. However, some Geosmithia fungi, such as G. eupagioceri and G. microcorthyli, 

are known to affiliate with ambrosia beetles (Kolarik & Jankowiak 2013). Geosmithia species 

and their beetle associates occupy a variety of hosts including pines, oaks, junipers, 

angiosperms and walnut trees (Kolarik & Kirkendall 2010, Kolarik & Jankowiak 2013, Kolarik et 

al. 2007). An understanding of the ecology and diversity of symbiotic relationships between 

these fungi and their beetle associates is limited, but has recently started to be explored (Kolarik 

& Jankowiak 2013, Kolarik et al. 2007). While most species in Geosmithia are saprotrophic, two 

species are known to be pathogenic—G. pallida (Lynch et al. 2014) and G. morbida (Tisserat et 

al. 2009), the latter of which is the focal species of this study.   

 Geosmithia morbida causes thousand cankers disease (TCD) in Juglans nigra (eastern 

black walnut) and is vectored into the host by Pityophthorus juglandis, commonly known as the 

walnut twig beetle (WTB) (Kolarik et al. 2011). The earliest mortality incidences of black walnut 

trees were noted in Colorado, US in 2001. Since then, nine western states (CO, WA, OR, ID, 

NV, UT, CA, NM, AZ) and seven eastern states (PA, OH, IN, MD, VA, TN, NC) have reported 

one or more incidences of TCD (Zerillo et al. 2014). This increase in TCD is likely a 

consequence of the expansion of WTB’s geographic range, which was present in only four 

counties of California, Arizona and New Mexico in the 1960s. However, as of 2014, the beetle 

has been detected in over 115 counties in the western and eastern US (Rugman-Jones et al. 

2014).   
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 The origin of this pathogen is not clear, however, it has been hypothesized that G. 

morbida may have undergone a host shift from J. major (Arizona black walnut) to a more naïve 

host, J. nigra, because the fungus does not cause disease in the Arizona black walnut, and 

neither WTB nor G. morbida were observed in the native range of J. nigra until 2010. It is also 

essential to note J. nigra is not indigenous to western US and has been planted through the 

region as an ornamental species. An alternative prediction based on G. morbida population 

genetic data suggests that the origin of G. morbida and WTB are the walnut populations of 

southern California, where the pathogen has been isolated from both healthy and diseased J. 

californica trees (Zerillo et al. 2014).  

 Some early symptoms of infection by G. morbida include yellowing, wilting and thinning 

of the foliage followed by branch dieback and tree death within 2-3 years after the initial 

infestation (Kolarik et al. 2011, Tisserat et al. 2009). Little is known about the specific means G. 

morbida employs for initiating and maintaining the infection, or what benefits, if any, the fungus 

imparts to the WTB vector. However, previous studies have demonstrated that fungal 

pathogens that occupy similar ecological niches as G. morbida must be capable of enduring and 

combating toxic host environments used by plants to resist infection. For instance, Grosmannia 

clavigera is a fungal symbiont of the mountain pine beetle, and this fungus can detoxify 

metabolites such as terpenoids and phenolics produced by the host as defense mechanisms 

(DiGuistini et al. 2011). 

 In a recent study, we developed a reference genome of Geosmithia morbida, which 

consisted of 73 scaffolds totaling 26.5 Mbp in length (Chapter 2, Schuelke et al. 2016). The 

fungus possesses 6,273 predicted proteins; over 30% of these peptides are homologous to 

proteins implicated in pathogenicity. In this work, we compare the reference genome of 

pathogenic and host specific species G. morbida with two closely related non-pathogenic and 

generalist species, G. flava and G. putterillii. To do so, we identify putative genes under positive 

selection that may be involved in the specialization of a pathogenic life strategy dependent on a 
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single beetle vector and narrow, but potentially expanding, host range. We also present a 

species phylogeny, estimated using single-copy orthologs, which confirms the placement of 

Geosmithia species in the order Hypocreales and that their closest fungal relative is 

Acremonium chrysogenum. The primary goal of this study was to gain insight into the evolution 

of pathogenicity within G. morbida. To do so, we identified potential genes that are experiencing 

adaptive selection in G. morbida and G. clavigera because these two tree pathogens are 

vectored into the host via beetle associates. We predicted these fungal pathogens to have 

common effector proteins that are under positive selection.   

3.2 Methods 

3.2.1 DNA extraction and sequencing 

The CTAB method delineated by the Joint Genome Institute was used to extract DNA for 

genome sequencing from lyophilized mycelium of Geosmithia flava and Geosmithia putterillii 

(Kohler et al. 2011). Total DNA concentration was measured with Nanodrop, and DNA 

sequencing was conducted at Purdue University Genomics Core Facility in West Lafayette, 

Indiana. DNA libraries were prepared using the paired-end Illumina Truseq protocol and 

sequenced on an Illumina HiSeq 2500 using a single lane. Mean insert sizes for G. flava and G. 

putterillii were 477bp and 513bp, correspondingly. Table 3.1 lists genetic, geographic, and host 

information for each Geosmithia species used in this study.  

3.2.2 Preprocessing sequence data 

The raw paired-end reads for G. flava and G. putterillii were corrected using BFC (version r181) 

(Li 2015). BFC utilizes a combination of hash table and bloom-filter to count k-mers for a given 

read and correct errors in that read based on the k-mer support. Because BFC requires 

interleaved reads as input, khmer was leveraged to interleave as well as split the paired-end 

reads before and after the error correction stage, respectively (Crusoe et al. 2015). Next, low 

quality bases and adapters in error corrected reads were trimmed with Trimmomatic, version 

0.32, using a Phred threshold of 4 (Bolger et al. 2014).  
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3.2.3 Assembly construction  

Genome assemblies were constructed with ABySS 1.9.0 using four k-mer sizes of 61, 71, 81, 

and 91 (Simpson et al. 2009). The resulting assemblies were evaluated using BUSCO (v1.1b1) 

(Simão et al. 2015), which assess completeness based on the presence of universal single-

copy orthologs within fungi. Length-based statistics were generated with QUAST v2.3 (Gurevich 

et al. 2013). Final assemblies were manually chosen based on length-based and genome 

completeness statistics. Furthermore, the raw reads of G. flava and G. putterillii were mapped 

back to their corresponding genomes using BWA version 0.7.9a-r786 to assess the quality of 

the chosen assemblies (Li & Durbin 2009).  

3.2.4 Structural and Functional Annotation 

We utilized the automated annotation software Maker version 2.31.8 to structurally annotate the 

genomes of G. flava and G. putterillii (Cantarel et al. 2008). We used two of the three gene 

prediction tools available within the pipeline, SNAP and Augustus. SNAP was trained using gff 

files generated by CEGMA v2.5 (a program similar to BUSCO) (Parra et al. 2007). Augustus 

was trained with Fusarium solani protein models (v2.0.26) downloaded from Ensembl Fungi 

(EnsemblFungi 2015). The protein sequences generated by the structural annotation were 

blasted against the Swiss-Prot database to functionally annotate the genomes of G. flava and 

G. putterillii (Swiss-Prot 2015).  

3.2.5 Assessing repetitive elements profile  

To evaluate the repetitive elements profile of G. flava and G. putterillii, we masked the 

interspersed repeats within the assembled genomes with RepeatMasker 4.0.5 using the 

sensitive mode and default values as arguments (Smit et al. 1996).  

3.2.6 Identifying putative genes involved in host-pathogen interactions 

To search for putative genes contributing to pathogenicity, we conducted a BLASTp search with 

an e-value threshold of 1e-6 against the PHI-base database that includes known genes 

implicated in pathogenicity (PHI-base 2015). Additionally, we identified proteins that contain 
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signal peptides and lack transmembrane domains in each Geosmithia species as well as their 

close relative, Acremonium chrysogenum, with SignalP 4.1 and TMHMM 2.0 (Peterson et al. 

