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ABSTRACT 

STABILIZATION OF COMPRESSOR SURGE USING GAIN-SCHEDULED CONTROLLER 

by 

Zaid A Alsayouri 

University of New Hampshire, December, 2016 

 

 

Gain scheduling is a control method that is used in nonlinear systems to optimize their 

controlled performance and robustness over a wide range of operating conditions. It is one of the 

most commonly used controller design approaches for nonlinear systems. In this control technique, 

the controller consists of a collection of linear controllers, each of which provides satisfactory 

closed-loop stability and performance for a small operating region, and combined they guarantee 

the stability of the system along the entire operating range. The operating region of the system is 

determined by a scheduling signal, also known as the scheduling variable, which may be either 

exogenous or endogenous with respect to the plan. A good design of the gain-scheduled controller 

requires a suitable selection of the scheduling variables to properly reflect the dynamics of the 

system. 

In this thesis, we apply the gain scheduling control method to the control of compression 

systems with active magnetic bearings (AMBs). First, a gain-scheduled controller is designed and 

tested for the rotor levitation control of the AMB system. The levitation controller is designed to 

guarantee robust rotor levitation over a wide range of rotating speeds. We show through numerical 

simulation that the rotor vibration is contained in the presence of uncertainties introduced by speed 

dependent gyroscopic forces. Next, we implement the gain scheduling control method to the active 
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stabilization of compressor surge in a compression system using the AMBs as actuators. Recently, 

Yoon et al. [1] showed that AMBs can be used to stabilize the surge instability in a compression 

system. In this thesis, we demonstrate that gain scheduling control can effectively extend the stable 

operating region of the compression system beyond the limits presented in [1]. For the stabilization 

of surge, a gain-scheduled controller was obtained by combining six linear controllers that together 

they cover the full operating range of the compression system. We were able to demonstrate 

through numerical simulation that the designed surge controller is effective in suppressing the 

instability down to a throttle valve opening of 12%, and in the presence of random flow disturbance 

and actuator saturation. An observer-based technique was implemented to achieve a bumpless and 

smooth transfer when switching between the linear controllers. 
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Chapter 1 

Motivation 

 

 

  

Over the last six decades, linear control methods have seen important advancements, both 

in terms of theory and applications. Many applications in the real world behave in a nonlinear 

manner, and their dynamics are approximated by linear models in order to apply linear controller 

design methods. On the other hand, there are some nonlinear systems, such as high performance 

aircraft that operates over a wide range of Mach numbers and altitudes and the wide operating 

range limits the accuracy of any single linearized model approximation. A common method that 

is used for the control of this class of nonlinear systems is to base the design on different operating 

conditions along the system parameter range. This is the basic idea of the gain scheduling method. 

Compression systems are used in applications that require fluid or gas at high pressure. 

These compressors may suffer from instabilities such as rotating stall and compressor surge, which 

may cause significant damage to the compression system if they are not controlled properly. 

Recently, active magnetic bearings (AMBs) have been used along with active controllers to control 

these instabilities [1]. Active magnetic bearings are contactless bearings that suspend the rotor 

using magnetic forces. The contactless feature of the AMBs give them advantages in applications 

that require continuous maintenance-free operation for extended periods of time. 

In this thesis, we apply the gain scheduling control method to the control of compression 

systems with active magnetic bearings (AMBs). First, a gain-scheduled controller is designed and 
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tested for the rotor levitation control of the AMB system. The levitation controller is designed to 

guarantee robust rotor levitation over a wide range of rotating speeds. We show through numerical 

simulation that the rotor vibration is contained in the presence of uncertainties introduced by speed 

dependent gyroscopic forces. Next, we implement the gain scheduling control method to the active 

stabilization of compressor surge in a compression system using the AMBs as actuators. Recently, 

Yoon et al. [1] showed that AMBs can be used to stabilize the surge instability in a compression 

system. In this thesis, we demonstrate that gain scheduling control can effectively extend the stable 

operating region of the compression system beyond the limits presented in [1]. For the stabilization 

of surge, a gain-scheduled controller was obtained by combining six linear controllers that together 

cover the full operating range of the compression system. We were able to demonstrate through 

numerical simulation that the designed surge controller is effective in suppressing the instability 

down to a throttle valve opening of 12%, and in the presence of random flow disturbance and 

actuator saturation. An observer-based technique was implemented to achieve a bumpless and 

smooth transfer when switching between the linear controllers. 

The remainder of the thesis is organized as follows. In Chapter 2, we introduce the 

compression system and the most common instabilities from which compressors suffer. After that, 

an introduction to linear control theory is presented in Chapter 3, and H∞ and µ-synthesis control 

methods are briefly discussed. In addition, we present an overview of the gain scheduling control, 

and discuss the main advantages and disadvantages. A case study where we design a gain-

scheduled controller for the rotor levitation of an AMB supported motor is presented in Chapter 4. 

Then, we extend the results in [1] by designing a gain-scheduled controller for the stabilization of 

compressor surge, and simulation results are shown in Chapter 5. Finally, we present our 

conclusions in Chapter 6. 
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Chapter 2 

Introduction 

 

 

 

A compression system is used to increase the pressure of a gas. Pressure rise can be attained 

either by increasing the temperature so that the kinetic energy of the gas molecules increase, or by 

forcing the gas molecules to settle into a small volume. Compressors are driven by different power 

sources such as electric motors, steam turbines, gas turbines, or diesel engines. They are widely 

used in the industrial field and they have many applications. In this chapter, compressor types and 

common instabilities will be introduced. In addition, we will talk briefly about active magnetic 

bearings, how they work, and their application to compression systems. 

2.1 Introduction to Compression Systems 

Based on how the pressure rise is achieved in compressors, they can be divided into two 

main types: positive displacement compressors (intermittent flow) and dynamic compressors 

(continuous flow). On one hand, the pressure rise is achieved in positive displacement compressors 

by reducing the gas volume and discharging the compressed gas out of the enclosure. The most 

common positive displacement compressors are reciprocating compressors and rotary 

compressors. On the other hand, dynamic compressors achieve the pressure rise by increasing the 

velocity of the gas, and then restricting the gas flow in order to decelerate it. The reduction of the 

velocity, or the variation on the kinetic energy, is converted into pressure rise. There are two 

distinct types of the dynamic compressors: centrifugal compressors and axial compressors. Figure 
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2.1 shows the types of compressors. In the following two subsections, we will focus on the 

centrifugal compressor and the axial compressor. 

 

Figure 2.1 Compressors Types 

2.1.1 Centrifugal Compressor 

The centrifugal compressor is a dynamic compressor that is mainly used on large capacity 

systems [2]. It has three main components: an impeller, a diffuser, and a volute casing. Large 

capacity centrifugal compressors may have two or more impellers or stages in the same casing. 

Centrifugal compressors are usually driven by hermetic electric motors. However, open-drive 

centrifugal compressors are also available for some applications using steam turbine, gas turbine, 

or engine drives. The impeller is a circular rotating disk with curved blades that is driven to high 

speeds by the motor. As the gas enters the compressor, it is directed to the center of the impeller. 

When the impeller rotates, the gas rotates with it. This circular motion moves the gas from the 

center of the impeller to the impeller edge with a higher speed. As the gas leaves the outside edge 
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of the impeller, it enters the diffuser. The diffuser is designed so that the flow area increases as the 

gas leaves the impeller. This increased area allows the gas to slow down, where the kinetic energy 

is converted into a static pressure. Figure 2.2 illustrates a cross section of the centrifugal 

compressor. 

 

Figure 2.2 A cross section of a centrifugal compressor [31] 

2.1.2 Axial Compressor 

Similar to the centrifugal compressor, an axial compressor achieves gas compression by 

accelerating and decelerating the gas, and then transforms the kinetic energy into static pressure 

[3]. Axial compressors consist of a rotor and a stator. The rotor has blades that are known as the 

rotor blades, and the stator has blades that are known as stator blades. Usually, axial compressors 

are multi-staged. Each stage consists of a consecutive rotor blade and stator blade. The rotor blades 

accelerate the gas and pass it to the stator blades, where the gas is decelerated and the variation in 
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the kinetic energy is converted into a static pressure. Differently from centrifugal compressors, the 

flow in the axial compressor takes place in the axial direction. In addition, the axial compressors 

can handle higher flow rates compared to centrifugal compressors, and they are more efficient 

[31]. Figure 2.3 shows a cross section of the axial compressor.  

 

Figure 2.3 A cross section of an axial compressor [31] 

2.2 Compression System Instabilities 

There are two main instabilities that limit the performance and affect the efficiency and 

stability of compressors: rotating stall and compressor surge. In this section, we will discuss the 

causes and solutions for these instabilities. 

2.2.1 Rotating Stall 

In aircraft, stall is defined as a decrement in the lift coefficient on wings which results from 

the increment in the angle of attack of wings above a certain limit. This causes the aircraft to lose 

lift and go down. Similar to aircraft, compression systems can suffer from stall. In compression 

systems, the gas flow is parallel to the blades of the impeller. As the pressure becomes higher, the 

adverse pressure gradient on the impeller becomes higher. At a certain point, the adverse pressure 
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gradient on the impeller becomes very high in a way that makes the pressure separate the flow 

from the blades [4]. At that point, the lift force between the blades and the flow is lost and the stall 

occurs. This causes the back flow of the gas in the opposite direction.  

