
University of New Hampshire
University of New Hampshire Scholars' Repository

Doctoral Dissertations Student Scholarship

Winter 1982

DECENTRALIZED CONTROL OF
DISTRIBUTED PROCESSING SYSTEMS
AHMED KAMAL EZZAT

Follow this and additional works at: https://scholars.unh.edu/dissertation

This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has
been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more
information, please contact nicole.hentz@unh.edu.

Recommended Citation
EZZAT, AHMED KAMAL, "DECENTRALIZED CONTROL OF DISTRIBUTED PROCESSING SYSTEMS" (1982). Doctoral
Dissertations. 1332.
https://scholars.unh.edu/dissertation/1332

https://scholars.unh.edu?utm_source=scholars.unh.edu%2Fdissertation%2F1332&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/dissertation?utm_source=scholars.unh.edu%2Fdissertation%2F1332&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/student?utm_source=scholars.unh.edu%2Fdissertation%2F1332&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/dissertation?utm_source=scholars.unh.edu%2Fdissertation%2F1332&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/dissertation/1332?utm_source=scholars.unh.edu%2Fdissertation%2F1332&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:nicole.hentz@unh.edu

INFORMATION TO USERS

This reproduction was made from a copy of a docum ent sent to us for microfilming.
While the most advanced technology has been used to photograph and reproduce
this document, the quality of the reproduction is heavily dependent upon the
quality o f the material submitted.

The following explanation o f techniques is provided to help clarify markings or
notations which may appear on this reproduction.

1 .The sign or “ target” for pages apparently lacking from the document
photographed is “ Missing Page(s)” . If it was possible to obtain the missing
page(s) or section, they are spliced into the film along with adjacent pages. This
may have necessitated cutting through an image and duplicating adjacent pages
to assure complete continuity.

2. When an image on the film is obliterated with a round black mark, it is an
indication o f either blurred copy because of movement during exposure,
duplicate copy, or copyrighted materials that should not have been filmed. For
blurred pages, a good image o f the page can be found in the adjacent frame. If
copyrighted materials were deleted, a target note will appear listing the pages in
the adjacent frame.

3. When a map, drawing or chart, etc., is part of the material being photographed,
a definite method o f “sectioning” the material has been followed. It is
customary to begin filming at the upper left hand comer o f a large sheet and to
continue from left to right in equal sections with small overlaps. If necessary,
sectioning is continued again—beginning below the first row and continuing on
until complete.

4. For illustrations that cannot be satisfactorily reproduced by xerographic
means, photographic prints can be purchased at additional cost and inserted
into your xerographic copy. These prints are available upon request from the
Dissertations Customer Services Department.

5. Some pages in any document may have indistinct print. In all cases the best
available copy has been filmed.

University
Microfilms

International
300N .Zeeb Road
Ann Arbor, Ml 48106

8320641

Ezzat, Ahmed Kamal

DECENTRALIZED CONTROL OF DISTRIBUTED PROCESSING SYSTEMS

University of New Ham pshire Ph.D. 1982

University
Microfilms

International 300 N. Zeeb Road, Ann Arbor, Ml 48106

PLEASE NOTE:

In all c a s e s this material has been filmed in the best possib le way from the available copy.
Problems encountered with this docum ent have been identified here with a check mark V .

1. G lossy photographs or p a g e s _______

2. Colored illustrations, paper or print______

3 . Photographs with dark background______

4 . Illustrations are poor c o p y _______

5 . P ages with black marks, not original copy_______

6. Print show s through a s there is text on both s id es of p age_______

7. Indistinct, broken or small print on several p a g e s * /

8. Print ex ceed s margin requirem ents______

9. Tightly bound copy with print lost in spine_______

10. Computer printout p ages with indistinct print_______

11. P a g e (s)_____________ lacking when material received, and not available from school or
author.

12. P a g e (s)_____________ seem to be missing in numbering only a s text follows.

13 . Two pages num bered_____________. Text follows.

14 . Curling and wrinkled p a g e s_______

15 . Other__

University
Microfilms

International

DECENTRALIZED CONTROL

OF DISTRIBUTED PROCESSING SYSTEMS

BY

AHMED K. EZZAT

B.S. (Electrical Engineering), Cairo University, 1971
M.S. (Computer Engineering), Cairo University, 1976

A DISSERTATION

Submitted to the University of New Hampshire
in Partial Fulfillment of

the Requirements for the Degree of

Doctor of Philosophy

In

Engineering

December 1982

This dissertation has been examined and approved.

 .
.ssertation director

fohn L. Pokoski, Professor of Electrical
and Computer Engineering

R. Daniel Bergeron^ Ass^ibiate Professor of
Computer Science

^ /

Loren D. Meeker, Professor of Mathematics

_ jirL _ A3_̂2iLcn___
Paul J. Nahin, Associate Professor of
Electrical and Computer Engineering

L. Gordon Kraft, Assistant Professor of
Electrical and Computer Engineering

Date

ACKNOWLEDGEMENTS

The author wishes to thank Dr. J. L. Pokoski,

Professor, Electrical and Computer Engineering Department,

University of New Hampshire for his effort and contributions

to the progress of this work.

The author is deeply indebted to Dr. R. D. Bergeron,
Associate Professor and Chairman, Computer Science
Department, University of New Hampshire, for his

contributions and guidance during this work.

The author would like to express his appreciation to

Professor L. D. Meeker, Associate Profeesor P. J. Nahin, and
Assistant Professor L. G. Kraft, for their time and effort

in behalf of the author.

The author would like to express his gratitude to
Dr. R. R. Clark, Professor and Chairman, Electrical and
Computer Engineering Department, University of New

Hampshire, for his support and advice during the author's
assistantship in the Electrical and Computer Engineering

Department. Also, the author would like to thank the rest
of the staff of the Department of Electrical and Computer

Engineering for their help during his study.

The author would like to express his gratitude to the
Computer Science Department, University of New Hampshire,

for their help, and the extensive use of their facilities.

Finally, the author would like to thank his parents for

their support and encouragement through his career.

TABLE OF CONTENTS

LIST OF TABLES vii
LIST OF ILLUSTRATIONS ix
ABSTRACT .. X

Chapter
I. INTRODUCTION 1

Characterization of Distributed Systems
Objectives of Distributed Systems
The Problem and Its Importance
The Approach to the Problem
Related Work
Outline of the Thesis

II. DISTRIBUTED SYSTEM ARCHITECTURE 11
Issues Pertaining to Distributed Systems
A Model Based on Layers
The Model Layers
Summary

III. FUNCTIONAL MODEL FOR DECENTRALIZED
CONTROL IN DISTRIBUTED SYSTEMS 29
Uniform Resource Model
System State Representation
Performance Goals of the Model
Factors not Affecting the Model
Data-Bases Needed for the Model
Task Allocation Algorithm
Conclusions

IV. APPLICATION OF THE MODEL 43
Introduction
A Feasible Real Environment
Task Allocation Scheduling Algorithm
Moving Window Technique
Resource State Initialization
The Model Operation

V. SIMULATION OF THE DECENTRALIZED
CONTROL MODEL 54
Introduction
Workload Description
The Simulation Model

v

Distribution Identification
The Task Allocation Algorithm
The Simulation Parameters
Simulation Test Goals
Simulation Results and Analysis
Conclusions

VI. CONTRIBUTIONS AND FUTURE RESEARCH
Contributions
Future Extensions

BIBLIOGRAPHY

APPENDIX A: STOCHASTIC PROCESS
Introduction
Definition and Classification of a
Stochastic Process

APPENDIX B: QUEUEING MODELS FOR A
SINGLE RESOURCE
Introduction
M/M/1 Server Model
M/G/l Server Model
G/G/l Server Model

APPENDIX C: DATA ANALSIS AND DISTRIBUTION
IDENTIFICATION
Introduction
Data Collection
Distribution Parameters Estimation
Goodness-of-Fit Tests

93

98

105

111

119

vi

LIST OF TABLES

1. Host Resources' Capacities 59

2. Light Workload Parameters 60
3. Moderate Workload Parameters 61
4. Heavy Workload Parameters 62
5. Distribution Test Results for Heavy

G/G Workload 67
6. Distribution Test Results for Heavy

M/G Workload 67

7. Light M/G Workload 72

8. Light M/M Workload 74

9. Light G/G Workload 75
10. Moderate M/G Workload 77
11. Moderate M/M Workload 78
12. Moderate G/G Workload 80
13. Heavy M/G Workload 82
14. Heavy M/M Workload 83

15. Heavy G/G Workload 85
16. Full Migration-Response time Using

Different Communication Speeds for
the Heavy M/G Workload 86

17. Moderate G/G Workload With
Deterministic I/O 88

18. Moderate G/G Workload with Deterministic
I/O for Not Fully Connected Network ... 91

vi i

Cumulative Distribution Function of
the Standard Normal Random Variable ..

Critical Values for Kolmogorov-Smirnov
Test for the Exponential Distribution

vi i i

LIST OF ILLUSTRATIONS

1. Layers and Interfaces Structure 18

2. Decentralized Control Model for
Distributed Systems 37

3. Not-Fully Connected Network 90
A -1. Venn-Diagram for Some Stochastic

Processes 110

B-l. Single Resource Queue Model 114
C - l . Step Points for F(X) Continuous 131

ix

ABSTRACT

DECENTRALIZED CONTROL
OF DISTRIBUTED PROCESSING SYSTEMS

by
AHMED KAMAL EZZAT

University of New Hampshire, December, 1982

This thesis presents a methodology for implementing

decentralized scheduling for distributed systems. The

environment in which the controlling entities make decisions
is stochastic and can be described as uncertain since each
entity may have a different view of the system state. As a
consequence, these entities may make inconsistent decisions.

The methodology is based on defining the system state

as a set of distributions and using a queueing model to

predict the future behaviour of the system. The predicted
state is used to schedule the individual job tasks based on

minimum predicted job response time.

A hypothetical real system is simulated. The

methodology was tested using different queueing models and
under different environments. An evaluation of the proposed

technique using the simulation results indicates a

consistent performance improvement over the no network
case. Suggestions for extending this research are also

presented.

CHAPTER I

INTRODUCTION

Distributed processing systems have now been made
possible by the advancement in microelectronics technology
and the development of efficient cost-effective
interconnection structures. In this research we define

distributed processing system characteristics, survey

problems unique to distributed processing systems, and

propose a control scheme suitable for a distributed
processing systems environment. The term "distributed
systems" will be used as a synonym for distributed
processing systems in the rest of this thesis.

1.1 Characterization of Distributed Systems

The term "distributed system" is frequently used in the

literature to imply a collection of processing elements

(hosts) that are physically and logically interconnected and
share one or more resource(s). This definition includes an
extremely wide range of systems including both loosely
coupled and tightly coupled architectures. Jensen [JEN78]

has proposed a more precise definition intended to exclude

tightly coupled systems on one hand and pure data

communication networks on the other hand.
Following Jensen's definition, the term "distributed

system" refers to a computing system which has the following
physical and logical characteristics which may be
interpreted as general rules to be observed in a distributed

system.

1. The system includes an arbitrary number of system

and user processes.

2. The architecture is modular, consisting of a
possibly varying number of processing elements.

3. Communication is achieved via interprocess
communication architecture. This excludes shared memory

systems.

4. Some system-wide control for all resources is

needed to provide dynamic interprocess cooperation and
runtime management.

5. Interprocess message transit delays are variable
and some non-zero time interval always exists between the
production of an event by a process and the materialization

of this production at the destination process.

3

An important consequence of these characteristics is

that physical characteristics, such as the distance between

components, cannot be used to identify a distributed system.

1.2 Objectives of Distributed Systems

The objectives listed below constitute what is usually

expected from distributed systems in general [LAN81]. These
objectives may not all be meaningful to a particular system

and are probably not equally important. Obtaining these
objectives is complicated by the new problems that should be
taken into consideration, such as the need for system-wide
control to detect and resolve possible conflict without

excessively impairing parallelism, and asynchrony in

processing.

1.2.1 Increased performance - The processing power of a

multiple processor system should certainly be more than the
processing power of the system if treated as independent
single processors.

1.2.2 Extensibility - This means the ability to change the

system performance or the system function without the need

to change the system design. This implies that the system
should be designed on a modular basis.

1.2.3 Increased availability - Availability is defined as

the extent to which a system is able to survive
failures. Most reliability mechanisms existing today are
based on using redundant hardware, software, and data. The

4

existence of several processing elements in a system raises

the opportunity for utilizing mutual inspection techniques
which allow for automatic detection, diagnosis, and
recovery. In another way, if processing elements cooperate

in a decentralized manner, it becomes possible to take full

advantage of redundancy so as to obtain fail-soft computing,
i.e., systems which keep on running in spite of faults,
errors, or failures.

1.2.4 Resource sharing - the term "resource" should be taken

in its widest sense. For example, a resource may be a

physical device, a database maintained at one or more

processing element(s), or system software such as a specific

compiler. Resource sharing involves load sharing and
transparency to implemented architectures. Resource sharing
should not be restricted to remote access to a variety of
resources. The goal is to provide a single computing system

with some system-wide control of all activities; in other
words, the system would appear to the user as a single

virtual machine with optimal and dynamic resource
allocation.

1.3 The Problem and Its Importance

In this research we propose and evaluate a control
technique which would meet the objectives (1.2.1 - 1.2.4) of

distributed systems defined by characteristics (1 - 5)
above.

5

The relationship between objectives (1.2.1 - 1.2.4) and

characteristics (1), (2), and (3) are obvious.

Characteristic (4) is a vital one because it enables
achieving our ultimate goal, the single virtual
machine. Characteristic (5) expresses a very important
physical constraint which must be taken into account in the
design of any control technique for distributed
systems. This is because it excludes any system which is

based on the premise that all processes in the system share

a complete and consistent view of the entire system state at

every instant in time. Such systems are referred to as
centralized ones. In distributed systems, the existence of
such a unique entity is ruled out. Therefore, centralized
control techniques are not suitable for distributed systems.

We conclude that such system-wide control for
distributed systems should be built in a decentralized

manner; consisting of "N" identical physically distributed
entities, where "N" is the number of nodes in the
system. Each entity makes decisions locally on an equal
basis with the other entities based on system-wide
obj ectives.

The environment in which these entities make decisions

is stochastic and can be described by the following
constraints:

. entities may each have a different view of the

system state; consequently, these entities may
make inconsistent decisions;

6

. the difference between what the. instantaneous

system state really is and its representation
communicated to these entities may not be
negligible.

1.4 The Approach to the Problem

In designing a decentralized system-wide control

algorithm for distributed systems, one should address the
following points. First, the objective functions to be
achieved by the control algorithm must be defined. Second,

best decisions for achieving these objective functions under

high uncertainty about the system state must be made. (This
is a unique problem in distributed systems). Third, any

algorithm implementing decentralized control must run
quickly. This is an extremely important aspect of the
algorithm for two reasons. One is to minimize the effect of
uncertainty in the system state which makes any excessively
time-consuming solutions undesirable. The other reason is
to minimize the overhead imposed by the control algorithm on

the system.
The key idea in our approach is to define the system

states by a corresponding number of probability distribution
functions, where each distribution at any point in time is
completely described by an estimate of its first two moments
as functions of time, i.e., the mean(t) and the
variance(t). Using queueing theory models with the new
defined states, we can predict the future system behaviour

7

on which basis we can make decisions. A special technique

called a moving window of observations is developed to

update these estimates for the different entities in the

system. This technique is discussed in detail in a later
chapter.

Each host sends the parameters corresponding to its own
contribution to the system state to every other host in the

system. These parameters can be accessed by the

corresponding entity at each node. Using a simple queueing
model each entity is able to make the decisions needed to

achieve the objective functions of the control algorithm.
We show that decisions taken by the different entities

using this technique should improve the system performance.

1.5 Related Work

This research is related to work in the area of control

and scheduling in distributed processing systems. The
Distributed Computer Network (DCN) at the University of

Maryland [LAY74,MIL76] is intended to be a research tool for
the development and evaluation of resource allocation and
management techniques suited for distributed
environments. The Distributed Loop Computer Network (DLCN)

at Ohio state [REA76] uses the idea of connecting all nodes

of the network in a virtual ring and having a resource

allocating task floating through the ring to serve resource
allocation requests. The ARPANET [KAH72 f ROB70 ,SCH75] high
level protocol RSEXEC operates as a subnetwork of the ARPA

8

network and provides capabilities for remote file and device

access. RSEXEC is based on a virtual-storage and virtual
processor organization. Processes, devices and files can be
accessed from anywhere by a standard communication protocol,
but the user must still be aware of which host he is
utilizing. Stone [ST077] and Bokhari [BOK77], were
concerned with assigning program modules to a processor in a

two processor environment. The assignments were handled as

a commodity flow problem. An attempt was made to generalize
the results to three or more processors with partial

success, but an efficient solution has not yet been
obtained. They also assume "complete information" is
available at a central decision-making point, an approach

that we feel is not realistic in any large distributed

system. Russell and Bergeron [RUS81] at the University of

New Hampshire have implemented a decentralized scheduling

mechanism for a heterogeous distributed system based on task
migration during execution. The scheduling entities
exchange task information and cooperate on the migration
decision. A Distributed Real time Operating System (d-RTOS)
is a distributed computer simulation developed at the

Advanced Research Center in Huntsville, Alabama
[MIC80a,MIC80b,MIC80c]. This work is tailored to a

ballistic missile defense application to achieve maximum
performance at minimum overhead. The resource manager is
fully distributed and consists of five tasks which reside
identically on each computer in the network. Its main goal

9

is to dynamically balance the task load on the different

computers in the network. The work described above, as most

scheduling work in the distributed systems area, is based on
using message exchange and cooperation between nodes in the

network. Instead of using message exchange, our model uses
state prediction to determine task migration. The only
other research which handles scheduling under imperfect
knowledge of the system state was done by Stankovic

[STA 81a, STA 81b, STA 82]. His research is part of the design
of an experimental operating system, called Adaptive

Decentralized Controlled Operating System (ADCOS). ADCOS
and its associated hardware form one computer system that

happens to be physically distributed. The decentralized
control algorithms are generated by a methodology based on

Bayesian Decision Theory and a modified McCulloch-Pitts
Neuron. This research is similar to ours in that we both

make decisions in a decentralized manner based on local
information under conditions of imperfect knowledge of the

system state. Stankovic applied his model to a simpler

environment than ours. Each job is equivalent to a cpu task

whereas our jobs consist of a cpu task, terminal task, and
zero or more I/O tasks which can be deterministic or

nondeterministic. Also, his simulation utilizes FCFS
service discipline whereas ours uses a service discipline
which is close to a round-robin.