2011, Krogh et al. 2001).  

3.2.7 Identifying carbohydrate-active proteins and peptidases 

To identify enzymes capable of degrading carbohydrate molecules in species belonging to 

Hypocreales and G. clavigera, we performed a HMMER search against the CAZy database 

released July 2015 (Lombard et al. 2014) and filtered the results following the developer’s 

recommendations. Lastly, we profiled the proteolytic enzymes present in species under 

examination using the MEROPS database 10.0 (Rawlings et al. 2016).  

3.2.8 Phylogenetic analysis 

3.2.8a Taxon Sampling 

In order to determine phylogenetic position of Geosmithia, we combined the predicted peptide 

sequences from three Geosmithia species described here with the predicted peptide sequences 

of an additional 17 fungal genomes that represent the breadth of pathogens and non-pathogens 

within Ascomycota. Our dataset contained 11 pathogens and 9 non-pathogens. Table 3.2 lists 

the species used in this study and additional information regarding their taxonomy, ecological 

roles, and source databases.    

3.2.8b Inferring Orthology   

Orthologous peptide sequences among the 20 fungal genomes were determined using 

OrthoFinder version 0.3.0 (Emms & Kelly 2015). OrthoFinder performs an all-versus-all BLASTp 

(Altschul et al. 1990) search among a set of protein coding genes to infer orthogroups and 

aligns them using MAFFT (Katoh & Standley 2013). These orthogroups may contain paralogs 

as well as orthologs; because datasets rich in paralogs can confound phylogenomic analysis, 

the alignment files produced by OrthoFinder were parsed to recover only those orthogroups that 

contained single-copy orthologs from each of the 20 species. This resulted in 1,916 total 

orthogroups with 100% taxon occupancy.  
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3.2.8b Trimming Alignments    

For each alignment, regions that contained gap rich sites were removed using –gappout option 

in trimAl v1.4.rev15 (Capella-Gutiérrez et al. 2009). Next, all files containing orthogroups were 

renamed so the respective headers among these files were identical and individual alignments 

were concatenated. Concatenation resulted in a single fasta file containing all 1,916 partitions 

with 1,054,662 sites at 100% taxon occupancy. This initial alignment was further filtered using 

MARE (v.0.1.2) (Misof et al. 2013), which reduced the character matrix to 247,627 sites. This 

reduced fasta alignment was converted into a partitioned phylip formatted file. Next, the best-fit 

substitution models for each partition and a global partitioning scheme were determined with 

PartitionFinder (v1.1.1) using hcluster clustering algorithm and default parameters (Lanfear et 

al. 2014).  

3.2.8d Constructing Phylogeny 

Maximum likelihood (ML) analysis was conducted in RaxML v 8.1.20 (Stamatakis 2014) 

leveraging the partitioning scheme determined by PartitionFinder. The ML tree and 200 

bootstrap replicates were conducted in a single analysis using the –f a option. In addition, we 

conducted Bayesian Markov Chain Monte Carlo (BMCMC) analysis in MrBayes 3.2.6 (Ronquist 

et al. 2012). For MrBayes analysis, we specified the mixed amino acid model prior and ran the 

fully partitioned tree search for 215,000 generations. A consensus tree was then generated after 

discarding 50% of the run as burnin. The nexus file, including MrBayes block, provides other 

details of the MrBayes analysis (Supplementary File A).  

3.2.9 Measuring genomic distances using MinHash 

In addition to assessing the phylogenetic relationships among the fungal species in this study, 

we calculated approximate pair-wise distances based on whole genome sequences with a tool 

called Mash that utilizes the MinHash technique (Ondov et al. 2016). Mash reduces large 

clusters of sequences into MinHash sketches with a user-defined size and estimates a Mash 
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distance and a corresponding P-value. We constructed a distance matrix with data from 

100,000 sketches and default k-mer value of 21.  

3.2.10 Detecting genes under positive selection 

To identify genes under positive selection in G. morbida lineage, we compared G. morbida with 

all non-pathogens from the aforementioned 20 fungi used to estimate the species tree in Figure 

3.1. Among this batch of 10 fungal species, we detected 22,908 protein orthogroups using 

OrthoFinder that contained paralogs as well as orthologs. Of these, only 9,560 orthogroups 

were alignable with MAFFT because many groups consisted of only one sequence from a single 

species (Katoh & Standley 2013). A total of 3,327 orthogroups, composed of single-copy 

orthologs, were sieved and corresponding coding DNA sequences for each peptide in these 

partitions were extracted using custom scripts (available at our Github repository – see link 

below). 

 The coding DNA sequences were then aligned with MACSE v1.01.b (Ranwez et al. 

2011). This Java-based utility accounts for frameshifts and premature stop codons in coding 

sequences during the alignment process and outputs aligned protein and nucleotide sequences. 

In order to filter out alignments with frameshifts and internal stop codons, we utilized a program 

called PAL2NAL v14 (Suyama et al. 2006). This software searches for complementary regions 

between multiple protein alignments and the corresponding coding DNA sequences, and omits 

any problematic codons from the output file. This cleaning step reduced the number of 3,327 

orthogroups to 2,798 that were used for detecting genes under selective pressures. 

 We used the branch-site model (BSM) in the CodeML program of package PAML v4.8 

for selection analysis (Yang 2007). BSM permits ω (dN/dS) to vary among sites and branches 

and thus, allowing the identification of specific branches and sites subjected to selection. We 

computed two models in order to calculate and compare the likelihood values: a null model with 

a fixed ω value of 1 and an alternative model that estimates ω in the foreground branch, which 

is G. morbida in our case. In the effort to reduce false positives, we implemented the Benjamini-
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Hochberg correction method when comparing likelihood ratios for null and alternative models 

using a P-value threshold of 0.05. We performed similar BLAST searches as mentioned 

previously to characterize the functions of these proteins, identify proteins with signal peptides 

and transmembrane domains, and assess which genes encode for putative pathogenic proteins. 

 We repeated the above procedures for detecting genes under selection in Grosmannia 

clavigera because this fungal pathogen plays an ecological role similar to G. morbida. By 

performing these analyses, we sought to uncover genes under adaptive evolution in both 

beetle-vectored tree pathogens.          

3.3 Code Availability 

All commands and scripts used in our analyses are available at GitHub repository associated 

with this paper (https://github.com/macmanes-lab/GeosmithiaComparativeGenomics). 

3.4 Results and discussion 

3.4.1 Assembly features  

We recently assembled a reference genome for a G. morbida strain isolated from J. californica 

in Southern California. The reference contained 73 scaffolds with an estimated size of 26.5 

Mbp. We predicted 6,273 protein models in this reference that were generated in-silico using the 

Maker annotation pipeline (Cantarel et al. 2008). In this work, we sequenced strains of G. flava 

and G. putterillii at approximately 102x and 131x coverage, respectively. The G. flava assembly 

composed of 1,819 scaffolds totaling in 29.47 Mbp in length, and G. putterillii genome contained 

320 scaffolds with 29.99 Mbp. Both genomes possess 98% of the single-copy orthologs present 

in more than 90% of the fungal species. Additionally, 97% and 98% of the raw reads mapped 

back to G. flava and G. putterillii genome assemblies, respectively (Table 3.4). These length-

based, completeness, and mapping statistics attest to the high quality of our genome 

assemblies. We estimated G. flava and G. putterillii possess 6,976 and 7,086 peptides, 

respectively. This increase in number of predict proteins may provide a larger toolkit enabling G. 
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flava and G. putterillii to interact with multiple bark beetle species, however experimental work is 

necessary to support this speculation.     

