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PART I

THE EFFECTS OF COUPLE-STRESSES ON THE 

PROPAGATION OF WAVES IN AN UNBOUNDED VISCOELASTIC MEDIUM
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ABSTRACT

WAVE PROPAGATION IN VISCOELASTIC MEDIA

by

GARY KENNETH STEWART

In a linear viscoelastic medium with the couple stresses, the 

Green's function for an infinitely extended medium is examined and the 

wave propagation properties of the field are discussed by studying the 

analytical structure of the Green's function. It is observed that the 

longitudinal wave propagation is unaltered, and that the transverse 

mode undergoes a change (due to couple-stresses) with an appropriate 

wave number; and an overdaraped propagation mode is further modified 

due to viscoela.c effects. The consistency of the results is checked

for various specif cases.

The second part of the investigation deals with the problem of 

acoustic subbottom sediment identification and classification. The 

purpose of this study is to develop expressions for the acoustic response 

in a liquid halfspace overlying a multilayered halfspace consisting of 

viscoelastic soil and viscous fluid layers. The multilayered problem is 

solved using the Green's function formalism, integral transforms and by 

matching boundary conditions at each interface between layers. A 

recurrence relation is developed for the potentials in adjoining visco

elastic layers. This recurrence relation is applied successively to 

eliminate the potentials between the first and last viscoelastic layers.

xxii



Special cases of the multilayer problem are developed. Two 

viscoelastic layer halfspace cases are analyzed in detail for both 

finite and infinite depth of the overlying liquid. The integral form 

is evaluated by using digital computer and saddle-point approximation.

xxiii



CHAPTER I

INTRODUCTION

This report consists of two parts: 1) Effects of Couple-Stresses

in Linear Viscoelasticity, and the second part examines 2) Reflection of 

Acoustic Waves in a Liquid Halfspace Overlying a Multilayered Halfspace 

Consisting of Viscoelastic and Viscous Fluid Layers.

In theory of deformation of continua, originated by Voigt and 

amplified by E. & F. Cosserat [8], the couple per unit area, acting 

across a surface within a material volume or on its boundary, was taken 

into account in addition to the usual force per unit area. Some typical 

effects of such "couple-stresses" are exhibited, in this report, by 

means of solutions of problems of wave-propagation, vibration, stress- 

concentration and nuclei of strain— all within the framework of a 

linearized form of the couple-stress theory for perfectly elastic, 

centrosymmetric-isotropic materials.

A modern derivation of the Cosserat equations has been given by 

Truesdell & Toupin [9]. More recently, Toupin has derived the associated 

constitutive equations for finite deformation of perfectly elastic materials. 

Upon linearization, Toupin's equation becomes identical with those which 

are obtained, for example, by Aero & Kuvshinskii, without first establishing 

constitutive equations for finite deformation. On the other hand, Grioli 

has also obtained constitutive equations for finite deformation— equally 

correct, though of different form; but, upon linearization, he obtains 

results at variance with Toupin's.



In the linear theory that takes into account couple-stresses in a

centrosymmetric-isotropic, elastic material, there is an additional modulus

of elasticity (the ratio of couple-stress to curvature or twist, i.e., a

modulus of bending and twisting) with the dimensions of force. The square

root of the ratio of the bending-twisting modulus to the usual shear

modulus has the dimension of length. This length, £, is a material

property which carries with it all of the difference between analogous

equations or solutions with and without couple-stresses. The larger £

may be, the greater is the difference. Presumably £ is small, in

comparison with bodily dimensions and wave-lengths normally encountered,

as there appears to be no conclusive experimental evidence of its existence

However, even though small, its influence might became important as

dimensions of a body or wave-lengths diminish to the order of the length

£ . The assumption of positive-definiteness of the internal energy-density

requires the bending-twisting modulus to be positive. In the contrary case 
2£ would be replaced by its negative, in the equations; and the forms of 

solutions would be drastically different.

Recently, in a linear elastic field with couple stresses, the 

tensor Green's function is obtained by A. Yildiz [7].

It is observed that the longitudinal wave propagation is unaltered, 

and that the transverse mode (VS-type) undergoes a change (due to couple- 

stresses) with a modified wave number, and a new overdamped propagation 

mode is generated.

The purpose of the present work is (to consider within the frame

work of the theory of asymmetric elasticity) to take into account of the 

viscous effects.



3

Recently, viscoelastic as well as thermo-viscoelastic field with 

the couple stresses has been discussed by M. Yildiz [1 & 2].

The second part of the thesis is related to the identification.

The problem of remote acoustic classification and identification of 

sediments on the continental shelf has become increasingly important due 

to increased interest in the coastal zone. Presently, most acoustic 

sounding for sediments is done using seismic profiling where the intensity 

of the return is indicated as a function of pulse return time. This 

technique is valuable in obtaining a qualitative understanding of the 

subbottom; however, more detailed, quantitative information is usually 

required for underwater construction and commercial dredging for sand 

and gravel. In addition, it is difficult to interpret multiple return 

signals which imply sublayering in the sediment.

Recent sounding and coring data taken as part of the joining 

UNH-Raytheon Sea Grant project in Narragansett Bay and in Massachusetts 

Bay shows that commercially important sand and gravel deposits lie on a 

first layer 10 to 15 feet deep, below which lies finer clay sediment. 

Therefore, knowledge of the thickness of the first layer is important 

from a commercial standpoint.

In this investigation, we take into account the multiple layering 

of the subbottom using a realistic three-dimensional model for the coupled 

acoustic-viscoelastic field. Earlier investigators, notably Thomson and 

Haskell considered only the two-dimensional case for dissipationless 

solids. Hamilton in [25] concludes that unconsolidated underwater 

sediments can be modeled as elastic solids. Recently, Hamilton has 

presented data indicating that the sediments behave as a lightly damped
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elastic solid. Subsequently, Hamilton's measurements were verified by 

Celikkol and Vogel.

The Green's function integral, containing the complete description 

of the acoustic return signal as a function of all the water and sediment 

parameters involved, is too complex to be integrated in closed-form.

Therefore, IBM 360-50 digital computer subroutines were prepared 

in FORTRAN IV (G-level) to compute the value of the integral as various 

parameters were varied, to obtain the information and insight needed for 

the optimum system design for remote acoustic sensing of the ocean 

sediments.

Numerical integration on the computer presents many difficulties 

due to the behavior of the integrand. The integrand, when plotted versus 

integration variable £, displays large rapid fluctuations that result in 

large computation times, serving to make the exact integration procedure 

rather expensive.

However, several excellent approximations for this integral have 

been obtained analytically. One of these, known as a "saddle-point" 

approximation, where contributions from branch cut singularities are 

dominant and this represents reflected soundwaves from the layered thermo

viscoelastic subbottom.

So far, we have studied the sound responses in deterministic, as

well as, in statistical form in (k,t) or (k,to) (see references [1] , [2] , [7] , [36])
—yand at present in (r,w) domains with the following purpose in mind: 

to classify the characteristics of the sea floor soil according to their 

thermo-elastic and thermo-viscoelastic transport coefficients. To interpret 

remotely obtained data (which are in the form of analogue and digitized



5

forms) and correlate them correctly with the coring experiments we had 

to construct the appropriate analytically realistic engineering models.

We have two types of data which are available to us: digitized 

data (through which we interpret Q of the thermo-viscoelastic soil), 

and analogue data (through which we interpret the reflection coefficient 

of the thermo-viscoelastic soil).

Keeping in mind that we have to design analytical models which 

corresponds oblique incident reflectivity measurement since the normal 

incident reflectivity measurement prescribes only the compressional 

elastic parameters of the thermo-viscoelastic soil (it is also necessary 

to describe elastic-shear parameters).

In this investigation, therefore, we obtained the numerical 

solutions of the multilayer Green's function via the spectral repre

sentation which reduces the oblique incident results to an integration 

which corresponds to an evaluation Fourier-Hankel transform in the 

transformed wave-number domain. The integrations involving the oblique 

incidence are performed first with the computer, and then by the 

method of saddle-point of the integration.
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CHAPTER II

FIELD DESCRIPTION OF A COSSERAT CONTINUUM

It is appropriate to begin an investigation into wave propagation 

phenomena in a linear viscoelastic medium with couple-stresses by review

ing linear Cosserat field theory. Therefore, the fundamental equations 

of the linear couple-stress theory of elasticity, given in the detailed 

derivation of Mindlin and Tiersten (1962), are reviewed here. An approach 

similar to the one taken by Graff and Pao (1967b) in their brief account 

of the basic elements of couple-stress theory is followed, whereby only 

those equations pertinent to the propagation of waves in a homogeneous, 

isotropic linear elastic medium are included.

Consider the motion of a portion V , of a material volume,

which is bounded by a closed surface S , whose outward unit normal

vector at each point is specified by n^ . Cosserat field theory is

formulated on the assumption that the remainder of the material volume

exerts loads on V , which consist, at each point along S , of a force

per unit area, > an(3 a couple per unit area, ; also' at each

point within V , there exist an extrinsic force per unit mass, f^ , and
(n)an extrinsic couple per unit mass, c^ . The force-stress vector T^ 

and the body-force vector f^ are polar vectors, whereas the couple-stress 

vector M.[n  ̂ an^ ^ e  body-couple vector c^ are axial vectors. The 

fundamental laws, namely the principles of conservation of mass, balance 

of momentum and moment of momentum, and conservation of mechanical energy, 

which govern the behavior of physical phenomena in a Cosserat continuum, 

are summarized, respectively, in the following system of field equations:
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d_
dt p dV = 0 , (2 .1)

V

d_
dt v.p dV = T.(n)dS +l 1 f . p dV ,x (2 .2)

V V

d_
dt e . ., x . v ,p dV = xgk 3 k ( e . . v T (n)+M.(n))dS + x^k 3 k x (e. x.f +c.)p dV , (2.3)ilk 3 k x

V V

d_
dt (— v.v.+U)p dV = 2 x x

V
(T.(n,v.+i«.(n)e..t ^ ) d S  x x 2 x xnk dx.

3

V

1 3vk(f.v.t— c.e. -— )p dV ,x x 2 x xik 9x.
3

(2.4)

where d/dt is the material time-derivative operator, p is the mass

density, x^ is the spatial position vector from a fixed origin, u^

is the material displacement, v^ is the material velocity duVdt ,

U is the internal energy per unit mass, 8/9x^ is the spatial gradient

operator, and e.. is the usual permutation symbol. Thus, in addition 13 K
to the usual surface force per unit area, the derivation of the Cosserat 

field equations takes into account the effects of a surface couple per 

unit area (see Figure 1), which have generally been neglected in the 

development of the classical theory of elasticity (Love, 1927). Such a 

consideration seems appropriate for materials with granular or crystalline 

structure, where the interaction between adjacent elements may introduce 

internal couples.

In order to specify the action at a point within a material volume 

or on its surface, nine components of couple-stress are required in addition 

to the usual nine components of stress. As the stress tensor is
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Components of stress and couple-stress in a varying two-dimensional field.



(ri)related to the stress vector T. over a surface with unit normal1
vector n . by 

3

T.(n) = x . .n. , (2.5)i D1 3

the couple-stress tensor y is related to the surface couple-stress 

vector M b y

M.^ = y . . n . . (2.6)i D1 3

Employing the relations in equations (2.1), (2.5), and (2.6) and the 

divergence theorem, the principles of conservation of linear and angular 

momentum, expressed in equations (2.2) and (2.3), yield the stress and 

couple-stress equations of motion, respectively,

3 t  . . dv.
— + pf = p — i (2.7)3 x . l dt

3

and

+  p c . +  e . . t  =  0  . ( 2 . 8 )3 Xj l ijk jk

It is observed in equation (2.8) that when spatially varying couple- 

stresses or body-couples are considered, the stress tensor is not 

necessarily symmetric. Conversely, if the stress tensor is symmetric, 

or even zero, the couple-stresses and body-couples need not vanish: only 

the sum of the first two terms in equation (2.8) must then be zero. If 

both the couple-stress tensor y^^ and the body-couple vector c^ are 

absent, the antisymmetric part of the stress tensor vanishes, and 

consequently, the stress tensor must be symmetric.
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The stress tensor may be expressed in terms of its symmetric
S Apart x . . and antisymmetric part t . . as il il

T. . = TS . + XA . , (2.9)
11 11 11

where

and

t"f . = ~~ (x . . +x . . ) (2 . 9a)19 2 i: ji

t  . = ^  (t, ,-t..) = - ;  e. e t . (2.9b)2 ji 2 13k kmn nm

Additionally, the couple-stress tensor may be expressed in terms of its 
Ddeviatoric part y „  and scalar part y ^  by the relation

y. . = yD . + 7  y»»5 . . , (2.10)ij 13 3 VL 10

where 5 is the Kronecker delta. Then, by substituting equation (2.9b) 

into equation (2.9) and using the latter with equation (2.10), equations

(2.7) and (2.8) may be combined to give an alternative form of the equation 

of motion:

3Ti± , 1 . r , 1 3pok . dvi r  ...r ir  +  2  h j k  +  p f i +1 e i j k  n r =  p  s r  ■ ( 2 - 1 1 )1 1 I 1

It should be noted that the antisymmetric part of the stress tensor and 

the scalar of the couple-stress tensor are not present in this form of 

the equation of motion. Characteristically, the antisymmetric part of 

the stress and the scalar of the couple-stress are left indeterminate 

in the treatment of Cosserat field equation (2.11).

Equation (2.11) can be expressed in still another form upon 

development of the constitutive relations. In formulating the constitutive 

equations, the procedure followed here is based on consideration of the
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functional form of the expression for internal energy. Employing 

equations (2.1), (2.5 - 2.8) and the divergence theorem, the principle 

of conservation of mechanical energy may be expressed as

dU S ^ i  1 3 Vk
P dt Tji 9x . 2 £ijk^^i 9x„9x. ' (2.12)1 I 1

Then substituting equation (2.10) into equation (2.12), the latter gives

dU S ^ i  1 D 3 Vk . .
dt Tji 9x. 2 eijkP£i 9xn9x.1 £ 1

It is observed in equation (2.13) that the antisymmetric part of the 

stress and the scalar of the couple-stress do not contribute to the 

internal energy.

At this point in the development, the theory, which so far has 

remained general, is specialized to apply to linear Cosserat fields. 

Therefore, the expression for internal energy in equation (2.13) must 

undergo linearization. Performing this operation, equation (2.13) becomes

2*9u. 9 u,• S i l  D kpU = t . . —--  + — e. p».- ----    , (2.14)i] 3x. 2 ink ti 9x,,9x.
3 t  3

where the material-time derivative reduces to a local-time derivative 

after linearization, or d( )/dt = 9( )/9t , and the local-time derivative

is denoted as 9( )/9t = ( ) . It is convenient to introduce the small-

strain tensor , which is related to the displacements by

9u. 9u.
e. . = - (r-^ + t- 1) , (2.15)ij 2 ox. Bx.

3 i
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and the curvature-twist tensor k .. , which is defined in terms of theiD
gradient of a small-rotation vector to. = e . 3u /9x asD 2 Dmn n m

UsJ.ng relations (2.15) and (2.16) in equation (2.14), the internal energy 

may be expressed alternatively as

S* D •pU=x..e..+y.,K... (2.17)ID ID id ID

It is of interest to account for the deformations produced by

the stresses and couple-stresses. From equation (2.9b), it may be seen
Athat, with i = j , t = 0 . In this instance, the normal components 

of the strain are related to the normal components of the stress by the 

usual stress-strain relations of classical linear elasticity. When
I\

i / j , however, 0 , and it is found that the symmetric part of

the shear stress produces the usual shear strains, while the antisymmetric 

part of the shear stress tends to produce local rigid rotations as 

indicated in Figure 2. The rotations are balanced by the couple-stresses 

and body-couples in accordance with equation (2.8). With regard to the 

deformations attributable to couple-stresses, the couple-stresses produce 

curvatures, as shown in Figure 3, which are related to the local rigid 

rotations according to equation (2.16). It can be shown from equation 

(2.16) that the components of the gradient of the rotation, that is, the 

components of the curvature-twist tensor, are expressible as eight 

independent linear combinations of the eighteen components of the strain 

gradient. Thus, the components of the curvature-twist tensor represent

K = — i = I
ij 3xi 2

3u). n (2.16)  0 ------
2 jinn 3 x . 3x i m
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Figure 2. Strain and unbalanced rotation produced by symmetric and antisymmetric parts of the 
shear stress (two-dimensional).
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Figure 3. Curvatures produced by couple-stresses (two-dimensional).
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the additional deformations that the continuum may undergo due to the

effects of couple-stresses. When couple-stresses are not taken into

account, the specific energy of an elastic medium may be expressed

solely as a function of the strain tensor.

If the internal energy is assumed to be a positive quadratic

function of e.. and k .. , a pair of constitutive relations can be il il
derived from equation (2.17). For a homogeneous, isotropic, linear 

elastic medium, these relations are

ST . .11
(2.18)

and

D V . . il 4r|1 k . . + 43' k , , , il li
(2.19)

where A' and y ' are the usual Lame parameters, while y' and 3' 

are newly introduced bending-twisting parameters. It is observed that 

the couple-stresses are proportional to the curvatures. Couple-stress 

has the dimensions of couple per unit area or force per unit length, 

while curvature is the reciprocal of length. Therefore, y' and 3' 

have the dimensions of force. When relations (2.15) and (2.16) are 

substituted into (2.18) and (2.19), and the latter are inserted into 

the linearized version of equation of motion (2.11),

3 t S . 32y° 3 c  3 2 u .

+ k  e' -v a t + Pf • + i  P E - -v = p  o (2-20)3 x. 2 ink 3x.dx» 1 2 11k 3x. „ 21 I t  l 3 t

one obtains Mindlin and Tiersten's (1962) displacement-equation of motion
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for a homogeneous, isotropic, linear elastic field with couple-stresses:

3 2 u .

3 x2
+ (A'+y')

3 2 u .
 1_
3x.9x. 1 3

+ n
~ 2  3 2 u  3 c  3 2 u ..3__ ,   n > . _ , 1 k i

2 ijkekmn 3x.9x i 2 PEijk 3x. P °3x
t

m j 3t

(2.21)

The mass density p in equations (2.20) and (2.21) is a constant as a 

result of the linearization.
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CHAPTER III 

FORMULATION OF THE PROBLEM

In the development of the previous chapter, a perfectly elastic 

medium was considered. For studies where small deformations occur, many 

elastic materials do not deviate grossly from perfectly elastic behavior, 

as is corroborated by experimental investigations with elastic materials, 

where the observed results agree quite well with the predictions of the 

elastic theory. It is well-known, however, that when materials are set 

in vibration, the vibrations are accompanied by dissipation, due to the 

conversions of elastic energy to internal energy. The various mechanisms 

by which this phenomenon occurs are collectively termed internal friction.

According to the work of Kolsky (1953) and others, dissipative 

behavior in solid media is found to be quite complex and to vary consider

ably with the nature of the medium. In general, it may be stated that 

the effect of internal friction is to produce attenuation and dispersion 

in the propagation of elastic waves. Several mathematically convenient 

mechanisms, which occasionally fit experimental data over a limited 

range of frequencies, have been proposed in order to describe energy 

dissipation in vibrating solid media. Yet, at present there is no 

satisfactory theory of internal friction in solid media, and more 

experimental data needs to be collected for further studies in this area.

One class of mechanisms that has been utilized to describe the 

dissipative behavior of elastic media is dependent on the assumption that 

in addition to the elastic restoring force, which is proportional to the 

displacement, a viscous dissipative force, which is proportional to the
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velocity, exists in the medium. Hence, a medium characterized by 

mechanisms of this type is called a "viscoelastic" medium. Within this 

class of internal friction mechanisms, the behavior of the viscoelastic 

medium may be represented by models consisting of elastic and viscous 

elements joined in either parallel, series, or slightly more complicated 

arrangements which combine the features of both of these models, depending 

on the relaxation properties of the medium. The more complicated models 

have been shown to give results more in accordance with the behavior of 

real solid media.

A viscoelastic model which features a parallel type of coupling 

between elastic and viscous elements was originally considered by Meyer 

(1874) and later extended by Voigt (1892). Another model for viscoelasticity, 

which consists of an elastic element connected in series with a viscous 

element, was suggested by Maxwell (1890). When the application of a load 

results in an irrecoverable deformation, the material is described best by 

the Maxwell model. On the other hand, the Voigt model applies favorably 

to a'material whose deformation upon loading approaches a constant value 

asymptotically with time and recovers slowly when the load is removed. It 

should be emphasized that very few solid media behave, even approximately, 

like either the Maxwell or Voigt model. To allow for the fact that a 

number of different relaxation phenomena may occur simultaneously in a 

solid medium, more complicated models have been considered. Thus, it is 

only when the solid medium is considered as having a number of different 

relaxation times, that is, a relaxation time spectrum, that the dynamic 

behavior can be defined adequately. The only reason for using simpler 

models with single relaxation times is that the more complex models 

require extremely involved mathematics. However, when the dynamic
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mechanical behavior of a viscoelastic medium is required for only a 

limited range of frequencies, the Voigt or Maxwell model frequently 

provides a convenient method of describing its mechanical properties 

under the prescribed conditions. The Voigt model is employed 

exclusively in this work.

The theory advanced by Voigt assumed that the stress components 

in a viscoelastic medium could be expressed as the sum of two sets of 

terms: one set being proportional to the strains, and the other set

proportional to the rate of change of the strains. This assumption 

implies that if displacement equation of motion (2.21), which governs 

the dynamic behavior of an elastic medium with couple-stresses, is 

modified to include the effects of Voigt viscoelasticity, constitutive 

relations (2.18) and (2.19) must be reformulated in order to account for 

the additional viscous contributions discussed here. It is well-known, 

however, that in the case of a homogeneous, isotropic, linear elastic 

medium, the modification of the stress-strain relation of elasticity to 

include the effects of Voigt viscoelasticity leads to a relation similar 

to the one obtained for the elastic case, except that the operators 

A' + A"(9/9t) and y' + y"(3/9t) replace A' and y' , respectively. 

According to this scheme, relation (2.18) may be expressed as

tS . = (A'+A" |r)e»p«.. + 2 (y ' +y" |r) e . . (3.1)il 9t SUL 13 9t 13

for a homogeneous, isotropic, linear viscoelastic medium, where A" and

y" denote the viscous parameters which correspond to Lame's parameters.

If the Voigt approach to viscoelasticity is generalized to the case in

which couple-stresses are present, then the couple-stress parameters, 13 '

and 3' in equation (2.19), change form in a manner analogous to the Lame



20

parameters, so that the couple-stress-curvature-twist relation becomes

]iD . = 4 (n'+n" |t-)k. . + 4 (3'+3" , (3 .2)ILJ d'C 13 d t 3

where the viscous parameters which correspond to the elastic bending- 

twisting parameters are denoted as n" and 3" .

By introducing the modified constitutive relations (3.1) and (3.2) 

into the linearized equation of motion (2.20), the linear couple-stress 

theory of elasticity is extended to consider the effects of Voigt 

viscoelasticity in a homogeneous, isotropic medium:

3 32u . 9 2u . „ ,2 32u
3t> — i + ^ C L - + (n’+ri" - )  ^

3 x. 1 3  3x„ J D m3 J t

3c 32u.
+ pf + ^ p e .  T  - p  ---7 . (3.3)

1 2 9xj 3 t2

Expanding the permutation symbols, one obtains the identity

2 2 2 3 u 3 u. 3 u. n_ _ _____ _____ i_ . ..
Eijkekmn 3x.3x 3x.3x. 2

1 m 1 i 3 x .3

Upon substituting this identity into equation (3.3) and rearranging terms, 

the displacement-equation of motion becomes

(3.5)
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where the operator is given by

n'+n" -rr ~2 2
L . = [(------d— ) ?— £—
13 P 9x2 9x2

I  3

y 1 +y "
(------

- —  2 2

9x2
3

9t2 ij

T1'+n" at 92 - 11— - ^ >  ^  + 
P 9*?

A'+y ,+ (A"+y") 9t1
9x.9x. i 3

(3.5a)

The effects of a body-couple loading are disregarded here.



22

CHAPTER IV 

METHOD OF APPROACH

In this chapter, a method of approach is prescribed for the 

study of wave propagation phenomena in the unbounded, homogeneous, 

isotropic, linear viscoelastic medium with couple-stresses, whose 

dynamic behavior is governed by field equation (3.5). As was mentioned 

earlier, many of the studies regarding couple-stresses, for example, 

investigations of stress concentration problems, have been concerned 

with the effects of static loadings on the medium. Recent studies have 

revealed however, that the dynamic stress concentrations are also 

influenced by the frequency of the applied force. In view of these 

developments and the stated objective of this study, it seems appropriate 

that one employ a general approach, applicable to problems wherein the 

medium may be acted upon dynamically by the body forces in question.

Such an approach is provided within the framework of linear field theory.

Linear field theory is one of the classical field theories 

dealing with the space-time dependent behavior of physical variables 

which describe field phenomena that are excited by prescribed sources.

In the linear regime, the methodology of description is to a large 

extent independent of the nature of the field and generally applicable 

to different fields. Within a specified space-time domain, the general 

linear field requires a description of the field variables and prescribed 

sources, usually in terms of partial differential equations, subject to 

the statement of initial and boundary conditions. Solution of the so 

specified field problem can be effected by formal field representations
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in the appropriate space-time domains.

It is observed that knowledge of the symmetry properties of a 

field often facilitates the determination of explicit field solutions 

to the field problems. Therefore, if field symmetries exist, it is 

advantageous to infer such properties from the general form of the field 

equations prior to their explicit solution. Accordingly, linear field 

theory suggests that one consider certain auxiliary or adjoint problems, 

related to the original field problem in such a manner as to reveal the 

space-time symmetry of the original field. If a technique is employed 

whereby field problems are formulated in terms of Green's functions 

which describe the field response to a "point-source excitation", the 

desired properties appear as symmetries in these Green's functions.

The Green's function technique for the solution of field problems 

utilizes analytical procedures which have the advantages of (a) displaying 

in simple terms the field dependence on the excitation, and (b) permitting 

the use of a mathematical format common to all linear field problems.

Since studying the analytical structure of the Green's function for 

continuous systems provides an effective method for the investigation of 

the dynamical properties of such systems, the use of a Green's function 

formalism appears to be consistent with the statement of the problem.

It should be emphasized that the Green’s function formalism to be 

applied herein has features common to the description of any linear 

field.

