AN INTERACTIVE COMPUTER ANALYSIS OF PHONOCARDIOGRAMS

ANTALANDRAS SARKADY

Follow this and additional works at: https://scholars.unh.edu/dissertation

Recommended Citation

SARKADY, ANTAL ANDRAS, "AN INTERACTIVE COMPUTER ANALYSIS OF PHONOCARDIOGRAMS" (1975). Doctoral Dissertations. 1097.
https://scholars.unh.edu/dissertation/1097

INFORMATION TO USERS

This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted.

The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction.

1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page (s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity.
2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. You will find a good image of the page in the adjacent frame.
3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning" the material. It is customary to begin photoing at the upper left hand corner of a large sheet and to continue photoing from left to right in equal sections with a small overlap. If necessary, sectioning is continued again - beginning below the first row and continuing on until complete.
4. The majority of users indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from "photographs" if essential to the understanding of the dissertation. Silver prints of "photographs" may be ordered at additional charge by writing the Order Department, giving the catalog number, title, author and specific pages you wish reproduced.
5. PLEASE NOTE: Some pages may have indistinct print. Filmed as received.

Xerox University Microfilms

```
                                    76-2523
SARKADY, Antal Andras, 1937-
    AN INTERACTIVE COMPUTER ANALYSIS OF
    PHONOCARDIOGRAMS.
    University of New Hampshire, Ph.D., 1975
    Engineering, electronics and electrical
```


Xerox University Microfilms, Ann Arbor, Michigan 48106

(C) 1975

ALL RIGHTS RESERVED

AN INTERACTIVE COMPUTER ANALYSIS OF PHONOCARDIOGRAMS

by

ANTAL A. SARKADY
B.S., University of New Hampshire, 1965
M.S., University of New Hampshire, 1967

A DISSERTATION

Submitted to the University of New Hampshire In Partial Fulfillment of The Requirements for the Degree of

Doctor of Philosophy

In Engineering
Graduate School
June, 1975

This dissertation has been examined and approved.

Dissertation Adviser
Ronald R. Clark, Professor, Electrical Engineering Signal Processing Area, Engineering Ph.D. Program

Donal W. Melvin
Donald W. Melvin, Associate Professor, Electrical Engineering Signal Processing Area, Engineering Ph.D. Program
filer N. Atony
Gilson H. Glanz, Associate Professor, Electrical Engineering Signal Processing Area, Engineering Ph.D. Program

Leonard G. Christie, Jj., M.D., Cardiologist Dartmouth-Hifchcock Medical Center

$$
\underset{\text { Date }}{\text { when } 24,1275}
$$

ACKNOWLEDGMENTS

Abstract

As is usually the case in research of this type, many people have made significant contributions to make this work possible. Foremost among these is my wife, Joyce and my children, Lynne and Kenneth, who made many personal sacrifices during the course of this study. In addition, I would like to thank Dr. Roberta Williams of Children's Hospital, Boston, Massachusetts for suggesting and supporting the aortic stenosis study, Ms. Judith Keymont for her assistance in selecting and recording phonocardiogram data, Dr. Ronald R. Clark, University of New Hampshire, for his advice and guidance throughout the study, Dr. Edward L. Chupp for making the University of New Hampshire Space Science Center computer facilities available for this project, and Mr. Ernie Nichols for helpful suggestions and aid in the development of the FFT subroutine.

TABLE OF CONTENTS
LIST OF TABLES viii
LIST OF ILLUSTRATIONS x
ABSTRACT xii
IN'RODUCTION 1
I. PHYSIOLOGY OF THE NORMAL AND ABNORMAL HEART 3
FUNCTION AND OPERATION OF THE HEART 3
STRUCTURE OF THE HEART 5
ARTERIAL BLOOD FLOW 6
MECHANISM OF THE NORMAL AORTIC VALVE 7
AORTIC STENOSIS 10
MECHANISM OF THE STENOSED AORTIC VALVE 12
PATHOPHYSIOLOGICAL DESCRIPTION OF VALVAR AORTIC STFNOSIS 14
ESTIMATING THE SEVERITY OF AORTIC STENOSIS 16
II. THE PHONOCARDIOGRAM SIGNAL 18
STETHOSCOPIC AUSCULTATION 18
THE PHUNOCARDIOGRAM 20
HEART SOUNDS IN THE PHONOCARDIOGRAM SJGNAL 21
HEMODYNAMIC CORRELATION OF HEART SOUNDS 21
First Heart Sound - S_{1} 21
Second Heart Sound 23
Third Heart Sound - S_{3} 25
Fourth Heart Sound - S_{4} 25
ABNORMALITIES OF HEAR'T SOUNDS IN VALVAR AORTIC STENOSIS 26
Intensity Changes of S_{2} 26
Variations in the Splitting Interval of S_{2} 26
Ejection C1icks 27
HEART MURMURS 30
THE ORIGIN OF CARDIOVASCULAR VIBRATION ENERGY 31
AREAS OF AUSCULTATION 32
TRANSMISSION CHARACTERISTICS OF THE HUMAN THORAX 35
INDIRECT CAROTIC PULSE RECORDING 36
PHONOCARDIOGRAM SIGNAL FEATURES 37
PHONOCARDIOGRAM IDENTIFICATI N FEATURES OF
VALVAR AORTIC STENOSIS 38

TABLE OF CONTENTS (Continued)

DIFFERENTIAL DIAGNOSIS OF VALVAR AORTIC STENOSIS 39
MAJOR PHONOCARDIOGRAM SIGNAL PROCESSING WORK DONE BY OTHERS 41
III. DESCRIPTION OF THE EXPERIMENT 44
APPROACH TO THE PROBLEM 44
SELECTION OF RECORDING SITES AND
TIMING DATA 46
ESTIMATION OF THE RECORDING TIME DURATION 46
EXPERIMENT ORGANIZATION AND BLOCK DIAGRAM 48
ANALOG DATA ACQUISITION AND RECORDING
EQUIPMENT 49
RECORDING AND CALIBRATION PROCEDURES 51
Differential Phono-Channel Delay 55
Push Down Test 55
ANALOG-TO-DIGITAL CONVERSION 55
SELECTION OF EQUIVALENT CARDIOCYCLES 57
Equivalent Data Ensembles 60
PASS 2-3 DATA 62
Pase 2-3 Data Tape Formats 63
IV. SIGNAL PROCESSING TECHNIQUES 69
TIME DOMAIN SAMPLING 69
Point Samp1ing 73
FREQUENCY DOMAIN SAMPLING 75
DISCRETE FOURIER TRANSFORM 77
The Fast Fourier Transform (FFT) 79
DESCRIPTION OF A STOCHASTIC PROCESS 82
Definition of a Stochastic Process 82
Moments of a Stochastic Process 83
A Stationary Stochastic Process 84
POWER SPECTRUM ANALYSIS 84
The Power Spectral Density of a
Deterministic Signal 85
Power Spectral Density of a Stochastic Process 86
The Discrete Power Spectral Density Estimate 87
Bartlett's Smoothing Procedure 88
Bartlett's Spectral Window 89
Variance of Smoothed Spectral Estimators 92
Confidence Interval for the Smoothed Spectrum 93
Bandwidth of a Spectral Window 95
Summary of Bartleit Window Properties 96

TABLE OF CONTENTS (Continued)

Computation of the Discrete Power Spectral Estimate 97
Explanations of the Plot Labels 99
ENVELOPE ANALYSIS 99
The Hilbert Transform 101
The Analytic Signal 102
Envelope, Phase and Frequency of the Phonocardiogram Signal 103
Envelope of Heart Sounds and C1icks 104
Envelope of the Murmur Signal 106
Computation of the Discrete Envelogram Estimate 107
V. RESULTS 111
DESCRIPTION OF THE PATIENT DATA SET 112
ENSEMBLE-AVERAGED ENVELOGRAMS 1ij
ENSEMBLE-AVERAGED WAVELETS 120
ESTIMATING THE SEVERITY OF AORTIC STENOSIS USING MURMUR POWER SPECTRAL ANALYSIS 124
VI. DISCUSSION OF RESULTS 135
ADVANTAGES OF ENSEMBLE AVERAGING 135
DISCUSSION OF V.A.S. SEVERITY ESTIMATES 136
SUGGESTIONS FOR FURTHER STUDY 138
B I BLIOGRAPHY 141
APPENDIX I 149
COMPUTER PROGRAM ANALOG READ BINARY DUMP 155
COMPUTER PROGRAM - DASFFT 160
APPENDIX II
DESCRIPTION OF THE INTERACTIVE ANALYSIS 175
INTERACTIVE ANALYSIS PROGRAM - AUTOFREQ 177
COMPUTER ANALYSIS PROGRAMS EMPLOYED FOR SEVERITY ANALYSIS ESTIMATES 188
DESCRIPTION OF THE FIRST-PASS SEVERITY ANALYSIS PROGRAM, PANAL 189
MAIN PROGRAM PANAL 192
SUBROUTINE FANAL 194
DESCRIPTION OF THE SECOND-PASS SEVERITY ANALYSIS PROGRAM, PPAVER 206

TABLE OF CONTENTS (Continued)

MAIN PROGRAM PPAVER 207
ERROR ANALYSIS OF 215LEAST SQUARE REGRESSION LINE ANDCORRELATION COEFFICIENT CALCULATIONS 218

LIST OF TABLES

1. LIMITS OF P.S.E.G. AND AORTIC VALVE AREAIN V.A.S.17
2. A TYPICAL ANALOG RECORD SEQUENCE 54
3. PASS 1 DIGITAL DATA TAPE RECORD FORMAT 58
4. PASS 1 DIGITAL DATA TAPE FILE FORMAT 59
5. PASS 2-3 DIGITAL DATA TAPE RECORD FORMAT 65
6. PASS 2-3 DIGITAL DATA TAPE FILE FORMAT 67
7. SUMMARY OF BARTLETT WINDOW PROPERTIES 97
8. THIRTEEN CATHETERIZED VALVAR AORTIC STENOSIS PATIENTS DATA 113
9. PERSONAL DATA FOR NORMAL AND CLINICALLY DIAGNOSED VALVAR AORTIC STENOSIS PATIENTS 114
10. BANDWIDTH AND FIRST MOMENT OF MEAN POWER SPECTRUM COMPUTED FROM INSPIRATION, EXPIRATION AND CAROTID DATA FILES AT 2ND R.I. 130
11. SUMMARY OF MURMUR SPECTRUM ANALYSIS AT 2ND R.I. FOR THE CATH. V.A.S. PATIENTS 131
12. SUMMARY OF CORRELATION STUDY BETWEEN P.S.E.G. AN: MEAN MURMUR POWER SPECTRUM PARAMETERS, CALCULATED AT THE 2ND R.I. FOR THE CATH. V.A.S. PATIENTS 134
13. PREDICTED MEAN P.S.E.G. AND STANDARD DEVIATION FOR THE CLINICALLY DIAGNOSED VALVAR AORTIC STENOSIS PATIENTS 140
1,AI. ACOUSTICAL COMPARISON OF MICROPHONE 2 VERSUS MICROPHONE 1 152
2,AI. PATIENT HEADER FORMAT 153
3,AI. DATA HEADER FORMAT 154

LIST OF TABLES (Continued)

1,AII. CORRELATION STUDY BETWEEN P.S.E.G. AND$50 \% \mathrm{~F}$ AT THE 2ND R.I. ON INSPIRATION,EXPIRATION AND CAROTID DATA FOR THETWELVE CATHETERIZED VALVAR AORTIC STENOSISPATIENTS • •219
2,AII. CORRELATION STUDY BETWEEN P.S.E.G. AND $\overline{\mathrm{f}}$ AT THE 2ND R.I. ON INSPIRATION, EXPIRATION AND CAROTID DATA FOR THE TWELVE CATHETERIZED VALVAR AORTIC STENOSIS PATIENTS 220
3,AII. CORRELATION STUDY BETWEEN P.S.E.G. AND \bar{f} AT THE 2ND R.I. ON INSPIRATION DATA FOR THE TWELVE CATHETERIZED VALVAR AORTIC STENOSIS PATIENTS 221
4,AII. CORRELATION STUDY BETWEEN P.S.E.G. AND f AT THE 2ND R.I. ON EXPIRATION DATA FOR THE TWELVE CATHETERIZED VALVAR AORTIC STENOSIS PATIENTS. 222

LIST OF ILLUSTRATIONS

1. Normal Heart of a Child 4
2. The Normal Aortic Valve 8
3. Normal and Aortic Stenosed Hearis 11
4. Cross-sectional Views of Normal and Stenosed Valves 13
5. Spectrum of Chest Vibrations and Threshold of Hearing 19
6. A Typical Normal Cardiac Cycle 22
7. A Typical V.A.S. Phonocardiogram Cycle 28
8. Primary Auscultation Areas 34
9. Block Diagram of the Experiment 50
10. Measured Frequency Response of the Electronics System with AM Recording Mode 52
11. Measured Frequency Response of the Electronics System with FM Recording Mode 53
12. Five Typical Equivaient Phonocardiogram Records 61
13. A Typical Aligned Four-Channel Cardiocyc1e Record 64
14. Pulse and Impulse Sampling of $s(t)$ and Corresponding Amplitude Spectra 72
15. A Sampled Amplitude Spectrum and the Corresponding Periodically Extended $s(t)$ 76
16. A Typical V.A.S. Murmur Power Spectrum Estimate. 100
17. Envelogram Estimate of Fig. 7 109
18. Averaged V.A.S. Envelogram for Inspiration 116
19. Averaged V.A.S. Envelogram for Expiration 117
20. A Typical V.A.S. Carotid Pulse 119
21. A Typical Normal Second Heart Sound 122
22. The Aligned Averaged Aortic Component of Fig 123
23. A Typical Aortic Ejection Click 125
24. A Typical Aligned Averaged Aortic Ejection Click 126
25. A Typical Averaged V.A.S. Murmur Power Spectrum 128
26. Scatter Diagram for the Catheterized V.A.S. Patients at the 2nd. R.I. for Inspiration + Expiration + Carotid Data 133
1,AI. Microphone Placement on the Chest 150
2,AI. Amplitude Response Curve of a Type 53616 Microphone 151

ABSTRACT
 AN INTERACTIVE COMPUTER ANALYSIS
 OF PHONOCARDIOGRAMS

by

Antal A. Sarkady

Computerized phonocardiogram analysis techniques were developed to aid in the positive diagnosis of systolic heart diseases and these techniques were applied to noninvasively assess the severity of valvar aortic stenosis. Signal processing algorithms were incorporated into an interactive analysis program used to study heart sounds and murmurs in the time and frequency domains. The algorithms are applicable to several heart diseases, but this study was conducted on six normal patients, thirteen catheterized, and four clinically-diagnosed valvar aortic stenosis patients.

For each patient, phonocardiogram data (30-1200Hz range) from four listening sites, along with an ECG, respiration, and carotid pulse, were recorded for approximately 100 seconds. A typical patient data set consists of seven data files; two mid-inspiration, two mid-expiration, two carotid and one calibration file.

As a starting point of the interactive analysis
branch, a normalized ensemble-averaged envelogram is
computed and plotted for each file. From these plots, maximum precardium intensity areas, respiration affects, murmur shape, and the timing of clicks, murmurs and sounds are identified or measured. Using the measured onset times and durations, murmur, click, and heart sound signals are gated and separately studied in the time and frequency domains. The severity of valvar aortic stenosis is estimated noninvasively from a gated and ensemble-averaged phonocardiogram murmur power spectrum. The averaged spectrum is computed from several cardiocycles (typically 40-50 records) recorded from the second right intercostal space. Ensemble averaging is essential in this analysis to reduce spectrum variance and to obtain consistent results. A high degree of correlation exists (correlation coefficient $=0.96$) between the peak systolic ejection gradient measured by cardiac catheterization, and the calculated first moment of the mean murmur spectrum.

A Varian 620/I 16 bits/word minicomputer was used for this study. The computer was equipped with a 12 K word memory, two seven-track digital tape recorders, a graphics terminal, an analog multiplexer, and an analog-to-digital converter.

INTRODUCTION

The computerized phonocardiogram analysis techniques presented in this dissertation are applicable to many systolic heart diseases found in a wide age group. However, children and adolescents four to twenty years of age were selected for this study for the following reasons. A large portion of heart diseases are congenital or can be traced to a minor cardiac disorder occurring in early life; consequently, early detection and correction are necessary for a long and active adult life. In addition, innocent murmurs are extremely common in children and adolescents, occurring in approximately 50 percent of these subjects [36]. Therefore, a need exists for an accurate and rapid screening instrument. The analysis techniques presented here can be adapted in the design of such an instrument. Finally, children are relatively free from arterial diseases such as arteriosclerosis and may serve as a ready standard for a large number of heart diseases.

In order to assess the merits of the computerized phonocardiogram analysis techniques, the study of valvar aortic stenosis was suggested by Dr. Roberta Williams of Children's Hospital, Boston, Massachusetts. Her proposal was an excellent and challenging choice for several reasons.

Valvar aortic stenosis is a frequently detected disease representing approximately three to six percent of
the total heart diseases found in children [10]. Severity of the disease requires frequent assessment, particularly in moderate and severe cases, since for these patients sudden death is a distinct possibility. Accurate assessment of the severity of this disease is presently possible only by catheterization, an invasive surgical procedure requiring three days of hospital care. It is clear that a definite need exists for an accurate, noninvasive technique to assess the severity of valvar aortic stenosis; such a technique is presented in this dissertation. Finally, the valvar aortic stenosis murmur is produced by a 'turbulent jet" [1] where similar jets are found in several other heart diseases (pulmonary stenosis, ventricular septal defect, atrial septal defect, etc.). Consequently, this anomaly can be considered as a representative prototype cf several "noisy systolic murmurs" and it may be possible for this analysis technique to be extended to these heart diseases as well.

CHAPTER I

PHYSIOLOGY OF THE NORMAL AND ABNORMAL HEART

FUNCTION AND OPERATION OF THE HEART

The function of the heart is to pump oxygenated blood to all parts of the body. It is readily visualized as two serially-connected dual-chamber pumps, activated by a common electrical pacemaker through conduction bands [28]. The two pumps are similar in size but the left side is a considerably higher-pressured system than the right side. A full scale drawing of a normal child's heart and the connecting great vessels is shown in Fig. 1. Pumping action of the heart is described with the aid of this diagram.

Oxygen-poor blood (blue blood) is pooled in the right atrium (RA) and enters the right ventricle (RV) through the tricuspid valve (TV). The right ventricle pumps the blood through the pulmonary valve (PV) into the small capillaries of the lungs where it becomes enriched with oxygen. The oxygenated blood (red blood) is pooled in the left atrium and enters the left ventricle (LV) through the mitral valve (MV).

The left ventricle pumps the red blood through the aortic valve (AV) to the aorta (AO) where it is distributed by smaller arteries to the rest of the body. The circulation path is completed when the blue blood is returned to the

AO-aorta, AV-aortic valve, IVC-inferior vena cava LA-1eft atrim, LV-left ventricle, MPA, main pulmonary artery MV-mitral valve, PV-pulmonary valve, RV-right atrium RV-right ventricle, SVC-superior vena cava TR-tricuspid valve, $F B$-femoral bifurcation

Fig. 1. Normal heart of a child
right atrium via the inferior vena cava (IVC) and the superior vena cava (SVC).

The pumping cycles of the two sides of the heart are nearly synchronous. A cardiocycle is divided into systolic and diastolic phases, at which times the ventricular muscies are contracted and relaxed respectively. In the early part of the systole, the ventricle is at a constant volume, while during the latter part, blood is being pumped from it. In the early part of the diastole, the ventricle is at a constant volume, while during the latter part, blood is being pooled in it.

Functions of the atria are to assure an adequate blood supply to the ventricle during the filling phase and to assist in the filling by contracting at the end of the diastolic phase. This is often referred to as "topping off" the ventricle.

All of the heart valves are operated by the blood flow; nearly zero pressure drop occurs across the valves during forward flow and they are closed by reverse flow.

STRUCTURE OF THE HEART

A dense connective tissue forms a fibrous "skeleton" of the heart surrounding the valves. The atria, ventricles and arterial trunks are firmly attached to this "skeleton" [1].

The ventricles are composed of sheets of spiraliing, tightly-bound, myocardial fibers which thicken near the apex. The wall of the left ventricle is considerably thicker
than that of the right ventricle. Capillaries connected to the coronary arteries supply blood to the heart muscle at a rate ten to twenty times higher than to the skeletal muscle. This high nourishment rate is required to support the mechanical work performed by the ventricles.

ARTERIAL BLOOD FLOW

The outstanding feature of arterial blood flow is its pulsatile character. During the early systole, blood is suddenly ejected into the ascending aorta. The ventricle has insufficient energy to overcome the inertia of the long column of blood in the arteries; consequently, the blood tends to pile up in the distended ascending aorta, producing a sudden, local pressure increase. A pressure wave propagates down the descending aorta with a velocity of $4-5 \mathrm{~m} / \mathrm{sec}$. [1]. This velocity is ten to twenty times greater than the flow velocity of the blood [2] and is a function of the physical properties of the vessel wall and the blood.

The advancing pressure wave is reflected by the peripheral structures (primarily at the femoral bifurcation) producing a reflected wave traveling back toward the heart. The observed pressure wave at any point in the aorta is the superposition of the forward pressure wave and the reflected wave. As the aortic valve closes at the end of the systole, drainage from the aorta and arteries into the arterioles continues, transforming the highly pulsatile flow into a more continuous, steady flow. Dispersion of the pulse
waveform during its travel is one of the characteristics of the vascular system.

A detailed analysis of pulsatile blood flow in distensible arteries is given in a book edited by Attinger [3]. A recent computer model of the left ventricle and the aorta is presented by watts [4]. He models the aorta as a tapered, electrical delay line and studies the pressure pulse propagation produced by an impaired left ventricle. Watt's model, however, is valid only in the $0-20 \mathrm{~Hz}$ frequency range.

MECHANISM OF THE NORMAL AORTIC VALVE

The aortic valve is composed of three cusps of equal size attached around the circumference of the valve orifice. In children and adolescents, the cusps are thin, elastic membranes which thicken later in life. A considerable overlap in the cusps'area assures a tight closure; when open, it forms a triangular orifice which has a smaller crosssectional area than the aorta. This opening however, is sufficiently large to have a negligibly small pressure drop across the open valve and to have laminar blood flow through the valve. Behind the aortic valve cusps are three cavities, the sinuses of valsalva [29], shown in Fig. 2. Left and right coronary circulation originates from two of these sinuses through small openings called coronary cstia. The sinuses perform an important role in the closing mechanism of the valve. If a valve leaflet comes in contact with the coronary ostia, the rapidly falling coronary pressure and

Fig. 2. The normal aortic valve
the increasing aortic pressure would seal the cusp against the wall of the aorta; space provided by the sinus prevents this from happening.

Bellhouse's [5,6,7] experiments with leaflet-type model valves demonstrated that vortices trapped in the sinuses provided a fluid mechanical valve control and aided systolic coronary circulation. In the model valve, the cusps presented negligible obstruction to the accelerating fluid flow during the opening phase. Thrown open, the cusps aligned themselves with the fiow, and stagnation points were formed at the sinus ridges along with intense vortices inside the sinuses. During the early and mid-systole, the cusps were positioned so that their tips were slightly projected in the sinuses. The stagnation points, acting as high pressure sources, contributed to the systolic coronary circulation. During the end of the systole in the deacceleration phase, the ventricular pressure fell below the sinus pressure and the cusps started to close. Streamlines were spread downstream and the cusps drifted to a threequarter closed position; the valve was fully closed by a small amount of reverse flow. Bellhouse, et al. [7] measured four percent regurgitation in the model valves during the closing phase. During the entire systole the flow was laminar and no sign of turbulence was reported.

AORTIC STENOSIS

Aortic stenosis is defined as an obstruction to blood flow between the aorta and the left ventricle. Depending upon the location of the obstruction, it is divided into three major classes. Obstruction produced by an impaired valve is called valvar aortic stenosis, while obstruction above or below the valve is referred to as supravalvar aortic stenosis or subvalvar aortic stenosis respectively. Subaortic stenosis is usually further subdivided into discrete and idiopathic classes. The four types of stenosis, along with a normal heart, are shown in Fig. 3. Note that discrete subvalvar obstruction is produced by a fibrous band located below the valve, whereas supravalvar and idiopathic subaortic stenoses are produced by deformation of the aorta and ventricle respectively. Sub- and supravalvar stenoses are infrequent, while valvar stenosis is a common anomaly occurring in three to six percent of patients with congenital cardiovascular defects [10].

Valvar aortic stenosis may be acquired during the course of a disease, but in children it is most often due to congenital fusion of the cusps [12]. When all three cusps are fused near the valve root, valve motion is impaired, but the cusps can function as three independent units. This valve anomaly is called tricuspid valvar aortic stenosis. When the cusps are fused in such a way that they

> SUPRAVALVAR AORTIC STENOSIS

IDIOPATHIC HYPERTROPHIC SUBAORTIC STENOSIS

DISCRETE SUBVALVAR AORTIC STENOSIS

Fig. 3. Normal and aortic stenosed hearts

Abstract

function as two independent units, the term bicuspid valvar aortic stenosis is used. Occasionally, in congenital deformation, the valve may become a single, semi-rigid perforated membrane acting as an obstruction rather than as a valve, presenting the same cross-sectional area for both flow directions. This anomaly is rare and its ausculatory features are distinct from tricuspid and bicuspid aortic stenoses [11]. Cross-sectional views of the three valve anomalies and of a normal valve for open and closed conditions are shown in Fig. 4.

The most common forms of aortic stenosis in children are the bicuspid and tricuspid types; the valves are seldom if ever calcified [10]. Calcification in humans begins at age 13-14 and damaged valves tend to accumulate calcium past this age. Consequently, even mild early valve impairment may lead to calcified aortic stenosis in adult life [12].

MECHANISM OF THE STENOSED AORTIC VALVE

A marked change in fluid flow occurs when the aortic valve area is reduced to approximately less than fifty percent of normal size. At the onset of the ejection phase a turbulent jet is formed in the ascending aorta and persists throughout the systole. Presence of the jet in the aorta is routinely observed in angiocardiographic studies [9,13, $31]$ and is considered to be a prime distinguishing feature in discriminating between valvar and subvalvar aortic

Fig. 4. Cross-sectional views of normal and stenosed valves
stenosis [11]. In the laboratory, turbulent flow of fluids in tubes and vessels is observed when the Reynolds number exceeds a critical value of 970 ± 80 [1]. Bellhouse, et al. [8] simulated valvar aortic stenosis by glueing the leaflets of the model valve together, reducing the valvar area by fifty percent. Under these conditions, instead of laminar flow in the systole, a turbulent jet formed at the valve and no vortices were observed in the sinuses. Pressure at the coronary ostia was slightly lower, indicating mild impairment of systolic coronary circulation and becoming more significant at a higher degree of stenosis. During the closing phase, the amount of reverse flow was only slightly more than that for the normal valve since the stenosed valve was never fully open.

PATHOPHYSIOLOGICAL DESCRIPTION OF
VALVAR AORTIC STENOSIS

When the aortic valve area is reduced from the normal range of $2.5-3.5 \mathrm{~cm}^{2}$ to a critical range of $0.5-1.0 \mathrm{~cm}^{2}$, compensatory mechanisms fail and the following physiological symptoms develop: a marked increase in flow impedence [30], a marked left ventricle pressure increase accompanied by a slow rise in the aortic pressure wave, and a pressure drop across the valve. Peak pressure drop across the valve may exceed 100 mm . Hg in severe stenosis. Cardiac output remains nearly the same at rest but is reduced during exercise,
indicating that the left ventricle relies on cardiac reserve to handle the overload. The overstressed ventricle responds by gradually increasing muscle mass [10], commonly observed in angiocardiography [31]. The increased muscle mass and wall tension greatly increase oxygen consumption of the ventricle at the time when coronary circulation is seriously impaired. Impairment is produced partially by the increased and prolonged intramural blood pressure and partially by the reduced systolic sinus pressure [12]. When oxygen demand exceeds the ability of the coronary blood flow to provide oxygen, myocardial ischemia and angina pectoris result [10,12]. Contractibility of the oxygen-starved cardiac muscle is reduced and congestive heart failure, syncope, or angina pectoris develops. At this stage the history of patient survival averages two, three, and five years, depending on the symptoms, where ten to fifteen percent die suddenly [32] if corrective surgery is not performed. In most instances the surgery is a valvarlaremy, but in some cases, particularly in older individuals, replacement of the impaired valve with a prosthetic valve is involved. It is important to emphasize that the human heart tolerates mild aortic stenosis well, and not until the aortic valve area is reduced to less than fifty percent of normal, do clinical symptoms develop [12]. Surgery is required only in severe cases.

ESTIMATING THE SEVERITY OF AORTIC STENOSIS

Vector ECG and phonocardiography are considered to be adequate noninvasive diagnostic techniques for the identification of aortic stenosis; however, estimating the degree of stenosis has been poor with these techniques.

The most reliable invasive techniques for assessing the degree of stenosis are considered to be internal pressure measurements by cardiac catheterization, and simultaneous blood flow studies of X-ray motion pictures, known as angiocardiography. In these methods, access to the left ventricle is gained through hazardous routes, either by a transseptal needle [14] or by a retrograde arterial route past the aortic valve [15]. If the transseptal needle (catheter with a needle tip) is used, it is inserted into the femoral vein and advanced into the right atrium. The interatrial septum is punctured and the catheter is advanced into the left atrium and left ventricle. Proper positioning of the needle prior to puncturing is one of the more hazardous aspects of this procedure.

Retrograde arterial catheterization is usually per-
formed through the femoral artery or the bronchial artery. This procedure often involves some degree of arterial trauma and is occasionally difficult to perform in children.

After the catheter is placed ir to the left ventricle by one of the foregoing routes, oxygen saturation and pressure measurements are taken. An X-ray absorbing dye is
injected and angiocardiographic studies are performed. Next, the catheter is withdrawn and pressure measurements are performed ir the ascending aorta. The peak systolic pressure drop (referred to as peak systolic ejection gradient, P.S.E.G.) across the aortic valve is determined and the valve area is calculated from Gorlin's formula [16]. The degree of stenosis is determined on the basis of these measurements and is classified as mild, moderate, or severe according to the limits [11] listed in Table 1.

It is clear that cardiac catheterization is an accurate diagnostic technique; however, it is a surgical procedure requiring three days of hospitalization and is not a clinical diagnostic tool.

TABLE 1
LIMITS OF P.S.E.G. AND AORTIC VALVE AREA IN V.A.S.

Degree of Stenosis	Peak Valvar Pressure Drop P.S.E.G. in mm. Hg	Value Area cm^{2}
Mild	$10-40$	$1.5-0.8$
Moderate	$40-80$	$0.9-0.6$
Severe	>80	<0.6
Surgery Recommended	>110	<0.5

CHAPTER II

THE PHONOCARDIOGRAM SIGNAL

In this chapter the normal and abnormal phonocardiogram signal waveforms are discussed and the various signal components are correlated with hemodynamic events. In addition, production and transmission of vibrational energy is described. Finally, diagnostic signal features of aortic stenosis are tabulated and the differential diagnosis of the disease is presented.

STETHOSCOPIC AUSCULTATION

Vibrations in the $1-750 \mathrm{~Hz}$ frequency range are commonly observed on the surface of the human chest. A representative power spectrum of the vibrations measured in normal subjects, along with the mean threshold of hearing, are given by [17] and shown in Fig. 5. Note that stethoscopic auscultation is limited to the $40-750 \mathrm{~Hz}$ range and that most of the vibration energy is below this range.

In the audible range, the human ear and stethoscope is an extremely sensitive detector and assisted by the brain, forms an adaptive filter; however, it is a time variant, nonquantitative, ausculatory system. Perhaps the most serious problem with stethoscopic auscultation is the lack of data storage and retrieval features which often leads to

Fig. 5. Spectrum of chest vibrations and threshold of hearing.
subjective diagnosis. These shortcomings were demonstrated by recent tests performed on physicians [18].

THE PHONOCARDIOGRAM

The phonocardiogram is an intensity versus time display by a high-frequency chart recorder of the audible vibrations observed on the human chest by a microphone. In principle, phonocardiography is a clinically-quantitative diagnostic technique; however, lack of amplitude calibration and nonstandardization of the recording equipment render this technique semi-quantitative; direct waveform comparison among clinical recordings is difficult. Still, a great deal of quantitative timing information has been gained by phonocardiography and it offers permanent data storage and display features.

The crystal microphones which are most often used in clinical phonocardiography have a relatively flat, frequency response curve in the $40-750 \mathrm{~Hz}$ range. Within these bounds the acoustical frequency region of interest can be selected by a band-pass filter. The filter characteristics are not standardized in phonocardiography, but most clinics use "mid-frequency filtration" [21] or "stethoscopic filtration" [33,34]. "Mid-frequency filtration" is produced by a filter with a flat frequency response function in the approximate band-pass range of $120-500 \mathrm{~Hz}$ and a roll-off of 6 db /octave outside this range. "Stethoscopic filtration" is similar to "mid-frequency filtration" with the notable exception
that the band-pass is modified to produce a response at the filter output in the $120-500 \mathrm{~Hz}$ range which resembles the acoustical response of the human ear (see Fig. 5).

