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Hexose oxidase was purified from an aqueous extract of Chondrus 

crispus by first co-precipitating the enzyme with carrageenan with 2% 

CaClg. The precipitate was resolubilized with 2 M NaCl and the 

carrageenan selectively removed as its insoluble cetyltrimethylammonium 

complex. The hexose oxidase that remained was purified by DEAE- 

cellulose chromatography using a 0-0.5 M NaCl gradient, or pH gradient 

of 6.8 - 4.0. A 54 fold purification with a recovery of 1% was 

obtained. A fraction having a specific activity of 36 U/mg showed one 

major band after disc gel electrophoresis. This band corresponded 

with a zone which stained for hexose oxidase activity with a specific 

stain developed for this purpose.

The enzyme had a molecular weight of 140,000 as determined 

from gel filtration, and contained two subunits of about 70,800 as 

determined from SDS-polyacrylamide gel electrophoresis. The isoelectric 

point of the protein was pH 4.40. The enzyme contained only 4% by 

weight carbohydrate. Trace metal analysis by atomic absorption showed 

a minimum of 4.0 mol copper and 5.3 mol iron per mol protein.

The kinetics of enzyme catalysis was studied polarographically 

in the presence and absence of each product. The data was consistent 

with a ping pong hi bi mechanism of hexose oxidation.

The kinetic constants determined from this analysis were:

K°2, app = 22-33 ppm
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The inhibition constants determined with were:

The inhibition constants determined with D-glucono-6-lactone were:

K°2 = 0.44 M 

= 0.30 M

The state of copper was determined by EPR analysis. A narrow 

signal of 79 G was observed at g = 2.075 with no hyperfine structure. 

The signal was considered to be either Cu (II) in the perpendicular 

region of the spectrum with hidden hyperfine structure, or exchange or 

weak dipole-dipole coupled copper ions. The copper ions are separated 

by 7.9 A if dipolar coupling is presumed. The evidence for a dimeric 

structure came from spectral features which included an uv absorption 

at 330 nm and an EPR shoulder suggestive of a pair of perpendicular 

absorbances. By attributing the pair of resonances to coupled copper 

(II) ions, a very small D splitting of 2.81 x 10  ̂cm ^ was calculated 

which could arise from electron-electron dipolar and/or exchange 

interactions.

Under an atmosphere of followed by glucose addition, the 

copper signal diminished by 47% (68 ± 2.4 to 36 ± 1), while the iron 

signal (g = 4.26) remained essentially unchanged (22 to 20). Copper
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(II) was considered to be changing to Cu (I) under these conditions.

A mechanism was proposed which was consistent with the data 

obtained from the physical-chemical study and kinetic determinations. 

Oxygen binds to the copper dimers which are in the univalent state 

with the formation of peroxo-ion and 2 Cu(II). Hydrogen peroxide is 

released upon donation of protons from groups located on the protein. 

Glucose binds to the enzyme next, reducing the pairs of copper (II) to 

pairs of Cu (I) as was suggested by the diminished EPR signal shown 

under these conditions. The protons are replaced on the protein with 

D-glucono-5-lactone formation, completing the cycle.
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INTRODUCTION

A. Copper-Containing Proteins and Oxygen 

Metalloproteins are particularly well-suited for the study of 

the mechanism of enzyme action since the unique physical-chemical 

characteristics of the metal ion constitute intrinsic probes in the 

region of the protein where it is bound (Vallee and Williams, 1968).

Because most metal ions in these enzymes take an active part in the 

action of the enzyme, studies to determine the metal ion's environment, 

valence, and ligands at rest and during active catalysis, will enable 

certain predictions to be made about the order of events which make up 

the mechanism of the enzyme. Some studies can be carried out in the 

absence of substrate, thus eliminating the effects induced by the 

substrate binding, so that only the region in the enzyme involved 

directly with catalysis, the active center, is scrutinized, as the 

metal ion labels this site.

Many enzymes require metal ions either as a tightly bound 

cofactor or as a complex with substrate. Over 30% of the enzymes 

which had been studied up to 1964 have a metal ion requirement or are 

metalloproteins (Dixon and Webb, 1964). The most frequently observed 

metal ion cofactors are transition group elements, like copper and 

iron. These two metals serve as important cofactors for enzymes and 

proteins which utilize oxygen, the oxidases, oxygenases and oxygen- 

carriers. Their usefulness in enzymes can be attributed to the favorable 

chemical properties of metal ions in these reactions, the availability 

of copper and iron in sea water and the role each has played in the 

adaptation of organisms to an aerobic atmosphere (Friedean and Hsieh,

1976).

1
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A listing of the more well-known copper containing proteins, 

their function and copper content (from Malmstrom, e^ al., 1975), 

shows that these proteins may contain more than one copper atom/mol 

protein and are active in the utilization of oxygen, as 0^ carriers, 

or as catalysts of oxidation reactions employing oxygen as the electron 

acceptor:

Protein Function Number of Copper atoms

Hemocyanin 0^ transport 2/subunit

Superoxide dismutase 0^ dismutation 2

Cytochrome c oxidase Oxidation of cytochrome 2
c; terminal enzyme in 
respiration

Laccase 4
Oxidation of organic 

Tyrosinase 4-6
substrates

Galactose oxidase 1

Stellacyanin Electron transport 1

Transition metal ions, such as copper, function in enzymes involved 

with oxygen reactions because they are capable of changing the electronic 

structure of oxygen, reducing the strength of the bond between the 

oxygen atoms. Oxygen possesses unusual stability because the molecule 

is held together by one two-electron bond and also by two three- 

electron bonds (Ingraham, 1966). To be used in oxidations the molecule 

must be activated in some way, weakening the strong bonds. One way in 

which metal ions such as copper can serve as activators is by partially 

or completely donating a readily available electron to the oxygen 

molecule. Ingraham (1966) notes that when a metal-oxygen complex is 

formed the oxygen donates a pair of electrons to the metal and the
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metal donates an electron pair from a filled ^-shell producing a 

double bond. As a result the oxygen atoms are now held together by 

just one single bond which is more readily broken. More importantly, 

the overall charge of the complex is positive and so electron addition 

for redox catalysis is favored. Transition metal ions, then, acf’-<>'at-e 

oxygen by forming complexes in which the electronic structure of 

oxygen is changed. Once activated, the addition of electrons for the 

purpose of reducing oxygen is favored by the net-positive charge of 

the complex.

Copper-containing enzymes which use oxygen as an electron 

acceptor can be classified as either producing hydrogen peroxide in a 

two electron reduction, or producing water in a four-electron change. 

Galactose oxidase catalyzes a two electron reduction of oxygen in 

which galactose is oxidized in the C-6 position with the formation of 

peroxide. The blue oxidases such as laccase catalyze the reduction of 

oxygen to water through a four electron oxidation of its phenolic 

substrate. There are some copper enzymes, such as tyrosinase, which 

catalyze a cleavage of molecular oxygen in which one atom is reduced 

to water while the other atom becomes incorporated into a phenolic 

product. Enzymes which catalyze this type of reaction are called 

mixed-function oxidases (Hayashi and Hashimoto, 1950).

A widely studied group of copper enzymes are the so-called 

blue oxidases. The enzymes, ascorbic acid oxidase, laccase and 

ceruloplasmin and the oxygen carrier protein hemocyanin, are examples 

of blue copper proteins. Upon deoxygenation or introduction of the 

second substrate to these proteins, the blue color bleaches (Lontie 

and Vanquickenborne, 1974). This phenomenon was interpreted
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as a change occurring in the valence state of copper from Cu(II) to 

Cu(I) under reducing conditions and was supported by experiments using 

valence-specific copper-chelating agents (Dawson, 1966). The copper 

in these proteins is viewed as storing and conducting electrons from 

one substrate to the other.

The development of probing magnetic techniques, such as electron 

paramagnetic resonance spectroscopy (EPR) has enabled researchers to 

study the state of copper in these proteins with regard to its electronic 

and magnetic properties. Three different forms of copper (II) have 

been found in one enzyme, laccase, as a result of EPR study (Malmstrom, 

et al., 1968).

The copper in blue proteins as compared with simple chelates 

of copper was first thought to be different when it was found that the 

color was 5-10 times more intense than that of model complexes (Ingraham, 

1966). It was concluded that the chemistry of copper found in the 

blue proteins is unlike any simple copper complex.

Studies of the magnetic properties of copper protein in the 

EPR analysis of laccase by Malmstrom and Vanngard and coworkers, 

uncovered much information about the state of the four coppers in this 

enzyme. The copper in this enzyme was viewed as consisting of one- 

half Cu(II) and one-half Cu(I), (Levine, 1966), since EPR integration 

studies showed that half the copper in laccase could be detected as 

Cu(II) while the other half was not detectable, (Malkin, et al.,

1969), and assumed to be Cu (I), the most common diamagnetic form of 

copper (Malmstrom, 1965). From anaerobic titrations, however, it was 

found that laccase could accept four electrons, as many as it had 

copper ions, indicating that all the cooper must be Cu(II) (Fee, et
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al., 1969). Furthermore, the copper that was detected in EPR analysis 

consisted of two types. This conclusion was based on the magnetic 

splitting parameters of each form (Broman, et̂  , 1962). One form, 

called Type I copper, was found to be responsible for the intense blue 

color in these enzymes. It had a small hyperfine splitting constant 

indicative of severe electron delocalization (Malmstrom, et ,

1968). Type 2 copper had properties very similar to small chelates 

and could bind anionic intermediates such as peroxo anion in the 

action of laccase (Andreasson and Vanngard, 1970). Some maintain, 

however, that Type 2 copper is derived from denatured enzyme (Nakamura, 

1976). Two ions failed to give an EPR signal and were thought at 

first to be Cu(I). This is not the only form of copper which is 

incapable of producing an EPR signal (Ochiai, 1977). Copper with a 

short relaxation time or an easily saturated transition resulting from 

copper being in a specific environment would not be expected to give 

an EPR signal. Antiferromagnetically coupled copper or low spin 

Cu(III) would give the same result. The EPR-nondetectable copper in 

laccase was found to be a pair of magnetically coupled Cu(II) ions.

