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ABSTRACT

NORMED NEAR ALGEBRAS AND FINITE DIMENSIONAL
NEAR ALGEBRAS OF CONTINUOUS FUNCTIONS

by
JOEL W. IRISH

A real near algebra system is a real algebra which
lacks the left distributive property and the scalar peoperty
x(ty) = t(xy). The emphasis of this paper is in the area of
analysis and function near algebras rather that the study of
algebraic properties.

A real normed near algebra is a near algebra over the
field IR such that the linear space 1s a normed space and
Wxy W\ £ ixIl Hyll. This condition is not strong enought to
force continuity of multiplication in both variables; but it
does result in the following.

The right multiplication operator is a continuous function.
Every normed near algebra without identity can be isomor-
phically isometrically embedded in a normed near algebra
with identity provided x(ty) = t(xy) for all t 2 O.

A D-normed near algebra is a normed near algebra such
that lbx - byllé-Kb!lx - yll for all x, y and b and for some

I&)Z O. A strongly D-normed near algebra occurs whenever



K = llbll for all b. These conditions are a weak distributive

b
property of the norm. Several results follow directly from the
D-norm condition.

Multiplication is continuous in both variables separately

and simultaneously in a D-normed near algebra.

Every strongly D-normed near algebra is a near algebra

with continuous inverse.

Every strongly D-normed near algebra can be embedded in a

complete strongly D-normed near algebra.

The left regular representation of a normed algebra is
generalized for normed near algebras with the bounded left
multiplication operators (not necessarily linear) as the
representation space. For D-normed near algebras, the repre-
sentation is into the space of Lipschitz left multiplication
operators.

The existence of left continuity of multiplication and
left modules result in several important theorems. For a near
algebra N and left module A, let [n,a,b] = n(a+b) - na - nb
denote the distributor of a, b € A with respect to n € N. For
nonempty sets Sq, 82, 35 € N, let [81’32’S5] be the subspace of
N* generated by the distributor elements [81,52,55]. Define
D°(A) = A and DX(a) = [N, 05" T(4),N]; then N is D-weakly
distributive (D-w-d) of length k > O if DX(N) = 0 and
T () # o.

Every left continuous semisimple D-w-d near algebra is a
semisimple algebra.

If N is a normed near algebra and there exists a non-zero

vi



left module M which is left distributive with respect to

N, then M is a sub algebra and there is a representation
of N into the space of bounded linear operators on M.

If N is a D-w-d normed near algebra of length k > 0, then
there exists a representation of N as a space of bounded
linear operators.

Every normed semisimple near algebra which contains a non-
zero left distributive left module 1s a semisimple algebra.

Every finite dimensional positive homogeneous normed
near algebra with orthogonal idempotent basis is a D-normed
near algebra and multiplication is continuous.

The major result of this paper deals with the finite
dimensional sub near algebras of TC(ﬂ?nD, the continuous func-
tions on R ™, which contain & (JR™). 1In addition, the finite
dimensional sub near algebras of TC(IR) are completely
determined.

Every one-dimensional sub near algebra of TC(ﬂ?) has the
form N(a,b) = <:aJ + bK:> , 2% + v° # 0, where J(x)

= (x + |xl)/2 and K(x) = (x - [x]|)/2. N(a,b)g N(c,d) iff
ad = bc or ac = bd.

The near algebra of positive homogeneous ILipschitz func-
tions is the only two-dimensional sub near algebra of TC(IR).
There are no k-dimensional sub near algebras of TC(ﬂ?) for

k 2 3.

For n 2 2, there are no finite dimensonal sub near algebras
of TC([Rn) which properly contain B(IRH), the linear

operators on IR ™.

vii



INTRODUCTION

The study of near algebras and normed near algebras
is motivated by the desire to generalize the results of
normed algebras and the possible applications to non-linear
operators. Ior example, quantum mechanical models have been
considered in which the operators form only a near algebra.
Although the discussion of stronger multiplicative conditions
on the norm to insure continuity of multiplication is central
to this paper, the principle result is Theorem 4.7 which is
found in Chapter 1V and does not require a norm. Theorem 4.7
resulted from an attempt to construct near algebras of con-
tinuous functions on.”? . From these considerations it was
possible to completely determine all the finite dimensional
near algebras of continuous functions on R and, in Theorem
4.7, to prove that there is no finite dimensional sub near
algebra to TC(ﬂ?n) which properly contains the algebra of
bounded linear operators on MY for n 2 2.

