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ABSTRACT

PHOSPHATE ADSORPTION AND DESORPTION 

ON TWO CONTRASTING SOILS 
USED FOR LAND TREATMENT OF WASTEWATER

by

Stephen A. Gasiorowski 
University of New Hampshire 

September, 1980

Land treatment of wastewater involves the use of plants 

and the soil to remove unwanted constituents. Removal of 
phosphorus is particularly important to avoid excessive 
biological activity in water systems receiving the treated 

wastewater. This research examines the phosphate adsorption 
- desorption behavior of two soils: Charlton silt loam, a 
typical acid soil from New England which is being used in 

experimental wastewater treatment, and Tujunga coarse sandy 
loam from a wastewater land treatment facility located at 

Manteca, California, which has failed to remove phosphate 
from wastewater efficiently.
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The- effects of changing the pH and phosphate content of 
municipal wastewater on adsorption and desorption were 
determined. Sorption isotherms were determined for each 
soil using wastewater as the equilibration solution. 

Phosphate was added to the wastewater to obtain the 

concentration range necessary for the isotherms. After 96 
hour equilibration periods, radioactive phosphorus was added 

to the suspensions. Measurements of the redistribution of 
the P-32 were used to determine the exchangeability of the 

sorbed phosphate.

Radioactive phosphorus-32 was used to follow the 

adsorption and desorption rates in suspensions of soil and 

wastewater. Parallel experiments were conducted in which 

phosphate concentrations were determined by conventional 
spectrophotometric analysis. Effluent from a conventional 
secondary treatment facility and the whole soil (all 

particles < 2 mm) were used in these studies to model the 
normal situation in land treatment facilities.
Concentration changes of solution phosphate or P-32 were 

measured over 46 hour equilibration periods. After this 

period, soil samples were separated from the suspension, 

treated to remove interstitial solution, and dried at room 

temperature.

The dried soil samples were resuspended with either a 
fresh portion of effluent or 0.005 M NaCl solution.
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Resuspension with effluent mimics a repeat application of 

wastewater to a treatment field. Suspension in sodium 
chloride solution allows determination of phosphate 

desorption in the absence of exchange reactions.

The complementary use of p-32 and non-radioactive 
phosphate permitted the evaluation of adsorption and 
desorption of freshly sorbed and native phosphate 
independently as well as the amount of exchange occurring.

Charlton soil sorbed large amounts of phosphate with a 

capacity of over 1000 mg P/g soil. At concentrations 

typical of wastewater, complete removal of phosphate from 
solution was rapid. When small amounts (<100 mg/g) were 

sorbed, phosphate was bound in very stable forms which were 
largely unavailable to exchange. Sorption was slightly less 
complete in suspensions at pH 8.0 as compared to pH 5.0 and

6.5. At higher loadings of phosphate,an increasing amount 
of exchangeable phosphate was sorbed on the Charlton soil. 

However, at a single pH, the proportion of exchangeable 

phosphate to sorbed phosphate was constant at all amounts of 
sorbed P studied.

Tujunga soil capacity for phosphate was much lower than 

Charlton soil. Sorbed phosphate was susceptible to a large 
amount of exchange as well as net desorption. Efficiency of 
sorption decreased with a decrease in pH - opposite to the

xv ii



trend observed with the Charlton soil. A three step 
mechanism of P sorption was used to explain the results of 
these studies.

c

Determination of relative concentrations of Fe (II) and 

Fe (III) by Mossbauer spectroscopy was examined. Mossbauer 

spectra were obtained which demonstrate the successful 
application of the technique to the study of reduced iron in 

soils.
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CHAPTER I

AN OVERVIEW OF LAND TREATMENT OF WASTEWATER

Land Treatment of Wastewater

Land treatment of wastewater involves the use of plants 
and soil to remove dissolved substances from wastewater.

The concept of wastewater renovation by land application has 

been employed throughout history (Iskandar, 1978). The 
handling of large amounts of municipal waste by land 
application became fairly common in Europe during the last 

century. "Sewage farms" were widely used in Great Britain 
in the late 19th and early 20th centuries. These facilities 

were gradually abandoned due to the large land requirements 

and the production of offensive odors. Both of these 

problems were minimized by artificial means of sewage 
treatment which eventually replaced the farms (Cooke, 1978). 
While land disposal of livestock waste continues in Britain, 

(more for the reuse of nutrients on farmland than actual 

"disposal"), use of land in sewage treatment in Britain is 
limited to the disposal of sewage sludge generated by 
artificial sewage treatment.

1
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One of the earliest established municipal sewage 
treatment sites in the United States is located in Calumet, 
Michigan. Started in 1887, the system continues to operate 
today with expansion and modification necessary to 

accommodate increased demands from the areas served 
(Baillod, et a l ., 1976). A number of other major facilities 

for land treatment of wastewater have been established since 

the last century in the United States and elsewhere (Reed, 
et a l . , 1972).

The growth in concern with water system quality is 
reflected in the Federal Water Pollution Control act and 
Amendments. Due to this increased concern, the viability of 
land treatment of wastewater has been examined in much 

greater detail than previously. A variety of state and 

federal agencies have been involved in these studies 

including the U.S. Army Corps of Engineers (Baillod, et 
al., 1976, Reed, et al., 1973). Several international 
symposia have been held in recent years on the subject of 
land treatment of wastewater. A diversity of topics are 

presently of concern in land treatment systems: legislative 

requirements, public acceptance, site selection, necessary 
pretreatment of wastewater, mathematical modeling of 

transport of materials in the soil, health considerations, 
and cost requirements.
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Before application to land, wastewater is usually 

treated to the secondary level (i.e. flocculation of 
particulates and biological removal of other constituents). 

The method of application may involve spray irrigation, 

overland flow, or other methods. The rate of application 

varies among the particular systems. Wastewater may be 
applied at a rate low enough to allow rapid and complete 
infiltration, avoiding the accumulation of standing water.
An alternative method applies wastewater at a rate which 
causes flooding of the land area, often to a depth of a few 

inches. The important factors influenced by the rate of 
application are; availability of atmospheric oxygen to the 
soil and bacterial colonies therein, possible changes in 
soil chemistry associated with saturated conditions, effects 
on plant growth in the treatment area, and the wastewater/ 
soil contact time. The choice of application method and 

rate depend on the permeability of the soil, characteristics 
of the wastewater, and properties of the soil and plants at 

the particular treatment site.

Reuse of wastewater on forest soils, aiding in the 
production of timber, is an alternative that minimizes the 
introduction of toxic materials into the foodchain, although 

other impacts on the environment are still of concern 

(Ballard and Fiskell, 1974; Urie, et a l ., 1978). The 
possible detrimental effects on tree growth must still be 

considered but since foodstuffs are not involved, some 

problems of toxicity at higher levels of the foodchain are
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minimized. Sopper and coworkers at the Pennsylvania State 

University have conducted extensive studies on the effects 

of land disposal of wastewater on forest areas (Sopper and 
Kardos, 1973; Sopper and Richenderfer, 1979).

The effects of introducing wastewater into groundwater 
have received very little attention. The problem of 

contamination appears much lower than with surface water 
since percolation through the overlying soil and rock 

results in physical and chemical removal of some 

contaminants prior to reaching groundwater level (Dryden and 
Chen, 1978; Jones and Lee, 1979) . Since the disposal of 
wastewater on land ultimately results in the treated water 

reaching groundwater, larger scale studies must eventually 
be made to determine the long term effects of such disposal.

This brief overview of wastewater land treatment 

presents only the basic considerations of this method of 

sewage disposal. The great amount of ongoing work indicates 
high interest and incomplete knowledge of the exact soil - 
wastewater interactions. This is hardly surprising when one 

considers the extremely complex and highly variable nature 
of both soils and wastewater as well as the variability of 

conditions under which the treatment is carried out.
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Phosphorus in Wastewater

Phosphorus contamination of aquatic systems by the 
introduction of phosphate-containing wastewater has been 
clearly established as a factor leading to eutrophication 

(Sawyer,1966). Phosphate is a key nutrient controlling the 

growth of algae, which in turn affects water oxygen content, 
turbidity, and other water quality parameters. A 

phosphate-phosphorus concentration of 0.03 mg/L or more has 

been shown to promote eutrophication of lakes (Sawyer,
1966) .

Industrial and domestic wastewater is the greatest 

source of phosphorus in aquatic systems. The phosphate 
content of wastewater effluent varies considerably but 

generally falls into the range of 0.5 to 40 mg/L, averaging 
approximately 10 mg/L (Bouwer and Chaney, 1974) .

Phosphate containing detergents represent the largest 
single source of phosphate in domestic wastewater. The 
steady decrease of phosphate levels observed at many 
locations over the past decade has been related to the 

increased use of non- or low-phosphate detergents 

(Gakstatter, et a l ., 1978).

Since most wastewater ultimately enters surface fresh 

water or groundwater systems, minimization of the phosphate 
content of effluent from treatment facilities is of major 
concern. Typically, phosphate is partially removed from the
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raw wastewater during the treatment process by precipitation 

with various chemicals including lime, aluminum sulfate, and 
ferric chloride. Biological treatment systems have' also 
been developed which can reduce the effluent P content to 

less than 1 mg/L (Levin,1972).

While the introduction of excess phosphate must be 
avoided in fresh water systems, the addition of phosphate to 
agricultural land is often deemed necessary. Additions are 

usually made by applying phosphate fertilizers. Irrigation 
of agricultural land with wastewater to increase the 

nutrients in the soil is an old practice and is attractive 
for minimizing the use of expensive fertilizers as well as 
being a highly efficient reuse of wastewater (Hyde, 1976). 
However, the successful use of wastewater on crop lands must 

be tempered by a knowledge of the toxic metal, pathogenic 
bacterial and viral components, toxic organic residues, and 

other hazardous constituents of the wastewater (Schmidt, et 

al., 1975; Iskandar, 1975; Anderson, 1978; Larkin, et a l ., 

1978; Brown, 1978). Crops grown on land irrigated with 

wastewater may, therefore, not be suitable either for human 

consumption or as forage for livestock. Toxic materials may 
also prevent proper growth of plants. The effects of 
hazardous materials in wastewater vary widely with the 

particular wastewater to be disposed, method of 
pretreatment, application, and the management of the 
disposal site (Olsen and Guinn,1978).



Statement of the Problem

The motivation for this research project arose from an 
inability to explain some specific effects on the removal of 
phosphate from wastewater. Two soils with widely divergent 

phosphate sorbing properties were selected for study based 

on results published by workers at the Cold Regions Research 
and Engineering Laboratories of the U.S. Army Corps of 

Engineers at Hanover, NH (Iskandar, et a l ., 1976).

A wastewater land treatment site in Manteca, California 

was found to be leaking phosphate. Soil solution 
concentrations of up to 9.9 mg/L P were found at a depth of 
1.6 m for samples collected with a suction lysimeter in the 

Tujunga coarse sandy loam at the treatment site. Background 
levels of P in the soil solution of a control field not used 

for wastewater treatment were also elevated; approximately 1 

mg/L P as phosphate. No significant contamination of the 
groundwater was observed but the potential for such 
contamination was high (Murrmann and Iskandar, 1976). The 

other soil, Charlton Silt Loam, is a typical New Hampshire 
soil that has been shown to sorb large amounts of phosphate 

in a prototype land treatment system (Iskandar, et al.,

1976) .

The phosphate sorbing properties of each soil were 
examined in detail, including studies on the sorption 
capacities, kinetics of adsorption, desorption and 

exchangeability of sorbed phosphate, influence of various
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physical and chemical soil properties, and pH effects. By 
comparing these two contrasting soils, it was hoped that the 
variables that control differences in their behavior could 

be determined. The ultimate goal was to contribute to the 

development of predictive models which will permit 

intelligent and efficient management of wastewater land 
treatment sites.



CHAPTER II

SOIL - PHOSPHATE BEHAVIOR: A REVIEW OF THE LITERATURE

The literature covering investigations of phosphate 
sorption behavior of soils is extensive. However, while 

some very general conclusions may be drawn from the reported 

work, there is little consensus on the particulars of 
phosphate sorption behavior. In fact, the apparently 

contradictory conclusions reached among the workers in this 

field lead to confusion which is enhanced by the large 
number of publications.

In examining the work performed in the area of soil 

phosphate sorption, and in soil science in general, one must 

be constantly aware of the inherent complexity of the topic. 
The physical, chemical, and biological nature of a soil 
system vary continuously among locations. A sample removed 
from a single small area is itself a heterogeneous system 
containing materials having diverse properties. The wide 

distribution of particle sizes and the heterogeneous nature 
of the soil cause difficulties in obtaining truly 
"representative" samples. Furthermore, many of the methods 
employed to characterize soils produce information defined
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more by the procedure used than by any sharp distinction 
implied by a simple label.

