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ABSTRACT

INVOLVEMENT OF LYSOSOMES IN SPONTANEOUS 
ATHEROGENESIS AND THE EFFECTS OF ESTROGENS

BY

Jane Linscott Hough 

University of New Hampshire, May, 1981

Alterations and accumulations of glycosaminoglycans (GAG) and 

lipids are prominent features in atherosclerotic lesions. Lysosomes 

are essential for cellular catabolism and are known to be altered in 

advanced atheroslcerotic lesions; however, their involvement in spon

taneous atherogenesis or lesion progression is unclear. Estrogens 

have been reported to interact with lysosomes and are thought to pro

vide a "protective" effect against development of atherosclerotic 

lesions. Analysis of lysosomes from sites predisposed to lesions, as 

well as consideration of the effects of estrogens on lysosomes at 

different stages of lesion development, may provide insight into bio

chemical mechanisms of spontaneous atherogenesis and lesion progres

sion. Simultaneous analysis of lesion-resistant aortic segments pro

vides a control for differentiating between aging processes and le

sion development.

Lysosomal fragility and marker enzyme activities, N-acetyl-B- 

hexosaminidase (NAHase) and acid phosphatase (APase), were measured 

in subcellular fractions from upper thoracic, aortas (lesion-resistant 

areas) and celiac bifurcations (site predisposed to lesions) from



atherosclerosis-susceptible White Carneau (WC) and atherosclerosis- 

resistant Show Racer .(SR) pigeons at 1 day, 6 weeks, 6 months, and 

6 years of age. Isolated arterial segments were also incubated with 

17B-estradiol at physiological temperatures to determine the effect 

on lysosomal fragility and enzyme activities.

Lysosomal enzyme activities and protein yields in both aortic 

sites from 6 week old WC pigeons were higher than in corresponding 

SR; thus, turnover rates of cellular components would appear higher 

in the WC than in the SR. However, the lysosomes from 6 week old WC 

aortas also appeared more fragile than lysosomes from SR aortas.

Since this is prior to appreciable GAG and lipid accumulation in WC 

celiac sites, excessive release of lysosomal enzymes and/or greater 

activities of these enzymes may cause alterations in connective tis

sue matrix and mitochondrial function which are associated with lipid 

accumulation during atherogenesis in the WC. The increased lysosomal 

fragility may also deplete the cell's vacuole system of acid hydrolas 

therefore decreasing catabolism of Intracellular components and endo- 

cytosed material eg. lipid.

Estrogen treatment increased APase activity and protein yield 

in the "lysosomal" fraction of 6 week old birds suggesting an in

crease in number of lysosomes which may aid cellular catabolism and 

explain the reported estrogen "protection" against lesion develop

ment in WC.

Soluble NAHase activity increased in the WC celiac segment by 

6 years of age and may explain the altered GAG profiles which occur 

during atherosclerotic'lesion progression.



Since the greater lysosomal enzyme activities, protein yields 

and membrane fragility in the WC occur at both tissue sites, a ge

netic mechanism is Indicated. In the WC celiac segment higher lyso

somal enzyme activities, protein yields and membrane fragility appear 

augmented by local factors, and may play a major role in spontaneous 

atherogenesis.

xiv



I. INTRODUCTION

Atherosclerosis is implicated in nearly 90% of all cardio

vascular disease, which is the primary cause of death in much of 

the industrialized world (Klevay, 1975; Ross, 1975). In 1969, the 

World Health Organization proclaimed cardiovascular disease the most 

decimating disease ever to affect mankind (Stamler, 1970). Athero

sclerosis has been found in arteries of 16th century B.C. mummies, 

yet the initiating factors of the disease are still poorly under

stood.
Many animal species which develop spontaneous or experimentally 

Induced atherosclerosis have been used as models to study initiating, 

progressive, and regressive factors in the disease. One of the few 

animal models which develops spontaneous atherosclerosis under normal 

conditions without cholesterol feeding or Induced arterial injury is 

the White Carneau pigeon.

Spontaneous atherosclerosis in pigeons and its close resem

blance to the human disease was first described by Clarkson, et: al. 

(1959). Santerre, et al. (1972) later described the normal and 

atherosclerotic architecture and topography of the muscular foci at 

the celiac bifurcation in prenatal to six-year old White Carneau and 

Show Racer pigeon aortas. In this model system, which includes a 

negatlve-control, atherosclerotic susceptibility, lesion site speci

ficity, lesion severity, and rate of disease progression are quite 

predictable, Since the White Carneau (WC) pigeon shows a greater 

tendency than the Show Racer (SR) pigeon to develop atherosclerosis
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under identical conditions of environment, exercise, and diet, the 

disease in pigeons is believed to have a genetic basis (Prichard, 

et al., 1962; Thomas e£ al., 1973).

By four years of age nearly 100% of all WC have grossly visible 

spontaneous lesions in the innate muscular cushion at the celiac ' 

bifurcation (Clarkson et al., 1965; Cooke and Smith, 1968; Lindsay 

and Nichols, 1971; Prichard et al., 1964; Santerre et al., 1972).

It has been suggested that these raised muscular cushions are the 

counterpart of the musculo-elastlc layers of intimal thickening in 

the human lesions which is a prerequisite for lipid accumulation 

(Cooke and Smith, 1968; Santerre et al., 1972). The negative- 

control (SR) in the pigeon model has facilitated numerous in vivo 

and in vitro comparisons of cellular and intercellular constituents, 

as well as metabolic capabilities of atherosclerotic and non

diseased pigeon aortas (Curwen and Smith, 1977; Lofland and Clark

son, 1959, 1965; Lofland et al., 1967; Nicolosi et al , 1972;

Smith et al., 1965; Smith e£ al., 1966; Hajjar and Smith, 1978,

1980; Zemplenyl and Rosenstein, 1975; Hajjar et al., 1980). Fur

thermore, the WC-SR system permits discrimination between athero

sclerotic events and normal developmental or aging processes.

Studies of atherosclerosis in man and a variety of animal 

models has led to the hypothesis that the mechanism(s) inciting 

the disease is a normal arterial repair process or a non-specific 

mesenchymal response to irritating and injurious factors (hyper

tension, emotional stress, diet, hormones, or autoimmune irritants). 

However, it is unclear how the associated proliferative and de

generative events affect arterial homeostasis. These events in-



3
elude intimal accumulation of cells, structural proteins, complex 

carbohydrates and lipids. In contrast to results with many ex

perimental animal models elevated blood lipid and cholesterol 

levels or aberrant liproprotein profiles do not seem to play a 

role in the development of spontaneous atherosclerosis in the WC 

pigeon (Jensen et al., 1978; Lofland and Clarkson, 1959; Wagner 

et al., 1973).

It has been well documented that the lysosomes of arterial 

smooth muscle cells are altered in atherosclerosis and other vas

cular diseases. Increased numbers of lysosomes, including lipid- 

containing lysosomes, have been demonstrated by both cell frac

tionation and ultrastructural cytochemlcal techniques in aortic 

cells: from cholesterol-fed rabbits (Peters and de Duve, 1974;

Shio et al., 1974; Haley et al., 1977); from humans with both 

atheromatous lesions (Berberian and Fowler, 1979) and areas of 

fibromuscular thickening without focal lipid accumulation or 

superficial fatty streaks (Coltoff-Schiller et al., 1976); and, 

from hyperlipemic monkeys (Goldfischer ejt al., 1975). Biochemical 

analyses of atheromatous and hypertensive aortas have also demon

strated that the activity of lysosomal acid hydrolyses were 

significantly elevated when compared with normal vascular tissue 

(Berberian and Fowler, 1978; Wolinsky et al., 1974; Wolinsky et 

al., 1975; Peters et al., 1973; Haley et al., 1977). Peters et 

al. (1973), have further shown in cholesterol-fed rabbits that 

lysosomal membrane stability increases with the severity of 

atherosclerosis.

Lysosomes hydrolyre both extracellular material incorporated
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into the cell by endocytosis, and cytoplasmic elements sequestered 

within the lysosome by autophagia (de Duve, 1969). The release 
of lysosomal enzymes extracellularly is also considered to play 

a major role in the physiological as well as pathological break

down of extracellular macromolecules (Reynolds, 1969). Altera

tions in lysosomal enzymes or in the lysosomal membrane may alter 

normal catabolic activity in the arterial wall either by a decrease 

in normal degradative processes or by abnormal release of enzymes 

causing alterations in the structural architecture of the vessel. A 

metabolic defect in arterial wall catabolism may be a causative 

factor in atherogenesis or may be a consequence of an earlier 

initiating factor.

A sex difference in suscepitibility to atherosclerosis has 

been well documented in humans. Women prior to menopause show a 

lower Incidence of heart attacks than men in the same age group. 

Ovariectomy or menopause cause the loss of this "resistance" to 

coronary events, and estrogens are thought to provide the pro

tective effect. Because of the protective effect of estrogens 

studies were Initiated in which estrogens were administered to men 

who had had previous myocardial infarctions or prostatlc carcinoma 

(Stamler et al., 1956; Coronary Drug Project, 1970; Vet. Admin. 
Cooperative Urp. Res. Grp,, 1967), The results from these studies 

are conflicting, and many variables may have affected the outcome. 

Although women have slightly lower serum cholesterol; levels of 

estrogens needed to produce alterations in serum cholesterol in 

men are relatively high and beyond the physiological range. Such 

high doses, especially of synthetic estrogens (i.e., ethinyl
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estradial is 60 to 75 times as potent as conjugated estrogens), 

were found to increase the number of myocardial infarctions (Coro

nary Drug Project, 1970; Vet. Admin. Cooperative Res. Group, 1967; 

McGill and Stem, 1979) . However, administration of low doses of con- 

conjugated estrogens to men tended to increase the survival rate over 

a five year study (Stamler et al., 1963). On the other hand, McGill 

and Stern (1979) concluded that estrogens do not cause regression 

of atherosclerosis in men; men who have taken estrogens for several 

years have a higher percentage of fibromuscular lesions than lipid

laden lesions (McGill and Stem, 1979). Perhaps estrogens are able 

to stimulate mechanisms for the removal of lipid material. Similarly, 

administration of conjugated estrogens to five to seven year old WC 

pigeons did not affect the actual size of the spontaneous aortic 

lesions; however, the amount of lipid material found within the 

lesions was significantly lower when compared to the controls 

(Hanash jet al., 1972). Hanash ej: al. (1972) also reported a 

significant difference between sexes within the control and estro

gen treated groups (female aortic lesions always contained less 

lipid material). Souadjian et al. (1968) found that administra

tion of conjugated estrogens to immature WC pigeons significantly 

decreased the development of atherosclerotic lesions. Therefore, 

it appears that in both man and pigeons administration of estrogen 

to subjects with pre-existing atherosclerotic lesions does not cause 

regression but does appear to aid in the removal of lipid from the 

lesions. The presence of estrogens prior to lesion development does 

appear to prevent or retard the development of lesions.
The effects of estrogens on atherosclerosis in other experl-



mental animals has been shown to vary with species and location of 

lesions in the vascular tree, as well as with the type of disease 

(spontaneous vs. induced) (Hanash, et al., 1972; Sirek, et al., 

1977; Prichard, et al., 1966; Stamler, et al., 1956). Differences 

in hormone receptors in the arterial wall may account for differ

ences in the mesenchymal response. Autoradiographic studies using 

H -estradiol have demonstrated receptors for estrogens not only 

in "target organs", but in blood vessels (Stumpf and Sar, 1977) 

and cardiac muscle as well (Stumpf et. al., 1977).

Administration of e&trogens to animals has been shown to 

alter lysosomal acid hydrolase activity: decreasing the

abnormally high aortic enzyme activity in hypertensive rats 

(Wolinsky, j^t_al., 1974); increasing activity in rat myometrium 

(Sloane and Bird, 1977); and, decreasing activity in the pituitary 

and hypothalamus of male frogs (Milone, ,et<al., 1978). Further

more estrogens have been shown to Interact with lysosomes in vivo 

and in vitro; however, the effects are equivocal. Several studies 

have reported that estrogens have a labilizing effect on lysosomes 

(Szego, _et _al., 1971; Szego. et al., 1977; Briggs, 1973; Sergeer, 

.et .al., 1978) while others have reported a stabilizing effect 

(Bodel, et al., 1972; Weissman, 1969). Increased stabilization of 
membranes has been correlated with decreased ability of the mem

brane to fuse with other membranes (Papahadjopoulos, et al.,

1973). Likewise a decrease in membrane stability (or increase 

in fragility) would increase the ability of the membranes to 

fuse. If lysosomes are stabilized in atherosclerotic lesions, 

then their ability to fuse with endocytotic vesicles,
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autophagic vesicles, the plasma membrane or secondary lysosomes (to 

provide additional degradative enzymes) would be diminished thereby 

decreasing the catabolic capacity of the cell and cause subsequent 

accumulation of connective tissue and lipids. A decrease in the lyso

somal membrane stability (possibly by estrogens) would prevent this 

cascade of events. On the other hand, lysosomes whose membranes are 

destabilized can also have a deleterious effect on the cell through ex

cessive extra- and intra-cellular release of lysosomal hydrolases. Since 

the effect of cholesterol on membrane fluidity depends on the amount of 

cholesterol present, as well as the overall composition of the membrane, 

perhaps the conflicting reports of the effects of estradiol on membrane 

stability may be caused by differences in composition of various membranes 

studied.

Although no significant sex differences in the suscepitibility 

of pigeons to atherosclerosis have been seen (Santerre, et al., 1972; 

Hajjar, et al., 1980), estrogens have still been shown to produce a 

protective or preventive effective in immature WC pigeons (Souadjian, 

et al., 1968). However Koes, et al. (unpublished) have reported greater 

vacuolization and amounts of lipid in cell cultures from the aortas of 

male pigeons than in cell cultures from the aortas of female pigeons.

The lack of a sex difference in the development of atherosclerotic lesions 

in the WC may be due to their reproductive behavior (Brannigan, 1973).

The WC males are more aggressive than the SR males; therefore, the WC 

reproduce more readily. The WC also wean their young earlier and start 

a second hatch sooner than the SR pigeons. These findings suggest 

a difference in either the balance of circulating hormones or in the 

response of the male birds to hormones. Brannigan (1973) also found
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adrenal hyperplasia In WC pigeons (both sixes) which Increased when 

the birds were Isolated or grouped (Instead of paired). Lutmer and 

Wexler (1970) have shown that repeatedly bred female mice develop spon

taneous atherosclerosis and have high adrenocortical activity. Fur

thermore lams and Wexler (1977) found that early weaning of the young 

Increased the severity of the disease In the mothers, and that adrenal

ectomy Inhibited the development of arteriosclerosis. Also, Friedman 

it al., (1972) showed that humans of a high coronary risk group had 

significantly elevated levels of corticosteroids. Szego (1972) has al

so shown that corticosteroids antagonize estrogen action In target tis

sues. Furthermore, androgen and glucocorticoid secretion by the adren

als occurs simultaneously (James, 1975), so that increased glucocorti

coid secretion means increased androgen secretion as well. McMullin et 

al., (unpublished) found that the addition of an androsterone Increased 

lipid vacuolization in smooth muscle cells cultured from WC aortas. 