 

Figure 2.4 Schematic of stall cell in rotating stall [5] 

Figure 2.4 illustrates a set of blades in stall condition. If blade B is stalled, a blockage of the flow 

will occur in the area between blades A and B. This area is called the stall cell. The blocked flow 

will be distributed between the other plates in the upward direction, and they will be stalled in the 

same manner. That is why it is called the rotating stall. The stall cells propagates in the direction 

of the flow. These cells rotate with the rotating blades at 50% - 70% of their speed [5].  

2.2.2 Compressor Surge 

Compressor surge is one of the most common dynamic instabilities that affects the 

performance of centrifugal and axial compressors. It occurs as a result of the continuous increment 

of pressure in the plenum in a way that the compressor cannot generate sufficient pressure 

difference to match the pressure rise in the plenum [1]. This causes the backflow of the gas towards 
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the compressor’s inlet which initiates the surge limit cycle, and thus the system becomes unstable. 

The steady state gas flow and pressure condition that indicate the initiation of the surge instability 

in a compressor is known as the surge point. This point separates between the stable and unstable 

regions of the compressor characteristic curve, which maps the equilibrium operating point of the 

compressor in terms of pressure rise and flow rate. Figure 2.5 shows the compressor characteristic 

curve for different operating speeds N1, N2, and N3.  

There are a few symptoms which indicate that surge may be occurring in a compressor, 

such as low flow rate in the system, increment in the discharge gas temperature, violent fluctuation 

in the discharge pressure, and excessive radial vibration in the compressor. Surge might cause 

structural damage to compressors. Generally, there are two popular methods that are used to 

overcome the surge problem: surge avoidance [6] and surge control [1]. In surge avoidance, the 

compressor is forced to operate away from the unstable region by using a safety margin called the 

surge margin. If the compressor operates in the safety margin, a safety mechanism is used to release 

 

Figure 2.5 Compressor characteristic curve for different operating speeds 
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the built up pressure and increase the flow, which pushes the operation back towards the stable 

region. This method is used widely in industrial applications. The second method is surge control, 

in which a controller is used to regulate and stabilize the flow in the compressor when operating 

under surge conditions. This method will be studied in Chapter 5.  

2.3 Active Magnetic Bearings in Compression Systems 

An active magnetic bearing is a bearing that supports the rotating shaft using magnetic 

forces generated by electromagnets. This is achieved by integrating proximity sensors, controller, 

power amplifiers, and electromagnetic actuators [24]. The sensors measure the displacement of 

the rotor from its reference position, and the controller generates a control signal based on the 

sensor output. The control signal is then converted to a control current by the power amplifier. 

This control current generates a magnetic field in the actuating electromagnets, which results in 

magnetic forces that suspend the rotor. The main advantage of magnetic bearings is that they 

support the rotor without mechanical contact, and they are widely used in applications involving 

high speed rotating machinery. Also, the contactless feature of the AMBs allows for “canned” 

designs of compressors and pumps for applications involving high pressure, high temperature, and 

erosive chemicals. Magnetic bearings require a continuous power input and active control to keep 

the rotor under stable levitation [11].  

2.3.1 Modeling of Flexible Rotor Dynamics 

Rotors are main components in dynamic compressors that transfer energy to the working 

gas, and the target of the AMB actuator for levitation. For the control of the AMB levitation, an 

accurate model of the AMB dynamics is needed. Figure 2.6 shows a rotor that is suspended by 

AMB’s. 
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Figure 2.6 Rotor suspended by AMB’s [1] 

The finite element method (FEM) is used to analyze and model flexible rotors supported 

by AMBs. This method is used to model large scale and complex rotor systems. Using the FEM, 

the rotor is divided into n elements. Between each neighboring elements, nodes are introduced and 

each node has a certain number of degrees of freedom (DoF). Figure 2.7 illustrates a 2D rotor mesh 

example. To simplify the modelling, the following assumptions are used: 

 rotor elements have a uniform radius along its length, 

 the added disks are treated as point masses, and  

 the rotor is symmetric in the lateral axis. 
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Figure 2.7 2D rotor mesh example 

After the division of the shaft into smaller elements, each element is studied separately [1]. 

For each element, the generalized displacement and rotation are described using the DoFs at each 

points. For simplicity, only the lateral dynamics of the rotor will be considered, thus each element 

has 8 DoFs. Figure 2.8 shows a rotor element and the generalized displacement of the nodes i and 

i+1. 

 

Figure 2.8 Rotor element with the generalized displacement for nodes i and i+1 
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As shown in Figure 2.8, the angular displacement about the x and y axes are given by Өx 

and Өy, respectively. In addition, the lateral displacement in the x and y axes are given by Ux and 

Uy, respectively. Thus the generalized displacement vector at the node i is given by  

𝑞𝑖 = 

[
 
 
 
𝑈𝑥𝑖

𝑈𝑦𝑖

Ө𝑦𝑖

Ө𝑥𝑖]
 
 
 
.                                                                                                                                         (2.1) 

By combining the generalized displacement vectors at the nodes i and i+1, we get the generalized 

displacement vector for the ith element 𝑄𝑖, which is defined as  

𝑄𝑖= [
𝑞𝑖

𝑞𝑖+1
].                                                                                                                                   (2.2) 

Based on the defined DoFs, the lateral translation and rotation along the rotor element can 

be interpolated, and the shape of that element is estimated using the generalized displacement 

vector 𝑄𝑖 and shape functions 𝑁𝑖. The shape functions are given by 

N1 = 
1

𝐿3 (𝐿3 − 3𝑧2𝐿 + 2𝑧𝐿3),                                                                                                                (2.3a) 

N2 = 
1

𝐿2 (𝑧𝐿2 − 2𝑧2𝐿 + 𝑧3),                                                                                                          (2.3b) 

N3 = 
1

𝐿3 (3𝑧2𝐿 − 2𝑧3),                                                                                                                  (2.3c) 

N4 = 
1

𝐿2 (−𝑧2𝐿 + 𝑧3).                                                                                                                    (2.3d) 

where L is the shaft length and z is axial position along the element. The generalized lateral 

translation of the ith element at the axial position z is given by 

[
𝑈𝑥𝑖(𝑧, 𝑡)
𝑈𝑦𝑖(𝑧, 𝑡)

] = [
𝑁1 0 𝑁2

0 𝑁1 0
     

0 𝑁3 0
−𝑁2 0 𝑁3

     
𝑁4 0
0 −𝑁4

] 𝑄𝑖.                                               (2.4) 
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The lateral rotations about the x and y axes are given as 

Өx = 
𝜕𝑈𝑦

𝜕𝑧
 ,                                                                                                                                        (2.5a) 

Өy = 
𝜕𝑈𝑥

𝜕𝑧
 .                                                                                                                                         (2.5b 

With the interpolated rotor element shape, the linearized dynamic equation for the ith element is 

given by             

𝐹𝑖= 𝑀𝑖�̈�𝑖
 + 𝐶𝑖 �̇�𝑖

 + ω G �̇�
𝑖
 + 𝐾𝑖𝑄𝑖,                                                                                                  (2.6) 

where 𝑀𝑖 is the mass matrix, 𝐶𝑖 is the damping matrix, G is the gyroscopic matrix, 𝐾𝑖  is the 

stiffness matrix, and 𝐹𝑖  is the generalized force vector. By defining the generalized displacement 

vector 𝑄𝑇  as �̇�
𝑖
 

𝑄𝑇= [ 𝑞1
𝑇 𝑞2

𝑇 𝑞3
𝑇 …       𝑞𝑛+1

𝑇 ].                                                                                                               (2.7) 

The rotor dynamic equation becomes 

MR �̈�+ (DR + ωGR)�̇� + (KR + ωDI + �̇�GR + ω2Kω)Q = FR(t)                                                        (2.8) 

where FR(t) is the force vector defined in the radial direction, and ω is the rotational speed. Matrices 

MR, KR, and DR represent the symmetric mass, stiffness, and damping matrices, respectively, GR 

is the skew symmetric gyroscopic matrix, Kω is the centrifugal stiffening matrix, and DI is the 

rotating part of the internal damping matrix. Obviously, we can see in Equation (2.8) that the 

gyroscopic effect depends on the operating speed. The speed-dependent gyroscopic effect can 

introduce significant uncertainties to the control system designed for a constant operating speed, 

which affect the robustness and the performance of the system. 
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The general structure of the vector differential equation for a cylindrical undamped rotor 

can be rewritten as 

[
𝑀 0
0 𝑀

] [
𝑞�̈�

𝑞�̈�
] + ω [

0 𝐺
𝐺 0

] [
𝑞�̇�

𝑞�̇�
]+ [

𝐾 0
0 𝐾

] [
𝑞𝑥

𝑞𝑦
] = [

𝐹 0
0 𝐹

] [
𝑢𝑥

𝑢𝑦
],                                                   (2.9) 

 

where M is the mass matrix, G is the gyroscopic matrix, and K is the stiffness matrix. The lateral 

displacements in the x and y directions are given as 𝑢𝑥 and 𝑢𝑦, respectively. The differential 

equation in (2.9) shows that the rotor dynamics in the x and y directions are only coupled by the 

gyroscopic effect, which is dependent on the rotor speed ω. The states of this differential equation 

correspond to the two lateral and the two angular degrees of freedom assigned to each node point. 