Consider the unbounded medium whose displacement field is governed 

by linear partial differential equation (3.5). The linearity of the 

field implies a corresponding linear dependence of the displacement field 

Uj on the excitation fm . Thus, the displacement at any space-time
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—ypoint, x,t , can be expressed as

~yu .(x;t) = i G. (x,x';t,t')f (x';t')d^x'dt' , (4.1)jm m

where the integrals are extended over four-dimensional space-time volume
3-*- -y -yelements d x'dt1 , wherein the excitation is nonvanishing. G. (x,x';t,t')im

is identifiable as a tensorial Green's function representing the displace-
-yment at x,t arising from a unit vector force density acting in the

-y -ydirection e^ at x = x' , t = t' . Thus, a general expression for the 

solution of the displacement field is written in terms of a newly intro

duced tensorial Green's function, which is independent of the form of

the source distribution.

As noted previously, a peculiarity of the Cosserat field equations 

is that the antisymmetric part of the stress tensor and the scalar of the 

couple-stress tensor are left indeterminate. It is observed that the 

system of Cosserat field equations consists of thirty-seven equation in 

thirty-eight dependent variables. From a solution, u^ , of equation

(3.5), given by equation (4.1), six components of , three of uk ,
A Deight of k .. , nine of t .. and nine of y.. can be computed, leavingil il il

only the remaining parts of the stress, namely the three components of

the antisymmetric part of the stress and the scalar of the couple-stress,

unknown. Although the method of approach employed here allows one to
-ycalculate the space- and time-dependent response u.(x;t) of the linear

-yfield described by equation (3.5) to a known excitation f (x;t) , the scopem
of this investigation does not include the explicit determination of the 

displacement u^(x;t) . The central theme of this investigation revolves

essentially about the evaluation of Green's function representations for the
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displacement field.

The field representation in equation (4.1) reduces the problem

of solving field equation (3.5) to the determination of the Green's

function G. . The benefit of this reduction is that, in the solution jm
of the field problem for the Green's function, complexities associated

~y twith the functional form of the excitation f (x;t) are eliminated. Tom
develop the defining equation for the Green's function, one substitutes 

the representation (4.1) into equation (3.5). In view of the arbitrariness 

of the excitation, one obtains

L..G. (x,x';t,t') = 6. <5 (x-x1 ) 6 (t-t') , (4.2)ij jm lm

where L.. is the linear operator in relation (3.5a). It is seen from il
equation (4.2) that the explicit determination of the Green's function

G. is essentially concerned with the inversion of the tensorial im
operator L „  . In free space, the inversion is simple and may be 

accomplished by means of an operator method or an equivalent analytical 

method.

If field symmetries exist, it is of interest to explore properties

of the Green's function that can be inferred prior to the explicit solution

of equation (4.2). For example, in the case of an unbounded, homogeneous

medium, one readily infers from the invariance of the form of equation

(4.2) to arbitrary displacements in space and time that the solution of
-y —yequation (4.2) is a function of the differences x - x' and t - t' , 

that is.

G. (x ,x ' ; t, t ' ) = G. (x-x' ; t—t' ) jm jm (4.3)
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The term "invariant" suggests that the method and result are independent 

of the choice of coordinate system for the medium. Additional symmetry 

properties of the Green's function can be inferred by relating the 

solution of field equation (3.5) to the one obtained from an adjoint 

problem.

Although a number of formal solutions have been obtained via 

operator or equivalent techniques for problems where space- and time- 

dependent fields are excited by arbitrary, space-time source distributions, 

it is not generally possible to obtain closed-form solutions for such 

problems. Frequently, their explicit evaluation requires a complicated 

integration process, depending on the form of the space-time source 

distributions. When free-space sources of harmonic plane-wave form are 

considered, however, the determination of field solutions is much simpler 

to effect because the operator analysis becomes essentially algebraic.

Thus, in suitable media, if the source distributions can be analyzed 

in terms of their plane-wave constituents, the corresponding field 

response can generally be obtained by algebraic techniques. Then the 

desired space-time fields can be evaluated by synthesis of the constituent 

plane-wave responses. When they are applied to appropriate linear fields, 

analysis and synthesis procedures provide an effective methodology for 

studying the dynamical properties of a medium as was illustrated by A. 

Yildiz (1972) when he considered an unbounded medium and examined the 

wave propagation properties of a linear elastic field with couple-stresses. 

The remainder of this work concentrates on the development of modal 

analysis and synthesis procedures in application to the present field 

problem.

Now, reconsider the unbounded, homogeneous, isotropic, linear
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viscoelastic medium whose displacement-equation of motion is given by

partial differential equation (3.5). As discussed previously, the

displacement field which is describable by linear field equation (3.5)
—y  —yleads to the Green's function G. (x-x';t-t') defined byim

L..G. (x-x';t-t') = 6. 5 (x-x')6 (t-t') , (4.4)lj jm lm

where equation (4.3) is substituted into equation (4.2). Since L̂ _, is 

representable by a square matrix whose elements are tensorial operators, 

the Green's function G ^  is likewise represented as a square matrix 

whose elements are subsidiary Green's functions.

The invariance of the unbounded, homogeneous, linear medium of 

equation (4.4) under arbitrary space-time displacements, evident in the
—yindependence of L_^ on the coordinates x, t, implies the existence of 

a plane-wave representation for the Green's function G_.̂  . The Green's 

function may be represented in various ways as the superposition of wave

functions that display the field symmetries. The plane-wave functions
~y —y -yexp{-i[k*(x-x')-w(t-t')]} constitute a convenient set capable of

representing completely the space-time dependent field. The vector 
-y

wave number k and the angular frequency to characterize the wave
—yperiodicities along the spatial and temporal coordinates, x and t ,

respectively. The mathematical basis for such a representation is

provided by the four-dimensional Fourier-integral theorem. An integrable
-y -yspace-time function G^(x-x1;t-t') is accordingly representable as

G. (x-x';t-t') = :m G. , (4.5a)
( 2 tt)
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where the transform amplitude G. (k;ui) is given byDm

G, (k;to) = 3m
n 1 4- 1 1 \ i [k* (x-x')-w (t-t') ] 3 ->• -*G. (x-x ;t-t1)e d (x-x )d (t-t )3 m

(4.5b)

3->- 3 4with d k and d (x-x') denoting volume elements in k and x space,

respectively.

The Fourier transforms (4.5a) and (4.5b) can be combined into 

the more compact form of a "completeness relation", which establishes a 

plane-wave representation for the four-dimensional space-time delta 

function:

5 (x-x1)6 (t-t') = a-i [k* (x-x') — oj (t-t') ] d3kdgj
5 4(2t t )

(4.6a)

The transform relations (4.5) are recoverable from equation (4.6a), as
—̂ ~y~is evident on the replacement of x' by x' + x" in the latter, followed

by multiplication with G. (x";t") and integration over all space-time3m
volume elements d3x"dt" . The transform relations (4.5) also imply an 

"orthogonality" property,

(2tt) ̂ 6 (k-k') 6 (o>-o)') = i [ (k-k') • (x-x') - (to—u)') (t-t1) ] 3 .d (x-x1)d(t-t1) .

(4.6b)

With the knowledge of a proper set of modes or waves as a base, 

modal representation of the solution to the field problem requires a 

twofold procedure: (a) an analysis or transform process to determine
_y.

the dependence of the modal amplitude G^m (k;o)) on the source, and 

(b) a modal synthesis or inverse transform process for the evaluation of

the space-time Green's function Gjm (x-x';t-t') . In field equations that
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are invariant to space-time translations, a characteristic feature of 

the plane-wave representation is that it algebraizes the spatial and 

temporal derivative operators 3/3x^ and 3/3t . According to the 

basis defined in equations (4.5) and (4.6),

3 3= -ik. and -r— = iw (4.7)3x. j 3t1

Substitution of equations (4.5a) and (4.6a) into defining equation (4.4) 

leads via property (4.7) to the transformed equation

L. . (k;o))G. (k;(jj) = 6 . (4.8)lj jm lm

in k, a) space, where the operator L̂ _. in relation (3.5a) becomes

v r,n'+iwn'\,4 M'+ioHj" 2 2L . . (k; a)) = [ ( ) k + (------- ) k -w ] <5 . .11 P p i ]

. n^iisrr 2 _ _ (4.8a)
P P i 1

—y ~yThe singularity properties of G. (k;co) in the complex k, co planesim
determine the dispersion properties of plane waves characteristic of the 

source-free field within the medium. Dispersion implies that the various 

harm'- c wave constituents required to synthesize the field travel at 

different speeds. Explicit knowledge of the transformed Green's function 

G^m (k;to) via inversion of equation (4.8) permits by equation (4.5a) the 

determination of the space- and time-dependent Green's function in equation 

(4.4). The generality of the analytical procedures employed herein suggests 

their applicability to any linear field that is invariant under spatial
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and temporal displacements.

The inversion of equation (4.8) to solve for the transformed 

Green's function G_.m (k;ca) cannot be readily effected due to the 

contraction of "j" indices between the linear operator and the

Green's function G . However, by taking the divergence of equation

(4.8), the following auxiliary relation, which facilitates the inversion, 

is found:

k-> ink.G. (k;cd) = ------------- -----------  . (4.9)
3 3™  rA'+2M'+iaj(A"+2y")11 2 2

L J K  ~ *0)

Substituting equation (4.9) into equation (4.8) and solving for G^(k;w) 

yields

^ k .k k.k
G (k;m) = (6 . - -J -^) G(k;w) + G (k;w) , (4.10)jm jm 2 T 2 L

~ywhere G (k;w) and G (k;to) , which depend only on the magnitude of k ,T L
are given by

and

G (k;w) = --------       (4.10a)
2 . ,n"k +U'\. 2 ,n'k +y\, 2 a) -x ( ) k oi--(-1------) kP P

G (k;m) = -------------   (4.10b)
2 . ,A " + 2 y " ,, 2 , A ' + 2 y 2oj -l ( •=— ) k w- ( ) kP P

Here the subscripts T and L denote, respectively, the transverse 

and longitudinal components of the Green's function. It is observed that
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the longitudinal component G (k;to) is not influenced by the presence
X j

of couple-stresses, whereas the transverse component Ĝ Ckuto) is modified 

by this effect. It snould be noted that the tensorial Green's function 

in equation (4.10) is symmetric with respect to an interchange of "j" and 

"m" indices.

The components of the Green's function are classified as transverse

and longitudinal since they are descriptive of these modes of wave propa

gation in the medium. In accordance with usual procedure the transverse 

mode of wave propagation describes waves which propagate through the 

medium with no dilatation, that is, elements within the medium do not 

experience a fractional change in volume, while the longitudinal mode of 

wave propagation corresponds to waves which propagate with no rotation, 

that is, elements within the medium do not undergo rotation as a rigid 

body. The conditions for these two types of waves are expressed as

A = du./dx. = 0 and u). /3x. = 0 , where A is the dilatation1 1  l 2 ljk k j

and co. is the rotation vector which was defined earlier. Transversel
waves are also referred to as equivoluminal, distortional, or rotational

waves, while the terms irrotational waves and dilatational waves are

often used to describe longitudinal waves.

The properties of these two types of waves are reflected in the

Green's function by the analytical form of the projection operators which

accompany each of the components. An illustration of these properties

may be effected by first substituting equation (4.10) into the transformed

version of equation (4.1) for u^ (k;co) , and then operating upon both

sides of the resultant equation, in one instance taking the divergence

and in another the curl. In the former case the longitudinal component

G (k;co) should be disregarded, whereas in the latter case the transverse L
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component Gî(k;a)) should be disregarded. After performing each of these

operations, inspection of the altered forms of the equation reveals that

the action of the divergence and curl operators eliminate, respectively,

the transverse and longitudinal contributions to the expression for the

Green's function, according to the definitions prescribed earlier for

these quantities. Thus, the Green's function satisfies the conditions

stated earlier for the propagation of these two types of waves. The

Green's function gives a complete description of wave propagation in the

medium, since it is well-known that any displacement field vector can be

expressed as the sum of an equivoluminal and an irrotational component,

the propagation characteristics of which are given separately by the

components G (k;w) and G (k;u)) . It is to be noted that the projectionT L
operators not only preserve the transverse and longitudinal properties

of the displacement field vector u^(x;t) , but also indicate its

directions as shown in equation (4.1).

One readily infers that the components G (k;aj) and G (k;to)
T  L

may be expressed in terms of the tensorial Green's function Gjm (k;w) as

k . k k . k
G_(k;a>) = ^(S. - -J -^) G . (k;w) , Gt (k;to) = G . (k;u) . (4.10c)T 2 jm 2 jm L 2 jm

K K

Having related the propagation of transverse and longitudinal waves in 

the medium to the components of the Green's function, it is observed, in 

agreement with previous investigations, that the longitudinal mode of wave 

propagation is not influenced by the presence of couple-stresses, while 

the transverse mode of wave propagation is modified by this effect.

According to the twofold analytical procedure outlined for the 

modal representation of the solution to the field problem, following the
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analysis or transform process whereby the dependence of the modal

amplitude on source is determined, the space-time Green's

function G (x-x1;t-t') can be evaluated by performing a modal synthesis

or inverse transform process. Recalling that the transformed Green's

function Gjm ;̂u>) is explicitly determined in equation (4.10), the

corresponding space-time Green's function G. (x-x';t-t') is derivableDm
therefrom via inverse Fourier transform relation (4.5a). The subsequent 

chapters are devoted to the evaluation of the space-time Green's function 

representation by successive application of the temporal and spatial 

parts of the inverse Fourier transform to the transformed Green's function. 

Intermediate Green's function representations in k,m , k,t , and x,u) 

space are elaborated upon as they constitute an essential part of the 

synthesis process. Each of these representations for the Green's function 

by virtue of its different mathematical perspective on the behavior of 

physical phenomena in the medium provides an alternative point of view 

from which to examine the dynamical properties of the medium.

In addition to determining the properties characteristic of wave 

propagation in the infinitely extended, homogeneous, isotropic, linear 

viscoelastic medium with couple-stresses, it is desirable to compare 

these properties, both analytically and numerically, with those of other 

media. It is particularly useful, as a basis for comparison, if media 

wherein basic wave phenomena are well-known are reexamined from the view

point of the method of approach proposed here. In the investigation that 

follows, the additional media selected for this purpose include a visco

elastic medium without couple-stresses, an elastic medium with couple- 

stresses, and an elastic medium without couple-stresses: each medium

being unbounded, homogeneous, isotropic and linear. It is convenient to



34

refer to the viscoelastic medium with couple-stresses as the general 

case, and these additional media as special cases, as each is structurally 

less complicated, that is, each requires the use of fewer material para

meters for its characterization. It appears that a transition from the 

general case to each special case may be effected via reduction of the 

formulation. Thus, when one considers the special cases, usually it 

is not necessary to rederive expressions previously derived for the 

general case. In most instances, expressions for the special cases may 

be obtained directly from the corresponding expressions for the general 

case by disregarding the contribution of specific effects as required 

by the particular specialization. Expressions obtained for the special 

cases via these limiting techniques also serve as a check on the 

consistency of the more complex expressions developed for the general case.

Viscoelastic Medium

The first special case examined is that for a viscoelastic medium

without couple-stresses. The absence of couple-stresses in the medium

is equivalent to the assumption that the medium offers no resistance to

local curvature. The absence of both couple-stresses and body-couples

in the medium implies that the properties of stress in the medium are

symmetric, that is, x.. = x.. .il li
It is worthwhile to briefly summarize the fundamental equations 

applicable to this special case, beginning with the displacement-equation 

of motion. Once the displacement-equation of motion for the general case 

is specialized for a viscoelastic medium, duplicating the analytical 

procedures which are employed in the formal development of the general
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case yields the remaining equations. When the terms that account for the 

effects of couple-stresses on the behavior of dynamical phenomena in the 

viscoelastic medium with couple-stresses are eliminated by setting the 

material parameters n' and n" to zero, displacement-equation of motion

(3.3) reduces to the form appropriate for a viscoelastic medium:

3 2 u . 9 2 u . 3 c  3 2 u .

I + + pfi + 5 a?: “ p — 2 •3 x . 1 1  1 3 t
J

(4.11)

Rearranging terms and disregarding the body-couple vector, the displacement 

equation of motion becomes

LV .u. = f. , (4.12)i] ] i

Vwhere the operator is given by

p'+p” fr ,2 ,2 J'+p'+(X”+p") |r 2
lT . = [- (-^ > 2— --------------------- J r V -  •13 p ax2 2 13 p 3* 3x

3

The superscript v is employed to distinguish quantities appropriate to 

a viscoelastic medium.

The tensorial Green's function for field equation (4.12) may be 

expressed as

LV .GV (x-x1;t-t1) = 6, (x-x1)S (t-t1) . (4.13)lj jm 1m

Employing Fourier analysis technique, equation (4.13) is transformed in 

space and time according to the basis defined in equations (4.5) and (4.6) 

to yield

LV .(k;w)GV (k;o)) = 6 . , (4.14)11 jm lm
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where

Tv  ,? x r ,y'tiwy",, 2 2, „ , rA '+y1 +iu> (A"+y"),, , ,„ , , sL . . (k;ai) = [(-------)k — a) ]6.. +-[-------------— ]k.k. . (4.14a)
iD P ID P i D

The inversion of equation (4.14) to solve for the transformed Green's
vfunction G. (k;w) gives Dm

k.k k.k
GV (k;u)) = (6 . — ^jG^tkju) , (4.15)Dm ]m k2 T k

where

G^(k;w) = — ----— ^ ---- :   , Gy(k;oi) = 12 y" 2 .y' 2 L K ' ' 2 A"+2y" 2 A'+2y' 2a) -x (— )k to— (— )k to -x (------ )k to-(------)kP P p p

(4.15a)

It is observed, as expected, that characteristics of the longitudinal 

mode of wave propagation in the viscoelastic medium with couple-stresses 

do not undergo change in the transition to the viscoelastic medium, since 

couple-stresses affect only the transverse mode of wave propagation.

Elastic Medium with Couple-Stresses

The next special case studied is that for an elastic medium with 

couple-stresses. This case, which earlier was the subject of a brief 

review, is the one most frequently encountered in literature regarding 

couple-stresses. It should be recalled from previous discussion that 

the properties of stress in a medium supporting spatially varying 

couple-stresses are not necessarily symmetric.
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It is worthwhile to briefly summarize the fundamental equations 

that apply to this special case. If the terms that account for the 

effects of viscoelasticity on the behavior of dynamical phenomena in 

the viscoelastic medium with couple-stresses are eliminated by setting 

the material parameters n " r  A" and y "  to zero, displacement-equation 

of motion (3.3) assumes the form in equation (2.21), which is appropriate 

for an elastic medium with couple-stresses. After rearranging terms 

and disregarding the body-couple vector, displacement-equation of motion 

(2.21) becomes

LeCu. = f. , (4.16)i: 3 1

GCwhere the operator L _  is given by

• *<=. l l i L .  ,Ml, i_ _ r if- * iliHJ--, — a2lTT = [ (̂ -) - (*-) ]6. . -[(— ) .in p _ 2 „ 2 p 2 „ 2 ii p „ 2 p dx.ax.J dx^ 3x_. K 3x_. 3t 3x^ K i j

(4.16a)

The superscript ec denotes quantities appropriate to an elastic medium 

with couple-stresses.

The tensorial Green's function for field equation (4.16) may be 

expressed as

L .G . (x-x';t-t') = 6. (x-x')6 (t-t1) . (4.17)lj jm lm

Employing Fourier analysis technique, equation (4.17) is transformed in

space and time in accordance with the basis defined by relations (4.5)

and (4.6) to read as follows:

LeC(k;oj)GeC(k;o)) = 6. , (4.18)il jm lm
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where

Lec(k;aj) = [ (— )k4+(5î -)k2-a)2]5. . -[(— )k2 - A'+}J']k.k. .(4.18a) ID p p i d p d i d

SCSolving for G_.m (k;a)) via inversion of equation (4.18) gives

GeC(k;w) = (<5. - - ^ ) G ® C (k;w) + - ^  G®C (k;a)) , (4.19)Dm Dm k k

where

SC “"1 SC “ 1
° T  (ki“ ’ “ 2 . V k 2 + U .,;2 ' ° L  '  2 , X ' + 2 „ \ . 2  ■ (4-19a)w - ( ) k w --(------) kP P

Elastic Medium

The last special case considered is that for an elastic medium

without couple-stresses. As stated in the discussion regarding the

first special case, the absence of couple-stresses in the medium implies

that the medium has no resistance to local curvature. If both the

couple-stresses and body-couples are absent, the properties of stress

in the medium are symmetric, that is, t .. = x.. .iD D1
It is worthwhile to briefly summarize the fundamental equations 

that apply to this special case, beginning with the displacement-equation 

of motion. When the terms that account for the effects of couple-stresses 

and viscoelasticity on the behavior of dynamical phenomena in the visco

elastic medium with couple-stresses are eliminated by setting the material 

parameters n1, h"/ and p" to zero, displacement-equation of motion
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(3.3) reduces to the form appropriate for an elastic medium:

2 2 2 3 u. 3 u. 3c 3 u.
]i'---7 + ( A ,+p')---rj- + Pf . + ^  pe. .. ---  = p ----^ . (4.20)„ 2 9x.9x. l 2 ink 9x. , 29 x . 1 3  3 3 t3

Disregarding the body-couple vector and rearranging terms, displacement- 

equation of motion (4.20) becomes

Le .u. = f. , (4.21)13 3 1

ewhere the operator L _  is given by

L e . =  +  • <4 - 2 1 a )13 p 9x2 2 13 p 3x.9x
3

The superscript e is employed to denote quantities appropriate to an 

elastic medium.

The tensorial Green's function for field equation (4.21) may be 

expressed as

Le .G0 (x-x1;t-t1) = 6. 6 (x-x')6 (t-t') . (4.22)13 jm 1m

Employing Fourier analysis technique, equation (4.22) is transformed in 

space and time according to the basis defined in equations (4.5) and (4.6) 

to yield

L?.(k;m)G? (k;w)= <5. , (4.23)13 jm 1m

where

Le .(k;u)) = [ (— )k2-o>2]<5. . + [ k . k . . (4.23a)13 P 13 p 1 3
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© ”*■The inversion of equation (4.23) to solve for G. (k;w) givesjm

k.k k.k
G® (k;u>) = (S. - -^)G®(k;u>) + - 1^ !1 G®(k;a>) , (4.24)jm jm k2 T k

where

GT (ki“ ) ■ GL (ki" 1 ° 2 ,A~+2y’ 2 ' (4'24i»a) - (— ) k a) --(------) kP P

It is observed that the characteristics of the longitudinal mode of 

wave propagation for this special case are identical to those for the 

special case of an elastic medium with couple-stresses, as the longitudinal 

mode of wave propagation is unaltered by the presence of couple-stresses.
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CHAPTER V

GREEN'S FUNCTION REPRESENTATIONS IN THE k,0) AND k,t DOMAINS

The Green's function representation in the k,t domain may be 

obtained by application of the temporal part of inverse Fourier trans

form relation (4.5a) to equation (4.10) for the transformed Green's
->■function in the k,w domain. It is convenient to adopt a more concise 

notation for Gjm (k;oi) at this time. Accordingly, the transformed 

Green's function in equation (4.10) is rewritten as

PT L
G (k;w)  --------- ^ -----------------32!-----  f (5.D

^  2 . 2 2 2  2 . 2 2 2  a) -iD k w-C k a) -lD k o)-C kcT cT L L

where

PT = (6. _ JJE, , D f c2 = n^±vL = cj(i+£2k2)Dm ;jm 2 cT p cT p TK

I 2 = ^  (5.1a)T p y 1

L kjkm _ A " + 2 p " 2 A ' + 2 y '
jm , 2 ' L p ' LL p

Thus, the material parameter t , mentioned in the introduction, is equal 

to the square root of the ratio of the elastic bending-twisting modulus 

to the elastic shear modulus and has the dimension of length. This 

material length Z and the viscous parameter n" carry with them, 

respectively, all the elastic and viscous effects of couple-stresses in 

the subsequent expressions. It can be shown that, with Z and n" not 

zero, high stress gradients may lead to large couple-stresses. In as
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much as the classical theory of elasticity has been verified experi

mentally in great detail, Z and n" are probably very small in 

relation to bodily dimensions and wavelengths that are normally 

encountered.

Applying the temporal part of Fourier inversion integral (4.5a)

to the transformed Green's function G. (k;cj) givesim

G. (k;t-t') = ;jm
,r> ioj(t—t' du) G . (k; to) e —;jm 2tt

= -P
ia) (t-t1)____________________  dm_

jm J 2 . 2 2 2 2ir
J to -lD k uj —C k _oo cT cT

-p .

i(jj(t-t') _e___________  dw_
jm j 2 ,n ,2 2 2 2 ttto -lD k w-C k 

Li L

(5.2)

For the purpose of evaluating the Green's function, it is convenient to 

rewrite equation (5.2) as

G . (k;t-t') = jm
T L-P. I - P . I ,jm 1 jm 2 (5.3)

where 1^ and are the integrals in equation (5.2)

J1 =
io)(t-t') ,e do)

2 . ,2 2 2 2ttu) -lD k 0)-C k _oo ct cT
(5.3a)

and

I =2
ia)(t-t') _e__________ du_

2 . _ , 2 J 2  2 2tt ta -iD k rn-C k 
Li L

(5.3b)



43

Since these integrals are structurally identical with respect to the 

variable of integration, they are discussed and evaluated coincidentally 

in what follows.