Androsterone Is metabolite of androstenedione which is one of the major 

androgens secreted by the adrenals (James, 1975), Therefore, the WC 

pigeon is hormonally as well as genetically disposed toward the devel

opment of atherosclerosis. This behavior pattern in the WC female may 

eliminate or oppose any "protective" effect of estrogens, and enhance 

atherogenesis through androgen and/or glucocorticoid effects on aortic 

smooth muscle cell metabolism.



II. THE PRESENT STUDY

Although the protective effect of estrogens In cardiovascular 

disease has been hypothesized for several decades, the mode or 

modes of action remain to be elucidated. A major complication In 

the elucidation of estrogen mechanisms Is the apparent diversity 

of tissue responses, depending on the dose of estrogen used, the 

location and type (spontaneous vs. cholesterol-fed) of lesion, and 

the age and hormonal status of the recipient. Estrogens are known 

to Interact with lysosomes, and alterations In lysosomes are common 

features of various blood vessel lesions. Therefore, the present 

study was undertaken to determine whether there Is a correlation 

between lysosomal alterations, estrogen action and atherogenesls. 

Since the WC pigeon develops spontaneous atherosclerotic lesions 

which are site and age specific, morphologically similar to human 

lesions, and appear to respond to estrogen In a similar manner, 

it Is an ideal animal model for the study of atherosclerosis and 

its initiating factors, as well as for examining the effect of 

estrogens. Hie simultaneous comparison of the atherosclerosis- 

resistent SR as a control enables the Investigator to discriminate 

between differences due to age, vascular location and athero

sclerosis.
This study was designed with the following as independent 

variables:

Two breeds - WC and SR;

Two Sexes - male and female;

9
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Four Ages - 1 day, 6 weeks, 6 months, and 6 years;

Two Aorta Sites - Upper thoracic and celiac bifurcation;

Two treatments - control and estrogen;

Four Tissue Fractions - crude homogenate, lysosomal, micro

somal, and soluble fractions.

Two Activities - Brlj-35 and Free.

The above scheme contained two separate dependent variables:

N-Acetyl-B-hexosamlnldase (NAHase) and Acid Phosphatase (APase) 

activities.

Each cell In the two designs contained results from 3 replicate 

tissue pools, except for 1 day aortas where aorta sites were not 

separated.

Activities of the above lysosomal marker enzymes, latency of 

these enzymes were determined In the upper thoracic aorta (non- 

lesion site) and In the muscular cushion at the celiac bifurcation 

(pre-dlsposed lesion site In WC) In 1 day old (pre-atherosclerotic), 

4-6 week old (pre-atherosclerotic, just weaned), 4-6 month old (early 

biochemical atherosclerosis), and 5-6 year old (advanced atheroscler

osis) WC and SR pigeons. In vitro Incubation of tissues with 17B- 

estradiol enabled measurement of any direct effect of estrogen on 

lysosomes and lysosomal enzymes.

N-Acetyl-B-hexosamlnldase is considered to be the most reliable 

lysosomal marker enzyme and has not been demonstrated In other sub- 
cellular organelles. Acid phosphatase Is the most commonly used 

lysosomal marker enzyme even though activity has been demonstrated
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In the endoplasmic reticulum. Enzyme activities were measured in 

the crude tissue hombgenate, the lysosomal-mitochondrial pellet ("ly

sosomal" fraction), the microsomal pellet, and the soluble frac

tion (105,000 g supernatant). Further separation of lysosomes from 

mitochondria was not necessary since the enzyme activities measured 

have not been demonstrated in mitochondria. The enzyme activity 

present in the microsomal fraction is of interest since ultra- 

structural alterations of the endoplasmic reticulum (ER) and in

creased B-glucuronidase activity in the ER have been demonstrated 

in smooth muscle cells cultured from WC aortas (Wight, et al., 1977; 

Smith and Smith, in preparation). ' The soluble enzyme activities were 

also measured in order to determine non-menbrane bound enzyme.

The percentage of latent enzyme activity (enzymes contained in 

intact lysosomes and not available to the substrate until the lyso

somes are disrupted) was determined'in the following manner. The 

enzyme activity was measured before and after the lysosomes were dis

rupted by the addition of a non-ionic detergent, Brij-**35, to the assay 

mixture. The free enzyme activity (activity prior to lysosomal rup

ture) is then subtracted from the total enzyme activity (activity 

after lysosomal rupture) and the value is divided by the total 

activity:

% Latent enzyme m Total activity - Free activity 
activity * Total activity

Tissue samples of birds of opposite sexes were kept segregated 

because previous studies in other animals have shown that APase and 

NAHase enzyme activities were sex dependent. The response of aortic 

tissue to estrogen may vary with sex as well.



III. MATERIALS AND METHODS

Tissue Samples

One-day old White Carneau and Show Racer pigeons were obtained 

from colonies maintained at the University of New Hampshire. These 

colonies were established with pigeons from stock obtained from the 

Palmetto Pigeon Plant (Sumter, S.C.). These birds are of the same 

lines as described by Clarkson et al.,(1959). Six-week, six-month, 

and six-year old WC and SR pigeons were obtained from either the 

Palmetto Pigeon Plant or from the U.N.H. colonies. The birds were fed 

Palmetto Health Grit and Purina Pigeon Choe Crackers, or a mixture 

of whole grains: wheat peas, Kaffir, and milo, ad libitum.

Pigeons were sacrificed by exsanguation, and aortas from the 

arch to just below the celiac bifurcation were removed and placed 

in ice-cold Hank's Balanced Salt Solution containing glucose (Hb). 

Thoracic and celiac segments were separated as described by Santerre, 

et al. (1972). The tissues were dissected free of blood and ex

traneous material, and then the adventitia was removed according to 
the mehtod of Wolinsky and Daley (1971). Thoracic and celiac seg

ments (approximately equal in size) were subsequently pooled respec

tively to provide sufficient tissue for analysis (20 mg samples from 

2 birds per pool).

Each tissue pool was divided into two aliquots (tissue frag
ments of approximentely equal size), A and B, and weighed. Tissue

aliquot A was incubated for 30 mln. at physiological temperature (42C)
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In W* (100 ul/mg tissue) containing 0.5 ul/ml of 0.1 M phosphate 

buffer (pH 7.0) and 0.1% Bovine gamma globulin fr. II (buffer I). 

Aliquot B was treated similarly except that Buffer I contained 

200 mg/ml of 17B-estradiol (final concentration of 100 pg/mlHf) in 

addition. After Incubation the tissue was washed once with cold H+ 

and twice with cold 0.25M sucrose, and put on ice. There was no 

appreciable difference in NAHase activity between untreated tissue 

incubated at 42°C for 30 min. and tissue kept on ice for 30 min.

Subsequent to incubation and washing, the tissue was minced 

and homogenized in 0.25 M sucrose by 25 strokes of a Dounce homo- 

genizer (Wheaton, pestle size A) at a concentration of 16 mg wet 

weight per ml sucrose. All glassware used was previously silicon

ized using Aqua-sil (Pierce, Inc.).

The tissue homogenate was centrifuged for 5 min. at lOOg to 

remove debris and the supernatant divided into three aliquots. One 

aliquot (200 ul) was frozen for DNA analysis. The second aliquot 

(100 ul) was put on ice for subsequent enzyme analysis, while the 

third aliquot (500 ul) was separated into "lysosomal", microsomal, 

and soluble fractions by further ultracentrifugation (Beckman model

L ultracentrifuge).
Samples were centrifuged at 800g for 10 min, to remove the

nuclear fraction. The post-nuclear supernatant was then centri

fuged' at 20,000 g for 30 min. The pellet ("lysosomal'* fraction) was 

resuspended in 0.25 M sucrose to the original volume (300 ul) and 

divided into two aliquots (150 ul each). One aliquot was frozen 

for protein'analysis and the other kept on ice for subsequent en-
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zyme analysis. The post-lysosomal supernatant was further cen

trifuged at 105,000 g for one hour. The 105,000 g pellet (micro

somal fraction) was resuspended in 0.25 M sucrose to its original 

volume (200 ul) and kept on ice. The post-microsomal supernatant 

(soluble fraction) was also kept on ice for subsequent enzyme 

analysis.

A sample of 30 ul from each fraction was diluted 1:2 with 

either 0.25 M sucrose (free activity) or with 0.25 M sucrose con

taining 0.1% Brij-35 (Fisher) (total activity).

Lysosomal Enzyme Analyses

Acid phosphatase and N-acetyl-B-hexosaminidase were determined 

in a similar manner using 4-Methylumbelliferyl derivatives as sub

strates at a final concentration of 4 mM (Barrett and Heath, 1977). 

Acetate buffer, 0.2 M (pH 4.8) and 0.1 mM citrate buffer (pH 4.1) 

were used for APase and NAHase analyses respectively. The sub

strate concentration and pH were optimized for each enzyme (Fig. la 

and lb) and was the same for both breeds of pigeons and for both 

tissue sites.

Twenty ul of each sample to be assayed was incubated with 20 ul 

of the appropriate buffer solution for twenty minutes. The reaction 

was stopped by the addition of 1.7 ml of 0.5 M Carbonate buffer (pH 

10.5),and the quantity of product formed was determined fluoro- 

metrically (Turner Model 430 Spectrofluorometer; excitation 365 nm; 

emission 450 nm) from a standard curve for 4-methylumbelliferone.

The reactions were linear with time (20 min.) for both breeds of
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pigeons and for both tissue sites at all ages.

DNA Analysis

Duplicate 60 ul aliquots of the post lOOg supernatant were 

analyzed for DNA content by the microfluorometric method of 

Kissane and Robins (1958), using 3,5-diamino-benzoic acid dihydro

chloride, as modified for the Turner Model 430 Spectrofluorometer. 

Samples were frozen for not more than one month prior to analysis. 

Preliminary experiments determined that pronase digestion or soni- 

cation was not necessary for the complete release of DNA from the 

tissue; therefore, neither pronase digestion nor sonication was 

used prior to DNA analysis.

Protein Analysis

Protein was quantitated by the protein-dye binding method of 

Bradford (1976). Aliquots of 40 and 70 ul of the "lysosomal" and 

microsomal fractions, respectively, were diluted to 0.4 ml with

0.25 M sucrose, and 0.1 ml of the dye reagent (0.01% (w/v)

Coomassie Brilliant Blue G-250, 4.7% (w/v) ethanol, and 8.5% (w/v) 

phosphoric acid) provided in a test kit by Bio-Rad Laboratories 

was added. After twenty minutes samples were read at 595 nm on a 

Beckman model 26 spectrophotometer, and the quantity of protein deter

mined from a standard curve for bovine serum albumin (Miles Labora

tories).



18

Development of Methods

Determination of optimal conditions for lysosomal disruption

Membrane disruption with Brij-35 was found to liberate the 

greatest enzyme activity from the “lysosomal" fraction when compared 

to other methods of membrane disruption. Other membrane disruption 

methods evaluated included digitonin, freezing-thawing, hypotonic 

(0.05 M sucrose) solution, Triton x-100, sonication, and heating 

and cooling. Brij-35 was tested using concentrations from 0.001% 

to 8%, and a concentration of 0.1% produced the greatest effect. 

Enzyme activity increased with increasing Brij-35 concentrations 

up to 0.1% at which point the enzyme activity declined when the 

Brij-35 concentration was increased further.

Determination of estrogen incubation time
3Uptake of 17B-[6,7- H(N)]-estradiol (MEN) by the upper thoracic 

aorta and celiac bifurcation in- vitro plateaued between 10 and 20 min. 

and remained relatively constant for up to 90 min. However, since 

NAHase activity was found to decrease when tissue was incubated for 

more than 45 minutes, 30 minutes was used as the optimal incubation 

time. Radioactivity in the tissue samples was determined by liquid 

scintillation spectrometry (Beckman LS 7000) after overnight diges

tion at 60°C in 0.5 ml BTS-450 (Beckman tissue solubilizer: 0.5N

quaternary ammonium hydroxide in toluene).
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Statistical Analysis

Analyses of variance were run using a fully nested design with 

breed as the main effect. Cross interactions were considered within 

each breed In the following manner:

Sex within each breed 

Age within each sex 

Thoracic x celiac within each age 

No treatment x Estrogen treatment within each tissue site

Significant differences between total and free activities were 

determined by the Student's t Test for paired samples.



IV. RESULTS

Protein Yield of Subcellular Fractions

The major and most consistent differences in the protein yields 

of the "lysosomal" and microsomal fractions were seen as a function 

of age within sex and breed at each site. (Tables 1-6)

The "lysosomal" protein yield in the SR (both sexes) did not 

vary significantly with age at either tissue site. However, in 

young WC the protein yield of this fraction was high and dropped 

as the birds matured. The yield in WC males was highest at 6 

weeks.at both tissue sites. In the celiac segment of the WC female, 

protein yield was also highest at 6 weeks but was maximal in the 

thoracic segment at 6 months. (Tables 1 and 2; Figures 2a and 2b) 

Generally the microsomal protein yield increased with age with 

the exception of the yield in the WC female, which was maximal at 

6 weeks and was significantly lower than in other birds in the 

celiac segment at 6 years of age. (Tables 1, 2, 4; Figures 2c, 2d) 

No significant differences between aortic sites in "lysosomal" 

and microsomal protein yields were seen in either breed. (Tables 

1 and 3)

Only a few scattered differences in the protein yields of 

fractions between breeds or sexes were observed and no erends are 

apparent. (Tables 1, 4, and 5)

Estrogen incubation significantly increased the "lysosomal" 

protein yield in both the thoracic and celiac segments of 6 week



old SR male pigeons, eliminating breed differences. (Tables 1, 4 

and 6; Figure 3a) The age profiles of the males subsequent to 

estrogen administration were also similar: maximal at 6 weeks

(both tissue sites), minimal at 6 months and then high again at 

6 years (celiac only). (Tables 1 and 2; Figures 3a and 3b)

Estrogen treatment also caused an increase in "lysosomal” protein 

yield at 6 weeks in the WC female and at 6 months in the SR female, 

but only in the celiac segment, so that yields in the celiac be

came significantly different from those in the thoracic segment 

and between breeds for the female. (Tables 1, 3, 4 and 6) The 

"lysosomal" protein yield in the SR male celiac segment was signi

ficantly higher than any of the other birds at 6 years. Estrogen 

treatment of the tissue did not alter the yield in the SR, but 

did increase the yield in the WC so that they were no longer 

significantly different. Also of note is the particularly low 

yield of the SR female at 6 weeks (significantly different from 

other birds only in the celiac segment), which is not altered 

significantly by estrogen treatment. (Tables 1, 2, 3 and 4;

Figures 2a, 2b, and 3a)

Estrogen treatment of tissue increased microsomal protein 

yield at 6 weeks in the WC male and female thoracic, SR male 

thoracic and celiac (at 6 months also) enhancing age differences. 

(Table 2) The SR female tissue was not responsive. Notably the 

WC female celiac showed a significant drop at 6 weeks subsequent 

to estrogen treatment, which was paralleled by the large increase 

in the lysosomal yield at 6 weeks. (Figure 3a)



Figure 2o. Protein Yields of the Lysosomal Fraction from 
the Upper Thoracic Aortas of Uhite Carneau CWC) 

and Show Racer (SR) Pigeons.
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Figure 2b. Protein Yields of the Lysosomal Fraction from 
the Celiac Bifurcation of Uhite Carneau (WC) 

and Show Racer (SR) Pigeons.
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Figure 2c. Protein Yields of the Microsomol Fraction from
the Upper Thoracic Aortas of White Carneau (WC) 

and Show Racer (SR) Pigeons.
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Figure 2d. Protein Yields of the Microsomal Fraction from 
the Celiac Bifurcation of White Carneau (WC) 

and Show Racer (SR) Pigeons.