In this experiment "stethoscopic filtration" is employed with a slight low-frequency accentuation. This filter setting produces good sensitivity over a wide frequency range while essential identification features of the time series are preserved.

HEAR'T SOUNDS IN THE PHONOCARDIOGRAM SIGNAL

Typical normal phonocardiogram (PCG) findings in time correlation with ECG, aortic pressure, left ventricular pressure, and left atrial pressure waves are shown in Fig. 6 . Note the presence of four distinct groups of vibrations (marked $S_{1}, \ldots . ., S_{4}$) in the phonocardiogram record. These are called heart sounds. Characteristics of these sounds will now be described and correlated with hemodynamic events.

Duration of the systole on a phonocardiogram is defined as the period from the onset of S_{1} to the onset of S_{2}, and duration of the diastole is from the onset of S_{2} to the onset of the next S_{1}.

HEMODYNAMIC CORRELATION OF HEART SOUNDS

First Heart Sound $-S_{1}$. Onset of the first heart sound occurs at the beginning of the systole following the ECG Q wave by approximately $10-20 \mathrm{~ms}$. The entire event lasts for an average of $100-120 \mathrm{~ms}$. It is generally

Fig. 6. A typical normal cardiac cycle
recognized that the first heart sound has four components [20,21] as shown in Fig. 6. The chronological order of these is as follows: The first component is a small, lowfrequency ($\approx 30-50 \mathrm{~Hz}$) initial vibration which coincides with and is produced by contraction of the left ventricular muscle. The second component consists of a large, highfrequency ($80-200 \mathrm{~Hz}$) vibration and is caused by abrupt closure of the mitral valve. The third component follows mitral valve closure by 30 ms . and is also a high-frequency ($\approx 80-200 \mathrm{~Hz}$) vibration. It is suspected that this component is produced by rapid ejection of blood into the great vessels, but some investigators contribute it to closure of the tricuspid valve [21]. The fourth component is a small, low-frequency ($40-80 \mathrm{~Hz}$) vibration produced by acceleration of blood in the great vessels.

Second Heart Sound $-S_{2}$. There is general agreement that the second heart sound is caused by closure of the aortic and pulmonic valves. The vibration produced is in the $70-200 \mathrm{~Hz}$ range and persists for about 100 ms . This sound is often "split" into aortic $\left(A_{2}\right)$ and pulmonic (P_{2}) components (see Fig. 6). In normal subjects the splitting sequence is such that A_{2} precedes P_{2} by $10-20 \mathrm{~ms}$. upon expiration. For any one individual the splitting is not co ; tant, but increases by $6-10 \mathrm{~ms}$. from expiration to inspiration.

The physiologic reasons for increased inspiratory splitting described by Tavel [21] are as follows: During inspiration the blood is pooled in the lungs causing a pressure decrease in the main pulmonary artery and incomplete filling of the left ventricle. The reduced pressure delays pulmonary valve closure, P_{2}, and incomplete filling causes aortic valve closure, A_{2}, to occur early. Thus, both events contribute to inspiratory widening, a respiratory effect which is an important discriminatory feature used to identify A_{2} and P_{2}.

The onset of A_{2} was believed to be correlated with the left ventricular pressure change, called the dicrotic notch or dicrotic incisure, (see Fig. 6). More recently, Piemme, et al. [23] demonstrated that the closing sound was delayed from the dicrotic notch by $20-30 \mathrm{~ms}$. occurring in coincidence with maximum reverse blood flow. In addition, the presence of a low-frequency ($30-40 \mathrm{~Hz}$) component preceding the closing sound was observed. Its onset occurred in coincidence with the dicrotic notch and with the abrupt slope change of the forward blood flow curve. Piemme attributed this early component to vibration of the cardiohemic system, produced by rapid relaxation of the left ventricle and consequent deacceleration of the blood. These experiments were performed on dogs with implanted transducers of limited frequency response ($0-40 \mathrm{~Hz}$), and were significant in providing accurate measurements in vivo of the aortic valve closing time.

Third Heart Sound $-S_{3}$. The third heart sound is often observed, particularly in children, during the early rapid ventricular filling phase. This low-frequency ($20-70 \mathrm{~Hz}$) vibration occurs on the average of 150 ms . after A_{2} and has a duration of $40-50 \mathrm{~ms}$. Its origin remains evasive, but most investigators believe that it is caused by vibration of the rapidly elongating left ventricular walls excited by the incoming blood flow. Since the third heart sound is not produced by valve closure its presence is not considered to be clinically significant in children.

Fourth Heart Sound $-S_{4}$. The fourth heart sound has frequency characteristics similar to the third sound and may occur during the late diastolic filling phase. If observed, it usually precedes S_{1} by $70-100 \mathrm{~ms}$. and has a duration of $30-50 \mathrm{~ms}$. This sound is most likely produced by vibration of the ventricle walls excited by rapid inflow of blood produced by atrial contractions. During this cardiac phase the atrium acts as a secondary pump "topping off" the ventricles [1].

The four th heart sound is often observed in children and is considered to be a normal phonocardiographic finding, disappearing in young adult life. Therefore its presence is not considered to be clinically significant.

Intensity Changes of S_{2}. Comparison of the intensity and tonal qualities of heart sounds taken at the same listening area are affected by extracardiac as well as by cardiac factors. Some prime examples of the former are thickness of the chest wall, pulmonary emphysema, fever, chest deformity and pericardial fluid. Examples of cardiac factors causing an intensity increase of S_{2} are increased rate of valve closure [24] and stiffening of the valve cusps. An intensity decrease of S_{2} is commonly caused by a reduced force of closure (reduced pressure gradient) across the aortic or pulmonic valve, and by calcification of valves (calcified aortic or pulmonic stenosis). Children's cusps are supple and noncalcified and thus, highly mobile [11]. Therefore, in children with congenital valvar aortic stenosis A_{2} is of normal intensity.

Variations in the Splitting Interval of S_{2}. An abnormally wide splitting on expiration, but otherwise normal $\left(\mathrm{A}_{2}, \mathrm{P}_{2}\right)$ sequence, is caused by delayed pulmonic or early aortic valve closure. This anomaly is often observed in pulmonic stenosis, mitral stenosis and ventricular septal defects.

The reversed or paradoxical splitting sequence $\left(P_{2}, A_{2}\right)$ occurs when aortic valve closure is delayed, causing a splitting interval which decreases from expiration to
inspiration. This condition is caused by left branch block, patent ductus arteriosis and severe aortic stenosis [19]. While paradoxical splitting occurs in severe aortic stenosis, it has not been found to be useful in estimating the degree of stenosis. Bache, et al. [35] reported that a prolonged left ventricular ejection time (LVET) existed in valvar aortic stenosis, but poor correlation was observed between LVET and the calculated valve area.

Ejection Clicks. A short, high-frequency (80-200 Hz) vibration may follow S_{1}; this extra sound may originate from the right or left side of the heart. The former is referred to as pulmonic click [21] and is associated with pulmonary valvar stenosis, pulmonary hypertension and conditions which increase the right ventricular output (e.g., A.S.D. and V.S.D.). When origin of the sound is from the left side, it is referred to as aortic click and is observed in almost all cases of congenital valvar aortic stenosis [11,21]. Since this form of stenosis is common, and other heart diseases seldom if ever produce an aortic click, its presence in children is considered a prime diagnostic feature of congenital valvar aortic stenosis [11,21]. Later in life, with gradual calcification of the valve, intensity of the click is reduced and its absence signifies severe calcified aortic stenosis. A typical phonocardiogram cycle (i.e., ECG $Q-Q$ interval) containing an aortic ejection click is shown in Fig. 7. This cycle was acquired from a valvar

aortic stenosis patient (Edward D.) at the second right intercostal space (2nd R.I.) during inspiration.

In pulmonary valvar stenosis, the pulmonic ejection click is of decreasing intensity or even disappears during inspiration and occurs earlier than normal [26]. The degree of prematurity has been found to be correlated with the severity of pulmonary stenosis [21]. In comparison, intensity and onset of the aortic cJick are independent of respiration, and onset time is not related to severity. While the onset time is not clinically useful, constant intensity of this click is an important feature and is used to identify aortic and pulmonic clicks.

Opinion on the origin of the aortic ejection click has been divided. Some investigators [21] state that it is a root event produced by acceleration of blood into the aorta and occurs at the onset of the pressure rise in the indirect carotid pulse. (Thus, more appropriately, it can be called an accentuated component of S_{1}). Others report that the click is independent of S_{1}, valvar in origin and is produced when the valve is fully domed and stressed by the ejected blood. Recent detailed intracardiac sound and angiogram studies on normal and valvar aortic stenosis subjects demonstrated, that while both mechanisms could produce sound $[27,13]$, the aortic click is valvar in origin. The click produced by the stenosed valve always occurred in coincidence with the anacrotic notch. The time interval from the click to the rise of the aortic pressure pulse is
approximately 24 ms . This time interval is defined as valve mobility and correlates poorly with the degree of stenosis in the wide age group of patients in Epstein's studies [27].

HEART MURMURS

Heart murmurs are relatively long-duration vibrations which may occur in any part of the cardiac cycle. Murmurs are classified into several, not necessarily mutually exclusive, groups. The most important classifications are listed below and are described according to:

1. their physiological properties; innocent or organic.
2. their frequency content; high-pitched, low-pitched, musical or harsh.
3. their intensity envelope; diamond-shaped, crescendo, or descrescendo.
4. their time of occurrence in the cardiac cycle; systolic, diastolic, or continuous.

To further define the time of a murmur's occurrence, the prefixes early, mid, late and holo are often used.

A typical cardiocycle containing a diamond-shaped systolic murmur is shown in Fig. 7. This type of murmur is commonly observed in valvar aortic stenosis. During auscultation, intensity of a murmur is graded on a subjective scale of 1 (very faint) to 6 (loudest possible).

The mere presence of a murmur does not imply the presence of heart disease or a heart disorder. Innocent
murmurs (those not associated with significant heart disease) are common ausculatory findings and occur in approximately fifty percent of normal children [36]. The timing, location, intensity pattern shape and most importantly, the accompanying heart sound abnormalities, determine the presence and type of significant heart disease $[18,21,36,37]$.

THE ORIGIN OF CARDIOVASCULAR VIBRATION ENERGY

A thorough study of the origin of cardiovascular vibration energy can be divided into three parts:

1. Study of the hemodynamic event which causes the heart to vibrate.
2. Modeling of the vibrating system and study of the production of vibrational energy.
3. Study of the propagation modes of vibrational energy and transmission properties of the human thorax.

There has been general agreement among physicians for many decades that S_{1} and S_{2} are caused by closing of the valves. Time correlation of heart sounds with major hemodynamic events are well established and well reported in 1iterature $[20,22,23,24,25]$.

It is generally accepted that harsh non-musical murmurs are produced by a turbulent jet of blood flowing through a small orifice $[1,18,37]$. Examples of such murmurs are aortic stenosis, pulmonic stenosis, ventricular septal
defects, etc. Musical murmurs, those with tonal qualities, are produced by other processes. Vortex shedding, periodic wake, and flitter are the mechanisms proposed by Bruns [39] and Rushmer [18] to explain the origin of musical murmurs. Detailed theories concerning the production mechanisms of cardiovascular vibration energy have been studied by many $[38,39,40,41,42]$ and the turbulent murmur problem is extensively modeled by Yellin and Bellhouse $[43,7,8]$. A highly intuitive cardiac model is described by Rushmer [1]. In this model the blood, heart walls, and heart valves are considered as one vibrating "cardiohemic" system, where heart sounds are caused by acceleration or deacceleration of the blood. This non-mathematical model is quite successful in predicting the time of occurrence of normal heart sounds, but fails to account for the wave shapes of the sounds.

AREAS OF AUSCULTATION

Murmurs produced by various anomalies and heart diseases have definite, well established intensity radiation patterns on the chest. The point of maximum intensity and the radiation pattern are two important discriminatory diagnostic features in cardiology.

Conventionally, the chest is divided into four areas, referred to as the aortic (A), pulmonic (P), right ventricular or tricuspid (T), and left ventricular or mitral (M) auscultation areas. The locations of these areas are shown
in Fig. 8. The areas are named after the heart sounds and murmurs which are best observed at these locations [51]. Vibrations originating from the aorta (i.e., aortic stenosis murmur, aortic ejection click, and the aortic component of the second heart sound) are usually best observed at the aortic area, or more specifically, at the second right intercostal space near the sternum border (2nd R.I.S.). Vibrations originating from the main pulmonary artery (i.e., pulmonic ejection click, pulmonary stenosis murmur, and pulmonary component of the second heart sound) are well transmitted to the pulmonary listening area at the second left intercostal space near the sternum border (2nd L.I.S.). While the aortic component of the second heart sound and the aortic ejection click tend to be maximum at the aortic area, they are well transmitted to other listening areas, particularly to the left ventricular area or apex. In contrast, the pulmonary component of the second heart sound is highly localized to the pulmonary area and seldom if ever is observed at the 2nd R.I.S. and apex. Predictable transmission characteristics of the second heart sound are most useful in identifying aortic and pulmonic components of the second heart sound.

Vibrations originating from the left ventricle (i.e., mitral closing sounds, third heart sounds, mitral stenosis murmur, etc.) are best observed at the mitral area or apex, whereas vibrations from the right heart (tricuspid closing

Fig. 8. Primary auscultation areas
sound, tricuspid stenosis murmur, etc.) are generally loudest at the tricuspid area.

As expected, these primary auscultation sites are located on the chest where the left and right ventricles and great vessels are closest to the surface.

TRANSMISSION CHARACTERISTICS OF THE HUMAN THORAX

The human body is an anisotropic, nonhomogeneous, acoustical medium where vibration energy propagates in several modes [45,46].

In the heart and arterial walls vibration energy propagates as shear waves [46] with a velocity of $4-5 \mathrm{~m} / \mathrm{sec}$. [45]. Shear waves are attenuated at $20 \mathrm{db} / 10 \mathrm{~cm}$. at 100 Hz . Additional relevant data obtained in vivo measurements are given in $[45,46,50,53]$.

Energy is conducted as compressional waves in bone and tissue with velocities of $3400 \mathrm{~m} / \mathrm{sec}$. and $1490 \mathrm{~m} / \mathrm{sec}$. [45,53] respectively. Bone conducts sound energy well in a wide frequency range, where in tissue it is attenuated at an approximate rate of $10 \mathrm{db} / 10 \mathrm{~cm}$. at 90 Hz [45,52]. Additional relevant data is available in the literature [44,45, 47,48,49].

Faber, et al. [47] suggested that vibrational energy emerges at the primary auscultation sites and spreads to nearby locations as surface waves. Surface wave velocity on the human chest is approximately $15 \mathrm{~m} / \mathrm{sec}$. at 100 Hz and
increases approximately with the square root of the frequency [47]. However, these waves are localized since they are attenuated at a rate of $27 \mathrm{db} / 10 \mathrm{~cm}$. at 100 Hz [45].

From the above discussion we may conclude that the microphones must be located between the ribs and as close to the sources as possible. This choice minimizes the affect of multiple conduction paths and produces maximum signal intensities. In valvar aortic stenosis the murmur, ejection click, and A_{2} are observed with maximum intensity at the 2 nd R.I.S. The arch of the aorta is only $2-3 \mathrm{~cm}$. away from this site as shown in Fig. 8. For the above reasons, the 2nd R.I.S. is chosen for the study of this disease.

INDIRECT CAROTID PULSE RECORDING

The carotid arteries are major vessels directly connected to the aorta and easily accessible at the neck. The recording of the carotid artery wall displacement versus time in the $0.2-20 \mathrm{~Hz}$ frequency band is referred to as the indirect carotid pulse recording, or in short, the carotid pulse [21]. This pulse shape closely resembles the waveshape measured in the ascending aorta, but is delayed by 20-30 ms. In addition, the high-frequency components (dicrotic notch) are considerably attenuated. When the proper time delay correction is applied, the upstroke of the carotid pulse and the dicrotic notch occur in coincidence with the onset of the ventricular ejection and aortic
valve closure. Consequently, the carotid pulse is useful in identifying the aortic ejection click and the closing sound in the phonocardiogram tracings.

In valvar aortic stenosis the carotid pulse may show a "slow" upstroke, a prolonged left ventricular ejection time, and pressure fluctuation or trill. While these signs are usually present in patients with an aortic valve pressure gradient greater than $40-50 \mathrm{~mm} . \mathrm{Hg}$, a more precise classification with this method has not been possible [21].

PHONOCARDIOGRAM SIGNAL FEATURES

Phonocardiographic diagnosis of heart diseases must be based on rugged signal features which are statistically reliable and are defined by Levine [54] as features "whose presence are not changed and whose character are not greatly altered by normal variation in the image of a character in a given category".

Selection of general and rugged signal features is highly empirical and requires access to a complete data set, that is, a data set that contains all heart diseases. Cardiologists through years of experience have found the following rugged phonocardiogram signal features relevant to the diagnosis of heart diseases $[1,18,21,36]$.

1. Presence of murmurs.
2. Presence of systolic click or other abnormal sounds.
3. Timing of murmurs and sounds.
4. Location of maximum intensity points and transmission paths of murmurs, clicks, and sounds on the chest.
5. Shape of murmur envelope.
6. Peak intensity of sounds, clicks, and murmurs.
7. Frequency content of murmurs.

It is important to note that correct diagnosis is not reached by considering features from one of the categories listed above. Rather, a combination of features from the entire group must be jointly interpreted; a weighted sum of the features leads to proper diagnosis.

PHONOCARDIOGRAM IDENTIFICATION FEATURES OF VALVAR AORTIC STENOSIS

The following phonocardiogram features are considered to be the rugged identification features of congenital valvar aortic stenosis in children [21].

1. A diamond-shaped, systoiic ejection murmur is present and is usually loudest at the aortic 1istening area. The murmur must end before onset of the aortic component of the second heart sound.
2. The murmur is introduced by a constant intensity, aortic ejection click which is usually loudest at the aortic listening area or at the apex.

In addition, the following features are often observed in valvar aortic stenosis, particularly in moderate and severe cases.
3. The left ventricular ejection period is prolonged, producing a paradoxicallysplit second heart sound.
4. The carotid pulse may show a slow upstroke, prolonged peak time, a flattening of the dicrotic notch, and superimposed vibrations or a trill in the systole.

The following innocent systolic murmurs have one or more signal features similar to valvar aortic stenosis [36].

1. Still's murmur.
2. Innocent pulmonic murmur.
3. Supraclavicular atrial bruit.
4. Innocent late systolic murmur.
5. Innocent cardio-respiratory murmur.

These innocent systolic murmurs have typical diamondshaped envelopes but are never introduced by an ejection click. Consequently, the presence of the aortic ejection click can be used to discriminate between valvar aortic stenosis and innocent systolic murmurs.

In children the following common heart anomalies have phonocardiogram signal features similar to valvar aortic
stenosis [21,36].

1. Pulmonic stenosis.
2. Mild ventricular septal defect.
3. Moderate to severe atrial septal defect.
4. Tetrology of Fallot.

A11 of these anomalies have typical diamond-shaped, ejection-type systolic murmurs which may be introduced by an ejection click. However, they can be differentiated from valvar aortic stenosis by observing the following basic differences:

In pulmonic stenosis:
a. The pulmonary ejection click is variable; that is, intensity and onset of the click are functions of respiration.
b. The pulmonic ejection murmur is generally loudest at the pulmonic listening area. Its intensity is often a function of respiration, and it may continue to the onset of the pulmonic component of the second heart sound.

In mild ventricular septal defect:
a. The murmur is a harsh, short-duration, ejection-type, where the location of the maximum intensity point on the chest overlaps the location of the intracardiac location of the shunt, generally at the third left intercostal area or lower.

In moderate to severe atrial septal defect:
a. Abnormal first and second heart sounds are present.
b. A pulmonic-systolic ejection murmur is present related to the large pulmonary blood flow.

In Tetrology of Fallot:
a. The ejection-type murmur in mild to moderate cases is not introduced by an ejection click and consequently, can be easily discriminated.
b. In severe cases the short-duration ejection murmur is introduced by an ejection click making discrimination difficult on the basis of phonocardiogram features alone, but is easily identified by other clinical observations such as cyanosis and low oxygen content of the blood.

MAJOR PHONOCARDIOGRAM SIGNAL PROCESSING WORK DONE BY OTHERS

The following investigators have recently made significant contributions in the field of phonocardiogram signal processing:

Cambron [82] studies 111 patients with mitral stenosis, mitral insufficiency or normal phonocardiograms and
uses pattern recognition techniques, such as the nearestneighbor method, to identify these conditions in the frequency domain.

Vocker [83] employs an adaptive filter to select the epoch of the first and second heart sounds. He was able to update the filter to follow the epoch variation of the second sound caused by breathing.

Stephens [84] analyzes the first heart sound with bandpass filters and establishes frequency patterns useful in the identification of myocardial infarction.

In the work of Perry, et al. [85], analog as well as digital techniques are considered. In the digital analysis, 2.5 sec . recordings are made from four listening areas and successive threshold levels are used to identify sounds and murmurs. A band of filters is used to obtain the cardiogram energy spectra. A diagnostic decision process is employed to identify common heart diseases.

Frome and Frederickson [86] select several first and second heart sound waveforms, convert them into discrete data segments, and compute averaged first and second heart sound power spectra using the FFT algorithm. The authors suggest that the intensity of the computed spectra can be used to monitor the depth of anesthesia during surgery.

Gerbarg, et al. [87] make an indepth study on the use of computers to identify innocent heart murmurs. Identification is based primarily on timing of the innocent
systolic murmur.
Townes, et al. [88] compare the signal features of several cycles of innocent and stenosed bruits using zero crossing, statistical, and power spectrum analysis techniques. The investigators conclude that the number of major peaks in the power spectra of stenosed bruits exceeds the number found in innocent bruits, and use this signal feature to differentiate the two kinds.

CHAPTER III

DESCRIPTION OF THE EXPERIMENT

APPROACH TO THE PROBLEM

A brief examination of abnormal phonocardiogram records reveals that the time series consists of repetitive cardiocycles. Each cycle is composed of deterministic wavelets (heart sounds) and amplitude-modulated, bandwidthlimited, random signals (murmurs). The term wavelet is used here to indicate a portion of the phonocardiogram time series which is associated with a single hemodynamic event, such as aortic ejection click.

The cardiologist examining a phonocardiogram time series selects a typical inspiration cardiocycle and an expiration cardiocycle free of artifacts, measures the diagnostic signal parameters, and derives a partial diagnosis on the basis of these two cycles [11]. The measured parameters obtained from a single cardiocycle are often statistically unreliable due to added noise and other random artifacts. The statistical errors cannot be reduced since the data is in an unsuitable form. Thus, the single, biggest disadvantage of this type of time series display is that it is unsuited for computer processing, particularly for power spectrum analysis.

The need for frequency information prompted some investigators $[55,56]$ to complement the time series display with online power spectrum analysis display. While online spectrum analysis is useful in identifying and describing musical murmurs, such as the "sea gull" murmur, on the basis of a single estimate [55], high statistical variance prevents accurate descriptions of noiselike murmurs. Since most organic murmurs are of this type, the above statement applies to the majority of heart diseases.

At the start of this research it was felt that by properly averaging equivalent cardiocycles (those which are produced under identical hemodynamic conditions) in the time, envelope and frequency domains, statistically reliable decision parameters could be obtained. With the use of these reliable parameters, the diagnosis of systolic heart diseases can become more accurate, and assessment of the severity of valvar acrtic stenosis by computer analysis may now become possible.

This study was conducted on fourteen catheterized and four clinically diagnosed valvar aortic stenosis patients. In addition, six normal patients were included in the study to facilitate the identification of valvar aortic stenosis signal features. The complete patient set is described in Chapter V.

A small 16 bits/word mini-computer with approximately $12-16 \mathrm{~K}$ words memory capacity, equipped with digital
tape recorders, a maltiplexer, an analog-to-digital converter, and a graphics terminal, was used for this study. The multichannel time series was digitized and the large volume of data required was stored on digital magnetic tapes. With the aid of the graphics terminal the operator could interact with the computer, quickly reviewing and interpreting the processed data. In questionable cases, additional analysis could be requested. Quick turn-around time is of course the most essential characteristic of such an interactive analysis system.

SELECTION OF RECORDING SITES
 AND TIMING DATA

In this study phonocardiogram data from all four classical 1istening sites (2nd R.I.S., 2nd L.I.S., 4th L.I.S. and apex) were acquired. With this choice of listening sites, an adequate transmission pattern can be obtained and all heart diseases that can be diagnosed by phonocardiography can be adequately analyzed. Additionally, ECG, carotid pulse and respiration were recorded to facilitate the timing and identification of heart sounds and ejection clicks, and to observe changes in the phonocardiogram signal induced by respiration.

ESTIMATION OF THE RECORDING TIME DURATION

Clearly, the confidence limits of each analyzed point will be determined by the type of analysis, smoothing,
and number of cardiocycles included in the analysis. The effects of this will be discussed in Chapter IV. Prior to analysis, the recording time interval must be selected to be consistent with the goals of the analysis, as well as with other considerations. An example of the latter is: can a young child maintain quiet and steady respiration for the duration of the recording interval? Another relevant question may be asked: how reproducible is the measurement on a weekly or monthly basis? It is useless to reduce the short range statistical errors to 1 percent when the unexplainable human variables limit the monthly reproducibility of the measurement to 100 percent.

The repetitive nature of the phonocardiogram makes it possible to estimate the number of cardiocycles required to obtain a desired short range statistical error. Each cardiocycle can be represented as a sample function of a finite population. The task is to estimate the population mean with a desired error d, on the basis of N samples and with a particular confidence level. Assuming that the population is approximately normally distributed with a mean of η and a standard deviation of σ, the number of samples required is given by the equation below [57],

$$
\mathrm{N}=\frac{z^{2} \sigma^{2}}{\mathrm{~d}^{2}}
$$

where Z is the confidence constant; for a 95 percent confidence level $Z=1.96$. Selecting a 10 percent short range
measurement error as a realistic goal with a 95 percent confidence level, and assuming that the population variance is approximately one-half the population mean, these assumptions give

$$
\begin{aligned}
\mathrm{d} & =n / 10 \\
\sigma & =n / 2 \\
z & =1.96
\end{aligned}
$$

and the corresponding sample size is $N=100$ cardiocycles. Assuming that 0.9 sec . equals the average cardiocycle period, this yields a recording time duration $T=90$ seconds. During data recording, it was observed that a patient could be maintained in a statistical equilibrium for these time durations, and repeated measurements taken on the same patient indicated that an acceptable 10 percent monthly reproducibility was possible.

EXPERIMENT ORGANIZATION AND BLOCK DIAGRAM

In this study the data "handling" was conveniently divided into four steps: analog data acquisition, analog-to-digital conversion, data selection, and data analysis. During the first step, four channels of analog data were acquired and recorded by an analog tape recorder. In the second step, analog data was converted into a continuous stream of digital records. During the third step, equivalent cardiocycles were selected and arranged in equivalent
data files. In the final step, files were analyzed, diagnosis signal features were identified, and the severity of aortic stenosis was assessed.

A complete block diagram of the experiment is shown in Fig. 9.

The first three procedures will be described in this chapter while the next two chapters will be devoted to data analysis.

ANALOG DATA ACQUISITION AND
RECORDING EQUIPMENT

The analog data acquisition and recording equipment, as shown in Fig. 9, was located in the Cardiology Department at Children's hospital and an analog tape recorder was used for data storage.

The transducer-amplifier display equipment used in the study was a commercial heart sound monitoring system manufactured by Cambridge Instrument Company, Inc. The crystal microphones were Cambridge type 53616 "adult size" and were secured to the chest by suction as shown in Fig. 1,AI (Appendix I). The manufacturer's acoustical calibration curve is shown in Fig. 2, AI and the measured differential error between the two microphones is given in Table l, AI. The phonocardiogram amplifier-filters were Cambridge type 72352 with the filter switch set to the "L" position.

Fig. 9. Block diagram of the experiment

At the start of this project the exact phonocardiogram bandwidth was unknown. To obtain good frequency response above 1 KHz , the first group of clinically-diagnosed patients (Analog Tapes No. 1 and No. 2) were AM recorded. During the data conversion and initial power spectrum analysis it became obvious that, even for the severe aortic stenosis case, 95 percent of the phonocardiogram signal energy is concentrated below 400 Hz , and therefore highfrequency response was not required. To improve the lowfrequency response and the signal-to-noise ratio, subsequent analog tapes were recorded in the FM mode. With the exception of one valvar aortic stenosis patient, all catheterized patients were recorded in the FM mode. The measured frequency response curves of the two phono-channels are shown in Figs. 10 and 11. Here the Cambridge amplifier inputs were taken as the system input and the multiplexer input was taken as the system output. Measurements were performed with a constant-intensity sinusoidal source. Note that the two recording modes have almost identical "frequency response curves" in the $50-1000 \mathrm{~Hz}$ range, but that below 50 Hz the AM recording provides more attenuation.

RECORDING AND CALIBRATION PROCEDURES

Prior to data recording the patient was introduced to the equipment and was assured that no physical pain would be involved with this test. Since emotional strain affects the heart and blood flow rates, this step was

Fig. 10. Measured frequency response of electronics system with A.M. recording mode

Fig. 11. Measured frequency response of electronic system with F.M. recording mode
required to obtain consistent phonocardiogram recordings and assured that the data was recorded under steady-state conditions. Before the actual recording was begun the four listening sites were briefly tested and the recorder gains were set to the maximum allowable levels (i.e. no limiting) at the maximum intensity sites. These settings were maintained throughout the recording. While being recorded the patients were in a supine position and respiration was at a normal, steady rhythm. A typical analog patient recording sequency is shown in Table 2.

TABLE 2
A TYPICAL ANALOG RECORD SEQUENCE

Recording Time in sec.	$\underset{1}{\text { Channe }}$	$\underset{2}{\text { Channel }}$	$\underset{3}{\text { Chame } 1}$	$\underset{4}{\text { Channel }}$
20	Phono 1 2nd L.I.	$\text { Phono } 2$ Apex	Carotid Pulse	FCG Lead 2
90	Phono 1 2nd L.I.	Phono 2 Apex	Respiration	ECG Lead 2
20	Phono 1 2nd R.I.	$\begin{aligned} & \text { Phono } 2 \\ & 4 \text { th L.I. } \end{aligned}$	$\begin{aligned} & \text { Carotid } \\ & \text { Pulse } \end{aligned}$	ECG Lead 2
90	Phono 1 2nd R.I.	$\begin{aligned} & \text { Phono } 2 \\ & 4 \mathrm{th} \mathrm{L.I.} \end{aligned}$	Respiration	ECG Lead 2
10	$\begin{aligned} & 400 \mathrm{~Hz} \\ & \text { Tone Cal. } \end{aligned}$	Background Noise	---	---
10	Background Noise	$\begin{aligned} & 400 \mathrm{~Hz} \\ & \text { Tone Cal. } \end{aligned}$	---	---

Note that the phonocardiogram channels were calibrated following each patient's recording by a 400 Hz constant-intensity acoustical source. The sound intensity at the calibrator aperture was approximately 10^{-14} watts/ cm^{2}. This calibration signal was used later in the data analysis for normalization and made possible the direct comparison of processed data among the patients.

Differential Phono-Channel Delay. The total differential system delay between the two phono-channels was measured by on-off keying a common acoustical source placed an equal distance from the two microphones, and by observing the corresponding differential time delay at the graphics terminal. The measured differential time delay was less than $400 \mu \mathrm{sec}$. or less than one sample time increment.

Push Down Test. The phonocardiogram "signal sense" (sign relation between signal polarity and chest displacement) was determined by placing a rubber sheet over the microphone and applying a downward displacement with a rubber tipped pencil.

This test indicates that an outward chest displacement corresponds to a negative signal level, whereas an inward displacement corresponds to a positive signal level in the phonocardiogram time series as observed on the graphics terminal.

> ANALOG-TO-DIGITAL CONVERSION

During analog-to-digital conversion, the four
channels of analog data were time multiplexed and digitized by an 8-bit analog-to-digital converter. The choice of an 8 -bit converter offers better than 1 percent quantitization accuracy (considered adequate for clinical measurements) and an efficient digital data format (i.e., with a 16 bits/ word computer and an 8 bits/sample, two samples/word can be stored). The phonocardiogram signal was sampled at a 2.5 KHz rate, whereas the ECG, carotid pulse and respiration signals were sampled at a 625 Hz rate. The phonocardiogram and timing signals are bandwidth-1imited functions with highest significant frequency components of 400 Hz and 60 Hz respectively. It is clear from the above that the selected sampling rates are more than three times the Nyquist sampling rates, and consequently the analog signals are completely defined by their digital sample sequence. A detailed mathematical description of the sampling process is presented in Chapter IV.

