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ABSTRACT

ASYMMETRIC HOMOGENEOUS HYDROGENATION WITH CHIRAL 
PHOSPHINE-RHODIUM(I) CATALYSTS

by

SUSAN J. HATHAWAY

Asymmetric homogeneous hydrogenation with c h ira l phosphine- 

rhodium(I) catalysts has been investigated.

The syntheses o f two new chiral phosphine ligands, 

2-phenylbis(diphenylphosphino)butane (SUPHOS) and carvomenthyl- 

diphenylphosphine (CMDPP) are described. A lternate syntheses o f 

2-phenyl-l-diphenylphosphinobutane (BUPHOS) and neomenthyl- 

diphenylphosphine (NMDPP), previously prepared in th is  laboratory, 

are also described.

Asymmetric homogeneous hydrogenations of both E and Z isomers 

of a-  and e-methyl cinnamic acids, (Z)-a-acetamidocinnamic acid, (E )- 

and (Z )-e th y l 3-acetoxybut-2-enoate, (Z)-methyl 3-acetoxybut-2-enoate,

(E )- and (Z )-e th y l 3-acetoxyhex-2-enoate, (Z )-e th y l 3-acetoxytridec-2- 

enoate, (Z )-e th y l 3-acetoxytetradec-2-enoate, and (Z )-e th y l 3-acetoxy- 

cinnamate were carried  out.

Hydrogenations o f the a,e-unsaturated acids were performed with the 

ligands prepared in th is  study and o^anisyl cycl ohexylmethylphosphine (ACMP), 

2,3-0-isopropylidene-2,3-d ihydroxy-1,4-bis(diphenylphosphino)butane (DIOP), 

and 1,2-ethanediylbis[(o-methoxyphenyl)phenylphosphine] (DIPAMP). Hydro

genation o f (E)-a-methylcinnamic acid with a neutral Rh/NMDPP catalyst

xvi
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gave up to 63% ee. When preformed ca tio n ic  catalysts were used, the 

highest op tica l y ie ld  (39% ee) was observed in the reduction o f (E )-a -  

methylcinnamic acid with [Rh(COD)(CMDPP)]+BF^. The influence of 

substrate geometry (E/Z) on both chemical and optical y ie ld  varied  

from substrate to substrate.

Hydrogenations of (Z)-a-acetamidocinnamic acid with neutral 

Wilkinson-type catalysts containing BUPHOS, SUPHOS, NMDPP, and 

CMDPP gave products having low optical p u ritie s  (0-12% ee).

The resu lts  of hydrogenation o f enol acetate substrates with 

eleven d if fe re n t ch ira l Rh( I ) phosphine cata lysts  showed BUPHOS to be 

the most successful ligand, when both chemical and optical y ie lds are 

considered. Several catalysts gave large amounts o f hydrogenolysis 

(20-65%). Successful reductions were achieved with ethyl-3-acetoxybut- 

2-enoate and ethyl 3-acetoxyhex-2-enoate but long chain a lip h a tic  enol 

acetates did not undergo hydrogenation.

Hydrogenation o f (Z )-e thy l 3-acetoxycinnamate with Rh/ACMP gave 

a sp ec ific  ro ta tio n  nearly seven times the li te ra tu re  value fo r the 

maximum ro ta tio n  o f ethyl 3-acetoxyhydrocinnamate. The synthesis of 

chira l ethyl-3-acetoxyhydrocinnamate was investigated and the source of 

the li te r a tu re  e rro r was found to be associated with by-product formation 

during the e s te r if ic a tio n  of the ch ira l 6-hydroxy acid precursor. Using 

the ch ira l s h if t  reagent, Eu(dcm)g, the maximum rotation value was 

determined to be nearly twelve times th a t previously reported fo r the 

acetoxy es te r.

xvi i
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INTRODUCTION

Chiral compounds are essential in the synthesis of pharmaceuticals,

flavors , fragrances, and natural products. The c lass ica l methods of

producing o p tic a lly  a c tiv e  molecules are the manual separation o f

enantiomeric crystal forms (not often used; Pasteur's manual separation

of D and L forms o f t a r ta r ic  acid was the f i r s t ) ,  reso lution  by physical
1 2separation o f diastereom eric d eriva tives , ’ thermodynamically controlled  

asymmetric transform ations, and k in e tic a lly  contro lled  asymmetric trans

formations. The la s t  category includes asymmetric synthesis.

An asymmetric synthesis is  defined as "a reaction  in which an 

achiral u n it in an ensemble o f substrate molecules is  converted by a 

reactant into a c h ira l u n it in such a manner that the stereoisomeric 

products are produced in  unequal amounts." I t  is  possible to obtain 100% 

conversion o f a p rochira l substrate to one ch ira l product by asymmetric 

synthesis. However, only a few nonenzymatic syntheses are th is  e f f ic ie n t .  

The loss o f a t le a s t 50% of the starting  material th a t is  unavoidable in 

resolutions o f racemic compounds can therefore be circumvented. The 

economic factor is  an important driving force for the development o f this  

kind of process since there is  no waste o f m ateria ls .

A good example o f the impact of an e f f ic ie n t  asymmetric synthesis
4

is the production o f c h ira l essential amino acids. In the la s t few 

years in te res t in adequate world-wide n u tr itio n  has been growing and with 

i t  the price o f commodities such as soybeans (rich  in essential amino 

acids) has increased w ith  th is  demand. The desire to produce L-amino 

acids inexpensively has resulted in the development o f an e f f ic ie n t

1
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2

c a ta ly tic  asymmetric synthesis by the Monsanto Company (to be described 

in d e ta il la te r ) .

Asymmetric synthesis occurs when diastereomeric tra n s itio n  states
5

are formed between a reagent and a substrate, one of which is  c h ira l.

The magnitude o f the energy d ifference between diastereomeric tra n s itio n  

states determines the excess of one stereoisomer over the other. Reagents 

(chemical, organismic, or enzymatic) are sought which w ill maximize the 

energy d iffe ren ces . R ationally  designed syntheses attempt to make use o f  

s te ric  hindrance or in  some other way fa c i l i t a t e  the use o f a lower energy 

pathway. However, i t  is not always possible to design an e f f ic ie n t  

asymmetric synthesis. Good attempts can be made though, given a system 

with a known mechanism and a normally stereoselective outcome.

I t  is  important to use ch ira l reagents e f f ic ie n t ly , th a t is ,  to  

be able to recycle them. Only ra re ly  is i t  desirable to create one c h ira l 

center from the destruction of another. Obviously, then, one o f the best 

ways to use c h ira l reagents is as c a ta lys ts . Chiral catalysts have 

already achieved a high degree of success. Asymmetric Wilkinson-type 

catalysts fo r homogeneous hydrogenation developed by Dr. W illiam  S. Knowles 

at the Monsanto Co. are good examples. The Knowles catalysts have made 

possible the d ire c t c a ta ly tic  synthesis o f D- and L-amino acid d eriva tives  

with s te re o s e le c tiv itie s  heretofore observed only in enzymatic processes 

(greater than 95%). The process has been applied successfully to the 

large scale manufacture o f L-dopa, an amino acid drug used in the t r e a t 

ment o f Parkinson's Disease. As a re s u lt o f the economic leverage of the 

Knowles process the Monsanto Co. has become the only manufacturer o f  

L-dopa in the United States and the leading world-wide producer. The 

practical formation o f one or the other o f two enantiomers in greater
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than 90% excess is  the mark o f an elegant asymmetric synthesis. The 

Knowles process is  even more impressive because i t  is c a ta ly t ic .
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HISTORICAL

Wilkinson Catalysts

Synthesis o f the Original C atalyst

The o rig in a l Wilkinson ca ta lys t, tris (triphenylp hosph ine)- 

chlororhodium(I) was well described in 1966.7 The c a ta lys t was

prepared by allow ing an excess of triphenyl phosphine to react with 

rhodium (III) ch loride hydrate in ethanol to form RhCl(PPhg)3 J a dark 

burgundy-red c ry s ta ll in e  complex. This complex, under one atmosphere 

of hydrogen a t room temperature and in a su itab le  solvent ( i , e .  benzene) 

formed an octahedral dihydrido rhod ium (III) complex (Figure 1) which was 

capable o f rapid homogeneous hydrogenation o f c e rta in  alkenes and alkynes.

Figure 1. Octahedral dihydrido rh o d iu m (III)  complex.

An A lte rn ate  Synthesis of Wilkinson-Type Catalysts

Subsequent to Wilkinson's pioneering investigations with t r i 

phenyl phosphine i t  was found that c a ta ly t ic a lly  active  dihydrido Rh

H

Cl

4
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complexes of a va rie ty  o f 3° phosphines could be obtained from an eas ily
8  9prepared precursor, [R hC dienejC l^ . This bridged R h(I) dimer was most

e ffec tive  when the diene was 1,5-cyclooctadiene (COD) (Figure 2 ) .  The 

system most commonly employed now fo r  in s itu  homogeneous hydrogenations 

involves the addition o f two molar equivalents o f a 3° monophosphine or 

1 molar equivalent of a diphosphine to  0.5 equivalent of [Rh(C0D)Cl]g.

Wilkinson-type cata lysts  have been found to e ffe c t rapid cis  

homogeneous hydrogenation o f o lefins  and alkynes. Early ra te  studies of 

the hydrogenation o f 1-heptene, cyclohexene, and 1-hexyne w ith the o rig ina l 

catalyst were conducted to determine the dependence on such factors as 

catalyst and substrate concentration, pressure, and temperature. I t  was
_3

shown that a t a c a ta ly s t concentration of 10 M in benzene, and a t one 

atmosphere o f hydrogen and 25°, o le fin s  would hydrogenate so rap id ly  that 

the solution would b o il.  Wilkinson-type catalysts exh ib it high s p e c if ic ity  

in the reduction o f carbon-carbon double bonds in the presence o f other

Figure 2. Preformed ca ta lys t precursor, [Rh(C0D)Cl]2 -

Synthetic U t i l i t y
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functional groups. They also are specific  fo r  unhindered o le fin s .

Unlike most heterogeneous catalysts they are not poisoned by d ivalent 

s u lfu r .^

Mechanism o f Action

Cationic Versus Neutral Catalyst Species. The Wilkinson catalyst 

can e x is t as e ith e r  a ca tion ic  or neutral species. The neutral species, 

RhCl(PPh3 )g , was described by Wilkinson. I t  was discovered th a t s im ilar 

hydrogenation resu lts  could be obtained when a ca tio n ic  c a ta ly s t, 

[Rh(diene)Ln] +A“ (L = te rtia ry  phosphine ligand with n = l,2 ; A"=C10^, BF ,̂ 

or PFg) was u s e d .^  Both cation ic  and neutral ca ta lysts  are currently  

used. A ca tio n ic  phosphine containing ca ta lys t has the advantage of 

being a ir  s table  while the free  phosphine used to form the neutral

ca ta lys t is  a i r  sens itive . Numerous studies have been conducted to

determine the e ffic a cy  o f one species over the other but no conclusive 

evidence has y e t been presented. There are s t i l l  unresolved questions 

about the precise nature o f the c a ta ly tic  process fo r  the two species, 

although ce rta in  g en era lities  have been elucidated.

The Mechanism Proposed by Wilkinson. Wilkinson proposed a 

catalys is  mechanism that is  shown in Figure 3 . 7 His f i r s t  assumption 

was th a t the complex, RhCll_3 , in i t ia l l y  underwent e s se n tia lly  complete 

dissociation o f a phosphine ligand to give an unsaturated complex 

RhCll^. This assumption has been proved wrong.^ The dissociation of

a ligand has been found to be very unfavorable and to occur in less than
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RhCIL

RhClL2

I K

i ( a)Ml

H2RhClL2

(b) 01

(01) RhCI L2 — ^ R h C IL 2 + p ara ffin

01 =  o le fin  

L =  PPho

Figure 3. O rig inal mechanism proposed by Wilkinson.
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5%. I t  was fu rth e r proposed th a t the unsaturated complex could promote 

hydrogenation by one o f two pathways, one involving o le fin  coordination 

as a f i r s t  step (a , in Figure 3) and the other involving oxidative  

addition o f hydrogen as a f i r s t  step (b, in Figure 3 ) .

These mechanistic a lte rn a tiv e s , and others involving oxidative  

addition of hydrogen p r io r  to ligand dissociation (see below) have been 

reviewed. Their re la t iv e  importance is s t i l l  open to debate. However, 

as w ill be shown, there is  common agreement th a t a t some point in the 

sequence there is ox idative  addition of a hydrogen molecule and disso

c iation of one phosphine ligand to form a dihydrido o le f in  rhod ium (III) 

complex (A, in Figure 4 ) .  The coordinated o le fin  inserts  in to  a Rh-H 

bond to give an a lkyl rhodium intermediate (B, in Figure 4 ) ,and then via 

reductive e lim ination  an unsaturated c a ta ly tic  species (C, in Figure 4) 

is regenerated and saturated product is released.

Mechanistic A lte rn a tiv e s . A mechanism proposed by D olcetti and 

Hoffman is shown in Figure 5 .^  I t  is a well established fa c t that 

RhCl(PPhg)g is  a square planar R h(I) complex. Whether th is  complex f i r s t  

undergoes oxidative addition o f H2 to form the octahedral dihydride R h ( II I)  

complex (step 1) or whether the o le fin  adds f i r s t  (step 7) is  uncertain. 

Whichever takes place f i r s t ,  i t  is  postulated th a t the dissociation of a 

phosphine ligand (L) occurs subsequently (steps 2 and 8 ) .  (A solvent 

molecule would occupy a position in the coordination sphere of the 

octahedral complex a t th is  p o in t.)  In step 3 the o le fin  adds to the 

active dihydride species or a lte rn a tiv e ly , in step 9 , H2 adds to form the 

R h (III)  dihydride. Through stages 4, 5 and 6 the pathway is  the same
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H

P\  ! 
> RhA ĉ

Cl

(A)

insertion

x C l^  R h ^ -  CH, 

‘
Cl

(B)

CH.

reductive
e lim ination

CH3“ CH3

p Cl

Rh

p /  X s

(C)

S =  solvent or some other coordinating ligand, i . e . . phosphine 
or o le fin

Figure 4. Insertion o f an o le fin  followed by reductive e lim ination  
to regenerate the ca ta lys t and release the saturated 
product.
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rch2 ch3

RhClL-

I (6)V

RCH=CH,

RCH2CH2RhHClL3

A(5 )

\
RCH2CH2 RhHClL2

\
(4)

H2RhClL3 (RCH=CH2)RhClL

N..-A
(2)  L (8)

/  I
HpRhCILp (RCH=CH2)RhClL

/  /
(3) (9)

H2 RhClL^CH2=CHR)

CH2=CHR 2

Figure 5. The mechanism proposed by Dolcetti and Hoffman fo r  the 
neutral Wilkinson c a ta ly s t.
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regardless o f the preceding steps w ith in sertion  of the o le fin  to form 

the sigma bonded a lky l then reductive e lim ination  o f the alkane and 

regeneration o f the active ca ta lys t (regains the formerly dissociated  

lig a n d ).

The Mechanism Proposed by Schrock and Osborn fo r the Cationic  

Wilkinson C ata lys t. In 1976, Schrock and Osborn proposed a mechanism fo r  

homogeneous hydrogenations involving ca tion ic  complexes (Figure 6 ) . ^

The in i t ia l  6 steps are essen tia lly  the same as those shown in Figure 3 

fo r the neutral c a ta lys t except th a t the complex is cationic and the 

problem o f ligand dissociation is avoided by not designating the number 

of ligands present. The difference is  seen with the complex [RhH2Ln] +Cl~ 

which can by loss o f HC1 become the neutral species RhHLn (step 7 ). This 

species can then add o le fin  in step 8 to form RhHLn(01) which can undergo 

insertion (step 9) to form an alkyl rhodium complex, RhRl_n. Addition o f  

H2 (step 1 0 ) to form RhH2 Ln (where rhodium is once again in the plus 

three s ta te ) allows reductive e lim ination o f RH (the saturated product) 

and regeneration o f RhHLn. This "side" mechanism (steps 7-11) has been 

found to be associated with the isom erization o f unsaturated substrates; 

i t  can be suppressed by keeping the reaction medium acid ic. Whichever 

reduction pathway is  active in steps 1 - 6 , the process is known to be 

slower than th a t in the "side mechanism", but i t  does not cause the 

isom erization o f substrates.
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Chiral Wilkinson-Type Catalysts 

Chiral Ligands

With the success of achiral Wilkinson-type catalysts in the 

hydrogenation o f carbon-carbon double bonds i t  was logical th a t there 

should be a progression to the design of ch ira l systems. Several workers 

recognized the potentia l value of incorporating ch ira l phosphine ligands 

into the Wilkinson ca ta lys t system thereby producing an asymmetric homo

geneous hydrogenation catalyst.

There have been many studies o f such systems. The ch ira l phosphine, 

phosphinite, and aminophosphine ligands th a t have been used to prepare 

chiral cata lysts  fo r the hydrogenation o f carbon-carbon double bonds are 

lis te d  in Figure 7.

General Methods of Ligand Synthesis

P-Chiral Ligands. The varie ty  o f ch ira l ligands th a t could be 

synthesized fo r use in the Wilkinson-type c a ta lys t is  lim ited  only by the 

imagination and s k i l l  o f the synthetic chemist. The f i r s t  researchers in 

th is  area attacked the synthesis problem by making ligands th a t were 

chiral a t phosphorus (P -c h ira l). These P -ch ira l ligands were prepared 

using Mislow's scheme fo r the synthesis o f o p tic a lly  active phosphine 

oxides which, in tu rn , can be deoxygenated s te re o s p ec ifica lly  to ch ira l 

phosphines (Figure 8 ) .^ 2 ,43 ’ ^

The syntheses of two P-chiral ligands, o-anisylcyclohexyl- 

methylphenylphosphine (ACMP or CAMP) (2 ) and 1 ,2 -e thaned iy lb is - 

[(oHnethoxyphenyl)phenylphosphine] (DIPAMP) (1 2 ), both synthesized by
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Ph—P—Me
I

n —Pr

(+) - (S) -Methyl phenyl -n-propy 1 ■ 
phosphine (Ref. 9)

1

Me — P—i —Pr 
I “
Ph

OMe

Me—P

(+ ) - (R) - ACMP (R ef. 12, 13)

OMe

OM e-P

(-  )-Methyl isopropylphenyl -  o-Anisylmethyl phenyl phosphine
phosphine (Ref. 8 ) 90% "(Ref. 8 ) 95% o p tic a l purity
optical purity

OMe

M e-P
I
Ph

m-Ani syl methyl phenyl phosphi ne 
XRef. 8 ) 80% optical p u rity

M e -P —CcH ,,j 6 11

Ph

Cyclohexyl methyl phenylphosphi ne 
(Ref. 8 ) 75% o p tica l purity

6a

Figure 7. Chiral phosphine, phosphinite, and phosphinamide ligands 
used for asymmetric homogeneous hydrogenation o f carbon- 
carbon double bonds with the Wilkinson-type c a ta ly s t .*
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F ig u re  7 C o n t in u e d .

M e -P —Ph
IEt

(R)-Ethylmethylphenylphosphine 
(Ref. 50)

6b

OMe

M e -P

o-Ani syl methyl-n-propylphosphi ne 
TRef. 8 ) 95% op tical purity

8

OMe

£-Ani syl i sopropyl phenyl -  
phosphine (R ef. 8 ) 80%
optical p u rity

7

OMe

o-Ani sylbenzyl methylphosphi ne 
TRef. 1 2 )

9

OMe / CH.,
i  3P — CH9CH— CH-

I 2 3Me
PhChL— P — Ph

2 i
Me

o-Ani syl i sobutylmethylphosphi ne 
TRef. 1 2 )

10

(R)-Benzylmethylphenyl -  
phosphine (R ef. 14)
[a ]p 5 84° ( £ 1 . 3 ,  toluene)

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



16

F ig u re  7 C o ntinu ed .

OMe O -i-P r

P— ch2— ch2— p C6Hl l - f
Me

(™)-(R,R)-DIPAMP (R ef. 16) Cyclohexyl -o - i  sopropoxyphenyl- 
methylphosphine (R ef. 13, 17)

12 13a

O -i-P r

Me— P M e-P

o_~ I sopropoxyphenyl methyl phenyl ■ 
phosphine (Ref. 13)

^-Benzyloxyphenylcyclohexyl ■ 
methylphosphine (R ef. 13)

13b 13c

OEt

M e-P

OMe

Me— p

i — Pr

Cyclohexyl-o-ethoxyphenylmethyl ■ 
phosphine TRef. 13)

o-Ani s y li sopropylmethylphosphine 
TRef. 13)

13d 13e
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F ig u re  7 C o n t in u e d .

OMe Me

o-Ani sylm ethyl-2-m ethyl-4 -  
bromophenylphosphine (Ref. 13)

13f

E t-C H-C H-PPh,,
I 2 2
Me

(+ )-(S )-2 -M ethy lbu ty l diphenyl- 
phosphine (R ef. 15)

15

(S)-MMPP (Ref. 18) 96%
optical p u rity  (R) also 
synthesized p

14

Ph — CH —CH9PPh, 
I 1 1
Et

(+ ) -(S )-2-Phenyl butyl diphenyl-  
phosphine (Ref. 15)

16* *

Me—CH —CgH-j 3 

PPh0

(+ ) - 2 - 0 ctyldiphenylphosphine 
(Ref. 15)

17

PPh,

( + ) - ( ! R,3S,4S)-NMDPP (Ref. 15)

18
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F ig u re  7 C on tinu ed .

Me
I

P h - P - ( C H 2CH—  E t ) 2

Bis(sec-butyl)phenylphosphine 
(Ref. 6 )

19

PPh

PPh

H

(-)-(2R ,3R )-D I0P  (Ref. 19)

20

PPh,
PPh, PPh,

(+)-CAMPHOS (Ref. 20) 

21

H
MeO  ̂ =

.PPh,

H

PPh,

(-)-MDPP (R ef. 20) 

22

P(2-Me-C6H4 ) 2

P(2-Me-C6H4 ) 2

(+ )-2 ,3~D im ethoxy-l,4 -b is- 
(diphenylphosphinoJbutane 
(Ref. 19) [a ]D 4 .0 °  (c 2 .45 , 
benzene)

(-)-2 ,3 -0 -Is o p ro p y lid e n e -1 ,4- 
bis(di-£-tolylphosphino)butane

(Ref. 21) [a ] 2 2  -13 .5 ° (c 2 .2 ,
benzene)

23 24
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F ig u re  7 C o n tin u e d .

X  /  v 9 = ^ ^ P ( 2 >5- Me2- C6H3)2

(-)-2 ,3 -0 -Is o p ro p y lid e n e -1 ,4- 
b is (d i- 2 , 5-dimethyl phenylphos- 
phino)butane (Ref. 21)
[a]g 2 -1 8 .9 ° ( £ 1 . 6 , benzene)

25

H_

0  r  X V  
\  /  N

0 - k / P(2 >5 - Me^ H3)2  ^
H H

P(3-Me-C6H4 ) 2

P(3-Me-C6H4 ) 2

(-)-2 ,3 -0 -Is o p ro p y lid e n e -l ,4 -  
b is (d i-m -to ly l phosphino)butane
(Ref. 21, 22) [a ] 22 -3 .46°  
( £ 2 , benzene)

26

(Ch2) 5

0
PPh

P Ph
0

H

(-)-2 ,3 -0 - Is o p ro p y lid e n e -l,4- 
b is ( 2 , 2 '-biphenylphosphino)- 
butane (Ref. 21, 22)
[a ] 22  -65 .5 ° (£  2 , benzene) 

27

(-)-2 ,3 -0 -C y c lo h e x y l-l ,4 - 
bis(diphenylphosphino)butane
(Ref. 21) [a ] 22 -18.7°
(£  2 , benzene)

28

PPh

PPh
P

H

(-) -2 ,3 -0 -B e n z y l- l ,4 -b is -  
(diphenylphosphino)butane

(Ref. 21) [a ] 22  -26 .0 °
(£  2 , benzene)

PPh,

PPh,

( - ) - ( lR ,2 R ) - tra n s -1,2-B is- 
( diphenylphosphinomethyl) 
cyclopentane (Ref. 21)

[ct]n2 -2 5 .9 °  (c 1, benzene)

29 30
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F ig u re  7 C o n tin u ed .

PPh

PPh

H

(-)-l,2 -B is(d iphenylphosphino
methyl )b icyc lo [2 . 2 . 2 ]octene
(Ref. 21) [a ] 22  -20 .0°
(c_ 1 , benzene)

(Ref. 23)

31 32

CH.