This conclusion was based on the discovery chat these two EPR-silent 

ions in the enzyme accepted electrons in pairs (Malmstrom, et al.,

1968). Laccase has a large absorption in the region of 330 nm, a 

feature consistent with a copper dimer (Malkin, , 1969). In

addition, when laccase and other dimer-containing proteins were reacted 

with NO a broad absorption EPR spectrum at g=2 with forbidden transitions 

containing 7 hyperfine lines was produced, all of which are diagnostic 

of magnetically coupled copper (Mason, 1976) . Thus three forms of 

copper were found in laccase: Type 1 was found to be responsible for
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the intense blue color. Type 2 was found to be involved in anion 

binding, and Type 3 was a copper dimer which acted as an electron pair 

acceptor. Copper dimers have since been discovered in other blue 

oxidases, such as ascorbic acid oxidase (Lee and Dawson, 1973), and 

ceruloplasmin (Frieden and Hsieh, 1976), along with the other two 

copper forms. This suggests they are general features of the blue 

copper oxidases (Malmstrom, e^ ̂ . , 1975).

A copper dimer structure has been found in nonblue copper- 

containing proteins of which tyrosinase is one example. This multi­

copper enzyme failed to show an EPR spectrum (Kertesz, 1966). But the 

enzyme absorbed light at 330 nm (Mason, 1976) and produced a spectrum 

attributable to dimeric copper upon reaction with nitrous oxide (Schoot 

Witerkamp and Mason, 1973). The existence of copper dimers in the 

blue and nonblue oxidases suggests that copper dimers may be a common 

feature in the transfer of pairs of electrons in these enzymes.

Another form of copper, Cu(III), has been implicated in the 

action of galactose oxidase, an enzyme which contains only one copper 

atom. On the basis of redox titrations, Hamilton (1976) has proposed 

that Cu(III) may be formed from Cu(I) in the resting enzyme by a two 

electron transfer. Occasionally, Cu(II) is formed when superoxide 

"leaks" out of the active enzyme, and this form is the only form 

detected by EPR spectroscopy.

An unusual copper-cysteine structure has been suggested by Williams 

and his coworkers (Byers, et̂  al•, 1973) to explain some features of 

blue oxidases. In this structure, a pair of Cu(I) atoms are coupled 

to a pair of cysteine sulfhydryls. Electron transfer would occur 

through the reversible cystine/cysteine formation. The evidence
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against the involvement of this form in these blue oxidases has been 

provided by amino acid analysis which showed no differences in cysteine/ 

cystine ratio between reduced or oxidized forms of the enzyme.

From this discussion of the various forms of copper that have 

been detected or postulated as working in the copper-containing 

proteins, it is apparent that the state of copper in these proteins is 

much more complex than was thought before the development of EPR 

analysis of biological systems. Much work is required before it 

becomes possible to understand the function that copper plays in these 

enzymes.

B. Hexose Oxidase and Carrageenan

Carrageenan is a polysulfated galactan which makes up a large 

part of the dry weight of Chondrus crispus. Because of its solubility 

and anionic nature, carrageenan was seen to influence the behavior of 

proteins in an aqueous extract of red algae. Since the purification 

of the multicopper enzyme, hexose oxidase (E.G. 1.1.3.5) was affected 

by the presence of this carbohydrate, a brief introduction of the 

properties and forms that this polysaccharide may be appropriate.

Carrageenan is a cell wall polysaccharide which makes up 

between 30 and 80% of the dry weight of Chondrus, depending upon the 

season (Whistler and Smart, 1953). The carbohydrate has been studied 

extensively and structural analysis indicates a backbone structure 

consisting of two galactose residues linked alternately a(1-4) and 

6(1-3), with sulfate esters present on carbons 2 or 4 or both, depending 

on the class. It is widely recognized that there are at least three 

main classes of carrageenan found in the red algae: k (kappa), i
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Figure 1: Repeating structure of carrageenan. The molecule

consists of alternating a (1-4) and 6(1-3) linkages of 

D-galactose and 3-6 anhydro D-galactose units. Sub­

stituents R^, Rg, or R^ are either sulfate groups or 

protons depending upon the class of polysaccharide, k , 

I or A. (From Haus, 1974.)
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(iota), and X (lambda) carrageenans. These three classes differ in 

the degree of sulfation and in the amount of 3, 6 anhydro-D-galactose 

found in the 1-4 linked residue. These forms are illustrated in 

Figure 1. Carrageenan in fact does not consist of three homogeneous 

macromolecular species but is rather a family of polysaccharides which 

has a more or less continuous variation in molecular weight, extent of 

sulfation, and fraction of D-galactose residues in the 3, 6 anhydro 

form (Haus, 1974). These characteristics suggest a variation in 

properties and chemistry for the mixture of carrageenan as would be 

found in a Chondrus extract.

Carrageenan appears to exist in an ion-exchange equilibrium with 

the surrounding sea water (Haus, 1974). Like another polyanionic 

carbohydrate, agar, it is water soluble and capable of forming gels 

under certain conditions. The degree and position of the sulfate 

groups in the carbohydrate backbone have been shown to affect the gel- 

forming and ion-exchange ability of the polysaccharide (Haus, 1974).

For example, 0.25% KCl will precipitate the K-carrageenan fraction but 

A-carrageenan remains in solution. Taken as a family of polysaccharides 

then, carrageenan as is found in Chondrus extracts can have a wide 

range of species which differ in ion-exchange capacity and gel-forming 

ability, making attempts to remove it from solution particularly 

difficult.

Bean and Hassid (1958) discovered an enzyme in Iridophycus 

flaccidum with properties similar to those of hexose oxidase and any 

carrageenan which may have been present in extracts of this algae 

would have been removed by the barium-methanol step used in their 

fractionation procedure.
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The purpose of this work was to purify and characterize the enzyme 

hexose oxidase. The purification of the enzyme took advantage of the 

coprecipitation of the enzyme with carrageenan. Effort was then made 

to characterize the protein and to study the mechanism of action of 

the enzyme by kinetic analysis and by probing the active site by EPR 

spectroscopy.
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MATERIALS AND METHODS 

A, Preparation of Hexose Oxidase.

1. Algae Preparation

Chondrus crispus was collected in the intertidal zone at 

Hilton Park in Newington, New Hampshire. The freshly picked fronds 

were taken directly to the lab, sorted, and rinsed under cold running 

tap water for about thirty minutes. The washed material was then 

dried on a rack in a fume hood under a flow of air. The crisp, dried 

(about 16% moisture by weight) algae was ground to about 0.5 cm flakes 

with a Waring blender before storage in a freezer at -20°C.

2. Algae Extraction

One hundred grams of dried Chondrus was prepared for aqueous 

extraction by regrinding in a blender with pressure applied by hand 

using a dry sponge. This finely ground material was added to 1 liter 

of 10 mM sodium phosphate, pH 6.8. After stirring for at least 15 

hours with an overhead stirrer at a speed fast enough to keep the 

flakes suspended, the brownish suspension was filtered under gentle 

suction through two layers of cheesecloth into a chilled filter flask. 

It was then centrifuged at 11,000 x g for 30 minutes at 4° C to remove 

insoluble material.

3. Carrageenan Precipitation

The bright red supernatant with a typical volume of 550 to 650 

ml was placed in an ice-cold beaker and solid CaCl2*2H20 (J. T.

Baker) was added gradually with stirring to a final concentration of 

2% w/v. Throughout this addition, the pH was carefully maintained at
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6.8 by addition of 1 M NaOH. After allowing to stand for 10 minutes, 

the precipitate which contained the enzyme was collected by centri­

fugation at 11,000 X g for 5 minutes. Normally, about 20 to 30 grams 

wet weight of precipitate was recovered. The supernatant, containing 

most of the red pigmented protein phycoerythrin, was discarded.

4. Precipitate Wash and Resuspension 

The precipitate was washed with 50 ml of 0.1 M sodium phosphate, 

pH 6.8 for 10 minutes to remove easily solubilized contaminants. The 

pH of the slurry was monitored and maintained at 6.8. The suspension 

was centrifuged at 12,000 x g and the resulting supernatant, which 

contained little activity, was discarded while the washed precipitate 

was reextracted twice with 50 ml portions of 2 M NaCl dissolved in the

0.1 M sodium phosphate buffer. The suspension was centrifuged at 

26,000 X g for 10 min and the two supernatants pooled. Twenty-five ml 

of 1.0% cetyltrimethylammonium bromide (CTAB Br, J. T. Baker) in water 

was added to the combined supernatants to 0.2% w/v, and allowed to 

stand for 15 minutes. The resulting precipitate of carrageenan was 

removed by centrifugation at 26,000 x g. The yellow-orange supernatant 

was dialyzed against two liters of 10 mM sodium phosphate pH 6.8, with 

two changes.

5. DEAE-cellulose Chromatography 

After dialysis, the solution was centrifuged at 26,000 x g for 

15 min to remove residual precipitate. The clear supernatant was then 

applied to a 1.5 x 12 cm column of l̂ Thatman DE-52 DEAE-cellulose (Reeve 

Angel) at a flow rate of 1.0 ml/min and washed with 0.1 M sodium phosphate
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buffer, pH 6.8. After the sample was applied, the column was washed 

with this buffer until the effluent had no absorbance at 280 nm.

Elution of the column was accomplished either with a pH gradient or a 

salt gradient established by 250 ml each of 0.1 M sodium phosphate 

buffer, pH 6.8, and 250 ml of 0.05 M sodium citrate, pH 4.0 or by a 0- 

0.5 M linear gradient of sodium chloride in 0.1 M sodium phosphate, pH

6.8 (500 ml total volume) respectively. A flow rate of 0.33 ml/min 

was used in the elution and 5 ml fractions were collected. Protein 

content in each fraction was estimated from the absorbance at 280 nm, 

the pH or NaCl conductance was measured, and hexose oxidase activity 

determined as described below. The most active fractions, generally 

those eluting between pH 5.9 and 4.9 or at 0.1 M NaCl were pooled and 

the pH adjusted to 6.2 with the addition of 0.2 M disodium hydrogen 

phosphate. The hexose oxidase solution was concentrated to about 10 

ml by pressure ultrafiltration with an Amicon concentrator using a PM- 

10 membrane and N^ at 20 psi. The concentrated hexose oxidase solution 

was dialyzed against 1 liter of 10 mM sodium phosphate, pH 6.2. The 

dialysis casing (Spectrapore, National Scientific) was boiled for 2 hr 

prior to use.