A near ring is an algebraic system with two binary
operations satisfying all of the axioms for a ring, except
possibly one distributive law; and a near field is a near
ring in which every nonzero element has a multiplicative
inverse. Near fields are useful in the study of certain non

Desarguesian planes [18, 25] while near rings appear to have

Desarguesian planes [18, 25] while near rings appear to have



application to the study of nonlinear operators and in
characterizing endomorphisms of a group. Finite near fields
were first considered by Dickson [15] . Zassenhaus [55] de-
termined all finite near fields. It was Kalscheuer [19]
who proved that the twisted quaternions are the only finite
dimensional real near fields (Fastkorper) with continuous
multiplication. More recently Blackett [9] considered a class
of simple and semisimple near rings and Deskins [44] studied
near ring radicals. In [2, %, 4] Beidleman studied near ring
modules and the ideal structure of near rings and in [2] he
organized many of the results on near rings.

A near algebra is a near ring which admits a field as
a right operator domain. Brown [46] studied the structure of
certain classes of near algebras. He investigated the multi-
plicative semigroup structure of a near algebra and some
necessary and sufficient conditions for the admissibility of
division in a near algebra. He discussed the concepts of a
distributor [a,b,c] = a(b + ¢) - ab - ac and of a distributor
chain. Semisimple near algebras are also introduced and a
topological near algebra is defined as a near algebra whose
linear space structure is a Banach space. The principle
result arising from the topological property is that any
semisimple topological near algebra such that right multipli-
cation is differentiable at the origin is a semisimple algebra.

Yamamuro [29, 30, 31, 34] has written several papers
on near algebras of bounded functions (f maps bounded sets to

bounded sets) on a Banach space. The near algebra has a metric



induced by the seminorms of the bounded functions. His
results are, for the most part, generalizations of the results
on two sided ideals studied by Calkin [12]. For example, he
proved in.[BE] that the closed ideal C is minimal amongest all
closed ideals which contain all linear mappings of finite
rank. C is the set of all compact and continuous functions

on the Banach space.

Neither Brown nor Yamamuro define a topological near
algebra in the usual sense. Although Brown used the left or
right continuity of multiplication, he did not incorporate the
continuity of multiplication in his definition of a topolog-
ical near algebra. Yamamuro made no explicit reference to
the continuity of the operations at all. As mentioned
earlier, however, Kalscheuer [19] did consider topological
near algebras. If the scalar field allowed a linear topology
for the linear space structure, then the division near
algebra was called continuous (stelig Fastkorper) whenever
multiplication satisfied the following limit property, pro-
vided the limit existed, lim aibi = 1lim ay lim bi' The
previously mentioned example of "twisted quaternions'" consists
of the vector space of gquaternions over IR with the ususl norm
topology with a product defined by the formula a x b = b % a
O for a = 0 and a * b = a . 5&(a) . b . (Sy(a))—/| for

a # 0 where Sy(a) = cos(—;;log Na)) + 1 sin(%(log Na)) for
0 # y'e.ﬁa . Here - denotes the usual quaternion multipli-
cation, and Na denotes the norm of a.

More recently Beidleman and Cox [5] defined a

topological near ring as a near ring with Hausdorff topology



such that addition and multiplication are coordinate-wise
continuous. The authors noted that this definition is

weaker than that of Kaplansky [20] who insisted that addition
and multiplication be continuous on the product space. The
results of Beidleman and Cox are concerned with the closure
of ideals and radicals and tend to generalize the results of
Kaplansky.