OWCd*
& SR a
4 SR 2

Months
I 6

Day Weeks
AGE ISA

Ul



UG 
PR
OT
EI
N 

/ 
UG 

DN
A

Figure 3a
Protein Yield of the"Lysosomal" and Microsomal Fractions from 
the Upper Thoracic and Celiac Bifurcation of Six Week Old 

White Carneau (WC) and Show Racer (SR) Aortas.
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Figure 3b
Protein Yield of the"Lysosoma|Mand Microsomal Fractions from 
the Upper Thoracic and Celiac Bifurcation of Six Month Old 

White Carneau (WC) and Show Racer CSR) Aortas.
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Enayme Activities

A. N-Acetyl-B-Haxosaminidase (NAHase) Activity

Since no significant sex differences were found in NAHase 

activity except when estrogen treated, the data for both sexes 

was pooled for presentation in Tables 7 and 8. Figures 5 a-c 

show data from males and females where the effect of estrogen was 

significantly different between sexes.

1. Age and breed differences in the thoracic aorta.

Both Brij-35 and free NAHase activities in the homogenate and 

all fractions decreased with age in each breed. However, activity 

in the SR was 71% lower at 6 weeks than at 1 day and did not change 

significantly from 6 weeks to 6 years. The activity in the WC was 

28% lower at 6 weeks than at 1 day and 64% lower at 6 months.

(Table 9; Figures 4a, b, c)

The relative subcellular distribution of NAHase activity was 

similar in both breeds. The "lysosomal” fraction contained 40% of 

the total activity, the soluble fraction, 40-50%, and the micro

somal fraction contained only a negligible amount of NAHase activity.

The only significant difference in NAHase activity in the upper 

thoracic segment between breeds occurred at 1 day where the SR 

NAHase activity was higher than the WC in all subcellular fractions. 

(Tables 7 and 10)

2. Age and breed differences in the celiac bifurcation.

The total NAHase activity in both breeds was lower at 6 months



29

than at 6 weeks, but this decrease was statistically significant 

only in the WC. The total activity in the WC was significantly 

higher than in the SR at 6 weeks, similar to the activity in the 

SR at 6 months, and higher than in the SR at 6 years. (Tables.8 

and 10; Figure 4a) Upon fractionation of the homogenate, at 6 

weeks the free lysosomal activity and Brij-35 soluble activity in 

the WC was significantly higher than in the SR. (Table 10; Figures 

4b and 4c) The higher free activity without higher Brij-35 

activity is indicative of differences in latent activity which will 

be presented in a later section. At 6 years the only breed difference 

occurred in the soluble fraction where activity in the WC was higher 

than in the SR. (Table 10; Figure 4c)

The relative subcellular distribution of NAHase activity in 

the celiac segment was the same as seen for the upper thoracic 

aorta at 6 weeks and 6 months. However, at 6 years as much as 

65% of the NAHase activity in the WC was soluble, whereas only 

44% was soluble in the SR.

The only significant difference between tissue sites in NAHase 

activity occurred in the 6 year old WC where the soluble activity 

in the celiac segment was higher than in the thoracic segment.

(Tables 7 and 8; Figure 4c)

3. The effect of 17B-estradiol on NAHase activity.

Only a few scattered changes in age, breed, or aortic site 

differences occurred subsequent to estrogen treatment (Tables 7,8,10, 

and 11), but no meaningful trends were observed.
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Subsequent to Incubation of the thoracic aorta with 17B- 

estradiol, free NAHase activity in the soluble fraction signifi

cantly increased in the SR male, but decreased in the WC male.

The Brij-35 NAHase activity in this fraction from SR female 

aortas significantly decreased subsequent to estrogen incubation.

The NAHase activity in the SR female also decreased'in the "lyso

somal" fraction and increased in the microsomal fraction. (Figure 

5a) The activity in the WC female homogenate increased, and this 

increase was seen in the "lysosomal" and microsomal (statistically 

significant) fractions.

Statistically significant effects of estrogen treatment at 

other ages are few and scattered without any meaningful trends.

4. The effect of Brij-35 on N-acetyl-B-hexosaminidase 

activities in the soluble fraction.

Addition of Brij-35 to the assay medium caused a significant 

decrease in NAHase activity in the soluble fraction (Tables 7, 8 

and 12). In some cases estrogen treatment appeared to enhance 

inhibition by Brij-35 (Tables 7, 8 and 12). Only a few scattered 

differences and no major trends in the decreased NAHase activity 

were observed (Tables 13 and 14).

5. Latent NAHase Activity

The latent activity was extremely variable; however, a few sig

nificant differences were seen. The percents of the Brij-35 acti

vity, released and the actual levels of activity released
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by Brij-35 in the“lysosomal" fraction are presented in Table 15.

In both breeds the actual amount of enzyme activity released de

creased with age, however in WC the total activity decreased to 

a greater degree so that the percent latent activity actually in

creased with age. In the SR no changes in the percent latency 

were seen with age (Table 16).

The only significant difference in latency between breeds 

was seen in the celiac bifurcation at six weeks of age (Table 17).

At this age the WC did not show any significant latent enzyme 

activity whereas 33% of the total activity in the "lysosomal*' 

fraction of the SR was latent.

The only significant effect of estrogen on the enzyme latency 

was seen in the celiac bifurcation of six month old SR (Table 15): 

estrogen completely eliminated all latent activity. At 6 years 

estrogen decreased the latency in the celiac bifurcation of both 

breeds, but to a greater extent in the SR so that a breed differ

ence appeared. Estrogen treatment also decreased latency in the 

WC at 6 weeks in the thoracic (Tables 15 and 17).

B. Acid Phosphatase (APase) Activity

1. Sex, age and breed differences in the upper thoracic aorta.

Unlike NAHase, APase activity was sex dependent. In general, 

statistically significant sex differences were seen as early as 1 

day in the SR, but not until 6 years in the WC (Figures 6a-d; Tables 

18 and 22). Generally, estrogen treatment amplified sex differences
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in both breeds by Increasing the male and/or decreasing the female 

activities, so that a greater number of statistically significant 

sex differences were seen (Table 19 and 22). However, at 6 years 

estrogen treatment eliminated sex differences seen in the WC with 

no treatment.

The SR (both sexes) total activity was significantly lower 

at 6 weeks than at 1 day, whereas the WC activity tended to be 

higher at 6 weeks than at 1 day, but only significantly higher in 

the WC male (Tables 18 and 23; Figure 6a). The activity in the 

WC male reached a maximum at 6 months and was lower at 6 years.

The total activities in the SR (both sexes) and WC female did not 

change significantly from 6 weeks to 6 years.

The majority of the APase activity was found in the"lysosomal" 

fraction, about 50% at 1 day increasing to 65% by 6 years. The 

lysosomal activity followed the same age trend as the homogenate 

activity (Figures 6b and 6c; Tables 18 and 23). However, the 

soluble activity decreased with age in both breeds and sexes from 

1 day to 6 years (Tables 18 and 23; Figure 6d). At 1 day the 

soluble activity in the SR male was significantly higher than in 

the WC (both sexes) or in the SR female. The microsomal activity 

was lower in the SR (both sexes) at 6 weeks than at 1 day, but did 

not vary significantly from 6 weeks to 6 years. The microsomal 

fraction in the thoracic aortas of WC (both sexes) did not change 

significantly from 1 day to 6 years (Figure 6e). No major changes 

in age trends were seen subsequent to estrogen treatment (Table 24).

The major breed differences occurred at 1 day in the male pigeons
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such that the activity in the SR male was significantly higher 

than in the WC male in all subcellular fractions (Table 18 and 25; 

Figures 6a-6e).

Estrogen treatment of tissue increased the APase activity 

in the SR male at 1 day and 6 weeks, but decreased it at 6 months. 

In the WC male estrogen treatment increased the activity at 1 day 

and 6 years, decreased it at 6 weeks, and had no effect at 6 

months. Because the male pigeons react differently at the same 

ages, significant breed differences at 6 weeks (SR total activity 

is higher) and at 6 months (SR total and lysosomal activities are 

lower) appear subsequent to estrogen treatment (Tables 19, 24 

and 26). The microsomal activity in the SR female increased at 

1 day after estrogen treatment so that it became significantly 

higher than in the WC female.

2. The affect of 17B-estradiol treatment on APase activity 

in the thoracic aorta

In one day aortas the total APase activity tended to increase 

subsequent to incubation with estrogen in both sexes of both breeds, 

but only in the WC was the Increase significant. However, APase 

activity did increase significantly in the soluble fraction of the 

SR male and in the microsomal fraction of the SR female (Figure 8a; 

Table 19). The WC male also showed a significant increase in 

APase activity in the microsomal fraction, making the activity in 

this fraction similar to the activity in the SR male and WC female. 

The SR female microsomal activity subsequent to estrogen incubation
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was at least 1.7 fold higher than the SR male or the WC of either 

sex.

In 6 week aortas only the activity In the SR male homogenate 

Increased significantly subsequent to estrogen treatment (Table 

19; Figure 8b). No notable changes occurred at 6 months in either 

sex of either breed. At 6 years the activity in the WC homogenate 

increased subsequent to estrogen incubation (male P <  0.05; female 

P <  0.1).

3. Sex, age, and breed differences in APase activity 

in the celiac bifurcation

Sex differences were seen at 6 weeks in the SR and at 6 months 

(earlier in the thoracic) in the WC. At 6 years sex differences 

occurred in the "lysosomal" fraction of the SR and in the micro

somal and soluble fraction of the WC (Tables 19 and 27; Figures 

7b-e).

As was seen in the thoracic segment, the APase activity in the 

SR (both sexes) at the celiac bifurcation did not change significantly 

from 6 weeks to 6 years in any subcellular fraction. However, the 

total activity in the WC (both sexes) was significantly higher at 6 

years than at 6 months. The activity in the WC female was lower at 

6 months than at 6 weeks or 6 years in all fractions, and signi

ficantly so in the "lysosomal" and soluble fractions (Tables 20 

and 23; Figures 7a-e). The microsomal activity from the WC male 

was higher at 6 months and 6 years than at 6 weeks (Figure 7e).

The major breed differences occurred at 6 weeks and 6 years.
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At 6 weeks APase activity was higher in the "lysosomal" fraction 

of the corresponding sexes in the WC than in the SR (Tables 14 and 

28; Figures 7b and 7c). APase activity in the WC male was lower 

than the SR male in the microsomal but higher than the SR male in 

the soluble fraction (Tables 20 and 28; Figures 7d and 7e). At 6 

years the activity in the WC homogenate (both sexes) was higher 

than in the SR only in the microsomal fraction (this was also seen 

at 6 months) whereas the activity in the WC female was significantly 

higher than in the SR in the soluble fraction (Figures 7b-7e;

Tables 20 and 28). As seen in the thoracic segment, the majority 

of the APase activity was found in the"lysosomal" fraction.

4. Differences between the thoracic and celiac segments

APase activity in the homogenate in the WC male celiac foci 

was significantly higher than in the thoracic segment. This in

creased activity was located in the "lysosomal" fraction (P <  0.1) 

and the soluble fraction (P <  0.05) (Tables 18, 20, and 29).

Although the total activity was similar in the thoracic and celiac 

segments of the SR (both sexes),the celiac segment contained a 

higher proportion of the activity in the microsomal fraction than 

the thoracic segment (female: P <  0.1; male: P <  0.05) (Tables

18 and 20).

At 6 months the microsomal fraction of the celiac segment of 

the males of both breeds contained a higher proportion of the 

APase activity than the thoracic segments.

At 6 years the lysosomal activity in the WC (both sexes)
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celiac segment was higher than the thoracic segment. Also the 

microsomal activity in the WC male celiac and the soluble activity 

in the WC female celiac were higher than the corresponding thoracic 

segment.

5. The affect of 17B-estradlol treatment on the APase 

activity in the celiac bifurcation

As seen in the 6 week thoracic segment, incubation of the 

celiac segment with estrogen significantly increased the APase 

activity in the SR male homogenate. However, in the "lysosomal" 

fraction APase activity increased in both sexes of each breed, 

with the SR male showing the greatest increase (Figure 9a).

At 6 weeks estrogen treatment had the greatest effect on the SR 

male celiac segment (Figure 9a). The increased activity in the SR 

male at 6 weeks eliminated breed differences (Tables 28 and 30), in

creased sex differences (Table 21), and altered the age profile 

(Tables 23 and 24), so activity in the homogenate and "lysosomal" 

fractions were higher at 6 weeks and 6 years than at 6 months
j
(estrogen decreased the SR male activity at 6 months). The WC 

male had the same age profile (Tables 21, 23, and 24; Figure 9a).

The microsomal activity age profile was similar in the untreated 

and treated tissue but activity increased in the treated tissue 

(Tables 21, 23, and 24). In the SR female, APase activity increased 

at 6 months subsequent to estrogen treatment so that activity was 

lower at 6 weeks and 6 years than at 6 months in the homogenate 

and "lysosomal" fraction, a pattern.opposite to the WC (both sexes)
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and the SR male. In the 6 year old WC female, estrogen incubation 

increased the microsomal activity to eliminate sex differences and 

increased the lysosomal activity creating a breed difference.

Estrogen treatment also increased activity in the soluble fraction 

in tissue from 6 year olf WC male and decreased activity in the 

microsomal fraction (Figure 9b; Tables 21, 27, and 30).

6. Latent APase activity

The latent APase activity was quite variable (Table 32).

No differences were seen between the thoracic and celiac segments 

and only a few breed differences appeared; however, no meaningful 

trends were evident (Tables 33 and 34).

Summary of Results

Differences between corresponding aortic sites in WC and SR pigeons, 
and between thoracic and celiac sites in WC, which appear related to
atherogenesis and/or lesion progression are restated below.

)
1: NAHase activities in the homogenate and all subcellular frac
tions from both aortic sites in 6 week old WC pigeons were greater 
than those in 6 week old SR. These differences were especially 
pronounced between the celiac segments.

2: At 6 years of age soluble NAHase activity in the WC celiac site

was greater than in the SR celiac and in thoracic areas from both 
breeds.

3: Little, if any, latent lysosomal NAHase activity was apparent
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in WC celiac and thoracic sites at 6 weeks of age In contrast to 
corresponding sites In the SR.