Therefore, the total number of states increases for rotors with complex geometries and large 

number of elements. A dynamic model with a large state vector is computationally intensive to 

simulate and thus leads to numerical problem during the design of the AMB rotor suspension 

controller. A common method of reducing the size of a state vector is to adopt the modal truncation 

approach, where the system equation (2.9) is transformed into the modal coordinates and irrelevant 

high frequency modes are discarded from the analysis. The transformation matrix transforms the 

rotor state vector from the physical coordinates to the modal coordinates by solving a generalized 

eigenvalue problem 

K ɸ = M ɸ λ2,                                                                                                                                    (2.10) 

where the diagonal matrix  λ is composed of the rotor resonant mode frequencies and the 

columns of the nonsingular matrix ɸ are vector mode shapes. The matrix ɸ is normalized such 

that 

ɸT M ɸ = I,                                                                                                                              (2.11a) 

ɸT K ɸ = λ2.                                                                                                                            (2.11b) 

Define new state vectors 𝜁𝑥 and 𝜁𝑦 following the coordinated transformation  
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ɸ 𝜁𝑥 = 𝑞𝑥,                                                                                                                    (2.12a) 

ɸ 𝜁𝑦 = 𝑞𝑦.                                                                                                                    (2.12b) 

Therefore, the modified dynamical equation yields the following form with the assumption 𝐶𝑖= 0 

ɸT M ɸ 𝜁
𝑥
̈  + ω ɸT G ɸ 𝜁

𝑦
̇  + ɸT K ɸ 𝜁𝑥 = ɸT  F 𝑢𝑥,                                                                  (2.13a) 

ɸT M ɸ 𝜁
𝑦
̈  + ω ɸT G ɸ 𝜁

𝑥
̇  + ɸT K ɸ 𝜁𝑦 = ɸT  F 𝑢𝑦,                                                                  (2.13b) 

by substituting Equations (2.11a) and (2.11b) into (2.13a) and (2.13b), we obtain  

𝜁
𝑥
̈  + ω G 𝜁

𝑦
̇  + λ2 𝜁𝑥 = 𝐹𝑚 𝑢𝑥,                                                                                                 (2.14a) 

𝜁
𝑦
̈  + ω G 𝜁

𝑥
̇  + λ2 𝜁𝑦 = 𝐹𝑚 𝑢𝑦.                                                                                                (2.14b) 

The state space equation (2.14a) yields  

[
𝜁
𝑥
̇  

𝜁
𝑥
̈
] = [

0 𝐼
−λ2 2𝜁𝜆

] [
𝜁
𝑥

𝜁
𝑥
̇  
] + [

0
𝐹𝑚

] 𝑓𝑥+ [
0

𝜔𝐺
] 𝜁𝑦.                                                                    (2.15) 

This can be simplified in the following form 

�̇� = A x + B 𝑓𝑥 + ω [
0
𝐺
] 𝜁𝑦,                                                                                               (2.16) 

therefore, the state space equation for the complete rotor lateral dynamics with the gyroscopic 

effect can be presented as 

[
�̇�
�̇�
] = [

𝐴 𝜔𝐺𝑚

−𝜔𝐺𝑚 𝐴
] [

𝑥
𝑦] + [

𝐵 0
0 𝐵

] [
𝑓𝑥
𝑓𝑦

].                                                                                             (2.17) 

where the combined force applied by the opposite coils of the AMB actuator in the x and y 

directions is given by 𝑓𝑥 and 𝑓𝑦, respectively. 𝐺𝑚 is the gyroscopic matrix after the coordinate 

transformation.  
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2.3.2 Modeling of AMB system  

After modeling the rotor dynamics, we need to present a model of the AMB system and 

combine these two models to get the overall model for the rotor-AMB system. The displacement 

of the rotor supported by AMBs may be represented as 

[

𝑋𝑎𝑚𝑏1

𝑋𝑎𝑚𝑏2

𝑌𝑎𝑚𝑏1

𝑌𝑎𝑚𝑏2

] = [
𝐶 0
0 𝐶

] [
𝑥
𝑦],                                                                                                               (2.18) 

where 𝑋𝑎𝑚𝑏 and 𝑌𝑎𝑚𝑏 are the rotor displacements given at the AMB location in the x and y 

directions, respectively. Figure 2.9 shows a rotor that is supported by an AMB.  

 

Figure 2.9 2D rotor-AMB system 

As mentioned before, the AMBs generate a magnetic force to support the rotor in the axial 

and radial directions. These forces are functions of the rotor displacements and control currents 

and they can be represented by the following linearized equations 

𝑓𝑥 = [ 𝐾𝑥 I ] 𝐶 + 𝐾𝑖 [
𝑖𝑥1

𝑖𝑥2
] ,                                                                                                                            (2.19a) 
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𝑓𝑦 = [ 𝐾𝑥 I ] 𝐶 + 𝐾𝑖 [
𝑖𝑦1

𝑖𝑦2
] ,                                                                                                                 (2.19b) 

where 𝐾𝑥 is the open loop stiffness, and 𝐾𝑖 is the open loop current gain. The perturbation currents 

in the x and y directions are given by 𝑖𝑥 and 𝑖𝑦, respectively.  

2.3.3 Overall Assembly for Rotor-AMB system 

By combining Equation 2.17, 2.19a, and 2.19b, we get the overall model of the rotor-AMB 

system which is given by the following equation 

[
�̇�
�̇�
] = [

𝐴 + 𝐵𝐾𝑥𝐶 𝜔𝐺𝑚

−𝜔𝐺𝑚 𝐴 + 𝐵𝐾𝑥𝐶
] [

𝑥
𝑦] + [

𝐵𝐾𝑖 0
0 𝐵𝐾𝑖

]  [
𝑖𝑥
𝑖𝑦

] .                                                                       (2.20) 

2.4 Conclusions  

In this chapter, we introduced the two main types of the compressor, the positive 

displacement and dynamic compressors, and how the pressure head is achieved in each type. In 

addition, some of the most popular problems in compressors such as rotating stall and compressor 

surge were discussed. Finally, we presented the modeling of the rotor-AMB system for the purpose 

of presenting control methods for them in the coming chapters. 
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Chapter 3 

Control Theory  

 

 

 

Generally, control theory can be approached from different directions. The first systematic 

techniques in control theory appeared in the 1930s. Control theory can be divided into two main 

parts: classical control and modern control. Classical control methods are based on either the root 

locus technique or compensator design in the frequency domain. Similar to the root locus 

technique, the modern control design methods were developed to deal with the placement of the 

closed-loop transfer function poles, in order to achieve the design specifications. For that, the state 

variables of the system have to be measured. In some cases, the state variables cannot be measured. 

Hence, we need to observe or estimate the system’s state variables to be able to apply the state 

feedback. This can be done using a full-order state observer or a reduced-order state observer. 

3.1 Linear Control Systems 

In real life, most dynamic systems are nonlinear. The analysis and control of the systems 

with nonlinear dynamics are known to be difficult and complicated [7]. Because of that, 

linearization methods are used to get linear model approximations for these systems, which are 

easier to deal with. Generally, linear systems are divided into two main parts: linear time-varying 

(LTV) systems, where the outputs of the system depend on time, and linear time invariant (LTI) 

systems, where the system input-output characteristics do not change with time. An LTI system 

can be described in the time domain as a differential equation, and in the frequency domain as a 

transfer function. The general state space representation of a linear control system is given by  
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�̇� = A(t) x(t) + B(t) u(t),                                                                                                                         (3.1) 

y = C(t) x(t) + D(t) u(t),                                                                                                                       (3.2) 

where x(t) is the n x 1 state vector, u(t) is the r x 1 input vector, y(t) is the p x 1 output vector, A is 

the n x n system matrix, B is the n x r input matrix, C is the p x n output matrix, and D is the p x r 

coupling matrix between the input and the output. In LTI systems, A, B, C, and D are constant 

matrices. The general solution of the LTI linear system state equation can be given as 

x(t) = Φ (t) x(0) + ∫ 𝛷(𝑡 − 𝜏)𝐵 𝑢(𝜏)𝑑𝜏
𝑡

0
,                                                                                           (3.3) 

where Φ(t) is the state transition matrix, and it is given by Φ (t) = 𝑒𝐴𝑡. 

3.2 𝑯∞ Control 

𝐻∞ Control is one of the most common techniques that are used to design advanced 

synthesis controllers. It achieves high levels of stability with a guaranteed performance for the 

systems. This control technique requires a good level of mathematical understanding for the 

dynamics of the system to design a controller with a good level of robustness against uncertainties 

and disturbances. The H∞ control method is used with unstructured uncertainties, which is the 

difference between the nominal and actual plant models [1]. The H∞ controller is designed based 

on an upper bound that includes all unmodeled uncertainties. Figure 3.1 shows an example for the 

upper bound in which all the unmodeled uncertainties stay below it.  
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Figure 3.1 Example of an upper bound of unstructured uncertainties 

The goal of the 𝐻∞ control method is to design controllers that minimize the 𝐻∞ norm of 

an augmented closed-loop transfer function. Generally, there are two main design methods for 𝐻∞ 

controllers: loop shaping design and signal-based design. The loop-shaping technique is one of the 

widely used techniques to generate 𝐻∞ controllers as it includes the performance requirements as 

performance weights in the early steps of the design process [10]. It is used to design multi-input 

multi-output (MIMO) controllers. In the loop shaping method, the closed-loop objectives are 

defined in terms of the specifications on the open loop singular values. On the other hand, the 

signal-based method represents design objectives through weighting functions on different inputs 

and outputs of the closed-loop system, and designs a controller that will minimize the 𝐻∞ norm of 
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the augmented closed-loop transfer function [1]. A case study that compares between the loop-

shaping and signal-based methods is presented in [11].  