Continuous data storage was accomplished by the use of two 4 K word computer memory buffers. The digital samples were sequentially stored in one of the buffers; when this buffer was full, data continued to be stored in the second buffer while the contents of the full buffer was transferred to digital magnetic tape by way of the DMA data path. Repetitive use of this process allowed continuous conversion.

The converted data is free of gaps because the readout time is shorter than the read-in time, and the buffers can be switched within one sample time. During conversion,
the high degree of time correlation between data channels was maintained. The computer subroutine used for sampling is given in Appendix I.

Each buffered data block stored on the magnetic tape comprised a data record and records were separated by inter-record gaps. Digital data processed in this manner is referred to as pass 1 data and the record format is shown in Table 3. Digital data of each patient is arranged into five data files and each data file is preceded by an alphanumeric header file describing it. Each header contains the patient's name, hospital number, and transducer locations. In addition, the first header contains other essential patient parameters and diagnostic information. The digital tape file format is shown in Table 4, and typical patient header files are shown in Tables $2, A I$ and $3, A I$.

SELECTION OF EQUIVALENT CARDIOCYCLES

A detailed examination of the Pass 1 time series revealed that wavelets in the systole for properly selected phonocardiogram cardiocycles exhibited remarkable time coherence. This coherence existed within a Pass 1 data file for cardiocycles of the same respiration phase whose Q-Q interval variations were within 10 percent. For these selected cardiocycles, the ejection click and first and second heart sounds were very reproducible in both onset time and waveshape, with almost all of the $Q-Q$ time deviation occurring in the diastole. The onset jitter (epoch

TABLE 3
PASS 1 DIGITAL DATA TAPE RECORD FORMAT

RECORD GAP

RECORD GAP

PASS 1	\|RECORD NO.
Phono 1	Phono 2

TABLE 4
PASS 1 DIGITAL DATA TAPE FILE FORMAT

File No.

1	ALPHA-NUMERIC PATIENT HEADER	$\begin{aligned} & \text { F.G. } \\ & \text { (FILE } \\ & \text { GAP) } \\ & \text { F.G. } \end{aligned}$	\uparrow
	Phono 1 /Phono 2 Tone Cal Binary Data Recs.		
2	ALPHA-NUM. HEADER FOR NEXT FILE		
4	Phono $1=2 \mathrm{~L} . \mathrm{I}$. Phono $2=$ Apex Pulse = Car. ECG $=$ Lead 2 Binary Data Recs.	F.G.	
	ALPHA-NUM. HEADER FOR NEXT FILE	F.G. F.G.	Patient Block
6	Phono $1=2 \mathrm{~L} . \mathrm{I}$. Phono 2 = Apex Respiration ECG $=$ Lead 2 Binary Data Recs.		
	ALPHA-NUM. HEADER FOR NEXT FILE	F.G.	
7	Phono $1=2 R . I$. Phono $2=4 \mathrm{~L} . \mathrm{I}$. Pulse = Car. ECG $=$ Lead 2 Binary Data Recs.	F.G.	
8	ALPHA-NUM. HFADER FOR NEXT FILE	F.G.	
$\begin{array}{r}9 \\ \\ \hline\end{array}$	Phono $1=2 R . I$. Phono $2=4 \mathrm{~L} . \mathrm{I}$. Respiration $\mathrm{ECG}=$ Lead 2 Binary Data Recs.	F.G.	
10		F.G.	

jitter) of the wavelets was approximately $\pm 4 \mathrm{~ms}$. where all onset times were measured from the ECG Q wave. This coherence was observed in all patients included in this study.

As pointed out in Chapter II, in the cardiohemic system the onset time and intensity of the wavelets are functions of the hemodynamics of the heart and the high degree of coherence and reproducibility observed among these selected cycles indicates that these cardiocycles are produced under identical hemodynamic conditions. In conclusion, equivalent cardiocycles at a listening site are defined here as cardiocycles which are produced at the same respiration phase and whose $Q-Q$ interval variations are within 10 percent.

Equivalent Data Ensembles. Clearly, equivalent cycles may be averaged at any respiration phase, but to observe the maximum phonocardiogram signal changes produced by respiration, equivalent cycles are selected at midinspiration and mid-expiration.

Mid-inspiration (and mid-expiration) cardiocycles are defined as those cardiocycles where the maximum (and minimum values of the respiration signal occur at the middle of the cycle. Thus, these cardiocycles are obtained at approximately maximum (and minimum) lung volumes. Fig. 12 shows the systole and early diastole of five midinspiration cardiocycles selected as discussed above. Note

that the onset time and shape of the wavelets are independent of the record length (Q-Q interval).

PASS 2-3 DATA

Equivalent data ensembles (files) are generated with a two-step data reduction process. In the "initial step', equivalent cardiocycles are selected and approximately timed to contain a single $Q-Q$ interval. The data output in this step is referred to as Pass 2 data. During this step the four-channel Pass 1 data is displayed on the graphics terminal; from this display, equivalent $Q-Q$ interval cardiocycle records are selected with the "graphics cursor" and are output to the digital tape recorder. Excessively noisy cycles are omitted at this time.

During the second step the previously selected cardiocycles are aligned and timed to start precisely at the ECG Q wave and the data output in this step is referred to as Pass 3 data. Prior to alignment the ECG waveforms are examined and the largest and most rapidly changing signal feature (R or S wave) is selected as the alignment point. The time interval between the alignment point and the Q wave is measured and defined as the IDQ interval. This interval is stored as a parameter in the "align program" and serves as a common reference within a patient data set. Alignment is accomplished by a computer program which searches for the alignment point (local maximum or minimum) and slides the cardiocycles to the left or right
to cause an alignment about the point mentioned above. To start the aligned records at the ECG Q wave, data points to the left of the IDQ interval are deleted. Selection and timing of the four data channels occur simultaneously, maintaining a time correlation between data channels of $400 \mu \mathrm{~s}$. Typical aligned cardiocycle records are shown in Fig. 13. As a final check on alignment and timing, ECG records of each file are "stack plotted" and carefully examined. With this two-step process, cardiocycle alignment precision (i.e., Q wave onset jitter) is approximately $\pm 1.6 \mathrm{~ms}$.

Pass 2-3 Data Tape Formats. Both Pass 2 and Pass 3 data outputs have identical data tape record and file formats as shown in Tables 5 and 6. Note that each data file is preceded by a header file describing it. Each patient "data block" consists of seven data files; two mid-inspiration, two mid-expiration, two carotid, and one calibration file.

Data pertaining to a cardiocycle consists of four records: Phono 1, Phono 2, ECG, and Respiration or Carotid. The first three words of each record are the record length, record number and record identification character or the Pass 1 record number respectively.

Fig. 13. A typical aligned four-channel cardiocycle record

TABLE 5
PASS 2-3 DIGITAL DATA TAPE RECORD FORMAT

TABLE 5--Continued

RECORD GAP	
RECORD LENGTH	
PASS 2-3	REC. No.
Record R	ID. Char. P
$\begin{aligned} & \text { Pulse/Resp. } \\ & \text { Samp. } 1 \end{aligned}$	$\begin{aligned} & \text { Pu1se/Resp. } \\ & \text { Samp. } 4 \end{aligned}$
	Pulse/Resp. Last Samp.

Pulse/Resp. Data Rec.

TABLE 6

PASS 2-3 DIGITAL DATA TAPE FILE FORMAT

TABLE 6--Continued

ALPHA-NUM. HEADER FOR NEXT FILE	
Phono $1=2$ R.I. Phono $2=4 \mathrm{~L} . \mathrm{I}$. Inspiration ECG $=$ Lead 2 Binary Data Recs.	
ALPHA-NUM. HEADER FOR NEXT FILE	
Phono $1=2$ R.I. Phono $2=4 \mathrm{~L} . \mathrm{I}$. Expiration ECG $=$ Lead 2 Binary Data Recs.	

CHAPTER IV

SIGNAL PROCESSING TECHNIQUES

In this chapter phonocardiogram signal processing techniques are described in detail. Time and frequency domain sampling is discussed along with the discrete Fourier transform (DFT) and the fast Fourier transform (FFT). A description of a stochastic process and its power spectrum are presented. The final sections of the chapter are devoted to envelope analysis and a description of the Hilbert trans form.

TIME DOMAIN SAMPLING

The sampling process can be represented as amplitude modulation of a discrete carrier by a continuous data function [64]. This modulation process is defined by Eq. 1.

$$
\begin{equation*}
\stackrel{*}{s}(t)=s(t) p(t) \tag{Eq. 1}
\end{equation*}
$$

where $\stackrel{*}{s}(t)=$ sampled data function
$s(t)=$ continuous data function
$p(t)=$ periodic carrier

If $p(t)$ is a finite pulse duration, unit amplitude, periodic pulse sequence, then the process is called "pulse sampling" and Eq. 1 describes a practical sampling process. If $p(t)$ is a periodic sequence of unit delta functions, then the process is called "impulse sampling."

Let $p(t)$ be a finite duration, periodic pulse sequence with

$$
\begin{aligned}
\Delta t & =\text { sampling period } \\
T_{p} & =\text { sampling pulse duration }
\end{aligned}
$$

where $p(t)$ is defined as

$$
\begin{array}{lll}
p(t)=1 & \text { when } & |t| \leq \frac{T p}{2} \\
p(t)=0 & \text { when } \frac{T p}{2}<|t| \leq \frac{\Delta t}{2}
\end{array}
$$

Since p(t) is periodic, it can be expanded in the Fourier series as

$$
P(t)=\sum_{k=-\infty}^{\infty} c_{k} e^{j \frac{2 \pi k t}{\Delta t}}
$$

where c_{k} 's are the Fourier coefficients and $j=\sqrt{-1}$

$$
c_{k}=\frac{1}{\Delta t} \int_{-\frac{p}{2}}^{\frac{T_{p}}{2}} s(t) e^{-j \frac{2 \Pi k t}{\Delta t}} d t
$$

and $\stackrel{*}{s}(t)=\sum_{k=-\infty}^{\infty} c_{k} s(t) e^{j \frac{2 \Pi k t}{\Delta t}}$

Using the equations given below and denoting the transformed functions with capital letters, the Fourier transform of $\stackrel{*}{s}(t)$ is obtained below.

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \stackrel{*}{s}(t) e^{-j \omega t} d t=\stackrel{*}{S}(\omega) \\
& \int_{-\infty}^{\infty} s(t) e^{a t} e^{-j \omega t} d t=S(\omega-a)
\end{aligned}
$$

$$
\stackrel{\dot{\star}}{\mathrm{S}}_{\mathrm{p}}(\omega)=\sum_{\mathrm{k}=-\infty}^{\infty} c_{\mathrm{k}} \mathrm{~S}\left(\omega-\mathrm{k} \omega_{\mathrm{s}}\right)
$$

Eq. 2
where $\omega_{s}=\frac{2 \pi}{\Delta t}=$ sampling rate

When impulse sampling is used

$$
\mathrm{p}(\mathrm{t})=\sum_{\mathrm{n}=-\infty}^{\infty} \delta(\mathrm{t}-\mathrm{n} \Delta \mathrm{t})
$$

$$
\text { where } \delta(t)=\text { unit impulse function. }
$$

For this type of sampling the Fourier coefficients in Eq. 2 are

$$
c_{k}=\frac{1}{\Delta t} \text { for all } \mathrm{k}^{\prime} \mathrm{s}
$$

and Eq. 2 reduces to

$$
\stackrel{*}{S}_{\delta}(\omega)=\frac{1}{\Delta t} \sum_{k=-\infty}^{\infty} S\left(\omega-k \omega_{S}\right)
$$

Eq. 3

The amplitude spectra of $\stackrel{*}{S}(\omega)$ along with $\stackrel{*}{S}(t)$ for pulse and impulse sampling are given in Fig. 14. From these amplitude plots and from Eqs. 2 and 3, the following properties can be shown:

1. Sampling in the time domain produces a repetitive spectrum in the frequency domain. When impulse sampling is used, the spectrum becomes a periodic extension of $\frac{1}{\Delta t} S(\omega)$.
2. If $s(t)$ is bandwidth-1imited to B (i.e., $S(\omega)$ $=0$ for $|\omega| \geq B$) and the sampling rate ω_{s} is $\omega_{s} \geq 2 B$, then $S(\omega)$ can be recovered from $\stackrel{*}{S}(\omega)$ by low-pass filtering. Consequently, $s(t)$ can be uniquely determined from ${ }_{s}^{*}(t)$. If $\omega_{s}<2 B$, then the adjacent "lobes" of $\stackrel{*}{S}(\omega)$ are overlapping

Fig. 14. Pulse and impulse sampling of $s(t)$ and corresponding amplitude spectra
as shown in Fig. 14 and $S(\omega)$ cannot be recovered from ${ }^{*}(\omega)$. This latter condition is referred to as "alaising" [76], while statement 2 is referred to as the sampling theorem [64, 65, 66, 71].

Point Sampling. Let $S(\omega)$ be the Fourier transform of a signal $s(t)$, then

$$
s(t)=\frac{1}{2 \Pi} \int_{-\infty}^{\infty} S(\omega) e^{j \omega t} d \omega
$$

From the above equation a discrete sequence $\left\{s_{n}\right\}$ is obtained by substituting discrete values for t into $s(t)$. This form of sampling will be referred to as point sampling. It is shown by Cooley et al. [63] that point sampling s(t) produces a periodic Fourier spectrum which is the superposition of the shifted spectra of $S(\omega)$. This periodic property is outlined below.

Point sampling $s(t)$ with a sampling rate of F produces time samples at the intervals of $n \Delta t=\frac{n}{F}, n=0$, $\pm 1, \pm 2, \ldots$, where

$$
s(n \Delta t)=\frac{1}{2 \Pi} \int_{-\infty}^{\infty} S(\omega) e^{j \frac{\omega n}{F}} d \omega
$$

Recalling that $e^{j \frac{\omega n}{F}}$ is a periodic function of ω with a period $2 \pi F$, the above equation is rewritten as

$$
s(n \Delta t)=\frac{1}{2 \bar{\Pi}} \sum_{k=-\infty}^{\infty} \sum_{k 2 \pi F}^{(k+1) 2 \pi F} S(\omega) e^{j \frac{\omega n}{F}} d \omega
$$

Assuming well behaved functions and making the substitution $\omega=u+2 \pi k F$ (recalling that $e^{j 2 \Pi k n}=1$ for all integers k and n), then the above equation
is expressed as

$$
\begin{array}{ll}
s(n \Delta t)=\frac{1}{2 \pi} \int_{0}^{2 \pi F} S_{p}(\omega) e^{j \frac{\omega n}{F}} d \omega & \text { Eq. } 4 \\
\text { where } S_{p}(\omega)=\sum_{k=-\infty}^{\infty} S(\omega+k 2 \pi F) & \text { Eq. } 5
\end{array}
$$

and u is replaced by ω.
Comparison of Eqs. 3 and 5 reveals that impulse and point sampling are identical within a constant of $\frac{1}{\Delta t}$. Additionally, if the signal $s(t)$ is bandwidth-limited to B (i.e., $S(\omega)=0$ for $|\omega| \geq B$) and if the sampling rate $F \geq \frac{2 B}{2 \pi}$, then the periodic function $S_{p}(\omega)$ is an unaliased (nonoverlapping) extension of $S(\omega)[63,66]$. Since $S_{p}(\omega)$ is a periodic function of ω with period $2 \pi F$, it can be represented by Fourier series as

$$
S_{p}(\omega)=\sum_{n=-\infty}^{\infty} A_{n} e^{-j \frac{\omega n}{F}}
$$

Eq. 6

$$
\text { where } A_{n}=\frac{1}{2 \Pi F} \int_{0}^{2 \pi F} S_{p}(\omega) e^{j \frac{\omega n}{F}} d \omega
$$

Comparing Eq. 4 with the Eq. above reveals that the Fourier coefficients A_{n} 's can be expressed in terms of the sample values as

$$
A_{n}=\frac{s(n \Delta t)}{F}
$$

Substituting these Fourier coefficients into Eq. 6 we obtain

$$
\begin{equation*}
S_{p}(\omega)=\frac{1}{F} \sum_{n=-\infty}^{\infty} s(n \Delta t) e^{-j \frac{\omega n}{F}} \tag{Fq. 7}
\end{equation*}
$$

It is clear from the above that the periodic function $S_{p}(\omega)$ is completely defined by the sample points $s(n \Delta t)$.

Let $s(t)$ be a signal waveform defined on the interval of $|t|<T / 2$ and zero for $|t|>T / 2$, where T is the record length. The Fourier transform of this signal is defined below.

$$
S(\omega)=\int_{-T / 2}^{T / 2} s(t) e^{-j \omega t} d t
$$

Eq. 8

Expanding $s(t)$ in Fourier series on the interval of $-T / 2$ to $T / 2$, we obtain a periodic function $s_{p}(t)$ given by

$$
\begin{gather*}
s_{p}(t)=\sum_{k=-\infty}^{\infty} c_{k} e^{j \frac{2 \pi k t}{T}} \tag{Eq. 9}\\
\text { where } c_{k}=\frac{1}{T} \int_{-T / 2}^{T / 2} s(t) e^{-j \frac{2 \pi k t}{T}} d t \tag{Eq. 10}
\end{gather*}
$$

and comparing Eqs. 8 and 10 , we obtain

$$
c_{k}=\frac{S\left(\frac{2 \pi k}{T}\right)}{T}
$$

Eq. 11

Note that the Fourier coefficients c_{k} 's are determined from the sample values of $S(\omega)$ and consequently, define the periodic function $s_{p}(t)$. The above result can be restated as point sampling of $S(\omega)$ at $\frac{2 \text { IIk }}{T}$ angular frequency intervals corresponding to a periodic extension of $s(t)$ in the time domain $[60,63,66,77]$ as shown in Fig. 15.

Fig. 15. A sampled amplitude spectrum and the corresponding periodically extended $s(t)$

DISCRETE FOURIER TRANSFORM

To compute Fourier transforms with a digital computer, one must consider a finite number of discrete samples in the time as well as in the frequency domain.

Suppose that a finite-duration, bandwidth-1imited function $g(t)$ can be represented by a sequence of N equallyspaced samples in the time domain. The sequence is denoted by $\{g(n \Delta t)\}$ where

$$
\begin{aligned}
\mathrm{n} & =\text { time sample index and } \\
\Delta \mathrm{t} & =\text { sample time interval. }
\end{aligned}
$$

Similarly, let $G(\omega)$ (Fourier transform of $g(t)$) be represented by a sequence of N equally-spaced samples in the frequency domain where the sequence is denoted by $\{G(k \Omega)\}$ and

$$
\begin{aligned}
& \mathrm{k}=\text { frequency sample index and } \\
& \Omega=\frac{2 \pi}{\mathrm{~N} \Delta t}=\text { sample frequency interval. }
\end{aligned}
$$

Consistent with the above discussion, the discrete Fourier transform (DFT) of the sequence $\{g(n \Delta t)\}$ is defined as the sequence $\{G(k \Omega)\}$, where each component of $\{G(k \Omega)\}$ is computed from Eq. 12 [58,60].

$$
\begin{equation*}
G(k \Omega)=\frac{1}{N} \sum_{n=0}^{N-1} g(n \Delta t) e^{-j \Omega \Delta t n k} \tag{Eq. 12}
\end{equation*}
$$

The original time sequence $\{g(n \Delta t)\}$ can be recovered by the inverse discrete Fourier transform (IDFT) where each component of $\{g(n \Delta t)\}$ is computed from Eq. 13 .

$$
\begin{equation*}
g(n \Delta t)=\sum_{k=0}^{N-1} G(k \Omega) e^{j \Omega \Delta t n k} \tag{Eq. 13}
\end{equation*}
$$

The discrete Fourier transform pair is often referred to as the finite Fourier transform pair and within a constant, is equal to the sampled version of the periodically-extended continuous functions $g(t)$ and $G(\omega)[58,60,61,62,63,75]$. The periodic property of the $D F T$ is a clear consequence of time and frequency domain sampling. Derivation of the DFT from the continuous Fourier transform is outlined below.

Consider a finite-duration and bandwidth-limited signal $s(t)$, where $s(t)=0$ for $|t| \geq T / 2$ and its Fourier transform $S(\omega)=0$ for $|\omega| \geq B$. Point sampling of $s(t)$ with a sampling rate $\omega_{s} \geq 2 B$ produces a finite, discrete sequence in the time domain and an unaliased, continuous periodic extension of $S(\omega)$ in the frequency domain $[58,60,61,63]$ as described in the previous section. This periodic function $S_{p}(\omega)$ is defined by Eq. 7. If we point sample $S_{p}(\omega)$ by replacing ω with $k \Omega$, Eq. 7 can be expressed as

$$
\begin{equation*}
S_{p}(k \Omega)=\frac{T}{\bar{N}} \sum_{n=-\infty}^{\infty} s(n \Delta t) e^{-j \frac{2 \pi n k}{N}} \tag{Eq. 14}
\end{equation*}
$$

where $N=\frac{T}{\Delta t}=$ number of sample points per record length T. Note that time and frequency sampling yields N term periodic discrete sequences in the frequency, as well as in the time domain, as shown in Figs. 14 and 15 [58,60,61,63]. We can express Eq. 14 as a finite sum by recognizing that $s(n \Delta t)$
and $e^{-j 2 \Pi n k / N}$ are periodic in n with period N where any arbitrary integer n can be expressed as

$$
\begin{gather*}
n=r N+n_{o} \\
\text { where } r=\text { integer and } \\
n_{o}=n \text { modulo } N . \\
S_{p}(k \Omega)=T\left(\frac{1}{N} \sum_{n=0}^{N-1} s_{p}(n \Delta t) e^{-j \frac{2 \pi n k}{N}}\right) \tag{Eq. 15}\\
\text { where } s_{p}(n \Delta t)=\sum_{\ell=-\infty}^{\infty} s(n \Delta t+\ell T)
\end{gather*}
$$

Eq. 16

The righthand side of Eq. 15 is the record length T times the DFT of the signal $s(t)$, while the lefthand side is the point sampled and periodically-extended $S(\omega)$.

The Fast Fourier Transform (FFT). The fast Fourier transform (FFT) introduced by Cooley and Tukey [59,63] is an efficient computational algorithm used to compute discrete Fourier transform pairs. A brief examination of Eqs. 12 and 13 reveals that for a complex sequence, N^{2} complex operations (multiplications and additions) are required to compute the DFT or IDFT from the definitions. In comparison, the FFT algorithm requires approximately $\frac{3 \mathrm{~N}}{2} \log _{2} \mathrm{~N}$ complex operations and at $N=1024$, it offers a factor of approximately 200 computational savings [60,62,63]. Using Cooley and Tukey's notation, the FFT algorithm used to compute IDFT involves evaluating the complex sum given below.

$$
\begin{gathered}
X(n)=\sum_{k=0}^{N-1} A(k) Q^{k n} \\
\text { for } n=0,1, \ldots, N-1 \text { and } Q=e^{j \frac{2 \pi}{N}}
\end{gathered}
$$

Note that the DFT defined by Eq. 12 can be expressed as

$$
\begin{equation*}
S(k \Omega)=\frac{1}{N}\left[\sum_{n=0}^{N-1} \stackrel{*}{S}(n \Delta t) Q^{k n}\right]^{*} \tag{Eq. 18}
\end{equation*}
$$

where * denotes conjugation. A comparison of Eqs. 17 and 18 reveals that they differ only by a constant and by conjugations; therefore, the same algorithm can be used to compute forward as well as inverse DFT's.

When the sequence length N is equal to the powers of 2, for example $N=8$, then it is convenient to represent both n and k as a binary number; that is, for $\mathrm{n}=0,1, \ldots$, 7 and $k=0,1, \ldots, 7$ we can write

$$
\begin{aligned}
& \mathrm{n}=4 \mathrm{n}_{2}+2 \mathrm{n}_{1}+\mathrm{n}_{\mathrm{o}} \\
& \mathrm{k}=4 \mathrm{k}_{2}+2 \mathrm{k}_{1}+\mathrm{k}_{\mathrm{o}}
\end{aligned}
$$

where $n_{0}, n_{1}, n_{2}, k_{0}, k_{1}$ and k_{2} can take on values of 0 or 1 only. Substituting their values into Eq. 17 and omitting Δt and Ω for notational clarity, we may obtain

$$
x\left(n_{2}, n_{1}, n_{o}\right)=\sum_{k_{o}}^{\stackrel{1}{=}} \sum_{k_{1}}^{\stackrel{1}{=}}{ }_{k_{2}}^{\sum_{0}^{1}} A\left(k_{2}, k_{1}, k_{o}\right) Q_{T}
$$

where

$$
Q_{T}=Q^{\left(4 n_{2}+2 n_{1}+n_{o}\right)\left(4 k_{2}+2 k_{1}+k_{o}\right)}
$$

Completing the products of exponents and noting that $Q^{\mathrm{k}+\mathrm{n}}=$ $Q^{k} \cdot Q_{n}$, it is apparent that some of the product terms reduce to unity by the periodic property of the exponential function (i.e., $Q^{m 8}=1$ where m is an integer). This leads to

$$
x\left(n_{2}, n_{1}, n_{o}\right)=\sum_{k_{o}=0}^{1} \sum_{k_{1}=0}^{1} \sum_{k_{2}=0}^{1} A\left(k_{2}, k_{1}, k_{o}\right) Q^{y_{2}}{ }^{y_{1}} 1_{Q}^{y_{o}} \quad \text { Eq. } 19
$$

where $y_{2}=4 n_{o} k_{2} \quad y_{1}=2 k_{1}\left(2 n_{1}+n_{o}\right) \quad y_{o}=k_{o}\left(4 n_{2}+2 n_{1}+n_{o}\right)$
Note that the computation of $x\left(n_{2}, n_{1}, n_{0}\right)$ involves successive computation of A_{1}, A_{2} and A_{3}, each containing 8 complex terms where the last step is a simple reordering operation. It is clear that each new complex term to be computed requires only the previous set of terms; consequently, the same storage area can be shared in computations of stages. The FFT formula, Eq. 19 , shows 48 complex computations; however, note that the first multiplication in each sum involves multiplication by +1 and $Q^{0}=-Q^{4}, Q^{1}=-Q^{5}$, etc. When each
of these time saving steps is accounted for, the number of operations is reduced to $\frac{3}{2} N \log _{2} \mathrm{~N}$ complex operations.

A 1024 complex number FFT program (DAS FFT), using the computational steps outlined above, is given in Appendix I. This program was developed by E. Nichols, M. Stern and the author and is written in the Varian $620 / I$ assembly language.

DESCRIPTION OF A STOCHASTIC PROCESS

In the following analysis the phonocardiogram murmur signals obtained over a short time duration are approximated as a finite stationary stochastic process. This approximation is particularly reasonable for a "flat" envelope murmur and for ejection murmurs where the ensemble elements are composed of short records centered about the peak intensity of the murmur.

Definition of a Stochastic Process. When a random time series data record is analyzed, it can be regarded as one of the many data records which may have occurred. Representation of such a process is accomplished by associating with each point of time t in the range of $(-\infty \leq t \leq \infty)$, a random variable $X(t)$ which has a sample space $\{-\infty \leq X(t) \leq \infty\}$ and a corresponding probability density function (pdf), $f(x)$. Consequently, a time series can be described as an ordered set of random variables $\{X(t)\}$ defined on $(-\infty \leq t \leq \infty)$ for a continuous time series and an ordered set of random variables $\left\{X_{t}\right\}, t=0,1,2, \ldots$, for a discrete time series.

The ordered set of random variables is called a stochastic process $[67,68,70]$ and provides a probabilistic description of the physical process as it changes with time. The double infinite set of time functions defined on this sample space is called an ensemble [67].

Moments of a Stochastic Process. At any point in time we can define the univariant moments of a stochastic process by

$$
\begin{equation*}
E\left[(X(t))^{k}\right]=\int_{-\infty}^{\infty} x^{k} f(x) d x \tag{Eq. 20}
\end{equation*}
$$

and the bivariant moments by

$$
E\left\{\left(x\left(t_{1}\right)\right)^{k}\left(x\left(t_{2}\right)\right)^{n}\right\}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_{1}^{k} x_{2}^{n} f\left(x_{1}, x_{2}\right) d x_{1} d x_{2} \quad \text { Eq. } 21
$$

where $f(x)=$ probability density function at time t

$$
f\left(x_{1}, x_{2}\right)=\text { joint probability density function at time } t_{1}, t_{2}
$$

The most important univariant moments are the mean function $E[X(t)]$ and the second central moment, or variance function $\operatorname{Var}[\mathrm{X}(\mathrm{t})]$. These moments are defined by the equations given below.

$$
\begin{align*}
& E[X(t)]=\eta(t)=\int_{-\infty}^{\infty} x f(x) d x \tag{Eq. 22}\\
& \operatorname{Var}[X(t)]=\sigma^{2}(t)=\int_{-\infty}^{\infty}(x-n(t))^{2} f(x) d x
\end{align*}
$$

Eq. 23

In addition we may define the autocorrelation function (acf), $R\left(t_{1}, t_{2}\right)$ and the autocovariance function (acvf), $C\left(t_{1}, t_{2}\right)$ by

$$
\begin{aligned}
R\left(t_{1}, t_{2}\right) & =E\left[X\left(t_{1}\right) X\left(t_{2}\right)\right]=\int_{-\infty}^{\infty} x_{1} x_{2} f\left(x_{1}, x_{2}\right) d x_{1} d x_{2} \quad E q \cdot 24 \\
& C\left(t_{1}, t_{2}\right)=E\left[\left(X\left(t_{1}\right)-n\left(t_{1}\right)\right)\left(X\left(t_{2}\right)-n\left(t_{2}\right)\right)\right] \quad \text { Eq. } 25
\end{aligned}
$$

where $n\left(t_{i}\right)=$ the mean of $X\left(t_{i}\right)$ at time t_{i}.

A Stationary Stochastic Process. In general, the properties of a stochastic process are time dependent. The assumption is often made that the process has reached a steady equilibrium in the sense that the statistical properties of the series are independent of absolute time. In this case the process is called stationary or strictly stationary $[67,68,70]$. The minimum requirement for this to hold is that the pdf, $f(x)$ and the joint pdf of the process, $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be independent of absolute time. The clear consequences of the stationary requirement are that the mean $E[X]$ and the variance $\operatorname{Var}[X]$ are constant, and in addition, the autocorrelation and covariance functions are independent of absolute time and are functions of the lag variable $\tau=t_{1}-t_{2}$.

POWER SPECTRUM ANALYSIS

In this section power spectrum analysis is introduced to study the power distribution of abnormal phonocardiograms as the function of frequency. Later, in

Chapter V the signal features of the murmur power spectrum are examined and correlated to the severity of valvar aortic stenosis.

The Power Spectral Density of a Deterministic
Signal. The true power spectral density $B(f)$ of a continuous deterministic signal $s(t)$ is defined by

$$
B(f)=\underset{T \rightarrow \infty}{\operatorname{1imit}} B_{i}(f)
$$

Eq. 26

$$
\text { where } B_{i}(f)=\text { power spectral density estimate }
$$

and is derived from the fourier transform of a signal of T seconds duration by the equation given below.

$$
\begin{equation*}
B_{i}(f)=\frac{1}{T}\left|S_{i}(f)\right|^{2} \tag{Eq. 27}
\end{equation*}
$$

For a deterministic signal, as the record length T approaches infinity, $B_{i}(f)$ converges "smooth1y" to the theoretical spectrum $B(f)$ in the sense that for all values of f, the error $B(f)-B_{i}(f)$ approaches zero as T approaches infinity [67]. It is shown by Papou1is, Jenkins and Watts; Davenport and Root $[66,67,68]$, that for the power spectral density of a stochastic signal, the above definition cannot be applied. The basic difference between the Fourier analysis of a stochastic signal and a deterministic signal is that for the former, the variance of $B_{i}(f)$ does not approach zero as the record length T approaches infinity. Consequently, $B_{i}(f)$ does not approach smoothly to $B(f)$ with increasing record length.

Power Spectral Density of a Stochastic Process.

More general definitions for the true power spectral density are given below and apply to deterministic as well as to stationary stochastic processes. The power spectral density $B(f)$ can be defined from the autocorrelation function $R(\tau)$ as

$$
\begin{equation*}
B(f)=\int_{-\infty}^{\infty} R(\tau) e^{-j 2 \pi f \tau} d \tau \tag{Eq. 28}
\end{equation*}
$$

If the sample functions of the process are real, then the autocorrelation function $R(\tau)$ is real and is an even function of τ; consequently, $B(f)$ is real and is an even function of f. Since $B(f)$ and $R(\tau)$ are Fourier transform pairs, we gain an insight to $B(f)$ by examining the equation given below at $\tau=0$.

$$
\begin{array}{r}
E[s(t+\tau) s(t)]=R(\tau)=\int_{-\infty}^{\infty} B(f) e^{j \omega \tau} d f \quad E q \cdot 29 \\
R(0)=E\left[s^{2}(t)\right]=\operatorname{Var}[s(t)]+(E[s(t)])^{2}=\int_{-\infty}^{\infty} B(f) d f \\
E q \cdot
\end{array}
$$

It is clear from Eq. 30 that $B(f)$ is a positive real-valued function which describes how the total signal power is distributed in frequency.