10

1.6 Outline of the Thesis

Chapter II discusses different issues in distributed
systems, some of which are common to those in nondistributed
systems, and others are unique to distributed systems. This
chapter also gives a brief overview of an informal model for
a distributed system architecture.

Chapter III presents the functional model. Chapter IV

discusses how to apply this model to a real system

environment. This includes developing some techniques

needed by the model such as updating the system state and
system state initialization. Chapter V discusses in detail
the simulation implemented to test our model. Different

test results are shown under different workload
environments. Analysis and conclusions for our model from

the simulation results are also presented.

Chapter VI summarizes the contributions of this

research and presents possible extensions for future
research.

Appendix A gives a brief review of stochastic processes

as they relate to our research. Appendix B gives a summary
of the different resource queueing models used in our

decentralized control model. Appendix C gives a brief
discussion of the distribution identification problem. One

of these techniques is implemented in our simulation.

This thesis assumes that the reader is familiar with
queueing theory at the level presented in Appendix B.

CHAPTER II

DISTRIBUTED SYSTEM ARCHITECTURE

The area of distributed systems is new and not well
defined. The purpose of this chapter is to survey problems

unique to distributed systems and provide an informal
framework for a distributed system architecture model,
keeping in mind that there are many alternative approaches

to the realization of this and similar models.

2.1 Issues Pertaining to Distributed Systems

Distributed systems have many problems and solutions in
common with nondistributed systems. New problems, however,
are introduced by the physical separation, the potential
heterogeneity of the system components, and the need to have

multiple entities controlling the system [WAT81]. The

following is a discussion of the important problems

introduced by distributed systems:

2.1.1 Identification - We need to be able to distinguish
between various kinds of identifiers used to refer to

11

12

objects at all levels of architecture. Identifiers at

different levels referring to the same object should be

bound together either statically or dynamically. One way to
implement this, is by mapping identifiers into addresses and
routes.

Many problems are added to the design of an
identification system due to the heterogeneous nature of the
system components, each with its own possible local
identification system for accessing objects. Another kind
of problem is in maintaining distributed context and mapping

information in spite of delays and errors in message
transmission, and local or network crashes.

The choice of an identification scheme can affect the
ease or even the possibility of achieving goals, such as:

. Efficient support of both transaction and stream

oriented services. In a transaction oriented

system the application has the identifiers of one

or more resources on which it desires to perform a

given operation, with no implication that these
resources or the operation may ever be used
again. In a stream oriented system, on the other
hand, it is assumed at the start that a stream of
operations may be requested over time against an
identified set of resources. Efficient support of

transaction oriented applications and services
implies minimizing the delay and number of
messages (overhead) that must be exchanged before

13

and after the actual message is sent to perform

the desired function. On the other hand,
supporting efficient stream oriented applications
implies that we want to perform identifier mapping

at most once before or during the first access.

. Global space identification. A system should be

seen as a global space of identified objects

rather than one viewed as a space of identified
hosts containing local objects.

. Relocation of objects. A system should allow an
object to change location. This implies having at
least two levels of identifiers, a name and an

address, and that the binding between them is

dynamic.

. Use of multiple copies of the same

object. Multiple copies are required for
performance and reliability goals. This means a
single identifier at one level can be dynamically
bound to more than one address at a lower level

according to some criteria.

. Broadcasting. A broadcast capability requires

that many different objects be able to share the
same identifier.

2.1.2 Resource management - Allocating and scheduling
resources at the various distributed system hosts is usually

14

based on local decisions, because of the need for local

autonomy for the different resources at each host. Resource

management and state information management are intimately
related. In many distributed systems, one would like to use

resource and state management philosophies at all levels
that could achieve both low delay and high throughput.

Delay is defined as the time interval from the time a
process is ready to send a message until the first useful
bit of the message reaches the destination. Delay is
affected not only by the transmission and queuing properties

of the interprocess communication (IPC) mechanisms, but also

by the overhead messages at one or more layers that may have

to be exchanged to reserve resources, map identifiers,
initialize state variables, etc., before the desired request

or data can be sent.
Throughput is defined as the number of useful data bits

per second that reach the receiver in some

interval. Throughput is affected not only by transmission
and queuing characteristics of the IPC mechanisms, but also

by the amount of identification, control, protection and

other overhead information that must accompany the
meaningful user data object bits.

The principal difference between transaction and stream
oriented communications is the number of identification
mappings typically required. Consequently, minimum delay is

the better goal for a transaction oriented environment,,
whereas maximum throughput is the better goal for a stream

15

oriented environment.

Developing mechanisms that can achieve both low delay

and high throughput in a distributed system is a difficult
task. Tradeoffs exist between quantity of state

information, amount of overhead information carried with
messages, and the number of messages needed to initialize

state information. Because parameters are a function of the
resource management services being supported, one can say

that levels of this service also define trade-offs between

delay and throughput.

2.1.3 Synchronization - The term synchronization refers to
mechanisms used by cooperating entities to coordinate access

to shared resources or to order events with some means to

keep the system in a consistent state.
In the absence of any particular assumption, the only

way to preserve consistency is to guarantee that operations

remain atomic [K0H81], i.e., operations are executed one
after the other in a strictly sequential fashion. An
operation is atomic iff all intermediate states are not
visible to any other operation. To explain the principle of

atomic operations by example, let us assume two operations
A ,B ; for each resource R K shared by A and B, let {aj } be

the set of actions of A that access R K and {bj } the set of
actions of B that access R K . Then A and B are atomic if

ftfor every action a in {a; } a occurs before b for every b in
{b^ }, or all a occurs after all b. Having specific
assumptions, it is possible to relax conditions of atomicity

16

for operations and still preserve consistency. Clearly, if

actions activated by a given set of operations manipulate
different objects, parallel execution of actions is
certainly recommended.

It should be clear now that atomicity implies that it

is possible to express or enforce a particular ordering on
any given set of events so as to preserve system state

consistency, which is the purpose of any synchronization
mechanism. For distributed systems where operation
executions involve a number of processing elements, it is
easy to see that variability in propagation d e l a y (i.e.,the

time delay between the production and materialization of an
event) may disturb any particular event ordering which was

supposed to occur.

2.1.4 Error control - Error control implies error detection

and recovery. Two schemes for error control are discussed
using the concept of recovery points [LAN81]. A recovery
point is a recording of all needed information whereby a

consistent state of the system may be-reinstalled.

One scheme is the "backward error recovery", where on

error detection all activities of any operation are rolled
back to the last recovery point. The other one is the
"forward error recovery" scheme, which depends on the
possibility of detecting the consequences of a fault; it
allows activities not affected by the error to proceed to
the next recovery point, and those which are affected or
will be affected to roll back to the last recovery point.

17

These two schemes are based on the utilization of those

recovery points. Defining the recovery points in a

distributed environment is clearly much harder and perhaps

infeasible.

2.1.5 Other problems - These include translation issues

resulting from heterogeneous data encoding and
representation at the different hosts; the need for a
message base IPC model; the need to maintain consistency

among multiple copies of information; the need to have a

uniform resource structure which can support distributed

objects.

2.2 A Model Based on Layers

A model which provides a framework for solving these

problems should be based on the techniques of layering,
message passing, and creation of abstract objects.

The concept of modular and layered design or levels of
abstraction [IS079] has been widely accepted as good

software engineering practice. Such concepts when applied
to the design of a distributed systems could result in the
organization shown in figure 2-1 [WAT81]. Associated with a
layer N are two interfaces. Each layer N provides a
well-defined set of services at the interface to layers N+l
and higher. In turn, layer N is implemented using the

services provided through interfaces with layer N-l and
lower. The layers may be partially ordered since many
abstractions at higher levels may involve only some or none

18

services provided co one
or more higher layers

layer N co higher
layer interface

Host (B)Host (A)
Ineera layer

service interface

Layer N Layer "N1
modules

layer N to lower
layer interface

services from one or
more lower layers

Figure 2-1. Layers and Interfaces Structure

I

19

of the abstractions at some particular level below.

Designing a distributed system architecture requires:

. decomposing the system into layers and sublayers

according to some set of criteria;

. specifying the services to be offered by layer N

to higher layers;

. specifying the services layer N requires of lower
layers.

The services of layer N may be further decomposed into
modules. The modules implementing a service of a given
layer may in turn be distributed. Modules, like layers,

provide a well-defined set of services at their interfaces

and their internal implementation is not visible on the

other side of this interface.
The above description identifies two interfaces, one

between adjacent layers and one between cooperating modules
within a given layer. Generally, an interface is defined as
a set of conventions for the exchange of information between

two entities. It consists of a set of abstract objects and

for each object a set of allowed operations and associated

parameters.
The model is based on the idea of having a distributed

operating system (DOS). One of the major design goals of a
DOS is to provide users with access to real and abstract
objects or resources [JON78] in which the distributed nature

20

of their implementation is hidden as far as practical. In
addition, all objects (system and user defined) are named,
communicated with, and shared uniformly. Real objects are
entities such as processors, secondary storage, I/O

devices. DOS abstract objects or resources are entities
such as processes, files, directories, and databases, which
are used as a set of basic building blocks for creating
higher level objects. Objects at each level interact

through, and are created from, lower level objects.
Each type of resource or object is specified by:

. a set of data structures visible at the interface

(object representation);

. a set of operations or functions and associated
parameters that can be performed on the object
representation.

Two resources are said to be of the same type iff they

have the same specifications (representation and

operation). These specifications are implemented by one or

more modules called server(s). Servers can be implemented
by hardware/firmware or a set of procedures (processes).

The implementation details of a resource representation
are of concern only to a particular server. Two different
servers implementing a resource of a given type, such as a
file, might internally structure the files they manage quite

differently, while presenting the same specification
(representation and operations) externally at the

interface. This characteristic is important in dealing with

the heterogeneity that results when a DOS is built on top of

existing operating systems or even implemented directly on
heterogeneous hardware/firmware components.

2.3 The Model Layers

Watson's model for distributed system architecture

consists of four basic layers, meeting the layering

guidelines and having the concept of objects and their
interaction presented above:

. A hardware/firmware component layer - This layer
consists of processors, memories, I/O units,

terminals, etc.

. A distributed operating system kernel/IPC
layer - This layer provides the minimal general

purpose services such as creation of abstract

objects, interprocess communication (IPC), and
interfacing I/O structures to the message passing

m o d e l .

. A distributed operating system service

layer - This layer provides services useful to a
wide variety of applications such as resource

allocation and process creation, management, and

deletion services.

22

. An application layer - This layer contains

processes that provide application dependent
serv ices.

An important characteristic of Watson's model is that

it explicitly recognizes the need for having a distributed

operating system. Most of the existing literature on

distributed systems or computer networking has focused on
interprocess communication. Developments to date have made
valuable services possible such as access to remote
interactive programs from terminals on heterogeneous
systems, simple file transfer, and electronic
mail. However, there have been very few applications of

resource sharing or distributed computing as defined in
Chapter I. Adding one or more function-oriented protocols,
such as file transfer protocols, built on top of the IPC
layer is not going to offer resource sharing to support
distributed systems as defined in Chapter I.

It is clear that an explicit distributed Kernel/IPC

facility should be created as a core of the distributed

operating system architecture model. The DOS should provide

two basic facilities:

. It should turn a collection of distributed

hardware/software resources into a coherent set of
real and abstract objects (resources). The
Kernel/IPC layer must support naming, sharing,
protection, synchronization, and error recovery

23

. It should multiplex and allocate these resources

among distributed processes and possibly in a

distributed manner.

The DOS must provide this functionality in the face of

the problems of heterogeneity and physical separation of
components. In the rest of this chapter we are going to
discuss in more detail the model layers starting from the

top layer.

2.3.1 Application layer - The service provided by the

application layer is clearly dependent on specific

applications. Process management, communication,
information management, virtual I/O and accounting are the
usual services needed in different forms by all
applications.

The issue here is how to organize and structure the

processing, the data and other resources both physically and

logically. For example:

. How should processing be distributed? Should it

be distributed on a functional separation basis, a
given level of fault tolerance, or other goals?

. Is the control of the application distributed or

centralized, and how does the application process

maintain synchronization?

. How should data be distributed? Should files be
strictly partitioned, fully redundant, or

24

partially redundant? The decision will depend on

cost factors such as money, reliability,
responsiveness and also on available mechanisms to
support consistency of multiple copies.

. What features should be in the languages used in
addition to those desirable in a nondistributed

systems? One view of distributed system design

uses layers of abstraction to create the illusion
of a nondistributed system at some level. How
pure should this illusion be? How many of the
distributed system naming, error control and
resource management facilities should be visible

and under user control, and which should be
handled automatically by the system?

The application layer should provide answers for these

questions.

2.3.2 Pistributed operating system service layer - The

services required by this layer are'very similar to their
counterparts for nondistributed systems including the
ability to create and destroy resources, interrogate their

status, read and write their data structures, account for
their usage, and start and stop them. Services in this

layer access objects in the lower kernel layer via
interrupts and privileged commands, and those in the higher
application layer via the message based IPC facility. In
this layer, we still have the question about how much

25

resource management, error control, etc., should be visible

at the DOS interface.
There are many approaches to defining a distributed

operating system. One is to build a DOS on top of existing

operating systems. Another is to define a DOS built as the

native system on each host. In any case, common DOS goals
are the following:

. Processes, terminal users and programmers should
have a uniform coherent view of distributed

objects. This means that the user should not have

to program differently or use different procedures

depending on resource location, i.e., host

boundaries are largely or completely hidden.

. The DOS structure should be efficiently
implemented. This means that access by local
users to local services should be as efficient as

a nondistributed operating system in terms of the
number and kind of messages exchanged or overhead

for the same operations.

. The DOS should be extensible. This implies that

users can easily add new services built on
existing services without requiring system
programmers to add new privileged code. In other

words, the focus would be on the definition of
general purpose abstract objects and operations

that can be used as building blocks for objects of

26

higher levels of abstraction, rather than

elaborate definitions of restricted objects and
operations producing restricted functions.

. The DOS should define standard models for logical
server, resource structure, protection, error
control, resource management, etc.

2.3.3 The distributed system kernel layer - The services to
be provided by the kernel could vary depending on
assumptions about the underlying hardware support, security,
and applications to be supported. However, it is desirable
to place the minimum functionality possible in the
kernel. Services expected from the kernel layer are:

. Interprocess communication service (IPC). This
service should provide the most primitive process

synchronization mechanism.

. A message oriented interface to I/O
structures. This service converts interrupts from
I/O devices into messages to the kernel, and
messages from the kernel into low level I/O
commands.

. Basis for other services. The kernel should also

provide the basis for creating processes;
primitive objects; I/O resources; protection and
security; and component multiplexing.

27

Even though it is the responsibility of this layer to
create processes, the responsibility of managing these
processes would reside in server processes outside the

kernel.
Organization of the kernel will vary from one system to

another depending on whether it is built from the
hardware/firmware up or is built on top of existing

operating systems. Of all the layers and sublayers, the IPC
is best understood because most of the work in networking in
the last decade has been focused on the IPC

[CCI80,WAT80a,WAT80b]. Briefly, the design of the IPC

service should allow the following goals:

. Each communicating entity should have complete

autonomy and control over its own resources and
state.

. There should be no a priori restrictions on which
processes can communicate with each
other. Knowing a process identification should be

sufficient to communicate, not including possible
access restrictions.

. Efficient support for both transaction and

stream-oriented services should be provided.

. The user should have a uniform view of the system,
by allowing communication among all processes to
use the same mechanism, whether processes are

28

local or remote or whether they are user or system

processes.

2.3.4 Hardware/firmware components - Most existing

hardware/firmware components were designed to be used in
standalone or tightly coupled systems. In distributed
systems, it is important to utilize components that are more
appropriate for a message oriented, heterogeneous,
communication environment. Some examples are: I/O

structures that provide more efficient IPC; components that

support system state information and efficient privacy;

intelligent components that can be directly connected to the
network; and generally enabling much of the architecture to

be placed in firmware.

2.4 Summary

The main features of Watson's distributed system

architecture model introduced in this chapter are:

. layering and modularity;

. the need to explicitly create a distributed
operating system built around a unified view of

objects or resources;

. a message based IPC;

. support for both transaction and stream oriented

services and applications.

CHAPTER III

FUNCTIONAL MODEL FOR

DECENTRALIZED CONTROL IN DISTRIBUTED SYSTEMS

The principle goal of this work is to develop a viable
decentralized system-wide control for distributed systems.
The main goal of the model is to be able to make decisions
locally to schedule job tasks to the available resources in

the system. This is done in an uncertain environment for

the good of the whole system according to some performance

objectives. In order to achieve this goal, we need a

definition of system state and a means for predicting a
future system state. In such an environment our solution is
to make decisions based on predicted values for the actual

system state. In this research we assume that each job
consists of a group of tasks, one task for each resource

required by the job. A task can be deterministic (one which
has a predetermined location for the resource) or

nondeterministic (one which has no predetermined location
for the resource). We also assume that the task's
description is known upon the job's arrival to the system,

29

30

i.e., the number of operations required by the task from the
resource, and a measure of the task length defined as the

number of bytes to be used for estimating the communication
cost for the task. A typical job consists of a CPU task and

possibly one or more I/O task(s).
In the rest of this chapter, we will discuss in details

the following points:

1. uniform resource model;

2. system state representation;

3. performance goals for the distributed control

model;

4. factors not affecting the model;

5. databases needed for the model;

6. the task allocation algorithm;

3.1 Uni form Resource Model

A resource can be viewed as a data structure*l
(possibly distributed) which represents the resource, plus a
set of all operations that can be performed on that

resource. In turn, the data structure (resource
representation) consists of two major parts:

. The resource state record (heading). This part of

the data structure contains resource independent
information such as creation time, last access

time, access rights, etc.