4: APase activities were higher In nale aortas than in female aor
tas at all ages In SR, but only at 6 months and 6 years In WC.
Sex differences in APase activities were more pronounced between 
celiac sites than thoracic areas.
5: "Lysosomal" protein yields were higher from both aortic sites
In 6 week WC than from corresponding sites in SR of the same sex,
6: The most noticeable effects of estrogen treatment occurred at
6 weeks of age and produced a marked increase in lysosomal APase 

activity from celiac segments in both sexes of each breed.
7: Estrogen treatment also Increased the "lysosomal" protein

yield from celiac sites in 6 week old WC females, SR males, and SR 

females.
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Figure 4a. N-Acety1-B-Hexosaminidase Acti vi by in Homogenates 
of the Upper Thoracic and Celiac Segments of 
Uhibe Carneau (WC) and Show Racer (SR) Pigeons.
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Figure 4b. N-Acety1-B-Hexosaminidase Activity in the Lysosomal
Fraction from the Upper Thoracic and Celiac Segments 
from White Carneau (WC) and Show Racer (SR) Pigeons.
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Figure 4c.
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N-AcetyI-B-Hexosaminidase Activity in the Soluble 
Fraction from the Upper Thoracic and Celiac Segments 
from White Carneau (WC) and Show Racer CSR) Pigeons.
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F i g u r e  5a

N-Acetyl-B-Hexosaminidose Activity in the Thoracic Aorta 
of One Day Old White Carneau (WC) and Show Racer (SR) 

Pigeons with and without Estrogen Treatment.
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S = significant difference (P<0.05) between treatments; statistical analysis was done 
by the Student's Test for paired samples.
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Figure 5b
N-AcetyI-8-Hexosaminidase Aciivity in the Thoracic Aorta 
of Six Ueek Old Uhite Carneau (WC) and Show Racer (SR) 

Pigeons with and without Estrogen Treatment.
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Figure 5c
N-AcetyI-B-Hexosaminidase Activity in the Celiac Bifurcation 

of Six Ueek Old Uhlte Carneau (WC) and Show Racer (SR) 
Pigeons with and without Estrogen Treatment.
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by the Student*s Test for paired samples.
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Figure 6a. Acid Phosphatase Activity in Homogenates of 
the tipper Thoracic Aorta fron White Carneau (UC) 

and Show Racer (SR) Pigeons.
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Figure 6b. Acid Phosphatase Activity in the Lysosomal Fraction
from the Upper Thoracic Aorta of Female Pigeons.
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Figure 6c. Acfd Phosphatase Activity in the Lysosomal Fraction
from the Upper Thoracic Aorta of Male Pigeons.
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Figure 6d. Acid Phosphatase Activity in the Soluble Fraction
From the Upper Thoracic Aorta of White
Carneau (WC) and Show Racer (SR) Pigeons.
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Figure 6e. Acid Phosphatase Activity in the Microsomal Fraction
from the Upper Thoracic Aorta of White Carneau (WC)

and Show Racer (SR) Pigeons.
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Figure 7a. Acid Phosphatase Activity in the Homogenates of
the Celiac Bifurcation from White Carneau (WC} 

and Show Racer (SR} Pigeons.
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Figure 7b. Acid Phosphatase Activity in the Lysosomal Fraction
from the Celiac Bifurcation of Female Pigeons.
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Figure 7 c. Acid Phosphatase Activity in the Lysosomal Fraction
from the Celiac Bifurcation of Hale Pigeons.
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igure 7d. Acid Phosphatase Activity in the Soluble Fraction
from the Celiac Bifurcation of White Carneau (WC)

and Show Racer (SR) Pigeons.
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Figure 7e. Acid Phosphaiase Activity in the Microsomal Fraction
from the Celiac Bifurcation of White Carneau (WC) 

and Show Racer (SR) Pigeons.
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Figure 8a
Acid Phosphatase Activity in the Thoracic Aorta of One Day 
Old White Carneau (UC) and Show Racer CSR) Pigeons with and 

without Estrogen Treatment.
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F i g u r e  8 b

Acid Phosphatase Activity in the Thoracic Aorta of Six Ueek 
Old Uhite Carneau (UC) and Show Racer (SR) Pigeons with and 

without Estrogen Treatment.
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F i g u r e  9 a

Acid Phosphatase Activity in the Celiac Bifurcation of Six 
Ueek Old White Carneau (WC) and Show Racer (SR) Pigeons with 

and without Estrogen Treatment.
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F i g u r e  9 b

Acid Phosphatase Activity in the Celiac Bifurcation of Six 
Year Old White Carneau (WC) and Show Racer (SR) Pigeons with 

and without Estrogen Treatment.
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V. DISCUSSION

Acid phosphatase was formerly considered the most reliable 

lysosomal marker enzyme. Recently APase activity has been re

ported in other subcellular fractions (microsomal, nuclear, and 

soluble) (Bodansky, 1972; Nadler and Egan. 1970). Despite this 

fact it is still the most widely used enzyme as a lysosomal 

marker, and for this reason APase activity was measured along with 

NAHase (now considered the most specific'lysosomal marker enzyme) 

activity in the present study.

It has been well established in various tissues from numerous 

animals that NAHase exists as two major isozymes, A and B. Iso

zyme A has been found in the soluble and lysosomal fractions of all 

homogenates before and after complete lysosomal disruption (Robinson 

and Sterling, 1968). Isozyme B, on the other hand, has been found 

only in the lysosomal pellet even after complete rupture of these 

organelles. This suggests that isozyme B is membrane bound whereas 

isozyme A is not membrane bound or is at least easily dissociated 

from the membrane. Recently Burnside and Schneider (1980) showed 

that NAHase in a purified lysosomal fraction is membrane found and 

can be displaced by mannose-6-phosphate. However, they did not do 

any determination of isozymes present in the membrane bound fraction. 

NAHase A is also much more sensitive than B towards heat inactivation 

(complete inactivation at 50°C in 3 hrs.), and this is often used as 

partial criteria when identifing the isozymes (O’Brien et al., 1970; 

Geiger and Arnoii, 1976; Hayase et al., 1973; Srivastava et al.,

39
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1976). Freezing-thawing, acid, P-hydroxymercuribenzoate, and merthio- 

late have also been shown to Inactive form A (Salfer and Rosenthal, 

1973; Gleger and Amon, 1976). Geiger and A m o n  (1976) found that 

form B consisted of two non-covalently bound subunits of the same 

type each consisting of two "B" polypeptide chains linked by 

disulfide bridges. The A form consisted of two non-covalently 

bound subunits of two types, one with two polypeptide chains 

linked by disulfide bridges and one with two "B" chains identical 

to the B form subunit. Theoc^ and B£ subunits are thought to be 

'dissociated more readily than the B2and B2 subunits. Human aortic 

tissue has been found to consist of 51% A and 49% B (Hayase at al., 

1973). In the present study prolonged incubation at 41°C (60 min.), 

Triton x-100, digitonin, freezing-thawing, sonlcation, and Brij-35 

were found to cause partial inactivation or inhibition of the NAHase 

activity in the soluble fraction. Almost half of the total aortic 

NAHase activity was found in the soluble fraction in both breeds.

Since a large portion of the lysosomes were ruptured^ and the soluble 

activity had an acid pH optimum, the soluble activity is most 

likely of lysosomal origin, may represent isozyme A, and was in

creased in severe atherosclerotic lesions (6 year old WC celiac 

bifurcation). Consistent with this idea is the finding that the A 

form of NAHase is Increased in chronic liver disease as a response 

to mesenchyme reaction (I.e., acceleration of metabolism with in

creases in connective tissue, cholesterol, and/or fatty a d d  syn

thesis, cell proliferation, etc.) (Pott et al., 1978).

NAHase is known to be involved in the degradation of glycos-
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aminoglycans (GAG) (by cleaving nonreducing terminal N-acetyl- 

glucosamine or N-acetylgalatosamine (Buddecke and Werries, 1965) 

Conehlc and Levy, 1959) and has been found to be the rate-limit

ing factor in the degradation of hyaluronic acid (Hayashi, 1977; 

Weissman et al., 1975). Although NAHase activity levels have 

been shown to be dependent on sex (Hosoi e£ al., 1979) no sex 

differences in activity were seen at any age in the present study. 

However, NAHase activity did decrease significantly with age.

This decrease in activity with age agrees with studies of NAHase 

activity in the rat aorta and decreased GAG turnover with age 

(Hermelin and Picard, 1978; Picard et al., 1974). However,

NAHase activity in one day old thoracic aortas was much higher 

in the SR than in the WC, but dropped drastically in the SR by 

six weeks. The NAHase activity in the WC did not decrease to the 

same extent until 6 months. Since Curwin and Smith (1977b) have 
shown that amounts and profiles of GAGs in the thoracic segments 

of WC and SR pigeons do not change appreciably with age, synthesis 

of these macromolecules probably follows similar patterns of decrease 
with age as seen for NAHase activity. This suggests that syn

thesis of GAGs is higher in the WC at 6 weeks than in the SR, but 

since degradation is also higher (both tissue sites) actual amounts 

of GAGs present at 6 weeks in the WC and SR are not significantly 

different (both tissue sites). Supporting this idea i3 the recent 

report that WC smooth muscle cells in culture synthesize more 

GAGs than SR smooth muscle cells, but the relative proportions of 

the GAGs present are similar in the two breeds (Wight, 1980).
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By 6 months, NAHase activity In the WC (both tissue sites) was 

similar to activity in the SR. However, total GAGs in the WC 

celiac bifurcation (6 months) were significantly higher than in 

the SR, suggesting that GAG synthesis remains high while degrada- 

tive enzymes decrease. Stimulation of aortic smooth muscle cells 

to continue a high rate of GAG production may be caused by injury 

or alterations in extracellular matrix mediated by hemodynamic 

factors, infiltration of plasma constituents, or excessive release 

of lysosomal enzymes.

to Although much work has been done on NAHase isozymes, no one 

to date has looked at the specificity of these isozymes for differ

ent GAGs. Avila and Convit (1976) and Avila (1978) have shown that 

lysosomal enzymes interact with GAGs and that this interaction 

depends on pH, and degree and type of sulphatlon. However, they 

did not look at the specificity of separate isozymes. If, as in

dicated earlier, the relative distribution of NAHase activity 

reflects the relative isozyme pattern, then changes in the isozyme 

pattern (activity distribution) may alter individual GAG degrada

tion or turnover. Consistent with this idea is the finding that 

although absolute amounts of NAHase activity in the thoracic seg

ment differ at one day and 6 weeks between the two breeds, the 

distribution of activity is the same, andj as shown by Curwen and 

Smith (1977b) the GAG profiles are the same in the two breeds. 

However, in the celiac segment of the WC the NAHase soluble activity 

(isozyme A) increased from 6 months to 6 years. During this same 

time period total GAGs decrease but chondroitin-4-sulfate (Ch-4-S0g)
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decreased much more rapidly than other GAGs (Curwen and Smith, 1977b). 

This suggests that the soluble NAHase activity (form A) preferentially 

aids in the degradation of Ch-4-S0^ relative to other GAGs. However, 

changes in synthesis of individual GAGs could also account for the 

observed differences.

APase activity in the SR (upper thoracic) decreased sharply 

with age (1 day to 6 weeks) as did NAHase activity. This suggests 

that there is a general decrease in the SR cellular catabolism. 

However, the WC (upper thoracic) showed no such decrease in APase 

activity with age. In fact, the WC male APase activity increased 

from 1 day to 6 months. A higher metabolic turnover rate is in

dicated in the WC than in SR as seen by high APase and NAHase 

activities. This high level could also be due to a response by 

the cell to replace acid hydrolases lost from the cell through 

excessive extracellular release (as discussed later).

Unlike NAHase, APase activity varied with sex. In the WC, 

sex differences appear to be amplified in the celiac segment when 

compared to the thoracic segment. This Indicates either a greater 

inflex of circulating hormones (increased permeability of tissue 

or hemodynamic factors), or a greater response by cells in the 

celiac area to hormones. The SR did not show this difference be

tween tissue sites. Furthermore, APase activities in the SR male 

and female showed the same general trend with age (only absolute 

values were different), but in the WC, APase activity variation 

with age was quite different between male and female. Both WC 

male and female had higher APase activity at 6 weeks in the celiac
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than the respective SR pigeons. However, at this point activity 

in the WC male continued to increase to 6 years, whereas activity 

in the WC female dropped by 6 months and then increased by 6 years. 

Testosterone (major pigeon androgen, Sturkie, 1976) is known to 

cause Increases in APase activity (Milone ejt al., 1978) as seen 

here in the WC and SR males upon reaching maturity (4-6 months). 

However, the Increase in APase activity from 6 weeks to 6 months is 

significant only in the WC male suggesting that testosterone levels 

are higher in the WC or that the tissue response to testosterone is 

greater in the WC. This is supported by the fact that the SR males 

are less aggressive (Brannigan, 1973) and testosterone is believed to 

play a role in male behavior (Sturkie, 1976). Corticosterone (the 

major avian glucocorticoid) has been shown to decrease APase activity, 

so that an excess of corticosterone (produced by excessive stimula

tion of the adrenal caused by the stress of high reproductive 

activity (Brannigan, 1973), may be responsible for the large drop 

in APase activity from 6 weeks to 6 months in the WC female. This 

drop is not seen in the WC male, which has also been shown to have 

adrenal hyperplasia; however, the opposing effect of testosterone 

on APase activity may have eliminated the effect of corticosterone.

Subcellular fractionation showed that enzyme localization at 6 

years was depentent on sex. Both sexes in the WC showed increased 

APase activity in the "lysosomal” fraction; however, activity in the 

male also increased in the microsomal fraction but not in the sol

uble fraction. The activity in the WC female Increased in the sol



uble fraction but not in the microsomal fraction. Treatment of cel- 

•iac tissue of WC males with, estrogen caused a shift of activity from 

the microsomal to the soluble fraction. This shift could be due 

to lysis of the microsomes and/or release of membrane bound activity, 

or an increase in fusion of enzyme containing particules with lipid

laden particles. Sergeer at al. (1978) found that estrogen in

creased the release of APase and inhibited membrane binding of 

enzymes.

Since lysosomes are the major site of catabolic activity within 

the cell, Increased lysosomal acid hydrolase activity from 6 months 

to 6 years in the WC celiac segment may be a response by aortic 

smooth muscle cells to increases in substrates, i.e. connective 

tissue components, lipids, cell debris, and plasma constituents.

The accumulation of such substances suggests a defect in catabolism 

by overloading (synthesis and/or endocytosis) of the cell's vacuole 

system, by inhibition or alterations of degradative enzymes, and/or 

by alterations in the lysosomal, endocytotic vacuole, or auto

phagic vacuole membranes. Increases in acid hydrolases were not 

as dramatic as seen in cholesterol fed animals (Peters eit al.,

1972; Peter and de Duve, 1974) nor was this increase predominately 

seen in the "lysosomal"fraction. This suggests that the spontaneous 

lesion is biochemically as well as morphologically (Curwen and Wight, 

in preparation) different from the cholesterol- fed lesion.

High yields of intact aortic lysosomes are precluded because 

of the large amount of connective tissue present in the vessel 

wall. Peters et al., (1972) and others have used collagenase,
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hyaluronidasa, and elastaae Co dlgesfc the connective tissue matrix 

of minced aortic tissue in order to obtain intact cells for sub

sequent fractionation and, therefore, obtained a higher yield of 

intact lysosomes. However, when this was attempted with pigeon 

aortas, the total NAHase activity decreased appreciably, while 

APase total activity increased. Presumably NAHase was denatured 

or degraded during the (I5* to 2 hrs) Incubation of the tissue. 

Furthermore, the enzyme mixture used to digest the tissue was 

found to contain acid phosphatase activity which was apparently 

partially retained by the aortic tissue even after several washings.

_In the present study, fine mincing and gentle homogenization of the 

tissue gave the highest yield of intact lysosomes without altera

tions in enzyme activity. Even so, the yield of intact lysosomes 

obtained was low.

