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ABSTRACT

PHYSIOLOGICAL FACTORS AFFECTING THE DIFFERENTIAL 

UPTAKE AND ACCUMULATION OF PHOSPHORUS BY LONG AND SHORT 

SEASON GENOTYPES OF MAIZE

uy

THEODORE F. BRUETSCH

Genotypes of maize were studied to determine the reasons 

why long and short season lines exhibit differential uptake of 

nutrients, especially of P. Four genotypes (Cornell 110, Seneca 

XX155, Wisconsin 335A, and Agway 590-X) were selected for these 

investigations on the basis of their economic importance to the 

Northeast. They are ranked according to maturity, Cornell 110 

being the earliest and Agway 590-X being the latest. Experiments 

were conducted in hydroponic solutions and soil in the greenhouse, 

as well as in the field.

In the spring under cool soil conditions the early

genotypes accumulated significantly more dry matter compared to

the later lines. Early lines tended to accumulate more p in

both tops and roots. The unique accumulation pattern of P by

the early genotypes may afford a degree of protection from the

toxic effects of soluble A1 in the root zone. The formation of

a P-Al complex in or on the root may be responsible. A P-Fe

complex may also be occurring at the roots of the early genotypes

as shown by an Fe-deficiency symptom. Such a complex would 
decrease Fe translocation to the plant tops.



Low concentrations of Al in the nutrient solution (0,

2.5, and 5 ppm) stimulated top growth of all genotypes. Aluminum 

levels of 10 ppm stimulated top growth of early lines but caused 

dry matter decreases in later lines, indicating sensitivity of 

the later lines to soluble Al. When P was withheld from the 

solution and higher Al concentrations were used (0, 10, 25, and 

50 ppm), the roots of early genotypes expressed Al toxicity 

symptoms before those of later lines indicating that P must be 

present in order to protect the early lines from the harmful 

effects of soluble Al. Elevated levels of Al in the root 

environment decreased Mg uptake and appeared to be associated 

with the maturity rating of the genotype. The early lines 

contained the most Mg.

In the field, early lines produced more shallow root 

systems, and these plants were more responsive to surface-applied 

P. Also, tissue Mg levels increased with applied P, probably 

due to the inactivation of Al by P which lessens the Al-Mg 

interaction. Under no-till conditions, the early lines accumu

lated more P while the later lines accumulated more P under 

conventional tillage conditions. These results probably reflect 

the shallow rooting pattern of the early lines as well as the 

better growth of these lines under cool soil conditions. The 

early lines removed more Fe, Al, and Mg from the soil under no

till conditions while the later lines removed more under conven

tional tillage. The choice of variety may well be dictated by 

the culture system to be used.



INTRODUCTION

Information is needed for the proper selection of maize 

genotypes with respect to mineral composition, resistance to 

soil moisture stress, and efficient fertilizer utilization. In 

the northeastern states, where soil pH frequently limits plant 

growth, the efficiency of P use is especially relevant. Phos

phorus is readily fixed by both Al and Fe in acid soils. The 

choice of varieties showing superior nutrient efficiency is 

wise. The physiological factors which contribute to the 

variation in nutrient use among genotypes are not well understood.

In this investigation a series of studies were designed 

to determine the effect of root temperature, volume and mor

phology, root zone Al concentration and pH, and tillage practice 

on the differential growth and P uptake of early and late season 

maize genotypes.

1



REVIEW OF LITERATURE 

Characterizations of Root Systems of Maize

Volume

Maize genotypes differ with respect to root volume 

(Whaley _et al. 1950, Andrew and Solanki 1966, Nass and Zuber 

1971, and Weihing 1935)» The volume of roots in contact with 

soil or a nutrient solution may well influence the water or 

nutrient uptake characteristics of that plant. Weihing (1935) 

studied the differences in root systems of maize varieties that 

differed materially in aboveground size. He reported that 

varieties with more massive aboveground portions tended to 

possess a greater root volume and larger main root diameter.

Nass and Zuber (1971) showed that maize genotypes with vigorous 

young root systems tend to have superior root systems at maturity. 

Andrew and Solanki (1966) showed root number and root volume to 

be positively correlated and reported large variation among 

maize inbreds with respect to the rates of increase of root 

volume. Their work was done in solution culture in which plants 

may produce fewer root hairs and have a morphology different 

from that of1 soil-grown plants (Warncke and Barber 19 7Z+).

Depth

The proportion of roots a maize plant produces in the 

fertile zones of a soil greatly influences its nutrient uptake, 

especially during early growth (Mengel and Barber 1974). Shallow 

rooting may be associated with better early growth and higher



grain yields of maize (Allmaras and Nelson 1970. Leeper et al. 

(1971+) reported much of the variation in maize yield within a 

field was due to the variation in depth of rooting. Weihing 

(1 9 3?) reported differences among varieties in rooting depth and 

showed that maize varieties with large aboveground portions 

tended to have deeper average and maximum penetration than those 

with smaller aboveground portions.

Differences in depth of rooting among maize hybrids has 

been suggested by Baker et. al. (1970) to be at least partially 

responsible for differences in P accumulation. This theory was 

discarded a year later when Baker e_t al. (1971) concluded that 

P accumulation in maize is genetically controlled, is associated 

with the physiological processes within the plant, and is 

independent of depth of rooting. Jungk and Barber (1971+) showed 

that a large proportion of the maize root must be exposed to a 

P source in order for the plant to take up an adequate amount 

of P. If a non-mobile plant nutrient such as P is applied to 

the surface and not incorporated into the soil as is the case 

with no-till cultural methods, shallow rooted varieties will be 

more efficient in the uptake of P than deep rooted varieties.

The latter have a smaller portion of their root system exposed 

to the nutrient. Stryker et_ al. (1971+) noticed a reduction of 

dry matter accumulation and shoot growth under conditions where 

only part of the root system of maize was exposed to an external 

P supply. However, maize plants with shallow spreading root 

systems have increased susceptibility to a P-induced Fe stress 

under a no-till culture system. High amounts of P in close 

proximity to the roots is considered responsible (Estrada and



Cummings 1968). Barber (1971) reported deeper rooting of maize 

under tilled when compared to no-till conditions. This obser

vation may have been due at least in part to soil temperature 

and/or moisture conditions.

Mosher and Miller (1972) reported that low soil temper

atures tended to cause corn roots to grow laterally while higher 

temperatures caused them to grow vertically. Onderdonk and 

Ketcheson (1973) showed maize root growth to be nearly lateral 

at soil temperatures of 17C; temperatures above or below 17C 

caused vertical growth.

Extensiveness

Plants with fine roots, a large surface area, and 

greater length per unit weight should be efficient in nutrient 

absorption in a large volume of soil (Baylis 1972). Allmaras 

and Nelson (1971) reported the lateral spread of maize roots to 

be associated with improved grain yield and early growth.

Maize varieties with large tops have been reported to possess 

roots with a greater maximum spread, more functional main roots, 

and a greater combined length of main roots per plant when 

compared to varieties with small tops (Weihing 1935). Spencer 

(1940) found that maize lines differed markedly in total length 

of the main roots. Kiesselbach and Weihing (1935) reported that 

inbred lines of maize differed greatly in root characters such 

as root number per plant, number of branches per unit length, 

and lateral spread. More recently, Andrew and Solanki (1966) 

showed differences in the root length of 14 maize inbreds and 

noted that the rate of growth in root length decreased with



maturity. Maize root length has also been shown to be affected 

by tillage practice (Barber 1970* Roots tend to be longer under 

conventional tillage systems when compared to no-till conditions.

Working with maize hybrids selected for high and low P 

accumulation characteristics, Baker ejt al. (1970) found that 

accumulation by the radicle of all hybrids tested was in a zone 

no more than 4 cm from the root tip. Russell and Sanderson 

(1967) suggest that the important factors in P uptake are the 

amount of root elongation, the production of lateral roots, the 

extent of root hairs produced, and the extent to which different 

parts of the roots absorb P from the soil.

Biomass

The relationship between root number, length or surface 

area, and dry weight has been shown by Hackett (1969) to exhibit 

little variation. Therefore, it was concluded that root dry 

weight is an adequate method by which to measure a root system. 

Nass and Zuber (1971) showed maize root volume and weight of 

greenhouse-grown plants to be significantly correlated with root 

clump weight in the field. Root growth rate of maize (based on 

dry weight) was shown to increase exponentially with age to the 

silking stage at which time it slowed down (Warncke and Barber 

197i+)» They also reported the rate of nutrient uptake for P 

and Mg to increase rapidly with the age of the plant until 

silking after which it decreased as the plant changed from 

vegetative to reproductive growth.

The genotype of maize plays a large role in the type of 

root system present. Holbert and Koehler (1924) showed differ



6

ences among maize inbreds with respect to the size and shape 

of tracheids and cell wall thickness. Nass and Zuber (1971) 

reported that a maize genotype with a large root weight in early 

stages generally would have the most massive root system at 

maturity. Maize genotypes with large aboveground portions tend 

to have high root weights (Weihing 1935)* Substantial differences 

between maize inbred lines were found with respect to the number 

(Spencer 1940) and dry weight (Spencer 1940, Whaley et. al. 1930) 

of their roots. A close correlation was reported between root 

dry weight and the number of pounds required to pull the plant 

from the ground (Spencer 1940).

Andrew and Solanki (1966) compared 14 maize inbreds with 

respect to top-root ratios. They found that inbreds with high 

top-root ratios had smaller actual root systems, and vice versa. 

The relationship between top and root growth of maize was studied 

by Foth (1962). He found that early development of the maize 

plant was characterized by rapid growth of both tops and roots.

The top weight increased at a greater rate than the root weight, 

resulting in an increased top-root ratio to the time of formation 

of brace roots. The production of brace roots tended to decrease 

the top-root ratio.

Effect of Soil Temperature on Root Growth

Several environmental conditions profoundly affect plant 

growth. Soil temperature is of special importance in maize 

production in the Northeastern United States since early plantings 

into cool soils are common.
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Growth Response

Low soil temperatures early in the growing season can 

have a detrimental effect on the growth of crops planted (Knoll 

et al. 1964, Walker 1969, Willis et_ al. 1957, Alessi and Power 

1971, Beauchamp and Lathwell 1966, Beauchamp and Lathwell 1 9 6 6a, 

Power _et al. 1963, Nielsen et_ al. 1961, Jones and Meaerski 1963, 

MacLean and Donovan 1973). Walker (1969), working with maize 

seedlings found that one degree differences in soil temperature 

ranging from 1 PC to 35C produced changes in growth and nutri

tional behavior amounting to as much as 40% per degree change.

For each degree rise in soil temperature between 17C and 26C, 

seedling dry weight increased an average of 20% over each 

previous soil temperature. Beauchamp and Lathwell (1966, 1967, 

1967a) reported that maize plants grown at higher root zone 

temperatures were lower in percent dry weight at similar leaf 

stages when compared to plants grown at lower root zone temper

atures, They reported the rate of morphological development 

increased with increasing root zone temperatures. High root 

zone temperatures have also been shown to increase the rate of 

cell elongation (Beauchamp and Lathwell 1 9 6 6a). At lower temp

eratures the reverse was observed along with a delay in root 

maturation. Young roots would be more active in water and 

nutrient uptake than older roots, a condition which may tend to 

compensate for the effects of low temperatures in the restriction 

of these processes.

Willis _et al. (1957) showed with greenhouse-grown maize



that as the soil temperature increased between 16C and 2LfC, 

growth rate and dry matter production increased. In a field 

experiment, they showed that increased soil temperatures hastened 

seed emergence, increased growth rate, and promoted earliness.

These investigators reported the minimum soil temperature for 

maize seed germination as 10C, the optimum soil temperature for 

germination as 3 kC, and the optimum soil temperature for maize 

growth in central Iowa as 2kC. Richards _et al. (1952) reported 

29C as the optimum soil or root temperature for maize growth.

Alessi and Power (1971) related maize seedling emergence to soil 

temperature and seeding depth. They found that soil temperature 

had a much greater effect on maize than seeding depth. They 

stated that maize planted in a seedbed below IOC will have little 

or no chance for germination. Jones and Mederski (1963) showed 

differential response of six maize inbreds to increased coil 

temperatures. They reported that increased soil temperatures 

reduced the days to silking in all inbreds tested, but to 

different extents. The detrimental effect of low root zone temp

erature was not as great in the early maturing maize cultivars 

(MacLean and Donovan 1973)• These researchers grew six maize 

hybrids of various heat unit requirements at 10C and 16C and 

reported increased growth responses to the higher soil temperature 

in hybrids with a low heat unit requirement. Similarly, Cal and 

Obendorf (1972) studied the growth of four maize hybrids at three 

different root zone temperatures. The hybrid with the lowest 

degree day requirement was the least sensitive to cold root zone 

temperatures. Conversely, the hybrid with the greatest degree day 

requirement showed the highest sensitivity to low root zone temper
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ature. There was no significant difference between the hybrids 

with respect to percent survival and leaf number, but dry matter 

accumulation differed at the low temperatures. At the high root 

zone temperatures the differential growth of the hybrids was 

less evident. These data support field observations that maize 

varieties with high degree day requirements are more sensitive 

to cold soil temperatures and grow more slowly in early spring 

than do varieties with low degree day requirements.

Of interest in regard to temperature influences on root 

growth is that the direction and growth rate of maize roots is 

influenced by the temperature of the soil in which they are 

growing (Mosher and Miller 1972, Onderdonk and Ketcheson 1973). 

Such changes therefore could indirectly influence the type and 

rate of nutrient absorption by the plant. Mosher and Miller 

(1 9 7 2) showed that at low soil temperatures, radicle growth tended 

to be horizontal and at high soil temperatures they tended to 

grow straight down. They found the angle of the radicle from 

the horizontal was increased from 30 degrees at 18C to 61 degrees 

at 360. Onderdonk and Ketcheson (1973) reported the angle of 

root growth relative to the horizontal to be minimal at a con

stant root temperature of 17C. Above or below this temperature 

maize roots tend to grow in a more vertical direction.

Nutritional Response

Phosphorus availability has been implicated in the 

restriction of growth under low root zone temperatures. Increased 

plant uptake of P has been shown in warm soils (MacLean and

Donovan 1973, Nielsen et_ al. 1961, Jones and Mederski 1963> Knoll
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et al. 1964). Much of the increased total accumulation of 

nutrients has been attributed to increased yields at higher root 

zone temperatures (Nielsen et al. 1961, Knoll et aJL. 1964* 

Patterson et. al. 1972)*

Knoll et al. (1964) conducted a greenhouse study to 

determine effect of soil temperature on the growth and P content 

of maize. They reported a positive correlation between soil 

temperature and plant dry weight, as well as P uptake.

They also reported that under no circumstances did the addition 

of fertilizer F completely overcome the harmful effects of low 

soil temperatures. These results agree with those of Patterson 

et al. (1972) and Knoll et al. (1964)* Nielsen ejt al. (1961) 

reported that favorable root zone temperatures will not compen

sate for a lack of plant nutrients, and the addition of nutrients 

will not reverse the inhibitory effects of low root zone temp

eratures. Ketcheson (1957) reported that P applications to 

maize growing at 13C soil temperature partially counteracted 

the low temperature effect. Unlike the above investigators,

Knoll et al. (1964) found that P uptake was influenced very 

little by the root zone temperature and depended almost entirely 

upon the P level of the nutrient solution. They explained any 

reduction in P uptake at low root zone temperatures as due to 

reduced root growth at the low temperature. They also stated 

that low root zone temperature stimulates the synthesis of 

anthocyanin and that purpling of maize leaves early in the 

season is not necessarily indicative of a P deficiency.