. The resource proper (body). This part of the data
structure contains resource dependent
information. For example, the body of a file
resource may be the information itself and how to
access it, i.e., the format to store or retrieve

the information.

The functions required to perform operations on the

data structures consequently can be classified into two main
groups. One group performs operations on the resource state

record data structure and involves accessing or modifying
the resource heading. The other group performs operations

on the resource body and are clearly resource dependent. A
third group of functions is needed to create and destroy a

resource.

3.2 System State Representation

In order to implement a decentralized control model we

m u s t :

1. define a representation for the system state;

2. be able to estimate the current system state;

1. For more details on abstract data types and data
structures, refer to [GUT77,SHA77].

3. be able to predict the future system state.

3.2.1 Definition of system state - The system state is
basically defined in terms of the resources in the

system. A resource state is defined by: The resource
workload arrival time distribution? the resource workload

service time distribution? and the resource capacity. A

node state is defined as the collection of the individual
resource states at the node. The system state is defined as
the collection of the node states in the system.

3.2.2 Estimation of the current system state - Since each

node in the system has the ability to make scheduling

decisions, each node must have an approximate value

(estimation) of the current system state. Because of

communication delays, a node's knowledge of other node's
resource states will always be more or less inaccurate. To
get other node's states, there are two main approaches:

. Centralize the system state information and make

it available on demand to any remote process that
needs it. This approach does not require saving

the system state at each node and is relatively

more accurate. However this approach requires
high overhead and is less reliable since failure
of the central node affects all nodes.

. Replicate the system state information at every

node and update it periodically. This approach

33

requires saving the system state at each node. It

is less accurate because of delays in

updating. However this approach allows more

concurrent decisions to be taken simultaneously
and is more reliable as functioning of the system
is independent from any node in the system.

We chose the second approach and use a "moving window
technique" to update the system state at each node. This

technique is discussed in detail in Chapter IV.

3.2.3 Prediction of the future system state - The

representation of each state by a distribution allows the
local controllers at each node to use the past history of
the state to predict the actual present and future value of
the state. We hope that this approach will minimize the
effect of the communication time delay and its

variability. Estimation of the resource state distribution

parameters is discussed in detail as part of the

distribution identification problem in Appendix C.

3.3 Performance Goals of the MOdel

The proposed model makes decisions based on predicted

response time defined as the difference in time between job
completion and job arrival to the system.

34

3.4 Factors not Affecting the Model

The model is not affected by the physical
implementation of the following factors even though the

model needs information related to them, such as the actual
communication cost.

. Network switching policy. The model does not

depend upon whether the network is implemented

using circui t swi tching (a physical path is
actually established between the source and
destination nodes), or packet switching (messages
are divided into packets and routed through the
interconnection network without establishing a

physical connection path).

. Network topology. The model is not affected by

the network topology or whether the topology is
static (the links between nodes are passive and
dedicated) , or dynamic (links can be

reconfigured).

. Routing algorithm. This refers to a mechanism

establishing which path the message is going to

take between the source and destination

nodes. Although the model is not affected by the
physical implementation of the routing algorithm,
it uses an estimation for the communication cost
which must be calculated by the routing algorithm.

35

3.5 Data-Bases Needed for the Model

Two databases are needed as a part of the resource

state record. One has static information such as resource

name, how to reach the resource (address), and resource
capacity. This database is updated only on resource
addition/failure. The other database has dynamic
information representing the workload arrival and service
time distribution parameters for each resource in the
system. This information is updated dynamically whenever

the resource state changes beyond a predetermined limit.

3.6 Task allocation algorithm

A decentralized task allocation algorithm is one

algorithm composed of "N" physically distributed entities,
{e, ,ea ,. . .. ,eM } . Each of the entities is considered a local

controller running asynchronously (potential performance
improvement) and concurrently with the others, continually
making decisions over time. Each entity "e-," makes

decisions based on system-wide objectives, rather than on

local ones. Each e-, makes decisions on an equal basis with
the other entities (no master entity). It is intended that
the task allocation algorithm adapts to the changes in the
state of the various nodes in the system.

It is hypothesized that these controlling entities
acting together can produce greater benefits than

cost. These include the cost of running the algorithm
itself, the cost of transmitting the update information, and

36

the cost of moving the jobs between hosts.

Upon job arrival at any node, the local controller will

assign the individual job tasks (CPU and I/O tasks) to
server queues for the resources available in the system in a

manner which achieves the model objectives (see
Figure 3-1). For example, a job can arrive at node "j" and
be migrated to node "i" where the CPU task will be executed,
and from node "i" perform I/O tasks possibly at other

nodes. Decisions taken by the local controllers in the
general form are based on minimizing the total time cost (T)
given by the estimated job response time. Defining the
response time depends on the way the job is executed in the
system. There are two main approaches to defining the job
response time:

1. We can assume that all the tasks belonging to

one job start execution together and

independently, i.e., parallel execution. The
response time will be defined as the summation
of the cpu task migration time from the
arrival node to the assigned cpu task
execution node plus the maximum time for

executing any of the job tasks including
necessary communication cost for I/O tasks.

2. We can assume that the various tasks of the

job alternate execution in time, i.e., serial
execution. The response time will be defined

L.

37

Interconnection
conmunicaclon

aacworlc"'
CPTJ-L

asternal
Job
arrival

]— « Perlpheral-l

Jh.

Figure 3-1. Decentralized Control Model for
Distributed Systems

38

as the sum of the cpu task migration time from

the arrival node to the assigned cpu task
execution node plus the summation of the
execution time costs of all the job's tasks

individually. I/O tasks which are not

executed at the cpu task node include their
communication time cost as part of their
execution time cost.

We feel that the second approach is closer to what

happens in a real system.
On arrival of a new job to the system (consisting of N

nodes) at node "j " , the local controller at the job arrival
Inode will calculate the estimated total time cost (Tj), for

assigning the job to each of the nodes in the system, i=
I1, 2, ..,j ,..,N. Estimation of Tj will depend on the

resource queueing model we assume. In the simulation We use
three models M/M/1, M/G/l, and G/G/l. A brief description
of each model and their steady state analysis results are

presented in Appendix B. Of particular importanats are the

equations for computing the estimated time a process wait in
resource queue before starting execution. We can thus

compare the simplicity of the M/M/1 model, the more accurate
but relatively more complicated M/G/l model, and the G/G/l
model which is the closest to the real environment but
substantially more complex. The local controller will
assign the job tasks to the system resources corresponding

\to minimum Tj .

39

3.6.1 Computing cost for one allocation - For a system

having "N" nodes, let us assume an external job which

arrives at node "j", consists of a cpu task and only one

nondetermini Stic I/O task. Given a possible allocation for

the CPU task to node "i" and the I/O task to node "k", apply
the task allocation algorithm. The predicted job response

itime (Tj) for that specific allocation would be:

response time=Cy, + (time cost for CPU task) +

(time cost for I/O task)

=c ji + (T -u +T tx) + (T',3+TW+Ti5)

Where:

Cjj ..Estimated time cost for migrating the CPU
task from the arrival node "j" to the CPU
task execution node "i", i.e., the size of

the CPU task (Scpa) multiplied by the cost of

communication from node "j" to node "i" per

unit size (c ;•) .dl

ji = Scpu*c S»

T •„ ..Estimated "waiting time" at node "i" before

the CPU task starts execution. This cost
depends on the model used to represent the

CPU resource, i.e., M/M/1, M/G/l or G/G/l

model. Formulas for these models are given

in Appendix B. In the case of the M/M/1
m o d e l :

40

T P l u C j
1 - p cpu

Tix..Estimated execution time for the CPU task at

node "i".

T i3 ..Estimated time cost to access the required

I/O resource from node "i", i.e., the size of
the I/O task (S-,j0) multiplied by the cost of
communication from node " i" to node "k" per

unit size (C.(K) .

..Estimated "waiting time" for the I/O task

before it starts execution. This cost
depends on the model used to represent the

I/O resource. In the case of the M/M/1
m o d e l :

T ;_ ..Estimated execution time for the I/O task atID

node "k".

We can see that T-„ and T-,¥ are the only components

which depend on the resource model representation used,
i.e., M/M/1, M/G/l or G/G/l model.

T]x=ij u o)cpa

T i3 = S-, /o * C ' , k

I ------
t

41

In a real system environment, the job arrives at node

"j" and we want to find node 11 i" and node "k" to allocate

the job tasks achieving the system objectives. Applying the
above algorithm for all possible allowed combinations, the

job tasks will be scheduled according to the allocation
combination which gives minimum cost. Assume T j is the
total time cost for one specific allocation (CPU task to
node "i" and I/O task to node "k") and apply the following

algorithm:

for (i=l TO N){
assign CPU task to node "i";

for (k=l TO N){

assign I/O task to node "k";
if K

compute T ̂ ;

}

}

Schedule the CPU task to node " i" and the I/O task to
\,K

node "k" having minimum Tj of all possible combinations.

3.6.2 General job task allocation cost - In general, a job
may consist of a CPU task, "m" deterministic I/O tasks, and
"n" nondeterministic I/O tasks. The general equation for
computing the predicted job response time for any one

specific allocation is the summation of the estimated time

cost for migrating the cpu task from the arrival node "j" to
the cpu task execution node "i" and the sum of the time cost
of the cpu task plus all I/O tasks of the job individually

42

including their communication cost.

As discussed in Chapter IV, it is not always necessary

to apply the full general algorithm in a real world
system. Most probably there will be only a limited number

of nodes accessible from a particular node. This means the
algorithm will require less time to perform the task
allocation calculations.

3.7 Conclusion

The decentralized control model presented in this

chapter offers a promising approach to the uncertainty
problem in the system state of distributed systems. It
offers a compact representation of the system resource
states, and requires simple calculations which implies low

overhead.

CHAPTER IV

APPLICATION OF THE MODEL

4.1 Introduction

Chapter III presents relatively simple model for making

scheduling decisions based on queueing theory. If all the
assumptions embedded in the model are correct for a given

environment, we could utilize the model for scheduling
without requiring further validation. However, there are
several important assumptions that do not generally hold in
real systems. First, the resource queueing models used in
the prediction (M/M/1, M/G/l or G/G/l) assume First Come
First Service (FCFS) service scheduling, whereas real

systems usually use a form of scheduling that is more like

round robin. Second, in calculating the estimated time
required to finish a job, we assume that the job consists of

a set of independent tasks. In this chapter we discuss how
the scheduling model of Chapter III can be applied to a real
system. In this case, however, the analytical results are
not sufficient - we must verify the validity of this

43

44

application by simulation. We hope that the simulation

results will show a consistent performance improvement using

our model.

4.2 A Feasible Real Environment

In order to simulate the performance of our model, we
must create an environment that approximates a real
environment. This environment has the following

characteristics:

1. Job description. A job is assumed to be one cpu

task, one terminal task, and zero or more I/O

tasks. The terminal task is always assumed to be
executed at the arrival host independent of the
algorithm used for scheduling. I/O tasks can be
deterministic (predetermined location for

execution) or nondeterministic (location is
determined by the scheduling).

2. Resource scheduling. Scheduling of all resources

at every host uses a round-robin discipline for as
many tasks up to the resource
capacity. Additional tasks must wait in another

queue until capacity is available before they
enter the round-robin queue. Each task utilizes a
percentage of the resource capacity until it is

d o n e .

45

3. Task description. The task descriptions are

known, i.e., number of operations required per
task and a measure of the task size which is used
to estimate communication cost.

In large distributed systems, it is likely that the

network would be partitioned into a set of overlapping

subnetworks, i.e., each node is only allowed to communicate

directly with part of the network. This issue of
partitioning is not considered in our research, i.e., we
assume that a job at any node in the network can access any
resource at any other node in the network. This is not a
major restriction since partitioning can be reflected by

assigning appropriate communication costs between nodes.

4 . 3 Task Allocation Scheduling Algorithm

This section describes the three allocation algorithms

that are implemented and compared via the simulation.
Upon external job arrival, the local controlling entity

using any of the three schedulers - will allocate the job
tasks according to minimum predicted response time as

discussed in Chapter III. In the mean time, each local

controlling entity updates the resource's state to the

network using a moving window technique. This technique is
discussed in detail later in the chapter. The main
difference between the three algorithms is the degree of
freedom in scheduling the job tasks to the different
resources in the network. We assume that each job consists

46

of a CPU task, a terminal task, and zero or more I/O
tasks. For all three algorithms, the terminal task is
always assigned to the arrival node resource, and

deterministic I/O tasks are assigned to the corresponding

predetermined node resources.

1. The Joint Migration Algorithm

The local controlling entity may schedule the cpu task
and nondeterministic I/O tasks to any node in the network
but they must be assigned to the same host. The time cost

for executing this algorithm is linearly proportional to the

number of nodes in the network.

2. The I/O Migration Algorithm

The local controlling entity schedules the CPU task to
the arrival node, but each nondeterministic I/O task can be
scheduled independently to any node in the network. The

time cost of this algorithm is only slightly better than the
full migration algorithm discussed below.

3. The Full Migration Algorithm

Both CPU task and nondeterministic I/O tasks can be
scheduled independently to any host in the network. This
approach should achieve the optimal minimum response
time. However, the time cost for executing the algorithm
can be high - it is proportional to N , where N is the

number of nodes in the network and r is the number of tasks

47

to be allocated for the job.

In general, each scheduler allocates tasks based on

calculating a predicted cost for executing the job assuming
a specific allocation pattern. In doing this, each resource
can be treated as an M/M/1, M/G/l or G/G/l queueing
model. All models were tested in the simulation under

different workloads to see the tradeoffs between them.
The three schedulers were simulated using the three

queueing models and the performance of each were compared to
the base-line case where no migration is allowed, i.e., both
CPU task and nondeterministic I/O tasks must be allocated to
the arriving host.

The simulation results provide important insights into

the feasibility of the scheduling algorithms, the different
resource models, and the effects on performance improvement

of migration and communication costs.

4.4 Moving Window Technique

The resource state is represented by the workload
arrival distribution, the workload service time
distribution, and the resource capacity. It is clear that

both arrival and service time distribution parameters will
vary with time as the workload on the resource

varies. Updating these two distribution parameter values

involves two issues.

48

1. How much time is needed to estimate the

distribution parameter values? We define a window
of time within which we retain sufficient data to
be able to compute these distribution

parameters. The window moves forward in time with

system time. Window size is defined as the most

recent period of time used to estimate the state
distribution parameters.

2. How often is the resource state updated? In this
regard we have a tradeoff between a high update
rate which means imposing high overhead on the

communication capacity of the network, and a low

update rate which means a greater chance that the

current state value does not represent the actual
value.

4.4.1 Window si ze - It is possible to define either a
fixed-sized window or a variable-sized window.

1. Fixed window si ze - With a fixed size window of

size "T", the tasks that have arrived at a

resource during the most recent "T" time units are

used in estimating the arrival and service time
distribution parameters. This approach can not
handle both high arrival rate and low arrival rate

efficiently. In the case of high arrival rate, a
small window will contain enough tasks to be able
to calculate the distribution parameters

49

accurately. In the case of low arrival rate, we

will need a larger window in order to have enough

tasks to be able to calculate the distribution

parameters. Now, if we have a fixed window size

which is enough to estimate the distribution
parameters in case of low arrival rate (large
window size) this means an unnecessary overhead
when the workload changes to high arrival

rate. On the other hand, if we choose the window
size small enough to handle high arrival rate

efficiently, the window may be too small to handle
a low arrival rate.

2. Variable window si ze - With a variable size window
the controlling entity maintains enough past
history to allow us to calculate the arrival and

service time distribution parameters.

We have chosen the second approach because it is more

accurate and more efficient. If we assume that at least "M"

tasks are required to be able to calculate the distribution
parameters. Then at any point in time, the window size
would be "M" multiplied by the current mean interarrival
time between two tasks at that resource. This means also

that at any point in time, every resource in the network
will have a different window size, and for any specific

resource the window size is variable with time according to
the workload variations on this resource. On the other

50

hand, the storage overhead for maintaing the data is

constant, and the window size is linearly proportional to
the total average arrival rate at a resource for all
resources independently.

4.4.2 Resource state updating rate - There are two

approaches to selecting the state update rate:

1. Fixed rate state update - Having a fixed rate of
state update does not allow the system to respond
to system state variations. If we have high fixed
rate of state update, there will be high overhead

when the system state varies slowly. On the other
hand, having a low fixed rate of state update may

lead to making decisions based on the wrong system

state.

2. Variable rate state update - This approach

basically tends to update the system state only
when the system state changes significantly.

We chose the second approach. In our model

recalculations are made following each time period equal to

the mean interarrival time for that resource. Using the

current window size ("M" multiplied by the current mean
interarrival time for this resource), we calculate the new
arrival time and service time distribution parameters. If
the percentage difference between the new state and the old
state is higher than a predetermined value, update the

51

system state. Having new parameter values will affect the

next time to check the state of the resource (mean

interarrival time for the resource) and the window size.