As a result of these problems, a review of the
literature cannot be expected to yield a precise 

understanding of the problem. Each group of workers has

chosen to examine a particular soil or group of soils using

a particular set of procedures. Consequently, results 

reported by different investigators cannot always be 
directly compared. All interpretations of the findings must 
be tempered with the knowledge that such a variety of 
materials and methods are used. Nonetheless, a general 

understanding of the problem can be gained by a careful 
examination of past and continuing work in soil behavior.

Soil Phosphate

Soils generally contain relatively low amounts of 
phosphate, ranging from 0.01% to 0.25% (Bolt and 
Bruggenwert, 1976) . The levels present in soils vary 
considerably due to the presence of phosphate minerals, 
fertilization practices in farming areas, past leaching of 

phosphate compounds, and additions of plant residues (Black, 
1968).

Soil phosphorus occurs naturally almost exclusively as 
orthophosphate, PO^ , found in both organic and 
inorganic forms. The relative proportion of phosphate in 
these two general forms depends on the organic matter
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content and source of phosphate. The organic phosphate 
content of surface soils varies from 0.3% to 95% of the 
total phosphate present. The organic forms probably include 

nucleic acids, phospholipids, inositol phosphate, and many 

other specific forms. Due to the difficulties of isolation 

and identification, the specific nature of soil organic 

phosphates remains unresolved. The sources of these organic 
compounds are often degradation of plant and animal 

material, but some microorganisms also produce organic 
phosphates as waste material, particularly inositol 
phosphates.

The inorganic forms of phosphate have been studied in 
detail, particularly as to their mineralogical nature. 

Apatite [Ca^QX 2 (PO^) 2 ] y X = F, Cl, OH, vivianite 
[Fe3 (P04 )2 .8 H 20 ] , and wavelite 

[Alg(OH)3 (P04 ) 2  *5 H 20] are the predominant
phosphate minerals present in soils. However, phosphate not 

present as discrete minerals is most directly involved in 
the water - soil interactions. The exact natures of these 

compounds are not known but a variety of iron, aluminum, and 

calcium phosphates are indicated (Lindsey, et al., 1962). 

Amorphous "hydrous oxides" have been extensively used as 
model systems to study phosphate adsorption properties of 

soils (Ryden, et a l ., 1977a; Parfitt, et a l ., 1975; Hsu and 
Rennie, 1962) .
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The irreversible binding of phosphorus by soils was 

first investigated to examine the deactivation of phosphate 
fertilizers applied to farmland (Lindsey, et al., 1962; 
Murrmann and Peech, 1968) . Recent work has emphasized the 

study of phosphate sorption capacities and mechanisms for 
the handling of phosphate waste. The action of sediments in 

reducing the phosphate content of lake water has also been 

extensively examined (Syers, et a l ., 1973; Li, et a l .,
1972). Many parallels can certainly be drawn between 

sediments and soils but one must be conscious of the 

chemical changes which will occur with a soil kept in 
waterlogged conditions.

Adsorption Models

The practical goal of most phosphate sorption studies 
is to aid in the determination of the phosphate sorption 

capacity of a particular soil. Ideally, a relatively simple 
mathematical model may be found which accurately indicates 
the rates and absolute amounts of phosphate which a soil can 
sorb.

Simple adsorption models have been used for many years 

in evaluating chemical interactions in soil systems. The 
Langmuir equation and variations of it are often used to 
predict sorption capacities of soils. However, these models 

appear adequate for only a few soils within a limited 
phosphate concentration range. Failure of the Langmuir
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equation arises from the assumptions inherent in its 
development. First of all, it was developed as an 
intentionally simplistic model for gas - solid interaction 

and assumes ideal gas behavior, an adsorbed monolayer, 

surface homogeneity of the solid, non - interaction of 
adsorbed materials, and no lateral movement of adsorbates 
(Daniels and Alberty, 1966) . Certainly none of these 
assumptions are valid for the interaction of a dissolved 
ionic species with the surface of a clay particle.

The empirical Freundlich equation, also a gas 

adsorption model, which allows for heterogeneous reactive 
sites on the solid surface, has also met with limited 

success, and in any case cannot be used to predict a maximum 
of adsorbed material.

More complex models of phosphorus sorption have been 

proposed, particularly addressing the kinetics of the 
sorption process and predictions of phosphorus movement 

through the soil (Enfield and Shew, 1975; Enfield, 1974; 

Novak and Adriano, 1975; Enfield, et a l ., 1976; Enfield, 

1978). Most of these models use predicted phosphate 
sorption maxima derived from empirical data along with 

factors of particle size, soil bulk density, velocity of 
migration of solution, and various other factors to predict 

phosphate movement. However, while a few models include 
terms designating the amount of native mineral phosphate and 

mineral aluminum and iron present, an exhaustive treatment
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of possible reaction products of phosphate and substances 

found in both the soil and soil solution has not been 

presented. Treatments that ignore possible desorption of 
native and/or previously sorbed phosphate have been shown to 

predict soil behavior inaccurately (Harter and Baker, 1977). 
An exhaustive treatment of all factors is prohibitively 
complex and may be unnecessary. Many of the models already 

presented in the literature have yet to be tested in the 
laboratory and/or in the field and one or more may yet prove 
successful (Enfield, 1978). However, variables such as pH, 

Eh, ionic strength, and the inhomogeneities of soil and 
wastewater must be carefully treated in 'any model that will 

meet with general success.

While all models have questionable application to field 

conditions, the Langmuir isotherm equation still finds very 
wide use in studying phosphate sorption behavior in the 

laboratory. This extensive use is due to the fact that it 

allows simple calculation of sorption maxima and relative 
sorption energies, both of which aid greatly in evaluating 
the sorption process. The examination of these parameters 

allows informed statements to be made on the mechanism or 
multiple mechanisms involved in the sorption process (Ryden, 

et al., 1977a).
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Factors Affecting Phosphate Sorption

If phosphate sorption consisted of a simple adsorption 
process on the surface of the soil particles, the behavior 
would depend primarily on a few physical parameters; 

particle size distribution, surface area, porosity of the 

particles, surface charge, and fluid dynamics defining flow 
around the particles. The sorption models described above 
deal primarily with just these effects and generally fail to 
follow empirical studies. Obviously, the sorption process 
is not simple and consists of a complex interplay of 
adsorption, chemisorption, ligand exchange, crystal growth, 

and precipitation. Thus, chemical interaction of dissolved 
phosphate with the surface of soil particles plays a major 

role in sorption behavior.

Reactive Materials

Deactivation of phosphate fertilizers has long been 
credited to the formation of phosphate compounds rendering 

phosphate unavailable to plants (Lindsey, et al., 1962). 
Identification of the exact compounds formed is of interest 

both in considering the problems of fertilization and in 

studying intentional phosphate retention by soils. Lindsey, 
et al. (1962) equilibrated saturated solutions of several 

phosphate fertilizers with soils and identified the 
precipitation products formed over extended periods of time. 
They found a large variety of calcium, aluminum, iron and
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manganese phosphate compounds, some indistinguishable from 

phosphate minerals, (hydroxyapatite, strengite), as well as 

other phosphate compounds and unidentifiable mixtures. 
Murrmann and Peech (1968) studied soils which were 

fertilized and limed five years before the initiation of the 
study. By examining the solubility of soil phosphate and 
soil calcium, they found that the long term reaction 
products of phosphate in soils consisted of the apatite 
series, with fluoroapatite as the ultimate product.

Various workers have shown that phosphate sorption 

capacities of soils can be correlated to the concentration 
of various materials in the soil. Aluminum, iron, calcium, 

and organic matter are generally recognized as the materials 
establishing overall phosphate sorbing properties of a soil. 

Extractable iron and aluminum have been very closely 
correlated with phosphate sorption abilities of soils 

(Vijayachandran and Harter, 1975; Ballard and Fiskell, 
1974). The iron and aluminum content of soil, determined by 

a dithionite - citrate - bicarbonate extraction (Mehra and 
Jackson, 1960) that reportedly removes amorphous free iron 

oxides and associated alumina, appears to be the factor most 
closely correlated to phosphate sorption capacities (Syers, 
et al., 1971). Still, the relative importance of iron and 

aluminum compounds is a topic of much debate. It has been 
suggested than amorphous aluminosilicates are more active 

per unit weight that iron compounds (Syers, et al 1971; 

Vijayachandran and Harter, 1975).
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Calcium has been found to play an important role in 

phosphate binding, particularly in calcareous soils. Due to 
the low solubility of calcium phosphate compounds, it is 
thought that a rapid adsorption of phosphate onto the 

calcium compound surface is followed by a precipitation and 
crystallization process (Mattingly, 1975) .

It has been suggested that an equilibrium exists among 

phosphate - containing compounds such that the least soluble 

forms will tend to be the ultimate products of sorption, 
although equilibration may be slow (MacKensie, 1962) . This 

explains the fact that phosphate sorption ability of many 
soils appears to be self - regenerating to a large degree. 
The more soluble forms of phosphate, which generally are 

thought to be the forms produced by rapid sorption, will be 

altered slowly to less soluble forms while also regenerating 

the original material for rapid sorption (Hsu and Rennie, 

1962; MacKensie, 1962). However, this redistribution of 

phosphate occurs very slowly in many soils, while regener­
ation of rapid sorption sites often occurs rather quickly 
(Mattingly, 1975). Hsu has suggested that accelerated 

decomposition of soil may result from sorption of phosphate. 
This accelerated destruction of mineral structure would make 

available more surface active materials for sorption, 
particularly aluminosilicates(Hsu, 1965). The long term 
effect of this process may be destruction of the suitability 
of a soil for agricultural use as well as wastewater 

treatment, although evidence for this is not convincing.
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Organic matter Has been credited with both increasing 

and decreasing the amount of P sorbed. Weir and Soper
(1967) found that less phosphate was irreversibly bound in 

soils to which large amounts of manure were added. They 

believe that soluble iron and aluminum complexes formed by 

interaction with the organic material were responsible for 
the effect. Vijayachandran and Harter (1975) suggested that 

organic material will enhance phosphate binding by physical 
adsorption of phosphate on the organic material.
Complexation of phosphate with metallo - humics may also 

play a role in the eventual mineralization of phosphate 
(Nissenbaum, 1979). On the other hand, Weir and Black

(1968) determined that additions of inorganic phosphorus had 
little effect on the mineralization of organic phosphorus in 
soils.

pH Effects

The effect of soil solution pH on phosphate sorption 

processes is debated widely. When a pH effect is 

recognized, it is usually based on a trend toward lower 

sorption with an increase in pH. This is generally 
attributed to a reduction of the charge on the clay surface 
as it approaches the point of zero charge, generally around 
pH 8 (Ryden and Syers, 1977a; Madrid and Posner, 1979).
Soil pH and effects of pH changes on phosphate sorption vary 

considerably with different soil types.
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By considering the pH effect on the solubility of 

phosphate minerals, other rationalizations can be made of 
the observed trends. Variscite and strengite increase in 
solubility with an increase in pH while the calcium 

containing phosphate minerals; fluoroapatite, 
hydroxyapatite, octocalcium phosphate, and dicalcium 
phosphate hydrate all decrease in solubility with an 

increase in pH (Weir and Soper, 1962; Lindsey and Moreno, 
1960). Thus, it is suggested that iron and aluminum 

associated phosphate forms will be more stable in acid soils 

than in alkaline soils, and the opposite effect will apply 
to the calcium associated phosphate forms. This is 

supported by the general differences observed between 

calcareous and non-calcareous soils.

Nur and Bates (1979) reported that phosphate binding in 
lake sediments reached a minimum at pH 7.33. They found 

that the minimum fixation for aluminum, iron, and calcium 

phosphate fractions all occurred at a near neutral pH. This 
is in apparent contradiction to the trends predicted on the 
basis of solubility properties of the metal phosphates. The 

complexed relationship of Eh, pH, and biological activity in 
sediment systems may cause the observed behavior.

Hsu (1973) commented on the large range of pH values 
reported as "optimum" for precipitation of iron phosphates 
in wastewater treatment with pH values ranging from 2.5 to
7.4. He found that the OH-/Fe concentration ratio in
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solution was a more important factor than pH alone at low 

phosphate concentration levels (P/Fe <= 0.8). The optimum 
OH-/Fe ratio varied with the particular phosphate 
concentration. At high phosphate concentrations, the effect 

of the OH-/Fe ratio was minimal.

The effect of changing the pH of a soil system must 
also be considered. As the natural pH of the soils is 

altered, shifts in soil solution equilibria will certainly 

occur. Alterations in the surface charge of the clays, and 
other particulates will all affect the manner of phosphate 
adsorption. A slow increase in soil pH is generally 

observed at wastewater land treatment sites (Bouwer and 
Chaney, 1974). Consequently, any detrimental effects of 

soil pH alteration on phosphate sorbing properties of the

soil may decrease the long term use of a disposal site.