It is shown by Papoulis $[66,70]$ that the true power spectral density $B(f)$ of a stationary random process can be alternatively defined by the equation given below.

$$
B(f)=\lim _{T \rightarrow \infty} E\left[B_{i}(f)\right]
$$

Eq. 31
where ensemble averaging of the power spectral density estimates is required to reduce spectrum variance.

Prior to development of the FFT algorithm, power spectral density estimates were most often computed from the autocorrelation function using Eq. 28 since it was the fastest method available. With the advent of the FFT algorithm, the second expression, given by Eq. 31, is now most often used. This method is the faster of the two and therefore was employed to compute power spectral density estimates in this study.
The Discrete Power Spectral Density Estimate. To
take advantage of the computational speed of the digital computer and the FFT algorithm, the discrete power spectral density function, $B_{i}(k \Delta f)$ is defined by replacing f by $k \Delta f$ in Eq. 27 giving

$$
\begin{equation*}
B_{i}(k \Delta f)=\frac{1}{T}\left|S_{i}(k \Delta f)\right|^{2} \tag{Eq. 32}
\end{equation*}
$$

Using Eq. 15 to compute $\mathrm{S}_{\mathrm{i}}(\mathrm{k} \Delta \mathrm{f})$, the above equation is written for $0 \leq k \leq \frac{N}{2}-1$ as

$$
\begin{align*}
& B_{i}(k \Delta f)=T\left|\frac{1}{N} \sum_{n=0}^{N-1} s(n \Delta t) e^{-j \frac{2 \pi n k}{N}}\right|^{2} \\
& B_{i}(k \Delta f)=\frac{\Delta t}{N}\left[R_{e a l}^{2}(k \Delta f)+I_{m}^{2}(k \Delta f)\right]
\end{align*}
$$

where $R_{e a 1}(k \Delta f)$ and $I_{m}(k \Delta f)$ are the real and imaginary components of $B_{i}(k \Delta f)$. Note that $B_{i}(k \Delta f)$ is an even function of f; therefore, Eq. 33 also provides values for negative frequency components.

It is shown by Jenkins and Watts [67] that for a white Gaussian random signal with zero mean, $B_{i}(k \Delta f)$ is chisquare distributed. The mean $E\left[B_{i}\left(f_{k}\right)\right]$ and variance $\operatorname{Var}\left[B_{i}\left(f_{k}\right)\right]$ of $B_{i}(k \Delta f)$ are given in terms of the variance of the signal Var[s] as

$$
\begin{aligned}
E\left[B_{i}\left(f_{k}\right)\right]=(\Delta t) \operatorname{Var}[s]=B(k \Delta f) & \text { Eq. } 34 \\
\operatorname{Var}\left[B_{i}\left(f_{k}\right)\right]=\{(\Delta t) \operatorname{Var}[s]\}^{2}=B^{2}(k \Delta f) & \text { Eq. } 35
\end{aligned}
$$

It is clear from the above that $E\left[B_{i}\left(f_{k}\right)\right]$ and $\operatorname{Var}\left[B_{i}\left(f_{k}\right)\right]$ are independent of record length T and consequently a $B_{i}\left(f_{k}\right)$ estimate will not converge to the theoretical power spectral density with increasing record length. It is important to note that even if the signal is not Normally distributed, the random variables $R_{e a l}(k \Delta f)$ and $I_{m}(k \Delta f)$ for $N>30$ computed from the DFT have nearly a Normal distribution as can be shown by the central limit theorem. Therefore, the distribution of $B_{i}(k \Delta f)$ will be very nearly chi-square.

Bartlett's Smoothing Procedure. The variance of spectral estimates can be reduced by spectral smoothing. One of the first smoothing procedures was introduced by Bartlett [81]. The procedure involves splitting up the random time series into m sub-series where each has a record length M. The spectral estimate for each sub-series is computed, and an averaged spectrum for $0 \leq k \leq \frac{N}{2}-1$ is calculated according to the equation given below.

$$
\bar{B}(k \Delta f)=\frac{1}{m} \sum_{i=1}^{m} B_{i}(k \Delta f) \quad \text { Eq. } 36
$$

When the signal $s(t)$ is white noise, the sub-series are independent and the mean $E\left[\bar{B}\left(f_{k}\right)\right]$ and variance $\operatorname{Var}\left[\bar{B}\left(f_{k}\right)\right]$ of $\bar{B}(k \Delta f)$ are defined by the sample statistics [67,79]. If the sample size m is greater than 30 , then the sampling distribution is asymptotically normal [79] and the mean and variance of $\bar{B}\left(f_{k}\right)$ are related to the mean and variance of $B_{i}\left(f_{k}\right)$ by equations given below.
and

$$
\begin{aligned}
E\left[\bar{B}\left(f_{k}\right)\right] & =E\left[B_{i}\left(f_{k}\right)\right] \\
\operatorname{Var}\left[\tilde{B}\left(f_{k}\right)\right] & =\frac{\operatorname{Var}\left[B_{i}\left(f_{k}\right)\right]}{m}
\end{aligned}
$$

From the above it can be concluded that the $\operatorname{Var}\left[\bar{B}\left(f_{k}\right)\right]$ is inversely proportional to the number of sub-series (records) averaged, m, while the relative error, defined below, is inversely proportional to \sqrt{m}.

$$
\begin{equation*}
\frac{\sqrt{\operatorname{Var}\left[\bar{B}\left(f_{k}\right)\right]}}{E\left[\bar{B}\left(f_{k}\right)\right]}=\frac{1}{\sqrt{m}} \tag{Eq. 37}
\end{equation*}
$$

Clearly, this smoothing procedure can be applied to nonsequential but independent random records such as phonocardiogram murmur signals.

Bartlett's Spectral Window. The Bartlett smoothing procedure outlined in the previous section now will be reexamined and its effect on spectral resolution and bias will be described.

Since the Fourier transform is a linear operation, the smoothed estimate $\bar{B}(f)$ can be expressed in terms of the averaged autocorrelation function $\tilde{R}(\tau)$ as

$$
\bar{B}(f)=\int_{-M}^{M} \bar{R}(\tau) e^{-j 2 \pi f \tau} d \tau
$$

Eq. 38

For the $i^{\text {th }}$ sub-series we may find the autocorrelation estimate for $\tau \geq 0$ by

$$
R_{i}(\tau)=\frac{1}{M} \int_{(i-1) M}^{i M-\tau} s(t) s(t+\tau) d t
$$

Eq. 39

$$
\text { where } \bar{R}(\tau)=\frac{1}{m} \sum_{i=1}^{m} R_{i}(\tau)
$$

It is shown by Jenkins and Watts, and Richards $[67,71]$ that $\overline{\mathrm{R}}(\tau)$ is given by

$$
\bar{R}(\tau)=\frac{T-m}{\bar{T}-\left|\frac{\tau}{\tau}\right|}\left(\frac{1}{T}\right) \int_{0}^{T-|\tau|} s(t) s(t+\tau) d t \quad \text { Eq. } 40
$$

where $\bar{R}(\tau)=0$ for $|\tau|>M$.

Examination of Eq. 40 reveals that the segmented averaging described earlier is statistically equivalent to multiplying the original autocorrelation function by a "window" function $w(t)$ where

$$
\begin{array}{ll}
w(\tau)=\frac{T-m \mid \tau}{T-|\tau|} & \text { when }|\tau| \leq M \\
w(\tau)=0 & \text { when }|\tau|>M
\end{array}
$$

When $M \ll T$, then the denominator of $W(\tau)$ is approximately equal to T. The corresponding window (Bartlett lag window) is given below.

$$
\begin{array}{ll}
\mathrm{w}_{\mathrm{B}}(\tau)=T-\frac{|\tau|}{M} & \text { when }|\tau| \leq M \\
\mathrm{w}_{B}(\tau)=0 & \text { when }|\tau|>M
\end{array}
$$

Eq. 41

Substituting the windowed autocorrelation function into Eq. 38 and assuming that the number of segments m approaches infinity, we obtain the smoothed spectrum estimate as

$$
\bar{B}(f)=\int_{-\infty}^{\infty} w_{B}(\tau) R(\tau) e^{-j 2 \pi f \tau} d \tau
$$

Eq. 42

Recalling that the product in the lag domain is convolution (denoted by *) in the frequency domain, the above equation can be expressed as

$$
\begin{equation*}
\bar{B}(f)=W_{B}(f) * B(f)=\int_{-\infty}^{\infty} W_{B}(x) B(f-x) d x \tag{Eq. 43}
\end{equation*}
$$

and the corresponding Bartlett spectral window is given below.

$$
\begin{equation*}
W_{B}(f)=M\left(\frac{\sin (\Pi f M)}{\Pi f M}\right)^{2} \tag{Eq. 44}
\end{equation*}
$$

It is clear from Eq. 43 that the estimate $\bar{B}(f)$ is a biased estimator of the true spectral density $B(f)$, where the bias $B_{i a s}(f)$ is defined below.

$$
\begin{equation*}
B_{\text {ias }}(f)=\bar{B}(f)-B(f) \tag{Eq. 45}
\end{equation*}
$$

For an arbitrary spectrum containing spectral peaks, the bias will be zero only if the window width M approaches infinity.

It has been shown in the previous section that for a random signal with finite record length T, the spectrum variance is reduced by decreasing the sub-series length M. However, for the Bartlett window $W_{B}(f)$, the first zero crossing occurs at $1 / M$ and a small M implies smoothing over a wider range of frequencies. Consequently, with this estimation, one is forced to compromise between variance reduction and spectrum bias.

Several windows are commonly used in power spectrum spectroscopy, most often these are the Bartlett, Tukey, or Parzen windows $[67,69,72,74]$. These offer various degrees of compromise between bias and variance. However, all the windows must satisfy the following conditions [67] in the lag domain.

$$
\begin{aligned}
& \text { 1. } w(0)=1 \\
& \text { 2. } w(\tau)=w(-\tau) \\
& \text { 3. } w(\tau)=0 \text { for }|\tau|>M
\end{aligned}
$$

The Bartlett window is used in this study because it offers computational simplicity and good reduction of variance at a moderate bias.

Variance of Smoothed Spectral Estimators. To investigate the statistical error of a smoothed spectral estimator $\bar{B}(f)$, the variance of this function is defined below. It is shown by Jenkins and Watts [67], that for any bandwidthlimited, normal stochastic signal $s(t)$, the variance of $B_{i}(f)$ is

$$
\operatorname{Var}\left[B_{i}(f)\right] \approx B^{2}(f)
$$

Similarly, for a smoothed spectral estimator $\bar{B}(f)$ (used to estimate $B(f))$ the mean and variance are

$$
\begin{array}{cc}
E[\bar{B}(f)] \approx B(f) & E q \cdot 47 \\
\operatorname{Var}[\bar{B}(f)] \approx \frac{B^{2}(f)}{T} \int_{-\infty}^{\infty} w^{2}(\tau) d \tau=\frac{B^{2}(f) I}{T} & \text { Eq. } 48
\end{array}
$$

For the Bartlett window

$$
\begin{equation*}
I=\int_{-M}^{M}\left(1-\frac{|\tau|}{M}\right)^{2} d \tau=\frac{2}{3} M \tag{Eq. 49}
\end{equation*}
$$

and consequently,

$$
\operatorname{Var}[\bar{B}(f)] \approx \frac{B^{2}(f)}{T}\left(\frac{2}{3} M\right)
$$

Eq. 50

We may define a reduction factor

$$
\frac{I}{T}=\frac{\operatorname{Var}[\bar{B}(f)]}{B^{2}(f)}
$$

which compares the variance of a smoothed spectrum versus the variance of the estimate. For the Bartlett window this ratio is expressed as

$$
\begin{equation*}
\frac{I}{T}=.667\left(\frac{M}{T}\right) \tag{Eq. 51}
\end{equation*}
$$

Confidence Interval for the Smoothed Spectrum. When $\bar{B}(f)$ is computed from a finite number of phonocardiogram records, the precise value of $B(f)$ cannot be predicted. However, for this case it is possible to define a confidence
region where $B(f)$ is found with a specified probability or confidence level. It is shown by Jenkins and Watts [67] that for a smoothed spectrum, the probability density distribution function of $\bar{B}(f)$ can be approximated by ax ${ }^{2}$ where

$$
\begin{aligned}
x^{2} & =\text { chi-square distribution } \\
a & \approx \frac{E[\bar{B}(f)]}{V} \\
\text { and } \quad v & \approx \frac{2(E[\bar{B}(f)])^{2}}{\operatorname{Var}[\bar{B}(f)]}=\text { degree of freedom }
\end{aligned}
$$

Substituting from the previous section for the mean and variance of the Bartlett window (Eqs. 47 and 50), $v=3 \frac{\mathrm{~T}}{\mathrm{M}}$. Knowing that the distribution is chi-square, the confidence interval for $B(f)$ at each value of $\bar{B}(f)$ is obtained from the probabilistic equation given below.

$$
\operatorname{Pr}\left\{X_{L}<B(f) \leq X_{H}\right\}=1-\alpha
$$

The percent confidence level is $100(1-\alpha)$ for the limits given below.

$$
\begin{aligned}
& x_{L}=\frac{v \bar{B}(f)}{x\left(1-\frac{\alpha}{2}\right)} \\
& x_{H}=\frac{v \bar{B}(f)}{x \frac{\alpha}{2}}
\end{aligned}
$$

For a given confidence level, the confidence limits are usually evaluated from chi-square tables or charts [67,79]. As the degree of freedom approaches infinity, the chi-square distribution approaches the Normal distribution. Consequently,
for $v>30$, the confidence limits can be closely approximated from the Normal distribution and the spectrum is estimated with a desired confidence level by the equation below.

$$
\begin{equation*}
B(f)=\bar{B}(f) \pm z \sqrt{\operatorname{Var}[\bar{B}(f)]} \tag{Eq. 52}
\end{equation*}
$$

In the above equation z is a confidence parameter; for 99.73% confidence level, $z=3.00$, for a 95% confidence level, $z=1.96$, and for a 68.27% confidence level, $z=1$. For the Bartlett window, Eq. 52 can be expressed as

$$
\begin{equation*}
B(f) \approx \bar{B}(f)\left(1 \pm z \frac{\sqrt{\frac{2}{3}}}{\sqrt{\mathrm{~m}}}\right) \tag{Eq. 53}
\end{equation*}
$$

where m is the number of sub-intervals or records averaged. Bandwidth of a Spectral Window. It has been shown in the previous sections that the variance, bias and resolution of $\bar{B}(f)$ is determined by the shape and width of the spectral window $W(f)$. In this section the equivalent bandwidth of a spectral window is defined which determines the above-mentioned properties of the spectrum. Consider a rectangular spectral window with a bandwidth h defined by the equation given below.

$$
W_{R}(f)=\frac{1}{h} \quad \text { for }-\frac{h}{2} \leq f \leq \frac{h}{2}
$$

The total $A C$ power or variance within this window is given below.

$$
\operatorname{Var}[\bar{B}(f)] \approx \frac{B^{2}(f)}{T} \cdot \frac{1}{h}
$$

For a nonrectangular spectral window, we define its bandwidth b as the width of a rectangular window which gives the same variance or AC power [67].

$$
\operatorname{Var}[\bar{B}(f)] \approx \frac{B^{2}(f)}{T} \cdot \frac{1}{\bar{b}}=\frac{B^{2}(f)}{T} \int_{-\infty}^{\infty} w^{2}(\tau) d \tau
$$

This definition is sometimes referred to as equivalent bandwidth and spectrum smoothing occurs within it. Consistent with the above discussion, the bandwidth of an arbitrary window is defined [67] as

$$
\begin{equation*}
b=\frac{1}{\int_{\infty}^{\infty} w^{2}(\tau) d \tau}=\frac{1}{\int_{-\infty}^{\infty} w^{2}(f) d f}=\frac{1}{I} \tag{Eq. 54}
\end{equation*}
$$

and the bandwidth for the Bartlett spectral window is given below.

$$
\begin{equation*}
\mathrm{b}_{\mathrm{B}}=\frac{3}{2 \mathrm{M}} \tag{Eq. 55}
\end{equation*}
$$

Summary of Bartlett Window Properties. The essential properties of the Bartlett window described in this section are summarized in the table below.

TABLE 7
SUMMARY OF BARTLETT WINDOW PROPERTIES

Spectra1 Window W(f)	Variance Ratio I/T	Degree nf Freedom	Bandwidth
$M\left(\frac{\sin (\Pi f M)}{\Pi \mathrm{Tf}}\right)^{2}$	$\frac{2}{3} \frac{M}{\mathrm{~T}}$	$3 \frac{T}{\mathrm{M}}$	$\frac{3}{2 M}$

Computation of the Discrete Power Spectral Estimate.
A discrete power spectral function is defined below in order to study the power distribution of a phonocardiogram signal as a function of frequency. More specifically, the discrete power spectral estimate $\mathrm{P}_{\mathrm{i}}(\mathrm{k} \Delta \mathrm{f})$ of a signal for $0 \leq k \leq\left(\frac{N}{2}-1\right)$ is defined as

$$
\begin{equation*}
P_{i}(k \Delta f)=\frac{B_{i}(k \Delta f)}{T} \tag{Eq. 56}
\end{equation*}
$$

Note that $B_{i}(k \Delta f)$ is a power density function while $P_{i}(k \Delta f)$ is a power function and each harmonic term $k \Delta f$ represents the signal power in a bandwidth $\frac{1}{T}$ centered at $k \Delta f$. With this definition, the power spectrum is merely the square of the magnitude of the discrete Fourier spectrum as defined by Eq. 12 and the total signal power is computed from the equation given below.

$$
\begin{equation*}
P_{S}=\sum_{k=-\frac{N}{2}+1}^{\frac{N}{2}-1} P_{i}(k \Delta f) \tag{Eq. 57}
\end{equation*}
$$

The power spectral estimate of a phonocardiogram signal is computed here by using the steps outlined below.

1. Select the required signal in the time domain using the rectangular Bartlett data window.
2. Remove the DC bias introduced by the analog-to-digital converter.
3. Divide each signal amplitude by the rms value of the calibration signal. This normalization step removes microphone and other gain setting errors.
4. Compute the complex DFT spectrum as defined by Eq. 12 using an $N=1024$ fixed length FFT algorithm. When the time series record length is < 1024, the additional buffer values are set equal to zero. The effect of lengthening the time sequence by extra zeros is merely interpolation in the frequency domain [58].
5. Compute the single-sided $(0 \leq k \leq 511)$ power spectral estimate as prescribed by Eq. 56. That is, for each harmonic interger k, find the sum of the squared real and squared imaginary components of the DFT spectrum.

The power spectral estimates were computed either interactively using the program "AUTOFREQ" or in batch mode using the subroutine FANAL. The programs, along with their descriptions, are given in Appendix I. A typical V.A.S.
murmur power spectral estimate smoothed by a 100 ms . Bartlett window is shown in Fig. 16. Explanations of the plot labels are given in the next section, while the analysis and interpretations of the spectrum are given in Chapter V. Explanations of the plot Labels. An explanation of the plot labels is as follows: the first and second lines contain the patient's first name, identification number, respiration phase, and microphone location. The respiration phases are inspiration, expiration, and minspiration (mixed inspiration and expiration). On the third line, T is the plotting time interval measured in ms. from the Q wave of the ECG signal. On the fifth line, N is the number of records averaged and R is the last record number acquired for analysis. The remaining letters describe the channel number, type of analysis performed (TIM. = time, PWS = power spectrum, LNV. = envelogram), and the analysis sampling rate (DEF. $=2.5 \mathrm{KHz}$, SUM. $=1.25 \mathrm{KHz})$. The vertical scales are normalized intensity scales. Prior to computations, the PCG records are amplitude-normalized by the rms value of the appropriate calibration records. This step removes microphone and other gain setting errors, allowing direct data comparison among patients.

ENVELOPE ANALYSIS

In this section a real-valued function, called an envelogram, is derived from the phonocardiogram signal by complex demodulation. The envelogram is essentially a

Fig. 16. A typical V.A.S. murmur power spectrum estimate
high-resolution intensity plot of the phonocardiogram signal and is used to locate the epochs, measure durations, and estimate the intensity of phonocardiogram wavelets and murmurs.

In the development of an envelogram, the Hilbert transform and the analytic signal representation of the phonocardiogram signal are required. These are defined and their properties explored in the two sections that follow.

The Hilbert Transform. Let $s(t)$ be a real signal with a Fourier transform $S(\omega)$. The Hilbert transform $[66,70,73,80]$ of $s(t)$, denoted by $\Delta(t)$ is defined by the convolution (denoted by *) integral given below.

$$
\begin{equation*}
\Delta(t)=s(t) *\left(\frac{1}{\pi t}\right)=P\left[\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{s(\lambda)}{t-\lambda} d \lambda\right] \tag{Eq. 58}
\end{equation*}
$$

where P stands for the Cauchy principal value of the integral. The Fourier transform of $\frac{1}{\pi t},[66,73]$ is

$$
\int_{-\infty}^{\infty} \frac{1}{\Pi t} e^{-j \omega t} d t=-j \operatorname{sgn}(\omega)
$$

$$
\text { where } \begin{aligned}
\operatorname{sgn}(\omega) & =1 \text { when } \omega>0 \\
\operatorname{sgn}(\omega) & =0 \text { when } \omega=0 \\
\operatorname{sgn}(\omega) & =-1 \text { when } \omega<0
\end{aligned}
$$

The Fourier transform of $\stackrel{\Delta}{S}(t)$, denoted by $\stackrel{\Delta}{S}(\omega)$, can be computed in the frequency domain from the equation given below
by recalling that convolution in the time domain is the product in the frequency domain.

$$
\hat{S}(\omega)=-j \operatorname{sgn}(\omega) S(\omega)
$$

Eq. 59

It is clear from the above that $\stackrel{\Delta}{S}(t)$ is produced by shifting the phase of $s(t)$ by -90° for $\omega>0$ and $+90^{\circ}$ for $\omega<0$. The singular case when $f=0$ is covered by defining $\operatorname{sgn}(0)=0$. It is shown below that if $s(t)$ is real, then $\Delta(t)$ is also real. The necessary and sufficient condition for a signal to be real $[66,73]$ is as follows:

$$
S(-\omega)=\stackrel{*}{S}(\omega)
$$

Applying the above definition to Eq. 59 and realizing that $\operatorname{sgn}(\omega)$ is an odd function of ω, gives

$$
\stackrel{\Delta}{S}^{*}(\omega)=\stackrel{\Delta}{S}(-\omega)
$$

and consequently $\Delta(t)$ is real. This property of $\hat{S}(t)$ is required when the analytic signal representation $s(t)$ is developed.

The Analytic Signal. Using the Hilbert transform, the analytic signal $[66,70,73,80,89]$ denoted by $z(t)$ is defined as

$$
\begin{equation*}
z(t)=s(t)+j \hat{s}(t) \tag{Eq. 60}
\end{equation*}
$$

Since $s(t)$ and $\hat{S}(t)$ are real signals, it is clear from the definition that $z(t)$ is complex; consequently, $Z^{*}(\omega)$ is not equal to $Z(-\omega)$. In fact $Z(\omega)$ is a signal which contains only positive frequency components (i.e., $Z(\omega)$ is an upper
single-sideband signal). To show this, one merely needs to take the Fourier transform of Eq. 60 and substitute Eq. 59 for $\stackrel{\Delta}{S}(\omega)$ resulting in

$$
\begin{equation*}
Z(\omega)=S(\omega)[1+\operatorname{sgn}(\omega)] \tag{Eq. 61}
\end{equation*}
$$

Recalling the definition of $\operatorname{sgn}(\omega)$, the above equation can be rewritten as

$$
\begin{array}{ll}
Z(\omega)=2 S(\omega) & \text { for } \omega>0 \\
Z(\omega)=S(\omega) & \text { for } \omega=0 \tag{Eq. 62}\\
Z(\omega)=0 & \text { for } \omega<0
\end{array}
$$

Envelope, Phase and Frequency of the Phonocardiogram
Signal. Let $s(t)$ be the phonocardiogram signal and $z(t)$ be the corresponding analytic signal of $s(t)$. The envelope of the signal $e(t)$ is defined here as

$$
\begin{equation*}
e(t)=|z(t)|=\left[s^{2}(t)+\stackrel{\Delta}{s}_{2}(t)\right]^{1 / 2} \tag{Eq. 63}
\end{equation*}
$$

while the phase $\theta_{S}(t)$ and frequency $\omega_{s}(t)$ of the signal $s(t)$ are defined as

$$
\begin{array}{rlr}
\theta_{s}(t)= & \arctan \left(\frac{s(t)}{s(t)}\right)=\operatorname{ph}(z(t)) & \text { Eq. } 64 \\
\omega_{s}(t)=\frac{d \theta_{s}(t)}{d t} & \text { Eq. } 65
\end{array}
$$

The envelope, phase and frequency as defined above coincide with the normally used descriptors of narrow band signals [73, 80]. The envelope is of particular interest in phonocardiogram signal analysis since it can be employed to
time narrow band wavelets and to identify murmur intensity patterns.

Envelope of Heart Sounds and Clicks. In this study heart sounds and clicks are represented as the modulated signal given below.

$$
s(t)=a(t) \cos \left(\omega_{c} t+\phi(t)\right)
$$

Eq. 66
where $a(t)=$ modulating signal envelope
$\omega_{c}=$ carrier or mean frequency
and $\quad \phi(t)=$ phase deviation

It will be shown that if the bandwidth of $a(t) \cos \phi(t)$ and $a(t) \sin \phi(t)$ are less than ω_{c}, then $a(t)$ is equal to the magnitude of the analytic signal. To show this, one must investigate the Hilbert transform of the products of two functions. It is shown by Bennett [73] that if $f(t)$ and $g(t)$ are low-pass and high-pass signals respectively (i.e., $f(t)$ and $g(t)$ are two real functions with nonoverlapping Fourier spectra and the spectrum of $f(t)$ is confined below the spectrum of $g(t))$, then

$$
\begin{equation*}
\mathrm{H}[\mathrm{f}(\mathrm{t}) \mathrm{g}(\mathrm{t})]=\mathrm{f}(\mathrm{t}) \mathrm{H}[\mathrm{~g}(\mathrm{t})] \tag{Eq. 67}
\end{equation*}
$$

where H is the Hilbert transform operator. In addition, we must recall that

$$
\begin{aligned}
\mathrm{H}\left[\sin \left(\omega_{c} t\right)\right] & =-\cos \left(\omega_{c} t\right) \\
\text { and } \quad H\left[\cos \left(\omega_{c} t\right)\right] & =\sin \left(\omega_{c} t\right)
\end{aligned}
$$

Using the trigonometric identities, Eq. 66 is expressed as

$$
s(t)=a(t)(\cos \phi(t)) \cos \omega_{c} t-a(t)(\sin \phi(t)) \sin \omega_{c} t
$$

Requiring that $a(t) \cos \phi(t)$ and $a(t) \sin \phi(t)$ be low-pass signals with bandwidths below ω_{c}, we obtain

$$
\begin{gathered}
\Delta(t)=a(t)\left[(\cos \phi(t)) \sin \omega_{c} t+(\sin \phi(t)) \cos \omega_{c} t\right] \\
\Delta \\
\Delta(t)=a(t) \sin \left(\omega_{c} t+\phi(t)\right)
\end{gathered}
$$

Eq. 68

The corresponding analytic signal is

$$
\begin{gathered}
z(t)=s(t)+j s(t) \\
z(t)=a(t)\left[\cos \left(\omega_{c} t+\phi(t)\right)+j \sin \left(\omega_{c} t+\phi(t)\right] \quad \text { Eq. } 69\right. \\
z(t)=a(t) e^{j \omega_{c} t+\phi(t)}
\end{gathered}
$$

Taking the magnitude of the above equation gives the desired result.

$$
|z(t)|=e(t)=a(t)
$$

For a general modulated signal in the form of Eq .66 , but with overlapping frequency spectra between the carrier and $a(t) \cos \phi(t)$ or $a(t) \sin \phi(t)$, the Hilbert transform of this signal is given by Rihaczek [80] as

$$
\stackrel{\Delta}{s}(t)=a(t) \sin \left(\omega_{c} t+\phi(t)\right)+K(t)
$$

Eq. 70
where the significance of the correction terms $K(t)$ diminish as the essential frequencies in $a(t)$ and $\phi(t)$ decrease compared to ω_{c}. It is clear from the above that the envelope of this signal derived from $z(t)$ is not equal to $a(t)$;
however, in most cases the error is reasonably small [90]. It is shown by Rubin and DiFranco [90], that for a wide-band signal defined by Eq. 66, the rms error between $z(t)$ and $a(t)$ is a function of the percent bandwidth, where the percent bandwidth is defined as 100% times the modulating signal bandwidth divided by f_{C}. For a Gaussian pulse envelope at 50% bandwidth, the error is approximately 2%. Envelope of the Murmur Signal. In this section it will be shown that the analytic signal can be used to find the intensity patterns of heart murmurs. When $s(t)$ is a wide-band signal with a bandwidth approximately equal to ω_{s}, the modulating signal $a(t)$ as defined by Eq. 66 loses its meaning [80]. However, the envelope $e(t)$ as defined by Eq. 63 can still be used to identify a slowly changing modulating signal. To demonstrate this, let $v(t)$ be a positivevalued, high-pass random Gaussian signal where the Fourier transform $V(f)=0$ for $500 \mathrm{~Hz} \leq|f| \leq 30 \mathrm{~Hz}$. We define the murmur signal $s(t)$ as the product of these two signals.

$$
s(t)=m(t) v(t)
$$

and the Hilbert transform of this product as defined by Eq. 67 is

$$
\stackrel{\Delta}{s}(t)=m(t) \stackrel{\Delta}{v}(t)
$$

and the corresponding analytic signal is
and

$$
\begin{gathered}
z(t)=m(t)(v(t)+j v(t)) \\
|z(t)|=e(t)=m(t)|v(t)+j v(t)| \quad \text { Eq. } 71
\end{gathered}
$$

Note that Eq. 71 is the product of two positive-valued functions. Since $v(t)$ is a bandwidth-limited random signal, the ensemble average of $e(t)$ will produce

$$
\mathrm{E}[\mathrm{e}(\mathrm{t})]=\mathrm{m}(\mathrm{t}) \mathrm{K}
$$

Eq. 72
where K is a constant approximately equal to one and therefore, the murmur intensity envelope shape is preserved in this analysis.

Computation of the Discrete Envelogram Estimate.
The discrete envelope of a phonocardiogram cycle, as defined by the equation given below, is referred to as the envelogram estimate.

$$
|\operatorname{IDFT}\{Z(k \Delta f)\}|=|\operatorname{IDFT}\{S(k \Delta f)(1+\operatorname{sgn}(k \Delta f))\}| E q \cdot 73
$$

where IDFT denotes the inverse discrete Fourier transform operation. The envelogram estimate is a high-resolution intensity plot of the phonocardiogram signal and is rapidly computed in the frequency domain using Eq. 73 and the FFT algorithm as outlined below.

1. Input the sample points of a phonocardiogram cycle to the real buffer of the FFT subroutine. The number of data points must be less than or equal to 1024.
2. Remove the DC bias introduced by the analog-todigital converter.
3. Divide each signal amplitude by the rms value of the calibration signal. This normalization
step removes microphone and other gain setting errors.
4. Compute the complex DFT spectrum as defined by Eq. 12 using an $N=1024$ fixed-1ength FFT algorithm. When the phonocardiogram cycle length is less than 1024, the additional buffer values are set equal to zero.
5. Set all negative frequency terms equal to zero (i.e., all terms for $512 \leq k \leq 1023$).
6. Multiply the positive frequency terms by 2 (i.e., all terms for $1 \leq k \leq 511$). Note that the $D C$ value $k=0$ remains unchanged.
7. Take the 1024 point inverse discrete Fourier transform using the FFT algorithm.
8. Compute the magnitude of the complex function obtained in Step 7 (i.e., for each integer, find the square root of the sum of squared real and squared imaginary components). The resulting real-valued function is the envelogram estimate of a phonocardiogram cycle.

A typical phonocardiogram cycle and its corresponding envelogram estimate are shown in Figs. 7 and 17. Note that the large, narrow-band wavelet (aortic ejection click) occurring at approximately $90-113 \mathrm{~ms}$. is demodulated and represented on the envelogram as a single pulse, where its value is equal to the intensity of the wavelet. Similarly, wavelets in the $350-440 \mathrm{~ms}$. time range (s_{2}) are demodulated

Fig. 17. Envelogram estimate of Fig. 7
and separated into four major components. The demodulation process resembles the absolute value function for the wideband random signals occurring in the $120-350 \mathrm{~ms}$. and $440-800$ ms. time ranges.

