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ABSTRACT 

DECENTRALIZED CONTROL 
OF DISTRIBUTED PROCESSING SYSTEMS

by
AHMED KAMAL EZZAT 

University of New Hampshire, December, 1982

This thesis presents a methodology for implementing 

decentralized scheduling for distributed systems. The 

environment in which the controlling entities make decisions 
is stochastic and can be described as uncertain since each 
entity may have a different view of the system state. As a 
consequence, these entities may make inconsistent decisions.

The methodology is based on defining the system state 

as a set of distributions and using a queueing model to 

predict the future behaviour of the system. The predicted 
state is used to schedule the individual job tasks based on 

minimum predicted job response time.

A hypothetical real system is simulated. The 

methodology was tested using different queueing models and 
under different environments. An evaluation of the proposed



technique using the simulation results indicates a 

consistent performance improvement over the no network 
case. Suggestions for extending this research are also 

presented.



CHAPTER I

INTRODUCTION

Distributed processing systems have now been made 
possible by the advancement in microelectronics technology 
and the development of efficient cost-effective 
interconnection structures. In this research we define 

distributed processing system characteristics, survey 

problems unique to distributed processing systems, and 

propose a control scheme suitable for a distributed 
processing systems environment. The term "distributed 
systems" will be used as a synonym for distributed 
processing systems in the rest of this thesis.

1.1 Characterization of Distributed Systems

The term "distributed system" is frequently used in the 

literature to imply a collection of processing elements 

(hosts) that are physically and logically interconnected and 
share one or more resource(s). This definition includes an 
extremely wide range of systems including both loosely 
coupled and tightly coupled architectures. Jensen [JEN78]



has proposed a more precise definition intended to exclude 

tightly coupled systems on one hand and pure data 

communication networks on the other hand.
Following Jensen's definition, the term "distributed 

system" refers to a computing system which has the following 
physical and logical characteristics which may be 
interpreted as general rules to be observed in a distributed 

system.

1. The system includes an arbitrary number of system 

and user processes.

2. The architecture is modular, consisting of a 
possibly varying number of processing elements.

3. Communication is achieved via interprocess 
communication architecture. This excludes shared memory 

systems.

4. Some system-wide control for all resources is 

needed to provide dynamic interprocess cooperation and 
runtime management.

5. Interprocess message transit delays are variable 
and some non-zero time interval always exists between the 
production of an event by a process and the materialization 

of this production at the destination process.
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An important consequence of these characteristics is 

that physical characteristics, such as the distance between 

components, cannot be used to identify a distributed system.

1.2 Objectives of Distributed Systems

The objectives listed below constitute what is usually 

expected from distributed systems in general [LAN81]. These 
objectives may not all be meaningful to a particular system 

and are probably not equally important. Obtaining these 
objectives is complicated by the new problems that should be 
taken into consideration, such as the need for system-wide 
control to detect and resolve possible conflict without 

excessively impairing parallelism, and asynchrony in 

processing.

1.2.1 Increased performance - The processing power of a 

multiple processor system should certainly be more than the 
processing power of the system if treated as independent 
single processors.

1.2.2 Extensibility - This means the ability to change the 

system performance or the system function without the need 

to change the system design. This implies that the system 
should be designed on a modular basis.

1.2.3 Increased availability - Availability is defined as 

the extent to which a system is able to survive 
failures. Most reliability mechanisms existing today are 
based on using redundant hardware, software, and data. The
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existence of several processing elements in a system raises 

the opportunity for utilizing mutual inspection techniques 
which allow for automatic detection, diagnosis, and 
recovery. In another way, if processing elements cooperate 

in a decentralized manner, it becomes possible to take full 

advantage of redundancy so as to obtain fail-soft computing, 
i.e., systems which keep on running in spite of faults, 
errors, or failures.

1.2.4 Resource sharing - the term "resource" should be taken 

in its widest sense. For example, a resource may be a 

physical device, a database maintained at one or more 

processing element(s), or system software such as a specific 

compiler. Resource sharing involves load sharing and 
transparency to implemented architectures. Resource sharing 
should not be restricted to remote access to a variety of 
resources. The goal is to provide a single computing system 

with some system-wide control of all activities; in other 
words, the system would appear to the user as a single 

virtual machine with optimal and dynamic resource 
allocation.

1.3 The Problem and Its Importance

In this research we propose and evaluate a control 
technique which would meet the objectives (1.2.1 - 1.2.4) of 

distributed systems defined by characteristics (1 - 5)
above.
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The relationship between objectives (1.2.1 - 1.2.4) and 

characteristics (1), (2), and (3) are obvious.

Characteristic (4) is a vital one because it enables 
achieving our ultimate goal, the single virtual 
machine. Characteristic (5) expresses a very important 
physical constraint which must be taken into account in the 
design of any control technique for distributed 
systems. This is because it excludes any system which is 

based on the premise that all processes in the system share 

a complete and consistent view of the entire system state at 

every instant in time. Such systems are referred to as 
centralized ones. In distributed systems, the existence of 
such a unique entity is ruled out. Therefore, centralized 
control techniques are not suitable for distributed systems.

We conclude that such system-wide control for
distributed systems should be built in a decentralized 

manner; consisting of "N" identical physically distributed 
entities, where "N" is the number of nodes in the
system. Each entity makes decisions locally on an equal 
basis with the other entities based on system-wide 
obj ectives.

The environment in which these entities make decisions

is stochastic and can be described by the following
constraints:

. entities may each have a different view of the 

system state; consequently, these entities may 
make inconsistent decisions;
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. the difference between what the. instantaneous 

system state really is and its representation 
communicated to these entities may not be 
negligible.

1.4 The Approach to the Problem

In designing a decentralized system-wide control 

algorithm for distributed systems, one should address the 
following points. First, the objective functions to be 
achieved by the control algorithm must be defined. Second, 

best decisions for achieving these objective functions under 

high uncertainty about the system state must be made. (This 
is a unique problem in distributed systems). Third, any 

algorithm implementing decentralized control must run 
quickly. This is an extremely important aspect of the 
algorithm for two reasons. One is to minimize the effect of 
uncertainty in the system state which makes any excessively 
time-consuming solutions undesirable. The other reason is 
to minimize the overhead imposed by the control algorithm on 

the system.
The key idea in our approach is to define the system 

states by a corresponding number of probability distribution 
functions, where each distribution at any point in time is 
completely described by an estimate of its first two moments 
as functions of time, i.e., the mean(t) and the 
variance(t). Using queueing theory models with the new 
defined states, we can predict the future system behaviour
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on which basis we can make decisions. A special technique 

called a moving window of observations is developed to 

update these estimates for the different entities in the 

system. This technique is discussed in detail in a later 
chapter.

Each host sends the parameters corresponding to its own 
contribution to the system state to every other host in the 

system. These parameters can be accessed by the

corresponding entity at each node. Using a simple queueing 
model each entity is able to make the decisions needed to 

achieve the objective functions of the control algorithm.
We show that decisions taken by the different entities 

using this technique should improve the system performance.

1.5 Related Work

This research is related to work in the area of control 

and scheduling in distributed processing systems. The
Distributed Computer Network (DCN) at the University of 

Maryland [LAY74,MIL76] is intended to be a research tool for 
the development and evaluation of resource allocation and 
management techniques suited for distributed
environments. The Distributed Loop Computer Network (DLCN) 

at Ohio state [REA76] uses the idea of connecting all nodes 

of the network in a virtual ring and having a resource 

allocating task floating through the ring to serve resource
allocation requests. The ARPANET [KAH72 f ROB70 ,SCH75] high
level protocol RSEXEC operates as a subnetwork of the ARPA
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network and provides capabilities for remote file and device 

access. RSEXEC is based on a virtual-storage and virtual 
processor organization. Processes, devices and files can be 
accessed from anywhere by a standard communication protocol, 
but the user must still be aware of which host he is 
utilizing. Stone [ST077] and Bokhari [BOK77], were 
concerned with assigning program modules to a processor in a 

two processor environment. The assignments were handled as 

a commodity flow problem. An attempt was made to generalize 
the results to three or more processors with partial 

success, but an efficient solution has not yet been 
obtained. They also assume "complete information" is 
available at a central decision-making point, an approach 

that we feel is not realistic in any large distributed 

system. Russell and Bergeron [RUS81] at the University of 

New Hampshire have implemented a decentralized scheduling 

mechanism for a heterogeous distributed system based on task 
migration during execution. The scheduling entities 
exchange task information and cooperate on the migration 
decision. A Distributed Real time Operating System (d-RTOS) 
is a distributed computer simulation developed at the 

Advanced Research Center in Huntsville, Alabama 
[MIC80a,MIC80b,MIC80c]. This work is tailored to a 

ballistic missile defense application to achieve maximum 
performance at minimum overhead. The resource manager is 
fully distributed and consists of five tasks which reside 
identically on each computer in the network. Its main goal
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is to dynamically balance the task load on the different 

computers in the network. The work described above, as most 

scheduling work in the distributed systems area, is based on 
using message exchange and cooperation between nodes in the 

network. Instead of using message exchange, our model uses 
state prediction to determine task migration. The only 
other research which handles scheduling under imperfect 
knowledge of the system state was done by Stankovic 

[ STA 81a, STA 81b, STA 82 ]. His research is part of the design 
of an experimental operating system, called Adaptive 

Decentralized Controlled Operating System (ADCOS). ADCOS 
and its associated hardware form one computer system that 

happens to be physically distributed. The decentralized 
control algorithms are generated by a methodology based on 

Bayesian Decision Theory and a modified McCulloch-Pitts 
Neuron. This research is similar to ours in that we both 

make decisions in a decentralized manner based on local 
information under conditions of imperfect knowledge of the 

system state. Stankovic applied his model to a simpler 

environment than ours. Each job is equivalent to a cpu task 

whereas our jobs consist of a cpu task, terminal task, and 
zero or more I/O tasks which can be deterministic or 

nondeterministic. Also, his simulation utilizes FCFS 
service discipline whereas ours uses a service discipline 
which is close to a round-robin.
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1.6 Outline of the Thesis

Chapter II discusses different issues in distributed 
systems, some of which are common to those in nondistributed 
systems, and others are unique to distributed systems. This 
chapter also gives a brief overview of an informal model for 
a distributed system architecture.

Chapter III presents the functional model. Chapter IV 

discusses how to apply this model to a real system 

environment. This includes developing some techniques 

needed by the model such as updating the system state and 
system state initialization. Chapter V discusses in detail 
the simulation implemented to test our model. Different 

test results are shown under different workload 
environments. Analysis and conclusions for our model from 

the simulation results are also presented.

Chapter VI summarizes the contributions of this 

research and presents possible extensions for future 
research.

Appendix A gives a brief review of stochastic processes 

as they relate to our research. Appendix B gives a summary 
of the different resource queueing models used in our 

decentralized control model. Appendix C gives a brief 
discussion of the distribution identification problem. One 

of these techniques is implemented in our simulation.

This thesis assumes that the reader is familiar with 
queueing theory at the level presented in Appendix B.



CHAPTER II

DISTRIBUTED SYSTEM ARCHITECTURE

The area of distributed systems is new and not well 
defined. The purpose of this chapter is to survey problems 

unique to distributed systems and provide an informal 
framework for a distributed system architecture model, 
keeping in mind that there are many alternative approaches 

to the realization of this and similar models.

2.1 Issues Pertaining to Distributed Systems

Distributed systems have many problems and solutions in 
common with nondistributed systems. New problems, however, 
are introduced by the physical separation, the potential 
heterogeneity of the system components, and the need to have 

multiple entities controlling the system [WAT81]. The 

following is a discussion of the important problems 

introduced by distributed systems:

2.1.1 Identification - We need to be able to distinguish 
between various kinds of identifiers used to refer to

11
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objects at all levels of architecture. Identifiers at 

different levels referring to the same object should be 

bound together either statically or dynamically. One way to 
implement this, is by mapping identifiers into addresses and 
routes.

Many problems are added to the design of an 
identification system due to the heterogeneous nature of the 
system components, each with its own possible local 
identification system for accessing objects. Another kind 
of problem is in maintaining distributed context and mapping 

information in spite of delays and errors in message 
transmission, and local or network crashes.

The choice of an identification scheme can affect the 
ease or even the possibility of achieving goals, such as:

. Efficient support of both transaction and stream 

oriented services. In a transaction oriented 

system the application has the identifiers of one 

or more resources on which it desires to perform a 

given operation, with no implication that these 
resources or the operation may ever be used 
again. In a stream oriented system, on the other 
hand, it is assumed at the start that a stream of 
operations may be requested over time against an 
identified set of resources. Efficient support of 

transaction oriented applications and services 
implies minimizing the delay and number of 
messages (overhead) that must be exchanged before
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and after the actual message is sent to perform 

the desired function. On the other hand, 
supporting efficient stream oriented applications 
implies that we want to perform identifier mapping 

at most once before or during the first access.

. Global space identification. A system should be 

seen as a global space of identified objects 

rather than one viewed as a space of identified 
hosts containing local objects.

. Relocation of objects. A system should allow an 
object to change location. This implies having at 
least two levels of identifiers, a name and an 

address, and that the binding between them is 

dynamic.

. Use of multiple copies of the same 

object. Multiple copies are required for 
performance and reliability goals. This means a 
single identifier at one level can be dynamically 
bound to more than one address at a lower level 

according to some criteria.

. Broadcasting. A broadcast capability requires 

that many different objects be able to share the 
same identifier.

2.1.2 Resource management - Allocating and scheduling 
resources at the various distributed system hosts is usually
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based on local decisions, because of the need for local 

autonomy for the different resources at each host. Resource 

management and state information management are intimately 
related. In many distributed systems, one would like to use 

resource and state management philosophies at all levels 
that could achieve both low delay and high throughput.

Delay is defined as the time interval from the time a 
process is ready to send a message until the first useful 
bit of the message reaches the destination. Delay is 
affected not only by the transmission and queuing properties 

of the interprocess communication (IPC) mechanisms, but also 

by the overhead messages at one or more layers that may have 

to be exchanged to reserve resources, map identifiers, 
initialize state variables, etc., before the desired request 

or data can be sent.
Throughput is defined as the number of useful data bits 

per second that reach the receiver in some 

interval. Throughput is affected not only by transmission 
and queuing characteristics of the IPC mechanisms, but also 

by the amount of identification, control, protection and 

other overhead information that must accompany the 
meaningful user data object bits.

The principal difference between transaction and stream 
oriented communications is the number of identification 
mappings typically required. Consequently, minimum delay is 

the better goal for a transaction oriented environment,, 
whereas maximum throughput is the better goal for a stream
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oriented environment.

Developing mechanisms that can achieve both low delay 

and high throughput in a distributed system is a difficult 
task. Tradeoffs exist between quantity of state 

information, amount of overhead information carried with 
messages, and the number of messages needed to initialize 

state information. Because parameters are a function of the 
resource management services being supported, one can say 

that levels of this service also define trade-offs between 

delay and throughput.

2.1.3 Synchronization - The term synchronization refers to 
mechanisms used by cooperating entities to coordinate access 

to shared resources or to order events with some means to 

keep the system in a consistent state.
In the absence of any particular assumption, the only 

way to preserve consistency is to guarantee that operations 

remain atomic [K0H81], i.e., operations are executed one 
after the other in a strictly sequential fashion. An 
operation is atomic iff all intermediate states are not 
visible to any other operation. To explain the principle of 

atomic operations by example, let us assume two operations 
A ,B ; for each resource R K shared by A and B, let {aj } be 

the set of actions of A that access R K and {bj } the set of 
actions of B that access R K . Then A and B are atomic if

ftfor every action a in {a; } a occurs before b for every b in 
{b^ }, or all a occurs after all b. Having specific 
assumptions, it is possible to relax conditions of atomicity
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for operations and still preserve consistency. Clearly, if 

actions activated by a given set of operations manipulate 
different objects, parallel execution of actions is 
certainly recommended.