4.5 Resource State Initialization

Estimating the resource state (arrival time and the

service time distribution parameters) is based on using the
past history of the workload on the resource. At system
start time, the resource does not have a history about its
state. In a real system, these values would be determined

based on experience. In the simulation, we initialize the

resource arrival time and service time distribution

parameters with the corresponding values of the arrival and
service time distributions for jobs arriving to the node

which has this resource. Knowing no history for the
resource, this seems to be a reasonable guess for the
resource's initial state. Each local controlling entity
will adapt its resource state with time. In other words,

the controlling entities will adjust its resources' states
as it learns more about its history. This approach of

handling the initial resource states has a special case
which must be handled separately. Let us assume that one
node in the network has no external job arrivals (mean job
interarrival time is infinity and mean service time is
zero). This means that the next time the controlling entity
at this node updates the resource states at the node will be
at time infinity, i.e., the resource states at this node

52

will never be adapted to the arrival of the internal task

arrivals in the network. Consequently, all nodes in the

network will think that this node's resources are free all
the time and migrate their tasks to that node even though
eventually the resources at this node will become heavily
loaded. Our solution to this specific case is to force a
maximum time to recheck the resource state. This value is

defined as four times the initial average time to update the

states at other nodes in the network.

4.6 The Model Operation

The controlling entity at each host has access to a
data base representing the system state (i.e., distribution
parameters for each resource in the system). On system

start-up, the initialization phase takes place where each
local controlling entity initializes its resource states

(initial resource arrival time and service time distribution
parameters) as discussed in the previous section. Upon mean
interarrival time elapsing for any resource, the local
controlling entity recalculates the new resource state (new
arrival time and service time distribution) and compares
them to the old values and updates the resource state in the

network if the difference exceeds a fixed predetermined
percentage. As implemented, the local task allocation

controlling entity has two options.

1. The resource can be treated as an M/M/1, M/G/l or
G/G/l queueing model.

53

2. The algorithm doing the task allocation can be any
of the three algorithms - joint migration, I/O
migration or full migration.

On external job arrival to any node, the local

controlling entity according to the type of scheduling
(algorithm) will allocate the different job tasks to the

available resources in the system using the current local
values for the resource state distribution
parameters. Arrival of a migrated task to its assigned

resource will affect this resource's state the next time the
local controlling entity updates the resource state.

CHAPTER V

SIMULATION OF THE

DECENTRALIZED CONTROL MODEL

5.1 Introduction

This chapter is intended to describe the simulation

model used in testing and evaluating our decentralized
control model under different workload environments. The
entire simulation and auxiliary programs were implemented
under the UNIX operating system using the C programming

language [RIT78]. As implemented, the simulation can run

many different variations of the basic scheduling model

applied to any workload for an arbitrary network. In order
to interpret the results of the simulation in a reasonable
fashion, we present here comparative results of running nine
variations on nine different workloads for a fixed

network. We then present results from isolated experiments

using other workloads and networks. Comparison between the

various tests are based on job mean response time (the mean

time a job spends in the system), load balancing of system

54

55

resources, and the number of migrations. It is important to

note that all algorithms are relatively simple and require

minimal run time cost.

5.2 Workload Description

5.2.1 Workload characteristics. The workloads used in the
simulation are divided into three sets, light, moderate, and

heavy. A 1 ight workload is defined as a workload which if

equally balanced in the network will give around twenty
percent cpu utilization in the network. A moderate workload
is defined as a workload which if equally balanced in the
network will give around forty percent cpu utilization in
the network. A heavy workload is defined as a workload

which if equally balanced in the network will give over

sixty percent cpu utilization in the network. In addition,

the workloads used can be categorized by their arrival and
service time distributions as follows:

1. M/M Distribution Workload. The arrival is

generated from a Poisson . distribution, and the
service time is generated from exponential
distribution. The purpose of generating this kind

of workload is to be able to compare the
performance of applying the M/M/1 resource
queueing model and the M/G/l resource queueing
model, i.e., comparing the use of both resource
models under a workload which is typically biased
to the M/M/1 resource model.

56

2. M/G Pistribution Workload. The arrival

distribution is generated from a poisson

distribution, and the total service time is

generated from a general distribution. The

general distribution can be generated from any
arbitrary distribution defined by its mean and
variance. In all our workloads, the general
distribution is generated from a normal
distribution. The purpose of generating this kind
of workload is to be able to compare the

performance of the M/M/1 resource model under a

general service time distribution with the more

accurate M/G/l resource model for this workload.

3. G/G Distribution Workload. The arrival
distribution is generated from a normal
distribution and the total service time is
generated from a normal distribution. The purpose
of generating this workload is to compare the

M/M/1 and M/G/l resource queueing models under a
workload that does not have Poisson arrival and

Exponential service distributions.

5.2.2 Workload Generation. The workload inputs to the
simulation are generated separately. Input data to the
workload generator program includes the following

information: Number of hosts in the system, maximum number

of deterministic I/O tasks allowed in a job, maximum number

57

of nondeterministic I/O tasks allowed in a job, total

simulation time, and parameters for each host including the

following:

1. Arrival distribution type and its - parameter
values. The arrival distribution can be Poisson,
defined by its mean, or normal, defined by its

mean and variance.

2. Total service time distribution. The service time

is defined as the sum of the service times
required by all tasks of a job, i.e., cpu,
terminal, and I/O. The total service time can be
generated from an exponential distribution,
defined by its mean, or a normal distribution,

defined by its mean and variance. We actually

generate the total number of operations required

by a job instead of the total service time so that
the job is independent of specific resource
capacities. The total number of operations
generated is then divided among the job's
individual tasks on a random basis using a
uniformally distributed random number generator.

3. For the terminal and I/O tasks, we assume the

number of operations required by the individual

tasks also represents the size of the task in
bytes to be used as a measure for the
communication cost. In effect, each operation

58

represents the transfer of one byte. Since there

is no direct correlation between the size of a
program and the number of operations it executes,
another distribution was used to determine the cpu

task size.

The network was selected to consist of five hosts with

each host having three resources: a cpu, a terminal, and an
I/O resource. The capacities of the resources can be
assigned for each host independently. In most of the tests
reported here we assumed identical hosts with the resource
capacities shown in table 5-1. It is important to mention
that M/G and G/G workloads are generated separately but from

distributions having the same mean and variance to ensure
equivalent total resource demand for both workloads over a
sufficiently long period of time. Similarly, programs were
developed to generate equivalent M/M workloads from the M/G

workloads
The parameters of the different M/G and G/G workloads

are shown in tables 5-2a, 5-2b, 5-2c. . There are no explicit

parameters for the M/M workloads since they were regenerated

from the actual M/G workloads.

5.3 The Simulation Model

The simulation model, consists of a network of an

arbitrary number of hosts with any required topology. The
topology of the network is represented by the communication

costs in a routing table. Each host is represented by a cpu

resource type capacity

CPU 300 M oper./hr

terminal 90 K oper./hr

I/O 300 K oper./hr

TABLE 5-1. Host Resources' Capacities

Hoat
nuaber

G/G (Ganaral arrival/Genaral service distribution

interarrival
naan

intararrival
variance service

tlna
service
variance

CPU
length

CPU
length
variance

1 0.25 0.0025 0.3 0.003 A0 10

2 0.35 0.0035 0.3 0.003 AO 10

3 0.50 0.0050 0.3 0.003 A0 10

A 0.50 0.0050 0.3 0.003 A0 10

3 1.00 0.0100 0.3 0.003 A0 10

Seat
M/G (Poiaaon arrlval/Ganaral service distribution)

nuaber arrival
rata

naan
service
clae

service
variance

CPU
lengch
naan

CPU
length
variance

1 A.O 0.3 0.003 A0 10

2 3.0 0.3 0.003 A0 10

3 3.0 0.3 0.003 A0 10

A 2.0 0.3 0.003 A0 10

3 1.0 0.3 0.003 A0 10

TABLE 5-2a. Light Workload Parameters (time units in hours,
task length units in Kbytes)

Hoat
number

G/G (General arrival/General service distribution

Intararrival
oisfa

interarrlval
variance

naan
service
eiaa

service
variance

CPU
lengthmoan

CPU
length

variance

1 0.1666 0.001666 0.3 0.003 40 10

2 0.1666 0.001666 0.3 0.003 40 10

3 0.2500 0.00250 0.3 0.003 40 10

4 0.3333 0.00333 0.3 0.003 40 10

S 0.5000 0.0050 0.3 0.003 40 10

Hoat
M/G (Polaaon arrival/Genaral service distribution)

nuaber arrival
rate

mean
service
time

service
variance

CPU
lengthmaatj

CPU
length
variance

1 6.0 0.3 0.003 40 10

2 6.0 0.3 0.003 40 10

3 4.0 0.3 0.003 40 10

4 3.0 0.3 0.003 40 10

5 2.0 0.3 0.003 40 10

TABLE 5-2b. Moderate Workload Parameters (time units in hours,
task length units in Kbytes)

Hose
number

G/G (GonaraX arrival/General sarvica distribution

incerarrlval
T M I W I

lncararrlvai
variance

me nit
sarvica
eioa

service
variance

CPU
length
naan

CPU
length

variance

1 0.1 0.001 0.3 0.03 40 10

2 0.1 0.001 0.3 0.03 40 10

3 0.2 0.002 0.3 0.03 40 10

4 0.2 0.002 0.3 0.03 40 10

5 0.25 0.0025 0.3 0.03 40 10

Hose
M/G (Polsson arrlval/Ganaral sarvica distribution)

nuaber arrival
rata

aean
service
elaa

sarvica
variance

CPTJ
length
wean

CPU
length
variance

1 10.0 0.3 0.03 40 10

2 10.0 0.3 0.03 40 10

3 s.o 0.3 0.03 40 10

4 s.o 0.3 0.03 40 10

5 4.0 0.3 0.0 3 40 10

TABLE 5-2c. Heavy Workload Parameters (time units in hours,
task length units in Kbytes)

63

resource, terminal resource, and one I/O resource. The

units of time in the simulation is hours. Delay due to

communication in the network is modeled as a simple

function, i.e., the size of the information in Kbytes to be
sent multiplied by a corresponding communication cost per
Kbyte supplied to the system in the form of the routing
table. The cost of running the algorithm is considered
fixed.

Three algorithms are implemented as discussed in the

previous chapter. Any of the three algorithms can use

different models representing the resources in the

prediction process used in scheduling jobs upon
arrival. This includes the M/M/1, M/G/l, and G/G/l queueing

models.

5.3.1 Statistics. The following statistics are gathered:

1. The utilization of each resource in the network;

2. The mean time a task spends at a specific

resource;

3. The mean time a task spends in the queue of a

resource;

4. The mean time a job spends in the system;

5. The total number of jobs which arrived to the

network during the simulation period;

64

6. The total number of jobs completed;

7. The total number of cpu tasks migrated;

8. The total communication cost in the network.

5.3.2 Resource State Update. The arrival and service time

distribution parameters are updated upon task arrival to the

resource or elapsed mean interarrival time for this

resource. Resource state update uses the moving widow
technique discussed in the previous chapter.

5.3.3 Job Execution. A job starts execution only after the

cpu task arrives at the executing host and all its tasks can
have their requirements from the different resources'
capacities. Each task requires a certain percentage of the

resource capacity based upon how the task relates to the
other tasks comprising the job. In a real system the

various parts of a job alternate execution - some cpu, then
I/O, more cpu, more I/O etc., with considerable
cooperation. To approximate that behaviour without
simulating it exactly, we have spread out the execution of

each task over the total time required to complete the
job. We have accomplished this as follows:

1. Compute total job execution time as the sum of the

cpu task execution time, the terminal execution
time, I/O execution time, and total communication
c ost.

65

2. Calculate each task percentage requirements from

its corresponding resource as the task time

divided by the total job time.

3. Assign only that percentage of the resource

capacity to this task.

In other words, if a job's cpu task is 10% of its total

time, then its cpu task will be assigned 10% of the capacity
of the host executing it. This is similar to the effect of
any multitasking scheduling such as round-robin.

5.3.4 The Bias. The bias is a variable included in the

simulation to compensate for the inaccuracies inherent in

the model since the state information is necessarily
uncertain as described in Chapter III.

Some inhibitation to migration is desirable to ensure
stability. This bias against migration is defined as a
percentage of the job execution time at the arrival
host. The bias is closely related to the window size used

for calculating the resource state and the workload.

5* 4 Distribution Identification

We have discussed different' types of workloads and
different resource models used by the scheduling
algorithms. It is important to note that even though the

external arrival at a specific resource may be Poisson,
there is no reason to believe that the total effective

arrival at the resource (external arrivals plus internal

arrivals from other hosts) will be Poisson. It is important

to be able to get conclusions from comparing the above

workloads under different resource models to know the
goodness-of-fit of our hypothesized distribution*2. We

implemented a goodness- of-fit test to test on-line the
hypothesis that the arrival process is drawn from a Poisson
distribution and the service process is drawn from an

exponential distribution according to a predetermined level

of significance. This test is activated for every resource
in the system every time the resource state is updated,

i.e., every time a task arrives at a resource and every mean
interarrival time for the resource.

At the end of the simulation, as part of the statistics
gathered in the simulation, there is a summary for each
resource in the network indicating how often the arrival
distribution was Poisson, and how often the service

distribution was exponential to a predetermined level of
significance. These statistics help to provide better

understanding of the results of the application of different
resource models to the same workload. Table 5-3a, 5-3b show
the workload distribution statistics for the heavy G/G
workload when no migrations are allowed and when using the

full-migration algorithm respecively. Table 5-4a, 5-4b show

2. A survey of the distribution identification problem and
the goodness-of-fit tests are discussed in Appendix C.

67

resource arrival service
type Poisson expon.

CPU 12% 15.6%

term. 0.7% 5.7%

I/O 2.7% 21.2%

resource
type

arrival
Poisson

service
expon.

CPU 5.5% 6.8%

term. 0.72% 5.4%

I/O 5% 15.5%

a. No Migration b. Full Migration

TABLE 5-3. Distribution Test Results for Heavy G/G Workload

resource arrival service
type Poisson expon.

CPU 73.8% 12.2%

term. 78.4% 7.1%

I/O 71.1% 7.8 %

resource arrival service
type Poisson expon.

CPU 46.3% 9%

term. 78.3% 7.1%

I/O 50% 6.3%

a. No Migration b. Full Migration

TABLE 5-4. Distribution Test Results for Heavy M/G Workload

68

the same statistics for the heavy M/G workload. Both
results were tested under a fully connected network with
communication capacity of 55.5 Kbyte/sec and a bias of
35%.These tables show that the implemented distribution

identification scheme is working correctly, and also that

the internal migrations reduce how often the arrival
distribution is Poisson as shown in table 5-4a, 5-4b.

5.5 The Task Allocation Algorithm

In Chapter IV we discussed the three algorithms which

are implemented in the simulation:

1. Joint migration. The cpu task and the

nondeterministic I/O's are scheduled anywhere in

the network but together as one unit.

2. I/O migration. The cpu task is scheduled to the
arrival host and the nondeterministic I/O's are
scheduled anywhere in the network and
independently.

3. Full migration. The cpu task and all

nondeterministic I/O's are scheduled anywhere in

the network and independently.

As a base line of comparison, a fourth scheduler was
implemented where the cpu task and all nondeterministic
I/O's are forced to be executed locally, i.e., no task
migrationsare allowed. For any of the schedulers, a

69

resource in the network can be represented as an M/M/1,

M/G/l or G/G/l queueing model. However, we present only a

few results using the G/G/l model because this model has no

accurate simple equation for the estimated waiting time for

a task at a resource before it starts execution. There are
only relatively simple lower and upper bounds as a function
of the resource utilization. In the G/G/l model we assume a
linear interpolation between the lower bound and the upper

bound for waiting time as a function of the resource

utilization.

5.6 The Simulation Parameters

The following is a list of the simulation parameters:

1. The workload category, i.e., light, moderate or
heavy;

2. The workload distribution type, i.e., M/G, M/M or

G/G;

3. The resource model, i.e., M/M/1, M/G/l or G/G/l;

4. The scheduling algorithm, i.e., full migration,
joint migration or I/O migration;

5. Network topology and communication cost;

6. The bias;

7. The window size;

70

8. The level of significance used for distribution

identification.

It is clear that it is impossible to try every possible
combination of parameters. Some variables, however, are not
crucial for the purpose of our tests. Since our goal is to

understand and validate the model, we have chosen one

homogeneous fully connected network for most tests. A

simple structure helps in understanding the effects of
varying other parameters. Most of our experiments used 55.5
Kbyte/sec communication speed. A set of early tests showed
a window of size twenty tasks and a 20% level of
significance for distribution identification were reasonable

and they were used in all tests described below.

5.7 Simulation test goals

The main goals of the simulations tests presented are:

1. Evaluate the performance of different resource
models under different workloads.

2. Evaluate the effect of communication cost on the

different models.

3. Validate the workload distribution at any resource

with respect to the resource model used.

4. Determine the value of the bias.

71

5.8 Simulation Results And Analysis

This section presents the simulation results, compares

the different algorithms and discusses the applicability of

the different resource models.
Three main workload sets were used in the simulation as

discussed above (table 5-2). Before the network simulation
was run for every workload, it was decided to obtain an
upper bound on response time for the system. Therefore, the
five hosts of our model were run for each different workload

with no task migrations, i.e., cpu task and nondeterministic
I/O tasks must be executed at the arrival host. The

performance of the system with no migration is then used as

a baseline for comparing the results of the other
simulations.

5.8.1 Light Workload Set

1. Poisson arrival/General service distribution

(M/G). For the no migration case table 5-5a shows
the resource utilization in the network. Applying

the full migration algorithm for the same workload
with different biases, a homogeneous fully
connected network with communication cost of 55.5
Kbyte/sec using both the M/M/1 and M/G/l resource
models, table 5-5b shows the response time and
corresponding number of migrations which tends to

be flat for bias values over 20%. Table 5-5c
shows the resource utilization in the network for

72

Hose
nuabor

cpu
uclliz.

tarn
UCllll.

I/O
acllls.

1 0.38 0.108 0.348

2 0.31 0.092 0.314

3 0.20 0.064 0.193

4 0.19 0.058 0.218

3 O.U 0.042 0.141

rasponsa eiao ■ 0.231776
t of Jobs coaplaead ■ 233
Toeal t of Jobs “ 239

Hose
m&ba?