The real integrals I and I can be converted into complex 

integrals and subsequently treated as portions of these integrals by 

replacing w with the complex variable z which defines the complex 

frequency domain. Applying the residue theorem to the closed contours 

C and C 1 in the upper and lower halves of the complex z-plane (see 

Figure 4) yields

0
■'c,C'

and

(I
•’c,c'

where the plus and minus signs apply, respectively, to the integrals 

evaluated along the contours C and C 1 , which are traversed in the 

positive (counterclockwise) and negative (clockwise) senses, and 

^Residues denotes the sum of the residues at all singularities enclosed 

by the chosen contour. Each of these integrals is well defined and 

exponentially decreasing in the upper half of the z-plane for t > t' 

and the lower half of the z-plane for t < t' . Thus, the contours C 
and C' must be selected, respectively, for the cases of t > t 1 and

^iz(t-t')
= ± 2iri^Residues , (5.4b)2 - ^ , 2  _,2 2 2ttz -id k z-C k

J_i i_i

iz(t-t1)
0 z = ± 2Tri^Residues (5.4a)2 . ,2 2,2 2ttz -lD k z-C k cT cT
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complex z-plane

t>t

-R

t<t'

Figure 4. Contours of integration for the complex integrals in 
equations (5.4).
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t < t' . The integrals in equations (5.4) may be expressed alternatively 

as

R ico(t-t') ,e da)
2 . ,2 2 2 2tt„ co -lD k co-C k -R cT cT

eiz(t-t') dz
-------   — —  = ± 2uiyResidues2 ,_2 2tt lr,I” z2-iD k2z-C“ k cT cT

(5.5a)

and

R

-R

ico(t-t') ne___________dco
2 . _ . 2 .,2, 2 2ttco -id k co-C k 

L  L

eiz(t-t') dz
—  = ± 27ri^Residues ,T,„, 2 . ^ . 2  2 2 2 irr,r' z - iD  k z-C k L L

(5.5b)

since they are to be evaluated along the closed paths C and C1 in 

the upper and lower halves of the complex z-plane consisting of the 

real axis from -R to R and either the semicircle T or f  . Taking 

the limit as R 00 , it follows from equations (5.5) that

J1 =
iaj(t-t') e____________  dm

2 . ,2 2 2 2ttoj -iD k co—C k cT cT
= ± 2ui^Residues (5.6a)

and

ito (t-t1) .e__________  dm
2 . _ , 2 2 2 2tt

oj -iD k co-C k 
i-i L

= ± 2-rrî Residues (5.6b)

The integrals over the semicircular arcs r(t>t') and r'(t<t') both



approach zero as R -* °°, and thus do not contribute to their respective 

integrations.

The singularities contributing to the integrals in equations

(5.4) consist of simple poles which occur, respectively, at

It is observed that the path of integration in the upper half of the 

z-plane encloses all the poles of the integrands, or equivalently, that 

the integrands are analytic within the region enclosed by the path of 

integration in the lower half of the z-plane. This arrangement of 

poles is physically significant, suggesting that the medium obeys the 

principle of causality.

After evaluating the sum of the residues from the poles enclosed 

within the chosen contour, one obtains the tensorial Green's function

2 2
zi,2 = ± C cTM l - d k / p )  + :

and (5.7)

2 2
zl 2 = ± cLk (1-h k /p)

where

d2 = (n"k2+y ")2
4y1(l+£2k2)

2 = (A"+2y")2 
4 ( A'+2y ') (5.7a)
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where u(t-t') represents the unit step function which equals 1 for 

t > t1 and 0 for t < t1 . Specifically, the Green's function in

equation (5.8) gives the response of the medium to a unit vector force
->*density acting in the direction e1 at x = x f , t = t' , as representedm

in the k , t domain. Because the response vanishes until a force is 

applied, G (k;t-t') is called the retarded response function and the 

medium is said to be causal. Clearly this property of causality follows 

directly from the analyticity of G_.m (k;z) in the lower half of the 

complex z-plane. The conditions for the case of underdamped oscillation 

in the transverse and longitudinal modes are given, respectively, by 

2 [p' (l+l2 k 2 )p ] 1 / 2  > (n"k2+M")k and 2 [ (A '+2pi ’) p ]1/2 > (A"+2y")k . The

overdamped case, where the response decays without oscillation, occurs 

for these modes when

2 [y ' (l+£2k2)p]1/2 < (n"k2+ii")k and 2 [ (A'+2p’)p]1/2 < (A"+2p")k .

It should be noted that the tensorial Green's function obtained here is

symmetric under an interchange of "j" and "m" indices.

The natural frequency, o> , and damping, L, , characteristic

of the transverse and longitudinal modes of wave propgation in the k, co

and k, t domains can be ascertained directly by inspection of the

analytical structure of the Green's function representations in these

domains. Furthermore, using this information, it is possible to determine

other properties of the medium including the attenuation, y , damped

frequency cô  , quality factor, Q , period, t , and bandwidth, BW ,

in terms of the material parameters of the medium. The properties which

characterize the transverse and longitudinal modes of wave propagation
—yin the k, co and k, t domains for a viscoelastic medium with couple-



48

stresses are summarized as follows:

Transverse Wave Properties

_ ,  , ^ ) 1 / 2 < 1 + A 2 ) 1 / 2 k ,  r = o r A n - i * —  = 2
nT p T 1/2 T T n T  2 p

2[y' d+rrjp]

1/2
o 1/2 u i 1/2 p p 1/2 fn"k2+u'M 2k 2

<1 + A  > “  - " , A  1 * •4y ' (1+t k ) p

„2 2 1/2 
= JL. = fy' (i+l k )P]

t  or 2
T  ( n " k  + y " ) k

2tt 2tt
t
T 2 i /o i/o 2 2 2 ' ^ 2

»nTd-?T) (— i a + A 2) u  - (i"k ^ : ),k ] k
P 4y ' (1+t k )p

BW = 2? co = (n. .k +y )k2 (5.9a)T T nT p

Longitudinal Wave Properties

/A ' + 2 y \ 1 / 2 1 _ (A"+2y")k _ l,A" +2y '\, 2
CO T  =  ( — r - ^ )  k '  =    T 7 7 '  Yt =  T  =  — 7  ) knL  p L 2 [ (X1+ 2 y 1)p] L L nL 2 p

= 2 ! / 2 _ A'+2y' (X"+2y") 2k 2 / /2 1 [(A'+2y')p]
dL nL  ?L 5 ( p 5 [ 4 (X'+ 2 y 1)p ] ' QL 2t (A"+2y")k

X j

1/2

2tt
2 I/2 co _ (i-cr)nL L

2tt
(X"+2y")2k2 
4 (X1+2y 1)p

1/2 BW. = 2 C  0 )  tL nL ( ^ f ^ ) k 2

(5.9b)
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It is observed that the longitudinal mode of wave propagation is not 

influenced by the presence of couple-stresses, whereas the transverse 

mode is modified by this effect.

For real w , the response function, ' -*-s usually

divided into two parts: a dissipative response and a reactive response.

When the medium is time-reversal invariant, these are given, respectively, 

by the imaginary and real parts of G_.m (k;m) , and denoted as Gjm (k;w) 

and G\m (k;m) . The dissipative response, also known as the absorptive 

response, is given by the real odd function of frequency

T 2 L 2P . D mka) P . D k wim cT im L /r. „ „ ,G . (k;u>)   r  — i— z------  — ------=— -- —  ------— r- . (5.10a)lm ,2 2 ,2.2 , ,2.2 , 2 _,2, 2 , 2 , 2 , 2(u) -C k ) +(D k m) (a) -C k ) + (D_k m) cT cT L L

The Fourier transform of GVm (k;w) is the imaginary odd function of time

G" (k;t—t1) = Dm
->• ioi (t-t') dm G" (k;w)e —jm 2tr

T -l/2DcTk* lt-f| sin[CcTk(l-d2k2/p)1/2(t-t')]
= P . e

Im 2 2 1/22iCcTk(l-d k /p)

T -1/2D k2|t-t'| sin[CTk(l-h2k2/p)1/2(t-t')]
+ PL e L  £---------------------  .(5.11a)im 1/2

2iC k(1-h k /p)
Li

The reactive response, also known as the dispersive response, is given by



the real even function of frequency

T . 2 2 2 L , 2 2, 2.P . (cj -C k ) P . (w -C k ). , im cT -im L /r. , ,G . (k;ai)  -----— \— — ------ — ----- - ------ -— - . (5.10b)jm . 2 2 2. 2 . \ / _2 2. 2 , 2 .2(a) -C k ) +(D k oj) (w -CTk ) +(DTk w)cT cT L L

The Fourier transform of G1. (k;w) is the real even function of timejm

G! (k;t-t1) Dm
. io) (t-t') do) G'. (k;w)e —jm 2tt

21 | 2. 2 1/2T -l/2DcTk |t-t'| sin[ccTk(1-d k /p) |t-t'|]
= P . eI10 2 2  1/2

2CcTk(l-d k /p)

1/2
-1/2D k2|t-t1| sin[C k(l-h2k2/p) |t-t'|]

+ P e     . (5.11b)
Dm 2 2 1/22C k(l-h k /p)L

The reactive response is symmetric with respect to an interchange of 

"j" with "m" and t with t1 , whereas the dissipative response is

antisymmetric under the same interchange.

Because the response function for the dissipative medium 

discussed here is causal, or equivalently, because G^m (k;z) which is

defined in the lower half of the complex z-plane is also analytic there,

it follows that a mutual relationship exists between the real and 

imaginary parts of G_.m (k;m) for real frequencies w . This relation

ship is expressed by the Kramers-Kronig relations:
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G'.' (k;oj) = P nm
G ’. (k; a)1 ) . ,

. (5.12b)0)' -0J TT

where "P" denotes the principal value integral, that is, an integral

symmetrical about the singularity (see Appendix A). It is deduced that,

with the use of relations (5.12) , explicit knowledge of either G\'m (k;ui)

or G'. (k;co) is sufficient to permit the determination of G. (k;to) .Dm  ^  ]m
Thus, for a dissipative medium that obeys the principle of causality,

it follows that the real and imaginary parts of the Green1s function

G. (k;oj) satisfy the Kramers-Kronig relations and the Green's function Dm
—yis uniquely determined by either of its components GVm (k;w) , G_(m (k;w)

for real values of to .

Since the medium discussed here is causal and the time domain 

response is real, the temporal part of Fourier inversion integral (4.5a) 

assumes a special form which leads to a relationship between G_.m (k;t-t')
- Vand the real and imaginary parts of G. (k;co) . G. (k;t-t') may be

Dirt jm
—y ~yexpressed in terms of either G! (k;w) or G'.' (k;u) alone as followsjm jm

(M. Yildiz, 1974):

2_
TT G 1. (k;w) cos [a) (t-t') ] da) Dm

G. (k;t-t') = , t > t' . (5.13)Dm

- — G". (k;a)) sin[w (t-t') ]dajtt J jm
0

~y ~yIt was remarked earlier that G*. (k;co) and G" (k;co) are not independentDm Dm
of each other but that one of them can be uniquely determined in terms 

of the other.
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Viscoelastic Medium

Green's function representations that appropriately describe the

properties of wave propagation for the special case of a viscoelastic 

medium may be obtained directly from the corresponding representations 

for the general case of a viscoelastic medium with couple-stresses by 

disregarding the contribution due to couple-stresses. Since couple- 

stresses affect only the transverse mode of wave propagation, character

istics of the longitudinal mode of wave propagation do not undergo 

alteration in the transition to this special case. It should be mentioned 

that since a viscoelastic medium is a dissipative medium, previous 

discussion pertaining to the principle of causality may be applied to 

this special case. When the terms that account for the effects of 

couple-stresses in the medium are eliminated by setting the material 

parameters t = n" = 0 , the Green's function representations previously 

developed for the general case reduce to the following forms:

v ->G. (k ;oi) ]m
P
_ j i n

P
(5.14a)

GV (k;t-t') = u(t-t') {PT e jm jm

1/2
-l/2DTk2(t-t') sin[CTk(l-g2k2/p) (t-t1)]

2 2 1/2 CTk(l-g k /p)

2 2 2 ^ / 2  -1/2D k (t-t') sin[C k(1-h k /p) (t-t')]L L } (5.14b)
2 2 1/2 C^k(1-h k /p)

V a- PL D k2mjm L' (5.14c)2 2 2 2 2 2 (u) -CTk ) + (Djpk u)) , 2 2 2,2 ,„,2 ,2 (w -C k ) +(D k w)L L
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21 I 2 2-l/2DTk | t-t'| sintC^k (1-gT/p) (t-t1)]
G1' (k; t-t') = P. e 3m Dm 2 2 1/2

2 2 2 1/2 _ -1/2D k It-t'| sin[C k(l-h k /p) (t-t')]
+ PL e L--------  ---------------------- , (5.14d)

:m 2 2 !/22iC k (1-h k /p)Xj

PT (.2 - - c V )  PL (u2 2k2)
G^(k;a>)  ----    r------------ ■      , (5 -14e)
3 (m  - c V ) 2 +( d  k 2a))2 (oj - C 2k ) + (D k to)

1 1  L j J_j

1/2
m -1/2D k 2 |t-t'| sin[C k ( l - g 2k 2/p) |t-t'|]

G'. (k; t - t ') = P. e-------------- ------------------------------------
3m 3m 2 2 , I/22CTk(l-g k /p)

1/2
_ -1/2D k2 |t-t'| sin[C k(l-h2k2/p) |t-t'|]

+ PL e L  ---------------------- , (5 ,14f)
3m 2 2 1/22C k(1-h k /p)1j

where it is necessary to define the new quantities = p"/p and
2 og = y"z/4y' . The conditions for the case of underdamped oscillation 

in the transverse and longitudinal modes are given, respectively,by 

2 [ y ' p ] 3'^2 > y"k and 2 [ (A '+2y ') p ] ̂ 2 > (A" + 2p")k . The overdamped case,

where the response decays without oscillation, occurs for these modes
1/2 1/2 when 2[y'p] < p"k and 2[(A'+2p')p] < (A"+2p")k . The properties

which characterize the transverse and longitudinal modes of wave propa-

gation in the k, to and k, t domains for a viscoelastic medium are

expressed in terms of the material parameters of the medium
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as follows:

Transverse Wave Properties

nT =
1/2

k, y"k

2 (y'p) 1/ 2 ' ‘’T^nT

dT
2 1/2 , 1/2 „ 2k 2 1/2

v (1-^ >  = <r>  ^  k '
1 _ (y1 p)1/2

2?T y "k

2ir 2 tt

T 2 I/2 y, 1/2
<r>

y"2k2 1/2
[1 - k4y 'p

BW„ = TWnT p (5.15a)

Longitudinal Wave Properties

nL
(A'+2y' 1/2

k, (A"+2y")k _ 1 ,A"+2y",, 2--------- 7 7 Yt = Cod = — (----— )k1/2 L L nL 2 p2 [ ( A 1+2y 1)P ]

dL = CD (1'nL < >
1/2 (A'+2y' 1/2

(1 (A"+2y" 2 2 k
4 (A ' + 2y 1) p

1/2 
] k, ®L

1 _ [ (A 1+2y 1)P ]1/2
2C (A"+2y")k

tl
2tt 2tt
2 1/2 A'+2y' 1/2

[1 - (A " + 2 y " ) 2k 2 
4 (A'+2y 1) p

1/2 
■] k

BW„ 2 C oj t L nL
<v±2!t,k2.

(5.15b)

Elastic Medium with Couple-Stresses

Green's function representations that appropriately describe the 

properties of wave propagation for the special case of an elastic medium
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with couple-stresses may be obtained directly from the corresponding

representations for the general case of a viscoelastic medium with

couple-stresses by disregarding the contribution due to viscoelasticity.

Since an elastic medium is not a dissipative medium, previous discussion 

relating to the principle of causality is not applicable to this special 

case. When the terms that account for the effects of viscoelasticity in 

the medium are eliminated by setting the material parameters g" = A" = y" = 0,

the Green's function representations previously developed for the general

case reduce to the following forms:

T LP . P .ec,̂ - . im jmG (k;to)  ----— %— 7    ■ , (5.16a)jm 2 2.2 2 2 2
oj -C k oj -C k cT L

sin[C k(t-t')] sin[C k(t-t')]
G (k; t-t' ) = u(t-t') {PT    + PL   }jm jm CcTk jm CLk

(5.16b)

The properties which characterize the transverse and longitudinal modes
~y tof wave propagation in the k, a) and k, t domains for an elastic

medium with couple-stresses are expressed in terms of the material

parameters of the medium as follows:

Transverse Wave Properties

u 1 ^ 2 2 ^  ̂
“„t - (ir> (X+£ k > k- ?T = °- = w  - 0

2 u ' i 2 1
“dT = a)nT(1“?T) = ( k ] kf QT = ^-(^efined)

Ptt PttTm = -----— -----  =- ;--— --------- , BW = 2c; u = 0 . (5.17a)T y 1/2 1/2 p p 1/2 T TnT
WnT(1- V  O  il+l k 5 k
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Longitudinal Wave Properties

nL = (A1+2y '
1/2

k, t = 0, y ?LUnL = 0

2^/2 A'+2u' ■̂//2 1
oj = w (1-S ) = (-------) k, Q = — — (undefined)dL nL L p L 2?

i_i

tl
2 tt 2tt

1/2
P

BWt = 2C 0) T = 0 L L nL (5.17b)

Elastic Medium

Green's function representations that appropriately describe the 

properties of wave propagation for the special case of an elastic medium 

may be obtained directly from the corresponding representations for the 

general case of a viscoelastic medium with couple-stresses by disregarding 

the contributions due to viscoelasticity and couple-stresses. They may 

also be obtained from either the special case of a viscoelastic medium 

or the special case of an elastic medium with couple-stresses by dis

regarding, respectively, the contributions due to viscoelasticity and 

couple-stresses. Since couple-stresses influence only the transverse 

mode of wave propagation, characteristics of the longitudinal mode of 

wave propagation for this special case are identical to those for the 

previous special case of an elastic medium with couple-stresses. Because 

an elastic medium is not a dissipative medium, previous discussion per

taining to the principle of causality is not applicable to this special 

case. When the terms that account for the effects of viscoelasticity and
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couple-stresses are eliminated by setting the material parameters

■t = n" = A" = p" = 0 , the Green's function representations previously

developed for the general case reduce to the following forms:

T L
G® (itii.1) - - - -  ... - >  , (5.18a)„2-cV J-cV

1  i-J

sin[C k(t-t1)] sin[C k(t-t')]
C j m ' k . t - l ' )  - u ( t - t ' )  < P j i n ------------------— ------------------ + P . m   — ----------------}  . ( 5 . 1 8 b )

The properties which characterize the transverse and longitudinal modes
—)■ “>■of wave propagation in the k, w and k, t domains for an elastic 

medium are expressed in terms of the material parameters of the medium 

as follows:

Transverse Wave Properties

, 1/2
u> = (— ) k, t = 0, y = £ u) m = 0nT p T T T nT

2 ^/^ u1 ^
WdT = WnT(1-‘’T) = (~ 5 k' 2T = 2F~{ undefined)

XT =  - 2-1/2 = 7 1 7 T '  BWT = 2?TWnT = ° (5‘19a)
WnT(1~ V  ^  k



Longitudinal Wave Properties

X 1 +2u 1
% L = (“  5 k ' ?L = °' YL = ?L“nL = °

2 A' + 2u' 1
“dL = % L (1^L> = <“ 7 ^  k ' 2L = i f (Undefined)L

2tt 2tt
TL ,2,1/2 " ,\'+2)i\l/2, ' L “ L^n L

^ n L  L  (~ ----5 k
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(5.19b)
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CHAPTER VI

GREEN'S FUNCTION REPRESENTATION IN THE X,U) DOMAIN

The Green's function representation in the x,u) domain may be

obtained by application of the spatial part of inverse Fourier transform

relation (4.5a) to equation (4.10) for the transformed Green's function 
~yin the k,co domain:

G. (x-x';co) jm
—y ~̂  3->

G. (k;»)e-i k M x - x ') - 3 - ^  
3m (2ri3

- 6 . { .n'+imn"

—y —y —
-ik* (x-x11____________________a3it
4+(M^li« V )]c2_ai2 3

P

9 x . 9x 
j m

-y ~y -y e-ik*(x-x')

k2 1 (II' + ^ ' V +(^ - ^ 'V -»2TP P
-y —y —y -ik'(x-x') -3̂ -_______ e_____________________d k

9x.9x JIJ , 2 r rA '+2y'+im (A"+2y") 2 2 n ,3i m  J k [[----- ---------------- jk -a) ] (2tt)
- C O  p

, (6.1)

where the integrals are to be evaluated over the entire space of 
~yk-vectors.

A convenient approach for the valuation of these integrals

utilizes a spatial representation in spherical coordinates. In spherical
—y tcoordinates an arbitrary vector k is related to the orthogonal coordi

nate directions k , k k ^  by the relation

k = (k^jk^fk^) = (k sinG coscf>,k sinG sin<J>,k cosG) , (6.2)
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I i 3->where k = |k| . A volume element in this space is given by d k
2= k sin0 dk d0 dp, and if the polar axis is chosen along the direction 

of x - x ' ,  the quantity k’fx-x1), which appears in the exponential
i iterm within each integrand, can be replaced by k|x-x'|cos0 . Integrating 

over the angles 0 and $ first, the Green's function assumes the form

G (x-x1;tu) = <5 . {■jm jm
-l

(2tt) x -x *

k | x-x11 _e~ik | x-x1 I j
k4+ (jiMdaHi) k2-a)2

p p
dk}

9x. 9x . . 2 I-*j m (2 tt ) x-x'

3x. 9x , 2 i->-j m (2ir) x-x'

j -> ->■ | | |ik x-x1 -ik x-x1  e ____ 1 -e 1____ |_____
k [ k 4+ (Ji'+i^y" 2_m2

P P
dk}

| | | -> jik x-x' -ik x-x' e 1____ 1 -e 1______ |___
, r rA1 +2y '+io) (A"+2y ") „ 2 2,k [ [--------------------- ]k -to ]P

dk}, (6.3)

where the integrations with respect to the angles yield

TT 2lT
I t-ik x-x' cos0 . e ' 1 smGdG

| | | |-2tti r ik x-x' -ik x-x1 , ,̂   ̂ ,d(f> = --;— ;---[e 1 1 -e ' 1 ] . (6. 3a)i -> ■>k x-x'

Performing the change of variables k -* - k on the first exponential 

function in the integrand of each of the integrals permits the limits of 

integration to be extended from -°° to 00 , leaving the following
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integrations over k:

G. (x-x1;w) = 6 . {nm ' „ . 2 i-> (2ir) x-x
ke-ik x-x'
k4+ k2_a)2

P P
dk}

i-ik x-x'
9x. 9x 

3 m (2ir)2 | ->■ x-x'
dk}

9x. 9x 
3 m 2 i(2ir) x-x'

-ik x-x'________e '____ |_________
, rrA,+2u,+ia)(A"+2u")„ 2 2,k [ [----  ]k -ai ]P

dk} (6.4)

For the purpose of evaluating the Green's function, it is convenient to 

express equation (6.4) as

 ̂ p ' r p (n1 -iuiri") i T iG . (x-x ; oj) = 6 • ( o ^ f ----- T~3T~Z—  Ii ̂jm jm , ,2 2 „2, . „ . 2 i i 1(n +to n ) (2tt) |x -x '|

+ 9x.9x 
3 m

p (n '-icon")
 ̂ 2 2 2 . >2i-*-(n +u n ) (2tt) |x-x'

p [A'+2y '-iu) (A"+2y") 1
8xi9Xm [(A'+2y')2+w2(A"+2y")2] (2ir)2|x-x' V  ' (6.5)



where 1^, I , and 1^ denote the integrals

I. = ke
i ■+ ■+ -ik x-x1

4 , (y'+iwy")(n'-iwn") , 2 c + --------— x ^ ---- k, 2 2 2 n +a) n
po) (g'-imy")

2 2 2 n' +o) n"

dk , (6.5a)

I. =
i ■+-ik x-x'

, r, 4 , (y’+iaJM") (n '-iwn") ,2 k |k + - - - k
n' +cj n"

pgj (n'-iun”),
,2 2 „2n ' +0) n

dk , (6.5b)

I =
->-ik x-x'

P032 [A'+2y'-io)(A"+2y") ] 
(A 1 +2y 1 ) 2+o)2 (A "+2y ") 2

dk
k[k"

(6.5c)

Since the integrals 1^ and I , which comprise the transverse component 

of the Green's function, are similar in structure with respect to the 

variable of integration k , they are evaluated coincidently in what 

follows.

The real integrals I and I can be converted into complex 

integrals and subsequently treated as portions of these integrals by 

replacing k with the complex variable z which defines the complex 

wavenumber domain. Applying the residue theorem to the closed contour 

C in the lower half of the complex z-plane (see Figure 5), since each 

of these integrals is well defined and exponentially decreasing there, 

yields

r
ze-iz x-x- V  '

„ _4 , (y,+iwy"j (n'-iwn") _2 pm (n'-iwn")
dz = -27ri^Residues (6.6a)
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complex z-plane

-R

Figure 5. Contour of integration for the complex integrals in 
equations (6.6).
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and

i ■+ ^-iz x-x'

r 4 . ( y '+ iu ) y M) ( n ' - i o o n " )  2 C z[z + ----- »— =—  -----  z
n 1 +oo n"

poo (n '- io o n " )
2 2 2 l̂ i  ̂ II ̂n +o) n

dz = -2ni^Residues , (6.6b)

where the minus signs indicate that the contour C is traversed in the 

negative (clockwise) sense, and £Residues denotes the sum of the residues 

at all singularities enclosed by the contour. The integrals in equation 

(6.6) may be expressed alternatively as

R
ke

. i ■+-ik x-x'
dk

4 + (y 'tippy") (n1 -icon") k2
-R , 2 2 2n +oo n

poo (n ' - io o n " )
2 2 2 

n '  +oo n "

ze
I-iz x-x1

4 , (y ' t io o y " ) (n 1- icon ")  2 poo (n ' - io o n " )
r z + -------“ -T "2---- 2 --------- 2 2 „2

n +oo n n +oo n

dz = -2Tri][ Residues

(6.7a)

and

R -ik x-x'
dk

_R  k[k4 + ■̂ ^ H : \ ) j n ' ^ ooIr i k2
i t iin +oo n

poo (n ' - io o n " )
.2 2 2

n +oo n

• i ■ +  ■* -lz x-x'

r 4 , ( y '+ io o y " )  ( n ' - io o n " )  2z[z + ......    z
n '  +oo n

poo (n '- io o n " )
.2 2 „2

n +oo n

dz  = -2 T r i^ R e s id u e s ,

(6.7b)

since they are to be evaluated along the closed path C in the lower half 

of the complex z-plane consisting of the real axis from -R to R and
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the semicircle T of radius R . Taking the limit as R -> °° , it follows 

from equations (6.7) that

J1 =

| -> .. -ik x-x1ke r-----  = -2ni2JResidues

and

I2

2,4 (M'+imu") (n'-icon") ,2 poi (n'-iwn")
k  +  2' ' 2 "  2  k  2 2 2n’2+“V 2 n ' V n "2 {6>8a)

, ->■ |-ik x-x*
------- dk = - 2ttii)j Residues

4 (y'+imyi") (n'-irnn") ,2 _ pa)2 (n'-itun") 1 
,2 2 „2 k 2 2 2 J 

n +W n n +W n (6.8b)

The integrals over the semicircular arc F both approach zero as R

and thus do not contribute to their respective integrations.