It should be clear now that atomicity implies that it 

is possible to express or enforce a particular ordering on 
any given set of events so as to preserve system state 

consistency, which is the purpose of any synchronization 
mechanism. For distributed systems where operation 
executions involve a number of processing elements, it is 
easy to see that variability in propagation d e l a y (i.e.,the 

time delay between the production and materialization of an 
event) may disturb any particular event ordering which was 

supposed to occur.

2.1.4 Error control - Error control implies error detection 

and recovery. Two schemes for error control are discussed 
using the concept of recovery points [LAN81]. A recovery 
point is a recording of all needed information whereby a 

consistent state of the system may be-reinstalled.

One scheme is the "backward error recovery", where on 

error detection all activities of any operation are rolled 
back to the last recovery point. The other one is the 
"forward error recovery" scheme, which depends on the 
possibility of detecting the consequences of a fault; it 
allows activities not affected by the error to proceed to 
the next recovery point, and those which are affected or 
will be affected to roll back to the last recovery point.
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These two schemes are based on the utilization of those 

recovery points. Defining the recovery points in a 

distributed environment is clearly much harder and perhaps 

infeasible.

2.1.5 Other problems - These include translation issues 

resulting from heterogeneous data encoding and 
representation at the different hosts; the need for a 
message base IPC model; the need to maintain consistency 

among multiple copies of information; the need to have a 

uniform resource structure which can support distributed 

objects.

2.2 A Model Based on Layers

A model which provides a framework for solving these 

problems should be based on the techniques of layering, 
message passing, and creation of abstract objects.

The concept of modular and layered design or levels of 
abstraction [IS079] has been widely accepted as good 

software engineering practice. Such concepts when applied 
to the design of a distributed systems could result in the 
organization shown in figure 2-1 [WAT81]. Associated with a 
layer N are two interfaces. Each layer N provides a 
well-defined set of services at the interface to layers N+l 
and higher. In turn, layer N is implemented using the 

services provided through interfaces with layer N-l and 
lower. The layers may be partially ordered since many 
abstractions at higher levels may involve only some or none
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Figure 2-1. Layers and Interfaces Structure
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of the abstractions at some particular level below.

Designing a distributed system architecture requires:

. decomposing the system into layers and sublayers 

according to some set of criteria;

. specifying the services to be offered by layer N 

to higher layers;

. specifying the services layer N requires of lower 
layers.

The services of layer N may be further decomposed into 
modules. The modules implementing a service of a given 
layer may in turn be distributed. Modules, like layers, 

provide a well-defined set of services at their interfaces 

and their internal implementation is not visible on the 

other side of this interface.
The above description identifies two interfaces, one 

between adjacent layers and one between cooperating modules 
within a given layer. Generally, an interface is defined as 
a set of conventions for the exchange of information between 

two entities. It consists of a set of abstract objects and 

for each object a set of allowed operations and associated 

parameters.
The model is based on the idea of having a distributed 

operating system (DOS). One of the major design goals of a 
DOS is to provide users with access to real and abstract 
objects or resources [JON78] in which the distributed nature
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of their implementation is hidden as far as practical. In 
addition, all objects (system and user defined) are named, 
communicated with, and shared uniformly. Real objects are 
entities such as processors, secondary storage, I/O 

devices. DOS abstract objects or resources are entities 
such as processes, files, directories, and databases, which 
are used as a set of basic building blocks for creating 
higher level objects. Objects at each level interact 

through, and are created from, lower level objects.
Each type of resource or object is specified by:

. a set of data structures visible at the interface 

(object representation);

. a set of operations or functions and associated 
parameters that can be performed on the object 
representation.

Two resources are said to be of the same type iff they 

have the same specifications (representation and 

operation). These specifications are implemented by one or 

more modules called server(s). Servers can be implemented 
by hardware/firmware or a set of procedures (processes).

The implementation details of a resource representation 
are of concern only to a particular server. Two different 
servers implementing a resource of a given type, such as a 
file, might internally structure the files they manage quite 

differently, while presenting the same specification 
(representation and operations) externally at the



interface. This characteristic is important in dealing with 

the heterogeneity that results when a DOS is built on top of 

existing operating systems or even implemented directly on 
heterogeneous hardware/firmware components.

2.3 The Model Layers

Watson's model for distributed system architecture 

consists of four basic layers, meeting the layering 

guidelines and having the concept of objects and their 
interaction presented above:

. A hardware/firmware component layer - This layer 
consists of processors, memories, I/O units, 

terminals, etc.

. A distributed operating system kernel/IPC 
layer - This layer provides the minimal general 

purpose services such as creation of abstract 

objects, interprocess communication (IPC), and 
interfacing I/O structures to the message passing 

m o d e l .

. A distributed operating system service 

layer - This layer provides services useful to a 
wide variety of applications such as resource 

allocation and process creation, management, and 

deletion services.
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. An application layer - This layer contains 

processes that provide application dependent 
serv ices.

An important characteristic of Watson's model is that 

it explicitly recognizes the need for having a distributed 

operating system. Most of the existing literature on 

distributed systems or computer networking has focused on 
interprocess communication. Developments to date have made 
valuable services possible such as access to remote 
interactive programs from terminals on heterogeneous 
systems, simple file transfer, and electronic 
mail. However, there have been very few applications of 

resource sharing or distributed computing as defined in 
Chapter I. Adding one or more function-oriented protocols, 
such as file transfer protocols, built on top of the IPC 
layer is not going to offer resource sharing to support 
distributed systems as defined in Chapter I.

It is clear that an explicit distributed Kernel/IPC 

facility should be created as a core of the distributed 

operating system architecture model. The DOS should provide 

two basic facilities:

. It should turn a collection of distributed 

hardware/software resources into a coherent set of 
real and abstract objects (resources). The 
Kernel/IPC layer must support naming, sharing, 
protection, synchronization, and error recovery
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. It should multiplex and allocate these resources 

among distributed processes and possibly in a

distributed manner.

The DOS must provide this functionality in the face of 

the problems of heterogeneity and physical separation of 
components. In the rest of this chapter we are going to 
discuss in more detail the model layers starting from the 

top layer.

2.3.1 Application layer - The service provided by the 

application layer is clearly dependent on specific 

applications. Process management, communication,
information management, virtual I/O and accounting are the 
usual services needed in different forms by all 
applications.

The issue here is how to organize and structure the

processing, the data and other resources both physically and

logically. For example:

. How should processing be distributed? Should it

be distributed on a functional separation basis, a 
given level of fault tolerance, or other goals?

. Is the control of the application distributed or

centralized, and how does the application process

maintain synchronization?

. How should data be distributed? Should files be
strictly partitioned, fully redundant, or
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partially redundant? The decision will depend on 

cost factors such as money, reliability, 
responsiveness and also on available mechanisms to 
support consistency of multiple copies.

. What features should be in the languages used in 
addition to those desirable in a nondistributed 

systems? One view of distributed system design 

uses layers of abstraction to create the illusion 
of a nondistributed system at some level. How 
pure should this illusion be? How many of the 
distributed system naming, error control and 
resource management facilities should be visible 

and under user control, and which should be 
handled automatically by the system?

The application layer should provide answers for these 

questions.

2.3.2 Pistributed operating system service layer - The 

services required by this layer are'very similar to their 
counterparts for nondistributed systems including the 
ability to create and destroy resources, interrogate their 

status, read and write their data structures, account for 
their usage, and start and stop them. Services in this 

layer access objects in the lower kernel layer via 
interrupts and privileged commands, and those in the higher 
application layer via the message based IPC facility. In 
this layer, we still have the question about how much
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resource management, error control, etc., should be visible 

at the DOS interface.
There are many approaches to defining a distributed

operating system. One is to build a DOS on top of existing

operating systems. Another is to define a DOS built as the 

native system on each host. In any case, common DOS goals 
are the following:

. Processes, terminal users and programmers should 
have a uniform coherent view of distributed

objects. This means that the user should not have

to program differently or use different procedures 

depending on resource location, i.e., host 

boundaries are largely or completely hidden.

. The DOS structure should be efficiently 
implemented. This means that access by local 
users to local services should be as efficient as 

a nondistributed operating system in terms of the 
number and kind of messages exchanged or overhead 

for the same operations.

. The DOS should be extensible. This implies that 

users can easily add new services built on 
existing services without requiring system 
programmers to add new privileged code. In other 

words, the focus would be on the definition of 
general purpose abstract objects and operations 

that can be used as building blocks for objects of
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higher levels of abstraction, rather than

elaborate definitions of restricted objects and
operations producing restricted functions.

. The DOS should define standard models for logical 
server, resource structure, protection, error 
control, resource management, etc.

2.3.3 The distributed system kernel layer - The services to
be provided by the kernel could vary depending on
assumptions about the underlying hardware support, security, 
and applications to be supported. However, it is desirable 
to place the minimum functionality possible in the 
kernel. Services expected from the kernel layer are:

. Interprocess communication service (IPC). This 
service should provide the most primitive process 

synchronization mechanism.

. A message oriented interface to I/O 
structures. This service converts interrupts from 
I/O devices into messages to the kernel, and 
messages from the kernel into low level I/O 
commands.

. Basis for other services. The kernel should also 

provide the basis for creating processes; 
primitive objects; I/O resources; protection and 
security; and component multiplexing.
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Even though it is the responsibility of this layer to 
create processes, the responsibility of managing these 
processes would reside in server processes outside the 

kernel.
Organization of the kernel will vary from one system to 

another depending on whether it is built from the 
hardware/firmware up or is built on top of existing 

operating systems. Of all the layers and sublayers, the IPC 
is best understood because most of the work in networking in 
the last decade has been focused on the IPC 

[CCI80,WAT80a,WAT80b]. Briefly, the design of the IPC 

service should allow the following goals:

. Each communicating entity should have complete 

autonomy and control over its own resources and 
state.

. There should be no a priori restrictions on which 
processes can communicate with each
other. Knowing a process identification should be 

sufficient to communicate, not including possible 
access restrictions.

. Efficient support for both transaction and 

stream-oriented services should be provided.

. The user should have a uniform view of the system, 
by allowing communication among all processes to 
use the same mechanism, whether processes are
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local or remote or whether they are user or system 

processes.

2.3.4 Hardware/firmware components - Most existing

hardware/firmware components were designed to be used in 
standalone or tightly coupled systems. In distributed 
systems, it is important to utilize components that are more 
appropriate for a message oriented, heterogeneous, 
communication environment. Some examples are: I/O

structures that provide more efficient IPC; components that 

support system state information and efficient privacy; 

intelligent components that can be directly connected to the 
network; and generally enabling much of the architecture to 

be placed in firmware.

2.4 Summary

The main features of Watson's distributed system 

architecture model introduced in this chapter are:

. layering and modularity;

. the need to explicitly create a distributed 
operating system built around a unified view of 

objects or resources;

. a message based IPC;

. support for both transaction and stream oriented 

services and applications.



CHAPTER III

FUNCTIONAL MODEL FOR 

DECENTRALIZED CONTROL IN DISTRIBUTED SYSTEMS

The principle goal of this work is to develop a viable 
decentralized system-wide control for distributed systems. 
The main goal of the model is to be able to make decisions 
locally to schedule job tasks to the available resources in 

the system. This is done in an uncertain environment for 

the good of the whole system according to some performance 

objectives. In order to achieve this goal, we need a 

definition of system state and a means for predicting a 
future system state. In such an environment our solution is 
to make decisions based on predicted values for the actual 

system state. In this research we assume that each job 
consists of a group of tasks, one task for each resource 

required by the job. A task can be deterministic (one which 
has a predetermined location for the resource) or 

nondeterministic (one which has no predetermined location 
for the resource). We also assume that the task's 
description is known upon the job's arrival to the system,

29
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i.e., the number of operations required by the task from the 
resource, and a measure of the task length defined as the 

number of bytes to be used for estimating the communication 
cost for the task. A typical job consists of a CPU task and 

possibly one or more I/O task(s).
In the rest of this chapter, we will discuss in details 

the following points:

1. uniform resource model;

2. system state representation;

3. performance goals for the distributed control 

model;

4. factors not affecting the model;

5. databases needed for the model;

6. the task allocation algorithm;

3.1 Uni form Resource Model

A resource can be viewed as a data structure*l 
(possibly distributed) which represents the resource, plus a 
set of all operations that can be performed on that 

resource. In turn, the data structure (resource 
representation) consists of two major parts:

. The resource state record (heading). This part of 

the data structure contains resource independent 
information such as creation time, last access



time, access rights, etc.

. The resource proper (body). This part of the data 
structure contains resource dependent
information. For example, the body of a file 
resource may be the information itself and how to 
access it, i.e., the format to store or retrieve 

the information.

The functions required to perform operations on the 

data structures consequently can be classified into two main 
groups. One group performs operations on the resource state 

record data structure and involves accessing or modifying 
the resource heading. The other group performs operations 

on the resource body and are clearly resource dependent. A 
third group of functions is needed to create and destroy a 

resource.

3.2 System State Representation

In order to implement a decentralized control model we

m u s t :

1. define a representation for the system state;

2. be able to estimate the current system state;

1. For more details on abstract data types and data 
structures, refer to [GUT77,SHA77].



3. be able to predict the future system state.

3.2.1 Definition of system state - The system state is 
basically defined in terms of the resources in the 

system. A resource state is defined by: The resource
workload arrival time distribution? the resource workload 

service time distribution? and the resource capacity. A 

node state is defined as the collection of the individual
resource states at the node. The system state is defined as
the collection of the node states in the system.

3.2.2 Estimation of the current system state - Since each 

node in the system has the ability to make scheduling 

decisions, each node must have an approximate value 

(estimation) of the current system state. Because of 

communication delays, a node's knowledge of other node's 
resource states will always be more or less inaccurate. To 
get other node's states, there are two main approaches:

. Centralize the system state information and make 

it available on demand to any remote process that 
needs it. This approach does not require saving 

the system state at each node and is relatively 

more accurate. However this approach requires 
high overhead and is less reliable since failure
of the central node affects all nodes.

. Replicate the system state information at every 

node and update it periodically. This approach
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requires saving the system state at each node. It 

is less accurate because of delays in

updating. However this approach allows more 

concurrent decisions to be taken simultaneously 
and is more reliable as functioning of the system 
is independent from any node in the system.

We chose the second approach and use a "moving window 
technique" to update the system state at each node. This

technique is discussed in detail in Chapter IV.

3.2.3 Prediction of the future system state - The 

representation of each state by a distribution allows the 
local controllers at each node to use the past history of 
the state to predict the actual present and future value of 
the state. We hope that this approach will minimize the 
effect of the communication time delay and its 

variability. Estimation of the resource state distribution 

parameters is discussed in detail as part of the 

distribution identification problem in Appendix C.

3.3 Performance Goals of the MOdel

The proposed model makes decisions based on predicted 

response time defined as the difference in time between job 
completion and job arrival to the system.



34

3.4 Factors not Affecting the Model

The model is not affected by the physical
implementation of the following factors even though the 

model needs information related to them, such as the actual 
communication cost.

. Network switching policy. The model does not

depend upon whether the network is implemented

using circui t swi tching (a physical path is 
actually established between the source and 
destination nodes), or packet switching (messages 
are divided into packets and routed through the
interconnection network without establishing a 

physical connection path).

. Network topology. The model is not affected by

the network topology or whether the topology is
static (the links between nodes are passive and 
dedicated) , or dynamic (links can be 

reconfigured).

. Routing algorithm. This refers to a mechanism

establishing which path the message is going to

take between the source and destination 

nodes. Although the model is not affected by the 
physical implementation of the routing algorithm, 
it uses an estimation for the communication cost 
which must be calculated by the routing algorithm.
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3.5 Data-Bases Needed for the Model

Two databases are needed as a part of the resource 

state record. One has static information such as resource 

name, how to reach the resource (address), and resource 
capacity. This database is updated only on resource 
addition/failure. The other database has dynamic 
information representing the workload arrival and service 
time distribution parameters for each resource in the 
system. This information is updated dynamically whenever 

the resource state changes beyond a predetermined limit.

