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ABSTRACT

ELECTROPHYSIOLOGICAL STUDIES ON 
ULMUS AMERICANA

by

JILL STANLEY KATHLEEN SHIPMAN 

University of New Hampshire, May 1982

Although membrane potentials have been measured in algal cells and 

in large cells of some higher plants, this investigation is the first to 

include such measurements in mesophyll cells of elm (Ulmus americana) 

leaves. The inquiry entailed the development of the technique for 

measuring elm leaf cell membrane potentials, the determination of 

membrane potentials expected of healthy, greenhouse elms, and the 

effects of various physical and chemical factors on the membrane poten­

tials of elm leaf cells.

The membrane potential of a specific cell, was measured by ampli­

fying the potential difference between a microelectrode inserted in the 

cell and a reference electrode located in the solution bathing the cell. 

The potential difference was then visible on an oscilloscope screen and 

on a strip chart recorder. Changes in the potential difference with 

time or in response to a stimulus were recorded by the strip chart 

recorder and could then be compared to measurements taken from other 

cells. Random electrical radiations were shielded from the measurement 

system by a Faraday cage. Chemical test factors, such as pH, were



tested by flushing the test solution through a perfusion chamber in 

which the cell being measured was located. Physical factors such as

light and temperature were tested with the aid of filters and solutions

of various temperature, respectively.

The studies provided an electrophysiological picture of the elm 

inclusive of healthy and stimulus related effects on membrane potential. 

Also, an equation was developed which combines several criteria from 

membrane potential traces to facilitate the comparison of the electrical 

nature of various cells. The equation also can serve as an internal 

standard for a particular cell, while simultaneously making a statement 

about the electrical stability of a cell. Although the equation was

only tested for elm, it may be useful in interpreting the electrophysi­

ological nature of other species.

This comprehensive investigation on the electrophysiology of elm 

has provided elm leaf membrane potential expected for healthy elm and 

for effects on elm of various physicochemical stimuli. The results 

suggest that electrophysiological methods have potential for use in 

pathology and breeding programs for elm.

x



INTRODUCTION

Historical interest in bioelectric systems can be traced to 

Aristotle's observations of torpedo fish (Anonymous, 1975). More 

recently in the 18th and 19th centuries, several investigators claimed 

beneficial effects of electricity on plant growth (see review by Tattar 

and Blanchard, 1976), and Warner (1892, 1893), Kinney (1897), and Stone 

(1909) led the way for future studies in the use of electricity in 

agriculture. Recent studies have been more physiological and 

biochemical in nature. For example, reversible movements and touch 

responses in plants have been shown to be regulated by changes in 

internal electrical potentials (Simons, 1981). Light and gravity induce 

positive electrostatic charges in cell membranes of plants and these 

charges are thought to be involved in growth reactions controlling 

various physiological activities (USDA, 1979). Electricity also affects 

development. Examples of its effect on growth and development from the 

animal, plant, and fungal kingdoms include studies on cardioacceleration 

(Joseph and Engel, 1981), nerve endings (Borgens, tit ^1., 1981), pollen 

tubes (Jaffe and Nuccitelli, 1977; Mulcahy, 1974), and hyphal tips and 

root tips (Heller, 1959; Scott, 1975).

At the cellular level, bioelectrical phenomena are receiving 

considerable attention. Electrophysiological techniques are being used 

in both plant and animal cells to better understand metabolic processes 

and how they influence or are influenced by electrical responses.

Cell electrophysiology is ultimately a study of cell membranes.

All living cells are surrounded by membranes that separate components of

1
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metabolic processes from the external environment. In this sense cells 

have identity, and the ability of the cell to control fluxes of 

molecules is dependent upon the integrity of the cell membrane (Jain and 

Wagner, 1980). Almost every living biological membrane maintains an 

electrical potential difference between two adjacent solutions (Heinz, 

1981). The origin of this potential difference has been summarized by 

Heinz (1981) and involves potentials from three sources: 1) Equilibrium

Potential, which is established when a nonpermeable ion is unequally 

distributed between two solutions separated by a selectively permeable 

membrane, 2) Membrane Diffusion Potential, which is established when 

differences in ion mobility cause unequal concentrations of ions on 

either side of a membrane, and 3) Electrogenic Pump Potential, which is 

established when ions are forcibly transported across a membrane, 

causing an unequal redistribution of ions. Consequently, any changes in 

cell metabolism or membrane integrity that influence one or more of the 

three defined potentials will affect the electrical potential difference 

across the membrane.

Around 1900, W. Nernst, a physical chemist, developed a formula 

(Nernst Equation) which in essence was a statement showing how the 

internal and external activities of an ionic species are related to the 

electrical potential difference across a membrane (Nobel, 1974).

However, it was not until 1939 and 1940 that micropipettes were used to 

record the electrical activity of a single cell and thereby substantiate 

the Nernst Equation in living cells. By inserting a glass micro­

electrode into the lumen of a freshly dissected squid giant axon,

Hodgkin and Huxley (1939) in England and Curtis and Cole (1940) in the
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United States were able to measure the electrical potential of resting 

nerve as well as the alteration of this voltage during the propagation 

of an action potential.

An inherent problem in the use of microelectrodes described by the 

earlier researchers was that tip diameters ranged from 10-100 u. Since 

squid giant axon cells are on the order of 500 u, such microelectrodes 

posed little problem. However, before membrane potentials of smaller 

cells could be accurately measured, smaller electrodes were required.

In response to this need, Ling and Gerard (1949) described a method for 

preparing glass micropipettes with tip diameters less than 1 urn. Since 

that time, technology has vastly improved microelectrodes and the 

instrumentation for amplifying and recording membrane potentials in both 

animal and plant tissues. Subsequent studies have led to an expanding 

body of knowledge of metabolic processes associated with membrane 

integrity.

The biophysical aspects of ion transport in plants have developed 

from studies of electrochemical potentials and ion fluxes across 

membranes of large algal cells (MacRobbie and Dainty, 1958a, 1958b; Hope 

and Walker, 1960, 1961). Methods were used which had been developed for 

animal cells. These methods were subsequently applied to higher plants 

by Higinbotham and co-workers who established the existence of 

electropotentials in cells of higher plants and determined that the 

plasma membrane was the chief electrical barrier (see reviews by Dainty, 

1962; Higinbotham, 1973a; MacRobbie, 1970).

Changes in the physical structure of a cell membrane or in the 

environment around the membrane, may have direct and indirect effects on 

membrane pathobiology. For example, Chia, et al. (1981) showed that at
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physiological temperature, membrane phospholipids undergo a progressive 

transition to a gel phase and that this transition is correlated with 

loss of membrane function during cell senescence. They further showed 

that senescence was related to environmental stresses that affect cell 

biochemistry. Marx (1974) cited free radicals as a possible source of 

membrane damage associated with senescence. The herbicide, paraquat (1, 

1’ - dimethyl - 4, 4 ’ - bipyridinium dichloride), for example, induces 

formation of the highly-reactive radical, superoxide (0 )̂ , anc* among 
other effects, disrupts cell membranes (Birchem, et al., 1979). Some 

pathogens have been shown to change the membrane potentials in higher 

plants (Novacky, e_t al_., 1976; Novacky and Karr, 1977), which may be 

related to membrane recognition of toxins. Strobel (1974, 1975) 

suggested that sugarcane susceptible to the leaf eyespot disease 

pathogen, Helminthosporium sacchari, bound the toxin helminthosporoside 

with a membrane protein, while resistant sugarcane did not. He 

theorized an interaction phenomenon in which the toxin interfered with 

the membrane’s ability to regulate the passage of ions. Strobel (1975) 

cited membrane potential experiments by Novacky, Jones, and Dropkin of 

the University of Missouri, where exposure of sugar cane cells to 

helminthosporoside caused an immediate drop in the electric potential 

across the membrane. Novacky and Hanchey (1974) also showed 

depolarization of membrane potentials in oat roots treated with the 

toxin, victorin.

Although electrophysiological techniques have been used for animal 

cells since before World War II, only in the last two decades have such 

techniques been used extensively to elucidate metabolic phenomena in 

plant cells. Further, even less time has been spent in elucidating the
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aspects of membrane involvement in self-recognition and failure to 

recognize pathogens and/or their metabolites. Goals in plant 

pathological research should include an understanding of the mechanisms 

of host-parasite interactions at the cellular level so that target sites 

for control can be identified. Electrophysiological techniques should 

aid in this understanding.

Before abnormal aspects of cellular function are elucidated, an 

understanding of the normal aspects must be addressed. The research 

described in this dissertation is a first attempt in addressing the 

membrane potentials of "normal" elm leaf cells. American elm (Ulmus 

americana L.) was chosen specifically because of the extensive body of 

knowledge about this species and the diseases it suffers (see Stipes and 

Campana, 1981). Understanding first what the normal membrane potentials 

are and how these potentials are affected by various tissue preparations 

and external stimuli, could hopefully lead to further studies using 

electrophysiological techniques in elucidating host-parasite 

interactions in elm diseases.



CHAPTER I 

THE HEALTHY ELM 

Introduction

The plant cell wall encloses the cell and may be thought of as a 

continuum of the cell's external environment (Wallach, 1972). The 

plasmalemma, however, represents a barrier to the environment. 

Similarly, the many other membranes found within the cell are 

responsible for the compartmentation of cellular contents. The various 

cell membranes keep metabolic activities grouped so that the cell can 

continue to function. A physical barrier, such as the plasmamembrane, 

can separate charge. The difference in charge on either side of a 

membrane can be measured and is an indication of cell metabolic 

activities. The plasmalemma selectively controls the entrance and exit 

of molecules and ions into the cell. The tonoplast exhibits a similar 

permeability function. Ions in and around a plant cell, then, account 

for its electrical properties. The ions change in response to cell 

metabolic activities and to changes in the cell's ambient milieu. In 

addition the membrane itself is not stagnant. Components of the 

membrane change in response to cell metabolism and environmental 

fluctuations. The potential difference between the two solutions 

separated by the changing membrane mirrors the chemical activity or 

inactivity of the cell.

Another possible source of variation in membrane potentials is 

endogenous current. For example, Black, _et al. (1971) found that 

endogenous currents in tomato plant tissues was attributed to either an 

ion pump or to a redistribution of plant growth regulating substances.

6
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In a study on pollen tubes, Jaffe and Nuccitelli (1977) found growth was 

associated with electrical changes. Similarly, Heller (1959) and Scott 

(1975) found expanding root tips to have electrical properties.

Finally, Higinbotham (1974) and Spanswick (1981) have reviewed the works 

of several investigators illustrating that ion distribution contributes 

to changes in membrane potentials.

The preceding clearly demonstrate that membrane potentials can be 

affected by one or a combination of factors. Thus, these membrane 

potentials are a reflection of the physiology of a cell.

Elm is a majestic tree, subject to many diseases. It provided an 

excellent focus for plant electrophysiology for three reasons:

1. elm is a woody plant that has been thoroughly studied because

of Dutch elm disease,

2. there are numerous other diseases of elm, and

3. the electrical studies of elm leaves may lead to a better

understanding of disease mechanisms.

The major objective of this study was to measure the membrane 

potentials of a large number of healthy elm cells and to compare these

measurements of a woody plant with those of non-woody plants.

Measurements included maxima and minima membrane potentials and 

longevity of penetrated cells.

Materials and Methods

The Elms

Elm (Ulmus americana) seeds were collected in Durham, New Hampshire 

and were stored at 10°C until planted. Seeds were germinated in flats 

in a Jiffy mix: soil: perlite mixture (1 :5:1), then were transplanted

to and maintained at 21°C in 8 inch standard pots in a
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greenhouse with 16 h light/day. Plants were watered daily and sprayed 

once a week with Resmethrin to control white flies. Experiments were 

not done on recently sprayed trees. Trees (ca. 1 m in height) were 

moved from the greenhouse to the lab at least two days before 

measurements were taken. Trees were exposed to ambient laboratory light 

including fluorescent and daylight components. Temperature of the 

laboratory was 24- 1°C.

The electrophysiology set-up

The electrophysiology set-up (Figure 1) was composed of three 

separate parts: the light path, the fluid path and the electrical

circuit.

The Light Path. Light was transmitted from a light source (AO 

starlite illuminator, with 6v, 20-watt Tungsten-Halogen lamp). It 

traveled either filtered or unfiltered through one side of the perfusion 

chamber, through the specimen, through the other side of the perfusion 

chamber and then through the microscope to the eye.

The Fluid Path. Either Ringer’s solution or a test solution was 

gravity fed through Tygon tubing from a shelf 85 cm above the sample.

The flow rate was regulated by a valve on the Tygon tube. The fluid 

flowed through the perfusion chamber and then again through Tygon tubing 

to a flask (70 cm below) which collected the waste.

The Electrical Circuit. Differences in charge across the cell 

membrane and tonoplast were amplified and either recorded on a strip 

chart recorder, or visualized on an oscilloscope or both. The measuring 

recording instruments were interconnected to the cell via two electrodes 

which were connected to the amplifier (Nobel, 1974). Both were
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Figure 1. The electrophysiology set-up. The reference electrode (a) 
and the microelectrode (b) are connected to an amplifier and recording 
devices. Ringer's solution or a test solution (c) is fluxed through the 
perfusion chamber (d). The micromanipulator (e) was used to lower the 
electrode into the cell. The microscope (f) was used for viewing the 
elm leaf cells. The light source was behind the perfusion chamber (d).





Table 1. Solutions used to study the Electrophysiology of Elm.