Working with barley, Power et al. (1963) found that by 
increasing the available P supply, the soil temperature range



over which the nearly maximum growth occurred was greatly 

increased. They reported growth responses to P fertilization 

to be more dependent on soil temperature when the soil was low 

in available P than when P was more available. Such results 

support the practice of using starter-P fertilizers when planting 

maize in the cool northern areas of the U.S.

Development of Maize Under Minimum Tillage and Conventional

Culture Systems

Soil Conditions

The no-till culture system for maize production is being 

widely practiced in the U.S. due primarily to reduced energy 

and labor costs, better soil and water conservation, and reported 

higher yields than obtained with conventional tillage methods 

(Estes 1972). Minimum tillage practices for producing maize 

create unique problems with respect to soil nutrients, especially 

P. These practices may also cause stress conditions with regard 

to trace elements (Estes 1972).

Phosphorus is relatively immobile in soil, and its move

ment is retarded in two ways (Bieleski 1973). First, fine soil 

particles increase the length of the diffusion path, a phenomenon 

called tortuosity. Secondly, P movement is retarded by a rever

sible surface interaction between P and soil particle surfaces.

Vijayachandran and Harter (1975) studied the P-absorption 

characteristics of a large number of soils from various locations. 

They found Al and organic matter to be primarily responsible 

for P adsorption in most of the soils investigated. Shapiro et al.
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(I960) showed the existence of a 1-2 mm wide P depletion zone in 

the soil around roots suggesting that plants may absorb P faster 

than it can be supplied by the soil. Such depletion may be a 

significant problem on farmland in the Northeast U.S. where soils 

are naturally low in pH and soluble Al content is high.

Due to the slow diffusion of P in the soil (Bieleski 

1973)j the question of the fate of surface applied P fertilizers 

must be investigated. This is especially important under no-till 

conditions where fertilizer is surface-applied and not incorpor

ated into the soil. Without tillage, layers of nutrient concen

tration and/or depletion may develop over a period of years. 

Consequently, highly acidic conditions in the lower soil horizons 

may develop from such stratification creating high soluble Al 

levels (Estes 1972). Maize varieties with deep, penetrating 

root systems may be exposed to this higher soluble Al under such 

conditions and Al toxicity may be the result.

Shear and Moschler (1969) did a six year comparison of 

no-till and conventional tillage methods for maize production. 

They reported a stratification of P under no-till conditions 

with significantly more available P near the surface where it 

was applied. Moschler et al. (1975) reported more P recovered 

from soil in the surface 20 cm after no-till conditions than 

after conventional tillage. These results reflect the immobile 

nature of P in the soil.

Glycerophosphate, a relatively new product, is being 

investigated with respect to its value as a P fertilizer. It 

has been shown to be mobile and will move through the soil via
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rain or irrigation water (Rolston et al. 197̂ +). This product 

may someday prove well suited to no-till maize operations where 

fertilizer is applied to the surface and not plowed under.

Belcher and Ragland (1972) investigated P absorption by 

maize grown in Kentucky under no-till conditions from surface 

applied P fertilizers. They reported that P does not have to 

be incorporated into the soil in order to obtain high yields.

These researchers measured dry matter and P uptake at various 

stages of plant growth and showed that P fertilizer applied to 

the surface under no-till conditions was available to the plants 

throughout the entire growth period. These results were explained 

on the basis that a dead sod mulch would result in higher soil 

moisture conditions which would increase shallow rooting and 

P uptake near the soil surface. Mulch conditions have also 

been observed to help retain soil moisture by other researchers 

(Jones et al. 1969> Moody e_t al. 1963, Moody et al. 1961). At 

low soil moisture levels, P diffusion is very low and affects 

the amount of P available to a plant root (Mahteb et al. 1972). 

Plants growing in soils with low moisture do not respond to 

added P while plants adequately supplied with moisture do show 

a more favorable P response (Olsen at al. 1961).

Soil temperatures under a mulch tillage system have 

been shown to be reduced (Willis et al. 1957, van Wijk et al.

1959, Moody et al. 1963) and may be a major reason for the poor 

early growth and lower yields of maize that commonly occur 

under such a system in the northern states. van Wijk et al.

(1 9 5 9) tried to explain why mulch tillage in northern states 

produced maize yields inferior to those reported by southern



states using similar tillage practices. Data collected from 

southern states showed soil temperatures early in the growing 

season to be near optimum for the growth of maize. Conversely, 

soil temperatures early in the growing period in northern states 

were far below optimum, and growth rate was low. Mulch conditions 

in northern areas tended to lower both soil temperatures and 

growth rate. In warmer regions, a reduction in soil temperature 

during the summer months may favor growth (Chauahary and Prihar

Growth Responses

Many researchers (Jones et al. 1969, Moschler and Martens 

1975, Moody et_ al. 1963* Chaudhary and Prihar 1971+» Estes 1972., 

Shear and Moschler 1969, Jones e_t al. 1968) reported increased 

yields under minimum tillage conditions while others (van Wijk 

et al. 1959, Willis et al. 1957) report yield decreases, espec

ially in the cooler northern areas. Estes (1972) reported a 

yield increase with no-till over conventional tillage culture 

during a relatively dry season in New Hampshire in spite of a 

reduction in plant population. Moody e_t al. (1963) reported 

early season growth reduction of mulched maize in Virginia and 

associated it with low soil temperatures. These researchers 

attribute increased yields under mulched conditions to favorable 

moisture conditions later in the season.

The tillage practice employed has been shown to have a 

definite influence on maize rooting characteristics. Barber

(1971) took soil core samples to study the root distribution 

and morphology of maize grown under various tillage practices.



He showed that annual plowing resulted in maize roots that were 

deeper, finer, longer, and more extensive than were maize roots 

produced under minimum or no-till systems. Belcher and Ragland

(1972) suggest more extensive root development under dead sod 

mulch was the result of increased soil moisture.

Mengel ana Barber (197^) showed early growth of the 

maize plant to be strongly influenced by the amount of roots 

the seedling has in a fertile zone. Shallow rooted maize 

varieties should shov; increased efficiency in the uptake of P 

applied to the soil surface. Singh et al. (1966) reported 

young maize plants grown under no-till conditions contain higher 

P relative to conventionally tilled maize while Moschler and 

Martens (1975) found P concentrations in maize unaffected by 

tillage system.

Stryker at al. (197^) reported that maize plants showed 

maximum dry matter accumulation only when the entire root system 

was exposed to an external P supply. Shoot growth decreased 

nearly 20% when only part of the root system was exposed to P. 

Since mulch systems change soil temperature, they will also 

influence the depth and distribution of roots growing under 

mulch. This rooting behavior should be predicted and approp

riately managed when one is contemplating using a culture system 

other than conventional tillage.

Nutritional Differences Among Genotypes of Maize 

Nutrient Accumulation Patterns of Maize Genotypes

Phosphorus uptake by maize is believed to be an active
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process requiring the expenditure of energy. The rate of P 

uptake will therefore be dependent upon temperature, genotype, 

and the amount of other ions present in the root zone. Clark 

and Brown (1971+) tested P uptake efficiency of two maize inbreds 

by varying the amount of P in solution and also by adding various 

amounts of Al to the nutrient solution. The inbreds varied 

greatly in their accumulation of P under the P-stress conditions. 

Phillips et_ al. (1971a) reported a 1.6 fold difference in P 

accumulation between maize genotypes, and in related work Phillips 

et al. (1 9 7 1b) suggested genetic differences in the mechanism 

of absorption as an explanation. Differences in rooting depth 

rather than differences in absorption mechanisms of the genotypes 

is proposed by Baker e_t al. (1970) to exj+lain the above variation. 

In a later study, Baker _et al. (1971) reported P accumulation 

in maize is genetically controlled and is associated with physio

logical processes within the plant and is independent of rooting 

depth.

Root zone temperature has also been implicated as 

affecting P uptake. A significant interaction between maize 

hybrid and root zone temperature was obtained by MacLean and 

Donovan (1973) who reported significant yield increases at low 

root zone temperatures as a response to added P.

Phosphorus accumulation by maize may also be affected 

by a greenhouse environment. Baker and Woodruff (1963) showed 

that young maize plants grown in a greenhouse may not reflect 

the relative P accumulation characteristics of different hybrids 

when grown to maturity in the field. Much higher fertility 

levels, especially P, were required by maize plants grown in



containers where the volume of soil in contact with the roots 

was less than under field conditions. Baker _et al. (1964) stated 

that differential accumulation of P by maize genotypes will be 

relative whether the plants are grown in the greenhouse or 

field, although greenhouse-grown plants will contain less P.

These researchers concluded that field uptake patterns can be 

predicted from greenhouse results. Also, P concentration between 

hybrids has been shown to exhibit a dilution effect and decrease 

markedly with increasing yields (Terman et_ al. 1975) • Thus, the 

concentration of nutrients in maize hybrids may need to be 

evaluated in other terms such as dry matter or maturity ratings, 

especially during early growth.

Nutritional Interactions

A. Phosphorus-aluminum interactions Plant species or genotypes 

exhibit differential tolerances to high soluble Al levels in the 

growth media. A possible explanation is the ability of the plant 

to complex Al with organic molecules (Barber 1967). Wallihan 

(1948) reported that Al precipitation is most likely to occur 

on the root, but Wright and Donahue (1993) concluded that Al 

was precipitated internally as a phosphate. Latshaw and Miller 

(1924) reported 0.98, 0.07 and 0.13% Al in the roots, leaves, 

and stems respectively of maize indicating accumulation in the 

roots and very little translocation to aerial portions. Adding 

Al to a nutrient solution has been shown to increase root Al 

content but has little or no effect on shoot Al content (Foy 

and Brown 1963)* McCormick and Borden (1974) showed that an 

Al-P interaction does occur in plant roots resulting in the



formation of an Al-P precipitate. They reported that the precip

itate occurs in the intercellular and intracellular material of 

the root cap. Jones (1961) suggested that cell walls or cyto

plasm may contain substances which complex Al and allow resistant 

plants to tolerate high Al levels and still maintain normal P 

levels in the foliage. Aluminum-induced P accumulation in the 

growing parts of perennial ryegrass roots was shown to be 

inhibited by cyanide treatments, indicating metabolic processes 

may be involved (Jones 1961). In contrast, the results of 

Clarkson (1966) indicate that increased P accumulation by barley 

seedlings in nutrient solutions containing Al was due only to 

adsorption and precipitation reactions and did not involve meta

bolic activity.

The most detrimental effect of Al toxicity to aboveground 

portions of a plant is a lack of P due to decreased translocation 

of P from the roots (Barber 1967). Phosphorus deficiency symptoms 

and P concentration in plant tops may be used to determine Al 

toxicity conditions in maize since no Al is translocated to the 

leaves and a P deficiency is a common symptom of Al toxicity 

(Foy and Brown 1964)* Jones (1961) and Foy and Brown (1964) 

presented evidence that differential Al tolerance by plant geno

types is related to their ability to absorb and utilize P in 

the presence of high amounts of Al.

Foy _et al. (1974) found a purple pigmentation indicative 

of a P deficiency in wheat plants grown on unlimed soils or in 

nutrient solutions containing Al. The plants however, still 

contained an adequate level of total P. The incorporation of 

this P into metabolic activities within the plant was apparently



hindered by precipitation with Al. Liming the soil to decrease 

soluble Al and increase P availability or omitting Al from the 

nutrient solution reduced or prevented the symptoms.

Clark and Brown (1974) reported that under an Al-induced 

P stress condition, maize inbreds efficient in P uptake produce 

increased growth. This indicates an increased efficiency in 

these plants in competing for P. Using alfalfa, Foy (1964) 

reported that P applications to acid soils increased growth and 

decreased Al content in half of the soils used. Recently, Foy 

et al. (1 9 7 4) reported that yields of various wheat cultivars 

were not significantly influenced by Al until the P level in the 

nutrient solution was reduced to two parts per million. At this 

low P concentration, the cultivars differed substantially in both 

top and root growth. While these data are interesting, it should 

be recognized that the mean P concentration of soils (using Bray 

1 extractant) is 25.8 ppm in Pennsylvania soils (Baker and Hall 

1967). At these higher P concentrations, P-Al interactions in 

the plant may differ significantly.

Low levels of Al (5 Ppm) in solution culture increased 

the content and concentration of P in both shoots and roots of 

eight week old perennial ryegrass while high Al levels (50 ppm) 

depressed P content but increased P concentration due to a 

general reduction in growth (Randall and Vose 1965). Estrada 

and Cummings (1 9 6 8) investigated the effect of lime and P treat

ments on the growth and nutrient composition of maize grown in 

an acid loamy sand under greenhouse conditions. Their results 

indicated that raising soil pH to 6.7 was not as effective as a 

P application in decreasing Al uptake by plants. Furthermore,
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they suggested that the increased growth resulting from P additions 

was the result of decreased Al rather than increased P uptake.

Hartwell and Peraber (1918) were among the early investi

gators to recognize a stunting and thickening of barley and rye 

shoots to be the result of high Al concentrations. Aluminum 

damage may also be due to the inability of the plant to develop 

an adequate root system resulting in decreased uptake of other 

nutrients (Barber 1967). This is especially true during the 

early stages of growth because sensitivity to Al decreases with 

age. Such a response may relate to meristematic activity and 

growth rate since root hairs are especially sensitive to Al 

(Hatch 1973).

Fleming and Foy (1968) investigated the morphological 

effects of Al on the roots of wheat. They found that the roots 

of an Al-sensitive variety ceased to elongate after 24 hours 

exposure to Al whereas the Al-tolerant variety continued root 

elongation throughout the duration of the experiment. The Al- 

sensitive variety showed root tip injury characterized by a 

disorganization of the root cap, root apex, and vascular elements.

Symptoms of Al toxicity to tops resemble a severe P 

deficiency symptom (Hewitt 1948). The leaves become small with 

thick, shortened internodes resulting in a stunted plant. The 

foliage becomes dark green, and, sometimes a purple coloration 

may appear. Foy (1964) reported that Al toxicity symptoms in 

alfalfa also include necrotic old leaves and small dark green 

young leaves.

Lee (1972) has shown that Al reduces Mg uptake in potato 

roots at solution concentrations of 5 and 10 ppm Al but did not
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reduce Mg uptake in the tops until a 10 ppm Al concentration 

was reached. Clark (1975) states that Al toxicity in maize may 

be closely related to Mg absorption and translocation. He 

selected maize inbreds which varied in tolerance to Al. Mag

nesium uptake decreased significantly in all inbreds at Al 

concentrations greater than 5 ppm.

B. Phosphorus-iron interactions In many instances, the chemical 

behavior of Fe in both plants and soils is similar to that of Al. 

Excessive P in the growth medium frequently decreases Fe absorp

tion (Adriano et al. 1971, Brown and Ambler 1970, Brown and Bell 

1969, Estes and Bruetsch 1973» Lee 1972, Odurukwe and Maynard 

1969). Iron chlorosis is associated with an increased P concen

tration in the tops of the plants. Plants exhibiting what 

appears to be Fe-deficiency symptoms can contain as much Fe as 

green plants if the concentration of P in the growth medium is 

high (Brown and Bell 1969). Estes and Bruetsch (1975) showed 

varietal variation in maize to P-induced Fe stress. The variety 

susceptible to P-induced Fe stress frequently contained high 

levels of Fe in the foliage. They related this to reduced Fe 

translocation within the plant due to high P concentrations.