^ CH2N cĥ CH2 ^ >

■ III H

C02CH2CH2OH H -C -O H

Ph2P PPh2

(Ref. 24) (Ref. 25)

33 34

( -)-cis-M yrtan.yl di phenyl -  
phosphine (Ref. 26)

PPh

( - ) - c is -Dihydronopyldi phenyl -  
phosphine (Ref. 26)

35 36
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F ig u re  7 C o n tin u ed .

^ C H 2 PPh2

CH2PPh2

(lR ,2R )-tran s -l,2 -B is (d ip h e n y l-  
phosphinomethyljcyclobutane 
(Ref. 27)

37

CH2 P(4-Me-C6H4 ) 2

X H 2P(4-Me-C6 H4 ) 2

( lR ,2 R )-tra n s -l,2 -B is (d ito ly l-  
phosphinomethyljcyclobutane 
(R ef. 27)

38

^C H 2 P(Np) 2

\ : h 2 p(np) 2

(lR ,2R )-tran s -l ,2 -B is (d in ap hthy l- 
phosphinomethyljcyclobutane 
(Ref. 27)

39

PPh

I
COOBu

t

.CH2PPh2

N :H 2PPh2

( !R ,2 R )-tra n s -l ,2-Bis(diphenyl 
methyljcyclohexane (Ref. 28)

40

PPh

(-)-(2S,4S)-BPPM (R ef. 29)

41

(-)-(2S ,4S)-PPM  (Ref. 29)

42
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F igure  7 C o ntin ued .

PPh,

t >
CH2 PPh2

C-CMe,
» 3
0

(2S,4S)-PPM (Ref. 30) 

43

CH3—  CH-CH2— PPh2 

Ph

(R)-PROPHOS (R ef. 31) 

44

CH,—CH—CH— CH, 3 , 1  3
PPh2 PPh2

(-)-(2S,3S)-CHIRAPH0S (R ef. 31) 

45

H

o o
o o

CH2 PPh2

CH2 PPh2

( - ) - (S) -NAPH0S(1 ,1 ) (R e f. 33) 

47

0
li
CN

PPh,

PPh,

N ,N-Bi s ( 2-d i phenylphosphi no
ethyl )biotinamide (R ef. 42)

46

PPh

PPh

CH-NMe 2
Me

(+)-(S)-(R)-BPPFA (R ef. 34)

48
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Figure 7 Continued.

PPh

(-)-(2S,4S)-CPPM (R ef. 35)

49

6 -D e o x y -l,2 ,3 ,4 -d i-0 -is o -  
propyl i dene-6 -d i phenylphosphi no- 
a-D-galactopyranose (Ref. 36)

50

0 — CH

OMe aOPPh2 

0PPho

M ethyl-4,6-0-benzylidene-2- 
deoxy-2 -d i phenylphosphi no- 
a-D-altropyranoside (Ref. 36)

51

OPPh,

OPPh,

(+)-trans-BDPCP (R ef. 38)

(+)-(lS,2S)-BDPCH (R ef. 37) 

52

O o

oo

OPPh.

OPPh,

( - ) - ! , !  '-B i-2 -n ap h th y lb is -  
(diphenylphosphinite) (Ref. 39)

53 p/JOt
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F ig u re  7 Continued.

CH,

N —  P
I
Me

CH,( '3 | 3
Ph-CH Ph CH— Ph

■N
I
Me

(Ref. 40) Phenylphosphonous acid b is -
[N-methyl- ( S) -a-phenethylami de] 
(Ref. 41)

55 56

CH- CH-
I 3 I 3

Ph-CH Ph CH-Ph
I I I
N — P— N
I I
CH, CH,

CH. 
I ;

PPh, 
I ‘

Ph—CH—N —CH-— CH-—N -C H -P h  2 2 |
PPh- cht

(Ref. 41)

[(S)-a-Phenylethyl]-2-phenyl' 
2 -phosphaimidazolidine 
(Ref. 41)

57

58

CH3— CH— N— PPh2

Ph Et

(+)-(R )-Ethyl-N -(ci-m ethylbenzyl )■ 
diphenylphosphine (Ref. 15)

59

*Data concerning configuration, ro ta tio n , and optical purity  was not 
availab le  for a l l  ligands. Data is  given where a v a ilab le .
**Renumbered and referred to as 80̂  in Results and Discussion when 
prepared \na the tosylate in th is  study.
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Ph —PCI,
ch3oh

W Ph-P(0CH3 ) 2

CH3 1

0  0
Jl PCI, II

Ph — P—Cl < ---------- ----------- Ph-P-O CH
I I
c h 3 CH3

(-)-m enthol

C5H5N

° 0 0

P h -P -O -m e n th y l ■ reso1utl.on„> PhllHIP-O-Men + CHJIIIi P -0 -M e n
I A J 1
CH3 CH3 Ph

(R) (S)

0
II

CHJIIIi p -0 -M e n
3 a

Ph

RMqX
0
II

Phlllil P— R
A
CH0

HSiClg*^ I
Phlim P -R  

k
CH0

Figure 8 . Mislow's procedure fo r  preparation o f o p tic a lly  active  
phosphines.

Conditions are also ava ilab le  fo r  deoxygenation w ith inversion (see 
t e x t ) .
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Knowles and coworkers a t Monsanto, w ill  be described in d e ta il .  Catalysts

prepared from these ligands have been highly e ffec tive  fo r the asymmetric

homogeneous hydrogenation o f a-acetam idoacrylic acids. The synthesis o f
13ACMP is  il lu s tra te d  in  Figure 9. The R menthyl phosphinate was 

obtained by frac tio n a l c ry s ta ll iz a t io n  o f the mixture o f diastereomeric 

esters from a- or $-pinene. The R ester was then allowed to react w ith  

an o-anisyl Grignard reagent to displace menthol. The benzene ring o f 

the resulting d iary l phosphine oxide was se lec tive ly  hydrogenated with  

rhodium on carbon and the monoaryl phosphine oxide was deoxygenated with  

trich lo ro silane  and tr ie th y l amine (inversion) to give the R phosphine.

DIPAMP is  prepared from the ACMP precursor d iary l phosphine oxide, as 

shown in Figure 1 0 .^  Neither ACMP nor DIPAMP is commercially ava ilab le  

and both syntheses are tedious, th ere fo re , these ligands have not been 

tested as extensively as some others (e .g . , DIOP, see below).

C-Chiral Ligands. As is  obvious from Figure 7 a great va rie ty  o f  

ligands chiral a t carbon (C -c h ira l)  is  ava ilab le . One method of synthesizing  

C-chiral phosphines is used more often than any other due to its  general 

u t i l i t y  in preparing ligands not ch ira l a t  phosphorus. The procedure was 

used by Kagan fo r the synthesis o f the highly successful C -ch ira l ligand  

2,3-0-isopropylidene-1,4-bis(diphenylphosphino)butane (DIOP) (20 ) . 19  The 

synthesis of DIOP involves formation o f a tosylate which is  allowed to 

react with diphenyl phosphide anion to form the desired phosphine ( 2 0 )

(Figure 1 1 ) .^  Tosylate displacement procedures have been used to prepare 

many of the C-chiral ligands shown in Figure 7. The polymer supported
OO

DIOP derivative ( 32) was prepared in a s im ila r manner (Figure 12).
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Ph
I

0=piliiCH,
A
OMen

OCH

OCH3

MgBr

HSiCl.

Et3N

OCH

Ph

(R) P

h2

Rh/C

OCH

(+)-(R)-ACMP ( R ) ,

Men =  1-menthyl

Figure 9. The synthesis o f ACMP.
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Ph
I

O^PIH'CH,
A
OMen

MgBr

OCH OCH

Ph

1) LiN(iC3H7) 2

2) Cu(II )

Y

Ph

(:P -C H 2 f 2 

OCH,

HSiCl

tr ib u ty l amine

Ph

(R» R)

(R, R)-DIPAMP

Figure 10. The synthesis o f DIPAMP.
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COOHHCOHHOCHdOOH
xs.

OMe OMe 
S  /  C H3C C H3

pTsOH (c a t.)  
CgH12 (solvent)

X

H

0 " —3 ^-"COOEt

0 *— ‘ COOEt

M
PPh,
t h f ‘

(-)-(R, R)-DIOP

1) LiAlH4

2) NaOH

CH2OTs

CH2OTs

TosCl

C5H5N 0  -  & CHpOH
H *

A
0 PPh

PPh
0

=  L i , Na, K

Figure 11. The synthesis o f DIOP.
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— ch2ci
( ch3) 2so

—  CHO

M e rr ifie ld  
Resin

H

OTs

OTs

HO
OTs

OTs
HO

H

In so lu b ilized  DIOP

Figure 12. Preparation of polymer-supported DIOP.
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Neomenthyldiphenylphosphine (NMDPP) ( 18) has been prepared by

conversion of menthol to menthyl chloride followed by displacement with 

20phosphide anion. This procedure, modifications o f which have been

used to synthesize other phosphines (e .g . , 2 2 ), has been well reviewed.

The synthesis o f one other C-chiral ligand deserves spec ific

comment. (2S,3S)-Bis-(diphenylphosphino)butane (CHIRAPHOS) ( 45) was
31prepared according to the general tosylate displacement procedure.

However, the is o la tio n  and p u rifica tio n  procedure is  worth special notice. 

The phosphine was separated from by-products as an insoluble n ic k e l( I I )  

complex which was then freed with cyanide ion. Yields o f 20-30% of 

CHIRAPHOS were obtained in  th is  manner.

C-Chiral Plus P-Chiral Ligands. One ligand th a t is  c h ira l a t

both phosphorus and carbon has been reported. Menthyl methyl phenylphosphine 
18(MMPP) (1_4) was synthesized from neomenthyl chloride v ia  reaction with 

sodium methyl phenyl phosphide. This reaction produced a mixture o f epimers 

(R and S ) which were converted to th e ir  respective phosphine oxides and
r r

then separated by chromatography on s ilic a  g e l. A fte r separation the 

phosphine oxides were reduced w ith phenyl si lane to give the free  phosphines. 

Under the reducing conditions S -MMPP was stereochemically stable but the
r

Rp isomer underwent 13-25% epim erization.

T e rtia ry  Phosphines having Axial C h ir a lity . The ligand ( - ) - ( S ) -

2 ,2 '-b is(d iphenylphosphinom ethyl)-l,1 '-binaphthyl [NAPH0S(1,1 ) ]  (47) was

the f i r s t  reported example o f a chiral phosphine possessing axia l 
33c h ira lity . This ligand was prepared via an Arbuzov reaction between
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O O

Oo

CH2Br

CH2Br
+ MeOPPh,

oo

oo
o
ii

CH2PPh2

CH2PPh2

HSiCl. 
Et3N ’

O o
CH2PPh2

CH2PPh2

NAPHOS ( 1 , 1 )

Figure 13. The synthesis of NAPHOS (1 , 1 ) .
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(S )-(-)-2 ,2 '-b is (brom om ethyl ) - l  ,1 '-binaphthyl and methyl diphenylphosphinite 

to give a phosphine oxide which was, in tu rn , reduced w ith  HSiClg-EtgN 

(Figure 13).

Ferrocenyl Plus C-Chiral Ligands. Planar c h ir a l i t y  is  exhibited

by substituted ferrocenes. In the case o f ligand (48) there is  a center
34of c h ira lity  a t carbon as w e ll. The ligand (S ) -c t - [ (R ) - l ' ,2 -b is(d iphenyl- 

phosphino)-ferrocenyl jethyldimethylamine (BPPFA) is prepared by stepwise 

lith ia tio n  o f (S)-a-ferrocenylethyldim ethylam ine with in-butyl lithium  

and ivbutyl lith iu m  in  TMEDA, followed by introduction o f a diphenyl -  

phosphino group in to  each cyclopentadienyl ring (Figure 13).

Chiral Phosphinite Ligands. I t  has been found th a t phosphinites 

are also e ffe c tiv e  as ligands in Wilkinson-type c a ta ly t ic  systems. Chiral 

phosphinites are very simply prepared from an o p tic a lly  active alcohol and 

chlorodiphenylphosphine. In Figure 15 the preparation o f ( + ) - trans-l ,2 -

PPh9
1) j^-BuLi, Et20

2) n-BuLi, TMEDA/Eto0

CHNMe

Me

Figure 14. Synthesis of (S)-(R)-BPPFA.

&
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37bis(diphenylphosphinoxy)-cyc1ohexane (BDPCH) ( 52) is  shown.

Figure 15. Preparation of (+)-(lS,2S)-BDPCH.

Chiral Aminophosphine Ligands. Amino and diaminophosphines have 

also been employed successfully as ligands in W ilkinson-type ca ta lys t 

systems. A general procedure fo r preparing th is  type o f ligand is shown 

in Figure 16. A c h ira l amine, (S)-(-)-N -m ethyl-a-phenylethylam ine, was 

allowed to react w ith dichlorophenylphosphine to form phenylphosphonous 

aci d bis [N-methyl -  ( S) -a-phenyl ethyl ami de] (5 6 ). ̂

4 Ph-CH-NHMe + PhPCl?
I
Me

Figure 16. Preparation of a diaminophosphine ligand.

Me Me

Ph-CH CH-Ph 
I I
N -P '-N
I
Me

I
Me

Ph

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



35

Substrates fo r Chiral Hydrogenation Studies

Unfunctionalized Olefins

Very few unfunctionalized o le fins  have been studied because 

in it ia l  examples showed th a t the p a ra ffin  products are o f low optical 

purity . Furthermore, o p tic a lly  active paraffins are o f l i t t l e  p rac tica l 

value. Simple o le fin s  tha t have been asymmetrically hydrogenated are 

lis ted  in Table 1. The highest % ee was obtained with a Rh/phosphinite 

catalyst though none o f the resu lts  are outstanding.

Monofunctionalized Olefins 

Enol Ethers. The reduction o f a-methoxystyrene (60j was one of
Q

the f i r s t  monofunctional o le fin  hydrogenations reported. A 3-4% ee of 

(R )-(+)-l-m ethoxy-l-phenylethane was observed with a ca ta lys t containing  

(+)-(S)-methylphenyl-n-propylphosphine. Reduction o f the same substituted

styrene with a rhodium c a ta lys t containing ligand (52J or (53) gave
38approximately a 9°% ee o f the R isomer.

Ph-C=CH,
i 2
OMe

60

S ily l Enol Ethers. Three d iffe re n t s ily l enol ethers have been 

hydrogenated w ith a c a ta lys t containing (-)-DIOP ( 20) (Table 2 ) .^ °  The
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Table 1. Reduction of unfunctionalized olefins with Wilkinson-type catalysts.

'try Substrate
Catalyst
Ligand

Product
Config.

Product 
% ee Ref

1 PhC(Et)=CH2 1 S 7-8 9

2 II 52 R 33 36

3 II 53 11 60 37

4 II 20 S 25 II

5 II 32 II 1 46

6
II 49 II 25 35

7 CH3 (CH2 ) 3 -C (E t)= C H 2 49 II 6 II

8 c is -C H 3CH =  C(Ph)CH3 53 II 14 36

9 CH3CH2C(Ph)=CH2 55 - 49 40
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optical y ie lds fo r a l l  o f these hydrogenations were low, but were higher 

than the values obtained with catalysts containing a number of other 

phosphines. Hydrogenations performed with catalysts containing other 

C-chiral (18) or P -ch ira l ligands (]_)> ( 6b_)j (1J_) gave less than 4% 

optical y ie ld .

Enamides. Enamides have been found to be good prochiral substrates 

for the asymmetric synthesis o f o p tic a lly  active amides and amines. A 

large number of enamides have been reduced with the Wilkinson-type catalyst 

containing e ith e r (+)-D I0P  (20) or (-)-DIPAMP (1 2 ). The optical y ie lds  

vary greatly  but as high as 92% ee has been obtained in the reduction of

1-acetamido-1-phenylpropene ( 61b) (entry 2 , Table 3 ) .

Ph\^C=C-CH~
AcNH^ 13 

61b

Variations in optical y ie ld  are observed depending on solvent 

and whether the c a ta lys t is  cation ic  or n eu tra l. These differences w ill  

be discussed la te r .

Carboxylic Acids and Esters. The monofunctional substrates that 

have been studied the most extensively are a,B-unsaturated carboxylic 

acids and esters. These substrates are eas ily  obtained; many are natural 

products or are e as ily  synthesized. They give a wide range of optical
[

r-'
r.

f .
['
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Table 3 Continued.

Catalyst Product Product Ref.
Entry Substrate Ligand Config. % ee -------

6 61a (+ )-20  R 45 22

7 61b " " 83

8 61c " " *73 + 3 51

9 61d " " 8 5 + 4

10 61 g " S 14

11 61h " " 6

12 ( E)—62 " " 15

13 ( Z)-62 R 1

14 63 " -  10

15 (E)-62 ( - ) - l 2 R 9 46

16 ( Z)-62 " " 51

*These ligands were used in a preformed cationic ca ta lys t; a l l  other catalysts were 
prepared in s itu  from [R h (a lk e n e ^ C la n d  phosphine.



y ie ld s . Substrates th a t have been reduced are lis te d  in  Figure 17.

Results fo r  a large number o f d iffe re n t ligands are shown in Table 4.

Some te n ta tiv e  g en era lities  can be drawn from the resu lts  presently  

availab le . The highest optical y ie lds  are observed fo r reduction o f (E )-  

p-methylcinnamic acid (69a) with Rh/(R )- or (S)-MMPP. This same ligand  

also gives 61% ee with (E)-a-methylcinnamic acid. The only other results  

that are greater than 60% ee are those obtained w ith  these same substrates 

and Rh/NMDPP (1 8 ). A lso, Rh/DIOP (20) is  especia lly  successful in the 

reduction o f a tro p ic  acid (63% e e ). With any p a rtic u la r  ligand , i t  

appears th a t E isomers o f a,g-unsaturated acids hydrogenate to give 

products having higher % ee values. The presence o f an aryl group in the 

substrate seems to promote high asymmetric induction.

Difunctional Olefins

Substrates th a t are Amino Acid Precursors. Most cata lysts  are 

tested fo r  th e ir  a b i l i t y  to hydrogenate amino acid precursors in high 

chemical and op tica l y ie ld . A large varie ty  o f these substrates have 

been examined but two substrates have usually been used to te s t new 

ligands. In Table 5 these two substrates, a-acetam idoacrylic acid ( 71) 

and (Z)-a-acetamidocinnamic acid (7 2 ) are lis te d  w ith the resu lts  obtained 

upon hydrogenation with a Wilkinson-type ca ta lys t containing every ligand  

that has been tested on these substrates. This tab le  has been compiled 

in an attempt to give a common basis fo r comparing the e ffic ie n c y  of 

existing ch ira l ligands.
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CH,

X
Ph COOR 

64

CH,

A
ch3 cooh

65

CH,

X
HOOC CH,

66

a: R=H
b: R=Me

CHCOOH CHPh CHCOOR
II II II
c c c

/  \  /  \  /  \
CH3 COOH CH3 COOH CH3 Ph

67 (E + Z) 68  (E + Z) 69

CHPh
II
C

/ \
Ph COOR

70 (E + Z)

a: R=H (E + Z)

b: R=C 2H5

Figure 17. a,g-Unsaturated carboxylic acid and ester substrates 
used in  asymmetric homogeneous hydrogenation.

COOH
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Table 4. Results of the hydrogenation of ct,8-unsaturated carboxylic acids and esters 

with various chira l Wilkinson-type c a ta ly s ts .*

Entry

1

2

3

4

5

6

7

8 

9

10

11

12

13

Substrate

64a

Catalyst Product Product
Ligand Confiq. % ee Ref.

20 S 44 49

18 n 30 II

22 - 0 II

21 S 6 II

3 ii 15 6

19 - 1 6

(S)-14 R 14 18

(R)-14 S 28 18

20 n 63, 60 22, 19, 13

2 - 12 13

33 S 58-62 53, 24

50 R 17 36

51 S 2 M

00
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Table 4 Continued.

Entry Substrate
Catalyst

Ligand
Product
Config.

Product 
% ee Ref.

59

60 

61 

62

63

64

65

(E)-70

(Z)-70

22

21

2

21

18

22

21

R

S

R

27

12

2

1

9

3

14

49

*Reaction conditions are widely varied fo r th is  series of hydrogenations but temperatures 
and pressures tend to be higher than those used with other substrates. References should 
be checked fo r specific  conditions.

•p»
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Table 5. Results of the hydrogenation of a-acetamidoacrylic acid (71.) and a-acetamidocinnamic acid 

(72 ). A comparison of ligand effectiveness with two "standard substrates".

CH2 = C \

71

NHAc

COOH

P h /  NHAc 
^ C = C

H' ‘COOH

72

Entry

1

2

3

4

5

6

Catalyst
Ligand

2

12

13a

13d

14

20 *

Substrate

71
72

71
72(Z,E )

71
72

71
72

71
72

71
72

Product
Config.

(Z )S , (E )S

R,S

R

R

Product 
% ee

60
54-88

(Z ) 9 4 j ( E ) 4 7 ( 9 6 )

(R )4 0 , (S )4 6

83

44

7 3 ( 6 1 - 8 3 ,4 2 ( S ) , 6 0 ( S ) ) 
7 2 ( 8 2 , 5 8 ( S ) , 8 1 ( S ) , 

44 (S ) , 4 9 (S ) ,6 0 (S ) )

Ref,

8
13,12

13

13

18

1 9 .1 3 .2 2 .5 2
2 1 .2 2 .5 5 .5 2

CO
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Table 5 Continued.
Catalyst Product Product

Entry Ligand Substrate Config. % ee Ref.

17 41 71
72 R 2-91 29

18 42 71
72 S 6

19 45 71 R 88-91 31
72 " 74-89

20 46 71 S 2-44 42
72

21 47 71
72 " 54 33

22 48 71
72 " 89-93 34

23 50 71
72 R 6 36

24 51 71
72 " 2

25 54 71 6 39
72 -  9 It

26 58 71
72 R 80 41

P

*(-)-D I0 P  gives (R)-phenylalanine. (+)-DI0P gives (S)-phenylalanine. g



I t  is evident from the data in Table 5 th a t some ligands are 

clearly  superior to others fo r  the reduction o f acyl ami noacrylic  substrates.
!'■

I t  is possible to obtain nearly o p tic a lly  pure alanine or phenylalanine\ ■

I through the correct choice o f ligand and reaction conditions. Of the
L
li: ligands that are ava ilab le  commercially DIOP (20) is best. This is  not

a bad choice considering th a t an 82% o p tic a lly  pure amino acid (phenylalanine) 

t  can be obtained. I f  the ligands are to be synthesized then CHIRAPHOS (45 ),

ACMP { 2 ) ,  DIPAMP (1^) or BPPM (41_) would be good choices w ith CHIRAPHOS or 

BPPM being somewhat less d i f f i c u l t  to synthesize. Substrate structure  

must also be taken in to  consideration. Reduction o f (Z ) - (7 2 )  with Rh/DIPAMP 

i gives 94% ee product whereas (E )-(72J yields only 57% ee phenylalanine.

I The subject of substrate geometry w ill be covered more f u l ly  in  the section

[ on S tru c tu re -A ctiv ity  Relationships.

I t  is not possible from examination of the a v a ila b le  data to say 

that any p a rtic u la r type o f ligand (e .g . , phosphine, phosphinite, amino- 

phosphine) is superior to any other. In general, the phosphinite ligands 

studied to date seem to be less e ffe c tiv e , whereas the ferrocenyl and 

aminophosphinyl ligands are as e ffe c tiv e , and in many cases more e ffe c tiv e , 

i than the P -chiral and C -ch ira l phosphines.

Media e ffec ts  on optical y ie lds are g rea t, as can be seen from 

| the data fo r ligand (41_) (en try  17). The optical p u rity  varies from

2-91% depending on solvent and the presence or absence o f t r ie th y l amine 

in the hydrogenation m ixture. (A more detailed discussion of these effects

j. w i l l  be taken up la t e r . )
ir.

Substrates (7JJ and (72J have been reduced w ith catalysts  contain-
s
1 ing many d iffe re n t ligands, but there are a number o f other substrates
{■'[;
I
!•
S •

L:
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i that have been reduced w ith a less varied l i s t  o f ch ira l ca ta lys ts . A

I compilation o f  these resu lts is shown in Table 6 .
i ;

The most e f f ic ie n t  ligands fo r  asymmetric induction are ACMP (2 j ,  

f DIPAMP (12.), DIOP (2 0 ), and CHIRAPHOS (45 ). Since two of these are

! P-chiral and two are C -chiral i t  is obvious th a t the nature o f the

t chiral center is  not c r i t ic a l .  I t  might be argued th a t because DIPAMP,

I DIOP, and CHIRAPHOS a ll possess a C£ axis o f symmetry the number of

| diastereomeric chelates is  reduced and th is  could be a t leas t p a r t ia lly

I responsible fo r  the higher asymmetric bias. However, some ligands that

[ also possess a Cg axis don 't begin to achieve the high asymmetric induction
}
[' generally seen in catalysts  containing the aforementioned ligands.

| Furthermore, ACMP is  not a chelating ligand and does not have a C2 ax is ,

I yet i t  is  as e ffe c t iv e  as DIPAMP, DIOP and CHIRAPHOS in many instances.