Effects of Flooding of Soils; Changes in Eh

Under waterlogged conditions, as may occur with some 

methods of land treatment of wastewater, major chemical 
changes can occur in the soil. As the oxygen content of the 

soil is depleted, the action of sequentially heterotrophic, 

autotrophic, and obligatory anaerobes will result in the 
development of reducing conditions in the soil (Gotoh,
1973; Ponnamperuma, 1972) . The chemical environment of the 

soil changes dramatically under these conditions with the
reduction of Fe (III) to Fe (II) , nitrate to ammonia,
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sulfate to sulfide, and other conversions. The development 

of such conditions can dramatically affect phosphate 
sorption processes. Patrick and co-workers have conducted 

numerous investigations on the pH, moisture regime, initial 

phosphate content of the solution, and iron content of the 
soils (Mahapatra and Patrick, 1969; Patrick and Khalid, 
1974). They have reported that the chemical state of iron 
present in soil is an important factor in phosphate 
fixation. Fe (III) generally binds phosphate in less 

soluble forms than does Fe (II) (Patrick and Khalid, 1974). 

Since large quantities of iron may be reduced under 

waterlogged conditions in a soil (Asami, 1970;
Ponnamperuma, 1972; Turner and Patrick, 1968) , phosphate

sorption may be drastically reduced.

The effects of aerobic versus anaerobic conditions on
phosphate sorption behavior are complex. Patrick and Khalid 

(1974) found that with high initial concentrations of 

phosphate, a reducing atmosphere enhances phosphate 

adsorption relative to the same soil under oxidized 
conditions. At low P concentrations, the opposite is true. 

While the solubilities of ferrous phosphates are markedly 
higher than ferric phosphates, the much greater surface area 

of the reduced hydrous iron oxides as compared to oxidized 

forms may result in an increased sorption capacity and rate 
of sorption.
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Mahaprata and Patrick (1969) reported that for 
phosphate initially associated with the soil, waterlogging 
resulted in increased insoluble aluminum and iron phosphate 
content at the expense of soluble phosphate. The calcium 

phosphate content of the soil did not change substantially 
upon waterlogging.

Under long term, highly reduced conditions, actual 

destruction of clay structure occurs (Brinkman, 1970) . The 
resulting soil is characterized by very low cation exchange 
capacity and low pH, which in turn leads to high mobility of 
previously bound substances. The soil becomes unsuitable 

for plant growth as well as wastewater treatment.

The complex effects of the development of anaerobic 
conditions in a soil system will continue to be of interest 

to soil scientists. Difficulties in developing good 

experimental procedures for working with soil systems under 
reduced conditions have resulted in the lack of a completely 
consistent picture of the sometimes dramatic effects 
involved.

Exchangeability of Sorbed Phosphate

If the sorption process is a simple physical adsorption 
process, it should be fully reversible. Phosphate thus 
adsorbed should be exchangeable with solution phosphate and 
should desorb if the solution concentration drops below the 
equilibrium value. Exchangeability of sorbed phosphate
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indicates the degree of reversibility and thus the stability 
of the materials formed. Use of radioactive phosphorus 
allows one to follow adsorption and exchange reactions in 

soils.

Weir and Soper (1962) found that phosphate associated 
with aluminum in the soil was readily exchangeable. As the 
calcium content of the soil increased, the amount of 

exchangeable phosphate decreased. Iron associated phosphate 
showed intermediate behavior. Their findings appear to 
support the idea of low - solubility calcium products being 

the ultimate forms of sorbed phosphate.

Mattingly (1975) distinguished several forms of 

phosphate in soils based on the degree of exchangeability 
exhibited. He also showed that after aging for periods of 1 
to 5 months following equilibration with phosphate 

solutions, the ratio of exchangeable phosphate to sorbed 
phosphate was almost constant, indicating the establishment 
of an equilibrium.

Barrow and Shaw (1975) found that the amount of 

isotopically exchangeable phosphate increased proportionally 
with the amount of P sorbed but decreased with increasing 

equilibration time. This again indicates that a slow 
conversion process occurs among phosphate forms after 
initial sorption. Changes in pH did not affect the 

exchangeability properties in a continuous manner. 

Competitive pH effects on the solubilities of various
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phosphate compounds present explain this complex behavior. 

Ryden and Syers (1977d) observed similar effects on the 

exchangeability of phosphates in soils.

Mechanisms of Sorption

Many different mechanisms for phosphate sorption on 
soil particles have been proposed, but as with much of the 

reported work in this field, there is little consistency in 

views. Anion exchange, simple adsorption, chemisorption, 

ligand exchange and many other processes have been 
postulated as contributing to the overall sorption process. 

It is quite possible that all of these processes are 
involved.

Parfitt et a l . (1975) used infrared spectroscopic

techniques to observe changes in the surface structure of 

iron oxides sorbing phosphate. They concluded that 
phosphate formed a strongly bonded binuclear complex with 
Fe (III) ions on the surface of hydrous iron oxide gels. 

While the spectral properties of minerals examined obscured 
the results, a similar reaction was assumed to occur with 
clay particles.

In Langmuir isotherm studies, Hsu and Rennie (1962) 

found that phosphate fixation appears to follow true 
adsorption behavior in amorphous aluminum hydroxide. They 

reported that phosphate is primarily sorbed on the surface 
of the aluminum hydroxide since significant amounts were
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desorbed upon reequilibration. However, a precipitation

reaction may follow the initial adsorption, forming hydroxyl
aluminum phosphates under neutral or slightly acidic

«

conditions (Hsu, 1965). At this point, Hsu believes 

decomposition of the aluminum hydroxide occurs, exposing 
fresh surface for a new initial adsorption step. Because of 

this competitive precipitation and decomposition behavior, 

actual mineralization of the sorbed phosphate may never 
occur in nature.

Barrow and Shaw (1975b) proposed that soil phosphate 
exists in three "compartments" in successive equilibrium 

with each other. The first compartment includes labile 

phosphate that is exchangeable with solution phosphate. The 

second compartment, in equilibrium with both the first and 
third, contains bound phosphate, probably formed through 
ligand exchange with hydroxyl groups on the hydrous oxide 

surfaces. The third compartment, in equilibrium with the 

second, but not with the labile phosphate, contains tightly 
bound forms, possibly involving double linkage to the oxide 

surface. Barrow has attempted to quantify temperature 

effects with sorption behavior as well as studying the 

effects of other experimental conditions such as 

soil:solution ratios and vigor of mixing (Barrow,
1975b? 1979c).
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Ryden et al. (1977a) reported that three distinct 

sorption regions were consistently found for the Langmuir 
isotherm studies of different soil tyoes and for synthetic 

hydrous iron oxide. At low P concentration, the dominant 

mechanism is a substitution of phosphate for protonated 
hydroxyl groups on the hydrous iron oxide surface. This 
chemisorption reaction is pH dependent since the hydroxyl 

groups of the iron oxide must be protonated. The second 
mechanism involves a substitution of phosphate for 

unprotonated hydroxyl groups on the hydrous oxide. This 

reaction becomes the dominant form of sorption when the 
protonated reactive sites are saturated. Thus, while the 
second mechanism is independent of pH, its degree of 
contribution to the overall sorption process is dependent on 
the predominance of the first, pH dependent mechanism. 
Finally as all hydroxyl sites on the hydrous iron oxide are 

saturated, a third mechanism, involving a weak, more 
physical sorption onto the surface of the hydrous oxide 

becomes dominant. This more physically sorbed phosphate is 

much more susceptible to isotope exchange than the 

chemisorbed phosphate. Under some circumstances, the more 
physically sorbed phosphate can be completely desorbed 
(Ryden, et al., 1977e; Ryden and Syers, 1977c).

Ryden, Syers, and their coworkers have rationalized the 
effect of ionic strength and cations (Ryden and Syers,
1975; Ryden, et a l ., 1977e), kinetic studies (McLaughlin, 
et al. , 1977; Ryden, et al., 1977b), desorption and
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exchange (McLaughlin and Syers, 1978; Ryden and Syers, 

1977d) , and availability of phosphate in soils (Ryden and 
Syers, 1977c) to this three process mechanism. Thus, this 
mechanism is the most elegant and complete description of 

phosphate sorption behavior of soils to emerge in the 
literature to this time.



CHAPTER III

SOIL AND EFFLUENT CHARACTERIZATION 

Introduction

The soils to be studied were chosen on the basis of 
previous work conducted by the Cold Regions Research and 

Engineering Laboratories (CRREL) at Hanover, NH, as 

described in the statement of the problem. The two soils, 
Tujunga loamy coarse sand from the wastewater treatment site 
located at Manteca, CA, and Charlton silt loam from the 

prototype land treatment facility at CRREL, had exhibited 
vastly different phosphate binding. Quite high soil 

solution phosphate concentrations were found at the Manteca 
site. Samples from treatment fields actually desorbed 
phosphate when equilibrated with solution containing less 

than 8 pg/mL of p (Iskandar and Syers, 1980). The Tujunga 

soil used in these studies was removed from a control field 
located adjacent to the fields used for disposal of 

wastewater. This control field has never received any 

wastewater and is thought also to be free from any phosphate 
fertilizers.

28
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At the beginning of this project, the decision was made 
that the sorption behavior would be examined using effluent 

from a sewage treatment system rather than an inorganic salt 

solution. While this increased the complexity of the system 

studied, actual treatment conditions were better 

approximated.

Very little previous work has been reported using 
wastewater except for field studies and work with soil 
column systems (Sawhney and Hill, 1975). Van Riemsdijk, et 
al. (1977) used an "inorganic synthetic sewage water medium" 

in sorption studies. This medium contained inorganic salts 

in concentrations similiar to those of typical wastewater. 
They reported that this synthetic sewage water did not mimic 

some of the characteristics of actual sewage water, 

including buffering capacities and carbon dioxide 
saturation. Also, the complete absence of organic material 

and particulates eliminated the inflences of these materials 

which are typically found in wastewater. Many possible 
differences in behavior of soils equilibrated with 

wastewater and inorganic solutions can be. expected. Ionic 
strength effects have been clearly shown to influence the 
sorption behavior (Ryden, et al., 1977a; Barrow, 1979). The 

formation of organic complexes of phosphate and/or iron and 
aluminum may significantly affect the observed behavior.
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Selection of the domestic wastewater used in this 
project was entirely a matter of availability and 
convenience. While the measured characteristics of the 
wastewater all fall within the normal ranges reported, 

implication that this sample is entirely "typical" is not 
intended.

Experimental Procedures

Soils

The entire available supply of each soil (approximately 
1 kilogram in both cases) was air dried at room temperature 
and passed through a sieve to remove any particles greater 

than 2 mm in diameter. Each sieved soil was stored in a 

single sample bag. For the studies conducted before June, 

1979, samples were removed from these bags at random as 

needed. In June, 1979, the entire remaining supply of each 
soil was subdivided into 10.00 gram samples usir.g a Fisher 

brand Riffle Sampler (Cat. No. 4-940) and a Soil Test 

brand Precision Sample Splitter (Cat.No. C1-242B). These 
samples were stored in polystyrene sample containers and 

chosen at random for all further experiments.

Soil particle size distribution was determined using a 
sedimentation method after wet sieving through a 47 pm sieve 
(300 m esh). The readily oxidizable organic carbon of the
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soils was determined by oxidation with potassium dichromate 
in concentrated sulfuric acid, followed by titration of 

excess dichromate with 0.5 M ferrous ammonium sulfate 
solution (Gaudette, 1974).

Free iron oxide and associated alumina content of each 

soil was determined using the dithionite - citrate - 
bicarbonate extraction procedure of Mehra and Jackson (1960) 

with three successive treatments with dithionite as modified 
by Iskandar (personal communication). Extractable calcium 
content was determined by heating 1 gram of soil with 40 mL 

of 0.5 M HC1 at 100°C for 1 hour. All extractions were 
performed in triplicate. Extracts were analyzed using a 
Varian-Techtron atomic absorption spectrometer equivalent to 

Model A A 6 , with a DI-30 digital integrator. The 

determinations were made as follows: iron by atomic 

absorption using an air-acetylene flame; aluminum by atomic 

emission using a fuel rich nitrous oxide-acetylene flame; 

calcium by atomic absorption using an air-acetylene flame in 
the presence of 0.1% La to eliminate phosphate interference. 
Accuracy of the analyses was verified using the method of 
standard additions.