A. Analysis and Characterization of Hexose Oxidase.

1. Assay of Hexose Oxidase Activity

The activity of hexose oxidase was measured polarographically 

by the rate of oxygen conversion to hydrogen peroxide using glucose as 

the second substrate. A Clark-type oxygen electrode and meter, model 

54 RC (Yellow Springs Instrument Co.), connected to a Heath chart
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recorder was used. The sensor was covered by a thin (0.0005-0.001 

inch) Teflon FEP membrane and fitted into a reaction vessel of standard 

kind for oxygen uptake studies but was custom made of glass to accept 

the larger size sensor. The reaction chamber, 4.86 ml in volume, was 

sealed with a ground glass stopper. The contents of the chamber were 

stirred at a constant rate with the aid of a magnetic micro stirring 

bar. The reaction chamber was enclosed by a water jacket and maintained 

at 25°C by a Haake-FJ circulating water bath. Before use, the meter 

was calibrated by setting it at 8.4 ppm when the cell contained distilled 

water which had been saturated with air at 25° under 1 atmosphere 

pressure. Buffered glucose substrate was placed in a glass cylinder 

located in the constant temperature water bath and water-saturated air 

was allowed to equilibrate the solution at constant temperature. Five 

ml of substrate solution was added to the reaction chamber, stirred at 

constant speed, and the excess removed by replacing the glass stopper.

The chamber was examined for air bubbles, then the stopper was removed, 

0.1 ml of substrate solution withdrawn and quickly replaced by 0.1 ml 

of enzyme solution. The dilution this makes to any substrate or 

inhibitor concentration present is near 2%. The stopper was replaced, 

the chamber reexamined for air bubbles, stirring speed checked, and 

the chart recorder started. One unit of enzyme activity is equivalent 

to an initial rate of oxygen consumption of one ppm min  ̂mg 

Glucose concentrations used in this work are expressed as total D- 

glucose without regard to a- or g- anomer proportions.
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2. Kinetic Analysis

Kinetic analysis of the enzyme reaction was determined using 

partially purified enzyme. The initial velocity of oxygen conversion 

was measured as described before. Normally, membranes capable of 

detecting oxygen in the 0-20 ppm range were used. In those experiments 

in which the concentration of oxygen was fixed at the level of water- 

saturated air, high sensitivity membranes (0-10 ppm) were used. For 

experiments which called for variable oxygen concentrations, pure 

oxygen was metered into the buffered glucose solution mixed with 

water-saturated 

were obtained.

Buffers used for studying the effect of pH on the rate were 

0.1 M phosphate and citrate-phosphate, made in accordance with Gomori 

(1955). Solid glucose was added to a concentration of 0.1 M and the 

pH of each solution measured before use.

Inhibition of the rate of the forward reaction was done using 

hydrogen peroxide (30% w/v, Mallinckrodt) and D-glucono-6-lactone 

(Sigma). In those experiments utilizing hydrogen peroxide, a stock 

solution of 1.8 M H^O^ in water was used to make 0.5, 1.0 and 2.0 mM

of stock peroxide solution was added to 10 ml of substrate solution, 

so dilution was negligible. In those inhibition experiments utilizing 

D-glucono-6-lactone, solid D-glucono-6-lactone was added with stirring 

to 10 ml of 0.2 M buffered substrate solution to final concentrations 

of 0.05 M, 0.1 M and 0.2 M with no regard to volume changes. Five ml
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of this solution was pipetted into the reaction chamber and the assay

started as previously described. The time from the mixing of the

inhibitor to the beginning of the recording trace was 0.8 min, during 

which the pH of the solution dropped from 6.21 to 6.14, from the 

spontaneous hydrolysis of the lactone.

To obtain an accurate measurement of the initial velocity the 

enzymatic conversion of oxygen to hydrogen peroxide was recorded at 1 

cm/minute chart speed for about 5 minutes. The best straight line was 

drawn through the initial part of the record and two successive 

points of intersection were found between the line and the corners of 

the chart paper grid. The slope of the line was calculated by dividing 

the oxygen converted to the nearest tenth ppm, by the change in time

to the nearest tenth of a minute.

3. Disc gel Electrophoresis

Analytical disc gel electrophoresis was carried out according

to Davis (1964) using 7% acrylamide gels. Samples of protein were 

mixed with 40% sucrose and layered on the stacking gel; this in turn 

was layered with reservoir buffer which contained bromphenol blue as 

the tracking dye. Gels were run at 2-3 mA per gel tube until the dye

front was 1 cm from the bottom. A temperature of 10°C was maintained

by a flow of cold tap water throughout the run. The gels were taken 

out of their glass tubes and the position of the tracking dye was 

marked by a needle puncture. Gels were stained for either protein 

with 0.25% Coomassie Brilliant Blue in methanol: acetic acid : water

(1:1:5), activity, or carbohydrate (vide infra).
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4. Activity Stain 

The activity of hexose oxidase was localized and quantitated 

on polyacrylamide gels by the following technique. Following electro- 

phoxesis the ''els were immersed in 5 ml of 0.1 M glucose solution 

which had been saturated with oxygen. One tenth ml of a 1 mg/ml 

solution of horseradish peroxidase in water was then added to each 

tube. The tubes were mixed on a vortex mixer, and then 1 ml of 3 

mg/ml solution of £-dianisidine*2 HCl in water was added. Upon 

development of the color (in about 30 minutes, depending on the activity 

applied), the incubation mixture was poured off and the colorimetric 

reaction halted by the addition of 7% acetic acid. The yellow-gold 

bands, stable to acetic acid, were quantitated with a scanning densitometer.

5. Molecular Weight Determination by Gel Filtration with Sephacryl S-200 

Sephacryl S-200 (Pharmacia) was washed with 0.1 M sodium 

phosphate, pH 6.8, and the slurry poured into a 1.5 cm column to a 

final height of 96.5 cm. The gel was packed and equilibrated with a 

downward flow of the sodium phosphate buffer at a rate of 15 ml/hr or 

8.2 ml/hr-cm^. Calibration of the column was accomplished by measuring 

the elution volume of the following proteins: Bovine y-globulin

fraction (169,000), Aspergillus niger glucose oxidase (160,000), 

glucose-6-phosphate dehydrogenase (104,000), human hemoglobin (64,500), 

horseradish peroxidase (40,000), and a-chymotrypsinogen A (25,700).

6. SDS-Polyacrylamide gel Electrophoresis 

This procedure was done as described by Weber and Osborn 

(1969). The concentration of acrylamide in the gels was 10% and 

samples and standards used were made up in SDS/2-mercaptoethanol
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buffer and incubated at 42°C for 4 hours. After incubation, the 

proteins were mixed with bromphenol blue tracking dye and glycerol and 

this mixture was layered atop the SDS gels, and electrophoresis 

carried out at 4 mA per tube for 9 hours. The gels were sliced in the 

middle of the tracking dye front and stained for 15 minutes in hot

0.25% Coomassie Brilliant Blue. The gels were destained in a transverse 

destainer and the residual stain removed by diffusion in 7% acetic 

acid for several days. The following proteins, with their molecular 

weights, were used as molecular weight markers: Bovine serum albumin

(63,000), glutamate dehydrogenase (53,000), pepsin (35,000) and a- 

chymotrypsinogen A (25,700).

7. Isoelectric Focusing on Acrylamide Gels 

Isoelectric focusing on acrylamide gels was based on the 

method of Haglund (1971). Gels were 7% in acrylamide and 4% in 

ampholyte (Ampholine, LKB). Gelling solution (1.90 ml) was mixed with 

a 0.1 ml solution of protein before polymerizing with ultraviolet 

light. The gels were run for 6 hours at 400 V using 0.02 M NaOH as 

the catholyte solution and 0.01 M phosphoric acid as the anolyte 

solution. Afterward, the gels were either stained for activity or 

sliced into 0.5 cm sections in order to determine the pH profile.

8. Carbohydrate Analysis 

Total reducible carbohydrate was determined by the method of 

Dubois £t. al. (1956). Two ml of an aqueous sample containing between 

10 to 70 yg of carbohydrate was mixed with 50 yl of 80% aqueous phenol. 

Five ml of concentrated sulfuric acid was added and after allowing to
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stand for 1 hour, the absorbance at 490 nm was read. Glucose at 

concentrations of 10-70 yg/ml were used as standards.

9. Protein Analysis 

Protein concentrations were determined by the method of Lowry 

et. al. (1951) using bovine serum albumin as a standard.

10. Electron Paramagnetic Resonance (EPR)

EPR data was obtained on a Varian Model E-9 spectrometer at X- 

band (9.5 KHz) frequencies and 100-KHz field modulation. The g^ 

values were determined from the resonance position of solid diphenyl 

picrylhydrazyl (DPPH) used as an external standard. A solution of 

hexose oxidase was placed into 3 mm diameter quartz sample tubes to a 

height of about 2 cm and frozen by placing in liquid nitrogen. The 

tube was then positioned in a sample Dewar which contained liquid 

nitrogen and was placed in the sample cavity of the EPR spectrometer. 

All spectra were recorded at 77° K.

For anaerobic EPR experiments, oxygen was removed by bubbling 

through a solution of hexose oxidase for about 10 minutes after 

which solid glucose was added. The EPR tube was flushed with and 

deaereated enzyme solution was injected into the tube by a syringe.