Thus, an argument fo r greater cata lyst effectiveness based sole ly  on 

the symmetry character o f the ligand is  not s u ff ic ie n t  to explain the 

; general behavior observed. I t  cannot be said th a t the presence of a

p o te n tia lly  coordinating oxygen atom makes a ligand more e ffec tive  since 

CHIRAPHOS (100% ee with leucine) contains only hydrocarbon residues.

Tetrasubstitu ted  o le fin ic  amino acid precursors w ill not hydro- 

| genate in  th is  system. Also, optical y ie ld s  are usually lower when large

I ester or amide functions are present in the substrate. Optical y ie lds

in reductions o f m ultifunctional amide-containing acid substrates are 

greater than those fo r  monofunctional amide or acid substrates and un

functional ized o le fin s . Apparently, an extra coordination is  observed 

| through the amide function (see la s t section). The e ffec ts  o f E/Z isomerism,

| substrate io n iza tio n  and s te ric  bulk, and media e ffec ts  w ill be discussed

i::

i
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Table 6 . Results for the hydrogenation of a varie ty  of amino acid precursors with several chiral

Wilkinson-type catalysts (excluding results presented in Table 5 fo r two "standard substrates").
0
II

NHCR'

R-CH
\

R"

Substrate

Entry
Catalyst
Liqand R jV_ R^

Product
Config.

Product 
% ee Ref

1 1 4 3-Me0-4-(0H)C6H3 Ph COOH _ 28 8

2 2 II II II - 87,90 II

3 2 II Me II - 77,85,88 II

4 2 Ph Ph II - 85 II

5 2 3-Me0-4-(0Ac)CgH3 Me II
- 88 12

6 li H-C1-C6H4 II 11 - 77 It

7 II 3 -(1 -a c e ty l- in d o ly l) II II - 60 II

8 2 Ph II C0NH2 i i 70 13

9 2 II 11 COOMe ii 60 II

10 3 3-Me0-4-(0H)C6H3 Ph COOH - 28 8 CJ1CO
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Table 6 Continued.
_________________________Substrate

Catalyst
Entry Ligand R

101 45 r-ohc6h4 Me

102 II II Ph

103 II £ -0AcCgH4 Me

104 II 3-Me-4-(0AC)C6H4 II

105 48 4-0AcCgH4 II

106 II 3-Me0-4-(0Ac)C6H3 II

107 II 3,4-(CH202 )C6H3 1!

108 54 Ph II

109 II H 11

110 56 Ph II

111 57 II II

112 58 II II

* (-)-D I0 P  ( 20) is used unless otherwise indicated as (+ )-(2 0 ) .

Product Product
RT Config. % ee Ref.

C00H R 88 31

II II 92 11

II II 74 II

II II 80 II

II S 8,38,87 34

II H 36,86 II

11 ii 52 II

COOMe - 76 39

11 - 76 It

II R 4-20 41

II - -
If

II R 9,66,83 II

CTlO
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fu l ly  in the section in S tru c tu re -A ctiv ity  Relationships.

Enol Acetates. One other class o f d ifunctional o le f in , enol 

acetates, has been hydrogenated by ch ira l Wilkinson-type systems. Enol 

acetates have received very l i t t l e  a tten tio n  re la t iv e  to other substrates.
A C

Results w ith only two ligands, ( 73) and (7 4 ), have been reported. The 

(Z)-a-enol acetate (73) when hydrogenated in the presence of a c a ta ly s t  

prepared from ligand ( 12) gave about 90% ee but the (Z )-  and (E)-B-enol 

acetates (74) were hydrogenated only sluggishly compared to ( Z ) - ( 73) and 

less than 1 0 % ee was observed in both cases.

Ph-CH=C-C00Et Ph-C=CH-C00Et

OAc OAc

Ethyl -2 -a c e ty loxy-3-phenyl- E th y l-3 -a c e ty loxy-3-phenyl ■
propenoate propenoate

73 74

Structure-A ctiv i ty Rel ationships
j

j E/Z Isomerism. Early studies did not consider the matter o f E

and Z isomerism in substrates. As more examples were reported the very
j

great in fluence o f substrate geometry on the degree o f asymmetric bias 

became apparent (see preceding tables fo r  s p ec ific  da ta ). Which d ia s te r -  

eomeric form w i l l  give the higher % ee with a p a rtic u la r ligand varies  

with substrate type. Entries, 12, 13, 15, and 16 in  Table 3 show the
[

influence o f enamide substrate geometry even though the % ee values are 

| not high. With enamides there is no pred ictab le  outcome; e .g . , (+ )-D I0P

(20) with enamide (E )-(6 2 ) shows 15% ee w hile  with { l ) - { 6 2 )  1% ee is

I :
I
i
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observed. Conversely, reduction o f (Z )-(6 2 ) w ith  Rh/DIPAMP ( 12) gives 

51% ee while the E substrate gives only 9% ee. Thus there is  a 

reversal o f p referred  enamide substrate geometry depending on the ligand 

used.

In the reduction o f a ,3 -unsaturated carboxylic acids and esters 

the E substrates seem to give higher asymmetric b ias . The two ligands 

that are outstanding are (+)-NMDPP (18J and the s tru c tu ra lly  s im ilar 

MMPP ( 1 4 ). C onsistently , these ligands have given b e tte r results with 

the substituted cinnamic acids than other ligands. However, the highest 

optical y ie ld s  w ith  a tro p ic  acid (64a) are observed when DIOP (20) and the 

polymer supported DIOP ligands (33, 34) are used.

In many published hydrogenations o f a-acetamidocinnamic acids,

(Table 5) the substrate geometry has not been sp e c ifie d , but in cases 

where both E and Z isomers were hydrogenated w ith a ca ta lys t containing 

the same ligand , a much higher % ee was observed fo r  the Z isomer; fo r  

example, entry 2, Table 5: 94% ee (Z) versus 47% ee (E ); also, Table 6 ,

entries 21-27, 29, 54-66, 69-80.

Effects o f Amide and Acetate F u n c tio n a litie s . The presence of
j
! fu n c tio n a lities  on a substrate that can coordinate to the cata lys t promotes

| high asymmetric b ias . Such coordination reduces the number o f ways in

which the o le f in ic  grouping can coordinate to the m etal. The more 

I specific the approach o f the substrate to the c a ta ly s t must be, the better

w ill be the chances o f a high optical y ie ld . Coordination o f amide and 

L acetate functions in  substrates that are amino acid precursors and enol

| acetates, re s p ec tiv e ly , serves this purpose w e ll. Their "extra coordination"

I;

ifMl
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is believed to be re sp o n s ib le  fo r the much higher op tica l y ie lds  observed 

with these substrates as opposed to those observed with substrates lacking 

such groups (see la s t  sectio n ).

The E ffect o f Substrate Functional Group Charge State and S teric  

Bulk. In the reduction o f a,e-unsaturated acids added trie thy lam ine  

affects the optical y ie ld . When a small amount of tr ie thy lam ine  was 

added to the hydrogenation so lu tion , prior to reduction, a much higher 

% ee was observed. This e ffe c t  has been a ttrib u ted  to the added re s tr ic 

tion imposed by coordination o f the carboxyl ate anion to the ca ta lys t 

during hydrogenation.

The % ee obtained in ch ira l reductions of amino acid precursors 

is also affected by the s te ric  bulk of ester or amide functions in the 

substrate (Table 7, en tries  54-65). One can speculate th a t th is  may be 

a re fle c tio n  of a loosening o f the complex coordination sphere to 

accomodate the b u lk ie r substrate. In this event, s te ric  in teractions  

between substrate and c h ira l ligands might be less severe and prochiral

j recognition could be less e ffe c tiv e . A lte rn a tiv e ly , the bulk e ffe c t
t

j may be more s p e c if ic a lly  re la ted  to the lack o f "extra coordination" to

! the hindered ester or amide which would resu lt in the absence of a directing

e ffe c t fo r o le fin  coordination. In re a lity , probably both aspects are 

operative.

i

| Media Effects

j The nature o f the solvent greatly a ffects  asymmetric hydrogenation.

| Solvent e ffec ts  have not been systematically studied ye t nor are they

I
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understood. The e ffe c t o f this va riab le , is  dramatized by entry 111 in 

Table 6 ; 9% ee (benzene), 83% ee (methanol). Some of the large variations  

in % ee values apparent from the data in Tables 4 , 5, and 6 can be a t t r i 

buted to such e ffe c ts . A few comparisons have been made but the best 

solvent cannot be generalized; because the solvent e ffe c t is both ligand 

and substrate dependent. The most frequently used solvents are benzene, 

methanol, e thanol, benzene-ethanol, and benzene-methanol. Before planning 

an asymmetric hydrogenation one should check the li te ra tu re  for optimum 

results with s im ila r  catalysts and substrates in order to choose the best 

solvent system.

Changing from a polar to a non-polar solvent can also result 

in a change in the configuration of the product. I t  is conceivable that 

in a polar solvent such as methanol, C l-  dissociates from the catalyst 

complex (Figure 1) (leaves the coordination sphere), thus forming a 

cationic species, whereas in a non-polar solvent such as benzene, Cl~ 

would be expected to remain within the coordination sphere of rhodium.

Not enough is known about the mechanism at th is  time to postulate why in 

some cases a cation ic  catalyst may be more e ffe c tiv e  than a neutral one 

and vice versa.

Effects o f temperature and pressure have not yet been well studied 

and vary widely fo r d iffe re n t systems. One advantage of the Monsanto 

DIPAMP system, however, is its  lack of s e n s it iv ity  to such effects.

t;ii.
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R ationalizations fo r Asymmetric Induction  

in  O lefin  Hydrogenations

G laser's Stereocorrelation Model

Glaser's s tereocorre la tion  model fo r  the rhodium-DIOP complex

can be used to p red ic t the configuration o f the product in  some asymmetric
28homogeneous hydrogenations. Using CPK-type s p a c e -f illin g  models of the 

rhodium-DIOP complex the conformation shown in Figure 18 was chosen as 

most desirable . As seen in (7 3 ), due to the r ig id i t y  o f the dioxolan 

ring in the ligand the seven-membered ring coordinating rhodium is forced 

to assume a twisted ch a ir form. This constraint forces one phenyl of the 

diphenylphosphino group in the foreground of ( 73) to be pushed forward 

into the "b e lt region" o f the complex toward coordination s ite  A in (74), 

thus s te r ic a lly  hindering i t .  I t  is assumed, th e re fo re , th a t s ite  A w ill  

probably be occupied by hydrogen while the less hindered s ite  B w ill be 

occupied by the o le f in . There is s t i l l  the matter o f the small or the 

large group facing rhodium when there is a prochiral o le f in . In the 

achiral case (when the phosphines are not c h ira l)  then two enantiomeric 

pairs o f diastereomers are possible (75a-d) . However, when the phosphines 

are chiral then four diastereomers are possible ( 7 6 a -d ). I t  is  the pre

dominance o f two diastereomers that w ill form one enantiomeric product, 

over the other two th a t w ill  form the other enantiomer th a t causes the 

asymmetric synthesis. I f  the chira l ligands f a i l  to produce a preferred 

diastereomer then no asymmetric induction occurs and the re s u lt is a 

racemic product.

| Glaser used th is  model to predict the stereochemical outcome of

j 24 asymmetric homogeneous hydrogenations and hydros ily la tion s  using DIOP
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Figure 18. G laser's  model for predicting product configuration.
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as the ligand and c o rre c tly  predicted the configuration o f the product 

in a ll but three cases.

Knowles' Stereocorrelation Model

Knowles' s tereocorre la tion  model fo r the Rh/DIPAMP c a ta ly s t  

proposes a bisphosphine-rhodium c a ta lys t complex that presents a lte rn a tin g  

"edges" and "faces" o f phenyl rings to a substrate so as to favor an 

approach by one o f the prochira l faces tha t is  less crowded than the 

other (Figure 19 ). For example, hydrogenation of (Z )-a-acylam inoacrylic  

substrates with the Rh/DIPAMP ca ta lys t gives the S isomer of the product 

amino acids. This can be explained by viewing the ca ta lys t and substrate  

as in Figure 19.

edgeface OCH

faceedge

0
II

0

vs face HO — C NHCPh vs edge

Y
II

vs edge

H

vs face

Figure 19. Knowles' stereocorrelation model fo r the 
Rh-DIPAMP ca ta lys t complex.

The catalyst assumes the conformation whereby the four phenyl rings show
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alternating edges and faces with the phenyl rings substituted with  

methoxyl groups being the faces and the unsubstituted phenyls being the 

edges. The oxygens in the methoxyl group are not close enough to the Rh 

to enter i ts  coordination sphere but some kind of in te rac tio n  is  assumed 

to occur that causes these groups to be held in  a f l a t  face-exposed 

position. When looking a t  (Z)-a-benzamidocinnamic acid in  a f l a t  

conformation i t  is  re a d ily  seen th a t with the carboxyl, the o le f in , and 

the phenyl coplanar and w ith  the amide projecting on one side i t  is  

easiest fo r the substrate to  approach the c a ta lys t with the amide oxygen 

bonding to an ax ia l position  o f the rhodium and the o le fin  occupying an 

equatorial position . This arrangement imposes added r ig id i t y  on the 

approach of substrate and c a ta ly s t. I t  also lin es  up the la rg er phenyl 

and carboxyl groups in the substrate with the face exposed phenyls of 

the catalyst and puts the s te r ic a l ly  less pretentious hydrogen and 

amide functions over edge phenyls. (The amide function is  "smaller" 

than COOH because i t  is  able to ro ta te  away from the edge phenyl.) In 

th is position the re face o f the substrate is  toward the metal and w ill 

be hydrogenated to give the S product. I f  the substrate is  turned over 

to expose the si face to  hydrogenation then the f l a t  p a rt o f the substrate 

molecule (carboxyl, o le f in ,  and phenyl) has to approach edge phenyls and 

hydrogenation is much slow er. Use o f (E)-a-benzamidocinnamic acid rather 

than the Z isomer resu lts  in  loss o f l in e a r ity  and p la n a rity  and the 

phenyl is then juxta -positioned  with an edge c a ta lys t phenyl and hydro

genation is slower but the S isomer o f product is  s t i l l  obtained.

i
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RESULTS AND DISCUSSION

The purpose of th is  study was to design and prepare new chiral 

phosphine ligands fo r  use in the Wilkinson-type ca ta lys t system and to 

test th e ir  e ffic ien cy  with a varie ty  o f d iffe re n t substrates.

Chiral Phosphine Ligands 

An a lte rn a te  Synthesis of BUPHOS

The C-chiral phosphine, 2-phenyl butyl diphenylphosphine (BUPHOS)
15was f i r s t  prepared by Burnett. His synthetic scheme involved the 

reaction o f lith iu m  diphenyl phosphide with ch ira l 1-c h io ro -2 -phenylbutane 

to form the phosphine.

A preparation o f BUPHOS via the tosylate , a process analogous to 

that described previously fo r DIOP, was investigated. A sample of 

optically  pure (+ )-2 -phenylbutyric  acid (77) was reduced w ith LiAlH^ to 

give 2-phenyl butanol (78J. The alcohol was converted to the tosylate  

( 79) by a standard tosy la tion  procedure. The tosylate was allowed t , 

react with potassium diphenyl phosphide in THF to form BUPHOS (80) in 44% 

y ie ld  (Figure 20).

Preparation o f BUPHOS by the tosylation route ra th er than the 

chloride route o ffers  no advantage in overall y ie  Id from ch ira l 2 -  

phenylbutyric acid. However, the tosylation route is  somewhat simpler 

in terms of the synthetic manipulations involved. For th is  reason, 

other phosphine ligands were prepared by tosylation .

68
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Figure 20. The synthesis o f BUPHOS.
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I t  was also found th a t the counterion in the phosphide displace

ment step was important. Kagan's synthesis o f DIOP gave the best results
19when the cation was sodium. In Masler's synthesis o f CAMPHOS via

to sy la tio n , the best y ie ld  o f phosphine was observed when potassium was 

20the cation. Potassium diphenyl phosphide also gave a higher y ie ld  than 

did sodium diphenyl phosphide in the BUPHOS synthesis (Figure 20).

The Synthesis o f SUPHOS

In order to compare s tru c tu ra lly  s im ila r mono- and diphosphines, 

the diphosphine, 2-phenylb is(l ,4-diphenylphosphino)butane (SUPHOS) (84) 

was prepared. The carbon skeleton of SUPHOS is  id en tica l to that of 

BUPHOS but there is  an additional diphenylphosphino group present in 

SUPHOS which can act as a chelating ligand.

The synthesis o f SUPHOS (84) (Figure 21) involved a procedure 

analogous to that described fo r  BUPHOS. A sample o f racemic 2-phenyl- 

succinic acid (8j_) was resolved with (-)-ct-methylbenzyl amine and the plus 

isomer o f (81_) was obtained in  be tte r than 98% optical p u rity . A sample 

of 73% ee m aterial was also obtained and treated in  the same manner to 

prepare 73% ee SUPHOS. The o p tic a lly  active d iacid  was reduced with 

liq u id  LiAlH^ to give 2-phenyl-1 ,4-butanediol (8 2 ). Problems were 

encountered in the reduction step due to the condition o f the LiAlH^. 

In i t i a l l y ,  the reduction was attempted with powdered LiAlH^ and no 

reduction was observed. Using a sample o f liq u id  LiAlH^ which had 

p a r t ia lly  evaporated and p rec ip ita ted  on standing, again, no reduction 

was observed, even though ac tive  LiAlH^ was l e f t  a t the end o f the reaction.
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Figure 21. The synthesis o f SUPHOS.
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Some reduction did occur when a fresh ly  opened bo ttle  o f liq u id  LiAlH^ 

which had not prec ip ita ted  or evaporated was employed, but y ie ld s  were 

low. There does not appear to be an unequivocal explanation fo r th is  

behavior. I t  was thought th a t some dio l might have been trapped in  

the copious lith ium  and aluminum sa lts  produced during the work-up.

For th is  reason, an acidic work-up was attempted but no bette r resu lts  

were obtained than with a basic work-up. In an acid medium i t  is  possible 

that there was dehydration o f any diol th a t was formed.

The diol proved to be n o n -d is tilla b le . A heavy grease which 

remained as the pot residue upon attempted d is t i l la t io n  was analyzed by 

i r  and appeared to be an alcohol; no COOH or alkene bands were present 

in the spectrum. The crude d io l (82J was subjected to tosylation  d ire c t ly .  

The tosylate ( 83) was then trea ted  with potassium diphenyl phosphide to 

form SUPHOS (84) in a low overa ll y ie ld  (10%). The y ie ld  was g rea tly  

lowered by the d if f ic u lt ie s  encountered in the LiAlH^ reduction as well 

as the usually observed low y ie ld  in the phosphide displacement.

A comparison o f the hydrogenating a b il ity  of BUPHOS and SUPHOS 

w ill be discussed la te r  in the section on asymmetric homogeneous hydro

genations.

An A lternate Synthesis o f NMDPP

The successful preparation of BUPHOS by the tosylate method made 

i t  seem worthwhile to attempt the synthesis of NMDPP (18J by th is  procedure. 

Direct conversion o f (-)-m enthol to menthyl tosylate followed by reaction  

with potassium diphenyl phosphide (Figure 22) is a much simpler scheme than
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that used by Masler fo r the preparation of NMDPP (preparation discussed in  

h is to rica l section). However, the y ie ld  o f NMDPP prepared in th is  manner 

was very low (10%), and analysis by glpc indicated the presence o f 15% 

neomenthyldiphenyl phosphine oxide (NMDPPO) in the product. The value o f 

th is  synthetic method is debatable. I t  is  a much easier preparation but 

the y ie ld  is  much lower because e lim ination  competes with displacement.

The Synthesis o f CMDPP

In our e ffo rts  to determine the features that make a good ch ira l 

phosphine ligand, we decided to prepare carvomenthyldiphenyl phosphine 

(CMDPP) (94J. CMDPP is a s tru c tu ra l isomer o f NMDPP. The methyl and 

isopropyl groups on the cyclohexane ring are interchanged in the two 

compounds. The synthesis designed fo r CMDPP involved a tosy la tion  

procedure analogous to th a t described fo r the preparation of NMDPP 

(Figure 22). However, no precursor alcohol of the required stereochemistry 

was commercially a v a ilab le . (-)-C arvone was chosen as the n a tu ra lly -  

occurring compound that could be converted most inexpensively and eas ily  

to the required alcohol.

The preparation o f carvomenthol (8 8 ) from (-)-carvone (85J is  

shown in Figure 23. A sample o f (-)-carvone was reduced with sodium in  

e th an o l^  to give a mixture o f dihydrocarveol (86J (95%) and neodihydro- 

carveol (87_) (5%). No attempt was made to separate the isomers a t  th is  

point due to the small amount o f the undesired alcohol present. Attempts 

to reduce dihydrocarveol with hydrogen in the presence o f acid ic  PdClg 

and gum arabic were unsuccessful and unreacted dihydrocarveol was

L
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



75

0

85

Na

absolute
EtOH OH
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+
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menthol

88  89 90 91
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Figure 23. The synthesis of carvomenthol.*

*There is a disagreement in the lite ra tu re  as to the naming of the 
carvomenthol s. The convention described by Schroeter and El i el is 
fo i l  owed.
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recovered.® 0 Dihydrocarveol was successfully reduced w ith hydrogen and

5% Pd/C ca ta lys t to give a mixture of the expected a lcoho l, carvomenthol
fil

(8 8 ) and neocarvomenthol (89 ).

I t  was evident from t ic  analysis th a t the product was a mixture 

of at le a s t two alcohols (two spots). In order to prepare a large sample 

of the pure alcohol ( 8 8 ) i t  was necessary to p u rify  the d is t i l le d  product 

mixture by preparative hplc. When a sample was analyzed on a Porasil 

column (a n a ly tica l hp lc) four d iffe re n t peaks were observed. Separation 

by preparative hplc o f 33 g o f alcohol mixture on s i l ic a  gel in 80/20 

hexane/ethyl acetate y ielded four fractions including 18.7 g o f ( 8 8 ) and 

9.85 g from the three other fractions . The products from these three 

fractions were determined to be the dehydration product 1 ,2,5,6-menthadiene

(92), neocarvomenthol (89.), and neoisocarvomenthol (90) (Figure 23 ). I t  

was not possible to determine by nmr which frac tio n  was (90J and which

was (89 ). I t  was assumed th a t isocarvomenthol (91_) was not found because

the d iax ia l compound would be least l ik e ly  to be formed.

P u rified  carvomenthol (8 8 ) was converted to carvomenthyl tosylate

(93) as shown in Figure 24. The tosylate was then allowed to react with 

potassium diphenyl phosphide to y ie ld  CMDPP (9 4 ).

. L
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Figure 24. The synthesis o f CMDPP from carvomenthol.

A low y ie ld  (14%) of CMDPP was obtained. This was s lig h tly  

higher than the y ie ld  observed fo r the analogous reaction of neomenthyl 

tosylate to form NMDPP. The higher y ie ld  in th is  case may be a ttrib u tab le  

to a less s te r ic a l ly  hindered reaction s ite  (the a -a lk y l substituent is 

methyl ra th e r than isopropyl).

An Attempted Synthesis o f PPDPP

I t  was hoped th a t a ligand could be synthesized using the product 

from the 1 ,4 -a d d itio n  o f phenyl magnesium bromide to the naturally  occurring 

terpene, pulegone (9 5 ). The less expensive enantiomer (+)-pulegone, was 

treated w ith  phenylmagnesium bromide in the presence of copper(I) chloride  

as described by Ensley6 3 , 6 4  to give a good y ie ld  (65%) o f 2-(2-phenylpropyl)■ 

5-methylcyclohexanone (96) (Figure 25). The approximately 1:1 mixture o f

L
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Figure 25. Preparation o f 2 - (2-phenyl propyl) -5-methyl cyclohexyldiphenyl -  
phosphine from (+)-pulegone.
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



79

cis and trans ketones was equilib rated  to what has been reported to be

an 85:15 mixture (the more stable trans isomer in excess) by treatment
65with ethanolic potassium hydroxide. Subsequent reduction with sodium 

and 2 -  propanol in re flu x in g  toluene gave a mixture o f alcohol epimers 

(97) (Figure 25). I t  has been reported by Ensley th a t due to more 

rapid reduction o f the trans isomer to alcohol fu rth e r equ ilib ra tio n  

occurs during reduction and mainly one alcohol isomer is  obtained. In 

Ensley's work the desired epimer was iso lated by standard open column 

chromatographic techniques (s il ic a  g e l, with ethyl ether:petroleum
64,

ether eluent ).