Latency of lysosomes can be measured in two ways: the % acid

hydrolase activity sedimented by ultracentrifugation; or the 

measurement of activity before (free activity) and after (total 

activity) disruption of the lysosomal membrane. It is well known 

that some of the "free" acid hydrolase activity measured in a 

tissue homogenate will sediment with intact lysosomes (Davies,

1975); therefore, measurement of the % activity sedimented would 

not give an accurate measurement of lysosomal latency or fragility. 

On the other hand, methods used to disrupt lysosomes (detergents, 

freezing, and thawing) can alter acid hydrolase activity through 

direct inhibition or denaturation of the enzymes. Since 40-5QX of 

the NAHase activity was found in the soluble fraction in the pre-
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sent study, then at least 40-50% of the lysosomes containing NAHase 

were ruptured during homogenization. However, only 20-40% of the 

activity sedimented in the "lysosomal" fraction was latent. This 

low latency in the "lysosomal" fraction could be the result of one 

or two processes: the activity is bound to large lysosomal mem

brane fragments formed during homogenization, or the majority of 

the lysosomes were intact, but were ruptured during ultracentrifuga

tion. Nevertheless, after taking into account the activity in the 
soluble and microsomal fractions, latent NAHase activity in the 

homogenate was similar to that seen in the "lysosomal" fraction. 

Therefore, the free activity in the "lysosomal" fraction is pro

bably due to membrane bound enzymes of lysosomes ruptured during 

tissue homogenization. The latent activity seen was probably 

due to primary or small secondary lysosomes better able to with

stand homogenization than larger secondary lysosomes.
The latent APase activity is quite variable and hard to inter

pret. Since APase activity is sex dependent the differences in 

latent activity between sexes may simply be a reflection of bio

chemical heterogenity of lysosomes (Davies, 1975). However, APase 

is no longer considered a reliable lysosomal marker enzyme because 

it can be detected in other subcellular fractions, particularly in 

the microsomes. Complete separation of lysosomes from microsomes 

is difficult, and was not attempted in this study. (Nor was the 

degree of microsomal contamination of the lysosomal fraction 

assessed.)

Van Dijk et al.5 (1976) determined that 17% of the protein 

present in a "lysosomal" fraction (sedimented at 25,000 g in 0.25
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M sucrose) was actually due to the presence of microsomes. Al

though samples were spun at 20,000 g to obtain a "lysosomal" 

fraction in the present study, the presence of microsomes in the 

"lysosomal" fraction is likely. Furthermore, WC aortic smooth 

muscle cells in tissue culture (Wight e£ al., 1977) and in vivo 

(Cooke and Smith, 1968) have a strikingly higher amount of dilated 

ER than SR aortic smooth muscle cells. Upon homogenization a larger 
proportion of the dilated ER from the WC may have sedimented with 

the lysosomal fraction. Therefore, part of the APase activity seen 

in the "lysosomal" fraction may be actually due to activity present 

in the endoplasmic reticulum within the intact cell. Supporting 

this idea is the fact that latent APase activity seen in the 

"lysosomal" fraction from celiac segments of WC can be correlated 

with the activity seen in the microsomal fraction such that when 

structural latency was seen in the microsomal fraction and the 

activity was high, latency was also seen in the "lysosomal" frac

tion (eg. in 6 month old WC male celiac segment). However, when 

activity in the microsomal fraction was low, latency in the "lyso

somal" fraction was low or not significant (eg. in 6 week old WC 

male celiac). When estrogen treatment appeared to stabilize the 

lysosomes (increase in latency as seen in 6 week old WC male celiac), 

the microsomal activity also increased. Therefore, differences in 

"lysosomal" APase activity and latency may be partially due to differ

ences in microsomal activity and can not be used as representing

only the lysosomal activity. NAHase activity on the other hand, 

has not been detected cytochemically in the endoplasmic reticulum 

or biochemically in microsomal preparations. Therefore, latent
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NAHase activity is probably representative of lysosomal stability.

The small amount of NAHaSe activity found in the microsomal fraction 

in this study was probably due to small primary lysosomes, or more 

likely, since no significant structural latency was seen, due to 

NAHase bound to small lysosomal membrane fragments.

Despite the variation in the latent NAHase activity present in 

the homogenate and "lysosomal" fractions, significant differences 

in latent activity between breeds were seen. In the 6 week old 

WC, no significant latent NAHase activity is seen at either tissue 

site, indicating a greater lysosomal fragility in the WC than in
c

the SR. The percentage and actual amount of latent activity in 

thoracic segments were not significantly different between breeds. 

However, estrogen treatment did decrease latency in the WC and in

crease it in the SR, so that the percentage of latent activity was

significantly higher in the SR than in the WC. In the celiac

segment of the WC lack of structural latency was more evident and 

was significantly lower than in the SR. Estrogen treatment 

appeared to stabilize the lysosomes from the WC celiac, so that 

the difference between the SR and WC latency is not statistically 

significant.
The effect of estrogen treatment on lysosomal latency varied 

between tissue sites in the WC and between breeds. The different

responses may be due to the interaction of the estrogen molecule

with lysosomal membrane components, and, as is seen for cholesterol* 

the actual individual membrane components (phospholipids in particular) 

would determine the overall effect (stabilization or labilization) of 

astrogen on the membrane. At 6 months estrogen treatment caused a
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complete disappearance of latency In SR celiac segment. This may 

reflect changes In the lysosomal membrane components at 6 months In 

the SRt or an accumulative effect of estrogen (endogenous estrogen 

present prior to the removal of tissue and the added exogenous estrogen 

(In vitro treatment)).

The most widely accepted model of the mode of estrogen action Is 

reviewed by Schulster et al. (1976). In the model*estradiol diffuses 

Into the cell and combines non-covalently and specifically with a 

receptor protein present In the cytoplasm. The estrogen-receptor 

complex then moves Into the nucleus, where it is thought to affect 

specific transcription processes at the level of the gene. However, 

Szego (1976) has described a model where estrogen action Is mediated by 

lysosomes. In this model estrogens are taken up by the cell through 

endocytosls rather than by passive diffusion through the membrane. The 

endocytotic vesicles fuse with lysosomes which contain the estrogen 

receptor. The lysosomes containing estradiol then move Into the 

nucleus where specific transcription processes are affected. The 

fact that trltlated 17B-estradiol was taken.up by aortic tissue more 

rapidly in buffer containing glucose than in buffer without glucose or 

with ethanol (unpublished observations) suggest that an energy requir

ing process does at least aid in the uptake of estrogens and may be 

selective since the uptake of 17B-estradiol was ten times that of 

estriol. However, estrogen treatment did not alter lysosomal latency 

in a consistent predictable pattern aa reported by Szego (.1971, 1976) 

and Szego et al., (1972). This discrepancy may be due to differences 

in the actual amount of estrogen taken up by the tissue or in the 

responses of reproductive versus non-reproductive organs.
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IC has been shown that Increased fragility (or destabilization) of 

membranes enhances membrane fusion (Ahleong et al«, 1975; Poste and 

Allison 1973). Activation (or destabilization) of lysosomes in tissue 

has been shown to cause breakdown of extracellular matrix (Reynolds, 

1969) by excessive release of acid hydrolases. Such a phenomenon in 

pigeon aorta would cause localized alterations In the connective tissue 

matrix surrounding the cells, changing tissue permeability and binding 

characteristics. Excessive lysosomal fragility may also result in 

leakage of enzymes Into the cytosol or cause excessive autophagy lead

ing to cell degeneration or death. Hajjar et al., (1980) recently 

reported significantly higher amounts of nonesterlfled fatty acids 

(NEFA) and extracellular debris-like material In the celiac bifurca

tion of the 6 week old WC than In the celiac bifurcation of the SR. 

Cooke and Smith (1968) have also shown a loss of extracellular matrix, 

in particularly collagen and elastln. NEFA have been shown to decrease 

lysosomal membrane stability (Raz and Goldman, 1976); therefore, 

Increases in NEFA seen in the 6 week old WC celiac bifurcation may 

cause destabilization of lysosomes which in turn may cause extracel

lular matrix and cell degeneration. Since low membrane stability is 

also seen in the thoracic segment in 6 week old pigeons as well, a 

genetic origin of membrane fragility cannot be overlooked. It is 

presently thought that membrane integrity and function depend on the 

lipid composition of the membrane (Cullis and DeKruuff, 1979). 

Furthermore, different phospholipids prefer different configurations. 
Phosphatidylethanolamlnes prefer a hexagonal arrangement (considered 

to be an intermediate configuatlon during membrane fusion), but phos

phatidylcholine and sphingomyelin prefer the more stable bilayer
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configuration. When either phosphatidylcholines or sphingomyelins 

(at more than 30 mole %) are added to phosphatidylethanolamines (in a 

non-bilayer configuration), the bilayer phase is induced. In mixed 

lipid systems (biological membranes) cholesterol can stabilize the 

bllayer structure or disrupt it depending on the degree of saturation 

of the fatty acids present. The addition of Ca^+ can also trigger the 

formation of the hexagonal configuration. Differences in the phospho

lipids, cholesterol, and fatty acids components of lysosomal or other 

cellular membranes may be responsible for differences in lysosomal

membrane stability between the SR and the WC. A greater influx of
2+plasma components (cholesterol, phospholipids, Ca , hormones), which 

would be endocytosed by the cell and subsequently fuse with lysosomes, 

in the WC celiac bifurcation than in the thoracic segment due to hemo

dynamic factors may increase the membrane fragility even more, inducing 

extracellular and Intracellular release of lysosomal enzymes, and caus

ing the damage described earlier.

Cramer and Smith (1976) suggested that the slower rate of utili

zation of yollt phospholipids by WC embryos may reflect a difference in 

the composition of the phospholipids. Furthermore, Hallar et al..

(1980) also reported Increased levels of phospholipids in one day old 

WC embryos. Hajjar and Smith (1980, 1978) reported that in 6 week old 

WC celiac segment there is a lack of ATP regulation of NADU transhy

drogenation and suggest that in 6 month old WC celiac segments low P/0 

ratios represent uncoupled respiratory - chain phosphorylation. It 

has been reported that excessive release of lysosomal enzymes into the 

cytosol may be Involved in the disruption of mltochrondrial function 

by inhibiting Ca^+ uptake by the mitochondria or by uncoupling oxidative



phosphorylation (Lefer, 1976). Disruption or leakage of lysosomes

would release phospholipases which could damage the mitochondrial and

other membranes producing nonesterlfied fatty acids and lysophospho-

1ipids (surface active agents which could cause further damage)

(Weglicki et, al., 1974). Uncoupled oxidative phosphoralation may be

responsible for a decrease or depletion of ATP leading to high intraeel- 
2+lular Ca causing "blebbing off" of the plasma membrane (seen by Hajjar 

et al, (198$, in 6 week and 6 month old WC celiac segments) as was seen 

in the erythrocyte on ATP depletion (Sheets and Singer, 1977; Lutz 

et al., 1977). Hajjar and Smith (1980) suggested that lack of ATP 

regulation of NADH transhydrogenation and other Impaired mitochondrial 

functions may enhance lipid biosynthesis and exacerbate the develop

ment of atherosclerosis in WC pigeons.

Both tissue sites show an Increase in saturated to unsaturated 

FA ratios from 6 weeks to 6 months. This may be in part a response by 

the cell to increase membrane stability (Papahadjopoulos, 1974) rather 

than completely due to lower oxygen levels found at 12 weeks in the 

celiac of WC (Farber, 1978).

WC celiac smooth muscle cells may respond to this intra- and 

extra-cellular injury (caused by excessive release of acid hydrolases) 

by elaborating different types or proportions of GAGs as seen by 6 

months of age (Curwen and Smith, 1977b). Alterations in GAG profiles 

coupled with hemodynamic factors could cause increased sieving and 

retention of plasma constituents (esp. Lipoproteins within the vessel 

wall as well as influence metabolic pathways within the smooth muscle 

cell Itself (Hay and Meier, 1974). GAGs (esp. Ch-6-S0^) have been 

shown to interact with lysosomal acid hydrolases (Avila and Convlt,
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1975, 1976) and this Interaction varies with degree and type of sul

fation (Avila, 1978). GAGs have also been shown to cause abnormal 

isozyme distribution of acid hydrolases (Kint et al., 1973). Curwen 

and Smith (1977) have suggested that a variant type of heparitin 
sulfate (HS') present in the WC celiac segments may have a higher sul

fate content than HS present in- the WC thoracic or in the SR accounting 

for its higher electrophoretic mobility. Therefore, interaction of this 

variant HS* with lysosomal hydrolases may be different from interac

tions with normal pigeon HS and contribute to.altered catabolic func

tion in the WC celiac segment. Increased deposition of plasma con

stituents causing increased smooth muscle cell endocytosis leading to 

overloading or alteration of the cells degradative pathway combined 

with hydrolase alterations may be major contributing factors to lesion 

progression in WC pigeons.

Even though lysosomal membrane stability increases by 6 months 

(possibly due to increases in saturated fatty acids or Increased hor

monal Influences (adrenal corticosteroids stabilize lysosomal mem

branes) ), connective tissue matrix alterations and mitochondrial 
damage already exist and can cause lesion progression.

Farther studies on lysosomal membrane stability are needed to 

confirm the lysosomal fragility seen in the WC celiac foci at 6 weeks, 

experiments of this type would best be carried out on aortic cells in 

culture since a high yield of intact lysosomes could probably be obr 

talned because of the lack of extensive connective tissue matrix. Ana

lysis of Individual phospholipids present would also aid in the deter

mination of the role of membrane structure and fragility in athero- 

genesis.
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The protein yields of the "lysosomal" fractions include protein 

from lysosmes, mitochondria, and possibly microsomes, so that differ

ences between breeds, sexes, ages, and tissue sites are difficult to 

interpret. Even though the protein content of lysosomes is not thought 

to be constant (Davies, 1975), alterations in protein yield of a lyso

somal fraction may reflect changes in the number of lysosomes as well 

as Increased or decreased content of acid hydrolases (especially in 

the 6 week old WC male). The effects of estrogen treatment on the 

"lysosomal" protein yield were similar to the effects on APase activity. 

This suggests that in 6 week old pigeons (except SR female) estrogen 

treatment increased the number and/or enzyme content of lysosomes. 

Decrease in protein yield may reflect a decrease in protein synthesis 

which would decrease formation of lysosomes, so that the number of 

lysosomes would diminish as they became inactive. Increases in micro

somal protein yield and APase activity is suggestive of newly synthe

sized acid hydrolases. An increase in transcription subsequent to 

estrogen administration (in vivo and in vitro) is one of the first res

ponses of target tissues, however a general increase in protein synthe

sis is not seen for another 2-3 hours (Schulster et al.. 1976; Gorski 

et al., 1975). Therefore the effects of estrogen treatment on protein 

yields (and enzyme activities) in the present study may not be due to 

general synthesis of RNA and protein, but rather to an early selective 

effect on RNA and protein synthesis. Szego (1972, 1976) and Szego e£ 

al. (1971, 1977) suggested that lysosomes containing the estrogen re

ceptor, translocate the estrogen-receptor complex to the nucleus where 

the lysosomal acid hydrolases aid in intranuclear penetration. However, 

their emphasis was on lysosomal membrane labillzatlon by steroids rather
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than changes in actual enzyme activities. Therefore, rapid (within 30 

min.) alterations in acid hydrolase activity, subcellular location 

(seen at 6 years in the WC celiac segment), and/or lysosomal membrane 

stability (not seen consistently here) may be a result of estrogen ac

tion on the cell, but may not play a role in the initiation of the 

cellular response to estrogen. Furthermore Sierralta et al. (1978) 

suggest that lysosomes are Involved only in the degradation of the 

estrogen-receptor complex. However, these proposed roles of lysosomes 

in estrogen action were suggested for organs in the reproductive 

system, and even though estrogen receptors have been reported in the 

arterial wall (Stumpf and Sar, 1977), the effect and mode of estrogen 

action may be quite different than that which occurs in cells of the 

reproductive system, even smooth muscle cells.