Effluent

The effluent used in experiments previous to June,
1979, was collected on December 7, 1977 at the Durham, NH 
sewage treatment plant, a secondary treatment facility. The
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concentration of filterable orthophosphate was 4.0 mg/L (ppm
3_P as P04 ) and the pH of the effluent was 6.8. The

entire supply of effluent was frozen shortly after 
collection and stored at -25°c until just before use. To 
assure homogeneity and to promote uniform size of 

particulate matter from sample to sample, individual 

portions of effluent were thoroughly mixed in an electric 

blender immediately before use.

The effluent used in the studies after June, 1979, was 
collected from the Durham sewage treatment plant on July 3, 

1979. The filterable orthophosphate (< 0.45 pm) content was 
2.40 mg/L P as phosphate, the total P was 3.80 mg/L, and the 
pH was 6.2. This effluent batch was stored and handled as 
described above.

Spectrophotometric determinations of orthophosphate 
were performed using'a Technicon AutoAnalyzer II, following 
the procedure recommended by the manufacturer (Murphy and 

Riley, 1962) . Measurements were made on untreated filtrate 
(< 0.45 pm) as well as filtrate subjected to persulfate 

digestions (Standard Methods, 1975) , with no difference in P 

concentration detected. Total P was measured using the 
persulfate digestion of unfiltered effluent. Dissolved 

organic carbon content of the effluent was determined using 
a Sybron/Barnstead Photochem Organic Carbon Analyzer after 
filtering the sample through a 0.45 pm nitrocellulose 
filter. The filterable residue, total residue, total fixed
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residue, and total volatile residue were found as designated 
in Standard Methods.

To improve consistency among effluent samples, a gallon 

was thawed, poisoned with 40 mg/L mercuric chloride and 

subdivided into 100 mL samples which were stored in separate 
polypropylene containers for later use in sorption studies. 
These samples were refrozen until just before use at which 
time they were thawed in a lukewarm (approximately 30°

35°C) water bath. This procedure was adopted to minimize 
any effects of bacterial action and chemical processes which 

might alter the composition of the effluent.

In normal land treatment of wastewater, effluent would 
contain particulate material. Consequently, we wished to 
perform sorption studies using unfiltered effluent.

However, sorption studies require filtration to separate 
soil from solution prior to analysis. This process 

unavoidably removes effluent particulates as well as soil. 

Therefore, it became necessary to determine if effluent 

particulates could influence apparent sorption behavior by 

interactions with P-32 or by chemical changes associated 
with pH adjustments.

For these reasons, phosphorus distribution and behavior 
in the effluent were examined. Aliquots of effluent (100 
mL) , either poisoned with 40 mg/L mercuric chloride or 
non-poisoned, were adjusted to pH 5.0, 6.5, or 8.0 and 

maintained at that pH with gentle stirring for one hour.
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One milliliter of each solution was filtered thrugh a 0.45 
urn nitrocellulose filter and diluted to an appropriate 
concentration for analysis. Total phosphate content of each 
solution was determined following a persulfate digestion on 

a second 1 mL sample. Resulting digests were filtered and 

diluted for analysis.

The equilibration of P-32 tracer within the effluent 

alone was also examined. Samples (100 mL) of both poisoned 
and non-poisoned effluent were again adjusted to pH 5.0,
6.5, and 8.0, and a small amount of carrier free P-32 as 

phosphoric acid (New England Nuclear) was added. After an 

equilibration period of one hour, a 1 mL sample was 

filtered, and the filtrate dried in a cupped planchet. A 
total of 10 mL of the solution was passed through another 

filter, which was then placed in a cupped planchet, 
dissolved in acetone and dried, leaving a thin film to 
minimize self - absorption effects in counting. The 

radioactivity of these samples was determined using an 
end-window Geiger-Muller detector connected to a standard 

scaler and associated electronics. The distribution of P-32 

was also examined in effluent samples to which 50 mg/L P as 
phosphate was added to see if increasing the phosphate 
levels in the effluent would cause an increased exchange 
between the dissolved and condensed forms of phosphate.
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RESULTS AND DISCUSSION

Soil Particle Size Distribution

The Tujunga soil contains much higher amounts of sand 

than the Charlton soil (Table 1). The relative coarseness 

of the Tujunga soil suggests that applied effluent should 
percolate through the soil at a rather rapid rate, thereby- 

lowering the residence time for chemical removal of 

phosphate by the soil. Correspondingly, there is a greater 
fraction of smaller soil particles in the Charlton soil.

The proportion of silt is substantially greater in the 
Charlton soil. While both soils are relatively low in clay 
content, there is a significantly greater precentage in the 
Charlton soil. Due to the much greater surface area and 

amount of reactive material associated with the small 

particles, the silt and clay fractions account for the major 

proportion of sorption occurring in the soil. On this basis 

alone, we would expect the Charlton soil to have 
significantly greater sorption capacity than the Tujunga 

soil. However, the particle size differences are inadequate 
to explain the dramatic P sorption differences. Particle 
size analyses also give no hint of the chemical reactions 

associated with phosphate sorption.



Table 1. Particle Size Distribution.

Size Fraction _% by Weight

Tujunga Charlton

Sand >47 pm 86.1% 58.5%

Silt 47 um - 2 pm 11.6% 38.4%
Clay <2 pm 2.3% 3.1%
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Soil Reactive Compounds and Organic Carbon Content

The free iron oxide and associated alumina 
concentrations in the Charlton soil were, respectively, four 
and ten times larger than in the Tujunga soil (Table 2). 

These large differences can be partially explained by the 

lower amounts of silt and clay in the Tujunga soil, but they 

also indicate a difference in overall chemical makeup. The 

HCl extractable calcium content of the Tujunga soil is 

somewhat higher than the Charlton soil, indicating a much 
greater proportion of calcium with respect to other reactive 
species in the Tujunga soil. Thus, calcium compounds may 

have a greater influence on phosphate binding behavior of 
the Tujunga soil.

The oxidizable organic carbon content of the soils also 

differ greatly, with the Charlton soil containing four times 

the organic carbon of the Tujunga soil. This difference may 

also have some effect on the sorption behavior of the soils, 
but the carbon concentrations cannot be considered to be 
high in either soil.

Native Phosphate Distribution

The identification of the metals with which phosphate 
is associated in soils is a major problem in analysis. 
Various procedures have been used to extract the different 

phosphate fractions selectively. The procedure of Chang and 

Jackson (1957) and modifications of their original procedure



Table 2 . Extractable Free Iron Oxide and Associated 
Alumina, Calcium, and Organic Carbon Content 
of the Soils.

Tuj unga Charlton

%Fe20 3 0.39% 1.6%
%A120 3 0.14% 1.6%

Ca 115 ug/g 90 pg/g

Organic C 0.54% 2.1%
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are most commonly used to identify the associated forms of 
phosphate in soils. According to the Chang and Jackson 

procedure, phosphate is extracted as the nominally soluble 
fraction (1 M ammonium chloride extract), aluminum 

associated fraction (pH 7.0, 0.5 M ammonium fluoride), iron 
associated phosphate and organic phosphate (0.1 M sodium 
hydroxide), calcium associated phosphate (0.25 M sulfuric 

acid), and "occluded" phosphates (0.3 M sodium citrate and 
sodium dithionite). However, all such fractionation 

estimates must be interpreted cautiously because sharp 

distinctions amoung fractions are not achieved. While each 

fraction contains materials other than the labels imply, the 
procedure does provide a means to compare the relative 
abundance of phosphorus forms in soils (Ballaux and Peaslee, 
1975; Barrow and Shaw, 1971; Williams, et al., 1967).

Despite the empirical nature of the procedures, the 

results of the Chang and Jackson methodology show large 

differences between the two soils (Table 3). In the 
Charlton soil, the phosphate is primarily associated with 

"aluminum and iron fractions", while only a small fraction 

of the phosphate in the Tujunga soil is similarly 
associated. Even allowing for the lack of specificity in 

the Chang and Jackson extraction procedure, the differences 

in the phosphate forms present are drastic enough to permit 
the prediction that phosphate sorption in the two soils 
might be quite different. Also, while the Charlton soil 
exhibits a greater capacity to adsorb phosphates, it



Table 3. Native Phosphorus Distribution According

to the Procedure of Chang and Jackson (1957

Charlton Tuj unga

pg/g P as P043“ hg/g P as P043'

Extractant

1 M NH4CL 0 5
(Soluble P)

0.5 M NH4F 301 58
(Al-associated P)

0.1 M NaOH 167 20

(Fe-associated P)

0.25 M H2S04 90 390
(Ca-associated P)

Total P 558 473
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contains about 100 pg/g more native phosphate than the 
Tujunga soil.

Effluent Characteristics

The measured characteristics of the effluent are 

presented in Table 4. All of these values are typical of 
effluents, though the phosphate level is low-normal (Bouwer 

and Chaney, 1974). Thus, the effluent used in these studies 

is fairly typical of effluent encountered in land treatment 
facilities.

Effluent Phosphorus Content and Reactivity

No significant changes were observed for the 

distribution of orthophosphate between soluble and 

particulate forms in the effluent at pH 5.0, 6.5, and 8.0 

after an equilibration time of 1 hour. The natural pH of 
the effluent at the time of collection was 6.2. The 
addition of 40 mg/L of mercuric chloride also had no effect 
on the phosphate distribution. Persulfate digestion of the 
filtered dissolved orthophosphate samples resulted in no 

higher detectable levels of phosphate than obtained without 

digestion. This means that all of the condensed phosphate 
is associated with the particulate matter of the effluent.

The degree of isotope exchange between the filterable 
phosphate in the effluent and the particulate forms was 
small but significantly affected by pH changes. In all
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Table 4. Effluent Characteristics.

Dissolved Organic Carbon 14.7 mg/1

Total Residue 407 mg/1
Total Particulate Matter 60 mg/1
Total Filterable Residue 347 mg/1

Total Fixed Residue 280 mg/1
Total Volatile Residue 127 mg/1

Filterable Orthophosphate 2.40 mg/1
Total Phosphate 3.80 mg/1
pH 6.2
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cases of effluent equilibrated at pH 5.0 and 6.5, 
approximately 1% of the radioactive phosphate was associated 
with the particulate matter after 1 hour of equilibration, 
poisoning of the effluent had no further effect at these pH 

values. However, at pH 8.0 and the natural effluent 

phosphate level (2.40 mg/L filterable P ) , 2.5% of the P-32 
was found in the particulate phase. Again, no significant 

differences between the poisoned and non-poisoned samples 
were observed. Where the effluent phosphate level was 
raised to 50 mg/L P before P-32 equilibration, both pH 8.0 

and poisoning altered the redistribution of the tracer. In

poisoned effluent at pH 8.0, 3.4% of the radiotracer was in

the particulate fraction, while in non-poisoned samples, the 
amount increased to 5.5%. Apparently, at pH 8.0, isotope 
exchange processes between the dissolved and condensed forms 

in the effluent become significant. This exchange is 

further enhanced by microbial action.

While these findings indicate the existance of a small 
influence by effluent particulate matter on P-32 

distribution at a solution pH of 8.0, impact on 

adsorption/desorption studies with soils would be small if
not negligible. This is especially true at natural

phosphate levels.



CHAPTER IV

ADSORPTION ISOTHERM AND ISOTOPE EXCHANGE STUDIES

Introduction

Measurement of adsorption isotherms is the method most 
commmonly employed for the study of soil - phosphate 

sorption. While a great deal of basic information can be 

derived from isotherms (See Chapter 2), they also provide a 
simple means to compare two or more soils.

Conventional equilibrium isotherms are usually 
constructed from a large amount of data in order to define 
the isotherm at low solution concentrations. In this 
research, isotherms were developed to provide information 

relevant to the discussion of the kinetic studies presented 

in the next chapter. As such, conditions for the isotherm 
studies were kept as similar as possible to the conditions 

used in the kinetic studies. The lower limit of solution 

concentration was established by the effluent phosphate 
concentration. Thus, a well defined isotherm for very low 

solution concentrations was not possible. However
44
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the conditions do effectively mimic those expected in land 
treatment systems.

Isotope exchange between the effluent particles and 
solution phosphate is enhanced when the phosphate content of 
the effluent is increased, as is discussed in Chapter 3.

Thus competitive effects will be observed in the isotope 
exchange measurements made in the following study.

Despite these problems, the equilibrium isotherms were 

conducted using effluent with phosphate added as needed.

This procedure better reflects the actual treatment of 
wastewater by soil application (Iskandar and Syers, 1980). 

Due to the problems of using effluent in isotherm studies, 
these isotherms should not be regarded as detailed 
evaluations of the characteristics of the soils. However, 

the studies are sufficiently detailed to allow comparison of 

the sorption capacities and amounts of exchangeable 

phosphate present after sorption by the two soils.