This brings us to the present paper. We wish to
develop the theory of a normed near algebra. Moving in the
direction of Beidleman and Cox, we search for conditions on
the norm which will insure at least a topological near algebra
in the norm topology. Although the usual multiplicative pro-
perty for a normed algebra, [l xyll<€ Jixll l yll , is not
sufficient to insure the continuity of left multiplication,

we define such a near algebra to be a normed near algebra and

prove right multiplication is continuous as is scalar multi-
plication and addition. If left multiplication is continuous,
then multiplication is continuous on the product space.

To insure continuity in both variables we define a
D-norm. A norm has the D-norm condition if and only if
Hxylt € HxU Wyl and, for all b, x, and y, there exists
K, 2 O such that Il vx - vyll £ Ky llx - yll . The D-norm
condition is a left distributive property of the norm and is
a special case of the normed near algebra condition.

Chapter I presents the basic definitions and pro-
perties of a near algebra. We also investigate several
difficulties that the missing distributive property creates

for near algebra arithmetic.



In Chapter II we begin the study of normed near
algebras. In section one we study the norm and D-norm con-
ditions and various continuity properties of multiplication
that result. We also show that the adjoining of an identity
is not a straightforward generalization of the normed
algebra case. The completion of a normed near algebra requires
special conditions on the norm.

Section two is devoted to representation theory. The
left regular representation is generalized and the near
algebra of Lipschitz functions generalizes the space of bounded
linear operators. The distributive conditions of Brown Cﬂﬁ]
are used to strengthen the representations. We prove an
important theorem similar to that of Brown [40] stated earlier.
Every normed semisimple near algebra which contains a nongzero
left distributive left module is a semisimple algebra.

In section three we investigate finite dimensional
normed near algebras. Positive homogeneity and an orthogonal
idempotent basis insure continuity of multiplication.

Chapter III is devoted to a study of the near

algebras of Lipschitz and locally Lipschitz functions and is

primarily concerned with the development of these special
examples. The locally Lipschitz functions are a special case
of the bounded functions studied by Yamamuro [52] . The
principle result of this chapter is that all strongly D-normed
near algebras are near algebras with continuous inverse.
Chapter IV, one of the most important chapters, does

not rely heavily on the norm properties. We determine all



finite dimensional near algebras of continuous functions on

ﬁeand via representation theory all one dimensional near

algebras with continuous multiplication. Extending these

ideas to ﬂ?n we prove the main result of this paper: There

are no finite dimensional near algebras of continuous functions

on ”?n which properly contain the bounded linear operators.
Finally we represent every finite dimensional near

algebra with a special annihilator condition on the basis set

as a function near algebra in T(JR"). This generalizes the

matrix representation found in [1] .



CHAPTER I
BASTIC CONCEPTS

This chapter presents the basic definitions and
establishes some notation and a few introductory results.
Not all of the results are new but they are included for
completeness and to demonstrate the oddities of near algebra
arithmetic. Standard terms in algebra and ring theory, which
are not defined here, may be found in MacLane Birkhoff [24],
terms in functional analysis can be found in Wilansky [28]
and Naimark [26] and topological terms can be found in Kelley
[EM]. The definitions and notations are chosen to be gener-
alizations of ring theory terms.

1.1 Definition. A (right) near algebra over a field

F is a linear space N over F on which a multiplication is
defined such that
i) N forms a semigroup under multiplication,
ii) Multiplication is right distributive over addition:
For all a, b, and ¢ belonging to N, (a + b)c
= ac + bc
iii) (ta)b = t(ab) for all a, b € N and t € F.
This is the definition presented by Brown [40] except that we
have assumed right distributivity instead of left distribu-
tivity. The linear space structure of N will be denoted by

+

N" and the additive identity of N* by 0. If N has a

7



multiplicative identity it will be denoted by e. A near
algebra satisfies all the algebra axioms with the possbile
exception of the left distributive law and the scalar pro-
perty a(tb) = t(ab).