The singularities contributing to the integrals in equations (6.6) 

consist of simple poles which may be located by setting the denominators 

of the integrands to zero. The poles of I differ from those of 1^ 

in that I contains an additional pole at the origin. This pole is, 

however, a noncontributing factor in the evaluation of Î , since its 

residue has no spatial dependence, and, after the residues of I are

summed, a spatial operator acts on them. The poles common to I and

I are indicated symbolically by

z = ± r ^'+W)."H3t-ig!V:i ± <n’-ia.n"> ((u.+lu,„.)^4pM2(n̂ Wn") ]1/2]1/2
2 (g1 +o) n” ) 2 (n1 +U) n" ) (6 9)

It is apparent that the introduction of complex material parameters for 

the medium renders the task of locating the poles rather cumbersome.
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After considerable algebra the poles can be expressed as

Zl,2 = ±(kT r ikTl} Z3,4 = ±(kT2"ikT2) ' (6’10)

where

k r;i =  ------ -— ^ —  x ( [ ( n ,f + M ,n ,+ w r i " g + w 2 y"ri") 2 +(ri,g-aj)j,Ti"+a)ri'y"-wn"f) 2 ] 1'/ 2T1 . .2^ 2 ,,2,1/2 2 (n +w n )

- (n ’ f+y 1 n'+uri"g+a)2y "n") }1//2 , (6.10a)

= ----- -— |— 2~T72 x  ̂[(ri'f+>J,o l+wri"g+w2y"ri")2+ ( n ,g-a)y,n " + w n ,tJ"-a)n,,f)2 ]1//2
2 (n1 +w n" )

+ (n,f+y,n'+wn"g+u>2y"n") }1/2 , (6 .10b)

k ' =  9 ■ y  -9 /9 x { [(n,f-M,n ,+con"g-a)2y"n")2+(-n,g-a)y'n,,+wn,y"+a)n"f)2]1/2
2(n' +w n" )

+ (n,f-y,n ,+wn"g-a)2y"n") }1/2 , (6.10c)

k^2 = ---- 2— \— 2 i/2 x ■f t (g'f-h'n'+wn"g-(jj2y "n") 2+(-n'g-wy ,n"+a)n,y"+a)n"f) 2]1,/2
2(n* +u n" )

-(n'f-y'n'+a)n"g-a)2y"n") }1/2 , (6.10d)

f = ~T77 n ( y ,2-w2y"2+4pa32n ,)2+(2a)y,y"+4pw3nM)2]1/2+(y,2-a)2y"2+4pa)2n')}1/2 
2 V

(6.lOe)

and

g = { [(y,2-co2y"2+4pa)2n ,)2+(2a)y ,y"+4p(Jj3n")2]1/2-(y'2-a)2y"2+4pto2n ,)}1/2 .

(6.lOf)

It is observed that the path of integration in the lower half of the 

z-plane contains only the contributions due to z^ and z3 which
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represent propagation modes. The noncontributing poles ẑ  and z^

which lie outside of the contour correspond to reflection modes from 

infinity. Thus, the contributing poles in 1^ and I are effectively 

the same; but of course, the residues themselves are different due to 

the algebraic forms.

After evaluating the sum of the residues from the poles enclosed 

within the contour in the lower half plane, one obtains

/ i • i.% ■ n - -k".Jx-x' “ik' x-x' -k" x-x' -ik'. x-x'-tt (g '+iu)g ) (f-ig) l r T2' 1 T2 1 1 T11 1 Tl1 1 •,\  = ------ 2---- 1------- (e e -e e }
f + g

(6.11a)

and

I i | ->■ -h |—k" x—x 1 -ik1 x—x 1_ —tt (n1 +img") (f-ig)i ■■ 2 (g '+io)ri")____  T2 1 1 T2 1 '
2 f2 + ^2 (f+ig)-(gI+io)p") 0 0

I I | “> “>• |, . ... -k" x-x' -ik'. x-x'2 (g1 tioig ) Tl1 1 Tl1 1+ / ■ . ,— ;;— t— :--nrr e e J- . (6.11b)(f+ig)+ (p'tirnp )

Now only the integral for the longitudinal component of the Green's

function must be evaluated to complete the inversion procedure.

The real integral I in equation (6.5c) can be converted into 

a complex integral and subsequently treated as a portion of this integral 

by replacing k with the complex variable z which defines the complex 

wavenumber domain. Applying the residue theorem to the closed contour 

C in the lower half of the complex z-plane (see Figure 6), since this
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complex z-plane

-R

Figure 6. Contour of integration for the complex integral 
in equation (6.12).
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integral is well defined and exponentially decreasing there, yields

->-iz x-x'

2 pa) [X'+2)j,-ia)(A"+2y")]
dz = -2iTi^Residues , (6.12)

z [z
(A '+2y 1 )2+ w 2 (A"+2y") 2

where the minus sign denotes that the contour C is traversed in the 

negative (clockwise) sense, and ^Residues denotes the sum of the residues 

at all singularities enclosed by the contour. The integral in equation 

(6.12) may also be expressed as

r R -ik x-x'

2 pui [A '+2y '-ico (A"+2y") ]
dk

-R k [k -
( A ' + 2 y ')2+ m 2 (A"+2y")2

-iz x-x'

2 pa) [ A 1 +2y 1 - ico (A "+2y ") ]
dz = -2-iTi^Residues (6.13)

z [z
(A 1 +2p 1) 2+o)2 (A"+2y") 2

since it is to be evaluated around the closed path C in the lower half 

of the complex z-plane consisting of the real axis from -R to R and 

the semicircle F of radius R . Taking the limit as R , it follows 

from equation (6.13) that

I 3

1 “>■-ik x-x'

, rl_2 pm [A'+2y'-iai (A"+2p") ] ,11 11 J
(A'+2y1) +w (A"+2y")

dk = -2-rri^Residues . (6.14)

The integral over the semicircular arc F approaches zero as R and

thus does not contribute to the integration.
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The singularity contributing to the integral in equation (6.12) 

consists of a simple pole which may be located by setting the denominator 

of the integrand to zero. The pole which occurs at the origin does not 

contribute to the result for , since its residue is not spatially

dependent, and, after the residues of I are summed, a spatial operator 

acts on them. The remaining poles are expressed symbolically as

z = ± [pu)2 [ A ' + 2 y ' - i a ) ( A " + 2 y " )  ] ^1/2 

(A ' + 2 y  ') 2 +u)2 ( A " + 2 y " )  2
(6.15)

After considerable algebra the poles can be expressed as

1 , 2 (k'-ik") ,J_j J_j (6.16)

where

kL = kL

2 A"+2u" 2 1/2 A 1/2
u+“ i w > 2]1/2+1

2 A " + 2 y "  2
1 2[1+w (r w - } ]

kL = kL<

r 2 A " + 2 y "  2 1 / 2  
[1+U) A ' + 2 y 1 ] ~ 1

0 r i . 2 , A " + 2 y " ' 2,2 [1+rn (Ai+2y«) 3

1/2

Oj 0)
L CL (A ' + 2 y 1 / 2

(6.16a)

It is observed that the path of integration in the lower half of the 

z-plane contains only the contribution due t.o ẑ  which represents a 

propagation mode. The noncontributing pole which lies outside of

the contour corresponds to a reflection mode from infinity.

After evaluating the residue from the pole enclosed within the 

contour in the lower half plane, one obtains

J3 =

I —y ~y | | ~y ~yn . „ . ■ -k" x-x' -ik' x-x1-tt [ A ' + 2 y '+im (A + 2 y  ) ] i L 1 1 L 1    e e (6.17)
pa)
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Combining the transverse and longitudinal components of the 

Green's function by substituting the values of 1^, I ^ r and I from 

equations (6.11) and (6.17) into equation (6.5) gives

G. (x-x';cj) = lm

2 “k" |x-x'| “ik' | x-x'
-p (f-ig) 2 (n'+ioin") 3 ■._e__________e__________

*■ ttti 4- • j--:2 2 jm (f+ig) + (y' +iwy") 3x.3x'(f+g) s i -   ̂ D m 4tt x-x'

2 "k" |x-x'| -ik' |x-x'
p (f-ig) _ 2 (n '+id)n")______ 3 . e__________e__________

2 2 jm (f+ig) - (y '+iuiy ") 3x.3x' l^^.lf+g J  ̂ j m 4tt x-x'

-k "|x-x'L -ik'|x-x' L
2 3x.3x' m j m 4 tt

-> -> x-x'
(6.18)

where 3/3x^ = -3/Sx^ . A comparison with the special case of a visco

elastic medium, which follows, shows that the longitudinal mode of wave 

propagation in the viscoelastic medium is unaltered by the presence of 

couple-stresses; however, the transverse mode of wave propagation under

goes changes due to the effects of couple-stresses that include: (i) the

introduction of a new mode of wave propagation with complex wavenumber 

k̂ , - ik^ ; (i-i) the modification of the complex wavenumber for the usual

mode of wave propagation from k^ - ik^ to k^2 - ik^ ; and (iii) the 

modification of the amplitude of the usual mode of wave propagation. The 

propagation of an additional transverse wave due to the effects of couple- 

stresses is in agreement with the findings of Mindlin and Tiersten (1962) 

in their study of the propagation of waves in an elastic medium with 

couple-stresses. They found that three types of waves, including an
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additional transverse wave, may exist in such a medium in contrast to 

the two predicted by classical elasticity. It should be noted that the 

tensorial Green's function obtained here is symmetric under an inter

change of the "j" and "m" indices and also symmetric with respect
—y -yto an interchange of x and x' .

The attenuation constants and velocities of propagation character

istic of the transverse and longitudinal modes of wave propagation in the 
~yx,u> domain can be determined directly by inspection of the analytical

structure of the Green's function representation in this domain. The

amplitudes of the transverse and longitudinal waves are attenuated with

distance as they propagate through the medium in accordance with the terms

exp(-kî1 |x-x' | ) , exp(-k^2 |x-x'| ) , and exp(-k£| x-x' | ) , where k̂ , , k£ ,

and k" are the respective attenuation constants for these waves. These 
Li

attenuation constants serve as a measure of the internal friction of the 

medium. The velocities of propagation of these modes, known as phase

velocities, are defined by means of the equations = oi/k^,

CT2 = W//kT2' and CL = W//kL ‘ It: may be seen from equations (6.10a - f)
and (6.16a) that k^, k^2, k,£ , k^, and k£ all vary with frequency.

The quantities k' , k' , and k' vary with frequency in a manner such i X. 12. 1j
that the phase velocities C' , C' , and C' are also dependent on

L J. L A l_i

frequency. This dependence of phase velocity on frequency indicates 

that the relaxation behavior of waves associated with the viscous properties 

of the medium not only produces attenuation in the amplitudes but also

dispersion in the velocities of propagation.



Viscoelastic Medium

The Green's function representation that appropriately describes 

the properties of wave propagation for the special case of a viscoelastic 

medium may be obtained directly from the corresponding representation for 

the general case of a viscoelastic medium with couple-stresses by dis

regarding the contribution due to couple-stresses. Since couple-stresses 

affect only the transverse mode of wave propagation, characteristics of 

the longitudinal mode of wave propagation do not undergo alteration in 

the transition to this special case. When the terms that account for the 

effects of couple-stresses in the medium are eliminated by setting the 

material parameters n ' = n" = 0, the Green's function representation 

previously developed for the general case reduces to the form

vG. (x-x'; us) jm

p ( y ' - i m y " )  .
1 ,2 2 2 jmy ' +w y 2 9x.9x' a) j m

I ~y —y | | ~y ~-y-k" x-x' -ik' x-x' T1 1 T 1e_________e_________
I ~y -y |4 tt x-x'

i —y ~y i-k"Ix-x'I -
e e

i -y ->ik 1 x-x1

2 9x.9x' a) 1 m I -y -y 4tt x-x'
(6.19)

where the quantities k̂j, , and k^2 in the general case, upon

which the attenuation constants and velocities of propagation of waves in

the medium are dependent, have undergone the following changes:



It is observed that the additional transverse mode of wave propagation

with wavenumber k ^  - ik^ , introduced by the presence of couple-

stresses in the medium, vanishes in the absence of couple-stresses,

while the usual transverse mode is modified during the transition to

this special case.

The amplitudes of the transverse and longitudinal waves are

attenuated with distance as they propagate through the medium in accordance

with the terms exp(-k" x-x1 ) and exp(-k" x-x1 ) , where k" and k"T L T L
are the respective attenuation constants for these waves. The phase

velocities corresponding to these modes of wave propagation are defined

by the equations C' = w/k' and C' = w/k' . It may be seen fromT T L L
equation (6.16a) and (6.19a) that k', k", k' and k" all vary withT T L L
frequency. The quantities k' and k' vary with frequency in a mannerT L
such that the phase velocities and are also dependent on

frequency. This dependence of phase velocity on frequency indicates 

that the relaxation behavior of waves associated with the viscous properties 

of the medium produces dispersion in the velocities of propagation in 

addition to attenuation in the amplitudes.

Elastic Medium with Couple-Stresses

The Green's function representation that appropriately describes 

the properties of wave propagation for the special case of an elastic 

medium with couple-stresses may be obtained directly from the corresponding
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representation for the general case of a viscoelastic medium with couple- 

stresses by disregarding the contribution due to viscoelasticity. When 

the terms that account for the effects of viscoelasticity in the medium 

are eliminated by setting the material parameters n" = A" = p" = 0, the 

Green's function representation previously developed for the general case 

reduces to the form

i - >  - >  ,

2 -kT1lx“x,l„ec> . -1 , r. 1 9 . eG. (x-x';m) = — ----- (6 + —  T- -a--V )
cJ(l+4 4 u|J-5'|

2 -ikT2l-.| -ikjI-J.
_______1______.» _ 1 9 . e___________ 1_ 9 e________
2. n 2 2 1/2 jm 2 9x.9x' i , t 2 9 x . 9 x ‘ I • IC T (1+4-t k ) kT2 j m  4tt|x-x'| w : m  4ir|x-x'|

(6 .20)

where the quantities k' , k" , k' , k" , k' and k" in the general case,
T l  1 1  TZ T  Z L  1j

upon which the attenuation constants and velocities of propagation of 

waves in the medium are dependent, have undergone the following changes:

S i  +  0  • k i i  *  k T i  =  p T S J 1 * 1 + 4 ^ 2 |c t )  1 / 2 + i  ] 1 / 2

j. i -y v =  i r(l+4/2k2) 1/2-ll1/2 k" -> 0T2 T2 2l/2^lt T J ' T2

k' ^ k , k" -> 0 . (6.20a)
Li Lj L

It is observed that both transverse modes of wave propagation and the 

longitudinal mode of wave propagation are modified during the transition 

to this special case. The additional transverse mode of wave propagation 

associated with the presence of couple-stresses in the medium becomes a
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non-propagating, or purely attenuated mode, whereas the other transverse

mode and the longitudinal mode are no longer attenuated in this special
e c  - > • —>-case. The expression for G^^x-x';w) in equation (6.20) agrees with the

one obtained by A. Yildiz (1972) except that it contains an additional 
2-1/C factor and the time dependence employed is different. The former 

difference is attributable to the manner in which the Green's function 

is defined and does not affect the value of the displacement predicted 

by use of equation (4.1).

The overdamped transverse mode associated with the presence of 

couple-stresses in the medium is attenuated with distance in accordance
| -/■ Iwith the term exp(-k^^|x-x'|) , where is the attenuation constant.

The other transverse mode and the longitudinal mode are not attenuated as

they propagate through the medium. The phase velocities corresponding to

these modes of wave propagation are defined by the equations = w/kT2

and C = u)/k . It may be seen from equations (6.16a), (6.19), andL L
(6.20a) that k and k vary with frequency. The quantity kT 2 L J- £
varies with frequency in a manner such that the phase velocity C is

also dependent on frequency. This dependence of phase velocity on

frequency indicates that the wave is propagated dispersively. On the

other hand, k is directly proportional to the first power of the L
frequency such that the velocity of propagation C is independent of

L j

frequency. Thus, the longitudinal wave is propagated non-dispersively.

A comparison with the special case of an elastic medium, which 

follows, shows that the longitudinal mode of wave propagation in the 

elastic medium is unaltered by the presence of couple-stresses; however, 

the transverse mode of wave propagation undergoes changes due to the



effects of couple-stresses that include: (i) the introduction of a new

mode of wave propagation with wavenumber ^ » (ii) the modification of

the wavenumber for the usual mode of wave propagation from to kT ;

and (iii) the modification of the amplitude of the usual mode of wave 

propagation.

Elastic Medium

The Green's function representation that appropriately describes 

the properties of wave propagation for the special case of an elastic 

medium may be obtained directly from the corresponding representations 

for the special cases of either a viscoelastic medium or an elastic 

medium with couple-stresses by disregarding, respectively, the contributions 

due to viscoelasticity and couple-stresses. Since couple-stresses 

influence only the transverse mode of wave propagation, characteristics 

of the longitudinal mode of wave propagation for this special case are 

identical to those for the previous special case of an elastic medium 

with couple-stresses. When the terms that account for the effects of 

viscoelasticity in the special case of a viscoelastic medium are eliminated 

by setting the material parameters A" = n" = 0, or the terms that account 

for the effects of couple-stresses in the special case of an elastic 

medium with couple-stresses are eliminated by setting the material para

meter Z = 0, the Green's function representations previously developed 

for these special cases reduce to the form
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The quantities k", k', k", and k' , upon which the attenuation constants T T L L
and velocities of propagation of waves in the viscoelastic medium are 

dependent, have undergone the changes

kT "*■ ° ' kT ^ kT ' kL ^ ° ' kL ^ kL ' (6.21a)

while the quantities k ^  and k , upon which these same wave properties 

in the elastic medium with couple-stresses are dependent, have undergone 

the changes

k , k „ -> k . (6.21b)Tl T2 T

It is observed that the transverse and longitudinal modes of wave propa

gation are modified during the transition from the viscoelastic medium to 

this special case, while only the transverse modes of wave propagation 

are altered in the transition from the elastic medium with couple-stresses 

to this special case, since couple-stresses influence only the transverse

mode of wave propagation. The transition from the viscoelastic medium
0leads to an expression for G. (x-x1 ;oj) wherein the transverse and:m

longitudinal modes are no longer attenuated for this special case. The

additional transverse mode of wave propagation with wavenumber k ,

associated with the presence of couple-stresses in the elastic medium,

vanishes in the absence of couple-stresses, while the usual transverse

mode is modified during the transition from the elastic medium with

couple-stresses. The expression for G^tx-x';oi) in equation (6.21)

agrees with the one obtained by A. Yildiz (1964, 1972) except that it
2contains an additional factor and the time dependence is different.

The former difference is a direct consequence of the manner in which the
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Green's function is defined and does not affect the value of the displace

ment predicted by use of equation (4.1) . Since k and k are directly1 1 j

proportional to the first power of frequency, the velocities of propagation

C = w/k and C = (o/k are independent of frequency. Thus, the T T L L
transverse and longitudinal waves propagating through the elastic medium 

do not undergo attenuation in their amplitudes or dispersion in their 

velocities of propagation.
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CHAPTER VII

GREEN'S FUNCTION REPRESENTATION IN THE x,t DOMAIN

The Green's function representation in the x,t domain may be 

obtained by application of the spatial part of inverse Fourier transform 

relation (4.5a) to equation (5.8) for the transformed Green's function 

in the k,t domain:

G. (x-x1;t-t') = Dm J «

-y —y —y 3->
G. (k;t-t')e_ (x-x )

{2tt)
= u(t-t') X

{ 6  . jm
II -l/2DcTk2(t-f) si„[Co^(l-d2k2/p)1/2(t-t')l d3j

e .........  ..........„ , /n ,2,2, , 1/2 
cT (1 /P) (2 t t )

9x. 9x D m

s b i y M V w V V - t ' l l  j. j.j d3j
e         e  -

CcT)c3(l-d2k2/p)1/2 (217)

3x. 3x D m

-1/2D k2 (t-t') sin[CTk(l-h2k2/p)1/2(t-t') ] -ik*(x-x') ,3->
e  r---- — :-- t t:-----  e  -} ,

CLk3(l-h2k2/p)1/2 (217)

(7.1)

where

cT cT T 4p' (l+£2k2)

= A"+2y" 2 = (1"+2m ")
L p ' 4(X1+2y1)

c- = r_ o*- = iL_ c = 
T p ' m ’ ' L (7.1a)



81

and u(t-t') represents the unit step function. These integrals are 

to be evaluated over the entire space of k-vectors.

A convenient approach for the evaluation of integrals of this 

type, which utilizes a spatial representation in spherical coordinates,

was outlined previously for the integrals in equation (6.1). Accordingly,
3->- 2a volume element in k-space is expressed as d k = k sin0 dk d0 d<J), and

when the polar axis is chosen along the direction of x-x1 , the quantity
—y -yk*(x-x') , which appears in the exponential term within each integrand,

| -> I I -> ican be replaced by klx-x'IcosO, where k = |k| . Integrating with

respect to the angles 0 and (f> first, the Green's function assumes 

the form

Gjm (x-x';t-t') = u(t-t') x

{<5 . ['jm
-l
2  i ->( 2 TT ) X - X 1

-1/2D k2(t-t') sin[C k(l-d2k2/p)1/2(t-t')]cT cT
e ----------------- 2~2----172--------  XccTd-d k2/p) /2

r ik x-x' -ik x-x' ,[e 1 1-e 1 1]dk]

3x . 3x 1 21 ,3 m (2tt) | x-x' |

t _
e

l/2Dc^ 2(t-t') sin[CcTk(l-d2k2/p)1/2(t-t') ]

0
C k2(i-d2k2/P)1/2 cT

ik x-x' -ik x-x'[e 1 '-e 1 ']dk]

d x  .9x . 2 1 *> -> Ij m (2tv) I x-x1 |

-1/2D k2(t-t') sin[Ck(l-h2k2/p)1/2(t-t')]Li LiG   X
„ , 2 ,2 2 . .1/2 C k (1-h k /p)

Li

I -> | I —y -y |r ik x-x' -ik x-x' ,[e 1 1-e 1 1]dk]} (7.2)
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Performing the change of variables k - k on the first exponential 

function in the integrand of each of the integrals permits the limits of 

integration to be extended from -°° to 00 , leaving the following inte

gration over k:

G. (x-x'; t-t') = u( t-t'){<$. [3m 3m _ i-----  1 ] + — ---- r-2i+ 1 1J 9x.9x 1
( 2 TT) X-X' j m (2tr) x-x'

9x. 9x ~ 1 ■ • ,3 m  (2tt) x -x
( 7 . 3 )

where 1^, I a n d  I denote the integrals

*1 =
f -l/2DcTk2 (t-t') sin[CcTk(l-d2k2/p)1/2(t-t': 

0 --------------
„ /. -.2. 2 . N1/2 CcT(l-d k /p)

I -> I-lk X-X ' -> 3e 1 1dk , (7.3a)

I2
-l/2DcTk2 (t-t') sin[CcTk(l-d2k2/p)1/2(t-t')]

e    — --- t— --- e 1 dk , (7. 3b)
ccTk2 (i-d2k2/P)V 2

and

I3
-1/2D k2 (t-t') sin[CTk(l-h2k2/p)1/2(t-t')] IL L ""IK X —X
e  2-2 2 — 172 e ^C k (l-h k /p)V  

Li

(7.3c)

One method of evaluating the remaining integrals consists of first 

expressing the integrands in more integrable forms by the use of series 

expansions. After interchanging the order of the integration and summation 

operations, the resultant integrals are evaluated analytically. This 

approach leads to a representation for the Green's function in the x,t
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domain as a superposition of damped harmonic oscillator wave functions 

in the form of a series of Hermite polynomials and Gaussian functions.

The analytical procedure outlined here for the evaluation of integrals 

1̂ , Î , and I proves to be rather cumbersome in application, however, 

due to the algebraic forms of the integrands, and the resultant series 

are inefficient for numerical evaluation by computer.

It is more productive in this case to evaluate the integrals 

’*’1' 2̂' an(̂  ^3 an e<5uati-ons (7.3a - c) by numerical methods. An approach 

is suggested whereby each element of the tensorial Green's function is 

evaluated separately. First the operations on I , Î , and I indicated 

in equation (7.3) must be performed. Then the altered integrals can be

evaluated numerically by computer and combined by use of equation (7.3)
~y —yto give G. (x-x';t-t') . It should be noted that the tensorial Green's3 ;jm

function in equation (7.3) is symmetric under an interchange of "j" and
—y"m" indices and also symmetric with respect to an interchange of x and 

~yx' . Consequently, only six elements, or subsidiary Green's functions,
~y ~yneed to be determined in order to completely specify G (x-x';t-t') .

Viscoelastic Medium

The Green's function representation that appropriately describes 

the properties of wave propagation for the special case of a viscoelastic 

medium may be obtained directly from the corresponding representation for 

the general case of a viscoelastic medium with couple-stresses by dis

regarding the contribution due to couple-stresses. Since couple-stresses 

affect only the transverse mode of wave propagation, characteristics of 

the longitudinal mode of wave propagation do not undergo alteration in
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the transition to this special case. When the terms that account for the 

effects of couple-stresses in the medium are eliminated by setting the 

material parameters Z = n" = 0, the Green's function representation for 

the general case reduces to the form

gY (x-x1; t-t1) = u(t-t'){S. r-jm jm ‘
1 v d
2,-> -v. i 1J + 9x.9x L'(2tt) x -x 1

— ----- IV]2i-> i 2j m (2tt) I x -x '

9x. 9x , . 21
j m (2ir) | x-x' I31> ' (7.4)

V V Vwhere 1^, I , and I denote the integrals

2 2 2 1/2 -1/2D k (t-t') sin[Ck(1-g k /p) (t-t')]
T  ^-- — ----------— - e x-x dk, (7.4a)

cT d - g  k /p) 7

2 2 2 1/2 -l/2DTk (t-f) sin [CTk (1-g k /p) (t-t1) ] _ik|++,|
---------2— n — 1?2— e dkf (7-4b)CTk (1-g k /p)

and

-1/2D k2 (t-t') sin[CTk(l-h2k2/p)1/2(t-f) ] Ilj J-J lj£ I X“X I •• / n A »
---------2— n — 172— e ^  • (7-4c)C Tk  ( 1 - h T / P )  7J_i

The new quantities Dt and g , which were defined earlier following
2 2equations (5.14a - f), are given by = y"/p and g = y" /4y' .
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Elastic Medium with Couple-Stresses

The Green's function representation that appropriately describes 

the properties of wave propagation for the special case of an elastic 

medium with couple-stresses may be obtained directly from the corresponding 

representation for the general case of a viscoelastic medium with couple- 

stresses by disregarding the contribution due to viscoelasticity. When 

the terms that account for the effects of viscoelasticity in the medium 

are eliminated by setting the material parameters n" = A" = y" = 0, the 

Green's function representation for the general case reduces to the form

Gec(x-x'; t-t') = u(t-t'){6. [• Dm Dm 2,->- i 1 J 9x.9x 1(2tt) x - x ' j m  (2tt) x -x '
-i----- ISC]
2 ,+ -+ i 2 J

9x. 9x ,  ̂| . •D m (2ir) x-x'
_i  iec ] }2i->- i 3 ' (7.5)

ec 0c g  cwhere 1^ , , and I denote the integrals

.ec sin[C k(t-t') ] .. i-> + |cT -ik x-x'-----    e 1 dk ,
cT

(7.5a)

.ec sin[C k(t-t'cT
C mkcT

!->■->* I
-Ik x-x'e 1 ' dk , (7.5b)

and

.ec sin[CLk(t-t')] _ik|$_$,|^ 
--------   e 'dk

CLk
(7.5c)
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Elastic Medium

The Green's function representation that appropriately describes

the properties of wave propagation for the special case of an elastic 

medium may be obtained directly from the corresponding representation 

for the general case of a viscoelastic medium with couple-stresses by 

disregarding the contributions due to viscoelasticity and couple-stresses. 