Experimental Procedures

Ten gram soil samples were equilibrated with 100 mL 
samples of effluent poisoned with 40 mg/L mercuric chloride. 
The natural effluent phosphate concentration of 2.4 mg/L P 

established the lower limit of the concentrations studied 
since it was necessary to conduct all equilibrations in 
effluent. For subsequent equilibrations, sufficient 

phosphate was added to the effluent to raise the
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concentration by 25, 5 0 ,  6 5 ,  85, and 100 mg P/L for the 
suspensions with the Charlton soil. Additions of 15, 35,
50, 75, and 100'mg/L were used for the Tujunga soil trials. 
The difference in choice of initial solution concentrations 

for the two soils was based on the difference in their 
sorption behavior. The features of the isotherms for each 

soil were better established with the set of data obtained 

using these initial concentrations.

The pH of resulting suspensions was adjusted and 

maintained at 5.0, 6.5, or 8.0 by the addition of HC1 or 

NaOH solutions as needed. A Corning Model 7 pH meter fitted 

with a Corning Cat. No. 476051 rugged duty combination pH 
electrode was used to monitor the pH of the suspensions. 

Equilibration of each soil at each of the initial solution 

concentrations was studied at each of the three p H ’s. All 
of the suspensions were agitated on a platform shaker 

throughout the equilibration time except during pH 
adjustment and sampling.

After shaking periods of 24, 48, 72, and 96 hours, 
representative samples of approximately 1.5 mL were removed 

from the suspensions and filtered through 0.45 urn 
nitrocellulose filters. A 1.0 mL aliquot of filtrate was 
immediately diluted to an appropriate concentration for 

spectrophotometric phosphate analysis using the Technicon 
AutoAnalyzer as discussed in the initial studies of the 
effluent. The resulting solutions were stored in acid
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washed polypropylene bottles at 2°c until analysis was 
performed.

After 96 hours of equilibration, carrier free P-32 as 
phosphoric acid (New England Nuclear) was added to provide 

an activity of approximately 10000 cpm/mL of filtered 
solution. Shaking of the suspensions was continued for 
another 8 hours. At this time, samples of the suspensions 

were removed, filtered, and a 1 mL aliquot of filtrate dried

in a cupped planchet over low heat. The radioactivity of
these samples were determined using a Geiger - Muller 
detector as before.

Results and Discussion

The isotherms for both soils at all pH's for a 96 hour
equilibration are presented in Figure 1. The dramatic

difference in sorption capacity between the Charlton and 

Tujunga soils is immediately apparent. Complete data sets 
for the Charlton and Tujunga soil adsorption isotherms are 
presented in Appendices A and B respectively.

Note that the suspensions have not reached equilibrium 
after 96 hours but approach to equilibrium is sufficient to 

allow examination of sorption capacity and exchange 

behavior. The Charlton soil sorbs in excess of 900 ug P/g 
while maintaining a solution concentration of less than 10 
mg/L with pH 5.0 suspension (Further discussion of pH 
effects follows). On the other hand, the Tujunga soil
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appeals to reach a sorption maximum of approximately 150 ug 

P/g soil. With the natural phosphate level of the effluent, 
the lowest concentration used for these isotherms, about 

one-half of the phosphate remains in solution after 96 hours 
of equilibration with Tujunga soil. These findings verify 
the very low phosphate sorbing capacity of the Tujunga soil 
(Murrmann and Iskandar, 1976; Iskandar and Syers, 1980).

Charlton Soil Sorption Isotherms

Figures 2a-d present the isotherms constructed from the 

24, 48, 72, and 96 hour data. While minor increases in 
sorption continue after the first 24 hours of equilibration, 
the most apparent effect of time is improved resolution of 
the pH effects. Solution pH has a marked effect on the 

amount of phosphate sorbed by Charlton soil. Increase in pH 
from 5.0 to 8.0 results in a steady decrease in the sorption 

of phosphate at all concentrations. According to Ryden, et 

a l ., (1977a), P is sorbed predominantly as physically sorbed 
phosphate when the equilibrium solution concentration is 
greater than 1 mg/L, as it is for most of these solutions. 
Surface charge will play a significant role in more physical 
sorption. As pH of the suspension increases, there will be 

a lower overall surface charge on the soil particles since 

fewer hydroxyl sites will be protonated than at an acidic 
pH.
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Increased solubility of iron and aluminum phosphate 
compounds at alkaline pH will also contribute to a lowering 
of the sorption capacity with an increase in pH. The 

relatively high iron and aluminum content of the Charlton 

soil indicates that these compounds play an important role 

in phosphate sorption. Thus, a decrease in phosphate 

sorption capacity may be expected in alkaline solutions.

Charlton Soil Exchange Studies

The degree to which isotopically labelled phosphate 

will be removed from solution in a suspension at equilibrium 

indicates the amount of exchangeable phosphate present in 

the soil. Since exchange of phosphate between the soil and 
solution involves a dynamic equilibrium, phosphate will 

continue to move between sorbed forms and solution forms 
even at equilibrium. While suspensions in this study are 
not at true equilibrium after 96 hours of equilibration, the 
net amount of sorption occurring over the 8 hour 

equilibration period after addition of radiotracer is very 

small. An 8 hour equilibration period was used rather than 

a shorter period as used by Ryden and Syers (1977d) to 
insure approach to isotopic equilibrium.
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The amount of exchangeable phosphate in the soil is 
calculated as follows.

% P-32 (Soil)
mg P ( E x ) A  (Sol "n) = mg P (Sol’n) X _______________

% P-32 (Sol ’n)

ug P(Ex)/g Soil = 10 X mg P(Ex)/L sol'n

The results are presented in Figure 3. The complete set of 
data is presented in appendix C.

A major portion of the sorbed phosphate is bound as a 

physically sorbed form which is subject to isotope exchange. 

The proportion of sorbed phosphate that is exchangeable is 
quite large and constant within experimental error 
throughout the concentration range of these isotherms. The 
plotted lines indicate the least squares fit for the 

combined pH 5.0 and 6.5 data (A) and pH 8.0 data (B). There 

is no statistical difference between the pH 5.0 and pH 6.5 

data, but the difference between the pooled pH 5.0 and 6.5 

data and the pH 8.0 data is significant at the 90% 
confidence level. The statistical calculations are outlined 
in Appendix C.

Increased amounts of physically sorbed phosphate can 
account for the observed pH effect. The mechanisms of Ryden 
et a l . (1977a) propose that phosphate is irreversibly bound 

on a soil by ligand exchange with either protonated or 
unprotonated hydroxyl sites. At pH 5.0, many surface 
hydroxyls will be protonated and phosphate should be
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strongly attracted and rapidly converted to chemisorbed P. 
However, at pH 8.0, the surface charge on the soil is lower 
and chemisorption would be restricted to non - protonated 
hydroxyls. As argued above, this decreased surface charge 

results in generally decreased sorption, but also the lack 

of protonated ligand exchange sites limits the amount of 

chemisorption occurring. Thus, a larger proportion of 

physically sorbed, exchangeable P is expected to be present 
at alkaline pH in contrast to acidic pH. Suspensions with 

effluent containing only the natural phosphate level (2.4 
mg/L) showed no measureable P in solution at equilibrium and 

thus no exchangeable P in the soil. In this case it can be 

assumed that all of the sorbed P was transformed to 
chemisorbed forms not susceptible to isotope exchange.

Tujunga Soil Sorption Isotherms and Exchange Studies

In contrast, the sorption capacity of Tujunga soil is 
considerably lower than that of Charlton soil and there is 
no recognizable pH effect on the sorption behavior.

Apparent equilibrium is reached fairly quickly with the 

Tujunga soil suspensions with little difference seen in the 
isotherms generated from the 24 hour and 96 hour 

equilibration data (Figures 4a and b ) .

The amount of exchangeable phosphate present in the 
soil is greater than the amount sorbed at the lowest 
solution concentrations. Exchangeable phosphate represents
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a majority of the sorbed phosphate at all levels of addition 
(Figure 5). The large amount of scatter in the experimental 
data is due to increased sampling errors with the coarser 

Tujunga soil as compared to Charlton soil. Also, the low 

amounts of P sorbed by this soil make absolute errors of 
measurement of greater proportional significance than the 

equivalent errors for Charlton soil. The correlation 
coefficient for a least squares fit is statistically 
significant despite the apparent scatter of the data 

(Appendix C ) .
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CHAPTER V

KINETIC STUDIES: ADSORPTION AND DESORPTION

Introduction

The rate at which wastewater may be applied to soil 
while maintaining efficient phosphate removal is important 

in the design of land treatment systems. Often, the rate of 

application is based on the permeability of the soil rather 
than the rate of phosphate removal from the wastewater. If 

soil permeability is high and the rate of phosphate removal 
low, solution phosphate may reach very deep soil levels.

Through these kinetic studies of phosphate sorption, 
contributions of sorption rate differences between the two 

soils to the problems observed at the Manteca, CA treatment 

site will be evaluated.

Experimental Procedures

The rates of sorption of phosphate from wastewater at 
pH°s 5.0, 6.5, and 8.0 were measured for both Charlton and 
Tujunga soils. Air dried ten-gram soil samples were 
equilibrated with 10 mL of distilled water for 24 hours

62
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before use to insure uniform hydration of the soil. The 

hydrated soil was mixed with previously described 100 mL 

portions of homogenized, poisoned wastewater stored in 

polypropylene storage containers. These containers served 

as reaction vessels for the sorption studies. The pH was 
adjusted to the desired value using HC1 or NaOH solutions.
An Orion Model 701A pH meter fitted with a Corning 

Cat. No. 476051 rugged duty combination pH electrode was 

used to monitor the pH of the suspensions. Mixing was 
accomplished using a Nalgene Floating Stir Bar which 

maintained vigorous mixing action while avoiding mechanical 
grinding of the soil by the stir bar.

To enable an unbiased evaluation of the effect of 
different wastev/ater pH on the sorption rates for both 

Charlton and Tujunga soils, a completely randomized 
experiment was designed. For each soil, triplicate sorption 

experiments were performed for each of the three pH values, 

using spectrophotometric measurement in one series and P-32 
as a radiotracer in a second series. Thus, 36 trials were 
performed in this scheme (2 soils, at 3 pH's, with 2 

analytical methods, all in triplicate).

The sequence in which these trials were performed was 

decided on the basis of a set of random numbers generated 
from a simple computer program. Any uncontrolled variations 

in the trials are randomly distributed throughout the 
experiment. This allows for a proper statistical evaluation
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of the differences among the experimental conditions as well 
as determination of the general reproducibility of the 

results.

At periodic intervals, samples of approximately 1.5 mL 

were removed from the suspensions and filtered through 0.45 

urn pore size nitrocellulose filters. For spectrophotometric 
phosphate analysis, a 1.0 mL aliquot of filtrate was 
immediately diluted to an appropriate concentration and the 
resulting solution was stored in an acid washed 
polypropylene bottle at 2°C until analysis was performed.

For the P-32 tracer experiments, a 1.0 mL aliquot of the 

filtrate was transferred to a cupped planchet and dried over 
low heat. The P-32 radioactivity of the residue was 
measured using an end - window Geiger - Muller detector 

connnected to a standard scaler and associated electronics. 
Decay corrections were made for samples measured at 

different times.

At the conclusion of an adsorption trial, the remaining 

suspension was filtered through a 0.40 urn pore size 

polycarbonate filter. Polycarbonate filters were chosen for 
this use due to the difficulties encountered in removing 
soil samples from nitrocellulose filters. The retained 
material, which included both wastewater and soil particles, 

was washed twice with 10 mL portions of 70% methanol - water 
to remove interstitial solution without displacing bound 

phosphate. Each sample was then air dried.
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After the recovered material for each adsorption trial 

was dried for a minimum of 48 hours, the soil was 
resuspended in either 100 mL of unused wastewater or 0.005 M 
NaCl solution. The sodium chloride solution modeled the 

ionic strength of the wastewater but contained no phosphate.

Each resulting suspension was adjusted to the same pH 
as used in the adsorption trial for the soil sample 
involved. Suspensions were stirred and samples were removed 

periodically and analyzed as in the adsorption trials. At 
the conclusion of the desorption experiment, the remaining 

soil was again filtered and washed with 70% methanol and 

allowed to air dry.

Results and Discussion

Phosphate Adsorption Trials

Since all adsorption trials were performed in 

triplicate, each plotted point is a mean of three values.
An estimate of the precision of any point was computed as 
the pooled standard deviation of all trials for each soil 
and method of analysis. For the P-32 trials, the Charlton 
soil had an absolute pooled standard deviation of a single 
datum of 1.79%. Therefore, the standard deviation of a mean 
of 3 values would be 1.79/V3" = 1.03%. The corresponding 

values for the Tujunga soil are 5.96% and 3.44%. The
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primary reason for the greater imprecision for the Tujunga 

soil is the large fraction of coarse particles, which causes 
a greater error in sampling.