Brown e_t al. (1972) reported similar results and showed that an 

P'e-efficient maize genotype is able to compete with P in the 

growth medium for the Fe present. Odurukwe and Maynard (1969) 

reported that a Fe-efficient maize inbred was more susceptible 

to Fe chlorosis because of its low Fe:P and Fe:Mn ratios and 

consequently lower amounts of available Fe. They state that 

normal plants have a Fe:P ratio greater than 0.020 while ratios 
less than this produced chlorotic plants. As the relative P
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content of the tissue increases, more Fe is tied up in phosphate 

combinations resulting in less Fe available for reactions leading 

to the formation of chlorophyll (Odurukwe and Maynard 1969)*

C. pH-nutrient interactions It is an accepted fact that pH 

plays a major role in soil and plant nutrient reactions. Clark 

and Brown (197^) adjusted nutrient solution pH to 4*6 when doing 

Al toxicity studies because, at a pH above 5»0-5»5j the effects 

of Al on plant growth is minimal. Walker et_ al. (1975) found 

that raising soil pH to 5*2 or above decreased the tissue concen

tration of Al in sorghum. The ability of some genotypes to change 

the pH of their root environments in the presence of Al is a 

possible explanation for the differential uptake by high and low 

P accumulating types (Brown et al. 1972, Clark and Brown 197^,

Foy 1975)* Foy et al. (1965) mentioned that changing the H+ of 

a solution by a factor of 10 (pH 5 to 4) will change the active 

Al by a substantial amount.

Lutz e_t al. (1971) grew inbred lines and single crosses 

of maize on acid soils (pH 3»9) and on the same soil treated 

with various amounts of dolomitic limestone to raise the soil pH. 

They showed that there were significant differences among the 

inbreds and single crosses with respect to dry weight and plant 

height. Acid soils of the eastern U.S. may create Al toxicities 

in plants due to increased solubility at low soil pH (Brown _et_ al. 

1972). Ragland and Coleman (1959) reported the growth of roots 

into unlimed subsoils was inversely related to the amount of 

exchangeable Al in the subsoil. However, roots grew well into 

these subsoils when lime was applied to them.
Since liming of surface soils does not raise the pH of acid
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subsoils, Al toxicity in these subsoils may limit root penetra

tion and therefore reduce drought tolerance and the utilization 

of subsoil nutrients (Brown _et al. 1972). Maize genotypes that 

are better able to tolerate high acid soil conditions would be 

desirable where it is impossible or impractical to correct such 

soil acidity. Such a situation would exist under no-till culture 

where the soil is not mixed, or on rocky soils where subsoil 

acidity is significant.
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MATERIALS AND METHODS

Four maize genotypes were selected on the basis of their 

relative maturity for use in these investigations. They were 

ranked according to the percent dry matter (%DK) of the plant 

tops after 115 days of growth in the field, A lower %DM after 

115 days indicated a less mature genotype and vice versa. The 

genotypes matured in the following order from early to late: 

Cornell 110; Seneca XX 155> Wisconsin 335A; Agway 590-X. These 

genotypes were used in all the greenhouse, laboratory, and 

field investigations. Greenhouse studies were conducted in the 

Plant Science research facilities at Durham, New Hampshire.

Field studies were conducted at the University of New Hampshire 

Agronomy Research Farm, Madbury, New Hampshire.

Greenhouse Investigations 

Root Temperature Studies

Two greenhouse studies were initiated in an attempt to 

relate the temperature of the root zone to the plant dry weight 

and to nutrient uptake and accumulation.

Study 1. Seeds from the four maize genotypes were planted on 

October 19j 1973 approximately 3 cm deep in plastic trays filled 

with vermiculite. The trays were watered with distilled water 

for 11 days at which time the seedlings were at the two leaf 

stage. The seedlings were removed from the trays and the vermic

ulite washed from the roots with distilled water. The seed piece 

was removed with a razor blade.



The seedlings were moved to water-jacketed crocks 

containing 2.2 1 of a nutrient solution of the following concen

tration: 0.001M KC1, 720uM C a ^ P O ^ ^ O ,  0.005M KNO^, 0.005M 

Ca(N0^)2.i+H20, 0.002M MgSO^H^O, 38uM H^BO^, 9.2uM MnCl?*4H?0,

0.5uM H_MoO. »H_0, IOuM CuSO, *5H-0, 1 uM sequestrene Na_.Zn (15*5% 
id H id  1+ id

Zn) and 172uM sequestrene NaFe (12% Fe). The nutrient solutions 

were aerated with a slow stream of bubbles from a Pasteur pipette. 

The crocks were completely randomized on a greenhouse bench with 

four maize genotypes, two root temperatures, and three repli

cations. One-half of the crocks had cool water running through 

the jackets to maintain the temperature of the nutrient solution 

at 15.5 * 1.3C. The remaining crocks were left at ambient 

greenhouse temperature which maintained a nutrient solution 

temperature of 24.4 ± 3.5C. This variation was due to problems 

with the greenhouse heating system.

The plants were allowed to grow for 19 days under these 

conditions with a fresh nutrient solution employed after 11 days. 

After 19 days the plant tops and roots were harvested and dried 

in an oven at 70C for one week. After dry weight measurements 

were taken the tissue was ground in a Wiley mill to pass a 20 

mesh screen. A sample was ashed for 4 hours at 500C in a muffle 

furnace. The ash was dissolved in acid according to Jones and 

Weaver (1970) and analyzed for P by the ammonium molybdate- 

stannous chloride colorimetric method. Iron was determined with 

a Jarrel-Ash atomic absorption spectrophotometer.

Study 2. A second greenhouse study was initiated on November 19, 

1973 because variation was relatively high in the first study.
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The treatments, experimental design, and analyses were identical 

to those of the first study.

Phosphorus-32 Absorption

A greenhouse investigation was initiated to characterize 

the P uptake of four maize genotypes. Seeds of the four geno

types were grown in vermiculite for 11 days. Roots were then 

washed with distilled water, the seed piece excised, and the 

seedlings placed in stone crocks containing the nutrient solution. 

The crocks were set up in a randomized complete block design 

with k blocks containing 12 experimental units each. There were 

3 replications of each of the k genotypes within each block.

The solutions were aerated using aeration stones.

After growing the plants for 1A days, the nutrient 

solution was replaced. Three days later (26 days from seed) all

12 crocks in the first block were spiked with 20 microcuries
32 32(uCi) of phosphorus-32 ( P). The ' "P activity of the center of

each leaf was measured with a GM scaler (Tracerlab Model 16U) 

with an efficiency of 3*9%• The distance between the GM tube 

and the leaf was standardized to minimize variation. A piece 

of cardboard approximately 1 mm thick was placed on a ringstand 

and the leaf placed on the cardboard. A sheet of lead approx

imately 1 mm thick with a 15 mm diameter round hole was positioned

over the leaf so that the center of the leaf was directly beneath
2the hole and 1.76 cm of leaf surface was exposed. A k mm thick 

rubber washer was glued to the top of the lead sheet to encircle 

the hole. The GM tube was placed on top of the rubber washer and 

all measurements were made with identical sample geometry. Radio
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activity measurements were made on all the leaves of the plants 

from the first 12 crocks (Block 1) 7, 17, 28, 52, and 96 hours
A?after spiking with ^'P. Following these measurements, the tops

of the plants in the first block were harvested, dried in an

oven at 70C for 7 days, and weighed.

After 2k days in nutrient solution (35 days from seed)

crocks 13 through 2k (Block 2) were spiked with 20uCi P. The

radioactivity in the leaves of these plants was measured after

6, 26.5, 5 1 , 76.5, and 102 hours and dry weights determined.

The nutrient solution in the remaining 2k crocks was

changed for the second time, and three days later (31 days in

solution or k2 days from seed) crocks 25 through 36 (Block 3)
38were spiked with 20uCi P and the radioactivity measured after

6.5, 29*5, 55, 76.5, and 101 hours and dry weights determined.

The nutrient solutions for the remaining 12 plants

(Block k) were renewed 10 days after the second change. Solutions
32were spiked with 20uCi P after a total of 38 days growth in

32solution (k9 days from seed). The activity of P in the leaves 

was measured 5*5, 29*5, 5k, 76.5, and 103 hours after spiking 

and dry weights determined.

Radioactivity measurements were made on each fully 

expanded leaf. The total counts per plant were divided by the 

number of leaves to calculate the mean counts per minute (cpm) 

for each plant. These counts were converted to absolute activity 

(dpm) after correcting for decay. The dpm's for each genotype 

in each block of plants were plotted and a line was fitted to 

the data points by means of a second degree polynomial regression 

equation.



Root Volume

Solution grown maize plants may exhibit different root 

morphology and have fewer root hairs than soil-grown plants 

(Warncke and Barber 1974)* To determine if differences in 

nutrient uptake of the four maize genotypes were affected by 

rooting habit, root volume was determined. The plants were grown 

with their roots in nutrient mist instead of nutrient solution. 

Plants grown in mist systems have been shown to have root volumes 

comparable to plants grown in sand culture (Martin and Hendrix 

1967) but significantly different from those in nutrient solutions. 

The roots of mist-grown plants can be measured without breakage 

and inevitable root loss.

A mist chamber was constructed to accomodate 12 plants 

(Pig. 1). Seedlings of the four genotypes were grown to the two 

leaf stage (13 days from seed) in vermiculite. After excising 

the seed piece, the plants were positioned to permit the roots 

to hang down into the mist chamber. The experimental design 

consisted of a randomized complete block design with 3 repli

cations of each of the four genotypes. An electric humidifier 

was placed in the base of the mist chamber, and all the root 

systems were arranged to be equidistant from it. The humidifier 

was timed to mist the roots with the nutrient solution used 

previously for a 3 minute duration spaced 3 minutes apart. 

Approximately 12 liters of solution were used in 24 hours. The 

temperature inside the mist chamber remained approximately 21C 

throughout the experiment.

Root volumes were measured 8, 16, 23, 30, and 36 days 
after placing in the mist chamber (21, 29, 36, 43, and 49 days



from seed, respectively). These measurements were made by water 

displacement (Fig. 2) using the method of Pinkas et al. 0  96*+).

The longest root was also measured after 36 days in the mist 

chamber. At this time the tops and roots were separated, dried 

at 70C for 7 days, and weighed.

Soil pH

A greenhouse experiment was conducted to test the response 

of genotypes to soil acidity. A split-plot design was utilized 

with 5 replications; applied lime served as main plots and 

genotype as subplots. Each unit consisted of a stone crock 

lined with a polyethylene bag into which 3500 g of air dried soil 

was placed.

Chemical analyses were conducted on the soil prior to 

planting. Soil Fe and Zn concentrations were measured by the 

DTPA-TEA extraction method of Lindsay and Norvall (1969)* Phos

phorus was extracted with a Bray 1 extracting solution (0.025N 

HC1 + 0.30N NH^F)(Bray and Kurtz 1945) and determined with the 

molybdenum-blue reduction method of Jackson (1958). Cation 

exchange capacity (CEC) was determined by adding 25 ml of IN 

ammonium acetate (pH 7.0) to 5 g of soil. After 30 minutes agitat

ion, the mixture was filtered through Whatman 2 filter paper and 

the residue washed with 70% ethanol to remove excess ammonium 

acetate. A Kjeldahl distillation was performed on the soil to 

determine the CEC. The filtrate was analyzed for Ca, Na, and K 

using flame emission and Mg using atomic absorption spectrophoto

metry. A Jarrel-Ash atomic absorption spectrophotometer was 

used in the above analyses. The milliequivalents of individual
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Figure 1. Mist chamber used for growing corn plants in the 
greenhouse root-volume experiment.

Figure 2. Water displacement device used to measure root volume 
in the greenhouse-mist experiment.
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cations per 100 g of soil and the percent base saturation of 

these elements were calculated. Soil pH was measured on a 1:1 

...•oil to water slurry using a Model 701 Orion pH meter. Aluminum 

concentration was determined on the soil prior to the experiment 

and again after completion. Soil Al was extracted with the 

procedure of McLean (1965) ana analyzed by atomic absorption 

spectrophotometry.

Twenty days before planting, hydrated lime was thoroughly 

mixed with the soil in the crocks at a rate equivalent to 0, 3*3, 

and 6.7 metric ton/ha of calcium carbonate. Soil in each of the 

60 crocks received the equivalent of 221+ kg/ha N (using NH^NO^), 

(using K^PO^), and K^O (using KC1); the fertilizers were 

thoroughly incorporated with the soil.

Three seeds of the four genotypes were planted approx

imately 2.5 cm deep in each of the crocks. Six cool white 

fluorescent lamps were placed approximately 60 cm from the tops 

of the crocks and timed to give a 14 hour daylength. Six days 

after planting, two of the three seedlings were removed leaving 

one representative plant per crock. The plants were kept moist 

with distilled water and were harvested after 35 days. The tops

and roots were separated, washed in distilled water, and dried in

an oven for 7 days at 70C. After drying, the plants were weighed, 

ground to pass a 20 mesh screen, and analyzed for P, Al, Fe, and

Zn. Soil pH was measured after harvest.

Hydroponics Studies

Study 1. A greenhouse experiment was run to determine the effect 

of Al on P uptake and accumulation by the four maize genotypes.



The automatic sub-irrigation hydroponics system described by 

Estes and Bruetsch (1973) was employed. A split-plot design was 

utilized with three replications; genotypes served as main plots 

and Al levels as subplots. The nutrient solution used in this 

experiment was identical to those described previously. However, 

in this study, Al from Al^iSQ^)y 1 was added to the solutions 

to give concentrations of 0, 2.5> 3, and 10 ppm Al.

Seeds were planted approximately 3 cm deep in vermiculite 

After 11 days the seedlings were removed, the roots washed with 

distilled water, and the seed piece removed. Seedlings were 

transplanted into 7.6 liter stone crocks containing sterile 

quartz sand. The nutrient solution was pumped into the crocks 

every two hours. Additional light was provided to give a total 

of 1^ hours daily with the aid of Gro-Lux lamps. The lamps were 

maintained at 60 cm above the tops of the plants throughout the 

experiment. After 17 days, the nutrient solutions were changed. 

After an additional 22 days, the plants were harvested. The tops 

and roots were separated, washed with distilled water, dried in 

an oven at 70C for 7 days, and weighed.

Study 2. A second study was conducted to determine the effect 

of high levels of soluble Al on the four genotypes. Methods and 

materials were identical to those of the previous study except 

that the levels of Al were 0, 10, 25, and 50 ppm. Also, when the 

nutrient solutions were changed after 19 days (33 days from seed) 

P was left out of the solutions in an effort to reduce the P-Al 

interaction, and to increase the sensitivity of the Al response. 

Calcium was supplied as CaCl^ since the removal of P also removed



Ga when CaCH^PO^^'H^O was used.

After 10 days of growth in the P-deficient nutrient 

solution (/+3 days from seed) the plants were harvested and 

prepared as described previously. After weighing, the dried 

plants were ground to pass a 20 mesh screen and analyzed for P,

Al, Fe, and Mg using the procedures described previously.

Laboratory Investigations

Seed Analysis

Seeds of each genotype were analyzed for P, Fe, and dry 

weight in an effort to relate these parameters to maturity. The 

seed was ground into coarse pieces approximately 3 mm in diameter. 

The coarse pieces were dried at 70C for 7 days, weighed, ground to 

pass a 20 mesh screen, ashed in a muffle furnace at 500C for 5 

hours, and analyzed for P and Fe by the procedures described 

previously.