The major effect of estrogen treatment on enzyme activities occured 

at 1 day and 6 weeks, prior to sexual maturity with the SR male being 

the most responsive. Generally activities increased; however, sub- 

cellular fractionation showed a different distribution of activity 

depending on sex, age, breed, and tissue site. These differences 

in response of the tissue to estrogen suggest that other factors 

(hormones present prior to removal of tissue, or tissue uptake or sen

sitivity) may alter the effect of estrogens on enzyme activities. This 

type of developmentally related "responsiveness" of lysosome enzyme 

activities to hormones has been seen in humans, rats, and mice (Ober- 

kotter et al., 1980a; Oberkotter et al., 1980b; Swank, 1978). Swank

(1978) reported that growth hormone potentiated responsiveness of B- 

glucuronidase to androgenic stimulation. Therefore, differences in 

levels of estrogens, testosterone (shown to augment estrogen stimulation
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of phospholipid synthesis in rat aorta (Chobanian, 1968)), glucocorti

coids (known to antagonize estrogen action (Szego, 1972) or other hor

mones are suggested and may be responsible for variations in tissue 

response. Sex differences in APase activity occur at one day in the 

SR, but not until later in the WC, further suggesting differences in 

circulating hormones between the male pigeons. APase activity is 

extremely high in the immature SR male and estrogen treatment increases 

it still further, suggesting that the SR male may have higher levels 

of estrogens at this age than the WC male. Unfortunately, preliminary 

attempts to measure estrogen levels in the birds used in this study 

were not successful.

At 6 weeks in the celiac segment of all birds, APase activity in

creased in the lysosomal fraction. This preferential increase in the 

lysosomal fraction rather than other fractions (as seen in advanced 

atherosclerotic lesions) suggests that estrogens may aid in lysosomal 

formation as well as increase synthesis of acid hydrolases. Since 

lysosomes are essential for degradation of cellular components, in

creased number of lysosomes would aid in the degradation of intracel- 

lalar lipids which accumulate in atherosclerosis and may provide some 

"protection" against lesion development. Supporting this idea is the 

observation that estrogen administration suppresses the connective 

tissue accumulations seen in hypertensive rat aorta (Wolinsky ejt al., 

1974). However, estrogens may alter connective tissue synthesis as 

well.

Estrogen may also elicit responses in aortic smooth muscle cells 

not seen here because of the short treatment time. Chobanian (1968) 

reported that estrogen treatment (in vivo and in vitro) increased
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phospholipid synthesis in the arterial lntlma; however, individual 

phospholipids were not analyzed. Perhaps estrogen stimulation of in

dividual phsopholipid synthesis may change the phospholipid composition 

of the lysosomal membrane, thereby altering membrane stability.

Studies on the effect of In vivo estrogen administration on athero

sclerotic lesion development in the WC suggest that estrogens provide 

a "protective” effect only when administered to young birds and do not 

promote lesion regression in 6 year old birds (Souadjian e£ £l., 1968, 

and Hanash et al., 1972). The greater response to estrogen in the 

tissue from immature birds seen in the present results may explain why 

only young birds show a "protective" effect of estrogens. On the other 

hand, once alterations in the connective tissue matrix and mitochon

drial function (caused by excessive release of acid hydrolases due to 

fragile lysosomes at 6 weeks of age) occur, atherosclerotic lesions may 

progress despite administration of estrogen, alterations in membrane 

phospholipid composition, lysosomal membrane stabilization, and stimu

lation of lysosomal and microsomal enzymes.



VI. CONCLUSIONS

Differences in lysosomal enzyme activity and membrane stability be

tween aortas in atherosclerosis-susceptible WC and atherosclerosis- 

resistant SR pigeons have been shown to occur at early ages. However, 

their relationship to initiation or development of atherosclerotic 

lesions remains to be clarified by assay of other enzymes involved in 

lipid and connective tissue degradation, and by re-evaluation of as

sociated factors which may affect lysosomal stability (ie. NEFA levels, 

membrane phospholipid composition).

Specific inferences are as follows:

1. Higher lysosomal enzyme activities and protein yields occur in 

both aortic sites of 6 week old WC indicating an increased capacity for 

catabolism. Since no appreciable accumulation of GAG or lipid is

seen at this age, a higher turnover rate of intracellular and extra

cellular components is indicated.

2. At 6 weeks of age lysosomes (or a population of lysosomes in 

the WC aorta) are more fragile than in the SR. Excessive release of 

acid hydrolases due to fragile lysosomes correlates with connective 

tissue breakdown, GAG accumulation, and altered mitochondrial function 

seen in WC celiac segments. Altered lysosomal fragility may also de

plete the cell's vacuole system of acid hydrolases, thereby decreasing 

catabolism of cellular components and endocytosed material (eg. lipid) 

to enhance lipid accumulation.

3. Although differences in lysosomal enzyme activities and fragil

ity are seen between the two breeds of pigeons at 6 weeks in both

79
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tissue sites, differences are greater between the celiac segments than 

between the. thoracic segments. This Indicates that local factors may 

accentuate metabolic alterations which lead to celiac lesion develop

ment In WC.

4. The greatest and most consistent effect of estrogen treatment 

occurred in 6 week old celiac segments where lysosomal APase activity 

and protein yield Increase In both sexes of each breed. These Increases 

may reflect an Increase in the number of lysosomes and/or activity of 

acid hydrolases. Such an Increase In the cellular catabolic capacity

In tissue sites predisposed to atherosclerotic lesion development may 

explain the reported estrogen "protection" against lesion development.

5. The diversity of tissue response to estrogen treatment between 

breeds, sexes, and ages and the greater response of the celiac segment 

indicates that local factors accentuate metabolic alterations and res

ponses.

6. APase activity in the arterial wall of SR and WC pigeons is 

higher in males and than in females of the same age, and sex differ

ences occur as early as one day in the SR. However, the increase in 

APase activity seen in males upon reaching maturity is less in the SR 

than the WC so that differences between sexes are then similar in both 

breeds. This may indicate a different mechanism of disease progression 

in WC males and females since lesion severity is similar in the birds. 

NAHase activity is not sex related.

7. Increase of soluble NAHase activity at 6 years in the WC celiac 

segment suggests a disproportionate increase in isozyme A relative to 

isozyme B which may alter GAG degradation and explain previously 

reported changes in arterial wall GAG composition. Since the increase



in soluble activity does not occur until after 6 months of age, and 

then only in the celiac segment, it is most likely a consequence of 

lesion development and not an initiating factor. However, it may still 

contribute to lesion progression.

8. Since the greater lysosomal enzyme activities, protein yields 

and membrane fragility in the WC occur at both tissue sites a genetic 

mechanism is Indicated. As mentioned earlier (number 3 above), higher 

lysosomal enzyme activities, protein yields, and membrane fragility 

in the WC celiac segment appear to be augmented by local factors, and 

may play a major role in spontaneous atherogenesis.
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Table 1.
Proceln Yield of "Lysosomal” and Microsomal Fractions as a Function of Age and Sex 

In White Carneau (WC) and Show Racer (SR) Aortic Sites.
"Lysosomal"Fraction
Thoracic Celiac

Microsomal Fraction 
Thoracic Celiac

WC SR WC SR WC SR WC SR
No
treatment
1 day M 2.97 + 0.41 2.94 + 0.82 0.31 + 0.17 0.55 + 0.14

F 2.31 + 0.52 3.39 jlu.50 1.06 + 0.50 1.67 + 1.30
6 weeks M 8.33 + 3.23 5.17 i 0.47 8.80 + 3.10 6.25 t 0.39 2.31 + 0.91 1.63 + 0.02 2.31 + 0.91 2.48 + 1.22

F 5.20 + 0.58 3.99 ± 1.00 6.31 +1.08 3.45 ± 0.46 3.63 + 1.57 2.85 + 0.49 3.76 + 1.41 3.92 + 0.30
6 months M 5.20 + 3.11 5.31 * 2.61 4.80 + .087 6.96 + 5.50 5.36 + 1.25 3.81 + 0.84 5.65 + 2.04 4.85 + 0.58

F 6.56 + 1.98 4.55 i 2.93 5.44 +0.90 5.63 + 2.77 2.36 + 2.45 4.12 + 1;33 3.88 + 0.49 5.24 + 1.09
6 years M 4.15 + 0.35 5.53 1 0.84 4.65 +0.87 7.74 + 2.13 4.69 + 0.41 4.92 + 1.11 4.94 + 1.15 5.90 + 0.60

F 3.48 + 0.32 4.65 * 0.70 3.83 +0.06 4.80 + 0.57 2.61 + 0.80 3.69 + 0.79 2.48 + 0.56 5.47 + 2.05
fiII8g|Rt
1 day M 2.20 + 0.63 3.71 + 0.59 1.02 + 0.29 0.85 + 0.40

F 2.65 + 0.70 3.18 + 0.63 1.24 + 0.81 2.66 + 0.01
6 weeks M 9.16 + 4.63 8.21 + 2.62 7.94 +2.10 9.16 + 1.65 5.39 + 1.90 2.78 + 1.32 2.80 + 2.60 4.13 + 2.76

F 5.48 + 1.57 3.99 + 0.36 10.83 +4.51 4.37 + 0.26 4.73 + 0.37 3.46 + 0.84 1.50 + 1.64 4.08 + 0.44
6 months M 5.24 + 0.81 4.50 + 0.99 2.94 +0.27 4.76 + 0.99 5.56 + 0.25 4.88 + 0.19 5.39 + 0.47 6.14 + 0.23

F 5.25 + 0.85 4.49 ± 1.73 5.63 + 1.23 8.66 + 5.49 4.82 + 0.78 3.81 + 1.90 4.59± 0.60 3.35 + 1.88
6 years M 4.47 + 0.55 5.57 + 1.03 6.01 + 3.62 7.22 + 2.50 3.24 + 1.08 4.62 + 1.84 3.49 + 1.91 5.70 + 1.32

F 4.03 + 0.39 4.46 + 0.53 5.23 + 1.23 3.82 + 0.57 3.70 + 0.25 4.22 + 0.95 3.42 + 0.96 4.15 + 0.47

Values expressed as ug protein/ug DNA + SD.
M ■ male; F “ female.

N



No
Treatment 
1 day - 6 weeks

6 weeks - 6 months

6 months - 6 years

Estrogen
Treatment
1 day - 6 weeks 

6 weeks - 6 months 

6 months - 6 years

Table 2

Statistical Analysis of Protein Yields Presented In Table 1. 
Age Comparisons

"Lysosomal"Fraction 
Thoracic

WC SR
Celiac

WC

Microsomal Fraction 
Thoracic

SR WC SR
Celiac

WC SR

M
F
M
F
M
F

S
S
s

N
N
S

N
N
N
N
N
N

S
N
N
N

N
N
N
N

S
S
s

N
N
N

N
N
S
N
N
N

S
N
N
N

S
N
N

M
F
M
F
M
F

S
S
s

N
N
N

S
N
S
N
N
N

S
S
S
N

S
s

N
s

s

s

N
N
S
N

S
N
S
N

S
S
S
N

S
N
N
N

S - significantly different (P <  0.05); N - not significantly different. 
M “ male; F « female. vou»



Table 3
Statistical Analysis of Protein Yields Presented in Table 1. 

Aortic Site Comparisons (Thoracic vs. Celiac)

No
Treatment 
6 weeks

6 months

6 years

Estrogen
Treatment
6 weeks 

6 months 

6 years

"LyaosomalHFractlon Microsomal Fraction
WC SR WC SR

H N N N N
F N N N N
M N N N N
F N N N N
H N N N N
F N N N N

M
F
M
F
M
F

N
S
N
N
N
N

N
N
N
S
N
N

S
S
N
N
N
N

N
N
N
N

S - significantly different (P < 0.05); N - not significantly different. 
M “ male; F ■ female.



Table 4.
Statistical Analysis of Protein Yields Presented In Table 1. 

Breed Comparisons (UC vs. SR)

No
Treatment 
1 day

6 weeks

6 months

6 years

Estrogen
Treatment
1 day 

6 weeks 

6 months 

6 years

'lysosomal 'fraction 
Thoracic Celiac

M
F
M
F
M
F
M
F

N
N
S
N
N
N
N
N

N
S
N
N
S
N

Microsomal Fraction 
Thoracic Celiac

N
N
N
N
N
N
N
N

N
N
N
N
N
S

M
F
M
F
M
F
M
F

N
N
N
N
N
N
N

N
S
N
S
N
N

N
N
S
N
N
N
N
N

N
S
N
N'
S
N

S - significantly different (P <0.05); N - not significantly different.



No Treatment 
1 day

6 weeks

6 months

6 years
Estrogen
Treatment

Tabls 3
Statistical Analysis of Protein Yields Presented In Table 1. 

Sax Comparisons (Mvs.P )

'lysosomal'traction 
Thoracic Celiac
VC SK

N

N

N

N

VC

N

SK

S

1 day

6 weeks M S  S S

6 months N N N S

6 years N N M S

S - significantly different (P <  0.05); N - not significantly different.

Microsomal Fraction
Thoracic 
VC SK

Callac
VC SK

«o*



Table 6
Statistical Analysis of Protein Yields Presented In Table 1. 

Treatment Comparisons - (Control vs. Estrogen)
”Lysosomal"Fractlon Hlcrososooal Fraction
Thoracic Celiac Thoracic Celiac
WC SR WC SR WC SR WC SI

1 day M H N N N
F H H N N

6 weeks H N S N S S N N N
F H N S N N N S N

6 months M N S H N N H N S
F S N N S S N N N

6 years H N N N N N H N N
F' N N N N N N N 11

S “ significantly different (P < 0.05); N “ not significantly different.
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Activity 

In 
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From 
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Upper 
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Aorta 

of 
White 

Carneau 
(WC) 

and 
Show 

Racer 
(SR) 

Plgeone 
aa 

a 
Function 

of 
Age 

and 
BrlJ-35 

Treatnant.