 An estimated 0.80% of G. morbida reference genome sequence represented repeats; 

however, 0.63% and 0.64% of the sequences in G. flava and G. putterillii consisted of repetitive 

elements. There are 60, 42, and 15 DNA transposons in G. morbida, G. flava, and G. putterillii, 

respectively. Furthermore, G. morbida possesses only 152 retroelements, whereas G. flava and 

G. putterillii have 401 and 214 of such elements, correspondingly.      

3.4.2 Identifying putative genes involved in pathogenicity  

The full BLASTp search results against the PHI-base database (v4.0) for G. morbida, G. flava, 

G. putterillii and Acremonium chrysogenum are available in the supplementary material (Table 

S1). Approximately 32%, 34%, and 34% of the total proteins in G. morbida, G. flava and G. 

putterillii respectively share homology with protein sequences in the database. The number of 

unknown proteins with hits in the PHI-base database is similar for G. morbida (26) and G. flava 

(28) in comparison to G. putterillii (37).  

 In comparison to A. chrygosgenum in Table 3.6, G. morbida contains four percent more 

proteins that putatively play a role during or after the infection process. The three Geosmithia 

species share 961 of the PHI-base proteins with their closest relative, Acremonium 

chrysogenum. G. morbida possesses only 14 unique PHI-base proteins when compared to G. 

flava, G. putterillii and A. chrysogenum (Figure 3.3). However, nine of the 14 genes encoded 

products that were proven to disrupt pathogenicity; whereas the remaining predicted proteins 

did not phenotypically affect pathogenicity. One of these unique genes important for 

pathogenicity encodes for polyketide synthase, which is involved in microbial secondary 

metabolism that confers virulence (Tsai et al. 1998, Gaffoor et al. 2005). Other genes that may 

contribute to pathogenicity in G. morbida are involved in environmental stress response and 

conidium and appresorium formation (Cervantes-Chávez et al. 2011, Chen et al. 2008, Ryder & 

Talbot 2015). G. morbida contains Calcineurin regulatory subunit B, a gene that controls stress 
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response. Studies show that transformants lacking this gene were unable to form proper cell-

wall in Ustilago hordei (Cervantes-Chávez et al. 2011, Kraus & Heitman 2003).           

 Moreover, the protein product encoded by a gene known as Rac1, is a GTPase that 

plays a role in directed cellular growth and the development of appressorium that allows the 

pathogens to penetrate the host surface (Chen et al. 2008, Rolke & Tudzynski 2008, Harris 

2011). Another gene present only in G. morbida that affects appressorial construction encodes 

for adenylate cyclase that is located within the cell membrane and catalyzes cAMP from ATP 

(Steer 1975). cAMP monitors signaling pathways that control morphogenesis, hyphal 

development, and virulence in various fungal pathogens (Choi & Dean 1997, Adachi & Hamer 

1998, D’Souza & Heitman 2001, Barhoom & Sharon 2004). Although the specific penetration 

mechanisms are not known in G. morbida, the presence of Rac1 and adenylate cyclase 

homologs suggests that this fungus employs similar invasion strategies as other known plant 

pathogens such as Magnaporthe grisea (rice blast fungus), Claviceps purpurea (ergot fungus), 

and Ustilago maydis (corn smut fungus).  

3.4.3 Identifying putative secreted proteins 

A total of 349, 403, and 395 proteins in G. morbida, G. flava, and G. putterillii contain signal 

peptides respectively. Of these putative signal peptides, G. morbida encodes 27 proteins (7.7%) 

with unknown function, whereas G. flava and G. putterillii contain 29 (7.2%) and 30 (7.6%) 

unknown proteins. The difference in percent of unknown proteins with signal peptides is minimal 

among the three genomes. For each species, proteins containing signal peptides were 

subjected to a membrane protein topology search using TMHMM v2.0. There were 237, 281, 

and 283 proteins in G. morbida, G. flava, and G. putterillii that lacked any transmembrane 

protein domains. Again, these numbers of proteins are very similar. 

3.4.4 Profiling carbohydrate active enzymes and peptidases 

CAZymes are carbohydrate active enzymes that break down plant structural components 

enabling initiation and establishment of infection. We assessed the CAZymatic profile of all 
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species in the order Hypocreales, Geosmithia species, and Grosmannia clavigera (Figure 3.1). 

The glycoside hydrolase (GH) family members dominated all protein models followed by 

glycosyltransferase (GT) family. The two most prominent families among all fungal species were 

GH3 and GH16 (supplementary material Table S2). GH3 hydrolases are involved in cell wall 

degradation and defense against the host immune system, and GH16 enzymes fulfill a wide 

range of cellular functions including transporting amino acids. The third most representative 

family was GH18; however G. morbida only contains four of these enzymes. In contrast, this 

number for other species ranges from 9 to 31 enzymes. Along with acetylglucosaminidases, 

family GH18 harbors chitinases that assist in the production of carbon and nitrogen. In terms of 

other CAZyme families, all fungi express a similar overall distribution, with F. solani being the 

only exception, which contains more CAZymes than any other pathogen and non-pathogen. 

This Fusarium species is a necrotrophic pathogen that is hypothesized to possess more 

CAZymes than biotrophic and hemibiotrophic fungi. This discrepancy may be due to the fact 

that necrotrophic pathogens require an extensive toolkit to promote host cell death as quickly as 

possible; whereas biotrophs need to keep the host alive and dispensing large number of 

degradation enzymes can be detrimental to that aim (Zhao et al. 2013). 

 In addition to profiling CAZymes, we also performed a BLAST search against the 

peptidase database, Merops v10.0 (Rawlings et al. 2016), for each Hypocreales, C. platani, and 

G. clavigera genome. Among the pathogens, G. morbida has the third highest percent of 

predicted proteases after Cordyceps militaris (insect pathogen) and G. clavigera (Figure 3.2). 

Moreover, G. flava and G. putterillii have largest percent of peptidases among the 

nonpathogenic fungi. All three Geosmithia species illustrate similar proteolytic profiles and 

contain no glumatic and mixed peptidases.  

3.4.5 Inferring phylogeny 

Even though the Geosmithia genus was first established in 1979, it has only recently been 

described in depth. One of the main objectives in this study was to uncover the phylogenetic 
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relationship between Geosmithia species and other fungal pathogens using protein coding DNA 

sequence data. In order to determine the broader evolutionary history of Geosmithia species, 

we constructed a maximum likelihood (ML) and Bayesian Markov Chain Monte Carlo (BMCMC) 

phylogenies using 1,916 single-copy orthologs from G. morbida, G. putterillii, G. flava, and 17 

additional fungal taxa (Table 3.2). Our final dataset consisted of 11 pathogens and 9 non-

pathogens. 

 After trimming and filtering, our 1,916 orthogroups contained approximately 1e106 amino 

acid sites in total. The topologies of trees generated under ML and BMCMC were identical and 

all branches in all analyses received bootstrap support of 100% (ML) and posterior probabilities 

of 1.0 (BMCMC) (Figure 3.3). Both analyses resulted in identical tree topology that is consistent 

with prior work (Fitzpatrick et al. 2006, Wang et al. 2009). Our phylogenetic analysis places 

Geosmithia species in the order of Hypocreales and confirms that the closest relative to this 

genus is Acremonium chrysogenum (Kolarik et al. 2011).    