Field Investigations

Study 1. In 1973> the same four genotypes were grown in a

Charlton loam soil under field conditions. A split-plot design

was utilized with four replications; applied P^O^ served as main

plots and genotype as subplots. Each plot measured 6.9 by /*.6

meters. Prior to planting, soil samples were taken at random to

a depth of 20 cm and analyzed .for CEC, pH, P, Al, Fe, and Mg by

the methods described previously.

Nitrogen and K^O were applied to the field at a rate of

22k kg/ha from urea and muriate of potash respectively. Dolomitic 
limestone was applied at the rate of 2,2k metric ton/ha. They
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were incorporated into the soil by deep disking. The was

supplied from superphosphate (20% anc* was aPP^is  ̂ to the
plots at rates of 0, 112, and 224 kg/ha. The superphosphate was 

applied by hand to the entire surface of each plot so that it 

remained near the surface

Seed was planted approximately 6 cm deep, 20 cm apart, in 

rows 7b cm apart. Prior to emergence, the herbicides Atrazine 

80W and Lasso 4EC were applied to the soil surface at the rate of 

2.2 kg/ha and 0.76 liter/ha respectively.

After 63 days from planting, one representative plant 

from each plot was harvested, dried at 7 0 0 for 7 days, and weighed. 

The tissue was ground to pass a 20 mesh screen and analyzed for 

P and Fe by methods previously described.

The plants were harvested and fresh weight taken 12.7 days 

after planting. Plant tissue samples were dried at 700 for 7 days, 

weighed, ground to pass a 20 mesh screen, and analyzed for P, Al, 

Fe, and Mg by spectrographic methods.

Study 2. In 1974, a field investigation was initiated to compare 

the effects of no-till and conventional tillage conditions on 

nutrient uptake. Special attention was paid to the root systems.

In the fall prior to the study, the research area (Charlton 

loam) was seeded with annual rye as a cover crop. Prior to spring 

plowing of this field, the rye was killed with Paraquat applied 

at a rate of 1.1 kg/ha. Strips 6.1 meters wide of the dead sod 

were plowed and disked so that the field was composed of four 

sets of no-till and tilled soil. Each culture system measured

6.1 by 48.8 meters. Each plot within a culture system measured
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6.1 by 6.1 meters. Between each set of no-till and tilled strips 

a 6.1 meter wide alley was used for turning machinery.

Soil samples were taken at random from the field and 

analyzed for CEC, exchangeable cations, P, Al, Fe, and pH by 

methods previously described. These soil samples were taken at 

depths of 0 to 10 cm, 10 to 20 cm, 20 to 30 cm, and 30 to 1+0 cm.

Seed was hand planted approximately 6 cm deep, 20 cm apart, 

in rows 76 cm apart. Atrazine SOW and Lasso 4EC were applied 

prior to seedling emergence at a rate of 2.2 kg/ha and 0.76 

liter/ha to control weeds.

Plants were harvested from the plots four times during 

the growing period (37, 62, 93, and 110 days from planting). At 

each date a representative plant was harvested, dried at 70C for 

7 days, and weighed. The dry tissue was ground to pass a 20 mesh 

screen and analyzed for P, Al, Fe, and Kg as previously described. 

Also, at each harvest the soil was excavated from one side of the 

plant to display the roots while the plant was still anchored in 

the ground. Water under pressure was used to wash the soil away 

from the roots in an effort to determine visually the root depth, 

extensiveness, and morphology.



36

RESULTS AND DISCUSSION 

Greenhouse Investigations 

Root Temperature Studies

Study 1. In this preliminary study, significant differences in 

dry weight of the four genotypes were observed. Dry weight of 

tops was always higher at the higher root temperature. Root 

dry weight of all genotypes except Agway 590-X was higher at 25C.

No significant differences were observed at either root 

temperature with respect to P and Fe concentration of tops and 

roots, P and Fe content of tops, and P content of roots. Root Fe 

content of Agway 590-X was significantly lower than that of the 

other genotypes under both root zone temperatures. A highly 

significant negative correlation (r= -0.60, 22df) existed between 

root Fe content of the genotypes and their growing degree day 

requirement (GDD). The GDD requirement was 1500, 1700, 2000, and 

2300 for Cornell 110, Seneca XXI55, Wisconsin 335A, and Agway 

590-X respectively (Bruetsch and Estes 1976).

Study 2. Because of problems encountered with the greenhouse 

heating system in Study 1, a second experiment was run in an 

effort to minimize variation. The results of this study are 

presented in Tables 1 and 2. Dry weight of tops and roots 

generally increased when the plants were grown at the higher root 

temperature (Table 1). The increased dry weight accounted for a 

significantly higher total accumulation of P in the tops and 

roots of Seneca XX155 and the tops of Agway 590-X (Table 2). The



Table 1. Dry weight of tops and roots of four maize genotypes grown under hydroponic 
conditions at two root temperatures. Plants were grown in a greenhouse to 
30 days of age (19 days in hydroponic solution). Values represent the mean 
of three replications.

Tops Roots
Genotype 15.5C 25C 15.5C 25C

g

Cornell 110 0.34 a*# 0.53 a 0.1/+ a 0.17 el

Seneca XXI55 0.29 a it 0.54 a 0.1? a 0.22 a

Wisconsin 335A 0.24 ab 0.21 b 0.13 ab 0.10 b

Agway 590-X 0.09 b 0 . 1 7  b 0.07 b 0.C9 b

* Figures within a column followed by the same letter are not significantly different 
at 5%j according to Duncan's New Multiple Range test. 

it Indicates a significant difference at 3% with respect to top or root dry weight 
within a genotype due to the root temperature.



Table 2. Content of iron (Fe) and phosphorus (P) in the tops and roots of four maize
genotypes grown under hydroponic conditions at two root temperatures. Plants 
were grown in a greenhouse to 30 days of age ( 1 9 days in hydroponic solution). 
Values represent the mean of three replications.

Tops Roots
15.5C 25C 1 C Kf 1 y . y U 25C

Genotype Fe p Fe P Fe p Fe P
mg

Cornell 110 0.03 a* 3.23 a 0.05 a 4.10 b 1.98 a 0.91 a 2.60 a 1.29 b

Seneca XX155 0.06 a 4.28 aBrt 0.06 a 8.05 a 1.99 a 0 . 64 ait 2.38 a 2.92 a

Wisconsin 335A 0.08 a 2.91 a 0.06 a 1.54 c 2.15 a 1 .04 3, 1.45 a 1.08 b

Agway 590-X 0.04 a «o b# 0.04 a 2.01 be 1.0? a 0 k ̂-J . ys a 1.44 a 0.20 b

* Figures within a column followed by the same letter are not significantly different at 
5%, according to Duncan's New Multiple Range test. 

it Indicates a significant difference at 5% with respect to Fe or P content of a genotype 
top or root due to root temperature.
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early maturing genotypes accumulated significantly more dry 

matter when compared to the later lines which indicates a more 

rapid early growth even under cool root temperatures.

The foliage of two genotypes (Seneca XX155 and Agway 

590-X) showed a P content which was significantly lower at 15*50 

compared to 250. The total P content of foliage from the early 

genotypes was higher than from the late genotypes irrespective 

of temperature (Table 2).

The above results do show an association between the 

maturity of the genotypes and their accumulation of P. Parly 

maturing lines tend to contain more P in both tops and roots.

The movement of Fe from the roots to the tops appears to be 

retarded in these genotypes (Table 2). A P-Fe precipitation in 

or on the root which reduces Fe translocation is a strong possi

bility (Odurukwe and Maynard 1969)*

Phosphorus-32 Absorption 

32The P uptake characteristics of the four genotypes were 

plotted by means of second degree polynomial regression and are 

presented in Figures 3, 4, 5, and 6. Because of variation in 

natural light intensity from day to day, relative comparisons 

within rather than between figures may only be made. With 28 day 

old plants, Seneca XXI55 was the most and Wisconsin 335A the least 

efficient in P uptake (Fig. 3)* These differential accumulation 

patterns of P by the genotypes remained unchanged at 35 and 42 days 

from seed (Fig. 4 and 5)* The P-uptake characteristics shown in 

Figure 6 show that at about seven weeks from seed, Seneca XX155 

and Cornell 110 are substantially higher in radioactivity than
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Wisconsin 335A and Agway 590-X. The above results indicate that

the earlier genotypes, especially Seneca XXI55j exhibit a greater

ability to absorb P from solution compared to other genotypes.

Furthermore, differences do exist in nutrient absorption rates

and, in the case of P, may be easily and quickly determined by

the radiotracer technique.

Table 3 shows that in nearly all cases, the dry weight of

the early genotypes was greater than the later genotypes at the
32various stages of development. The absorption of P in dpm's is

a measurement of isotope concentration. To determine total content 
32of absorbed P, plant dry weight was taken into account. When

the dpm's are multiplied by the dry weight of the plant tops,
32an index of total P accumulation is obtained; the earlier 

genotypes were always greater in total accumulation at each 

harvest except for Cornell 110 after Zk days in the radioactive 

solution (Table if). Statistical significance was achieved in 

all but the third harvest.

Elemental analysis of the tissue was not made due to the 

radioactive nature of the sample. However, visible Fe-deficiency 

symptoms appeared in the last two harvests (plants older than 33 

days from seed). The severity of the Fe-deficiency symptoms were 

as follows: Cornell 110 = Seneca XX135 > Agway 590-X > Wisconsin

335A. These symptoms may indicate that Fe is being immobilized 

in the roots of the early genotypes, thus reducing its trans

location to the tops. Srch immobilization may be the result of 

a P-Fe complex within or on the root. Such a complex has been 

postulated by Rasmussen (1968) where an Al-phosphate may be formed; 

an Fe-phosphate is also a possibility. Similar immobility of Fe



Table 3» Top dry weights from four consecutive harvests of four maize genotypes grown 
in a greenhouse under hydroponic conditions. The plant tops were harvested 
28, 35, 42, and 49 days from seed (1 7, 24, 3 1 , and 38 days in solution, 
respectively). Values represent the mean of three replications.

Days from seed
Genotype 28 35 42 49

g

Cornell 110 0.49 ab* 0.93 be 2.44 a 5.59 ab

Seneca XX155 0.64 a 1.27 a 2.37 a 7.09 a

Wisconsin 335A 0.42 ab 1.09 ab 1.81 a 5.35 ab

Agway 590-X 0.38 b 0.74 c 1.75 a 3.88 b

* Figures within a column followed by the same letter are not significantly different at 
5%, according to Duncan's New Multiple Range test.



Table 4. Phosphorus-32 uptake from four consecutive harvests of four maize genotypes 
grown in a greenhouse under hydroponic conditions. The plants were measured 
28, 3 5 , 42, and 49 days from seed (1 7, 24, 3 1 , and 38 days in solution, 
respectively. Values represent the mean of three replications and are the 
result of the top dry weight multiplied by disintegrations per minute.

Days from seed
Genotype 28 35 42 49

Cornell 110 3236 ab* 9402 b 24823 a 93509 ab

Seneca XX155 4642 a 2 0 4 2 6 a 3 2 9 8 8 a 119939 a

Wisconsin 335A 2443 b 9681 b 20029 a 76676 b

Agway 590-X 2363 b 8605 b 18296 a 59680 b

* Figures within a column followed by the same letter are not significantly different at 
5%, according to Duncan's New Multiple Range test.

-P*O'
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was observed in the root temperature studies reported earlier in 

this manuscript.

Root Volume

In addition to root biomass, it is possible that the 

volume of roots possessed by a genotype may influence the pattern 

or rate of nutrient accumulation. Plants grown with their roots 

subjected to a mist rather than submerged in a hydroponic solution 

produce root systems similar to soil-grown plants (Warncke and 

Barber 1 g ). An added advantage of mist culture over soil-grown 

plants is the fact that the roots can be measured periodically 

without damage to the root system and with a minimum of shock to 

the plant.

Root volume was measured by water displacement five times 

over a period of if9 days (Fig. 7)» At the end of 49 days, the 

plants were harvested and dry weight measurements taken. The 

results of these analyses are presented in Table 5*

The data gathered in this experiment do not support the 

hypothesis that root volume plays a major role in the differential 

uptake or accumulation of P by the maize genotypes. The genotypes 

did differ with respect to root volume but no trends were apparent 

to associate those differences with previously observed nutrient 

absorption characteristics. Root length likewise showed no 

relationship to nutrient uptake characteristics for any given 

genotype. At the end of this experiment, the highest dry weight 

was obtained by Seneca XX155 which agrees with the root temper

ature experiments discussed earlier. Agway 590-X, the latest 

genotype, produced not only the lowest biomass of roots but also



RO
OT

 
VO

LU
M

E 
(c

c)
.Seneca XXI55

^Agway 590-X 
£ Wisconsin 335A

10-

Cornell 110

25 30 35 504540 55

DAYS FROM SEED
Figure 7. Regression curves for root volume of four maize genotypes grown in a mist 

culture system. Plants were placed in the mist chamber at 12 days from seeding and 
grown to 9 days from seeding.

-tr-00



Table 5. Dry weight of tops and roots, top/root ratio, and length of the longest root 
of four maize genotypes grown in a mist culture system. Values represent the 
mean of three replications.

Genotype
Dry

Top
weight (g) 

Root
Top/root
ratio

Length of 
longest root (cm)

Cornell 110 0.90 a* 0.50 a 1 .82 a 55.8 a

Seneca XX155 1.1*5 a 0.71 a 2.03 a 81.3 a

Wisconsin 335A 1.24 a 0.65 a 1.85 a 73.1 a

Agway 590-X 0.88 a 0.50 a 1.66 a 56.7 a

* Figures within a column followed by the same letter are not significantly different at 
5%, according to Duncan’s New Multiple Range test.



50

had the lowest top/root ratio. This indicates a larger root 

system in proportion to the tops although the actual root system 

was smaller compared to the other genotypes at this stage of 

development. Long term studies with root volumes in a mist 

chamber could be extremely valuable in providing information on 

nutrient use throughout the growing season.

The above results help to explain the Fe-deficiency 

symptoms reported in the P uptake study, where the earlier 

maturing genotypes exhibited the most visible Fe deficiency.

The later genotypes had larger root systems in relation to the 

tops, contained more Fe but less P (absorption at 25C, Table 2), 

when compared to the early genotypes. The lower levels of Fe in 

the proportionally smaller root systems of the earlier genotypes 

may have been saturated by p, and through the formation of a 

P-Fe precipitate in the root prevented the Fe from being trans

located to the tops.

Soil pH

The soil used in this experiment was analyzed before 

treatment and again after completion of the experiment. Results 

of the soil analyses are presented in Table 6. The levels of 

extractable nutrients did change during the 35 days of the exper

iment. For example, the pH of the untreated soil was i+.58 

initially and if.28 at the conclusion of the experiment. The 

amount of extractable P, Fe, Zn, and Al in the soil at the com

pletion of the study decreased with increased lime rates. This 

decrease could be the result of either increased absorption of



Table 6. Analysis of soil used in the greenhouse soil pH study. The soil was analyzed 
prior to treatment and again after the experiment was completed.

Analysis
Lime
Treatment pH Cation exchange

capacity Na Ca K Mg p Fe Zn A1
meq/1OOg ppm

Untreated 
soil * 4.58 8.19 0.28 3.86 0.52 0.61 4.51 101 .7 2.99 15.0

Treated soil** 
(post harvest)
0 metric ton/ha 4.28 6.68 99.1 2.68 21 .3

3.3 metric ton/ha 5.05 5.60 99.4 2.49 15.0

6.7 metric ton/ha 5*66 3.43 70.8 2.29 12.2

* Values represent the mean of three replications.
** Values represent the mean of two replications.



these elements or a chemical interaction of elements such as 

Fe-P or Al-P within the soil which renders them insoluble.