CPU
ueillz.

cam
lit 1112.

I/O
tielllz.

1 0.34 0.107 0.303

2 0.29 0.089 0.289

3 0.21 0.064 0.193

4 0.19 0.058 0.219

5 0.16 0.043 0.202

rasponsa elaa “ 0.227544
of Jobs cosplacad » 233

a. No Migration c. Full Migration - M/G/l
Resource Model Resource
Utilization Utilization

Bias oz 10Z 13Z 20Z 23Z 30Z 40Z 30Z

rasponaa
Mao 0.3799 0.2723 0.2324 0.2387 0.2370 0.2309 0.2302 0.2317

M/M/1 # of
Affaciona 172 78 41 28 24 14 4 1

t ot Joba
coaplacad 232 234 232 233 233 233 233 233

rasponsa
Mas 0.4116 0.2436 0.2336 0.2273 0.2296 0.2302 0.2317 0.2318

M/C/1 # at
Acraelooa 171 37 23 17 10 6 0 0

t ot joba
coaplacad 232 232 233 233 233 233 233 233

b. Full Migration - Response Time
Using Different Resource Models

TABLE 5-5. Light M/G Workload

73

the M/G/l resource model. This algorithm shows

little improvement (1.8%) in response time and not

much improvement in load balancing.

2. Poisson arrival/Exponential service workload
(M/M). This workload is generated from the light
M/G workload, table 5-6a shows the no migration

case, table 5-6b shows results of the full
migration algorithm using M/M/1 with improvement

8.5% and the M/G/l model with improvement 6.6%

under a bias of 20%. The M/M/1 model gives better
results because it matches the M/M workload better
than the M/G/l model does. Table 5-6c shows the

resource utilization for the M/M/1 model.

3. General arrival/General service workload

(G/G). For the no migration case, table 5-7a
shows the resource utilization in the

network. Table 5-7b shows the results of applying
the full migration algorithm under a 20% bias and
communication cost of 55.5 Kbyte/sec using the
M/M/1, M/G/l, and G/G/l. Table 5-7c shows the
resources utilization in the network for the M/G/l

m o d e l .

Generally for the light workload, there is little or no

improvement since there is sufficient capacity at each host
to handle the external arrivals to that host efficiently,
i.e., there is little or no incentive for migration. An

74

Hose
nuabar

CPU
utillz.

ears
uclllz.

I/O
utillz.

1 0.41 0.116 0.407

2 0.39 0.065 0.316

3 0.18 0.056 0.202

4 0.24 0.049 0.185

S 0.09 0.031 0.174

rasponsa elaa ■ 0.304049
t of jobs complaead ■ 232
Total t of Joba “ 239

Hoat
nuabar

CPU
utillz.

earn
utillz.

I/O
utillz.

1 0.29 0.114 0.290

2 0.33 0.068 0.242

3 0.24 0.054 0.250

4 0.23 0.049 0.256

5 0.23 0.031 0.252

rasponsa elaa • 0.2780
t of jobs contplacad • 232

a. No Migration
Resource
Utilization

C. Full Migration - M/M/1
Model Resource
Utilization

aJS
UO00
< re

sp
on
se

tl
oe

osa0
u
03UO 00

** a f
of

jo
ba

co
mp
le
te
d

no
mlgrafc. 0.304 0 232

M/M/X 0.278 76 232

M/G/X 0.284 61 230

b. Full Migration - Response Time
Using Different Resource Models

TABLE 5-6. Light M/M Workload

75

Hoat
uumbar

CPU
uclllz.

cam
utillz.

I/O
uclllz.

1 0.43 0.13 0.372

2. 0.29 0.107 0.297

3 0.21 0.065 0.196

4 0.18 0.071 0.197

S 0.09 0.035 0.101

response elaa ■ 0.190337
$ of joba cooplaced " 236
Total t of Joba “ 239

Hoat
number

CPU
uclllz.

ears
uclllz.

1/0
uclllz.

1 0.373 0.13 0.335

2 0.294 0.107 0.297

3 0.209 0.065 0.196

4 0.197 0.071 0.197

5 0.154 0.035 0.138

response elm* > 0.19005
0 of joba completed ■ 236

a. No Migration c. Full Migration - M/G/l
Resource Model Resource
Utilization Utilization

a■a44•HW000
< re

sp
on
se

ci
ne

f
of

mi
gr
at
io
ns

t
of

jo
bs

co
mp
le
te
d

oo 0.1903 0 236migrac.

M/M/1 0.1912 25 236

M/G/l 0.1900 13 236

G/G/l 0.2431 91 235

b. Full Migration - Response Time
Using Different Resource Models

TABLE 5-7. Light G/G Workload

76

interesting result was the output of the G/G/l workload. We
believe that the 27% degradation of performance is caused by
the fact that our linear interpolation approximation is not
accurate, at least at low resource utilization.

5.8.2 Moderate Workload Set

Taking the same procedure as in the light workload set:

1. Poisson arriva1/General service workload
(M/G). For the no migration case, table 5-8a
shows the resource utilization in the
network. Table 5-8b shows the results of the full

migration algorithm using M/M/1 and M/G/l resource

models under different biases. This table shows

also that the response time tends to be flat after
a 20% bias. Table 5-8c shows the resource
utilization in the network for the M/G/l resource
model with bias 20%. The improvement over the
base line is 14%.

2. Poisson arrival/Exponential service workload

(M/M). Table 5-9a shows the no migration resource
utilization in the network. From table 5-9b we

can see that the full migration algorithm using
M/M/1 gives 20% improvement, and using the M/G/l
model gives 11.6% improvement. Table 5-9c shows
the resource utilization for the M/M/1 model.

77

Hoat
auabar

OT
utillz.

can
uclllz.

I/O
uclllz.

1 0.61 0.169 0.538

2 0.31 0.165 0.49

3 0.38 0.108 0.348

4 0.31 0.092 0.314

5 0.21 0.064 0.193

response
i a i jot
Tocal t

elaa ■0.313488
>• coaplacad ■ 390
o£ joba. " 399

a. No Migration
Resource Utilization

Hose
auabar

OT
uclllz.

cam
uclllz.

I/O
uclllz.

1 0.45 0.163 0.386

2 0.44 0.161 0.388

3 0.41 0.11 0.39

4 0.36 0.094 0.359

5 0.34 0.064 0.336

rasponsa elms ■ 0.2713
t a t Joba cosplacad ■ 390

c. Full Migration - M/G/l
Model Resource
Utilization

Uaa oz 10Z 20Z 25Z 30Z 40Z 30Z

rasponsa
etaa 0.59*6 0.3962 0.2950 0.2833 0.2826 0.2841 0.2864

M/M/1 # of
derations 295 187 100 75 67 47 26

t ot Jobs 385 386 390 390 390 390 390

ratpeoM
das 0.5778 0.3002 0.2713 0.2801 0.2895 0.2897 0.2874

M/C/1 # ot
■Uzadoas 303 113 65 58 48 27 21

t ot Joba
cosplacad 385 390 390 390 390 390 390

b. Full Migration - Response Time
Using Different Resource Models

TABLE 5-8. Moderate M/G Workload

78

Hoac
auabar

CPU
uclllz.

earn
uclllz.

I/O
uclllz.

1 0.64 0.172 0.605

2 0.55 0.164 0.619

3 0.41 0.116 0.407

4 0.39 0.065 0.316

5 0.18 0.056 0.202

rasponsa elaa * 0.525601
t of Joba coaplacad ■ 387
Tocal t of Joba » 399

Hoac
auabar

CPU
uclllz.

earn
uclllz.

I/O
uelllz.

1 0.43 0.172 0.449

2 0.36 0.167 0.341

3 0.43 0.109 0.422

4 0.44 0.064 0.456

5 0.48 0.053 0.424

raaponaa elaa » 0.4184
of Joba cosplacad » 382

a. No Migration
Resource
Utilization

c. Full Migration - M/M/1
Model Resource
Utilization

a
•S

k*o
03

<

a<B
Soa. a O S

ac0■MW
4
U

O 00
•a* « ■

4.S 4) O « ^ 4
pa*

■3 I1
« 3

no
mLgrac. 0.5256 0 387

M/M/1 0.4184 180 382

M/6/1 0.4645 161 382

Full Migration - Response Time
Using Different Resource Models

TABLE 5-9. Moderate M/M Workload

79

3. General arrival/General service workload

(G/G). Table 5-10a shows the no migration

resource utilization. For the moderate workload,

a new experiment was run to determine the effect
of communication cost on the response time and
number of migrations. Table 5-10b compares the
performance of the various models at 55.5

Kbyte/sec communication speed. The improvement
for the M/M/1 and M/G/l model are 7% and 15.7%

respectively. The G/G/l model is 31% worse than

the baseline. Table 5-10b shows also a variety of

communication speeds for the M/G/l
model. Variations from different communication
speeds are uniform. This result occurs due to the
nature of the jobs in the workload which place a

relatively small demand on communication relative
to the cpu and I/O demands. Table 5-10c shows the

resource in the network utilization using the

M/G/l m o d e l .

Generally, under the moderate workloads, the M/M/1 and
M/G/l models show performance improvements over the baseline
of no migrations, but the G/G/l model is still worse. This
further supports the belief that our approximation is not

accurate. It is also worth noting that the relative

performance of the M/M/1 and the M/G/l are fairly close in
all workloads.

80

Hoac
auabar

CPU
uclllz.

cam
uclllz.

I/O
uclllz.

1 0.47 0.2 0.48

2 0.52 0.2 0.43

3 0.46 0.13 0.37

4 0.41 0.11 0.35

S 0.35 0.06 0.34

response elaa “ 0.2478
t o f Jobs completed ■ 412

Hose
auabar

CSV
uclllz.

earn
uclllz.

I/O
uclllz.

1 0.599 0.1975 0.582

2 0.66 0.199 0.505

3 0.44 0.129 0.372

4 0.293 0.105 0.293

5 0.209 0.065 0.196

response elaa “ 0.29384
i o f Jobs cooplacad " 409
Tocal t o f Jobs “ 420

a. No Migration c. Full Migration - M/G/l
Resource Model Resource
Utilization Utilization

Casa. Cose 2.22
Kbyte/eec

5.55
Kbyte/see

55.5
Kbyte/sec

0.55
Mbyte/sec

10
Hbyce/sac

M/M/1

response
elaa 0.2731

t of
atgrstions 79

t of Jobs
coapleced 412

M/S/1

response
cme 0.2423 0.2507 0.2478 0.2405 0.2404

f of
msretlons 55 58 59 57 57

of jobs
coapleced 411 412 412 412 412

a/a/i

response
else 0.3853

/ of
atgrsclons 107

t of Jobs
. esaplscsd 408

b. Full Migration - Response Time
Using Different Communication
Capacities

TABLE 5-10. Moderate G/G Workload

81

5.8.3 Heavy Workload Set

1• Poisson arrival/General service distribution
(M/G). Table 5-lla shows the no migration case
resource utilization in the network. Table 5-llb
shows the results of the full migration algorithm

using the M/M/1 and M/G/l resource models under

different biases. This table shows that unlike

the light and moderate workloads, there is a clear
optimal bias for both resource models under heavy
workloads. Because both models had very close
performance in the range 30-40%, we have chosen
35% as a compromise optimal bias for both. The

M/G/l model shows an improvement of 48.1% over the
baseline and the M/M/1 model shows 45.4%

improvement. Table 5-llc shows the resource

utilization in the network for the M/G/l model
under a 35% bias.

2. Poisson arrival/Exponential service distribution

(M/M). Table 5-12a shows the no migration case
resource utilization in the network. Table 5-12b

shows the results of the full migration algorithm

using the M/M/1 model which yields a 30%

improvement and the M/G/l model which yields 42%
improvement. Table 5-12c shows the resource

utilization for the M/G/l model in the network.

82

Hoac
auabar

CPU
uclllz.

ears
uclllz.

I/O
uclllz.

1 0.87 0.246 0.838

2 0.85 0.274 0.848

3 0.50 0.138 0.434

4 0.45 0.15 0.452

5 0.38 0.107 0.344

rasponsa elaa • 1.045712
f a t joba cosplacad » 586
tocal i of jobs “ 652

Hose
auabar

cptr
uclllz.

cars
uclllz.

I/O
uclllz.

1 0.674 0.289 0.701

2 0.665 0.302 .0.670

3 0.655 0.143 0.611

4 0.620 0.149 0.569

5 0.613 0.115 0.593

rasponsa elaa • 0.5423
t a t jobs cooplacad « 622

a. No Migration
Resource
Utilization

c. Full Migration - M/G/l
Model Resource
Utilization

Bias OZ 10Z 20Z 30Z 33Z 40Z 50Z

rasponsa
das 1.0083 0.9193 0.7413 0.5956 0.5707 0.5543 0.5789

M/H/l t at
attentions 491 460 377 297 246 217 133

t ot jobs
cosplacad 393 590 613 619 619 623 620

rasponsa
etas 0.9603 1.037 0.7309 0.5369 0.5423 0.5462 0.5583

M/G/l I of
attndeoa 499 476 333 223 193 164 138

ot jobs
coaplscod 596 388 606 619 622 620 628

c. Full Migration - Response Time
Using Different Resource Models

TABLE 5-11. Heavy M/G Workload

Hoac
auabar

cm
uclllz.

earn
uclllz.

I/O
uclllz.

1 0.316 0.228 0.846

2 0.77 0.269 0.862

3 0.523 0.154 0.506

4 0.508 0.148 0.575

5 0.418 0.114 0.404

raaponae elaa ■ 1.392
i of joba cosplacad “ 569
Tocal t of Joba " 652

Hoac
auabar

CPU
uclllz.

eerm
uclllz.

I/O
uelllz.

I 0.639 0.242 9.668

2 0.577 0.326 0.631

3 0.629 0.146 0.631

4 0.649 0.135 0.674

5 0.642 0.109 0.683

raaponaa elaa “ 0.3036
t of joba coaplocad * 599

a. No Migration
Resource
Utilization

c. Full Migration - M/G/l
Model Resource
Utilization

az:
**WO30•m<

a
9
a0a. q
9 a41

ae0
M
9

•M U O 30
^ fl

a ̂.£ 9 9 w ^ 41sis« o

an
algrac. 1.392 0 569

M/M/1 0.3534 314 603

M/G/l 0.3036 317 599

b. Full Migration - Response Time
Using Different Resource Models

TABLE 5-12. Heavy M/M Workload

84

3. General arriva1/General service distribution

(G/G). Table 5-13a shows the no migration

resource utilization in the network. As shown in
table 5-13b the full migration algorithm with a

fixed bias 35% and 55.5 Kbyte/sec communication

speed gives substantial improvement: 54.4%, 55.4%,
and 49.7% for the M/M/1, M/G/l, and G/G/l models
respectively. Table 5-13c shows the resource
utilization in the network for the M/M/1 model.

Generally the M/M/1 resource model seems to be stable

and performs very close to the M/G/l model under different
environments. The G/G/l model performs very poorly. Even

though it does better than the baseline for the heavy
workloads, it is still worse than either of the other
models. As a result of these conclusions, we decided to use

only the M/M/1 model on the heavy G/G workload for
additional experiments described below.

5.8.4 Various Communication Speeds

To test the effect of the communication speed on any of

the algorithms discussed before, we selected the heavy M/G
workload and changed the resource capacities in the network
to make the communication delay a more effective factor in

the scheduling process. Applying the full migration

algorithm and using the M/M/1 model under different
communication speeds, table 5-14 shows that the algorithm is
stable as the communication speed changes from 2.22

85

Hose
amber

CPU
uclllz.

term
uclllz.

I/O
uclllz.

1 0.86 0.291 0.816

2 0.885 0.275 0.767

3 0.535 0.162 0.477

4 0.549 0.174 0.434

5 0.442 0.131 0.376

paapmea f-fT*m a 1.235791
a t Jobe complscsd “ 600
Total t a t Jobs “ 678

Hose
amber

CPU
uclllz.

term
uclllz.

I/O
uclllz.

1 0.75 0.33 0.67

2 0.72 0.31 0.65

3 0.71 0.16 0.60

4 0.72 0.17 0.61

5 0.68 0.13 0.60

response time • 0.56304
t a t Jobs completed " 651

a. No Migration
Resource
Utilization

c. Full Migration - M/M/1
Model Resource
Utilization

Cum. Case 2.22
tbyes/see

5.55
Kbyte/sac

55.5
Kbyte/see

0.55
Mbyte/sec

10
Mbyte/sac

M/M/1

response
elm 0.5630

* of
■derations 160

at Jobs
consisted 651

M/C/1

response
tim 0.5718 0.5621 0.5508 0.5389 0.5389

1 of
nitrations 142 138 137 ' 139 139

of jobs
comleced 655 659 656 654 654

C/C/1

response
elm 0.6207

» of
nitrations 165

t of Jobs
eonplacad 651

b. Full Migration - Response Time
Using Different Communication
Capacities

TABLE 5-13. Heavy G/G Workload

Comm. Cost 2.22
Kbyte/sec

5.55
Kbyte/sec

55.5
Kbyte/sec

0.55
Mbyte/sec

10
Mbyte/3ec

M/M/1

response
time 0.037196 0.03704 0.03680 0.036775 0.036774

II of
migrations

6 13 22 23 24

It of jobs
completed 650 650 650 650 650

Mo - migration response time ” 0.037308
It of jobs completed - 650
Total It of jobs ■ 652

TABLE 5-14. Full Migration - Response Time Using Different
Communication Speeds for the Heavy M/G Workload

87

Kbyte/sec to 10 Mbyte/sec. The response time consistently

decreases and the number of migrations slightly increases.

5.8.5 G/G Workload With Deterministic I/O

This test utilized a G/G workload in which each job had
one deterministic I/O task plus one or two nondeterministic
I/O tasks. Table 5-15a shows the no migrations resource
utilization. Applying the full migration algorithm and

using the M/M/1 model under various biases, table 5-15b

shows that the bias for the minimum response time is 40% and

yields an improvement of 35% in response time. Table 5-15c
shows the resource utilization in the network with bias 40%.