3.3 µ-Synthesis Control 

The µ-synthesis method can be considered as an extended version of the 𝐻∞ control 

method, where the systems’ structured uncertainties are added to the design. Differently from the 

unstructured uncertainties, structured uncertainties are defined for particular parameters or 

characteristics of the controlled plant. The objective of the µ-synthesis method is to minimize the 

𝐻∞ norm of the closed-loop transfer function, and to maximize the level of the structured 

uncertainty that the system can deal with and remain stable. Figure 3.2 illustrates the 

interconnected system for the µ-synthesis method, where G(s) is the plant, K(s) is the controller, 

∆(s) is the uncertainty in the plant model, and M(s) is the closed-loop transfer function of the 

system. The uncertainty ∆(s) and the plant G(s) are scaled, such that the maximum norm of ∆(s) 

equals 1. 

 

Figure 3.2 Interconnected system for µ-synthesis controller 
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The robust stability and robust performance of the closed-loop system M(s) can be 

measured through the Structured Singular Value (µ), which is defined as [12]:  

 

µ∆(M) = 
1

min {𝜎(𝞓)∶ 𝞓∈∆, det(𝐼−𝑀∆)=0}
 , (3.11) 

where  is the maximum singular value of the given matrix. We can see that the smallest value 

σ(𝞓) in the set of all possible uncertainty ∆ that makes det (I-M∆) = 0 is 1 / µ∆(M). This means 

that the interconnected loop is nonsingular to the given ∆(s) whenever 1 / µ∆(M) > 1, and hence 

the interconnected system is stable.  

3.4 Gain Scheduling Control  

Over the last six decades, linear control methods have made important advancements in 

both theory and applications. Many applications in real world behave in a nonlinear manner, and 

their dynamics are approximated by linear models in order to apply linear controller design 

methods. On the other hand, there are some nonlinear systems, such as high performance aircrafts, 

that operate over a wide range of Mach numbers and altitudes, and the wide range of operation 

limits the accuracy of any single linearized model approximation. A common method that is used 

for the control of this class of nonlinear systems is to combine control laws that are specifically 

designed for different operating conditions along the system parameter range. This is the basic 

idea of the gain scheduling method. 

3.4.1 Background  

Gain scheduling is a control method that is used in nonlinear systems to optimize their 

performance. It is one of the most commonly used controller design approaches for nonlinear 

plants. This controller consists of a collection of linear controllers, each of which provides 
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satisfactory closed-loop stability and performance within different operating regions of the system. 

The operating region for the system is determined by a scheduling signal, also known as the 

scheduling variable, which may be either exogenous or endogenous with respect to the plant. 

Based on the characteristics of the scheduling signal, a controller is selected among the set of 

predesigned controllers. The gain scheduling method is suitable to use when the scheduling 

variable varies slowly compared to the control bandwidth. 

The idea of gain scheduling first appeared in the 1960’s. An early version of this technique 

was used in World War II to control the flight dynamics of rockets, in which the controllers were 

switched based on the measured altitude and other data. Gain scheduling attracted more attention 

after the introduction of linear parameter varying (LPV) systems in 1988 by Jeff. S. Shamma in 

his PhD dissertation [13]. The idea of the LPV systems is to represent nonlinearities of a system 

as a time varying parameters of a linear system. After Shamma’s work, gain scheduling became 

one of the most common approaches to control nonlinear systems. The design of a gain scheduled 

controller can be described by three main steps [14]: 

 The first step is to obtain a linear parameter-varying model for the nonlinear plant. Mainly, 

two approaches are used for this. The first approach is the Jacobian linearization of the 

nonlinear system around a set of equilibrium points of the plant, also called operating 

points, which leads to a family of linearized plants. The second approach is the quasi-LPV 

scheduling, where the plant’s dynamics are represented to blind the nonlinearities as time-

varying parameters that form the scheduling variables. 

 The second step is to design a linear controller for each linear parameter-varying model 

that arises from the first step. This leads to a collection of linear controllers for a set of 



24 
 

scheduling variables. Interpolation may be considered to obtain the linear controllers 

corresponding to scheduling variables not included in the initial design. 

 The third step is the main step in the implementation of the gain scheduled controller, where 

the controller’s coefficients are scheduled based on the scheduling signals.  

These steps can be clarified using the following example of a launching rocket in Figure 

3.3, which is a highly nonlinear system. At the beginning or at the launching state, the point a 

represents the operating point of the system. As the rocket goes up, the operating point changes to 

point b. As the rocket goes further, the operating point changes to c and so on. What gain 

scheduling control involves is to find linear approximation models of the system around each 

operating point and design a linear controller for each linear model of the system. A scheduling 

signal based on the measured state of the rocket determines the operating point of the system, and 

the appropriate controller to switched on.  

Gain scheduling methods can be classified in different ways according to the 

decomposition of the original system dynamics, the classification of the input/output signals, and 

the method used for the design of the linear control law. Gain scheduling method may be classified 

based on how the nonlinear dynamics of the plant are decomposed. The gain scheduling control 

method may:  

 decompose the nonlinear problem into linear sub-problems, or 

 decompose the nonlinear problem into non-linear sub-problems. 

Based on the properties of the input/output signals, gain scheduling methods may also be divided 

into: 

 continuous gain scheduling methods, 
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 discrete gain scheduling methods, or  

 hybrid or switching gain scheduling. 

 

 

Figure 3.3 Launching rocket 

Finally, based on the design method used for the linear control law, gain scheduling can be divided 

into: 

 classical control-based gain scheduling, 

 Lyapunov approach-based gain scheduling synthesis, 

 linear fractional transformation (LFT) formulation-based gain scheduling synthesis, or 

 fuzzy control gain scheduling. 

The classical control-based gain scheduling incorporates methods in classical control to 

design the collection of linear controllers. Classical control methods require linear approximations 
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of the nonlinear plant around a family of static operating points [18]. Lyapunov approach and LFT 

synthesis techniques are based on LPV or LFT representation of the plant, respectively. These 

methods yield improved performance, robustness, and stability when compared to the classical 

method. 

One of the main concerns while switching between the controllers is to achieve a smooth 

transfer between them. High transient vibrations could occur when switching between the 

controllers, which degrades the robustness and stability of the closed-loop system. Generally, there 

are two main techniques for bumpless transfer between the controllers: the conditioning technique 

[15] and the observer based technique [16]. The idea of the conditioning technique is to match the 

input signal of the offline controller with the output signal of the online controller. In other words, 

the states of the offline controller are changed based on the measurements of the online controller 

signal. This results in a fast return to the reference signal (online signal), and the smooth transfer 

between the controllers is guaranteed. In the observer based technique, the initial conditions of the 

off-line controller are estimated in order to guarantee the continuity in the controller output signal 

at the switching time. 

3.4.2 Linear Parameter Varying Systems 

As mentioned before, the gain scheduling technique became more popular after the 

introduction of linear parameter varying systems by Shamma [13] in 1988. In the gain scheduling 

method, a controller is built for a nonlinear system by gathering a set of linear controllers to cover 

the whole operating range. The switching between these controllers is based on the scheduling 

signals (also called scheduling variables). The nonlinear plant dynamics are represented as a 

parameterized linear system. The linear parameter varying (LPV) system is represented as  

�̇� = A(Ө) x + B(Ө) u,                                                                                                                     (3.12a) 
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y = C(Ө) x.                                                                                                                                   (3.12b) 

where Ө is an exogenous parameter. The LPV framework is considered as an interface between 

the linear and the nonlinear dynamics of the system [27].  

3.4.3 Active Magnetic Bearings and Gain Scheduling Control 

In rotor-AMB systems, the rotor is unstable; therefore, it needs to be stabilized using active 

feedback control. The rotor-AMB systems’ dynamics are affected by many factors such as the 

nonlinearities, external disturbances, and model uncertainties. Many robust optimal control 

methods are used to stabilize rotor-AMB systems such as 𝐻∞ method, µ-synthesis, and H2 control 

technique. 𝐻∞ control methods are used to synthesize controllers that achieve stabilization with 

guaranteed performance. The goal of the 𝐻∞ control method is to design controllers that minimize 

the 𝐻∞ norm of an augmented closed-loop transfer function [1]. The µ-synthesis method can be 

considered to be an extended version of the 𝐻∞ control method, where the systems’ structured 

uncertainties are added to the design. Differently from the unstructured uncertainties, structured 

uncertainties are defined for particular parameters or characteristics of the controlled plant. The 

objective of the µ-synthesis method is to minimize the 𝐻∞ norm of the closed-loop transfer 

function, and to maximize the level of the structured uncertainty that the system can deal with and 

remain stable. 

Switching amplifiers are commonly used in AMBs. However, their power supply has a 

finite supply voltage, which limits the maximum AMB force slew rate.  A bias current can be 

introduced to improve the force slew rate of the AMB system, but this may result in AMB losses 

due to the eddy currents and the hysteresis effects. Also, it may result in rotor heating due to the 

added power dissipated by the AMBs. A gain scheduled control with a low bias current was 

presented in [25] to control AMBs. The nonlinear system dynamics were formulated as a quasi-
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LPV system, and gain scheduled H∞ controllers were synthesized. The plant and the controller 

were presented into the LFT form for the robustness analysis with linear time varying uncertainties 

and multiplicative linear time invariant uncertainties. The robustness analysis consisted of finding 

an upper bound to the structured singular value of the closed-loop system using iteration between 

two minimizations, the µ analysis problem and the L2 gain problem. The robustness analysis 

showed that the gain scheduled controller provided little robustness to the closed-loop system. 