In order to convert the alcohol (97) to a phosphine ligand i t  

was necessary to have a re la t iv e ly  large quantity  o f the alcohol. Prepara

tive hplc was chosen fo r  the p u rifica tio n  ra th er than standard methods

_______  which would have required many repeated separations due to the scale_______

lim ita tio n s . A sample o f 33 g of 2 - (2-phenylpropyl)-5-methylcyclohexanol, 

prepared as described above was purified  by preparative hplc using a 

90/10 hexane/ethyl acetate solvent system. A fte r  separation about 63% 

of the a ll  equatorial alcohol was obtained p lus, in contrast to Ensley1s 

resu lts , 15% each o f two other isomers, possessing e ith e r  an axial 

hydroxyl or an axial methyl group. About 7% o f other by-products was 

obtained in three other fractions which were id e n tif ie d  as dehydration 

products and one u n id en tified  compound (Figure 26).

The alcohol was converted via a standard tosylation  procedure to 

the tosylate (98) which was then allowed to react with potassium diphenyl-  

phosphide in an attempt to form 2 -(2-phenyl propyl )-5-methyl cyclohexyl -  

diphenylphosphine (PPDPP) (99) with the configuration shown in Figure 25.

L
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Figure 26. P u rific a tio n  o f 2-(2-phenylpropyl)-5-methylcyclohexano,l by 
hplc.
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Several attempts to accomplish the SN2 displacement with phosphide anion 

resulted in recovery o f only a few percent of a white solid  which proved 

to be e lim ination  products contaminated with diphenylphosphine oxide. I t  

appears th a t the tosy la te  is too s te r ic a lly  hindered to allow Ŝ 2  displace

ment.

* L
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Asymmetric Homogeneous Hydrogenations 

Use o f Cationic vs In Situ Catalysts

Several workers have investigated the use o f cation ic  and neutral 

catalysts in an attem pt to ascertain the d ifferences in hydrogenation 

performance. I t  has already been noted (see h is to ric a l section) that 

the preformed ca tio n ic  catalysts have the advantage o f not being a ir  

sensitive. No general statement can be made about whether or not 

d iffe re n t percent ee values may be obtained with a ca tio n ic  catalyst as 

compared to a neutra l in  s itu  catalyst tha t a d ifference  is  observed.

In th is  study, an attempt was made to run hydrogenations with 

both neutral and ca tio n ic  catalyst species to determine possible d if fe r 

ences. The ligands DIOP (2 0 ), NMDPP (1 8 ), and CMDPP (94) were converted
fi7

to preformed ca tio n ic  catalysts (see below). Hydrogenation results 

with these ca tio n ic  catalysts  were compared with those obtained with 

neutral ca ta lysts  containing the same ligands. These comparisons w ill be 

discussed in the section on hydrogenation o f a,B-unsaturated acids. Attempts 

to form cation ic  Rh cata lysts  with BUPHOS (80) and SUPHOS (84) were un

successful .

NaBF _
[Rh(C0D)Cl] 2 + Phosphine ---------> [Rh(COD)(Phosphine)n] BF^

L
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Reductions of a,g-Unsaturated Acids

A series o f hydrogenations involving (E )- and (Z )-  a -  and

3-methyl cinnamic acids were performed with catalysts containing previously 

20reported ligands as well as those prepared in th is  study. The structures  

of the substrates used, also lis te d  in the h is to rica l section , are shown 

again here fo r convenience.

Ph.V . - CH3
> cx
I CO OH

(E ) - 6 8

Ph. .COOH
/ =Cs  H CH3

(Z ) - 6 8

phv . j*

CH
=c:

‘COOH

(E)-69

Ph. COOH

/ C=CN CH£ >1

(Z)-69

Most o f the hydrogenation were performed at 300 psig and 60° fo r  

24 hr. Under these conditions, neutral catalysts containing the ligands 

NMDPP (1 8 ), DIOP (2 0 ) , BUPHOS (8 0 ), SUPHOS (8 4 ), and CMDPP (94) completely 

reduced the substrate (E)-a-methylcinnamic acid (613) (Table 7 ) .  The 

products obtained w ith (1_8), (8 4 ), and (94) were a l l  o f the R configuration  

with the highest percent ee observed fo r the cata lyst containing NMDPP 

(18). Ethyl-2-methyl-3-phenylpropanoic acid of the S configuration was 

obtained upon reduction o f (E ) - ( 68j  with Rh/(20). However, the R isomer
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Table 7. 

Substrate

Reduction o f a-methylcinnamic acid 

and cationic Rh ca ta lys ts . 3

Catalyst %
Ligand Reduction

( 6 8 ) with a series

Product 
% ee

of neutral

Product
Confiq.

( E) —68 18 100 63 R
11 20 II 25 S
II 80 II - -
II 84 II 8 R
11 94 II 28 II

II 1 2b 30 _d

II 18b 56 - _d

II 94b 100 19 R
II ub,c 90 23 II

II 12b,c 17 _ _d

II 20b,c 5 - _d

(Z ) -6 8e 20 100 33 R

a) Hydrogenations were run at 300 psig of hydrogen, and 50 for 24 hr in
the presence of tr ie th y l amine unless otherwise noted.

b) Cationic ca ta lys t.
c) These hydrogenations were run a t 45 psig o f hydrogen, otherwise condi

tions were the same as described in footnote a.
d) Because of the low y ie ld  no ro tation data were taken.
e) Additional comparative data of th is  kind are lis te d  in Table 4. CO-p>
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was obtained when ( Z ) - ( 6 8 ) was reduced with Rh/(20) indicating th a t the 

approach of the Z isomer to the c a ta ly s t was d iffe re n t from th a t o f the 

E isomer. Reduction o f (E ) - ( 6 8 ) w ith  Rh/BUPHOS (80) showed no asymmetric 

induction, Rh/SUPHOS (84) gave a very low value, and Rh/CMDPP ( 94) a 

s lig h tly  higher ee (28%).

Generally, neutral ca ta lys t species hydrogenated a-methylcinnamic 

acid more e ff ic ie n t ly  (higher reduction y ie ld s ) than did cation ic  species. 

Cationic catalysts containing DIPAMP (12J, NMDPP ( 18 ), and DIOP (20) 

ligands gave very l i t t l e  reduction whereas Rh/CMDPP gave complete reduction. 

CMDPP was also the only ligand e ffe c tiv e  a t low pressures (45 p s ig ); 90% 

reduction and 23% ee.

The hydrogenation data obtained with (E )- and (Z)-B-methylcinnamic 

acids are shown in Table 8 . With these substrates, in contrast to the 

a-methylcinnamic acids (Table 7 ) ,  reduction o f the Z-isomer with Rh/DIOP 

(20) gave a higher percent ee than reduction o f the E isomer. The same 

tendency was observed when the c a ta lys t was Rh/ACMP (2 ). A reversal in  

product configuration was also observed with DIOP and ACMP catalysts when 

the substrate geometry was changed from E to Z.

The results of hydrogenations with ligands (80) and (84) are 

unspectacular (3% ee) but once again, the value with a neutral Rh/CMDPP 

cata lyst is  much higher (39% ee ). As in the case o f the a-methylcinnamic 

acid substrates, the cation ic  complexes containing NMDPP (18J and DIPAMP 

(1 2 ), gave low percent reduction. Only the cationic ca ta lys t containing  

CMDPP (94) gave complete reduction but with a lower ee (19%) than was 

observed fo r the neutral c a ta lys t (39%).
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Table 8 . Reduction o f (E )- and (Z)-B-methylcinnamic acid with a series  

of neutral and cationic cata lys ts . 3

Substrate
Catalyst

Ligand
%

Reduction
Product 

% ee
Product
Config.

(E)-69  

(Z )-69  

(E)-69  

(Z)-69  

( E)-69

20
II
2t

«b

80

84

94
ub

12fc

18̂

100

33

50

5

28

13

37

3

3

39
19

R

S

R

S
II

II

II

II
_c
c

a) Hydrogenations were run a t 300 psig of H2 , and 50° fo r 24 hr in the 
presence of EtgN.

b) These ligands were used in cationic catalyst species.
c) Because of the low y ie ld , no ro tation data were taken.

00
CTl



In a ll reductions o f substrates ( 6 8 ) and (69} without added 

tr ie th y l amine, l i t t l e  or no hydrogenation occurred.

Reductions o f (Z)-a-Acetamidocinnamic Acid

(Z)-a-acetamidocinnamic acid ( 72) has been reduced with the 

Wilkinson-type ca ta lys t containing a large number o f the ch ira l ligands 

that have been synthesized (Table 5 ). Therefore, i t  was decided to te s t  

the ligands from th is  study on the phenylalanine precursor (Table 9 ) .

A check on the system and procedure was carried out with a sample o f the 

DIPAMP ( 12) ca ta lys t. The re s u lt obtained, 93% ee of the S isomer, is  in  

agreement with the value reported by Knowles.^ Reduction o f ( 72) with  

Rh/DIOP ( 20) also gave resu lts  in agreement with lite ra tu re  values (76%ee)J

Results obtained upon hydrogenation o f ( 72) with catalysts con

taining the ligands prepared a t New Hampshire were not spectacular 

(Table 9 ) . The percent ee values ranged from 1-12%. "Unnatural" N- 

acetyl-D-phenylalanine was the predominant enantiomer produced. The less 

s te r ic a lly  hindered ligand , CMDPP (9 4 ), once again proved its  hydrogenation 

effic ien cy  (100% reduction) as did BUPHOS (8 0 j. The much more hindered 

ligands NMDPP ( 18) and SUPHOS (84) were incapable of completely reducing 

( 72) even though many attempts to do so (varying the phosphine to rhodium

72
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Table 9. Reduction of (Z)-a-acetamidocinnamic acid with 

a series o f neutral and cationic catalysts.

% Product Product
Ligand Reduction % ee Confiq.

12b 100 93 S

20 " 76 R
18 25 0 -

18b 10-15 0

80 100 8 R

84 75 12

. 84° 75 6

94 100 5

a) Hydrogenations were run a t 3 atm o f H2 , and 50° fo r 24 
hr.

b) These ligands were used as cationic cata lyst species.
c) 73% ee.
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ra tio , increased reduction times) were unsuccessful and are not reported 

here. From these re s u lts , i t  is evident that none o f the New Hampshire 

ligands tested (NMDPP, CMDPP, BUPHOS, SUPHOS) is very e ffe c t iv e  in 

c a ta ly tic  reductions o f (Z)-a-acetamidocinnamic acid.

The preparation of ch ira l g-hydroxy acid d erivatives  v ia  the 

asymmetric homogeneous hydrogenation of enol acetates was attempted 

during th is  study. A series of enol acetates, varying in  the length of 

the a lip h a tic  chain,were prepared. Due to d if f ic u lt ie s  in the synthesis 

of the long chain enol acetates, most of the work was done w ith short 

chain analogues. The enol acetate substrates that were used are shown in 

Figure 27.

The substrate most commonly used was (Z )-e th y l 3-acetoxybut-2- 

enoate (Z -100); i t  was eas ily  synthesized as shown in Figure 28. The 

B-keto es te r, ethyl acetoacetate, was purchased and was converted to 

the Z-enol acetate in an acid catalyzed reaction. The Z-isomer is 

presumed to form p re fe re n tia lly  due to the formation of the hydrogen- 

bonded interm ediate ( 105) . ^

Reductions o f Enol Acetates

A lip h atic  Enol Acetates

0 '* 0

105
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CHo CH. H
J\  3\  /C =  CH—COOEt C = C
/  /  \

AcO AcO COOMe

100 (E and Z) 101

n-Pr CH H23v  / H
^)C =  CH-COOEt C —  C

AcO AcO^ ^  COOEt

102 (E and Z) 103

C10H21X  / H
C = C  

/  \
AcO COOEt

104

Figure 27. A lip h a tic  enol acetates studied as precursors of o p tica lly  
ac tive  g-hydroxy acid d eriva tives .
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In order to prepare the E isomer, the reaction was run under

basic conditions (Figure 2 8 ). The E isomer is presumed to form

p re fe re n tia lly  due to the presence of the solvent separated ion in te r -  

69mediate (106), in  the basic media.

0

106

Neither the acid nor base synthesis is s tereospecific ; the observed 

•s te re o s e le c tiv itie s  were; 18:1 , Z:E and 1:15, Z:E, resp ec tive ly . Both 

procedures gave good y ie ld s  (g rea ter than 80%). (E )- and (Z )-e th y l 3- 

acetoxyhex-2 -enoate ( 1 0 2 ) were prepared from ethyl butyryl acetate by the 

same procedures. Also, the (Z)-methyl ester ( 101) was prepared from 

methyl acetoacetate by the procedure described for the synthesis o f 

(Z )-(IO O ).

The synthesis of the long chain enol acetates, ( 103) and ( 104) ,  

was not as simple as th a t o f the shorter analogues. The B-keto esters  

had to be prepared since they were not commercially a v a ila b le . The 

synthetic scheme used fo r ethyl 3-ketotetradecanoate and ethyl 3 - 

acetoxytetradec-2-enoate is  shown in Figure 2 9 .^ ’^ ’ ^  The procedure 

described by Rathke was used to prepare l i th io  ethyl acetate . Addition 

of e ither lauroyl chloride or undecanoyl chloride to l i t h io  ethyl acetate  

yielded ethyl 3-ketotetradecanoate or ethyl 3-ketotridecanoate, respectively .

, L
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0 0 

II II
CH3CCH2COEt

0  0 
II II

CH3CCH2 C0Et

OAc
I

CH2= C -C H 3 

2 -TsOH, a

0
II

CH3CC1

HMPA, Et3N

CH\  _  /

/  \
AcO COOEt

(Z)-IOO  

18:1 Z:E

CH- COOEt

/  \
AcO H

( E )—100 

1:15 Z:E

Figure 28. The synthesis of (E )- and (Z)-ethyl-3-acetoxybut-2-enoate.
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0
S0C1, II

CH3— (CH2 ) 1 0 -C00H  CH3 - (C H 2 ) 1 0 -C ~ C 1

la u ric  acid lauroyl chloride

n-BuLi + C g H ^N H d -P r) — >  C g H ^ -N -^ — Pr

0 0
II (I

0

CH3COOEt

CH3— (CH2) 10— CCH2C0Et «
ch3-(c h 2) 10-c c i _

CH2 C00Et

ethyl 3-ketotetradecanoate l i th io  ethyl acetate

OAc
I

CH2 =  C-CH3 

j^-TsOH, A

ch3 - ( c h 2 ) 10 h
C =  C/  \

AcO COOEt

103

Figure 29. The synthesis o f (Z )-e thy l 3-acetoxytetradec-2-enoate from 
la u ric  acid.
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At this stage, numerous problems were encountered in the synthesis. Very 

low yields o f the B-keto esters were obtained due to decomposition o f the 

products upon d is t i l la t io n .  Due to such d i f f ic u l t ie s ,  impure samples 

were converted to the enol acetates, ( 103) and ( 104). Very low y ie lds  

were obtained and th is  method was not v iable  fo r the preparation o f long 

chain a lip h a tic  B-keto esters. One can speculate that, had i t  been possible 

to obtain the B-keto esters in a purer form, the preparation o f the enol 

acetates would have proceeded smoothly and in good y ie ld .

The results o f a series o f reductions of ( Z ) - ( IOO) with Wilkinson- 

type catalysts containing a large number o f ligands are reported in Table 

10. Reaction mixtures were analyzed d ire c tly  by glpc to obtain percent 

reduction, percent conversion, and percent hydrogenolysis. The percent 

reduction was based on the to ta l amount of hydrogenated product present 

in the reaction m ixture. The percent conversion was determined from the 

weight ra tio  o f s ta rtin g  m aterial to a ll products. The percent hydro

genolysis (cleavage o f OAc) was based on the amount o f ethyl butyrate in 

the to ta l reaction m ixture. In a few hydrogenations, some ethyl crotonate 

was observed as a product. Apparently, ethyl crotonate is  formed during 

hydrogenation and then is  rap id ly  reduced to ethyl bu tyra te . A fter the 

glpc analysis was completed on the hydrogenation solution the samples were 

worked-up fo r sp ec ific  ro ta tion  measurements. The s p e c ific  ro ta tion  values 

were very low (0 .0 0 -0 .6 9 ° ) . There is no lite ra tu re  value fo r  the maximum

rotation of ethyl-3-acetoxybutanoate. Attempts to determine th is  value
73by use of the ch ira l s h if t  reagent Eutdcm)^ were unsuccessful since 

variations in peak areas as small as one nmr chart paper d iv is ion  caused 

major variations in the ro ta tion  calculations. I t  was only possible to
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Table 10. Reduction of (Z)-ethyl-3-acetoxybut-2-enoate with a varie ty  of
5

neutral and cationic catalysts .

% % %

Ligand
Reduction

qc2
Conversion

gc2
Hydrogenolysis

(gc ) 2 m J

2 35 100 65 0.53

12 60 100 40 0.69

20 85 100 15 0.14

18 27 29 7 0 .1 2

94 41 45 8 0 .1 0

80 85 100 15 0.34

84 60 66 17 0.03

21 42 53 20 0.14

45 30 55 13 0.48

41 78 100 22 0.27

37 66 78 16 0 . 0 0

1) Ligands were used as the cationic form of the ca ta lys t.
2) 10% SE 30 on Varaport 30, 80-100 mesh, 10' x 1 /4 " , 147, 30 ml/min He, 150 mA.
3) Density assumed to be 1 .0 .
4) Values o f incompletely converted samples corrected to 100% reduction.
5) A ll hydrogenations were run in a s tirred  reactor a t 400 psi H2 , 50°C, in

absolute ethanol fo r 24 hours, with the exception of hydrogenations with DIPAMP 
which were complete in 6 hours.
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estimate th a t the maximum specific  ro ta tio n  l ie s  between 1 .5 -3 .5 °; no 

more precise value could be established using the s h if t  reagent technique.

As Table 10 shows, widely d iffe re n t hydrogenation yields and 

chiral e ff ic ie n c ie s  (as indicated by the magnitude of [a ] )  were observed. 

Rh/DIPAMP (12) gave the highest rotation ( [ a ] D0 .69 ) but th is  positive  

aspect was counterbalanced by the fa c t th a t there  was 40% hydrogenolysis. 

On the other hand, catalysts prepared from NMDPP (18) and CMDPP ( 94) gave 

only 7-8% hydrogenolysis but unfortunately, s p e c ific  rotations of only 

0 .1 0 -0 .1 2 °. A re s u lt  between these two "extreme cases" ju s t cited was 

obtained with Rh/BUPHOS (80) which gave only 15% hydrogenolysis and a 

specific  ro ta tio n  o f [a ]D0.34° was observed. I f  both chemical and 

optical y ie ld  are important then BUPHOS has to be considered the most 

successful lig an d . I f  optical purity  is o f the utmost concern then 

DIPAMP is  the most e ffe c tiv e  ligand. Table 10 also shows that ligands 

(2 0 ), (37J, (4 1 ), and ( 45) which have a ll  been ra th er successful with 

other substrates ( e .g . ,(7 2 ) )  are very in e f f ic ie n t  in th is  system.

I t  was noted repeatedly that in hydrogenations characterized by 

incomplete conversion, the small amount o f E-isomer present in the 

substrate appeared to hydrogenate less rap id ly  than the Z-isomer. Indeed 

reduction o f a sample containing (E ) - ( IOO) w ith  Rh/BUPHOS gave only 30% 

conversion in the same amount of time required fo r  1 0 0 % conversion of 

the Z-isomer.
21A maximum ro ta tio n  o f [a ]Q 0.54° (neat) has been reported for

74 75methyl-3-acetoxybutanoate. 5 I t  seems l ik e ly  th a t the maximum rotation  

of the ethyl e s te r should be s im ilar, although the ch ira l s h ift  reagent 

work does not support th is  conclusion nor does the fa c t  that a specific
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rotation o f 0 .69° was obtained fo r  the ethyl ester in the hydrogenation 

of ( 100) with Rh/DIPAMP. Attempts were made to reduce the methyl enol 

acetate ( Z ) - ( 101) with the Wilkinson-type ca ta lys t containing DIPAMP,

ACMP or BUPHOS but i t  was never possible to achieve any reduction o f 

the substrate. This strange re su lt has defied ra tio n a liz a t io n , and 

should be re -in ve stig a ted .

Results fo r hydrogenations of the longer chain enol acetates,

( 102), ( 103), and (104) are shown in Table 11. (Z)-E thyl-3-acetoxyhex-

2-enoate ( 102) was hydrogenated with Rh/DIPAMP (12J and Rh/BUPHOS (80) 

to give products having [a ]D2.17° (neat) and [a ]D-0 .51° (n e a t) , respectively. 

The maximum ro ta tion  is  not known and attempted analysis w ith  the ch ira l 

s h ift reagent Eu(dcm)g was unsuccessful (no c le a rly  discernable doubling 

due to overlapping peaks). Once again, as observed with ( Z ) - ( 100) , DIPAMP 

caused more extensive hydrogenolysis (74%) than BUPHOS (28%).

Attempted reductions o f (Z )-(103) and (Z)-(1Q4) with Rh/BUPHOS 

gave e ith e r heterogeneous reaction mixtures or no hydrogenation. Further 

investigation is  required with these long chain a lip h a tic  substrates. As 

mentioned previously, these substrates were impure and must be p u rifie d .

Aryl Enol A cetates. The only reported example o f the asymmetric 

homogeneous hydrogenation o f enol acetates involves the hydrogenation of 

(Z)-ethyl-2-acetoxy-3-phenylprop-2-enoate (73)  and (E )- and (Z )-e th y l-3 -  

acetoxy-3-phenylprop-2-enoate (74) with Rh/DIPAMP (12J . 4 6  O r ig in a lly , 

greater than 90% ee was presumed with both (Z )-(7 3 j and (Z ) - (7 4 ) ^ 6
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Table 11. Reduction o f long chain a lip h a tic  enol acetates with a Rh/BUPHOS catalyst and a 

Rh/DIPAMP c a ta ly s t . 9

Catalyst % I  % j
Substrate Ligand Hydrogenation Conversion Hydrogenolysis [a]p

102 12b 26 100 74 2.17

102 94 70 97 28 -0.51

103 -  "

104 -  -

O

o

a) Hydrogenations were run a t 400 psig o f Ho, and 50° fo r 24 hr. ,
b) This ligand was used in a cationic cata lyst form, [Rh(COD)(DIPAMP)] BF^".

<oco
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based on li te ra tu re  maximum ro ta tion  values.

Ph> /
AcO sC00Et

(Z )-(7 4 )

Reduction of (Z )- (7 4 )  in our laboratory with Rh/ACMP (2 ) gave
7 7

ethyl-3-acetoxy-3-phenylpropanoate, [ a ]D~32.4° (n e a t). Based on the 

accepted l i te ra tu re  value fo r  the maximum ro ta tio n , ( [a ]J 75 .28° (n e a t)7® 

or [a]p75.24° (n ea t)7^) the apparent % ee for the Rh/ACMP reduction was 

thus greater than 600%I I t  was concluded that the li te ra tu re  value must 

be incorrect. The hydrogenation o f (Z )-(7 4 ) was repeated using Rh/DIPAMP. 

Ethyl-3-acetoxy-3-phenylpropanoate with a specific ro ta tion  o f O jg -4 .1 5 0 

(neat) was obtained. This corresponds to Knowles' re s u lt with the same 

catalyst. Based on the li te ra tu re  ro ta tion  (presumably in co rrec t) this  

value corresponded to about 80% ee. Products from the Rh/DIPAMP and 

the Rh/ACMP hydrogenations were analyzed with the ch ira l s h if t  reagent 

Eu(dcm)3 .

The product from the Rh/DIPAMP reduction was found to contain  

3-5% ee o f the (-)-enantiom er rather than 80% ee, and the sample from the 

reduction involving ACMP was found to contain 38% ee o f the same enantiomer.

As a re s u lt o f the above findings i t  seemed appropriate to in v e s ti

gate the preparation o f c h ira l ethyl-3-acetoxy-3-phenylpropanoate in order 

to ascertain the source o f the erroneous maximum ro ta tio n .
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A sample o f ethyl-3-hydroxy-3-phenylpropanoate ( 107) was prepared 

by the Reformatsky reaction of benzaldehyde, ethyl bromoacetate and zinc

in the presence of trim ethyl borate. The ester was saponified w ith KOH/
80methanol to give 3-hydroxy-3-phenylpropanoic acid ( 108) (Figure 30).