3.4.6 Genomic distances 

The genomic distance dendrogram does not align with the phylgeny built using single copy 

orthologs (Figure 3.4). The Geosmithia clade is consistent with the predicted species tree in 

Figure 3.3, however five of the 13 Hypocreales group separately from the others. Trichoderma 

virens is the most distantly related fungus. The disparity between the phylogeny and the 

distance based dendrogram can simply be explained by their divergent construction 

approaches. The species phylogeny (Figure 3.3) depends solely on protein coding sequences, 

but the heatmap (Figure 3.4) incorporates both coding and noncoding regions of the genomes.   

3.4.7 Genes under positive selection 

In order to detect genes under positive selection in the G. morbida lineage, we first searched for 

all single-copy orthologs shared among the 9 non-pathogens and G. morbida using OrthoFinder 

(v0.3.0). Briefly, this program conducts all-versus-all BLASTp searches to find orthologous 

peptides. Using a custom Python script, we extracted the corresponding coding sequences for 
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each protein in the 3,327 orthogroups containing 1:1 orthologs. These orthogroups were aligned 

using MACSE v1.01b and cleaned with PAL2NAL v14. This step resulted in 2,798 multiple 

sequence alignments that were used for selection analysis.  

 To identify coding sequences and sites experiencing selection, we leveraged the branch-

site model in PAML’s codeml program (v4.8). Geosmithia morbida was selected as the 

foreground branch. Our results showed 38 genes to be under positive selection at an adjusted 

P-value < 0.05. Next, we performed a functional search for each protein by blasting the peptide 

sequences against the NCBI non-redundant and pfam databases. We determined that several 

were involved in catabolic activity, gene regulation, and cellular transport.  

 For instance, a cullin3-like protein belonging to a group of structurally similar molecules 

involved in protein degradation, such as the Skp-Cullin-F-box (SCF) ubiquitin ligase complex, 

was predicted to be under positive selection (Pintard et al. 2004, Cardozo & Pagano 2004). 

Furthermore, a ubiquitin-conjugating enzyme (E2) that interacts with cullin3 to prepare substrate 

for degradation, also had a dn/ds > 1, indicating that both genes are under positive selection 

within G. morbida. Although little is known regarding the precise functional abilities of these 

complexes, it is possible these proteins are involved in pathogenicity of G. morbida. Previous 

studies have also implicated ubiquitin ligase complexes in infection and disease development 

(Duyvesteijn et al. 2005, Han et al. 2007). 

 Additionally, our analysis showed a regulatory protein homologous to the basic leucine 

zipper (bZIP) transcription factor under selection. The bZIP proteins are similar to AP-1 

transcription factors and monitor several developmental and physiological processes including 

oxidative stress responses in eukaryotes (Corrêa et al. 2008). Fungal pathogens such as the 

rice blast fungus Magnaporthe oryzae express AP1-like transcription factor called MoAP1 that 

contains bZIP domain. MoAP1 is highly active during infection and is translocated from the 

cytoplasm to the nucleus in response to oxidative stress induced by H2O2 (Guo et al. 2011). 

Furthermore, the researchers showed that MoAP1 regulates enzymes such as laccase and 
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glutamate decarboxylase that are involved in lignin breakdown and metabolism of γ-

aminobutyric acid, respectively (Janusz et al. 2013, Baldrian 2005, Solomon & Oliver 2002). 

Some of the other positively selected genes include ABC1 transporter, proteases, proteins 

involved in apoptosis and DNA replication and repair. Lastly, only five of the 38 genes encoded 

proteins with unknown functions. A complete list of genes and their functions is provided in the 

supplementary material (Table S3). 

3.4.8 Transmembrane protein and effector genes 

 Our analysis of the 38 proteins under positive selection showed that 11 of these possess 

at least one or more transmembrane domains. Given nearly 30% of the positively selected 

genes are membrane bound suggests that interactions with the host surface are drivers of 

evolution within G. morbida. Transmembrane proteins are important mediators between a host 

and its pathogens during microbial invasion. Fungal pathogens either penetrate a surface or 

enter the host through a wound or opening such as stomata in order to gain access to the 

nutrients in the plant (Chisholm et al. 2006).  Once the infiltration process is completed, 

pathogens are exposed to host plasma membrane receptors that detect pathogen-associated 

molecular patterns (PAMP) and induce PAMP-triggered immunity (PTI) to prevent further 

proliferation of the microbe. Transmembrane proteins a fungal pathogen expresses within its 

membrane are crucial during PTI because they are responsible for suppressing PTI directly or 

by secreting effector molecules, which contain signal peptides necessary for proper targeting 

and transport (Boller & He 2009, Chisholm et al. 2006). However, we found no protein that 

contained a signal peptide indicating none of these proteins are secretory in nature. This finding 

is significant because it demonstrates that the secretome of G. morbida is not under positive 

selective pressures, and that this pathogen may be utilizing conserved effector proteins.    

 We also performed a BLASTp search against the phibase database (version 4.0) and 

found that seven out of 38 proteins shared homology with experimentally confirmed genes 
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involved in pathogenicity. These seven putatively pathogenic genes do not contain any 

transmembrane domains or signal peptides.  

3.4.9 Genes under adaptive evolution in beetle-vectored fungal pathogens 

 In addition to detecting genes under selective pressures in G. morbida, we performed 

the same selection analysis for Grosmannia clavigera to identify candidate proteins that may 

help explain adaptations these beetle-vectored species have evolved in light of their specific 

ecological roles. We found that G. clavigera possesses 42 positively selected genes that share 

protein domains with only two of the 38 genes predicted to be under selection in G. morbida 

(Supplementary table S4). The two overlapping motifs are methyltransferase and protein kinase 

domains. Our KEGG analysis exhibited no common pathways between G. morbida and G. 

clavigera. These results confirm that organisms can evolve vastly different mechanisms that 

give rise to similar phenotypic traits. Although both G. morbida and G. clavigera have similar 

niches, their host ranges are unrelated and the beetle vectors are also distinct. Given that many 

factors govern the evolution of each player in a vector-host-pathogen complex, it makes sense 

that the suite of pathogenic tools does not overlap between G. morbida and G. clavigera, but 

rather represents independent evolutionary trajectories for the development of pathogenicity in 

each fungal species.   

3.5 Conclusion 

This study aims to provide insight into the evolution of pathogenicity within Geosmithia morbida, 

a beetle vectored pathogen that is the causal agent of Thousand Cankers Disease in Julgans 

nigra (eastern black walnut). Here, we present de novo genome assemblies of two 

nonpathogenic Geosmithia species, G. flava and G. putterillii, and employ comparative 

genomics approach to uncover the molecular factors contributing to pathogenicity in G. morbida. 

 G. flava and G. putterillii have estimated genome sizes of 29.6 Mbp and 30.0 Mbp, 

correspondingly. These assemblies are larger than the genome of G. morbida, which measures 

26.5 Mbp in length. Furthermore, in contrast to other species in the phylogeny (Figure 3.3), tree 
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fungal associates, namely Geosmithia species, G. clavigera, and C. platani have reduced 

genomes and gene content. We predict this genome and gene content reduction is a result of 

evolving specialized lifestyles with a narrow host range. For instance, all three Geosmithia 

species and G. clavigera are vectored into their respective hosts via bark beetles, which may 

restrict the evolutionary processes because these fungi must adapt to their vectors and hosts 

simultaneously. Moreover, possessing genes that are not essential for this specialized lifestyle 

may impose a fitness disadvantage on the pathogen. A recent study characterizing the genome 

of mycoparasite Escovopsis weberi, exhibited that specialized pathogens tend to have smaller 

genomes and predicted protein sets because they lack genes that are not required beyond their 

restricted niche when compared to close generalist relatives (de Man et al. 2016).   