CHAPTER V

RESULTS

In this chapter a complete data set is described and the analysis results are presented in two parts. The first part contains averaged envelogram and phonocardiogram plots and their descriptions. These plots aid in the positive diagnosis of systolic heart diseases and condense the large volume of phonocardiogram time series data into a single display. The plots can be used for rapid identification and accurate timing of phonocardiogram events. It is demonstrated that the essential aortic identification signal features are preserved or enhanced in these displays.

In the second part, selected segments of aortic ejection murmurs are gated and an average power spectrum is computed. From this spectrum, quantitative murmur diagnosis parameters (first spectral moment and bandwidth) are defined and computed. For the thirteen catheterized patients, correlation studies between the calculated power spectrum parameters and the peak systolic ejection gradient (P.S.E.G. measured by catheterization) are presented. These studies indicate that good correlation exists between the first spectral moment and the P.S.E.G. and that this noninvasive technique is useful in assessing the severity of aortic stenosis.

DESCRIPTION OF THE PATIENT DATA SET

Fourteen catheterized and four clinically-diagnosed aortic stenosis patients were recorded for this study. One of the catheterized patients, Raymond S., Hosp. \#80-62-02, was later omitted from the analysis when post-operative diagnosis indicated that his disease was severe congenital deformation of the aorta rather than valvar aortic stenosis. A11 the catheterized patients had either mild or no aortic regurgitation. For the catheterized patients, the personal data, the diagnosis, the degree of aortic regurgitation (Aortic Regurg), and the peak systolic ejection gradient (P.S.E.G.), (obtained from Children's Hospital catheterization data charts) are tabulated in Table 8.

In addition, six normal patients were included in this study to facilitate the identification of aortic stenosis signal features. Personal data for the normal and clinically-diagnosed (uncatheterized) aortic stenosis patients are given in Table 9.

Prior to data recording, the chest wall thickness of each patient was classified as thin, medium, or thick, gauged by the following criteria: thin-walled if the ribs were clearly visible, medium-walled if the ribs were not distinguishable but had no appreciable fatty deposit, and thick-walled if the ribs were covered by a fatty layer. All of the patients included in the study had no chest deformities and all had normal body temperatures.

TABLE 8

THIRTEEN CATHETERIZED VALVAR AORTIC STENOSIS PATIENTS DATA

Personal Data				Catheterization Data		
Name	Hosp. \#	Age/Sex	Chest Wall	Cath. Diagnosis	Aortic Regurg.	$\begin{gathered} \text { P.S.E.G. } \\ \text { mm }{ }^{\text {Hg }} \end{gathered}$
Roger F.	47-99-27	16 M	Thick	Mod. V.A.S.	---	75
Tommy K.	63-77-80	10 M	Thin	Mild V.A.S.	---	9-18
Donald G.	62-12-80	10 M	Thin	Triv. V.A.S.	Mild	16
Natalie K.	70-89-05	8 F	Med.	Mild V.A.S.	Triv.	23
Bryan K.	60-91-88	14 M	Thin	Mild V.A.S.	---	39
Robert M.	53-91-59	19 M	Med.	Mild-Mod. V.A.S.	Mild	45
Elizabeth R.	55-01-61	12 F	Thin	Mod. V.A.S.	---	45
Rudolph B.	68-97-78	9 M	ThinMed.	Mod. V.A.S.	---	45
Richard F.	57-53-27	11 M	Med.	Mod. -Sev. V.A.S.	Mild	61-68
Jean S.	58-79-24	15 F	Med.	Mod. -Sev. V.A.S.	Mild	70-90
Mark M.	68-95-48	10 M	Thin	Triv. V.A.S.	Triv.	6-8
Jonathan F.	64-87-14	9 M	Thin	Triv. V.A.S.	Triv.	5-9
Barry F.	60-50-48	10 M	Med.	Mild V.A.S.	---	16-24

TABLE 9

PERSONAL DATA FOR NORMAL AND CLINICALLY DIAGNOSED VALVAR AORTIC STENOSIS PATIENTS

Clinically-Diagnosed Valvar Aortic Stenosis Patients						
Name	Hospital \#	Age	Sex	Chest Wall		
Edward D.	$57-03-63$	14	M	Thin		
John B.	$58-29-30$	9	M	Thick		
John R.	$66-12-34$	7	M	Med.		
Donald D.	$79-41-95$	15	M	Thin		

Normal Patients

Name	Hospital \#	Age	Sex	Chest Wa11
Kenneth S.	--	10	M	Thin
Sherry C.	--	13	F	Med.
Steven C.	--	10	M	Thin
Cameron C.	--	15	M	Med.
Lynne S.	--	13	F	Thin
She1don W.	--	10	M	Thin

ENSEMBLE-AVERAGED ENVELOGRAMS

As the initial step of the interactive diagnostic analysis, an ensemble-averaged envelogram was computed for each data file as defined below.

$$
\bar{e}(n \Delta t)=\frac{1}{N \cdot R E C} \sum_{i=1}^{N \cdot R E C} e_{i}(n \Delta t)
$$

where $N . R E C=$ Number of records averaged

$$
\begin{aligned}
\mathrm{e}_{\mathrm{i}}(\mathrm{n} \Delta \mathrm{t})= & \text { value of the } i^{\text {th }} \text { envelogram } \\
& \text { estimate at time } n \Delta t
\end{aligned}
$$

and $\bar{e}(n \Delta t)=$ value of the averaged envelogram at time $n \Delta t$.

The computed ensemble-averaged envelograms were plotted on the graphics terminal and hard copies were generated. The plots were examined and the maximum murmur intensity site was noted. For nearly all of the aortic stenosis patients studied, the maximum intensity site was at the 2nd R.I. space. The interactive diagnosis program and its description are given in Appendix II.

Ensemble-averaged envelogram plots at the 2 nd R.I. for inspiration and expiration are shown in Figs. 18 and 19. A comparison of Figs. 17 and 18 reveals that in the averaged envelogram, "fine wavelet structures" are preserved while murmur intensity variance is reduced by approximately a factor of three. Note that good correlation exists between Figs. 18 and 19 in the 113-177 ms. time interval.

Fig. 18. Averaged V.A.S. envelogram for inspiration

Fig. 19. Averaged V.A.S. envelogram for expiration

Consequently, these peaks are probably not produced by random intensity fluctuations, but are more likely produced by murmur amplitude modulation. This interpretation is supported by the following observations: (1) the pressure fluctuations (trill) occur in the carotid pulse waveform during the 113-177 ms. time interval as shown in Fig. 20 and correlate with the intensity fluctuation observed in their corresponding envelogram, and (2) the gated averaged power spectrum of this region does not contain strong line structures, indicating that the signal is random.

The large intensity increase in the $89-113 \mathrm{~ms}$. range shown in Fig. 18 is identified as an aortic ejection click. Identification is based on the following observations:

1. It correlates well with the upstroke of the carotid pulse.
2. Maximum intensity occurs at the 2nd R.I.
3. Intensity and onset time of the event are not affected by respiration.

Observation 1 suggests that the intensity increase is an ejection click, where 2 and 3 suggest aortic origin.

The intensity change in the $358-448 \mathrm{~ms}$. range shown in Fig. 18 is identified as the aortic component of the second heart sound. Identification is supported by the following observations:

1. It radiates well to all four listening areas, particularly to the 2 nd R.I. and to the apex.

Fig. 20. A typical V.A.S. carotid pulse
2. The entire wavelet occurs earlier upon inspiration than upon expiration.

The intensity increase in the $130-358 \mathrm{~ms}$. range shown in Fig. 18 is identified as an aortic ejection murmur. Its timing and diamond shape imply that the murmur is ejection type and its maximum intensity location suggests aortic origin.

ENSEMBLE-AVERAGED WAVELETS

Heart sounds and murmurs are identified and accurately timed from the averaged envelogram plots. Knowing the time of occurrence, wavelets of special interest can be gated and an ensemble-averaged wavelet (averaged signal waveform) can be computed as defined by the equation given below.

$$
\bar{s}(n \Delta t)=\frac{1}{N \cdot R E C} \sum_{i=1}^{N \cdot R E C} s_{i}(n \Delta t)
$$

$$
\begin{aligned}
\text { where } s_{i}(n \Delta t)= & \text { signal intensity of } i^{\text {th }} \text { estimate at } \\
& \text { time } n \Delta t \\
\text { and } \bar{s}(n \Delta t)= & \text { averaged signal intensity at time } n \Delta t .
\end{aligned}
$$

As pointed out in Chapter III, wavelets within an equivalent ensemble are highly reproducible in both time and waveshape. The approximate onset time jitter of wavelets is 4 ms . measured from the ECG Q wave while the difference in mean onset time from inspiration to expiration is approximately 16 ms . In addition, waveshapes of the aortic wavelets (i.e., aortic ejection $c 1 i c k$ and A_{2}) are
independent of respiration. The onset time jitter of an aortic wavelet can be removed by searching for and locating a particular signal feature (local maximum or minimum) within a narrow time window. Thus, wavelets can be aligned prior to averaging.

Aligned averaging is equivalent to time domain filtering where superimposed signals can be separated, and reliable average wavelet waveforms can be obtained. When two wavelets with similar frequency characteristics have nearly identical onset times, large segments of their waveforms are superimposed. Due to overlapping frequency components, separation by frequency filtering is not possible. Examples of such events are the aortic-pulmonic components of the second heart sound and the first heart sound ejection click. The onset time jitter of these wavelets tends to be independent, since they are generated by different physical events. Alignment of the early event and ensemble averaging cause enhancement of the early component and suppression of the later event. This effect is shown in Figs. 21 and 22. A typical, single, normal second heart sound of Sherry C., consisting of aortic (373-400 ms.) and pulmonic (406-430 ms.) components is shown in Fig. 21, with the aligned and averaged aortic wavelet shown in Fig. 22. Prior to averaging, alignment was performed on the aortic component. Note that in Fig. 22 the pulmonic component (second wavelet) is suppressed, while the aortic component is preserved.

Fig. 21. A typical normal second heart sound

Fig. 22. The aligned averaged aortic component of Fig. 21

Similarly, aligned averaging can be used to separate wavelets (e.g., mid and late systolic clicks, ejection clicks, etc.) from superimposed random signals (e.g., murmurs). To demonstrate this, a 100 ms . time segment containing the click of Edward D. is gated, and the alignedaveraged time waveform is computed. Note that a highfrequency component is evident in the single record (95-117 ms.), Fig. 23, but that an additional low-frequency component observed in the averaged plot (115-135 ms.), Fig. 24, is obscured by the murmur.

Estimating The severity of aortic stenosis
USING MURMUR POWER SPECTRAL ANALYSIS

As the first step of the severity assessment analysis, averaged envelogram plots at the 2 nd R.I. space are examined, and a 100 ms . "rectangular data window" is chosen centered around the peak intensity of the systolic ejection murmur. Since the duration of the systole is usually $300-400 \mathrm{~ms}$., this data window encompasses approximately one-third of the murmur signal. During this time interval the murmur is at a reasonably constant intensity and is approximated as a stationary random process. In addition, this data window is sufficiently delayed from the first heart sound and the ejection click; consequently, these signals contribute a negligible amount to the total signal intensity. Using the selected data window, the required murmur signals are gated at the 2nd R.I. and an averaged power spectrum is computed.

Fig. 23. A typical aortic ejection click

Fig. 24. A typical aligned averaged aortic ejection click

The averaged murmur power spectrum of Edward D., computed from inspiration and expiration data files as described in Chapter IV, is shown in Fig. 25. The spectral resolution provided by the rectangular data window (computed by Eq. 55) is 15 Hz . The confidence interval of the averaged spectrum (computed by Eq. 53) at $Z=1(68.27 \%$ confidence level) is $\pm .16 \overline{\mathrm{~B}}(\mathrm{f})$. Comparison of the averaged murmur power spectrum (Fig. 25) with a spectral estimate (Fig. 16), reveals that the estimate is inherently random and unreproducible, while the averaged spectrum obtained from twenty-four estimates converges to a spectral shape which appears to contain four major peaks.

For each averaged power spectrum, the first spectral moment $\overline{\mathrm{f}}$ (AVE. FRQ.) and the spectrum bandwidths ($\%$) at 10% area increments are computed. The first spectral moment $\overline{\mathrm{f}}$ is defined by the equation given below,

$$
\overline{\mathrm{f}}=\frac{\sum_{k=0}^{511}(k \Delta f) \overline{\mathrm{P}}(k \Delta f)}{\sum_{k=0}^{511} \bar{P}(k \Delta f)}
$$

where $\bar{P}(k \Delta f)=$ average $k^{\text {th }}$ spectral component

$$
\bar{P}(k \Delta f)=\frac{1}{N \cdot R E C} \sum_{i=1}^{N \cdot R E C} P_{i}(k \Delta f)
$$

$$
\Delta f=1.2207 \mathrm{~Hz}
$$

and N. REC $=$ number of records averaged

Fig. 25. A typical averaged V.A.S. murmur power spectrum
and the spectrum bandwidth is defined as the frequency increment centered about \bar{f}, which includes a specified fraction of the total spectral area. These parameters. calculated at the 2 nd R.I. from inspiration, expiration and carotid data files for Natalie K., are given in Table 10. Note that in addition, the table contains the maximum spectral magnitude times $10^{4}(\mathrm{M} . \mathrm{M} * 10 \mathrm{~K})$, the frequency of the maximun magnitude (FM.MAG), the total area of the spectrum times 100 (AREA100), the number of records averaged (N.REC), the analysis performed (ANAL), and the start and end times for the spectral window (S.TIM \& E.TIM). The severity analysis computer programs and their descriptions are given in Appendix II.

The murmur power spectrum analysis results, along with the personal and catheterization data for the thirteen catheterized aortic stenosis patients, are summarized in Table 11. These results were obtained at the 2 nd R.I. from inspiration, expiration, and carotid data files as described above. The table contains the first spectral moment (\bar{f}), the estimated standard deviation of the first moment ($\sigma_{\dot{f}}$), the spectral bandwidth at 50% total area $(50 \% \mathrm{~F})$, the total number of records averaged (N.REC), and the murmur signal-to-diastolic-noise ratio (S / N) . The signal-to-noise ratio was estimated from the averaged envelogram plots, where the peak murmur intensity is defined as the signal (S) and the mean intensity in the diastole is defined as the noise (N): The analysis for $\sigma_{\bar{f}}$ is given in Appendix II.

TABLE 10

BANDWIDTH AND FIRST MOMENT OF MEAN POWER SPECTRUM COMPUTED FROM INSPIRATION, EXPIRATION AND

CAROTID DATA FILES AT 2ND. R.I.

TABLE 11

SUMMARY OF MURMUR SPECTRUM ANALYSIS AT 2ND. R.I. FOR THE CATH. V.A.S. PATIENTS

Cath. and Personal Data				Phonocardiogram Data				
Name	Hosp. \#	Chest Wall	$\begin{gathered} \text { P.S.E.G. } \\ \mathrm{mm} \mathrm{Hg} \end{gathered}$	$\text { In }^{\bar{f}} \mathrm{~Hz}$	$\mathrm{In}^{\circ} \mathrm{Hz}$	$\begin{aligned} & 50 \% \mathrm{~F} \\ & \text { In } \mathrm{Hz} \end{aligned}$	N.Rec.	S/N
Roger F.	47-99-27	Thick	75	134.98	1.52	100.1	54	20
Tommy K.	63-77-80	Thin	9-18	85.79	2.26	78.1	32	10
Donald G.	62-12-80	Thin	16	89.70	2.00	61.0	40	11
Natalie K.	70-89-05	Med.	23	124.53	1.48	35.2	60	10
Bryan K.	60-91-88	Thin	39	127.97	1.62	73.2	49	15
Robert M.	53-91-59	Med.	42-45	124.53	1.58	90.3	53	12
Elizabeth R.	55-01-61	Thin	45	147.77	1.54	80.6	48	26
Rudolph B.	68-97-78	Thin-	45	142.86	1.43	97.7	58	12
Richard F.	57-53-27	Med.	61-68	168.56	1.38	78.1	54	24
Jean S.	58-79-24	Med.	70-90	201.84	1.70	68.4	30	13
Mark M.	68-95-48	Thin	6-8	95.89	1.71	78.1	53	10
Jonathan F.	64-87-14	Thin	5-9	93.12	2.06	36.6	37	11
Barry F.	60-50-48	Med.	16-24	104.15	2.08	56.2	34	10

The correlation coefficient between the peak systolic ejection gradient (P.S.E.G.) and the 50% bandwidth is equal to .32. Calculations are given in Table l,AII. The correlation coefficient between the P.S.E.G. and the first moment of the mean power spectrum based on all thirteen subjects is . 89 and the corresponding scatter diagram is given in Fig. 26. Careful examination reveals that a single point belonging to Roger F., Hosp. \#47-99-27, exhibits a lower frequency moment than expected. Since this patient was the only one with a thick chest wall, the observed spectral moment difference may possibly be due to the increased chest wall thickness. The correlation coefficient between the P.S.E.G. and the first moment of the mean power spectrum $\overline{\mathrm{f}}$ based on the twelve thin-medium chest walled patients is .96. The corresponding least square regression line calculated for the twelve points is shown in Fig. 26. Calculations are given in Table 2 ,AII.

To investigate the affect of respiration on the correlation between P.S.E.G. and \bar{f}, separate power spectral moments for inspiration and expiration were also computed. The corresponding calculations are given in Tables 3,AII and 4,AII. The resulting correlation coefficients for the twelve thin-medium chest walled patients were .95 for inspiration and . 96 for expiration. Results of the correlation studies are summarized in Table 12.

Fig. 26. Scatter diagram for the catheterized V.A.S. patients at the 2 nd. R.I. for inspiration + expiration + carotid data

SUMMARY OF CORRELATION STUDY BETWEEN P.S.E.G. AND MEAN MURMUR POWER SPECTRUM PARAMETERS, CALCULATED AT THE 2ND. R.I. FOR THE CATH. V.A.S. PATIENTS

Chest Wall Thickness and Data Files Av. at 2nd. R.I.	Corr. Coeff. between P.S.E.G./焐	$\begin{gathered} \text { Corr. Coeff. } \\ \text { between } \\ \text { P.S.E.G./50\% F } \end{gathered}$
$\begin{aligned} & \text { For } 1 \text { Thick + } 12 \text { (Med.-Thin) } \\ & \text { Inspir. + Expir. + Car. } \end{aligned}$. 89	---
$\begin{aligned} & \text { For } 12 \text { (Thin-Med.) } \\ & \text { Inspir. + Expir. + Car. } \end{aligned}$. 96	. 32
For 12 (Thin-Med.) Inspir.	. 95	---
For 12 (Thin-Med.) Expir.	. 96	--

CHAPTER VI

DISCUSSION OF RESULTS

ADVANTAGES OF ENSEMBLE AVERAGING

As pointed out earlier in Chapter IV, the envelogram and power spectral estimates derived from a single phonocardiogram cycle are statistically unreliable and consequently, are unsuitable for the positive identification of phonocardiogram signal features. In Chapter V ensemble averaging of estimates was introduced to reduce the variance and the averaged plots were interpreted. Ensemble averaging of estimates offers the following advantages:

1. Reduces the variance of power spectral and envelogram estimates by approximately a factor of $\sqrt{\mathrm{N}}$. Ensemble averaging is particularly required to smooth power spectra and to obtain consistent severity estimates.
2. Improves the detection sensitivity and timing of heart murmurs in the envelograms by approximately a factor of $\sqrt{\mathrm{N}}$.
3. Unsynchronized respiratory and other external noise events are approximately evenly distributed and appear as a constant bias in the averaged envelograms.

The murmur detection sensitivity of ensemble-averaged envelograms was clearly demonstrated in the case of a normal patient, Lynne S., where prior to recording, no systolic murmur was detected by a cardiologist using auscultation techniques. However, the averaged envelogram computed from fourteen equivalent cardiocycles indicated a late systolic murmur of a grade 1-2 level, and was later confirmed by a second careful ausculatory examination. The high murmur detection sensitivity makes this technique particularly attractive in the assessment and study of mild regurgitanttype murmurs which occur in mild prolapsed mitral valves and in mild aortic and pulmonic insufficiency.

Unsynchronized noise smoothing (advantage 3) is especially uscful in the detection of mild heart murmurs in infants and young children. The detection of these murmurs is, at best, difficult with the usual ausculatory and phonocardiogram techniques due to large respiratory and body background noise.

DISCUSSION OF V.A.S. SEVERITY ESTIMA'TES

The accurate noninvasive assessment of the severity of valvar aortic stenosis is an important clinical problem, and presently, is possible only by cardiac catheterization (an invasive surgical procedure which requires three days of hospital care). In contrast, the severity estimation procedure outlined in Chapter V is a completely noninvasive
technique where the measurements and data analysis are performed within minutes. For this technique to gain wide acceptance in clinical cardiology, it is suggested that it first be employed to follow the case history of catheterized valvar aortic stenosis patients, thus eliminating additional catheterizations while increasing the cardiologist's confidence in the technique.

Estimating the severity of valvar aortic stenosis from the murmur power spectrum has been tried unsuccessfully by several investigators, notably by Jacobs et al. and McKusick $[17,56]$. The basic difference between the technique employed by these investigators and that presented in Chapter V is as follows. The estimation parameters for the former were obtained from a power spectral estimate computed from a single murmur signal, while for the latter, these parameters were computed from an averaged power spectrum computed from 30-50 murmur signals. The accurate severity estimation of valvar aortic stenosis is made possible by the ensemble averaging of spectral cstimates.

For the twelve thin-medium chest walled patients discussed earlier in Chapter V, excellent correlation exists between the peak systolic ejection gradient and the first spectral moment of the mean murmur spectrum. The correlation can be clearly observed from the scattering diagram, Fig. 26, and from Table 12. These results, however, do not appear to apply to thick chest walled patients where additional fatty deposits can produce high-frequency attenuation.

This observation is implied by the lower f of the single thick chest walled patient, Roger F.

The linear least square regression line fitted to the twelve thin-medium chest walled patients shown in Fig. 26 was used to estimate the severity of the four clinicallydiagnosed V.A.S. patients. The corresponding predicted peak systolic ejection gradients are tabulated with other pertinent data in Table 13. From the calculations these patients are classified as having mild to moderate valvar aortic stenosis.

During the severity estimation it may be well remembered that while Fig. 26 can be used to estimate the severity of thin-medium chest walled patients, prior to the use of this plot the diagnosis of valvar aortic stenosis must be established as outlined in Chapter V.

SUGGESTIONS FOR FURTIIER STUDY

A significant improvement in the positive diagnosis of heart disease by phonocardiogram signals can be made if echo phonocardiograms were to be included as an extra time series data channel in this analysis. This signal could be used to improve the timing of the aortic ejection click and could possibly be used to measure chest wall thickness between the listening site and the aortic valve cusps. The measured chest wall thickness could in turn be incorporated
to improve severity estimates and to extend the correlation results to include thick chest walled patients.

The envelogram and power spectral analysis techniques employed in this study could be adopted in a computerized phonocardiogram diagnostic system.

PREDICTED MEAN P.S.E.G. AND STANDARD DEVIATION FOR THE CLINICALLY idagnosed valvar aortic stenosis patients

Name	Hosp. \#	Chest Wall	N. Rec.	S/N	$\begin{gathered} \sigma_{\overline{\mathrm{f}}} \\ \text { In } \mathrm{Hz} \end{gathered}$	$\operatorname{In~}^{\bar{f}} \mathrm{~Hz}$	Predicted Mean P.S.E.G. In Hg mm	Predicted ${ }^{\sigma}$ P.S.E.G. In Hg mm
Edward D.	57-03-63	Thin	31	15	1.98	138.8	42	1.25
John B.	58-29-30	Thick	54	14	1.47	147.1	> 47	---
John R.	66-12-34	Med.	38	8	2.0	100.8	18	1.26
Donald D.	79-41-95	Thin	40	8	1.85	117.5	28	1.17

1. Rushmer, R. F., Cardiovascular Dynamics, 3rd Ed., W. B. Saunders Co., Philadelphia, 1970.
2. Attinger, E. O., "The Cardiovascular System" in Pulsatile Blood Flow, McGraw-Hill, New York, 1964.
3. Attinger, E. O., Pulsatile Blood Flow, McGraw-Hill, New York, 1964.
4. Watts, R. N., "A Mathematical Model for Studying the Mechanical Properties of the Impaired Left Ventricle", Ph.D. Dissertation, Rutgers Univ., New Brunswick, N. J., Jan., 1974.
5. Bellhouse, B. J. and Bellhouse, F. H., 'Mechanism of Closure of the Aortic Valve", Nature, Vol. 217, Jan., 1968.
6. Bellhouse, B. J. and Bellhouse, F. H., "Fluid Mechanics of the Aortic Root with Application to Coronary Flow', Nature, Vo1. 219, Sept., 1968.
7. Bellhouse, B. J. and Talbot, L., "The Fluid Mechanics of the Aortic Valve", J. Fluid Mech., Vol. 35, Part 4, 1969.
8. Bellhouse, B. J., Phil, D., and Bellhouse, F., "Fluid Mechanics of Model Normal and Stenosed Aortic Valves", Circ. Res., Vol. XXV, Dec., 1969.
9. Klatte, E. D., Tapas, J. P., Campbe11, J. A., and Lurie, P. R., "The Roentgenographic Manifestation of Aortic Stenosis and Aortic Valvular Insufficiency", Amer. J. Roent., Vol. 88, 1962.
10. Braunwald, E. and Friedman, W. F., "Aortic Stenosis" in Paediatric Cardiology, Ed. by Nadas, A., Saunder, Philadelphia, 1963.
11. Private Communication with Roberta Williams, M.D.
12. Blackman, J. R. and Murray, John A., 'Valvular Heart Disease" in Cardiovascular Dynamics, 3rd Ed., W. B. Saunders Co., Philadelphia, 1970.
13. Whittaker, A. V., Shaver, J. A., Gray, S., III, and Leonard, J. J., "Sound-Pressure Correlates of the Aortic Ejection Sound, An Interactive Sound Study", Circ., Vol. XXXIX, April, 1969.
14. Brackenbrough, E. C., Braunwald, E., and Ross, J., "Transseptal Left Heart Catheterization", Circ., Vo1. 25, 1962.
15. Seldinger, S. I., "Catheter Replacement of the Needle in Percutaneous Arteriography", Acta. Radiol., Vol. $39,1953$.
16. Gorlin, R., and Gorlin, S. G., "Hydraulic Formula for Calculation of the Area of the Stenotic Mitral Valve, Other Cardiac Valves, and Central Circulatory Shunts", Amer. Heart J., Vo1. 41, 1951.
17. Jacobs, J. E., Horikoshi, Kazuo, and Petrovick, M. A., "Feasibility of Automated Analysis of Phonocardiograms", J. Audio Engin. Soc., Vol. 17, Jan., 1969.
18. Rushmer, R. F., Morgan, C. L., and Harding, D. D., "Electronic Aids to Auscultation", Med. Res. Engin., Vol. 7, No. 4, 1968.
19. Holford, F. D., Dartmouth Med. School, Classroom Notes on Heart Sounds and Murmurs.
20. Shah, P. M., Mori, M., MacCanon, D. M. and Luisada, A. A., 'Hemoeynamic Correlates of the Various Components of the First Heart Sound", Circ., Res., Vo1. 12, 1963.
21. Tave1, M. E., Clinical Phonocardiography and External Pulse Recording, 2nd Ed., Year Book Medical Publisher, Inc., Chicago, 1972.
22. MacCanon, E. M., Arevalo, F. and Meyer, E. C., "Direct Detection and Timing of Aortic Valve Closure", Circ. Res., Vol. 14, 1964.
23. Piemme, T. E., Barnett, G. O., and Dexter, L., "Relationship of Heart Sounds to Acceleration of Blood Flow', Circ. Res., Vol. 18, March, 1966.
24. Kusukawa, R., Bruce, D. W., Sakamoto, T., MacCanon, D. M., and Luisade, A. A., 'Hemodynamic Determinants of the Amplitude of the Second Heart Sound", J. Appl. Physiol., Vol. 21, 1966.
25. Sakamoto, T., Kusukawa, R., MacCanon, D. M., and Luisade, A. A., Hemodynamic Determinants of the Amplitude of the First Heart Sound", Circ. Res., Vol. 16, Jan., 1965.
26. Hultgren, H. N., Reeve, R., Cohn, K., and Mcleod, R., "The Ejection Click of Valvular Pulmonic Stenosis", Circ. Res., Vol. XL, Nov., 1969.
27. Epstein, E. J., Criley, J. M., Raftery, E. B., Humphries, J. O'Neal, and Ross, R. S., "Cineradiographic Studies of the Early Systolic Click in Aortic Valve Stenosis", Circ. Res., Vol. 31, June, 1965.
28. "The Normal Heart", Clinical Educational Aid, No. 7, Ross Laboratories, Columbus, Ohio.
29. Thorek, P., Anatomy in Surgery, J. B. Lippincott Co., Philadelphia, 1962.
30. Spencer, M., and Edmunds, L. H., Jr., 'Evaluation of Operative Left Ventricular Outflow Tract Lesions with a Fluid Impedance Plot', Circ. Res., Vol. 37, 1968.
31. Kennedy, J. W., Twiss, R. D., B1ackman, J. R. and Dodge, H. T., "Quantitative Angiocardiography III: Relationships of Left Ventricular Pressure, Volume, and Mass in Aortic Valve Disease", Circ. Res., Vol. 38, 1968.
32. Morrow, A. G., Roberts, W. C., Ross, J. Jr., Fisher, R. D., Behrendt, D. M., Mason, D. T., and Braunwald, E., "Obstruction of Left Ventricular Outflow', Ann. Intern. Med., Vo1. 69, 1968.
33. Rappaport, M. B. and Sprague, H. B., "The Graphic Registration of the Normal Heart Sounds", Am. Heart J., Vol. 23, 1942.
34. Leatham, A., Phonocardiology, Brit. M. Bull., Vol. 8, 1952.
35. Bache, R. J., Wang, Y., and Greenfield, J. C., Jr., "Left Ventricular Ejection Time in Valvar Aortic Stenosis", Circ. Res., Vo1. XLVII, March, 1973.
36. Caseres, C. A., The Innocent Murmur, Little, Brown and Co., Boston, 1967.
37. Rushmer, R. F., and Morgan, C., 'Meaning of Murmurs", Amer. J. Cardiol., Vol. 21, May, 1968.
38. Dock, W., "The Forces Needed to Evoke Sounds from Cardiac Tissues and the Attenuation of Heart Sounds", Circ. Res., Vo1. XIX, March 1959.
39. Bruns, D. L., 'A General Theory of the Causes of Murmurs in the Cardiovascular System", Amer. J. Med., Sept., 1959.
40. Meismer, J. E., and Rushmer, R. F., "Production of Sounds in Distensible Tubes", Circ. Res., Vol. 12, 1963.
41. Frueham, C. T., "On the Aeolian Theory of Cardiovascular Murmur Generation", New Physician, Vol. 11, 1962.
42. Lighthil1, M. J., "On Sound Generated Aerodynamically II: Turbulence as a Source of Sound", Proc. Royal Soc., London, A222, 1954.
43. Yellin, E. L., "Hydraulic Noise in Submerged and Bounded Liquid Jets", Biomed. Flujd Mech. Sym., Denver, April, 1966.
44. Von Gierke, H. E., "Transmission of Vibratory Energy Through Human Body Tissue", Proc. First Natl. Biophy. Conf., Columbus, March, 1957.
45. Faber, J., Job, M. B. and Burton, A. C., "Biophysics of Heart Sounds and Its Application to Clinical Auscultation', Canac. Med. Assn. J., July, 1964.
46. Faber, J. J. and Purvis, J. H., "Conduction of Cardiovascular Sound Along Arteries", Circ. Res., Vol. 12, March, 1963.
47. Faber, J. J., and Burton, A., "Spread of Heart Sounds Over Chest Wall", Circ. Res., Vol. 11, July, 1962.
48. Faber, J. J., "Damping of Sound on the Chest Surface", Circ. Res., Vol. 13, Oct., 1963.
49. Zalter, R., Hardy, H. C. and Luisada, A. A., "Acoustic Transmission Characteristics of the Thorax", App1. Physiol., Vo1. 18, 1963.
50. Bergel, D. H., "The Dynamic Elastic Properties of the Arterial Wall', J. Physiol., 156, 1961.
51. Burton, A. C., Physiology and Biophysics of the Circulation, Year Book Med. Pub., Inc., Chicago, 1965.
52. Takagi, S., Yoshimura, S. and Okamura, T., "Transmission Problems of Sounds from Heart to Phonograph", 8th ICMBE, Chicago, July, 1969.
53. Anliker, M., Histand, M. B. and Ogden, E., 'Dispersion and Attenuation of Small Artificial Pressure Waves in the Canine Aorta", Circ. Res., Vol. 23, Oct., 1968.
54. Levine, M. D., "Feature Extraction: A Survey", Proceedings of IEEE, Vo1. 57, No. 8, August, 1969.
55. McKusick, V. A., Murry, G. E., Peeler, R. G. and Webb, G. H., "Musical Cardiovascular Murmurs", Bu11. Hopkins Hosp., Vo1. 97, 1955.
56. McKusick, V. A., "Spectra Phonocardiography", Am. J. Cardio., Vo1. 4, 1959.
57. Remington, R. D., "Editorial: Statistics", Circ. Res., Vol. 39, April, 1969.
58. Gold, B. and Rader, C. M., Digital Processing of Signals, McGraw-Hill, New York, 1969.
59. Cooley, J. W. and Tukey, J. W., "An Algorithm for the Machine Calculation of Complex Fourier Series", Math. Comp., Vol. 19, April, 1965.
60. Bergland, G. D., "A Guided Tour of the Fast Fourier Transform", IEEE Spectrum, July, 1969.
61. Brigham, E. O. and Morrow, R. E., "The Fast Fourier Transform", IEEE Spectrum, December 1967.
62. Cochram, W., Cooley, J. W., Favin, D. L., Helms, H.D., Kaenel, R. A., Lang, W. W., Maling, G. C., Jr., Ne1son, D. E., Rader, C. M., and Welch, P. D., "What is the Fast Fourier Transform?" IEEE Trans. on Audio ε Electroacoustics, Vol. AU-15, No. 2, June, 1967.
63. Cooley, J. W., Lewis, P. A. W., and Welch, P. D., "Application of the Fast Fourier Transform to Computation of Fourier Integrals, Fourier Series, and Convolution Integrals", IEEE Trans. on Audio \& Electroacoustics, Vol. AU-15, No. 2, June, 1967.
64. Ragazzini, J. R. and Frank1in, G. F., Sampled-Data Control Systems, McGraw-Hill, New York, 1958.
65. Goldman, S., Information Theory, Dover Publications, Inc., New York, 1953.
66. Papoulis, A., The Fourier Integral and Its Applications, McGraw-Hill, New York, 1962.
67. Jenkins, G. M. and Watts, D. G., Spectra Analysis and Its Applications, Holden-Day, Inc., San Francisco, 1968.
68. Davenport, W. B., Jr., and Root, W. L., An Introduction to the Theory of Random Signals and Noise, McGraw-Hiil, New York, 1958.
69. Blackman, R. B. and Tukey, J. W., The Measurement of Power Spectra, Dover Publications, New York, 1962.
70. Papoulis, A., Probability, Random Variables, and Stochastic Processes, McGraw-Hill, New York, 1965.
71. Richards, P. I., "Computing Reliable Power Spectra", IEEE Spectrum, January, 1967.
72. Bingham, C., Godfrey, M. D. and Tukey, J. W., "Modern Techniques of Power Spectrum Estimation", IEEE Trans. on Audio and Electroacoustics, Vol. AU-15, No. 2, June, 1967.
73. ،Bennett, W. R., Introduction to Signal Transmission, McGraw-Hill, New York, 1970.
74. Singleton, R. C. and Poulter, T. C., "Spectral Analysis of the Call of the Male Killer Whale", IEEE Trans. on Audio and Electroacoustics, Vol. AU-15, No. 2, June, 1967.
75. Rabiner, L. R. and Rader, C. M., Ed., Digital Signal Processing, IEEE Press, New York, 1972.
76. He1ms, H. D. and Rabiner, L. R., Ed., Literature in Digital Signal Processing: Terminology and Permuted Title Index, IEEE Press, New York, 1972.
77. 'Technical Report on Recommended Practices for Burst Measurements in the Frequency Domain', IEEE Trans. on Audio and Electroacoustics, Vo1. AU-15, No. 1, March, 1967.
78. Beers, Y., Introduction to the Theory of Error, AddisonWesley, Palo A1to, 1957.
79. Spiege1, M. R., Theory and Problems of Statistics, Schaum's Outline Series, McGraw-Hill, New York, 1961.
80. Rihaczek, A. W., Principles of High-Resolution Radar, McGraw-Hill, New York, 1969.
81. Bartlett, M. S., An Introduction to Stochastic Processes with Special Reference to Methods and Applications, Cambridge University Press, Cambridge, 1953.
82. Cambron, T. M., "Pattern Recognition Applied to Phonocardiogram Diagnosis", Ph.D. Thesis, Department of Electrical Engineering, University of South Carolina, 1971.
83. Vocker, M. C., "An Adaptive Method of Epoch Location for Repetitive Signals", Ph.D. Thesis, Department of Electrical Engineering, University of Iowa, 1971.
84. Stephens, J., "The Diagnostic Value of a Frequency Analysis of the Isovolumic Phase of the First Heart Sound", Ph.D. Thesis, Department of Electrical Engineering, University of Cincinnati, 1969.
85. Perry, L. W., Sherman, D., Winer, D. E., Weihrer, A. L., Hodgson, D., and Caceres, C. A., "Computer Analysis of the Phonocardiogram", in Engineering in the Practice of Medicine, Williams and Wilkins Co., Baltimore, 1967.
86. Frome, E. L., and Frederickson, E. L., 'Digita1 Spectrum Analysis of the First and Second Heart Sounds", Computer and Biomedical Research, Vol. 7, pp. 421-431, 1974.
87. Gerbarg, S. D., Taranta, A., Spagnuolo, M., and Hotlev, J. J., "Computer Analysis of Phonocardiograms", Progress in Cardiovas. Disease, Vol. 5, No. 4, Jan., 1963.
88. Townes, W. H., Bosers, M. J. and Braun, A. H., "Characteristics of Innocent and Stenotic Cervical Bruits', Amer. Heart J., Vol. 79, No. 6, June, 1970.
89. Schroeder, M.R., Flanagan, J. L., and Lundry, E. A., "Bandwidth Compression of Speech by AnalyticSignal Rooting", Proceedings of IEEE, Vol. 55, No. 3, March, 1967.
90. Rubin, W. L., and DiFranco, J. V., "Analytic Representation of Wide-band Radio Frequency Signals", J. Franklin Inst., Vol. 275, pp. 197-204, 1963.