3.6 Task allocation algorithm

A decentralized task allocation algorithm is one 

algorithm composed of "N" physically distributed entities, 
{e, ,ea ,. . .. ,eM } . Each of the entities is considered a local 

controller running asynchronously (potential performance 
improvement) and concurrently with the others, continually 
making decisions over time. Each entity "e-," makes 

decisions based on system-wide objectives, rather than on 

local ones. Each e-, makes decisions on an equal basis with 
the other entities (no master entity). It is intended that 
the task allocation algorithm adapts to the changes in the 
state of the various nodes in the system.

It is hypothesized that these controlling entities 
acting together can produce greater benefits than 

cost. These include the cost of running the algorithm 
itself, the cost of transmitting the update information, and



36

the cost of moving the jobs between hosts.

Upon job arrival at any node, the local controller will 

assign the individual job tasks (CPU and I/O tasks) to 
server queues for the resources available in the system in a 

manner which achieves the model objectives (see
Figure 3-1). For example, a job can arrive at node "j" and
be migrated to node "i" where the CPU task will be executed,
and from node "i" perform I/O tasks possibly at other 

nodes. Decisions taken by the local controllers in the
general form are based on minimizing the total time cost (T) 
given by the estimated job response time. Defining the 
response time depends on the way the job is executed in the
system. There are two main approaches to defining the job
response time:

1. We can assume that all the tasks belonging to 

one job start execution together and 

independently, i.e., parallel execution. The 
response time will be defined as the summation 
of the cpu task migration time from the 
arrival node to the assigned cpu task
execution node plus the maximum time for

executing any of the job tasks including 
necessary communication cost for I/O tasks.

2. We can assume that the various tasks of the 

job alternate execution in time, i.e., serial 
execution. The response time will be defined
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as the sum of the cpu task migration time from

the arrival node to the assigned cpu task
execution node plus the summation of the 
execution time costs of all the job's tasks 

individually. I/O tasks which are not

executed at the cpu task node include their 
communication time cost as part of their
execution time cost.

We feel that the second approach is closer to what 

happens in a real system.
On arrival of a new job to the system (consisting of N 

nodes) at node "j " , the local controller at the job arrival
Inode will calculate the estimated total time cost (Tj ), for 

assigning the job to each of the nodes in the system, i=
I1, 2, ..,j ,..,N. Estimation of Tj will depend on the

resource queueing model we assume. In the simulation We use
three models M/M/1, M/G/l, and G/G/l. A brief description
of each model and their steady state analysis results are

presented in Appendix B. Of particular importanats are the

equations for computing the estimated time a process wait in
resource queue before starting execution. We can thus

compare the simplicity of the M/M/1 model, the more accurate
but relatively more complicated M/G/l model, and the G/G/l
model which is the closest to the real environment but
substantially more complex. The local controller will
assign the job tasks to the system resources corresponding 

\to minimum Tj .
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3.6.1 Computing cost for one allocation - For a system

having "N" nodes, let us assume an external job which

arrives at node "j", consists of a cpu task and only one

nondetermini Stic I/O task. Given a possible allocation for

the CPU task to node "i" and the I/O task to node "k", apply
the task allocation algorithm. The predicted job response 

itime (Tj ) for that specific allocation would be:

response time=Cy, + (time cost for CPU task) +

(time cost for I/O task)

=c ji + (T -u +T tx ) + (T',3+TW+Ti5 )

Where:

Cjj ..Estimated time cost for migrating the CPU 
task from the arrival node "j" to the CPU 
task execution node "i", i.e., the size of 

the CPU task (Scpa) multiplied by the cost of 

communication from node "j" to node "i" per 

unit size (c ;• ) .dl

ji = Scpu*c S»

T •„ ..Estimated "waiting time" at node "i" before 

the CPU task starts execution. This cost 
depends on the model used to represent the 

CPU resource, i.e., M/M/1, M/G/l or G/G/l

model. Formulas for these models are given 

in Appendix B. In the case of the M/M/1 
m o d e l :
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T P l u  C j
1 -  p  cpu

Tix..Estimated execution time for the CPU task at 

node "i".

T i3 ..Estimated time cost to access the required 

I/O resource from node "i", i.e., the size of 
the I/O task (S-,j0 ) multiplied by the cost of 
communication from node " i" to node "k" per 

unit size (C.(K ) .

..Estimated "waiting time" for the I/O task

before it starts execution. This cost
depends on the model used to represent the

I/O resource. In the case of the M/M/1
m o d e l :

T ;_ ..Estimated execution time for the I/O task atID

node "k".

We can see that T-„ and T-,¥ are the only components 

which depend on the resource model representation used,
i.e., M/M/1, M/G/l or G/G/l model.

T]x=ij u o )cpa

T i3  =  S-, /o * C ' , k
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In a real system environment, the job arrives at node 

"j" and we want to find node 11 i" and node "k" to allocate 

the job tasks achieving the system objectives. Applying the 
above algorithm for all possible allowed combinations, the 

job tasks will be scheduled according to the allocation 
combination which gives minimum cost. Assume T j is the 
total time cost for one specific allocation (CPU task to 
node "i" and I/O task to node "k") and apply the following 

algorithm:

for ( i=l TO N ){
assign CPU task to node "i"; 

for ( k=l TO N ){

assign I/O task to node "k"; 
if K

compute T ̂  ;

}

}

Schedule the CPU task to node " i" and the I/O task to
\,K

node "k" having minimum Tj of all possible combinations.

3.6.2 General job task allocation cost - In general, a job 
may consist of a CPU task, "m" deterministic I/O tasks, and 
"n" nondeterministic I/O tasks. The general equation for 
computing the predicted job response time for any one 

specific allocation is the summation of the estimated time

cost for migrating the cpu task from the arrival node "j" to
the cpu task execution node "i" and the sum of the time cost
of the cpu task plus all I/O tasks of the job individually
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including their communication cost.

As discussed in Chapter IV, it is not always necessary 

to apply the full general algorithm in a real world 
system. Most probably there will be only a limited number 

of nodes accessible from a particular node. This means the 
algorithm will require less time to perform the task 
allocation calculations.

3.7 Conclusion

The decentralized control model presented in this 

chapter offers a promising approach to the uncertainty 
problem in the system state of distributed systems. It 
offers a compact representation of the system resource 
states, and requires simple calculations which implies low 

overhead.



CHAPTER IV

APPLICATION OF THE MODEL

4.1 Introduction

Chapter III presents relatively simple model for making 

scheduling decisions based on queueing theory. If all the 
assumptions embedded in the model are correct for a given 

environment, we could utilize the model for scheduling 
without requiring further validation. However, there are 
several important assumptions that do not generally hold in 
real systems. First, the resource queueing models used in 
the prediction (M/M/1, M/G/l or G/G/l) assume First Come 
First Service (FCFS) service scheduling, whereas real 

systems usually use a form of scheduling that is more like 

round robin. Second, in calculating the estimated time 
required to finish a job, we assume that the job consists of 

a set of independent tasks. In this chapter we discuss how
the scheduling model of Chapter III can be applied to a real
system. In this case, however, the analytical results are
not sufficient - we must verify the validity of this

43



44

application by simulation. We hope that the simulation

results will show a consistent performance improvement using 

our model.

4.2 A Feasible Real Environment

In order to simulate the performance of our model, we 
must create an environment that approximates a real
environment. This environment has the following 

characteristics:

1. Job description. A job is assumed to be one cpu 

task, one terminal task, and zero or more I/O

tasks. The terminal task is always assumed to be
executed at the arrival host independent of the 
algorithm used for scheduling. I/O tasks can be 
deterministic (predetermined location for 

execution) or nondeterministic (location is 
determined by the scheduling).

2. Resource scheduling. Scheduling of all resources 

at every host uses a round-robin discipline for as 
many tasks up to the resource
capacity. Additional tasks must wait in another 

queue until capacity is available before they 
enter the round-robin queue. Each task utilizes a 
percentage of the resource capacity until it is 

d o n e .
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3. Task description. The task descriptions are 

known, i.e., number of operations required per 
task and a measure of the task size which is used 
to estimate communication cost.

In large distributed systems, it is likely that the 

network would be partitioned into a set of overlapping 

subnetworks, i.e., each node is only allowed to communicate 

directly with part of the network. This issue of 
partitioning is not considered in our research, i.e., we 
assume that a job at any node in the network can access any 
resource at any other node in the network. This is not a 
major restriction since partitioning can be reflected by 

assigning appropriate communication costs between nodes.

4 . 3 Task Allocation Scheduling Algorithm

This section describes the three allocation algorithms 

that are implemented and compared via the simulation.
Upon external job arrival, the local controlling entity 

using any of the three schedulers - will allocate the job 
tasks according to minimum predicted response time as 

discussed in Chapter III. In the mean time, each local 

controlling entity updates the resource's state to the 

network using a moving window technique. This technique is 
discussed in detail later in the chapter. The main 
difference between the three algorithms is the degree of 
freedom in scheduling the job tasks to the different 
resources in the network. We assume that each job consists
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of a CPU task, a terminal task, and zero or more I/O 
tasks. For all three algorithms, the terminal task is 
always assigned to the arrival node resource, and 

deterministic I/O tasks are assigned to the corresponding 

predetermined node resources.

1. The Joint Migration Algorithm

The local controlling entity may schedule the cpu task 
and nondeterministic I/O tasks to any node in the network 
but they must be assigned to the same host. The time cost 

for executing this algorithm is linearly proportional to the 

number of nodes in the network.

2. The I/O Migration Algorithm

The local controlling entity schedules the CPU task to 
the arrival node, but each nondeterministic I/O task can be 
scheduled independently to any node in the network. The 

time cost of this algorithm is only slightly better than the 
full migration algorithm discussed below.

3. The Full Migration Algorithm

Both CPU task and nondeterministic I/O tasks can be 
scheduled independently to any host in the network. This 
approach should achieve the optimal minimum response 
time. However, the time cost for executing the algorithm 
can be high - it is proportional to N , where N is the 

number of nodes in the network and r is the number of tasks
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to be allocated for the job.

In general, each scheduler allocates tasks based on 

calculating a predicted cost for executing the job assuming 
a specific allocation pattern. In doing this, each resource 
can be treated as an M/M/1, M/G/l or G/G/l queueing 
model. All models were tested in the simulation under 

different workloads to see the tradeoffs between them.
The three schedulers were simulated using the three 

queueing models and the performance of each were compared to 
the base-line case where no migration is allowed, i.e., both 
CPU task and nondeterministic I/O tasks must be allocated to 
the arriving host.

The simulation results provide important insights into 

the feasibility of the scheduling algorithms, the different 
resource models, and the effects on performance improvement 

of migration and communication costs.

4.4 Moving Window Technique

The resource state is represented by the workload 
arrival distribution, the workload service time 
distribution, and the resource capacity. It is clear that 

both arrival and service time distribution parameters will 
vary with time as the workload on the resource 

varies. Updating these two distribution parameter values 

involves two issues.



48

1. How much time is needed to estimate the

distribution parameter values? We define a window 
of time within which we retain sufficient data to 
be able to compute these distribution 

parameters. The window moves forward in time with 

system time. Window size is defined as the most 

recent period of time used to estimate the state 
distribution parameters.

2. How often is the resource state updated? In this
regard we have a tradeoff between a high update 
rate which means imposing high overhead on the 

communication capacity of the network, and a low 

update rate which means a greater chance that the 

current state value does not represent the actual 
value.

4.4.1 Window si ze - It is possible to define either a 
fixed-sized window or a variable-sized window.

1. Fixed window si ze - With a fixed size window of 

size "T", the tasks that have arrived at a

resource during the most recent "T" time units are 

used in estimating the arrival and service time 
distribution parameters. This approach can not 
handle both high arrival rate and low arrival rate 

efficiently. In the case of high arrival rate, a 
small window will contain enough tasks to be able 
to calculate the distribution parameters
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accurately. In the case of low arrival rate, we 

will need a larger window in order to have enough 

tasks to be able to calculate the distribution

parameters. Now, if we have a fixed window size 

which is enough to estimate the distribution 
parameters in case of low arrival rate (large
window size) this means an unnecessary overhead
when the workload changes to high arrival

rate. On the other hand, if we choose the window
size small enough to handle high arrival rate

efficiently, the window may be too small to handle 
a low arrival rate.

2. Variable window si ze - With a variable size window 
the controlling entity maintains enough past 
history to allow us to calculate the arrival and 

service time distribution parameters.

We have chosen the second approach because it is more 

accurate and more efficient. If we assume that at least "M" 

tasks are required to be able to calculate the distribution 
parameters. Then at any point in time, the window size
would be "M" multiplied by the current mean interarrival
time between two tasks at that resource. This means also 

that at any point in time, every resource in the network 
will have a different window size, and for any specific 

resource the window size is variable with time according to 
the workload variations on this resource. On the other
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hand, the storage overhead for maintaing the data is

constant, and the window size is linearly proportional to
the total average arrival rate at a resource for all 
resources independently.

4.4.2 Resource state updating rate - There are two 

approaches to selecting the state update rate:

1. Fixed rate state update - Having a fixed rate of 
state update does not allow the system to respond 
to system state variations. If we have high fixed 
rate of state update, there will be high overhead 

when the system state varies slowly. On the other 
hand, having a low fixed rate of state update may 

lead to making decisions based on the wrong system 

state.

2. Variable rate state update - This approach

basically tends to update the system state only
when the system state changes significantly.

We chose the second approach. In our model 

recalculations are made following each time period equal to 

the mean interarrival time for that resource. Using the 

current window size ("M" multiplied by the current mean 
interarrival time for this resource), we calculate the new 
arrival time and service time distribution parameters. If 
the percentage difference between the new state and the old 
state is higher than a predetermined value, update the
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system state. Having new parameter values will affect the 

next time to check the state of the resource (mean 

interarrival time for the resource) and the window size.

4.5 Resource State Initialization

Estimating the resource state (arrival time and the 

service time distribution parameters) is based on using the 
past history of the workload on the resource. At system 
start time, the resource does not have a history about its 
state. In a real system, these values would be determined 

based on experience. In the simulation, we initialize the 

resource arrival time and service time distribution 

parameters with the corresponding values of the arrival and 
service time distributions for jobs arriving to the node 

which has this resource. Knowing no history for the 
resource, this seems to be a reasonable guess for the 
resource's initial state. Each local controlling entity 
will adapt its resource state with time. In other words, 

the controlling entities will adjust its resources' states 
as it learns more about its history. This approach of 

handling the initial resource states has a special case 
which must be handled separately. Let us assume that one 
node in the network has no external job arrivals (mean job 
interarrival time is infinity and mean service time is 
zero). This means that the next time the controlling entity 
at this node updates the resource states at the node will be 
at time infinity, i.e., the resource states at this node
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will never be adapted to the arrival of the internal task 

arrivals in the network. Consequently, all nodes in the 

network will think that this node's resources are free all 
the time and migrate their tasks to that node even though 
eventually the resources at this node will become heavily 
loaded. Our solution to this specific case is to force a 
maximum time to recheck the resource state. This value is 

defined as four times the initial average time to update the 

states at other nodes in the network.

4.6 The Model Operation

The controlling entity at each host has access to a 
data base representing the system state (i.e., distribution 
parameters for each resource in the system). On system 

start-up, the initialization phase takes place where each 
local controlling entity initializes its resource states 

(initial resource arrival time and service time distribution 
parameters) as discussed in the previous section. Upon mean 
interarrival time elapsing for any resource, the local 
controlling entity recalculates the new resource state (new 
arrival time and service time distribution) and compares 
them to the old values and updates the resource state in the 

network if the difference exceeds a fixed predetermined 
percentage. As implemented, the local task allocation 

controlling entity has two options.