 Our results also illustrate that three Geosmithia species are highly similar based on 

genomic distances estimated with Mash. Furthermore, although one might expect that G. 

morbida harbors more carbohydrate binding enzymes and peptidases conferring pathogenicity 

only in G. morbida, our results indicate that all three species have similar enzymatic profiles 

(Figures 3.1 and 3.2). Despite these congruencies, our PAML analysis showed the presence of 

38 genes under positive selection in G. morbida when compared to other nonpathgens within 

the order Hypocreales. These genes encode for proteins that have been implicated in 

pathogenicity in other fungal pathogens such as Magnaporthe oryzae. Additionally, we found 

peptides with protein kinase and methyltransferase domains that are under positive selection in 

both G. morbida and G. clavigera. Proteins kinases were previously shown to be under strong 

positive selection in G. clavigera (Alamouti et al. 2014). This result suggests the key 

contributions that protein kinases make in initiating signal transduction pathways during 

pathogen host interactions. Our study identified a small set of significant genes that are 

potentially involved in the evolution of pathogenicity in the genus Geosmithia. Functional 

experiments will be needed in order to valid our predictions.  



 

  

3.6 Tables and Figures 
 
Table 3.1. Species, geographic regions, Juglans host information for Geosmithia morbida, Geosmithia flava, and 
Geosmithia putterillii. 
 

Species Isolate Cluster Haplotype Geographic 
region County Host 

G. morbida* 1262 1 H03 California Ventura J. californica 
G. flava CCF3333 - - Czech Republic - Castenea 

sativa 

G. putterillii CCF4204 - - California - J. californica 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

46 



 

  

Table 3.2. Fungal species used for phylogenetic analysis  
 

Species Class Order Ecological 
role 

Download 
source References 

Geosmithia morbida Sordariomycetes Hypocreales Pathogen - Schuelke et al. 2016 

Geosmithia flava Sordariomycetes Hypocreales Non-pathogen - - 

Geosmithia putterillii Sordariomycetes Hypocreales Non-pathogen - - 

Acremonium 
chrysogenum Sordariomycetes Hypocreales Beneficial FungalEnsembl Terfehr et al. 2014 

Stanjemonium 
griseum Sordariomycetes Hypocreales Saprotrophic JGI Used with permission 

Trichoderma virens Sordariomycetes Hypocreales Beneficial JGI Kubicek et al. 2011 
Trichoderma reesei Sordariomycetes Hypocreales Saprotrophic FungalEnsembl Martinez et al. 2008 
Ustilaginoidea 
virens Sordariomycetes Hypocreales Biotrophic 

pathogen FungalEnsembl Zhang et al. 2014 

Cordyceps militaris Sordariomycetes Hypocreales Insect 
pathogen FungalEnsembl Zheng et al. 2011 

Myrothecium 
inundatum Sordariomycetes Hypocreales Saprotrophic JGI Used with permission 

Fusarium solani Sordariomycetes Hypocreales Necrotrophic 
pathogen FungalEnsembl Coleman et al. 2009 

Fusarium 
graminearum Sordariomycetes Hypocreales 

Necrotrophic 
pathogen FungalEnsembl 

Trail et al. 2003, Cuomo 
et al. 2007, Ma et al. 

2010 
Ceratocystis platani Sordariomycetes Microascales Pathogen FungalEnsembl Belbahir 2015 
Neurospora crassa Sordariomycetes Sordariales Saprotrophic FungalEnsembl Galagan et al. 2003 
Chaetomium 
globosum Sordariomycetes Sordariales Saprotrophic JGI Berka et al. 2011 

Grosmannia 
clavigera Sordariomycetes Ophiostomatales Pathogen FungalEnsembl DiGuistini et al. 2011 
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Eutypa lata Sordariomycetes Xylariales Pathogen JGI Blanco-Ulate et al. 2013 

Botrytis cinerea Leotiomycetes Helotiales Necrotrophic 
pathogen FungalEnsembl Amselem et al. 2011, 

Staats & van Kan, 2012 
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Table 3.3. Statistics for Geosmithia morbida isolates, Geosmithia flava and Geosmithia putterillii sequence data.  
 

Species Total read pairs Est. coverage  

G. morbida 14,013,863* 20,674,289* 109* 160* 

G. flava 16,183,281 102 

G. putterillii 19,711,745 131 
 
*These values are for paired-end read data for G. morbida from Schuelke et al. 2016. 
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Table 3.4. Length-based statistics for Geosmithia morbida isolates, Geosmithia flava, and Geosmithia putterillii generated 
with QUAST v2.3. 
 

Species Est. genome 
size (Mbp) 

k-mer for 
ABySS 

assembly 

Scaffold 
count Largest scaffold NG50* LG50* Genome 

completeness 

G. morbida 26.5 NA1 73 2,597,956 1,305,468 7 98 
G. flava 29.6 91 1,819 1,534,325 460,430 22 98 

G. putterillii 30.0 91 320 2,758,267 1,379,352 9 98 
 
The average GC content for G. morbida, G. flava, and G. putterillii equals 54%, 52%, and 55.5% respectively. The estimated genome sizes of G. 
morbida, G. flava, and G. putterillii are 26.5 Mbp, 29.6 Mbp, and 30.0 Mbp, respectively. The genome completeness values were produced with 
BUSCO v1.1b1. These percentages represent genes that are complete and not duplicated or fragmented. 
1Genome assembly for G. morbida was constructed using AllPaths-LG (v49414). See Chapter 2 for further details.  
*NG50 is the scaffold length such that considering scaffolds of equal or longer length produce 50% of the bases of the reference genome. LG50 is 
the number of scaffolds with length NG50.
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Table 3.5. Repetitive elements profile of Geosmithia and 9 additional fungal species 
generated with RepeatMasker v4.0.5.  
 

 Genome size 
(Mbp) % GC % Bases 

masked 
Num. of 

Retroelements 
Num. of DNA 
transposons 

G. morbida 26.5  54 0.81 152 60 

G. flava 29.6 52 0.63 401 42 

G. putterillii 30.0 55.5 0.64 214 15 
 
 
Table 3.6. Gene count and PHI-base results for Geosmithia morbida, Geosmithia flava, 
Geosmithia putterillii, and Acremonium chrysogenum. 
 

Species Total number of 
genes 

% of total genes 
homologous to 

pathogenic genes 

% of unique genes 
homologous to 

pathogenic genes 
G. morbida 6,273  36 32 

G. putterillii 7,086 40 34 

G. flava 6,976 38 34 

A. chrysogenum 8,901 32 28 
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Table 3.7. Functions of 14 PHI-base proteins that are present only in Geosmithia 
morbida. 
 