The solution of hexose oxidase was diluted by about 5% with the 

addition of solid glucose.
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A. PURIFICATION of HEXOSE OXIDASE

1. Effects of Salts and pH on Enzyme Precipitation

Effect of CaGlp. It was observed that when CaCl^ was added to 

an aqueous extract of Chondrus crispus there was a coprecipitation of 

the polysaccharide carrageenan and hexose oxidase. The effect of 

increasing concentrations of CaCl^'ZH^O from 0.1% to 5.0% on the 

quantity of enzyme recovered in the resulting precipitate and super­

natant was studied. The results (Figure 2) indicated that an increasing 

amount of enzyme was taken out of solution with an increasing calcium 

chloride concentration, up to 2.0% CaCl2*2H2Û. Above 2% calcium 

chloride, no further enzyme was precipitated. The recovery of enzyme, 

as judged by the nearly quantitative yield from the sum of the activities 

in the precipitate and supernatant, ruled out enzyme inactivation by 

calcium. The precipitate which contained hexose oxidase with the 

highest specific activity and in the best yield was produced by 2.0% 

CaCl2-2H2Ü.
Effect of pH on enzyme precipitation. The pH at which the 

precipitation was performed was shown to influence the recovery of the 

enzyme. The effect of CaCl2 concentrations from 1% to 30% at pH 4.9 

(Figure 3) showed that much less enzyme was precipitated at this pH 

than at pH 6.5. At pH 4.9, 5% CaCl2*2H20 precipitated only 35% of the 

total activity versus 87% for an analogous preparation done at pH 6.5 

(Figure 2). More enzyme was precipitated at pH 4.9 as more CaCl2*2H20 

was added, but the recovery was far less than that recovered at pH 

6.5.
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Figure 2: The effect of increasing concentration of CaCl2*2H20 upon

the recovery of hexose oxidase activity in Chondrus extracts. 

In this experiment, 25 ml of a 10,000 x g extract having a 

total activity of 27.5 U was used. Solid CaCl2 "2H2O was 

added to the desired concentration at pH 6.5 and the resulting 

precipitate was separated from the bulk solution by centrifu­

gation at 26,000 X g. The precipitate was brought to 10 ml 

with 0.1 M sodium phosphate buffer, pH 6.8 and the total 

activity and protein in this and the supernatant were 

determined. The solid squares in the illustration represent 

the activity measured in the precipitate; the open squares, 

that which is in the supernatant.
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Figure 3: The effect of increasing concentrations of CaCl^ on the

recovery of activity in extracts of Chondrus done at pH 4.9. 

Experimental conditions are the same as in Figure 2, except 

the pH of the extract was maintained at pH 4.9 with 1 M KOH. 

Solid squares represent total activity recovered in the 

precipitate. Open squares represent the activity recovered 

in the supernatant.
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Figure 4: The effect of pH on the amount of hexose oxidase precipi­

tated by CaCl^. The effect of the pH of the Chondrus 

extract on the quantity of enzyme precipitated by 5% CaCl^'ZH^O 

was determined as in Figure 2, except the pH of the extract 

was adjusted from 3 to 10 with 1 M HCl or 1 M NaOH. The 

total amount of activity in the precipitate is shown in 

solid squares. The total amount of activity found in the 

supernatant is shown by the open squares.
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Figure 5: The effect of increasing KCl concentrations on the amount of 

enzyme precipitated from Chondrus extracts. The experimental 

conditions were the same as those used in Figure 2 except 

that solid KCl was added to the extract from 0.5% to 30% 

final concentration. The pH of the extract was maintained 

at 6.5 with 1 M KOH. Solid squares represent the total 

units recovered in the precipitate. Open squares represent 

the total units that remain in the supernatant.

Li
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The effect of pH was examined more closely in an experiment in 

which the amount of enzyme activity precipitated by 5% CaCl^'ZH^O was 

determined at pH values between 3 and 10 (Figure 4). The result 

showed that optimum recovery was produced between pH 6 and 7. It was 

important to maintain the pH in the optimum range since the pH dropped 

to 5 after addition of CaCl^ to the slightly buffered Chondrus extract.

Effect of KCl. The effect of increasing concentrations of 

KCl on the precipitation of hexose oxidase was examined and the results 

illustrated in Figure 5. Although KCl was found to precipitate the 

polysaccharide at pH 6.5, the results show that little enzyme was 

precipitated by this salt. Thus at concentrations of up to 30% KCl 

(w/v), only 5 units out of a total of 28 were precipitated. Changing 

the pH of the extract to 11 or 4.9 produced no increase in the amount 

of enzyme precipitated by 10% KCl (data not shown).

2. Seasonal Variation of Activity

A seasonal variation of hexose oxidase contained in Chondrus 

extracts was observed during these studies. In two similar extracts, 

one made with algae collected during July and one with October algae, 

it was found that in the October sample a total of 680 units of enzyme 

were extracted while the July extract contained 300 units of activity 

per 100 grams of ground algae. Also, the October sample had a better 

recovery of enzyme which was precipitated by CaCl2 . An enzyme recovery 

of 75-87% was obtained with the October sample but no more than 30-40% 

was recovered in the July sample. Seasonal variations in the amount 

of carrageenan found in Chondrus have been observed by Butler (1936), 

who measured a high of 82% carrageenan content by weight in July to a
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low of about 60% content in the period from January to April. Thus 

there appears to be seasonal variability for both carrageenan and 

hexose oxidase content in Chondrus extracts.

3. Resolubilization 

Once precipitated by CaCl^, the enzyme was very difficult to 

resolubilize. Various salts, buffers and detergents were tested for 

their ability to resolubilize hexose oxidase in a given quantity of 

CaClg precipitate. It was shown that the best solubilizer was 0.1 M 

sodium phosphate which contained 2 M NaCl. It is likely that this 

combination of salts functions by removing calcium ions from solution 

as calcium phosphate while carrageenan redissolves as its sodium salt.

4. Cetyltrimethylammonium bromide (CTAB) Fractionation 

The resolubilization of enzyme activity from the CaCl^ precipitate 

could be part ion-exchange and part resolubilization of the carrier 

carrageenan from the insoluble calcium salt to the soluble sodium 

form. The successful purification of the enzyme required the selective 

removal of carrageenan. It is known that detergent cations can selectively 

remove carrageenan from a mixture of agar, pectin and other gel- 

forming polysaccharides (Scott, 1960), and an experiment was performed 

to determine if the cationic detergent cetyltrimethylammonium bromide 

(CTAB) could effectively eliminate the polysaccharide from a solution 

containing hexose oxidase. Preliminary experiments indicated that 

carrageenan could indeed be precipitated at the NaCl resolubilization 

step, but whether coprecipitation of the enzyme and polysaccharide 

reoccurred depended upon the ionic strength of the solution. Experiments 

performed at low ionic strength (0.01 M sodium phosphate) showed that
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low concentration of CTAB were effective in removing some carrageenan, 

but higher concentrations of the detergent resulted in precipitation 

of hexose oxidase. Further experiments demonstrated that CTAB was 

capable of precipitating carrageenan at high ionic strength, even in 

the presence of 2 M NaCl which was used to resolubilize the enzyme 

found in the CaCl^ precipitate. The high sodium chloride concentration 

had the advantage of "salting in" the proteins. Table I lists the 

results of one experiment performed in this manner; in this instance,

93% of the carbohydrate was removed while 78% of the activity from the 

previous step remained soluble. An additional benefit derived from 

this step was the moderate purification of hexose oxidase as a result 

of the elimination of a small amount of contaminating proteins.

5. DEAE-cellulose Chromatography 

Following the removal of carrageenan by CTAB treatment, the 

partially purified hexose oxidase could be further fractionated by 

ion-exchange chromatography using DEAE-cellulose. From some pre­

liminary experiments, using fractions containing redissolved carrageenan- 

hexose oxidase, it was determined that the polyanionic carbohydrate 

must be removed before a consistent DEAE-fractionation could be made.

For example, the concentration of NaCl needed to elute the enzyme from 

DEAE-cellulose was determined in separate fractionations of carrageenan- 

containing hexose oxidase to be 0.12 M, 0.15 M, 0.20 M, and 0.33 M 

NaCl in 0.1 M sodium phosphate, pH 6.8. Varying elution patterns were 

also observed when a pH gradient of pH 6.8 to 2.2 was used. Depending 

on the preparation used, some enzyme could be eluted at pH 4.9 while 

at other times no enzyme at all could be eluted under the same conditions.
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In most cases, the yield of enzyme following DEAE-cellulose fractiona­

tion was poor.

Ion-exchange chromatography of the CTAB-treated hexose oxidase 

produced a more consistent fractionation, with improved yields. Two 

elution programs, one a 0-0.5 M NaCl gradient in the first fractiona­

tion and the other, a pH gradient established by 250 ml each of 0.1 M 

sodium phosphate buffer pH 6.8 and 0.05 M sodium citrate, pH 4.0 for 

the second fractionation (Table II) were required to obtain a pure 

preparation of enzyme. The enzyme under these conditions eluted at a 

NaCl molarity of 0.11 M and a pH value of 5.4. The highly purified 

enzyme which was recovered after this fractionation had 13 times the 

specific activity as the fraction which was applied to the column 

(Table II).

The purity of the enzyme was assessed by the one band produced 

in disc gel electrophoresis of the enzyme having a specific activity 

of 36 U/mg (Figure 6). The band corresponded to a band stained for 

activity, having an of 0.51.

6. Activity Stain for Hexose Oxidase.

A specific staining procedure was developed for detecting and 

quantitating hexose oxidase following disc gel electrophoresis based 

on the method described by Manwell and Baker (1963). The procedure 

uses the chromogen £-dianisidine, which, as it is oxidized following 

catalysis by horseradish peroxidase, becomes insoluble and fixes at 

the site of peroxide production in disc gels. Thus when a gel containing 

hexose oxidase was placed in staining solution, a thin band of pre­

cipitated, oxidized chromogen was detected at the location of hexose
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oxidase. Figure 7 shows a photograph of a series of gels which contain 

various quantities of enzyme. Figure 8 is a plot of the standard 

curve which was made from measuring the absorbance throughout the 

length of the gel of each band by a scanning densitometer versus the 

amount of activity contained in the gel. The resulting straight line 

indicated that the stained area is linearly related to the activity 

contained in the gel. In addition, this procedure can be used to 

localize and/or quantitate any peroxide-producing enzyme in gels.