1. The resource can be treated as an M/M/1, M/G/l or 
G/G/l queueing model.
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2. The algorithm doing the task allocation can be any 
of the three algorithms - joint migration, I/O 
migration or full migration.

On external job arrival to any node, the local 

controlling entity according to the type of scheduling 
(algorithm) will allocate the different job tasks to the 

available resources in the system using the current local 
values for the resource state distribution
parameters. Arrival of a migrated task to its assigned 

resource will affect this resource's state the next time the 
local controlling entity updates the resource state.



CHAPTER V

SIMULATION OF THE 

DECENTRALIZED CONTROL MODEL

5.1 Introduction

This chapter is intended to describe the simulation 

model used in testing and evaluating our decentralized 
control model under different workload environments. The 
entire simulation and auxiliary programs were implemented 
under the UNIX operating system using the C programming 

language [RIT78]. As implemented, the simulation can run 

many different variations of the basic scheduling model 

applied to any workload for an arbitrary network. In order 
to interpret the results of the simulation in a reasonable 
fashion, we present here comparative results of running nine 
variations on nine different workloads for a fixed 

network. We then present results from isolated experiments 

using other workloads and networks. Comparison between the 

various tests are based on job mean response time (the mean 

time a job spends in the system), load balancing of system

54
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resources, and the number of migrations. It is important to 

note that all algorithms are relatively simple and require 

minimal run time cost.

5.2 Workload Description

5.2.1 Workload characteristics. The workloads used in the 
simulation are divided into three sets, light, moderate, and 

heavy. A 1 ight workload is defined as a workload which if 

equally balanced in the network will give around twenty 
percent cpu utilization in the network. A moderate workload 
is defined as a workload which if equally balanced in the 
network will give around forty percent cpu utilization in 
the network. A heavy workload is defined as a workload 

which if equally balanced in the network will give over 

sixty percent cpu utilization in the network. In addition, 

the workloads used can be categorized by their arrival and 
service time distributions as follows:

1. M/M Distribution Workload. The arrival is 

generated from a Poisson . distribution, and the 
service time is generated from exponential 
distribution. The purpose of generating this kind 

of workload is to be able to compare the 
performance of applying the M/M/1 resource 
queueing model and the M/G/l resource queueing 
model, i.e., comparing the use of both resource 
models under a workload which is typically biased 
to the M/M/1 resource model.
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2. M/G Pistribution Workload. The arrival

distribution is generated from a poisson 

distribution, and the total service time is

generated from a general distribution. The 

general distribution can be generated from any 
arbitrary distribution defined by its mean and 
variance. In all our workloads, the general
distribution is generated from a normal
distribution. The purpose of generating this kind 
of workload is to be able to compare the

performance of the M/M/1 resource model under a 

general service time distribution with the more 

accurate M/G/l resource model for this workload.

3. G/G Distribution Workload. The arrival
distribution is generated from a normal
distribution and the total service time is
generated from a normal distribution. The purpose 
of generating this workload is to compare the 

M/M/1 and M/G/l resource queueing models under a 
workload that does not have Poisson arrival and 

Exponential service distributions.

5.2.2 Workload Generation. The workload inputs to the
simulation are generated separately. Input data to the 
workload generator program includes the following 

information: Number of hosts in the system, maximum number

of deterministic I/O tasks allowed in a job, maximum number
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of nondeterministic I/O tasks allowed in a job, total

simulation time, and parameters for each host including the

following:

1. Arrival distribution type and its - parameter
values. The arrival distribution can be Poisson, 
defined by its mean, or normal, defined by its

mean and variance.

2. Total service time distribution. The service time 

is defined as the sum of the service times 
required by all tasks of a job, i.e., cpu, 
terminal, and I/O. The total service time can be 
generated from an exponential distribution, 
defined by its mean, or a normal distribution, 

defined by its mean and variance. We actually 

generate the total number of operations required 

by a job instead of the total service time so that 
the job is independent of specific resource 
capacities. The total number of operations 
generated is then divided among the job's 
individual tasks on a random basis using a 
uniformally distributed random number generator.

3. For the terminal and I/O tasks, we assume the 

number of operations required by the individual

tasks also represents the size of the task in 
bytes to be used as a measure for the 
communication cost. In effect, each operation
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represents the transfer of one byte. Since there 

is no direct correlation between the size of a 
program and the number of operations it executes, 
another distribution was used to determine the cpu 

task size.

The network was selected to consist of five hosts with 

each host having three resources: a cpu, a terminal, and an
I/O resource. The capacities of the resources can be 
assigned for each host independently. In most of the tests 
reported here we assumed identical hosts with the resource 
capacities shown in table 5-1. It is important to mention 
that M/G and G/G workloads are generated separately but from 

distributions having the same mean and variance to ensure 
equivalent total resource demand for both workloads over a 
sufficiently long period of time. Similarly, programs were 
developed to generate equivalent M/M workloads from the M/G 

workloads
The parameters of the different M/G and G/G workloads 

are shown in tables 5-2a, 5-2b, 5-2c. . There are no explicit 

parameters for the M/M workloads since they were regenerated 

from the actual M/G workloads.

5.3 The Simulation Model

The simulation model, consists of a network of an 

arbitrary number of hosts with any required topology. The 
topology of the network is represented by the communication 

costs in a routing table. Each host is represented by a cpu



resource type capacity

CPU 300 M oper./hr

terminal 90 K oper./hr

I/O 300 K oper./hr

TABLE 5-1. Host Resources' Capacities



Hoat
nuaber

G/G (Ganaral arrival/Genaral service distribution

interarrival
naan

intararrival
variance service

tlna
service
variance

CPU
length

CPU
length
variance

1 0.25 0.0025 0.3 0.003 A0 10

2 0.35 0.0035 0.3 0.003 AO 10

3 0.50 0.0050 0.3 0.003 A0 10

A 0.50 0.0050 0.3 0.003 A0 10

3 1.00 0.0100 0.3 0.003 A0 10

Seat
M/G (Poiaaon arrlval/Ganaral service distribution)

nuaber arrival
rata

naan
service
clae

service
variance

CPU
lengch
naan

CPU
length
variance

1 A.O 0.3 0.003 A0 10

2 3.0 0.3 0.003 A0 10

3 3.0 0.3 0.003 A0 10

A 2.0 0.3 0.003 A0 10

3 1.0 0.3 0.003 A0 10

TABLE 5-2a. Light Workload Parameters (time units in hours,
task length units in Kbytes)



Hoat
number

G/G (General arrival/General service distribution

Intararrival
oisfa

interarrlval
variance

naan
service
eiaa

service
variance

CPU
lengthmoan

CPU
length

variance

1 0.1666 0.001666 0.3 0.003 40 10

2 0.1666 0.001666 0.3 0.003 40 10

3 0.2500 0.00250 0.3 0.003 40 10

4 0.3333 0.00333 0.3 0.003 40 10

S 0.5000 0.0050 0.3 0.003 40 10

Hoat
M/G (Polaaon arrival/Genaral service distribution)

nuaber arrival
rate

mean
service
time

service
variance

CPU
lengthmaatj

CPU
length
variance

1 6.0 0.3 0.003 40 10

2 6.0 0.3 0.003 40 10

3 4.0 0.3 0.003 40 10

4 3.0 0.3 0.003 40 10

5 2.0 0.3 0.003 40 10

TABLE 5-2b. Moderate Workload Parameters (time units in hours,
task length units in Kbytes)



Hose
number

G/G (GonaraX arrival/General sarvica distribution

incerarrlval
T M I W I

lncararrlvai
variance

me nit
sarvica
eioa

service
variance

CPU
length
naan

CPU
length

variance

1 0.1 0.001 0.3 0.03 40 10

2 0.1 0.001 0.3 0.03 40 10

3 0.2 0.002 0.3 0.03 40 10

4 0.2 0.002 0.3 0.03 40 10

5 0.25 0.0025 0.3 0.03 40 10

Hose
M/G (Polsson arrlval/Ganaral sarvica distribution)

nuaber arrival
rata

aean
service
elaa

sarvica
variance

CPTJ
length
wean

CPU
length
variance

1 10.0 0.3 0.03 40 10

2 10.0 0.3 0.03 40 10

3 s.o 0.3 0.03 40 10

4 s.o 0.3 0.03 40 10

5 4.0 0.3 0.0 3 40 10

TABLE 5-2c. Heavy Workload Parameters (time units in hours,
task length units in Kbytes)
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resource, terminal resource, and one I/O resource. The 

units of time in the simulation is hours. Delay due to

communication in the network is modeled as a simple 

function, i.e., the size of the information in Kbytes to be 
sent multiplied by a corresponding communication cost per 
Kbyte supplied to the system in the form of the routing
table. The cost of running the algorithm is considered
fixed.

Three algorithms are implemented as discussed in the 

previous chapter. Any of the three algorithms can use 

different models representing the resources in the 

prediction process used in scheduling jobs upon 
arrival. This includes the M/M/1, M/G/l, and G/G/l queueing 

models.

5.3.1 Statistics. The following statistics are gathered:

1. The utilization of each resource in the network;

2. The mean time a task spends at a specific

resource;

3. The mean time a task spends in the queue of a 

resource;

4. The mean time a job spends in the system;

5. The total number of jobs which arrived to the 

network during the simulation period;
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6. The total number of jobs completed;

7. The total number of cpu tasks migrated;

8. The total communication cost in the network.

5.3.2 Resource State Update. The arrival and service time 

distribution parameters are updated upon task arrival to the 

resource or elapsed mean interarrival time for this 

resource. Resource state update uses the moving widow 
technique discussed in the previous chapter.

5.3.3 Job Execution. A job starts execution only after the 

cpu task arrives at the executing host and all its tasks can 
have their requirements from the different resources'
capacities. Each task requires a certain percentage of the 

resource capacity based upon how the task relates to the 
other tasks comprising the job. In a real system the 

various parts of a job alternate execution - some cpu, then 
I/O, more cpu, more I/O etc., with considerable
cooperation. To approximate that behaviour without 
simulating it exactly, we have spread out the execution of 

each task over the total time required to complete the
job. We have accomplished this as follows:

1. Compute total job execution time as the sum of the 

cpu task execution time, the terminal execution 
time, I/O execution time, and total communication 
c ost.
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2. Calculate each task percentage requirements from

its corresponding resource as the task time

divided by the total job time.

3. Assign only that percentage of the resource 

capacity to this task.

In other words, if a job's cpu task is 10% of its total 

time, then its cpu task will be assigned 10% of the capacity 
of the host executing it. This is similar to the effect of 
any multitasking scheduling such as round-robin.

5.3.4 The Bias. The bias is a variable included in the 

simulation to compensate for the inaccuracies inherent in 

the model since the state information is necessarily 
uncertain as described in Chapter III.

Some inhibitation to migration is desirable to ensure
stability. This bias against migration is defined as a 
percentage of the job execution time at the arrival 
host. The bias is closely related to the window size used 

for calculating the resource state and the workload.

5* 4 Distribution Identification

We have discussed different' types of workloads and 
different resource models used by the scheduling 
algorithms. It is important to note that even though the 

external arrival at a specific resource may be Poisson, 
there is no reason to believe that the total effective 

arrival at the resource (external arrivals plus internal



arrivals from other hosts) will be Poisson. It is important 

to be able to get conclusions from comparing the above 

workloads under different resource models to know the 
goodness-of-fit of our hypothesized distribution*2. We 

implemented a goodness- of-fit test to test on-line the 
hypothesis that the arrival process is drawn from a Poisson 
distribution and the service process is drawn from an 

exponential distribution according to a predetermined level 

of significance. This test is activated for every resource 
in the system every time the resource state is updated,

i.e., every time a task arrives at a resource and every mean 
interarrival time for the resource.

At the end of the simulation, as part of the statistics 
gathered in the simulation, there is a summary for each 
resource in the network indicating how often the arrival 
distribution was Poisson, and how often the service 

distribution was exponential to a predetermined level of 
significance. These statistics help to provide better 

understanding of the results of the application of different 
resource models to the same workload. Table 5-3a, 5-3b show 
the workload distribution statistics for the heavy G/G 
workload when no migrations are allowed and when using the 

full-migration algorithm respecively. Table 5-4a, 5-4b show

2. A survey of the distribution identification problem and 
the goodness-of-fit tests are discussed in Appendix C.
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resource arrival service
type Poisson expon.

CPU 12% 15.6%

term. 0.7% 5.7%

I/O 2.7% 21.2%

resource
type

arrival
Poisson

service
expon.

CPU 5.5% 6.8%

term. 0.72% 5.4%

I/O 5% 15.5%

a. No Migration b. Full Migration

TABLE 5-3. Distribution Test Results for Heavy G/G Workload

resource arrival service
type Poisson expon.

CPU 73.8% 12.2%

term. 78.4% 7.1%

I/O 71.1% 7.8 %

resource arrival service
type Poisson expon.

CPU 46.3% 9%

term. 78.3% 7.1%

I/O 50% 6.3%

a. No Migration b. Full Migration

TABLE 5-4. Distribution Test Results for Heavy M/G Workload



68

the same statistics for the heavy M/G workload. Both 
results were tested under a fully connected network with 
communication capacity of 55.5 Kbyte/sec and a bias of 
35%.These tables show that the implemented distribution

identification scheme is working correctly, and also that 

the internal migrations reduce how often the arrival 
distribution is Poisson as shown in table 5-4a, 5-4b.

5.5 The Task Allocation Algorithm

In Chapter IV we discussed the three algorithms which 

are implemented in the simulation:

1. Joint migration. The cpu task and the 

nondeterministic I/O's are scheduled anywhere in 

the network but together as one unit.

2. I/O migration. The cpu task is scheduled to the 
arrival host and the nondeterministic I/O's are
scheduled anywhere in the network and 
independently.

3. Full migration. The cpu task and all 

nondeterministic I/O's are scheduled anywhere in 

the network and independently.

As a base line of comparison, a fourth scheduler was 
implemented where the cpu task and all nondeterministic
I/O's are forced to be executed locally, i.e., no task
migrationsare allowed. For any of the schedulers, a
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resource in the network can be represented as an M/M/1, 

M/G/l or G/G/l queueing model. However, we present only a 

few results using the G/G/l model because this model has no 

accurate simple equation for the estimated waiting time for 

a task at a resource before it starts execution. There are 
only relatively simple lower and upper bounds as a function 
of the resource utilization. In the G/G/l model we assume a 
linear interpolation between the lower bound and the upper 

bound for waiting time as a function of the resource 

utilization.

5.6 The Simulation Parameters

The following is a list of the simulation parameters:

1. The workload category, i.e., light, moderate or 
heavy;

2. The workload distribution type, i.e., M/G, M/M or 

G/G;

3. The resource model, i.e., M/M/1, M/G/l or G/G/l;

4. The scheduling algorithm, i.e., full migration, 
joint migration or I/O migration;

5. Network topology and communication cost;

6. The bias;

7. The window size;
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8. The level of significance used for distribution 

identification.

It is clear that it is impossible to try every possible 
combination of parameters. Some variables, however, are not 
crucial for the purpose of our tests. Since our goal is to 

understand and validate the model, we have chosen one 

homogeneous fully connected network for most tests. A 

simple structure helps in understanding the effects of 
varying other parameters. Most of our experiments used 55.5 
Kbyte/sec communication speed. A set of early tests showed 
a window of size twenty tasks and a 20% level of 
significance for distribution identification were reasonable 

and they were used in all tests described below.

5.7 Simulation test goals

The main goals of the simulations tests presented are:

1. Evaluate the performance of different resource 
models under different workloads.

2. Evaluate the effect of communication cost on the 

different models.

3. Validate the workload distribution at any resource 

with respect to the resource model used.