For the spectrophotometric trials, the imprecision is 

somewhat greater due to the more extensive sample 

preparation involved. The Charlton soil pooled standard 

deviations of single points and means were 3.58% and 2.07% 

while the corresponding values for the Tujunga soil were 

8.31% and 4.80%. The number of degrees of freedom in the 
calculations for the Charlton soil were only 14 because 

often the detection capability of the spectrophotometric 
technique was exceeded for these samples. Thus, many of the 
samples simply indicated that more than 98.5% of the 

phosphate was adsorbed.

It is imperative to note the very different behavior 

indicated by the P-32 and the bulk of the solution phosphate 

as determined spectrophotometrically. This dramatically 
illustrates possible errors inherent in using only one of 
these methods to evaluate the behavior of sorbed phosphate. 
The radiotracer reflects the behavior of the phosphate 
initially present in the wastewater. Spectrophotometric 

monitoring of the solution phosphate shows the net changes 

of phosphate concentration in solution, including possible 

release of native phosphate from the soil. Thus, 
information obtained by using both methods of analysis is 
complementary.



67

Phosphate Adsorption by Charlton Soil

Adsorption behavior for the Charlton soil is presented 

* in Figures 6 and 7. Greater than 90% of the phosphate was 
adsorbed within 30 minutes of mixing the wastewater with the 

soil in all cases.
t

The rates of sorption observed were dependent on the 

vigor of mixing of the suspensions. In preliminary sorption 
experiments, the suspensions were agitated by bubbling air 
through the suspensions from an aerator tube located at the 

bottom of the reaction container. Generally lower amounts 

of phosphate were removed from the solution using this air 
agitation compared to mixing with the Nalgene floating stir 

bar. Reproducibility of the measurements was also much 
poorer using air agitation.

Barrow and Shaw (1979c) found that rates of sorption 
vary with the vigor of mixing. They examined three vigorous 
methods of mixing; rotation of the bottles on a roller, end 

- over - end shaking at 30 cycles per minute, and 

reciprocating shaking at 240 cycles per minute. They found 

higher rates of sorption using the reciprocating shaking 
with soil particles of unstable structure. They suggested 

that very vigorous agitation physically broke down the soil 
particles exposing more reactive materials for sorption.
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For the experiments in this study, agitation provided 

by the platform shaker in the equilibrium isotherm studies 

and the mixing used in the kinetic studies yielded
9

comparable conditions. The isotherm studies carried out 

with wastewater containing phosphate at the natural level 
produced results comparable to the kinetic data obtained in 
similar suspensions. The lower rates of sorption observed 

with air agitation are quite likely due to less efficient 
suspension of all the soil particles resulting in reduced 

mass transfer efficiency.

The P-32 phosphate adsorption (Figure 6) shows almost 
complete adsorption for the suspensions at pH 5.0 and 6.5, 
but a significantly lower rate of adsorption at pH 8.0. 
Likewise for the spectrophotometrically monitored trials 
(Figure 7), there is no detectable phosphate (<0.04 m g / L ) in 
solution after 30 minutes of equilibration at the two lower 
pH values. However, the pH 8.0 suspension exhibits a 

pattern of rapid adsorption followed by a slower release.

Other differences in the pH 8.0 trials were noted. 
Filtrates of the suspensions acquired a distinct brownish 
color after 12 hours of equilibration. Also, suspensions 

became difficult to filter after that period of time. These 

characteristics were not observed in the suspensions at 
lower pH. The release of hydrous iron oxides and organic 

material from the soil would account for both the color 

development in the filtrate and the filtering difficulties.
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Reduced P sorption at pH 8.0 can be rationalized on the 
basis of the elegant mechanistic proposals of Ryden et 
a l . (1977a). Very low concentrations of P are available for 
sorption from the wastewater alone, corresponding to 24 ug/g 

soil. Furthermore, the concentrations of P remaining in 
solution after 30 minutes are always below 0.3 mg/L and for 
pH 5.0 and 6.5, they are below 0.04 mg/L. According to 

Ryden et a l . (1977a), at equilibrium we would expect all of 

this phosphate to have been bound by ligand exchange with 
either protonated or unprotonated hydroxyl groups. However, 

our kinetic studies are for times ranging from 30 minutes to 

48 hours and, therefore, represent non-equilibrium 
conditions. According to the proposed mechanism of Ryden, P 
is initially more physically sorbed followed by a slow 

transformation to chemisorbed P. Since the surface charge 

will play a significant role in more physical adsorption, it 
will affect the apparent sorption rate. At pH 5.0, many 
surface hydroxyls will be protonated and phosphate would be 
strongly attracted and rapidly converted to chemisorbed P. 

Although we did not measure the point of zero charge, the 

absence of any detectable difference in sorption rates at pH 

5.0 and 6.5 suggests that the surface is still highly 

attractive to the phosphate at the latter pH. However, at 
pH 8.0, the surface charge on the soil is quite different 
and the sites available for chemisorption would be 
restricted to non - protonated hydroxyls. Hence, the lower 
sorption rate observed is not unreasonable.
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Another factor contributing to this pH effect is the 
increased solubility of iron and aluminum phosphate 
compounds in alkaline solutions. The relatively high iron 
and aluminum content of the Charlton soil indicates that 

these compounds play an important role in phosphate 
sorption. Thus a decrease in phosphate sorption capacity 
may be expected in alkaline solutions. The difference in 
sorption pattern between the spectrophotometric and tracer 
studies indicates that the phosphate being released is in 
part native phosphate. This phenomenom is dealt with more 

extensively in the desorption studies.

Phosphate Desorption by Char1 ton soil

Desorption studies were designed to evaluate the 
behavior of sorbed phosphate under two conditions. 
Re-equilibration of soil in fresh wastewater mimics a repeat 

application of wastewater after a short dormant period as 

would occur in many land treatment facilities.

Equilibration in 0.005 M NaCl solution provides an 

evaluation of the stability of the phosphates in the soil, 
both native and most recently sorbed.

A complete set of results for adsorption, resuspension 
in wastewater, and resuspension in sodium chloride solution 

is presented on a single graph for each combination of 
conditions (Figures 8 through 13). In this way, all the 

information derived for each set of conditions employed is
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presented in a self - consistent manner. For all the 

figures with the exception of the Tujunga soil at pH 5.0, 

whenever net adsorption occurs (positive values),
9

percentages are calculated relative to the initial 

concentration in the filterable fraction of the wastewater 
(100%). When there is a net desorption (negative values), 
percentages are calculated relative to the concentration of 

P removed from the wastewater during the initial adsorption 

tr ial.

For the Charlton soil at pH 5.0 and 6.5 using 

spectrophotometric determinations (Figures 8 and 9), a 
simple pattern is observed. The "desorption" trials in 
wastewater produce a net adsorption of P. Reequilibration 
of the soil with wastewater shows that the capacity to sorb 

phosphate is, at most, marginally affected by the phosphate 

sorbed in the initial adsorption trial. Almost identical 

sorption behavior is observed for the "desorption" in 

wastewater. Correspondingly, no significant amount of 
phosphate is found in the sodium chloride solution.
Clearly, sorbed P is very tightly bound by the Charlton soil 

at pH 5.0 and 6.5.

For pH 8.0 (Figure 10), sorption observed for the 

second volume of wastewater shows a somewhat decreased rate 
and amount of adsorption, though the large majority of P is 
again removed from the wastewater.
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However, in the equilibration with salt solution, a net 

desorption is seen to the extent of 20% of the phosphate 
sorbed from the intial adsorption trial. This result is 
consistent with the explanation of adsorption behavior which 

considered solubility properties of iron and aluminum 

compounds and the character of adsorption sites.

For the studies using P-32 (Figures 11-13), the results 
are complementary to the pattern shown by the 
spectrophotometric determinations. For pH 5.0 and 6.5, no 
significant amount of P-32 is released to either the fresh 

wastewater or the NaCl solution. This indicates that the 

freshly sorbed phosphate is bound in a stable, insoluble 

form not subject to isotope exchange. For pH 8.0, however, 

a very small amount of P-32 is desorbed to the fresh 
wastewater (^'1%), with a significantly greater amount 
released to the salt solution (~5%). This contrasts to the 
20% of phosphate desorbed to the salt solution observed 

when measured spectrophotometrically. Apparently, 75% of 
the phosphate desorbed is from native phosphate (possible 
further dissolution) and 25% is from the freshly sorbed 

phosphate. Thus, for low amounts of sorbed phosphate, most 
of the freshly sorbed phosphate in the Charlton soil is 

either initially bound or is rapidly transformed to very 

stable forms.
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In summary, phosphate adsorption and desorption 
behavior at pH from 5.0 to 8.0 on the Charlton soil is 

adequately explained by a combination of the mechanistic 

proposals of Ryden et a l . and solubility properties of 

phosphate minerals.

Phosphate Adsorption by the Tujunga Soil and Comparison with 

Charlton Soil

The adsorption behavior for the Tujunga soil is 

illustrated in Figures 14 and 15. It is immediately obvious 

that these results present a much more complex and very 
different picture than the Charlton soil. In what follows, 
possible explanations of these data will be presented but 
completely unambiguous statements are not possible.

The P-32 results (Figure 14) show that the rates and 

amounts of phosphate sorption on Tujunga soil are much lower 

than for the Charlton soil at all pH s. For example, with 

the Charlton soil, the minimum percent uptake of P-32 after 

30 minutes is 93 + % whereas with Tujunga soil, the maximum 
uptake after 30 minutes is ~48%. After 46 hours, the 
minimum percent uptake with the Charlton is ~97% where as 

with Tujunga soil, the uptake is approximately 77% at all 
pH*s. The low sorption capacity of the Tujunga soil is 

verified by the equilibrium isotherm studies discussed in 

Chapter 4.
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It is also informative to examine the pH effect on the 

P-32 adsorption with Tujunga soil (Figure 14). At pH 6.5 
and 8.0, equilibrium is approached quite rapidly, i.e., the 
curves have very low slopes after 12 hours. In contrast, at 

pH 5.0, the initial rate is slow but uptake continues at a 

significant rate throughout the 46 hour equilibration 
period. This pH effect is the inverse of that observed for 

the Charlton soil and suggests that different mechanisms are 
operating.

Comparison of P-32 results in Figure 14 with 
spectrophotometric results in Figure 15 reveals a much lower 
percent P uptake for the latter. The difference is likely 
due to the combined contributions of isotope exchange and 

dissolution of native P. Evidence to be discussed in 

conjunction with desorption experiments will argue that 
dissolution is the dominant effect at low sorbed P levels. 

Further comparison. >etween Figures 14 and 15 show that pH 

effects are similar with both types of measurement. At pH 
6.5 and 8.0, equilibrium is rapidly approached, especially 

at pH 8.0. At pH 5.0, a net desorption of P from the soil 

is observed for the first two hours, followed by a slow but 
constant rate of adsorption. After 46 hours, the net 

adsorption is equal to that for pH 8.0.

It is impossible to give an unequivocal mechanistic 
explanation of the pH 5.0 behavior. However, one 
possibility is that there are small amounts of calcium
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phosphate compounds which are significantly soluble at pH
5.0. There is other evidence of the presence of soluble 

phosphate in the Tujunga soil. For example, ammonium 
chloride extraction (Table 4) indicated 5 pg/g of soluble 

phosphate. Iskandar and Syers (1980) have reported 

significant amounts of water soluble P in this soil. Based 
on a soluble P concentration of 2.40 mg/L in the wastewater, 
the release of 50 ug of P from 10 g of soil to 100 mL of 
wastewater would increase the concentration to 2.90 mg/L, or 
a 20% increase. In Figure 15, this would appear as a 20% 

desorption (assuming no simultaneous adsorption to 

compensate). Since the observed increase in concentration 
was only 8%, this rationalization seems plausible. 
Incidentally, the P release assumed in the above 
calculations only amounts to about 1% of the total P of 
Tujunga soil.

We should also note that the amount of P required for 

the above calculations could be contributed by the release 

of weak physically sorbed phosphate. According to sorption 

isotherms generated by Ryden et a l . (1977a, 1977b), when

the equilibrium concentration of soluble P is 1 mg/L or 
greater, the predominant amount of P sorbed by a soil is in 
this physically sorbed form. Although the experiments in 
this series do not represent equilibrium conditions, in all 
cases, there is 1 mg/L or more phosphate remaining in 

solution after 46 hours of equilibration.
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The isotope exchange studies discussed previously 

support the argument that much of the sorbed P is in a 
physically sorbed, exchangeable form. The isotope exchange 
studies showed that there was more exchangeable P present 

than freshly sorbed P at low loadings of P. Much of the 
native phosphate is, therefore, in an exchangeable form. If 

inadequate chemisorption sites are present in the Tujunga 

soil to immobilize the native phosphate, little added 

phosphate can be expected to be strongly bound. The absence 
of a pH effect on the exchangeability of sorbed P also 

argues for the saturation of chemisorption sites on the
<5

Tujunga soil. If most hydroxyl sites have already bound 
phosphate or other materials, protonation of the sites will 

be limited and will have little effect on surface charge or 

chemisorption.