This specific activity stain, for example, was used to locate hexose 

oxidase in the determination of its isoelectric position (pl^) in 

polyacrylamide pH gradient gels (Figure 24).
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Figure 6: Disc gel electrophoresis of purified hexose oxidase. Hexose 

oxidase was purified according to the procedure outlined in 

"Results". After disc gel electrophoresis in 7% gels, the 

first gel, containing 83 pg of enzyme at 36 U/mg was stained 

for protein using coomassie blue, while the second gel, 

containing 8.3 yg of protein was stained for activity as 

described previously in Materials and Methods.

L
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Figure 7: Hexose oxidase activity stain of disc gels. Gel number 1 

contained 430 yg of protein (0.167 U of activity) and was 

stained for protein. Gels 2-7, contained 0, 0.033, 0.067,

0.10, 0.133, and 0.167 U of activity, respectively, and were 

stained for activity as described previously. The specific 

activity of the enzyme used was 0.37 U/mg.
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Figure 8: Standard curve of the quantity of stain from the area cf

densitometric tracing versus the amount of activity applied. 

The area under the densitometer tracing of the gels, shown 

in Figure 7 is expressed as ^ . D . x  0.01 cm chart units.
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B. KINETICS

Kinetic determinations were made using separate preparations 

of partially purified hexose oxidase with the assay system described 

in Materials and Methods.

1. pH Dependence of the Hexose Oxidase Reaction.

A plot of activity measured at pH values from 5.9 to 6.9 in 

phosphate and phosphate-citrate buffers (Figure 9) produced a curve 

with a peak at pH 6.05. The shallow pH-rate profile suggests confor­

mational changes or changes in state of protonation of groups on the 

protein which are remote from the active site (Cleland, 1977).

2. Initial Velocity Pattern of Hexose Oxidase with Varied Glucose 

Concentrations and at Constant Oxygen Concentration.

Glucose concentrations ranging from 4.0 mM to 100 mM were made 

in 0.1 M sodium phosphate, pH 6.2, and the initial velocity of the 

enzyme-catalyzed reaction measured at constant initial oxygen concen­

tration of 8.4 ppm. A Lineweaver-Burke treatment of the data is shown 

in Figure 10. The apparent K for glucose was 10.4 mM.

3. Initial Velocity Pattern of Hexose Oxidase with Varied Oxygen 

Concentration and Glucose at Constant Non-Saturating Concentrations.

The initial rates of the enzyme reactions were determined 

using glucose concentrations near the apparent K^ while the concentra­

tions of 0^ were varied. Figure 11 is a plot of the data in double­

reciprocal form. The series of parallel lines obtained is indicative 

of a ping-pong type of reaction mechanism in which one substrate is 

bound and a product released before a second substrate is bound and
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Figure 9: The effect of pH on the initial activity of hexose oxidase.

The initial activity of hexose oxidase was determined with 

0.1 M glucose concentration in 0.1 M sodium phosphate (solid 

circles) and 0.1 M sodium citrate (solid squares) at various 

pH values. The enzyme preparation used had a specific 

activity of 2.5 U/mg.
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Figure 10: The effect of varied glucose concentrations on the

initial velocity of hexose oxidase at constant initial 

oxygen concentration. Glucose solutions at concentrations 

of 100, 20, 10, 6. 6, 5, and 4 mM were allowed to 

equilibrate overnight to assure complete mutarotation.

The concentration of oxygen initially was 8.4 ppm.

Hexose oxidase specific activity was 8.5 U/mg.
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Figure 11: The effect of varied oxygen on the initial rate of

enzyme catalysis with constant glucose. The open 

circles represent the result using 100 mM glucose, the 

open squares that using 10 mM glucose and the open 

triangles that with 5 mM glucose. Hexose oxidase used 

in this study had a specific activity of 1.0 U/mg.
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Figure 12; The plot of the y-intercepts of Figure 11 versus the

reciprocal of glucose concentration.
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the other product released from the enzyme. Since hexose oxidase 

catalyzes a two substrate-two product reaction, the mechanism is 

referred to as ping pong hi hi according to Cleland (1963).

An apparent of 22 ppm for oxygen was determined from the 

line constructed from the results of the experiment using 100 mM 

glucose concentration (Figure 11, open circle). The y-intercepts of 

the lines plotted in Figure 11 can be replotted to obtain an estimate 

of the true of glucose. A value of 11 mM was calculated from the 

intersection of this replotted line with the x-axis (Figure 12), in 

good agreement with the value obtained from the double reciprocal plot 

in which the apparent was estimated at 10.4 mM glucose (Figure 10).

4. Product Inhibition: The Effect of Hydrogen Peroxide on the

Initial Velocity of the Enzyme Reaction.

The effect of hydrogen peroxide upon the initial velocity of 

the enzyme reaction was measured according to the procedure described 

previously. Figure 13 is a plot of the data in double reciprocal 

form. The series of lines which converge at a point on the ordinate 

represents a pattern of competitive inhibition between glucose and 

hydrogen peroxide. Glucose and hydrogen peroxide, then, either compete 

for a common enzyme form or each is connected in a reversible way to a 

common intermediate form of the enzyme. This result is consistent 

with the proposed ping pong mechanism with glucose and hydrogen peroxide 

competing directly for one enzyme form.

The same data, when plotted according to Dixon (1953), (Figure 

14) depicts a series of lines converging at a point above the abscissa. 

The results further support competitive inhibition occurring with
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Figure 13: The effect of hydrogen peroxide on the initial rate of

the forward reaction, with varied glucose concentration. 

A fixed initial oxygen concentration of 8.4 ppm and 

varied glucose concentration of 100, 33.3, 20, 10, and 

5 mM were used. Hexose oxidase having a specific 

activity of 1.5 U/mg was used.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



E
S
c
1
>

.0 m M  H2O2 
O. 5 m M  H2O2
O 1 m M  H 2O 2

_ V  2 m M  H9O2

8

7

6

5

4

3

2
10 30 50 200

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without p



Figure 14: A replot of the data in Figure 13 according to Dixon

(1953). The graph is a plot of the reciprocal of the 

initial velocity versus the inhibitor concentration. 

Oxygen concentration initially was a constant 8.4 ppm. 

The dots represent data obtained with glucose at 100 mM 

concentration, the open circles with glucose at 33.3 

mM, the open squares at 20 mM and the open triangles at 

10 mM concentration.
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Figure 15: Product inhibition by hydrogen peroxide on the initial

rate of the forward hexose oxidase reaction with varied 

oxygen concentrations. The initial rate of the enzyme 

reaction was measured at fixed (100 mM) glucose concen­

tration while the oxygen concentration was varied 

between 8.4 and 20 ppm. Hexose oxidase having a specific 

activity of 3.5 U/mg was used in this analysis.
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glucose in the presence of hydrogen peroxide, and is consistent with 

the ping pong mechanism of action of the enzyme. The point at which 

these lines cross in the x-coordinate gives a measure of the inhibition 

constant of peroxide for this substrate: A value of 3.0 mM was

estimated from this treatment.

5. Product Inhibition: The Effect of Hydrogen Peroxide on the

Forward Reaction Rate at Constant, Saturating Glucose Concentration 

with Varied Oxygen Concentrations.

Hydrogen peroxide was allowed to inhibit the forward reaction 

while glucose was maintained at a constant saturating concentration 

while the concentration of oxygen was varied. The result of this 

experiment is shown in Figure 5. The x-intercept of the intersecting 

lines provides an additional measure of the apparent for oxygen.

K^2 was estimated to be 33 ppm for this series. Because the oxygen 

electrode assay system employed in this measurement of the initial 

rates of the enzyme reaction was incapable of reading above 20 ppm 

oxygen, the extrapolation of the experimentally determined line to a 

point on the x-axis was long. This may explain the variation in the 

valves of 22 to 33 ppm for the apparent K^2. Nevertheless, the lines 

obtained from this treatment tend to converge at a point on the x-axis 

and indicate a noncompetitive pattern of inhibition. In this case, 

hydrogen peroxide lowered the proportion of central complexes that 

result in products by causing partial reversal of the reaction (Cleland, 

1977). The result is consistent with the proposed ping pong mechanism.

A plot of this data by the method of Dixon (1953) (Figure 16) 

produced a value of 1.4 mM for the hydrogen peroxide inhibition rnnstant
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Figure 16: A replot of the data of Figure 15 according to Dixon

(1953). The dots represent the values with oxygen at 

20 ppm, the open circles with oxygen at 16.7 ppm, the 

open squares with oxygen at 13.3 ppm and the open 

triangles at 10 ppm.
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with respect to oxygen. Complete inhibition of the reaction was 

observed for the assay at low oxygen concentration and 2.0 mM H^O^.

6. Product Inhibition: The Effect of D-Glucono-6-lactone on the 

Forward Reaction Rate at Constant Initial Oxygen Concentration with 

Varied Glucose Concentration.

The effect of D-Glucono-6-lactone on the reaction rate determined 

at various glucose concentrations is shown in Figure 17. The lines 

for roe inhibited and uninhibited enzyme reactions converge at a point 

on the x-axis, forming a noncompetitive pattern of inhibition. This 

result is consistent with the ping pong mechanism already proposed, 

for in this case D-glucono-6-lactone caused partial reversal of the 

reaction which results in less central complexes forming products. 

(Cleland, 19 7 7 ).

A Dixon replot, shown in Figure 18, gave the value of 0.3 M as 

the inhibition constant of D-glucono-6-lactone with respect to glucose.

7. Product Inhibition: The Effect of D-glucono-6-lactone on the 

Forward Reaction Rate at Constant, Saturating Glucose Concentration 

with Varied Oxygen Concentration.

The effect of D-glucono-6-lactone on the initial velocity of 

hexose oxidase under conditions of constant glucose and varied oxygen 

was determined and the result plotted in double reciprocal form (Figure 

19). The lines converging at a point on the y-axis form a competitive 

inhibition pattern of D-glucono-6-lactone with respect to oxygen.