It may also be obtained from the special case of a viscoelastic medium 

or the special case of an elastic medium with couple-stresses by dis

regarding, respectively, the contributions due to viscoelasticity and 

couple-stresses. Since couple-stresses influence only the transverse 

mode of wave propagation, characteristics of the longitudinal mode of 

wave propagation for this special case are identical to those for the 

previous special case of an elastic medium with couple-stresses. When 

the terms that account for the effects of viscoelasticity and couple- 

stresses are eliminated by setting the material parameters Z  = g" = A"

= m " = 0, the Green's function representation for the general case 

reduces to the form

6G. (x-x';t-t')

(7.6)
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0 6 6 where 1^, 1^, and denote the integrals

1 dk , (7.6a)

sin[CTk(t-t')J _it|J_;.|
-------   e 1 1 dk

c k T
(7.6b)

and

*3-
e.ik|;.;.|ak _

(7.6c)
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CHAPTER VIII 

NUMERICAL ANALYSIS

In this chapter, numerical analysis is performed on the analytical
—VGreen's function representations in the k,w , k,t , and x,t domains 

for the general case of a viscoelastic medium with couple-stresses and 

for the special cases of a viscoelastic medium, an elastic medium with 

couple-stresses, and an elastic medium. Numerical results based on this 

analysis are presented in the form of graphical illustrations which 

include the isolated contributions from the transverse and longitudinal 

components of the Green's function in addition to the total Green's 

function. Tables of numerical values that correspond to various 

properties characteristic of the transverse and longitudinal modes of 

wave propagation are also included.

An analytical basis for a comparison of the properties character

istic of wave propagation in these media, whereby inspection of analytical 

structure of the Green's function representations provided valuable 

information concerning wave phenomena, was developed in the foregoing 

chapters. It is also desirable to establish a numerical basis for 

comparison. Since this investigation concerns a relatively unexplored 

area of mechanics, however, there is no experimental data available upon 

which to base a numerical analysis. Despite the lack of available data, 

an attempt is made here to graphically illustrate the analytical Green's 

function expressions obtained earlier in order to gain insight into the 

propagation of waves in these media. Numerical analysis is particularly 

helpful for interpreting the Green's function representations in the x,t
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domain, which are left in integral form following the analytical develop

ment. Comparisons of the viscoelastic medium with couple-stresses with 

the viscoelastic medium, the elastic medium with couple-stresses with the 

elastic medium, and the viscoelastic medium with the elastic medium, where 

either the effects of couple-stresses or viscoelasticity are isolated, 

should be most useful for identifying these effects.

It was mentioned earlier that the derivation of the Cosserat 

field equations takes into account the effects of a surface couple per unit 

area in addition to the usual surface force per unit area, and that such 

a consideration seems appropriate for materials with granular or crystalline 

structure, where the interaction between adjacent elements may introduce 

internal couples. In view of this argument, the selection of one of the 

major marine-sediment types as the medium upon which to base the numerical 

analysis on couple-stresses that follows seems justifiable. Marine 

sediments are classified according to the general environment in which 

they are found in addition to various of their physical properties which 

are either measured or computed. Coarse sand, a major marine-sediment 

type that occurs in the continental terrace (shelf and slope) environment, 

is chosen here as the medium for numerical analysis.

The material parameters used in this analysis to characterize the 

marine-sediment type coarse sand are summarized as follows:

3 , 3p = 2.30 x 10 kg/m

8 4n' = 3.33 x 10 nt , n" = 6.67 x 10 nt-sec

9 2 5 2
X' = 6.00 x io nt/m , A" = 6.00 x 10 nt-sec/m

y' = 1.00 x 109nt/m2 , y" = 2.00 x lO^nt-sec/m2 . (8.1)
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Values for the elastic material parameters p, A ' , and y ' correspond 

closely to the data on the elastic properties of coarse sand reported 

by Hamilton (1974a). Numerous investigations have been performed to model 

and measure internal energy dissipation in marine sediments. Yet, the 

damping mechanisms in marine sediments are not well understood and no 

universally accepted model for damping exists which is valid over the 

frequency range of interest. In view of the conflicting data on 

compressional-wave attenuation in marine sediments and the lack of 

available data on shear-wave attenuation, values for the viscous material 

parameters A" and y" , which correspond to Lame's parameters A' and 

y' , are chosen by the author. With regard to the material parameters 

for couple-stresses, since there are no experimental values available 

for the elastic bending-twisting parameter 71' , and there is no previous 

mention in the literature of the corresponding viscous parameter y" , 

these values were also chosen by the author. If the values selected for 

the material parameters that account for the effects of couple-stresses 

and viscoelasticity in the medium are somewhat exaggerated due to the 

lack of available data, it serves the purpose of clearly illustrating 

these effects in the graphical results that follow. Since special cases 

where these effects are disregarded are also treated here, it is desirable 

to emphasize these effects, when they are present in the medium, as a 

basis for comparison.

In the graphical illustrations that follow, in each case the

trace of the tensorial Green's function G. , G .. , is plotted versusDm  ID
either frequency or time. The trace represents the sum of the elements

along the principal diagonal of the matrix formed by the subsidiary Green's

functions of the tensorial Green's function G. . It is convenient toDm
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plot the trace of the tensorial Green's function, since the projection

operators which accompany the transverse and longitudinal components of

the Green's function are eliminated.

Taking the trace of the tensorial Green's function representations

in the k,w and k,t domains affects only the projection operators 
T LP_.̂  and P__m , which precede the transverse and longitudinal components 

of the Green's function. Setting j = m , one finds that

= ( 6 . ----- i-ii) -* pT . = 2 (8.2a)jm jm k2 33

and

t k  -k  T
P = ~ -* P . = 1 . (8.2b)
1™  k2 33

In order to obtain graphical representations of the Green's functions in

the k,oo and k,t domains, which are to be plotted versus u) and t ,

respectively, the spatial wavenumber k is arbitrarily fixed at

k = lm  ̂ , or wavelength A = 2Trm . Figures 7, 8, 9, and 10 illustrate

the Green's function representations in the k,a) and k,t domains for

all the media previously considered in the analytical development. The

transverse and longitudinal components of the Green's functions are

illustrated separately in order to obtain a measure of their respective

contributions to the Green's function. Tables 1A and IB give numerical

values for the transverse and longitudinal wave properties summarized in

equations (5.9), (5.15), (5.17), and (5.19). It should be mentioned that

the odd part of G..(k;t-t') is plotted in place of G".(k;t-t') . The
11 11

The odd and even parts of G..(k;t-t') , denoted, respectively, by



TABLE 1A

TRANSVERSE WAVE PROPERTIES

nT y t dT tt BWT

Medium -1sec -1sec -1sec sec -1sec

xlO2 xlo”2 xlO1 xlO2 2t xlo”3 xlO2

Viscoelastic with
couple-stresses 7.61 7.61 5.80 7.59 6.57 8.28 1.16

Viscoelastic 6.59 6.59 4.35 6.58 7.58 9.55 0.87

Elastic with
couple-stresses 7.61 0.00 0.00 7.61 OO 8.25 0.00

Elastic 6.59 0.00 0.00 6.59 CO 9.53 0.00

to



TABLE IB

LONGITUDINAL WAVE PROPERTIES

“  TnL y l 03dL TL BWL

Medium -1sec ?L
-1sec -1sec sec -1sec

3x 10 xlO-1 2x 10 , 3 xlO ql xlo"3 xlO2

Viscoelastic with
couple-stresses 1.87 1.17 2.17 1.85 4.29 3.39 4.35

Viscoelastic 1.87 1.17 2.17 1.85 4.29 3.39 4.35

Elastic with
couple-stresses 1.87 0.00 0.00 1.87 00 3.37 0.00

Elastic 1.87 0.00 0.00 1.87 00 3.37 0.00
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O GG..(k;t-t') and G..(k;t-t') , are related to the imaginary and real parts ID 11
of Gjj(k;t-t') by the relationships

G?.(k;t-t') = j!j-[G . . (k; t-t')-G . . (k; t'-t) ] = i G'.'. (k; t-t' ) (8.3a)11 2 33 33 33

and

G? . (k; t-t1) = r’[G . . (k; t-t1 ) +G . . (k; t1 - t) ] = G'. . (k; t-t') . (8.3b)11 2 33 33 31

Similar relationships exist for the components G (k;t-t') and G (k;t-t')T L
Taking the trace of the tensorial Green's function representation 

in the x,t domain has the following effect on the projection operators 

which precede the transverse and longitudinal components of the Green's 

function:

2 2
6 . -*6 .. = 3 ,  ■ = V2 . (8.4)3m 33 oX.oX - 23 m 8x.1

It follows that the identity

1 I I I-ik x-x' „ -ik x-x'
V {—---'---- -} - - k 2 S---1---- 1 (8.5)

x-x1 x-x'

helps to reduce the expressions for G ^(x-x*;t-t') , G^^(x-x';t-t') ,
QC 0G .,(x-x';t-t') , and G . .(x-x';t-t') in equations (7.3 - 6). The trace 11 11

of the tensorial Green's function representation in equation (7.3) gives

G. . (x-x';t-t') = u(t-t'){ v1 - ■ ■ ■ In + ----— —  I,} , (8.6)
3 3 (2tt) I x -x ' I 1 (2tt) |x-x' | 3
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where

-i/2DcTk2 (t-f) si„[ccTk a - a \ 2/p)1/2(t-t’>]
i “ e  „ ,, a */ ,1/2-------e ak <8-6a)

CcT(1“d k /P)

as in equation (7.3a), and now

-l/2DLk2 (t-t') sin[CLk(l-h2k2/p)1/2(t-t')] ik|J_+.|
I = e  — -   e 'dk

c.(l-hY/P)v
(8.6b)

The trace of the tensorial Green's function representation in equation (7.4)

gives

(x-x1; t-t') = u(t-t'){- — ----- lV +
(2tt) 2 I x - x 1 I "*■ I3} ' (8*7)(2tr) x-x'

where

I, =
-1/2D k2 (t-t') sin[c k(l-g2k2/p)1/2(t-t')] -ikIx-x'I

 „ „ . 1/2  e 'dk (8-7a)cT (l-g k /p)

as in equation (7.4a), and now

-1/2D k2 (t-t1) sin[C k(l-h2k2/p)1//2 (t-t1) ] ., i ^ t i
p h  ±i______________________ p 1XIX x I dk

_ M . 2. 2, .i/2 C (1-h k /p)
i_ l

(8.7b)

The trace of the tensorial Green's function representation in equation (7.5) 

gives

pn —VGj_. (x-x' ;t-t') = u(t-t'){- +
2 i i 1

( 2 it ) x - x '

_____i_____  jec>
v 2 . I 3 '

( 2 tt ) x-x'
(8.8)



where

ec s m  C k (t-t ) ] ., | ■> +. |cT -xk x-x' „------   e 1 'dk
cT

(8.8a)

as in equation (7.5a), and now 

sin[C k (t-t1)]ec -ik x-x' — TTX x-x’d k -  —  6 ( t - f -
CL

-) . (8.8b)

GCNumerical evaluation by computer of I presents some difficulty since 

there is no exponential damping factor present in the integrand. There-
GCfore, 1^ is converted into the equivalent integral (see Appendix B)

ec -2i -2a
T

-4ay . , 1/2, . 2 ,.1/2, ,„l/2, ,e smh[2 b (y +1) ]cos[2 by] dy
(y2+l)1/2

, (8.9)

where

a =
cT (t-f)

41 b = |x-x'
21 (8.9a)

This form is more convenient for numerical evaluation by computer because
2it contains the Gaussian type convergence factor exp(-4ay ) . The trace 

of the tensorial Green's function representation in equation (7.6) gives
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where

*1- sin[C k (t-t1)] i i  . 5--------e-ik|*-x''1^ „ . i| s(t_t, . (810a)
T C TT

as in equation (7.6a), and now

sin[C k(t-f)] _ik|^,| iir |+_+,|
------_------- e 1 ' dk = - 5 (t-t' - ■ 1 ) . (8.10b)

L C LL

Upon substituting the right-hand sides of equations (8.10a) and (8.10b)
0 0 0 ■ yfor I and I into equation (8.10), G ..(x-x1;t-t') may be expressed1 8  J J

as

- J ^ l ,  S(t_t. - i M l ,
T L

G0 . (x-x';t-t') =u(t-t'){-^— ------— — ------- +    } . (8.11)
C 4tt | x-x' | C 4it |x-x' |T L

Figures 11, 12, 13, and 14 illustrate the Green's function repre- 

sentation in the x,t domain for all the media previously considered in 

the analytical development. The transverse and longitudinal components 

of the Green's functions are illustrated separately in order to obtain 

a measure of their respective contributions to the Green's function. In 

each case the Green's function is plotted versus time, and the source 

point is fixed at x' = 0 , t' = 0 , while the observation point is

taken to be |x| = 10m . The transverse and longitudinal components
~y —)■G (x-x1;t-t1) and G (x-x'jt-t1) are defined according to the relation T L

G. . (x-x' ;t-t') = 2G (x-x' ;t-t') + GT (x-x' ,-t-t') , (8.12)33 T L
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in order to be consistent with the previous definitions for these 

components in the Green's function representations in the k,w and k,t 

domains.

It was mentioned earlier that the spatial wavenumber k was 

arbitrarily fixed at k = lm 1 in order to obtain the graphical illustra- 

tions of the analytical Green's function representations in the k,w and 

k,t domains. Thus, only one spatial component is plotted here for each 

of these Green's function representations. With the aid of Tables 1A 

and IB, a comparison of the numerical results in Figures 7, 8, 9, and 10 

for the viscoelastic medium with and without couple-stresses and the elastic 

medium with and without couple-stresses indicates that the elastic and 

viscous effects of couple-stresses are small for this spatial component.

The reason for this is clear when one inspects equations (5.17a) and (5.19a) 

for the transverse wave properties of an elastic medium with couple-stresses 

and an elastic medium, respectively. It is observed that the nondimensional 

product Zk carries with it all of the difference between the elastic 

equations with and without couple-stresses. In the numerical analysis 

performed here, Zk < 1 . If the value for k was selected such that 

the wavelength X = 2ir/k was on the order of the material length I (for 

example, X = Z gives Zk = 2tt) , the product Zk would be much larger 

and the effect of couple-stresses would be more noticeable in the graphical 

illustrations. An inspection of equations (5.9a) and (5.15a) for the 

transverse wave properties of a viscoelastic medium with couple-stresses 

and a viscoelastic medium, respectively, illustrates the same effect for 

the elastic couple-stress parameter Z . However, in order to complete 

the comparison in this instance, one must also take into consideration 

the presence of the viscous parameter ri" in the damping factor £ .
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This parameter also occurs as a product with the spatial wavenumber k 

in these forms. Thus, it appears that the numerical value of the spatial 

wavenumber k is a critical factor in determining the magnitude of the 

elastic and viscous effects of couple-stresses in the graphical repre- 

sentations in the k,ui and k,t domains. The observations here support 

the earlier statement that influence of couple-stresses might become 

important as wavelengths diminish to the order of the material length Z .



100

Graphical illustrations of the analytical Green's function repre-

sentation in the x,t domain contain all of the spatial components due

to the modal synthesis (integration) or inverse transform procedure.

In accordance with this procedure, in order to obtain the Green's function

representations in the x,t domain, the Green's function representations

in the k,t domain are integrated with respect to k over all k

(_oo<k<°o) , including all the spatial components of these continuous media

during the process. The numerical results in Figures 11, 12, 13, and 14

clearly illustrate the effects of couple-stresses and viscoelasticity in

the x,t domain. In the elastic medium there is no response at

|x| = 10m to the disturbance created at x' = 0, t' = 0 until the time

intervals t = |x|/C and t = jx|/C required, respectively, forT T L L
the transverse and longitudinal waves to travel |x| = 10m have elapsed.

As soon as each wave passes, the Green's function returns to its original

value (zero) instead of being permanently changed. In contrast, the

response in the viscoelastic medium occurs in the form of two Gaussian

curves whose peaks occur at t = t and t = t , and correspond,T L
respectively, to the transverse and longitudinal waves. The broadening 

of the elastic response about the times t = t and t = t^ is due to 

viscous effects introduced by viscoelasticity and depends on the degree 

of damping in the medium. Larger values of damping give broader responses. 

The presence of couple-stresses in the elastic medium and the viscoelastic 

medium does not influence the longitudinal components of the responses 

in these media. However, the transverse components of the responses in 

these media are altered by the presence of couple-stresses. The transverse 

component of the response in the elastic medium with couple-stresses is
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a damped oscillatory curve, even though there is no damping mechanism 

in the elastic medium. Somehow the bending and twisting which accompany 

couple-stresses are responsible for creating this damping in the absence 

of a damping mechanism. Except for the slightly smaller amplitude of 

the oscillations, the transverse component of the response in the 

viscoelastic medium with couple-stresses closely resembles that in the 

elastic medium with couple-stresses. Of course, there exists an actual 

damping mechanism in this case.

Further numerical analysis should be performed to better under

stand the behavior of the elastic medium with couple-stresses. By 

varying the numerical value for n' while keeping y ' fixed, one 

effectively changes the material parameter t for couple-stresses and 

permits a study to be performed where the sensitivity of the response 

to £ is isolated. This would allow one to better observe the manner 

in which the delta function response of the elastic medium is altered 

by the presence of couple-stresses.
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CHAPTER IX

GREEN'S FUNCTION REPRESENTATION FOR THE ACOUSTIC 

RESPONSE IN THE LIQUID MEDIUM

The acoustic response due to a point source in a liquid medium 

overlying a multilayered liquid-viscoelastic medium, which correspond 

to the ocean and its subbottom, respectively, is to be determined. The 

point source has varying strength and is located as shown in Figure 15.

The response can be characterized by a displacement potential <j> ,

from which the vector displacement uQ is given by uQ = V<|> , where

V is the gradient operator. The potential <|> satisfies the scalar 

wave equation

2
(y2 - -̂j)<f>0 (x,x';t) = -S(x-x')h(t) , (9.1)

co 9t
2where V is the Laplacian operator, c^ is the adiabatic sound velocity,

—Vh(t) is the time dependence of the source strength, x is the field 

point, and x' is the source point.

One may define the Green's function for equation (9.1) as 

2
(y2 " ~2 ^ 7 )9(x,x'?t,t,) = -6(x-x')5(t-t') . (9.2)

cQ 9t

Equation (9.2) implies that the Green's function g(x,x;t,t') represents 

the response at x,t arising from an impulsive point-source excitation 

applied at x = x', t = t' . Introducing the temporal Fourier transform
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pair

G(to) = ... -ioit g(t)e dt (9.3a)

g(t) = 2tt
, itot G(co)e dto , (9.3b)

according to which time differentiation in the transform domain corresponds 

to 9/9t = ioj , and transforming equations (9.1) and (9.2), one obtains

(V2+k2) (x,x' ;co) = -6 (x-x') H (to) (9.4a)

and

(V2+k2)G(x,x' ;co) = -6 (x-x1) , (9.4b)

where an(̂  G are the transforms of anĉ  9 • respectively.

The wavenumber kQ is defined by kQ = w/cQ . Combining equations 

(9.4a) and (9.4b), the transformed potential $ may be expressed as

$0 (x,x';o)) = G (x,x';to) H (to) . (9.5)

The time domain response for arbitrary h(t) or H(co) is obtained by

taking the inverse transform of equation (9.5)

-y -y iiotG (x,x' ;u) H (to) e dt . (9.6)

-y ~yIt is observed that obtaining the response <f>0 (x,x;t) for any pulse

shape h(t) is dependent upon the determination of the Green's function 
-y —yG(x,x';co) which satisfies equation (9.4b) and the appropriate boundary
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conditions for the liquid layer. The scope of this investigation does
-y -ynot include the e^qplicit determination of <f>0 (x,x;t) , however. The

~y —yprimary objective is to construct an analytical expression for G(x,x';to) .

In order to solve differential equation (9.4b), the following 

modal representation for the Green's function

G(x,x';o)) = (p ) (p' )G (k j , z ,z' ; w) (9.7)

-yshall be employed, where $j(p) are the two-dimensional set of mode 

functions defined by the two-dimensional scalar eigenvalue problem

(V2+k2 )<j>. = 0 , (9.7a)t tj i

and G (Kj ,z,z';o)) satisfies the differential equation 

2
(̂ —r + k2)G(k ,,z,z1 ;to) = -6 (z-z') , k2 = k2 - k2 , (9.7b)
dz 3 3 3 3

subject to appropriate boundary conditions in the z domain. The sub

script t in equations (9.7a) and (9.7b) denotes that the mode functions 

are for the coordinates transverse to the z-direction.

Since the configuration to be analyzed (see Figure 15) possesses 

a transversely unbounded cross section, the transverse eigenvalue problem 

is highly degenerate and many alternative choices of coordinate systems 

are possible for the modal representation of the unbounded cross section. 

The most useful for a point-source excitation are the circular cylindrical 

and rectangular, respectively, since they account in the most direct 

manner for the symmetry properties of the associated field. For the 

rectangular and circular waveguide descriptions of the unbounded cross
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Figure 15. Geometry of the liquid layer and the multilayered subbottom.
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section, one has (M. Yildiz, 1975):

Rectangular Waveguide Representation

*4 (P) = TT e 3 2tt
1 -i(£x+ny) -OO < £ < 00 f -oo < ^ <

v2 - + s L , „t . 2 2 ti8x 8y
,2 -2 2 2 2 f.2 2k^ = K + n , Kj = kQ - £ - n

6 (pT-p 1) = 6 (x-x') 6 (y-y')

= . (p)$ . (p ')
j

00 00 

r

4tt
-i(?x+ny) MSx'+ny')© 6 uT]

—oo —co

00 00

G (x,x' ;co) =
4tt

-i£ (x-x') —irj (y-y') _ . .e J G(<j,z,z ;o))d5dri

— OO — oo

(9.8a)
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Circular Waveguide Representation

6 i/2 — HttkI)(P) = (^) e (£p) , m = 0, ±1, ±2, •] 2tt m 0 < K <

v2 = l | _ ( 3 } + 1 3 V2 _ r2 2 _ , 2 r2+- - o o ' 4--i ~  ^ ' K-; - - <=t p dp op 2 _,2 ti j 0P 3<f>

P ’

= J<i> (p)$ . (p1 ) 
j

= —  I2tt lm=-00
£e (£p)e im4>'j (CP1 )dCm m

1 rn
G ( X , X '  ; u )  =  —  I 

m=-°°
-im (cf)—(j>') £J (£p)J (^p1 )G(k . ,z,z';cD)d? . m m  3

(9.8b)

For each of these representations the transverse wavenumber k ^  is 

expressed in terms of the "separation" constants. The eigenvalue problem 

in x and y leads to a double Fourier integral representation for 

6 (x-x')6(y-y1) in equations (9.8a), so that the two-dimensional free- 

space representation constitutes the two-dimensional Fourier integral 

theorem. The transform theorem associated with the integral representation 

for 6 (p- p')/p' in equations (9.8b) is referred to as the Fourier-Bessel 

or Hankel transformation.
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The suitability of the circular waveguide representation for

this point-source excitation problem may be made manifest if the coordinate

system is chosen so that p' = 0 , that is, the source is located on the

z-axis at p = 0 , z = z1 . This is the case for azimuthal symmetry

(3/9<j> = 0) of the field, where only the m = 0 mode contributes to the

Green's function. In view of the relation (0) = 1 , the expression 
—yfor G(x,x';w) in equations (9.8b) reduces to

~y 1G (x,x' ;u) = —2tt G(?,z,z';u>)J0 (5p)£d£ . (9.9)

2 2 2 If Kj is redefined as = -a^ , equation (9.7b) can be rewritten as

d2 2
(— ~ ~  a^)G (£,z,z' ;oj) = -6(z-z') , (9.10)
dz

where

a0 = “ k0 * (9.10a)

After solving equation (9.10) for the transformed Green's function

G(£,z,z';o)) , one may apply the inverse transform of equation (9.9) to

obtain the Green's function G(p,z,z';o)) .

It remains to solve equation (9.10) for appropriate boundary

conditions at the top (z = h^) and bottom (z = 0) of the liquid layer.

The Green's function may be written in two parts: one for the region

above the source and one for the region below the source, or

G> (£ ,z,z' ;oj) , h £ z £ z'
G(5,z,z';ai) = (9.11)

G< (5,z,z';u) , z' > z > 0 .
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The Green's function can be constructed from a knowledge of the two 

solutions G and G< of the homogeneous form of equation (9.10)

respectively, and the required conditions at z = z' . The behavior of 

G and dG/dz in the vincinity of the source at z = z' is given by

The former expression requires that the Green's function be continuous 

at z = z' . The latter expression for the discontinuity in the first 

derivative of the Green's function, referred to as the jump condition, 

is obtained by integrating governing equation (9.10) across an infinite

simal interval from just below the source to just above it.