Table 5-15b shows also the response time for the full
migration, I/O migration, and joint migration algorithms,

using the M/M/1 model with a fixed bias of 40%, and
communication speed of 55.5 Kbyte/sec. Even though the

results here show close performance for the three
algorithms, it is important to mention that other
experiments show that normally the joint migration algorithm
gives closer performance to the full migration than the I/O

migration algorithm. Occasionally the joint migration
algorithm even performed better than the full migration. We

believe that the joint migration is a feasible alternative

in most real environments. We would expect significantly

worse performance only in a heavily loaded network with
nodes that have widely disparate relative capacities of
their CPU and I/O resources.

Boat OTJ earn I/O Hoat cpo can I/O
number uclliz. uclllz. ueillz. niabar uclllz. uclllz. uclllz.

1 0.63 0.212 0.888 1 0.54 0.26 0.849

2 0.62 0.19 0.905 2 0.50 0.22 0.835

3 0.38 0.126 0.784 3 0.47 0.12 0.795

4 0.42 0.121 0.788 4 0.48 0.11 0.839

5 0.31 0.103 0.405 5 0.50 0.10 0.796

response else ■ 2.00266 response das • 1.304
t at joba cospleced * 545 t at Joba esoplaead * 593
Total t of job* • 680

a. No Migration c. Full Migration - M/M/1
Resource Model Resource
Utilization Utilization

Bias 202 302 352 402 502

Joinc
migrac.

M/M/1

response
time 1.3682

it of
migrations 290

It of jobs
completed 585

1/0
migrac.

M/M/1

response
time 1.3739

It of
migrations 0

It o t jobs
completed 585

Full
migrac.

M/M/1

response
time 1.3569 1.327 1.334 1.304 1.334

It of
migrations 328 275 257 229 207

It of jobs
completed 588 590 587 593 584

b. Response Time - Bias for the Three Algorithms

TABLE 5-15- Moderate G/G Workload with Deterministic I/O

89

5.8.6 Not Fully Connected Network

The above workloads with nondeterministic I/O tasks
were tested under the network configuration shown in

Figure 5-1 under different biases. Table 5-16 shows that a

bias of 40% gives the minimum response time yielding an
improvement of 36%.

5.8.7 System initialization. In order to test the

sensitivity of the algorithm performance to initialization,
we reran the heavy G/G workload with the M/M/1 model with
initialization factors that were far from their true
values. The results were almost identical to the results
with correct initialization. We believe that any

initialization which discourages migrations during the
startup period will lead to a reasonable performance result.

5.9 Conclusions

We can summarize the conclusions presented in the

previous section as follows:
For light workloads, there is not much performance

improvement, but the algorithm should be tuned to guarantee
stability.

For moderate workloads, there is a performance
improvement of around 20% over the no migration case and
more improvement in load balancing in the network. Also the
M/M/1 model gives stable results that are very close to the
M/G/l model in a variety of workload environments.

90

Moderate Light Heavy

Heavy

hose55.5 Kbvte/sechosehose

Moderate

hose hose

Figure 5-1. Not Fully Connected Network

I

91

Hose
nuabar

CPU
uclllz.

can
uclllz.

I/O
uclllz.

1 0.64 0.217 0.902

2 0.63 0.179 0.886

3 0.38 0.123 0.791

4 0.41 0.111 0.749

5 0.31 0.103 0.403

rsopoosa claa * 1.9814
(of Jobs coaplacad ” 343
Total # of Jobs • 680

Host
ouabar

CPU
uclllz.

can
uclllz.

I/O
uclllz.

1 0.34 0.236 0.818

2 0.48 0.218 0.813

3 0.31 0.123 0.832

4 0.50 0.113 0.832

5 0.47 0.092 0.814

rasponsa claa - 1.2339
of Jobs eoaplaead • 392

a. No Migration c. Full Migration - M/M/1
Resource Model Resource
Utilization Utilization

Blu 20Z 30Z 40Z 50Z

M/M/1

rasponaa
claa 1.3538 1.2906 1.2539 1.3707

9 of
algrsclona 323 276 237 203

9 of jobs
eoaplaead 591 592 592 586

b. Full Migration - Response Time
for Different Biases

TABLE 5-16. Moderate G/G Workload with Deterministic I/O
for Not Fully Connected Network

92

For heavy workloads, there is a clear performance

improvement of around forty percent over the no migration

case and resource utilization statistics show very good load

balancing in the network. The bias for minimum response
time is almost the same for both M/M/1 and M/G/l
models. The G/G/l model is not suitable for implementation
since its performance is unstable and worse than both the
M/M/1 and M/G/l models.

C H A P T E R VI

C O N T R I B U T I O N S A N D F U T U R E R E S E A R C H

6.1 Contributions

The major contribution of this thesis is the
establishment of a methodology for implementing a
decentralized scheduling mechanism for distributed

systems. Our approach is to handle the problem in a similar
way to the prediction problem in modern control theory,

i.e., using the past history to predict the actual and
future system state with a form of feedback to guarantee
system performance improvement. This approach required
solving two problems:

1. Defining the system state and making it
independent of a specific system implementation.

2. Building a model which can use these states in

predicting the actual and future state of the
system.

93

94

The system state is defined as the collection of

resource arrival and service distributions. By using

queueing theory models, we can predict on-line the future
system state, in an attempt to minimize the uncertainty in

the system state.
The following are the important conclusions of our

model demonstrated by the simulation.

1. The simulation indicates that the uncertainty
problem in the system state can be approached

using the past history of the resource to predict

the actual system state. The simulation indicates

also that representing the past history of a

resource by a distribution is reasonable and
valid.

2. The moving window technique discussed in Chapter

IV for updating the system state proves to be
efficient, i.e., it requires low overhead cost,

and is a stable technique for updating the system

state. By stability we mean that, even if the

system is initialized in an incorrect initial
state, it was shown that the system will converge
to the correct system state after a transition
period. This transition period is a period in
which the system learns more about its history.

3. The results of using the M/M/1 model show very

comparable results to the M/G/l model even under a

95

general distribution (G/G) workload. This result

is important in the applicability of the algorithm

proposed because the M/M/1 model requires simpler
calculations.

4. The simulation shows that the algorithm gives
significant improvement if tuned properly. It

seems that the performance of the algorithm is

more sensitive to the bias under heavy workloads
than under light or moderate workloads.

5. We believe that, depending upon the topology of a
network and the nature of the workload, either the
full migration algorithm or the joint migration

algorithm can be used.

6. The results of using the G/G/l model with the

linear interpolation approximation proved to be
not useful as it often gives worse performance
than the no migration case, and worse performance
than the M/M/1 and M/G/l models consistently.

6.2 Future Extensions

The research presented in this thesis can be extended

in several areas.

1. Improving the way the simulation executes the

jobs, i.e., executing the jobs in the simulation
closer to a real round-robin.

96

2. Addressing more carefully the interdependence
between the different tasks belonging to one job.

3. Incorporating in our model more performance

variables such as throughput.

4. Incorporating the effect of task migration on the

communication capacity.

5. Evaluating the M/M/1 resource model under
different general distributions other than the
normal distributions.

6. Investigating the relation between the bias and

the window size.

7. Implementing the M/M/1 resource model in our
simulation using round-robin scheduling rather
than first come-first service scheduling.

8. Investigating the possibility of allowing

remigration after scheduling.

9. Investigating the possibility of adapting the

model to handle the unknown job description. We

can see two approaches to handle this problem:

1. Assume the job description as the average job
description at the arrival node.

97

2. Let the job start execution at the arrival

node and gather statistics to identify the

nature of the job and then evaluate whether

to reschedule the job to another node.

10. Implementing other models in our simulation such
as the Bayesian model (or others) for performance

comparison purposes.

BIBLIOGRAPHY

[BOK77]

[BRI80]

[CCI80]

[CLA80]

[GR073]

[GUT78a]

[GUT78b]

[HOF80]

[IS079]

Bokhari, S. H. , Dual Processor Scheduling with
Dynamic Reassignment, The Second Distributed
Processing Workshop, Brown University, Providence,
Rhode Island, (Augustl977) .

Britton, D. E . , and Stickel, M. E . , An
Interprocess Communication Facility for
Distributed Applications, Proc. Distributed
Computing, (Septemberl980), 590-598.

CCITT Rapporteur Report, X.25, Characteristics of
Concern to Transport Services Working Paper, ANSI
Document Number X3537-80-32R, (Aprill980).

Clark, D. D., Sovobodova, L., Design of
Distributed Systems Supporting Local Anatonomy,
COMPCON 80, (Springl980), 438-444.

Gross, D . , Sensitivity of Queueing Models to the
Assumption of Exponentiality: 1-Single-Channel
Queues, Technical Memorandum Serial 64121,
Institute for Management Science and Engineering,
The George Washington University, (1973).

Guttag, Horowitz, and Musser, Abstract data types
and software validation, CAMC, (Decemberl978).

Guttag, The Design of Data Type Specification, In
Current Trends in Programming Methodology, R. T.
Yeh, Ed. Prentice-Hall, (1978).

Hoffman, R. H . , and Smith, R. W . , Applied
Techniques for Testing Distributed Data Processing
Software, Distributed Data Acquistion, Computing,
and Control Symposium, (Decemberl980), 202-212.

Reference Model of Open Systems Interconnection,
ISO/TC97/SC16N227, (Augustl979).

99

100

[JAF78]

[JEN78]

[JON77]

[JON78]

[KAH72]

[KLE75]

[KLE76]

[KOH81]

[LAN77]

[LAN78]

Jafari, H., Spragins, J., and Lewis, T., A New
Modular Loop Architecture for Distributed Computer
Systems, Trends and Applications: 1978 Distributed
Processing, (1978), 72-83.

Jensen, D. E., The Honeywell Experimental
Distributed Processor An Overview, Computer 11, 1,
(Januaryl978), 28-39.

Jones, A. K . , Software Management of Cm*-A
Distributed Multiprocessor, Proc. AFIPS Conf.
46, (1977) .

Jones, A. K . , The Object Model: A Conceptual Tool
for Structuring Software, Operating Systems: An
Advanced Course, Springer Verlag, (1978).

Kahn, Robert E . , Resource-Sharing Computer
Communications Networks, Proceedings of the IEEE
60, 1, (Januaryl977) , 85-93.

Kleinrock, L . , Queueing Systems Theory: Volume 1,
John Wiely & Sons, Inc., (1975).

Kleinrock, L. , Queueing Systems Theory: Volume 2,
John Wiely & Sons, Inc., (1976).

Kohler, W. H . , A Survey of Techniques for
Synchronization and Recovery in Decentralized
Computer Systems, ACM Computing Surveys 13, 2,
(June81) , 149-184.

Le Lann, G. , Distributed Systems-Towards a Formal
Approach, Proc. IFIP Congress, Toronto, North
Holland Publishing Company, (Augustl977) , 155-160.

Le Lann, G., Algorithms for Distributed Data
Sharing Systems Which Use Tickets, Proc. 3rd
Berkeley Workshop, (Augustl978), 259-272.

101

[LAN79]

[LAN81]

[LAY74]

[LIN79]

[LIU77]

[MAR74]

[MIC80a]

[MIC80b]

[MIC80c]

Le Lann, G., An Analysis of Different Approaches
to Distributed Computing, Proc. 1st ICDPS,
(Ocoberl979), 222-232.

Le Lann, G . , Motivations, Objectives and
Characterization of Distributed Systems, Lecture
Notes in Computer Science 105, 1, (1981) , 1-9.

Lay, W. M . , Mills, D. L . , and Zelkowitz, M . V . ,
Operating System Architecture for a Distributed
Computer Network, ACM Conference on Trends and
Applications of Minicomputer Networks,
(Apri 11974) .

Lin, W. K . , Concurrency Control in a Multiple Copy
Distributed System, Proc. 4th Berkeley Workshop,
(1979) .

Liu, M. T . , Pardo, R . , Babic, G . , A Performance
Study of Distributed Control Loop Network, Proc.
of the 1977 International Conference on Parallel
Processing, (1977), 137-138.

Marchal, W. G . , Some Simple Bounds and
Approximations in Queueing, Technical Memorandum
Serial T-294, Institute for Management Science and
Engineering, The George Washington University,
(Januaryl974).

Michael, L. G. , Edward, Y. S., Douglas, C. S . , A
Distributed Real Time Operating System,
Distributed Data Acquisition, Computing, and
Control Symposium, (Decemberl980), 175-184.

Michael, L. G. , Samprakash, M . , A Distributed Real
Time Resource Manager, Distributed Data
Acquisition, Computing, and Control Symposium,
(Decemberl980), 185-193.

Michael, L. G. , Edward, Y. S., Douglas, C. S. , A
Distributed Data Base Manager, Distributed Data
Acquisition, Computing, and Control Symposium,
(Decemberl980), 194-201.

102

[MIL76] Mills, David L., An Overview of the Distributed
Computer Network, AFIPS Conference Proceedings NCC
45, 1, (1976), 523-531.

[MIN79] Minoura, T . , A New Concurrency Control Algorithm
for Distributed Database Systems, Proc. 4th
Berkeley Workshop, (1979).

[RAN78] Randolph, T. Y . , and Chandy, K. M . , On the Design
of Elementary Distributed Systems, Proc. of the
Third Berkeley Workshop on Distributed Data
Management and Computer Networks, (Augustl978),
289-321.

[REA76] Reames, C. C . , and Liu, M. T . , Design and
Simulation of the Distributed Loop Computer
Network (DLCN), Proceedings of the Third Annual
Symposium on Computer Architecture, ACM Computer
Architecture News 4, 4, (Januaryl976), 124-129.

[RIT78] Ritchie, D. M . , Brian W.
Language, Prentice-Hal1,

K., The C
Inc. (1978)

Programming

[ROB70] Roberts, L. G . , and Wessler, B. D.,
Network Development to Achieve Resource
AFIPS Conference Proceedings SJCC
(May1970) , 543-549.

Computer
Sharing,
36, 1,

[RUS81] Russell, R. D . , and Bergeron, R. D . , Machine
Independent Migration and Scheduling in a
Heterogeneous Distributed Computer System,
University of New Hampshire, Department of
Computer Science Technical Report, (Decemberl981).

[SAP80] Saponas, T. G . , and Crews, P. L., A Model for
Decentralized Control in a Fully Distributed
Processing System, Proc. Distributed Computing,
(September1980), 307-312.

[SCH75] Schelonka, E. P., Resource Sharing with ARPANET,
Computer Networks: A Tutorial, IEEE Computer
Society, (1975), 5.19-5.22.

103

[SHA76]

[SIN80]

[STA80]

[STA81a]

[STA 81b]

[STA82]

[STE81]

[ST077]

Shaw, and Wulf, An Introduction to the
Construction and Verification of Alphard Programs,
IEEE Transaction on Software Engineering,
(December1976) .

Sincoskie, W. D. , Farber, D. J . , The Series/1
Distributed Operating System: Description and
Comments, Proc. Distributed Computing,
(Septemberl980), 579-584.

Stankovic, J. A., A Comprehensive Framework For
Evaluating Decentralized Control, Proc. at the
1980 International Conference on Parallel
Processing, (1980), 181-187.

Stankovic, J. A., ADCOS-An Adaptive, System-Wide,
Decentralized Controlled Operating System,
University of Massachusetts, Amherst, Department
of Electrical & Computer Engineering Technical
Report ECE-CS-81-2, (Novemberl981).

Stankovic, J. A., Bayesian Decision Theory and its
Application to Decentralized Control Algorithms,
University of Massachusetts, Amherst, Department
of Electrical & Computer Engineering Technical
Report, (November 1981) .

Stankovic, J. A., Simulation of Adaptive,
Decentralized Controlled, Job Scheduling
Algorithms, University of Massachuestts, Amherst,
Department of Electrical & Computer Engineering
Technical Report, (Januaryl982).

Stephen, S. Y., Chen-Chau, and Sol, M. S., An
Approach to Distributed Computing System Software
Design, IEEE Transaction on Software Engineering
se-7, 4, (Julyl981).

Stone, H. S., Multiprocessor Scheduling with the
Aid of Network Flow Algorithms, IEEE Transaction
on Software Engineering 13, 1, (Januaryl977),
85-93.

104

[TSA80]

[WAT79]

[WAT80a]

[WAT80b]

[WAT81]

Tsay, D. P., Liu, M. T., Design of A Robust
Network Front-End for the Distributed Double-Loop
Computer Network (DDLCN), Distributed Data
Acquisition, Computing, and Control Symposium,
(December1980), 141-155.

Watson, R. W., Fletcher, J. G . , An Architecture
for Support of Network Operating System Services,
Proc. 4th Berkeley Workshop, (Augustl979), 18-50.

Watson, R. W . , Comments on the EMCA Transport
Protocol, Contributors to ISO, SC-16,
(Augustl980) .

Watson, R. W . , Network Architecture Design
Issues: With Applications to Backend Storage
Networks, Computer 13, 2, (Februaryl980), 32-49.

Watson, R. W., Distributed System Architecture
Model, Lecture Notes in Computer Science 105, 1,
(1981), 10-43.

[WHI75] White, J. A., Schmidt, J. W . , Bennett, G. K . ,
Analysis of Queueing Systems, Academic Press,
(1975) .

APPENDIX A

Stochastic Process

A . 1 Introduction

The environment in which the decentralized controllers

make decisions is stochastic. This is because the
information that these controllers have about the state of

the system is uncertain; that is, they have only an estimate
of the system state. In addition, a decision made using the

estimated state of the system may prove less than optimal
due to future random variations that are independent of the

control decisions that can occur.
In this section, we will define a stochastic process*3,

and discuss in more detail specific stochastic processes to
be used later.