Imbalance in rotating machines leads to synchronous vibrations due to the generated 

unbalance forces. Many solutions have been proposed for this problem, but most of them are 

designed for magnetic bearings that operate at a single speed. Gain scheduled controllers are better 

suited to handle variable speed cases because the frequency of vibration varies with the operating 

speeds. Gain scheduled 𝐻∞ controllers have been used for this problem [33]. However, as the 

operating speed increases, the order of the controller also increases in order to satisfy stricter 

performance objectives. This is due to the need of higher order weighting functions in the 

controller synthesis, which also increases the order of the controller. High order controllers may 

be difficult to implement in practical applications. Another approach was presented in [26] using 

a discrete-time gain scheduled Q-parameterization controllers. As the frequency of the vibrations 

is equal to the rotational speed, the free parameter Q of the Q-parameterization controller is 

scheduled as a function of the rotational speed. The authors of [26] showed that satisfactory robust 

stability and the disturbance rejection capabilities were achieved by the closed-loop system for the 

entire operating speed range of the AMB. 

Generally, the lateral dynamics of AMBs are decoupled for low rotating speeds. The shaft 

axis of rotation is always aligned with the bearing center line, hence the inertia-induced moments 

on the disk are neglected. But when magnetic bearings are subjected to a continuous increment in 
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the operating speed, the shaft rotational axis start to diverge from the bearing’s center line due to 

the rotor gyroscopic effects [1]. The speed-dependent gyroscopic effect can introduce significant 

uncertainties to the control system designed for a constant operating speed. Gain scheduled 

controllers were used to solve this problem using different synthesis techniques. In [17], the LPV 

gain scheduling, with fixed and parametric Lyapunov functions, and the LFT gain scheduling were 

applied to two types of flywheel rotors: drum type and disk type. The author evaluated these 

synthesis techniques from different perspectives such as performance, robustness, implementation, 

and the computation complexity of these approaches.  

3.4.4 Advantages and Disadvantages of Gain Scheduling Method 

The main advantage of the gain scheduling technique is that we can use linear design 

methods for nonlinear systems. In other words, linear control tools including output feedback 

methods, time domain techniques, and frequency domain techniques can be used for nonlinear 

systems. Also, systems that operate under the gain scheduling control respond quickly to changes 

in operating conditions [13].  

On the other hand, the gain scheduling technique has some disadvantages. The main 

disadvantage is a result of using linear control methods, which may results in a local stability of 

the system around the operating point. In addition, as the gain scheduling technique depends on 

the scheduling variables, an improper selection of these variables may affect the performance of 

the controller. Therefore, the scheduling variables must be selected properly in order to reflect the 

changes in the system’s dynamics when operating conditions change. Finally, gain scheduling is 

an application specific method in which the selection of the scheduling signal can vary from system 

to system. For example, some control applications may not have an accessible scheduling signal 

that can be used to design the control law. 
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3.5 Conclusion 

This chapter presents a brief introduction to linear control systems and some advanced 

synthesis controller design methods in linear systems, such as the 𝐻∞ control and µ-synthesis 

control methods. Generally, the 𝐻∞ control method is used to design controllers for systems that 

have unstructured uncertainties, whereas the µ-synthesis control method is used for the systems 

with structured uncertainties. These optimal control methods are commonly used in cases where 

the proportional-integral-derivative (PID) controllers are not able to achieve the design 

requirements. In addition, we discussed the gain scheduling control method, which is one of the 

most popular methods that are used to optimize the performance of nonlinear systems. In addition, 

some of the common control challenges of rotor-AMB systems were presented, and we discussed 

how the gain scheduling control was applied to solve them in the literature. Furthermore, some of 

the main advantages and disadvantages for the gain scheduling control technique were discussed. 

 

 

 

 

 

 

 

 

 



31 
 

Chapter 4 

Gain-Scheduled Control for Rotor-AMB System 

 

 

 

In this chapter, we will present a case study of the gain scheduling control method applied 

to a rotor-AMB system. In particular, the µ-synthesis based gain scheduling technique is used to 

design an AMB levitation controller for a prototype motor that covers an operating speed range 

between 0 and 50,000 rpm. For the implementation of the gain scheduling technique, this speed 

range was divided into three regions, and a µ-synthesis controller was designed for each region. 

Furthermore, an observer-based bumpless transfer technique was implemented to switch between 

these controllers.  

4.1 Rotor-AMB System Model 

The test rig that is considered here consists of a flexible rotor with an integrated motor 

core. This rotor is supported horizontally by two radial AMBs and axially by a single thrust AMB. 

The assembled rotor weighs 390.2 pounds, with a total length of 52 inches, and the diameter varies 

between 3.54 and 11.3 inches. Figure 4.1 illustrates a FEM mesh of the rotor with the sensor 

locations and the AMB locations. The operating speed range under which the system is tested is 

between 0 and 50,000 rpm. Table 5.1 illustrates the natural frequencies of the test rig rotor. 
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Figure 4.1 FEM mesh of the rotor 

 

Table 4.1 Natural frequencies of the test rig rotor 

 List of modes    ωn (Hz) 

1st bending mode 270.82 

2nd bending mode 331.38 

3rd bending mode 745.05 

 

In this study, uncertainties in the modal frequency, modal damping, and the rotating speed 

of the shaft were considered. The uncertainty in the modal frequency/damping of the rotor was 

captured by a complex-valued uncertainty in the pole location of the open-loop AMB system. This 

can be represented as a circular uncertainty region in the complex plane that contains the nominal 

pole and has a radius of ±5% of the mode frequency. The uncertainty region is shifted to the left 

to avoid crossing the imaginary axis. The defined uncertainty region for the pole location is 

illustrated in Figure 4.2. 
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Figure 4.2 Pole location according to the uncertain rotor mode. 

4.2 Gain-Scheduled Controller Design 

After defining the uncertainties of the plant, an interconnected system is built for the µ-synthesis 

design. Figure 4.3 represents the 4-block interconnected system that was used in this study where 

P is the transfer function of the system and K is the feedback controller. The functions Wi for i 

from 1 to 4 are the weighting functions for the controller. The inputs to the interconnected system 

are the weighted noise input w1, the weighted disturbance input w2, and the control input u. The 

outputs of the system are the weighted control signal z1, the weighted controller input z2, and the 

control output y.  

 

Figure 4.3 The interconnected system for µ-synthesis 
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From the interconnected system in Figure 4.3, the µ-synthesis controller is found for the 

feedback loop. For the nominal system with ∆ = 0, the relationship between the performance 

defining inputs and outputs, wi and zi, are given by the following matrix of transfer functions  

  (4.1) 

The transfer functions of the above matrix describe the different desired performance 

characteristics of the nominal closed-loop system. The weighting functions,  and 

, were selected based on the performance requirements of the closed-loop system. Weighting 

function  was selected to limit the bandwidth of the feedback controller,  is defined to set 

the minimum disturbance rejection requirement, and  is selected to limit the output sensitivity 

function. The resulting weighting functions are: 

                                                              (4.2) 

As mentioned before, the modal frequency, the modal damping, and the rotating speed of 

the shaft were considered to be time-varying uncertainties. The operating speed range was divided 

into three regions, defined between 1) 0 to 18,000 rpm, 2) 17,000 to 34,000 rpm, and 3) 33,000 to 

50,000 rpm. For each region, a µ-synthesis controller was designed to satisfy the robustness and 

the performance requirements. An overlap was included between the speed regions in order to 

guarantee the stability at the switching points. For the first region, the derived controller has 284 

states, which was later reduced to 60 states using model reduction techniques based on the Hankel 

singular value. Figure 4.4 illustrates the Hankel Singular Value plot for the µ controller of the first 

region.  
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Figure 4.4 Hankel Singular Value plot for the µ controller of the first region 

Figure 4.5 shows the robust performance µ value obtained for the closed-loop system 

within the first operating speed region. We can see that the µ value is less than 1 for all frequencies. 

Similar results were obtained for the remaining speed regions, which indicate that the robust 

stability and robust performance objectives have been achieved.  

 

Figure 4.5 µ value of the interconnected system for the first region 
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In order to achieve a smooth transfer between the controllers in different speed regions, we 

implemented an observer based bumpless transfer technique. The state space representation of the 

𝑖𝑡ℎ controller equations can be represented as 

ƞ̇𝑖(t) = 𝐴𝑐,𝑖 ƞ𝑖(t) + 𝐵𝑐,𝑖 y(t) + 𝜉𝑖(t),                                                                                                (4.3) 

𝑢𝑖(t) = 𝐶𝑐,𝑖 ƞ̂(t) + Ө𝑖(t).                                                                                                               (4.4) 

where y(t) and u(t) are the online controller input and output, respectively. 𝜉𝑖(t) and Ө𝑖(t) are 

assumed to be white Gaussian noise with zero mean. The observer generates �̂�𝑖(t) and ƞ̂𝑖(t) by the 

observer dynamic equation: 

ƞ̇̂𝑖(t) = 𝐴𝑐,𝑖 ƞ̂(t) + 𝐵𝑐,𝑖 y(t) + 𝐾𝑖 [ u(t) - 𝐶𝑐,𝑖 ƞ̂𝑖(t)],                                                                         (4.5) 

�̂�𝑖(t) = 𝐶𝑐,𝑖 ƞ̂𝑖(t).                                                                                                                          (4.6) 

The Kalman filter gives the optimal estimate of the initial states in terms of the mean square error 

[19]. It is noted that the observer equation is similar to the controller, with a correction term added 

to the observer based on the error between the actual and estimated output. In the implementation 

of the bumpless transfer technique, the controller corresponding the current operating speed region 

is online. The remaining controllers are operated in the offline “observer” mode as represented in 

Equations (4.5) and (4.6). If the closed-loop system transitions from one operating region to the 

next, the controller corresponding to the new speed region becomes online, and the remaining 

control laws are switched to the observer mode. 