Differences in sensitivity of the four genotypes to lime 

treatments were noted from observing the dry weight of the tops 

and roots (Table 7). Top and root weight of Seneca XX155 was 

superior to the other genotypes at all lime rates. The addition 

of hydrated lime tended to reduce plant weights. The root weight 

of Cornell 110 was reduced to the greatest extent by the lime 

treatments. The top/root ratios of the two early genotypes are 

significantly lower than the two late genotypes at the 0 metric 

ton/ha lime rate. These data show that under acid soil condition 

the early genotypes possess more root system in relation to the 

tops while the reverse is true of the later genotypes. The dry 

weight data of tops and roots clearly show that the increase in 

top/root ratio of Cornell 110 as influenced by the addition of 

lime, is not the result of increased top growth, but rather due 

to decreased root growth. These results may also imply that a 

toxicity existed at the higher lime rate due to the use of 

hydrated limestone.

The nutrient content of P, Al, Fe, and Mg within the four 

genotypes as influenced by lime treatment are presented in Tables 

8 and 9 for tops and roots, respectively. High levels of soil 

Ca are known to suppress the uptake of many plant nutrients. The 

variability which exists between genotypes for these relationship 

are not well known.

The addition of lime decreased the accumulation of P by 

the maize plants. Seneca XX155 absorbed the most P and Cornell 

110 accumulated the lowest amount of P.



Table 7» Dry weight of tops, roots, and top/root ratios of four maize genotypes grown in a 
greenhouse for 35 days in soils receiving lime rates equivalent to 0, 3.3, and 6.7 
metric ton/hectare of calcium carbonate. Values represent the mean of five 
replications.

Genotype Tops Roots Top/root ratio
0 7 X ^ • D 6.7

g
0 3.3 6.7 0 3.3 6.7

Cornell 110 0.96 c* 0.92 b 0.91 b 0.55 b 0.41 b 0.37 c 1.79 b 2.26 a 2.48 a

Seneca XX155 1.63 a 1.70 a 1.73 a 0.76 a 0.73 a 0.73 a 2.H ab 2.38 a 2.42 a

'Wisconsin 335A 1.20 be 1 .08 b 0.96 b 0.46 b 0.42 b 0 . 4 1 be 2.72 a 2.61 a 2.48 a

Agway 590-X 1.30 bA** 0.86 bE 1.03 bB 0.54 b 0.39 b 0.57 ab 2.54 a 2 . 1 5 a 1.92 a

* Figures within a column followed by the same lower case letter are not significantly 
different at 5%, according to Duncan's New Multiple Range test.

** Upper case letters denote significance within a genotype for any one analysis. Numbers 
followed by different upper case letters are significantly different at 5%, according to 
Duncan's New Multiple Range test.

VJI



Table 8. Content of phosphorus, aluminum, iron, and magnesium in the tops of four maize
genotypes grown in a greenhouse for 35 days in soil which received lime at rates 
equivalent to 0, 3«3» and 6*7 metric ton/hectare of calcium carbonate. Values 
represent the mean of five replications.

0 metric ton/ha 3.3 metric: ton/ha
Genotype P A1 Fe Mg P- A1 Fe Mg

mg

Cornell 110 1.10 c* 0.03 b 0.09 b U39 c 0.94 St o • o a 0.08 b 1.53 c

Seneca XX155 1.86 bAB** 0.06 aA 0.14 a 2.65 a 1.44 aB 0.04 aE 0.16 a 2.81 a

Wisconsin 335A 1.49 be 0.05 abA 0.12 a 2.26 ab 1.14 a 0.03 aAB 0.1 1 b 2.10 b

Agway 590-X 2.54 aA 0.05 abA 0.11 ab 2.10 bA 1.35 aB 0.03 aAB 0.08 b 1.48 cB

* Figures within a column followed by the same lower case letter are not significantly different 
at 5%, according to Duncan’s New Multiple Range test.

**Upper case letters denote significance within a genotype for any one analysis. Numbers 
followed by different upper case letters are significantly different at 5%> according to 
Duncan’s New Multiple Range test.
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Table 8. (Continued)

6«7 metric ton/ha
Genotype  P______________ A1______________ Fe__________ Mg_____
___________________________   M _________________________________
Cornell 110 1.04 c 0.02 b 0.10 b 1.51 b

Seneca XX155 2.07 aA 0.05 aAB 0.16 a 2.85 a

Wisconsin 335A 1.41 be 0.02 bB 0.10 b 1.84 b

Agway 590-X 1.77 abB 0.02 bB 0.09 b 1.62 bAB



Table 9» Content of phosphorus, aluminum, iron, and magnesium in the roots of four maize 
genotypes grown in a greenhouse for 35 days in soil which received lime at rates 
equivalent to 0, 3«3» and 6.? metric ton/hectare of calcium carbonate* Values 
represent the mean of five replications.

0 metric ton/ha 3.3 metric ton/ha
Genotype p A1 Fe Mg p A1 Fe Mg

mg

Cornell 110 0 . 3 1 b* 3.19 aA** 4 * 1 4 aA 0.98 a 0.23 b 0.78 aB 1.06 aB 0.58 b

Seneca XX155 0.45 a 3.27 a 3.54 a 1.09 a 0.44 3. 2.35 a 3.60 a 0.99 a
Wisconsin 335A 0.28 b 1.48 b 2.22 a 0.76 a 0.26 b 0.90 a 1.05 a 0.76 ab

Agway 590-X 0.22 b 1.54 b 1.70 a 0.77 a 0.17 b 1.24 a 1.51 a 0.77 ab

* Figures within a column followed by the same lower case letter are not significantly 
different at 5%, according to Duncan's New Multiple Range test.

**Upper case letters denote significance within a genotype for any one analysis. Numbers 
followed by different upper case letters are significantly different at 5%» according to 
Duncan's New Multiple Range test.



Table 9. (Continued)

Genotype
6.7 metric ton/ha

P A1 Fe Mg
mg

Cornell 110 0.21 b 0.77 aB 0.87 aE 0.47 b

Seneca XX155 0.40 a 2.02 a 2.89 a 0.98 a

Wisconsin 335A 0.19 b 0 . 9 0  a 1.56 a 0.53 b

Agway 590-X 0.25 b 2.17 a 2.62 a 0.81 ab
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Magnesium content of tops was reduced by lime treatments, 

the two late genotypes showing the greatest decrease. Recent 

research has provided evidence that soil pH level affects Mg 

uptake more than does Ca level in soils (Christenson jet al. 1973) • 

The basis for this pH effect which was observed in oats grown on 

a Karlin loamy sand in Michigan was not stated.

Seneca XX155 accumulated much more Fe than the other 

genotypes at all lime treatments. The content of Fe within the 

roots of the two early genotypes decreased with the addition of 

lime. No significant change in Fe content occurred with the late 

genotypes.

A four-fold reduction in the Al content of roots of Cornell 

110 occurred with the addition of 3*3 metric; ton/ha of lime.

Early genotypes were affected more than the two late genotypes 

in this regard. The addition of lime caused a sharp reduction 

in the translocation of Al to the tops of the late genotypes as 

evidenced by their low Al content. The Al content of roots of 

the early genotypes was approximately double that of the later 

genotypes when grown in the absence of lime. A similar relation

ship was shown with Fe. These data show that under acid soil 

conditions, the early maturing genotypes accumulate higher amounts 

of Al in their roots compared to late genotypes. The complexing 

of P with either Al or Fe to form an insoluble phosphate may 

explain the retention and increased P content within the roots 

of the early genotypes as well as the visual Fe deficiency often 

displayed by these genotypes.

Hydroponics Studies
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Study 1. The differential effect of Al on the growth and P uptake 

and accumulation by the four maize genotypes was investigated 

under greenhouse-hydroponics conditions. In the first study, low 

levels of Al (0, 2.5> 5> and 10 ppm) were placed into the nutrient 

solutions used to grow the genotypes. After 59 days in the nutrient 

solutions ( 5 0 days from seed), dry weight of tops and roots were 

taken. Figure 8 presents the results of these analyses. It is 

clear from these data that low levels of Al in the nutrient 

solution had a stimulating effect on top dry weight. These results 

agree with those of Lee (1972) who reported stimulated growth of 

potato by low levels of Al. The top dry weight of Wisconsin 355A 

and Agway 590-X increased until 10 ppm Al was reached in the 

nutrient solution. Levels of 10 ppm Al produced a dramatic 

decrease in top dry weight. Cornell 110 and Seneca XXI55 contin

ued to produce higher top dry weight at 10 ppm Al. These results 

show that later genotypes (Wisconsin 335A and Agway 590-X) are 

more susceptible to decreases in top growth due to the presence 

of Al in the root environment when compared to the early genotypes 

(Cornell 110 and Seneca XX155). Similar results were expressed in 

terms of root dry weight.

The pH of the nutrient solutions prior to the experiment 

was 6.2, 5«2, 3.7, and 3.3 for Al concentrations of 0, 2.5> 5> and 

10 ppm, respectively. After 12 days growth, the plants changed 

the pH of the solutions to 6.6, 6.2, ^.8, and 3.5, respectively. 

Aluminum in the nutrient solution had the effect of lowering the 

pH. The pH remained low at the high Al levels regardless of the 

effect of the plant roots.

The sensitivity of the later genotypes to Al in the root
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environment may play a major role in the growth of these genotypes 

in the northeastern U.S. where soils are naturally acid and 

soluble Al levels are relatively high. It is quite possible 

that higher P levels observed in the earlier genotypes when 

compared to the later genotypes may be partially responsible for 

the ability to resist the harmful effects of Al. This may occur 

through an aluminum phosphate complex which forms in the tissue, 

particularly in the roots. Also, under field conditions the root 

systems of the early genotypes may remain in the upper portions 

of the soil profile where the pH is higher and P is available to 

the roots.

Study 2. A second study was initiated to determine the effect 

of increased levels of soluble Al on the growth and nutritional 

status of the four genotypes. The Al levels were changed to 

0, 10, 2.5, and 50 ppm Al in the nutrient solutions. The solutions 

were changed after 19 days and replaced with solutions lacking P. 

The plants were harvested after q3 days of growth (29 days in 

hydroponic solution) and the dry weight of tops and roots measured. 

These data are presented in Table 10. The dry weight of Seneca 

XX155 was significantly higher than that of the other genotypes 

when grown at 0, 10, and 25 ppm Al. When grown at the highest 

Al concentration, a significant reduction in top growth occurred 

only with Seneca XX155 and Agway 590-X. No sensitivity of the 

roots was noted to increasing concentration of Al in the nutrient 

solutions as evidenced by dry weight.

Although the dry weight of all genotypes generally in

creased with increased Al levels up to 25 ppm Al in the substrate,



Table 10. Dry weight of tops and roots of four maize genotypes grown in a hydroponic solution 
at four aluminum levels. Values represent the mean of three replications.

 Genotype ______________ _________________
Aluminum Cornell 110________ Seneca XXI 55_______ Wisconsin 335A________ Agway 590-X
level (ppm) Top Root Top Root Top Root Top Root

0 4.52 a*B#* 0.94 bB 6.21 abA 1.54 aA 4.52 aB 0.97 bB 4.75 abB 1.16 aAB

10 4.24 aB 0.80 bB 6.86 a A 1.47 aA 4.96 aB 0.93 bB 4.59 abB 1 .01 aB

25 5.12 aB 1.15 abE 7.02 aA 1.88 aA 5.26 aB 1.53 aAB 5.54 aB 1 .32 aB

50 4.35 a 1.38 a 4.99 b 1.50 a 4.47 a 1.36 ab 3.59 b 1.41 a

* Figures within a column followed by the same lower case letter are not significantly 
different at 5%» according to Duncan's New Multiple Range test.

**Upper case letters denote significance within an aluminum level for any one analysis. 
Numbers followed by different upper case letters are significantly different at 5%, 
according to Duncan's New Multiple Range test.
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the visual appearance of the roots of Seneca XXI55 and Cornell 110 

showed them to be more stunted at the higher Al treatments (Fig.

9). The above two early genotypes showed these symptoms of Al 

toxicity at treatment levels of 25 and 50 ppm while Wisconsin 

335A and Agway 590-X exhibited the effects only at the 50 ppm 

Al treatment. The stunting and malformation of the root of Al- 

treated maize appears to be the key to Al toxicity (Rasmussen 

1968).

These results do not support the hypothesis that early 

maize genotypes are less susceptible to high levels of soluble 

Al except through a tendency to encounter less Al due to a more 

shallow rooting pattern. However, if the formation of an insoluble 

Al-phosphate within the root is responsible for a degree of 

protection from A.1 it would probably not have occurred in this 

experiment since P was being withheld from the nutrient solution.

The tendency of a genotype to accumulate P may influence 

its depth of rooting into an acid soil. Reeve and Sumner (1970) 

attributed the beneficial effects of P fertilization of acid 

soils to the elimination of Al toxicity and the resulting 

increased ability of plants to absorb P, rather than to increased 

F availability in soils. Improved root development with starter 

fertilizers high in P may be associated with an improved tolerance 

to Al. In this regard, the exposure of cotton roots to 1 ppm of 

Al for 12 hours will cause severe cytological abnormalities in 

the dividing cells (Huck 1972).

Results of the chemical analysis of tops and roots of the 

four genotypes are presented in Tables 11, 12, 13> and 14» In all
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Table 11. Content of phosphorus and aluminum in the tops of four maize genotypes grown in a
hydroponic solution at four aluminum levels. Values represent the mean of three
replications.

Genotype
Aluminum Cornel.1 110 Seneca XX155 Wisconsiii 335A Agway 590-X
level (ppm) P Al P Al

mg
* Al P Al

0 18.8 a* 0.17 a 25.8 a 0.23 a 17.7 a 0.15 a 1 7. p a 0.17 a

10 18.4 a 0.25 a 19.1 a 0.30 a 13.4 a 0.23 a 10.6 a 0.22 a

25 14.5 aAE 0.19 a 22.0 aA 0.29 a 13.9 aAB 0 .1 5 a 9.3 aB 0.24 a

50 6.2 b 0.28 a 16.1 a 0 . 3 0  a 7.3 a 0.21 a 7.6 a 0.21 a

* Figures within a column followed by the same lower case letter are not significantly 
different at 5%> according to Duncan's New Multiple Range test.

**Upper case letters denote significance within an aluminum level for any one analysis. 
Numbers followed by different upper case letters are significantly different at 5?=> 
according to Duncan's New Multiple Range test.



Table 12. Content of magnesium and iron in the tops of four maize genotypes grown in a
hydroponic solution at four aluminum levels. Values represent the mean of three
replications.

Genotype
Aluminum Cornell 110 Seneca XX155 V/ i siconsin 335A Agway 59Ci-X
level (ppm) Mg Fe Mg Fe

mg
Mg Fe Mg Fe

0 7.4 a*B** 0.45 aAB 13.1 aA 0.54 abA 8.8 aB 0.41 abAB 10.0 aB 0.35 bB

10 6.9 aC 0.32 aB 12.3 abA 0.63 aA 10.2 aAB 0.44 abB 8.9 aBC 0.37 abB

25 7.7 abB 0.45 aB 10.1 bA 0.62 aA 7.7 aAB 0.53 aA 7.7 aAB 0 . 5 0 aA

50 3.7 b 0.35 a 5.5 c 0.42 b 4*8 b 0 . 3 2  b 3.5 b 0.33 b

* Figures within a column followed by the same lower case letter are not significantly different 
at 5%> according to Duncan's New Multiple Range test.