A. 3M KC1
223.68g/l

B. 3M KC1 agar
16g bacto agar 
500ml 3M KC1

C. Stock Solutions Used for Ringer's Solution

compound. g/1
MgS04 3.01
KCl 7.456
Ca(N03) ‘4H20 23.615
NaH2P04 .H20 13.799
Na2HP04 .7H20 2.681

D. Ringer's Solution

compound ml
MgS04 10
KCl 10
Ca(N03)2.4H20 10
NaH„P0..H„0 92 4 2
Na2HP04 .7H20 5
H20 956

adjust pH to 5.6

E. ImM Sodium Cyanide in Ringer's Solution

add 0.05g to 1000ml of Ringer's solution 
adjust pH to 5.6
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had a tip diameter of about ljim and was inserted, with a 

micromanipulator, directly into the cell to be measured. The complete 

circuit then included the amplifier, the microelectrode, the cell, the 

bathing medium and the reference electrode. Charged ions carried 

current through the liquid phase of the circuit. Electrons carried 

current through the metallic phase. The transition between the liquid 

and solid or metallic phases of the circuit was accomplished by the 

silver/silver chloride half-cells of the electrodes.

Biological membranes have high electrical resistance as do the 

micropipette tips (Nobel, 1974). Because of these high resistances, the 

amplifier used to measure membrane potentials must have a high input 

impedance (Luttge and Higinbotham, 1979). The instrument used was a WPI 

high input impedance amplifier (60 Fitch Street, New Haven, Connecticut, 

06515). Leaf structure in trees involves a protective cuticle which is 

stronger than the tip of the electrode used to measure membrane 

potential. Therefore, electrodes were not inserted through the cuticle. 

Instead, the cut leaf sections were held vertically in a sponge holder 

and the electrode was inserted through the cut edge of the leaf sections 

studied. The leaf holder was oriented in the perfusion chamber so the 

upper leaf surface faced the researcher. The electrodes were inserted 

in the palisade cells for membrane potential measurements. Palisade 

cells in elm measure ca. 10 x 25 urn.

Tissue Preparation

Fully expanded leaves were removed from the third or fourth node 

from the tip of the elm using a sharp razor blade to cut through the 

petiole. The excised leaves were inserted into a petri dish containing 

Ringer's solution at either 10°C or 24°C and were cut into 1 cm^
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sections. The cut tissues were then aged at room temperature for either 

1, 2, 3, 5, 15 or 24 h before membrane potentials were measured.

The membrane potential was measured by the microelectrode - 

reference electrode method as described in the section entitled, "The 

Electrical Circuit." The cell was illuminated with a microscope 

tungsten-halogen lamp. Measurements were done at room temperature 

(25°C). Resulting mv readings were statistically compared for the 

different treatments.

The sub programs ANOVA, one way analysis of variance with Duncan 

range test of means, FREQUENCY, frequencies of several variables of the 

membrane traces, and MANOVA, multiple analysis of variance, were used to 

compare several variables of the membrane potential traces of the elm 

leaf cells.

Results

The major objective of this study was to describe the membrane 

potentials of healthy elm leaf cells. There are many characteristics of 

a membrane potential trace (Figure 2). Before the microelectrode was 

inserted into a cell, the zero was defined on the chart recorder and the 

electrode was tested. If the electrode test gave a tip potential 

between 15 and 25 megohms, the electrode was inserted into the elm cell. 

The membrane potential generally hyperpolarized to a base value. The 

time to plateau from the initial measurement to the base value ranged 

from one to two minutes. Cells lived for a time period, labeled "cell 

longevity," which was often five to seven hours in elm. In some cases, 

a trace may have fluctuated during the entire measurement period; 

however, even without rapid changes in membrane potential, the trace had 

a maximum and minimum apart from initial insertion or cell death. Cell
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Figure 2. Characteristics of a membrane potential trace.
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death was defined to occur at the time when the membrane potential 

depolarized to a voltage less than -50 mV and did not hyperpolarize 

again. When the electrode was inserted in a dead cell, only ion 

movement in the free space of the leaf tissue was detected.

Maximum and minimum membrane potentials and cell longevity were 

compared using subroutines of SPSS including ANOVA, MANOVA, and Duncan's 

range test of means and frequency.

The study on cell longevity during membrane potential measurements 

indicated that most cells either die within the first five minutes or 

they live longer than twenty minutes (Table 2).

Apparently a high proportion of the cells are injured during the 

wounding by the electrode as shown by the fact that 48% of the cells 

penetrated died within five minutes. Thirty-three percent of cells 

penetrated lived longer than twenty minutes. Cells that live past the 

initial shock of electrode insertion normally live much greater than 

twenty minutes indicating that they survive the wounding caused by the 

electrode. The effect of injury on the longevity of the cells was 

visible at both temperatures and each of the six tissue preparation 

times.

Frequently the maxima and minima of cell membrane potential traces 

are used to make comparisons among cells (Spanswick, 1972; Zeiger,

Moody, Hepler and Varela, 1977). Because these factors are standard in 

electrophysiology experiments, they were compared for healthy elm cells 

subjected to the various tissue preparation time and temperature 

regimes. The electrical maxima and minima, greatest and least absolute 

values respectively, of the membrane potential measurements for elm leaf 

cells at the various preparation times and



Table 2. Effect of treatment time and temperature on elm leaf cell longevity during membrane
potential measurements. Numbers represent total cells dying in the longevity interval 
indicated.

Cell Treatment time (h)
longevity 1 2 3 5 15 24
(minutes) 10°C 24°C 10°C 24°C 10°C 24°C 10°C 24°C 10°C 24°C 10°C 24°C

0-5 oa 3 2 5 1 0 3 2 4 1 4 4

6-10 0 0 0 0 1 2 1 0 0 1 0 0

11-15 0 1 1 0 0 0 0 0 1 1 0 1

16-20 0 0 1 0 0 0 0 0 0 0 0 0

over 20 5 1 1 0 3 3 1 3 0 2 1 0

clEach column includes five cells.
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temperatures are shown in Table 3. The mean membrane potential for the 

entire population of cells tested was -117 mv. The mean membrane 

potential for those cells prepared at 10°C were -103 mv and -128 mv for 

minima and maxima, respectively and for those cells prepared at 24° were 

-102 mv and -133 mv for minima and maxima, respectively.

In the comparison of membrane potentials in elm leaf cells by 

priori contrast (Table 4), it can be seen that tissue preparation times 

of 1, 2, 3, 5, and 15 hours showed no significant difference in 

electrical minima. There are significant differences when comparing 1 

and 24 hour, 5 and 24 hour, and, 15 and 24 hour tissue preparation 

times. Similarly for electrical maxima of elm leaf cell membrane 

potential, there are no significant differences found among the measured 

tissues which were prepared for 1, 2, 3, 5 or 15 hours (Table 5). There 

were significant differences, however, when 1 and 24 hour and 5 and 24 

hour tissue preparation times were compared. The actual membrane 

potentials can be seen in Table 3.

Discussion

Chance for successful disease control increases with our 

understanding of how a host plant interacts with both the environment 

and the pathogen. Before various chemical and physical factors could be 

manipulated and their effects on the membrane potential of elm leaves 

studied, "normal" or "baseline" membrane potentials were required.

Prior to experimentation, no data were available on elm membrane 

potential.

Cells that are penetrated with an electrode are injured. The 

location of the penetration point, the physical state of the cell, the
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Table 3. Effect of treatment time and temperature on the minimum and 
maximum membrane potentials of elm leaf cells.

Treatment time

Membrane potential (mv)

(b)
Minima Maxima

10°C 24°C 10°C 24°C

1 -89 -85 -119 -116

2 -100 -123 -126 -132

3 -111 -118 -123 -145

5 -104 -72 -116 -114

15 -83 -92 -119 -149

24 -135 -125 -163 -139

Column X 
Column S.D. 
Overall X 
Overall S.D. =

-117
33.7

-104
31.8

-102
41.4

-128
29.3

-133
32.4

Membrane potentials are means of five replicates

Table 4. Priori contrast between different treatment times for minimum 
membrane potential in elm leaf cells.

Treatment 
Time (h) 1 2 3 5 15 24

1

2

- - - - - +a

3

5

— — — — —

+

15 - - - - - +

24 + - — + + —
£ + indicates a significant difference at 95% 
confidence (Duncan’s Range Test of Means).
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Table 5. Priori contrast between different treatment times for maximum 
membrane potential in elm leaf cells.

Treatment
Time (h)__________________1 2 3 5 15 24

1 
2 

3 

5

15

24_______________________ +
£+ indicates a significant difference at 95% 
confidence (Duncan’s Range Test of Means).
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condition of the electrode, and the extent of introduced vibrations on 

the electrode by the researcher can individually or collectively 

determine the ability of the cell to respond to the injury. Several 

authors have reported increases ("a steady, progressive 

hyperpolarization") in membrane potential with time following wounding 

(Macklon and Higinbotham, 1968; Koopowitz, Dhyse and Fosket, 1975). 

Successful recovery is necessary for further experimentation on 

individual cells, i.e., cells must have an acceptable longevity time.

Of the cells penetrated in this study, 48% died within the first five 

minutes (Table 2). Sixty-five percent of those that survived for at 

least five minutes, lived for more than 20 minutes. From these values 

it can be seen that, using the apparatus as described in materials and 

methods, the researcher would know by five minutes whether a penetrated 

cell could be useful for experimentation in terms of its survivability. 

Equilibration times (treatment) of one and three hours yielded the most 

usable cells in terms of longevity (Table 2) but other factors (dealt 

with in CHAPTER II) afforded more accurate predictions. Although cell 

walls (sic, membranes) often seal tightly around microelectrodes, and 

electrical activity of penetrated cells are maintained (Fein, 1977), 

there are reports of "jumps" in potential following electrode insertion 

(Koopowitz, Dhyse and Fasket, 1975). It is well-known that wounding 

induces developmental and physiological changes in higher plant tissues 

(Koopowitz, Dhyse and Fosket, 1975). Changes in membrane potential 

following wounding have also been reported (Koopowitz, Dhyse and Fosket, 

1975). Since I looked at membrane potential in sections of elm leaves, 

the studied tissues were wounded once during sectioning of the leaf 

tissue and again during electrode insertion. None the less, results of



studies on elm membrane potential do not conflict with similar studies 

on large-celled algae which are injured only during electrode insertion.

In elm cells, as in cells of other higher plants, the total 

electrical potential between the vacuole and the solution outside the 

cell is negative. Although, positive membrane potentials of isolated 

protoplasts and vacuoles have been found, suggesting severe changes in 

membrane permeability, most membrane potentials in plants range between 

-100 and -200 mv (Luttge and Higinbotham, 1979). Membrane potentials in 

elm cells vary within individual cells, i.e., there are maxima and 

minima potentials, and between cells (Table 3). The mean membrane 

potential for all elm cells measured was -117 mv with a standard 

deviation of 33.7. Variation within and between cells is affected by 

the temperature at which leaf tissues are cut and by the time allowed 

for tissues to equilibrate in Ringer's solution before insertion of 

electrodes (Tables 3, 4, 5).

Maximal and minimal values have been used by previous researchers 

to describe membrane potential traces and to characterize differences 

between experimental and control groups. (Spanswick, 1972; Zeiger, 

Moody, Hepler and Varela, 1977).

Early plant electrophysiology was facilitated by studying giant 

celled algae, such as Nitella, Chara and Halicystis (Luttge and 

Higinbotham, 1979; Spanswick, 1981). Since the cells of these plants 

are large compared to other plants, conclusions based on work from these 

plants need to be tested before they can be considered general 

electrical characteristics However, mean maxima and minima of membrane 

potentials in elm are comparable with those found in algae as well as 

those found in other higher plants.
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Characteristics which describe a "normal" elm leaf cell have been 

condensed in Figure 2. It is clear from the data obtained that general 

patterns are repeatable, but specific patterns of an individual cell are 

unique. Because variations in membrane potentials occur during "normal" 

cell activity, experimental studies should not be limited to elm cells 

lacking these variations.



CHAPTER II 

THE CELL STABILITY INDEX 

Introduction

Electrophysiology of plants began with studies on large algal cells 

and has since involved work on tissues as varied as oat coleoptile and 

carrot and oat root cells (Novacky and Hanchey, 1974; Etherton, 1963; 

Rubinstein, Maher, and Tattar, 1977). Presently, membrane potentials of 

leaf cells are being used to detect relative resistance of plants to 

specific pathogens and to elucidate mechanisms of host-parasite 

interactions (Novacky, Karr and Van Sambeek, 1976). A prerequisite to 

applying electrophysiology in the study of plant disease is knowledge of 

the electrical nature of the healthy plant. A healthy plant can carry 

out its physiological functions as expressed in its genetic make-up. 

Deviation from health interferes with these physiological functions and 

can thusly interrupt the balance of ions between a cell and its 

environment. A change in ion distribution from the norm surfaces in 

measurements of membrane potential. However, the healthy status of a 

plant does not in and of itself indicate that membrane potential must 

remain constant. Some changes in ion balance are expected in a healthy 

plant as a part of its "normal" metabolism (Luttge and Higinbotham, 

1979).