Resolution of ( 108) has been reported by various workers; with morphine,

l i t . 81 [ “ ]^ 1 9 .2 °  ( c5, e thano l); with brucine, l i t . [ a ] ^ 1 8 . 9 °  (£5 .00 ,

ethanol). The resolution was repeated in this laboratory with brucine

and a specific  ro tation  o f [a ]p l7 .9 °  (£5 .01, ethanol), corresponding to
*8095% ee based on the l i te ra tu re  value, was obtained. I t  would appear

that the maximum ro ta tio n  o f ( 108) is indeed about 19° based on the

experience of several workers who have resolved the compound.

The methyl ester o f (108) was prepared by e s te r if ic a tio n  with

diazomethane. The li te ra tu r e  value fo r  the specific  ro tation  o f methyl -

3-hydroxy-3-phenylpropanoate is [a ]p 419.3° (£4.78, ethanol) . 81 The

methyl ester prepared in th is  laboratory had [a ]p l7 .6 °  (£5.44, ethanol)
finwhich corresponded to 96% ee based on the lite ra tu re  ro ta tio n . The 

methyl ester was analyzed with the ch ira l s h ift  reagent Eu(Dcm)g. Nmr 

analysis o f the racemic methyl ester in the presence of Eu(dcm) 2  showed 

a symmetrical doublet (two enantiomers present in equal amounts) fo r  the 

methyl protons. The sh ifted  spectrum fo r the methyl ester from 95% ee 

acid showed a s in g le t in d ica ting  e s se n tia lly  o p tic a lly  pure m a te ria l. As 

expected, there was no racemization during e s te rific a tio n  with diazomethane.

Kenyon's d irections fo r  resolution with brucine indicated the formation 
of a 1:1 acidrbrucine s a lt .  Using th is  stoichiometry we were unable to  
repeat th is  work and subsequently found a la te r  report by Noyce tha t 
described formation o f a 2:1 acid:brucine s a lt .82 The 2:1 s a lt  was 
found to be the actual species involved in the resolution.
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PHCHO + BrCH2C00Et

B(OMe)3 , Zn

nh4oh

glycerol

(+)-PhCHCH2COOEt

OH

107

KOH, methanol

V

PhCHCH9COOH
i 2
OH

108

Figure 30. The synthesis o f racemic 3-hydroxy-3-phenylpropanoic 
acid .

&
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The methyl ester was acetylated with acetic anhydride and the 

resulting methyl 3-acetoxy-3-phenylpropanoate was analyzed using Eu(dcm)3< 

Two symmetrical doublets o f equal in ten s ity  were observed in  the lanthanide  

induced s h ift  (LIS) nmr spectrum fo r  racemic methyl 3-acetoxy-3-phenyl- 

propanoate; one doublet fo r  the protons in the methyl ester and another 

fo r  the acetoxy methyl protons. The LIS nmr spectrum of the o p tic a lly  

active m ateria l, on the other hand, showed sing lets for the methyl es ter  

and acetoxy methyl protons, in d ica tin g  a t le as t 95% ee; [ a ]D65.3° (n e a t).

From th is  series o f experiments i t  was obvious th a t the l i te ra tu re  

value fo r the maximum ro ta tio n  o f the precursor B-hydroxy acid ( 108) was 

correct and also tha t no racem ization occurred during acetylation o f the 

B-hydroxy methyl ester. This l e f t  e s te r if ic a tio n  of the B-hydroxy acid 

to the ethyl ester as the one questionable step in the synthesis o f 

ethyl 3-acetoxy-3-phenylpropanoate. In the preparation of ethyl 3-
79acetoxy-3-phenylpropanoate o r ig in a lly  described by Kenyon and coworkers

70
and repeated by Koga and coworkers, the e s te rific a tio n  was accomplished 

by dissolving the B-hydroxy acid in absolute ethanol and bubbling HC1 gas 

through the heated solution fo r  10 hr. Neither o f these groups reported 

any complication with th is  procedure. However, in  our hands, when 

o p tic a lly  active B-hydroxy acid ( 108) was treated in this way, a mixture 

of products was obtained and a low or neg lig ib le  optical ro ta tio n  was 

observed (Figure 31). The reaction was run tw ice. The f i r s t  tim e, some 

ester ( 109) was formed (g lpc , nmr); but the second time, none was observed 

and the optical ro tation  was zero. Analysis by nmr indicated the presence 

of the B-ethoxy ester ( 110) and a mixture of cis and trans alkenes ( 111)
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PhCHCHoC00H  ■■ >  PhCHCI-LCOOEt
I “ HCl(g), A | 2
OH OH

109

+

PhCH =  CHCOOEt + PhCHCH-COOEt
i 2 
OEt

i n  n o

Figure 31. E s te r if ic a tio n  of 3-hydroxy-3-phenylpropanoic acid with 
ethanol and HC1 gas.
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(four s ing lets  in the vinyl proton region). To v e rify  the existence of 

(1 1 0 ) the authentic compound was prepared by reaction o f ( 108) with

reaction m ixture from the e s te rific a tio n  and the authentic e-ethoxy 

ester (1 1 0 ) by glpc and nmr confirmed th a t a by-product from the ester

if ic a tio n  was indeed ( 1 1 0 ).

Figure 32. Synthesis of ethyl 3-ethoxy-3-phenylpropanoate.

From th is  evidence i t  appeared th a t the e s te r if ic a tio n  procedure 

(ethanol and HC1 gas) was the source of the l i te ra tu re  e rro r. I t  remained 

to synthesize the e-acetoxy ester by a non-racemizing technique.

A m ild method fo r e s te rific a tio n  involving the reaction of ( 108)
O A

with dimethylformamide diethylacetal was attempted (Figure 33). However, 

the e s te r if ic a t io n  did not proceed even under re flu x  conditions. A 

standard procedure involving e s te r if ic a tio n  w ith ethyl iodide and t r ie th y l-
OC

amine was successful fo r the preparation o f ( 109). The specific  ro ta tio n  

of the e s te r, prepared from a sample of ( 108) having [a ]D12.74° (c5, ethanol) 

(67% ee) was found to be [a]g616.85° (neat). This sample o f ester ( 109) 

was then acetylated w ith acetic anhydride to give ethyl 3-acetoxy-3-phenyl- 

propanoate ( 112) (Figure 34). Analysis o f the acetoxy ester ( 112) with 

Eu(dcm)g indicated a 67% ee, the same as th a t o f the hydroxy ester precursor. 

When the op tical p u rity  o f the s tarting  ester (67% ee) was taken into account,
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PhCHCH2 C00Et
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H
Me?NC(0Et)

PhCHCH2C00H  PhCHCH2C00Et

OH '  OH

Et3N, E tI

OH OH

PhCHCH9COOH --------- ---------------------------- PhCHCHoC00Et
I 2 I 2

109

Figure 33. Synthesis and attempted synthesis o f ethyl 3-hydroxy-3- 
phenylpropanoate.
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the maximum ro ta tio n  o f the acetoxy ester ( 1 1 2 ) was calculated to be 

[a ]D60.6° (neat) (d=1.088).

Ac90
PhCHCH-COOEt  PhCHCH-COOEt

i 2 i 2
OH OAc

112

Figure 34. A cylatioi; of ethyl-3-hydroxy-3-pheny1propanoate.

This maximum ro ta tio n  value is  more than ten times th a t previously  

reported fo r  ( 112) .  Thus the reduction of (E )- and ( Z )-e thy l-3 -aceto xy-
AC

cinnamate with Rh/DIPAMP reported by Knowles and coworkers actua lly  

gave only about a 5% ee rather than the 90% th a t would be calculable

based on the l i te r a tu r e  ro ta tio n  fo r ( 1 1 2 ) .

A general comment intended to assist fu tu re  workers who w ill  

continue th is  study involves hydrogenation technique. The key to 

obtaining undisputable and repeatable hydrogenation resu lts  is  to 

always maintain scrupulously clean equipment (glassware and hydro- 

genators); to keep the hydrogenators in good working order; to be 

consistent in reaction  conditions; and to always work under a nitrogen 

atmosphere with well-degassed solvents. Fa ilu re  to observe these 

warnings w il l  re s u lt  in  a large number o f heterogeneous, non-asymmetric 

hydrogenations.
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EXPERIMENTAL

General

G as-liqu id  P artitio n  Chromatographic Analyses: (glpc) were per

formed on a Varian Aerograph Model 90-P gas chromatograph coupled to a 

Sargent Welch Model SRG recorder. Helium was used as the c a rrie r gas. 

Table A l is t s  the analytica l columns and re ten tio n  times for the com

pounds used in  th is  study.

In fra re d  Spectra: ( i r )  were recorded on a Perkin-Elmer 337

grating spectrophotometer and ca lib rated  using the 1601.4 cnf^ band of 

polystyrene. The spectra of liqu ids  were obtained neat while those o f 

solids were taken as mulls.

Nuclear Magnetic Resonance Spectra: (nmr) were obtained on a

Jeolco Model JNM-MH 100, 100 MHz nmr. A ll 100 MHz spectra are numbered 

less than 7100. A Varian Model A-60 Spectrometer was used to record 60 

MHz spectra. A ll 60 MHz spectra are numbered over 16,500. Chemical 

sh ifts  are reported re la tiv e  to in ternal te tram ethy ls ilan e. S p littin g  

patterns are designated as s, s in g le t; d, doublet; t ,  t r ip le t ;  q, quartet 

m, multi pi e t .  Coupling constants are given in  Hertz.

Elemental Analyses: Elemental analyses were performed on an F

and M Model 185 Carbon, Hydrogen, Nitrogen Analyzer by Ms. D. Cardin and 

Ms. 0 . D aig le .

107
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Melting Points: Melting points were obtained using a Thomas-

Hoover melting point apparatus and are uncorrected.

Optical Rotations: Optical rotations were determined on a Carl

Zeiss Photoelectric Precision Polarim eter, 0 .005°, equipped with a 

deuterium lig h t source and f i l te r e d  to give readings a t 578 and 546 nm. 

Rotations are reported a t the sodium-D lin e  (589 nm) and were calculated  

from the Drude equation.

a

aD "

578 

a546-a578
a

546
578

a546-a578
+ 1.3727

High Performance Liquid Chromatography: (hplc) was performed on

a Waters ALC/GPC-202 chromatograph equipped with a model 6000 delivery  

system, U6 K in je c to r and re fra c tiv e  index and u l t r a v io le t  detection  

systems. Preparative hplc was performed on a Waters PrepLC/500 with a 

re fra c tiv e  index detector.

Unless otherwise noted, compounds were purchased from commercial 

sources and were used as received.

Dry Solvents: Dry solvents such as Diethyl ether and te tra -

hydrofuran (THF) were d is t i l le d  from lith iu m  aluminum hydride and used 

immediately or stored over sodium w .re or molecular sieves, respectively .

Pyridine was dried by storing over potassium hydroxide p e lle ts .

Hydrogenations: Hydrogenations were run in a s tirre d  low pressure

hydrogenator described by Masler e ^ a l_ ., a Parr Model 3911 low pressure
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hydrogenator or a Parr Model 4501 Medium Pressure Hydrogenator.

Gases: Nitrogen was bubbled through concentrated s u lfu ric

acid and passed through a calcium chloride drying tube. Hydrogen 

(prepurified , 99.95%) was used with no further treatment.

Table A. Gas chromatographic retention times fo r  compounds used in th is

Temp. Retention

study . 3

Compound Column °C Time, Min

Pulegone A 205 2 . 6

2 - (2-Phenyl p ro p y l)-5 - 
methylcyclohexanone A 205 4.9

2 - (2-Phenyl p ro p yl)-5 - 
methyl cyclohexanol A 205 5.8

2-t-Butyl -5-methyl -  
cyclohexanone B 100 4.4

Pulegone B 100 2.7

(+)-NMDPP B 230 2 . 6

(+)-NMDPP oxide B 230 4.6

Benzene B 230 0 . 2

(Z)-Ethyl -3-acetoxy-3- 
phenyl-2-propenoate C 250 3.7

Ethyl-3-acetoxy-3-phenyl-  
propanoate C 250 3.0

Ethyl cinnamate C 250 2.3

Ethyl-3-phenylpropanoate C 250 2 . 0

Ethyl-3-acetoxy-3-phenyl -
n rn n an n ate A 185 8.5

L.
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Table A. (continued)

Compound Column
Temp.

°C
Retention  
Time, Min

Ethyl-3-hydroxy-3-phenyl-  
propanoate A 185 9.3

Ethyl-3-ethoxy-3-phenyl -  
propanoate A 185 4.2

Ethyl-3-acetoxybut-2-enoate C 175 3.2

Ethyl-3-acetoxybutanoate C 175 3.1

Ethyl caproate C 175 1.4

(Z )-E thy l-3 -acetoxybut- 
Z-enoate13

C 147 3.2

( E)-Ethyl -3-acetoxybut- 
2-enoate C 147 3.6

L

Ethyl-3-acetoxybutanoate C 147 3 .0

Ethyl butyrate C 147 1.3

Column A: 10' x 1/4" 5% Carbowax 20 M on Chromasorb W, 80-

Column B: 5 ' x 1/4" 3% SE 30 on Chromasorb W, 60-80 mesh.

Column C: 10' x 1/4" 10% SE 30 on Varaport 30, 80-100 mesh

A constant flo w  ra te  o f 50 mL/min o f helium gas was maintained on 

a ll columns.

^The response ra tio s  were determined fo r (Z )-e th y l-3 -ace to xyb u t-2 - 

enoate and ethyl-3-acetoxybutanoate on column C a t 147° and found to be 

1 :1 . 6 8 , resp ective ly .

-m
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General Procedure fo r Use o f Chiral S h ift  Reagent, Eu(dcm) :
3

Reagents Quantity

Eu(dcm)g 0.080 g

Carbon d is u lfid e 0.35 mL

Compound 0.025 mL

TMS 0.05 mL

The reagents were mixed in a clean te s t tube in the order lis te d , 

as rapid ly  as possible. The yellow solution was transferred  to an nmr 

tube by p ipet and the spectrum was run w ith in  30 min. I f  excess s h ift  

reagent was needed to induce a greater s h if t ,  then 0.040 g portions were 

added d ire c tly  to the nmr tube containing the already prepared mixture 

and the spectrum read immediately. Ratios o f stereoisomers were 

determined by measuring peak height and by in teg ra tio n .

Dimethyl ethylphosphonoacetate: Trimethyl phosphite (100 g,

0.806 mol) was added dropwise to a solution o f ethyl bromoacetate (100  g, 

0.6 mol) which had been warmed to about 100°, under n itrogen. Heating 

was continued throughout the reaction and the methyl bromide was removed 

with a nitrogen stream. The product was iso lated  by d is t i l la t io n  of the 

residue and two frac tio n s  were collected; bp 70-80° (14 mm), 40 g; bp 

140-148° (14 mm), 92 g (83.6%). Analysis by nmr (16699, CDClg) indicated 

that the higher b o ilin g  frac tio n  was the desired product.

Ethyl -e-m ethylci nnamate: Dimethyl ethyl phosphonoacetate (112 g,

0.57 mol) was added dropwise to a cooled suspension o f sodium hydride
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(50% dispersion in N u jo l, 24 g, 0.5 mol) in dry dimethoxyethane (400 mL) 

so that the temperature did not ris e  about 30°. The reaction mixture 

was allowed to s t i r  fo r 1 hr a t room temperature and then acetophenone 

(60 g, 0 .5  mol) was added dropwise so tha t the temperature remained below 

30°. The reaction mixture was s tirre d  fo r 2 hr a t room temperature and 

then a t 50° fo r  2 hr. A fte r cooling, the reaction mixture was treated  

with water (75 mL) and saturated sodium chloride (75 mL) to decrease the 

s o lu b ility  o f the dimethoxyethane. The reaction mixture was extracted 

in to  ether and was concentrated to give a l ig h t  brown o i l .  The o il was 

d is t i l le d ,  bp 58-112° (2 .5  mm), y ie ld , 80.6 g (83.6%). Analysis of the 

d is t i l la te  by nmr showed the presence of both the (Z )-  and (E)-isomers 

in about a 1:9 r a t io , respectively, nmr (16700, CDClg) (E)-isomer:

6 5.90 (s , 1 , C=CH); (Z)-isomer: 6 5.70 (s , 1, C=CH).

(E)-B-Methylcinnamic Acid: Ethyl-B-methylcinnamate (80.6 g,
0.41 mol) was heated with a solution of potassium hydroxide (44 g,

0.79 mol) in  water (300 mL) and the reaction mixture was allowed to

re flu x  fo r  2 h r. The reaction mixture was cooled and was washed with

ether. The aqueous solution was a c id ifie d  w ith hydrochloric acid and

the c lear o il which separated was extracted w ith ether (2 x 150 mL).

The ether solution was dried (^ S O ^ ) and concentrated to give a white

c ry s ta llin e  product which was recry s ta llize d  from 3:1 heptane: ethyl

acetate (350 mL) to y ie ld  21.1 g (32%) o f white prisms, mp 95-97°;

mp lit .® ®  9 8 .5 °; nmr (16709, CDCl^) (E)-isom er: 8 6 .0  (s , 1, C=CH). A

second crop o f crystals was collected, mp 76-101°, y ie ld  21.2 g (32%),

nmr (16710, CDClg) 5 5.70 (s , 1, C=CHj Z-isomer 6 6 .0  (s , 1 , C=CJĥ , E-isomer).

The nmr analysis indicated that the f i r s t  crop was pure (E )-acid  whereas

the second crop was a 5:3 mixture o f (E ) : (Z ) ,  resp ective ly .
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(E)-g-Methylcinnamic A cid:8  ̂ In a 500 mL round-bottomed f la s k ,  

benzaldehyde (106 g, 1 .0  m ol), propionic anhydride (160 g, 1.23 m ol), 

and sodium acetate (82 g, 1 . 0  mol) were heated and allowed to re flu x  fo r  

24 hr. The reaction mixture was poured onto ice and water (1 .2  L) and 

was then a c id ifie d  with concentrated hydrochloric acid. The crude acid  

was extracted in to  ethyl e ther (400 mL) and the ether solution was then 

washed repeatedly with water. The ether solution was extracted with a 

solution of sodium hydroxide (80 g, 2.0 mol) in water (1 L) and the basic 

aqueous extract was separated and washed with ether. The aqueous layer  

was ac id ified  with concentrated hydrochloric acid and the product sepa

rated as an o il which was extracted into ether. The ether ex trac t was 

washed with w ater, dried (MgSO^) and concentrated in vacuo to give crude 

(E)-a-methylcinnamic acid which c ry s ta llize d  on standing. The crude 

product was re c ry s ta llize d  once from 60-110° pet ether to give 93 g (58%) 

o f (E )-acid , mp 70-76°; l i t . 87  mp 81-82°; nmr (16659, C0C13) 6 7.60  

(s , 1, CH=C).

(Z)-a-Methylcinnamic Acid: (E)-g-methylcinnamic acid (37 g) in

400 mL of 95% ethanol was placed in a quartz flask and subjected to 

radiation for e igh t days in  a photochemical reactor (128 w att, 2537 ft).

The reaction mixture was then concentrated to dryness. The resu ltan t 

solid  was weighed, dissolved in 30-60° pet ether (10 mL/g) and the solu

tion  was f i l te r e d . The f i l t r a t e  was seeded with authentic (Z )-ac id  

(obtained from Dr. W. F. Masler) and allowed to stand a t room temperature 

fo r  24 hr. Very large , parallelogram-shaped, yellow crystals formed, 

y ie ld  10.5 g (28.4%). These were recrys ta llized  from cyclohexanol (100 mL)
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to y ie ld  8.3 g of o ff-w h ite  c ry s ta ls , mp 92-95°; l i t . 88  mp 91-92°.

(Z)-3-Methylcinnamic A cid: A solution containing (E )-3-m ethyl-

cinnamic acid (10 g, 0.06 mol) in 100 mL o f 95% ethanol was irrad ia ted  

as described previously fo r  a-methylcinnamic acid. The reaction mixture 

was concentrated to dryness, weighed, dissolved in carbon d isu lfid e  

( 6  mL/g), and seeded with authentic (Z )-a c id . A fte r 24 hr, the l ig h t -  

yellow crystals were collected and re c ry s ta llize d  from 3:2 cyclohexane:

ethyl acetate (4 mL/g), y ie ld , 8  g, mp 130-133°; l i t . 20  mp 131.5°.
89

( Z) -a-Acetamidocinnamic A cid: A mixture o f acetylglycine

(58.5 g, 0.5 mol), sodium acetate (30 g, 0.37 mol), benzaldehyde (79 g, 

0.74 m ol), and acetic anhydride (134 g, 1.25 mol) was heated u n til 

solution occurred and then heating was continued on a steam bath fo r 1 

hr. The mixture was allowed to stand overnight a t 5°. The solid mass 

of brown and yellow crystals  was mixed with 125 mL of cold water and 

broken up. The crystals were f i l t e r e d ,  washed with cold water and then 

dried in vacuo to y ie ld  64 g ( 6 8 . 6 %) of the stable yellow azlactone 

interm ediate. The azlactone was dissolved in 600 mL o f acetone and 250 

mL o f water and refluxed fo r  4 h r. At the end of th is  time the acetone 

was d is t i l le d  o f f ,  800 mL o f water was added and the mixture was boiled  

fo r 5 min to ensure complete hydrolysis.

The mixture was f i l te r e d  hot (a small amount o f solid remained 

on the f i l t e r ) .  The f i l t e r  was washed w ith a small quantity o f hot water 

then the f i l t r a t e  was decolorized with N orite . Upon standing, large  

yellow prisms formed in the decolorized f i l t r a t e .  The prisms were re - 

crys ta llized  from 1100 mL o f water to y ie ld  56 g (60%) of large o ff-w h ite  

prisms, mp 190-192°; l i t .  mp89  191-192°. Analysis by nmr gave a Z:E 

ra tio  o f 9:1; nmr (77588, TFA) (Z)-isom er 6 7.32 (s , 1, CHfC); (E)-isomer
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6 7.45 (s , 1, CH=C).

Lauro.yl C h lo ride: Laurie acid (20 g, 0.1 mol) and p u rified

thionyl ch lo ride90  (23 .7  g, 0.2 mol) were combined and refluxed fo r  

six hours. The gold colored solution was cooled and then d is t i l le d  

to give a q u an tita tiv e  y ie ld  o f lauroyl ch loride, bp 92-94° (0 .9  mm), 

l i t . 91 bp 134-137° (11 mm).
72Ethyl-3-k.etotetradecanoate: A solution o f n-butyl lith ium

in hexane (15 mL, 1.6 M) was added, under nitrogen, to a flame dried  

250 mL round-bottomed fla s k  containing a magnetic s t i r r e r .  Freshly 

dried (d is t i l le d  from barium oxide) cyclohexylisopropylamine (7.05 g,

50 mmol) was then added dropwise. A fter ten min the hexane was removed 

in vacuo to give a c le a r  glass. The glass was dissolved in 25 mL o f 

dry THF and the re su ltin g  solution was cooled in a dry ice/acetone bath. 

Purified ethyl acetate (p re -d ried  over potassium carbonate then d is t i l le d  

from phosphorus pentoxide) (2 .2  g, 25 mmol) was added dropwise followed 

ten min la te r  by dropwise addition o f lauroyl chloride (5 .45  g, 25 mmol). 

Lithium chloride formed. A fte r s tir r in g  fo r ten min, 15 mL o f 20% hydro

chloric acid was added to quench the reaction. The reaction was allowed 

to come to room temperature then enough water was added to dissolve the 

lith ium  ch lo ride. The THF and water were separated and the water layer  

was washed with ethyl e th er. The ether extracts and the THF layer were 

combined, dried (MgSO^) and concentrated to y ie ld  a l ig h t  yellow  o i l .

The o il was d is t i l le d  bp 70-135° (1 .0  mm) to y ie ld  5.1 g (38%) 

o f a cloudy colorless o i l  which upon analysis by i r  and nmr proved to 

contain some of the desired g-keto ester; i r  (23034, heat) 1710 cm-1 

(C=0, e s te r ) , 1730 cm- 1  (C=0, ketone); nmr (6053, CDClg) 6 3 .4  

(s , 2, CO-CHg-CO). Attempted analysis by glpc gave decomposition;

L
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decomposition was also observed upon attempted d is t i l la t io n .

Attempts to separate the $-keto ester as a copper chelate using 

copper acetate were unsuccessful.

(Z )-E thy l -3-acetox.ytetradec-2-enoate : 6 9  In a 250 mL round- 

bottomed fla s k  were placed unpurified ethyl-3-ketotetradecanoate  

(5 g, 18.5 mmol), ]D-toluenesulfonic acid (0 .75  g ), and fresh ly  d is t i l le d  

isopropenyl acetate  (100 mL). The solution was d is t i l le d  very slowly fo r  

ten hr with continuous addition o f fresh isopropenyl acetate  to maintain 

the orig ina l volume. At the end of this time the mixture was cooled and 

5 g o f sodium bicarbonate was added. The remaining isopropenyl acetate  

was removed in  vacuo below 30°. The residue was extracted with e th e r, 

washed with ice water and saturated sodium ch lo rid e , dried  (Na2S0^) and 

concentrated below 30° to y ie ld  a brown o i l .