APPENDIX I

Fig. 1,AI. Microphone placement on the chest

Fig. 2, AI. Amplitude response curve of a type 53616 microphone

TABLE 1, AI

ACOUSTICAL COMPARISON OF MICROPHONE 2 VERSUS MICROPHONE 1

Frequency of Tone Generator	Relative Error* of Mic. 2 vs. Mic. 1
125 Hz	-19.1%
250 Hz	-6.15%
500 Hz	0.0%
1000 Hz	-10.8%
2000 Hz	$+19.2 \%$

*The relative error of microphone $2 E_{2}(f)$ is defined as

$$
E_{2}(f)=\left(\frac{\bar{R}_{2}(f)-\bar{R}_{1}(f)}{\bar{R}_{1}(f)}\right) 100 \%
$$

where $\bar{R}_{i}(f)=\frac{R_{i}(f)}{R_{i}(500)}=$ Normalized voltage response of microphone 1 to a constant intensity acoustical source. Reference response is chosen at 500 Hz .

TABLE 2,AI

PATIENT HEADER FORMAT

```
Name/Hosp.# :
Exam Date :
Diagnosis :
Sex :
Age :
Chest Wall :
Chest Deformity:
Fever :
Catheter Data Available ?:
Analog Tape #, Record # :
Comments on Analog Tape :
Pass 1 Conversion Date :
Next File:
```

Phono 1:
ECG Lead:

Phono 2:
Pulse/Resp:

TABLE 3,AI

DATA HEADER FORMAT

Name/Hosp. \#:
Next File:
Phono 1: Phono 2:
ECG Lead:
Pulse/Resp:

```
    1 *
    2 % MOD1G
    3 * ANALOG FEAN EINARI DUMMF
    4* A. SARKADYY 4/8/73
    5 TEM1 =MODUL. 4 COUNT INI VAL. =077777
    & * TEM2%MO[ML S200 [OUNTER INT VAL. =071600
    7 FIB= STAR AMM DF IN EIJF
    * FZZF =STAR AMM OF DUT BINF
    * B REG=ADD OF SDUND DATA
    # EIGHT M. S.E. = FHONO 1
    * EIGHT I.S.E. = PHONG 2
* XEGG = ADD IIF FULSE AND E. I. G. DATA INI = 01OG4O
* FIGHT M. S. E. = FULSF DATA
* ETGHT L.. S. E. =E. E. G TIATA
* SEN SW1 UF =STOF AND COINT WITH READ WHEN DOWN
* SEN SWZ UF=STOF AND FULLL FILE IAF'
17 %
1S # INIT TEM1, TEMZ, DTEM, ITEM, XFEG, BFEG, ETG
1% 4
20 *
21 #
22 NAME ANAL.
23 #
24 *
% FIS EXT
Z6 FZB EXT
2 7
2G ANAL ENTR
2% STX SAVX
30 STE SAVE
31 ENT FIOF
32 TZA
SM IAR
S4 STA TEMS FASE1 FEL EOUNT
35 l.DAI O77777
E6 STA TEM1
37 L.DAI 071600
SB STA TEMZ
39 LIMAI FZE
40 STA GTEM
41 L.LIPI FIE
42 ETB ITEM
43 LLAJ FIE
44 ADIII 3200
45 TAX INI X REG
```

46							
4.7	.JDY	SEN	O050, SEN 1				
43		NOF					
47		.JMF	.JOY				
$50 *$							
51 *							
52	\% MAIN	PROII					
53%							
54	SENJ	CIA	050				
5		SEN	0150, 501	FULSE	AND	FESF	DATA
56		NOF					
57		.JMF	\#-3				
56	501	INF	TEM1				
5%		. NIF	FE				
60%							
61		SEN	0250, $4+5$				
62		NOF					
63		JMF'	*-3				
64		CIA	050				
65*							
66	SENS	SEN	0350, 602	SOUND 1			
67		NOF					
68		NMF'	*-3				
69	5102	EIA	050				
70		1..FL_A	E				
71		SEN	0050, 603	SOUND 2			
72		NOF					
73		.JMF'	5-3				
74	603	INA	050				
75		ETA	0.2	$R=2$			
76		IBF					
77		INF:	TEMZ				
76		JOF	BIC				
79		AMF'	$\operatorname{EEN} 1+1$				
80%							
81 \%							
82	* FiEAD	PULSE	ND E. Ii.	TA			
85	*						
84	PE.	RUF					
85		CIA	050				

165 SAVX	BSS	1
166 SAVB	BSS	1
167 TEM1	BSS	1
168 TEM2	BSS	1
167 OTEM	BSS	1
170 ITEM	RSS	1
171 \#		
$172 *$	END	E.NT

```
ENTFIY NAMES
    OOOOOO R ANAL
EXTEFNAL. NAMES
    O00024 F: P1B 000016 E F2B
```

```
SYMBOLS
        000000 R ANAL
        000125 R CON
        000043 R 601
        000217 R HALT
        000241 R OTEM
        000236 R SAVB
        000133 R SWAP
```

000176	EB	00012	F EIC	000172	R BS
000003	R ENT	000227	R FG	000222	F FIL
000061	F GO2	000070	R 1903	000110	R GO4
000242	R ITEM	000030	F Joy	000202	F OCH
000074	E P1B	000016	P2B	000100	F PE
000235	R SAVX	000035	SEN1	000054	SEN
000237	F TEM1	000240	TEM	00025	TE


```
\therefore% %
```



```
z % I
```



```
1.%
```



```
| * ** N&,HFT:
```



```
1%
```



```
1%
```



```
#
*ツ%"F
\because-:
```



```
#%
#T1!% H1.%
```



```
            F|lim:
#
#% %
#%
%
-1 एitiol
```



```
%%
#
```



```
\&
4% T%
```



```
#% नाला
```



```
I: FOT%
4% %
F% |F%% Nाल%
```


97		． m°	M2－1	，MFF TF TMET
76		Manm	XF, XF	Til 1 TF Tf T
97	Ma	ETx	$\cdots \mathrm{m}$	
－		1 14，	9	
\％		．｜m17：	12%	
100		Hrniw	in，Ma	Tin If Natsan
1 id	M\％	ETh	\％6\％	
102				
109	H\％	T7A		Firat Trent
104		1．TEF：	TH1！ 7	
16		F11n．	WIN	
166		STh	FTERM	
107		T\％A		
10%		1 OEF\％	FTHIT	
197		14nt．	\％1\％	
110		サル゙	ETEFM	
111		リ月	FTFFA	
11． 7				
112				
111		T8		
115		1 nete	FIth T	
11%		1111	E14	
117		ETS	1 TED	
11%		Ta\％		
119		1 mes\％	Tinl｜t	
1%		min．．	の\％	
1 ± 1		AEM	1 TEFW	
15		ETM	TTEFM	
$\frac{18}{1 \% 4} 4$				
		，IIIFM	WVF！	
1\％\％				
1%	14	$1 \mathrm{H} \mathrm{\%}$	FF\％	
127			ワ， y	
1%		$\cdots 1 \%$	セTEF゙N	צTa世
19		The：		
1 \％		LIM，	O．\％	
131		Amin	FTEFM	
18%		IITH	TUF1\％1	
1%	REMM	－TEF\％	EH1\％ 7	
191		ETame	FEa	
13	$\%$			

186	ME	$1 \pi x$	Tmat	
17%		1r10	O， x	
15		－115	TTEFM	
18%		TAE：		
140		1 rif	O．x	
141		AMo	TTEFM	
142		，ITFM	10F1．10	
143	FEVE	ETEF\％	TH14 T	
141		GTrier	TMa\％	
1as	$\%$			
14		THE	FEA	THFEETEM
147		TNFE	Fhtn	FGumTEFS
1 1\％		THF：	Tram	
149		IRE	IH111．T	
150	＊			
151		INFE	EYST	
16		1．Г1\％	F\％TT	EtTF TF AL TEFME
14\％		1904	F	UTHH Mathan mill Mride
151	$\%$			
1%		－ H	EMIM	
15		EF\％	Fッチ．	
137		． $\mathrm{Al} \mathrm{F}^{2}$	FIM	ml TnE THTE STnE＊
15%		1．14F	NITMT． 1.1	140！！
159	3			
1.6	\％			
161	TYFI	FITF		TVFFFIME FTXUF
162		THFE\％	Tvinm	
16%		1 T	Funter	
$1 \% 4$		，19Fm	QHTFT	
165		1 HA	Twnete	
16		， 114 Fl	QHTFT	
1\％\％		1719	FTEEM	
16玉		AFF\％	01	
16%		ETA	FTEFM	
176		1．MA	TTEFT	
171		FGFim	al	
17%		ETN	TTEFM	
17 O		1．HME	GVFIT	
1．74		FFAT	FEM？	
175		．107	174	
17%		1WAF	GuFII	

177		FFBT	FETE	
176		19%	15	
17%		，H1F－	F\％	
100%				
161	GrF	玉णF		EFT MTIMATEE
18%				
183	GHTFT	FHTE		QuFT Ma meta
104		The		ETBM जिए FIT
185		ATM	N	
18，		धTA	O11）	
167	－HT	1 Tic	$\square \mathrm{a}$	
1\％		जबF\％	－1	
15%		91 C	a， x	
190		IXF：		
19		TXA		
19%		F下\％	CHE	
19%		，102\％	HIFT	
174		，MT	64T	
19%				
1\％\％	THIN	E\％	1	
17%	＊			
17%	NGFTH	1 me	FFA	UFMATE GTAET
199		amm	GFFR	リF materla
90			FEA	
$\cdots \mathrm{O}$		ATII	QFFF	
Qे		＂m	FEall T	
\％）		1 Ma	1423	
204		nmb	CEFF	
बए		GTM	TMm	
ف\％		mmom	EFFF	
307		ET\％	Tr44．T	
208		，19\％	r \％	
20\％	\％			
$\cdots 10$	FIN	1 ma	FFF	MIU FFFFrya
211		AEFA	01	
21		．14\％	91	आTmate a more
21%		ST介	GFFF：	N1\％1！
214		， HW°	111	धTヵET HEYT ETmE
215	＊			
1\％	\％			
97	$\%$	Funt	－ 701 T	
\％18	＊	mat	TO	2F DE：
919	＋	UnG\％	HFFFT	VA1ms
\％）	t			
\％ 1	$\%$			
玉\％	THEEA	ENTF		TETEFHTAE THEX

86	Mata	
370	11.7n	
971.	M\&T\%	
372	rasta	9\%¢, $91,9 \%, 9447,29 \%$
\%	MATA	29\%, 29177, 20\%, \%\%9, 9
374	TATA	
\%	Matm	
376	Math	
$\cdots 7$	Mata	
97	MATA	

 68
 धाण Et
 ひは $\angle E$
 U1\％1 GE
 104 4
 山川畐 76t
 $01 \square$E\％
 U4 θ
 61416
 2 H08
 $01 母$ 62

0	In\%	
81	rite	171, 7 , 7 \%, 16,
\cdots	Moto	
97	In9Ti	
37	THTA	
9%	HO T	
\%	THTC	¢\%\%,
97	M19\%	
\%\%	Mraim	10,
3%	M196:	

401	ロ4TA	$7761,7766,7671,7675,7179$
402	Mate	69\%, 676, 667, 6\%\%, 619\%
40\%	MATA	5997, 5797, 501, 503, 5905
404	Mata	क\%, 460, 460\%, 40\%, 40
पिए	MeTA	A011, \%11, \%11, उ111, उ11
406	LHTA	301, \%11, 2611, 2110,260
407	DATA	O0\%, 150\%, 160\%, 1A\%, 1 \%\%
4\%	WhTA	105, 904, 60, 402, 201 0
4.97	EHI	

```
NNTFY NAMEE
    OOO4OE FI FFTH
EYTEFNFI NGMF:
    णण4<Z F क巨E
OQF|| F TGETE OQAEO F INFFT
```

symemi－

00962	F \ddagger E	900\％	A AB		$\mathrm{F}=$
0060	F Ers	आलेक．1	Fimby	णणक¢0¢ Fi	$\mathrm{F} \times 1 \mathrm{~T}$
00271	FFHN	009470	F FTFN	कण44\％ F	I 1.
090474	F ITI	900477	Fi TTS	कण500 F	Thatio
900474	Fi Thme	099600	R TAME C	आण〇a7\％ F	THTY
oण050\％	Fi TTEFM	900419	Fi Twnre	O00016 Fi	＋1
Mon¢	Firce	कणल०\％\％	FHCL	O00101 E	Mr
ondse	F 14	क014．		$9 \mathrm{O}+6 \mathrm{E}$	N
000471	F HM\％	कणQa\％	Finma	ण0ヵ\％EF	NFIN
00044%	F NEIT	ण0¢कण	F MVF\％	कの¢dte Fi	Tumbl
90476	F FEAM．．	Oण142	F EEMA	कणनए F\％	FFPG
00047\％	Fi HFEl	0047	FiFFP	OпOGO4 Fi	FTFFIM
ण〇玉ze	$F \mathrm{~F}$	909\％＾\％	F G\％	Oण0\％7\％F E	－9
om00\％	F EFFT	0092\％6	Fi SHIFT	O0024 F	OHT
ण0¢एaz	F FIN	000505	F SETF	90¢ 10 F	OFMUR
Oण\％玉玉	Fi GMF	909464	F TSPALE	00¢7\％ F	TFTF
ण001	A Y F				

```
O0000% A FF:
OO40E FI FFTH
O0%\1 F: TएडTE
の00EOリ F TM||
OMधAGO F: INFFT
0000%1 F PH
Oण10Z F: MZ
OOQ4S! F NGMN
00%%G7 F NOF
DOO47% FI FREW%
000a77 F: FU|| %
Ood11 F Fb|mRE
O0\7% F GFFF
O0041% F GTFFT
OMEOT F EFFT
00001 A %
```


APPENDIX II

DESCRIPTION OF THE INTERACTIVE ANALYSIS

An interactive analysis program was used to compute envelograms, power spectra, and time-averaged phonocardiograms for the diagnostic analysis procedure.

Prior to data input, the type of record (PHON1, PHON2, etc.), the data window, the sampling rate and the number of records averaged were selected. A record was deleted from the analysis if the record length (Q-Q interval) was not within an acceptable specified range or if the record number was entered in a delete table. During data input, selected records were aligned (time-shifted to the left or right) by a two-pass process.

In the first pass a specified signal feature (local maximum or minimum) was searched for within a specified time range and the location of the signal feature for each record was tabulated in a table. Using this table, a mean alignment time was computed. The sliding increments necessary to cause alignment about this mean time was computed for each record and stored in the same table. During the second pass, the input data tape was repositioned, the same data was acquired and according to the tabulated correction factors, alignment corrections were made 'prisir to analysis.

An analysis routine was composed of modular computational algorithms (such as FFT, magnitude, IFFT, etc.) and was of a standard type (time, envelope, or power
spectrum) or was specifically created to suit a special need. In either case, the analysis was implemented from a command table containing a sequence of algorithm characters which defined the required analysis routine.

A11 the anaiyzed records were added to a 512 floating-point word accumulator buffer. When the specified number of records were analyzed, the average buffer values were computed and plotted on the graphics terminal or output to magnetic tapes. A listing of the interactive analysis program is shown on the following pages.

FAGF：

 1```
*** AIITGFFEG GEN FGFT ANALYS VEFE#Z S-E-74 A.SAFEALIY
*
*
*
%
7
10
1 1
12
1%
14 is
15
1% *
1 7
18
1%
```

FABE 2

| 51 | * | $Z=70=E N T E F$ TIME SFIMENT TE EE ZEFIDEII |
| :---: | :---: | :---: |
| 52 | * |  |
| 5 | * |  |
| 54 | 5 | $\operatorname{ILA}(4)=0$ |
| 5 |  | $=0$ |
| 56 |  | GALL HCLLEF( BH INIT DF\#, B ) |
| 57 | 3 | EALL INIEILF (40, MFFES) |
| 5 |  | $=0$ |
| 57 |  | CAIL HOLLLEF( $10 H$ NIT MFFE: , 10) |
| 60 | 1 | CAILL INFFT( IGSTE, 1024) |
| 61 |  | CALL EINTAF LINNO, LINO, LINO, LUN1) |
| 62 | 6 | EAIL EEL |
| 68 | 2 | CALL EEL |
| 64 |  | EALL EHIN(IEIM) |
| 65 | ; |  |
| 66 |  | IF (IEOM EG FOMED TE EOO |
| 67 |  | IF ( IGM-E4)401, 150, 1 |
| 68 | 401 | IF ( IGOM EGE EO MiG TE 15 |
| 69 |  |  |
| 70 |  | IF (IGOM. EQ. E\% MGITO 700 |
| 71 |  | IF (IEDM. EG. 78 )GO TG 5 |
| 72 |  |  |
| 73 |  | IF ( ICOM-76) 400, $420,40 \%$ |
| 74 | 400 | IF (ICOM EG GS IGIT TO OO |
| 75 |  | IF (IODM EQ 67 )EIT TOS4 |
| 76 |  | IF (IGIM. ED. 65 OLIG TG 40 |
| 77 |  | IF (IEOM EG. 71 ) 010 TG 4 S |
| 78 |  | IF (IEIM ES. 74 )TQ TG 42 |
| 79 |  | G10 T 1 |
| 80 | 3 |  |
| 81 | * | $Z=O O=E N T E F$ TIME SEGMENT TG EE ZEFGEL |
| 82 | * |  |
| 83 | 800 | $I Z(1)=0$ |
| E4 |  | IZ 2 ( $)=0$ |
| 8 |  | GALL UECIN(IZ (1) ) |
| 86 |  | GALL LEEIN ( IZ ( $\because$ ) |
| 87 |  | Gil TG |
| 8 E | \# |  |
| 89 | * | $\mathrm{G}=71=\mathrm{GO} \mathrm{EACK}$ TO STAFT GN MTOO |
| 90 | * |  |
| 71 | 4.51 | .I=NFFISNT-1 |
| 92 |  | IF ( IGFS. EO. O) $1=1+1$ |
| 95 |  | , $J=4 \% .1+1$ |
| 94 |  | EALL EINTAF ( $1,2 H F T 5,0,1)$ |
| 75 |  | Gig TO 6 |
| 96 | * |  |
| 97 | * | $S=E G=S T A F T$ STANI ANAL. EFIANEHE |
| 95 | * |  |
| 97 | * | $E=6 \%=E N V E L I F \quad F, F, L, I, M, V, A$ |
| 100 | * | T=E4=TIME SEFIFS Fi,T,V,A |

```
```

FAGE S
101 \# E=G7=EALIGFATIGN F,E,T,F,V,A
10Z * S=SG=FOWEF SFEGTFUM F,F,S,V,A
10马 *
104 600 =0
105 EALL HOLIEEF(EH [I. TYF=, S)
106
107
108
10%
110
111 *
112
113
114
115
116
117
11E 610 MAT(Z)=70
11% MAT( Z = =6S
120 MAT(4)=75
121 MAT(5)=77
122 MAT( }6)=8
125 MAT(7)=65
124 612 INT(5)=50
125 615 MAT(1)=E2
126 IOTIT 40
127 *
12E 620 MAT(z)=E4
12% MAT( S )=ES
150 MAT(4)=65
13 [i] TD\&12
152 \#
153 6%0 MAT(z)=67
1:4 MAT(: =E4
155 MAT( 4 )=E0
136 MAT(5)=E%
1:7 MAT(G)=に5
13: INT(5)=1
1%% GIOTOG15
140 *
141 640 MAT(z)=70
142 MAT( 3)=ES
143 MAT(4)=E6
144 MAT(5)=S5
145 GOTOE12
14% *
147 *
14E * F=GZ=ENTEF D-G MIN,MAX GIF LEN ANL FELO\# TG EE SKIFEL
147 *
150 700 MINLOF:=1

```
```

FAGF:. 4
MAXCOF=204%
152 EALL LECIN(MINLDF:)
153
154
155
156
157
159
15%
160
161
16%
16%
1<4
165
166
167
16G *
16% \#
170 * DUTFUIT FFOGSESED LATA TG MTO1
171 *
172 \# ILA( 1 )=W LENGTH IA(z)=\#IFUIT FECOFLG AVEFGGED
17S * IDA( S =FFE ID IDA( 4)=FEE\#
174 *
17! 20 I[IA(1)=102S
176 IDA(%)=IFEE
177 IDA( z )=IH(1)
17:
179
180
181 *
162 %
1G:*
1E4 10 [ug 12 , =1, 51Z
1ES 1% A(.J)=A(.J)/FLIAT(IFEG)
1E6 LIMF=LIMF%
1G7 EiOTO6
1GE \#
1E% \# F=FLGT A
1%0 *
1%1 *
%% 15 EALI ERAS
17S NSTAF=1
1%4
195
1%%
17% 16 =%%
1%%
I:ALL ELANF*A
200
IF(IZS.NE.O)GOTG17

```

FAGE \(\quad 5\)

201
202
208
204
205
\(20 \Leftrightarrow\)
207
20 E
209
210
\(\geq 11\)
212
213
214
215
216 ＊
217 子
\(215 *\)
217
220
221
22
2 z
224
2 C
226 if
27 अ

2\％＊
\(230420 \quad\) GIO TO 6
2814
23 ＊
\(23 \%\)＊
254 名
285 3
236＊INT \((1)=\)［IATA TYFE 1．．． 4
237＊INT \((2)=5 T A F T\) TIME IN M．EEE：
\(2 \mathrm{Z} \quad \mathrm{B} \quad\) INT \((\Xi)=E N T I\) TIME IN M．EET：
237
240 雨
241 ＊
242＊
243 \＃
Z44

\(\geq 47\)
248
249
250
```

                    EALL DECH4(IELF, ZH Z,IZ(1))
                            EALL IEEH4(IELFE, IELE, IZ(Z )
    17 =0
CALL ELANFA
GALI DECH4(IELK゙, ZH T,INT(Z))
EALL [EEH4(IELK, IELK,INT( Z))
CALL EHOHM(1Z)
C:AlIN EHIMI(10)
=50
GALL ELANKA
GALL LEEH4(IELK, ZH N, IFEE:
CALL [IELH4(IELE, ZH Fi, IE(Z))
EALL ENFLIOT(A, METAF;, NEND, SAMF, IH(1))
GITTOG
CIFSOF=MEAGURE TIME ANE FFFG FFIGM GVEF FLOTS
T=TIME IN M SEG FUEUUT OFFT TQ A ITHFFS=FFEG IN I
402 EALL GIIFEDF(IEHAF,NXF,NYF)
NXD=FLOAT(NXF )*SAMF

```

```

            IF(IGHAF, EO. 127)GOTGG
            =NXIM
            EALi DEEINA
            GIT TO 4O2
            INT(4)=0=EUM INT(4)=1=[IEFOLD
            INT(S)=#FFE: TO BE AVEF
            INT( <)=EXTFIA
            *
                    30 INT(4)=0
            INT(S)=100
            INT( }\sigma\mathrm{ )=10
            =0
            EALL HILIGEF(GHIN FAF,G)
            L=1
            ZZ IF(L.BE.G)GOTGG
    ```
```

FAGE

```

251
25
253
254
255 ＊
256 ＊
257 \＃
\(258 *\)
\(25 \%\)＊
260 ＊
26134
262
263
\(\geq 64\)
265
266
さ67
265
269 ；
270 ＊
\(\because 71\)＊INFIIT LIATA AGOFITINE TO INT TAELE
272＊
273＊
274 40 CALL INIEMF（ \(1024, A\) ）
275
マ 7 に

\section*{277}

\section*{279}

279
290
2G1 28 23 284 265

287
266
\(28 \%\)＊
CALL．DEE：IN（ INT（L））
IF（INT（L）LT．O）SiO TO
\(L=L+1\)
GTO TO＊

291 275 293 274 2\％5 \(2 \%\) 297 296 299 300
```

* 

```
*
*
*
*
=0
 EALI. HGLLEF(GHAN EDM, G)
 L=1
 3% SAlN EEL
 EALL EHIN(MAT(L))
 IF(MAT(L)-6S) =4,6, 3%
 #E lloL+1
 #E L=L+1
*
infuit mata agufiting tG int taEle
 40
 EAMT=SAM(1)
 IFEL:=O
 NFELNT=0
 MINLEN=512
 IZS=1
 *
 IF(INT(1). TEE E SAMI=SAM(Z)
 ISTAFT=FLGIAT(INT(Z) /(SAMT*1000.)
 IEN[I=FLDAT(INT(
 FMSV=FMS(1)
 IF(INT(1) ED 2)FMGV=FMG(2)
 IF(INT(4). IEE. 1 SAMT=SAMT/I.
 SAMF=1. ((1024. *SAMT)
 GALL INIEUF(12,HAD)
 #
 4: IWE:IENT-ISTAFTT+1
 EAIL INIEUIF(ZO4E, IF'W)
 EALL IOLATA(INT(1), 2OS1, LINNO, ILI(1), IOFS)
 IF(IOFS EG.O)GO TOL 10
 NFELNT=NFELCNT+1
 .I=ICIC こ)
 IF(.I. EG MFEES(.J) MO TO 42
 IF(ILI(1). GT. MAXEDFi MOO TG 4Z
 IF(ILI(1) LT. MINEOFAOGO TO 4%
 .J=I[(1)-ISTAFIT-S
 IF(IWE: GT, , I IWE==, \
```


## FAGE

7

301
302
303
304
305
806 ＊
307
308
$30 \%$
$\$ 10$
311
E12
$313 *$
314 ＊
$315 *$
31643
317
318
317
320
321
32 ＊
$323 *$
324 ＊
ジ5＊
326＊
327 ＊
3世＊
329 ＊
EO
331 ＊
32
35＊
34 \＃
35
$36 *$
35 ＊
$35 *$
$3 \%$＊
$\because 40$ \＃
341 长
342 ＊
$34: 3$
$344 \quad 50 \quad I C=0$
E45 IAV＝2
$346 \quad F S C: A L=1$ ．
347 ＊
$54 E \quad 51 \quad I C=I I+1$
$34 \% \quad 52 \quad I L O M=M A T(I C)$
350 ＊
LWLO $=204 E-$ I WL：
＊
＊LIEFOLI


I WI：$=2 *$ IWL：
HALS 2$)=$ AT（5）
GTO $4 E$

51 MM

HADC $z$ ）＝AT（4．）
7
$I H(1)=I D(3)$
$I H(Z)=I L(Z)$
TEST ETMMANI EHAF
$V=A V E F A G E=E G$
$T=T$ IME FEMAVEF＝64
$F=F$ LIT FW AFFAAY $=E O$
$N=F H A S E($ IF 1, IM1 $)=7 E$
M $=$ MAGNETMLI $=77$
$I=I N V$ FFT $=73$
$H=H A N=7 \%$
$F=F F T=70$
$E=$ ENVELUF $=6 \%$
$E=$ EAL IEFAT I AN $=67$
$A=$ ANAI．．$Y Z=65$
$\qquad$