If solutions of the form

G = c V (z) , z > z'
G(£,z,z';w) = > (9.14)

G< = c^U (z) , z' > z

are assumed for homogeneous equations (9.12), then conditions (9.13) yield

(9.12)

satisfying the required boundary conditions at z = h^ and z = 0

G> G< at z = z' (9.13a)

and

dG dG> < (9.13b)dz dz -1 at z = z

= U(z') = V(z')
C2 W(U,V) ' 1 W(U,V) (9.15)

for the constants c^ and c^ , where W(U,V) is the Wronskian
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determinant

W(U,V) =
V(z')

dV (z 1)

U(z')

dU(z 1 )
dz' dz'

(9.15a)

Equations (9.15) can be substituted into equation (9.14) to give

= U (z1 ) V (z) 
> W(U,V)

G (£ ,z,z';co) =
= U (z) V (z') 

< W(U,V)

(9.16)

or, using a more compact notation:

G(£ ,z,z';w) =
U(z<)V(z>) 
W(U,V) (9.17)

where z< and z> denote, respectively, the lesser and greater of the 

quantities z and z1 . Now only the functions V(z) and U(z) , which 

satisfy the homogeneous equations (9.12) in the regions above and below 

the source, respectively, and the yet to specified boundary conditions 

at the top (z = h^) and bottom (z = 0) of the liquid layer, need to 

be determined in order to obtain the Green's function G(£,z,z' ;w) .

The displacement uQ and pressure p in the liquid layer are 

related to the transformed Green's function as follows:

u„ = VG (9.18a)

and

p = pQu G , (9.18b)
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where is the mass density of the liquid. Assuming that the first

layer of the multilayered subbottom is a viscoelastic solid, the boundary 

conditions on the Green's function are as follows:

1. At z = big , the water's free surface, the pressure release 

condition holds

[p(z) ] = 0 , (9.19a)
z=ho

or, from equation (9.18b),

[G>] = 0 . (9.19b)
z=h0

2. At z = 0 , the liquid-solid interface, the stress and normal

component of the displacement are continuous. Since a = -p andzz
CT = 0 in the inviscid liquid, from equations (9.18) one has:P z

dG<[ (u ) ] = [-r— -̂] = [ (u ) ] , (9.20a)z 0 „  dz _ z 1z=0 z=0 z=0

I(azz)0] = [-po“2G<] = ^ z z 5!3 ' (9*20b)z=0 z=0 z=0

and

I (a ) ] = 0 = [ (a ).. ] . (9.20c)Pz 0 pz 1H z=0  ̂ z=0

The subscript "0" refers to the liquid layer while the subscript "1" 

refers to the first layer of the multilayered subbottom. The right-hand 

sides of equations (9.20a - c) are the transformed expressions for the 

normal displacement, normal stress, and shear stress at the surface of 

the multilayered subbottom. These expressions are only functions of the
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spectral variables, £ and gj , and the physical parameters of the sub

bottom. Next it is shown that by employing the definition of acoustic 

impedance, boundary conditions (9.20a) and (9.20b) can be combined into 

a single boundary condition.

The acoustic impedance Z is defined by Z = p/v^ , where p 

is the acoustic pressure and v is the velocity normal to the inter

face. This definition may be generalized for a solid medium by replacing 

p with the normal stress a • where p = ~a zz • the frequency

domain the normal velocity v is expressed as v = iwu . Accordingz z z
to these definitions, the impedance of the first layer of the multilayered 

subbottom is

• (9-21)
2 1 z=0

Now the two boundary conditions (9.20a) and (9.20b) can be replaced by 

the single condition

dG<G  —  Zn — —  = 0  at z = 0 . (9.22)< p in 1 dz

Thus, the use of the impedance concept simplifies the boundary conditions.

One now constructs eigenfunctions V(z) and U(z) for the regions 

above and below the source, respectively, satisfying the boundary conditions 

(9.19), (9.20), and (9.22) and homogeneous equations (9.12). A suitable 

set of functions is given by

V(z) = sinh[a^(h -z)] , z > z1 (9.23a)
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and

ia
U(z) = sinh(a^z) +   Z.,cosh(a z) , z' > z . (9.23b)0 p^u 1 0

When these functions are substituted into the egression for W(U,V)

in equation (9.15a), one obtains

ia
W(U,V) = a [sinh(ah) +  Z cosh(a h )] . (9.24)0 0 0  p u l  0 0

The final expression for the Green's function is obtained by substituting

equations (9.23) and (9.24) into equation (9.17)

ia0
■ , r ti vn sinh(a„z ) + --- Z cosh(a„z )sinh [a (h -z )] 0 < p to 0 <

G (5 ,z,z ' ;to) = --------------  {------------- ; } , (9.25)
a Q 0

sinh(ah) + --- Z cosh(ah)0 0 pQco 0 0

where Z^ is now generalized, Z^ -> Z , to represent the effective

impedance of the multilayered subbottom. It is observed that an expression 

for the acoustic response may be developed without explicitly solving for 

the subbottom impedance Z characterizing the interaction of the acoustic 

medium with the multilayered medium. To calculate the effective impedance 

of the multilayered subbottom, first the propagation of waves in adjoining 

layers is characterized by the successive application of a recurrence 

relation generated from a consideration of the appropriate boundary 

conditions at each interface. Following that, the interaction of the 

acoustic medium with the multilayered medium is determined, using the 

boundary conditions in equation (9.20) , to obtain an explicit expression 

for the subbottom impedance Z .
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CHAPTER X

WAVE PROPAGATION IN THE LIQUID-VISCOELASTIC MULTILAYERED MEDIUM

It was mentioned earlier that the multilayered subbottom to be 

considered here consists of layers that are modeled as either viscoelastic 

solids or viscous liquids. If the problem of wave propagation in the 

subbottom is formulated for the case of a multilayered viscoelastic sub- 

bottom, it is shown here that any viscoelastic layer can be converted 

to a layer of viscous liquid by a simple transition. The transition 

involves only the alteration of the velocities of wave propagation in 

the medium through changes in the material parameters of the medium, and 

may be accomplished after the effective impedance of the multilayered 

subbottom is determined. For this reason, an approach is taken which 

treats the subbottom as a series of viscoelastic layers. After the pro

pagation of waves in the n-layered viscoelastic subbottom is characterized, 

the method for converting any layer to a viscous liquid is discussed.

An expression for the dynamic behavior of a homogeneous, isotropic, 

Voigt viscoelastic solid is to be derived. The linear equation of motion 

applicable to both a linear elastic solid and a linear viscoelastic solid 

is given by

3 2 u . 9cr. .
“ - f  - - " h  ■ ,10-1)dt ]

where p is the mass density of the solid, u_̂ is the displacement vector, 

is the stress tensor, 9/3x^ is the spatial gradient operator, and 

f^ is the extrinsic body force per unit mass. The specialization of
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equation of motion (10.1) to describe either of these media is effected 

by inserting the appropriate constitutive relation into this form. The 

constitutive relation for a homogeneous, isotropic, Voigt viscoelastic 

solid is expressed as

a.. = X e 0lt&.. + 2ye.. , (10.2)il tl ii ii

where e., is the strain tensor il
3u. 9u.

e. . = ^-(r-^ + ■r J -) (10.2a)
il 2 3x. 9x.1 i

and A and y are the Lame operators

A = X' + A" f- , y = y' + y" . (10.2b)d t dt
This constitutive relation is similar to the one which characterizes an

elastic solid, except that the time-differential operators A' + A"(9/9t)

and y' + y"(9/3t) take the place of A' and y' , respectively. Here

A 1 and y 1 are the usual Lame parameters for an elastic solid, while

A" and y" denote the viscous parameters which correspond to Lame's

parameters in the Voigt viscoelastic model. After combining equations

(10.2), (10.2a), and (10.2b) and substituting the resultant form into

equation (10.1), one obtains 
2->

P ^  - (y'+y" |~)V2u - [A'+y'+(A"+y")~)V(V-u) = pf (10.3)z dt dtd t
for the displacement-equation of motion for a homogeneous, isotropic, Voigt 

viscoelastic solid.

The dynamic field equation governing each viscoelastic layer in

the subbottom may be written from equation (10.3) as
2->

P - (p'+y" |-)V2u - [A '+y '+ (A"+y")~—] V (V*u) = 0 . (10.4)
9t 3t 3t

The homogeneous form of equation (10.3), obtained by setting the body 

force f = 0 , is assumed here, since no direct form of excitation is 

present within any of the viscoelastic layers. After taking the Fourier
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transform with respect to time, according to the basis defined in 

equations (9.3), equation (10.4) may be expressed in the frequency 

domain as

k2
(V2+k2)u - (1 - -^)V(V-u) = 0 , (10.5)

kL

where k and k are the wavenumber for the longitudinal(compressional) ■ Xi T
wave and transverse(shear)-wave fields defined by

L 2 2 , i , ■ . . T 2 2 ... . . .
CL CLe(1+la)bL) CT CTe(1+1WbT)

2 _ A1+2y1 2 y '
CLe p ' CTe p

■

Here c^^ and c ^  are the elastic compressional-wave and shear-wave 

velocities for a typical viscoelastic layer in the subbottom, and bi-j
and bT are the damping coefficients which represent the modification

that the velocities of elastic waves undergo when an elastic layer is

generalized to include the effects of Voigt viscoelasticity. The damping

coefficients b and b account, respectively, for compressional-wave Xj t
attenuation and shear-wave attenuation in the viscoelastic layer. It is 

observed that the wave velocities become complex quantitities in the 

frequency domain when damping or viscoelasticity is introduced due to 

the time-dependent form of the Lame parameters.
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Consider that it is always possible to separate the displacement
—yvector u into longitudinal (irrotational) and transverse (divergenceless) 

components as follows:

u = uL + uT , (10.6)

where

V x u = 0 , V • u = 0 . (10.7)L i

Taking the divergence of equation (10.5), one obtains

V • (V2u+k?u ) = 0 . (10.8a)Li L L

Also, according to the relation V x u = 0 , the curl of the quantityL
in parentheses vanishes. If the divergence and the curl of a vector 

vanish, the vector also vanishes in the entire space. Therefore,

(V2+k2)u = 0 . (10.9a)L L

Returning to equation (10.5) and performing the curl, one obtains

V x (V2u + k 2u ) = 0 . (10.8b)'  rp  m  r n '

Applying the same arguments advanced for divergence equation (10.8a) to 

equation (10.8b), it is concluded that

(V2+k2)uT = 0 . (10.9b)

Thus, the equation of motion for a typical viscoelastic layer in the 

subbottom has been decomposed into two vector wave equations: one

representing the longitudinal-wave field, and the other representing 

the transverse-wave field.
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Solutions for the longitudinal and transverse components of the 

displacement vector satisfying relations (10.7) may be written as

uL = Vx , uT = 7 x A , (10.10)

where x is a scalar displacement potential for the compressional field 

and A is a vector potential. The vector potential is taken to be of 

the following form, which is appropriate for the cylindrical coordinate 

system:

A = V x e ip , (10.10a)z

where e is the unit vector in the z-direction, and ijj is the scalar z
displacement potential for the shear field. Only the vertical shear-wave 

field is excited in the viscoelastic layers due to the point-source 

excitation in the liquid layer.

The potentials x an<̂  ^ satisfy the following scalar Helmholtz 

equations (A. Yildiz, 1971):

(V2+k^)X = 0 , (V2+k2)ifj = 0 . (10.11)i-J 1

It is observed that the introduction of viscoelasticity does not alter 

the form of the elastic field equations in the frequency domain.

Accordingly, any viscoelastic layer can be converted to an elastic 

layer simply by disregarding the damping coefficients b and b inI_i 1
the appropriate layer. This is one example where changing the compressional- 

wave and shear-wave velocities allows one to shift attention from one 

medium to another without engaging in the derivation of new field equations. 

Later, this concept is employed to show that any viscoelastic layer can be 

converted to a layer of viscous liquid by altering the velocities of wave
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propagation c and c , since the field equations governing a visco- L T
elastic solid and a viscous fluid are of the same basic form in the 

frequency domain.

Solutions of equations (10.11) for the scalar potentials x and 

ip may be obtained by using the method of separation of variables, giving 

for cylindrical coordinates the following forms:

- aL Zx (P ,<}> ,z;io) = X x ^  < P # 4 > r Z ? o j )  ,  x m  % Jm (£p)cos (m<j))e (10.12a)
m m

and

±a_z
ip (p ,(j> ,z;w) = U  (p,<(),z;a)) , ib 'u J (£p) cos (mcf)) e , (10.12b)m m mm

where

2 t2 t2am = £ ~ kmT T (10.12c)

If one introduces the Fourier-Bessel transform, the potentials may be 

written in the form

X (p ,<)> ,z;u>) = £j (£p)x_(£,<|>,z;w)d? m (10.13a)

and

iJj (p ,(j) ,z;w) ?Jm (5p)^(5 ,(j),z;o))d̂  , (10.13b)

0

where x_ and are the transformed potentials. For azimuthal symmetry 

of the field (9/9<}>=0,m=0) , these transform relations reduce to

X (p ,z;u>) = X.(?,z;u)J0 (Cp)5d5 (10.14a)
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and
CO

ip(p,z ;to) = ±(Z ,z;(o) J Q (£p)£d£ .

0

(10.14b)

Equations (10.14) imply that the potentials are obtained by superimposing 

eigenfunctions %.(£,,z;u>) and ^(£,z;u)) over the continuous ^-spectrum. 

In order to obtain expressions compatible with the Green's function in 

the liquid layer, weighting factors are introduced as follows:

Due to the choice of time dependence of the form exp(itot) in equations 

(9.3), the first and second terms on the right-hand side of equations 

(10.15) correspond, respectively, to upward and downward traveling waves 

in a typical layer. The general form for the potentials ^  and \jj_ in 

equations (10.15) must be altered when applied to the n—  or last visco

elastic layer (a halfspace), since the displacement must vanish as 

z -* - 00 . It follows that this requirement is met by setting the potential 

coefficients A (5; to) = C(£,-to) = o in the half space. This is, in essence, 

a radiation condition since the potential coefficients A(£;w) and C (£;to) 

are paired with exponential terms which represent upward traveling waves, 

and there are no waves reflected from infinity.

+ B  (^ ;to) e (10.15a)

and

ifj(?,z;to) = ■-- - -[C (g;to) e —  4iTam'T
+D  (5 7 to) e ] (10.15b)
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At this point, the boundary conditions used in the solution of 

the n-layer problem under consideration are formulated. The boundary 

conditions applicable at each solid-solid interface are the continuity 

of displacement and stress across the boundary. First the displacement 

field is developed because stress can be expressed in terms of strain, 

which in turn is expressed in terms of displacement. It was mentioned 

earlier that the displacement field may be expressed in terms of longi

tudinal and transverse components as

u = u^ + uT , (10.6)

or substituting from equations (10.10),

u = Vy + VxVxe iJj . (10.16)z

The displacement field components are expressed in terms of the potentials 

as follows:

u = | r &  + ^  ' (10.17a)p op 9 z

u = 0 , (10.17b)<P
and

dv 3 ̂ o
U =  T -  + F-r- + k „ ) } b  . (10.17c)z dz - 2 T

dZ

The stress tensor a .. is related to the strain tensor e..il il
by the well-known relation in equation (10.2). The only elements of 

the stress field of interest are those acting on the horizontal surfaces 

of the layers, that is, a , a , and a, . These are expressed
ZZ p Z  <j)Z
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with the use of equation (10.2) as

and

a = X e pp + 2ye , (10.18a)
ZZ 'Ca-  ZZ

a = 2ye , (10.18b)pz pz

0 , = 2ye, , (10.18c)
tp Z (j)Z

where e , e , and e, are strains defined in terms of the dis- zz pz tpz
placement components by

9u , 9u 9u . 9u, . 9uz 1 , p , z, _ 1,__<ĵ ^ __ z
“  ^  \  r \ /  tzz 9z pz 2 9z 9p t()z 2 9z p 9<f)

(10.19a)

and

z 0B = e + e., + e = V • u . (10.19b)
XJt pp cpcp zz

Applying equations (10.17) and (10.19) to equations (10.18) gives the 

stress components in terms of the potentials:

2 2
a = (2y - AkJ)* + 2y |~(^r + , (10.20a)Z Z Z j_» dz r, ^dZ dZ

rV 2
[2 ^  + (2 - — + k^ijj , (10.20b)pz 9p 9z » 2 Tdz

and

0, = 0 . (10.20c)
tpz

Referring to Figure 15, the appropriate boundary conditions are 

to be applied at each interface. At the j-̂ - interface separating the j—
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viscoelastic layer from the (j+1)—  viscoelastic layer, continuity of 

the displacement and stress components normal and tangential to the 

horizontal boundary holds, or:

1. [u .] = [u , (10.21a)
p3  ̂ p (3+1> *z=-d. z=-d.1 3

2. [u .] = [u , (10.21b)
z 3 ^ z ( d + 1 )  ,z=-d. z=-d,3 3

3. [a .] = [a / (10.21c)zz] zz(3+I)z=-d. z=-d,3 3

4. [a .] = [a • (10.21d)Pz3 , pz (3+I)z=-d. z=-d.3 3

Equations (10.15) are now replaced by the following more general form 

for the potentials:

-a ,z a z
X.(£/Z;o>) =  ---- [A.(5;a))e  ̂ +B. (£ ;cj) e ^ ] , (10.22a)
^3  4ira  . 3 ]

—a .z a , z
lfe.(C,z;u) =  [C.(?;w)e 3 +D.(E;w)e 11 ] , (10.22b)
j 4Tra 3 3

where j = 1, 2, •••,n, and A^ = = 0 . Applying the expressions

for displacement and stress in equations (10.17) and (10.20) and the 

general form for the potentials in equations (10.22) to the system of 

boundary conditions given by equations (10.21), one obtains four equations 

which may be arranged in the following matrix form:
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where

ta.] .

and

-aLj

"j (2«2-kTj)

-2y .a . 1 Ld

[A.] = 1

0

0

a .Ll

v 2 5 2 - 4 > )

a d. 
, L3 1

2y . a_ . 3 L]

-a .d., L3 3

td

•2y .am .5 1 T]

T j

2y .am . £ 1

-a . d ., T3 3

(10.23a)

(10.23b)

A. = 
3

A./aT 
3 L]

B ./a .3 L]
C-/am .
3 T3

D •/a_ . L 3 *3,

(10.23c)

One writes a recurrence relation for the potential coefficients 

from equation (10.23) as follows:

A j [b(j+l) ,j] A (j+l) ' (10.24)
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where

and

-1
2p .to a, .a . J lj

2y ,a„ ,am 
3 L3 ^3

2yjaLjaTj^

- y . a ^ 2-*2 .)

y .am . (2?2-k2 : 
3 Tl T]

2 2 -y.a .(2E -k .) j Tj Tj

2y . aT . am . J L] TD

2y . aT . am . 
3 L3 T]

-aT . am . Ld T;j

-aT . a„. L] Tj

-aLj

aLj

-a
?3

atd

-a .a .
L 3 T3

-a .a . LD T]

(10.24b)

In order to obtain the acoustic response in the liquid layer, the potential 

coefficients A^ for the intermediate layers (j=2,3,•••,n-l) are 

eliminated by the successive application of equation (10.24). One obtains 

the following relation for the potential coefficients of the first layer 

in terms of the last layer:

->• n-  ̂ -*■A = { n [b n . J }A , 1 £=1 (t+1) n (n>l) , (10.25)

where it should be recalled that the first and third elements of the column 

matrix An are zero due to the physical considerations discussed earlier. 

Since the repeated product in equation (10.24a) is a (4x4) matrix, it 

follows that equation (10.25) may be expressed as

A, = [M] A , 1 n (10.26)
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where

n-1
[M] = n [b(£+1) / (n>l) (10.26a)

—1

is a (4x4) matrix whose elements are to be denoted as m.., i,il
j = 1,2,3,4 . Recurrence relation (10.24) has been used to successively

eliminate the potential coefficients A., B., C., and D. of the inter-1 1 1 1
mediate layers (j=2,3,•* *,n-l) . As a result, the effect of the layers 

between the first layer and the halfspace is characterized by the [M] 

matrix, whose elements are functions of the spectral variables, £ and 

w , and the physical parameters of the intermediate layers.

The explicit calculation of the [M] matrix for more than two 

viscoelastic layers is impractical due to the algebraic complexity; 

however, the forms developed here are ideal for computer analysis due to 

the introduction of the recurrence relation. The recurrence relation 

reduces all calculations to (4x4) matrix manipulations, which can be 

performed easily by a computer. The general n-layer problem, if solved 

without benefit of the recurrence relation, would require the inversion 

of a (4n-2) square matrix. The order (4n-2) of the matrix is governed 

by the number of potential coefficients A^ , B_, , C_. , and in equations

(10.22) for each layer. The computation time of the analysis would become 

excessive for a large number of layers. Applying the recurrence relation 

reduces the computer time for n large due to the cascading feature 

illustrated in equation (10.25). Another obvious advantage of the 

recurrence relation is the conciseness of the notation and its generality.

Now, the method for converting any viscoelastic layer in the multi

layered subbottom to a layer of viscous liquid is developed. If the layer
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of interest is assumed to consist of a linear viscous fluid (a Newtonian 

fluid), then linearized equation of motion (10.1) governs the dynamic 

behavior of the fluid layer. The specialization of equation of motion

(10.1) to describe a viscous fluid is effected by inserting the appro

priate constitutive relation into this form. The constitutive relation 

for a homogeneous, isotropic, linear viscous fluid is expressed as

a. . = -p<5. . + X e nr/S. . + 2 ye. . , (10.27)il il Vi il il

where ( ) = 9( )/9t and the notation with the bar over the constants 

X and y is employed to avoid confusion with the constants for the 

viscoelastic solid. The constants X and y are called coefficients 

of viscosity, and y is referred to as the dynamic coefficient of viscosity 

or the shear viscosity. Constitutive relation (10.27) may be expanded in 

terms of the displacement and velocity fields in the fluid as

_ 9u^ _  9un _ 9u. 9u.
a. . = k -—  6. . + X -—  <5. . + y (r-1- + ^ JL) , (10.28)il 9x£ lj 9x^ lj 9Xj 9x^

where the substitution p = is made in equation (10.27). The

constant k denotes the bulk modulus of the fluid.

Constitutive relation (10.2) for the Voigt viscoelastic solid may 

be expanded with the use of equations (10.2a) and (10.2b) as follows:

9u^ 9u« 9u. 9u. 9u. 9u.
a.. = A ' 5. . + A" — 6. . + y' ( ^  + — 1) + y" (t~^ + q-1) . (10.29)i l  9x0 i i  9 lj 9x. 9x. 9x. 9x.J & a i i  i i

A comparison of the forms in equations (10.28) and (10.29) illustrates 

that a transition from the constitutive relation of a viscoelastic solid
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to a viscous fluid may be effected through the following changes in the

material parameters of the viscoelastic solid:

A ' k" , y 1 ->-0 , A" -> X , y" -> y . (10.30)

The condition y ' -> 0 denotes that the fluid has no rigidity.

It is convenient, however, to write the constitutive relation for 

the viscous fluid in a slightly different form, in which the constants 

A and y are replaced by other constants:

°ij = ~P<Sij + % e 6ij + 2̂ ("ij ' I  ^ 6ij) ' (1°-31)

or, in expanded form,
• • •_ 3u» _  3u« _  3u. 9u.

o . . — k ~ 6 . , + (? - 6. . + n(x-^ + -) , (10.32)in d x 0 ii 3 3x„ ii 3x. 3x,
Z Z j i

where the substitution p = -tce^ is made again. This alternative form

for the constitutive relation for a viscous fluid may be obtained from

equation (10.28) by making the substitutions A + -j y = Z, and y = n .

The constants Z, and n are also coefficients of viscosity, referred

to as the bulk and shear viscosities of the fluid, respectively. Each

of these constants precedes a term responsible for a different type of

deformation: the constant z, is related to volume change components

of the deformation only without distortion, and the constant n is

related to distortion components of the deformation only without volume

change. The transition in equations (10.30) may be expressed alternatively

in terms of these different coefficients of viscosity as

y ’ -> o , A" e - |  n , y" -> n . (10.33)
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It should be mentioned that the constitutive relation for an inviscid or 

perfect fluid may be obtained from the constitutive relation for a 

viscoelastic solid by the following transition:

A' -+ k , y' -+ 0 , A" -+ 0 , y" -+ 0 , (10.34)

where the effects of rigidity and viscosity in the fluid are disregarded.

If either of the constitutive relations for the viscous fluid in 

equations (10.27) or (10.31) was substituted into equation of motion

(10.1) and the formal development characterizing wave propagation in the 

multilayered subbottom was repeated, the new development would lead to 

expressions of the same form as for the case of a layered viscoelastic 

subbottom, because the field equations governing a viscoelastic solid and 

a viscous fluid have the same basic form in the frequency domain. The 

only differences would occur in the velocities of wave propagation which 

would undergo the following modifications:

2 2 2 -  2 
2 _ _  pu  —2 _ __ pu________
L “ 2 “ A ,+2p'+ia)(A"+2y") L _ 2 ------2̂ . - 4 -c H / c p c +103 (£ + -  n)Jj J_j J

k 2  ,  4  =  - 7 £ A t  +  2 = 4 - ^  • < 1 0 - 3 5 >T 2 p'+itoy" T — 2 iton
CT CT

The substitution k = p c^ is made here, where p is the mass density 

of the fluid and c is the velocity of sound propagation in a perfect 

fluid. In any layer of the subbottom, the velocities of wave propagation 

or the respective wavenumbers for the propagation of waves in a viscous 

fluid may be substituted in place of the corresponding quantities for a 

viscoelastic solid in order to convert that layer from a viscoelastic
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solid to a viscous fluid. A method for specializing the formal develop

ment for the propagation of waves in the multilayered viscoelastic sub

bottom has been discussed here for the cases where any layer in the 

subbottom may be modeled as an elastic solid, a viscous liquid, or an 

inviscid liquid.
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CHAPTER XI

INTERACTION OF THE ACOUSTIC MEDIUM WITH THE MULTILAYERED MEDIUM

The interaction of the acoustic medium with the multilayered 

medium is considered at this point, in order to obtain a general 

expression for the subbottom impedance Z in equation (9.25). One 

applies the boundary conditions in equation (9.20) and (9.22) at the 

liquid-solid interface, using the expressions for the potentials in 

the first viscoelastic layer, that is, equations (10.22) with j = 1 . 