An immediate example of a near algebra which is not
an algebra is the set of all operators on a linear space V
into itself over the field F. For future reference, let T(V)
= {f I f: V=V, f is a function from V into V} denote
this near algebra with the pointwise operations of sum and
scalar multiplication, (f + g)(x) = f(x) + g(x) and (tf)(x)
= t(f(x)), and function composition as the multiplication,
(feg)(x) = f(g(x)). Henceforth, when it is convenient and no
confusion arises, Jjuxtaposition will be used for function
composition.

1.2 Definition. A subset ngélijf;called a sub near algebra

of the near algebra N if and only if Nq is a near algebra
when the operations of N are restricted to Nq.

As in the case of an algebra, we have the following lemma.
1.1 Lemma. Nqsé N is a sub near algebra of N if sa + th € N
and ab € l\T,I whenever a, b € N,| and s, t € F.

/|

For example, TO(V) = { T ’ f € (V) and £(0) =(D} is a sub
near algebra of T(V). If V is a linear topological space,
then TC(V) = { f ] f € TO(V) and f is continuous on'V} is an
important sub near algebra of T(V).

Some special sub near algebras of T(/R) will be con-
sidered to demonstrate the oddities of near algebra arithmetic.

These oddities often cause a problem in generalizing some of



the algebra properties. First consider the additive identity,
which in an algebra has the property that Oa = a0 = 0. All
near algebras have the property that Oa = 0; however, if we
choose the constant function f(x) = ¢ # O as an element in
T(R), then feO0 = £ # 0. We make the following definition
which was presented for near rings by Berman and Silverman[«é}.

1.5 Definition. A near algebra N is a near-c-algebra

if N has the property that a0 = O for every a &€ N.
To(ﬂ?) 1s an example of a near-c-algebra.

Although the multiplicative identity behaves properly,
the additive inverse of the identity does not always behave
as expected. Consider T(/R) as a near algebra with multipli-
cative identity I; then, f(-I) # (-I)f for all f € T(MR).
For example, let f(x) = X2, then f(-I) = £ # - f. This is in
keeping with the fact that, in general, f(tg) # t(fg) for
te R . The set 0(R) = {f [ f & T(R) and f(-x) = —f(x)}
of 0dd functions on /R forms a sub near algebra of T(/R) such
that £(-I) = (-I)f and yet f(tg) # t(fg) for all te R .

As a further consideration, let ﬂ?g be considered as
a real linear space and let H(ﬂ?g) = { f I f € T(ﬂ?g) and
f(tx) = tf(x) for all te fR} be the set of homogeneous
functions on ﬂ?g. H(IRE) is a near algebra which is not an
algebra such that £(tg) = t(fg) for t € R . Clearly f£(-I)
= (-I)f. This suggests other examples which satisfy certain
weaker scalar multiplication properties. For instance,
Hp(ﬂ?g) = [ f j f € T(IRE) and f£(tx) = t(f(x)) for all t € R |
t2 0 } is the near algebra of positive homogeneous functions

on ﬂ?g; hence, f(tg) = t(fg) whenever t 2 0. Finally, for
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the near algebra Ha(ﬂ?g) = { f l f e T(ﬂ?g) and f£(tx)
=]t| f(x) for all t elR } , the property f(tg) = 1t] (fg)
holds for all te R.

Commutative near algebras are obviously algebras.
In general, we define the concept of a center and generalize
the examples of Berman and Silverman[?6].

1.4 Definition. Let N be a near algebra. The center of N is

the set Nc = [ a l a € N and ax = xa for all XenAJ .

For an algebra the center is a nonempty commutative subalgebra;
however, this is not always the case for a near algebra. The
sub near algebra K([R) of constant functions in T(/MR) has no
center. The center of a near-c-algebra is nonempty; however,

it i1s not necessarily a sub near algebra. For example, let
N = {f[ f € To(le) £ o ng—afo{o} and f(B) = (o,o)}
where B = [ (x,5) lm/xg + y2 é-ﬂ] . N is easily shown to be
a sub near-c-algebra of To(ﬂ?g). Define f € To(ﬂ22) by the
(0,0), if (x,5) € & 'J { (x,0) | x € R}
formula f(x,y) = p , ‘ }.
00), if (x5 ¢ J {(x,o) | xelR
Then, f € N and fg = gf = O for all _ e . However, for
g € N defined by the formula g(x,y,) =
(0,0), if (x,y) € B
_ , (2f)g = 2(fg)
(X,O), if (X,y) ¢ B
= (2,0). Thus, f € N, but 2f ¢ N_.