Frequently the only points considered on a membrane potential 

versus time trace are the maximum and minimum membrane potential values 

(Higinbotham 1973a). Some consideration is given to the baseline value, 

or approximate millivolt level of the entire curve. In elm, the

24
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baseline membrane potential is sometimes variable (CHAPTER I). A method 

was needed to distinguish between the normal variability associated with 

a membrane potential trace of a healthy elm (Fig. 2) and changes in 

membrane potential caused by an experimental treatment. The scientific 

method involves a flow process from known facts, to hypothesis, to 

experimentation which furnishes more facts that will cancel, strengthen 

or alter the hypothesis (Little and Hills, 1978). The facts that 

membrane potentials in elm exhibit variability and have differing maxima 

and minima, and that the cells last for various lengths of time (CHAPTER

I) led to the hypothesis that the stability of the membrane potential 

could be determined by a formula. This formula could in turn be used to 

predict cell longevity or could make a statement about the combined 

metabolic effects contributing to membrane potential. Experimentation 

to determine healthy elm membrane potential under various treatments of 

tissue preparation and temperature (CHAPTER I) have shown that 

variations in membrane potential are attributable in some cases to 

manipulation of the treatment factors, or to natural variability.

The objective of this study was to test whether a hypothesized 

formula included all terms necessary to describe elm membrane potentials 

and to determine if the formula could be used as a predictor of cell 

stability for further membrane potential experimentation.

Materials and Methods

Because electrophysiology experiments in plants have used minimum 

and maximum membrane potential as well as cell longevity as descriptors 

of membrane potential and because preliminary experiments on elm leaf
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cells showed that their membrane potentials exhibited variability, a 

quantitative representation for the relationship among these variables 

was postulated:

Q , Ia x I + _io_ + Z_

200 y

Where Q = the cell stability index

A x  = the change in membrane potential,

y = a set time chosen for observation by the researcher 

and,

z = the number of positive fluctuations in membrane 

potential.

The data from CHAPTER I were further analyzed to see if additional 

terms should have been included in the formula or if any of those 

included should have been discarded. The formula was weighted in an 

attempt to balance the effect of the terms. Since the change in 

membrane potential could have had a value such as -190 mV this term was 

weighted with 200 which would bring the term close to 1. Similarly the 

length of time sufficient for an experiment was twenty minutes and to 

bring this term close to one, the time was divided into 10. The number 

of fluctuations was generally under 10 so this was left as a units term.

The membrane potentials of elm cells were measured in healthy 

tissue sections cut at either 10 or 24°C and allowed to equilibrate at 

one of six tissue preparation times: 1, 2, 3, 5, 15 and 24 h. The 

experiment was therefore designed as a two by six with a total of twelve 

blocks. Within each block, five replicates were made and several
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characteristics of the membrane potential traces were compared. These 

characteristics were

1. the minima and

2. maxima of membrane potential,

3. the change in potential from maximum to minimum,

4. the number of fluctuations during given time intervals and,

5. the duration of the fluctuations during the same time

intervals.

The sub programs ANOVA, one way analysis of variance with Duncan 

range test of means, FREQUENCY, frequencies of variables of the membrane 

traces, and MANOVA, multiple analysis of variance, were used to compare 

the variables of the membrane potential traces of the elm leaf cells.
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Results

Multiple analysis of variance showed the effects of

1. temperature at which the elm leaf cell was cut,

2. treatment time between cutting the leaf tissue and electrode

insertion, and

3) the interaction of the temperature and treatment time, on the

membrane potentials of healthy elm leaf cells.

The mean maximum potential for the total population was -121 mv 

(Table 6). The mean maximum potentials for cells of leaf tissues 

prepared at 10°C and 24°C were -128 mv and -133 mv, respectively. Based 

on treatment time, membrane potentials of cells measured at 1, 2, 3, 5, 

15 and 24 h ranged from a mean of -116 mv at 5 h to a mean of -152 mv at 

24 h. Although at 5 h the mean was lower than the mean maximum 

potentials at the other treatment times, the mean maximum membrane 

potentials at 1, 2, 3, 15 and 24 h were greater with increasing 

treatment time. The interaction between temperature and treatment 

time showed mean membrane potentials that ranged from -114 mv at 5 

h, 24°C to -163 mv at 24h, 10°C.

The mean minimum membrane potential of healthy elm leaf cells was 

-103 mv (Table 7). The mean minimum potentials for cells of leaf 

tissues prepared at 10°C and 24°C were -104 mv and -103 mv, 

respectively. The means of cells measured at 1, 2, 3, 5, 15 and 24 h



Table 6. Mean maximum membrane potentials of elm leaf cells showing the effects of temperature at which
the leaf was cut, the effects of treatment time between cutting and electrode insertion, and
the effects of the interaction between cutting temperature and tissue preparation time.

MULTIPLE ANALYSIS OF VARIANCE
MAXP 

BY TEMP 
TRT

Maximum Membrane Potential per Elm Leaf Cell Measured (mV) 
Temperature of Ringers Solution During Leaf Cut ( C) 
Treatment Time (Hours)

TOTAL POPULATION

-131 (60) a

TEMP
10 24

-128 (30) -133 (30)

TRT
1 2 3 5 15 24

-118 (10) -130 (10) -134 (10) -116 (10) -134 (10) -152 (10)

TRT
1 2 3 5 15 24

TEMP
10
24

-120 (5) 
-116 (5)

-126 (5) 
-133 (5)

-123 (5) 
-145 (5)

-117 (5) 
-114 (5)

-119 (5) 
-149 (5)

-163 (5) 
-137 (5)

dumber in parentheses indicate replications.



Table 7. Mean minimum membrane potentials of elm leaf cells showing the effects of temperature at which the
leaf was cut, the effects of treatment time between cutting and electrode insertion, and the
effects of the interaction between cutting temperature and tissue preparation time.

MULTIPLE ANALYSIS OF VARIANCE
MINP 

BY TEMP 
TRT

Minimum Membrane Potential per Elm Leaf Cell Measured (mV) 
Temperature of Ringers Solution During Leaf Cut ( C) 
Treatment Time (Hours)

TOTAL POPULATION

-103 (60)

TEMP
10 24

-104 (30) -103 (30)

TRT
1

(hours)
2 3 5 15 24

-87 (10) -112 (10) -115 (10) -88 (10) -88 (10) -130 (10)

TRT
1 2 3 5 15 24

TEMP
10
24

-89 (5) 
-85 (5)

-101 (5) 
-123 (5)

-111 (5) 
-118 (5)

-104 (5) 
-72 (5)

-83 (5) 
-93 (5)

-135 (5) 
-126 (5)

lumbers in parentheses indicate replications.
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ranged from -87 mv at 1 h to -130 mv at 24 h. The means of minimum 

membrane potentials for five replicates in each temperature, treatment 

time block ranged from -72 mv at 5 h, 24°C to -135 mv at 24 h, 10°C.

Multiple analysis of variance of the effects of temperature, 

treatment, and the interactions between temperature and treatment on 

membrane potentials showed that treatment (tissue preparation time) had 

a significant effect on both maximum, and minimum membrane potentials 

(95% confidence level, Duncan’s Range test of means).

The effect of treatment time and temperature on the change in 

membrane potential (maximum minus minimum) showed that at both tissue 

preparation temperatures, 10°C and 24°C, the mean differences between 

maximum and minimum were greatest at treatment times of 15 h (Table 8). 

They were least at either 3 h for the 10°C group or 2 h for the 24°C 

group.

The mean number of fluctuations in membrane potentials of the total 

population of elm leaf cells was 1.1 (Table 9). The mean number of 

fluctuations in membrane potentials for cells of leaf tissues prepared 

at 10°C and 24°C were 1.3 and 0.9, respectively. The means of 

fluctuations in cells measured at 1, 2, 3, 5, 15 and 24 h ranged from 

0.6 at 24 h to 1.4 at 15 h. When the interaction between temperature 

and treatment time was tested, the lowest mean number of fluctuations in 

membrane potentials was found at 3 h, 10°C. The greatest mean number of 

fluctuations was found at 15 h, 10°C.

The mean time of fluctuations in membrane potential for the elm 

population studied was 2.9 minutes (Table 10). The mean time of 

fluctuations in membrane potentials for cells of leaf tissues prepared 

at 10°C and 24°C was 4.6 and 1.1 minutes, respectively. Separation of



Table 8. Effect of treatment time and temperature at which leaves
were cut on the change in membrane potential (maximum minus 
minimum) of elm leaf cells.

Treatment time (h)

Mean chang ie in membrane potential (mv)a

at 10°C at 24°C

1 30.8 31.0

2 25.6 9.4

3 11.6 27.4

5 12.6 42.0

15 36.0 56.8

24 28.4 14.0
aNumbers are means of five replicates.



Table 9. Mean number of fluctuations in membrane potentials of elm leaf cells showing the effects of 
temperature at which the leaf was cut, the effects of treatment time between cutting and 
electrode insertion, and the effects of the interaction between temperature and tissue 
preparation time.

MULTIPLE ANALYSIS OF VARIANCE

BY
NODIPS Number of Fluctuations in Membrane Potential 
TEMP Temperature of Ringers Solution During Leaf Cut 
TRT Treatment Time (Hours)

(°C)

TOTAL POPULATION

1.1 (60)

TEMP
10 24

1.3 (30) 0.9 (30)

TRT (hours) 
1 2 3 5 15 24

1.1 (10) 1.3 (10) 0.8 (10) 1.3 (10) 1.4 (10) 0.6 (10)

TRT (hours)
1 2 3 5 15 24

TEMP
10
24

1.6
0.6

(5)
(5)

1.6 (5) 
1.0 (5)

0.2 (5) 
1.4 (5)

1.6 (5) 
1.0 (5)

1.8
1.0

(5)
(5)

0.8 (5) 
0.4 (5)

lumbers in parentheses indicate replications.



Table 10. Mean times of fluctuations in membrane potentials of elm leaf cells showing the effects of
temperature at which the leaf was cut, the effects of treatment time between cutting and
insertion, the effects of the interaction between temperature and tissue preparation time.

MULTIPLE ANALYSIS OF VARIANCE

BY
DIPTIME
TEMP
TRT

Total Time of Fluctuations in Elm Membrane Potential (Minutes) 
Temperature of Ringers Solution During Treatment ( C)
Treatment Time (Hours)

TOTAL POPULATION

2.9 (60)

TEMP
10 24

4.6 (30) 1.1 (30)

TRT (hours) 
1

15.0 (10)
2

0.3 (10)
3

0.5
5 15 24 

(10) 0.8 (10) 0.5 (10) 0.2 (10)

TRT (hours)
1 2 3 5 15 24

TEMP
10 26.1 (5) 0.4 (5) 0.1 (5) 0.3 (5) 0.6 (5) 0.3 (5)
24 3.9 (5) 0.2 (5) 0.8 (5) 1.2 (5) 0.4 (5) 0.1 (5)

£Numbers in parentheses indicate replications.
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the measurements by tissue preparation time showed a maximum mean of 15 

minutes fluctuation time for the 1 h group and a minimum mean of 0.2 

minutes fluctuation time for the 24 h group. Interaction between 

temperature and treatment groupings showed a range of mean fluctuation 

time from 0.1 minutes at both 3 h, 10°C and 24 h, 24°C to 26.1 minutes 

at 1 h, 10°C.

Priori contrast between different treatment times for duration of 

fluctuations in membrane potential demonstrated a significant difference 

between 1 h and all other tissue preparation times tested (Table 11).
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Table 11. Priori contrast between different treatment times for

durations of fluctuation in membrane potential in elm leaf 

cells.

Treatment 
Time (h) 1 2 3 5 15 24

1 - +a + + + +

2 + - - - - -

3 + - - - - -

5 + - - - - -

15 + - - - - -

24 + — — — — —
+ indicates a significant difference at 95% 

confidence (Duncan's Range Test of Means).
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Discussion

The hypothesized formula

q . J A i d L  + j o -  + z
200 y

was expected to describe an individual cell and index its usability for 

further experimentation. A cell which lived indefinitely with no 

changes in membrane potential would have a low index. The lower Q (the 

cell stability index), the more stable the cell. If, however y was an 

interval chosen by the researcher, a cell not lasting the selected time 

interval could not be used with the index. The formula was expected to 

describe the characteristics of the elm membrane potential and to 

predict cell health based on a stable membrane potential. Comparisons 

of means of several characteristics of membrane potential traces, show 

that the formula does describe elm leaf cell membrane potential. 

Membrane potential characteristics vary for individual cells and are 

reflective of both environmental fluctuations and internal metabolic 

fluctuations. Two external manipulations (temperature at which tissues 

were cut and time allowed for equilibration before electrode insertion) 

did interact to significantly affect membrane potential.

Maximal and minimal membrane potentials do differ depending upon 

tissue preparation (Tables 6, 7, 8), therefore x is a factor which 

contributes to the validity of the index. Since, in elm, the change in 

constant, 200, in the denominator of the first term of the equation 

could be lowered or even eliminated. The y factor, if set by the 

researcher, contributes the same amount to the index of each cell
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studied. If instead y is used to express longevity of the cell the 

formula can not be used as a predictor because the cell would have 

expired before y was determined. However, the longevity term is 

necessary in developing a predictive model. The formula can be refined 

so that the cell index is determined at a set time after electrode 

insertion. From the data in Chapter 1, it is clear that the time 

interval selected should be at least 5 minutes and need not be more than 

20 minutes. The z factor (number of fluctuations in the membrane 

potential contributes to the validity of the formula because such 

fluctuations are typical in measurements of healthy elm leaf cells 

(Table 9). It might be assumed that fluctuations would interfere with 

results from experimental stimuli. However, disregarding data from 

cells in a control group which have fluctuations while not eliminating 

them from the experimental group would bias the data. Use of the cell 

index gives an indication of natural variability of cells in both 

control and experimental groups before a stimulus is applied. Because 

of this, the number of fluctuations is an especially important factor in 

the formula. Analyses of experimental results show that cells with the 

lowest Q, and therefore those described as the most stable, were those 

measured in tissues cut at 10°C and allowed to equilibrate 3 h before 

electrode insertion.