Phosphate Desorption by Tuj unga So il and Compar ison with 
Charlton So il

The desorption behavior of the Tujunga soil also 

indicates that more complex equilibria within the soil are 
involved as compared to the Charlton soil. Consistent with 
the adsorption experiments for the Tujunga soil, the pH 5.0 

desorption trials show behavior substantially different from 

the other pH values (Figure 16 through 18).
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Spectrophotometric monitoring _t pH 6.5 and 8.0 
(Figures 17 and 18) show adsorption upon reequilibration 

with fresh wastewater occurring at an amount almost equal to 
the initial adsorption trials. Equilibration with the 

sodium chloride solution results in a large amount of 

desorption (70% at pH 6.5 and 80% at pH 8.0), clear evidence 
that most of the sorbed P is readily desorbed in a solution 
containing no phosphate. Actual solution concentrations of 
P in the NaCl solutions after 46 hours are 0.7 - 0.8 mg/L, 
large enough to support the argument that the P is in a 

physically sorbed form (See previous section). The pH 5.0 

desorption results (Fig. .17) show an overall net desorption 
in both the wastewater and salt solution. In fact, in the 

salt solution, an amount of phosphate is released greater 
than 100% of the amount sorbed by the soil in the initial 
adsorption trials. The pattern of sorption upon 

reequilibration with wastewater at pH 5.0 parallels the 
original adsorption except that a greater amount of 
phosphate is initially released from the soil. Apparently, 

the form of sorbed phosphate present is very easily 

solubilized at pH 5.0.

While no pH effect was found in the sorption isotherms 

for the Tujunga soil, any effects which may be present might 
be obscured by the approach to phosphate saturation of the 
soil. Also, since the most obvious effects of pH are in the 
first two hours of equilibration, the infrequent sampling 

times used in the isotherm studies may have missed the early
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effects. Thus the pH effects on the sorption isotherms may 
simply be unresolveable given the data obtained.

The radiotracer studies for the Tujunga soil (Figures 
19,20,21) show that considerably less P-32 is desorbed than 

the net amounts of phosphate released as indicated 
spectrophotometrically. Furthermore, less P-32 is desorbed 
from the soil into the sodium chloride solution than in the 
fresh wastewater at pH 5.0 and 6.5 - opposite to all other 

desorption results. This indicates that the desorption with 

Tujunga soil involves more than the solubility of the 

phosphate forms of the soil. Isotope exchange occurs to a 
large degree. The fact that phosphate present in the 
wastewater increases the amount of P-32 released indicates 
that a dynamic equilibrium with rapid exchange is involved 
in the adsorption/desorption behavior of the Tujunga soil.

The amount of P-32 desorbed to the fresh wastewater 

increases substantially with a decrease in pH, but the 
amount of P-32 desorbed in the NaCl solution remained 
practically constant with pH. Apparently, the degree to 
which isotope exchange occurs is sharply increased at pH
5.0. No such effect was observed in the isotope exchange 

studies made in conjunction with the adsorption isotherms, 

but the noticeable effect may be limited to systems 

containing relatively low amounts of phosphate. The 
relative amount of phosphate exchangeable at pH 5.0 may be 
obscured by the large amounts of phosphate remaining in
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solution in most of the isotherm studies. While no 
definitive explanation for this can be offered, it is 

interesting to speculate on the possibility that the 

speciation of phosphate, i.e. H 2p o 4~ vs HP042“ , 

has an effect on the isotope exchange process where P is 
loosely bound.



CHAPTER VI

DETERMINATION OF REDUCED IRON BY MOSSBAUER SPECTROSCOPY

Introduction

One of the initial goals of this research project was 
to evaluate the effects of reducing conditions in soil 

systems and the resulting reduction of iron (III) to iron 

(II) on the sorption of phosphate from solution. As 
discussed in Chapter 2, several workers have related the 
reduction of iron in soils to decreased retention of 
phosphate. Since some wastewater application systems flood 
the fields used for treatment, reducing conditions can 

develop under waterlogged conditions (Whisler, et a l .,

1974). A study of phosphate sorption by Charlton and 
Tujunga soils under reducing conditions would be of interest 
in explaining their overall sorption behavior.

Mossbauer spectroscopy allows the measurement of the 
relative abundance of iron in different chemical environ­
ments. It is an attractive method for the study of soils

96
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due to the minimal amount of sample preparation required. 
Mossbauer spectroscopy has been successfully applied to the 
measurement of the relative amounts of iron (III) to iron 
(II) in soils and sediments (Burns, 1972; Kodama, et al., 
1977; Manning, 1977).

Determining the total amount of iron present in soil is 

a relatively simple procedure. The relative abundances of 
Fe (II) to Fe (III) determined by Mossbauer can then be used 

in combination with the total amount of iron to determine 
the absolute amounts of the forms of iron present. 
Conventional determinations of Fe (II) versus Fe (III) 

concentrations in soils are dependent on extraction methods. 

As in many soil analysis methods, these extractions yield 

operational definitions of the iron extracted and have 

questionable specificity. Thus, accurate determinations of 
the amounts of reduced iron present in soils are difficult 
(Gotoh and Patrick, 1974) . The Mossbauer procedure is 

potentially a better method than these extraction methods to 
monitor accurately the amounts of reduced iron present.

Experimental Procedures

Soil samples for Mossbauer spectroscopic determinations 
were prepared by filtering a soil suspension through a 

nitrocellulose filter to produce a suitably thin (~1 mm) and 
uniform layer of soil on the filter. The filters and

mMdeposited soil were placed in "Petrislides " obtained
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from the Millipore Corporation, Bedford, MA. This 
container, which holds the filter firmly in a flat position, 
was then placed in a vacuum dissicator for 12 hours to dry 
the sample (necessary for good spectra). The container was 

then sealed to prevent any further interaction with the 

atmosphere.

To evaluate the feasibility of using Mossbauer 
spectroscopy for estimating reducible iron in soils, a 
sample of Charlton soil depositied on a membrane filter was 
treated with several drops of 1 M hydroxylamine 

hydrochloride for several minutes to reduce a portion of the 

iron (III) present. The sample was then vacuum dried and 
sealed in a Petrislide as described above.

All Mossbauer spectra were produced using a Model AME - 
40 Mossbauer spectrometer manufactured by Elscint, Ltd. 

Haifa, Israel.

Results and Discussion

Mossbauer spectra were successfully obtained for the 

soil samples. The spectra clearly show the characteristic 
doublets produced by Fe (III) and Fe (II) (Figures 22 and 

23). Since much of the iron present in soil clays is 
associated with the hydrous iron oxide coatings of the 
particles, the observed spectra for untreated soils are 
representative of the reactive iron fraction of the soil 
responsible for sorption of phosphate.



Figure 22. Mossbauer Spectra:
Top - Untreated Charlton Soil 
Bottom - Untreated Tujunga So



Figure 23* Mossbauer Spectrum:
Charlton Soil After Treatment 
with Hydroxylamine Hydrochloride 
Outer Peaks Indicate Abundance o 
Fe(Il) in Sample.
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An increased relative concentration of Fe (II) in the 

soil sample treated with hydroxyl amine hydrochloride 

demonstrates that Mossbauer spectroscopy promises to be a 

method of determining iron oxidation states in soil. The 

outer peaks of the spectrum of the treated soil are 
significantly larger, indicating the increased relative 

abundance of reduced iron.

A major problem with routine application of Mossbauer 

Spectroscopy is the time required to obtain good spectra. 

Mossbauer is a time consuming technique, at best, requiring 

on the order of four hours to obtain a spectrum of an 
ideally suited, pure iron sample. This time requirement is 
inherent in the technique because only absorption due to 
iron-57 is actually observed. Since Fe-57 has a natural 
abundance of only about 2 %, lengthy counting times are 
required to obtain satisfactory signal-to-background 

resolution for the gamma ray absorption. The examination of 

soils with their relatively low iron content and complex 

structure requires an apparent minimum of 48 hours, with 
longer times, up to as much as several weeks, desirable for 

a spectrum of good definition.

These studies were also limited because the available 

Cobalt-57 gamma ray source had an activity of only about 1 
millicurie. Most Mossbauer spectroscopy studies employ 

sources with activities between 30 and 100 millicuries. 

Sources of higher activity reduce the time needed to obtain
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adequate counting statistics.

Some manipulation of the soil samples could also reduce 
the requirements for obtaining good spectra. Examination of 
only the silt and clay fractions of the soil instead of the 

whole soil would help due to the larger proportion of iron 

present in these soil particles. The disadvantage of this 

approach is the separation step required to isolate the silt 

and clay. This somewhat defeats the advantage of minimal 
sample manipulation since the potential for atmospheric 
exposure is increased. Another possible way to shorten the 

time required for good spectra is to apply iron coatings to 
the soil particles enriched in Fe-57. This would 
substantially enhance the absorption per unit weight of 

sample but the modified particles might not accurately mimic 

the behavior of unaltered particles.

Other techniques of sample preparation are possible.

For example, Manning (1977) employed freeze-dried sediment 
samples. However, our experience to date indicates that the 

procedure described above is quite satisfactory from a 
manipulative point of view and yields spectra of good 

quality given the limitations in the instrumentation used. 

The necessity of drying the samples can also limit the 

overall usefulness of the technique. Mossbauer spectra 
cannot be obtained for liquid or gelatinous samples.
However, the hydrous iron oxides associated with clay 
particles contain large quantities of water in their
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non-rigid structure. Thus the act of drying the samples 

substantially alters the internal structure of the soil 

fractions being examined.

In addition to the problems encountered with the use of 

the Mossbauer spectrometer, the study of phosphate sorption 
in soil systems under reducing conditions was deferred for a 
variety of procedural problems and equipment limitations.
All such studies must be carried out under carefully 

controlled oxygen free conditions. This necessitates the 
use of elaborate atmosphere control systems such as designed 

and employed by Patrick and coworkers (Gotoh and Patrick, 

1974; Patrick and Khalid, 1974). Alternative procedures 
might be carried out in more conventional controlled 
atmosphere glove boxes but they are not trivial extensions 
of open air techniques. Thus, due to the magnitude of the 
precedural developments and limitations of available 

equipment, the decision was made to discontinue this phase 

of the research.



CHAPTER VII

CONCLUSIONS

The particulate phase of sewage effluent appears 
relatively inactive in the phosphate binding process since 

no significant change in phosphate distribution occurs with 

changes in pH. Exchange of P-32 from the soluble to the 
particulate phase is also very low but increases (a) with 
total soluble P concentration, (b) with increases in pH, and 
(c) in the presence of bacterial action.

The Charlton soil is capable of rapidly binding 

effluent phosphate at pH from 5.0 to 8.0. However, binding 

is less complete at pH 8.0 than at lower pH. Desorption 

studies using reequilibration of soil with NaCl solution 
demonstrate that the sorbed P is very strongly bound.

Isotope exchange studies show a steadily increasing amount 
of exchangeable phosphate present with increasing amounts of 
sorbed phosphate. Much of the behavior of the Charlton soil 
can be satisfactorily explained by the three mechanism 

sorption scheme of Ryden, et al. (1977a). With dormant 
periods such as those normally present in wastewater land 

treatment systems, it appears that the rate
104
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of P sorption on Charlton soil would be more than adequate 

to maintain high quality renovation of wastewater for 
phosphate.

Tujunga soil sorbs smaller amounts of phosphate and at 

a slower rate than the Charlton soil. Decreasing pH 

decreases phosphate sorption at low phosphate levels typical 
for sewage effluents. This pH effect is the inverse of the 

behavior of the Charlton soil. At high amounts of sorbed 

phosphate, there is no apparent pH effect on the behavior of 
the Tujunga soil. Desorption studies show that the sorbed 
phosphate is weakly bound at all levels of addition and 

subject to a large amount of exchange and desorption. The 
behavior of the Tujunga soil can be partially explained by 

the physical sorption mechanism of Ryden, et al., coupled 

with assumptions about the solubility of phosphate 
compounds. However, a definitive explanation based on all 
the information obtained is not possible. In contrast to 
the Charlton soil, dormant periods cannot be expected to 
revitalize the Tujunga soil probably because the sorbed P is 
not transformed from physical sorbed forms to chemisorbed 

forms.