Then the recurrence relation in equation (10.26) is applied for the first 

and last viscoelastic layers.

The three boundary conditions of equations (9.20) are expressed 

in matrix form in terms of the physical parameters and potential coeffi

cients of the first viscoelastic layer as follows:

4tt

P1CT1 z=0

4 77 [ (U ) ]Z 1 z=0

r- 2 2(2 5 -k^) 2 2 (25 - 4 ) 2aTl5 r2 1  ZaTl5 'V-u'
~aLl aLl 5 2 S 2 V aLl

-2a , Ll 2aLl (2?2-k2x) 2 2 
(2« -*T 1 >_

Cl/aTl
_ Dl/aTl.

(11.1)

The recurrence relation in equation (10.26), relating the potential
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coefficients in the first and last viscoelastic layers, is expanded to 

give the following:

' V au ' mi2 m!4^

Bl/aLl m22 m24

Cl/aTl m32 m34

_ Dl/aTl_ _ m42 B

I 
..

B /a n Ln
D /amn Tn

(11.2)

where the m.. are the elements of the [M] matrix, and it is recalled il
that = 0 . Substituting equation (11.2) into equation (11.1),

one obtains the matrix form

4 T  r  /  \  i

™  I1 „P1°T1 Z=°

4 IT [ (u ) ] z 1 z=0

f fii 12
f f21 22
f f31 32

B /a n Ln
D /am n Tn

(11.3)

where f ^  are the elements of the matrix formed by multiplying the (3x4)

matrix in equation (11.1) and the (4x2) matrix in equation (11.2). The

f .. elements are given by ID

'11

"12

'21

'22

'31

f 32 =

(2e2- k ^ ) (»i2+m22) + 2aT1C2(m42-m32) ,

(a?2- ^ )  (m14+m24) * 2aTIC2(m44-m34) ,

aLl (tt,22_mi2’ + S (m32+”42) '

aLl,m24"m14) + 5 (m34+m44) '

2aLi (m22_mi2) + m 2 -kT i ’ ‘"sa+’V  ’ 

2aLl("24-”l4) + ,2'-2-kTl' !m34+”,!4) '

(11.3a) 

(11.3b) 

(11.3c) 

(11.3d) 

(11.3e) 

(11.3f)
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Equation (11.3) may be solved for the subbottom impedance Z , yielding 

the following result:

„ _ 1 P1 “ .f31f12 ~ f32tll.
2 f f - f f k . 31 22 32 21T1

(11.4)

In expanded form, in terms of the m elements, equation (11.4) gives 

-i P, w
z = 74 *

aLlkTl

4<2s2‘kTl)[aLl<m22In14-m12m24)+aTl52(,"32m44‘m42”34n

+ (2S2-k2lA  (»>32+»42) ""i4+m24)' (m12+”22) ‘W 1

-4aLiaTl£ [(m32~m421 lm14~1"241~(mi2~m22) (m34~m44): 
[<m32+m42> (m24“”'l4)- l"22-"l2) (”34+m44> (11.5)

This process has eliminated the potential coefficients A., B., C., and1 1 1
Dj (j=l,2,•*•,n) in the viscoelastic layers enabling one to characterize 

the interaction of the acoustic medium with the multilayered medium by 

the subbottom impedance Z . The subbottom impedance Z is a function 

only of the physical parameters for the viscoelastic layers 

(P j j fP j j/ViV) » the geometry of the layering (h ) , and the spectral

variables (£/U)) .

Upon substituting equation (11.5) into equation (9.25), one 

obtains a Green's function expression for the n-layered subbottom. The 

appropriate elements, which are dependent upon the number of visco

elastic layers under consideration, must be inserted into this expression.
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It is interesting to note that only the eight elements comprising the 

second and the fourth columns of the [M] matrix are required in order 

to obtain the impedance z for any subbottom. The methodology set 

forth here to determine the subbottom impedance Z is applied to special 

cases of the n-layered subbottom in the development to follow. After 

the subbottom impedances for these special cases of interest are 

determined, Green's functions for the acoustic responses from these 

subbottoms are obtained with the use of equations (9.9) and (9.25) .
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CHAPTER XII 

SPECIAL CASES

The general expression for the Green's function obtained by 

substituting equation (11.5) into equation (9.25) is too complex to 

analyze further. Some special cases that are of interest are now 

examined.

One Viscoelastic Layer

The first special case examined is that for one viscoelastic 

layer (n=l) , where the subbottom consists of a single homogeneous, 

isotropic viscoelastic material occupying the lower halfspace. This 

problem has been analyzed previously by Press and Ewing (1950) for an 

elastic subbottom. The result for this case may be developed directly 

from equation (11.1) or a degenerate form of recurrence relation (10.26) 

may be used.

According to the former approach, one sets A^ = C^ = 0 in 

equation (11.1) and solves this system of three equations directly 

for the subbottom impedance Z . This procedure yields

~^P1W 2 2 2 2
z ------T ['« -kTl> -4aLiaTl5 1 <12-1>

aLlkTl

for the impedance of the subbottom. Employing the latter approach, one

sets n = 1 in equation (11.2), expands for the appropriate values for

m.. , and substitutes these values into equation (11.5). Following this
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procedure, one finds that the [M] matrix reduces to m = m = 1 , 

the other elements itk ̂ = 0 , i ^ j . Using these values in equations 

(11.5) yields the subbottom impedance in equation (12.1).

An integral expression for the Green's function for this special 

case is obtained by substituting equation (12.1) into equation (9.25) 

and inserting the latter expression into equation (9.9). Following this 

procedure, after some rearranging one obtains

sinh[a (h -z )]
G(x,x';w) = —   aoA(-5V  ' > {P i V (2? “kTl) "4aLiaTl? lcosh<a0Z<)

+p0aLikTlsinh(a0Z<) Ĵ0 ^ P)^d? ' (12.2)

where

A(S) = P1a0[(2?2-k21)2-4aLlaT152]cosh(a0h0)+p0aL1k41sinh(a0h0) . (12.2a)

After changing coordinate systems, converting notation, and disregarding 

the contribution due to viscoelasticity in the viscoelastic halfspace, 

this result is consistent with Press and Ewing's (1950) result for the 

case where the subbottom is an elastic solid halfspace. This iesult also 

agrees with Pekeris's (1948) result for a two-layered liquid halfspace, 

if one disregards the contributions due to viscoelasticity and rigidity 

in the viscoelastic halfspace. This may be accomplished by setting the 

material parameters y| = = y^ = 0 in the integral in equation (12.2).

In each case the present result contains an additional 1/4tt factor due 

to the Green's function formalism.
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Two Viscoelastic Layers

To obtain the Green1s function for the more general case where 

the subbottom consists of two viscoelastic layers (n=2) requires the 

use of the multilayer techniques developed earlier. The recurrence 

relation for the special case where the subbottom is a two-layered 

solid halfspace is obtained by writing equation (10.26) for n = 2:

Ax = [M]A2 , (12.3)

where, from equations (10.24a) and (10.26a), the appropriate IM] matrix 

is given by

[M] = [b ] = lAir 1Iair 1Ia2]IA2] . (12.3a)

The eight elements of the [M] matrix which appear in the general form

for the impedance in equation (11.5) must be computed. After

considerable algebra these elements are expressed as follows:

— (a +a ) d v LI L2 1
”aTl0 r r-w x^2 2, r„, . .2, 2m12 A {aLl[2(y2“yiK  P2U ]+aL2[2(V2_yi)? +Pl“ ]> ' (12*4a)

(aL r aL 2 ,di
r̂p-l ® 9 9 2 2

” 22 *  ---------- i---------  {aL l [2<U2 ‘P l )E -p 2“  1-aL 2 I2(p2',Jl )5 + 0 l“ !) ' (12'4b)

e~ <aT i + a L2^ di
I»32 -   1  {[2<U 2 - p 1 )52- ( p 2- p 1 )l«2] + 2 ( P 2- u 1 )aT 1 a L 2 } , ( 1 2 . 4 0

<aT r aL 2 )dl
aLl® 2 2m 42 = — ------ £  { [ 2 ( y 2-y;L)? - ( p 2- p 1 )ajZ] - 2 ( y 2 -TJ1 )aT 1 aL 2 } , (12.4d)

_ - (a + a  )d _ 2 v LI T2 1
aTl 6 2 2m i4 = ------------A------------  £ [2(y2 - y 1 )? - ( p ^ p ^ c o  ] +2 (y ̂  a ^ a ^ }  , (12.4e)



where A is the determinant of the [â ] matrix given by

A = 2Pl“2aLiaTl * (12-4i)

Substituting these elements of the [M] matrix into equation (11.5), 

one obtains

-ip,. 4(2g2-h21)P1+(2g2-k21)2P2-4aL1aTlg2P3
" ^ l p J r (12*5)

SI,lkTl 4

where

P1 = aL1aT1?2{[2(y2-y1)52-(p2-p1)m2][2(y2-y1)C2-P2m2]}

2 2-2(y2-y1)aL2aT2[2(y2-y1)C tP-jW ] , (12.5a)

?2 = {52l2 (y2-y1)52-(p2-p1)cj2]2-aL2aT2I2 (y2-y1)C2+p10)2]2} sinh (a^h^ sinh (a^l^)

■aLiaTl{[2(y2'1Jl)?2_P2a)2]2"4(y2_yi)2aL2aT252}cOSh(aLlhl)cOSh(aTlhl) 

-p1P2a)4{aL1aT2cosh(aL1h1) sinh(aT1h1)+aT1aL2sinh(aLlh1)cosh(aT1h1) } , (12.5b)
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P3 = {52[2(y2-v1)C2-(P2-P1)^2]2-aL2aT2t2(y2-yi)?2+p1a)2]2}cosh(aLlh1)cosh(aT1h1)

"aLlaTl{l2(y2-yi)?2“P2“2]2"4(y2“yi)2aL2aT2C2}sinh(aLlhl>Sinh(aTlhl}

"P1P 2a)4{aLiaT2Sinh(aLlhl)C°Sh(aTlhl)̂+aTiaL2C°Sh(aLlhl)Sinh(aTlhl)} ' (12 * 5c)

P4 = ^ 2 [2 (y2-p1 )52- (p2-P l )a)2] 2_aL2aT2 [2 (y2_yi) ?2+P1w 2] 2 }cosh (aLlh 1 ) sinh(aT1h i )

"aLiaTl{[2(y2“yi)52-p2u2]2"4(y2"yi)2aL2aT2?2}sinh(aLlhl)COSh(aTlhl)

“PlP2a)4{aLiaT2Sinh (aLlhl} S±nh (aTlhl) ̂+aTiaL2C°Sh (aLlhl) C°Sh } * (12 ' 5d)

It should be noted thar. d^ is replaced by in these forms since they

are equivalent (see Figure 15). The expression for the subbottom impedance 

in equation (12.5) represents the effective impedance of the two-layered 

subbottom.

An integral expression for the Green's function for this special 

case is obtained by substituting equation (12.5) into equation (9.25) 

and inserting the latter equation into equation (9.9). This form is 

omitted here because it is rather cumbersome. It can be shown that the 

result for the special case where the subbottom is a two-layered solid 

halfspace is consistent with the previous result for the special case 

where the subbottom is a solid halfspace. One simply allows the physical 

parameters in both viscoelastic layers to be the same, whereby there is 

effectively one layer (a halfspace). Upon setting p2 = P1 ' ^2 = ^1 '

y^ = y^ , ^2 = ^1 ' and P2 = P1 an ecluat^ons (12.5) , the expression

for the effective impedance of the two-layered subbottom reduces to a
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form which, upon substitution into equation (9.25), yields the expression 

for the Green's function in equation (12.2). A second method of check 

consists of allowing the thickness of the first viscoelastic layer to 

approach infinity, whereby the presence of the second viscoelastic layer 

is effectively disregarded. Upon taking the limit as h^ -> 00 , the 

expression for the Green's function for the two-layered subbottom reduces 

to the form in equation (12.2), where the subbottom is a halfspace. This 

result also agrees with Pekeris's (1948) result for a three-layered 

liquid halfspace, if one disregards the contributions due to viscoelasticity 

and rigidity in both layers of the two-layered viscoelastic halfspace.

This may be accomplished by setting the material parameters 

= y2 = ^2 = ^ 2 =:  ̂ ■’-nte9ra-*- exPressi°n f°r the Green's function

for the two-layered subbottom. The present result also contains an addi

tional 1/4tr factor due to the Green's function formalism.

Liquid Layer of Infinite Depth

A special case of practical interest is the limiting case where 

the depth, h^ , of the liquid layer covering the viscoelastic subbottom 

becomes infinite. This case provides a model useful where reflections 

from the water surface are unimportant: for bottom-bounce testing where

11q p , or for near-bottom pulse testing. Consequently, this special 

case is treated in detail here, and the numerical analysis that follows 

is based on the analytical expressions developed herein.

The Green's function for this special case may be obtained 

directly from the general expression for the Green's function in 

equation (9.25). Upon taking the limit as hQ -> °° , the Green's function
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in equation (9.25) reduces to

iaQ
-a z sinh(a„z ) + --- Z cosh(a z )0 > 0 < p ai 0 <

G(£ ,z,z';ui) = - ----- {------------- :--------------- } . (12.6)

D 01

After expanding the hyperbolic functions in the numerator and rearranging 

terms, this equation may be rewritten in the following form:

ia
-ao (z>-z<) 1 - ^ Z - v w

G (̂  ,z,z 1 ;oi) = - ----  {-------  } -------- . (12.7)
1 + ^  Z

D 01

Each of these terms is physically significant. The first term is the 

free-space Green's function for the liquid medium, and represents the 

response from the direct wave propagating through the water from the 

source to the receiver. The second term is expressive of the boundary 

effect, representing the response due to the presence of the subbottom. 

After integration, this term yields the reflected wave, surface (Stonely) 

waves, and refraction arrivals. It should be pointed out that the 

Green's function in equation (12.7) is also applicable to any subbottom.

Equation (12.7) is the Fourier-Bessel transformed form of the 

Green's function. To obtain the Green's function in the space domain, 

G(x,x';ui) , one must apply the inverse Fourier-Bessel transformation 

given in equation (9.9). Substituting the transformed expression for 

the Green's function in equation (12.7) into the inverse Fourier-Bessel 

transformation in equation (9.9) yields

G(x,x';w) = G_(x,x';m) + G (x,x' ;ui) , (12.8)f b
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where

Gf 4rr

-a„ z-z
Jo (£p)5dC , (12.8a)

G = ■— 1b 4tr

-aQ (z+z')
- --- r(5)J0 (5pUd£ , (12.8b)

and
ia„

T(C) =
p 0) H0

Z - 1

la.
p 0) Z + 1

(12.8c)

The notation employed earlier in the development is resumed here. The
-y ->•integration for Gf (x,x';u)) may be performed readily following 

Sommerfeld (1949), giving:

-lk0E
(12.9)

where

R = Ip2+(z-z')2 ]
1/2

(12.9a)

is the distance from the source to the receiver. The evaluation of

the integral for G^(x,x';a3) , which corresponds to reflected sound

waves, is more difficult, however. This integral is the subject of the

analytical development that follows.

The integral G, in equation (12.8b) can be evaluated analytically b
by performing a contour integration in the complex £-plane, or numerically
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on a digital computer. Efforts to evaluate this integral exactly by 

performing a numerical integration on the computer, have proven to be 

rather expensive, rendering this method of evaluation impractical. This 

difficulty is attributed to the behavior of the integrand, which, when 

plotted versus the variable of integration £ , displays large, rapid 

fluctuations. The fluctuations result in large computation times, 

serving to make the exact integration procedure an expensive undertaking. 

The efforts referred to here were directed toward the special cases where

the ocean subbottom was modeled as a solid halfspace and a two-layered

solid halfspace.

The analytical approach for the evaluation of G employs 

complex variable techniques, involving analytical continuation of the 

integrand and choosing an appropriate path of integration in the complex 

plane. The analytical approach does not lead to a closed-form solution 

for due to the presence of poles and branch points in the integrand.

However, there exist several analytical techniques for the approximate 

evaluation of integrals of this type. The saddle-point method, an 

analytical technique for the asymptotic evaluation of radiation integrals 

of the form given in equation (12.8b) for G^ , entails deforming the 

original path of integration in the complex plane in such a way that 

the integrand is significant for only a small region in the new path 

of integration. This method is applicable when one of the parameters in 

the integrand becomes large. In this case, an asymptotic expansion of 

the term containing the large parameter is made, and the leading term is

integrated to yield the result. The saddle-point method yields the

reflected field, which is of primary importance for the identification 

of the ocean subbottom. The pole and branch-point wave contributions ,
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which include surface waves, leaky waves, lateral waves and refracted 

waves, are disregarded by this method of evaluation. The saddle-point 

method has been discussed by many of the investigators mentioned in the 

introduction in relation to special cases of the present field problem. 

More recently, Magnuson (1972, 1972b, 1975) applied this technique to 

the integral expression he developed for a liquid halfspace overlying a 

viscoelastic halfspace. An enlightening illustration of the principles 

fundamental to the application of this technique to wave propagation 

problems is provided by M. Yildiz (1964, 1966).

desirable to cast the Fourier-Bessel transformation in equation (12.8b) 

into an alternative form in which the integration over £ extends 

from -°° to “ . Upon introducing the relation

For subsequent application of the saddle-point method, it is

(12.10)

(1 2)where ' (x) is the Hankel function of the first (second) kind of

order zero and argument x , one may write equation (12.8b) as

Gb (x,x’;cj) = I1 + I (12.11)

00• -a^(z+z1)
r(5)H(J1) (5p K<3?e (12.11a)

0

00■ -aQ (z+z')
r(C)H(J2) (Cp)gd̂  .e (12.11b)

0
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When one introduces the circuital relation

Hq1) (xe17r) = -H<2) (x) (12.12)

and the change of variables £ = £ exp(-iir) in the integrand of I in 

equation (12.11a), the representation in equation (12.11) becomes

G = —b 8tt
-a (z+z')

 --------- T(Z)K^2) (5p)Cd? . (12.13)
ao °

This integral is valid provided that T(£) is an even function of £ ,

a requirement satisfied by every special case developed from the multi-
(2)layer formalism herein. The choice of transformation involving Hq 

instead of i-s motivated by the fact that, for a time dependence

exp(iwt) , the former satisfies the radiation condition at p -> °° in 

a natural manner and facilitates the subsequent asymptotic evaluation of 

the integral.

To illustrate the saddle-point method, the exponential terms in 

the integrand of the integral for in equation (12.13) are examined

more closely. First, the nondimensional variable of integration x is 

defined in terms of the wavenumber kQ in the liquid by x = 5/kg . In 

addition, the nondimensional parameters y^ = kQp and y^ = kQ(z+z1) 

are introduced. Upon applying the high frequency assumption by using 

the asymptotic expression for the Hankel function, the exponential terms 

in the integrand of in equation (12.13) can be expressed as

2 1/2 -i[y x+(l-x ) y ]
e P z . (12.14)
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Then one introduces the angle of incidence 0 (see Figure 16) defined by

Y
6 = tan-1 (—7- 7) = tan_1 (-2-) . (12.15)z+z Yz

The quantities p and (z+z') may be expressed as

p = R^sin 0 , z + z' = R^cos 0 , (12.16)

where

2 2 X/2 Rj = IP +(z+z') ] . (12.16a)

Expression (12.14) may be written using these results as follows:

where

-k R f(x)
e u , (12.17)

2 1/2f (x) = i[x sin 0 + (1-x ) cos 0] . (12.17a)

The parameter k^R^ may be written as y , a ratio of the path length 

of the reflected wave to the wavelength. Now the parameter y = kQR^ 

is assumed to be large, or y »  1 , defining a radiation zone in the 
liquid field. In the complex z-plane the exponential term (12.17) 

decays rapidly due to the large parameter y , provided that the 

quantity f(z) is not too small. This implies that a portion of the 

integrand predominates when the integral is evaluated. Upon

locating the saddle-point, which occurs at x = sin 0 , or £ = kQsin 0 , 
and defining the path of integration, the saddle-point integration is
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Figure 16. Geometry of the source and receiver 
in the liquid layer.
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performed, yielding

+ -> ~lkoRi
G  (x,x';o)) = T (k sin 0) 0   . (12.18)b 0 4ttR_

This is the expression for the reflected wave. It has the spherical

spreading factor R , and propagates along the path shown in Figure 16

with the speed c_ . The result for G, in equation (12.18) is general U b
in the sense that no characteristics of the subbottom were specified 

for its evaluation. An expression for T(kQsin 0) for the special 

case where the subbottom is a viscoelastic halfspace is developed 

explicitly in what follows.

With the use of equations (12.1) and (12.8c), the quantity 

r(kQsin 0) in equation (12.18) may be written for a subbottom consisting 

of a viscoelastic halfspace as

rn ■ m  rPiao[ ̂ ^ ^ ti52-4aLiaTis2]" ^ 4 ^ 1 ,r(k sin 0) = {-------- -— -— 2---------5-----7----} • (12.19)
Pia0[(2? " W  "4aLiaTl? ]+P0kJiaLl r . .^ k ^ s m  0

Upon evaluating the right-hand side and rearranging terms, equation (12.19) 

may be expressed as

fl ~ f2r (0) = , (12.20)
1 2

where

2 2 3 2 1//2 2 1/f2C C P c
T l  9 T l  9 T l  9 T1 9f1 = PjC^cos 0 1(2 -y^sin 0-1) +4 ■ sin 0 (1 - -j^sin 0) (1 - -ysin 0) ]

C0 C0CL1 C0 C0

(12.20a)
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and
2 I/2

CT *1 O
f2 = P0C0 (1 ~ 2 ® in 0) * (12.20b)

co

It is observed that the quantity F(kQsin 0) in equation (12.19) 

represents the plane-wave reflection coefficient for a plane sound wave 

incident from a liquid on a liquid-solid interface (Ewing et al., 1957; 

Brekhovskikh, 1960). It is concluded that the saddle-point method for 

the evaluation of yields a result similar to ray theory. The

reflection coefficient F(0) is complex here due to the introduction 

of viscoelasticity into the subbottom. An expression for F(k^sin 0) 

in equation (12.18) can be written for the special case where the 

subbottom is a two-layered viscoelastic halfspace with the use of 

equations (12.5) and (12.8c). This expression is omitted here because 

it is rather lengthy.

In summary, a general expression for the total acoustic response, 

the sum of the direct wave and the reflected wave, may be written from 

equations (12.8), (12.9), and (12.18) as

-ik^R ~ikoRi
G(x,x1 ;a)) - £ _ _ + r(0) . (12.21)

This result could also be deduced directly by arguments of geometrical 

optics. Thus, for the limiting case of a liquid layer of infinite depth, 

the Green1s function for the acoustic response from any subbottom may 

be written from equation (12.21), provided that the appropriate reflection 

coefficient T(0) , which is dependent upon the acoustic properties of 

the subbottom, is inserted into this form. It should be kept in mind
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that the contribution to this result from the integral for was

obtained by the saddle-point method of integration, and provides a 

good approximation to the exact integration when the condition discussed 

earlier is satisfied.
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CHAPTER XIII 

NUMERICAL ANALYSIS

In the foregoing chapters, a sophisticated and realistic analytical 

model was proposed for application to the remote acoustic sensing of 

marine sediments on the continental shelf. The approach suggested 

therein for use in the remote acoustic identification and classification 

of marine sediments on the continental shelf is based on the usefulness 

of information that can be obtained by studying the reflection of sound 

waves from the ocean's subbottom. Accordingly, an acoustic signal is 

transmitted in the ocean and the return signal from the subbottom is 

analyzed, the subbottom's property of reflectivity revealing information 

useful for its identification. In order to accurately model the physical 

processes which occur in the ocean-subbottom system to form the return 

signal, the model proposed in the analytical development includes improve

ments in the model of the subbottom. The improved geoacoustic model of 

the continental shelf takes into account the effects of rigidity, 

internal energy dissipation, and stratification in the sedimentary 

subbottom. In addition, the model proposed here has the capability of 

accommodating layers of viscous liquids, for example, petroleum, which 

might occur in the subbottom.

In this chapter, numerical analysis is presented for a study on 

the reflection of sound waves incident from a liquid halfspace (ocean) 

on an interface with a liquid-viscoelastic multilayered halfspace 

(continental shelf), which is described by the improved geoacoustic 

model discussed above. The integral for G in equation (12.8b) and
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the saddle-point approximation to this integral in equation (12.18), 

both of which give the contribution of the wave reflected from the 

subbottom, are to be evaluated numerically by computer for special 

cases of the subbottom. A comparison of these numerical results is 

desired in order to determine the accuracy, and hence, assess the 

validity of the saddle-point approximation, which is dependent upon 

yet to be prescribed conditions regarding the frequency of the sound 

source and the geometry of the source and receiver. In addition, less 

sophisticated acoustic theories used in the study of the reflection of 

sound waves from the ocean's subbottom, which disregard the effects of 

rigidity and internal energy dissipation in their model of the subbottom, 

are analyzed for the purpose of comparison. Oftentimes these theories 

express the acoustic return from the subbottom as a plane-wave reflection 

coefficient of the form for r (0) in equation (12.20), which is inde

pendent of the geometry of the source and receiver. Therefore, in order 

to establish a basis for comparison with results from these acoustic 

theories, the Green's functions for the exact and approximate

estimation of the reflected field are normalized with respect to the 

reflection coefficient r (0) . The magnitudes of these normalized 

reflection coefficients are then plotted versus the angle of incidence 

0 . It is anticipated that the variation of the magnitude of the reflection 

coefficient as a function of the angle of incidence 0 may be useful 

for identifying various sediment types which occur on the continental 

shelf. Special cases where the subbottom is a halfspace and a two- 

layered halfspace are analyzed here for subbottoms with varying properties. 

In particular, the stratification and composition of the subbottom is
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varied, using Hamilton's data (1974a) for the properties of marine 

sediments on the continental shelf.

The present numerical study of the reflection of sound waves 

from the ocean's subbottom is an extension of the previous studies of 

Newman (1973) and Magnuson et al. (1973). They numerically evaluated 

the Green's function for the reflected wave for a subbottom consisting 

of a viscoelastic halfspace. They also included results for the saddle- 

point approximation and the less sophisticated acoustic theories discussed 

earlier. Hamilton's data (1971a) for the properties of marine sediments 

on the continental shelf was used to characterize the subbottom.