The o il was d is t i l le d  to give two fra c tio n s ; bp 105-125° (0 .7  mm), 

bp 140-152° (0 .8  mm). Analysis by i r  (23062, 23063, neat) 1690-1770 cm” 1

(C=C-0-C=0, and e s te r C=0); nmr (6081 , CDClg) 6 5 .2  (s , 1, C=CĤ ) indicated

product in both fra c tio n s , approximately 2 .5  g to ta l weight. Attempted 

analysis by glpc on column C a t 250° and 310° gave decomposition o f product

numerous decomposition products were observed.

Anal. Calcd fo r  C-j 3 ^3 2 ^4 : C, 69.19; H, 10.32. Found: C, 68 .4 ;

H, 10.7.

Undecanoyl C hloride: Undecanoic acid (37.2 g, 0 .2  mol) was

allowed to react in  the same manner as la u ric  acid to y ie ld  36.4 g (94%) 

of undecanoyl c h lo rid e , bp 84° (0 .8  mm).

E thy l-3 -keto tridecanoate: Undecanoyl chloride (36 .4  g, 0.19 mol) 

was allowed to reac t in the same manner as lauroyl ch loride to y ie ld
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approximately 10 g o f impure 8-keto  ester, bp 140-169° (1 .2  nm); glpc on 

Column C indicated a t le a s t 60% product plus s ta rtin g  m ateria l and many 

other im purities.

(Z )-E th y l-3 -aceto xytrid ec-2 -en o ate : E thyl-3-ketotridecanoate

(10 g o f impure m a te ria l) was reacted in the same manner as e th y l-3 -  

ketotetradecanoate to y ie ld  approximately 3 g of the enol acetate .

Anal. Calcd fo r  C-j^H^qO^: C, 67.96; H, 10.74. Found: C, 70.18;

H, 11.44. The sample smelled o f acetic acid a fte r  standing.

(Z)-Ethyl-3-acetox.ybut-2-enoate: In a 500 mL round-bottomed

flask were placed ethyl acetoacetate (43.3 g, 0.33 m ol), fres h ly  d is 

t i l le d  isopropenyl acetate (200 mL), and £ -to lu en efu lfo n ic  acid (6 .5  g ).

The solution was d is t i l le d  very slowly for 10 hr with continual addition  

of isopropenyl acetate to maintain the orig inal volume. At the end of 

this time, the mixture was cooled and sodium acetate (25 g) was added.

The remaining isopropenyl acetate was removed in vacuo below 30°. The 

mixture was extracted w ith e th e r, and washed successively w ith ice water 

and saturated sodium ch lo rid e . The extract was dried (Na2 S0^) and con

centrated, below 30°, to  y ie ld  an orange o i l .  The o il was d is t i l le d  to 

yield  48 g (83%) o f product, bp 75° (1.1 mm). Analysis by glpc on Column 

C showed the presence o f Z and E isomers in a 95:5 r a t io ;  nmr (6954, CDC13)

5 1.24 ( t ,  3, -CH2 -CH3 ) ;  5 1.96 (s , 3, CH^-C); 6 2.18 (s , 3 , CH3 -C00);

6 4.08 (q , 2, -CH2 -CH3 ) ;  5 5.56 (s , 1, C=CH).

(Z) -Methyl -3-acetox.ybut-2 -en o ate : Methyl acetoacetate (11.6 g,

0.1  mol) was treated in  an id en tica l manner as ethyl acetoacetate to form 

the methyl ester o f the enol acetate; y ie ld , 13.1 g (83%); bp 52° (0 .4  mm),
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glpc on Column C indicated only traces o f im purities  (probably less than 

1%).

Attempted Preparation o f (E)-Eth.yl-3-acetoxycinnamate: Acetyl

chloride (10 .6  g, 0.12 mol) was added dropwise over 0.5 hr, to a cool 

( ic e -s a l t ) ,  m echanically-stirred solution o f ethyl benzoylacetate (18.2 g, 

0.095 mol) and triethylam ine (12 g, 0.12 mol) in  HMPA (20 mL). A th ick  

suspension formed; i t  was s tirre d  a t room temperature fo r 2.5 hr. At the 

end of th is  time 50 mL of water and 50 mL o f ether were added. Two c lea r  

layers formed. The aqueous layer was extracted with ether and the ether 

extracts were combined with the ether la y e r, dried (MgSO^), and concen

trated to y ie ld  a brown o i l .  The o il was d is t i l le d  to y ie ld  two frac tio n s ; 

bp 120-148° (0 .4  mm), bp 148-156° (0 .4  mm); the nmr spectrum (7043, 7044, 

CDC13) indicated the presence o f several compounds. I t  was concluded 

that the (E)-enol acetate cannot be formed e f f ic ie n t ly  in this manner 

due to an equilibrium  between the g-keto es te r and enolized ester 

function.

Ethyl-g-hydroxyhydrocinnamic Acid by E s te rific a tio n  with Ethanol
79and Hydrogen Chloride Gas: A sample o f g-hydroxyhydrocinnamic acid

(12.5 g, 0.075 m ol), [a ]j^ -6 .1 6 ° (£5 .03 , ethanol) (33%ee based on [ a ] ^  18.9  

(£5, e th a n o l)) , was dissolved in absolute ethanol (125 mL) and heated on a 

steam bath under a slow flow o f hydrogen ch lo ride  gas fo r 10 hr. At the 

end of th is  time the hydrogen chloride flow was stopped, the heat was 

removed and the reaction was allowed to stand overnight. The ethanol was 

removed jm vacuo to y ie ld  a yellow o i l .

The o il was d is t i l le d , bp 92-122° (0 .8  mm) to y ie ld  a c lear co lor

less l iq u id . Analysis of the liq u id  by nmr (5847, CDC13) indicated the 

presence o f  the desired product s 1.05 ( t ,  3 , -CHg-Cjlg), 6 2.60
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(m, 2, -CHg-C=0), 5 4.05 (q , 2,  -CH2 -CH3) ,  6 4 .3  (s , 1 , -OH), 5 5.10

(m, 1, CH.-0H), 6 7.40 (m, 5, CgHg); but an unsaturated product

(possibly a dehydration product, both cij^ and trans isomers) was also

indicated by the presence o f 4 singlets between <5 6.1 and 6 7 .6 . A

third product, presumed to be the B-ethoxy e s te r (110)due to the presence
00

of overlapping peaks present near s 1.05 and 6 4.05: [ a ] Q -3 .8 3 ° (neat)

was also present. The specific  rotation of the product mixture corre-
• I -7

sponded to less than 2! ae based on the lite ra tu re  value o f [a ]Q 19.17°
79(neat) for the pure B-hydroxy ethyl ester.

The product was d is t i l le d  a second and th ird  tim e; bp 90-110°

(0 . 8  mm) each tim e, and the ro tation  was taken a fte r  each d is t i l la t io n .
00

The specific  ro ta tio n  fo r  the doubly d is t ille d  m aterial was [a ]Q -1 .49°
O 0

(neat) and fo r the t r ip ly  d is t i l le d  product i t  was [a ]Q -0 .96 ° (neat).

Analysis o f the t r ip ly  d is t i l le d  product by nmr (5849, CDCl^) indicated  

the same composition as the once d is t i lle d  m ateria l.

The reaction was repeated with 95% ee hydroxy acid ( [a ]g l7 .8 6 ° (n e a t)). 

A sample o f B-hydroxyhydrocinnamic acid (108)(5 g, 30 mmol) was dissolved in 

absolute ethanol (50 mL) and heated on a steam bath under a slow flow of 

hydrogen chloride gas fo r  9 hours. At the end of th is  time the hydrogen 

chloride flow was stopped, the heat was removed and the reaction was 

allowed to stand overnight. The ethanol was removed in vacuo and the 

residue was taken up in  ether and washed with 5% sodium bicarbonate. The 

ether layer was dried (MgSO^) and concentrated to y ie ld  a lig h t  yellow o i l .

The o il was d is t i l le d ,  bp 88-103° (0 .7  mm) to y ie ld  a c lear liq u id . Analysis 

by nmr (77747, CDCl^) indicated that the hydroxyl proton, 6 4.05 was missing; 

i r  (22940, neat) no OH present.
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Attempted E sterifica tio n  o f g-Hydroxyhydrocinnamic Acid with 

Dimethylformamide D iethylacetal: A sample o f g-hydroxyhydrocinnamic 

acid (1 08 )(1 .6 6  g, 0.01 mol) was suspended in absolute ethanol (10 mL) 

and dimethyl formamide diethylacetal (5 .62  g, 0.038 mol) was added a l l  a t  

once. The suspension turned yellow and the acid went slowly in to  solu

tio n . Constant gas evolution was observed. The gas smelled lik e  

dimethyl amine.

A fte r  re flux ing  fo r 24 hr no product ester was observed (glpc on 

Column A ).

Ethyl-g-hydroxyhydrocinnamate by E s te rific a tio n  with Triethylam ine  

and Ethyl Io d id e : 88  A sample o f g-hydroxhydrocinnamic acid ( 108)(3 .3 2  g, 

0.02 mol) ( [ot] pi 2 .74° (c5, ethanol)67%ee) was suspended in 25 mL o f dry 

toluene then triethylam ine (2.02 g, 0.02 mol) was added. A c lear solution  

formed. Ethyl iodide (3.12 g, 0.02 mol) was added and the c lear solution  

was refluxed fo r 6 hr.

At the end of the re flu x  period the mixture (2 layers) was washed 

successively with water and 2% sodium hydroxide. The organic layer was 

dried (Na^O^) and concentrated to y ie ld  a yellow  o i l ,  1.9 g (49%); nmr 

(6013, CDC13) 6 1.05 ( t ,  3, C I-^-C ^), 5 2 .60 (m, 2 , CH2 -C=0 ) ,  5 4.05  

(q, 2, CH2 -CH3) ,  s 4.3 (s , 1, OH), 6 5 .10 (m, 1, CH-OH), 5 7.40 

(m. 5 , CgHg) ; glpc on Column A showed only one peak: [ a]p817.02° (n e a t).

The product was d is t i l le d , bp 100-110° (0 .7  mm) to y ie ld  1.4 g 

(36.1%); [a ]p 816.85° (neat).
83

Ethyl-3-ethoxyhydrocinnamate: A sample of ethyl-B-hydroxy-

hydrocinnamate ( 109)(9 .7  g, 0.05 mol) was dissolved in ethyl iodide 

(20.1 g, 0.18 mol) and placed in an ice bath. S ilv e r ( I )  oxide (20.9 g, 

0.09 mol) was added slowly through Gooch tubing to the mechanically

1 ,
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stirred  solution. A th ick  brown suspension formed. The ice bath was 

removed and the flask was placed on a steam bath to re flu x  fo r 12 hr 

then ethyl iodide (10 g, 0.09 mol) was added and the re flux  was continued 

for 12 hr longer. The reaction was allowed to stand overnight and then 

was d is t i l le d  to y ie ld  5 g (45%) o f a c lea r o i l ,  bp 95-100° (0 .9  mm); 

nmr (77762, CDC13) 6 1.1 ( t ,  3, CH2 -CH3 e th e r ) , 6 1.25 ( t ,  3, CH2 -CH3 

e s te r), 6 2.55 (d , 2, CH2 -C=0), 5 3.42 (q , 2 , CH2 -CH3 e th er), 6 4.02  

(1, 2, CH2 -CH3 e s te r ) , 6 4.65 ( t ,  1, CH-0), 5 7.15 (s , 5, CgHg); glpc 

on Column A showed only one peak.

Ethyl-B-acetox.yhydrocinnamate:^  A sample o f e-hydroxyester
o n

(1 .0  g, 5.2 mmol), [a]p  16.85 (n e a t), (67% ee) was combined with fresh ly  

d is t i l le d  acetic  anhydride (2 .0  g, 19.6 mmol) and refluxed for 10 hr. The 

excess acetic  anhydride was removed in vacuo and the product was d is t i l le d ,  

bp 114-115° (0 .7  mm), y ie ld  0.9 g (75%); nmr (6020, CDC13) 6 1.95 (s , 3, 

C-CJH3);  [a]p^44.18° (n e a t), d = 1.088, glpc on Column A showed only one 

peak. Assuming no racemization the maximum ro ta tio n  was calculated, 

[a]JJax60.61° (neat).

Analysis with the chira l s h if t  reagent Eu(dcm) 3 (nmr 6026, 6027) 

indicated approximately 67% ee therefore no racemization occurred.

Menthyl Tosylate: To a s t ir re d , cooled ice-methanol solution of

(-)-menthol (7 .8  g, 0.05 mol) in 100 mL o f dry pyridine was added jd- 

toluenesulfonyl chloride (9 .5  g, 0.05 mol) in one portion. A drying tube 

was attached and the mixture was allowed to s t i r  fo r one hr a t - 1 0 ° ; i t  

was then stored a t 5° fo r 12 hr.

At the end of th is  time water (100 mL) was added and two layers 

formed. The organic layer c ry s ta llize d  as menthyl tosylate , was
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f ilte re d  and then was re c ry s ta lliz e d  from 95% ethanol to form white 

crysta ls , y ie ld  9.9 g (63.5% ), mp 90-92°.

Neomenthyldiphenylphosphine: To a solution o f diphenylphosphine 

(6.7 g, 0.036 mol) in THF (100 mL) was added potassium metal (1 .4  g,

0.036 mol). The mixture was s tir re d  at room temperature fo r  6 hr and 

then menthyl tosylate  (9 .9  g, 0.032 mol) was added. The b rig h t red 

mixture was refluxed fo r  19 h r, and then was s tirre d  u n til i t  cooled to  

room temperature. At th is  point the mixture was lig h t  ye llo w . Degassed 

water (50 mL) was added and two c lear layers formed. The organic layer  

was separated and was evaporated on a rotary evaporator u n til a white  

solid was l e f t .  The so lid  was c rys ta llize d  from ethanol to  y ie ld  1 .5  g 

(10%) o f NMDPP. The nmr spectrum (77319, CDClg) matched th a t o f an 

authentic sample; glpc on Column B a t 230° indicated about 85% NMDPP ( 18) 

and 15% NMDPP oxide-

Phenylmagnesium Bromide: A to ta l base t i t r a t io n  o f  the reagent,

prepared from bromobenzene (52 .3  g, 0.33 mol) and t r ip ly  sublimed magnesium 

metal (8 .0  g, 0.33 mol) in the usual way, indicated 0.234 mol (130 mL of 

1.8 N) Grignard reagent, 70.3% y ie ld .

2- ( 2-Phenyl propyl) -5-meth.yl cycl ohexanone :6 3 To an ether solution  

of phenyl magnesium bromide (115 mL, 0.207 mol) under n itrogen a t room 

temperature was added copper ( I )  chloride (0.17 g, 1 mol %) in dry ether 

(50 mL). A solution o f (+)-pulegone (25.4 g, 0.167 mol) in  ether (150 mL) 

was then added over a one hour period. The resu lting  m ixture was refluxed  

for two hr and then was allowed to stand overnight. The re s u lta n t black 

mixture was poured onto ice and a c id ifie d  with hydrochloric acid . The 

ether layer was separated, washed with water, dried (MgSO^), and concen

trated to y ie ld  a yellow o i l .  The o il was d is t i l le d ,  bp 120-130° (0 .7  mm),
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to y ie ld  25 g o f m a te ria l; nmr (77284, CDClg) 6 7.85 (m, 5, CgHg); 

glpc on Column B a t 205° indicated about 80% of the desired product and 

about 20% pulegone.

Equil ib ra tio n  o f 2 - (2-Phen.yl propyl) -5-methyl cycl ohexanone to  

Give Predominantly the trans-Ketone: A sample of 2 - (2-phenyl propyl) -

5-methyl cyclohexanone (96) was refluxed in 100 mL of 5% ethanolic potassium 

hydroxide fo r  2 h r. The reaction mixture was d is t i l le d ,  bp 125-145° (1 .5  mm) 

to y ie ld  19.0 g (8 8 . 8 %) o f ketone; presumed to be trans:cis 85:15; 

the nmr (77299, CDClg) was indistinguishable from that o f the unequilibrated  

product.
66Preparation o f 2 - (2-Phenylpropyl) -5-methylcyclohexanol: Sodiurn

chips (5 .3  g, 0.23 mol) in  dry toluene (62.3 mL) were melted a t 110° with 

s tir r in g  under n itrogen. A solution of 2 - (2-phenylpropyl) -5-m ethylcyclo- 

hexanone (18 .5  g, 0.804 mol) and 2-propanol (14.5 g, 0.257 mol) was added 

and the re su ltin g  suspension was allowed to s t i r  under re flu x  fo r  1 .5  hr.

Ice water (300 mL) was added c a re fu lly  to the cooled reaction m ixture. 

Extraction w ith  e th er, drying (MgSO )̂ and concentration gave a crude o il 

which upon d is t i l la t io n ,  bp 130-140° (0 .7  mm), yielded 11.2 g (53.7%) o f 

a clear o i l .  The nmr spectrum (77304, CDClg) 6 3.4 (m, 1, CĤOH) indicated  

formation o f the desired alcohol.

P u rif ic a tio n  o f 2 - (2-Phenyl propyl )-5-methy1 cycl ohexanol b,y h p lc :

Thin layer chromatography o f the alcohol (97) in 90:10 hexane:ethyl acetate  

and development with iod ine, indicated the presence of a t leas t four compo

nents; the spots were well separated and assumed to represent the four 

possible diastereomers. The sample was examined on the ana ly tica l hplc 

in the same solvent system and a t le a s t seven uv active peaks were 

observed.
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A 1 .5  g sample of the alcohol was in jected in to  the prep hplc in 

a solvent system o f 90:10 hexane:ethyl acetate a t a flow ra te  o f 300 

mL/min. Six fractions were collected and analyzed by nmr and i r .

Fraction f iv e  (1 g) was determined to be the desired (a l l  eq u ato ria l) 

product; nmr (77441, CDC13 ) <5 0.88 ( t ,  1, CH-CH3) ,  6 1 .27 , 6 1.40  

(2s, 6 , C-(CH3)2) , 5 0 .60 -1 .95  (m, 8 , ring H 's ), 6 3.3 (m, 1, CH-0H),

<5 7.08 (m, 5 , CgJHg);  i r  (22288, neat) 3300-3600 cm-  ̂ (OH). Fractions 

four, f iv e  and six had iden tica l nmr and i r  spectra. Fractions one, two, 

and three were present in only trace amounts. In a subsequent separation 

20.7 g o f (97J were p u rifie d  in th is  manner from 33 g o f alcohol mixture.

A ll Equatorial 2 - (2-Phenylpropyl)-5-m ethylcyclohexyltosylate: A 

sample o f pu rified  2 - (2 -phenyl propyl) -5-methyl cycl ohexanol (97) (20 g,

86 mmol) was tosylated according to the procedure described fo r the 

preparation o f menthyl tosy la te . A fter re c ry s ta lliz in g  from ethanol and 

drying in vacuo, 25 g (78%) o f tosylate (98J were obtained, mp 68-71°; 

nmr (77374, CDC13) 6 2 .3  (s , 3, CgH^-Cjtj), 6 6 .8 -7 .7  (c h a rac te ris tic  

tosylate peaks plus phenyl) indicates the tosylate  had formed.

Attempted Preparation o f 2 - (2-Phenylpropyl) -5-m ethylcyclohexyldi

phenyl phosphine: To a solution o f diphenylphosphine (6 .7  g, 0.036 mol) 

in dry THF was added potassium metal (1.4 g, 0.036 mol) and the deep- 

red solution s tirre d  fo r  6 hr under nitrogen. A solution o f 2 -(2 -  

phenyl propyl) -5-methyl cycl ohexyl tosylate (12.4 g, 0.032 mol) in 30 mL 

of THF was added dropwise and the resulting yellow suspension refluxed  

for 18 hr. The mixture was cooled to room temperature and 50 mL of 

degassed water was added. Two c lear layers were formed and the organic 

layer was taken up in  e th e r, dried (MgSO )̂ and concentrated to y ie ld  an

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



o i l .  The o il was dissolved in ethanol in an attempt to c ry s ta lliz e  i t .  

C ry s ta lliza tio n  did not occur and the ethanol was removed in vacuo. The 

o il c rys ta llize d  upon standing a t  room temperature fo r  about one week. 

Analysis by nmr (5069, CDClg) suggested th a t elim ination had occurred 

(65.55) and also that there was contamination o f the alkene with diphenyl-  

phosphine oxide (67 .5 ).

(+)-2-Pheny1 succinic Acid: Racemic 2-phenyl succinic acid (100 g,

0.57 mol) was dissolved in 2000 mL o f ethyl ether and (-)-a -m eth y l- 

benzylamine (145 g, 1.25 mol) was added. A heavy white p rec ip ita te  formed 

immediately. The s a lt was allowed to stand overnight then was f il te r e d  

and dried . The s a lt was re c ry s ta llize d  four times from 95% ethanol 

(12 mL/g). The sa lt (28 g) was hydrolyzed with 3.7% hydrochloric acid.

The free  acid was washed with water then was extracted into 10% sodium 

hydroxide and washed with ether to remove any traces of amine. The free  

acid was then liberated with d ilu te  hydrochloric ac id , taken up in e ther, 

dried (MgSO )̂ and concentrated in  vacuo to y ie ld  crude resolved acid (81J . 

The acid was recrys ta llized  from water to y ie ld  20 g (10%) of fin e  white 

crysta ls; [ a ]D 137.63° (c4, methanol), 98.3% ee. Hydrolysis o f a small 

sample o f the s a lt a fte r  only two c ry s ta lliz a tio n s  gave material of 73% ee 

and a fte r  three c ry s ta lliza tio n s  o f 8 6 % ee.

(+)-2-Phen.ylbutyric Acid: The cinchonidine s a lt  o f (+)-2-phenyl-

butyric acid (77J (170 g ), prepared by R. W. Ridgway was hydrolyzed with  

d ilu te  hydrochloric acid and the free  acid was extracted with ether. The 

ether extract was washed with water, extracted with 1 0 % sodium hydroxide, 

washed with ether, neutralized with d ilu te  hydrochloric acid, taken up in 

ether, dried (MgSO )̂ and concentrated in vacuo to y ie ld  54 g o f l ig h t
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yellow o i l .  The o il was d is t i l le d ,  bp 118-120° (0.1 mm) to y ie ld  52 g o f 

clear o i l ;  [a ]jp 9 6 .8 °  (n e a t), l i t J  [a ]^ 9 5 .8 °  (n e a t).

2-Phenyl-1 ,4 -b u tan ed io l: To a s tirre d  so lu tion , under n itrogen,

of lith ium  aluminum hydride in  ether (300 mL of what was a t one time a

1.1  M solution which had p a r t ia l ly  evaporated and deposited a p re c ip ita te  

on standing over one year) was added resolved (+ ) - 2 -phenylsuccinic acid 

(20 g, 0.103 mol) (98.3%ee) in 1200 mL o f dry e th er. The mixture was 

refluxed fo r  9.5 h r. At the end of th is  tim e, 10 mL of ethyl acetate ,

10 mL of 15% sodium hydroxide, and 22 mL of water were added to hydrolyze 

any remaining LiAlH^. The mixture was s tirre d  overnight, was then a c id i

fied with concentrated hydrochloric acid and extracted w ith ether fo r  24 hr 

( liq u id - liq u id  e x tra c to r). The ether from the ex trac to r was dried and 

concentrated to y ie ld  a gray wet o i l .  An attempt was made to remove the 

water by d is t i l la t io n  with benzene (benzene-water azeotrope, bp 69°) but 

this was not e n t ire ly  successful. The o il was d is t i l le d  to y ie ld  5 

fractions. Four fractions  o f c lea r o ils  d is t i l le d  from 60-142° (0.1 mm) 

and these appeared to be a mixture o f es ters , unreduced ac id , and d io l.

The pot residue (10 g) o f l ig h t  brown grease appeared to be mainly 

unreduced acid . Analysis of the d is t i l la t e  and pot residue by nmr 

(77584, 77585, CDClg) <5 12.9 (s , 2, C00HJ showed non-reduction. A ll of 

the fractions were combined (16 g) and reduced again with non-precipitated  

liqu id  LiAlH^ as before followed with only a base work-up (the reaction  

mixture was not a c id if ie d ) . The ether from the base work-up was dried  

(KgCOg) and concentrated to y ie ld  5 fra c tio n s . F-l (pot residue, 8  g) of 

viscous o il would not d is t i l l  but the i r  spectrum (22785, neat) indicated  

that i t  was the desired alcohol (OH, 3400 cm"^). The i r  spectra o f 

fractions 2 -5 , which d is t i l le d  between 67-112° (0.1 mm) indicated no OH
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stretching peaks but showed a C=C stretching band a t 3020 cnf^ . The pot 

residue (possibly an aluminum chelate  of the desired d io l)  was used fo r  

to sy la tio n . Separate reduction o f racemic and 73% ee 2-phenyl succinic  

acid gave 2-phenyl- 1 ,4-butanediol w ithout complication when a d if fe re n t  

source of liq u id  LiAlH^ was used.