In the original formula the number of membrane potential 

fluctuations was considered, but the time duration of these fluctuations 

was not. Duration of fluctuations was significant only between 

treatment equilibration time of 1 h and all other treatment times (Table

11). However, when treatment times were coupled with temperature at 

which tissues were cut (Table 10), substantial differences were shown.
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These results suggest that fluctuation time would be a reasonable factor 

to add to the cell stability formula.

Results show that the membrane potential "fingerprint" of 

individual cells is unique and is affected by methods of tissue 

preparation. However, variations should not be used empirically to 

label a cell as usable or unusable for further experimentation. The 

cell stability index aids in quantifying and describing the membrane 

potential of an individual elm cell and comparing it to potentials of a 

population of elms. The hypothesized index is by no means complete, but 

it is useful as a descriptior in its present form. Based on the results 

of the multiple analysis of variance, the formula can be refined to 

include A x  and z at a selected time interval between 5 and 20 minutes. 

As data is accumulated over the years, addition of other factors, such 

as fluctuation time, will undoubtedly yield a formula that in addition 

to being descriptive is sufficiently refined so that it is also highly 

predictive.



CHAPTER III 

LIGHT AND HEALTHY ELM MEMBRANE POTENTIAL 

Introduction

Exposing green algal cells to light causes hyperpolarization (see 

Glossary) and enhanced ion transport (Higinbotham, 1973). Green cells 

of higher plants are also hyperpolarized by light. Hydrogen ion 

movement, pH gradient and electrogenic pumps have been suggested 

explanations (Higinbotham, 1973). In light membrane potential is 

approximately 50 mv more negative than in the dark. This difference in 

potential has been attributed to an electrogenic pump (Higinbotham,

1973). Light at 660 nm triggers hyperpolarization and at 730 nm 

depolarization (Galston and Satter, 1976). These changes are perhaps 

caused by structural changes in the pigment phytochome (Galston and 

Satter, 1976).

There are two photosystems thought to operate in photosynthesis, 

photosystem II and photosystem I. Both photosystems are activated by 

red or blue radiation. There is a light driven proton gradient formed 

by the thylakoid membrane (Luttge and Higinbotham, 1979; Jagendorf,

1977; Junge, 1977). Photosystems II and I both contribute about equally 

to the electric potential difference after excitation of chloroplasts 

with a short flash of light (Junge, 1977). In the light, the inner 

thylakoid membrane drops in pH indicating increased concentration of 

protons (Jagendorf, 1977).

Light does affect disease development, sometimes in conjunction 

with temperature effects. In light - grown bean hypocotyls, for 

example, anthracnose symptom development was temperature dependent

40
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(Bailey, 1974). It has been suggested that fungi have the ability to 

metabolize the phytoalexins which counter the disease at lower 

temperatures (Bailey, 1974).

In higher plants, as in other photosynthetic species, many enzymes 

are light-modulated (Anderson, Ashton, Mohamed and Scheibe, 1982). Both 

activation and inactivation of enzymes can be light-modulated (Anderson, 

Ashton, Mohamed and Scheibe, 1982). In the case of the light-modulated 

enzyme chloroplast fructose - 1, 6-bisphosphatase, for example, 

modulation involves conformational change (Anderson, Chin and Gupta, 

1979a). Some light-modulated enzyme changes shift pH dependency 

(Anderson, Chin and Gupta, 1979a), or affinity for substrate (Anderson, 

Hansen and Anderson 1979b).

Inhibition of light-modulated enzymes is probably responsible for 

part of the toxic effect of SC^ on plants (Anderson and Duggan, 1977). 

Novacky and Karr (1976) have indicated a light-dependent component of 

membrane function that is vulnerable to leaf-damaging pathogens. Such 

light-dependent susceptibility of the membrane illustrates the 

importance of fully understanding light effects on membrane potential.

The purpose of this experiment was to test the effect of presence 

or absence of light of various wave lengths on the membrane potential of 

healthy elm leaf tissue.

Materials and Methods

Leaves of 1 year old, greenhouse-grown, elm trees were submerged in
o 2Ringer's solution at 10 C and were cut into 1 cm sections. The leaf

sections were then allowed to age for three hours. A leaf section was

then positioned in front of a horizontal microscope in a perfusion

chamber. Ringer's solution was fluxed through the perfusion chamber.
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Using the standard electrophysiological set-up (Figure 1), membrane

potentials were measured for 5 minutes with the source light on, then

the source light was shut off for five minutes. After 5 minutes, the

source light was turned on again. There frequently was ambient light in

the room. The experiments to test effects of presence or absence of

light were repeated with the ambient laboratory light blocked out so

that when the source light was out, no light was present. Flux

densities of light used to study elm membrane potential, measured with a

Quantum/Radiometer/Photometer (Li Cor, Lincoln, Nebraska [Lambda

Instrument Corp.] Sr. No.:ZRPA 306-781), ranged between 17 and 32 
-2 -1microeinsteins m sec for white light. The red filter passed

wavelengths longer than 580 nm. The flux densities for red light ranged
-2 -1between 5.3 to 10 microeinsteins m sec . The blue filter passed

wavelengths from 360 nm to 500 nm. The flux densities for blue light
-2 -1ranged between 0.6 to 11.5 microeinsteins m sec

Results

Following a light-dark change, the membrane potential

hyperpolarizes about 10 mv, then depolarizes slightly before returning

to its beginning level. The membrane potential depolarizes about 20 mv

following a dark-light change, then hyperpolarizes to return to near its

previous value (Figure 3).

Similarly, with ambient laboratory light present (less than 0.3 
- 2  - 1microeinsteins m S ), a white-blue light change resulted in a 

hyperpolarization followed by a return to the starting level and a 

blue-white light change caused a depolarization in

the membrane potential followed by a return to near its previous level 

(Figure 4).



Figure 3. The effect of light-dark and dark-light changes 
potential in elm leaf cells. The trace is typical of more 
traces. White light was shut off at the point labled dark 
again five minutes later at the point labled white light.
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Figure 4. The effect of white-blue and blue-white light changes on 
membrane potential in elm leaf cells. The trace is typical of the 
reaction in more than 25 cells. Ambient laboratory light was present 
during the blue measurement.
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However, when no ambient light was present except the source light, 

a white-blue light change resulted in a depolarization followed by a 

slight repolarization and then a gradual depolarization about 20 mv.

When a blue-white change was made, there was a rapid depolarization of 

about 20 mv followed by a hyperpolarization to near its previous level 

(Figure 5).

A white-red light change caused a hyperpolarization about 10 mv 

followed by a gradual depolarization. A red-white light change caused a 

depolarization, about 10 mv, followed by a gradual hyperpolarization. 

With ambient laboratory light, the white-red, red-white light change 

caused a similar hyperpolarization-depolarization,

depolarization-hyperpolarization membrane potential pattern (Figure 6).

Discussion

Transport systems in the membrane of Chara corallina which are 

light stimulated include Cl influx and OH efflux. Lichtner, Lucas and 

Spanswick (1981), suggested that if these systems represent major 

conductance pathways in the membrane, the regulation of transport by 

light might account for the rise of the membrane resistance in the dark.

Membrane potential of green cells is generally hyperpolarized on 

illumination. It has been assumed that light activates the putative H+ 

pump which acts electrogenically. (Kawamura, Shimmen and Tazawa, 1980).

Transient potential changes observed from switching from dark to 

light, or vice versa are probably a result of ionic diffusion. For

example, in light, H+ is taken up by chloroplasts Atriplex spongiosa and
+ +K is extruded (Higinbotham, 1973). Possibly K efflux from

chloroplasts is involved in Nitella flexilis since pH in the vacuole

shifts downward during depolarization (Higinbotham, 1973).
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Figure 5. The effect of white-blue and blue-white light changes on 
membrane potential in elm leaf cells. The trace is typical of the 
reaction in more than 25 cells. No ambient laboratory light was present 
during the measurements.
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Figure 6. The effect of white-red and red-white light changes on 
membrane potential in healthy elm leaf cells. The trace is typical of 
the reaction in more than 25 cells. No ambient laboratory light was 
present during measurements.
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Photosynthetically active light has both depolarization and hyper­

polarization effects on cell membrane potentials (Bentrup, 1974b; Felle 

and Bentrup, 1974a,b; Jeschke, 1970a,b). Electrogenic pumps are assumed 

to be involved in the light-dependent changes in membrane potential (see 

Review: Bentrup 1974) . Transient membrane potential phenomena

associated with the presence or absence of light may last longer than 

1 h (Luttge and Higinbotham, 1979) . Resting potential (baseline 

membrane potential) is often re-established after light-dark or 

dark-light induced oscillations, however.

Because membrane potentials alter with wavelengths of 

photosynthetic light, hydrogen ion changes have been studied (Luttge and 

Higinbotham, 1979). Work with intracellular pH-microelectrodes (Davis,

1974) supports the following sequence of events:

1. presence of light (after a dark period) causes photosynthetic 

ion transfer and hydrogen ions are taken up by the thylakoids,

2. the stroma of the chloroplast becomes more alkaline,

3. the membrane potential depolarizes (the cytoplasm could lose 

hydrogen ions which, according to the Nernst and Goldman equations, 

would depolarize the membrane potential), and

4. hydrogen ions are taken up into the cell (Luttge and 

Higinbotham, 1979).

The reverse process seems to occur following a change from light to 

darkness (Luttge and Higinbotham, 1979). Photosynthetic CC^ 

assimilation has also been proposed to explain the changes in membrane 

potential, assuming that the pumps transporting HCO^ and OH operate 

with different kinetics (Denny and Weeks, 1970). Although, Neumann and 

Levine (1971) suggest that hydrogen ion movements at the thylakoids are
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not reflected at the chloroplast envelope or at the plasmalemma, work 

with the uncoupler F-CCP and the electron acceptor p-benzoquinone on 

Elodea (Hope et al., 1972) implies that part of oscillations in membrane 

potential may be coupled to photosynthetic electron flow. With intact 

cells of Phaeoceros laevis transient pH changes do occur following 

alterations of light and dark (Davis, 1974). Vredenburg and Tonk (1973) 

observed a rapid light-triggered reaction which caused a decrease in 

membrane resistance of Nitella translucens cells and postulated that 

transport of a reaction product, an intermediate or an ion across the 

tonoplast might be involved. A slower light-dependent change in 

membrane potential also occured in Nitella (Vredenburg and Tonk, 1976) . 

Bentrup (1974) suggests that the effect of small, light-dependent, 

cytoplasmic pH changes may be magnified by protonation at the 

plasmalemma.

Wright and Fisher (1981) observed an effect of light on Salix sieve 

tube membrane potential. A light-dark change induced a hyperpolariza­

tion of 10 to 15 mV that reached a maximum in 5 min., followed by a 

slower depolarization to the original potential (Wright and Fisher, 

1981). A dark-light change caused a rapid depolarization followed by a 

slow repolarization in the sieve tube membrane potential. They did not 

feel the changes were caused by electrode effects or temperature but did 

not speculate as to their origin.

According to Chemiosmotic theory of Mitchell developed for mito­

chondria and chloroplasts (Mitchell, 1967), ATP synthesis results from 

an electrogenic separation of H+ and OH ions across the membrane.

The H+ is driven outward in mitochondria and inward in chloroplasts; the 

process is reversible in the presence of suitable pH gradients 

(Higinbotham, 1973).
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Rapid electrical changes in onion guard cell membrane potentials 

are among the fastest known stomatal responses (Zeiger, Moody, Hepler 

and Varela, 1977.)

Researchers look for photo receptor systems through which plants 

sense light conditions which require mass synthesis of protective 

pigments (Drumm-Herrell and Mohr, 1981), for example. Phytochrome is 

often implicated in this type of sensory system (Drumm-Herrell and Mohr, 

1981).

Conclusion

The effects of the presence or absence of light on the membrane 

potential of healthy elm leaf tissue were tested. Elm leaf sections 

were cut in 10°C Ringer's solution and aged for three hours at room 

temperature, 24°C. In addition, the effects of red and blue filtered 

light were studied. Photosynthesis was inhibited with DCMU and 

potentials were measured however, results were inconclusive and will not 

be discussed further.

The results of this study indicated that:

1. A light-dark, dark-light change caused a hyperpolarization - 

depolarization, depolarization - hyperpolarization in elm 

membrane potential.

2. A white-blue, blue-white light change caused a depolarization 

- repolarization - depolarization, depolarization - 

hyperpolarization pattern in elm membrane potential

(Figure 4).

3. The white-blue, blue-white light induced changes in elm 

membrane potential were masked by the presence of ambient 

laboratory light (Figure 5).
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4. A white-red, red-white light change caused a hyperpolarization 

- depolarization, depolarization - hyperpolarization pattern 

in elm membrane potential (Figure 6). This pattern was not 

affected by the presence of ambient laboratory light.

5. Light-dark and dark-light induced changes in membrane 

potential were similar to patterns found for other species.

The work on elm showed light-dark induced membrane potential 

oscillations similar to those found with other plants. However, white 

light to red or to blue light caused opposite initial effects on the 

membrane potentials of elm leaf cells. The fact that red and blue light 

both allow photosynthesis, leads to the expectation that the membrane 

potentials would both follow the same pattern if the oscillations in 

membrane potential were entirely related to photosynthesis. Perhaps 

another mechanism is involved. Measurements of elm membrane potential 

when the tissue is subjected to narrower bands of light could lead to 

further speculation and perhaps suggest the involvement of a phytochrome 

receptor.