Accession ID Function Mutant phenotype Pathogen 
PHI:101 Polyketide synthase Reduced virulence Aspergillus fumigatus 

PHI:1183 Protein kinase Reduced virulence Fusarium 
graminearum 

PHI:138 Histidine kinase Reduced virulence Candida albicans 

PHI:1509 Transcription factor Unaffected pathogenicity Fusarium 
graminearum 

PHI:1635 Transcription factor Unaffected pathogenicity Fusarium 
graminearum 

PHI:1780 Transcription factor Unaffected pathogenicity Fusarium 
graminearum 

PHI:2054 

Actin cytoskeleton 
organization, polarized 

cellular growth, 
conidiogenesis 

Loss of pathogenicity Magnaporthe oryzae 

PHI:2339 Cell-wall integrity Reduced virulence Ustilago hordei 

PHI:241 Adenylate cyclase Loss of pathogenicity Cryptococcus 
neoformans 

PHI:2425 T-toxin production Reduced virulence Cochliobolus 
heterostrophus 

PHI:2342 Necrosis and ethylene-
inducing protein Unaffacted pathogenicity Botrytis elliptica 

PHI:2924 Lipase Unaffacted pathogenicity Fusarium oxysporum 
PHI:72 Aspartyl proteinase Reduced virulence Candida albicans 

PHI:2504 Putative α-1,3-glucan 
synthase  Unaffacted pathogenicity Aspergillus fumigatus 
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Figure 3.1. Carbohydrate active enzymes (CAZymes) distribution for Geosmithia 
species, other Hypocreales, and Ceratocystis platani. The species in red are 
pathogens, while the names in black are nonpathogens. CAZymes were identified with 
HMMer searches of dbCAN peptide models. GH: glycoside hydrolases, GT: 
glycosyltransferases, PL: polysaccharide lyases, CE: carbohydrate esterases, AA: 
auxiliary activities enzymes, and CBM: carbohydrate-binding molecules.  
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Figure 3.2. Proteolytic enzymes distribution for Geosmithia species, other 
Hypocreales, and Ceratocystis platani. The species in red are pathogens, while the 
names in black are nonpathogens. Proteases were identified using BLASTp searches 
against the MEROPs database v10. S: serine, M: metallo, C: cysteine, A: aspartic, 
T:threonine, I: inhibitors, P: mixed, G: glutamic.    
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Figure 3.3. The Bayesian Markov Chain Monte Carlo (BMCMC) phylogeny was 
estimated using the mixed amino acid model in MrBayes (Ronquist et al. 2012) on a 
dataset containing 89,999 positions. This topology is identical to partitioned analyses 
conducted in RAxML (Stamatakis 2014). All nodes in BMCMC and ML analyses receive 
maximum support. The black circles symbolize classes. The color-shaded boxes at 
the right of the figure denote the orders within each class. The first and second 
numbers in parentheses represent the genome sizes in Mbp and the number of 
predicted protein models, respectively. Black and red branches correspond to non-
pathogens and pathogens, which span multiple orders.  
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Figure 3.4. The distance matrix illustrated as a heatmap. A value close to 0 indicates 
high similarity; whereas 1 represents divergent species. The largest distance between 
two species in the matrix was 0.38. Black and red branches correspond to non-
pathogens and pathogens. The distance matrix was generated with Mash (Ondov et al. 
2016).   
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Figure 3.5. Number of shared PHI-base proteins based on Phibase accession IDs 
among Geosmithia morbida, Geosmithia flava, Geosmithia putterillii, and Acremonium 
chrysogenum.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

 58 

3.7 References 

1. Adachi K, Hamer JE. 1998. Divergent cAMP Signaling Pathways Regulate Growth 

and Pathogenesis in the Rice Blast Fungus Magnaporthe grisea. Plant Cell. 10:1361-

1373. 

2. Alamouti SM, Haridas S, Feau N, Robertson G, Bohlmann J, et al. 2014. Comparative 

Genomics of the Pine Pathogens and Beetle Symbionts in the Genus Grosmannia. 

Mol Biol Evol. 31:1454-1474. 

3. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment 

search tool. J Mol Biol. 215:403–10. 

4. Amselem J, Cuomo CA, van Kan JA, Viaud M, Benito EP, et al. 2011. Genomic 

analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis 

cinerea. Plos Genet. 7:e1002230. 

5. Baldrian P. 2005. Fungal laccases-occurrence and properties. FEMS Microbiol Rev. 

30:215-242.  

6. Barhoom S, Sharon A. 2004. cAMP regulation of “pathogenic” and “saprophytic” 

fungal spore germination. Fungal Genet Biol. 41:317-326. 

7. Belbahri L. 2015. Genome sequence of Ceratocystis platani, a major pathogen of 

plane trees. Available at http://www.ncbi.nlm.nih.gov/nuccore/814603118. 

8. Berka RM, Grigoriev IV, Otillar R, Salamov A, Grimwood J, et al. 2011. Comparative 

genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora 

thermophila and Thielavia terrestris. Nat Biotechnol. 29:922-927.  

9. Blanco-Ulate B, Rolshausen PE, Cantu D. 2013. Draft Genome Sequence of the 

Grapevine Dieback Fungus Eutypa lata UCR-EL1. Genome Announc. 1:e00228-13. 

10. Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina 

sequence data. Bioinformatics. 30:2114-2120. 



 

 59 

11. Boller T, He SY. 2009. Innate immunity in plants: An arms race between pattern 

recognition receptors in plants and effectors in microbial pathogens. Science. 

324:742-744. 

12. Cantarel BL, Korf I, Robb SMC, Parra G, Ross E, Moore B. 2008. MAKER: An easy-

to-use annotation pipeline designed for emerging model organism genomes. Genome 

Res. 18:188-196 

13. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. 2009. trimAl: a tool for 

automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 

25:1972-1973.  

14. Cardozo T, Pagano M. 2004. The SCF ubiquitin ligase: insights into a molecular 

machine. Nat Rev Mol Cell Biol. 5:739-751. 

15. Cervantes-Chávez JA, Ali S, Bakkeren G. 2011. Response to environmental stresses, 

cell-wall integrity, and virulence are orchestrated through the calcineurin pathway in 

Ustilago hordei. Mol Plant Microbe Interact. 24:219-232. 

16. Chen J, Zheng W, Zheng S, Zhang D, Sang W, et al. 2008. Rac1 is required for 

pathogenicity and Chm1-dependent conidiogenesis in rice fungal pathogen 

Magnaporthe grisea. PLoS Pathog. 4:e1000202.  

17. Chisholm ST, Coaker G, Day B, Staskawicz BJ. Host-microbe interactions: shaping 

the evolution of the plant immune response. Cell. 124:803-814. 

18. Choi W, Dean RA. 1997. The adenylate cyclase gene MAC1 of Magnaporthe grisea 

controls appressorium formation and other aspects of growth and development. Plant 

Cell. 9:1973-1983. 

19. Coleman JJ, Rounsley SD, Rodriguez-Carres M, Kuo A, Wasmann CC, et al. 2009. 

The genome of Nectria haematococca: contribution of supernumerary chromosomes 

to gene expansion. PLoS Genet. 5:e1000618. 



 

 60 

20. Corrêa LG, Riano-Pachon DM, Schrago CG, dos Santos RV, Mueller-Roeber B, et al. 

2008. The Role of bZIP Transcription Factors in Green Plant Evolution: Adaptive 

Features Emerging from Four Founder Genes. PLoS One. 3:e2944. 

21. Crusoe MR, Alameldin HF, Awad S, Boucher E, Caldwell A, et al. 2015. The khmer 

software package: enabling efficient nucleotide sequence analysis. F1000Res. 4:900. 

22. Cuomo CA, Gldener U, Xu JR, Trail F, Turgeon BG, et al. 2007. The Fusarium 

graminearum genome reveals a link between localized polymorphism and pathogen 

specialization. Science. 317:1400-1402. 

23. D’Souza C, Heitman J. 2001. Conserved cAMP signaling cascades regulate fungal 

development and virulence. FEMS Microbiol Rev. 25:349-364.  

24. de Man TJB, Stajich JE, Kubicek CP, Teiling C, Chenthamara K, et al. 2016. Small 

genome of the fungus Escovopsis weberi, a specialized disease agent of ant 

agriculture. PNAS. 113:3567-3572.   

25. DiGuistini S, Wang Y, Liao NY, Taylor G, Tanguay P, et al. 2011. Genome and 

transcriptome analyses of the mountain pine beetle-fungal symbiont Grosmannia 

clavigera, a lodgepole pine pathogen. PNAS. 108:2504-2509. 