Table 8.
N-Acetyl-B-Hexosoalnidase Activity in Sub-cellular Fractlona froa the Celiac Bifurcation of 

White Carneau (WC) and Show Racer (SR) Aortas as a Function of Age 
and Brij-35 Treatment

Hoaogenate "Lysosomal" Fraction Microsomal Fraction Soluble Fraction
WC SR WC SR WC Si WC SR

No treatment *
6 weeks Brij-35 59 + 12 * 35 + 6.1 21 + 5.5 14 ± 2.4 4.0 ± 2.7 4.1 + 0.7 20.0 + 6.0 11.3 +

Free 57 + 8.4 30 + 4.7 18 +4.3 9.4+ 1.4 2.6 + 0.8 3.0 + 1.4 24.8 + 8.2 15.8 +
6 months Brijr35 30 + 8.5 • 28 + 4.0 10 +2.3 12 + 3.8 2.6 + 1.3 2.8 + 0.8 8.3 + 2.2 8.1 +

Free 25 + 4.8 26 + 4.6 6.4+ 1.8 7.8+ 1.9 2.0 + 1.1 2.1 + 0.3 10.1 + 3.2 10.2 +
6 years Brlj-35 35 + 13 23 + 4.5 11 + 2.8 9.7+ 1.5 3.7 + 2.1 1.4 ± 1.1 16.4 + 6.6 6.6 ±

Free 32 + 10 23 + 5.5 6.3* 0.7 6.1+ 0.7 1.9 + 0.9 1.8 + 1.2 20.9 + 7.8 10.0 +
Estrogen
treatment
6 weeks Brij-35 72 ± 30 43 + 17 25 + 5.6 19 + 7.9 2.4, ± 0.7 4.2 ± 2.9 24 + 7.6 13.8 + 8.9

Free 68 + 27 36 + 13 21 + 5.9 13 + 4.3 2.1 ± 1.3 5.1 ± 1.4 26.8 + 8.2 17.6 + 6.7
6 months Brij-35 33 ± 7.2 32 + 6.4 12 + 3.8 9.9+ 4.5 4.1 + 1.6 4.1 + 0.6 7.4 + 1.8 10.8 + 2.6

Free 28 ± 6.5 30+ 3.2 7.1+ 3.2 9.3+ 1.9 3.2 + 1.1 2.0 + 1.1 11.2 + 23 13.5 + 3.2
6 years Brij-35 39 + 13 21 + 3.5 13 + 3.0 8.6+ 0.6 4.0 + 2.8 1.3 ± 0.4 15.3 + 4.9 7.2 + 2.2

Free 35 + 12 19+ 4.4 7.8f 2.2 6.3+ 1.0 2.1 + 1.8 1.9 + 0.8 24.1 + 10 8.9 + 1.2

Values expressed as ng substrate Uberated/mln./ug DNA + SD.

1+ 
1+ 

1+ 
1+ 

l+|
 +



Table 9.
Statistical Analysis of N-Acetyl-B-Hexosoalnidase Activities Presented In Tables 7 and 8.

Age Comparisons
Thoracic Hoaogenate "Lysosomal"Fractlon Microsomal Fraction Soluble Fraction

1 day - BrlJ-35
WC
S

SR
S

WC
s

SR
S

WC
N

SR
S

WC
N

SR
S

6 weeks Free N S s S N S N S
6 weeks - BrlJ-35 S N N N N ti . S N
6 months Free s N S N N N S S
6 months - BrlJ-35 N N N N N N N N
6 years Free N N N N N N N N

Celiac 
6 weeks - Brij-35 S N S N N N S N
6 months Free s N S N H N S N
6 months - Brij-35 N N N N N N N N6 years Free N N N N N H S N

S - significantly different (P < 0.05); N - not significantly different.



No treatment

1 day

6 weeks

6 months

6 years

Estrogen
Treatment
1 day 

6 weeks 

6 months 

6 years

Table 10,
Statistical Analysis of N-Acetyl-B-Hexoaomlnidase Activities Presented in Tablea 7 and 8.

Breed Comparisons (WC vs. SR)
Homogenate "Lysosomal"Fractlon Microsomal Fraction Soluble Fraction
Thoracic Celiac Thoracic Celiac Thoracic Celiac Thoracic Celiac 

BrlJ-35 S S S S
Free S S s S
BrlJ-35 N S N N N N N S
free » S N S N N . N  N
Brij-35 N N N N N . N  N N
?ree N 3 N N N N N N
BrlJ-35 N N N N N S N S
Free N N N N N N N S

Brij-35 S N S S
Free S S S S
BrlJ-35 N S N N N N S S
Free S S N S N S S N
Brij-35 N N N N N N N N
Free N N N N N N N N
Brij-35 N N N N N S N N
Free N N N N N N N S

S - significantly different (P <0.05); H - not significantly different.



Table 11.
Statistical Analysis of N-Acetyl-B-Hexosaminidase Activities Following Estrogen Treatment

Presented in Tables 7 and 8. Age Comparisons.
Homogenate "Lysosomal"Fraction Microsomal Fraction Soluble Fraction

Thoracic WC SR WC SR WC SR WC SR
1 day - 
6 weeks Brij-35 S S s S N S N S

Free N S s S N S N S
6 weeks - 
6 months Brij-35 S N N N N N S N

Free S N s N ‘n N S S
6 months - Brij-35 N N N N N H N N6 years 

Celiac

Free N N N N N N N N

6 weeks - 
6 months

Brij-35 S N S N N N S N
Free S N s N N S S N

6 months - 
6 years Brij-35 N N N N N S N N

Free N N N N N N S N

S = significantly different (P <. 0.05); N - not significantly different.



Table 12.
Decrease In N-Acetyl-B-Hexosaainldase Activity in the Soluble Fraction After Brij-35 Treatment.

Thoracic
WC
Control Estrogen

SR
Control Estrogen

Celiac
WC
Control Estrogen

SR
Control Estrogen

1 day Actual 2.9+ 6.0 3.8 + 4.7 0.0* 6.7 + 8.0
Z 9.7 + 11.8* 9.1+ 9.7 0.0 + 0.2 11.9+ 8.3

6 weeks Actual 6.0+ 4.9 11.5 + 11.1 8.2 + 5.0 9.9+ 7.4 5.2 + 5.2 3.2 + 6.0* 4.5+ 1.8 3.8+ 4.0
X 23.1 + 16.0 34.3 + 18.2 35.3 + 15.8 44.6 + 22.4 19.4 + 16.4 10.4 + 14.9 28.5 + 12.6 21.6 + 18.2

6 months Actual 4.2+ 3.7 2.8+ 1.2 2.6 + 2.1 3.2+ 1.2 1.8+ 2.9 3.8+ 1.7 2.1 + 2.6 1.7 + 2.9
Z 37.5 + 17.6 26.7+ 5.9 22.0 + 14.1 28.3+ 8.9 17.8 + 17.6 33.9 + 9.8 20.6 + 17.3 20.0 + 15.3

6 years Actual 2.6+ 1.2 2.0+ 0.9 3.8 + 1.0 4.3 + 1.3 4.5 + 4.5 8.8+ 7.7 3.5 + 0.8 1.7 + 1.7
Z 29.5+ 21.2 17.5 + 5.4 31.9 + 9.7 38.4 + 19.2 22.8 + 18.8 36.5 + 17.9 36.2 + 14.8 19.1 + 19.7

Actual - actual difference between Brij-35 activity and Free activity in ng/aln./ug 1)NA. 
Z “ Z decrease in activity
* Not significantly different fron 0 (P < 0.05).



Table 13.

Statistical Analysis of the Decrease in N-Acetyl-B-Hexosaminidase 
Activity Presented in Table 12.

Breed Comparisons (WC vs. SR)

Thoracic Celiac

Control Estrogen Control Estrogen

1 day Actual N N

% N N

6 weeks Actual N N N N

% N N N N

6 months Actual N N N N

% N N N N

6 years Actual N N N N

% N S S N

S = significantly different (P<0.05); N = not significantly different. 104



Table 14.
Statistical Analysis of Decreases in N-Acetyl-B-Hexosaminidase 

Activity Presented in Table 12.

Aortic Site Comparisons (Thoracic vs. Celiac)

WC SR

Control Estrogen Control Estrogen

6 weeks Actual N N N N

% N S N N

6 months Actual N N N N

% N N N N

6 years Actual N N N S

% N S N N

S = significantly different (P<0.05); N = not significantly different.



Table IS.
Percentage of Latent N-Acetyl-B-Hexoaaalnidaia Activity In the "Lyaoaonal" Fraction.

1 day Actual
Z

Upper Thoracic 
HC
Control

8 + 9  
2 4 + 8

Eatrogen

12
28

+ 4
± 13

SR
Control

13
24

± 10 
± 9

Eatrogen

10
21

Celiac Bifurcation 
HC SR
Control Eatrogen Control

6 weeka Actual 5.7 + 7.8* 2 + 3* 5.2 + 1.3 6.7 + 2.5 3.0 + 2.9* 4.0 + 2.0 4.6 + l.f
Z 23 + 15 11 + 12 33 + 4 36 + 13 14 + 10 . 16 + 13 33 + 7

6 nontha Actual
Z

5.2 + 3.0 
45 + 19

4.6+ 2.6 
45 + 24

3.9 + 2.0 
32 + 19

3.5 + 1.9 
29 + 12

3.8 + 3.4 
36 + 23

4.9 + 1.9 
41 + 18

4.2 + l.f 
35 + 12

6 yeara Actual 2.5 + 0.7 3.5 + 1.7 3.2 + 1.7 2.0 + 2.8* 4.4 + 1.9 5.4 + 1.0 3.9 + l.S
Z 38 + 5 33 + 13 29 + 16 22 + 22 43 + 10 40 + 5 39 + 8

Z Latency - gytJ"35 yttvlty - Free activity 
' BrlJ-35 activity 100

Actual - actual difference between Brlj-35 activity and the Free activity In ng/nln./ug DNA. 
Z « Z Latency
* Not algnlflcantly different fron 0 (P < 0.05).

Eatrogen

6.0+ 4.2 
32 + 15

0.7 + 0.7* 
7 + 7

2.7 + 0.9 
30 + 10

O



Table 16.
Statistical Analysis of latent N-Acetyl-B-hexosanlnldsse Activities Presented In Table 

Breed (HC va. SR) and Aortic Site (Thoracic vs. Celiac) Comparisons

1 day

6 weeks

6 months

6 years

Breed Comparisons 
Upper Thoracic 
Control Estrogen

Celiac Bifurcation 
Control Estrogen

Aortic Site Comparisons 
HC SR
Control Estrogen Control Estrogen

Actual
Z

N
N

N
N

Actual
Z

N
N

N
S

N
N

N
N

N
N

N
N

H
N

Actual
Z

N
N

N
H

N
N

N
N

N
N

Actual
Z

N
N

N
N

S
N

N
H

N
H

N
H

S “ significantly different (P< 0.0S); N “ not significantly different.



Table 17.
Statistical Analysis of Latent N-Acetyl-B-Hexosaalnldaaa Activities Presented in Table IS.

Age Coaparisons

1 day-6 weeks
Actual
X

6 weeks-6 aonths
Actual
X

6 aonths - 6 years 
Actual 
X

1 day-6 aonths
Actual
X

1 day-6 years
Actual
X

6 weeks-6 years
Actual
X

Upper Thoracic 
HC
Control Estrogen

N
N

N
N

N
ti

H
S

S
s

N
N

N
N

N
S

N
N

S
N

S
N

N
N

SR
Control Estrogen

N
N

H
N

N
N

N
N

S
N

N
N

N
N

H
N

N
N

H
N

S
N

N
N

Celiac Bifurcation 
HC
Control Estrogen

N
N

N
H

N
S

N
S

N
N

N
S

SR
Control Eatrogen

N
N

N
H

N
N

S
S

N
S

H
N

S - significantly different (P< 0.05); N - not significantly different.



Acid Phosphatase Activity la 
and Show Racer

Tabla 18,
Sub-cellular Fractions Fro* the Oppar Thoracic Aorta of White Carnaau (WC) 
(SR) Plgaona aa a Function of Age, Sex and BriJ-35 Treatment

Bomogenate "Lysosomal" Fraction Microsomal Fraction Solublei Fraction
WC SR WC SR WC SR WC SR

1 day BriJ-35 H 97.5 + 8.6 191 ± 28.0 54.9 ± 4.6 99.7 + 20.4 6.3 ± 1.8 19.3 + 5.2 19.0 + 1.4 36.3 + 8.8
F 109 + 8.1 139 + 28.8 51.7 + 26.3 73.8 + 5.7 16.2 + 8.0 18.9 + 15.9 12.6 + 12.1 13.5 + 1.0

Free M 84.1 + 5.5 153 + 33.1 48.5 + 4.5 87.0 + 13.0 4.6 + 0.1 21.0 + 5.6 19.4 + 1.1 36.3 + 5.4
F 83.6 + 2.7 123 + 22 42.6 + 20.2 68.0 + 4.5 17.0 + 6.0 25.7 + 17.8 12.8 + 10.9 12.5 + 5.4

6 weeks BriJ-35 M 114 + 0.5 114 + 8.5 70.0 + 13.0 74.0 + 7.0 6.9 + 3.1 3.9 + 4.0 4.9 + 2.3 14.4 + 10.6
F 121 + 51.5 83.6+ 5.5 77.3 + 31.5 49.2 + 11.2 8.9 + 9.0 7.6 + 0.4 5.4 + 4.8 2.4 + 3.6

Free N 113 + 15.0 117 + 9.0 65.5 + 17.5 61.5 + 3.5 8.2 + 4.8 5.5 + 5.5 15.5 + 6.5 20.0 + 8.0
F 98.7 + 26.5 73.2+ 13.1 54.3 + 23.5 41.0 + 9.6 9.0 + 7.9 10.0 + 1.7 9.8 + 2.9 4.7 + 4.7

6 months Bril-35 M 159 + 31.7 127 + 22.9 83.1 + 23.5 81.0 + 35.8 16.1 + 8.0 9.9 + 2.1 2.3 + 3.9 6.8 + 5.3
F 108 + 64.5 89.7+ 15.6 60.3 + 43.0 57.7 + 24.6 . 5.7 + 3.9 12.1 + 6.9 2.6 + 0.4 2.4 + 2.2

Free M 123 + 8.5 99.7+ 10.1 69.4 + 21.5 66.7 + 31.5 16.6 + 5.2 8.9 + 3.6 7.1 + 8.1 4.3 + 6.6
F 82.2 + 37.7 76.7+ 17.9 54.1 + 32.2 39..3 + 15.9 4.8 + 3.8 15.1 + 6.8 5.6 + 1.2 3.6 + 1.5

6 years BriJ-35 M 112 + 10.0 125 + 5.7 77.9 + 8.2 73.4 + 22.7 13.8 + 1.4 17.9 + 0.8 2.1 + 1.2 0.5 + 0.9
F 88.2 + 13.8 83.0+ 19.3 49.1 + 6.7 59.5 + 16.9 7.6 + 2.9 9.3 + 5.5 1.3 + 2.5 0.0 + 0.0

Free M 107 + 12.1 112 + 14.5 60.6 + 3.4 67.2 + 9.0 19.7 + 8.5 16.9 + 5.4 7.3 + 9.4 16.5 + 9.0
F 67.3 + 1.4 87.0+ 15.0 37.6 ± 3.4 48.8 + 12.0 9.1 + 2.7 9.0 + 3.2 6.3 + 3.6 6.5 + 1.4

Valuea expressed as ng substrate llberated/mln./ug DNA - SO. 
M * sale; F - female.
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Table 21.
Acid Phosphatase Activity Following Estrogen Treatment In Sub-cellular Fractlone fro* the Celiac Bifurcation of 