4. Determine the value of the bias.
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5.8 Simulation Results And Analysis

This section presents the simulation results, compares 

the different algorithms and discusses the applicability of 

the different resource models.
Three main workload sets were used in the simulation as 

discussed above (table 5-2). Before the network simulation 
was run for every workload, it was decided to obtain an 
upper bound on response time for the system. Therefore, the 
five hosts of our model were run for each different workload 

with no task migrations, i.e., cpu task and nondeterministic 
I/O tasks must be executed at the arrival host. The 

performance of the system with no migration is then used as 

a baseline for comparing the results of the other 
simulations.

5.8.1 Light Workload Set

1. Poisson arrival/General service distribution 

(M/G). For the no migration case table 5-5a shows 
the resource utilization in the network. Applying 

the full migration algorithm for the same workload 
with different biases, a homogeneous fully 
connected network with communication cost of 55.5 
Kbyte/sec using both the M/M/1 and M/G/l resource 
models, table 5-5b shows the response time and 
corresponding number of migrations which tends to 

be flat for bias values over 20%. Table 5-5c 
shows the resource utilization in the network for



72

Hose
nuabor

cpu
uclliz.

tarn
UCllll.

I/O
acllls.

1 0.38 0.108 0.348

2 0.31 0.092 0.314

3 0.20 0.064 0.193

4 0.19 0.058 0.218

3 O.U 0.042 0.141

rasponsa eiao ■ 0.231776 
t of Jobs coaplaead ■ 233 
Toeal t of Jobs “ 239

Hose
m&ba?

CPU
ueillz.

cam
lit 1112.

I/O
tielllz.

1 0.34 0.107 0.303

2 0.29 0.089 0.289

3 0.21 0.064 0.193

4 0.19 0.058 0.219

5 0.16 0.043 0.202

rasponsa elaa “ 0.227544 
# of Jobs cosplacad » 233

a. No Migration c. Full Migration - M/G/l
Resource Model Resource
Utilization Utilization

Bias oz 10Z 13Z 20Z 23Z 30Z 40Z 30Z

rasponaa
Mao 0.3799 0.2723 0.2324 0.2387 0.2370 0.2309 0.2302 0.2317

M/M/1 # of
Affaciona 172 78 41 28 24 14 4 1

t ot Joba 
coaplacad 232 234 232 233 233 233 233 233

rasponsa
Mas 0.4116 0.2436 0.2336 0.2273 0.2296 0.2302 0.2317 0.2318

M/C/1 # at
Acraelooa 171 37 23 17 10 6 0 0

t ot joba 
coaplacad 232 232 233 233 233 233 233 233

b. Full Migration - Response Time 
Using Different Resource Models

TABLE 5-5. Light M/G Workload
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the M/G/l resource model. This algorithm shows 

little improvement (1.8%) in response time and not 

much improvement in load balancing.

2. Poisson arrival/Exponential service workload 
(M/M). This workload is generated from the light 
M/G workload, table 5-6a shows the no migration 

case, table 5-6b shows results of the full 
migration algorithm using M/M/1 with improvement 

8.5% and the M/G/l model with improvement 6.6% 

under a bias of 20%. The M/M/1 model gives better 
results because it matches the M/M workload better 
than the M/G/l model does. Table 5-6c shows the 

resource utilization for the M/M/1 model.

3. General arrival/General service workload

(G/G). For the no migration case, table 5-7a 
shows the resource utilization in the 

network. Table 5-7b shows the results of applying 
the full migration algorithm under a 20% bias and 
communication cost of 55.5 Kbyte/sec using the 
M/M/1, M/G/l, and G/G/l. Table 5-7c shows the 
resources utilization in the network for the M/G/l 

m o d e l .

Generally for the light workload, there is little or no 

improvement since there is sufficient capacity at each host 
to handle the external arrivals to that host efficiently,
i.e., there is little or no incentive for migration. An
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Hose
nuabar

CPU
utillz.

ears
uclllz.

I/O
utillz.

1 0.41 0.116 0.407

2 0.39 0.065 0.316

3 0.18 0.056 0.202

4 0.24 0.049 0.185

S 0.09 0.031 0.174

rasponsa elaa ■ 0.304049 
t  of jobs complaead ■ 232 
Total t  of Joba “ 239
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nuabar

CPU
utillz.
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utillz.

I/O
utillz.

1 0.29 0.114 0.290

2 0.33 0.068 0.242

3 0.24 0.054 0.250

4 0.23 0.049 0.256

5 0.23 0.031 0.252

rasponsa elaa • 0.2780 
t of jobs contplacad • 232

a. No Migration 
Resource 
Utilization

C. Full Migration - M/M/1 
Model Resource 
Utilization

aJS
UO00
< re

sp
on
se

tl
oe

osa0
u
03UO 00

** a f 
of 

jo
ba
 

co
mp
le
te
d

no
mlgrafc. 0.304 0 232

M/M/X 0.278 76 232

M/G/X 0.284 61 230

b. Full Migration - Response Time 
Using Different Resource Models

TABLE 5-6. Light M/M Workload
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Hoat
uumbar

CPU
uclllz.

cam
utillz.

I/O
uclllz.

1 0.43 0.13 0.372

2. 0.29 0.107 0.297

3 0.21 0.065 0.196

4 0.18 0.071 0.197

S 0.09 0.035 0.101

response elaa ■ 0.190337 
$ of joba cooplaced " 236 
Total t  of Joba “ 239

Hoat
number

CPU
uclllz.

ears
uclllz.

1/0
uclllz.

1 0.373 0.13 0.335

2 0.294 0.107 0.297

3 0.209 0.065 0.196

4 0.197 0.071 0.197

5 0.154 0.035 0.138

response elm* > 0.19005 
0 of joba completed ■ 236

a. No Migration c. Full Migration - M/G/l
Resource Model Resource
Utilization Utilization

a■a44•HW000
< re

sp
on
se

ci
ne

f 
of

mi
gr
at
io
ns

t 
of 

jo
bs
 

co
mp
le
te
d

oo 0.1903 0 236migrac.

M/M/1 0.1912 25 236

M/G/l 0.1900 13 236

G/G/l 0.2431 91 235

b. Full Migration - Response Time 
Using Different Resource Models

TABLE 5-7. Light G/G Workload
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interesting result was the output of the G/G/l workload. We 
believe that the 27% degradation of performance is caused by 
the fact that our linear interpolation approximation is not 
accurate, at least at low resource utilization.

5.8.2 Moderate Workload Set

Taking the same procedure as in the light workload set:

1. Poisson arriva1/General service workload 
(M/G). For the no migration case, table 5-8a 
shows the resource utilization in the 
network. Table 5-8b shows the results of the full 

migration algorithm using M/M/1 and M/G/l resource 

models under different biases. This table shows 

also that the response time tends to be flat after 
a 20% bias. Table 5-8c shows the resource 
utilization in the network for the M/G/l resource 
model with bias 20%. The improvement over the 
base line is 14%.

2. Poisson arrival/Exponential service workload 

(M/M). Table 5-9a shows the no migration resource 
utilization in the network. From table 5-9b we 

can see that the full migration algorithm using 
M/M/1 gives 20% improvement, and using the M/G/l 
model gives 11.6% improvement. Table 5-9c shows 
the resource utilization for the M/M/1 model.
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Hoat
auabar

OT
utillz.

can
uclllz.

I/O
uclllz.

1 0.61 0.169 0.538

2 0.31 0.165 0.49

3 0.38 0.108 0.348

4 0.31 0.092 0.314

5 0.21 0.064 0.193

response 
i  a i jot 
Tocal t

elaa ■0.313488 
>• coaplacad ■ 390 
o£ joba. " 399

a. No Migration
Resource Utilization

Hose
auabar

OT
uclllz.

cam
uclllz.

I/O
uclllz.

1 0.45 0.163 0.386

2 0.44 0.161 0.388

3 0.41 0.11 0.39

4 0.36 0.094 0.359

5 0.34 0.064 0.336

rasponsa elms ■ 0.2713 
t  a t Joba cosplacad ■ 390

c. Full Migration - M/G/l 
Model Resource 
Utilization

Uaa oz 10Z 20Z 25Z 30Z 40Z 30Z

rasponsa
etaa 0.59*6 0.3962 0.2950 0.2833 0.2826 0.2841 0.2864

M/M/1 # of
derations 295 187 100 75 67 47 26

t ot Jobs 385 386 390 390 390 390 390

ratpeoM
das 0.5778 0.3002 0.2713 0.2801 0.2895 0.2897 0.2874

M/C/1 # ot
■Uzadoas 303 113 65 58 48 27 21

t ot Joba 
cosplacad 385 390 390 390 390 390 390

b. Full Migration - Response Time 
Using Different Resource Models

TABLE 5-8. Moderate M/G Workload
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Hoac
auabar

CPU
uclllz.

earn
uclllz.

I/O
uclllz.

1 0.64 0.172 0.605

2 0.55 0.164 0.619

3 0.41 0.116 0.407

4 0.39 0.065 0.316

5 0.18 0.056 0.202

rasponsa elaa * 0.525601 
t of Joba coaplacad ■ 387 
Tocal t  of Joba » 399

Hoac
auabar

CPU
uclllz.

earn
uclllz.

I/O
uelllz.

1 0.43 0.172 0.449

2 0.36 0.167 0.341

3 0.43 0.109 0.422

4 0.44 0.064 0.456

5 0.48 0.053 0.424

raaponaa elaa » 0.4184 
# of Joba cosplacad » 382

a. No Migration 
Resource 
Utilization

c. Full Migration - M/M/1 
Model Resource 
Utilization

a
•S

k*o
03

<

a<B
Soa. a O S

ac0■MW
4
U

O  00
•a* « ■

4.S 4) O « ^  4 
pa*

■3 I1 
« 3

no
mLgrac. 0.5256 0 387

M/M/1 0.4184 180 382

M/6/1 0.4645 161 382

Full Migration - Response Time 
Using Different Resource Models

TABLE 5-9. Moderate M/M Workload
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3. General arrival/General service workload

(G/G). Table 5-10a shows the no migration 

resource utilization. For the moderate workload, 

a new experiment was run to determine the effect 
of communication cost on the response time and 
number of migrations. Table 5-10b compares the 
performance of the various models at 55.5 

Kbyte/sec communication speed. The improvement 
for the M/M/1 and M/G/l model are 7% and 15.7% 

respectively. The G/G/l model is 31% worse than 

the baseline. Table 5-10b shows also a variety of 

communication speeds for the M/G/l
model. Variations from different communication 
speeds are uniform. This result occurs due to the 
nature of the jobs in the workload which place a 

relatively small demand on communication relative 
to the cpu and I/O demands. Table 5-10c shows the 

resource in the network utilization using the 

M/G/l m o d e l .

Generally, under the moderate workloads, the M/M/1 and 
M/G/l models show performance improvements over the baseline 
of no migrations, but the G/G/l model is still worse. This 
further supports the belief that our approximation is not 

accurate. It is also worth noting that the relative 

performance of the M/M/1 and the M/G/l are fairly close in 
all workloads.
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Hoac
auabar

CPU
uclllz.

cam
uclllz.

I/O
uclllz.

1 0.47 0.2 0.48

2 0.52 0.2 0.43

3 0.46 0.13 0.37

4 0.41 0.11 0.35

S 0.35 0.06 0.34

response elaa “ 0.2478 
t  o f Jobs completed ■ 412

Hose
auabar

CSV
uclllz.

earn
uclllz.

I/O
uclllz.

1 0.599 0.1975 0.582

2 0.66 0.199 0.505

3 0.44 0.129 0.372

4 0.293 0.105 0.293

5 0.209 0.065 0.196

response elaa “ 0.29384 
i  o f Jobs cooplacad " 409 
Tocal t  o f Jobs “ 420

a. No Migration c. Full Migration - M/G/l
Resource Model Resource
Utilization Utilization

Casa. Cose 2.22 
Kbyte/eec

5.55
Kbyte/see

55.5 
Kbyte/sec

0.55
Mbyte/sec

10
Hbyce/sac

M/M/1

response
elaa 0.2731

t of
atgrstions 79

t of Jobs 
coapleced 412

M/S/1

response
cme 0.2423 0.2507 0.2478 0.2405 0.2404

f of
msretlons 55 58 59 57 57

# of jobs 
coapleced 411 412 412 412 412

a/a/i

response
else 0.3853

/ of
atgrsclons 107

t of Jobs 
. esaplscsd 408

b. Full Migration - Response Time 
Using Different Communication 
Capacities

TABLE 5-10. Moderate G/G Workload
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5.8.3 Heavy Workload Set

1• Poisson arrival/General service distribution 
(M/G). Table 5-lla shows the no migration case 
resource utilization in the network. Table 5-llb
shows the results of the full migration algorithm 

using the M/M/1 and M/G/l resource models under 

different biases. This table shows that unlike 

the light and moderate workloads, there is a clear 
optimal bias for both resource models under heavy 
workloads. Because both models had very close
performance in the range 30-40%, we have chosen 
35% as a compromise optimal bias for both. The 

M/G/l model shows an improvement of 48.1% over the 
baseline and the M/M/1 model shows 45.4% 

improvement. Table 5-llc shows the resource

utilization in the network for the M/G/l model
under a 35% bias.

2. Poisson arrival/Exponential service distribution 

(M/M). Table 5-12a shows the no migration case 
resource utilization in the network. Table 5-12b

shows the results of the full migration algorithm 

using the M/M/1 model which yields a 30% 

improvement and the M/G/l model which yields 42%
improvement. Table 5-12c shows the resource

utilization for the M/G/l model in the network.
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Hoac
auabar

CPU
uclllz.

ears
uclllz.

I/O
uclllz.

1 0.87 0.246 0.838

2 0.85 0.274 0.848

3 0.50 0.138 0.434

4 0.45 0.15 0.452

5 0.38 0.107 0.344

rasponsa elaa • 1.045712 
f  a t joba cosplacad » 586 
tocal i of jobs “ 652

Hose
auabar

cptr
uclllz.

cars
uclllz.

I/O
uclllz.

1 0.674 0.289 0.701

2 0.665 0.302 .0.670

3 0.655 0.143 0.611

4 0.620 0.149 0.569

5 0.613 0.115 0.593

rasponsa elaa • 0.5423 
t  a t jobs cooplacad « 622

a. No Migration 
Resource 
Utilization

c. Full Migration - M/G/l 
Model Resource 
Utilization

Bias OZ 10Z 20Z 30Z 33Z 40Z 50Z

rasponsa
das 1.0083 0.9193 0.7413 0.5956 0.5707 0.5543 0.5789

M/H/l t at
attentions 491 460 377 297 246 217 133

t ot jobs 
cosplacad 393 590 613 619 619 623 620

rasponsa
etas 0.9603 1.037 0.7309 0.5369 0.5423 0.5462 0.5583

M/G/l I of
attndeoa 499 476 333 223 193 164 138

# ot jobs 
coaplscod 596 388 606 619 622 620 628

c. Full Migration - Response Time 
Using Different Resource Models

TABLE 5-11. Heavy M/G Workload



Hoac
auabar

cm
uclllz.

earn
uclllz.

I/O
uclllz.

1 0.316 0.228 0.846

2 0.77 0.269 0.862

3 0.523 0.154 0.506

4 0.508 0.148 0.575

5 0.418 0.114 0.404

raaponae elaa ■ 1.392 
i of joba cosplacad “ 569 
Tocal t of Joba " 652

Hoac
auabar

CPU
uclllz.

eerm
uclllz.

I/O
uelllz.