2-Phenyl butanol: O p tica lly  pure (+)-2-phenylbutyric  acid (16 .4  g,

0.1 mol) in  75 mL o f dry ether was added dropwise to a s tir re d  solution  

of liq u id  LiAlH^ (60 mL, 1.8 M) under nitrogen. The mixture was refluxed  

fo r 22 hr then cooled in an ice bath before successive addition o f 10 mL 

of ethyl acetate and 100 mL o f 10% hydrochloric acid. The two c lear 

layers which formed were separated, and the aqueous layer was extracted  

with e ther. The ether extracts were combined, dried (MgSO^) and concentrated 

to y ie ld  15.6 g of l ig h t  yellow o i l .  The o il was d is t i l le d ,  bp 110-111°

(10 mm) to y ie ld  10.3 g (67%) o f c le a r  o i l .  The nmr spectrum (77592, CDCl^) 

id e n tifie d  i t  as the alcohol (78J 6 3 .3  (s , 1, OIK). The pot residue (5 g 

of heavy yellow o i l )  was id e n tif ie d  by nmr (77591, CDClg) as unreduced 

acid.

2-Phenyl-1 ,4 -d ito s y lb u ta n e d io l: Crude, u n d is tilled  2-phenyl- 1 ,4 -

butanediol ( 6  g, 0.036 mol) was tosylated according to the procedure 

described fo r the preparation o f menthyl to sy la te ; y ie ld  5.2 g (25%) 

mp 64-68°; the nmr spectrum (77589, CDClg) shows appearance of the tosyl 

group a t 5 6 .7 -7 .5  and disappearance of OH a t 64.0.

S im ilar results were obtained with racemic and 73% ee m ate ria l.

2 -Phenyl-1 -tosy l butanol: O p tica lly  pure 2-phenyl butanol (10.1 g, 

0.067 mol) was tosylated according to the procedure described fo r the 

formation o f menthyl tosy la te ; y ie ld  14.0 g (70%) of white c rys ta ls ; mp 

42-43 .5°; the nmr spectrum (77600, CDClg) shows appearance of a tosyl
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group a t 5 6 .7 -7 .5  and loss o f OH a t 6 2.8.

2-Phenylbis(l,4-diphen.ylphosphino)butane, ( SUPHOS) : A sample of

2-phenyl-l,4 -d ito sy lbu taned io l (4 .2  g, 8.9 mmol) was trea ted  according 

to the procedure fo r  the preparation of NMDPP. A white so lid  formed 

a fte r treatment w ith water. The solid  was c ry s ta lliz e d  from ethanol 

in the freezer to y ie ld  2 .5  g (53%) o f f lu f fy  white c rys ta ls  [a ]p °6 6 . 6 ° 

(£5.04, benzene) (8 4 ); nmr (5687, CDClg) 6 1 .60 -2 .05  (m, 4 , CH -̂ CĤ - PPh2) ,

6 2.22 (d , 2 , CH2 -PPh2 ) ,  6 2.60 (m, 1, Ph-CH), 6 7.08 (m, 25, CgHg).

Anal. Calcd fo r  C g^H g^: C, 81.26; H, 6 .42 . Found: C, 80.30;

H, 6 .11 .

Racemic and 73% ee phosphine were prepared in  the same manner.

2-Phenyl-1-diphenylphosphinobutane, (BUPHOS): A sample of 2-

phenyl-1-tosylbutanol (13.7 g, 0.046 mol) was treated according to the 

procedure fo r  the preparation o f NMDPP. A yellow  o il formed and was 

d is t i l le d ,  bp 190-191° (0 .05 mm) to y ie ld  6 .4  g (44%) o f BUPHOS (80); 

[a]p910.65° (£ 1 9 .4 , benzene); nmr (5686, CDClg) 6 0 .75 ( t ,  3, CH2-CHg),

6 1 .30-2.05 (m, 2 , CH^CHg), 6 2 .3 -2 .7  (m, 3 , Ph-CH-CHg-PPh^.

Anal. Calcd fo r  C ^H ^ P : C, 82.99; H, 7.28. Found: C, 82.65;

H, 7 .07.
59Dihydrocarveol: A sample o f 1-carvone (50 g , 0.33 mol)

20[a]p -58° ± 2 ° , was dissolved in  500 mL of absolute ethanol and sodium 

metal (60 g, 2 .7  mol) was added a t a rate s u ff ic ie n t to maintain re flu x .

The mixture was refluxed fo r  2 hr a fte r  the addition and then was s tirred  

until cool and allowed to stand overnight. The product was steam d is t i lle d  

over a 6 hr period . A l ig h t  yellow o il was extracted w ith ether from the 

aqueous d is t i l l a t e ,  dried (MgSO^) and d is t i l le d ,  bp 96.5-102° (9 mm) to
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y ie ld  37 g (73%) o f c lear o i l ;  the nmr spectrum (5403, CDC13) shows loss 

of a vinyl proton a t 6 6 . 6  and appearance o f an OH proton signal a t  

6 3 .7  and a carbinol H a t 6 3 .1 .
finAttempted Preparation o f Carvomenthol: Palladium chloride

(0.1 g) was mixed with warm (60-70°) water (10 mL) and then 2 drops of 

2 N hydrochloric acid were added. Gum arabic (0 .2  g) was added to 50 mL 

of hot water and then added to the palladium ch lo ride-hydroch loric  ac id— 

water mixture along with dihydrocarveol (7 .7  g, 0.05 m ol). The black, 

heterogeneous mixture was placed under a hydrogen atmosphere (40 p s i) 

fo r 2 hr. There was continual hydrogen pressure drop (apparently due to 

a slow leak). The reaction mixture was f i l te r e d  and extracted with e ther. 

The ether extract was concentrated and dried (MgSO )̂ to y ie ld  6 g o f 

clear o i l ;  the nmr spectrum (5408, CDC13 ) indicated recovery of unreduced 

starting  m ateria l.
61Carvomenthol: A sample o f dihydrocarveol (37 g, 0.24 mol) and

5% Pd/C (3.5 g) were mixed with 700 mL o f 95% ethanol and hydrogenated 

at 1 atm of hydrogen fo r 2 hr a t room temperature. In i t ia l ly  a rapid  

hydrogen uptake was observed, but th is  ceased in less than 2 hr. The 

catalyst was f i l te r e d  o f f  and the ethanol solution was concentrated and 

d is t i l le d ,  bp 94-95° (9 mm) to y ie ld  31 g (84%) of clear o i l ;  the nmr 

spectrum (5925, CDC13 ) showed the disappearance of vinyl hydrogens a t  

s 4 .7 , indicating the saturated product.

P urifica tion  o f Carvomenthol by hp lc: D is tille d  carvomenthol

(33 g ), bp 94-95° (9 mm) (1-2  spots in 4 d iffe re n t t ic  systems, pure 

sample by nmr) was analyzed by an a ly tica l hp lc. Separation on a Porasil 

column in 20% ethyl acetate/hexane gave 4 peaks. Samples of 5 and 10 mL
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size were then in jected onto 2 s i l ic a  gel columns in the prep hplc. The 

solvent was 20% ethyl acetate/hexane a t  a flow ra te  o f 200 mL/min. Four 

fractions were collected and the solvent removed in vacuo. Fraction 1 

(3.1 g) was id e n tifie d  as 1 ,2,5,6-menthadiene; nmr (5944, CDClg) vinyl 

hydrogens a t  6 6 .5 -7 .0 , loss of OH a t 5 3.8 . Fraction 2 (1 .5  g) was 

id en tified  as e ith e r neocarvomenthol (89) or neoisocarvomenthol ( 90) ; 

nmr (5945, CDClg). Fraction 3 (18.7  g) was id en tifie d  as carvomenthol (8 8 ) ; 

nmr (5946, CDClg) 6 3.04 (m, 1, CH-0H), 6 3.37 (s , 1, CH-0H). Fraction 4 

(5.25 g) was id e n tifie d  as e ith e r neocarvomenthol (89) or neoisocarvomenthol (90) 

plus some carvomenthol (d i f f ic u lty  in c learly  cutting the fra c tio n s );  nmr 

(5947).

Carvomenthyl Tosylate; A sample o f purified  carvomenthol 

(15.6 g, 0.1 mol) was tosylated as described fo r the preparation o f menthyl 

tosylate; y ie ld , 20  g ( 6 6 %) o f white crystals a fte r  re c ry s ta lliz a tio n  from 

ethanol.

Carvomenthyldiphenylphosphine, (CMDPP) : A sample o f carvomenthyl

tosylate ( 9 3 )(20 g, 0.065 mol) was allowed to react according to the 

procedure described fo r  the preparation o f NMDPP. The resu ltan t o il  

crysta llized  upon storage in the free ze r, y ie ld  3.1 g (14%) o f white  

crystals ( 94) mp 63-65° a f te r  re c ry s ta lliza tio n  from degassed ethanol 

[a]p098.9° (c6.01, benzene); nmr (5688, CDClg) <5 0 .25 -1 .0  (m, 9 , CH-(CHg)2, 

CH-CHg) 6 1 .0 -2 .0  (m, 9, a lip h a tic  H 's ), 6 2.8 (s , 1, CH-PPh2), 6 6 .9 -7 .6 5  

(m, 10, Ph).

Anal. Calcd fo r  C2 2H2 gP: C, 81.44; H, 9.01. Found: C, 80.91;

H, 9.24.
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[Rh(COD)Cl] A mixture of rhodium tr ic h lo r id e  trih yd ra te
2

(5 g, 19 mmol) and 1 ,5-cyclooctadiene (10 mL) in absolute ethanol (225 mL)

was heated and allowed to re flu x  fo r  3 hr. The yellow-orange c rys ta llin e

product was f i l te r e d  and washed w ith ethanol; y ie ld  2.75 g (59%) a fte r

re c ry s ta lliza tio n  from acetic  acid (90 mL/g).

rR h (C O D )(DI0P)1+BF~: A sample of (-)-D IO P (33 mg, 66  umol) and
4

[Rh(COD)Cl]g (14.8 mg, 30 umol) were dissolved in 1.5 mL o f degassed

methanol under nitrogen and a deep red solution formed. A solution of sodium

tetrafluoroborate (650 mg, 6 mmol) in 3.2 mL o f water was added and a sticky

yellow so lid  immediately p rec ip ita ted . The so lid  was f i l t e r e d ,  was washed

with water and was dried in  vacuo to y ie ld  a yellow  powder, mp 140-142° dec.

Anal. Calcd fo r  C3 gH^02P2 BF^Rh: C, 58.82; H, 5 .57 . Found:

C, 58.33; H, 5.67.

[Rh(C0D)(CMDPP) ] +BF~: A sample of CMDPP was allowed to react in
2 4

the manner described above fo r  DI0P to form a red glass which was ground

into a c ry s ta llin e  powder, mp 116-125°.

A nal. Calcd fo r  C^H^PgBF^Rh: C, 65.97; H, 7 .4 5 . Found

C, 66.62; H, 7 .55.

[Rh(C0D)(NMDPP) ] +BF~: A sample of NMDPP was allowed to react in 
2 4

the same manner as DIOP and a yellow c rys ta llin e  product was obtained, 

mp 120-132°.

A nal. Calcd fo r  Cg2H7 QP2BF4 Rh: C, 65.97; H, 7 .4 5 . Found:

C, 65.44; H, 7 .35.

Attempted Preparation o f [Rh(CQD)(SUPH0S)1+BF~: A sample of
4

SUPH0S was allowed to react in the same manner as DI0P and a yellow

J
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crys ta llin e  s o lid  was obtained which did not give a proper carbon and 

hydrogen ana lys is .

Anal. Calcd fo r  C^H^^BF^Rh: 65 .11; H, 5 .23. Found:

C, 57.71; H, 5 .20 .

Attempted Preparation of rRh(C0D)(BUPH0S) ] +BF : A sample of
2

BUPHOS was allowed to react in the manner described above for DIOP. An 

in tractab le  red gum formed.

General C a ta ly tic  Hydrogenation Procedures: A) Reduction of

substituted cinnamic acids with neutral c a ta lys ts : A cata lyst solution

was prepared from [Rh(C0 D)Cl] 2  (16.6 mg, 0.0337 mmol) and a monophosphine 

(0.5 mmol) or a diphosphine (0.25 mmol) by s t ir r in g  the above compounds in 

degassed 1:1 benzene:ethanol (100 mL) under 3.5 atmosphere of hydrogen fo r  

0.5 hr.

The c a ta ly s t solution was added to a solu tion of the substituted  

cinnamic acid (4 .05 g, 25 mmol) and tr ie th y l amine (0 .4  g, 4 mmol) in 1:1 

benzene:ethanol (100 mL). The mixture was then hydrogenated at 300 psi 

and 60° fo r 24 hr.

At the end of th is  time, the reaction mixture was concentrated 

to dryness and the concentrate was taken up in methylene chloride (50 mL). 

The acid was extracted in to  50 mL of 10% sodium hydroxide. The sodium 

hydroxide la y e r was removed, was washed with ether and was ac id ifie d  with  

concentrated hydrochloric acid. The lib e ra te d  acid was taken up in ether 

(100 mL), and was dried and concentrated to give an o i l .  The crude product 

was analyzed by nmr and the percent reduction determined by comparing the 

integrations o f the signals for phenyl hydrogens in the s tarting  m aterial
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and reduced product. The product was then d is t i l le d  and the spec ific  

rotation was measured.

B) Reduction o f substituted cinnamic acids with  

cationic cata lys ts : To a solution o f the substituted cinnamic acid 

(4.05 g, 25 mmol) and trie thy lam ine  (0 .4  g, 4 nmol) in 200 mL of fresh ly  

degassed 1 :1  benzene:ethanol was added the cationic c a ta ly s t,

[Rh(COD)(Phosphine)n] +BF  ̂ (0.0337 mmol) (n=l fo r diphosphines and n=2 for  

monophosphines). The solution was hydrogenated a t 300 psi and 60° fo r  

24 hr.

Further treatm ent was id en tica l to that in Procedure A.

C) Reduction o f (Z)-a-acetamidocinnamic acid with  

neutral ca ta lys ts : A c h ira l phosphine ligand (125 umol o f monophosphines 

or 62.5 umol o f diphosphines) and [Rh(C0D)Cl] 2 (4.1 mg, 8 .4  umol) were 

dissolved in 25 mL o f nitrogen degassed methanol and prereduced a t 3 atm 

of hydrogen and 50° fo r  0 .5  hr. At the end of th is  tim e, (Z)-a-acetam ido- 

cinnamic acid (1 g, 5.1 mmol) was added as a solid and the reaction was 

allowed to continue a t  50° and 3 atm of hydrogen fo r  varying lengths o f 

time. The solution was then allowed to cool to room temperature and its  

rotation was taken, w ithout fu rth e r treatment. The ro ta tio n  o f a solution  

containing the same amount o f c a ta ly tic  species in methanol was measured 

at the same time; no ro ta tio n  was ever observed fo r  the blank.

The methanol was removed in vacuo to y ie ld  an o ff-w h ite  s o lid .

The solid was dissolved in tr if lu o ro a c e tic  acid and an nmr spectrum was 

obtained to determine the percent reduction (comparison o f the in teg ra ls  

of the signals fo r phenyl hydrogens in the starting  m aterial and reduced 

product).

J t
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D) Reduction o f (Z)-a-acetamidocinnamic acid with 

cationic cata lysts: A solution o f (Z)-a-acetamidocinnamic acid (1 g,

5.1 mmol) and [Rh(COD)(Phosphine)2 ] +BF  ̂ (5 .2 umol) in 25 mL o f degassed 

methanol was hydrogenated a t 3 atm of hydrogen and 50° fo r  varying lengths 

of time.

Further treatment was id en tica l to that in Procedure C. The blank 

used fo r  the sp ec ific  ro ta tio n  measurement in th is  procedure contained the 

cationic ca ta lys t species.

E) Reduction o f enol acetates w ith neutral catalysts: 

A ca ta lys t solution was prepared from [Rh(COD)Cl] 2 (8 .3  mg, 18.9 umol) and

a monophosphine ligand (37.8  umol) or a diphosphine ligand (18.9  umol) by 

s tir r in g  the above compounds in degassed absolute ethanol (30 mL) a t room 

temperature under 3 .5  atm of hydrogen for 0.5 hr. At the end o f th is  time, 

the enol acetate (25 mmol) was added to the prereduced c a ta lys t solution  

with a syringe. The solution was then hydrogenated a t 400 psi and 50° 

for 24 hr.

An a liquot was removed and analyzed by glpc (Columns A and C) to 

determine the ra tio s  of hydrogenolysis product, reduced product, and 

starting  m ateria l. The ethanol was then removed in vacuo and the product 

d is t i l le d  from the c a ta ly s t. Hydrogenolysis by-products were eas ily  

removed from the product or s ta rtin g  material by d is t i l la t io n .  A sample 

of the d is t i l la te  was taken fo r  measurement of the s p e c ific  ro ta tio n . 

Products o f unknown maximum ro ta tio n  were also analyzed by nmr using the 

chiral s h if t  reagent Eu(dcm)g.

F) Reduction of enol acetates w ith ca tio n ic  catalysts  

To a solution o f [Rh(COD)(Phosphine)2 l +BF̂  (49 umol) in  30 mL of degassed

A i  "
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absolute ethanol was added the enol acetate (11 .3  mmol) via syringe. The 

solution was hydrogenated at 400 psi and 50° fo r  6 h r.

Further treatment was iden tica l to th a t in Procedure E.

Individual hydrogenation data specific  fo r  substrate and ligand 

including general procedure used, pertin en t conditions, 

and physical data obtained

Reduction o f (E)-g-Methylcinnamic Acid with a Neutral (+)-NMDPP 

C atalyst: (E)-a-Methylcinnamic acid was hydrogenated according to

general procedure A to give 2-methyl-3-phenylpropanoic acid.

Analysis o f the crude product by nmr (16584, CDC13) indicated 

complete reduction. The product was d is t i l le d ,  bp 95-100° (0.1 mm); 

y ie ld  1.S1 g (47%). The specific ro ta tion  [a ]19-1 7 .0 °  (c l l .2 2 , benzene) 

corresponded to 63% ee based on [a ]p ax2 7 .0 2 °.93

Reduction o f (E)-a-Methylcinnamic Acid with a Neutral (-)-DIOP  

C atalyst: (E)-a-M ethy1 cinnamic acid was hydrogenated according to general 

procedure A to give 2-methyl-3-phenylpropanoic acid.

Analysis o f the crude product by nmr (16675, CDClg) indicated 75% 

reduction. The product was d is t i l le d , bp 94-96° (0 .3  mm); y ie ld  3.3 g 

(81%). The s p e c ific  ro tation [a ]p°6 .65° (c l0 .8 2 , benzene) corresponded 

to 24.6% ee based on [a]j!Jax27.02o. 93

Reduction o f (E)-g-Methyl cinnamic Acid with a Neutral (-)-DIOP  

C atalyst: (E)-g-Methylcinnamic acid was hydrogenated according to general

procedure A to give 3-phenylbutanoic acid.
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Analysis o f the crude product by nmr indicated complete reduction. 

The product was d is t i l le d ,  bp 93-96° (0.3 mm); y ie ld  3 .4  g (83%). The 

specific ro ta tion  [a ]p ° -2 .8 5 °  ( e l l . 85, benzene) corresponded to 5% ee

based on [a]™ax-5 6 .5 ° . 94

Reduction o f (Z)-a-Meth.ylcinnamic Acid with a Neutral (-)-D IO P  

Catalyst: (Z)-a-Methylcinnam ic acid was hydrogenated according to general

procedure A to give 2 -m ethyl-3 -propanoic acid.

Analysis by nmr (16507, CDC13) indicated complete reduction. The 

product was d is t i l le d ,  bp 95.5-97° (0.35 mm); y ie ld  3 .05 g (74%). The 

specific ro ta tion  [a ]p 2 ’ 5-8 .8 9 ° (cl 1.92, benzene) corresponded to 33% ee 

based on [a ]J ax2 7 .0 2 °. 93

Reduction o f (Z)-g-Methylcinnamic Acid with a Neutral (-)-D IO P  

Catalyst: (Z)-B-Methylcinnamic acid was hydrogenated according to general

procedure A to give 3 -phenylbutanoic acid.

Analysis of the crude product by nmr (16606, CDCl^) indicated  

complete reduction. The product was d is t i l le d , bp 94 .5 -96° (0 .3  mm); 

yie ld  3.3 g (81%). The sp e c ific  rotation [c d ^ lS .S 0 ( e l l . 62) corresponded 

to 28% ee based on [a ]p ax5 6 .5 ° .94

Reduction o f ( Z ) - 3 -Methylcinnamic Acid with a C ationic ACMP 

C atalyst: ( Z ) - 3-Methyl cinnamic acid was hydrogenated according to general

procedure B to give 3-phenylbutanoic acid.

Analysis o f the crude product by nmr (16708, CDC13 ) indicated  

complete reduction. The product was d is t i l le d , bp 98 -99 .5 ° (0 .35 mm); 

yie ld  3.5 g (85%). The s p ec ific  rotation [a ]p 220.95° corresponded to 

37% ee based on [a ]p ax56.5°

Reduction o f (E)-g-Methylcinnamic Acid with a C ationic ACMP 

Catalyst: (E)-e-Methylcinnamic acid was hydrogenated according to general

A
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procedure B to give 3-phenylbutanoic acid.

Analysis o f the crude product by nmr (16718, CDC13 ) indicated

complete reduction. The product was d is t i l le d ,  bp 98-100° (0 .45 mm); 

y ie ld  3.3 g (81%). The specific  ro tation [a ] j^ -7 .4 5 °  (c l0 .3 8 , benzene) 

corresponded to 13% ee based on [a]pax5 6 .5 ° .9^

Reduction o f (E)-a-Meth.yl cinnamic Acid w ith a Neutral BUPHOS 

C ata lys t: (E)-a-Methylcinnamic acid was hydrogenated according to general

procedure A to give 2-methyl-3-phenylpropanoic ac id .

Analysis o f the crude product by nmr (77667, CDClg) indicated  

complete reduction. The product was d is t i l le d ,  bp 114-116° (0 .5  mm); 

y ie ld  3.4 g (83%). The specific  rotation  was zero.

Reduction o f (E)-B-Methylcinnamic Acid w ith a Neutral BUPHOS 

C ata lys t: (E)-B-Methylcinnamic acid was hydrogenated according to general

procedure A to give 3-phenylbutanoic acid.

Analysis of the crude product by nmr (77675, CDClg) indicated  

complete reduction. The product was d is t i l le d ,  bp 115-116° (0 .5  mm); 

y ie ld  3.4 g (83%). The specific  rotation [a ]p31 .58° (c5 .85 , benzene)

corresponded to 2.8% ee based on [a]pax5 6 .5 ° .9^

Reduction o f (E)-a-Methylcinnamic Acid w ith a Neutral SUPHOS 

C ata lys t: (E)-a-Methylcinnam ic acid was hydrogenated according to general

procedure A to give 2-methyl-3-phenylpropanoic ac id .