0 while g(2f)(1,0)

Although the center, NC, of a near-c-algebra N may

not be a sub near algebra, the set of elements NN = { xl x €N
C

and xa = ax for all a € NC} , which commute with the center,

does form a sub near algebra. Also, if NC is a sub near



1

algebra, it must be a commutative sub algebra.

Let us consider, more generally, the existence of
commutative sub near algebras and the generation of sub near
algebras. It is well known that every element x of an algebra
A generates a commutative subalgebra A(x) which contains x.

In fact, every subalgebra and hence every element is contained
in a maximal commutative subalgebra. This is not the case for
a near algebra.
Let E be a normed linear space and let Lip(E)
- { £ [ fe D (E)and |[£(x) - £(x)I|4¢ Kllx - yll for all x,
y € E and for some K 2 O} be the space of Lipschitz functions
on E. This space is a near algebra and will be developed
more fully in a later chapter. ILip(E) contains the non-
commutative algebra of bounded linear operators, R (E), as a
subalgebra; hence, the center of &B(E) or any algebra gener-
ated by a single element of B (E) is a commutative sub near
algebra of Lip(E). On the other hand, let E = R and let
X2, for O £ x ¢ 1
f(x) = 1, for x > 1 . By checking the various cases,
O, for x££ 0O
it can be shown that f belongs to Lip(ﬂ?). For example, if
0%x,y£1, then |[£(x) - £(7)| = [x° - 32|
= |Jx+y|l |x-y| 4 2 [x - y|l. The function f does not
belong to a commutative sub near algebra or even a sub algebra
4X4, for O £ x £ 1/2/2
of Iip(/R), since f(2f)(x) = {1, for x > 2/2 #
0, for x < O
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4
2x , for 0< x £ 1

2ff(x) = 2, for x > 1 . Therefore, some elements of
0, for x< O

Lip(/R) generate commutative sub near algebraswhile others do

not. If a commutative sub near algebra exists, then the

maximality condition generalizes in the following theorem.

The proof is analogous to that of an algebra and can be found

in [26, p. 155].

1.1 Theorem. Let N be a near algebra. If M is a commutative

sub near algebra, then M is contained in a maximal commuta-
tive sub near algebra.

Also, if commutativity is not a concern, the following
statement which is valid for an algebra is wvalid for a near
algebra and the proof is similar.

1.1 Proposition. The nonvoid intersection of any collection

of sub near algebras of a near algebra N is again a sub near
algebra of N. 1In particular, for SE N, 8 # ¢, (8) = N{M|
S& M and M is a sub near algebra of N} is the minimal sub
near algebra containing S.

If A is an algebra and S is a nonempty subset of A,
then the minimal sub algebra of A containing S is characterized
as the set of all finite sums of the form E:tkak where 3y
is the product of a finite number of elements in S. Let us
denote this characterization by F(S). Although it is easily
shown that F(S) € (8) for a near algebra, the following
example shows that the above characterization, F(S) = (8), is
not valid in general for a near algebra.

Let £:MlR—M ©be defined by f(x) = x°. Then f



1%

belongs to T(IR), the near algebra of all functions on the
space of real numbers where composition of functions is the

multiplication operation. It can be easily shown by induction

n
that £3(x) = x° , n = 1,2,-+-. Thus, F(f) = {glg :R— R

n
k
and g(x) = EEZakgg for all n = 1,2,--:}. However, using
k="
n

fn(x) = x2 , 1nduction, and appropriate sums and products of

f, it can be shown that any sub near algebra, M, of T(MR)

2

which contains f must also contain gn(x) = x“ for all n

= 1,2,++-. The set H ={h’h : R-R, n(x)

a x2k for n = ’1,2,---,ak€/R} which also contains f

n
k

k="
is a near algebra itself; thus, H = (f). Therefore, as
asserted, F(f) # (f) since g(x) = X6 € (f) while g# F(f).