Additional wavelength studies, particularly in the UV range, would 

strengthen the study on light effects on elm membrane potential. 

None-the-less, this study on the effects of light on membrane potential 

has contributed to our basic understanding of elm electrophysiology. 

Specifically, induced patterns of membrane potential activity in 

response to various light changes were determined.

This work is a significant contribution electrophysiology is to be 

applied to plant pathology since light effects are often involved in 

plant growth and development, cold hardiness and resistance to disease.



CHAPTER IV 

EFFECTS OF INHIBITORS 

Introduction

The microelectrode and it's associated electrical apparatus allow 

the study of the effects of metabolic inhibitors on intact or whole 

cells rather than on subcellular organelles.

Membrane potential in several species is thought to contain both 

diffusion and energy-dependent components (Kawamura, Shimmen, and 

Tazawa, 1980). Dependence of the Membrane Potential of Chara Cells on 

External pH in Planta 149 213-218. The Presence or Absence of Internal 

Adenosinetriphosphate).

Cyanide inhibits photosynthesis and respiration. The reduction 

of plastoquinone involves both electrons and protons (Avron, 1981). 

Plastoquinone is a proton carrier (Avron, 1981). DCMU acts after Q at 

plastoquinone (Avron, 1981).

Materials and Methods

Plant Material

Elm leaf tissue was prepared as described in CHAPTER I.

Preparation of Solutions

Cyanide was added to the Ringer's solution which was fluxed through 

the perfusion chamber. Composition of the cyanide solution is defined 

in Table 2.

56
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Electrical Measurements

The membrane potential differences between the external solution 

and the cell vacuoles was measured as described in Chapter 1. 

Microelectrodes containing 3M KCL were connected, using silver- silver 

choloride electrodes, to both the cell interior and a singal amplifier. 

The amplified signals were output on both a chart recorder and an 

oscilloscope.

Experimental Procedure

The treatment time was 3h and the temperature of the Ringer's 

solution during tissue preparation was 10°C.

During electrical measurement, leaf tissue was oriented in a 

split-sponge tissue holder (Appendix C) in the perfusion chamber. The 

upper leaf surface was facing the ocular of the microscope. Either 

Ringer's solution or the cyanide test solution (Table 2) was fluxed 

through the chamber. The tissue was illuminated with a microscope lamp 

(see CHAPTER III). Cyanide solution was in one bottle and Ringer's 

solution in another. These were connected to the perfusion chamber with 

Tygon tubing. A valve allowed selection of one or the other solution. 

Cell membrane potentials were measured for 15 minutes before the cyanide 

was perfused through the chamber. Cyanide solution exposure was five 

minutes, then, Ringer's solution without cyanide was again fluxed 

through the chamber.

Results

Cyanide fluxed through the electrophysiological system does affect 

the membrane potential readings in elm. The general trend of the 

cyanide effect is a depolarization of the membrane potential. Shortly
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after applying the cyanide solution, the electropotential decreases 

approximately 40% (Figure 7). When the cyanide is removed from the 

perfusion chamber by flushing it with fresh Ringer's solution, the 

membrane potential repolarizes (Figure 7).

Discussion

An increase in membrane permeability means a decrease in R 

(resistance) or, following Ohms law, a corresponding increase in current 

if the voltage stays the same. Similarly, a blockage of ion transport

leads to a blockage of current.
-5 -3Cyanide at 10 to 10 M, within about 5 minutes, reduces the cell 

electropotential by as much as 50%; recovery requires approximately 30 

min (Anderson, Hendrix and Higinbotham, 1974). DNP and Azide also cause 

depolarizations in membrane potentials (Higinbotham, 1973).

The swift depolarization caused by respiratory poisons is probably 

the most critical evidence for the presence of electrogenic ion pumps at 

membranes (Anderson, Hendrix and Higinbotham, 1974).

An electrogenic pump occurs when active transport, in which net 

charge is transferred across a membrane at the expense of metabolic 

energy, creates a potential difference (Higinbotham, 1973). Because a 

respiratory inhibitor blocks the source of metabolic energy, the 

potential difference changes causing rapid depolarization in membrane 

potential (Higinbotham, 1973).

In this section, the effects of CN poisoning on membrane 

potentials in elm leaf cells are described. These results are compared 

with similar results of other higher plant cells.
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Figure 7. The effect of flushing the perfusion chamber with ImM sodium 
cyanide on membrane potential in healthy elm leaf cells. The trace is 
typical of the reaction in more than 25 cells.
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Cyanide poisoning causes a very large membrane depolarization in 

all plants previously studied and also increases their membrane 

resistances (Anderson, Hendrix, and Higinbotham, 1974). The studies on 

elm membrane potential support the findings on other plants that 

membrane potential depolarizes by as much as forty to fifty percent. 

Hyperpolarization induced by light was found to be inhibited by Azide, 

CN, CCCP, and DCMU as expected with an electrogenic pump (see 

Higinbotham, 1973). Cyanide is a complex inhibitor, in addition to 

halting cytochrome oxidase, its effects on membrane potential may 

involve inhibition of iron-containing compounds, for example (Anderson, 

Hendrix, and Higinbotham, 1974).



CHAPTER V 

THE EFFECTS OF pH 

Introduction

There have been tremendous increases in sulfur dioxide (SC^) from 

the incineration of fossil fuels and other air pollutants through the 

last century (Bringi, Seliga and Dochinger, 1981). Ozone and SC>2 
pollution are widespread and have a large impact on the forest.

For example, pines, ash, larch, oak, aspen birch and elm are all 

susceptible to these two pollutants (Bringi, et. al, 1981), and are 

showing various degrees of injury.

The fallout of dilute solutions of sulfuric and nitric acid from 

SO^ and NC^ pollution is the major cause of acid precipitation (Manion, 

1981). Unpolluted rain generally has a pH value of 5.6 (Likens, Wright, 

Galloway, and, Butler, 1979). Dissolved carbonic acid caused by 

dissolving of CC^ from the atmoshere, in unpolluted rain, accounts for 

its slight natural acidity. The ratios of the various components in 

acid precipitation vary from time to time and place to place (Cowling 

and Linthurst, 1981).

Rain with pH as low as 2.4 has been recorded as a result of 

industrial pollution (Manion, 1981) . Significant effects of acid 

precipitation on terrestrial plant ecosystems are being documented 

(Harper and Jones, 1982).

Terrestrial effects of acid precipitation are felt directly through 

erosion of plant leaf cuticles and indirectly through the leaching of 

essential elements from soils. In a forest, precipitation is 

intercepted by vegetation where dissolved substances can induce various
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physiological changes before reaching the soil, including erosion of 

leaf surface waxes and leaching of essential elements and various 

metabolites from foliar organs (Cowling and Linthurst, 1981). It is 

possible that an additional indirect effect is that plants are 

predisposed to disease and insect injury by a weakening of the plant 

caused by the effects of acid precipitation.

Air pollution injury on forest trees has traditionally been 

reflected by changes in leaves, changes in volume of wood and in changes 

in weight of wood (Patton, 1981). Direct and indirect damage to crops 

and forest trees have been reported in various field, greenhouse and 

laboratory investigations of the effects of synthetic rain, equivalent 

in chemical composition and rate of deposition to natural rains (Cowling 

and Linthurst, 1981). Decomposition of litter on the forest floor is 

also affected by acid precipitation, thus, in turn affecting nutrients 

available for absorpiton by the trees (Cowling and Linthurst, 1981). A 

study on nutritive effect of low doses of SO^ showed growth enhancement 

in some tree species (Ziegler, 1979 and Maugh 1979; both as cited by 

Patton, 1981). The nutrient elements essential for growth of plants can 

be taken up readily through foliar organs in addition to absorption by 

roots from the soil solution (Wittwer and Bukovac, 1969).

Soil acidity governs the availability of nutrients to the tree 

(Pirone, 1978). As acid rain seeps into the soil, it leaches away 

valuable mineral nutrients but makes toxic metals more soluble. Plants 

can then absorb the poisons (Angyal, 1980). Adding lime may increase 

the toxicity of metals released by the acid (Angyal, 1980). Young trees 

are particularly sensitive to the detriments of acid rain. Whether the 

pH toxicity or poisoning by heavy metals is responsible, seed
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germination is inhibited, seedling growth is stunted, and bud formation 

is limited (Angyal, 1980). Acid precipitation has also caused 

nutritional problems, related to aspects of fertilization (Abrahamsen, 

1980). The most favorable soil pH range for Ulmus spp. is 6.5 to 7.5 

(Pirone, 1978).

The purpose of this experiment was to determine the effect of pH on 

membrane potential of elm leaf cells and to relate results to acid rain.

Materials and Methods

Sulphuric acid was added to Ringer's solution (normal pH = 5.5) to 

produce pH levels typical for acid rain: 3.5 and 4.5. Elm tissues were

prepared by cutting leaf sections in 10°C Ringer's solution and allowing 

them to equilibrate at room temperature for 3 h. Leaf sections were 

then placed in the holding chamber and bathed in fluxing Ringer's 

solution (see CHAPTER I for details of this procedure and the subsequent 

electrode insertion). Individual cells were penetrated with a 

microelectrode and allowed to equilibrate for five minutes. Membrane 

potential traces were monitored on a strip chart recorder. Then, 

Ringer's solution at one of the prepared pH levels was fluxed through 

the holding chamber. Flushing was allowed to continue for five minute 

sand was then replaced with normal Ringer's solution. Several cells 

were penetrated and treated in this manner for both pH levels.

Results

A typical membrane potential trace of elm leaf cells exposed to pH 

values of 3.5 and 4.5 is shown in Figure 8. Membrane potentials of 

penetrated cells were allowed to equilibrate for about five minutes, and
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Figure 8. The effect of acid pH ranges on membrane potential in healthy 
elm leaf cells. The trace is representative of measurements from 3 
cells at pH 3.5 and 3 cells at pH 4.5.
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most levelled off between -120 and -130 mv. The flushing Ringer's 

bathing solution, with a pH of 5.5, was shut off at the arrow (Figure 8) 

and was replaced with flushing Ringer's at either pH 3.5 or 4.5. Within 

three minutes, the membrane potential began to hyperpolarize and 

continued to do so gradually for five to eight minutes. The membrane 

potential then levelled out at 25-30 mv more negative than the original 

potential. When the altered pH Ringer's was replaced with normal 

Ringer's, the membrane potential gradually depolarized to the original 

level. This same pattern occurred for all cells tested and at both pH 

levels.

Discussion

In plant cells, membrane potential is considered strongly dependent 

on external pH (phQ). This dependency is decreased when cell metabolism 

is blocked by inhibitors or low temperature (Saito and Senda, 1973, 

Bentrup eĵ  al. 1973 and Richards and Hope 1974 as cited by Kawamura, 

Shimmen and Tazawa, 1980). Lichtner al. (1981) showed that changing 

external pH from 8 to 6 initially displaces the membrane potential 

toward a more positive value in Chara corallina. Also in Chara Kamura, 

et al. (1980) found that the membrane potential became more positive at 

a rapid rate as pH changed from 4.4 to 7.4. As pH changed from 7.4 to 

8.4, the membrane potential again became more positive but at a 

decreased rate.

In this study on elm leaf cells, only two levels of pH were 

studied. As with studies on Chara, membrane potentials did initially 

become more positive, but then resumed initial potentials. Both pH 

levels produced membrane potential traces similar to those produced by 

light-dark changes (Figure 8). Although initial studies here showed
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little impact of lowered pH on elm cells, it should be understood that 

pH changes were of short duration. Under prolonged stress, as would be 

expected with acid rain, cells might exhibit significant impact of air 

pollutants that could be studied electrophysiologically.

Before further inferences concerning various tree species can be 

made, more tests with other varieties and ages of trees, at various 

pollutant levels and at different time intervals are needed. Acid 

precipitation parallels increases in the emission of sulfur and nitrogen 

oxides from the combustion of fossil fuels (Likens, Wright, Galloway, 

and Butler, 1979). It would be worthwhile to study the effect of these 

emission increases on trees such as elm by acid treatments of trees 

which parallel these increases and to utilize the results for future 

electrophysiological studies (Shipman, 1981).



CHAPTER VI

SUMMARY AND FUTURE OUTLOOK 

Discussion

Dutch elm disease, caused by Ceratocystis ulmi (Buisman, C.

Moreau), and aided by the vectors Scolytus multistriatus and 

Hylurgopinus rufipes has had devastating effects on the elm populations 

of two continents. Because of the widespread incidence of the disease, 

much research has been done on its pathology. The abundance of studies 

on the elm provide a solid background on which to base

electrophysiological studies. They include pesticide research, genetics 

and breeding, fungal strains, resistant and susceptible varieties.

While electrophysiological studies of elm are still in elementary 

stages, they have vast potential to contribute to our understanding of 

wilt diseases, to breeding programs, to pesticide testing and to our 

basic knowledge.

The interaction of various physical factors on elm tree health is 

complex enough to make separation of single factors very difficult. The 

electrophysiology set-up allows the physical factors to be singled out 

and tested on one aspect of tree health, the nature of the leaf cell 

membrane potential. Leaf cell membrane potential, however, is 

indicative of the interaction of many cell metabolic activities. While 

it is unclear as to what metabolic activity or what combination of 

metabolic activities are causing changes in the membrane potential, the 

measurement of membrane potential in itself indicates rapid biochemical 

changes within the cell. The rapid detection of biochemical activity 

indicated by this technique is of value since current biochemical
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methods cannot uncover the reactions which occur within the first few 

seconds after a stimulus is provided. In fact, during that time, often 

the plant tissue is still in the stage of being ground-up.