Interpretation of these results in terms of use of the 
soils for typical wastewater land treatment systems 
indicates that the Charlton soil is well suited for 
phosphate removal. However, use of the Tujunga soil would 
be expected to result in very unsatisfactory performance.
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Continual application of wastewater may cause displacement 
of previously sorbed phosphate. Also, if the pH of the 
applied effluent falls below 6 .0 , large amounts of 

phosphate, including native P, may be mobilized. These 

conclusions account for the poor performance of the Manteca, 

California wastewater treatment site reported by Murrmann 
and Iskandar (1976) .

Complementary use of radiotracers and spectrophoto- 
metric measurement for the study of sorption kinetics 
provided much information not obtainable by either method of 

analysis alone. The amount of exchange occurring concurrent 
with the sorption process was shown by the differences in 

the relative amounts of P-32 and spectrophotometrically 
determined phosphate removed from solution. The behavior of 
the P-32 reflected the movement of the phosphate which was 

initially in solution. Spectrophotometric determinations 
showed the net changes in solution concentration due to the 

combined effects of sorption by the soil and release from 
the soil.

During the desorption studies, behavior of the sorbed 
P-32 indicated the stability of the freshly sorbed phosphate 

as distinct from the stability of the native phosphate. The 
spectrophotometric measurements monitor the desorption of 
both the freshly sorbed and native phosphate.
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Mossbauer spectroscopy appears to be a satisfactory 

technique for determining the concentration of reduced iron 
in a soil. Satisfactory spectra can be obtained with a 
minimal amount of sample handling. However/ the 

instrumentation available for this project was marginally 
adequate.

All of these processes must be examined to gain a 

complete understanding of the phosphate sorbing abilities of 

soils. The stability of native phosphate is of great 
importance in evaluating a soil to be used in wastewater 

treatment.
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APPENDIX A



Charlton Soil Adsorption Isotherms; 24 Hour Equilibration.

PH 6.5
Solution 

Cone. 
P/L ),

P
Sorbed 

(ug P/g Soil)
Solution 

Cone. 
(mg P/L)

P
Sorbed 

(ug P/g Soil)
Solution 

Cone. 
(mg P/L)

P
Sorbed 

(ug P/g Soil)

<o.o4 24.0 <0.04 24.0 0.13 22 .7
0.80 266. 1.28 261. 0.14 , 22.6
0.63 268. 1.16 262. 3.4 5 239.
1.22 512. 3.16 492. 12.2 402.
1.28 511. 3.06 493. 11.8 40 6.
^•73 477. 13.2 542. 9.98 424.
4.26 481. 24.5 629. 20.5 469 •
8.81 586. 24.7 627. 18.1 493.

17.8 696. 23.0 794. 32.4 550.
14.0 884. 35.8 666. 35.8 666.
13.6 888.

i
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Charlton Soil Adsorption Isotherms; 48 Hour Equilibration.

________ PH,5.0____________________   pH 6.5_______  _________ pH 8.0_____________
Solution P Solution P Solution P

Cone. Sorbed Cone. Sorbed Cone. Sorbedling...P/L)  - (ug P/g Soil) . (mg P/L) (ug P/g Soil) (mg P/L) (ug P/g Soil)

<0.04 24.0 <0.04 24.0 0.25 21 .5
0.38 2?1. 0.82 266. 0.23 217.
0.54 269. 0.86 265. 3.02 244.
0.8 7 515. 3.15 •

ON-3- 15.8 516.
0.80 516. 2.22 502. 15.8 516.
2.92 495. 8.86 585. 9.90 42 5-
2.10 503. 18.1 693. 8.70 437.
4.99 624. 19.6 678. 7-78 446.
5.86 615. 26.4 760. 26.8 606.

13-3 741. 20.8 816. 32.5 699.
10.9 915. 18.8 836. 36.9 655.
10.6 918.
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Charlton Soil Adsorption Isotherms; 72 Hour Equilibration.

________ PH 5.0_________________ pH
Solution P Solution

Cone. Sorbed Cone.
(mg P/L) . (ug P/g Soil) (mg P/L)

<0.0A 2A.0 <0.0A
0.30 272. O.70
0.37 270. 0.72
O.63 Ux Hi OO ■ 7.8O
0.57 518. 15.2
2.09 503. 17.3
1.33 511. 22.9
k . l k 633. 18.8
3 - k ? 6 k 0 . 16.1
9.80 776.
7.97 9 k k .

8.31 9A1.

■ 5    pH 8.0_____________
P Solution P

Sorbed Cone. Sorbed
■ lug P/g Soil) (mg P/L) (ug P/g Soil)

2k.0 0.20 22.0
267. 0.21 21.9

t

267. . 3 . 1 3  2^3.
596. 9.28 A31.
722. 8.A0 AA0.
701. 8.22 k k 2 .

795. 15.3 521.
836. 25.2 622.
863. 15.8 5A6.

33.8 686.
35-2 672.
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Charlton Soil Adsorption Isotherms; 96 Hour Equilibration.

-BiLLP. pH 6.5 pH 8.0
Solution 

Cone. 
(ms P/L)

P
Sorbed 

(ug P/g Soil)
Solution 

Cone. 
(mg P/L)

P
Sorbed 

J u g  P/g Soil)
Solution 

Cone. 
(mg P/L)

P
Sorbed 

(ug P/g Soil)

<0.04 24.0 <0.04 24.0 0.29 21.2
0.28 272. 0.68 267. O.36 20.4
0.31 271. 0.68 267. 3.41 240.
0.55 519. 1.73 506. 8.44 440.
0.46 519. 1.60 508. 9.32 431.
2.41 650. 5.76 616. 8.66 437.
1.59 508. 14.3 731. 15.7 517.
1.02 514. 14.9 725. 15.6 518.
2.44 ON 0 • 17.2 852. 33.7 687.
7.98 794. 14.9 VPlF'-

00

6.95 955.

I
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Tujunga Soil Adsorption Isotherms; 24 Hour Equilibration.

PH 6.5
Dlution 
Cone. 

m  P / D
P

Sorbed 
(ug P/g Soil)

Solution 
Cone. 

(mg P/L)
P

Sorbed 
Jug P/g Soil)

Solution 
Cone. 

(mg P/L)
P

Sorbed 
(ug P/g Soil)

1.92 4.80 1.28 11.2 1.37 10.3
1.96 4.40 1.35 10.5 1.37 10.3

13.3 41.0 12.1 53.0 11.0 64.0
29.8 76.0 12.1 53.0 26.8 106.
46.5 59.0 28.2 92.0 28.8 86.0
46.1 63.0 44.9 75-0 39.6 128.
60.6 168. 44.4 80.0 38.0 144.
60.2 172. 62.4 150. 57-1 203.
91.2 112. 91.9 105. 85-9 I65.
92.5 99.0 93-0 94.0 92.2 102.

78.4 240.
88.2 142. roVjO



Tujunga Soil Adsorption Isotherms; 48 Hour Equilibration.

-PH,5.0 .PH 6.5 pH 8.0
Solution 

Cone. 
(mg P/L)

1.62
1.59

12.1
29.1
45-9
33.6 
62.8
66.7 

92.4 
92.3

P
Sorbed 

(ug P/g Soil)

7.80
8.10

53.0
83.0 
65.O

188.
146.
107.
100.
101.

Solution 
Cone. 

_(mg P/L)

1.01
1.10

10.9 
12.1 
25.6
41.6
42.7 
60.1
91.7 
90.3
89.9 
8 7.5

P
Sorbed 

(ug P/g Soil)

13.9
13.0
65.0
53-0

118.
108.
97.0 

174. 
107. 
121. 
125. 
149.

Solution 
Cone.Jmg-P/L)..
1.36 
1.26 

10.8 
24.7 
29.0 
38.1
39.6 
58.9
84.6

P
Sorbed 

(ug P/g Soil)

10.4
11.4 
66.0

127.
84.0

143.
128.
185.
178.

't
jZ

l



J
Tujunga Soil Adsorption Isotherms; 72 Hour Equilibration.

pH 8.0
Dlution 
Cone. 
ng P/L)

P
Sorbed 

(ug P/g Soil)
Solution 

Cone. 
(mg P/L)

P
Sorbed 

(ug P/g Soil)
Solution 

Cone. 
(mg P/L)

P
Sorbed 

(ug P/g Soil)

1.32 10.8 1.80 6.0 1.60 8.0
1.38 10.2 11.4- 60.0 1.37 10.3

11.6 58.0 11.7 57.0 10.8 66.0
29.1 83.0 25.6 118. 24-.3 131 •
44.6 78.0 4-0.1 123. 29.4- 80.0
4-0.3 121. 38.3 14-1. 41.7 107.
64-.1 133. 60.1 173- 39.6 128.
57-0 204-. 89.8 126. 59.0 184-.
89-5 129. 93.9 85.0 83.4- 190.
90.3 121. 89.0 134-. 8 6  A 160.

85.8 166.
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Tujunga Soil Adsorption Isotherms; 96 Hour Equilibration.

________ pHr5»0______     pH 6.5_________________________ pH 8.0_____________
Solution P Solution P Solution P

Cone. Sorbed Cone. Sorbed Cone. Sorbed
.(ffig. pA.) (ug P/g Soil) _ (mg P/L) (ug P/g Soil) (mg P/L) (ug P/g Soil)

1.15 12.5 1.77 6.3 1.57 8.3
1.21 11.9 1.12 12.8 1.4-0 10.0

10.9 69.O 10.5 69.0 10.6 68.0
25-7 117. 11.5 59-0 22.7 14-7.
4-5.0 7 4-.0 24-.8 12 6. 26.4- 110.
4-2.0 104-. 4-1.8 106. 39-4- 130.
58.5 189. 4-1.9 105. 35.7 167.
58.5 189. 58.9 I85. 60.1 173.
87.9 14-5. 91.2 112. 85.1 173.
91.2 112. 8I.5 209.

88.3 141.
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Charlton Soil: Exchangeable P Versus Sorbed P. 

'pH 5.0_________    d H 6.5
p
>rbed 
?/g Soil)

P
Exchange. 

(ug P/g Soil)
P

Sorbed 
.(ug P/g Soil)

P
Exchange. 

lug P/g Soil)
P

Sorbed 
(ug P/g Soil)

P
Exchange. 

(ug P/g Soil)
272. 100. 2 67. 129. 24-0. 14-9.
271. 65. 267. 152. 440. 24-8.
519. 132. 507. 14-9 • 4-31. 215.
519. 120. 508. 195- 4-37 • 228.

ON VJN o • 259. 616. 235- 517. 230.

•
00o 193. *731. *117. 518, 223.

514-. 14-7. 725. 282. 687. 309.
650. 204-. 852. 388.
794-. 329. 875. 370.
951. 4-4-5.
955- 3^9.

#Data point omitted in statistical calculations. 128



Tujunga Soil: Exchangeable P Versus Sorbed P.

PH 5.0 pH 6.5 pH 8.0
p

Sorbed 
(ug P/g Soil)

P
Exchange. 

(ug P/g Soil)
P

Sorbed 
(ug P/g Soil)

P
Exchange. 

(ug P/g Soil)
P

Sorbed 
(ug P/g Soil)

P
Exchange. 

(ug P/g Soil)

12.5 19.5 6.3 35.3 8.3 18.1
11.9 18.3 12.8 17.7 10.0 16.4
65.0 34.4 69.O 46.3 68.0 45.2

117. 57-2 59-0 36.9 147- 41.
74.0 108. 126. 46.2 110. 38.1

104. 48.2 106. 48.0 130. 76.6
189. 33.4 185. 84.9 173. 114,
145. 70.2 112. 42.0
112. 43.0 209. 

141.
27.8 
91.6

129
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Statistical Calculations: Evaluation of pH Effects on
P Exchangeability.

Least Squares Fit for Intercept = 0
2  xySlope b1 =  p—

1  x^
2 ( 2  xy)2

2 y  " 2 ?1 w H _____Variance Sa =
yo n-1

Results for Charlton Soil

pH 5.0 pH 6.5 pH 8.0
b± = 0.3706 bx = 0.3363 bt = 0.4776

Sa = 48.51 pg/g Sa = 119.9 Pg/g Sa = 25.37 Pg/g
y0 y o y o

Pooled Values: pH 5*0 & 6.5
b1= 0.355 ’ Sa = 83.88

y o

(S| ) (n - 1) + (Sa ) (n, - 1)
2 ya yhPooled Variance Sa = ------------------------------------
yp (n - 1) + (nb- 1)

Sa = 71-91

Test of Significance of Difference in Slopes (t Test)

bl " b2t = --------- ±---- -------  = 2.00
(SA ) ( 1 + 1 )*

p 2 2 
X1 X 2

Tabular Value t (d.f.=24) (.90) = 1.71
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