**Upper case letters denote significance within an aluminum level for any one analysis. Numbers 
followed by different upper case letters are significantly different at 5%> according to 
Duncan's New Multiple Range test.
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Table 13. Content of phosphorus and aluminum in the roots of four maize genotypes grown in a
hydroponic solution at four aluminum levels. Values represent the mean of three
replications.

Genotype
Aluminum Cornell 110 Seneca XX155 Wisconsin 335A Agway 590-X
levels (ppm) P Al p Al P 

mg
Al p Al

0 3.5 ab*B **0.3 c 13.7 aA 0.5 c 7.2 aB 0.4 c 13.9 aA 0.7 c

10 1.3 bB 0.5 c 9.8 abA 1.3 c 5.6 aAB 0.6 c 4.9 bAB 0.8 c

25 3.4 ab 4.8 b 6.6 b 5.9 b h.2 a 5. 1 b 3.4 b 4.6 b

50 7.4 a 9-7 a 7.8 b 10.7 a 7.9 a 7.9 a 7.3 b 8.1a

* Figures within a column followed by the same lower case letters are not significantly different
at 5%, according to Duncan's New Multiple Range test.

♦•Upper case letters denote significance within an aluminum level for any one analysis. Numbers
followed by different upper case letters are significantly different at according to
Duncan's New Multiple Range test.
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Table 14. Content of magnesium and iron in the roots of four maize genotypes grown in a
hydroponic solution at four aluminum levels. Values represent the mean of three
replications.

enotype
Aluminum Cornell 110 Seneca XXI 55 Wisconsi n 335A Agway 590-X
level (ppm) Mg Fe Mg Fe

mg
Mg Fe Mg Fe

0 2.49 a*B** 0.50 b 3.52 aA 0.75 b 2.25 bB 0.48 b 2.50 aB 0.87 ab

10 2.29 aB 0.39 b 3®96 aA 0.72 b 2.2.6 bE 0.48 b 2.18 aB 0.59 b

25 2.57 aEC 0.89 a 3.67 aA 1.14 a 3.43 aAB 1.08 a 2.40 aC 1 .03 a

50 2.04 a 1.00 a • -0 C
o

O
' 1.09 a 1.49 b 0.74 ab 1 . 3 0 b 0.96 a

* Figures within a column followed by the same lower case letter are not significantly different 
at 5%) according to Duncan's New Multiple Range test.

**Upper case letters denote significance within an aluminum level for any one analysis. Numbers 
followed by different upper case letters are significantly different at 5%» according to 
Duncan's New Multiple Range test.
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genotypes, P concentration and content of the plant tops decrease 

with increasing Al concentration in the nutrient solution. The 

correlation coefficient for mg P in the plant tops versus Al 

level in the nutrient solution was -0,80, -0.38, -0.65> and -0.58 

with 10 degrees of freedom for Cornell 110, Seneca XXI55> 'Wisconsin 

335A, and Agway 590-X respectively.

Aluminum has been found to precipitate on the surface of 

the epidermal cells of the roots with no penetration into the 

cortex as long as the root surface remained intact. The local

ization of P was exactly the same as that of Al suggesting a 

precipitation of P by Al in roots of Zea mays (Rasmussen 1968).

Table 11 shows that the foliage of early genotypes 

(Cornell 110 and Seneca XXI55) generally exhibits a higher P 

content than the later maturing genotypes (Wisconsin 335A and 

Agway 590-X). These results agree with related work presented 

previously (Bruetsch and Estes 1976) and in this manuscript 

(root temperature studies) which show that early maize genotypes 

tend to accumulate higher amounts of P than the later maturing 

plants.

A review of data in Tables 11 and 13 shows that the 

movement of Al from the roots to tops is slight. The association 

between the Al concentration in the nutrient solution and in the 

plant tissue is very weak for tops but strong for roots. The 

precipitation of Al as an insoluble phosphate which subsequently 

becomes unavailable for transport within the vascular system has 

been suggested (Rasmussen 1968). The influence of Al treatments 

on the translocation of P differs greatly between genotypes
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(Tables 11 and 13)* Far more P moves to the tops in Cornell 110 

than in Agway 590-X at any Al treatment except the 50 ppm level.

The presence of appreciable levels of Al in the tissue 

of the control plants appears related to the presence of insoluble 

phosphates in the sand in which the plants were growing which 

were not completely removed by the acid washing procedure prior 

to initiation of Study 2. No significant differences occurred 

in the content of Al in the tops of the plants as influenced by 

the four Al treatments. Growth at 50 ppm Al produced an increase 

of ig.2X the Al content of roots of control plants. Thus, the 

impact of substrate Al is on the root system rather than the tops 

of maize plants. These data support the hypothesis that early 

genotypes are using P to inactivate Al in the roots under conditions 

of high soluble Al in the root zone. Improved translocation of P 

is implied under conditions of low soluble Al in the root zone.

The efficiency of Mg entry into the plant roots is also 

greatly affected by the Al treatments. The indirect effect of 

Al on chlorophyll synthesis and photosynthetic activity is there

fore implicated. The Mg content of the tops of the plants is 

more affected by the substrate Al treatments than is the Mg status 

of the roots. Only the 50 ppm Al treatment significantly 

decreased the Mg content of root tissue (Table 1^). The entry 

of Mg into the roots at the highest Al treatment is strongly 

associated with maturity rating, the earliest plants containing 

the most Mg. These data indicate an interference with Mg uptake 

and/or translocation by Al and support the findings of Lee (1972) 

and Rees and Sidrak (1961) who indicated that high levels of Al 

may reduce Mg uptake in plants. Aluminum toxicity in rice has
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also been characterized by lower concentrations of Mg in plant 

tops (Ota 1968). The mechanism to explain the Mg stress imposed 

by high Al treatments is unknown. However, Al may simply be 

more effective than Kg in competing for exchange sites on the root.

A saturation of a common carrier by Al may also be occurring.

The uptake pattern of Fe was very similar to that of Al.

In this regard, the content of Fe in the roots of all the maize 

genotypes tended to increase with increasing Al concentration of 

the root zone (Table 1^). This supports an observation at harvest 

that the roots of all the genotypes showed increasing intensity 

of red color with increasing concentration of Al in the nutrient 

solution. Since the sequestrene Fe used for the nutrient solution 

was red, it is assumed that Fe was being increasingly adsorbed on 

or in the roots as the Al level of the nutrient solution increased. 

Since the pH of the nutrient solution decreased with increasing 

Al treatment, the above may be related to the improved Fe solubility 

in the high Al treatments. Therefore, since Fe behaved similarly 

to Al, it is probable that both Fe and Al can significantly 

affect P nutrition.

At harvest, the plant tops visibly showed Fe-deficiency 

symptoms in all of the genotypes. These deficiency symptoms 

decreased with increasing Al concentration in the root zone.

Also, the earlier genotypes (Cornell 110 and Seneca XX155) had 

much more pronounced Fe-deficiency symptoms than Wisconsin 335A 

or Agway 590-X.

Laboratory Investigations

Seed Analysis
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To determine if the nutrient content between plants and 

seeds showed similarities, seeds of the four genotypes were 

weighed and analyzed for P and Fe (Table 15). It can be seen 

that the average weight of a seed of Seneca XXI55 or Wisconsin 

335A is significantly higher than that of Cornell 110 or Agway 

590-X. The genotypes with the more massive seeds would obviously 

be able to supply more nutritional support to the young seedling 

in its early development.

No statistical significance was attained with respect to 

concentration or content of P and Fe, although Fe level in the 

seed declined with maturity of the genotype. This is in agreement 

with other research where a strong correlation (r= -0.54» lOdf) 

existed between Fe concentration and growing degree days of the 

genotypes and early maturing genotypes accumulated more Fe in 

the tops when compared to later genotypes (Bruetsch and Estes 

1976). The high amount of stored Fe in the seeds does not appear 

related to the tendency of a genotype to show a deficiency symptom 

to Fe.

Field Investigations

To determine if results of greenhouse studies assume 

significance under field conditions, two studies were conducted. 

Study 1 utilized various P treatments and Study 2 utilized two 

different cultural methods (no-till and conventional tillage) to 

determine their importance on the nutrition of the genotypes 

previously used.

Study 1. Table 16 gives the results of the soil analysis of the



Table 15« Seed weight and concentration and content of phosphorus and iron of seeds of
four maize genotypes. Values represent the mean of three replications.

Genotype Seed weight
g

Concentration Content
p
%

Fe P 
ppm m

Fe
6

Cornell 110 0.21 b* 0.22 a 220 a 0.47 a 0.05 a

Seneca XX155 0.28 a 0.22 a 136 a 0.61 a 0.04 a

Wisconsin 335A 0.27 a 0.15 a 119 a 0.42 a 0.03 a

Agway 590-X 0.20 b 0.24 a 107 a 0 . 5 0  a 0.02 a

* Figures within a column followed by the same letter are not significantly different at
5%, according to Duncan' s New Multiple Range test.
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Table 16. Analysis of soil used in the first field study. Values represent the mean 
of three replications.

Analysis Result % Base saturation

PH 5.30

Phosphorus U. 19 ppm

Aluminum 1 5 . 1 9 ppm

Iron A2.80 ppm

Zinc 3.38 ppm

Exchangeable bases

Magnesium O.i+3 meq/IOOg 6.05

Calcium 5.81 meq/IOOg 81 .83

Potassium 0.57 meq/IOOg 8.02

Sodium 0.2if meq/IOOg 3.38

Cation exchange capacity 7.10 meq/IOOg

3̂
-p-
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field used in this study. Plants were grown in plots receiving 

either 0, 112, or 2.2.U, kg/ha aG a treatment. Plant samples

were taken after 53 days of growth and analyzed for dry weight,

P, and Fe (Table 17). A significant positive correlation existed 

(r= 0.35, A6df) between yield and P-0^ treatment indicating an 

increase in top growth with increasing P application. Greatest 

increases in ciry weight occurred with Seneca XXI55 and Wisconsin 

335A after 53 days of growth. There was no significant difference 

observed in P concentration of the tops in any genotype but total 

content of P did generally increase with applied P. The content 

of Fe generally increased with increased PpO^ application in all 

the genotypes except Agway 590-X. Thus, the application of P to 

field soils does not appear to reduce translocation of Fe in the 

plant as observed in hydroponic studies. Unrestricted root 

expansion, high levels of soil Fe, and P fixation by soil may be 

reasons for these results.

Plants in this study were harvested again after 127 days 

and analyzed for yield, P, Al, Fe, and Mg (Tables 18 and 19). 

Higher yields were observed in the later genotypes (’Wisconsin 

335A and Agway 590-X) when compared with the early genotypes 

(Cornell 110 and Seneca XX155). These data show that early 

genotypes are more responsive to applied PpO^ than late genotypes 

as reflected by a closer association between amount applied and 

amount absorbed (Table 19). These results support the findings 

of Study 2 of the hydroponics research where early lines accumu

late higher levels of P if it is available to the root. Since 

P was applied uniformly to the plots and not banded, the early 

genotypes may also be taking up more P simply because of a more



Table 17* Dry weight, and concentration and content of phosphorus and iron in the tops of
four maize genotypes grown for 53 days in a field which received 0, 112, and 224
kilograms per hectare PjO^. Values represent the mean of four replications.

Genotype
P?0R applied Dry weight F'hosnhorus Iron

(kg/ha) 8 io mg/plant ppm mg/plant

0 58.65 abc* 0.09 a 57.0 b 78.5 abc 4.5 bed
Cornell H O 112 60.75 abc 0.09 a 58.4 b 72.0 be 4.4 bed

22k 57.90 abc 0.1 1 a 67.5 b 88.0 ab 5.1 abc

0 43. 14 r> 0.1 1 a 48.1 b 86.5 ab 3.7 cd
Seneca XX155 112 56.04 be 0.12 a 61.2 b 75.7 be 4.1 bed

22k 63.05 ab o « o MO a 60.4 b 89.7 ab 5.7 ab

0 48.21 be 0.15 a 74.7 ab 83.7 abc 3.9 cd
Wisconsin 112 57.22 abc 0.12 a 71.7 ab 94.2 a 5-3 abc
335A 22k 73.13 a 0.12 a 95.6 a 86.7 ab 6.3 a

0 53.56 be 0.12 a 65.2 b 78.7 abc 4.2 bed
Agway 590-X 1 12 47.95 be 0.10 a 49.3 b 80.2 abc 3.7 cd

2.2k 53.09 be 0.12 a 64.4 b 66.2 c 3.4 d

* Figures within a column followed by the same letter are not significantly different at 5%,
according to Duncan’s New Multiple P.ange test.



Table 18« Yield, and concentration of phosphorus, aluminum, iron, and magnesium in the tops
of four maize genotypes grown for 127 days in a field which received 0, 112, and
224 kilograms per hectare ?2^5* Values represent the mean of four replications.

Genotype
PpOc- applied 

(Rg/ha)
Yield 

(metric tons/ha) %? ppm Al ppm Fe 9(Mg

0 50.96 abc* 0.26 d 82 abc 83 ab 0.25 b
Cornell 110 112 34.74 abc 0.29 cd 97 ab 94 ab 0.26 b

224 27.46 c 0.41 ab 47 be 73 b 0.28 b

0 31.80 abc 0 . 3 0  bed 74 abc 79 ab 0.32 ab
Seneca XXI55 112 34.32 abc 0.46 a 83 abc 85 ab 0.34 ab

224 32.22 abc 0.38 abc 65 abc 77 ab 0.34 ab

0 27.74 be 0.32 bed 59 abc 80 ab O . 3 4  ab
Wisconsin 112 36.56 ab 0.36 abed 73 abc 93 ab 0.40 a
335A 224 36.00 abc 0.31 bed 105 a f 04 a O . 3 3  ab

0 39.08 a 0.33 bed 66 abc 80 ab 0.31 ab
Agway 590-X i 12 35.44 abc 0.29 cd 64 abc 77 ab 0.27 b

224 39.65 a 0.32 bed 42 c 69 b 0.27 b

* Figures within a column followed by the same letter are not significantly different at 5%»
according to Duncan's New Multiple Range test.



Table 19* Content of phosphorus, aluminum, iron, and magnesium in the tops of four maize
genotypes grown for 127 days in a field which received 0, 112, and 2.24 kilograms 
per hectare ?2^5® Values represent the mean of four replications.

Genotype
F-Oc- applied Phosphorus Aluminum Iron Magnesium

(Rg/ha) mg/plant top

0 529 abc * 15.6 ab 16.2 ab 417 a
Cornell 110 112 545 abc 18.2 a 17.7 a 487 a

224 705 a 8.0 b 12.7 abc 492 a

0 416 be 8.7 b 10.1 be 463 a
Seneca XX155 112 633 ab 12.1 ab 12.0 abc 483 a

224 580 abc 8.7 b 11.3 be 510 a

0 350 c 7.2 b 9.6 c 405 a
Wisconsin 335A 112 530 abc 10.9 ab 13.7 abc 551 a

224 481 abc 18.9 a 17.6 a 549 a

0 597 abc 12.0 ab 14.3 abc 570 a
Agway 590-X 112 539 abc 12.3 ab 14.5 abc 513 a

224 514 abc 6.5 b 11.0 be 423 a

* Figures within a column followed by the same letter are not significantly different at 5%j
according to Duncan's New Multiple Range test.



shallow root system.