I 0.639 0.242 9.668

2 0.577 0.326 0.631

3 0.629 0.146 0.631

4 0.649 0.135 0.674

5 0.642 0.109 0.683

raaponaa elaa “ 0.3036 
t of joba coaplocad * 599

a. No Migration 
Resource 
Utilization

c. Full Migration - M/G/l 
Model Resource 
Utilization

az:
**WO30•m<

a
9
a0a. q 
9  a41

ae0
M
9

•M U O 30
^  fl

a ̂.£ 9 9 w ^  41sis«  o

an
algrac. 1.392 0 569

M/M/1 0.3534 314 603

M/G/l 0.3036 317 599

b. Full Migration - Response Time 
Using Different Resource Models

TABLE 5-12. Heavy M/M Workload
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3. General arriva1/General service distribution

(G/G). Table 5-13a shows the no migration

resource utilization in the network. As shown in
table 5-13b the full migration algorithm with a 

fixed bias 35% and 55.5 Kbyte/sec communication 

speed gives substantial improvement: 54.4%, 55.4%, 
and 49.7% for the M/M/1, M/G/l, and G/G/l models 
respectively. Table 5-13c shows the resource
utilization in the network for the M/M/1 model.

Generally the M/M/1 resource model seems to be stable 

and performs very close to the M/G/l model under different 
environments. The G/G/l model performs very poorly. Even

though it does better than the baseline for the heavy 
workloads, it is still worse than either of the other 
models. As a result of these conclusions, we decided to use 

only the M/M/1 model on the heavy G/G workload for
additional experiments described below.

5.8.4 Various Communication Speeds

To test the effect of the communication speed on any of 

the algorithms discussed before, we selected the heavy M/G 
workload and changed the resource capacities in the network 
to make the communication delay a more effective factor in 

the scheduling process. Applying the full migration 

algorithm and using the M/M/1 model under different 
communication speeds, table 5-14 shows that the algorithm is 
stable as the communication speed changes from 2.22
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Hose
amber

CPU
uclllz.

term
uclllz.

I/O
uclllz.

1 0.86 0.291 0.816

2 0.885 0.275 0.767

3 0.535 0.162 0.477

4 0.549 0.174 0.434

5 0.442 0.131 0.376

paapmea f-fT*m a 1.235791 
# a t Jobe complscsd “ 600 
Total t  a t Jobs “ 678

Hose
amber

CPU
uclllz.

term
uclllz.

I/O
uclllz.

1 0.75 0.33 0.67

2 0.72 0.31 0.65

3 0.71 0.16 0.60

4 0.72 0.17 0.61

5 0.68 0.13 0.60

response time • 0.56304 
t  a t Jobs completed " 651

a. No Migration 
Resource 
Utilization

c. Full Migration - M/M/1 
Model Resource 
Utilization

Cum. Case 2.22 
tbyes/see

5.55
Kbyte/sac

55.5 
Kbyte/see

0.55 
Mbyte/sec

10
Mbyte/sac

M/M/1

response
elm 0.5630

* of
■derations 160

# at Jobs 
consisted 651

M/C/1

response
tim 0.5718 0.5621 0.5508 0.5389 0.5389

1 of
nitrations 142 138 137 ' 139 139

# of jobs 
comleced 655 659 656 654 654

C/C/1

response
elm 0.6207

» of
nitrations 165

t of Jobs 
eonplacad 651

b. Full Migration - Response Time 
Using Different Communication 
Capacities

TABLE 5-13. Heavy G/G Workload



Comm. Cost 2.22
Kbyte/sec

5.55
Kbyte/sec

55.5
Kbyte/sec

0.55
Mbyte/sec

10
Mbyte/3ec

M/M/1

response
time 0.037196 0.03704 0.03680 0.036775 0.036774

II of
migrations

6 13 22 23 24

It of jobs 
completed 650 650 650 650 650

Mo - migration response time ” 0.037308 
It of jobs completed - 650 
Total It of jobs ■ 652

TABLE 5-14. Full Migration - Response Time Using Different 
Communication Speeds for the Heavy M/G Workload
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Kbyte/sec to 10 Mbyte/sec. The response time consistently 

decreases and the number of migrations slightly increases.

5.8.5 G/G Workload With Deterministic I/O

This test utilized a G/G workload in which each job had 
one deterministic I/O task plus one or two nondeterministic 
I/O tasks. Table 5-15a shows the no migrations resource 
utilization. Applying the full migration algorithm and 

using the M/M/1 model under various biases, table 5-15b 

shows that the bias for the minimum response time is 40% and 

yields an improvement of 35% in response time. Table 5-15c 
shows the resource utilization in the network with bias 40%.

Table 5-15b shows also the response time for the full 
migration, I/O migration, and joint migration algorithms, 

using the M/M/1 model with a fixed bias of 40%, and 
communication speed of 55.5 Kbyte/sec. Even though the 

results here show close performance for the three 
algorithms, it is important to mention that other 
experiments show that normally the joint migration algorithm 
gives closer performance to the full migration than the I/O 

migration algorithm. Occasionally the joint migration 
algorithm even performed better than the full migration. We 

believe that the joint migration is a feasible alternative 

in most real environments. We would expect significantly 

worse performance only in a heavily loaded network with 
nodes that have widely disparate relative capacities of 
their CPU and I/O resources.



Boat OTJ earn I/O Hoat cpo can I/O
number uclliz. uclllz. ueillz. niabar uclllz. uclllz. uclllz.

1 0.63 0.212 0.888 1 0.54 0.26 0.849

2 0.62 0.19 0.905 2 0.50 0.22 0.835

3 0.38 0.126 0.784 3 0.47 0.12 0.795

4 0.42 0.121 0.788 4 0.48 0.11 0.839

5 0.31 0.103 0.405 5 0.50 0.10 0.796

response else ■ 2.00266 response das • 1.304
t at joba cospleced * 545 t at Joba esoplaead * 593
Total t of job* • 680

a. No Migration c. Full Migration - M/M/1
Resource Model Resource
Utilization Utilization

Bias 202 302 352 402 502

Joinc 
migrac.

M/M/1

response
time 1.3682

it of
migrations 290

It of jobs 
completed 585

1/0
migrac.

M/M/1

response
time 1.3739

It of
migrations 0

It o t jobs 
completed 585

Full
migrac.

M/M/1

response
time 1.3569 1.327 1.334 1.304 1.334

It of
migrations 328 275 257 229 207

It of jobs 
completed 588 590 587 593 584

b. Response Time - Bias for the Three Algorithms

TABLE 5-15- Moderate G/G Workload with Deterministic I/O
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5.8.6 Not Fully Connected Network

The above workloads with nondeterministic I/O tasks 
were tested under the network configuration shown in

Figure 5-1 under different biases. Table 5-16 shows that a 

bias of 40% gives the minimum response time yielding an
improvement of 36%.

5.8.7 System initialization. In order to test the 

sensitivity of the algorithm performance to initialization, 
we reran the heavy G/G workload with the M/M/1 model with 
initialization factors that were far from their true 
values. The results were almost identical to the results 
with correct initialization. We believe that any 

initialization which discourages migrations during the 
startup period will lead to a reasonable performance result.

5.9 Conclusions

We can summarize the conclusions presented in the 

previous section as follows:
For light workloads, there is not much performance

improvement, but the algorithm should be tuned to guarantee
stability.

For moderate workloads, there is a performance 
improvement of around 20% over the no migration case and 
more improvement in load balancing in the network. Also the 
M/M/1 model gives stable results that are very close to the 
M/G/l model in a variety of workload environments.
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Moderate Light Heavy

Heavy

hose55.5 Kbvte/sechosehose

Moderate

hose hose

Figure 5-1. Not Fully Connected Network
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Hose
nuabar

CPU
uclllz.

can
uclllz.

I/O
uclllz.

1 0.64 0.217 0.902

2 0.63 0.179 0.886

3 0.38 0.123 0.791

4 0.41 0.111 0.749

5 0.31 0.103 0.403

rsopoosa claa * 1.9814 
( of Jobs coaplacad ” 343 
Total # of Jobs • 680

Host
ouabar

CPU
uclllz.

can
uclllz.

I/O
uclllz.

1 0.34 0.236 0.818

2 0.48 0.218 0.813

3 0.31 0.123 0.832

4 0.50 0.113 0.832

5 0.47 0.092 0.814

rasponsa claa - 1.2339 
# of Jobs eoaplaead • 392

a. No Migration c. Full Migration - M/M/1
Resource Model Resource
Utilization Utilization

Blu 20Z 30Z 40Z 50Z

M/M/1

rasponaa
claa 1.3538 1.2906 1.2539 1.3707

9 of
algrsclona 323 276 237 203

9 of jobs 
eoaplaead 591 592 592 586

b. Full Migration - Response Time 
for Different Biases

TABLE 5-16. Moderate G/G Workload with Deterministic I/O 
for Not Fully Connected Network
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For heavy workloads, there is a clear performance 

improvement of around forty percent over the no migration 

case and resource utilization statistics show very good load 

balancing in the network. The bias for minimum response 
time is almost the same for both M/M/1 and M/G/l 
models. The G/G/l model is not suitable for implementation 
since its performance is unstable and worse than both the 
M/M/1 and M/G/l models.



C H A P T E R  VI

C O N T R I B U T I O N S  A N D  F U T U R E  R E S E A R C H

6.1 Contributions

The major contribution of this thesis is the
establishment of a methodology for implementing a 
decentralized scheduling mechanism for distributed 

systems. Our approach is to handle the problem in a similar 
way to the prediction problem in modern control theory, 

i.e., using the past history to predict the actual and 
future system state with a form of feedback to guarantee 
system performance improvement. This approach required 
solving two problems:

1. Defining the system state and making it
independent of a specific system implementation.

2. Building a model which can use these states in

predicting the actual and future state of the
system.

93
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The system state is defined as the collection of 

resource arrival and service distributions. By using 

queueing theory models, we can predict on-line the future 
system state, in an attempt to minimize the uncertainty in 

the system state.
The following are the important conclusions of our 

model demonstrated by the simulation.

1. The simulation indicates that the uncertainty 
problem in the system state can be approached

using the past history of the resource to predict 

the actual system state. The simulation indicates 

also that representing the past history of a 

resource by a distribution is reasonable and 
valid.

2. The moving window technique discussed in Chapter 

IV for updating the system state proves to be
efficient, i.e., it requires low overhead cost, 

and is a stable technique for updating the system 

state. By stability we mean that, even if the 

system is initialized in an incorrect initial 
state, it was shown that the system will converge 
to the correct system state after a transition
period. This transition period is a period in
which the system learns more about its history.

3. The results of using the M/M/1 model show very 

comparable results to the M/G/l model even under a
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general distribution (G/G) workload. This result 

is important in the applicability of the algorithm 

proposed because the M/M/1 model requires simpler 
calculations.

4. The simulation shows that the algorithm gives 
significant improvement if tuned properly. It 

seems that the performance of the algorithm is 

more sensitive to the bias under heavy workloads 
than under light or moderate workloads.

5. We believe that, depending upon the topology of a 
network and the nature of the workload, either the 
full migration algorithm or the joint migration 

algorithm can be used.

6. The results of using the G/G/l model with the 

linear interpolation approximation proved to be 
not useful as it often gives worse performance 
than the no migration case, and worse performance 
than the M/M/1 and M/G/l models consistently.

6.2 Future Extensions

The research presented in this thesis can be extended 

in several areas.

1. Improving the way the simulation executes the 

jobs, i.e., executing the jobs in the simulation 
closer to a real round-robin.
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2. Addressing more carefully the interdependence 
between the different tasks belonging to one job.

3. Incorporating in our model more performance 

variables such as throughput.

4. Incorporating the effect of task migration on the 

communication capacity.

5. Evaluating the M/M/1 resource model under 
different general distributions other than the 
normal distributions.

6. Investigating the relation between the bias and 

the window size.

7. Implementing the M/M/1 resource model in our 
simulation using round-robin scheduling rather 
than first come-first service scheduling.

8. Investigating the possibility of allowing 

remigration after scheduling.

9. Investigating the possibility of adapting the 

model to handle the unknown job description. We 

can see two approaches to handle this problem:

1. Assume the job description as the average job 
description at the arrival node.
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2. Let the job start execution at the arrival 

node and gather statistics to identify the 

nature of the job and then evaluate whether 

to reschedule the job to another node.

10. Implementing other models in our simulation such 
as the Bayesian model (or others) for performance 

comparison purposes.
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Stochastic Process

A . 1 Introduction

The environment in which the decentralized controllers 

make decisions is stochastic. This is because the 
information that these controllers have about the state of 

the system is uncertain; that is, they have only an estimate 
of the system state. In addition, a decision made using the 

estimated state of the system may prove less than optimal 
due to future random variations that are independent of the 

control decisions that can occur.
In this section, we will define a stochastic process*3, 

and discuss in more detail specific stochastic processes to 
be used later.

3. This is a brief definition and classification of a 
stochastic process, for more details, refer to [KLE75].
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A .2 Definition and Classification of a Stochastic Process

Associate with each point of time "t" in the range of 
{-OCKtCOO}, a random variable X which has a sample space 

{-OCKX <00} and a corresponding probability density function 
f(x). A set of such random variables {X^} is called a 
stochastic process and is completely described by defining 
the probability density function of each random variable in 
the set and the joint probability density function of these 
random variables f(XI,X2,...,Xn). The state of a stochastic 

process at any point "t" in time is the value of the random 
variable "X If the permitted points in time when the
process can change its state are finite, it is called a 
"discrete-time stochastic process", otherwise, it is called 
a "continous-time stochastic process".

In the following we will study some stochastic 

processes which are characterized by different kinds of 
dependency relations among their random variables {x^}:

. Stationary process. In general, the properties of

a stochastic process are time dependent. The

process is called stationary if the probability 
density functions {f(x)} and the joint probability

density function of the process

f (xl,x2 xn) are independent of absolute

time. Clearly, consequences of that condition are

that the mean E[x] and the variance var[x] are
constants.
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Markov process. A stochastic process is called a 

Markovian process if the next state of the process 
depends only upon the current state and not on the 
previous states. In other words, the way in which 
the entire past history affects the future of the 

process state is completely summarized in the 
current state of the process (memoryless process).

In the case of a discrete-time Markov 
process, transitions from the current state to the 
next state are allowed only at a specific set of 

times; however, it should be clear that there is 
no restriction on the new state (within the state 

space). In the case of a continous-time Markov 

process, the transition between states may take 

place any time. Thus, we have to consider another 
random variable describing how long the process 

remains in its current state before making a 
transition. It has been shown that the 
exponential distribution is the only distribution 

which satisfies the continous-time Markov process 
definition, and the geometric distribution is the 
only one in the case of a discrete-time Markov 

process [KLE75].

Birth-Death process. A special case of the Markov 
process is called a Birth-Death process. It 
allows state transitions only to take place 
between neighboring states. If the process is in
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state X n , then the next state can be only one of 

three; remain in its current state; move to state 

X ft+(; or move to state X n_t. Birth-Death process 
can be either discrete or continous in time.

. Poisson process. A Poisson process is a special 

case of the birth-death process. In state 

transitions, the only allowed transitions are pure 
birth; i.e., a transition from state X would be 

to state X . Also, the distribution of time 
between transitions is memoryless but independent 

of the current state, i.e., the distribution of 
time between transitions in case of continous-time 

is exponential with a constant birth rate instead 
of being exponential with birth-rate a function of 
the current state.