3. This is a brief definition and classification of a
stochastic process, for more details, refer to [KLE75].

106

107

A .2 Definition and Classification of a Stochastic Process

Associate with each point of time "t" in the range of
{-OCKtCOO}, a random variable X which has a sample space

{-OCKX <00} and a corresponding probability density function
f(x). A set of such random variables {X^} is called a
stochastic process and is completely described by defining
the probability density function of each random variable in
the set and the joint probability density function of these
random variables f(XI,X2,...,Xn). The state of a stochastic

process at any point "t" in time is the value of the random
variable "X If the permitted points in time when the
process can change its state are finite, it is called a
"discrete-time stochastic process", otherwise, it is called
a "continous-time stochastic process".

In the following we will study some stochastic

processes which are characterized by different kinds of
dependency relations among their random variables {x^}:

. Stationary process. In general, the properties of

a stochastic process are time dependent. The

process is called stationary if the probability
density functions {f(x)} and the joint probability

density function of the process

f (xl,x2 xn) are independent of absolute

time. Clearly, consequences of that condition are

that the mean E[x] and the variance var[x] are
constants.

108

Markov process. A stochastic process is called a

Markovian process if the next state of the process
depends only upon the current state and not on the
previous states. In other words, the way in which
the entire past history affects the future of the

process state is completely summarized in the
current state of the process (memoryless process).

In the case of a discrete-time Markov
process, transitions from the current state to the
next state are allowed only at a specific set of

times; however, it should be clear that there is
no restriction on the new state (within the state

space). In the case of a continous-time Markov

process, the transition between states may take

place any time. Thus, we have to consider another
random variable describing how long the process

remains in its current state before making a
transition. It has been shown that the
exponential distribution is the only distribution

which satisfies the continous-time Markov process
definition, and the geometric distribution is the
only one in the case of a discrete-time Markov

process [KLE75].

Birth-Death process. A special case of the Markov
process is called a Birth-Death process. It
allows state transitions only to take place
between neighboring states. If the process is in

109

state X n , then the next state can be only one of

three; remain in its current state; move to state

X ft+(; or move to state X n_t. Birth-Death process
can be either discrete or continous in time.

. Poisson process. A Poisson process is a special

case of the birth-death process. In state

transitions, the only allowed transitions are pure
birth; i.e., a transition from state X would be

to state X . Also, the distribution of time
between transitions is memoryless but independent

of the current state, i.e., the distribution of
time between transitions in case of continous-time

is exponential with a constant birth rate instead
of being exponential with birth-rate a function of
the current state.

Figure (A-l) shows the relationship between the above

processes in the form of a Venn diagram. The symbols P\j
denote the probability of making a transition to state "j"

given that the process is currently in state "i". Also,
"fT" denotes the distribution of time between transitions;
to say that "fx is memoryless" implies that if the process

is discrete , then "fx " is a geometric distribution, whereas

if it is a continous-time process, then "fx" is an
exponential distribution. Furthermore, it is implied that

f ^ m a y be a function of the current state for the process.

r
110

MP P arbitrary

f y memoryless

BD P = 0 for | j-i J > 1
f y is memoryless

PP H* = 0 for j-i ^ 1

fr is memoryless

K
n

Mi = 0

Figure A-l. Venn Diagram for Some Stochastic Processes
MP: Markovian Process; BD: Birth-Death

Process; PP: Poisson Process

APPENDIX

QUEUEING MODEL FOR A SINGLE RESOURCE

B. 1 Introduction

Queueing theory offers a simple mathematical approach

for modeling any resource using a probabilistic
distribution. Queueing models are used in many applications
including performance evaluation of computer systems and
computer networks. They play a key role in understanding

computer communication networks, where one of the primary
factors for message delay in traversing a network is the

queuing delay. A single resource can be represented by a
"server-queue model" which requires defining the following:

1. The stochastic process describing the arrival time

distribution of customers. This process is

normally described in terms of the probability

distribution of the interarrival time of
customers.
A (t)= P[time between arrival < t]

2. The stochastic process describing the service time

distribution required by the different

112

customers. This process is normally described in

terms of length of time that customers need to

spend in the service facility.

B(x)= P[service time < x]

3. The queue length. This represents the storage
capacity available to hold customers waiting to

receive service.

4* Server specification. This includes number of

servers and their capacities. For example, for

one CPU as a resource, capacity is defined as the
maximum number of operations per unit time that
can be performed by the CPU.

5. The queueing discipline. The order in which
customers are taken from the queue and allowed

into service.

Figure (B-l) shows a single resource model. The

following notation is usually used in the literature to
define a queueing model:

A/S/N/L/C

Where,

A ...Customers arrival time distribution;

S . ,.Customers service time distribution;

114

Customer
arrival —

<X.£>

service discipline

queue

Job
Departure

\ : average job arrival rate;
1//X : average number of operations/job;

C : server capacity;
fj, C : average service rate;
P : resource utilization

= average arrival rate / average service rate
= X/flc , OssP<i;

T : average response time
= average (completion time *— arrival time);

W : average waiting time
= (response time — service time)

- (I- £-c>-

Figure B-l. Single Resource Queue Model

115

N...Number of servers in the resource;

L...Resource queue length;

C...Number of customers.

The last two terms are omitted if the queue length and

number of customers are infinite which is the case in our

model. Arrival and service time probability density

functions are abbreviated using the following symbols:

M . ..Markovian (exponential) distribution
- f U X

b(x) = f2 e

Er..r-stage Erlangian distributionb(1). r ^ x r e(r - 1)!
D . ..Deterministic distribution

b (x) = 5 [X-O-I
U

G...General (arbitrary) distribution.

Two models are of interest in this research, both
assume a First come-First service (FCFS) queueing

discipline. Results of the steady-state analysis are listed
below [KLE75].

B .2 M/M/1 Server Model

This model assumes a Poisson arrival distribution,
i.e., exponential (Markovian) interarrival distribution and
Exponential (Markovian) service time distribution; this

116

implies that the remaining service time for a job is

independent of how long that job has been in service. The
steady state solution for this model provides the following

results:

B.3 M/G/l Server Model

This model assumes a Poisson arrival distribution, and
General service time d istr ibut ion, this implies that the
remaining service time for a job may depend on how long that

job has been in service. The steady state solution for this
model provides the following results:

1. Average waiting time

T average response time

1

W average waiting time in the queue/job
P i n c
i - p

also

W = (average response time - execution time)

T- (
flC

Z Z

W= Ob + X

Where

t...average interarrival-time

X...average service-time

z
Ob -•.Variance of the service-time distribution

2. Average response time

T- W +

B *4 G/G/l Server Model

This model assumes general arrival and service

distributions. General distribution is defined as a process

where the future state depends on the current state and how

the process reached that state. Applying this for general
service time distribution, means that the remaining service
time for a job may depend on how long that job has been in
service. The results of the steady state solution for the

average waiting time (W) and the average response time (T)

are given below [KLE75].

1. Average waiting time

d. + Ob + t C i - P)1 r1
2 t (i - p) ~ 1 1

where,

"t...average interarrival-time

2,
(T...variance of interarrival-time distributiona.

10£.. .variance of service-time distribution

The second term (— ==-) is hard to evaluate. However it is
z I

possible to find upper and lower bounds for the waiting time
[KLE75]. The upper bound exceeds the known exact mean wait
time for the M/G/l model. Marchal [MAR74] has proposed that

the upper bound be scaled down so that it is exact for the

M/G/l model; thus his approximation gives
* p i x

» - 1 + Cb <X ■+ 0 1 1
Q / P f + c£ 1 1CI - p)

Where C{,, the service time coefficent of variation, is
defined as C l, X is the average service time. BothX
Marchal and Gross [GR073] considered the effectiveness of

this approximation to W. Their numerical studies show that
the fit to G/G/l is fair, improving as p increases, and

degrading with an increase in C a or Cj,.

2. Average response time

APPENDIX

DATA ANALYSIS AND DISTRIBUTION IDENTIFICATION

C. 1 Introduction

In modeling a queueing system, certain assunptions must

be made about the system in order to represent it by
mathematical equations. For example, we frequently assume

that interarrival and service times are exponentially
distributed random variables. However, since our attempt is

to model physical systems, we would wish to identify these
distributions properly rather than simply make

assumptions. The area of particular concern in this

Appendix is the identification of the probability

distribution of a random variable [WHI75]. This is a
threefold problem. First, the analyst must collect data
that characterize the random variable of concern. Using

these data he can develop and plot a relative-frequency
distribution for the random variable. By visually comparing

the relative-frequency distribution with known probability

density functions (pdf), one is often able to hypothesize

that certain families of distribution describe the random
variable under study. The selection of these candidate
distributions is the first of the three problems. Second,

120

121

the problem is to determine the numerical values of the

parameters of each candidate distribution based on the data

collected. Third, the hypothesis that each distribution is,
in fact, the true distribution of the random variable under

study must be tested. These three problems can be
statistically termed data collection, parameter estimation,
and goodness-of-fit testing, respectively. In the next
section, we will treat each of these topics in some detail.

C.2 Data collection

One common way for summarizing the collected data is

the frequency distribution. In the case of discrete
variables, we simply record the number of times (frequency)

each value was observed. For continous random variables, we
break the range of observed values into intervals and record
the frequency that occurs within each interval.

Once a frequency distribution has been tabularized, a

plot of entries is generally helpful in determining the
distribution of the random variable under study. One useful

method of displaying these data is to plot the relative
frequency distribution. The relative frequency for each
interval is simply the observed frequency count divided by
the total frequency count. With this information at hand we
can now proceed to select an appropriate probability
distribution. This suggests also that more than one pdf may

represent the collected data.

122

C .2 Distribution Parameters Estimation

The theory of estimation can be divided into two parts,
point estimation and interval estimation. In po int
estimation, we concern ourself with the problem of producing
a value that, in some sense, represents our best estimate as
to the actual value of the parameter of interest. In
interval estimation, we are interested in establishing an
interval that would contain the true value of the parameter

with some given level of probability. Such an interval is

called a confidence interval. These intervals can also be
viewed as possible measures of the precision of a point
estimator. This is the view that we will adopt in the

goodness-of-fit testing problem.
The general problem of po int estimation can be stated

as follows: There exists a random variable 'X' whose

distribution function is characterized by some parameter

1 that we would like to estimate. A random sample 'XI,
X 2 ,....... ,Xn' is to be drawn and a function
A A

0 = 0 (X 1 , X 2 , fXn) of this sample is formed. The value
A

of © is then used to estimate the parameter © . The
A

function © is referred to as an estimator of © and the
A

value that 0 takes on is called the estimate of © . Note
A

that © is itself a random variable, since it is a function

of the random observations XI, X 2 , Xn. It should be

apparent that there exist many estimators for a parameter
A

depending on our measure which describes the function © .

123

We will talk now about various properties of an
estimator that are considered desirable, and then discuss in
detail one procedure to estimate a distribution parameter
satisfying these desired properties.

An estimator for a parameter is itself a random

variable and must therefore have a distribution of its

own. Obviously we cannot specify this distribution until we
have completely described the estimator itself. Let us

Adefine the estimator distribution mean E [©] , and its
variance by

Var (©) = E [© - E (©) f = E (©) - [E (©) I*
A

The standard deviation of © , is defined by

[Var(©)]. Also of importance are the concepts sampling

error, bias, and mean square error. The sampling error,
A

defined by © - © , is simply the difference between the value
of the estimator and the true value of the parameter. The

Ab i a s , defined by E (©) - © , is the difference between the
expected value of the estimator and the true value of the

parameter. Whereas the sampling error may vary from sample

to sample, the bias is fixed and may or may not be
A 2zero. The mean-squared error, defined by E (© - @) , measures

the dispersion of an estimator and is therefore similar to
the concept of variance. The difference is that while the

A
variance measures the dispersion of © around its mean

A
E (0) , the mean squared error measures the dispersion around

A

the true value of the parameter. If it turns out that E (©)
and the true value of the parameter coincide, then the

124

mean-squared error and the variance are equivalent.

It should be recognized that by itself unbiasedness is

not enough, since it implies nothing about the dispersion of
the distribution of the estimator. Thus, an estimator can

be unbiased but yet lead to estimates that lie far from the
true value of the parameter. On the other hand, a biased
estimator even with small variance often can be less
useful. An efficient estimator is frequently called a

minimum-variance unbiased estimator, which is an unbiased

estimator with minimum variance.

Now we come to the problem of devising procedures to

obtain estimators that have all or at least most of the
above properties *4. We will discuss in detail the method
of moments to estimate the parameters of a distribution.

.Method of moments estimator. This estimator is based

on the principle that one should estimate a moment of a

population by the corresponding moment of the sample. For
example, consider a population whose density f(x) is

characterized by K parameters ©,, ©j,... .. , which are to
be estimated. Let XI,X2,.........,Xn be a random sample of
size "n" from the population. The i sample moment is

4. There are other methods such as the maximum-likelihood
method and least-square regression method [WHI75].

The i ^ moment of the f(x) can be calculated

mathematically and assumed to be E(x). Equating the first K

population and sample moments, we have

M1=E (x) , M2=E(x1) ,,Mk=E(xK)

A A AThe solution values Q , Q ,,q obtained by solving

these simultaneous equations are referred to as the method
of moment estimators for the K parameters Q t, Q ^ @^.

C.4 Goodness-of-Fit Tests The third and final step in

identifying a distribution is to test the hypothesis that

there is no detectable difference between the hypothesized

distribution and the sample distribution. We will discuss

later in this section one test for a Poisson distribution
and the Kolmogorov-Smirnov (K-S) test as a general purpose
test for any distribution*5. The following are important
terms which are commonly used in most of these tests.

1. Universe and sample. Any set of individuals
(objects) having some common observable

5. There are also other common goodnes-of-fit tests such as
Chi-Square test [WHI75].

characteristic constitutes a Universe. Any subset

of the universe is a sample from the

universe. There is then a "distribution of the
measurements of a sample" which actually we

observe and study and a "distribution of the
measurements of the universe" which needed to be
estimated. The problem is to decide what
information about the distribution of the universe
can be inferred from a study of the sample. For
the universe distribution we will denote the mean

of the universe by jj, and the variance of the
1universe by (J . The sample size represented by

the letter N, is the number of individuals in the
sample. A sample may be any size from N=1 to the
number of items in the universe.

The measurements on the individuals in the sample

will form a distribution which will have a mean X,
2 — 2and a variance S . Presumably X and S , which we

can actually measure, should give us some
/ / zinformation about f-L and (J , whose values are

— 2usually not known. X and S are different from
2

sample to sample, while and (J are constant,
i.e., have particular values for a particular
universe.
Central 1 imit theorem. If X has any distribution

2
with finite mean jj. and finite variance 0* , then

the distribution of X approaches the normal

127

x
distribution with mean Li and variance (J as the

Nsample size increases. If, however, the

distribution of the universe, is exactly normal,
then the sampling distribution of the mean of any

size sample, even N equal to one, will be exactly
normal.

This does not say that we are likely to be

close to the correct value of the parameter, but

we shall estimate the parameter correctly on the

average. Most of the goodness-of-fit tests are
based on this theorem.

3. Confidence interval. From the central limit
theorem, we have seen that the sampling
distribution of X has a mean JU , standard
deviation— 01 , and is normal in shape. Therefore,

<TT
we can use the area under the normal distribution

(//,==r) tables to find the proportion of the time^ fN"we can expect to obtain a sample mean within a
certain distance of /Z . Then it is clear that a

X - Anew random variable Z= (jyj whlc^ 1S a
normalized normal distribution having mean equal

to zero and standard deviation equal to one could
be used.

4. Level of significance T*le hypothetic
distribution will be rejected if the sample mean
value lies in the region where the proportion of

128

the time we can expect to find the sample mean is

equal to the level of significance; assuming the
hypothetic distribution is true. In another way,
the hypothetic distribution is rejected if the

sample mean value lies outside a confidence

interval equal to (1-Q£) .

C.4.1 Poisson-Process Test. This test is particularly
useful when sample data are sparse, since it does not
require any knowledge of the universe distribution
parameters.

Let t,,tz , ,tn denote the times at which n units

enter a queueing system during a time interval of length

T. If these arrivals are from a Poisson process then the

times are independent and uniformally distributed over the
interval (0-T) with the mean of the universe distribution

2.=T/2, and the variance of the universe =T /12n. The mean of
the sample X = — L— ̂ i;

Thus, to test the hypothesis that the arriving units

are from a Poisson process, we simply compute the normal
test variable Z

z = S" - T/2.
V i / a n

Choose a level of significance , and locate the critical
values Z (_ a and Z ̂ , in Table C-l. If Z }_>e<< Z <Z^u we reject

"2 T T 2
the hypothesis that our arrival is from a Poisson process

with level of significance Qf .

129

To summarize, the Poisson test proceeds as follows:

1. Compute X;

2. Compute the normal test variable Z;

3. Locate the critical values Z ̂ and in Table C-l;
T "* 1

4. If Zj ^ < Z < Z ^ , then we reject the hypothesis that the
2 ~Z

data could have come from a poisson process.

Since the test is based on the central limit theorem,

as a rule of thumb we can say that the test can be applied

tsafely whenever N ^,20.

C.4.2 Kolmogorov-Smirnov test. This test compares the PDF

for the hypothesized distribution F(x) with the sample
cumulative distribution Sn (x).The sample cumulative
distribution is defined by Sn(x) = i/n, where i is the number

of observations less than or equal to X, and n is the sample

size. The comparison between Sn (x) and F(x) is based on the

absolute value of their difference:
0 = m\d.x
/max X

FO) - Sn O)
The value D ^ „ is called the maximum deviation. The «n«*x
distribution of D is known and can be shown to be'’Aft X

independent of F(x). Several values from the distribution

have been tabulated as a function of n, the number of
observations, and (X t the level of significance. Table C-2

lists some of these values for different n and
combinations.

130

The hypothesis that the data come from the hypothesized

distribution is rejected at the level of significance
<*D , where D,. are the critical values listedn «

in Table C-2.