The total content of Mg was higher in all genotypes 

except Agway 590-X with increased P^O^ application. The results 

of this field study support findings in the second hydroponics 

study which showed decreases in tissue Mg with increasing Al 

levels in the root environment. High levels of P applied to a 

soil may render Al inactive and permit greater entry of Mg into 

the root. No consistent relationships existed between maturity 

rating, applied and Al and Fe levels of the plant tops.

These results are not surprising since significant differences 

in the hydroponics studies were primarily confined to the root 

systems of the plants.

Study 2. Because no-till systems of maize and forage crops 

production represent an avenue to reduce production costs, this 

technique was incorporated into Study 2. With no-till, plowing 

may not occur, and soil pH and soluble Al at lower soil depths 

may cause an unusual and inefficient pattern of nutrient use.

Root morphology and root depth of a genotype may play an important 

role in plant growth and nutrient uptake under no-till culture 

where the soil is left largely undisturbed.

This study was undertaken to determine the response of 

the four maize genotypes to no-till conditions when compared to 

conventional tillage culture. Figure 10 illustrates the two 

tillage systems used in this investigation. Special emphasis 

was placed on the root systems of the genotypes and the possible 

relationships to maturity rating and nutrient uptake.

Soil samples were taken from the plowed and no-till plots



Figure 10. No-till (A) and conventional tillage 
investigation.

(B) systems used in the second field
Coo
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prior to planting. The soil samples were taken at 10 cm incre

ments to a depth of 40 cm and analyzed for cation exchange 

capacity (CEC), pH, P, Al, Fe, and Zn. The results of these 

soil analyses are presented in Table 20.

Cation exchange capacity decreased with depth in the 

no-till (undisturbed) soil as did the exchangeable bases with 

the exception of Na (Table 20). Phosphorus concentration of the 

no-till soil was substantially higher in the top 10 cm indicating 

a lack of movement of fertilizer P applied to the surface in a 

no-till study the previous year. Soil pH decreased with depth 

showing the presence of highly acid subsoils, a condition 

favoring increased solubility of Al and Fe.

Results of the analysis of the plant tops grown under 

no-till and conventional tillage systems for 3?> 62, 93, and 110 

days are given in Tables 21, 22., 23, 24, 25, and 26. After 37 

days under no-till conditions, dry weight of the plant tops 

showed a decrease with increasing maturity of the genotypes.

This decrease indicated better growth of the early genotypes 

early in the season under no-till conditions when compared to the 

later genotypes. After 37 days, P content of the tops decreased 

with maturity rating of the genotypes under no-till conditions, a 

result not occurring under conventional tillage (Table 21). This 

decrease indicates that the early genotypes at this stage of

development are more efficient in P absorption when compared to

the late genotypes. This may be especially true when the soil

temperatures are relatively cool, on mulched plots which are not

disturbed by plowing, and when the fertilizer P is applied on the
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Table 20. Analysis of the soil used in the no-tillage field 
investigation. Values represent the mean of three 
replications.

Culture  Depth of soil sample (cm)____
system_______ Analysis_____ 0-10 1 O'-20_____ 20-50_____ 30" 40

Exchangeable 
bases (meq/
100g)
Mg 0.89 0.80 0.68 0.38
Ca 3.87 2.30 1.95 0.75
K 0.58 0.15 0 .13 0.03
Na 0.22 0.21 0.21 0.19

No-tillage Cation 
system exchange

capacity 6.51 6.12 5.93 4.22
P (ppm) 3.9 1.9 2.0 1.7
Al (ppm) 12.9 21.9 25.7 33.3
Fe (ppm) 46.4 53.9 71.7 32.if
Zn (ppm) 4.0 3.1 4.2 1.7
PH 5.63 4.92 4.74 4.73

F (ppm) 1.8 1.7 1.8 1.6
Conventional Al (ppm) 24.1 23.7 23.8 37.6
tillage Fe (ppm) 37.8 41 . 8 41.9 28.4
system Zn (ppm) 4.3 3.2 4.5 1.7

pH 4.78 4.99 4.75 4* 68



Table 21. Top dry weight, and concentration and content of phosphorus, iron, aluminum, 
and magnesium in the tops of four maize genotypes grown for 37 days under 
no-till or conventional tillage systems. Values represent the mean of four 
replications.

Tillage Concentration Dry weight
Genotype system % P ppm Fe ppm Al % Mg (g)
Cornell 1 1 0 No-till 0 . 3 4 a* 107 a ^ 8.7 a 0.27 a 6.52 a

Conventional 0.28 A** 192 AB’1" 20.7 A 0.34 A 4.76 A

Seneca XXI55 No-till 0.28 a 1 46 a 17.4 a 0.28 a 5.82 ab
Conventional 0.34 A 199 AB 24.8 A 0.35 A 4.93 A

Wisconsin 335A No-till 0 . 3 0  a 94 a 7.6 a,-, 0.31 a 4.61 ab
Conventional 0.28 A 245 A^ 30.8 k/f 0.35 A 4.96 A

Agway 590-X No-till 0.29 a 102 a 9.3 0.29 a 4.03 b
Conventional 0.32 A 179 B 29.3 A" 0.38 A 4*59 A

* Lower case letters within a column that are different indicate significant differences 
between genotypes under the no-till culture system. These differences are significant 
at 5%, according to Duncan's New Multiple Range test.

**Upper case letters within a column that are different indicate significant differences 
between genotypes under the conventional tillage system. These differences are 
significant at 5%> according to Duncan's New Multiple Range test.

# Indicates significant differences within a genotype between the no-till and conventional 
tillage systems. These differences are significant at 5%, according to Duncan's New 
Multiple Range test.



Table 21. (Continued)

Genotype
Tillage Content (mg)
system P Fe Al Mg

Cornell 110 No-till 22.1+ a 0.70 ab 0.05 ab 18.2 a
Conventional 13.8 A 0.92 AB 0 . 10 A 16.5 A

Seneca XX155 No-till 18.0 ab 0.78 a 0.10 a 16.3 a
Conventional 16.7 A 0.98 AB 0.12 A 17.1+ A

Wisconsin 335A No-till 15.1 ab 0.42 8CJ,' 0.03 1 4.8 a
Conventional 11+.0 A 1 .20 A ^ 0.15 A * 17.9 A

Agway 590-X No-till 12.2 b 0.34 c 0.03 11.6 a
Conventional li+.3 A 0.75 B 0.1 1 A 'r 17.9 A



Table 22. Top dry weight, and concentration and content of phosphorus, iron, aluminum, 
and magnesium in the tops of four maize genotypes grown for 62 days under 
no-till or conventional tillage systems. Values represent the mean of four 
replications.

Genotype
Tillage 
syst em % P ppm

Concentration 
Fe ppm Al 5b Mg

Dry weight
(s)

Cornell 110 No-till 0.20 a" 42.5 a 37.2 a 0.25 b 63*4 a
Conventional 0.15 A** 42.9 A 37.0 A 0.29 B 59.8 A

Seneca XX155 No-till 0.20 a 39.2 a* 54.0 a 0.29 a 67.0 a
Conventional 0.16 A 49.5 A" 49.9 A 0.28 B 80.9 A

Wisconsin 335A No-till 0.23 a* 40.3 a 36.1 a 0.28 ab 6 8 . 4  a
Conventional 0.15 A 43.6 A 47.7 A 0.31 AB 68.0 A

Agway 590-X No-till 0.20 a 39.9 a 41.6 a 0.28 ab 44.4 a
Conventional 0.19 A 44.5 A 72.2 A 0.34 A " 67.5 A

* Lower case letters within a column that are different indicate significant differences 
between genotypes under the no-till culture system. These differences are significant 
at 5%» according to Duncan's New Multiple Range test.

** Upper case letters within a column that are different indicate significant differences 
between genotypes under the conventional tillage system. These differences are 
significant at 5%> according to Duncan's New Multiple Range test.

# Indicates significant differences within a genotype between the no-till and conventional 
tillage systems. These differences are significant at 55-» according to Duncan's New 
Multiple Range test.



Table 22. (Continued)

Tillage ________________ Content (mg)______________________
Genotype______________ system_________ P_____________ Fe_____________ Al____________ Mg.

Cornell 110 No-till 116.5 ab 2.7 a 2.2 a 155 ab
Conventional 90.0 A 2.6 B 2.2 A 179 A

Seneca XXI55 No-till 139.8 ab 2.7 a 3.6 a 199 a
Conventional 131.9 A 3.9 A 3.8 A 233 A

Wisconsin 335A No-till 164.5 a 2.6 a 2.2 a 193 a
Conventional 108.0 A 3.0 AB 3.2 A 213 A

Agway 590-X No-till 91.1 b 1.7 a 1.8 a 128 b
Conventional 132.4 A 3.0 AB 4.6 A 229 A



Table 23. Top dry weight, and concentration and content of phosphorus, iron, aluminum, 
and magnesium in the tops of four maize genotypes grown for 93 days under 
no-till or conventional tillage systems. Values represent the mean of four 
replications.

Genotype
Tillage
system

Concentration Dry weight
% P ppm Fe ppm .Al % Mg (g)

Cornell 110 No-till 0.19 a* 406 a 47.8 a 0.22 a 348.9 a
Conventional 0.1? AE* ♦ 450 A 51.9 A 0.25 A 291.4 A

Seneca XX155 No-till 0.15 a 313 b j.. 41.5 a 0.22 a 179.5 b
Conventional 0.12 P. 401 A 43.6 A 0.25 A 255.0 A

Wisconsin 335A No-till 0.18 a 293 bj, 58.1 a 0.22 Q 235.8 b
Conventional 0.18 AB 455 A * 47.8 A 0.26 A 245.4 A

Agway 590-X No-till 0.14 a 274 b 3 1 . 2 a 0.23 a 261.6 ab
Conventional 0.21 A 316 E 45.5 A 0.25 A 269.5 A

* Lower case letters within a column that are different indicate significant differences 
between genotypes under the no-till culture system. These differences are significant 
at 5%, according to Duncan's New Multiple Range test.

♦♦Upper case letters within a column that are different indicate significant differences 
between genotypes under the conventional tillage system. These differences are 
significant at 5?s, according to Duncan's New Multiple Range test. 

it- Indicates significant differences within a genotype between the no-till and conventional 
tillage systems. These differences are significant at 5%, according to Duncan's New 
Multiple Range test.



Table 23. (Continued)

Tillage ______________ Content (mg)___________________
Genotype_______________ system_________ P___________ Fe____________ A1__________ K£_

Cornell 110 No-till 699 a 139.3 a 16.5 a 793
Conventional 524 A 134.9 A 15.6 A 738

Seneca XX155 No-till 317 b 64.0 b« 8.5 a 452
Conventional 311f A 1 0 1.3 AB'V 11.0 A 644

Wisconsin 335A No-till 423 ab 69.2 b ,, 1 3 . 2 a 525
Conventional 439 A 112.7 AB* 11.9 A 651

Agway 590-X No-till 357 ab 71.7 b 8.2 a 604
Conventional 567 A 86.3 B 12.4 A 671



Table 24. Population, percent dry matter, ear dry weight, silage produced, and dry matter
production of four maize genotypes grown for 110 days under no-till or conventional
tillage systems. Values represent the mean of four replications.

Genotype
Tillage
system

Population
(plants/ha)

Percent 
dry matter

Ear dry 
weight (g)

Silage 
(metric ton/ha)

Dry matter 
(metric ton/1

Cornell 110 No-till 10125 ab* 26.8 a_u 353 a 35.2 ab 9.4 a
Conventional 8808 B** 31 .4 A" 449 A 26.2 E 8.2 B

Seneca XX155 No-till 8808 b 19.6 b^ 288 ab 31.6 b 6.2 b
Conventional 8910 B 26.1 4 12 A 27.2 E 6.9 B

Wisconsin 335A No-till 91 12 ab 21.1 b 275 ab 37.1 ab 7.8 ab
Conventional 10428 AB 21.7 C 384 AB 3 1 . 6  E 6.7 B

Agway 590-X No-till 11643 a 19.1 b 201 b 40.6 a 7.7 ab^
Conventional 12352 A 21.9 0 270 B 48.7 A 10.7 A ■'

* Lower case letters within a column that are different indicate significant differences 
between genotypes under the no-till culture system. These differences are significant 
at 5%, according to Duncan's New Multiple Range test.

**Upper case letters within a column that are different indicate significant differences
between genotypes under the conventional tillage system. These differences are significant 
at 5%, according to Duncan's New Multiple Range test.

#■ Indicates significant differences within a genotype between the no-till and conventional 
tillage systems. These differences are significant at 5%, according to Duncan's New 
Multiple Range test.



Table 25. Concentration and content of phosphorus, iron, aluminum, and magnesium in the tops
of four maize genotypes grown to 110 days under no-till or conventional tillage
systems. Values represent the mean of four replications.

Concentration
Genotype system % P ppm Fe ppm A1 % Mg

Cornell 110 No-till
Conventional

0.1? ab* 
0.22 A **

359 a 
257 E

35.3
29.1

a
A

0.26 a 
0.25 A

Seneca XX155 No-till
Conventional

0.23 a 
0.21 A

321 a 
209 E

35.3
31.1

a
A

0.26 a 
0.23 A

Wisconsin 335A No-till
Conventional

0.18 ab 
0.20 A

331 a 
286 AB

29.0 
39 .4

a
A

0.25 a 
0.23 A

Agway 590-X No-till
Conventional

0.15 b 
0.13 E

2 3 0 a.u 
407 k*

37. 4 
43.5

3.

A
0.21 a 
0.26 A

* Lower case letters within a column that are different indicate significant differences 
between genotypes under the no-till culture system. These differences are significant 
at 5%, according to Duncan's New Multiple Range test.

**Upper case letters within a column that are different indicate significant differences
between genotypes under the conventional tillage system. These differences are significant 
at 5%, according to Duncan's New Multiple Range test.

# Indicates significant differences within a genotype between the no-till and conventional 
tillage systems. These differences are significant at 57=, according to Duncan's New 
Multiple Range test.
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Table 25. (Continued)

Tillage  Content (mg)___________________
Genotype________________________________ P______________ Fe_____________ Al______________ Mg

Cornell 110 No-till 418.0 ab 85.9 a 8.4 a 613 a
Conventional 555.1 A 62.8 B 7.2 A 614 A

Seneca XX155 No-till 521.7 a 68.7 ab 7.6 a 573 ab
Conventional 537.8 A 53.0 3 8.4 A 592 A

Wisconsin 335A No-till 484.7 ab 83.9 a 7.6 a 672 a
Conventional 514.1 A 73.0 AB 9.9 A 600 A

Agway 590-X No-till 306.6 b 46.2 b.v 7.7 a 438 b
Conventional 352.0 A 105.5 A 10.8 A 720 A



Table 26. Removal of phosphorus, iron, aluminum, and magnesium from soil by four maize
genotypes grown to 110 days under no-till or conventional tillage systems.
Values represent the mean of four replications.

Tillage P Fe Al Mg
Genotype system kg/ha removed

Cornell 110 No-till
Conventional

22.96
29.78

a*
A**

4.93 a 
3.36 E

0.50
0.38

a
R 36.93

32.44
a
B

Seneca XX155 No-till
Conventional

28.3k
28.09

a
A

3.68 a 
2.80 E

0.41
0.38

a
E

30.73
31.95

a
B

Wisconsin 335A No-till
Conventional

26.72
32.47

a
A

4.68 a 
4.64 B

0.42
0.62

a
AB

36.93
38.25

a
AB

Agway 590-X No-till
Conventional

21.72
26.08

a
A

3.24 a, 
8.15 A'y

0.54
0.83

a
A

31 .21 
53.92 1*

* Lower case letters within a column that are different indicate significant differences 
between genotypes under the no-till culture system. These differences are significant 
at 5%, according to Duncan's New Multiple Range test.