Figure (A-l) shows the relationship between the above 

processes in the form of a Venn diagram. The symbols P\j 
denote the probability of making a transition to state "j" 

given that the process is currently in state "i". Also, 
"fT" denotes the distribution of time between transitions; 
to say that "fx is memoryless" implies that if the process 

is discrete , then "fx " is a geometric distribution, whereas 

if it is a continous-time process, then "fx" is an 
exponential distribution. Furthermore, it is implied that 

f ^ m a y  be a function of the current state for the process.
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MP P arbitrary

f y  memoryless

BD P = 0  for | j-i J > 1  
f y  is memoryless

PP H* = 0 for j-i ^ 1

fr is memoryless

K
n

Mi = 0

Figure A-l. Venn Diagram for Some Stochastic Processes 
MP: Markovian Process; BD: Birth-Death

Process; PP: Poisson Process
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QUEUEING MODEL FOR A SINGLE RESOURCE

B. 1 Introduction

Queueing theory offers a simple mathematical approach 

for modeling any resource using a probabilistic 
distribution. Queueing models are used in many applications 
including performance evaluation of computer systems and 
computer networks. They play a key role in understanding 

computer communication networks, where one of the primary 
factors for message delay in traversing a network is the 

queuing delay. A single resource can be represented by a 
"server-queue model" which requires defining the following:

1. The stochastic process describing the arrival time 

distribution of customers. This process is 

normally described in terms of the probability 

distribution of the interarrival time of 
customers.
A (t)= P[ time between arrival < t]

2. The stochastic process describing the service time 

distribution required by the different
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customers. This process is normally described in 

terms of length of time that customers need to 

spend in the service facility.

B(x)= P[service time < x]

3. The queue length. This represents the storage 
capacity available to hold customers waiting to 

receive service.

4* Server specification. This includes number of 

servers and their capacities. For example, for 

one CPU as a resource, capacity is defined as the 
maximum number of operations per unit time that 
can be performed by the CPU.

5. The queueing discipline. The order in which 
customers are taken from the queue and allowed 

into service.

Figure (B-l) shows a single resource model. The 

following notation is usually used in the literature to 
define a queueing model:

A/S/N/L/C

Where,

A ...Customers arrival time distribution;

S . ,.Customers service time distribution;
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Customer 
arrival —

<X.£>

service discipline

queue

Job
Departure

\  : average job arrival rate;
1//X : average number of operations/job;

C : server capacity;
fj, C : average service rate;
P  : resource utilization

= average arrival rate / average service rate
= X/flc , OssP<i;

T : average response time
= average (completion time *—  arrival time); 

W : average waiting time
= (response time —  service time)

- (I-  £-c>-

Figure B-l. Single Resource Queue Model
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N...Number of servers in the resource;

L...Resource queue length;

C...Number of customers.

The last two terms are omitted if the queue length and 

number of customers are infinite which is the case in our 

model. Arrival and service time probability density 

functions are abbreviated using the following symbols:

M . ..Markovian (exponential) distribution
- f U X

b(x) = f2 e

Er..r-stage Erlangian distributionb(1). r ^ x r  e( r - 1 )!
D . ..Deterministic distribution

b (x) = 5  [X-O-I 
U

G...General (arbitrary) distribution.

Two models are of interest in this research, both 
assume a First come-First service (FCFS) queueing 

discipline. Results of the steady-state analysis are listed 
below [KLE75].

B .2 M/M/1 Server Model

This model assumes a Poisson arrival distribution, 
i.e., exponential (Markovian) interarrival distribution and 
Exponential (Markovian) service time distribution; this
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implies that the remaining service time for a job is 

independent of how long that job has been in service. The 
steady state solution for this model provides the following 

results:

B.3 M/G/l Server Model

This model assumes a Poisson arrival distribution, and 
General service time d istr ibut ion, this implies that the 
remaining service time for a job may depend on how long that 

job has been in service. The steady state solution for this 
model provides the following results:

1. Average waiting time

T average response time

1

W average waiting time in the queue/job
P i n  c
i - p

also

W = (average response time - execution time)

T- (
flC

Z  Z

W= Ob + X

Where

t...average interarrival-time

X...average service-time



z
Ob -•.Variance of the service-time distribution

2. Average response time

T- W +

B *4 G/G/l Server Model

This model assumes general arrival and service 

distributions. General distribution is defined as a process 

where the future state depends on the current state and how 

the process reached that state. Applying this for general 
service time distribution, means that the remaining service 
time for a job may depend on how long that job has been in 
service. The results of the steady state solution for the 

average waiting time (W) and the average response time (T) 

are given below [KLE75].

1. Average waiting time

d.  + Ob + t  C i - P )1 r1
2 t ( i - p )  ~ 1 1

where,

"t...average interarrival-time 

2,
(T...variance of interarrival-time distributiona.

10£.. .variance of service-time distribution



The second term (— ==-) is hard to evaluate. However it is
z I

possible to find upper and lower bounds for the waiting time 
[KLE75]. The upper bound exceeds the known exact mean wait 
time for the M/G/l model. Marchal [MAR74] has proposed that 

the upper bound be scaled down so that it is exact for the 

M/G/l model; thus his approximation gives
* p i  x

» - 1 +  Cb <X ■+ 0 1  1
Q / P f  + c£ 1 1CI - p )

Where C{,, the service time coefficent of variation, is 
defined as C l, X is the average service time. BothX
Marchal and Gross [GR073] considered the effectiveness of 

this approximation to W. Their numerical studies show that 
the fit to G/G/l is fair, improving as p  increases, and 

degrading with an increase in C a or Cj,.

2. Average response time
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DATA ANALYSIS AND DISTRIBUTION IDENTIFICATION

C. 1 Introduction

In modeling a queueing system, certain assunptions must 

be made about the system in order to represent it by 
mathematical equations. For example, we frequently assume 

that interarrival and service times are exponentially 
distributed random variables. However, since our attempt is 

to model physical systems, we would wish to identify these 
distributions properly rather than simply make 

assumptions. The area of particular concern in this 

Appendix is the identification of the probability 

distribution of a random variable [WHI75]. This is a 
threefold problem. First, the analyst must collect data 
that characterize the random variable of concern. Using 

these data he can develop and plot a relative-frequency 
distribution for the random variable. By visually comparing 

the relative-frequency distribution with known probability 

density functions (pdf), one is often able to hypothesize 

that certain families of distribution describe the random 
variable under study. The selection of these candidate 
distributions is the first of the three problems. Second,
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the problem is to determine the numerical values of the 

parameters of each candidate distribution based on the data 

collected. Third, the hypothesis that each distribution is, 
in fact, the true distribution of the random variable under 

study must be tested. These three problems can be 
statistically termed data collection, parameter estimation, 
and goodness-of-fit testing, respectively. In the next 
section, we will treat each of these topics in some detail.

C.2 Data collection

One common way for summarizing the collected data is 

the frequency distribution. In the case of discrete 
variables, we simply record the number of times (frequency) 

each value was observed. For continous random variables, we 
break the range of observed values into intervals and record 
the frequency that occurs within each interval.

Once a frequency distribution has been tabularized, a 

plot of entries is generally helpful in determining the 
distribution of the random variable under study. One useful 

method of displaying these data is to plot the relative 
frequency distribution. The relative frequency for each 
interval is simply the observed frequency count divided by 
the total frequency count. With this information at hand we 
can now proceed to select an appropriate probability 
distribution. This suggests also that more than one pdf may 

represent the collected data.
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C .2 Distribution Parameters Estimation

The theory of estimation can be divided into two parts, 
point estimation and interval estimation. In po int 
estimation, we concern ourself with the problem of producing 
a value that, in some sense, represents our best estimate as 
to the actual value of the parameter of interest. In 
interval estimation, we are interested in establishing an
interval that would contain the true value of the parameter 

with some given level of probability. Such an interval is 

called a confidence interval. These intervals can also be 
viewed as possible measures of the precision of a point 
estimator. This is the view that we will adopt in the 

goodness-of-fit testing problem.
The general problem of po int estimation can be stated 

as follows: There exists a random variable 'X' whose

distribution function is characterized by some parameter

1 that we would like to estimate. A random sample 'XI, 
X 2 ,....... ,Xn' is to be drawn and a function
A A

0 = 0 ( X 1 , X 2 ,  fXn) of this sample is formed. The value
A

of ©  is then used to estimate the parameter ©  . The
A

function ©  is referred to as an estimator of ©  and the
A

value that 0  takes on is called the estimate of ©  . Note
A

that ©  is itself a random variable, since it is a function

of the random observations XI, X 2 , ....... . Xn. It should be

apparent that there exist many estimators for a parameter
A

depending on our measure which describes the function ©  .
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We will talk now about various properties of an 
estimator that are considered desirable, and then discuss in 
detail one procedure to estimate a distribution parameter 
satisfying these desired properties.

An estimator for a parameter is itself a random

variable and must therefore have a distribution of its 

own. Obviously we cannot specify this distribution until we 
have completely described the estimator itself. Let us

Adefine the estimator distribution mean E [ © ] ,  and its 
variance by

Var (©) = E [ © - E ( © ) f  = E ( ©  ) - [E ( ©  ) I*
A

The standard deviation of ©  , is defined by

[Var(©)]. Also of importance are the concepts sampling 

error, bias, and mean square error. The sampling error,
A

defined by ©  - © ,  is simply the difference between the value 
of the estimator and the true value of the parameter. The

Ab i a s , defined by E ( © ) - © ,  is the difference between the 
expected value of the estimator and the true value of the 

parameter. Whereas the sampling error may vary from sample 

to sample, the bias is fixed and may or may not be
A 2zero. The mean-squared error, defined by E ( © - @ ) ,  measures 

the dispersion of an estimator and is therefore similar to 
the concept of variance. The difference is that while the

A
variance measures the dispersion of ©  around its mean

A
E ( 0 ) ,  the mean squared error measures the dispersion around

A

the true value of the parameter. If it turns out that E ( © )  
and the true value of the parameter coincide, then the
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mean-squared error and the variance are equivalent.

It should be recognized that by itself unbiasedness is 

not enough, since it implies nothing about the dispersion of 
the distribution of the estimator. Thus, an estimator can

be unbiased but yet lead to estimates that lie far from the 
true value of the parameter. On the other hand, a biased 
estimator even with small variance often can be less 
useful. An efficient estimator is frequently called a

minimum-variance unbiased estimator, which is an unbiased 

estimator with minimum variance.

Now we come to the problem of devising procedures to

obtain estimators that have all or at least most of the 
above properties *4. We will discuss in detail the method 
of moments to estimate the parameters of a distribution.

.Method of moments estimator. This estimator is based 

on the principle that one should estimate a moment of a 

population by the corresponding moment of the sample. For
example, consider a population whose density f(x) is

characterized by K parameters ©,, ©j,... .. , which are to
be estimated. Let XI,X2,.........,Xn be a random sample of
size "n" from the population. The i sample moment is

4. There are other methods such as the maximum-likelihood 
method and least-square regression method [WHI75].



The i ^  moment of the f(x) can be calculated 

mathematically and assumed to be E(x). Equating the first K 

population and sample moments, we have

M1=E ( x) , M2=E(x1 ) , .......,Mk=E(xK )

A  A  AThe solution values Q  , Q , .......,q  obtained by solving

these simultaneous equations are referred to as the method 
of moment estimators for the K parameters Q t, Q ^ ......   @^.

C.4 Goodness-of-Fit Tests The third and final step in 

identifying a distribution is to test the hypothesis that 

there is no detectable difference between the hypothesized 

distribution and the sample distribution. We will discuss 

later in this section one test for a Poisson distribution 
and the Kolmogorov-Smirnov (K-S) test as a general purpose 
test for any distribution*5. The following are important 
terms which are commonly used in most of these tests.

1. Universe and sample. Any set of individuals 
(objects) having some common observable

5. There are also other common goodnes-of-fit tests such as 
Chi-Square test [WHI75].



characteristic constitutes a Universe. Any subset

of the universe is a sample from the

universe. There is then a "distribution of the
measurements of a sample" which actually we

observe and study and a "distribution of the
measurements of the universe" which needed to be
estimated. The problem is to decide what
information about the distribution of the universe
can be inferred from a study of the sample. For
the universe distribution we will denote the mean

of the universe by jj, and the variance of the
1universe by (J . The sample size represented by 

the letter N, is the number of individuals in the 
sample. A sample may be any size from N=1 to the 
number of items in the universe.

The measurements on the individuals in the sample

will form a distribution which will have a mean X,
2 —  2and a variance S . Presumably X and S , which we

can actually measure, should give us some
/ / zinformation about f-L and (J , whose values are

—  2usually not known. X and S are different from
2

sample to sample, while and (J are constant,
i.e., have particular values for a particular 
universe.
Central 1 imit theorem. If X has any distribution

2
with finite mean jj. and finite variance 0* , then 

the distribution of X approaches the normal
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x
distribution with mean Li and variance (J as the

Nsample size increases. If, however, the 

distribution of the universe, is exactly normal, 
then the sampling distribution of the mean of any 

size sample, even N equal to one, will be exactly 
normal.

This does not say that we are likely to be

close to the correct value of the parameter, but

we shall estimate the parameter correctly on the 

average. Most of the goodness-of-fit tests are
based on this theorem.

3. Confidence interval. From the central limit 
theorem, we have seen that the sampling 
distribution of X has a mean JU , standard 
deviation— 01 , and is normal in shape. Therefore,

<TT
we can use the area under the normal distribution 

(//,==r) tables to find the proportion of the time^  fN"we can expect to obtain a sample mean within a 
certain distance of /Z . Then it is clear that a

X - Anew random variable Z= (jyj whlc^ 1S a
normalized normal distribution having mean equal 

to zero and standard deviation equal to one could 
be used.

4. Level of significance T*le hypothetic
distribution will be rejected if the sample mean 
value lies in the region where the proportion of
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the time we can expect to find the sample mean is 

equal to the level of significance; assuming the 
hypothetic distribution is true. In another way, 
the hypothetic distribution is rejected if the

sample mean value lies outside a confidence

interval equal to (1-Q£) .

C.4.1 Poisson-Process Test. This test is particularly 
useful when sample data are sparse, since it does not 
require any knowledge of the universe distribution 
parameters.

Let t,,tz , ,tn denote the times at which n units

enter a queueing system during a time interval of length

T. If these arrivals are from a Poisson process then the

times are independent and uniformally distributed over the
interval (0-T) with the mean of the universe distribution

2.=T/2, and the variance of the universe =T /12n. The mean of 
the sample X = — L—  ̂  i;

Thus, to test the hypothesis that the arriving units 

are from a Poisson process, we simply compute the normal 
test variable Z

z  =  S" -  T/2. 
V  i / a n

Choose a level of significance , and locate the critical
values Z (_ a and Z ̂  , in Table C-l. If Z }_>e<< Z <Z^u we reject 

"2 T  T 2
the hypothesis that our arrival is from a Poisson process

with level of significance Qf .
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To summarize, the Poisson test proceeds as follows:

1. Compute X;

2. Compute the normal test variable Z;

3. Locate the critical values Z ̂  and in Table C-l;
T  "* 1

4. If Zj ^ < Z < Z ^  , then we reject the hypothesis that the
2 ~Z

data could have come from a poisson process.

Since the test is based on the central limit theorem,

as a rule of thumb we can say that the test can be applied

tsafely whenever N ^,20.

C.4.2 Kolmogorov-Smirnov test. This test compares the PDF 

for the hypothesized distribution F(x) with the sample
cumulative distribution Sn (x).The sample cumulative
distribution is defined by Sn(x) = i/n, where i is the number

of observations less than or equal to X, and n is the sample

size. The comparison between Sn (x) and F(x) is based on the 

absolute value of their difference:
0  =  m\d.x
/max X

FO) - Sn O)
The value D ^  „ is called the maximum deviation. The «n«*x
distribution of D is known and can be shown to be'’Aft X

independent of F(x). Several values from the distribution 

have been tabulated as a function of n, the number of 
observations, and (X t the level of significance. Table C-2 

lists some of these values for different n and 
combinations.
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The hypothesis that the data come from the hypothesized

distribution is rejected at the level of significance
<*D , where D,. are the critical values listedn «

in Table C-2.

Figure C-l illustrates a typical situation in which F(x)is 

continous. It is important to note that two differences

must be computed at each step point X-,,

fW  -  s,(\D
Ft*.) -  S„(xO and

since one is permitted to choose either the
bottom or top of each step.