This is again consistent with the proposed mechanism as oxygen and the 

lactone compete for the same form of enzyme.

k
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Figure 17: The effect of D-glucono-ô-lactone on the initial rate

of the enzyme reaction with initial oxygen at 8.4 ppm 

and varied glucose concentration. Hexose oxidase with 

a specific activity of 2.5 U/mg was used.

The line drawn through the dots in the figure is 

the uninhibited reaction, the open triangles were with 

0.05 M lactone, the open circles were with 0.10 M 

lactone and the open squares were with 0.20 M lactone.
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Figure 18: A replot of the data of Figure 18 according to Dixon

(1953). The data was obtained as described in the 

legend for Figure 17.
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Figure 19: The effect of D-glucono-ô-lactone on the initial velocity

of the enzyme reaction at saturated glucose concentration 

and varied oxygen concentrations. The concentration of 

oxygen was varied between 8.4 ppm and 20 ppm. The 

result of 0.1 M (open circles) and 0.2 M (open squares) 

D-glucono-ô-lactone are illustrated.
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Figure 20: A replot of the data given in Figure 19, according to

Dixon (1953). The dots represent the values obtained 

with oxygen concentration at 20 ppm, the open circles 

with oxygen at 13.3 ppm, and the solid squares that with 

10 ppm oxygen.
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A Dixon plot of the same data gave 0.44 M as an estimate of 

the for this inhibitor for oxygen (Figure 20).

From these kinetic studies, the order of addition and release of 

substrates and products by Chondrus hexose oxidase has been established 

as a ping pong hi hi mechanism. This mechanism can be depicted using 

the known substrates and products as follows:

D-GLUCOSE D-GLUCONO-6-LACTONE

E [EOg]----->  F ----> [F-Glucose] — ^ E

The diagram above is one of two ways of depicting a mechanism of this 

kind. The other way, in which glucose is added first, is equally 

probable to the one given above.

A table of the patterns of inhibition and the estimated inhibition 

constants found for each product and substrate is given below:

TABLE III

Inhibition and Inhibition Constants of Hexose Oxidase

D-GLUCONO-Ô-LACTONE

R C 
A L 
T U 
E C

NONCOMPETITIVE

= 1.4 mM

COMPETITIVE 

K. = 0.44 M

COMPETITIVE

= 3.0 mM

NONCOMPETITIVE 

= 0.30 M
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c. PHYSICAL-CHEMICAL CHARACTERIZATION

1. Molecular Weight Determination by Gel Filtration

An estimate of the molecular weight of hexose oxidase was made 

by gel filtration using Sephacryl S-200 Superfine as the chromato­

graphic media. The elution volume of protein standards was plotted 

against the proteins' molecular weight (Figure 21). By comparing its 

elution volume with those of the standard proteins the molecular 

weight of hexose oxidase was estimated at 140,000.

2. SDS-polyacrylamide Gel Electrophoresis

To determine the subunit composition and size for Chondrus 

hexose oxidase, the enzyme was subjected to SDS-polyacrylamide gel 

electrophoresis. The position of the band in the gel is related to 

its size and the molecular weight of the banded protein can be estimated 

from a standard curve constructed by plotting mobilities of proteins 

which had been treated similarly, versus the log of their molecular 

weight. Hexose oxidase produced one sharp band when subjected to SDS- 

polyacrylamide electrophoresis (Figure 22), which corresponded to a 

molecular weight of 70,800 (Figure 23). Since the enzyme had a native 

molecular weight of 140,000 as determined by gel filtration analysis, 

it appears that native hexose oxidase contains twu subunits with a 

molecular weight of about 70,000.

3. Isoelectric Point of Hexose Oxidase

The isoelectric point of hexose oxidase was determined by 

isoelectric focusing in polyacrylamide gels followed by staining for 

hexose oxidase activity as described in Materials and Methods. The
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Figure 21: Molecular weight determination of hexose oxidase by gel

filtration using Sephacryl S-200 Superfine. The 

proteins used as standards were Bovine-y-globulin 

(169,000), open triangle; glucose oxidase (160,000), 

solid square; Glucose-6-phosphate dehydrogenase (104,000), 

open square; hemoglobin (64,500), open circle; horse­

radish peroxidase (40,000), closed triangle; and a -  

chymotrypsinogen A (25,700), solid circle. Hexose 

oxidase was found to elute at a volume marked as an "x" 

on the calibration li.e. A void volume, V^, of 60 ml 

was determined from the elution volume of Blue Dextran.
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Figure 22: SDS-polyacrylamide gels containing hexose oxidase and

molecular weight standards. The first gel contained 14 

yg of 36 U/mg hexose oxidase which had been treated as 

described previously in Materials and Methods. The 

second gel contained 10 yg each of BSA (68,000), 

glutamate dehydrogenase (53,000), pepsin (35,000), 

chymotrypsinogen A (25,700), lysozyme (14,300) and 

cytochrome c (11,700). The bottom of each gel was 

sliced at the center of the tracking dye front.
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Figure 23: SDS-polyacrylamide gel electrophoresis. Standard curve

of the log molecular weight of each of the standard 

proteins versus their retardation factor in the gel 

(Rg). The solid square represents BSA; the solid 

triangle, glutamate dehydrogenase; the open circle 

represents pepsin while the open square, chymotryp­

sinogen. The arrow marks the of hexose oxidase.
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Figure 24: Isoelectric focusing of hexose oxidase in polyacryl­

amide gels. A total of 0.2 U of hexose oxidase was 

applied and the enzyme located by the specific activity 

stain. The specific activity of hexose oxidase was 1.4 

U/mg.
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Figure 25: Isoelectric focusing of hexose oxidase in polyacryl­

amide gels. The isoelectric point of hexose oxidase 

was determined by applying the specific activity stain 

technique to hexose oxidase after isoelectric focusing 

in polyacrylamide gels (see Materials and Methods).

The arrow marks the migration position of hexose 

oxidase. The pl^ of the enzyme was determined by 

comparing its position in the gel with the pH of that 

section of the gel.
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pl^ for hexose oxidase was found to be pH 4.40 (Figures 24 and 25).

4. Carbohydrate Content of Hexose Oxidase 

The amount of carbohydrate contained in a hexose oxidase 

preparation was determined as the quantity of reducible sugars asso­

ciated with a known quantity of protein. A sample of 83 yg of protein 

was found to contain 3.4 yg of carbohydrate; thus the enzyme contained 

3.4/86.4 or 4.0% by weight of carbohydrate.

5. Copper Content of Hexose Oxidase

The amount of copper contained in hexose oxidase was deter­

mined by atomic absorption analysis. A sample of concentration 83 

yg/ml with a specific activity of 36 U/mg was found to contain 0.15 

ppm copper. This corresponds to a minimum value of 4.0 mol copper per 

mol protein, since the concentration of copper was 0.15 x 10  ̂g/1 v 

63.54 g/mol = 2.36 x 10  ̂mol copper, and the concentration of protein

was 0.083 g/1 T 1.4 x 10^^ g/mol or 5.93 x 10  ̂ mol protein, then

23.6 X I0-; m.l copper =
5.93 X 10 mol protein

6. Absorption Spectrum of Hexose Oxidase

The visible and uv absorption spectrum of hexose oxidase was 

recorded with a Cary Model 15-spectrophotometer. The spectrum (Figure 

26) revealed a featureless visible spectrum from 800 nm to 390 nm.

From 390 nm extending into the ultraviolet there is a broad absorption

shoulder which is centered at 330 nm with an of 1.47 x 10^

region of 260 nm to 300 nm, with an absorption maximum at 274 nm. The
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Figure 26: Visible and uv absorption spectrum of hexose oxidase.

The enzyme, 0.083 mg/ml with a specific activity of 36 

u/mg was dialysed exhaustively against 0.01 M sodium 

phosphate, pH 6.2.
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ratio of absorbance at 274 nm to that at 330 nm is 4.0.

7. EPR Spectrum of Hexose Oxidase

The EPR spectrum of the highly purified hexose oxidase as 

recorded using a Varian E-9 Spectrometer is shown in Figure 27. The 

signal observed at 77°K consisted of a single absorption derivative 

having no discernable hyperfine lines. From the resonance position of 

the external standard, DPPH, the midpoint g value, g^, was calculated 

to be 2.075. The absorption derivative was found to have a narrow 

peak-to-peak line width derivative, a, equal to 79 Gauss and there was 

a shoulder found in the middle of the transition. Figure 28 illustrates 

this shoulder more clearly as the scan range was decreased by a factor 

of five causing the line to spread. The EPR spectra shown did not 

have coherent baselines due to the broad paramagnetic absorption of 

oxygen dissolved in the liquid nitrogen.

The EPR spectrum of hexose oxidase taken after deaereation by 

bubbling with followed by glucose addition is shown in Figure 29.

The magnitude of the signal intensity was found to decrease by 47% (36 

± 1.0 from 68 ± 2.4 mean ± SEM of 3 determinations) compared with the 

same hexose oxidase solution which had been scanned under aerobic 

conditions. In addition to the decreased intensity of the signal at g 

= 2.075, a new signal, centered at g = 2.003, having a narrow line 

width (< 10 Gauss) was also observed under these conditions.

Samples of purified hexose oxidase also contained another EPR 

transition at 1550 Gauss centered at g = 4.26 (Figure 30). This 

signal was power saturated at microwave powers of 60 to 80 mW at 77°K. 

Atomic adsorption analysis confirmed that this signal was due to iron.
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Figure 27: EPR spectrum of hexose oxidase. The EPR spectrum of a 

sample of hexose oxidase which was 2.5 mg/ml and 23 

U/mg was determined at 77°K using a Varian E-9 EPR 

spectrometer. The microwave power was 40 mW at 9.248

GHz at a modulation frequency of 100 K Hz. Receiver
, i„4 and a time constant of 3.0 sec.gam was 1.25 x 10

The scanning rate was 66 G/min. The inset is the 

transition position of the external standard DPPH, 

which has a g value of 2.0036. The amplitude is in 

arbitrary units.
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Figure 28: EPR spectrum of hexose oxidase. The same enzyme

preparation as used for the EPR spectrum in Figure 27 

was scanned over a smaller range at 13 G/min. The 

receiver gain was 6.3 x 10^^ at a time constant of 10 

sec. The microwave power was 40 mW at 9.248 GHz 

frequency with a modulation frequency of 100 K Hz. 