**Upper case letters within a column that are different indicate significant differences 
between genotypes under the conventional tillage system. These differences are significant 
at 5%5 according to Duncan’s New Multiple Range test. 

ii Indicates significant differences within a genotype between the no-till and conventional 
tillage systems. These differences are significant at 5%> according to Duncan's New 
Multiple Range test.
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surface. The genetic endowment of a shallower root system in 

the early genotypes compared to the later genotypes may also be 

a factor in the above response.

The early genotypes may utilize P to confer some degree 

of protection from toxic levels of Al (=25 ppm) which exists at 

the 20-.50 cm soil depth. Visual effects of 25 and 50 ppm soluble 

Al on root development were seen in Figure 9» Since P is not 

mobile in the soil and tends to stay in the upper regions of the 

soil profile, roots of the early genotypes may remain shallow 

rather than extend to a greater depth. The relatively shallow 

root system of an early genotype (Seneca XXI 55) and the deeper, 

more vertical root system of a later genotype (Wisconsin 535A) 

after 62 days growth are shown in Figure 11. The differences in 

root extensiveness and morphology may explain the increased 

growth and P uptake of the early maturing genotypes after 37 

days in the field.

Iron content of the later genotypes after 37 days growth 

was significantly lower than that of the earlier maturing geno

types. The concentration of Fe decreased as the plants matured, 

indicating that most Fe is taken up very early in the season and 

is diluted when the plant mass increases. Throughout the growing 

season P’e, Al, and Mg content of the tops was higher under 

conventional tillage than under no-till conditions. These 

differences between cultural methods were especially large early 

in the season. Plowing the soil will tend to make root penetration 

easier as well as permit a greater production of fine roots which 

may explain the greater growth and increased nutrient uptake of 

the plants under conventional tillage.
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Figure 11. Shallow rooting pattern (A) of Seneca XXI55 > an early 
maturing genotype as opposed to the deep rooting pattern (B) 
produced by Wisconsin 335A, a later maturing line.

e
v
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Aluminum content was higher in the early maturing geno

types, a reflection of their higher dry weight relative to the 

late genotypes after 37 days of growth. Magnesium content at 

this stage of development tended to be lower in the later maturing 

genotypes. This effect was observed throughout the growing 

season (Tables 2?.., 23, 2A, 25, and 26).

After 62 and 93 days of growth (Tables 22 and 23), no 

significant differences in weight existed in plants grown under 

eicher cultural method. However, P concentration and content 

were higher in the early genotypes under no-till conditions and 

higher in the later genotypes under conventional tillage. These 

data probably reflect the shallow rooting pattern of the early 

genotypes and consequently more roots in the high soil P zones 

under no-till culture.

After 110 days of growth the plant tops were harvested 

and yield data were taken (Table 2k)* The later genotypes 

(Wisconsin 335A and Agway 590-X) had higher populations under the 

conventional culture. Under no-till conditions, Seneca XX155 

produced populations which were significantly lower than the 

other genotypes. All the genotypes exhibited a higher percent 

dry matter under conventional tillage when compared to the no-till 

system. These results are probably due to less soil moisture 

during the growing season under conventional tillage in comparison 

to the no-till plots. The shallower root systems of the early 

genotypes tend to magnify the consequences of low soil moisture 

with the conventional tillage system.

Ear dry weight (Table 2k) of the early maturing genotypes 

was greater than those of the later genotypes. This was probably



due to the fact that the later genotypes were not fully mature 

after 110 days of growth. The dry weight of ears was always 

greater under conventional tillage when compared to no-till 

culture.

Silage yield after 110 days (Table 2k) was higher under 

no-till conditions when compared to conventional tillage in all 

the genotypes except Agway 590-X. This likely resulted from a 

higher soil moisture under no-till conditions, a higher percent 

moisture in the plant tissue, and a delayed maturity. Agway 

590-X, which is the latest maturing genotype, was not fully mature 

and therefore contained more water than was present in the other 

genotypes. Due to the higher water content of both Wisconsin 

335A and Agway 590-X, silage yield for these genotypes was higher 

under both culture systems. The earliest maturing genotype 

(Cornell 110) produced the most dry matter under no-till condition 

while the latest genotype (Agway 590-X) produced the most dry 

matter under conventional tillage conditions (Table 2k), Such 

results indicate that the choice of hybrid may be dictated by 

the culture method to be used.

Plant tissue levels of P, Fe, Al, and Mg at harvest are

presented in Table 25. The utilization of P was better by all

genotypes when under conventional tillage. The absorption of P

under conventional tillage decreased with increasing maturity

rating of the genotypes. This decrease indicates a greater and

more rapid P uptake by the early genotypes compared to the late

genotypes in a 110 day growing season. Similar results were seen
32in Figure k where P was utilized to determine the rate of p 

absorption by the genotypes. An elevated Al level in the tops



97

of plants grown under conventional tillage did not seem to inter

fere with the absorption of P or Mg.

Under conventional tillage, Al and Fe levels in the plant 

tissue generally increased with increasing maturity of the geno

type. These data would imply a higher mobility of Al and Fe in 

the late genotypes and less tendency for immobilization of these 

elements via a P-Al or P-Fe interaction within the root. The 

association between Al and Fe in terms of similarity of uptake 

pattern was seen in the field study with F^Ck rates and in the 

hydroponic studies. Their role .in affecting phosphate utilization 

by plants growing in acid soils appears significant.

Magnesium concentration and content did not show any 

apparent relationship to maturity rating of the genotypes or to 

the type of tillage practice employed. However, it is apparent 

that Agway 590-X showed superior uptake of both Fe and Mg when 

compared to the other genotypes, especially under conventional 

tillage practices. The reverse was true with respect to the 

concentration and content of P by Agway 590-X. Under both tillage 

practices, Agway 590-X showed less uptake and accumulation of P. 

Under conventional tillage it also absorbed the highest amount of 

Al and Fe of any of the genotypes. However, the highest dry 

matter yield was produced from this genotype under conventional 

conditions. Thus, no harmful effect was apparent from the 

relatively high Al and Fe or low P levels under those field 

conditions.

Table 26 presents the total removal of P, Fe, Al, and Mg 

per hectare by the maize genotypes. Agway 590-X removed sign

ificantly higher amounts of Fe, Al, and Mg under conventional



tillage practices. However, under both no-till and conventional 

tillage Agway 590-X showed less P removal when compared to the 

other genotypes. There was no correlation between maturity 

rating of the genotypes and total P removal probably due to the 

increased population of the later genotypes at harvest.

'When comparing the elemental removal of Fe, Al, and Mg 

by the genotypes, it can be seen that the early lines (Cornell 

110 and Seneca XX155) remove more of these elements under no-till 

conditions while the later genotypes (Wisconsin 335A and Agway 

590-X) remove more under conventional tillage. These data show 

increased efficiency of absorption of these elements by the early 

lines under no-till culture; the efficiency of the later genotypes 

is enhanced by conventional tillage practices. Such results 

indicate that consideration should be given to matching the proper 

maize genotype to the proper culture practice in order to achieve 

the highest possible performance from applied fertilizers.
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SUMMARY AND CONCLUSIONS

Four maize genotypes (Cornell 110, Seneca XX155, Wisconsin 

335A, and Agway 590-X) were selected for these investigations. 

Cornell 110 is the earliest and Agway 590-X the latest. These 

genotypes were chosen to determine bases for the differential 

uptake and accumulation of nutrients, especially P, by long and 

short season lines. Experiments were conducted to investigate 

the effects of root temperature, volume, and morphology, root 

zone pH and Al concentration, and no-till culture on the nutri

tional behavior of early and late season genotypes.

Under hydroponic conditions in the root temperature study, 

it was shown that dry weight of tops and roots were generally 

higher at a root temperature of 2.5C than at 15.5C. Early geno

types grew faster than later genotypes, regardless of root temper

ature. Also, an association between the maturity rating of the 

genotypes and their accumulation of P and Fe was observed; early 

genotypes contained more P in both tops and roots while Fe trans

location from roots to tops seemed to be retarded. A P-Fe precip

itate in or on the root is a strong possibility.

The differential rate of P uptake by the four genotypes

was investigated under greenhouse conditions using radioactive 
32P. At seven weeks of age, the early genotypes (Cornell 110 and 

Seneca XX155) contained substantially more radioactivity than did 

Wisconsin 335A or Agway 590-X. These results indicate that 

differences did exist in P-absorption rates among genotypes and 

that the early genotypes showed a greater ability to absorb P 

from a hydroponic solution when compared to later genotypes.
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Also, visible Fe-deficiency symptoms were observed in all the 

genotypes, particularly the early ones. These symptoms suggest 

that a P-Fe complex was formed in or on the root which prevented 

Fe from being translocated to the tops. Also, as was shown in 

the root temperature studies, the early lines accumulated signif

icantly more dry matter than the later genotypes when grown for 

the same length of time.

Variation in root volume among the genotypes was inves

tigated as a possible explanation for their differential growth 

and nutrient uptake. Differences in root volume did exist between 

the genotypes but no trends were apparent to associate these 

differences with previously observed nutrient absorption character

istics.

Differences in sensitivity of the four genotypes to various 

degrees of soil acidity was investigated under greenhouse condit

ions. Under highly acid soil conditions, early genotypes possess 

more root system in relation to the tops while the reverse was 

true of the later genotypes. Dry weight data show that the 

increase in top/root ratio was the result of decreased root growth 

with increased soil pH rather than increased top growth. A 

substantial reduction in Fe and Al content of the roots of the 

early lines was observed with the addition of lime to the soil. 

However, in the absence of applied lime where the soil was highly 

acidic, P’e and Al content of the roots of the early genotypes was 

substantially higher than that of the later lines. These data 

suggest that under acid soil conditions, P may be complexing with 

Fe or Al to form an insoluble phosphate in the roots of the early
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genotypes. An Fe-phosphate may also explain the visual Fe-defic- 

iency symptoms expressed by the early maturing lines.

The effect of Al on growth and differential uptake of P 

by the genotypes was further investigated by growing the plants 

in nutrient solutions containing low concentrations (0, 2.5» 5> 

and 10 ppm) of Al. It was shown that low levels of Al in the 

nutrient solution had a stimulatory effect on top dry weight. 

Increased Al levels produced higher top dry weight of the early 

lines (Cornell 110 and Seneca XX155) while the later genotypes 

(Wisconsin 335A and Agway 590-X) increased top dry weight until 

10 ppm Al was reached, at which point it decreased. These results 

suggest that later genotypes are more susceptible to decreases in 

top growth due to the presence of soluble Al in the root environ

ment than are early maturing lines. This sensitivity to Al by 

later genotypes may play a significant role in their growth in 

the northeastern U.S. where acid soils are common and soluble Al 

levels are relatively high.

The high content of P observed in the early genotypes 

may be partially responsible for the ability of these genotypes 

to withstand high amounts of soluble Al in the root zone. A P-Al 

complex may form in the tissue rendering the Al harmless. Under 

field conditions, the roots of the early genotypes may also remain 

near the surface where the pH is higher and P is more available 

to the roots.

A second greenhouse-hydroponics study was initiated to 

determine the effect of increased levels of Al on the four geno

types. The plant roots were exposed to Al levels of 0, 10, 25> 

and 50 ppm. When the nutrient solutions were changed after 19
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days of growth, P was withheld to reduce the P-Al interaction and 

therefore increase the sensitivity of the Al response.

The impact of substrate Al was on the root system only, 

the tops showed no response to added Al in the root zone. However, 

the effect of Al on the plant tops may be through a reduction of 

P translocation. Dry weight of all the genotypes increased with 

increasing Al levels up to 25 ppm. At 25 and 50 ppm Al in the 

nutrient solution, the roots of Cornell 110 and Seneca XXI55 

showed stunting and malformation. These symptoms of Al toxicity 

did not occur in the later genotypes (Wisconsin 335A and Agway 

590-X) until 50 ppm Al was reached in the nutrient solution.

These results support the theory that P in the roots of early 

lines affords a degree of protection from A1. in the root zone.

Since no P was present in the solution, the roots of the early 

lines were not protected and an Al toxicity resulted. At low Al 

concentrations in the root zone, the translocation of P was 

increased in the early lines. These lines accumulated more P 

compared to the later maturing genotypes. Soluble Al in the root 

zone also appeared to affect the entry of Kg into the roots and 

was strongly associated with the maturity rating of the genotypes. 

The earliest plants contained the most Mg. The Al-Mg interaction 

could occur because Al is more effective in competing for exchange 

sites on the root or a common carrier of Al and Mg may be saturated 

by Al.

Two field studies were initiated to determine if the 

results of the greenhouse experiments assumed significance under 

field conditions. In Study 1, the four genotypes were planted in 

plots receiving 0, 112, and 224 kg/ha P20^. After 53 days of
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growth, a significant increase in yield occurred with increasing 

P applications. After 12? days of growth the data show that early 

genotypes were more responsive to added P as reflected by a close 

association between applied P and absorbed P. These results 

support the findings of the hydroponics study and show that early 

lines accumulated more P when it was available to the root. The 

PpOr was applied uniformly to the plots and not banded; the early
C. J

genotypes may be taking up more P simply due to a more shallow 

rooting pattern.

The total content of Mg in all the genotypes in the first 

field study increased with increasing application. These

results lend support to the findings of the greenhouse-hydroponics 

study where tissue Mg levels decreased with increasing Al levels 

in the root environment. High levels of P in a soil can render 

Al inactive and permit a greater uptake of Mg by the root.

In the second field study, the four genotypes were tested 

under no-till and conventional tillage practices. After 3? days 

growth under no-till conditions, P content and dry weight of the 

tops decreased with maturity rating of the genotypes indicating 

higher P uptake and better growth of the early lines early in the 

season under no-till conditions. This may be especially important 

when soil temperature is relatively cool, as is the case in the 

Northeast in the spring, especially under no-till conditions.

The roots of the early genotypes tend to remain shallow 

and do not extend very deep into the acid subsoil where soluble 

Al may create toxic conditions. The liming of soils and the 

associated benefits to crops is likely related to reduced soluble
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Al rather than to the added Ca or increased pH. Early genotypes 

may utilize P more efficiently under no-till conditions since it 

is not mobile in the soil and tends to stay in the upper regions 

of the soil profile. The shallower rooting pattern of the early 

lines may also be responsible for the higher P content exhibited 

by these genotypes when compared to the later lines.

Throughout the growing period, Fe, Al, and Mg content was 

higher under conventional tillage when compared to no-till condi

tions, undoubtably due to increased root penetration when the soil 

is loosened by plowing. However, P concentration and content was 

higher in the early genotypes under no-till conditions and higher 

in the later genotypes under conventional tillage. These results 

reflect the fact that the early lines have shallower root systems 

and consequently more roots in the high P zones of the soil.

The earliest genotype (Cornell 110) produced the most dry 

matter under no-till conditions while the latest genotype (Agway 

590-X) produced the most under conventional tillage, Also, it was 

shown that the early lines removed more Fe, Al, and Mg from the 

soil under no-till conditions while the latex' genotypes removed 

more under conventional tillage. These results indicate that the 

choice of which hybrid to plant may be dictated by the culture 

method to be used in order to achieve the highest possible perform

ance from applied fertilizers.
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