White Carneau (WC) and Show Racer (SR) Aortae as a Function of Age, Sex, and BrlJ-35 Treatment
Honogenate "Lysosomal" Fraction Microsomal Fraction Soluble Fraction
WC SR WC SR WC SR WC SR

A weeks BriJ-35 M 161 ± 10.0 204 ± 80.0 120 ± 0.1 123 i 51.5 21.6 i 21.4 18.0 i 9.1 7.4 t 3.7 3.9 - 3.9
F 152 + 66.7 102 + 28.0 118 + 49.8 58.2 ± 2.9 10.3 ±10.1 14.2 ± 1.0 5.7 ± 9.8 2.6 ±3.1

• Free M 137 ± 13.0 159 + 68.0 97.0+ 4.0 95.5 ±34.5 19.2 ± 12.9 17.5 ± 8.6 7.0 ± 5.1 4.0 ±4.0
F 119 ± 65.0 73.4 + 18.2 86.7+ 40.6 43.3 + 2.5 3.9 ± 4.2 17.2 + 5.9 6.0 ±10.4 3.3 ±3.2

A Months BriJ-35 M 156 ± 2.9 128 + 35.0 70.9 + 8.6 68.4 ± 5.4 45.6 ±19.3 32.8 ± 9.8 0.7 ± 0.6 4.2 ±2.5
F 92.7 + 23.3 130 + 21.0 55.8 + 17.9 92.0 + 32.5 12.7 ± 7.1 13.3 ±2.5 1.5 ± 1.4 4.3 ± 7.5

Free M 116 + 14.2 io2 + 9.2 46.0 + 12.9 49.1 + 4.1 41.1 ±13.2 28.6 ± 9.6 3.2 ± 5.6 2.8 ±2.1
F 72.7 + 12.7 93.7 + 8.3 52.5 + 13.3 66.3 + 25.5 10.8 ± 4.8 10.7 ± 9.7 1.2 ± 1.5 6.4 ±7.1

A years BrlJ-35 M 218 + 86.5 143 + 18.7 113 + 68.4 99.0 + 12.7 36.3 ±22.2 26.5 ± 9.1 27.4 ±27.9 0.3 ±0.6
F 158 + 51.0 93.2 + 13.5 104 + 31.1 45.4 ±14.0 26.1 ±14.4 15.8 ±11.4 12.0 ± 6.3 0.7 ±1.2

Free M 182 + 62.6 116 + 28.7 94.5 + 49.8 83.. 9 ± 7.4 37.1 ± 9.9 27.3 ±2.1 28.9 ±24.1 2.6 ±2.7
F 157 + 28.3 73.2 + 12.0 80.4 + 28.2 37.7 ± 8.4 24.6 ±12.3 18.7 ± 10.8 20.7 ±12.4 2.7 ±2.3

Valuea expressed as ng substrate llberated/mln,/ug DHA + SD, 
M " male; F " female.
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No Treatment 
1 day

6 veeka

6 months

6 years

Estrogen
Treatment
1 day 

6 weeks 

6 months 

6 years

Table 22.
Statistical Analysis of Acid Phosphatase Activities Presented In Tables 18 and 19.

Sex Comparisons (H vs. F)
"Lysosomal"Fractlon Microsomal Fraction Soluble FractionHomogenate 

HC SR UC SR WC SR WC SR

BrlJ-35
Free
Brij-35
Free
Brij-35
Free
Brlj-35
'Free

N
N
N
N
N
N
N
S

N
N
S
S
N
N
S
N

H
N
N
N
N
N
S
S

N
N
S
s
N
N
N
N

N
S
N
N
N
S
S
N

N
N
N
N
N
N
N
N

N
N
N
N
N
N
N
N

S
S
N
S
N
N
N
N

Brij-35
Free
Brlj-35
Free
Brij-35
Free
Brlj-35
Free

N
N
N
N
S
S
N

S
S
S
S
N
N
N
N

N
N
N
N
S
S
N
N

S
S
S
S
N
N
S
S

N
N
N
N
S
N
N
N

S
S
N
N
N
N
N
N

N
N
N
N
N
M
N

S
S
N
N
N
N
N
N

S - significantly different (P <0.05); N - not significantly different.



Table 23.
Statistical Analysis of Acid Phosphatase Activities Presented in Tables 18 and 20.-

Age Comparisons

Upper Thoracic Homogenate "LysosomalTraction Microsomal Fraction Soluble Fraction
WC SR WC SR WC SR WC SR

1 day - Brij-35 M S S N H N S S S6 weeks F N S N S N N N S
Free M S N N S N S N S

F N S N S N S N N
6 weeks - Brij-35 M S N N N N N N N6 months F N N H N N N N N

Free M N N N N N N N S
F N N N N N N N N

6 months - Brij-35 M N N N N N S N H6 years F N N N N H N N N
Free M N N N N N N N N

F N N H N H N N N
Celiac
6 weeks - Brij-35 M N N N H S N S H6 months F N N S N N N N N

Free M N N H H S N N N
F S N N N N N N H

6 months - Brij-35 H S H H N N N N N6 years F s N S N N M S N
Free M s N N N S N N N

F s N N N N N S N

S - significantly different (P < 0.05); N - not significantly different. M “ sale; F - female.
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Table 24.
Statistical Analysis of Acid Phosphatase Activities Presented 

in Tables 19 and 21. Age Comparisons.
Homogenate "Lysosomal" Fraction Microsomal Fraction Soluble FractionThoracic HC SR WC SR WC SR WC SR1 day - Brij-35 M S S N N S S S s6 weeks F N S N N N s N N

Free M S S S N S s N S
F N S N N N s N N6 weeks - Brij-35 H S S N S N s N N6 months 'f N N N N S N N N

Free H S S N S N S N N
F N N N N N N N N6 months - Brij-35 H N N N N N N N N6 years F N N N N S N N N

Free M N N N N N N N N
F N N N N N N N NCeliac

6 weeks - Brij-35 M N S S S S N N N
6 months F S N S N N N N N

Free M N S s S S N N N
F S N s N N N N N

6 months - Brij-35 H S N s . S N N S N6 years F S N s s N N S N
Free M S N s s N N s N

F S N N s N N s N

S ■* significantly different (P< 0.05); H - not significantly different.
M = male; F » female.



Table 25.
Statistical Analysis of Acid Phosphatase Activities Presented In Table 18.

Breed Comparisons (WC vs. SR)
Honogenate "Lysosomal"Fraction Microsomal Fraction Soluble Fraction

1 day Brlj-35 H S s s ’ S
F n N M N

Free M S S S S
F s H N N

6 weeks Brlj-35 M N N N N
F N N N N

Free M N N N N
F N N N H

6 months Brlj-35 M N N N N
F N N N N

Free M s N N N
F N N • .N N

6 years Brlj-35 M N N N N
F N N N H

Free . M N N N N
F N N N N

S ■ significantly different (P< 0.05); N “ not significantly different. 
M “ male; F - female.
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Table 26.
Stadatlcal Analysis of Add Phosphatase Activities Presented in Table 19.

Breed Comparisons (WC vs. SK)
Homogenate "Lysosomal"Fraction Microsomal Fraction Soluble Fraction

1 day Brij-35 M S S S S
F N N s N

Free M S S N S
F N N S N

6 weeks Brij-35 M S N N N
F H N N H

Free M S N N N
F N N H H

6 months Brij-35 M S S N N
F N H H N

Free M S S N N
F N N N N

6 years Brij-35 M N N N N
F N N N N

Free M N H N N
F N N N N

S “ significantly different (P < 0.05); N " not significantly different. 
M ■ male; F “ female.



Celiac
Region
No treatment 
6 weeks

6 months

6 years

Estrogen
Treatment
6 weeks 

6 months 

6 years

Table 27.
Statistical Analysis of Acid Phoaphatase Activities Presented In Tables 20 and 21.

Sex Comparisons (M vs.P )
"Lysosomal"FractionHomogenate 

WC SR
Mlcroaomal Fraction Soluble Fraction

WC SR WC SR WC SR

Brlj-35
Free
Brij-35
Free
Brlj-35
Free

N
N
S
S
s
N

N
N
N
S
N
S

N
S
S
N
N
N

S
S
N
S
S
S

N
N
N
N
N
N

N
N
N
N
N
N

Brlj-35 N S
Free N S
Brlj-35 S N
Free S N
Brlj-35 S S
Free N S

N S N
N S N
N N S
N N S
N S N
N S N

N N N
N N N
S N N
S N N
N N N
N N N

S “ significantly different (P < 0,05); N “ not significantly different,



Table 2B.
Statistical Analysis of Acid Phosphatase Activities Presented In Table 20,

Breed Comparisons (WC vs. SR)

Homogenate "Lyaosomal"Fraction Microsomal Fraction Soluble Fraction
6 weeks Brij-35 M N S S S

F N S N N
Free M S S N N

F s N N N
6 months Brlj-35 M H N S N

F N N N N
Free M N N N N

F H N N N
6 years Brlj-35 M S N S N

F S N H S
Free M S N S N

F S N N S

S “ significantly different (P< 0.05); N * not significantly different. 
M - male; F “ female.
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Table 29.
Statistical Analysis of Acid Phosphatase Activities Presented In Tables 18 and 20. 

Aortic Site Comparison* (Thoracic vs. Celiac)

Homogenate "Lysosomal"Fractlon Microsomal Fraction Soluble Fraction
WC SR WC SR WC SR WC SR

weeks Brlj-35 M S N N N N S S N
F N N H H N N N N

Free H S N N N N N N H
F N N N N N N N '

N
months Brlj-35 M N N N N S S N N

F N N N N N N N N
Free M N H N N N S N N

F N N N H N N N N
years Brlj-35 M S N S N S . N N N

F S N S N N N S N
Free M s N N N S N N N

F s K S N N N S N

S - significantly different (P <0.05); N - not significantly different. 
M “ male; F “ female.
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Table 30.
Statlatlcal Analysis of Acid Phosphatase Activities Presented In Table 21 

Breed Comparisons (WC vs. SR)
Homogenate "Lysosomal" Fraction Microsomal Fraction Soluble Fraction

6 weeks Brlj-35 M N N N N
F N s N N

Free M N N N N
F S S S N

6 months Brlj-35 M N N N N
F N S N N

Free M N N S N
F N N N N

6 years Brij-35 M S N N S
F S S N S

Free M s N N S
F s S N S

S “ significantly different (P < 0.05); N “ not significantly different. 
M “ male; F “ female.
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Table 31.
Statistical Analysis of Acid Phosphatase Activities Presented 

in Tables 19 and 20. Aortic Site Comparisons (Thoracic vs. Celiac)

Homogenate “Lysosomal" Fraction Microsomal Fraction Soluble Fraction
HC SR HC SR WC SR HC SI

6 weeks Brij-35 M S S S N N S N N
F N N S N N N N N

. Free M S S S N N S N N
F N N N N N N N N

6 months Brij-35 M N N N N S S N N
F N N H N N N N N

Free M N N N N S S N N
F N N N N N N N N

6 years Brij-35 M S N N N S N S N
F N N N N N N N N

Free M S N N N S N S N
F S N S N N N S N

S *■ significantly different (P <  0.05); N - not significantly different. 
M = male; F = female.



Table 32.
Percentage of Latent Acid Phosphatase Activities in the "Lysosomal” Fraction

1 day

Upper Thoracic 
WC
Control Estrogen

SB
Control

Celiac Bifurcation 
WC

Estrogen Control Estrogen
SR
Control Estrogen

H Actual
«

6.4
12

+
+

0.1
1

18
29

+
+

10
12

13
13

+
+

7
6

17
15

+
+

3
8

F Actual
«

9.1
18

+
+

8.5
16

12
19

+
+

4
4

5.8
8

+
+

1
1

11
19

+
+

4
4

6 weeks•
H Actual 4.5 + 4.5* 3.5 + 3.5* 13 + 11* 21 + 5 2 + 2* 23 + 4 19 + 7 28 + 17

% 6 + 8 5 + 5 17 + 13 21 + 1 2 + 2 19 + 4 24 + 7 21 + 6
F Actual 23 + 9 11 + 17* 8.2 + 2.4 3.3 + 2.4* 30 + 8 31 + 13 6.7 + 5.0* 15 + 4 .

% 30 + 5 16 + 13 17 + 3 7 + 4 35 + 10 27 + 12 16 + 10 25 + 6
6 months
M Actual 14 + 10* 20 + 10 14 + 5 16 +' 10 24 i K 25 + 11 15 + 20* 26 + 7

1 % 16 + 11 21 + 9 18 + 4 24 + 13 25 + 13 35 + 15 16 + 20 28 + 2
F Actual 6.2 + 12* 5.1 + 10* 18 + 7.0 12 + 8 4.3 + 2.9* 3.3 + 5.4* 17 + 18* 19 + 1

% 10 + 10 10 + 10 32 + 12 21 + 16 9.5 + 8.4 5.8 + 6.6 23 + 22 29 + 1
6
M
years

Actual 17 • + 11* 20 + -12* 6.2 + 8* 15 + 8 27 + 4 38 + 19 18 + 8 15 + 12*
% 21 + 12 21 + 12 8 + 10 18 + 9 24 + 6 29 + 3 18 + 8 15 + 11

F Actual 12 + 5 19 + 8 11 + 5* 9 + 2 24 + 8 24 + 4 9.4 + 19.1* 7.7 + 6.6*
% 23 + 7 28 + 13 18 + 10 16 + 3 26 + 6 23 + 6 20 + 19 17 + 13
Actual = actual difference between Brij' 
% = % Latency
* Not significantly different from o (P

-35 activity 
■C 0.05)

and Free activity in ng/min./ug DNA.

M = male; F = female.
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Table 33.
Statistical Analysis of latent Add Phosphatase Activities Presented In Table 32.

Breed (HC vs. SR), Aortic Site (Thoracic vs. Celiac), and Treataent (Control vs. Estrogen) Coaparisons
Breed Comparisons Aorcic Site Comparisons Treatment Comparisons
Upper Thoracic Celiac Bifurcation HC SR Upper Thoracic Celiac
Control Estrogen Control Estrogen Control Estrogen Control Estrogen HC SR HC SR

1 day M Actual N N S N
Z N N N N

F Actual N N H N
Z N N N S

6 weeks M Actual N N S N N S N N N N S N
Z N N S N N N N N N N S N

F Actual S H S N N N N S H H N H
Z s N N N N N N S N S N N

6 months M Actual N N N N N N N N N N H N
Z N N N N N H H N N H N N

F Actual N N N S N H N N N N H N
Z S S N S N N H N H N N H

6 years H Actual N N N N N N H H N N N H
Z N N N N N N N H N H N N

F Actual N N N S N N N N N N N N
Z N N N N N N N N N N N N

S - significantly different (P< 0.05); N - not significantly different. 
M “ male; F - female.
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Table 34.
Statistical Analysis of Latent Acid Phosphatase Activities Presented in Table 32.

Sex Comparisons (M vs. P).

Upper Thoracic Aorta Celiac Bifurcation
WC SR WC SR
Control Estrogen Control Estrogen Control Estrogen Control Ef

1 day Actual N N N N
« N N N N

6 weeks Actual S N N S S N N N
« S N N S S N N N

6 months Actual N N N N S S N N
t N H S N N S N N

6 years Actual N N N N N N N N
% N . N N N N N N N

S =* significantly different (P < 0.05); N * not significantly different.
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