IF（IWC：GT． $10 \geq 4$ ）IWI：＝10 4
GALI．LSFEUF（OOE，ISTAFT，IFW）
GALL INIEIIF（LWIO，IFW（IWL＋1））

IF（INT（4）．EE O）GD TG 43
EALL DEFOLII IWE，IFi 1 ）

EALL EIMMEIF（IWF，IFi ）
$43 \quad \operatorname{IF}(\operatorname{INT}(1)$ EG． 1$) I \mathrm{D}(3)=\mathrm{IL}(1)$
$S=F$ WWEF $S F E G T F U M=B$
$\mathrm{F}=\mathrm{FE}$ MIVE A＇vEFAGE $=E \%$
$\square=$ DUTFUT FW AFFAY $=7 \%$
$[I=A N A L I T I E: S I G A L=\measuredangle E$
$Z=G O=Z E F T$ A EEGMENT DF IFI AFFIAY

```
FAGE E
```

35
352
35
354 355 36
85
35
359
360
361 *
3625
363
364
865
366
367
E6E
369
370
371
372
373
374
375
376
377
375
377
360 *
EE1
SE
8
34
35
566
267
56
$38 \cdot 7$
890
391
3
$35 \quad 106 \quad F W(. J)=E \mathrm{EF} \cdot \mathrm{T}(\mathrm{F} W(.-J))$
59
375
36
397
398

```
 IF(ILOM ED FO)GIG TO ESO
```

            IF(ILOM ED FO)GIG TO ESO
    53 IF(ILIMM-56)54, 86,6
    53 IF(ILIMM-56)54, 86,6
    54 IF(ICOM-BS):OO, E%, E4
    54 IF(ICOM-BS):OO, E%, E4
    E00 IF(IILM-E2 )5, 82, E2
    E00 IF(IILM-E2 )5, 82, E2
    SE IF(IG:MM-79)EO1,7%,80
    SE IF(IG:MM-79)EO1,7%,80
    SO1 IF(ICIM-77)EG,ES,7E
    SO1 IF(ICIM-77)EG,ES,7E
    5G IF(ILNM-72)57,72,75
    5G IF(ILNM-72)57,72,75
    57 IF(IEOM-69)5E,6%,70
    57 IF(IEOM-69)5E,6%,70
    5G IF(ILOM-6E )60,65,69
    5G IF(ILOM-6E )60,65,69
    60 IF(ILIM-65)6,5%,67
    60 IF(ILIM-65)6,5%,67
    *
    *
    G
    G
        SAMF=SAMF**FLDAT(IA'V)
        SAMF=SAMF**FLDAT(IA'V)
        GALL ESTGF(127,,1)
        GALL ESTGF(127,,1)
        IF(.J. EG.O)IGTOG TO
        IF(.J. EG.O)IGTOG TO
        IF(IFEE. GE. INT(S) OMID TO
        IF(IFEE. GE. INT(S) OMID TO
        GiO TG 4Z
        GiO TG 4Z
    *
    *
    *
    *
    * FFT
    * FFT
    4
    4
    70 NEHFT=-1
    70 NEHFT=-1
        EALL FFTM(IF1, IM1,NSHFT)
        EALL FFTM(IF1, IM1,NSHFT)
        FSLAL=FLDAT( Z%*NSHFT //1024.
        FSLAL=FLDAT( Z%*NSHFT //1024.
        SAMF=SAMF
        SAMF=SAMF
        LIMF=10こ4
        LIMF=10こ4
        GTOT
        GTOT
    *
    *
    * FIOWEF FEETFOM OF MAGIN
    * FIOWEF FEETFOM OF MAGIN
    GGALL ISHIF(1OZ4, IFW)
    GGALL ISHIF(1OZ4, IFW)
        Z=(FSLAL&FELFIL )/(FMEV*FMSU)
        Z=(FSLAL&FELFIL )/(FMEV*FMSU)
        [M100 , =1=1,1024
        [M100 , =1=1,1024
        X=IFW(z%.1-1)
        X=IFW(z%.1-1)
        Y=IFW\ \*,I)
        Y=IFW\ \*,I)
    100 FW(, - )=(X*X+Y*Y)*Z
    100 FW(, - )=(X*X+Y*Y)*Z
        IF(IGOM EG. 77 )GG TG 1OE
        IF(IGOM EG. 77 )GG TG 1OE
        IAV=1
        IAV=1
        HADL 1 )=AT( E)
        HADL 1 )=AT( E)
        [i] TO S1
        [i] TO S1
    *
    *
    105 [IG 10G .J=1, 10:4
105 [IG 10G .J=1, 10:4
GO]TG S1
GO]TG S1
*
*
\#
\#
TIME FLDATE AFFAAY IFII ANTI NGFIMAL. BY FIMEV AND FSIAL
TIME FLDATE AFFAAY IFII ANTI NGFIMAL. BY FIMEV AND FSIAL
84 DO 1EO ,I=1,1024
84 DO 1EO ,I=1,1024
JNUM=1025-.l
JNUM=1025-.l
FW(.INUMM )=IF:1(,INIMM)

```
 FW(.INUMM)=IF:1(,INIMM)
```

```
FAGF: }
401 1EO F'W(.INUM)=FW(.JNLMM)&FSEAL.FNGV
402 HAD(1)=AT(1)
403 TOT TO 51
404 *
405 *
40% *
407 *
40E *
40%
4 1 0
411
412
413
414
415
41%
417
41E
41%
420
421
42% *
4%S*
4%4 6
425
426
4:7
42!
427
430
4:1
432
4:3
434
435 *
436 *
437 *
4:% *
4%% #
440 #
441 *
442 *
44% E6 [ig 110 .|=1, 512
444
445
446
447
44E
449
450
```

```
FAGE }1
451 * . IUITFIIT TG MTO1=0
452 *
45% 7% BIN TO S1
454 #
455 * FILEIT =F FW AFIFIAY ONLY
4.56 #
457 30
458
459 *
460 *
461 * E=6.9=AES VAL
4<2.2*
46% 6% [n0 320 ,J=1, 1024
464 F20 FW(.1)=AFS(FW(.1))
465 HADI(1)=AT(}3
466 EIO TO S1
4<7 *
46G #
467 *
470 *
471 6G IFi(1)=IFil(1)/:
472 IM1(1)=IM1(1)/2
475 FSLAL=ZOKFGLAL
```



```
475 IF1(.1)=0
476 140 IM1(, 1)=0
477 HALM 1)=AT(Z)
47E GOTO 51
479 * HANNINE; WINLIIW
4E1 *
4\Omega2 *
4E% 72 TiO TGE1
4E4 *
4ES * INV FFT
4E6 *
457 75 IEHFT=-1
4SE SAMF=SAMT
4E% LIMF=I WO:
4%0 [NI 500 :=1,1024
4%1 500 IM1(.J)=-IM1(.1)
4% EALL FFTM(IFI1,I
493 [MI 520 , =1,1024
4%4 5%0 IM1(.1)=-IM1(, 1)
4%5 FEEAL=FLGAT(こ**ISHFT)*FELAI
4%6 GIGTO SI
497 *
495 *
49% *
500 150 GOTO G
```

FAGF: 11
501 *
502 * FHAEE (IF1, IMI)
503 *
504 7e GOTO 51
505 *
506 *
507 *
$508 \quad 85$
$Z=90=Z E R I G$ A SEGMENT OF IF1

509
510
511
512
513
514
515
516
517
518
517
520
521 *
522 *
525
END
ENTFY/COMMON ELOLE NAMES
004353 F ( 004056 E \$
006007 E EOMMDN 002174 E LEREUF
EXTERNAI. NAMES
000216 E ICETE
000000 E NAMEF
001563 E HOLLEF: 004076 E INIEIIF 000215 E INFFT 000525 E DONTAF 001572 E EEL 001600 E CHIN 001526 E DECIN 001330 E [HOU 001451 E DECINA 002041 E IDDATA 004090 E FLDAT 00403 E E \$NN 003723 E \$0口 004113 E कHN 001251 E EFAG 00124\& E FHFAD 001355 E ELANKA. 001352 E DECH4 003477 E ENFLOT 001370 E CUFEDF 003762 E कロM

## COMPUTER ANALYSIS PROGRAMS EMPLOYED

FOR SEVERITY ESTIMATES

While the diagnostic analysis was performed interactively, "number crunching" involved in the aortic stenosis severity estimates was performed in a batch mode. The severity analysis was accomplished by a two-pass process. During the first pass, an analysis was performed on each patient file and a single, averaged power spectrum and envelogram was computed and stored on magnetic tape. During the second pass, the files were either combined to form a single spectrum at a listening site or were analyzed as independent data files. Second-pass analysis consisted of computing and listing the first moment of spectral bandwidths or involved automated plotting of envelograms and spectra on the graphics terminal.

The programs employed in the first pass are PANAL and the subroutine, FANAL, while the second-pass computations were performed by the program PPAVER. The programs and their descriptions follow.

## DESCRIPTION OF THE FIRST-PASS SEVERITY ANALYSIS PROGRAM, PANAL

PANAL $=$ Main program for patient data analysis in batch mode.

Prior to program execution, the following analysis and data parameters must be entered through the teletype.

1. Analysis parameter: a single teletype character

$$
\begin{aligned}
& \mathrm{E}=\text { Envelope analysis } \\
& \mathrm{T}=\text { Time analysis }
\end{aligned}
$$

and $S=$ Power spectrum analysis
2. Data parameters: unsigned integers less than 5 digits

INT(1) = Specifies the data type (integers 1-4)

If $\operatorname{INT}(1)=1=$ Phono 1 PCG data
$=2$ = Phono 2 PCG data
$=3=$ ECG data
$=4=$ Respiration or carotid data
INT(2) $=$ Calibration records start time in ms.

INT(3) $=$ Calibration records end time in ms.
INT(4) $=$ Sampling rate
If $\operatorname{INT}(4)=0=1.25 \mathrm{KHz}$ (SUM)
If $\operatorname{INT}(4)=1=2.50 \mathrm{KHz}$ (DEFOLD)
INT(5) $=$ Spare
INT(6) = Data record window start time in ms.
$\operatorname{INT}(7)=$ Data record window end time in ms.

$$
\begin{aligned}
\operatorname{INT}(8)= & \text { Number of patients to be analyzed } \\
\text { INT }(9)= & \text { Number of records to skip before } \\
& \text { Phono } 2 \text { calibration }
\end{aligned}
$$

Input Data:

> Magnetic tape unit: MTOO
> Data Format: PASS 2 data format

Output Data:
Magnetic tape unit: MTO1
Data format: 1024 data words (or 512 floatingpoint numbers) preceded by 8 -word parameter field as given below.

Parameter Words:

$$
\begin{aligned}
\# 1= & \text { Data type (fixed-point integer) } \\
\# 2= & \text { Number of records averaged per } \\
& \text { file (fixed-point integer) } \\
\# 3= & \text { Start time in ms. (fixed-point } \\
& \text { integer) } \\
\# 4= & \text { End time in ms. (fixed-point } \\
& \text { integer) } \\
\# 5 \text { and \#6 = } & \text { Sampling rate (floating-point } \\
& \text { number) } \\
\# 7 \text { and \#8 = } & 4 \text { alpha numeric numbers (de- } \\
& \text { scribing analysis performed) } \\
\text { if \#7 and \#8 = } & \text { TIM. = Time analysis }
\end{aligned}
$$

$$
\begin{aligned}
& \text { if } \# 7 \text { and } \# 8=\text { ANS, }= \text { Envelope analysis derived } \\
& \text { from analytic signal } \\
& \text { if \#7 and \#8 = PWS, = Power spectrum analysis }
\end{aligned}
$$

FAGF: 1


```
FAGE Z
 51
 52
 INT(7)=25
 INT(S)=S
 5% *
 54 =0
 ES EALL HOLLEEF(4H IF==,4)
 5 6
 57
 5%
 5%
 60 15
 61 *
 62 C:ALL BEL
 6% EALL EEI
 6 4 ~ E : A L L ~ E : H I N (. 1) ~
 65 IF(,0-67)60,10,20
 G6
 67 GO MGDE=O
 GG NF ILF=0
 6%
 70
 7 1
 72
 75
 7 4
 75
 76
 7 7
 75
 79
 80 *
 E1 BO INT(Z =INT(G)
 INT(E)=INT(7)
 INT(5)=50
 CALI EFAE
 EALL EDNTAF(MOLIF, ZHIF,0,1)
 EALI. FANAL(ICHAF, 1)
 NF ILE=NFILE+1
 IF(NFILE.GE.GMGOTG%O
 GO TO BO
 *
 %0}\quadINT(S)=INT(E)-
 IF(INT(S). LE. O)GGTO 1O
 GOTOES
 *
 E ENLI
ENTFY/EDMMON ELOLK NAMES
000420 Fi
000000 C EOMMBN
000021 E IELOIKK
EXTEFINAL NAMES
```

1	*	GUEFIDIT FANAL. VEFEIUNAZ FOFT $3-23-74$ A. SAFFGADY
2	*	
3	*	GEN FOFT ANALYYIS FIGITINE
4	*	
5	*	AND EALL FANAIL MANAI, MBUIT)
6	*	
7	*	
8	\#	MANAL=ANALYEIS FAFM
9	*	
10	*	IF EDIIAI TCI
11	*	
12	*	$67=C=E A L T E$
13	*	$6 \%=E=E N V E L O F$
14	*	$B=S=F$ OWEF SFECTFUM
15	*	$54=T=$ T IME
16	*	
17	*	SEAFILH IS LELETED
15	*	
17	4	
20		E!IFFiGITINE FANAL ( MANAI., MIUT)
21	*	
2	*	
23		GMMMN/IELIUK゙くINT( 17 )
24		EIMMON ILI 3 ), IFil $10 \geq 4), \operatorname{IM1}(1024)$
25		EDMMEN ILIA E)
26		EIMMIN A( 512)
27	*	
2 B		IIMENSILN MAT ( $\because$ ) , FME 2 )
29		
30		[IMENSION IFW (204S), FW (1024)
81		LIMENSION AT ( 7 )
32		LIMENSICN MFECS 32$)$
8		[IMENSION MEIIT 32$)$
4	*	
5		LIMENEION MEOF( 15 )
36	\%	
97		LIMENEIDN LIA ( $\because$ )
9	*	
8		EQIIVALENEE ( IDA(S), HAA( 1 ) )
40	*	
41	*	
42		EOUIVALENIE (IFi(1), IFW(1), FW(1))
43	*	
44		EGUIVALENIE MFECS( 1 ), MEITT( 1 ) )
45	3	
46		EXTEFNAL ISETE
47		EXTEFNAL NAMEF
43	*	
$4 \%$		[IATA FME, 1. , 1. ${ }^{\prime}$
50		LIATA SAM/E. E-4, 3 , $2 \mathrm{~F}-\mathrm{B}$

```
FAGE
```

51

## $5 \%$

5
54

55
56
57
5
59
60
61
62
6
64
65
66
67
68
$6 \%$ *
70 *
71 *
72 *
$73 *$
74 *
75 *
$7 \triangleq$ \#
77 *
$7 E$ *
79 *
$80 \quad 600$
81
8
$8:$
84
8
E
$\varepsilon 7$
$86 \quad 610$
$\theta$
90
71
$9 \%$
9
$74 \leqslant 1$
$95 \quad 6$
96
97 *
$96 \quad 620$
3
*
*
*
*
$*$

4
*
\#

```
LIATA IH/OMO.
IATA HADK 1)/O.
LATA IL \(/ 2 H F 1,2 H\).
DATA AT, 4 HTIM. , 4HANE. , 4HFW: , 4HELIM. , 4HIIEF. , 4HMAX.
4HMIN.
IATA LIUNO, LIIN1;O,1/
DATA IELKKZH.
DATA IZSTO.
DATA IZSA/O.
LIATA IEIIT/I/
600 IF (MANAL. EQ. 65)TIL TB GS
IF (MANAL EG. GO)TOTO TGO
IF (MANAL ED : \(24 / 100\) TOI 620
IF (MANAL. EO. 67) \(G O\) TOI 690
IF (MANAL. ED. SE)SO TI 640
IF (MANAL. EQ. 7015 OLO TO
GOTG
MAT \((z)=70\)
MAT \((5)=6 E\)
MAT (4) \(=75\)
\(\operatorname{MAT}(5)=77\)
MAT (6) \(=56\)
\(\operatorname{MAT}(7)=65\)
MAT(1)
\(\operatorname{MAT}(1)=E 2\)
GOTO 40
\(620 \quad\) MAT \((2)=84\)
MAT (3) \(=56\)
MAT (4) \(=65\)
```

```
FAGE S
```

101
$102 \quad *$
103630
104
105
106632
107
108
109
110
111 ＊

114 ＊
1.17
$11 E$
117
120 ＊
121＊
122 神
$1 \%$＊
124 3
125 ＊
126 4
1276
1295
130
131
132 ＊
$13 \%$＊
154
135
$1: \%$
$1: 7$
$13:$
$13 \%$＊
140 访
142

147 ＊
$11263 \operatorname{MAT}(2)=90$
113 GiOT TO 62
$115 \quad 640 \quad$ MAT $(2)=70$
$116 \quad$ MAT $(3)=3$

12 Lathl HMLLEF（AHAN＝，4）

141 म $\quad \mathrm{B}=\mathrm{E} 1=$ ENTEF FARAMFTEF：
143 ＊MCDF 1 ）＝MIN FET EOFF LENSTH
144 ＊MDOF $(2)=M A X$ FEL EOF LENGTH
145 ＊MLDFi 3 ）＝FEC：TD EE LIELETELI
146 \＃MIOR 4 ）$=$ FEC：$\#$ TG BE LIFLFTEL

149 ＊MOOF（ $6>=F \operatorname{LIT}$ IF＇1．END EOFF
150 ＊MODF 7 ）＝FLIT IFI GOFF SIIF INCFOM
［in TO 612
＊
INT（5）＝1
INT（ 4 ）$=0$
MAT（ $2:=67$
MAT（ $\because$ ）$=\mathrm{EO}$
MAT（ 4 ）$=54$
$\operatorname{MAT}(5)=86$
$\operatorname{MAT}(6)=65$
GiOTOG15

MAT（ 4 ）$=8$
MAT 5 ）$=65$
G1ロ TG 612


EALL EEL
GALL EEL
CALI EHIN（．J）

IF（．J．ED EOMGTG1S
IF（．）ES．$B 1$ ）GO TO 700
IF（I．ES． 74 TGU TD 44
IF（．I．EG． 77 MGI TO 402
BTO

```
F'AGE A
151 * MLOF(S =FLOT GFAIN SKIIF INEFOM
15% *
15% * MODF(9)=NOT LSEL
154 *
155 * MLOF(10)=SEAFI:H STAFTT TIME
156 * MEOF(11)=SEFFILH ENT TIME
157 * MEOF(12)=SEL MAX IFF MIN O=MIN 1=MAX
15% 方
15% *
160 *
1G1 *
162*
16:% *
164 700 GALI MESIN(L)
165 IF(L.GT. 15)SNTGG
1G% IF(L.LE.O)GGTOG
167
16%
1%% *
170 *
171 *
172*
175 15 EALL EFAG
174 NETAF=1
175 NEND=512
176
177
179179
 GFILL EUFGOF(IEHAF,NXF'NYF')
 NXI=FLDAT(NXF')*SAMF
 IF(ILHAF. ED. E4 INXG=FLGAT(NXF)*EAMF*1000.
 IF(ICHAF, EG. 127)GOU TG 5
```


## FAGE S

201
202
203
204 ＊
205 ＊
206
207
206 ＊
207 ＊
210 ＊
$211 *$
212 范
213 标
214 ＊
215 神
$216 \quad \exists \% \quad I Z E=0$
217
21E
217
220 ＊
$2 \div 1$＊
$22 \quad 4 \% \quad$ NFECNT $=$ NFECNT +1
マ玉
$2 \% 4$ म
250 EALL INIEUF（1024，$\because$ ）
玉玉6 EALL INIBLIF（ 10 ，HALI ）
257
226
229 $\ddagger$
230
213
$22 *$
23037
234
235
206
397
23
29


241
$24 \%$＊
24：$\quad 44$
244 ＊ 245
246

## $\geq 47$

$\geq 4 \Xi$

## 247

$=\mathrm{NXO}$
EALL DEEINA
Gig TO 4O2
$\operatorname{INT}(1)=$ DATA TYFE 1．．．4
INT（ 2 ）＝STAFT TIME
INT（S）＝END TIME IN M EEC：
INT（ 4 ）＝EEMF $\quad O=G U M \quad 1=$ LIEFOLD
INT $(5)=\#$ FELE IN ANAL．

EALL INIEUF（ZZ，MEUT）
IUUT＝0
GOTO

GO TO 42

I ZGA＝IZG／IEUT
IFEL：$=0$
NFEENT $=0$
$S A M T=E A M(1)$
IF（INT（1）．GE S SAMT＝SAM（ $\bar{Z})$
$X=5 A M T * 1000$ ．
ISTAFT＝FLGAT（INT（ $\because)$ ）$X$
IEND＝FLDAT（ INT（ $Z$ ））／$X$
FMEV＝FMME（1）

IF（INT（4）．IE． 1 ）EAMT＝EAMT／Z．
SAMF＝1．／（ 1024. FSAMT）
MXSTF＝MCOF 15 ）
4\％IWL＝IEND－ISTAFTT 1
EALL INIEUF（ $204 B$ ，IFW）
IF（IOFS．EG O IGOTO 10
NF：FINT＝NFECNT +1

INFIIT EIATA AGIFTING TG INT TAELE

GALL IODATA（ INT（ 1 ），2OS1，LINO，ID（1），IOFS）



```
FAGE
 7
301 51 IL=IL+1
SO% S% ILOM=MAT(IE)
30% *
S04 IF(ICOM-F0) 5G,850,6
305 5. IF(ICOM-E4 \54, 54, E6
306 54 IF(IGIM-E2)S5, E%, E5
307 55 IF(ICLM-77)56, E%, E0
30E 56 IF(ICDM-70)5E,70,73
307 5% IF(ICIM-6E)60,6E,6%
310 60 IF(IDOM-65)6,5%,67
311 4
312 5% IFEC=IFEC+1
313 SAMF=SAMF*FLIAT(IAV)
IF(IFEG IEE INT(E)
315
316
317
#18 *
319 % Z=90=SLAN TAFE TG AI_INF FELORLE
320 *
Z2 EOO GOT TO 42
22% #
3S * Z FO=ELIL EACH FFE: TO LFFT
324 *
Z25 B5O Bilu TO 51
326 *
37 *
#2G % FFT
32% *
30 70 N:HFT=-1
G1 EALL FFTM(IFI, IM1,NEHFT)
3% FSLAL=FLOAT(2**N:FHFT)/1024.
B3 GAMF=BAMF
#:4 EMOTD 51
35 *
3% * FOWWEF FELTFOUM DFF MABN
37 *
BGS CALL ISHIDF(1024, IFW)
BG%
340 Z=X*X
#41 IAV=1
342
34%
344
845
346
847
348
347
BHO
```

```
FALSF: E
51 *
5% 105 [n⿺⿻一𠃋十斤 106 N=1, 512
35 ,I=IA'V*N
354 106
35
5% %
SG * TIME FLIIATS AFIFAY IFI ANEI NOFMAL E:Y FMEV ANII FSLAI.
35%
55% E4 [ig 150 ,J=1,1024
S60 .JNDM=1025-.1
361
36%
36%
84
#%%
3%% *
3147 #
30% *
367 *
E70 E% EINMA=0.
371
372
37%
374
375
876
877
375
37%
80
361 *
3G% H LALIEFATIGN=C
3%*
354 6
85
36%
3% * AVEFAIGE=V FLDATING FDINT INLY
5%7 #
ZOE * IAV=1=AVEF EVEFIY FUINT
#%% IAV=z=AVEK EVEFYY ZNL FIOINT
FW(,IN|MM)=IFI1(,INIMM)
 1:0 FW(,NILM =FW(,INLMM)
 HAD(1)=AT(1)
 GiOTG S1
 *
 *
 *
 * FFMMIVES AVEFIAGF VALIIE
 [iG 90, I=1, IWC:
 XF=IFi1(, J)
 70 SUMMA=SUMMA +XF
 SIMA=SIIMA/FLGAT(IWL:)
 ISUM=SUMA
 IM 71 ,I=1, IWE:
 71 IFi(.I)=IFI(.1)-I:MMM
 GAMF=SAMT
 IF(IWC. LE. S1Z)IA'V=1
 GOTOSI
 67 FMEO=0.
 DO 76,J=1, IWI:
 XF=IFi1(.J)
 96 FMEC=FMEL+XFI*XF
 FM:EL=FMSE/FLOAT(IWL:)
 FMSE=SWFTT(FMGE:)
 IF(INT(1). EG. 1)FME(1)=FMSE
 IF(INT(1) EG. Z FFAS(Z =FNMSL
 ILIA(4)=0
 SAMF=SAMT
 G10 TG 51
```

400 *

E $\quad 7$		
401	*	
402	$\underline{6}$	[i0] $110,1=1,512$
403		.-ITM = IAV*.J
404	110	$A(1)=A(1)+F W(. J T A M)$
40.5		$\operatorname{IDA}(2)=I D A(2)+1$
406		G07E 51
407	*	
408	*	$E=6 \%$ EFAS ANLI FLIT IFI AFFAY
407	*	$\mathrm{F}=\mathrm{EO}=\mathrm{FLLDT}$ IFI AFFIAY
410	;	FLGT FANLF -12E, +12E
411	3	
$41 \%$	67	CALL EFAE
$41:$	80	$E=0$
414		Gia TO 5
415	*	
41\%	*	
417	H	$\mathrm{L}=\triangle=$ ANAI YTIE $\Xi I$ SNAL
418	*	
417	68	IFI( 1 ) = IFic 1 )/2
420		$\operatorname{IM1(1)=IM1(1)22}$
$4 \div 1$		FGLAL $=2$ OHFSLAL
422		[ig 140, $1=513,1024$
423		IFI(, 1$)=0$
424	140	IM1 (, J$)=0$
425		HALM 1 )=AT (z)
$4 \%$		Gil Til 5
427	\%	
428	*	INV FFT
427	*	
4.30	75	1SHFT $=-1$
431		SAMF =SAMT
4.6		DO $500, \mathrm{~J}=1,1024$
$43: 3$	500	IM1 ( -1$)=-1$ M1 (, 1 )
$4: 3$		EALI FFTM (IFI, IM1, ISHFT)
435		[1] $520, \quad 1=1,1024$
4:9	520	IM1( J$)=-\mathrm{IM1}(\mathrm{~J})$
437		FGCAL FFLDAT (2**ISHFT inFSTAL
4\%6		Gin TG Si
437	*	
440	*	FUNGTIDN AT ENL DF File
441	H	
442	10	IF (MANAL.. E®. 70 )
44:		IF (MOUT EG. O MiL TG GOO
444		ILAA 1 )=INT ( 1)
445		$\operatorname{ILA}(Z)=I F E E$
446.		$\operatorname{ILAA}(\Xi)=\operatorname{INT}(\underline{Z})$
447		ITIA 4 ) = INT ( 3 )
44E		LIA 1 ) = SAMF
44\%		LA( 2 ) $=$ HALI 1 )
450	*	

```
FACit: 10
451 CALL IODATA(0,10S2,1,IDA(1), 1)
452 CALL ADELAY(IDEAL)
453 501 CALI_ CDNTAF(1, ZHWE, 1,1)
4 5 4 ~ \% 0 2 ~ E A L L ~ A D E L A Y (L D E A I .) , ~
455 700 FETUFN
456 *
457 * EO BACK ON MTOO
458 *
459 451 J=NRECNT-1
460 IF(IOFS. ED.O).J=al+1
4<1 ,_l=4*,J+1
462
EALL EONTAF(1, 2HFB, 0,1)
GITTO F00
46.3
4<E *
46G ENLI
```

ENTFY／COMMON ELOLKK NAMFS			
003517	F	FANAL	
006013	C	COMMON	
000021	C：	I ELOCK：	
EXTERNA		NAMES	
000002	$E$	中SE	
000156	$E$	IGETE	
000000	$E$	NAMEF	
00015	$E$	INFFT	
000455	$E$	HOLLER	
000463	$E$	EEL	
000465	$E$	CHIN	
000617	E	DEEIN	
O02700	$E$	ERAS	
000622	$E$	FHEAD	
000630	$E$	FHEAD	
0006\％3	E	ELANKA	
000700	$E$	DEEH4	
000656	E	CHCll	
000705	E	ENFLITT	
000716	E	CLIESOF	
003074	$E$	Flfiat	
003077	$E$	\＄同以	
002413	E	\＄IC：	
000777	$E$	LEEINA	
001426	E	INIEUF	
002723	$E$	\＄ HN	
002534	$E$	कQN	
003205	E	I OLIATA	
001412	E	SHIFTE	
001447	E	IEFOLI	
001470	E	EUMEUF	
001730	$E$	csTuF	
003054	$E$	FFTM	
00.3067	$E$	\＄ HE	
002013	$E$	ISHIJF	
002631	$E$	क HH	
002475	$E$	\＄ FC	
00265：	$E$	\＄${ }^{\text {a }}$	
005057	$E$	\＄DO	
002542	E	SIFT	
003200	E	ADELAY	
003265	$E$	cIINTAF＇	

DESCRIPTION OF THE SECOND-PASS SEVERITY ANALYSIS PROGRAM, PPAVER

PPAVER $=$ Prints, plots, and averages analyzed data files.

Prior to program execution, the following command parameters must be entered through teletype as unsigned integers less than 5 digit length.