The observer gains used in the bumpless transfer method were obtained by following the 

Linear Quadratic Regulator (LQR) design method. It can be demonstrated that the observation 

error corresponding the Equation (4.5) and (4.6) approaches zero if the dual system  

,                                                                                       (4.7) 
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is stabilized. The LQR method provides the gain  such that the closed-loop system minimizes 

the quadratic objective function 

  (4.8) 

The matrix  is then the weight on the states’ energy, and  is the weight on the input energy.  

4.3 Simulation Results 

The performance of the AMB system under the gain scheduling control law was tested in 

simulation in the presence of rotor unbalance weights. Unbalance weights were added based on 

the specification of the API standard 541, in which the standard input unbalance in gram-mm for 

the forced response analysis of rotordynamic systems is set as  

 (4.9) 

where  is the journal static load in kg, and  is the maximum rotational speed in rpm. In our 

simulation, we used two unbalance weights of . One unbalance was added to each balancing 

plates of the rotor, separated by 180 degrees in phase.  

For the simulation test, the rotor was ramped up from 0 to 50,000 rpm. Figure 4.6 and 

Figure 4.7 show the rotor orbit at the sensor locations S2 and S3, respectively. Figure 4.8 shows 

the maximum rotor vibration level at the sensor locations over the speed range for the unbalance 

test. The simulation results show that the vibration level is maintained within an acceptable level, 

and it varies gradually along the speed range, as it is shown in Figure 4.8. Also, the smooth transfer 

was achieved when switching between the controllers. 
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Figure 4.6 Rotor orbit at sensor S2 location over the speed range 

 

Figure 4.7 Rotor orbit at sensor S3 location over the speed range 
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Figure 4.8 Rotor unbalance response 

 

4.4 Conclusion 

In this chapter, a µ-synthesis based gain scheduling technique was used to design a 

levitation controller for a prototype motor with AMBs. The operating speed range of the motor 

was divided into three regions, and a µ-synthesis controller was designed for each region. Both the 

design and simulation test results showed that robust performance was achieved, and rotor 

vibration was within an acceptable level for the entire operating speed range. An observer-based 

bumpless transfer scheme was implemented in our simulation to achieve smooth switching 

between the gain-scheduled controllers. 
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Chapter 5 

Gain-Scheduled Controller for Compressor Surge 

 

 

 

In this chapter, we will introduce the work in [1] for a compressor surge control in an AMB 

supported compression system using 𝐻∞ control technique. Then, we will extend this work by 

implementing the gain scheduling technique to design a surge control law that extends the stable 

operating region of the compressor. This chapter will be organized as the following. First, we will 

introduce the compression system model and the surge controller design in [1]. After that, the 

design of the gain-scheduled controller will be presented. Finally, we will present simulation 

results to illustrate the effectiveness of the gain-scheduled surge controller.  

5.1 Compression System Model  

 It is important to model the compression system properly in order to design a controller 

that is able to stabilize the system with a good level of robustness. One of the most popular models 

that is used to represent compression systems for surge control is the Greitzer model [28]. This 

model combines the dynamics of the compressor, the plenum volume, and the throttle valve in 

order to capture the surge instability. Compared to other compression system models, the Greitzer 

model adds the transient dynamics of the system over the known steady state characteristics, thus 

allowing for simpler model equations. This model represents the non-dimensional mass flow rate 

Ф and pressure rise Ѱ as 

Ф = 
𝑚

𝜌01𝑈𝐴𝑐
 ,                                                                                                                                (5.1) 
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Ѱ = 
∆𝑃

1

2
 𝜌01𝑈2

 ,                                                                                                                                 (5.2) 

where m is the dimensional mass flow rate, 𝜌01is the gas density in the ambient condition, U is the 

impeller tip speed, 𝐴𝑐 is the cross section area of the compressor duct, and ∆P is the dimensional 

pressure rise. The Greitzer model of the compression system in terms of the non-dimensional mass 

flow rate and pressure rise is given by 

𝑑Ф𝑐

𝑑𝑡
 = B 𝜔𝐻(Ѱc – Ѱp),                                                                                                                  (5.3a) 

𝑑Ф𝑡ℎ

𝑑𝑡
 = 

B  𝜔𝐻

𝐺
 (Ѱp – Ѱth),                                                                                                                     (5.3b) 

𝑑Ѱ𝑝

𝑑𝑡
 = 

𝜔𝐻

𝐺
 (Фc –  Фth),                                                                                                                       (5.3c) 

𝑑Ѱ𝑐

𝑑𝑡
 = 

𝜔𝐻

�̃�
 (Фc,ss –  Фc),                                                                                                                       (5.3d) 

where Фc and Фth are the compressor mass flow rate and the throttle valve mass flow rate, 

respectively. Ѱp is the plenum pressure rise and Ѱc is the compressor pressure rise. B represents 

the Greitzer stability parameter and �̃� represents the compressor time constant. 𝐺 is a parameter 

that depends on the ratio between the compressor and throttle duct dimensions. 𝜔𝐻 is the 

Helmholtz frequency and it is given by 

𝜔𝐻 = 𝑎01 √
𝐴𝑐

𝑉𝑝 𝐿𝑐
 ,                                                                                                                           (5.4) 

where 𝑎01 is the speed of sound at ambient condition, 𝐴𝑐 is the area of the compressor duct, 𝑉𝑝 is 

the volume of the plenum, and 𝐿𝑐 is the length of the compressor. The compression system model 

is built based on the steady state characteristics of the flow [1]. The non-dimensional steady state 

compressor pressure rise is a function of the compressor mass flow rate, and it is given as 
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Ѱ𝑐,𝑠𝑠(Ф𝑐) = A1 Ф𝑐
3 + B1 Ф𝑐

2 + D1,                                                                                                (5.5) 

where the coefficients A1, B1, and D1 are determined using the third order polynomial fitting that 

was presented in [32] to determine the curve from the measurements of the steady-state pressure 

and mass flow rate of the compression system. 

This model can be considered as a good start from which we can study the control of the 

compressor surge instability. However, Greitzer model has a disadvantage of not including the 

pipeline dynamics based on assumptions that the gas or fluid velocity in the plenum volume is 

negligible and the pressure distribution is uniform. This is not true in many compression systems. 

We will talk about the pipeline modeling later in this section. 

 Assuming that the throttle valve flow dynamics are negligible and �̃� is small, the 

mathematical model of the compression system reduced to three main parts: the compressor, the 

pipeline, and the plenum volume. The compressor and plenum dynamic equations are given as 

Ф𝑐
̇  = B ωH (Ѱ𝑐,𝑠𝑠 (Ф𝑐) + 

𝑃01
1

2
 𝜌01 𝑈2

 𝑘𝑐𝑙  𝛿𝑐𝑙 − Ѱ𝑝),                                                                    (5.6a) 

Ѱ𝑝
̇  = 

𝜔𝐻

𝐵
 (Ф𝑐 − Ф𝑝).                                                                                                                       (5.6b) 

where 𝑘𝑐𝑙is the tip clearance gain, and 𝛿𝑐𝑙 is the impeller tip clearance that can be actuated from 

the AMBs of the compressor. 𝑃01 is the inlet absolute pressure. The plenum mass flow rate Ф𝑝 

will come from the pipeline equation. More details about the equations’ derivation can be found 

in [1]. 

Pipeline modeling techniques were proposed by Goodson [29], and Krus et al. [30]. The 

authors of [1] used the model that was proposed by Krus et al. and studied the best position to 

implement the pipeline model in the compression system model. The pipeline model was located 
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at the compressor exhaust (between the compressor and the plenum volume), and at the plenum 

volume output (between the plenum volume and the throttle valve). The idea was to compare and 

match the experimental and simulation results for the Bode plot of the transfer function from the 

tip clearance (𝛿𝑐𝑙) to the plenum volume pressure rise. The results showed that the best place to 

locate the pipeline acoustic model was at the plenum volume output. Figure 5.1 shows the block 

diagram of the compression system model with the added pipeline model at the plenum volume 

output.  