In some special cases, as the next example illustrates,
(8) = F(8) and, yet, (S) is still not an algebra.

Let N = T(V), V a real linear space, and let c be a
fixed element of V. Define f : V=V by f(x) = ¢ for all
x € V. Let 8 = fr} ; then, as stated earlier F(S) & (8).
Conversely, for any natural number k, fk = f; thus,
St £ = tf. Therefore, F(8) - {tf]teﬂ?} . Clearly F(8) is
a linear subspace of N and (tf)(sf) = tf € F(S). Therefore,
by Lemma 1.1, F(S) is a sub near algebra of T(V) which

contains f; thus, (8) & F(8).
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The above discussion serves to demonstrate the
importance of both distributive properties. The remainder of
this chapter is devoted to some basic definitions and results
and cites references where further studies have been made.

The concept of a multiplicative inverse and its
unigueness agree with that of an algebra. However, the term-
inology assoéiated with near ring ideals is not as completely
standardized. For example, the definitions and terms of
Berman and Silverman E6] differ slightly from that of Brown
[10] or Beidleman [2]. If only near-c-rings are allowed, the
definitions are equivalent. We state the following definitions
ijxm1[6] in the context of a near algebra for reference
purposes.

1.5 Definition. A set L (R) of elements of the near algebra

N is called a left (right) ideal or left (right) module of N

if
(1) L (R) is a linear subspace of the linear space
N and
(2) x€ L (x€ R) and a € N implies ax € L (xa € R).

1.6 Definition. A set I of elements of the near algebra N is

called an ideal of N if
(1) I is a linear subspace of the linear space N' and
(2) (a+x)(b+y) -—ab€ I for all x, y € I and
a, b € N.
Given the above definition of an ideal we can charact-
erize the ideals as kernels of near algebra homomorphisms in
a manner completely analogous to that of ring theory. If f

is a mapping from the near algebra N to the near algebra M
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over the field F, then the usual definitions of homomorphism
and isomorphism apply for the near algebra systems. Similarly,
if I is an ideal in the near algebra N, then N/I, the set of
additive cosets a + I, determines a near algebra with respect
to the usual induced operations of addition, scalar multipli-

cation, and product of cosets.

1.2 Theorem. Under a near algebra homomorphism of the near

algebra N into the near algebra M, the complete inverse image
K of the zero, O, in M is an ideal in the near algebra N.
i.e. the kernel of the near algebra homomorphism is an ideal

in N.

1.3 Theorem. Every ideal I of the near algebra N induces a

homomorphism of N onto the quotient space N/I of additive co-
sets and I is the kernel of this homomorphism. Hence, every
ideal is the kernel of a homomorphism and conversely.

We close this chapter with a few results from near
ring theory which extend naturally to near algebras. The
theory of simple and semisimple near rings has been explored
by Blackett [9] and Beidleman [2]. A sampling of the results

is listed below.

1.7 Definition. A near algebra N is said to be semisimple if

N satisfies the descending chain condition on left modules
and has no nonzero nilpotent left modules. N is said to be
simple if N is a semisimple, nonzero near algebra with no

proper ideals.

1.8 Definition. The J-radical of a near algebra N, denoted by
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J(N), is defined to be the intersection of all left annihilator
ideals L(R) = {)Cl x € N, xR = O] where R ranges over the
minimal left modules of N.

Betsch [8] has shown the following which carries over to near
algebras.

1.4 Theorem. If N is a near algebra satisfying the descend-

ing chain condition on left modules, N is a semisimple near
algebra if and only if J(N) = O and that N/J(N) is semisimple.
Blackett [9] has proved and the proof carries over directly
to near algebras that:

1.5 Theorem. A semisimple near algebra can be decomposed

into a ring theoretic sum of simple near algebras.