To summarize, the (K-S) test proceeds as follows

1. Determine Sn (x) from the sample data;

2. Compute F(Xi)~ Sn(xi) and FCx»-S„0Q at each step point

X ; , if F (x) is continous. If F(x) is discrete, only

FCx,-) -Srt(x;) need to be computed;

3. Determine the maximum value D wekX from step 2;

4. Locate the critical value D in Table C-2;

5. If Dn / reject the hypothesis that the data have

come from the population described by F(x).
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PDF

F(x)

xxX 1+11-1 'i

Figure C-l. Step Points for F(x) Continuous



z F(.-) z F<=) Z m z F<-->

-4.000 0.0000 -3.750 0.0001 -3.500 0.0002 -3.250 0.0006
-3.590 0.0000 -3.740 0.0001 -3.490 0.0002 -3.240 0.0006
-3.980 0.0000 -3.730 0.0001 -3.480 0.0003 - 3.230 0.0006
-3.970 0.0000 -3.720 0.0001 -3.470 0.0003 -3.220 0.0006
-3.960 0.0000 -3.710 0.0001 -3.460 0.0003 -3.210 0.0007
-3.950 0.0000 -3.700 0.0001 -3.450 0.0003 -3.200 0.0007
-3.940 0.0000 -3.690 0.0001 -3.440 0.0003 -3.190 0.0007
-3.930 0.0000 -3.680 0.0001 -3.430 0.0003 -3.180 0.0007
-3.920 0.0000 -3.670 0.0001 -3.420 0.0003 -3.170 0.0008
-3.910 0.0001 -3.660 0.0001 -3.410 0.0003 -3.160 0.0008
-3.900 0.0001 -3.650 0.0001 -3.400 0.0003 -3.150 0.0038
-3.890 0.0001 -3.640 0.0001 -3.390 0.0004 -3.140 0.0009
-3.880 0.0001 -3.630 0.0001 -3.380 0.0004 -3.130 0.0009
-3.870 0.0001 -3.620 0.0002 -3.370 0.0004 -3.120 0.0009
-3.860 0.0001 -3.610 0.0002 -3.360 0.0004 -3.110 0.0009
-3.850 0.0001 -3.600 0.0002 -3.350 0.0004 -3.100 0.0010
-3.840 0.0001 -3.590 0.0002 -3.340 0.0004 -3.090 0.0010
-3.830 0.0001 -3.580 0.0002 -3.330 0.0004 -3.080 0.0010
-3.820 0.0001 -3.570 0.0002 -3.320 0.0005 -3.070 0.0011
-3.810 0.0001 -3.560 0.0002 -3.310 0.0005 -3.060 0.0011
-3.800 0.0001 -3.550 0.0002 -3.300 0.0005 -3.050 0.0012
-3.790 0.0001 -3.540 0.0002 -3.290 0.0005 -3.040 0.0012
-3.780 0.0001 -3.530 0.0002 -3.280 0.0005 -3.030 0.0012
-3.770 0.0001 -3.520 0.0002 -3.270 0.0005 -3.020 0.0013
-3.760 0.0001 -3.510 0.0002 -3.260 0.0006 -3.010 0.0013

TABLE C-l. Cumulative Distribution Function F(z) 
of the Standard Normal Random Variable Z
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z Fis) Z H--) Z F(:> Z F(-)

-3.000 0.0014 -1500 0.0062 -2.000 0.0227 -1.500 0.0668
-2.990 0.0014 -1490 0.0064 -1.990 0.0233 -1.490 0.0681
-1980 0.0014 -1480 0.0066 -1.980 0.0239 -1.480 0.0695
-1970 0.0015 -1470 0.0067 -1.970 0.0244 -1.470 0.0708
-1960 0.0015 -1460 0.0069 -1.960 0.0250 -1.460 0.0722
-1950 0.0016 -1450 0.0071 -1.950 0.0256 -1.450 0.0735
-1940 0.0016 -1440 0.0073 -1.940 0.0262 . -1.440 0.0750
-1930 0.0017 -1430 0.0075 -1.930 0.0268 -1.430 0.0764
-1920 0.0018 -1420 0.0078 -1.920 0.0274 -1.420 0.0778
-1910 0.0018 -1410 0.0080 -1.910 0.0281 -1.410 0.0793
-1900 0.0019 -1400 0.0082 -1.900 0.0287 -1.400 0.0808
-1890 0.0019 -1390 0.0084 -1.890 0.0294 -1.390 0.0823
-2.880 0.0020 -1380 0.0086 -1.880 0.0301 -1.380 0.0838
-1870 0.0021 -1370 0.0089 -1.870 0.0307 -1.370 0.0854
-1860 0.0021 -1360 0.0091 -1.860 0.0314 -1.360 0.0869
-2.850 0.0022 -1350 0.0094 -1.850 0.0322 -1.350 0.0885
-1840 0.0023 -1340 0.0096 -1.840 0.0329 -1.340 0.0901
-2.830 0.0023 -1330 0.0099 -1.830 0.0336 -1.330 0.0918
-2.820 0.0024 -1320 0.0102 -1.820 0.0344 -1.320 0.0934
-2.810 0.0025 -1310 0.0104 -1.810 0.0352 -1.310 0.0951
-1800 0.0026 -1300 0.0107 -1.800 0.0359 -1.300 0.0968
-1790 0.0026 -1290 0.0110 -1.790 0.0367 -1.290 0.0985
-1780 0.0027 -1280 0.0113 - 1.7C0 0.0375 -1.280 0.1003
-1770 0.0028 -1270 0.0116 -1.770 0.0384 -1.270 0.1021
-2.760 0.0029 -1260 0.0119 -1.760 0.0392 -1.260 0.1038
-2.750 0.0030 -1250 0.0122 -1.750 0.0401 -1.250 0.1057
-1740 0.0031 -1240 0.0125 -1.740 0.0409 -1.240 0.1075
-2.730 0.0032 -1230 0.0129 -1.730 0.0418 -1.230 0.1094
-2.720 0.0033 -1220 0.0132 -1.720 0.0427 -1.220 0.1112
-2.710 0.0034 -1210 0.0135 -1.710 0.0436 -1.210 0.1132
-1700 0.0035 -1200 0.0139 -1.700 0.0446 -1.200 0.1151
-1690 0.0036 -1190 0.0143 -1.690 0.0455 -1.190 0.1170
-1680 0.0037 -1180 0.0146 -1.680 0.0465 -1.180 0.1190
-1670 0.0038 -1170 0.0150 -1.670 0.0475 -1.170 0.1210
-1660 0.0039 -1160 0.0154 -1.660 0.0485 -1.160 0.1230
-1650 0.0040 -1150 0.0158 -1.650 0.0495 -1.150 0.1251
-1640 0.0041 -1140 0.0162 -1.640 0.0505 -1.140 0.1272
-1630 0.0043 -1130 0.0166 -1.630 0.0516 -1.130 0.1293
-1620 0.0044 -1120 0.0170 -1.620 0.0526 -1.120 0.1314
-1610 0.0045 -1110 0.0174 -1.610 0.0537 -1.110 0.1335
-1600 0.0047 -1100 0.0179 -1.600 0.0548 -1.100 0.1357
-1590 0.0048 -1090 0.0183 -1.590 0.0559 -1.090 0.1379
-1580 0.0049 -1080 0.0188 -1.580 0.0571 -1.080 0.1401
-1570 0.0051 -1070 0.0192 -1.570 0.0582 -1.070 0.1423
-1560 0.0052 -1060 0.0197 -1.560 0.0594 -1.060 0.1446
-1550 0.0054 -1050 0.0202 -1.550 0.0606 -1.050 0.1469
-1540 0.0055 -1040 0.0207 -1.540 0.0618 -1.040 0.1492
-1530 0.0057 -1030 0.0212 -1.530 0.0630 -1.030 0.1515
-1520 0.C3S9 — 1020 0.0217 -1.520 0.0643 -1.020 0.1539
-1510 0.0060 -1010 0.0222 -1.510 0.0655 -1.010 0.1563

TABLE C-l. Continued
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z F { : ) Z F [ : ) Z F ( : ) Z F I : )

1.000 0.8414 1.500 0.9332 2.000 0.9773 2500 0.9938
1.010 0.8438 1.510 0.9345 2.010 0.9778 2510 0.9940
1.020 0.8462 1.520 0.9357 1020 0.9783 1520 0.9941
1.030 0.8485 1.530 0.9370 1030 0.9788 1530 0.9943
1.040 0.8509 1.540 0.9382 1040 0.9793 2540 0.9945
1.050 0.8532 1.550 0.9394 1050 0.9798 1550 0.9946
1.060 0.8554 1.560 0.9406 1060 0.9803 2560 0.9948
1.070 0.8577 1.570 0.9418 1070 0.9808 2570 0.9949
1.080 0.8599 1.580 0.9429 1080 0.9812 2580 0.9951
1.090 0.8622 1.590 0.9441 1090 0.9817 1590 0.9952
1.100 0.8643 1.600 0.9452 1100 0.9821 2600 0.9953
1.110 0.8665 1.610 0.9463 1110 0.9826 2610 0.9955
1.120 0.8687 1.620 0.9474 1120 0.9830 2620 0.9956
1.130 0.8708 1.630 0.9484 1130 0.9834 2630 0.9957
1.140 0.8729 1.640 0.9495 1140 0.9838 2640 0.9959
1.150 0.8749 1.650 0.9505 1150 0.9842 1650 0.9960
1.160 0.8770 1.660 0.9515 1160 0.9846 2.660 0.9961
1.170 0.8790 1.670 0.9525 1170 0.9850 2670 0.9962
1.180 0.8810 1.680 0.9535 1180 0.9854 2680 0.9963
1.190 0.8830 1.690 0.9545 1190 0.9857 2690 0.9964
1.200 0.8849 1.700 0.9554 1200 0.9861 2.700 0.9965
1.210 0.8869 1.710 0.9564 1210 0.9865 2.710 0.9966
1.220 0.8888 1.720 0.9573 1220 0.9868 2.720 0.9967
1.230 0.8907 1.730 0.9582 1230 0.9871 2.730 0.9968
1.240 0.8925 1.740 0.9591 2.240 0.9875 2.740 0.9969
1.250 0.8944 1.750 0.9599 1250 0.9878 2750 0.9970
1.260 0.8962 1.760 0.9608 1260 0.9881 2760 0.9971
1.270 0.8980 1.770 0.9616 1270 0.9884 2770 0.9972
1.280 0.8997 1.780 0.9625 1280 0.9887 2780 0.9973
1.290 0.9015 1.790 0.9633 1290 0.9890 1790 0.9974
1.300 0.9032 1.800 0.9641 2300 0.9893 2800 0.9974
1.310 0.9049 1.810 0.9648 2310 0.9896 2810 0.9975
1.320 0.9066 1.820 0.9656 2320 0.9898 2820 0.9976
1.330 0.9082 1.830 0.9664 2330 0.9901 2830 0.9977
1.340 0.9099 1.840 0.9671 2340 0.9904 2840 0.9977
1.350 0.9115 1.850 0.9678 1350 0.9906 2850 0.9978
1.360 0.9131 1.860 0.9686 1360 0.9909 2860 0.9979
1.370 0.9147 1.870 0.9693 2370 0.9911 2870 0.9979
1.380 0.9162 1.880 0.9699 2380 0.9914 2880 0.9980
1.390 0.9177 1.890 0.9706 2390 0.9916 2890 0.9981
1.400 0.9192 1.900 0.9713 2400 0.9918 2900 0.9981
1.410 0.9207 1.910 0.9719 2410 0.9920 2910 0.9982
1.420 09222 1.920 0.9726 2420 0.9922 2920 0.9982
1.430 0.9236 1.930 0.9732 2430 0.9925 2930 0.9983
1.440 0.9251 1.940 0.9738 2440 0.9927 2940 0.9984
1.450 0.9265 1.950 0.9744 2450 0.9929 2950 0.9984
1.460 0.9279 1.960 0.9750 2460 0.9931 2960 0.9985
1.470 0.9292 1.970 0.9756 1470 0.9932 2970 0.9985
1.480 0.9306 1.980 0.9762 2480 0.9934 2980 0.9986
1.490 0.9319 1.990 0.9767 2490 0.9936 2990 0.9986

TABLE C-l. Continued
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z F{:) Z F(:) Z F{:) Z F(:>

3.000 0.9986 3.250 0.9994 3.500 0.9998 3.750 0.9999
3.010 0.9987 3.260 0.9994 3.510 0.9998 3.760 0.9999
3.020 0.9987 3.270 0.9995 3.520 0.9998 3.770 0.9999
3.030 0.9988 3.280 0.9995 3.530 0.9998 3.780 0.9999
3.040 0.9988 3.290 0.9995 3.540 0.9998 3.790 0.9999
3.050 0.9988 3.300 0.9995 3.550 0.9998 3.800 0.9999
3.060 0.9989 3 A10 0.9995 3.560 0.9998 3.810 0.9999
3.070 0.9989 3.320 0.9995 3.570 0.9998 3.820 0.9999
3.080 0.9990 3.330 0.9996 3.580 0.9998 3.830 0.9999
3.090 0.9990 3340 0.9996 3.590 0.9998 3.840 0.9999
3.100 0.9990 3350 0.9996 3.600 0.9998 3.850 0.9999
3.110 0.9991 3.360 0.9996 3.610 0.9998 3.860 0.9999
3.120 0.9991 3370 0.9996 3.620 0.9998 3.870 0.9999
3.130 0.9991 3380 0.9996 3.630 0.9999 3.880 0.9999
3.140 0.9991 3390 0.9996 3.640 0.9999 3.890 0.9999
3.150 0.9992 3.400 0.9997 3.650 0.9999 3.900 0.9999
3.160 0.9992 3.410 0.9997 3.660 0.9999 3.910 0.9999
3.170 0.9992 3.420 0.9997 3.670 0.9999 3.920 1.0000
3.180 0.9993 3.430 0.9997 3.680 0.9999 3.930 1.0000
3.190 0.9993 3.440 0.9997 3.690 0.9999 3.940 1.0000
3.200 0.9993 3.450 0.9997 3.700 0.9999 3.950 1.0000
3.210 0.9993 3.460 0.9997 3.710 0.9999 3.960 1.0000
3.220 0.9994 3.470 0.9997 3.720 0.9999- 3.970 1.0000
3.230 0.9994 3.480 0.9997 3.730 0.9999 3.980 1.0000
3.240 0.9994 3.490 0.9998 3.740 0.9999 3.990

4.000
1.0000
1.0000

TABLE C-l. Continued



Sample
size
N

Kolmogorov-Smirnov 
level of significance x

0.20 0.15 0.10 0.05 0.01

3 0.451 0.479 0.511 0.551 0.600
4 0.396 0.422 0.449 0.487 0.548
5 0.359 0.382 0.406 0.442 0.504
6 0.331 0.351 0.375 0.408 0.470
7 0.309 0.327 0.350 0.382 0.442
g 0.291 0.308 0.329 0.360 0.419
9 0.277 0.291 0.311 0.341 0.399
10 0.263 0.277 0.295 0.325 0.380
11 0.251 0.264 0.283 0.311 0.365
12 0.241 0.254 0.271 0.298 0.351
13 0.232 0.245 0.261 0.287 0.338
14 0224 0.237 0.252 0.277 0.326
15 0217 0.229 0.224 0.269 0.315
16 0.211 0.222 0.236 0.261 0.306
17 0.204 0.215 0.229 0.253 0.297
18 0.199 0.210 0.223 0.246 0.289
19 0.193 0.204 0.218 0.239 0.283
20 0.188 0.199 0.212. 0.234 0.278 -
25 0.170 0.180 0.191 0.210 0.247
30 0.155 0.164 0.174 0.192 0.226

>30 0.86 0.91 0.96 1.06 1.25
v'tf v'V v'-V v *

TABLE C-2. Critical Values for Kolmogorov-Smirnov 
Test for the Exponential Distribution
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