 

Figure 5.1 Block diagram of the compression system with the added pipeline model [1] 

The resulting state space representation of the pipeline model with the non-dimensional variables 

is given as 

[
Ѱ𝑡ℎ

̇

Ф𝑝
̇ ] = [

0
2 𝐴12 𝐴𝑐

𝜌𝑢 𝑈

𝐴21 𝜌𝑢 𝑈

2 𝐴𝑐
𝐴22

] [
Ѱ𝑡ℎ

Ф𝑝
] + [

0
2 𝐵12 𝐴𝑐

𝜌𝑢 𝑈

𝐵21 𝜌𝑢 𝑈

2 𝐴𝑐
𝐵22

] [
Ѱ𝑝

Ф𝑡ℎ
] + 

              [
0

𝜌𝑢 𝑃01

𝜌01 𝑈 𝐴𝑐
 (𝐴21 + 𝐵21)

],                                                                                  (5.7) 

where 𝜌𝑢 is the density of the gas in the pipline.  𝐴𝑖𝑗 and 𝐵𝑖𝑗 are coefficient matrices of the state 

space representation of the pipeline dynamics. More details on the calculations of these 

coefficients can be found in [1].  
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In the throttle valve, assuming subsonic flow conditions, the non-dimensional mass flow 

rate is a function of the plenum pressure rise and the throttle percentage opening uth, and it is given 

by 

Ф𝑡ℎ = cth uth √Ѱ𝑡ℎ,                                                                                                                    (5.8) 

where cth is the valve constant. Finally, the complete compression system equations are  

Ф𝑐
̇  = B ωH (Ѱ𝑐,𝑠𝑠 (Ф𝑐) + 

𝑃01
1

2
 𝜌01 𝑈2

 𝑘𝑐𝑙  𝛿𝑐𝑙 − Ѱ𝑝),                                                                    (5.9a) 

Ѱ𝑝
̇  = 

𝜔𝐻

𝐵
 (Ф𝑐 − Ф𝑝),                                                                                                                       (5.9b) 

Ѱ𝑡ℎ
̇  = 

2 𝐴12 𝐴𝑐

𝜌𝑢 𝑈
 Ф𝑝 + 

2 𝐵12 𝐴𝑐

𝜌𝑢 𝑈
 cth uth √Ѱ𝑡ℎ ,                                                                                (5.9c) 

Ф𝑝
̇  = 

𝐴21 𝜌𝑢 𝑈

2 𝐴𝑐
 Ѱ𝑡ℎ + 𝐴22Ф𝑝 + 

𝐵21 𝜌𝑢 𝑈

2 𝐴𝑐
 Ѱ𝑝 + 𝐵22 cth uth √Ѱ𝑡ℎ  

          +  
𝜌𝑢 𝑃01

𝜌01 𝑈 𝐴𝑐
 (𝐴21 + 𝐵21).                                                                                                  (5.9d) 

Table 5.1 shows the values of the parameters of the theoretical model as in [1]. 

Table 5.1 Model parameters for the compression system  

Parameter Symbol Unit Value 

Comp. duct length 𝐿𝑐 m 1.86 

Comp. duct cross area 𝐴𝑐 𝑚2 0.0082 

Corrected 𝐴1 coeff. 𝐴1 - -172.6 

Corrected 𝐵1 coeff.  𝐵1 - 36.88 

Corrected 𝐷1 coeff. 𝐷1 - 1.029 
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Design tip clearance 𝑐𝑙𝑛 mm 0.6 

Greitzer stab. parameter B - 0.44 

Helmholtz frequency 𝜔𝐻 rad/s 80.1 

Impeller tip speed U m/s 213.24 

Impeller blade height 𝑏2 mm 8.21 

Inlet pressure 𝑝01 pa 101,325 

Inlet gas density  𝜌𝑜1 kg/m3 1.165 

Plenum volume 𝑉𝑝 𝑚3 0.049 

Pipeline length L m 6.5 

Throttle constant  𝑐𝑡ℎ - 1.7197 

𝐴12 coeff. 𝐴12 - 3.7 * 106 

𝐴21 coeff. 𝐴21 - -0.0019 

𝐴22 coeff. 𝐴22 - -8 

𝐵12 coeff. 𝐵12 - -3.7 * 106 

𝐵21 coeff. 𝐵21 - 0.0019 

𝐵22 coeff. 𝐵22 - 7.98 

  

5.2 Compressor Surge Controller Design  

After deriving the dynamic equations for the compression system, the authors of [1] 

designed the stabilizing controller for compressor surge using the impeller tip clearance as 
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actuation through the AMB. They used the 𝐻∞ control method to design the stabilization 

controller. This requires the linearization of the compression system model. They introduced new 

state variables as the difference between the original state variables and their corresponding 

equilibrium value at the linearization point. The equilibrium point is the intersection point between 

the compressor characteristic curve and the load curve at a given speed. The speed  of 16290 rpm 

was chosen to be the operating speed, and the throttle valve opening of 17% was chosen for the 

linearization point. Figure 5.2 shows the characteristic curve for the compressor at different 

operating speeds. 

 

Figure 5.2 Compressor characteristic curves at different operating speeds. 

The 𝐻∞ design method is usually used with unstructured uncertainties, and it will provide 

good level of robustness for the system when designed properly. The interconnected system for 
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the synthesis of the surge controller is shown in Figure 5.3. The control input to the plant G(s) is 

the impeller tip clearance 𝛿𝑐𝑙, and the measured output for the controller is the linearized state 

corresponding to the plenum pressure rise and compressor mass flow rate.  

According to the interconnected system in Figure 5.3, the input-output transfer function 

matrix is given as 

[
𝑧1

𝑧2
] = [

−𝑊1 𝑆𝑖 𝐾 𝐺 𝑊3 𝑊1 𝑆𝑖 𝐾 𝑊4

𝑊2 𝑆𝑜 𝐺 𝑊3 𝑊2 𝑆𝑜 𝐺 𝐾 𝑊4
] [

𝑤1

𝑤2
],                                                                             (5.10) 

where G is the transfer function of the compression system and K is the transfer function of the 

controller. Wi for i = 1 to 4 are the weighting functions for the H∞ controller and  

𝑆𝑖 = (I + K G)-1,                                                                                                                          (5.11a) 

𝑆𝑜 = (I + G K)-1.                                                                                                                                     (5.11b) 

 

Figure 5.3 Interconnected system for the synthesis of the surge controller [1] 

The main objective to be accomplished when designing the 𝐻∞ controller is to minimize 

the 𝐻∞ norm for the closed-loop system. The selection of the weighting functions is based on 

achieving this objective and the design requirements. In this case, W1 and W3 were chosen to satisfy 

the robustness condition of the interaction between the surge controller and the levitation 

controller. In addition, “W4 was selected to prioritize the pressure feedback signal for the 

computation of the control input” [1]. The selected weighting functions for the 𝐻∞ controller were  
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W1 = I,                                                                                                                                              (5.12a) 

W2 = 0.001I,                                                                                                                                  (5.12b) 

W3 = 
2(𝑠+0.1)

𝑠+300
 I,                                                                                                                           (5.12c)  

W4 = 
2000(𝑠+0.1)

𝑠+3000
 [
1.5 0
0 1

].                                                                                                                 (5.12d)  

This controller achieved the stability and robustness conditions for the design. In addition, it was 

observed that the bandwidth of the controller is within the limitation of the digital implementation.  

5.3  Gain-Scheduled Controller Design 

In this section, the gain-scheduled controller for compressor surge control is presented. As 

mentioned before, the throttle valve opening of 17% was selected to be the nominal opening, and 

the gain-scheduled controller was designed to stabilize the compression system beyond the 

nominal throttle valve opening. By decreasing the throttle opening, the flow will be restricted, and 

the system will start to become unstable. The previous controller design can stabilize the system 

for a throttle opening down to 17% and within a very small region around it. A gain-scheduled 

controller can potentially extend the stable operating region for the surge controller, while also 

achieving a high level of robustness.  

Our goal is to extend the stable operating region of the compressor, which will allow it to 

operate deeper in the unstable operating region of the characteristic curve. Figure 5.4 illustrates a 

general shape of the compressor characteristic curve. The surge point is located approximately at 

the peak of the characteristic curve, and it separates the stable operating region on the right-hand 

side and the unstable region on the left-hand side. The surge curve is formed when connecting the 

surge points corresponding to different operating speeds. The authors in [1] used the throttle valve 

opening of 17% to linearize the compression system model, which will also serve as a starting 
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point of our gain-scheduled controller. By decreasing the valve opening, the flow will be restricted 

below the surge point. As a result, surge will occur. At the throttle opening of 11%, the system 

once again becomes stable, and this is expected. This can be justified due to changing of the slope 

of the characteristic curve. 

 

Figure 5.4 A general compressor characteristic curve [35] 

In Figure 5.4, we can see the variation in the slope of the characteristic curve. The curve 

has a negative slope in the stable region. This slope becomes positive when the compressor starts 

to operate in the unstable region. If the flow is further restricted, the slope becomes negative, which 

corresponds to a stable equilibrium flow region. This clarifies the behavior of the system at the 

opening 11%. Figure 5.5 shows the numerical simulation of the plenum pressure rise 11% throttle 

valve opening.  
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 For the gain-scheduled controller design, the throttle valve opening was set to be between 

12% and 17%, with operating sections divided by a step size of 1%. This results in six throttle 

valve openings, and six linear controllers are designed for these opening values. The throttle valve 

opening was chosen to be the scheduling variable, which determines the switching between the 

controllers. Figure 5.6 shows the operating range of the gain scheduling controller with respect to 

the scheduling signal. 

 

Figure 5.5 Plenum pressure rise for throttle valve opening of 11% 

The behavior of the gain-scheduled controller is as follows. When the throttle opening is 

17% or more, the gain-scheduled controller will turn controller 1 on to stabilize the compressor 

surge. As the throttle opening is decreased to 16%, the scheduled controller will switch to 

controller 2, which will stabilize the system for all the openings between 16% and 17%. In the 

same manner, controller 3 will stabilize the compression system for all the opening between 15% 

and 16%, and controller 4 for all the opening between 14% and 15%, and so on. A delay is 
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introduced in the switching between the controllers to mitigate the effect of noise in the switching 

signal. The observer-based technique was used to achieve bumpless and smooth transfer when 

switching between the controllers. 