Figure C-l illustrates a typical situation in which F(x)is

continous. It is important to note that two differences

must be computed at each step point X-,,

fW - s,(\D
Ft*.) - S„(xO and

since one is permitted to choose either the
bottom or top of each step.

To summarize, the (K-S) test proceeds as follows

1. Determine Sn (x) from the sample data;

2. Compute F(Xi)~ Sn(xi) and FCx»-S„0Q at each step point

X ; , if F (x) is continous. If F(x) is discrete, only

FCx,-) -Srt(x;) need to be computed;

3. Determine the maximum value D wekX from step 2;

4. Locate the critical value D in Table C-2;

5. If Dn / reject the hypothesis that the data have

come from the population described by F(x).

131

PDF

F(x)

xxX 1+11-1 'i

Figure C-l. Step Points for F(x) Continuous

z F(.-) z F<=) Z m z F<-->

-4.000 0.0000 -3.750 0.0001 -3.500 0.0002 -3.250 0.0006
-3.590 0.0000 -3.740 0.0001 -3.490 0.0002 -3.240 0.0006
-3.980 0.0000 -3.730 0.0001 -3.480 0.0003 - 3.230 0.0006
-3.970 0.0000 -3.720 0.0001 -3.470 0.0003 -3.220 0.0006
-3.960 0.0000 -3.710 0.0001 -3.460 0.0003 -3.210 0.0007
-3.950 0.0000 -3.700 0.0001 -3.450 0.0003 -3.200 0.0007
-3.940 0.0000 -3.690 0.0001 -3.440 0.0003 -3.190 0.0007
-3.930 0.0000 -3.680 0.0001 -3.430 0.0003 -3.180 0.0007
-3.920 0.0000 -3.670 0.0001 -3.420 0.0003 -3.170 0.0008
-3.910 0.0001 -3.660 0.0001 -3.410 0.0003 -3.160 0.0008
-3.900 0.0001 -3.650 0.0001 -3.400 0.0003 -3.150 0.0038
-3.890 0.0001 -3.640 0.0001 -3.390 0.0004 -3.140 0.0009
-3.880 0.0001 -3.630 0.0001 -3.380 0.0004 -3.130 0.0009
-3.870 0.0001 -3.620 0.0002 -3.370 0.0004 -3.120 0.0009
-3.860 0.0001 -3.610 0.0002 -3.360 0.0004 -3.110 0.0009
-3.850 0.0001 -3.600 0.0002 -3.350 0.0004 -3.100 0.0010
-3.840 0.0001 -3.590 0.0002 -3.340 0.0004 -3.090 0.0010
-3.830 0.0001 -3.580 0.0002 -3.330 0.0004 -3.080 0.0010
-3.820 0.0001 -3.570 0.0002 -3.320 0.0005 -3.070 0.0011
-3.810 0.0001 -3.560 0.0002 -3.310 0.0005 -3.060 0.0011
-3.800 0.0001 -3.550 0.0002 -3.300 0.0005 -3.050 0.0012
-3.790 0.0001 -3.540 0.0002 -3.290 0.0005 -3.040 0.0012
-3.780 0.0001 -3.530 0.0002 -3.280 0.0005 -3.030 0.0012
-3.770 0.0001 -3.520 0.0002 -3.270 0.0005 -3.020 0.0013
-3.760 0.0001 -3.510 0.0002 -3.260 0.0006 -3.010 0.0013

TABLE C-l. Cumulative Distribution Function F(z)
of the Standard Normal Random Variable Z

133

z Fis) Z H--) Z F(:> Z F(-)

-3.000 0.0014 -1500 0.0062 -2.000 0.0227 -1.500 0.0668
-2.990 0.0014 -1490 0.0064 -1.990 0.0233 -1.490 0.0681
-1980 0.0014 -1480 0.0066 -1.980 0.0239 -1.480 0.0695
-1970 0.0015 -1470 0.0067 -1.970 0.0244 -1.470 0.0708
-1960 0.0015 -1460 0.0069 -1.960 0.0250 -1.460 0.0722
-1950 0.0016 -1450 0.0071 -1.950 0.0256 -1.450 0.0735
-1940 0.0016 -1440 0.0073 -1.940 0.0262 . -1.440 0.0750
-1930 0.0017 -1430 0.0075 -1.930 0.0268 -1.430 0.0764
-1920 0.0018 -1420 0.0078 -1.920 0.0274 -1.420 0.0778
-1910 0.0018 -1410 0.0080 -1.910 0.0281 -1.410 0.0793
-1900 0.0019 -1400 0.0082 -1.900 0.0287 -1.400 0.0808
-1890 0.0019 -1390 0.0084 -1.890 0.0294 -1.390 0.0823
-2.880 0.0020 -1380 0.0086 -1.880 0.0301 -1.380 0.0838
-1870 0.0021 -1370 0.0089 -1.870 0.0307 -1.370 0.0854
-1860 0.0021 -1360 0.0091 -1.860 0.0314 -1.360 0.0869
-2.850 0.0022 -1350 0.0094 -1.850 0.0322 -1.350 0.0885
-1840 0.0023 -1340 0.0096 -1.840 0.0329 -1.340 0.0901
-2.830 0.0023 -1330 0.0099 -1.830 0.0336 -1.330 0.0918
-2.820 0.0024 -1320 0.0102 -1.820 0.0344 -1.320 0.0934
-2.810 0.0025 -1310 0.0104 -1.810 0.0352 -1.310 0.0951
-1800 0.0026 -1300 0.0107 -1.800 0.0359 -1.300 0.0968
-1790 0.0026 -1290 0.0110 -1.790 0.0367 -1.290 0.0985
-1780 0.0027 -1280 0.0113 - 1.7C0 0.0375 -1.280 0.1003
-1770 0.0028 -1270 0.0116 -1.770 0.0384 -1.270 0.1021
-2.760 0.0029 -1260 0.0119 -1.760 0.0392 -1.260 0.1038
-2.750 0.0030 -1250 0.0122 -1.750 0.0401 -1.250 0.1057
-1740 0.0031 -1240 0.0125 -1.740 0.0409 -1.240 0.1075
-2.730 0.0032 -1230 0.0129 -1.730 0.0418 -1.230 0.1094
-2.720 0.0033 -1220 0.0132 -1.720 0.0427 -1.220 0.1112
-2.710 0.0034 -1210 0.0135 -1.710 0.0436 -1.210 0.1132
-1700 0.0035 -1200 0.0139 -1.700 0.0446 -1.200 0.1151
-1690 0.0036 -1190 0.0143 -1.690 0.0455 -1.190 0.1170
-1680 0.0037 -1180 0.0146 -1.680 0.0465 -1.180 0.1190
-1670 0.0038 -1170 0.0150 -1.670 0.0475 -1.170 0.1210
-1660 0.0039 -1160 0.0154 -1.660 0.0485 -1.160 0.1230
-1650 0.0040 -1150 0.0158 -1.650 0.0495 -1.150 0.1251
-1640 0.0041 -1140 0.0162 -1.640 0.0505 -1.140 0.1272
-1630 0.0043 -1130 0.0166 -1.630 0.0516 -1.130 0.1293
-1620 0.0044 -1120 0.0170 -1.620 0.0526 -1.120 0.1314
-1610 0.0045 -1110 0.0174 -1.610 0.0537 -1.110 0.1335
-1600 0.0047 -1100 0.0179 -1.600 0.0548 -1.100 0.1357
-1590 0.0048 -1090 0.0183 -1.590 0.0559 -1.090 0.1379
-1580 0.0049 -1080 0.0188 -1.580 0.0571 -1.080 0.1401
-1570 0.0051 -1070 0.0192 -1.570 0.0582 -1.070 0.1423
-1560 0.0052 -1060 0.0197 -1.560 0.0594 -1.060 0.1446
-1550 0.0054 -1050 0.0202 -1.550 0.0606 -1.050 0.1469
-1540 0.0055 -1040 0.0207 -1.540 0.0618 -1.040 0.1492
-1530 0.0057 -1030 0.0212 -1.530 0.0630 -1.030 0.1515
-1520 0.C3S9 — 1020 0.0217 -1.520 0.0643 -1.020 0.1539
-1510 0.0060 -1010 0.0222 -1.510 0.0655 -1.010 0.1563

TABLE C-l. Continued

TABLE
C-l.

Continued

i i i i i i i i i i i i i i i i i i i ip p p p o p p p p o o o p o o o o o o o I
...p O f i Ms§sm3s8§sm§§§§§gsggggg3^§lSSil£3iiSi8li8i388i N

O O O O O O O O Q O O O O O O O O O O O O O O O *fe bi tj y k k « bi k b; k k s b a bs a 'UiUK.o o «
LA « 00

: y k £ !
■ « a .K> OO

o o p o o p p p p p p p o p p p p p p p p p p p p

I s S a s s l i i i i l S i i l l i i g i l l i l s
I Ip p p p p p p p o p r “ -

§ 5 § § S S s i g s !o o o08S ■ O '
; o 3

1 1 I I i I I l I I I l l l l l lo p o o o o o o o o o p o p p p o o o o o o o o o o
..5 5 B 5 J £ 5 3 S 5 S K g g g g g y g y ^ § g j g g i ^ g | | m i m | | N

O O O O O I o p p o p o o o o p o o o O O O O O O O Iiiiiiiiiiiiiiiiiiiiili yigigiiiiiiiiiiiiiiiiiiiiiii N

2 2 S 2 S S 2 S 2 S 2 S 8 ® ® ® ® p o o o p o
S S ^ S 8 S g 8 o 8 8 S ^ I » l ! S 8 o 8 8 S ^ 8 8 f c g 8 5 8 l s ^ 8 ^ I S 8 5 S 8 S ^ 8 ! f i i g 8 o 8
m 2 2 2 £ S 2 2 S 2 2 E ® ® ® ® ® p p p p p p p p p p p o P 9 o o o o o o o ® ° o o o o o o o o o o

N

U)4̂

135

z F { :) Z F [:) Z F (:) Z F I :)

1.000 0.8414 1.500 0.9332 2.000 0.9773 2500 0.9938
1.010 0.8438 1.510 0.9345 2.010 0.9778 2510 0.9940
1.020 0.8462 1.520 0.9357 1020 0.9783 1520 0.9941
1.030 0.8485 1.530 0.9370 1030 0.9788 1530 0.9943
1.040 0.8509 1.540 0.9382 1040 0.9793 2540 0.9945
1.050 0.8532 1.550 0.9394 1050 0.9798 1550 0.9946
1.060 0.8554 1.560 0.9406 1060 0.9803 2560 0.9948
1.070 0.8577 1.570 0.9418 1070 0.9808 2570 0.9949
1.080 0.8599 1.580 0.9429 1080 0.9812 2580 0.9951
1.090 0.8622 1.590 0.9441 1090 0.9817 1590 0.9952
1.100 0.8643 1.600 0.9452 1100 0.9821 2600 0.9953
1.110 0.8665 1.610 0.9463 1110 0.9826 2610 0.9955
1.120 0.8687 1.620 0.9474 1120 0.9830 2620 0.9956
1.130 0.8708 1.630 0.9484 1130 0.9834 2630 0.9957
1.140 0.8729 1.640 0.9495 1140 0.9838 2640 0.9959
1.150 0.8749 1.650 0.9505 1150 0.9842 1650 0.9960
1.160 0.8770 1.660 0.9515 1160 0.9846 2.660 0.9961
1.170 0.8790 1.670 0.9525 1170 0.9850 2670 0.9962
1.180 0.8810 1.680 0.9535 1180 0.9854 2680 0.9963
1.190 0.8830 1.690 0.9545 1190 0.9857 2690 0.9964
1.200 0.8849 1.700 0.9554 1200 0.9861 2.700 0.9965
1.210 0.8869 1.710 0.9564 1210 0.9865 2.710 0.9966
1.220 0.8888 1.720 0.9573 1220 0.9868 2.720 0.9967
1.230 0.8907 1.730 0.9582 1230 0.9871 2.730 0.9968
1.240 0.8925 1.740 0.9591 2.240 0.9875 2.740 0.9969
1.250 0.8944 1.750 0.9599 1250 0.9878 2750 0.9970
1.260 0.8962 1.760 0.9608 1260 0.9881 2760 0.9971
1.270 0.8980 1.770 0.9616 1270 0.9884 2770 0.9972
1.280 0.8997 1.780 0.9625 1280 0.9887 2780 0.9973
1.290 0.9015 1.790 0.9633 1290 0.9890 1790 0.9974
1.300 0.9032 1.800 0.9641 2300 0.9893 2800 0.9974
1.310 0.9049 1.810 0.9648 2310 0.9896 2810 0.9975
1.320 0.9066 1.820 0.9656 2320 0.9898 2820 0.9976
1.330 0.9082 1.830 0.9664 2330 0.9901 2830 0.9977
1.340 0.9099 1.840 0.9671 2340 0.9904 2840 0.9977
1.350 0.9115 1.850 0.9678 1350 0.9906 2850 0.9978
1.360 0.9131 1.860 0.9686 1360 0.9909 2860 0.9979
1.370 0.9147 1.870 0.9693 2370 0.9911 2870 0.9979
1.380 0.9162 1.880 0.9699 2380 0.9914 2880 0.9980
1.390 0.9177 1.890 0.9706 2390 0.9916 2890 0.9981
1.400 0.9192 1.900 0.9713 2400 0.9918 2900 0.9981
1.410 0.9207 1.910 0.9719 2410 0.9920 2910 0.9982
1.420 09222 1.920 0.9726 2420 0.9922 2920 0.9982
1.430 0.9236 1.930 0.9732 2430 0.9925 2930 0.9983
1.440 0.9251 1.940 0.9738 2440 0.9927 2940 0.9984
1.450 0.9265 1.950 0.9744 2450 0.9929 2950 0.9984
1.460 0.9279 1.960 0.9750 2460 0.9931 2960 0.9985
1.470 0.9292 1.970 0.9756 1470 0.9932 2970 0.9985
1.480 0.9306 1.980 0.9762 2480 0.9934 2980 0.9986
1.490 0.9319 1.990 0.9767 2490 0.9936 2990 0.9986

TABLE C-l. Continued

136

z F{:) Z F(:) Z F{:) Z F(:>

3.000 0.9986 3.250 0.9994 3.500 0.9998 3.750 0.9999
3.010 0.9987 3.260 0.9994 3.510 0.9998 3.760 0.9999
3.020 0.9987 3.270 0.9995 3.520 0.9998 3.770 0.9999
3.030 0.9988 3.280 0.9995 3.530 0.9998 3.780 0.9999
3.040 0.9988 3.290 0.9995 3.540 0.9998 3.790 0.9999
3.050 0.9988 3.300 0.9995 3.550 0.9998 3.800 0.9999
3.060 0.9989 3 A10 0.9995 3.560 0.9998 3.810 0.9999
3.070 0.9989 3.320 0.9995 3.570 0.9998 3.820 0.9999
3.080 0.9990 3.330 0.9996 3.580 0.9998 3.830 0.9999
3.090 0.9990 3340 0.9996 3.590 0.9998 3.840 0.9999
3.100 0.9990 3350 0.9996 3.600 0.9998 3.850 0.9999
3.110 0.9991 3.360 0.9996 3.610 0.9998 3.860 0.9999
3.120 0.9991 3370 0.9996 3.620 0.9998 3.870 0.9999
3.130 0.9991 3380 0.9996 3.630 0.9999 3.880 0.9999
3.140 0.9991 3390 0.9996 3.640 0.9999 3.890 0.9999
3.150 0.9992 3.400 0.9997 3.650 0.9999 3.900 0.9999
3.160 0.9992 3.410 0.9997 3.660 0.9999 3.910 0.9999
3.170 0.9992 3.420 0.9997 3.670 0.9999 3.920 1.0000
3.180 0.9993 3.430 0.9997 3.680 0.9999 3.930 1.0000
3.190 0.9993 3.440 0.9997 3.690 0.9999 3.940 1.0000
3.200 0.9993 3.450 0.9997 3.700 0.9999 3.950 1.0000
3.210 0.9993 3.460 0.9997 3.710 0.9999 3.960 1.0000
3.220 0.9994 3.470 0.9997 3.720 0.9999- 3.970 1.0000
3.230 0.9994 3.480 0.9997 3.730 0.9999 3.980 1.0000
3.240 0.9994 3.490 0.9998 3.740 0.9999 3.990

4.000
1.0000
1.0000

TABLE C-l. Continued

Sample
size
N

Kolmogorov-Smirnov
level of significance x

0.20 0.15 0.10 0.05 0.01

3 0.451 0.479 0.511 0.551 0.600
4 0.396 0.422 0.449 0.487 0.548
5 0.359 0.382 0.406 0.442 0.504
6 0.331 0.351 0.375 0.408 0.470
7 0.309 0.327 0.350 0.382 0.442
g 0.291 0.308 0.329 0.360 0.419
9 0.277 0.291 0.311 0.341 0.399
10 0.263 0.277 0.295 0.325 0.380
11 0.251 0.264 0.283 0.311 0.365
12 0.241 0.254 0.271 0.298 0.351
13 0.232 0.245 0.261 0.287 0.338
14 0224 0.237 0.252 0.277 0.326
15 0217 0.229 0.224 0.269 0.315
16 0.211 0.222 0.236 0.261 0.306
17 0.204 0.215 0.229 0.253 0.297
18 0.199 0.210 0.223 0.246 0.289
19 0.193 0.204 0.218 0.239 0.283
20 0.188 0.199 0.212. 0.234 0.278 -
25 0.170 0.180 0.191 0.210 0.247
30 0.155 0.164 0.174 0.192 0.226

>30 0.86 0.91 0.96 1.06 1.25
v'tf v'V v'-V v *

TABLE C-2. Critical Values for Kolmogorov-Smirnov
Test for the Exponential Distribution

	University of New Hampshire
	University of New Hampshire Scholars' Repository
	Winter 1982

	DECENTRALIZED CONTROL OF DISTRIBUTED PROCESSING SYSTEMS
	AHMED KAMAL EZZAT
	Recommended Citation

	00001.tif