Much of the emphasis in current literature on near
ring systems deals with the ideal structure and character-
ization of a radical. With the notable exceptions of
Kalscheuer [19] and more recently Brown [40] and Beidleman
and Cox [5] there seems to be little study of near algebras
or the topological properties of near algebras. We now ad-
dress ourselves to this problem in the study of normed near

algebras..




CHAPTER II

NORMED NEAR ALGEBRAS

The Norm and Related Properties

In this section we define and discuss some properties
of a normed near algebra. Near algebras with a topology de-
termined by a norm appear in the literature, but nowhere have
we found the concept of a normed near algebra discussed in
detail. For example, Yamamuro EBE] considers a near algebra
of bounded functions defined on a Banach space which has a
uniform topology determined by seminorms. However, Yamamuro
i1s more interested in the ideal structure of these special
function near algebras than the properties of the seminorms.
Brown [10] also considers a near algebra such that the under-
lying linear space is a Banach space; he, however, does not
explore in any detail the abstract properties of a normed near
algebra. Finally, Beidleman and Cox [5] have considered
topological near rings.

We investigate, in the first section, various multi-
plicative conditions for the norm along with their effect on
the continuity of multiplication. The first condition imposed
is the usual multiplicative property for a normed algebra. A
near algebra with norm such that }lxy|l <& llx"'ly!l is called

a normed near algebra and many examples of such a near algebra

17
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exist. However, although every normed near algebra is a near-
c-algebra and right multiplication is continuous, left multi-
plication is not continuous, a property that normed algebras
enjoy. Therefore, we strengthen the usual norm property.

We define a D-normed algebra N as a normed near
algebra such that for every b € N there exists K, 2 0 and
llbx - byl & Kbllx - yll for all x, y € N. The D-norm con-
dition is a left distributive property for the norm. The
D-norm condition is sufficient to insure continuity of left
multiplication. If K = llbll for all b € N, then the D-norm
is called a strong D-norm. A very important example of a
strong D-normed near algebra is the set of positive homo-
geneous Lipschitz functions on IR.

We define a Barach near algebra and a D-Banach near
algebra and show that the quotient near algebra of additive
cosets modulo a closed ideal is a Banach (D-Banach) near
algebra. We also show that the kernel of a continuous homo-
morphism is a closed ideal and every closed ideal induces a
continuous homomorphism.

Finally, although the usual argument for adjcining an
identity does not generalize, we prove that every normed near
algebra can be embedded in a near algebra with identity. The
completion of a normed near algebra is also a standard result
for normed algebras. We have been able to prove that a strong
D-normed near algebra can be completed; the general normed
case remains an open question.

We begin by considering the definition of a normed
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near algebra. One of the defining properties of a normed
algebra is the multiplicative property of the norm, /I xyll £
HxIllyll . It is readily shown that from this property
multiplication is a continuous function in both variables
simultaneously. This condition does not force such a result
in the case of a near algebra as will be demonstrated pre-
sently. We will begin with this condition, however, and then
strengthen it to get the desired continuity property.

2.1 Definition. A nonempty set N is called a (right) normed

near algebra if

(1) N is a (right) near algebra over the field Ror €
(2) There exists a norm on N, denoted by !l -l , such
that (NT, Hl-1l) is a normed linear space, and

(3) Il x-y 1l ¢ llxllliyll for each x, y € N.
Unless otherwise specified we will be considering real normed
near algebras. For example, every normed algebra is a normed
near algebra.

The following are some examples of normed near algebras
which are not algebras.

(1) Let E be a normed linear space and let TB(E)
- {f|t € T(E) ana /l£(x) N ¢ M lixll for all x € E and for
some M 2 O}'. TB(E} is easily shown to be a sub near algebra
of ™(E) and we can define a norm on TB(E) by [l £l =

:ﬂu)z Hﬁxftll lx € E, x £ O}'. This is the definition of

the usual sup norm defined on the bounded linear operators

extended to all bounded operators on E. Consequently, this
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defines a norm with the property that ’(fgll < ”:f” “ g” .