 

Figure 5.6 Resulting gain-scheduled controller 

The design of the linear 𝐻∞ controller requires the selection of the weighting functions to 

achieve stability, performance, and robustness requirements. There are several techniques to select 

the weighting functions [10]. The majority of these techniques use a trial and error selection 

process to find the appropriate weighting functions. In some cases, the designer may not be able 

to find the weighting functions that will result in the stabilizing controller, and this is the main 

disadvantage of the trial and error method. In our design, the weighting functions of the controllers 

are tuned from the design in [1] within certain limits using the trial and error method. The objective 

is to achieves similar robustness and stability conditions at the different linearization points.  

 In the linear controller design, we found that W3 and W4 have the most effect on the 

controller performance by the trial and error method. The weighting functions of the five linear 

controllers in the gain-scheduled controller were selected to achieve the performance objectives 

describes in Section 5.2. The weighting functions for the controllers 2 through 6 were found to be 
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 Controller 2 

W1 = I,                                                                                                                                           (5.14a) 

W2 = 0.001 I,                                                                                                                                    (5.14b) 

W3 = 
2(𝑠+0.3)

𝑠+400
 I,                                                                                                                               (5.14c)                                                                                                                 

W4 = 
1500(𝑠+0.6)

𝑠+2700
 I.                                                                                                                        (5.14d)                                                                                                                    

 Controller 3 

W1 = I,                                                                                                                                           (5.15a) 

W2 = 0.001 I,                                                                                                                                    (5.15b) 

W3 = 
2(𝑠+2.5)

𝑠+500
 I,                                                                                                                               (5.15c)                                                                                                                 

W4 = 
1700(𝑠+0.5)

𝑠+1600
 I.                                                                                                                        (5.15d)                                                                                                                    

 Controller 4 

W1 = I,                                                                                                                                           (5.16a) 

W2 = 0.001 I,                                                                                                                                    (5.16b) 

W3 = 
𝑠+0.7

𝑠+800
 I,                                                                                                                               (5.16c)                                                                                                                 

W4 = 
1300(𝑠+0.3)

𝑠+2000
 I.                                                                                                                        (5.16d)                                                                                                       

 Controller 5 

W1 = I,                                                                                                                                           (5.17a) 

W2 = 0.001 I,                                                                                                                                    (5.17b) 
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W3 = 
2.5(𝑠+0.5)

𝑠+600
 I,                                                                                                                               (5.17c)                                                                                                                 

W4 = 
1900(𝑠+0.9)

𝑠+1700
 I.                                                                                                                        (5.17d)                                                                                                                    

 Controller 6 

W1 = I,                                                                                                                                           (5.18a) 

W2 = 0.001 I,                                                                                                                                    (5.18b) 

W3 = 
1.3(𝑠+0.8)

𝑠+700
 I,                                                                                                                               (5.18c)                                                                                                                 

W4 = 
2300(𝑠+0.4)

𝑠+2100
 I.                                                                                                                        (5.18d)                                                                                                                    

Figure 5.7 shows the magnitude of the interconnected system in Figure 5.3 with the weighting 

functions and linear controller corresponding to the throttle valve opening at 12%. Similar results 

were obtained for the linear controllers designed for the remaining throttle valve opening values. 
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 Figure 5.7 Magnitude of the interconnected system for throttle opening of 12% 

5.4 Simulation Results 

In order to verify the performance of the gain-scheduled surge controller, a simulation test 

was constructed using Simulink. The compression system was represented using the nonlinear 

surge model in Equation (5.9). The control signal is the impeller tip clearance 𝛿𝑐𝑙. A saturation 

block and a low pass filter were added to the control signal to represent the physical limitations of 

the actuator. In addition, we added Gaussian noise to the feedback pressure signal with a mean of 

0 and variance of 1x10-5.  

To demonstrate the performance of our gain-scheduled controller, we compared it to the 

single 𝐻∞ surge controller from [1]. Figures 5.8 through 5.11 shows the simulated response of the 

compression system with the surge controller in [1]. In this numerical example, we gradually 



55 
 

changed the throttle valve opening from 20% to 12% in 25 seconds. This drove the compression 

system to surge condition.   

 

Figure 5.8 Throttle valve opening 
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Figure 5.9 Plenum pressure rise 

 

Figure 5.10 𝛿𝑐𝑙(t) with the single surge controller in [1] 
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Figure 5.11 Operation of the system using the controller in [1] 

Figure 5.8 shows the throttle valve opening signal. It also marks the limit in the throttle valve 

opening at which the system under the controller from [1] becomes unstable.  Figure 5.8 illustrates 

the throttle valve opening and how the system’s stability changes when changing the valve 

opening. Figure 5.9 shows the simulated plenum pressure rise signal together with the equilibrium 

pressure rise from the characteristic curve. It is obvious from the figure that the system becomes 

unstable and the controller we are using is not regulating the flow. The control signal of the 

simulation case is shown in Figure 5.10. We can see how the system becomes unstable when the 

throttle valve opening is around 16%. In addition, a clipping in the control signal occurred because 

the controller exceeded the saturation limits. Figure 5.11 presents the plenum pressure rise as 

function of the compressor mass flow rate together with the compressor characteristic curve. We 

can see that the compressor falls in the surge limit cycle, which demonstrates that the system is 

unstable. 

              From these figures, we can see that the controller in [1] was not able to stabilize the system 

under the new conditions. Figures 5.12 through 5.14 illustrates the simulated response of the 

system when using the gain-scheduled controller. In Figure 5.12, it is obvious how the plenum 

pressure rise matches the equilibrium pressure rise. The gain-scheduled surge controller stabilizes 

the compression system with the control signal shown in Figure 5.13. It is obvious how the 

controller worked to stabilize the system without entering the saturation mode. Figure 5.14 shows 

the behavior of the system and how it is running without any surge limit cycles using the gain-

scheduled controller. The gain-scheduled controller was able to stabilize the compression system 

when entering the unstable region between the compressor mass flow rates of 1.2 and -0.015, 
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which indicates that it extended the stable operating region down to the valve opening of 12% 

instead of 17%. 

 

Figure 5.12 Plenum pressure rise with the gain-scheduled controller 
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 Figure 5.13 𝛿𝑐𝑙(t) with the gain-scheduled surge controller  

 

Figure 5.14 Operation of the system using the gain-scheduled controller  
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5.5 Conclusion  

                In this chapter, we presented the design of the compression system and surge controller 

designs that were introduced in [1]. In addition, we presented the design of the gain-scheduled 

controller. This controller was designed to extend the stable operation region of the compression 

system. It allows the compression system to operate with a throttle valve opening as low as 12%. 

A Gaussian noise was added in the simulation design and the controller design accommodated the 

noise. This means that the compression system has a higher level of robustness against the 

disturbances with this controller compared to the previous controller [1]. The gain-scheduled 

controller consists of six linear controllers. A smooth transfer between the controllers was achieved 

using the observer-based technique.   
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Chapter 6  

Conclusions and Future Work 

 

 

 

 The use of the gain-scheduled controller to stabilize compressor surge and control the AMB 

levitation was discussed in this thesis. The motivations and objectives of this work were introduced 

in Chapter 1. In Chapter 2, we presented a brief introduction to compressors and some of the 

common instabilities in compressors. Active magnetic bearings were also introduced here. 

 In Chapter 3, linear control systems were introduced. Advanced control methods were 

discussed in this chapter such as the 𝐻∞ control and the µ-synthesis control techniques. In addition, 

we presented the concept of the gain scheduling control method and its main classifications, along 

with its advantages and disadvantages. In Chapter 4, we presented a case study of a gain scheduled 

controller designed for the stabilization of a rotor-AMB system. In order to guarantee the 

performance over a wide operating speed range, the µ-synthesis control method was used to design 

the linear controllers that forms the gain-scheduled controller. 

 Chapter 5 presented the compression system model and the design of the single 𝐻∞ surge 

controller in [1]. As a continuation to this work, we designed a gain-scheduled controller to extend 

the stable operating region of the compression system and improve the robustness of the closed-

loop system. The scheduling signal for the controller was chosen to be the throttle valve opening. 

The gain-scheduled controller was tested through a numerical simulation, and compared to the 

results with the controller in [1]. We were able to demonstrate that the gain-scheduled controller 
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can stabilize the system down to a throttle valve opening of 12%. Simulation results also showed 

the smooth transfer when switching between the controllers.  

The compressor characteristic curve presented the gas pressure rise as a function of the mass flow 

rate. The linear controllers were designed based on known equilibrium points for the system at 

each throttle valve opening at the rotating speed of 16290 rpm, where the equilibrium point is the 

intersection between the characteristic curve and the load curve. Figure 5.2 shows the compressor 

characteristic curve for different operating speeds with both stable and unstable regions. The curve 

in the unstable operating region is estimated from the curve in the stable operating region using 

the 3rd order polynomial interpolation. This adds uncertainties for the feedback control and limits 

the performance of the controllers. This problem can be solved if the controllers are designed based 

on unknown equilibrium points. There are several techniques that can be used with the unknown 

steady states such as adaptive control and delayed-feedback control. As a future work, these 

techniques and others will be tested for the system and the see the effectiveness of the controllers.  
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