Refinement of the detection of metabolic activity observed with 

electrophysiological methods is perhaps possible as the techniques are 

improving rapidly (Appendix C). Specific ion electrodes and beveled 

electrodes for example will provide more clues to the reasons for the 

electrical changes in the membrane potential. Combinations of membrane 

potential measurements with other techniques such as membrane resistance 

measurements, labeling, antibody work and electron microscopy will help 

unroll the riddles of the electrical results of metabolism. The direct 

and indirect effects of physical factors, chemicals and pathogens on 

membrane potential will begin to be resolved.

Interactions of factors seem to affect plant membrane potentials 

differently. For example:

1. Ambient light can mask the effects of blue light 

(CHAPTER III).

2. Temperature and treatment interaction affect membrane 

potential (CHAPTER II).

3. Membrane potentials of certain cells are affected by the 

interaction of sucrose and pH (Racusen and Galston, 1977).

In nature it is probable that the combination of physical and 

chemical stimuli interact in a manner similar to those of the 

interactions visible in laboratory electrophysiological studies. The 

electrical activities within and surrounding the plant may be involved 

in both:
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1. plant resistance or susceptibility to disease, and,

2. plant response to phytotoxic elements of the environment. I 

believe that mechanisms of resistance and susceptibility to the effects 

of plant disease, phytotoxins and environmental stress can be determined 

at least in part by using electrophysiological methods.

Philip Abelson (1982) indicated that analysis of presentations at a 

conference on "Biomass Substitutes for Liquid Fuels" held in February 

1982 in Brazil showed that, "a combination of factors will guarantee the 

increasing importance of the culture of trees and the applications of 

forest products." The factors discussed included:

1. the need to develop renewable alternatives to oil;

2. the growing world requirements for food and energy;

3. the need to decrease soil erosion.

Although we are in the early phases of improvement in biomass yield 

from trees, farmers currently obtain larger economic return from other 

crop plants than trees and profit yields of wood from natural forests 

are small (Abelson, 1982).

Traditional plant-breeding techniques, high-energy inputs, and vast 

chemical inputs led to great gains in agricultural productivity during 

the Green Revolution (Krogmann and Key, 1981). It is true that plant 

breeders and plant pathologists together have greatly improved the yield 

of food plants by selecting varieties that are resistant to disease, 

that yield well and that are adapted to specific climates, soils, and 

farming methods (Strobel, 1975). However, since selection through 

breeding is a slow process especially when maturity of the plant species 

takes years, as in trees, and since dissemination of a single new 

variety can itself be a hazard, electrophysiological techniques offer
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new promise. Though the methods need to be further developed and 

tested, they show potential for rapid screening of young plants for 

characteristics such as disease resistance and cold hardiness.

Krogmann and Key (1981) pointed out the concern that more research 

be directed toward solving future agricultural gains. More fundamental 

knowledge about plants appears essential to solving practical 

agricultural problems (Krogmann and Key, 1981).

Griesbach, Koivuniemi, and Carlson (1981) stated that, "current 

genetic engineering technology is not very well developed for use in 

plant improvement. Some of the problems in applying somatic 

hybridization and in vitro mutagenesis to plant breeding have 

demonstrated a need to re-examine classical agronomic and horticultural 

traits and to develop new technology specifically designed for plant 

improvement." Cell, tissue and organ culture of selected genotypes of 

tree species offers considerable potential for rapid, economical 

propagation (Brown, 1976 and Durzan and Campbell, 1974; as cited by 

Karnosky, 1981). Indeed, the improvement of tree species, as with all 

horticultural and agronomic plant species, depends upon selecting 

superior varieties and increasing genetic variability to broaden the 

genetic base from which to select new types with characteristics that 

make them in-demand. It is now difficult to make major genetic 

improvements in tree species because of the lengthy maturation time. 

Consequently, many breeders work with economic plant species with 

shorter maturation times. Using clonal rather than seed propagules to 

establish a stand of trees, none-the-less, offers considerable savings 

in time and money (Karnosky, 1981). With this technique, however, a 

single variety can constitute a large proportion of a number of
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plantings. When a large fraction of any crop is one variety, the entire 

crop can be lost to a previously unknown or unimportant disease 

(Strobel, 1975). It is possible that electrophysiological methods, used 

in conjunction with both traditional plant breeding and tissue culture 

techniques, could reduce this threat by providing a rapid way for 

several potentially-resistant varieties to be developed simultaneously.

Although it is possible to produce haploids and regenerate whole 

plants from cultured cells, or even from protoplasts for some species, 

there are difficulties with the new breeding methods. One of the 

difficulties limiting the new techniques is selecting hybrid cells from 

the parent cell population (Griesbach, Koivuniemi, and Carlson. 1981). 

New types of genetic manipulations such as chromosome-mediated 

transformation and in situ selection help to overcome this and other 

limiting factors in plant breeding (Griesbach, Koivuniemi, and Carlson. 

1981). Since most agronomically important traits are expressed in only 

one of several tissues in a plant (Griesbach, Koivuniemi, and Carlson. 

1981) a technique which would allow the researcher to identify 

characteristics of the whole plant or key desired traits when they are 

not phenotypically visible would broaden the selection. In situ 

selection has been used to produce herbicide tolerant tobacco plants, 

for example (Radin and Carlson, 1978; as cited by Griesbach, Koivuniemi, 

and Carlson. 1981). In situ rescue or selection combines classical 

genetic methods with tissue culture to recover whole plants with 

specific, desired traits. Cell electrophysiology could also be used in 

conjunction with these and other methods to enhance current breeding 

programs. My studies show that for plant diseases and stress situations 

which affect plant membranes, the electrophysiology set-up offers
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promise as a rapid scan of parent material in the selection processes of 

plant breeding. Particularly in trees, such a technique could speed-up 

breeding programs.

Our understanding of the basic electrical natures of plant cells is 

quite fragmentary. While emphasis in this dissertation is on the elm 

eletrophysiology, it has frequently been necessary to call attention to 

conclusions drawn from work with micro-organisms, other animals and 

plants. Numerous problems of plant electrophysiology could be 

illuminated by the closer application of the information and the 

techniques which have been developed with elms and with other organisms. 

For example, halophyte characteristics cannot be ignored in attempts to 

breed crop plants for salt tolerance (Jefferies, 1981). These 

characteristics include 1) a high internal ionic concentration, 2) a 

strong asymmetry in ion distribution within cells, 3) a reservoir of 

soluble organic compounds located mainly in the protoplast, and, 4) an 

ability to divert energy from other cell activities to maintain solute 

asymmetries and to encourage growth and reproduction despite low osmotic 

potentials (Jefferies, 1981). Since many of these characteristics are 

related to the electrical nature of the cell, it is highly probable that 

electrophysiological studies will contribute to the determination of 

such questions as whether or not halophytic genera are suitable for 

agricultural purposes in saline environments, and, whether a 

non-halophytic crop-plant has enough halophytic characteristics to be 

useful in breeding for salt tolerance. Accelerated optimal growth of 

trees under protective culture requires regulation of all environmental 

factors including light, temperature, minerals, water, carbon dioxide,
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growing media, competition, mycorrhizae, and pests (Hanover, Young, 

Lemmien and Van Slooten, 1976).

The common occurrence of chemical compounds is often indicative of 

a close phylogenetic relationship (Crawford and Giannasi, 1982).

Perhaps these compounds can be detected electrochemically with 

microelectrodes. Until researchers look for electrical differences 

between species or cultivars or races, the use of electrophysiology in 

plant breeding will be limited. However, as information is accumulated 

for various higher plants, the technique will take its place among 

traditional and tissue cultural plant breeding.

Electrophysiology as a plant research technique offers integration 

of basic and applied science. This technique allows observation on the 

interaction of several factors. It's immediate success perhaps cannot 

be measured in terms of increased agricultural yield per acre. However, 

both scientific progress in terms of understanding underlying processes

of plant growth and development, and, agricultural yield in terms of

applicable disease-resistance, or hardiness, screening techniques for 

breeding, and toxicity tests, are possible in the foreseeable future 

using the electrophysiology set-up.

Both physical and chemical stress on plants can be measured. The 

results can be applied locally and nationally for the improvement of 

crops.

These studies on the electrophysiology of elm have given me cause 

to believe that electrophysiology as a tool in plant research may yield 

important information on:

1) plant disease mechanisms;

2) plant disease resistance;
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3) plant breeding programs, especially for trees;

4) chemical stress studies (water, minerals);

5) physical stress studies (temperature, light);

6) toxicity studies; and

7) pure and applied tissue culture research.

With these basic data, we can consider more realistically the 

subsequent fate of the tree with respect to the animate and inanimate 

entities - spores, viruses, pollutants, fungicides and herbicides. More 

exhaustive surveys of membrane potentials in higher plants followed by 

computer assisted statistical analysis might reveal previously 

unrecognized trends and correlations between both chemical and physical 

stimuli, and, electrophysiological effects on plants. Digital storage 

oscilloscopes with computer interfaces and computers allow data to be 

gathered more rapidly and with considerably less effort than tracing the 

plots produced by analog chart recorders and either manually picking off 

values for "important" points or using a digitizer to trace the anolog 

plots. Similarly, recorders with both digital to analog and analog to 

digital capabilities, and, computer interfaces are available on the 

market today. Electrophysiology researchers should take advantage of 

the available instruments which will facilitate their studies 

particularly as the equipment becomes more affordable.
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APPENDIX A 

Membrane Models and Biomembranes 

Cell electrophysiology

Cell electrophysiology is ultimately a study of cell membranes. 
Transport of molecules back and forth across the membrane, whether as a 
result of metabolism or as a result of cell leakiness, is an indicator 
of membrane integrity. Cell membrane integrity, on the other hand, is 
often related to health, stress, or disease. The electropotential of a 
cell is dependent on cell metabolism, cell reaction to environment, 
recognition of self and of other, and on membrane maintenance. Pumping 
mechanisms also contribute to cell membrane potential.

There are many membrane models today. The most widely accepted of 
these is the fluid-mosaic model (Singer, 1971). Like earlier models, 
this model accounts for lipids and proteins, but does not account for 
the incorporation of water and ions into the membrane. Since water and 
ions are responsible for the electrical characteristics of membranes, 
they should be included in the models. The nature of a membrane depends 
on its thickness, its molecular structure and its fluidity. These 
characteristics affect the passage of particles, such as ions. Since 
transport of charged particles is affected by membrane properties, the 
electropotential of the membrane is also affected.

Membrane asymmetry

Membrane asymmetry is a fairly well-established concept today 
(Wallach, 2977). There are many types of asymmetry in biomembranes 
including those of kinetics, transfer capacity and morphology. There 
can also be asymmetry of the membrane environment. Membrane asymmetry 
means that 1) the kinetics of the components of a membrane varies in 
different sections of the membrane, 2) there is directional transfer 
capacity through the membrane, and, 3) the structure of the membrane 
itself is not bisymmetrical. In addition, the fluid environment on 
either side of a membrane can differ. Both membrane asymmetry and 
asymmetry of the membrane environment contribute to the electrical 
nature of a plant cell. Electrical asymmetry of the membrane 
contributes to membrane potential.

Kinetic asymmetry affects both the speed of ion movement through a 
membrane and the lateral and transverse movements of the lipid and 
protein components of the membrane.

Transfer asymmetry, affects differences in ion concentration 
maintained by pumps^(Appendix B). For example, a rapid and large influx 
of Ca through Ca —  specific ion channels in the membranes of paramecia 
results from depolarization (Eckert, Naitah and Machemer, 1976 as cited 
by Simons, 1981). Another example is found in Hodgkin and Huxley's 
report (1952) that in cerebellum tissue accumulation of extracellular 
potassium could lead to membrane depolarization, which, if large enough, 
could inactivate the sodium channel and possibly block conduction 
(Hodgkin and Huxley, 1952, as cited by Malenka, Kocsis, Ransom and 
Waxman, 1981).
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Morphological asymmetry contributes to electrical asymmetry because 
different lipids and protein molecules possess different charges on 
their parts. Since the molecules are spatially arranged, these charges 
are held to a particular side of the membrane, or are tucked inside, 
protected by some other portion of the molecule. A series of negatively 
charged lipids, for example, could yield a negative portion of a 
membrane. Similarly, ions may interact with charges in the cell 
membrane or plant cell wall affecting either membrane asymmetry or the 
environment on opposing sides of a membrane (Dainty, 1963).

A biomembrane is a lipoprotein structure that isolates cells or 
parts of cells into structural and functional compartments. It may be 
described as a tri-laminar sandwich of lipid and protein that is 
impermeable to water soluble materials,and which serves as a diffusion 
barrier between various compartments. Eukaryotic membranes may compose 
80% of the dry weight of a cell. For example, the rat liver cell is 
basically a synthetic cell and has predominantly synthetic membranes:

Rat liver cell

plasma membranes 3% 
nuclear 0.7%
outer mitochondrial membranes 1.2 
inner mitochondrial (no data)
rough endoplasmic reticulum (RER) - 60% g ^  
smooth endoplasmic reticulum (SER) - 35%

There are six major functions of membranes. (Stoeckenius and Engelmann 
1969).