NFILE = Number of files to average NPRINT $=$ List the $\overline{\mathrm{f}}$ and $\% \mathrm{~F}$ on the printer If NPRINT $=0=$ No print If NPRINT = $1=$ Print

IPLOT $=$ Plot averaged data on the graphics terminal

If IPLOT $=0=$ No plot
If IPLOT $=1=$ P1ot
MAXL $=$ Maximum number of lines per page for printing

NOP $=$ Number of tables per page
$\operatorname{NSKIP}(I)=$ Skip the $I^{\text {th }}$ file (in the modulo 6 file format) from the analysis

I = 1, 2, ...., 6
If $\operatorname{NSKIP}(\mathrm{I})=0=$ Do not skip $I^{\text {th }}$ file
If $\operatorname{NSKIP}(I)=1=\operatorname{Skip} I^{\text {th }}$ file

## Input Data:

Magnetic tape unit: MTOO

$$
\begin{aligned}
\text { Format: } & \text { PASS } 1 \text { severity } \\
& \text { analysis output } \\
& \text { format }
\end{aligned}
$$

Output Data:
Plots on graphics terminal or tables on printer

```
FAGE 1
\begin{tabular}{|c|c|c|}
\hline 1 & 标米为 & FFAUEF FORTFIAN E－17－74 A．EAFIGALIY \\
\hline \(\Sigma\) & ＊ & \\
\hline 3 & \％ & FF＇fivEF＝FRINTS AND FLITS AVERAGEL FILES \\
\hline 4 & ＊ & \\
\hline 5 & 3 & DATA INFUT FDFMET DUT FUT DF ALINEFFEE \\
\hline 6 & ； & \\
\hline 7 & ＊ & INFUIT LIATA IDS \\
\hline 8 & ＊ & \\
\hline 7 & ＊ & ILAA 1 ）＝LIATA TYFE 1，． 4 \\
\hline 10 & ＊ & ICA（ 2 ）＝\＃DF EAFMIG EYELEG／FILE \\
\hline 11 & ＊ & ILA 3\()=S T A F T\) TIME IN Mi SEE． \\
\hline 12 & ＊ & ILAA 4 ）＝ENL TIME IN M．SES \\
\hline 13 & \％ & LIA（ 1 ）＝GAMF FLOT SEMFLE INIFDMENT \\
\hline 14 & H & LAA \(Z=4\) EAFE IF ANAI．I［I \\
\hline 15 & \(*\) & \\
\hline 16 & ＊ & \\
\hline 17 & ； & \\
\hline 16 & ＊ & \\
\hline 17 & \％ & \\
\hline 20 & \(\ddot{\square}\) & INFUT EIMMFNLI FAFAMETEFS \\
\hline 21 & ＊ & \\
\hline 22 & ＊ & NFILE＝\＃IF FILFS TiU AVEF \\
\hline 23 & ＊ & NFFFINT＝FFINT \(\because \quad 0=N \mathrm{~N}, 1=Y \mathrm{Y}\) S \\
\hline 24 & ＊ & IFLOT＝FLDT \(\% 0=N O, 1=Y E \leq\) \\
\hline 25 & ＊ & MAXL＝MAX FFINT LINE NBM FAGE \\
\hline \(\because\) & ＊ & NOF＝\＃DF FLGTE GFi FFJNT ELDIEK \\
\hline \(\geq 7\) & ＊ & \\
\hline 28 & ＊ & \\
\hline 29 & ＊ & \\
\hline 30 & 4 & NSKIF \((1)=S I F\) FILE IN GFiUIF AND NGI AVEFAGE \\
\hline 31 & ＊ & \\
\hline 32 & ＊ & \\
\hline 3 & ＊ & \\
\hline 34 & ＊ & \\
\hline 35 & ＊ & ILGM＝INFUT COMMEND \\
\hline G6 & ＊ & \\
\hline 97 & ＊ & \(A=G\) SINIT AND STAFT ANAI YSTS \\
\hline 39 & ＊ & \(\square=67=\) LHANGE FAFIAMETEF： \\
\hline 37 & ＊ & \(:=74-\mathrm{CONTINLE}\) WITH ANFIL LIONT INIT \\
\hline 40 & ＊ & \\
\hline 41 & ； & \\
\hline 42 & ＊ & \\
\hline 43 & & EDMMON／TAELE／LINE（SO） \\
\hline 44 & ＊ & \\
\hline 45 & & CDMMION ILA（ \(B\) ），A（512），IAV（ 3 ） \\
\hline 46 & & EOMMION LES 1 ），AV（ 512\()\) ，DE（ 1 ） \\
\hline 47 & ＊ & \\
\hline \(4 \varepsilon\) & & DIMFNEION EW（10） \\
\hline 49 & & \\
\hline 50 & & IIMENEICIN IEIE（4），AFM（4），AT（4） \\
\hline
\end{tabular}
```

F'ABE

51
5
59
54
5 56 57
53
$5 \%$
60
$\leqslant 1$
62
*
*
*
*
$\sigma$

4

5

## *

LIMEN:ION NEKIF ( 6$), \operatorname{DA}(2), \operatorname{EMAS}(5)$, ITEM(5)

IAIL EFAS
EAL_L, EEL
ITEM( 1 )=1
$\operatorname{ITEM}(z)=1$
ITEM( 3 ) $=1$
ITEM (4)=50
ITEM 5 ) $=1$

NFILF=ITEM( 1 )
NFFFINT = ITEM ( $z$ )
IFLDT = ITEM ( $\vdots$ )
MAXLIN=ITEM(4)
NOF=I TEM( E )

EAIL INIEUF ( $6, N B K I F)$
$=0$
CAI L HOLLEF( GHNEKIF $=, 6$ )

```
FAGE S
```

```
3
```

```
 CALI EEL
```

    CALI EEL
    [ig 7,J=1,6
    [ig 7,J=1,6
    EAI L. LIEGIN(I)
    EAI L. LIEGIN(I)
    IF(I, GT. 7 MOG TO E
    IF(I, GT. 7 MOG TO E
    NSKIF(, J )=I
    NSKIF(, J )=I
    EONT INLJE
    EONT INLJE
    A=ES=INIT AND ANAIIZ
    A=ES=INIT AND ANAIIZ
    L=67=L:HANGE FG:Fi
    L=67=L:HANGE FG:Fi
    ,I=74=EONTINIE WITH ANAL.
    ,I=74=EONTINIE WITH ANAL.
    NIIFF=O
    NIIFF=O
    =0
    =0
    GAlLL HDLLEF( GH ICDM=,6)
    GAlLL HDLLEF( GH ICDM=,6)
    CAlL EEL
    CAlL EEL
    GALL EEL
    GALL EEL
    EALL EHIN( IGOM)
    EALL EHIN( IGOM)
    IF(ILOM EGS 6S)GD TO 10
    IF(ILOM EGS 6S)GD TO 10
    IF(IEOM. EG. 67 )GU TG 2
    IF(IEOM. EG. 67 )GU TG 2
    IF(IEOM. EG! 74 )GiO TG 12
    IF(IEOM. EG! 74 )GiO TG 12
    BITO 
    BITO 
    MODE=0
    MODE=0
    IF(NFFINT. EQ.O OGG TG 12
    IF(NFFINT. EQ.O OGG TG 12
    NLINE=O
    NLINE=O
    EALL. FFTLNE( 100)
    EALL. FFTLNE( 100)
    EALI. INIEJF(102S, EE(1))
    EALI. INIEJF(102S, EE(1))
    NAV=0
    NAV=0
    NDFFF=NOFFF+1
    NDFFF=NOFFF+1
    IF(NDFF. GT. NOF MG TG 
    IF(NDFF. GT. NOF MG TG 
        [ig 6O I=1, NFIIE
        [ig 6O I=1, NFIIE
            GALL. EFAA':
            GALL. EFAA':
            EAILL CONTAF'(MOILE, ZHFH, O,1)
            EAILL CONTAF'(MOILE, ZHFH, O,1)
            IF(MODE. EG 1 MGO TO }1
            IF(MODE. EG 1 MGO TO }1
            EAl.I. EEL
            EAl.I. EEL
            CALI. EHIN(.i)
            CALI. EHIN(.i)
            IF(.I. EO 1こ7 )IN TO E
            IF(.I. EO 1こ7 )IN TO E
            MONE=1
            MONE=1
            C:Al_I. INIEIDF(10E%, IDA( 1))
            C:Al_I. INIEIDF(10E%, IDA( 1))
            CALL IGLATA(10,10E2,0, I[IA(1),.1)
            CALL IGLATA(10,10E2,0, I[IA(1),.1)
            GAL_L EONTAF(1, ZHFF,0,1)
            GAL_L EONTAF(1, ZHFF,0,1)
                    FLIAT FAFF
                    FLIAT FAFF
                            AT( 1 )=I[IA(z)
                            AT( 1 )=I[IA(z)
                    AT(Z)=I[IA( Z)
    ```
 AT(Z)=I[IA(Z)
```

| FAGit： |  |  |
| :---: | :---: | :---: |
| 151 |  | AT（ 3 ）＝I IA（ 4 ） |
| 152 |  | AT（ 4 ）$=\operatorname{DA}(1)$ |
| 153 |  | $E L Z(11)=\operatorname{La}(2)$ |
| 154 |  | $S A M F=\square A(1)$ |
| 155 | ＊ |  |
| 156 |  | IF（ NGKCIF＇I ）NE．O MOT TO 60 |
| 157 | 15 | IF（NFFINT，ED．O）GID TG 40 |
| 158 | ＊ |  |
| $15 \%$ | ＊ |  |
| 160 | \＃ | FFINT 1ST LINE |
| 161 | ＊ |  |
| 162 |  | EALI．INIEUF（SO，LINE） |
| 169 |  | IF（ILA 1 ）ES 2 ）SiO TG 20 |
| 16.4 |  | CAI L．AMIFIF（ 0, NAMEF，$-64,0$ ） |
| 165 |  | Sill TO 25 |
| 166 | $\cdots$ |  |
| 167 | 20 | CALL AMDF $0, ~$ NAMEF，$-44,0$ ） |
| 168 |  |  |
| 169 |  | EALL AMIFF（ $2,1 F 2 B F,-16,0$ ） |
| 170 | \％ |  |
| 171 | 25 | EALL FFTLNE（ES） |
| 172 |  | EAIL＿FFITL NE（200） |
| 173 | ＊ |  |
| 174 | ＊ | ZNDI LINE |
| 175 | \＃ |  |
| 176 |  | EALL INIEHF（50，LINE） |
| 177 |  | $N=0$ |
| 178 |  | K゙ $=1$ |
| 179 |  | ［in］ $30,-1=1,4$ |
| 180 |  | EALL ALILF（ N，ELZ（ 6 ），－B，0） |
| 181 |  | $N=N+1$ |
| 182 |  | EAI L ALIMFi $N, A T(, 1), ~(1,2)$ |
| 183 |  | $N=N+1$ |
| 184 |  | ド $=$ ぐ＋2 |
| 185 | 30 | GINTINIJE |
| 186 | ＊ |  |
| $1 E 7$ |  | CALL ADLF（N，ELZ |
| 168 |  | EALL FF＇TLNE S S |
| 189 |  | CALL FFTTLNE（200） |
| $1 \% 0$ |  | NLINE $=$ NL I $\mathrm{NE}+4$ |
| 191 | ＊ |  |
| 192 | 40 | ［10） $50,1=1,512$ |
| 195 | 50 | $A V(.1)=A V(.1)+A(1)$ |
| 174 |  | NAV＝NAV＋IDA I $^{(1)}$ |
| 175 | 60 | LINT INJE |
| 176 | ＊ |  |
| 197 | ＊ |  |
| 1\％3 | ＊ | ANALYSIS |
| 177 | ＊ |  |
| 200 | ＊ |  |

PABF： 5

| 201 | 6.5 | CUNTINIJF | |
|---|---|---|---|
| 202 | 70 | FFGILIOO． |
| 203 |  | EUM $=0$. |
| 204 |  | $X=F L D A T(N A V)$ |
| 205 |  | ［10 $75 . J=1,512$ |
| 200 |  | $A V(J)=A V(0) / X$ |
| 207 |  | $S \\| M=S 11 M+A \cup(1)$ |
| 208 |  |  |
| 209 | 75 | CINT INUE |
| 210 | ＊ |  |
| $\geq 11$ |  | IF（NFFINT．EQ．O SiO TE 120 |
| $\geq 12$ | ＊ |  |
| 213 | 77 | $X=F$ FOOT／SLM |
| 214 |  | －IAVEF $=X$ |
| 215 |  | $\mathrm{F}^{\prime} \mathrm{J} F=X * S$ AMF |
| 216 |  | $A F E A=S U M * 100$. |
| 217 |  | $\mathrm{K}=-1$ |
| 219 | 76 | AMAX $=-10000$. |
| 219 |  | ［以］ $80.1=1,512$ |
| 220 |  | IF（ A＇v（ J ），GT．AMAX ） $6=1$ |
| 2 2 |  | IF（ AV（，J）．GT．AMAX ）AMAX＝AV（ ，I ） |
| $\pm 22$ | 80 | EINTINUE |
|  | ＊ |  |
| $2 \times 4$ |  | FMAX＝FLOAT（K）HSAMF |
| ż¢ |  | AFM（ 1 ）＝AUF |
| 26 |  | AFM（ $Z$ ）＝FMAX |
| 227 |  | AFMK -3$)=$ AREs |
| 229 |  | AFM（ 4 ）$=$ AMAX $* 10000$. |
| 289 | ＊ |  |
| 250 | ＊ |  |
| 231 | ＊ | FIND EAND WIDTH |
| 28 | ＊ |  |
| 25 | 82 | LIE（ 1 ）$=0$. |
| 234 |  | LIE（ 1 ）$=0$ ． |
| 285 |  | LIIF＝512－JAVEF |
| 236 |  | LLIW＝，IAVEF－1 |
| 237 |  | LIM＝LUF＇ |
| 236 |  | IF（LLDW，■T，LIJF ）IM $=$ LLIW |
| $23 \%$ | ＊ |  |
| 240 |  | SINC＝ 1 \＃GUM |
| 241 |  | K＝．JAVER |
| 242 |  | $I=.1 A \cup E F i+1$ |
| 243 |  | TITAI．．＝AV（ ．IAVEF： |
| 244 |  | $N=1$ |
| 245 | $E 4$ | $Y=S$ N |
| 246 |  | ［1］ $70, \mathrm{~J}=1$ LIM |
| 247 |  | IF（ド LE．E1Z ）ド＝ド＋1 |
| 24E |  | IF（ I．GE． 1 ）I＝I－1 |
| 247 |  | TOTAI $=$ TGTAL＋AV（K）＋DE（ I ） |
| 250 |  | IF（ TOTAL．LT．Y ）GIL TG \％ |

## FAGE <br> 6

251
252
25
254
255
25690
257 *
258 *
259 *
$200 \quad \%$
2に1 75
262
263
264
205
266
267
266
26.9

270
271
272
272
274
275
$276 *$
277 *
278105
*

$$
X=r-I+1
$$

EW $(N)=X * S A M F$
$N=N+1$
IF (N. GT. 7 )GUTG 75
$Y=Y+E I N L$
EONTINUE

FFINT LINE \#:
GALL INIEUF (SO.LINE )
$\mathrm{C}=1$
$N=0$
[i] $100, J=1,4$
EALL $\operatorname{ADCAR}(N, E L F,-2,0)$
$N=N+1$
EALI ADMF(N, ELE(K), -E, 0)
$N=N+1$
$k=K+z$
EALL AUEF(N, AFM( 1 ), 7, 2 )
$N=N+1$
ELINTINLIE
$\begin{array}{ll}100 & \text { GONT INLE } \\ 102 & \text { EAl. FFTLNE } \\ & \text { GALL FFTLNE } 200)\end{array}$
$\begin{array}{ll}100 & \text { GONT INLE } \\ 102 & \text { EAl. FFTLNE } \\ & \text { GALL FFTLNE } 200)\end{array}$

* FFINT L.INE\# 4

103 EALi. INIEUF (5O.LINF)
GALL ALIDF( $0, \operatorname{EL} 4(1),-64,0)$
EAII. FFTLME (ES)
EALL FFTLNE (2OO)
LINE\# 5
EALL INIEUF (5O, LINE)
EALI AMIFK 0, ELKK, $-2,0$ )
EALL ADIDF ( $1, \operatorname{EW}(1), 5,1$ )
CALL ADLF: $Z$, Bl_k, $-\mathbf{S}, 0$ )
CALI ADEF( $3, \operatorname{EW}(\geq), 5,1$ )
EALL AUIFi (4, ELK, - 3 , 0)
EAIL ADLFE (5, EW( 3 ), 5, 1)
EALL ALILFi 6, ELK $,-3,0$ )
EALL ALICR $7, \operatorname{BW}(4), 5,1)$

EALL AMDF( $7, \operatorname{EW}(5), 5,1)$
EALL ADIFF ( 10, BLK, $-3,0$ )
EALL. ACIDF( $11, \operatorname{EW}(6), 5,1)$

EALL ADIFF( 13, EWK 7 ), 5, 1)

```
FAGE %
904
305
306
307
B6%
80%
30
311 *
#12 12O IF(IFLOT. EQ O MOG TG 15O
313 *
314 *
315 *
316*
3 1 7 ~ 1 3 0 ~ E A L L ~ E F A S ~
31:
3%
#%
21
32
4%
34
25
32
2%
35
929
80
31
32
B%
3%4
5
8
37
85
8% %
340 #
34 *
34% #
343 *
344 140
:45
346
347
348
34%
350
```301302303
```

 CALL A[IDF(14, ELFE, -S, O)
 ZOS EALL ADIF(15,EW(E),5,1)
 *

111 EALI FFTLNE(:S)
CALI.. FFTTLNE(ZOO)
EALL FFTLNE(2OO)
NI.INE=NLINF+7
IF(NLINE. LE MAXLIN MGG TO 12O
115 NLTNE=0
EALL FFTLNE(100)
*

* FLIIT AV() AFFIAY NSTAF=ETAFT EDFE
NENL=ENLI GOFE FOF FLGT AFIFIAY
CAlL EEL
N:TAF:=1
NEN[=512
EALL LIEEIN(NETAFI)
GALI DEEIN(NEND)
EALL FHEALI IMA(1))
=NF ILE-1
EAI.I. FHEALI
=%%
EALL ELANKA
I=IMA(B)
I=IDA(4)
EAI L DECH4(IELNE,ZH T, I)
EALL [EEH4(IELK, IELK゙, J)
EALL EHDIL(1S)
EALL EHOHI 10)
=%
CALL ELAINKA
EALL DESH4(IE|K,ZH N,NAV)
CALL [IECH4(IELK\&,ZH F,NFILE)
GALI ENFLGT(AV,NETAF,NHNL,SAMF, DA(Z))

* ELIFSDF

```

```

|=74=FETUFIN TG ANAI. GTHFF:=LAFGOL FLOT
140
EALI. DAMCIIF(IEHAF, I, ,I)
EALL CHIHLS E1)
X=SAMF
IF(SAMF. LE. . 1) X=X % 1000
IF(ICHAF. EO EO SGQ TO 13O
IF(IEHAF. EQ. 127)GM TO 11
IF(IEHAF. EQ. 74)GIG TG 1%

```


\section*{ERROR ANALYSIS OF \(\overline{\mathbf{f}}\)}

The \(J^{\text {th }}\) spectral component of the mean murmur spectrum is defined as
\[
\bar{P}(J \Omega)=\bar{P}_{J}=\frac{1}{L} \sum_{i=1}^{L} P_{i}(J \Omega)
\]
and the first moment of this spectrum \(\bar{f}\) as
\[
\overline{\mathrm{f}}=\frac{\sum_{J=0}^{N}(J \Omega) \overline{\mathrm{P}}_{\mathrm{j}}}{\sum_{J=0}^{N} \overline{\mathrm{P}}_{\mathrm{J}}}=\frac{\Omega \mathrm{M}}{\mathrm{~S}}
\]
where \(M=\sum_{J=0}^{N} J \bar{P}(J \Omega)\)
\[
S=\sum_{J=0}^{N} \bar{P}(J \Omega)
\]
\[
N=511 \text { and } L=N . \operatorname{REC}
\]
\[
\text { and } \Omega=\frac{1.250 \mathrm{~K} \mathrm{~Hz}}{1024}=1.2207 \mathrm{~Hz}
\]

Assuming that the random errors of \(\overline{\mathrm{P}}_{1}, \overline{\mathrm{P}}_{2}, \ldots, \overline{\mathrm{P}}_{\mathrm{J}}\) are independent and uncorrelated, the standard deviation of \(\overline{\mathrm{f}}\) is found from the equation given below [78].
\[
\sigma_{\bar{f}}=\text { standard deviation of } \overline{\mathrm{f}}
\]
\[
\sigma_{\overline{\mathrm{f}}}=\sqrt{\left(\frac{\partial \overline{\mathrm{f}}^{\prime}}{\partial \overline{\mathrm{P}}_{0}}\right]^{2}\left[\sigma_{\overline{\mathrm{P}}_{0}}\right]^{2}+\left(\frac{\partial \overline{\mathrm{f}}^{2}}{\partial \overline{\mathrm{P}}_{1}}\right)^{2}\left[\sigma_{\overline{\mathrm{P}}_{1}}\right)^{2}+\ldots\left(\frac{\partial \overline{\mathrm{f}}^{\prime}}{\partial \overline{\mathrm{P}}_{\mathrm{N}}}\right)^{2}\left[\sigma_{\overline{\mathrm{P}}_{\mathrm{N}}}\right]^{2}}
\]
where the \(J^{\text {th }}\) partial derivative is
\[
\begin{aligned}
& \frac{\partial \bar{f}}{\partial \bar{P}_{J}}=\Omega \frac{[J S-M]}{S^{2}} \\
& \left(\frac{\partial \bar{f}}{\partial \bar{P}_{J}}\right)^{2}=\frac{\Omega^{2}}{S^{4}}\left[J^{2} S^{2}-2 J S M+M^{2}\right] \\
& \left(\frac{\partial \bar{f}}{\partial \bar{P}_{J}}\right)^{2}=\frac{1}{S^{2}}\left[\Omega^{2} J^{2}-2 J \Omega\left(\frac{\Omega M}{S}\right)+\left(\frac{\Omega M}{S}\right)^{2}\right] \\
& \left(\frac{\partial \bar{f}}{\partial \bar{P}_{J}}\right)^{2}=\frac{1}{S^{2}}\left[\Omega^{2} J^{2}-2 J \Omega \bar{f}+\bar{f}^{2}\right]
\end{aligned}
\]

Assuming that the spectrum is white and that
\[
\begin{aligned}
\sigma_{\bar{P}_{0}} & =\sigma_{\overline{\mathrm{P}}_{1}}=\ldots \sigma_{\overline{\mathrm{P}}_{\mathrm{N}}}=\sigma_{\overline{\mathrm{P}}}=\frac{\sigma_{\mathrm{P}}}{\sqrt{\mathrm{N.REC} .}} \\
S & =N \mu_{\mathrm{P}} \\
\text { and } \sigma_{\mathrm{P}} & \approx \mu_{\mathrm{P}},[71]
\end{aligned}
\]
where \(\quad \sigma_{P}=\) standard deviation of spectral estimates
\[
\mu_{P}=\text { mean value of power spectrum }
\]
and N.REC. = Number of records averaged yields the following equation.
\[
\sigma_{\bar{f}}=\frac{\sigma_{\bar{p}}}{S} \sqrt{\Omega^{2} \sum_{J=1}^{N} J^{2}-(2 \Omega \bar{f}) \sum_{J=1}^{N} J+N(\bar{f})^{2}}
\]

Expressing the sums in closed forms,
\[
\begin{aligned}
& \sum_{J=1}^{N} J^{2}=\frac{N(N+1)(2 N+1)}{6}=\frac{N}{6}\left[2 N^{2}+3 N+1\right] \\
& \sum_{J=1}^{N} J=\frac{N(N+1)}{2}
\end{aligned}
\]

Substituting these values in the previous equation,
\(\sigma_{\bar{f}}=\frac{\sqrt{\frac{1}{N^{2}}\left[N(\overline{\mathrm{f}})^{2}+\Omega^{2} \frac{N}{6}\left(2 N^{2}+3 N+1\right)-(2 \Omega \overline{\mathrm{f}}) \frac{N(N+1)}{2}\right]}}{\sqrt{\text { N. REC. }}}\)
\(\sigma_{\bar{f}}=\frac{\sqrt{\frac{\bar{f}^{2}}{\mathrm{~N}}+\Omega^{2}\left(\frac{2 \mathrm{~N}^{2}+3 \mathrm{~N}+1}{6 \mathrm{~N}}\right)-\Omega \overline{\mathrm{f}} \frac{(\mathrm{N}+1)}{\mathrm{N}}}}{\sqrt{\mathrm{N} \cdot \mathrm{REC} .}}\)
\(\sigma_{\overline{\mathrm{f}}}=\frac{\sqrt{\frac{\overline{\mathrm{f}}^{2}}{511}+254.56-1.223 \overline{\mathrm{f}}}}{\sqrt{\text { N.REC. }}}\)
The calculated values for \(\sigma_{\bar{f}}\) are summarized in Table 2, Chapter 5.

\section*{LEAST SQUARE REGRESSION LINE AND} CORRELATION COEFFICIENT CALCULATIONS

The correlation coefficient and linear least square estimate of P.S.E.G. from \(\overline{\mathrm{f}}\) are calculated from the short formula [79] as given below where
\[
\begin{aligned}
& \mathrm{N}=\text { number of patients } \\
& \mathrm{X}=\text { independent variable ( } \overline{\mathrm{f}} \text { or } 50 \% \mathrm{~F} \text { ) } \\
& \mathrm{Y}=\text { dependent variable (P.S.E.G.) } \\
& \mathrm{r}=\text { correlation coefficient }
\end{aligned}
\]
and \(Y_{\text {est }}=\) linear least square estimate of \(Y\) from \(X\)
\[
\begin{gathered}
D_{1}=N \sum_{i=1}^{N} x_{i}^{2}-\left(\sum_{i=1}^{N} x_{i}\right)^{2} \\
a_{0}=\frac{\left(\sum_{i=1}^{N} Y_{i}\right)\left(\sum_{i=1}^{N} x_{i}^{2}\right)-\left(\sum_{i=1}^{N} x_{i}\right)\left(\sum_{i=1}^{N} x_{i} Y_{i}\right)}{D_{1}}
\end{gathered}
\]
\[
K_{1}=N\left(\sum_{i=1}^{N} X_{i} Y_{i}\right)-\left(\sum_{i=1}^{N} X_{i}\right)\left(\sum_{i=1}^{N} Y_{i}\right)
\]
\[
a_{1}=\frac{\mathrm{K}_{1}}{\mathrm{D}_{1}}
\]
\[
Y_{e s t}=a_{0}+a_{1} X
\]
\[
D_{2}=N\left(\sum_{i=1}^{N} Y_{i}^{2}\right)-\left(\sum_{i=1}^{N} Y_{i}\right)^{2}
\]
\[
\mathrm{r}=\frac{\mathrm{K}_{1}}{\sqrt{\mathrm{D}_{1} \mathrm{D}_{2}}}
\]

TABLE 1,AII

CORRELATION STUDY BETWEEN P.S.E.G. AND \(50 \% \mathrm{~F}\) AT THE
2ND. R.I. ON INSPIRATION, EXPIRATION AND
CAROTID DATA FOR THE TWELVE CATHETERIZED VALVAR AORTIC STENOSIS PATIENTS
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Catheterization and Personal Data } & \multicolumn{1}{|c|}{\begin{tabular}{l} 
Phono. \\
Data
\end{tabular}} \\
\hline Name & Hosp. \# & \begin{tabular}{l} 
Chest \\
Wa11
\end{tabular} & \begin{tabular}{c} 
Y=P.S.E.G. \\
mm Hg
\end{tabular} & \begin{tabular}{c}
\(50 \%\) F \\
In Hz
\end{tabular} \\
\hline Tommy K. & \(63-77-80\) & Thin & \(9-18\) & 78.1 \\
\hline Dona1d G. & \(62-12-80\) & Thin & 16 & 61.0 \\
\hline Nata1ie K. & \(70-89-65\) & Med. & 23 & 95.2 \\
\hline Bryan K. & \(60-91-88\) & Thin & 39 & 73.2 \\
\hline Robert M. & \(53-91-59\) & Med. & \(42-45\) & 90.3 \\
\hline Elizabeth R. & \(55-01-61\) & Thin & 45 & 80.6 \\
\hline Rudo1ph B. & \(68-97-78\) & Thin- & 45 & 97.7 \\
\hline Med. & & 78.1 \\
\hline Richard F. & \(57-53-27\) & Med. & \(61-68\) & 78.1 \\
\hline Jean S. & \(58-79-24\) & Med. & \(70-90\) & 68.4 \\
\hline Mark M. & \(68-95-48\) & Thin & \(6-8\) & 78.1 \\
\hline Jonathan F. & \(64-87-14\) & Thin & \(5-9\) & 36.6 \\
\hline Barry F. & \(60-50-48\) & Med. & \(16-24\) & 56.2 \\
\hline
\end{tabular}
\[
\begin{array}{rlrl}
\Sigma Y= & \Sigma 03.5 & \Sigma Y^{2}=19,488.75 & \Sigma 50 \% F=893.5 \\
& \Sigma Y(50 \% F)=31,462.65 & \sum(50 \% F)^{2}=69,813.41
\end{array}
\]

Correlation Coefficient between P.S.E.G. and \(50 \%\) F \(=.3217\)

TABLE 2,AII

CORRELATION STUDY BETWEEN P.S.E.G. AND \(\overline{\mathrm{f}}\) AT THE
2ND. R.I. ON INSPIRATION, EXPIRATION AND CAROTID DATA FOR THE TWELVE CATHETERIZED VALVAR AORTIC STENOSIS PATIENTS
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{2}{|c|}{ Catheterization and Personal Data } & \multicolumn{1}{c|}{\begin{tabular}{c} 
Phono. \\
Data
\end{tabular}} \\
\hline \multicolumn{1}{|c|}{ Name } & Hosp. \# & \begin{tabular}{l} 
Chest \\
Wa11
\end{tabular} & \begin{tabular}{c} 
Y=P.S.E.G. \\
mm Hg
\end{tabular} & \begin{tabular}{c}
\(\bar{f}\) \\
In Hz
\end{tabular} \\
\hline Tommy K. & \(63-77-80\) & Thin & \(9-18\) & 85.79 \\
\hline Donald G. & \(62-12-80\) & Thin & 16 & 89.70 \\
\hline Natalie K. & \(70-89-05\) & Med. & 23 & 124.53 \\
\hline Bryan K. & \(60-91-88\) & Thin & 39 & 127.97 \\
\hline Robert M. & \(53-91-59\) & Med. & \(42-45\) & 124.53 \\
\hline E1izabethR. & \(55-01-61\) & Thin & 45 & 147.77 \\
\hline Rudolph B. & \(68-97-78\) & Thin- & 45 & 142.86 \\
\hline Richard F. & \(57-53-27\) & Med. & \(61-68\) & 168.56 \\
\hline Jean S. & \(58-79-24\) & Med. & \(70-90\) & 201.84 \\
\hline Mark M. & \(68-95-48\) & Thin & \(6-8\) & 95.89 \\
\hline Jonathan F. & \(64-87-14\) & Thin & \(5-9\) & 93.12 \\
\hline Barry F. & \(60-50-48\) & Med. & \(16-24\) & 104.15 \\
\hline
\end{tabular}

Correlation Coefficient between P.S.E.G. and \(\overline{\mathrm{f}}=.9657\)
Least Square Line \(=\) (P.S.E.G.) est. \(=-46.0+.634 \overline{\mathrm{f}}\)

TABLE 3,AII

CORRELATION STUDY BETWEEN P.S.E.G. AND \(\overline{\mathrm{f}}\) AT THE
2ND. R.I. ON INSPIRATION DATA FOR THE TWELVE CATHETERIZED VALVAR AORTIC STENOSIS PATIENTS
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{2}{|c|}{ Catheterization and Persona1 Data } & \begin{tabular}{c} 
Phono. \\
Data
\end{tabular} \\
\hline Name & Hosp. \# & \begin{tabular}{l} 
Chest \\
Wa1I
\end{tabular} & \begin{tabular}{c} 
Y=P.S.E.G. \\
mm Hg
\end{tabular} & \begin{tabular}{c}
\(\overline{\mathrm{f}}\) \\
In Hz
\end{tabular} \\
\hline Tommy K. & \(63-77-80\) & Thin & \(9-18\) & 89.66 \\
\hline Donald G. & \(62-12-80\) & Thin & 16 & 94.52 \\
\hline Natalie K. & \(70-89-05\) & Med. & 23 & 126.7 \\
\hline Bryan K. & \(60-91-88\) & Thin & 39 & 122.29 \\
\hline Robert M. & \(53-91-59\) & Med. & \(42-45\) & 125.49 \\
\hline E1izabethR. & \(55-01-61\) & Thin & 45 & 149.32 \\
\hline Rudolph B. & \(68-97-78\) & Thin- & 45 & 143.91 \\
\hline Richard F. & \(57-53-27\) & Med. & \(61-68\) & 168.81 \\
\hline Jean S. & \(58-79-24\) & Med. & \(70-90\) & 203.8 \\
\hline Mark M. & \(68-95-48\) & Thin & \(6-8\) & 99.98 \\
\hline Jonathan F. & \(64-87-14\) & Thin & \(5-9\) & 96.66 \\
\hline Barry F. & \(60-50-48\) & Med. & \(16-24\) & 106.66 \\
\hline
\end{tabular}
\[
\begin{gathered}
\Sigma Y=403.5 \quad \Sigma Y^{2}=19,488.75 \\
\Sigma \bar{f} Y=59,762.24 \\
\sum \overline{\mathrm{f}}^{2}=207,481.75
\end{gathered}
\]

Correlation Coefficient between P.S.E.G. and \(\bar{f}=.9575\)
Least Square Line \(=(\) P.S.E.G. \()\) est. \(=-48.74+.647 \overline{\mathrm{f}}\)

TABLE 4, AIT

CORRELATION STUDY BETWEEN P.S.E.G. AND \(\overline{\mathrm{f}}\) AT THE 2ND. R.I. ON EXPIRATION DATA FOR THE TWELVE CATHETERIZED VALVAR AORTIC STENOSIS PATIENTS
\begin{tabular}{|l|c|l|c|c|}
\hline \multicolumn{1}{|c|}{ Catheterization and Personal Data } & \begin{tabular}{c} 
Phono. \\
Data
\end{tabular} \\
\hline \multicolumn{1}{|c|}{ Name } & Hosp. \# & \begin{tabular}{l} 
Chest \\
Wall
\end{tabular} & \begin{tabular}{c} 
Y=P.S.E.G. \\
mm Hg
\end{tabular} & \begin{tabular}{c} 
f \\
In Hz
\end{tabular} \\
\hline Tommy K. & \(63-77-80\) & Thin & \(9-18\) & 82.55 \\
\hline Donald G. & \(62-12-80\) & Thin & 16 & 87.93 \\
\hline Nata1ie K. & \(70-89-05\) & Med. & 23 & 122.06 \\
\hline Bryan K. & \(60-91-88\) & Thin & 39 & 129.2 \\
\hline Robert M. & \(53-91-59\) & Med. & \(42-45\) & 125.89 \\
\hline Elizabeth R. & \(55-01-61\) & Thin & 45 & 145.67 \\
\hline Rudolph B. & \(68-97-78\) & Thin- & 45 & 138.25 \\
\hline Richard F. & \(57-53-27\) & Med. & \(61-68\) & 163.9 \\
\hline Jean S. & \(58-79-24\) & Med. & \(70-90\) & 199.03 \\
\hline Mark M. & \(68-95-48\) & Thin & \(6-8\) & 95.02 \\
\hline Jonathan F. & \(64-87-14\) & Thin & \(5-9\) & \(91-94\) \\
\hline Barry F. & \(60-50-48\) & Med. & \(16-24\) & 99.73 \\
\hline
\end{tabular}
\[
\begin{array}{rrr}
\Sigma Y=403.5 & \Sigma Y^{2}=19,488.75 & \Sigma \overline{\mathrm{f}}=1,481.17 \\
\Sigma \overline{\mathrm{f}} \mathrm{Y}=58,417.38 & \Sigma \overline{\mathrm{f}}^{2}=196,222.54
\end{array}
\]

Correlation Coefficient between P.S.E.G. and \(\bar{f}=.9669\)
Least Square Line \(=\) (P.S.E.G.) est. \(=-45.70+.6427 \overline{\mathrm{f}}\)```