26. Duyvesteijn RG, van Wijk R, Boer Y, Rep M, Cornelissen BJ, et al. 2005. Frp1 is a 

Fusarium oxysporum F-box protein required for pathogenicity on tomato. Mol 

Microbiol. 57:1051-1063. 

27. Emms DM, Kelly S. 2015. OrthoFinder: solving fundamental biases in whole genome 

comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 

16:157:2-14.  

28. EnsemblFungi. 2015. Available at http://fungi.ensembl.org/index.html. Accessed 14 

Nov. 2015.  



 

 61 

29. Fitzpatrick DA, Logue ME, Stajich JE, Butler G. 2006. A fungal phylogeny based on 

42 complete genomes derived from supertree and combined gene analysis. BMC 

Evol Biol. 6:99.  

30. Gaffoor I, Brown DW, Plattner R, Proctor RH, Qi W, et al. 2005. Functional analysis of 

the Polyketide Synthase Genes in the Filamentous Fungus Gibberella zeae 

(Anamorph Fusarium graminearum). Eukaryot Cell. 4:1926-1933.  

31. Galagan JE, Calvo SE, Borkovich KA, Selker EU, Read ND, et al. 2003. The genome 

sequence of the filamentous fungus Neurospora crassa. Nature. 422:859-868. 

32. Guo M, Chen Y, Du Y, Dong Y, Guo W, et al. 2011. The bZIP Transcription Factor 

MoAP1 Mediates the Oxidative Stress Response and Is Critical for Pathogenicity of 

the Rice Blast Fungus Magnaporthe oryzae. PLoS Pathog. 7:e1001302.   

33. Gurevich A, Saveliev V, Vyahhi N, Tesler G. 2013. QUAST: quality assessment tool 

for genome assemblies. Bioinformatics. 29:1072–1075. 

34. Han YK, Kim MD, Lee SH, Yun SH, Lee YW. 2007. A novel F-box protein involved in 

sexual development and pathogenesis in Gibberella zeae. Mol Microbiol. 63:768-779. 

35. Harris SD. 2011. Cdc42/Rho GTPases in fungi: variations on a common theme. Mol 

Microbiol. 79:1123-1127. 

36. Janusz G, Kucharzyk KH, Pawlik A, Staszczak M, Paszczynski AJ. 2013. Fungal 

laccase, manganese peroxidase and lignin peroxidase: Gene expression and 

regulation. Enzyme Microb Tech. 52:1-12. 

37. Katoh K, Standley DM. 2013. MAFFT Multiple Sequence Alignment Software Version 

7: Improvements in Performance and Usability. Mol Biol Evol. 30:772-780. 

38. Kohler A, Francis M, Costa M. 2011. Genomics DNA Extraction. 

http://1000.fungalgenomes.org/home/wp-

content/uploads/2013/02/genomicDNAProtocol-AK0511.pdf. Accessed 12 Dec. 2015. 

http://1000.fungalgenomes.org/home/wp-content/uploads/2013/02/genomicDNAProtocol-AK0511.pdf
http://1000.fungalgenomes.org/home/wp-content/uploads/2013/02/genomicDNAProtocol-AK0511.pdf


 

 62 

39. Kolarik M, Freeland E, Utley C, Tisserat N. 2011. Geosmithia morbida sp. nov., a new 

phytopathogenic species living in symbiosis with the walnut twig beetle 

(Pityophthorus juglandis) on Juglans in USA. Mycologia.103:325–332. 

40. Kolarik M, Jankowiak R. 2013. Vector Affinity and Diversity of Geosmithia Fungi 

Living on Subcortical Insects Inhabiting Pinaceae Species in Central and 

Northeastern Europe. Microb Ecol. 66:682–700. 

41. Kolarik M, Kirkendall LR. 2010. Evidence for a new lineage of primary ambrosia fungi 

in Geosmithia Pitt (Ascomycota: Hypocreales). Fungal Biol. 114:676–689. 

42. Kolarik M, Kostovcik M, Pazoutova S. 2007. Host range and diversity of the genus 

Geosmithia (Ascomycota: Hypocreales) living in association with bark beetles in the 

Mediterranean area. Mycological Res. 111:1298–1310. 

43. Kolarik M, Kubatova A, van Cepicka I, Pazoutova S, Srutka P. 2005. A complex of 

three new white-spored, sympatric, and host range limited Geosmithia species. 

Mycological Res. 109:1323–1336. 

44. Kraus PR, Heitman J. 2003. Coping with stress: calmodulin and calcineurin in model 

and pathogenic fungi. Biochem Bioph Res Co. 311:1151-1157.   

45. Krogh A, Larsson B, von Heijne G, Sonnhammer ELL. 2001. Predicting 

transmembrane protein topology with a hidden Markov model: Application to 

complete genomes. J Mol Biol. 305:567-580.  

46. Kubicek CP, Herrera-Estrella A, Seidl-Seiboth V, Martinez DA, Druzhinina IS, et al. 

2011. Comparative genome sequence analysis underscores mycoparasitism as the 

ancestral life style of Trichoderma. Genome Biol. 12:R40. 

47. Lanfear R, Calcott B, Kainer D, Mayer C, Stamatakis A. 2014. Selecting optimal 

partitioning schemes for phylogenomic datasets. BMC Evol Biol. 14:82.      

48. Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler 

transform. Bioinformatics. 25:1754–1760. 



 

 63 

49. Li H. 2015. BFC: correcting Illumina sequencing errors. Bioinformatics. 31:2885-2887. 

50. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. 2014. The 

Carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids 

Res. 42:D490–D495. 

51. Lynch SC, Wang DH, Mayorquin JS, Rugman-Jones PF, Stouthamer R, Eskalen E. 

2014. First Report of Geosmithia pallida Causing Foamy Bark Canker, a new disease 

on coast live oak (Quercus agrifolia), in association with Pseudopityophthorus 

pubipennis in California. Plant Dis. 98:1276. 

52. Ma LJ, van der Does HC, Borkovich KA, Coleman JJ, Daboussi MJ, et al. 2010. 

Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. 

Nature. 464:367-373. 

53. Mabey JE, et al. 2004. CADRE: the Central Aspergillus Data REpository. Nucleic 

Acids Res. 32:D401-405. 

54. Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, et al. 2008. Genome 

sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. 

Hypocrea jecorina). Nat. Biotechnol. 26:553-560. 

55. Misof B, Meyer B, von Reumont BM, Kuck P, Misof K, Meusemann K. 2013. Selecting 

informative subsets of sparse supermatrices increases the chance to find correct 

trees. BMC Bioinformatics. 14:348.  

56. Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, et al. 2016. Mash: 

fast genome and metagenome distance estimation using MinHash. BioRxiv. Available 

at http://dx.doi.org/10.1101/029827 

57. Parra G, Bradnam K, Korf I. 2007. CEGMA: a pipeline to accurately annotate core 

genes in eukaryotic genomes. Bioinformatics. 23:1061-1067. 

58. Peterson TN, Brunak S, von Heijne G, Nielsen H. 2011. SignalP 4.0: discriminating 

signal peptides from transmembrane regions. Nat Methods. 8:785-786.  



 

 64 

59. PHI-base. 2015. The pathogen–host interaction database. Available at 

http://www.phi-base.org/. Accessed 22 Nov. 2015.  

60. Pintard L, Willems A, Peter M. 2004. Cullin-based ubiquitin ligases: Cul3-BTB 

complexes join the family. EMBO J. 23:1681-1687. 

61. Pitt JI. 1979. Geosmithia, gen. nov. for Penicillium lavendulum and related species. 

Can J Botany. 57:2021-2030.  