General Functions of Biomembranes

1. continuous barrier
2. selective transport systems
3. support and orientation of enzymes and transport carriers 

Specialized Membranes

4. energy transducers
5. impulse conduction
6. electrical insulator

Most all membranes perform functions 1, 3, and 4. The other functions 
are common only to specific types of membranes. Unit membranes, or 
tripartate membranes, reform closed structures when broken. Bio­
membranes form compartments within cells.

Lipids are polar molecules which provide functions 1,2, 3 and 6, that 
is:

1. continuous barrier
2. selective transport
3. support and orientation 
6. electrical insulation
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While proteins are responsible for:

antigenic recognition 
cell-cell communication
shape and architecture (support and orientation 
receptors and transmitters (impulse conduction) 
enzymes in compartments

Definition of a biomembrane

A biomembrane is:

1. lipoprotein structure that isolates cells or parts of cells 
into structural and functional compartments,
2. tri-laminar, made of lipid and protein, impermeable to water 
soluble materials, and
3. a diffusion barrier between various compartments of a cell or 
tissue.

Components of a biomembrane

The components of biomembranes include proteins, lipids, carbohydrates, 
water, ions.

The components of membranes included in membrane models •

Membrane
Components Most models Some models Few or No models
Proteins X X X
Lipids X X X
Carbohydrates X X
Water X
Ions X

When referring to membranes, "functional" approximately equals "enzyme 
associated."
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Structures

When considering structures of membranes, ask:

1. How the various lipids and proteins are arranged in membranes
2. How such architecture affects and regulates specific membrane 

functions, and
3. What mechanisms are responsible for the individual molecules which 

comprise membranes synthesis.

Approaches to membrane models

1. Detailed model to closely approximate the specific membrane under 
study: Bracker (ultrastructure, biochemistry, etc.)

2. General System based on evolution of cell structure.
(Provides an approximation for a wide variety of membranes

a. Davison-Danielli
b. Fluid-Mosaic

Carbohydrate, ions, and water are nearly always omitted from 
membrane models.
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Three General Types of Membrane Models

Models of membranes are considered in three general categories.
These include 1) the bi-layer or unit type models, 2) the globular
subunit models, and, 3) compromise models. Each type of model will be
discussed in turn.

1.Bi-layer or unit membrane type models

1937 - realized sheet of protein didn't explain things very well so they 
changed it to globs of protein

It ft ItUS Asymmetric

1925 - Gorter and Grendel. 
Red blood cell membrane

1934 - Davison and Danielli
recognized that protein was associated with this bilayer.

O  O  O



1955 - Davison and Danielli proposed penetration of protein into the 
lipid bilayer

1955 - J.D. Robinson proposed the trilaminar or unit structure 
1970 - Deamer proposed lipid bridge models: dark, light, semi-dark,
light, dark bands of lipid and protein known as protein lipid protein 
sandwich models. Lateral movement of lipids is restricted.

lipid composition 
electrical 
permeability 
surf tension 
physical structure

final evolution of unit or 
lipid bilayer model.

metabolic activity 
enzymic sequences 
cellular control of membrane 
synthesis and function
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2. Globular subunit (actually are specific models originally thought 
to be general)
(in Plants) - Sjostrand 1963

Globules of a lipid core surrounded by proteins associated into layers 
of mitochondrial membrane.

$n
Green - 1966
Sjostrand - 1967 - globules - lipo protein micelles 
Green - 1969 - inner mitochondria membrane or chloroplast membrane 

1970 - protein crystal model -
Explains 1) high protein content

2) explains unit appearance after removal of 
lipids
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3. Compromise Models

Lipid bilaver with areas of irregularity 
1964 - Lucey

Discontinuity in the lipid layer 
1966-69 Wallach et al.

of Helical proteins dispersed in the lipid bilayer

1971-72 Singer library research

fluid mosaic model
protein icebergs in a sea of lipids, 
randomly arranged1/^ m  globular or leaflets exposed

W  V  o< helical submerged

* peripheral or extrinsic
^  integral or intrinsic

9?I9S
The fluid mosaic model is consistent today in terms of thermodynamics 
however it is specific for red blood cells (RBC).
Nature of the proteins

9? iff 88
Freeze Fracture Electron 
Microscopy

Can explain lateral movement
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For many types of membranes the fluid mosaic model is not consistent 
with chemical composition.

Consider these points:

1. Ca associates with charges on polar lipid head groups.
EDTA - which ties up calcium.
Calcium ion electrostatic bulges.

2. Carbohydrate (CHO) is thought associated with protein on 
the environmental side of the membrane.

3. Hydrocarbon chains of fatty acids and lipid anuli? What 
is the role of water in the membrane?

4. Membranes look alike under electron microscope —  possibly 
oversimplification caused by artifact.

Degree of membrane structure

There are various levels of organization in membranes. These levels are 
defined as degrees of membrane structure.

1° = molecular composition
2° = confirmation of the various molecules 

hydrophilic 
hydrophobic

3° = organization of molecular components and forces 
4° = interaction between various membranes 

cell-cell interaction 
fusion of cell membranes 

3° organization will be discussed

Singer understood that:
1. largest fraction of membrane proteins is water insoluble
2. amino acid composition was not particularly different from 
amino acid composition of water soluble proteins
3. most membrane proteins are ot -helical
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Mosaic structure was consistent with hydrophobic and hydrophilic forces. 
It accounted for:

1. Ionic attraction and repulsion
2. Vanderwaals forces
3. Cohesion
4. Polarity

molecular packing effect 
(lipid annulus)

9

deformation and non-homogeneity 
of lipid bilayer

peripheral or extrinsic - salt or EDTA 
integral - strong detergents or intrinsic
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Types of intrinsic proteins
1. Outside cell - functional properties - only enough of the protein 
in the lipid layers to anchor it.

2. The major part of functional activity is inside the cell.

The lipid composition in two bilayers is asymmetric. For example, in 
some cases intermediate hydrocarbon zones only contain sphingomyelin and 
cholesterol.

Short range vs. long range order.

1. Short range
Localized units of more or less repeating structure.

2. Long range
Whole membrane ordered or rather it is patchy with short 

range orders distributed randomly.

Short range order is common. Long range is rare except in 
some like inner mitochondrial of proteins and lipids.

fluid
dynamic (not static) Transverse or flip-flop 

exchange doesn’t occur very 
often.
Lateral movement is more 
frequent.

For both lipids and proteins, 
it takes seconds or minutes for 
lateral movement, however, 
hours or days for flip flop 
exchange.

Membrane Proteins

Membrane proteins are a special class of proteins distinct from the 
general secretory proteins of a cell. An c( -helical region is perhaps 
responsible for the difference.
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Additional Biomembranes References 

Introduction, Definition and General Functions

Rothfield - Structure and Function of Biological Membranes, Chapter 1, 
p. 3.

Weissman and Claiborne, Cell Membranes, Foreward, p. XIII.

Vandenheuvel, Adv. Lipid Res 9_, 161 (1971).

Androeli, Hoffman and Fanestil, Physiology of Membrane Disorders (1978) 
Chapter 1.

Jamieson and Robinson, Mammalian Cell Membranes, Vol. 1,General 
Concepts, Chapter 10.

Jain and White, "Long-Range Order in Biomembranes," Adv. Lipid Res. 15 
(1977).

Current Topics in Membranes and Transport LL, Chapter 1 (1978).

Israelachvili, "Refinement of Fluid-Mosaic Model" (on lipid annulus) BBA 
469, 221 (1977).

Jamieson and Robinson, Vol. 2 - The Diversity of Membranes.

Quinn and Chapman, "The Dynamics of Membrane Structure," CRC Critial 
Revs. Biochem 8 (1), 1 (1980).

Brescher, August 1973, Science. Classic on fluid-mosaic model.

Membrane Components

Proteins

American Rv. Biochem. 43, 805 (1974)

Weissman and Claiborne, Chapter 5, p. 45.

Capaldi - Membrane Proteins and Their Interactions with Lipids 

Kennedy, J. Memb. Biol. 42̂ , 265 (1978).

Lipids

Weissman and Claiborne, Chapter 2, p. 13.

Jackson and Gotto, NEJ Med. 290, 24 (1974)

Jain, Current Topics in Membranes and Transport 6_, 1 (1975)

Goodwin, Biochem. of Lipids II, Chapt. 3, p. 101
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Biochim. Biophys Acta 344, 95 (1974)

Roodyn, Subcellular Biochem 6_, 233 (1979)

Carbohydrates

Weissman and Claiborne, Chapter 6, p. 55 

Hughes, Essays in Biochem JL1_, p. 1 

Hughes, Membrane Glycoproteins 

Jarnefelt et al., TIBS (May 1978), 110 

Yamakawa and Nagai, TIBS (June 1978), 128

The plasma membrane has been described as, "a lipoprotein layer 
[that] acts as an electrical insulator to ion frequency currents," 
(Tattar and Blanchard, 1976).
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APPENDIX B

PUMPS IN THE LIVING CELL

Differences in concentration are maintained by pumps, driven by the 
metabolism of the cell, that push ions through the membrane one 
direction or the other (Solomon, 1962). Neutral pumps transport zero 
net charge across the membrane and therefore have no direct effect on 
membrane potential (Spanswick, 1981). Electrogenic pumps contribute to 
membrane potential (Higinbotham, 1974).

Additional references on ion pumps include:

Higinbotham, N., J.S. Graves and R.F. Davis. 1970. Evidence for an 
electrogenic ion transport pump in cells of higher plants. J. Membr. 
Biol. 3. pp 210-222.

Higinbotham, Noe. 1974. Conceptual developments in membrane transport, 
1924-1974. Plant Physiol. 54. pp 454-462.

Higinbotham, N. and W.P. Anderson. 1974. Electrogenic pumps in higher 
plant cells. Can. J. Bot. 52 pp 1011-1021.

Kitasato, Hiroshi. 1968. The influence of H+ on the membrane potential 
and ion fluxes of Nitella. Journal of Gen. Physiol. 52. pp. 60-87.

Slayman, C. L. 1974. Proton pumping and generalized energetics of 
transport: A review. In U. Zimmerman and J. Dainty, eds. Membrane
Transport in Plants. Springer-Berlag, Berlin, pp. 107-119.

Spanswick, Roger M. 1981. Electrogenic ion pumps. Ann. Rev. Plant 
Physiol. 32. pp 267-289.

Tosteson, Daniel C. 1981. Lithium and Mania. Scientific American. 
244:4. pp. 164-174.



APPENDIX C

ELECTROPHYSIOLOGICAL TECHNIQUES

GETTING READY TO PULL ELECTRODES 

Wear Goggles

1. Turn on the electrode puller.
2. Hold switch (magnetic switch) to the right,
this switch does not look like a switch.
3. While holding switch, push start,
holding switch for 2 minutes: The coil will
heat up. Release switch.
4. Then you can pull electrodes.

Electrode puller
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PULLING ELECTRODES 

Wear Goggles

(Read section on getting ready to pull electrodes) .

1. Open clamp, insert prepared micropipette, close clamp.
2. Move switch to right. Open lever so that the switch "grabs" the end 
of the pipe, release lever.
3. Push start button.

DON'T LET ANYONE STAND IN LINE WITH THE MACHINE OR PUT A FACE OR 
ARM THERE. SOMETIMES THE GLASS SHATTERS.

4. Electrodes may need "trimming" at the shank end. Use a three-corner 
file. Refer to Figure 2.

(Run file across points a and B....A, then, roll the pipette, then 
repeat.)

5. Place the electrodes in 3 M KC1 bath. Let sit Keep the 3 M KC1 bath 
covered except when placing or removing electrodes.

A

KCl should be filtered through filter paper in a funnel.
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BACKFILLING THE ELECTRODES

1. This stage called "Backfilling" since the tips should be full from 
sitting in the bath.
2. Fill the syringe with 3 M KC1.
3. Insert the syringe in the back or shank end of the electrode.
4. Fill, forcing out bubbles from the electrode as you go.
5. Place electrode in 3 M KCI bath or_ use immediately. (Preferably use

just after filling.

i 0

2

Backfilling the electrode, removing air bubbles.
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MOUNTING AN ELECTRODE IN THE ELECTRODE HOLDER

The electrode holder

1. Fill the electrode holder with 3 M KCl using a syringe. Leave a
drop on the top of the rubber part (Figure 5).

2. Bring the electrode in sideways. Put the back into the drop, then,
tip it vertically into the hole. Gently slide the electrode into the
electrode holder. Check for air bubbles.

3. Carefully place the electrode holder in the brass fitting. 
Measurements may then be taken with the electrode. Test the electrode 
using the electrode "test" button on the amplifier.

The electrode holder shown in relation to the drop of 3 M KCl and the 
electrode.

REDUCING TIP POTENTIAL

The microelectrode tip potential can be reduced if the pH of the 3 M KCl 
used to fill the electrodes is adjusted to 2 (Lichtner, Lucas and 
Spanswick, 1981).

OVERCOMING HIGH INPUT RESISTANCE

Because the tip of a micropipette is small, it has a high electrical 
resistance. To overcome this high resistance, the instrument measuring 
the cell membrane potential must be capable of measuring a small voltage
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in the presence of a large resistance (Nobel, 1974). Iti effect, the 
measurement of cell membrane potential is like interconnecting a volt 
meter resistance in parallel with the membrane resistance. The total 
resistance (R^) measured is therefore determined by the formula for the 
resistance of a parallel circuit:

where R is the resistance of the voltmeter and R is the resistance of 
the membrane. By making R large, the Rfc measure? approaches R in 
value. This figure is use? in measuring membrane potential. m

TISSUE HOLDER

A sponge with a slit in it served well as a holder for leaf tissue. The 
tissue studied protruded above the spon'~° several millimeters so that; 
light and fluids could readily get to tne tissue involved. The sponge 
did not crush and injure the tissue. A further advantage to this 
technique is that the same holder can support slices of tubers or tissue 
culture callus for electrophysiological study.
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ELECTRODES TO MEASURE INTRACELLULAR pH

A good reference on this topic is: Marx, Jean L. 1981. Investigators
focus on intracellular pH. Science 213:4509 pp. 745-747.