Numerical results for the case where the subbottom consists of a two- 

layered halfspace were not included in their studies. Their results 

showed that the acoustic return signal from the subbottom is sensitive 

to changes in the sediment type over a wide range of angles of incidence. 

The potential usefulness of the results from their preliminary investi

gation inspired the present extension to their work. The present 

numerical study is based on corrected laboratory data on the properties 

of marine sediments published recently by Hamilton (1974a). In addition, 

in-situ values for compressional- and shear-wave attenuation in these 

sediments is predicted in accordance with the method outlined by 

Hamilton (1972).

At this point it is useful to review the analytical forms which 

are to be analyzed numerically on the computer. The integral expression 

for in equation (12.8b) for the reflected wave from the subbottom

is to be evaluated for the special cases where the subbottom is a halfspace 

and a two-layered halfspace. For the special case where the subbottom
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is a viscoelastic halfspace, one may develop from equations (12.1), 

(12.8b), and (12.8c) the explicit expression for G^ given by

-y- —yG. (x,x';w) =b

-a_ (z+z 1) r/„2 ,2 ,2 ( 4
e ° fP1*01,26 T1 -4aLiaTl? ”P0aLl TliT ,.lr
 a  '------- 2 2 2-------- 2------- 4~ 0

° Pia0I(2  ̂ kTl) 4aLiaTl^ ■I+POaLlkTl

(13.1)

The corresponding expression for the special case of a two-layered

viscoelastic halfspace is obtained by the use of equations (12.5), (12.8b),

and (12.8c). This expression is too cumbersome to include in the text.

The integral expression for G^ contains a complete description of the

acoustic return signal as a function of the acoustic properties which

describe the water and sediment, the geometry of the source and

receiver, and the frequency of the acoustic signal transmitted. The

Green's function G^ is a complex quantity due to the introduction of

viscoelasticity into the subbottom. In order to introduce the angle

of incidence 0 into the integral for G, in equation (13.1), theb
quantities p and (z+z') are replaced by R^sin 0 and R^cos 0

(see equations (12.16)), respectively. The quantity R is fixed at

R = 10m in the numerical analysis. This implies that the positions

of the source and receiver change as the angle of incidence varies. It

was mentioned earlier that the numerical evaluation of the integral for

G^ for different subbottoms was quite expensive.

The saddle-point approximation for G^ in equation (12.18) is

to be evaluated for the special cases where the subbottom is a halfspace

and a two-layered halfspace. For the special case where the subbottom

is a viscoelastic halfspace, an explicit expression for G, isb
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given by

-ik R _ -ik„R0 I f - f 0 1
G (x ,x' ;oj) = T (9) -- - - ■■■ ■ = ---■ ■ ■ & ■ ■ ■ ■ , (13.2)b 4ttR̂ . + f 47^

where

2 3 2 2 i /o
CT1 2 2 CT1 2 CT 1 2 -̂-/2 ^Tl 2f.. = p c cos 01(2 —— sin 0-1) +4 —  sin 0( 1 ---— sin 0) ( 1 ---— sin 0) ]X X X)X z  z  z  z

c0 C0CL1 c0 C0

(13.2a)

and

°T1 2 I-/2
f2 = PqCq^1 " - f 1* 1*1 0) • (13.2b)

co

The quantity r (0) is recognizable as the plane-wave reflection coefficient

for a plane sound wave incident from a liquid on a liquid-solid interface.

The compressional- and shear-wave velocities, c and c , are complexLX TX
quantities due to the introduction of viscoelasticity into the subbottom.

The quantity R^ is fixed at R = 10m in the numerical analysis in

order to be consistent with the numerical evaluation of the integral

expression for . It was mentioned earlier that a comparison of the

numerical results for the integral for and the saddle-point

approximation to this integral was desirable.

In addition to the comparison of the numerical results for the

integral for G. and the saddle-point approximation to the integral o
for G^ , it is of interest to compare these results with those obtained 

with less sophisticated acoustic theories, which disregard the effects 

of rigidity and internal energy dissipation in their model of the 

subbottom. Many of these theories express the acoustic return from the
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subbottom as a plane-wave reflection coefficient. If the contribution

due to viscoelasticity in the complex compressional- and shear-wave

velocities, c ^  and c is disregarded, the reflection coefficient

T(0) in equation (13.2) reduces to the form appropriate for a subbottom

that is an elastic halfspace. An expression for r(0) for this case

may be developed from equations (10.5a), where for no damping one sets

b = b = 0  to effect the transition Li. T i.

A' + 2y' . „ y'2 . 2  1 H1 2 . 2  ^1
°L1 + CLel = - ^ --- ' °T1 * CTel = ^  <13-3)

in equation (13.2). If the contribution due to shear waves in the 

subbottom is disregarded by setting y^ = y^ = 0 , the reflection 

coefficient T(0) in equation (13.2) reduces to

CL1 2 1/2
PlCLlCOS 0-pOCO (1 “ " ^ ln 6)c

r (0) = ---------------------2---------- f (13.4)
CI1 2 1/2

PlCLlCOS 0+POCO (1 ’ 6)
co

where

2 +
cl. = —  L . (13.4a)LI p

If the contributions due to both viscoelasticity and rigidity in the

subbottom are disregarded, one obtains an expression of the same form
2as equation (13.4), but now c = A'/p . This is the classicalLi 1 1

Rayleigh reflection coefficient, which is the plane-wave reflection 

coefficient for a plane sound wave incident from a liquid on a liquid- 

liquid interface. It is observed that the effect of disregarding the
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contributions due to viscoelasticity and rigidity in the subbottom is 

to model the sea floor as a liquid. This is the simplest model of the 

subbottom which is employed in the study of the reflection of sound 

waves from the ocean floor. It should be pointed out that for normal 

incidence (0=0°) , the reflection coefficient r(0) in equation 

(13.4) assumes the form

D C  “ D C
r = 1 L1 0 0 . (13.5)

P1CL1 + P0C0

It is observed from equations (13.2) that, even if the subbottom is

capable of supporting and transmitting shear waves, a consequence of

using the reflection coefficient for normal incidence is to disregard

the effects due to rigidity in the subbottom. In the introduction, it

was mentioned that most investigators, in their efforts to use the

acoustic return from the ocean floor for determining soil classifications

and engineering properties of marine sediments, have studied reflection

coefficients obtained for normal incidence.

In order to establish a basis for comparison for the numerical

results obtained here with those of less sophisticated acoustic theories,

it is necessary to normalize the exact and approximate evaluations of

the reflected field, given by G, , with respect to the reflectionb
coefficients F(0) . Therefore, the numerical results for G, areb
plotted in the normalized form 41711^0^1x100% , which gives a reflection 

coefficient in percent.

The reflection coefficient 4771^10^1x100% is to be plotted 

versus the angle of incidence 0 , which is defined in Figure 16, as 

the angle of incidence 0 is varied from 0 = 0 °  (normal incidence)
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to 9 = 90° (grazing incidence). Additionally, the bounce distance, BD , 

is kept constant at BD = 10m in the numerical analysis. The bounce 

distance is defined as the total distance along the path traveled by the 

reflected wave in the water. Referring to Figure 16, the distance 

traveled by the reflected wave from the source to the water-sediment 

interface to the receiver is given by

2 2 1/2BD = D1 + D2 = R = [p +(z+z') ] . (13.6)

In reference to the integral for and the saddle-point approximation

to the integral for G, , it was mentioned that R would be fixed atb I
R = 10m in the numerical analysis. Now, this constraint may be viewed 

as holding the bounce distance BD constant.

The carrier frequency of the signal transmitted from the source 

is taken to be f = 5kHz for the numerical analysis. Thus, the acoustic 

waves transmitted from the source are monochromatic waves. The inter

relationships between the wavelength A^ , the wavenumber k^ , the wave- 

velocity cQ , and frequency co (to=2irf) in the liquid are given by

-> 21TC
A =  ~  =  ---- -  . ( 1 3 . 7 )0 kQ

The frequency f = 5kHz corresponds to the wavelength A^ ^ 0.3m in the 

water. It should be recalled that in the procedure by which the saddle- 

point approximation to the integral for G^ was obtained, it was assumed 

that the nondimensional quantity y = k^R^ is large, that is, y^ >> 1 . 

For the given constant values of the frequency of the signal and the 

bounce distance, ŷ . ^ 210 . Although this nondimensional quantity y 

is much greater than unity, the behavior of exponential term (12.17) is
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also dependent upon the exponent f(x) , which is a function of the 

angle of incidence 0 . Recalling that the arrangement of the source 

and receiver change as the angle of incidence 0 varies, it is of 

interest to note what effects different arrangements might have on the 

accuracy, and therefore, the validity of the saddle-point approximation 

under the conditions prescribed in this field problem. It is also of 

interest to note what effects the wavelength of the acoustic signal 

transmitted from the source might have on detecting layering in the 

subbottom.

The data used to characterize the elastic properties of the 

marine sediments, which comprise the various subbottoms considered in 

the numerical analysis, was taken from laboratory values of data 

reported by Hamilton (1974a) for the elastic properties of marine sediments 

on the continental terrace (shelf and slope). The laboratory values for 

these sediment properties were then corrected to in-situ values by the 

author according to the methods outlined by Hamilton (1971b). The 

corrected values for the elastic properties of these marine sediments 

are given in Table 2A in the text. The in-situ viscoelastic properties 

of marine sediments were obtained by following a method developed by 

Hamilton (1972), which allows prediction of compressional-wave 

attenuation in marine sediments, given the mean grain size or porosity 

of the sediment. The predicted values for the in-situ viscous properties 

of the marine sediment types in Table 2A were computed by the author for 

the Voigt viscoelastic model employed in this investigation. These 

values are given in Table 2B in the text. In the remainder of this 

work, the marine sediment types in Tables 2A and 2B are quite often 

denoted by the numbers which appear beside their names.



TABLE 2A

IN-SITU ELASTIC PROPERTIES OF MARINE SEDIMENTS*

Sediment Type
n

%

P

g/cm3

cL
m/sec

K

dynes/cm3

xlO10

A '
dynes/cm3

,10xlO

V'
dynes/cm3

xlO10

CT
m/sec

xlO1

Continental terrace (shelf and slope)

1. Coarse sand 38.6 2.06 1808 6.69 6.70 0.030 12
2. Fine sand 44.8 1.95 1727 5.51 5.35 0.23 35
3. Very fine sand 49.8 1.86 1672 5.02 4.95 0.14 27
4. Silty sand 53.8 1.80 1642 4.50 4.3 0.26 37
5. Sandy silt 52.5 1.81 1638 4.45 4.2 0.31 41
6. Silt 54.2 1.77 1599 4.33 4.2 0.15 29
7. Sand-silt-clay 67.2 1.58 1555 3.59 3.5 0.17 33
8. Clayey silt 72.6 1.47 1522 3.32 3.28 0.060 20
9. Silty clay 75.9 1.43 1496 3.15 3.12 0.038 16

ri, porosity; p, bulk saturated density; c , compressional-wave velocity; L (c, bulk modulus ; A 1
y', Lame's constants; cT, shear-wave velocity.
*Elastic properties were taken from laboratory values reported by Hamilton (1974a), and corrected
to in-situ values by the techniques outlined by Hamilton (1971b). Elastic properties are given

/ 3for a water depth of 31 meters in the San Diego Trough where the water density pQ = 1.025 g/cm 
and compressional-wave velocity cQ = 1505.37 m/sec.
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TABLE 2B
IN-SITU VISCOELASTIC PROPERTIES OF MARINE SEDIMENTS*

bL bT X ' X" y ' y"

Sediment Type sec sec dynes/cm^ dyne-sec/cm^ dynes/cm^ dyne-sec/cm^
-4xlO xlO-4 xio10 xlO6 xlO10 xio6

Continental terrace (shelf and slope)
1 . Coarse sand 0.010 1.7 6.70 -0.035 0.030 0.051
2. Fine sand 0.010 0.19 5.35 -0.030 0.23 0.045
3. Very fine sand 0.013 0.35 4.95 -0.035 0.14 0.051
4. Silty sand 0.013 0.17 4.3 -0.030 0.26 0.045
5. Sandy silt 0.014 0.17 4.2 -0.035 0.31 0.051
6. Silt 0.013 0.30 4.2 -0.030 0.15 0.045
7. Sand-silt-clay 0.0020 0.035 3.5 -0.0038 0.17 0.0057
8. Clayey silt 0.0016 0.070 3.28 -0.0028 0.060 0.0041
9. Silty clay 0.0014 0.083 3.12 -0.0021 0.038 0.0032

bL and b^, damping coefficients; X 1 Aand y', elastic contribution of complex Lame constants;
X" and y", viscous contribution of Acomplex Lame constants.
*In-situ viscous properties were predicted by the method developed by Hamilton (1972), and 
adjusted to describe the Voigt viscoelastic model for the frequency f = 5kHz .
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The physical parameters used in the numerical analysis to 

characterize petroleum are given by

p = 0.912 g/cm3, c = 1326 m/sec, X = p c2 = 1.60><106 dynes/cm2

—  2 —  2
t, = 0.9 dyne-sec/cm , n = 0.3 dyne-sec/cm , (13.8)

where p is the mass density, c is the adiabatic sound velocity, £ 

is the bulk viscosity, and n is the shear viscosity. The values for 

the viscosities £ and n were selected from a wide range of viscosities 

characteristic of petroleum.

It is observed from a comparison of the graphs in Figures 17,

18a, 19a - c, and 20a - c that the saddle-point approximation to the 

integral for agrees closely with the result obtained by the exact

evaluation of the integral for G^ for small angles of incidence 0 , 

and begins to deviate as the angle of incidence 0 approaches grazing 

incidence. The discrepancy between the numerical results for the saddle- 

point approximation to the integral for G^ and the exact evaluation of 

the integral for G^ at higher angles of incidence is due to the close

ness of the source and receiver to the liquid-solid interface. For a 

constant bounce distance, the source and receiver approach the water- 

sediment interface as the angle of incidence 0 approaches grazing 

incidence (0=90°) . For angles of incidence approaching grazing 

incidence, higher order terms, which were deemed small in the asymptotic 

expansion discussed earlier, begin to make a significant contribution to

G, . It should be recalled that only the leading term in the asymptotic b
expansion discussed earlier was considered in order to obtain the 

expression for the saddle-point approximation for G^ which was used
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in this numerical analysis. This phenomenon, where the geometrical 

optics approximation becomes less and less applicable as the receiver 

approaches the interface is discussed at length by Brekhovskikh (1960) .

If the bounce distance BD = R was fixed at a value greater than 

BD = 10m , the approximation would be improved at larger angles of 

incidence.

It is observed from a comparison of Figures 19a - c and 20a - c 

that when the wavelength of the signal transmitted from the acoustic 

source is on the order of the thickness of the layer of sediment with 

finite thickness, the acoustic return signal is sensitive to the 

presence of both layers in the subbottom. However, as the thickness of 

this intermediate layer is increased and the wavelength of the signal 

remains fixed, the return from the subbottom detects only the inter

mediate layer. At a thickness of h^ = 3m for the intermediate layer, 

the return signal closely resembles that as if the intermediate layer 

was a halfspace. It is difficult to draw conclusions from a comparison

of Figures 20a,b and 21a,b, regarding the sensitivity of the acoustic

return to replacing the halfspace of sediment #1 with a halfspace of 

petroleum, since the scales on these graphs are different. A comparison 

of Figures 18a - d indicates that the acoustic return signal is more 

sensitive to effects of internal energy dissipation than it is to the 

effects of rigidity.

In general, it is observed that the magnitude of the acoustic

return signal is greater at larger angles of incidence. The increased

magnitude of the acoustic return signal at large oblique angles indicates 

that as the angle of incidence 0 is increased, more acoustic energy is 

scattered back to the receiver, and less is transmitted away from the 

water-sediment interface into the sediment.
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Additionally, it is observed that the sensitivity of the acoustic 

return signal to distinguishing between subbottoms composed of varying 

sediment types is improved at oblique angles of incidence as compared 

with the return at normal incidence. The quasi-periodic small variations 

in the magnitude of the curves in Figures 17 - 21 are due to the accurate 

modeling of the physical processes which occur in the ocean-subbottom 

system to form the return signal as the angle of incidence varies.
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Figure 17. Plotted is 4ttR |g |xl00% vs.. 0 for the exact integral for G ,I d
where the subbottom consists of a half space of sediment #1.
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Figure 18a. Plotted is 4ttR G, *100% v s .I b for the saddle-point approximation
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Figure 18b. Plotted is 4ttR |g |xl00% vs. 0 for the saddle-point approximation for ,
where the subbottom (no damping) consists of a halfspace of sediments #1-9.
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Figure 18d. Plotted is 4ttR |g |xlOO% vs. 0 for the saddle-point approximation for G, ,i d  b
where the subbottom (no damping, no shear waves) consists of a halfspace of 
sediments #1-9.
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Figure 19b. Plotted is 4tfR G xi00% vs.1 1 b* for the exact integral for G_ , where the sub-b
bottom consists of lm of sediment #1 overlying a halfspace of sediment #8.
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bottom consists of 3m of sediment #1 overlying a half space of sediment #8.
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the subbottom consists of lm of sediment #1 overlying a halfspace of sediment #8.
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Figure 20c. Plotted is 4TTR.J. | Ĝ l xl00% vs. 9 for the saddle-point approximation for , where
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the subbottom consists of 0.3m of sediment #1 overlying a halfspace of petroleum.
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APPENDIX A

KRAMERS-KRONIG RELATIONS

Kramers-Kronig relations (5.12) have been proven in a most

direct manner by De Groot and Mazur (1962). They are derived here,

however, following the approach of Martin (1968), by a general technique

valid for complex z . In particular, one seeks to express Gjm (k;w)

for complex z first in terms of G'.' (k; co') and then G! (k;w") inDm ;jm
order to obtain, respectively relations (5.12a) and (5.12b).

Applying Cauchy's integral formula to the closed contour C' in 

the lower half of the complex z'-plane (see figure below) yields

G. (k; z) Dm
-1

2TTi

G. (k; z1 )
______
z' - z dz' 0 = -1

2fri
C'

G. (k; z' ) 3m
z' - z* dz' (A. 1)

C'

since C 1 encloses z but does not enclose z The minus sign takes

into account that the contour C' is traversed in the negative (clockwise) 

sense, while z denotes the complex conjugate of z . Adding or sub

tracting equation (A.l), one obtains

G. (k; z) 2-rri G (k; z ' ) [— --jm z -z z -z I dz1 (A.2)

which may be expressed alternatively as
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since the integral is to be evaluated along the closed path C' in the

Im

complex z1-plane

-R'

lower half of the z1-plane consisting of the real axis from -R' to 

R' and the semicircle T1 of radius R1 . Taking the limit as 

R1 -»■ 00 , equation (A. 3) gives

G. (k;z) = r-v- 3m 2m G. (k;u)')[-T—  ± ,1- doi' .3m  ( j O ' - Z  CO “ Z
(A.4)

The integral over the semicircle F' does not contribute because the
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integrand tends to zero as R1 . I t  follows from equation (A.4) that

G . (k;z) = - Dm G. (k;co' ) Re{—7— } =jm co -z TT1 G. (k;co') Im{—7— } pm co -z TT

(A.5)

depending upon whether the plus or minus is assumed.

If the real and imaginary parts of G__m (k;z) determined, 

respectively, from the first and second identities of equation (A.5) 

are added, one obtains

G. (k;z) = Re{G. (k;z)} + i Im{G. (k;z)} pm pm urn

Im{G. (k;co') } [Re{—t— } + i Im{—7— }] jm co -z M
dco'

co’ -z IT
G" (k; co 1) , , pm ____ dco'

CO' - Z TT

(A.6)

Clearly, if z = co - ie and e > 0 , the first of the Kramers-Kronig 

relations, equation (5.12a), is recovered since

G. (k;co) = G'. (k;co) + i G'.' (k;co) = limpm pm pm ê 0
G'.' (k;co') , , pm dco
c o ' - ( c o - i e )  tt

=  - P

G'.' (k;co' ) , ,pm ____ dio'
co'  -  co

+ i G" (k;co) , tt pm (A.7)

because of the identity

l i m  — —  =  P  —  +  T r i 6  ( x )  ,  x  = co1 - co .
e -> 0  x  ±  i e  x

(A.8)
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The second Kramers-Kronig relation, equation (5.12b), may be 

obtained in a similar manner. If the real and imaginary parts of
-VGjm (k;z) determined, respectively, from the second and first 

identities of eqation (A.5) are added, one finds that

G. (k;z) = Re{G. (k;z)} + i Im{G. (k;z)} Dm Dm Dm

= l Re{G. (k;to') } [Re{—7— } + i ImC-y }] —  = ijm ... ...>_ ~ ttto -z tO - Z TT
G'. ( k ; to1 ) .  ,

pm ______ d to '
(O' Z TT

(A.9)

Applying identity (A.8) to the last equality in equation (A.9) then 

yields the second of the Kramers-Kronig relations as follows:

G. (k;co) = G'. (k;to) + i G7 (k;to) Dm Dm Dm

lim i
e->-0

G'. (k ; to 1) . .
--Tv— v —  - s'. S.-m) + i pa)'-(to-ie) it Dm

G ! ( k ;  to ' )  .  , 
pm d to1
tO1 - (0 TT

(A.10)
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APPENDIX B

AN ALTERNATIVE INTEGRAL REPRESENTATION FOR I,ec

The purpose of the development that follows is to illustrate in 

detail the process leading to the conversion of the integral expression
ecfor 1^ in equation (8.8a),

1T -

2 2 1/2sin [C (l+£ k ) k(t-t')] .,1^.1T -ik x-x'
------------T Y T / 2  e dk 'CT (l+£ k )

(B.l)

ecto the equivalent integral form for 1^ in equation (8.9) ,

ec -2i -2a
1 " c l  6

-4ay . , . 1 A ,  2 . 1/2n ,̂ 1/2, ,e sinh[2 b(y +1) ]cos[2 by] dy
(y2+l)1/2

(B. 2)
.ecFirst of all, it should be noted that the integral for 1^ m  

equation (B.l) may be expressed equivalently as

Tec 
1 = " 2 l

0

sin [C (l+£ k ) k (t-t1) ]
-----------   - - ------ sin[k|x-x' | ]dk , (B.3)

CT (l+£ k )

since only the even parts of the integrand contribute to the integral

evaluated over the interval specified here. Employing the change of
2 2 1/2 ecvariables l k  + (1+1 k ) -* £ , this form for 1^ gives

ec -2i
1 “ C £T

sin[b(C~? 1)]sin[a(?2“? 2)] ~  / (B.4)
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where

a = 41
| x-x'
21 (B.4a)

ecFor the purpose of evaluating 1^ , it is useful to express equation

(B.4) as

xec _ ~2i rTec ec ,
1 C l  1 1 1 (B. 5)

GC GCwhere 1^ and I denote the integrals

ec
2i

. r, . “I., ia(?2-C 2) d?sm[b(?-? )]e (B.5a)

and

ec _1
2i

• rv, l-r r - 1 M  - i a ( C 2 - ?  2 ) d ?sin[b(C-C ) ]e — (B.5b)

GC GCThe real integrals 1^ and I can be converted into

complex integrals and subsequently treated as portions of these integrals 

by replacing C with the complex variable z . Applying Cauchy's

theorem to the closed contours C and C' in the upper and lower halves
+

of the complex z-plane (see figure below), where the integrals Iec and
ec are, respectively, well defined and exponentially decreasing, yields

2 -2x . r . -1., -ia (z -z ) dz _0 sxn[b(z-z )]e —  - 0z (B.6a)

and

 ̂ . r / "1., -ia z -z ) dz0 sin[b(z-z )]e —  = 0 ,z
C'

(B.6b)
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since there are no singularities enclosed within these contours.

Im

complex z-plane Re

Re

Re

These integrals may be expressed alternatively in terms of the 

straight line segments and arcs which constitute the specified paths
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of integration as

R

sinIb(?-C-1)]eia(? }

tt/4

+ 1 • n- / T1 T,”l 'sm[b (Re -R e
. .2 2i0 -2 -2i0■10 ia(R e - R e  )) J e d0

... . . . 2 nr/2 -2 -nr/2, dr■ rui nr/4 -1 -iit/4, 1 ia r e - r e  ) —  s m  b re -r e )]e r

R

+ i ■ • «■> _2asin20sin[2ibsin0]e d0 = 0 . (B

tt/4

and

R

- t t / 4

+ i • rvnp i0 u"1 “i0M -ia(R2e2l0-R~2e"2:L0)d0 s m  [b (Re - R e  ) ] e

... . . ,. . , 2 -itt/2 -2 itt/2.. . -nr/4 -1 nr/4. , -la (r e - r e  ) drsin[b(re -r e )]e —

R

+ l sin[2ibsin0]e2asin20 d0 = 0 (B.

-rr/4

.7a)

7b)
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Taking the limit as R , it follows from equation (B.7) that

and

sin[b(C-5“1)]eia(?2-?"2) ^
1

1
... . . 2 nr/2 -2 -nr/2) dr. ri_ . nr/4 -1 -nr/4., la (r e - r e  —sin b re -r e ) ] e r

+ i • r ■ ri n ~2asin20 sin [2ibsm0 ] e d0 = 0 .

ir/4

(B

sin[b(£-? 1)]e ia(? ] ^

. . 2 -itt/2 -2 nr/2)■ rv/ -rr/4 -1 nr/4... -la (r e - r e  drsm[b (re -r e ) ] e ~

+ i . r „., . _. 2asin20sm[2ibsin0] e d0 = 0 . (B

-ir/4

The integrals over the arcs T and T' both approach zero asR R
R -* » , and thus do not contribute to their respective integrations.

.8a)

.8b)

%



Subtracting equation (B.8b) from equation (B.8a) gives

2i sin[b(c-? h ]sin[a(£2-? 2)] ^

2 -2-a (r +r )r . r b ,, -1. ... , -1,,. . r b / , “lx • , . x i \ ^e {s m  t~i[y2 (r-r )+x(r+r )) ] -sin[—1y2'( (r-r )-i(r+r ))]} —

= 2i
2 -2-a(r +r ) . , r b , , -1%, r b , -lv, dr 

e sinh [- -jy2'(r+r ) 1cos L~ l / 2  ~ r ^  ~ (B.9)

The change of variables 0 -> - 0 indicates that the integrals over the 

arcs T and T1 are identical to each other and cancel upon subtraction. 

Finally, employing the change of variables 1/2(r-r y and multi

plying both sides of equation (b.9) by -1/C £ gives
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