Analysis o f the crude product by nmr (77680, CDClg) indicated  

complete reduction. The product was d is t i l le d ,  bp 115-116° (0 .5  mm); 

y ie ld  3.6 g ( 8 8 %). The spec ific  ro tation [a ] j^ -2 .0 9 °  (£5 .91 , benzene) 

corresponded to 7.7% ee based on [a]pax27.02°.
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nalysis of the crude product by nmr indicated complete reduction.

c t was d is t i l le d , bp 93-96° (0 .3  mm); y ie ld  3.4 g (83%). The 
or\

ro ta tio n  [a]g -2 .85° (cl 1 .85 , benzene) corresponded to 5% ee 

[u]SaX-5 6 .5 ° .94

eduction o f (Z)-g-Methy 1 cinnamic Acid with a Neutral (-)-D IOP  

(Z)-a-Methylcinnamic acid was hydrogenated according to general 

A to give 2-methyl-3-propanoic ac id .

nalysis by nmr (16507 , CDC13) indicated complete reduction. The 

as d is t i l le d ,  bp 95.3-97° (0.35 mm); y ie ld  3.05 g (74%). The

ro ta tion  [c t]p ^ -8 .8 9 °  (£11.92, benzene) corresponded to 33% ee

r  nm a x 0 7  no®[ a j p  2 / . U2 .

eduction o f (Z)-B-Meihylcinnamic Acid with a Neutral (-)-D IOP  

( Z ) - 3-Methylcinnarrnc acid was hydrogenated according to general 

A to give 3-phenylbjtanoic acid .

la ly s is  of the crude product by nmr (16606, CDCl^) indicated  

'’eduction. The prod ict was d is t i l le d ,  bp 94.5-96° (0 .3  mm); 

g (81%). The speci :ic  ro ta tio n  [a ] j^ !5 .8 °  (£11.62) corresponded 

based on [a]Jax5 6 .5 ° .94

eduction o f (Z)-g-Me .hylcinnamic Acid with a Cationic ACMP 

(Z)-B-Methylcinnanrc acid was hydrogenated according to general 

B to give 3-phenylbi,tanoic acid .

la ly s is  of the crude product by nmr (16708, CDCl^) indicated  

"•eduction. The prodict was d is t i l le d ,  bp 98-99.5° (0 .35 mm); 

g (85%). The specific  ro ta tio n  [a ]^ 2 0 .9 5 °  corresponded to 

;ed on LaJp 56.5 .

eduction of (E)-g-Mechyl cinnamic Acid with a Cationic ACMP

(E)-g-Methylcinnamlc acid was hydrogenated according to general
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procedure B to give 3-phenylbutanoic acid.

Analysis o f the crude product by nmr (16718, CDClg) indicated  

complete reduction. The product was d is t i l le d ,  bp 98-100° (0.45 mm); 

y ie ld  3.3 g (81%). The spec ific  ro ta tio n  [a ]^ -7 .4 5 °  (c l0 .38 , benzene) 

corresponded to 13% ee based on [a]|!|ax56.50 . 94

Reduction of ( E)-a-Methy1 cinnamic Acid with a Neutral BUPHOS 

C ata lyst: (E)-a-Methylcinnamic acid was hydrogenated according to general

procedure A to give 2-methyl-3-phenylpropanoic acid.

Analysis o f the crude p r o d u c t i™ j^ ^ 7 7 6 6 7 , CDC13) indicated  

complete reduction. The p r o d 4- 116°  (0 .5  mm); 

y ie ld  3.4 g (83%). The sper

Reduction o f ( E) - fa  u tra l BUPHOS

C ata lyst: (E )-g-M ethylci H  |ording to general

procedure A to give 3-pher

Analysis o f the c ru c ^ ^ H  indicated

complete reduction. The p rod uct B W p i l 5 - n 6 °  (0 .5  mm);

y ie ld  3.4 g (83%). The specific  ro ta tio n  [c t]jp l.5 8 ° (c5.85, benzene)

corresponded to 2.8% ee based on [a ]p ax5 6 .5 ° .94

Reduction o f (E)-a-Methylcinnamic Acid with a Neutral SUPHOS 

C ata lyst: (E)-a-Methylcinnamic acid was hydrogenated according to general

procedure A to give 2-methyl-3-phenylpropanoic acid.

Analysis o f the crude product by nmr (77680, CDC13) indicated  

complete reduction. The product was d is t i l le d ,  bp 115-116° (0 .5  mm); 

y ie ld  3.6 g (8 8%). The spec ific  ro ta tio n  [a ]p 4-2 .0 9 ° (c5.91, benzene)

corresponded to 7.7% ee based on [a ]^ ax2 7 .02 °.93
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Reduction o f (E)-g-Methylcinnamic Acid with a Neutral SUPHOS 

C atalyst: (E)-g-Methyl cinnamic acid was hydrogenated according to

general procedure A to give 3-phenylbutanoic acid.

Analysis o f the crude product by nmr (77681, CDC13 ) indicated  

complete reduction. The product was d is t i l le d , bp 115-116° (0 .5  mm); 

y ie ld  3.4 g (83%). The s p ec ific  rotation [a ]^ 1 .6 5 °  (£5 .70 , benzene)

corresponded to 2.9% ee based on [a ]p ax5 6 .5 ° .9^

Reduction o f (E)-a-Meth.yl cinnamic Acid with a Neutral CMDPP 

C atalyst: (E)-a-Methylcinnamic acid was hydrogenated according to

general procedure A to give 2-methyl-3-phenylpropanoic acid.

Analysis o f the crude product by nmr (77683, CDC13) indicated  

complete reduction. The product was d is t i l le d , bp 115-116° (0 .5  mm); 

y ie ld  3.6 g (8 8 %). The sp e c ific  rotation  [a ]j^ -7 .5 7 °  (£5 .56 , benzene) 

corresponded to 28% ee based on [a]™ax27 .02°.93

Reduction o f (E)-B-Methylcinnamic Acid with a Neutral CMDPP 

C atalyst: (E)-B-Methylcinnamic acid was hydrogenated according to

general procedure A to give 3-phenylbutanoic acid.

Analysis o f the crude product by nmr (77686, CDC13) indicated

complete reduction. The product was d is t i l le d , bp 115-116° (0 .5  mm); 

y ie ld  3.4 g (83%). The sp ec ific  rotation  [ct]p322.04° (£5 .72 , benzene) 

corresponded to 39% ee based on [a]j!Jax5 6 .5 ° .9^

Reduction o f (E)-a-Methylcinnamic Acid with a Cationic DIPAMP 

C atalyst: (E)-a-Methylcinnamic acid was hydrogenated according to

general procedure B to give 2-methyl-3-phenylpropanoic acid.

Analysis by nmr (77692, CDC13 ) indicated only 30% reduction.

No additional data were co llected .
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Reduction o f (E)-g-Methylcinnamic Acid with a C ationic DIPAMP 

C atalyst: (E)-g-Methylcinnamic acid was hydrogenated according to 

general procedure B to give 3-phenylbutanoic acid.

Analysis o f the crude product by nmr (77693, CDClg) indicated

only 33% reduction. No additional data were co llected .

Reduction o f (E)-a-Methylcinnamic Acid with a C ationic NMDPP 

C atalyst: (E)-a-Methylcinnam ic acid was hydrogenated according to

general procedure B to give 2-methyl-3-phenylpropanoic ac id .

Analysis o f the crude product by nmr (77731, CDC13 ) indicated

only 56% reduction. No additional data were co llected .

Reduction o f (E)-a-Meth.yl cinnamic Acid with a Cationic CMDPP 

C atalyst: (E)-a-Methylcinnamic acid was hydrogenated according to

general procedure B to give 2-methyl-3-phenylpropanoic ac id .

Analysis o f the crude product by nmr (77730, CDC13 ) indicated  

complete reduction. The product was d is t i l le d ,  bp 115-116° (0 .7  mm); 

y ie ld  3.7 g (90%). The specific  rotation [a ]j^ 5 .2 0 ° (c l0 .9 8 , benzene) 

corresponded to 19.3% ee based on [a]pax2 7 .0 2 °.9^

Reduction o f (E)-g-Meth.yl cinnamic Acid with a Cationic CMDPP 

C atalyst: (E)-g-Methylcinnamic acid was hydrogenated according to

general procedure B to give 3-phenylbutanoic acid.

Analysis o f the crude product by nmr (77732, CDC13) indicated  

complete reduction. The product was d is t i l le d ,  bp 115-116° (0 .7  mm); 

y ie ld  3 .8  g (92%). The spec ific  rotation [a ] j^ l0 .6 °  (c l 1 .29 , benzene) 

corresponded to 18.7% ee based on [a]pax5 6 .5 ° .9^

Reduction o f (E)-g-Methylcinnamic Acid with a C ationic NMDPP 

C atalyst: (E)-g-Methylcinnamic acid was hydrogenated according to
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general procedure B to give 3-phenylbutanoic acid.

Analysis o f the crude product by nmr (77733, CDCIg) indicated

only 50% reduction. No additional data were collected.

Reduction of (E)-a-Methylcinnam ic Acid with a Cationic CMDPP

Catalyst a t Low Pressure: (E)-ct-Methylcinnamic acid (0 .9  g, 5 .5 mmol)

was hydrogenated according to general procedure B except a t 45 psi o f

hydrogen and one-quarter scale to y ie ld  2 -m e th y l - 3-phenylpropanoic acid.

Analysis of the crude product by nmr (77741, CDCl^) indicated 90%

reduction. The product was d is t i l le d ,  bp 115-116° (0.7 mm); y ie ld  0.85 g

(84%). The spec ific  ro ta t io n , uncorrected fo r  incomplete (90%) hydro

genation, [a ]p 4 -6 .1 1 ° ( c l0 .94 , benzene) corresponded to 23% ee based on

r -imaXo-7 ôO 93 |_aJD 2 ; .02 .

Reduction of (E)-a-Methvlcinnam ic Acid with a Cationic DIPAMP 

Catalyst a t Low Pressure: (E)-a-Methylcinnamic acid (0 .9  g, 5 .5  mmol)

was hydrogenated according to general procedure B except a t 45 psi o f 

hydrogen and one-quarter scale to y ie ld  2-methyl-3-phenylpropanoic acid.

Analysis of the crude product by nmr (77755, CDClg) indicated

only 17% reduction. No add itional data were collected.

Reduction o f (E)-a-Methylcinnam ic Acid with a Cationic DIOP 

Catalyst at Low Pressure: (E)-a-Methylcinnamic acid (0 .9  g, 5 .5  mmol)

was hydrogenated according to general procedure B except a t 45 psi o f  

hydrogen and one-quarter scale to y ie ld  2 -m ethyl-3-phenylpropanoic acid .

Analysis of the crude product by nmr (77754, CDCl^) indicated  

only 5% reduction. No add itional data were collected.

Reduction of (Z)-a-Acetamidocinnamic Acid with a Cationic NMDPP 

C atalyst: (Z)-a-Acetamidocinnamic acid was hydrogenated according to
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general procedure D fo r  4 .5 hr to give N-acetyl phenyl a lan ine.

The specific  ro ta tio n  o f the hydrogenation solution was zero. 

Analysis o f the crude product by nmr (77605, TFA) indicated 10-15% 

reduction.

Reduction o f (Z)-g-Acetamidocinnamic Acid w ith a Cationic DIPAMP 

C atalyst: (Z)-a-Acetamidocinnamic acid was hydrogenated according to

general procedure D fo r  4 .5  hr to give N-acetyl phenyl a lan ine.
p/»

The specific  ro ta tio n  [a]^  37.2° (£4, methanol) corresponded to 

92.8% ee based on [a ]p °4 0 .1 ° ( c l , methanol) . 46

Reduction o f (Z)-a-Acetamidocinnamic Acid with a Neutral CMDPP 

C atalyst: (Z)-a-Acetamidocinnamic acid was hydrogenated according to

general procedure C fo r  24 hr to give N-acetyl phenyl a lan ine.
pp

The specific  ro ta tio n  [a]^  -1.92° (c4, methanol) corresponded to 

4.8% ee based on [a ]pax40.1° (c l ,  methanol) . 46  Analysis o f the crude

product by nmr (77628, TFA) indicated complete reduction.

Reduction of (Z)-g-Acetamidocinnamic Acid w ith a Neutral BUPHOS 

C atalyst: (Z)-a-Acetamidocinnamic acid was hydrogenated according to

general procedure C fo r  48 hr to give N-acetyl phenyl a lan ine.
p o

The specific  ro ta tio n  [a ]p  -3 .24° (c4, methanol) corresponded to 

8.1% ee based on [a ]gax40.1° (c l ,  methanol).4  ̂ Analysis o f the crude

product by nmr (77629, TFA) indicated complete reduction.

Reduction o f (Z)-a-Acetamidocinnamic Acid w ith a Neutral NMDPP 

C atalyst: (Z)-a-Acetamidocinnamic acid was hydrogenated according to

general procedure C fo r  64 hr to give N-acetyl phenyl a lan ine.

The specific  ro ta tio n  was zero. Analysis o f the crude product 

by nmr (77634, TFA) indicated 25% reduction.
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Reduction o f (Z)-a-Acetamidocinnamic Acid w ith  a Neutral DIOP 

Catalyst: (Z)-a-Acetamidocinnamic acid was hydrogenated according to

general procedure C fo r  24 hr to give N-acetyl phenyl a lan ine.
0  A

The s p e c ific  ro ta tio n  [a ]p  -30 .6° (c4, methanol) corresponded 

to 76.3% ee based on [ a ] p ax4 0 .1 °  (c l ,  m eth an o l).^  Analysis o f the 

crude product by nmr (77645, TFA) indicated complete reduction.

Reduction o f (Z)-a-Acetamidocinnamic Acid w ith  a Neutral SUPHOS 

C ata lyst: (Z)-a-Acetamidocinnamic acid was hydrogenated according to

general procedure C fo r 60 hr to give N-acetyl phenyl a lan ine.
00

The s p e c ific  ro ta tio n  [a]p -4 .79° (c4, methanol) corresponded to 

12% ee based on [ a ] p ax4 0 .1 °  (c l ,  m ethanol).^  Analysis o f the crude 

product by nmr (77648, TFA) indicated 75% reduction.

Reduction o f (Z)-a-Acetamidocinnamic Acid w ith  a 73% EE Neutral 

SUPHOS C ata lys t: (Z)-a-Acetamidocinnamic acid was hydrogenated with 73%

ee SUPHOS ligand according to general procedure C fo r  96 hr to give 

N-acetylphenyl a la n i ne.
0 ft

The s p e c ific  ro ta tio n  [a lp  -2 .38° (c4, methanol) corresponded to 

5.9% ee based on [a ]p ax40 .1° (c l ,  methanol).^® Analysis o f the crude 

product by nmr (77660, TFA) indicated 75% reduction. The ro ta tion  is 

uncorrected fo r  e ith e r  the optical purity  of the ligand or the % reduction. 

Nine percent ee would be expected compared to the value obtained with 

o p tic a lly  pure SUPHOS in the preceeding experiment but the 6% ee value is  

w ithin experimental e rro r.

Reduction o f (Z)-Ethyl-3-acetoxybut-2-enoate w ith a Cationic ACMP 

C ata lyst: (Z )-E thyl-3-acetoxybut-2-enoate was hydrogenated according to
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general procedure F to give ethyl-3-acetoxybutanoate.

Analysis by glpc (Column C) indicated 35% reduction, 100% 

conversion, and 65% hydrogenolysis. The product was d is t i l le d ,  bp 50°

(0 .2  mm); y ie ld  0.5 g (25%). The hydrogenolysis product, ethyl butyrate 

was removed w ith the solvent on the rotary evaporator p rio r to d is t i l la 

t io n . The maximum ro ta tio n  of the product is  not known but the specific
nr

ro ta tion  was measured; [a ]^  0.53° (n e a t). Data obtained upon analysis of 

the product w ith the ch ira l s h ift  reagent Eu(dcm) 3 could not be used to 

compute an accurate maximum ro ta tion . I t  would appear to be between 1 -3 °, 

but small discrepancies in in tegration o f the nmr signals caused major 

variations in  maximum rotation ca lcu lations.

Reduction of (Z)-Ethyl-3-acetox.ybut-2-enoate w ith a Cationic 

DIPAMP C a ta lys t: (Z)-E thyl-3-acetoxybut-2-enoate was hydrogenated

according to general procedure F to give ethyl-3-acetoxybutanoate.

Analysis by glpc (Column C) indicated 60% reduction, 100% conversion 

and 40% hydrogenolysis. The product was d is t i l le d ,  bp 52° (0 .2  mm); y ie ld

0.35 g (12%); [a]Q60.47° (neat).

Reduction o f (Z)-Ethyl-3-acetox.ybut-2-enoate w ith a Neutral DIOP 

C ata lys t: (Z )-E thyl-3-acetoxybut-2-enoate was hydrogenated according to

general procedure E to give ethyl-3-acetoxybutanoate.

Analysis by glpc (Column C) indicated 85% reduction, 100% 

conversion, and 15% hydrogenolysis. The product was d is t i l le d ,  bp 48°

(0 .2  mm); y ie ld  0.5 g (25%); [a ]p°0 .14° (n ea t).

Reduction of (Z)-Eth.y1-3-acetoxybut-2-enoate with a Neutral NMDPP 

C ata lys t: (Z)-E thyl-3-acetoxybut-2-enoate was hydrogenated according to

general procedure E to give ethyl-3-acetoxybutanoate.
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Analysis by glpc (Column C) indicated 27% reduction, 29% 

conversion, and 7% hydrogenolysis. The product was d is t i l le d ,  bp 50°

(0 .2  mm); y ie ld  1.3 g (65%); [a ]^ 0 .1 2 °  (n e a t). The ro ta tio n  is un

corrected fo r incomplete conversion and i t  is  assumed th a t there is no 

e ffe c t on the ro ta tion  o f the product due to the presence o f unreduced 

s ta rtin g  m ateria l.

Reduction o f (Z)-E thyl-3-acetoxybut-2-enoate with a Neutral 

CMDPP C atalyst: (Z)-E thyl-3-acetoxybut-2-enoate was hydrogenated

according to general procedure E to give ethyl-3-acetoxybutanoate.

Analysis by glpc (Column C) indicated 41% reduction, 45% 

conversion, and 8 % hydrogenolysis. The product was d is t i l le d ,  bp 50°

(0 .2  mm); y ie ld  1.3 g (65%); [a j^ O .lO 0 (n ea t).

Reduction o f (Z)-Ethyl-3-acetox,ybut-2-enoate with a Neutral BUPHOS 

C ata lys t: (Z)-E thyl-3-acetoxybut-2-enoate was hydrogenated according to

general procedure E to give ethyl-3-acetoxybutanoate.

Analysis by glpc (Column C) indicated 85% reduction, 100% 

conversion, and 15% hydrogenolysis. The product was d is t i l le d ,  bp 50°

(0 .2  mm); y ie ld  1.1 g (55%); [ a ] j ^ - 0 . 3 4 °  (n e a t).

Reduction o f (Z)-Eth.yl-3-acetox.ybut-2-enoate with a Neutral SUPHOS 

C ata lys t: (Z)-Ethyl-3-acetoxybut-2-enoate was hydrogenated according to

general procedure E to give ethyl-3-acetoxybutanoate.

Analysis by glpc (Column C) indicated 60% reduction, 6 6 % 

conversion, and 17% hydrogenolysis. The product was d is t i l le d ,  bp 50°

( 0 . 2  mm); y ie ld  1.4 g (70%); [ a ] j ^ - 0 . 0 2 °  (n e a t).

Reduction o f (Z)-Eth,yl-3-acetox,ybut-2-enoate with a Neutral 

CAMPHQS C atalyst: (Z)-E thyl-3-acetoxybut-2-enoate was hydrogenated
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according to general procedure E to give ethyl-3-acetoxybutanoate.

Analysis by glpc (Column C) indicated 42% reduction , 53% 

conversion, and 20% hydrogenolysis. The product was d is t i l le d ,  bp 50°

(0 .2  mm); y ie ld  1 .4  g (70%); [a ]p 10.058° (neat).

Reduction o f (Z)-Eth.yl-3-acetoxybut-2-enoate w ith  a Neutral 

CHIRAPHOS C ata lys t: (Z)-Ethyl-3-acetoxybut-2-enoate was hydrogenated

according to general procedure E to give ethyl-acetoxybutanoate.

Analysis by glpc (Column C) indicated 30% reduction, 44% 

conversion, and 13% hydrogenolysis. The product was d is t i l le d ,  bp 50°

(0 .2  mm); y ie ld  0 .8  g (40%); [a ]p 1-0 .144° (neat).

Reduction o f (Z)-Eth.yl-3-acetoxybut-2-enoate w ith  a Neutral BPPM 

C atalyst: (Z)-Ethyl-3-acetoxybut-2-enoate was hydrogenated according to

general procedure E to give ethyl-3-acetoxybutanoate.

Analysis by glpc (Column C) indicated 78% reduction, 100% 

conversion, and 22% hydrogenolysis. The product was d is t i l le d ,  bp 50°

(0 .2  mm); y ie ld  1 .0  g (50%); { a ^ O . 2 7 4 0 (neat).

Reduction o f (Z)-Eth.yl-3-acetoxybut-2-enoate w ith  a Neutral 

trans-1,2-Bis(diphenylphosphinomethyl)cyclobutane C a ta ly s t: (Z )-E th y l-

acetoxybut-2-enoate was hydrogenated according to general procedure E to 

give ethyl-3-acetoxybutanoate.

Analysis by glpc (Column C) indicated 6 6% reduction, 78% conversion, 

and 16% hydrogenolysis. The product was d is t i l le d , bp 50° (0 .2  mm); y ie ld

1.3 g (67%); [al^O.OOO0 (nea t).

Reduction o f (E)-Ethyl-3-acetox,ybut-2-enoate w ith  a Neutral BUPHOS 

C ata lyst: (E)-Ethyl-3-acetoxybut-2-enoate was hydrogenated according to
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general procedure E to give ethyl-3-acetoxybutanoate.

Analysis by glpc (Column C) indicated 23% hydrogenation, 30% 

conversion, and 30% hydrogenolysis. No additional data were collected.

Reduction o f (Z ) -M ethyl-3-acetoxybut-2-enoate w ith a Neutral 

BUPHOS C ata lyst: (Z)-Methyl-3-acetoxybut-2-enoate (1 .93  g , 25 mmol) was

hydrogenated according to general procedure E to give methyl-3 -  

acetoxybutanoate.

Analysis by glpc (Column C) indicated 49% hydrogenatings 54% 

conversion, and 9% hydrogenolysis. The product was d is t i l  le a , bp 48°

(0 .2  mm); y ie ld  1.3 g ( 6 8 %); [a ]p 20.000° (neat).

Attempts to hydrogenate the methyl ester with ca tio n ic  DIPAMP 

and ACMP catalysts gave less than 20% hydrogenation and 60-80% hydro

genolysis.

Reduction o f (Z)-Eth.yl-3-acetox.yhex-2-enoate w ith a Cationic

DIPAMP C ata lyst: (Z)-Ethyl-3-acetoxyhex-2-enoate (2 .3  g, 11.3 mmol) was

hydrogenated according to general procedure F to y ie ld  e th y l-3 -  

acetoxyhexanoate.

Analysis by glpc (Column C) a t 175° indicated 26% hydrogenation,

100% conversion, and 74% hydrogenolysis. The product was d is t i l le d ,  bp 95-96°

(10 mm); y ie ld  0.2 g (9%); 2.17° (n ea t), assume d = l.

Reduction of (Z)-Eth.yl-3-acetoxyhex-2-enoate with a Neutral BUPHOS 

C ata lys t: (Z)-Ethyl-3-acetoxyhex-2-enoate (2 .3  g, 11.3 mmol) was hydro

genated according to general procedure E to give ethyl-3-acetoxyhexanoate.

Analysis by glpc (Column C) a t 175° indicated 70% hydrogenation,

97% conversion, and 28% hydrogenolysis. The product was d is t i l le d ,  

bp 95-96° (10 mm); y ie ld  0.6 g (26%); [a ]j^ -0 .5 1 °  (n e a t), assume d = l.

I
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Attempted Reduction o f (Z)-Eth.y1-3-acetoxytetradec-2-enoate with 

a Neutral BUPHOS C ata lys t: (Z)-E thyl-3-acetoxytetradec-2-enoate (3.12 g,

10 mmol) was hydrogenated according to general procedure E to give e th y l-

3-acetoxytetradecanoate.

The reaction was heterogeneous a t the end of the reduction and no 

additional data were co llected .

Attempted Reduction o f (Z ) -E thyl-3-acetoxytridec-2-enoate with a 

Neutral BUPHOS C ata lys t: (Z )-E thyl-3-acetoxytridec-2-enoate (3 .0  g,

10 mmol) was hydrogenated according to general procedure E to give e th y l-

3-acetoxytri decanoate.

Analysis by glpc (Column C) showed unreacted s ta rtin g  m aterial 

only. No additional data were co llected .

Reduction of (Z)-Ethyl-3-acetoxybut-2-enoate with a Neutral 

Triphenylphosphine C ata lys t: (Z)-Ethyl-3-acetoxybut-2-enoate (2.13 g,

11.3 mmol) was hydrogenated with RhCHPPhg)^ (0.349 g, 0.378 mmol) in 

60 mL of degassed 1:1 benzenerethanol according to general procedure E.

Analysis by glpc (Column C) indicated 100% reduction, 100% 

conversion, and no hydrogenolysis. No additional data were co llected .

Reduction of (Z)-Ethy1-3-acetoxybut-2-enoate with a Neutral 

Neopent.yldiphenylphosphine C ata lys t: (Z)-Ethyl-3-acetoxybut-2-enoate

was hydrogenated according to general procedure E to give e th y l-3 -  

acetoxybutanoate.

Analysis by glpc (Column C) indicated 10% hydrogenation, 9% 

conversion, and 31 hydrogenolysis. No additional data were co llected .
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