CALCIUM ION-SELECTIVE MICROELECTRODE

Refer to: Shafie, Lamir M. 1980. Sodium-calcium exchange i^
rabbit heart muscle cells: direct measurement of sarcoplasmic Ca
activity. Science. 209:4457. pp 699-702.

ANTISTATIC MAT

An antistatic mat helps reduce build up of static electricity. It is a 
useful addition to a computer assisted laboratory, especially when 
digital instrumentation is used for cell measurements. (3M carries 
one.)

FLOW RATE

A flow valve from an intravenous unit works very well to control the 
rate of influx of Ringer's solution into the perfusion chamber.

REPLACING THE REFERENCE ELECTRODE

Bananna plug

Be sure to put wire through Red plastic part of bananna plug first. 

Don't cut wire shot - use about 1/4" of wire.
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DECREASING ELECTRICAL NOISE

1. Check all ground connections to ensure that they are properly 
attached. Can you ground anything else?

2. Use a Faraday Cage.

3. Change the reference electrode. The lead on the reference
electrode often breaks. Generally the break is not visible.

4. Use fiber optics.

5. Use rheostat switches.
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CHEMICALS AND EQUIPMENT

The chemicals and equipment used in the elm electrophysiology 
experiments were:

1,2-Dichloroethane 
2,4-Dinitrophenol 
Amplifiers (2)
Calcium Chloride, Dihydrate, Granul
Calcium Nitrate, Granular
Clamps
Cordycepin=CCCP 
Dissecting Microscope 
Electrode Holders 
Glassware 
Goggles
Horizontal Compound Microscope
Magnesium Sulphate, 7 Hydrate, CRYS
Micromanipulator
Micropipettes
Oscilloscope
Pasteur Pipettes
Perfusion Chamber
Petri Plates
Pi-Pumps
Plexiglass
Potassium Chloride
Potassium Chloride, Crystal
Recorder
Recorder Pens
Recorderpaper
Reference Cells
Refrigerator
Silicon Glue
Sodium Cyanide
Sodium Nitrate
Sodium Phosphate Dibasic, Anhydros
Sodium Phosphate Monobasic, Monohyd
Sodium Thiosulphate
Strainer
Syringes
Tubing (ID 3/32; OD 5/32; VI 1/32

ELECTROPHYSIOLOGICAL SUPPLY SOURCES

W.P. Instruments 
60 Fitch Street 
P.O. Box 3110
New Haven, Connecticut 06515

Frederick Haer 
P.O. Box 337 
Industry Road
Brunswick, Maine 04011, USA 
(207) 729-1601
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ADDITIONAL SUPPLIES

These additional supplies may be ordered from: 
Industrial Science Associates, Inc.
63-15 Forest Ave.
Ridgewood, NY 11227 
(212) 821-0209

Rubber mat for under electrode puller.
Draft shield for micropipette puller.

ADDITIONAL TECHNIQUES

Additional techniques which may supplement electrophysiological studies 
include:

1. electron microprobe analysis,
2. aequorin microluminescence,
3. chlorotetracyclic microfluorescence, and
4. ^ C a  autoradiography (Simons, 1981).
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APPENDIX D 

Elm

The elm is quite susceptible to highly destructive diseases 
(Pirone, 1978). A recent review of elm diseases (Stipes and Campana, 
1981) is available from the American Phytopathological Society.

Dutch Elm Disease

The most visible symptoms of Dutch Elm disease are the wilting and 
yellowing of the leaves. As with other vascular wilts, however, it is 
rather the blockage of water translocation which occurs in the branches 
and stem that results in the leaf symptoms than the halting of the leaf 
functions of photosynthesis and transpiration.

Dutch elm disease, which results from infection of the elm tree by 
Ceratocystis ulmi, led to widespread study of elm. There are several 
diseases of elm, however: The combined effects of Dutch elm disease,
elm phloem necrosis and other elm diseases have discoraged elm 
plantings. The elm, however, is easily transplanted, and becomes 
quickly established (Pirone, 1978).

Fertilizing elm trees causes increased vessel size making the tree 
more susceptible to Dutch elm disease (Pirone, 1978).

As Dutch elm disease makes its mark, scientists race to understand 
the host-pathogen complex well enough to combat the disease. Because 
the Dutch elm pathogen is so successful in attacking its host, elm 
becomes a prime candidate to serve as a model for electropathological 
research.

A very high molecular weight phytotoxic glycoprotein present in the 
filtrates of ceratocystis ulmi cultures was isolated by gel filtration 
(Salemink, Rebel, Kerling and Tchernoff, 1965; Rebel and Salemink, 1968 
as cited by Ballio, 1972). Salemink (1965, as cited by Dimond, 1972) 
demonstrated that the glycopeptide toxin produced by Ceratocystis ulmi 
appears to enter cells and damages membranes permanently. The history 
of research on this toxin involves the work of several people including 
Zentmyer, Dimond, Feldman, Kerling, Beckman and Salemink and is reviewed 
by Lousberg and Salemink (1972).

Variability in cultural morphology and its relationship to 
pathogenicity is being studied using a variety of Ceratocystis ulmi 
isolates. Inoculation trials with American and Siberian elms indicate 
that cultures reisolated from ioculated trees rarely differ in cultural 
characteristics from the original isolate. Polyphenol oxidase, catalase 
and peroxidase were suspected of being associated with darkly pigmented 
isolates. Peroxidase and catalase activity was detected in 
spectrophotometric assays of mycelial extracts, but their activity could 
not be associated with the onset of pigmentation or sporulation. Both 
pigmented and nonpigmented isolates showed similar enzyme activity 
(Hindale, 1981).
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Ceratocystis ulmi

Nine isolates of this fungus were obtained from Dale Hindale and 
have been cultured on potato dextrose agar (PDA). Synnema producing 
medium (SPM) and PDA have been used to compare morphological 
characteristics of the isolates received with those characteristics 
previously described for those starins.

The fungi are being grown in liquid culture so that fungal extracts 
can be used for electrophysiological studies on elm. Experiments are 
underway to inoculate 2 year old greenhouse elms with the different 
strains of Ceratocystis ulmi and to observe changes in membrane 
potential with time in infected and control elms.
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GLOSSARY

Action Potential

Originally this term was applied to electrical events in nerves 
which cause a biological action, such as muscle contraction. There is 
little agreement, though, in the literature about the definition of an 
action potential in plants but Simons (1981) suggests the following 
criteria of its properties:

(i) transient and rapid change in transmembrane potential 
difference;

(ii) a typical voltage curve usually features a sharp spike,
followed by a more gradual return to the original 'resting1 
potential;

(iii) can only be triggered after a critical level of excitation has 
been reached - a phenomenon known as the all-or-nothing 
response;

(iv) if sub-threshold stimuli are delivered over limited periods, 
sufficient excitation can be accumulated to trigger an action 
potential;

(v) during and immediately after the passage of an action 
potential, it is not possible to elicit another action 
potential on the same membrane site without a rest 
(refractory) period;

(vi) can be triggered by electrical stimuli (Simons, 1981).

Amplifier

An electrical circuit for increasing the strength or amplitude of 
an electric signal (Ackermann, 1972).

Background

In electrical measurements, unwanted or extraneous signals not 
related to the desired signal. Similar to noise. (Ackermann, 1972)

Bioinstrumentation

The development and use of instruments for recording and 
transmitting physiological data (Webster's New Collegiate Dictionary).

Chemiosmotic hypothesis

Electron transport (oxidation) and ATP synthesis (phosphorylation( 
are coupled by a proton gradient rather than by a covalent high-energy 
intermediate or an activated protein (Mitchell, 1961). Both the 
respiratory chain and ATP ase are vectorially arranged in the inner 
mitochondrial membrane (Mitchell, 1961).



114

Cytochrome

A cytochrome is a protein that contains a heme prosthetic group and 
that transports electrons. The ferrous (+2) state of cytochrome is 
reduced while the ferric (+3) state is oxidized (Stryer, 1981).

Depolarization

A decrease in electrical potential. As plant cell interiors are 
negative with respect to the outside medium, depolarization is generally 
a change to a more positive potential (Simons, 1981).

Direct current

An electrical current in which the electrons flow uniformly in one 
direction (Ackermann, 1972).

Electrode Polarization

The deposition of gas on one or both electrodes of an electrolytic 
cell increasing the resistance and setting up a counter electromotive 
force (Websters, 1973).

Electrogenic pump

An ion pump that contributes to membrane potential (Higinbotham 
1974).

Electron carriers

Electron carriers include flavins, iron-sulfur complexes, quinones, 
and hemes (Stryer, 1981).

Electron-transfer potential

NADH and FADH^ in oxidative phosphorylation have free energy, 
called electron-transf er potential, whiclji are converted to the 
phosphate-transfer potential of ATP. E , the redox potential is the 
measure of electron-transfer potential ?Stryer, 1981).

Electroosmosis

The flow of an electrolyte solution through a pore when a potential 
is applied (Higinbotham, 1973).

Facilitation

An increase in membrane potential over limited periods of time with 
successive stimulation (Simons, 1981).
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Feedback

A circuit in which a portion of an amplifier is returned to the 
input. When the current or voltage fed back is opposite in phase or 
polarity to the input, negative feedback results, which decreases the 
overall gain of the amplifier but makes for increased stability 
(Ackermann, 1972) .

Gain

The amount input current or voltage is increased by an amplifier in 
output (Ackermann, 1972).

Ground

Contact made with the earth or other point considered to be at zero 
electrical potential (Ackermann, 1972).

Half-cell

The redox potential of a H+ :H2 couple is defined as zero volts.
Hyperpolarization

An increase in electrical potential. As plant cell interiors are 
negative with respect to the outside medium, hyperpolarization is 
generally a change to a more negative potential (Simons, 1981).

Impedance

The generalized resistance to the flow of an alternating current 
(Ackermann, 1972).

Junction Potentials

Potential differences at boundaries, for example, between the 
electrode and the plant (Simons, 1981).

Noise

Any unwanted or extraneous signals which tend to interfere with a 
desired signal (Ackermann, 1972).

pH scale

The pH scale is a measure of acidity that is logarithmic. For 
example, solutions of pH 6, 5, and 4 respectively contain one, ten, and, 
one hundred microequivalents of acidity (Likens, Wright, Galloway, and, 
Butler, 1979). To expalin further, "each unit change in pH represents a 
tenfold change in acidity" (Angyal, 1980).
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Pigment

A substance which strongly absorbs visible light. Most absorb only 
certain regions of the spectrum and transmit all other wavelengths; 
consequently, they appear colored (Govindjee and Govindjee, 1974).

Phosphate-transfer potential

ATP has phosphate-transfer potential, which is measured as __ G°^
for the hydrolysis of the phosphate compound (Stryer, 1981).

Receptor Potentials

Transient changes in membrane potential which converts stimuli into 
electrical analogues. Receptor potentials always precede, and often 
trigger, action potentials, but they do not have the all-or-nothing, nor 
the propagating, properties of action potentials. The voltage curve of 
receptor potentials is highly variable and reflects specific properties 
of the stimulus (Simons, 1981).

Redox potential

Rodox potential is a measure of affinity a substance has for 
electrons. A negative redox potential means a substance has a lower 
affinity for electrons than H„ does while a positive redox potential 
means it has a greater affinity for electrons than does . A strong 
reducing agent, for example NADH, has a negative redox potential where 
as a strong oxidizing agent, for example CL, has a positive redox 
potential (Stryer, 1981).

Reference Electrode

The reference electrode is silver, coated with silver chloride, and 
immersed in a concentrated (3M) potassium chloride agar which 
communicates to the measuring electrode via the Ringer's solution (or 
other bathing solution) and the cell cytoplasm (Ackermann, 1972).

Resistance

Opposition offered to the passage of an electric current, 
symbolized by the letter, R, and, measured in ohms (Ackermann, 1972).

Specific ion electrode

An electrode which is used to measure the concentration of a 
specific ion in a solution. A common example of a specific ion 
electrode is the glass electrode of the pH meter (Ackermann, 1972).

Streaming Potentials

Streaming potentials are the converse of electroosmoses. The 
potential developed when an electrolyte solution is forced through a 
pore (Higinbotham, 1973).
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Transducer

Any device for converting one form of energy to another (Ackermann, 
1972).

Variation Potentials

First described by Houwink (1935) in the wound-induced changes in 
membrane potential in Mimosa, these are apparently confined to plants. 
Variation potentials develop relatively slowly over a period of minutes, 
rather than seconds (as in action potentials). They do not conform to 
the all-or-nothing property of action potentials, but are conducted away 
from the site of stimulation. The shape of the voltage curve is 
extremely variable (hence the name), often consisting of many small 
spikes superimposed on a slowly developing hyper- or depolarizing 
potential (Simons, 1981).

Volt

The unit of electrical potential, symbolized by V and equivalent to 
the potential difference required to make a current of one ampere flow 
through a resistance of one ohm (Ackermann, 1972).
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