Temperature was 77°K= DPPH transition at 2.0036 

(arrow) was used as a g marker. The arrow points up to 

the shoulder found near the midpoint of the transition.
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Figure 29: EPR spectrum of hexose oxidase after deaereation by

bubbling with followed by glucose addition. The 

enzyme used contained 23 U/mg and was at a concen­

tration of 2.5 mg/ml. The spectra was taken at 77°K at 

a microwave power of 40 mW and frequency of 9.268 GHz 

with a modulation frequency of 100 KHz. The receiver 

gain was 1.25 x lo'̂  at a time constant of 10 sec. Scan 

rate was 33 G/min, except in the inset where the 

spectra was scanned at 8.3 G/min. The g value for the 

new transition (arrow) was 2.003 as determined from its 

position relative to the known copper maximum of g =

2.075.
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found at a concentration of 5.3 g atoms per mol protein. This signal 

did not significantly diminish when the hexose oxidase solution was 

treated with glucose under anaerobic conditions (22 and 20 arbitrary 

intensity units,respectively).
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Figure 30: EPR spectrum of hexose oxidase at 77°K at half field.

The sample of hexose oxidase used in this analysis was 

the same as in Figure 29. Microwave power was 40 mw at 

9.268 GHz with a modulation frequency of 100 KHz. The 

recorder gain was 1.25 x 10^ with a time constant of 3 

sec and a modulation amplitude of 6.3 G. The g value 

for the midpoint of the transition was calculated to be 

4.26 from its position with respect to DPPH.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



DISCUSSION

A. Purification of Hexose Oxidase 

Precipitation of carrageenan from extracts of Chondrus crispus 

by CaCl2'2H^0 produced a coprecipitation of hexose oxidase. The pH at 

which this precipitation was carried out was found to influence the 

recovery of the enzyme, with an optimal yield prevailing at pH 6 to 7 

(Figure 4). Other agents capable of precipitating carrageenan, such 

as alcohol and KCl (Whistler and Smart, 1953) (Figure 5) were used but 

each failed to precipitate the enzyme. Because of the good recovery 

and small purification found with this step, precipitation with 2%

CaCl^ at pH 6.8 was used as the first step in the purification of 

hexose oxidase (Table II).

In the next step, a brief wash with 0.1 M sodium phosphate, pH 

6.8 removed some easily solubilized protein from the CaCl^ precipitate 

without dissolving hexose oxidase. Hexose oxidase and carrageenan 

were dissolved with 0.1 M sodium phosphate which contained 2 M NaCl 

(Table II). Carrageenan was removed from this solution by the addition 

of 0.2% cetyltrimethylammonium bromide (Table I). The high sodium 

chloride concentration was necessary in preventing precipitation of 

hexose oxidase by the cationic detergent. The data in Table II show 

that 0.2% CTAB eliminated 120 out of 125 mg of carbohydrate with only 

a 2% loss in enzyme activity.

Ion-exchange chromatography was used to fractionate the protein 

solution further. A linear NaCl gradient and a pH gradient (Table II) 

were used to recover an enzyme preparation (36 U/mg) which showed one
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band when subjected to disc gel electrophoresis (Figure 6). The 

recovery of enzyme from these two DEAE steps was poor, with a 98% loss 

of activity from the preceding step.

B. Physical Chemical Characterization of Hexose Oxidase

The native molecular weight of hexose oxidase was determined 

to be 140,000 by gel filtration. SDS polyacrylamide gel electrophoresis 

revealed one protein species which corresponded to a molecular weight 

of 70,800. Thus, the native enzyme consists of two subunits, each 

with a molecular weight of approximately 70,000. Other copper oxidases 

from plant and animal sources are of similar size and structure.

Ascorbic acid oxidase from squash has a molecular weight of 132,000- 

140.000 and contains two identical subunits (Lee and Dawson, 1973). 

Plasma ceruloplasmin is similar in size but the subunit structure is 

unknown at present (Deutsch, 1960).

Highly purified hexose oxidase was found to contain approxi­

mately 4% carbohydrate. This is considerably less than the value of 

70% first reported by Sullivan (1973) in the original study of this 

enzyme. Failure to completely remove carrageenan from solution could 

have caused this high measurement. Hexose oxidase did not stain for 

carbohydrate with periodic acid-Schiffs stain of polyacrylamide gels, 

which confirms the low content of carbohydrate found in the enzyme 

preparation. It is possible that the little carbohydrate which is 

detected may be due to a minor carrageenan contaminant. Or, hexose 

oxidase may be a glycoprotein like some other copper oxidases. For 

example, ceruloplasmin contains 8% by weight carbohydrate (Deutsch, 

1960), ascorbic acid oxidase, 10% (Lee and Dawson, 1973), and laccase,
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45% (Reinhammer, 1970).

The isoelectric point of hexose oxidase was found to be pH

4.40 by isoelectric focusing. This value indicated a predominance of

acidic over basic and neutral amino acids. Sullivan (1973) determined 

the amino acid composition of hexose oxidase and found a low amount of 

Lys, His and Arg - a total of 9 residues - to Glx and Asx - a total of 

40 normalized residues, which suggests such an acidic over basic 

predominance.

Atomic absorption analysis for trace metals showed that purified

hexose oxidase contained both copper and iron. The enzyme was found

to contain 0.18% copper or 4.0 g atoms of copper per molecule. In the 

original study by Sullivan (1973) a value of 12 copper atoms was found 

per molecule of 130,000 daltons, and no iron was detected by emission 

spectral analysis. Additional support for copper as a cofactor in the 

enzyme came from the inhibition observed by metal binding agents such 

as sodium diethyldithiocarbamate. This chelating agent, which has a 

great selectivity for copper (II) ions (Hallaway, 1959), markedly 

inhibited the enzyme, even at 10  ̂M concentrations (Sullivan, 1973).

The participation of iron in hexose oxidase action is not so 

well established. Atomic absorption measurements showed 0.21% iron or 

the equivalent of 5.3 g atoms of iron per mole protein. However, 

studies on the effect of metal inhibitors and chelating agents on the 

activity of hexose oxidase found that sodium azide, which inhibits 

iron-enzymes strongly (Hallaway, 1959) was approximately a thousand 

times less effective in inhibiting the activity of the enzyme than was 

sodium diethyldithiocarbamate (Sullivan, 1973).
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Most copper-containing proteins, like the blue oxidases, are 

intensely colored, but hexose oxidase is colorless. The uv spectrum 

of hexose oxidase consisted of typical aromatic amino acid side chain 

absorbances plus a broad shoulder which was centered at 330 nm.

Another copper oxidase, tyrosinase, is pale green in color and it too 

contains a 330 nm absorbance shoulder similar to that found in uv 

spectra of hexose oxidase (Bouchilloux, et 1963) . Several other 

corper oxidases including the blue oxidases laccase, ascorbic acid 

oxidase, and ceruloplasmin, as well as the oxygen carrier hemocyanin, 

have absorbance bands in the near ultraviolet centered at 330 nm to 

340 nm (Dawson, 1966; Ehrenberg, ^t. , 1962; Levin, 1966; Lontie

and Vanquickenborne, 1974). From CD, EPR, and anaerobic titration 

studies of some of these enzymes, it was found that the 330 nm absorption 

band was a characteristic of a copper dimer structure in these proteins 

(Mason, 1976). Each dimer in these proteins is made of a pair of 

magnetically-coupled copper ions which is diamagnetic. It has been 

suggested that the dimer functions by undergoing two-electron redox 

reactions (Fee jet. ^ .  , 1969). Model copper dimers, such as alkaline 

copper tartrate also possess an absorption at 330 nm (Chasteen and 

Belford, 1970). The 330 absorption band for hexose oxidase may be 

diagnostic of a copper dimer arrangment. Caution must be made in this 

assignment, however, because other interpretations are possible: the

absorption may be due to iron or absorption from a contaminant like 

phycoerythrin, which absorbs in this region (Bennett and Bogorad,

1971).

Electron paramagnetic resonance techniques (EPR) were used to 

study the state of copper in hexose oxidase. An X-band spectrum at
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g = 2.075 was typically seen in each enzyme preparation studied, 

varying from 4.2 to 23 U/mg. The spectrum consisted of a single 

absorption derivative with a lineshape unlike that normally seen with 

Cu(II) complexes in that there was a lack of hyperfine structure. A 

g^ value of 2.075 was calculated for this transition. This spectrum 

is commonly observed for axial Cu(II) in the perpendicular region with 

the g^ value and Gaussian peak-to-peak line width, a, of 79 G. A 

closer inspection of the transition at g = 2.075 revealed that the 

line contained a shoulder at the center of the descending line (Figure 

28, arrow). This was consistent with what is found in EPR spectra of 

model copper dimers in which the shoulder divides a pair of absorption 

derivatives predicted for the copper pair in the perpendicular region 

of the spectra. A dimer structure for the copper in hexose oxidase 

with a line width of 79 Gauss at a g value of 2.075 is not unreasonable 

when compared with the copper dimer complexes studied by Price, ^  

al., 1970; Boas, £t al. , 1969; and Pilbrow, et ^ . , 1970.

In theory, magnetically-coupled copper ions may produce an EPR 

spectrum when the unpaired electrons of each ion are antiferromag- 

netically coupled. When two copper (II) ions approach each other as a 

consequence of ligand binding, the unpaired electrons from each ion 

may pair up, and as a result the electron spins may be aligned or 

opposed as shown in Figure 31. If the spins of each electron are 

opposed to each other, a singlet state exists and the dimer is diamag­

netic; no EPR signal is possible. When the spins are aligned, a 

triplet state is evident, since S=1 and the multiplicity, 28+1=3. The 

dimer in this state is paramagnetic. The singlet state differs from
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Figure 31: Energy diagram and transition probability for copper

dimer structure.
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the triplet state by an energy of -2J, where J is referred to as the 

exchange interaction constant. The copper ions are said to be anti- 

ferromagnetically coupled if the singlet state is the ground state and 

the triplet state is the excited state; J in this case will be negative.