62. Ranwez V, Harispe S, Delsuc F, Douzery EJP. 2011. MACSE: Multiple Alignment of 

Coding SEquences Accounting for Frameshifts and Stop Codons. PLoS One. 

6:e22594.  

63. Rawlings ND, Barrett AJ, Finn RD. 2016. Twenty years of the MEROPS database of 

proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res. 44:D343-

D350.  

64. Rolke Y, Tudzynski P. 2008. The small GTPase Rac and the p21-activated kinase 

Cla4 in Claviceps purpurea: interaction and impact on polarity, development and 

pathogenicity. Mol Microbiol. 68:405-423. 

65. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, et al. 2012. MrBayes 

3.2: efficient Bayesian phylogenetic inference and model choice across a large model 

space. Syst Biol. 61:539–542.  

66. Rugman-Jones PF, Seybold SJ, Graves AD, Stouthamer R. 2015. Phylogeography of 

the walnut twig beetle, Pityophthorus juglandis, the vector of thousand cankers 

disease in North American walnut trees. PLoS ONE. 10:e118264. 

67. Ryder LS, Talbot NJ. 2015. Regulation of appressorium development in pathogenic 

fungi. Curr Opin Plant Biol. 26:8-13.   

68. Schuelke TA, Westbrook A, Broders K, Woeste K, MacManes MD. 2016. De novo 

genome assembly of Geosmithia morbida, the causal agent of thousand cankers 

disease. PeerJ. 4:e1952. 



 

 65 

69. Simao FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. 2015. 

BUSCO: assessing genome assembly and annotation completeness with single-copy 

orthologs. Bioinformatics. 1–3. 

70. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, Birol I. 2009. ABySS: A 

parallel assembler for short read sequence data. Genome Res. 19:1117-1123. 

71. Smit AFA, Hubley R, Green P. 1996. RepeatMasker. Available at 

http://www.repeatmasker.org.  

72. Solomon PS, Oliver RP. 2002. Evidence that γ-aminobutyric acid is a major nitrogen 

source during Cladosporium fulvum infection of tomato. Planta. 214:414-420. 

73. Staats M, van Kan JA. 2012. Genome update of Botrytis cinerea strains B05.10 and 

T4. Eukaryot Cell. 11:1413-1414. 

74. Stamatakis A. 2014. RAxML Version 8: A tool for Phylogenetic Analysis and Post-

analysis of Large Phylogenies. Bioinformatics. 30:1312–1313. 

75. Steer ML. 1975. Adenyl cyclase. Ann Surg. 182:603-609.  

76. Suyama M, Torrents D, Bork P. 2006. PAL2NAL: robust conversion of protein 

sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 

34:W609-W612. 

77. Swiss-Prot. 2015. Available at http://www.uniprot.org/. Downloaded 6 May 2015. 

78. Terfehr D, Dahlmann TA, Specht T, Zadra I, Kurnsteiner H, Kuck U. 2014. Genome 

Sequence and Annotation of Acremonium chrysogenum, Producer of the β-Lactam 

Antibiotic Cephalosporin C. Genome Announc. 2: e00948-14. 

79. Tisserat N, Cranshaw W, Leatherman D, Utley C, Alexander K. 2009. Black walnut 

mortality in colorado caused by the walnut twig beetle and thousand cankers disease. 

Plant Health Progress. 1–10. DOI 10.1094/PHP-2009-0811-01-RS.  

80. Traeger S, et al. 2013. The genome and development-dependent transcriptomes of 

Pyronema confluens: a window into fungal evolution. PLoS Genet. 9:e1003820. 



 

 66 

81. Trail F, Xu JR, San Miguel P, Halgren RG, Kistler HC. 2003. Analysis of expressed 

sequence tags from Gibberella zeae (anamorph Fusarium graminearum). Fungal 

Genet Biol. 38:187-197. 

82. Tsai HF, Chang YC, Washburn RG, Wheeler MH, Kwon-Chung KJ. 1988. The 

developmentally regulated alb1 gene of Aspergillus fumigatus: its role in modulation 

of conidial morphology and virulence. J. Bacteriol. 180:3031-3038. 

83. Wang H, Xu Z, Gao L, Hao B. 2009. A fungal phylogeny based on 82 complete 

genomes using the composition vector method. BMC Evol Biol. 9:195.    

84. Yang Z. 2007. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. 

24:1586-1591.      

85. Zerillo MM, Caballero JI, Woeste K, Graves AD, Hartel C, et al. 2014. Population 

structure of Geosmithia morbida, the causal agent of thousand cankers disease of 

walnut trees in the United States. PLoS ONE. 9:e112847. 

86. Zhang Y, Zhang K, Fang A, Han Y, Yang J, et al. 2014. Specific adaptation of 

Ustilaginoidea virens in occupying host florets revealed by comparative and functional 

genomics. Nat Commun. 5:3849.  

87. Zhao Z, Liu H, Wang C, Xu J. 2013. Erratum to: Comparative analysis of fungal 

genomes reveals different plant cell wall degrading capacity in fungi. BMC Genomics. 

15:6. 

88. Zheng P, Xia Y, Xiao G, Xiong C, Hu X, et al. 2011. Genome sequence of the insect 

pathogenic fungus Cordyceps militaris, a valued traditional Chinese medicine. 

Genome Biol. 12:R116. 

 

 

 



 

 67 

Closing remarks 

Several studies have investigated the evolution of pathogenicity in pathogens of agricultural 

crops; forest fungal pathogens are often neglected because research efforts are focused on 

food crops. Furthermore, studies that do investigate various aspects of a vector-host-

pathogen complex concentrate their attention on the geographic and genetic composition 

and distribution of the fungal pathogen. This research is significant because it explores the 

processes contributing to the evolution of a novel trait of pathogenicity in Geosmithia 

morbida, which is a beetle-associated pythopathogen and the causal agent of thousand 

cankers disease (TCD).  

 G. morbida is one of two known pathogens within the genus Geosmithia. Little is 

known about the precise means this pathogen utilizes to infect its host Juglans nigra. This 

pathogen and its vector, the walnut twig beetle, are of great concern. As of 2015, one or 

more TCD events have been recorded in several western and eastern states in the US. TCD 

not only threatens J. nigra native stands in eastern US, but also certain western walnut 

populations such as J. regia, J. californica, and J. hindsii.  

 Our work here investigates the evolution of pathogenicity within the genus 

Geosmithia. First, we presented the first draft genomes of three Geosmithia species—G. 

morbida, G. flava, and G. putterillii. Our overall findings exhibited that these three species are 

highly similar and closely relate to Acremonium chrysogenum in order Hypocreales. In 

comparison to other plant pathogens and saprobes, G. morbida has a relatively small 

genome composed of 26.5 Mbp and 6,273 protein models. The ecological restrictions 

imposed on G. morbida could explain this reduction in genome size because this fungus 

must adapt to its vector and host at the same time.     

 Although G. morbida and G. clavigera have similar ecological niches, both fungal 

pathogens have different set of genes undergoing positive selection. Nonetheless, some of 

the genes under selection in G. morbida have been implicated in the infection process in 
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other pathogens as such Magnaporthe oryzae (rice blast fungus). For instance, a positively 

selected gene in G. morbida encodes a bZIP-like transcription factor, which is involved in 

gene regulation during oxidative stress response in M. oryzae. 

 Acquiring insights into the evolutionary and molecular processes that give rise to 

novel traits in fungal pathogen is essential for the development of disease control and 

monitoring techniques. Our results will be instrumental for future studies that are necessary 

to corroborate our findings with experimental data.   
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