If the copper ions are situated in an axial field, the triplet 

state will be split into two energy states, m^=0 and m^=±l which is 

separated by D, the zero field splitting parameter. In the presence 

of an applied magnetic field, H, the magnetic moment of the electrons 

interact with this magnetic field and the multiplet state splits (the 

Zeeman effect). An EPR resonance signal occurs when an electromag­

netic wave of energy hv irradiates the compound in the direction 

perpendicular to the magnetic field causing a magnetic dipolar transition 

or "flipping of spins" to occur between the split states separated by 

quantum number Am^=l. With a spin S=l, a transition corresponding to 

a double jump in the electronic magnetic quantum number may sometimes 

occur. This is referred to as a forbidden transition because it 

disobeys the selection rules for EPR as it corresponds to Am^=2. In 

addition, anisotropy in g will affect the position and intensity of 

the lines as the direction of the axis of symmetry of the dimer is 

changed with respect to the direction of the magnetic field. Figure 

31 diagrams this situation occurring with two copper ions and shows 

the transitions which will occur for a dimer with a symmetry axis 

parallel to the magnetic field direction.

Changes in D, the zero-field splitting parameter, can dramatically 

change the appearance of the EPR spectra of copper dimers. Price, et 

al. (1970) have studied this effect by computer simulations with a 

hypothetical dimer. They found that if D was less than half the
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band— the transition probability for forbidden lines occurring at half 

field was very slight. Instead, a doublet would be seen in the g=2 

region. The D value for hexose oxidase copper was calculated, assuming 

that the shoulder divided the two perpendicular transitions and a 

value of 29 G or 2.81 x 10  ̂cm  ̂was calculated from g value of

2.075. This D value is at least 10 to 20 times less than values of 

typical model copper dimer systems (Chasteen and Belford, 1970; Price, 

£t al., 1970). A D value as low as that observed in the spectrum of 

hexose oxidase may be caused by a large distance separating the two 

coupled copper ions, or to exchange coupling at a distance greater 

than 5 A, or to dipole-dipole interactions that are too small to have 

a noticeable effect in the spectral line width (Price, e^ al«> 1970). 

Assuming that the interaction between the two copper ions is solely 

dipole-dipole and that the axis of symmetry between the coppers is 

perpendicular to the magnetic field direction, then the dipole equation 

can be used to estimate the distance separating the two copper ions 

(Chasteen and Belford, 1970):

where is the zero field splitting parameter for the dipole-dipole

and 0 is the angle between the r^^ (the interelectron distance) direction 

and magnetic field direction. Thus, r was calculated to be 7.9 A for 

the distance between the two copper atoms in hexose oxidase.
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The copper in hexose oxidase may be exchange coupled through 

the overlap of the electrons of each copper separated by a distance 

greater than 5 A. Cu(II) cyclopentanetetracarboxylic acid chelate was 

found to have exchange coupling parameters which are in line with 

those found for hexose oxidase: g=2.07-2.09 and a  of 60 G. The D

value for this chelate however, 0.10-0.23 cm ^ was much greater than 

that found for copper in hexose oxidase, so the two systems are not 

directly comparable. It is risky to compare small dimeric copper 

species with one found in an unresolved protein environment, due to 

the many factors which contribute to line width. Bleaney and Bowers 

(1952) have outlined the major factors which contribute to the line 

width of an EPR transition:

1. Magnetic interaction between electron spins of neighboring para­
magnetic units.

2. Spin-]attice relaxation.

3. Magnetic interaction between the electron spins and the nuclear 
magnetic moments of the neighboring diamagnetic atoms.

4. Unresolved components of the hyperfine structure.

Certainly the copper in hexose oxidase may be affected by the 

protein environment, perhaps in ways different from the environment of 

the small copper chelate. So, the signal observed for hexose oxidase 

may be that of a pair of copper(II) ions coupled through exchange 

interactions or weak dipole interactions in a protein matrix. The 

spectrum may also be interpreted as due to separate, bound copper (II) 

ions which are in a specific environment in the protein, such that the 

hyperfine normally seen for divalent copper is not discernable. The 

lack of hyperfine might be attributable also to the low level of
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copper present in concentrated samples of hexose oxidase (about 0.75 

ppm Cu) which comes close to the detection limit of the spectrometer 

for this metal (0.5 ppm).

In addition to the line found at 3200 G, another transition 

was always observed at about 1550 G (g=4.26) (Figure 30). It was 

thought at first that this line was a forbidden transition but atomic 

absorption analysis provided evidence that the signal was due to iron.

Also, the signal could be power saturated at 60-80 mW at 77®K, a 

property which is not expected for forbidden transitions owing to 

their small transition probability (Schoot Witerkamp and Mason, 1973).

The large amount of iron that was found in the 23 U/mg sample, even 

after dialysis against 18 megohm water, suggested that the iron was an 

integral part of hexose oxidase, a cofactor like copper. Alternatively, 

the iron may be a contaminant, bound to residual polyanionic carrageenan. 

This is likely since Sullivan (1973) did not find iron in emission 

spectral analysis of pure hexose oxidase solutions. Since carrageenan 

is in ion-exchange equilibrium with sea water, iron and other transition 

metals are to be expected in greater than trace amounts. It is note­

worthy that the EPR spectra of a dialyzed NaCl-resuspension of a 

hexose oxidase fraction produced iron^manganese and copper ion transitions. 

Further studies using methods to remove loosely bound metals and 

carrageenan completely should resolve this question of iron involvement.

The EPR spectrum of hexose oxidase following deaereation by 

saturation with nitrogen, and subsequent glucose addition, produced a 

line form similar to that of oxygenated samples but with the amplitude 

diminished by 47% (Figure 29). Also with this treatment, a new line 

was detected at g=2.003. The narrow line width (<10 Gauss) and g
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value close to that of a free electron (g=2.0023), suggests the presence 

of a radical. However, the appearance of a free radical signal is not 

sufficient evidence for invoking a one-electron step mechanism of 

glucose oxidation. The low field line, however, which was due to 

iron, showed a decrease in intensity of only 15%, which is considered 

insignificant in view of the noise produce by the high receiver gain 

(1.25 X lo'̂ ) . The interpretation was that the iron signal remained 

essentially undiminished while a certain quantity of paramagnetic 

species which have been attributed to copper in the g=2 region was 

lost upon reduction of hexose oxidase. The experiment suggested that 

Cu(II) changed to diamagnetic Cu(I) by this treatment, with the formation 

of a free radical.

C. Mechanism of Action of Hexose Oxidase 

It was established by kinetic analysis that hexose oxidase 

acts by alternating the addition and release of substrate and product 

in a typical ping pong bi bi fashion. Integrating this mechanism of 

action with the results of physical-chemical studies of the enzyme 

structure allowed a unified picture of hexose oxidase action to be 

postulated.

One mechanism which can be proposed calls for copper to exist in 

binuclear clusters within the enzyme which act to transfer pairs of 

electrons (Figure 32). Since EPR data suggests the possibility of 

exchanged or dipole coupled ions which undergo reduction with glucose 

in the absence of oxygen, perhaps the copper in the enzyme exists in 

the reduced state as pairs of Cu(I) ions. With the introduction of 

oxygen, the peroxo anion is formed in a complex with copper, forming 

the paramagnetic ternary [Cu^ (II) 0^]"^ complex. Model copper (I)
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Figure 32: Postulated mechanism of action of hexose oxidase
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salts have the capacity to bind oxygen reversibly in aqueous solution. 

O'chiai (1977) has reported the free energy changes which accompanies 

0 ^ binding to aqueous or ammoniacal Cu (I) pairs :

2 Cu (I) + Og--------- [CUg (II) 0 ^ ] ~ ^

The standard free energy change was a favorable-4.8 and-12.6 

kcal/mole, respectively. This same scheme is relevant to the action 

of oxygen-carrying capacity of the hemocyanins in molluscs (Lontie and 

Vanquickenborne, 1974).

With the formation of peroxo ion, the ping pong mechanism predicts 

that hydrogen peroxide be formed and released. This may occur with 

ionizable groups in the protein supplying the needed protons. With 

the formation and subsequent release of hydrogen peroxide, the copper 

ions would be in the divalent state. Glucose would add to the enzyme 

at this stage and the Cu (II) dimers would be reduced to pairs of Cu 

(I) by this substrate. This scheme of the mechanism is supported by 

EPR experiments in which the paramagnetism was reduced under these 

same experimental conditions. D-glucono-6-lactone would be formed as 

the protons from glucose are replaced to the groups in the protein.

An alternate mechanism may be proposed which doesn't require 

contiguous copper pairs. If the copper in the enzyme is considered to 

be isolated Cu (II) ions, a step-wise mechanism involving one electron 

transfer may be predicted. This theory is supported by the free 

radical signal which appears in the EPR spectrum of hexose oxidase 

under reducing conditions. However, formation of a superoxide radical 

from oxygen in a one electron addition is thermodynamically unfavored, 

costing 10.4 kcal/mole at pH 7 and 25°C. Yet, a one electron trans-
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fer mechanism has been implicated in xanthine oxidase action (Van 

Heurelen, 1976) but this enzyme contains Mo, iron and FAD, the latter 

stabilizing the free radical intermediate through resonance stabilization. 

Perhaps iron is a real cofactor in hexose oxidase, storing electrons 

in the same way as the iron-sulfur centers in xanthine oxidase. 

Unfortunately, not enough information is available to postulate a 

complete mechanism involving iron in the action of hexose oxidase.

From the physical-chemical study of hexose oxidase, taken with 

the kinetically-determined mechanism, the copper in hexose oxidase may 

be interpreted as conduits for electrons shuttling from glucose to 

oxygen. The coppers may work in tandem, transferring a pair of electrons, 

or as individual centers, with the transfer occurring in electron 

steps. Thus the state of copper in hexose oxidase is intimately 

involved in the mechanism of action of hexose oxidase.
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