(2) Letlj¥={flf‘€ To(ﬂ?), f'(x) exists and
If'(x)léMforallxeR ,MEO}. is a sub near
algebra of T(MR) and with the norm defined by the following:
sl = sup {If'(x)l 1 X € /R} ,o{J becomes a normed near
algebra with [lfgll € [Iell lgll.

(3) Let E be a real normed linear space and let
Lip(®) = {2 € 1,(® ana 1260 - sl £ Kyl - 5l
for all x, y € E and for some Kf e R R Kf 2 O~}. Define

el = inf { Kf[ He(x) - £ & Kf’lx - yH for al1

X, J € ?}. We will call this the induced Lipschitz norm.
This example is central to later discussions; hence, we will
develop it in more detail than the other examples. Let t and
s be arbitrary elements of R ana 1et f, g € Lip(E).
[ (62 + s@)(x) - (&£ + se)( Ml = ll£(2(x) ~ 2(3)) + s(g(x)
- e I € 16l o llx - 3l o+ js) B JIx - vl
(]l Ke + [leg)’lx - y” for all x, vy € E. Therefore,
tf + sg € Lip(E). Also H(fg)(x) - (fe)() Il £ K. lg(x)
- gl & Kng/Ix - yll for all x, y € E; hence, fg € Lip(E).
Thus, by Lemma 1.1, Lip(E) is a near algebra.

We now show that ! -l is a norm and Il te ]
< sl Negll. Since all Ko 2 0 and there exists at least
one Kf for each £ € Lip(E), INell 2 0 ana Hell is well de-
fined. If l£(x) - £l > Usll llx - gyl for some x # y,
then £l llx - yll € Ke llx - yll for all K. Thus, Il
< K, and hence, for some € > O, N+ € £ K, for all K

satisfying the required Lipschitz condition. This contradicts
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the infinum property of ll£ll . Therefore Il £(x) - £(y) Il
<t Hx - gyl for all x, y € E.

1f £l = 0, then Nl £(x) - £(O) I = Ne(x) Il
< Il Il xlI = O for all x € E. Therefore, f = O. Conversly,
if £ = 0, then choose O as one of the K.'s and hence lHell = o.
Therefore, Il fll = 0 if and only if f = O.

For t €eR , t # 0, I (t£)(x) - (x£)(y) Il
& el lx - y)l for all x, y € E; thus, HNf(x) - £(y) 1l

—%%%lLllx -yl ana Hfll ¢ -J%§JLH t # 0. Also, for all

x, vy €E, lle(x) - £y ¢ Nl llx - yll ; nence,
H(ee)(x) = ee)(O U = 1l He(x) = £l € 1l sl Hx - yll
for all x, v € E. Thus, ltfll £ [tllifll, t # O. Combining

these two results we have Ntfll = 1tl Hsll |, t # 0. TFor
t =0, Jjotll = olsfll ; therefore, Ntfll = Itl 1l £l for all
t e lR.

Finally, for f, g € Lip(E), [l (f + g)(x) - (f + g)(y) I
cllex) - £ I+ Hex) - eIl & nelt Nx -yl
gl Nx -yl = CHe + gl ) llx - yil . Thus, N1 + gl
< |If1l + legll. Therefore, ll£ll is a norm for the linear
space Lip (E)™.

To show that the multiplicative property holds, let
£, g € Lin(®). Il (ze)(x) - () Il = N 2(e)) - £y Il
< £l lgx) - g1l ¢ Nell llgll Hx - gl 5 nence
Neg )l € Nell llgll. Therefore (Lip(E), ‘I-’l) is a normed
near algebra.

The following proposition shows that we can agsume
the additive identity behaves properly with respect to multi-

plication in the discussion of normed near algebras.
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2.1 Proposition. A normed near algebra is a near-c-algebra.

Proof: 0 ¢ llaoll & lall lloll = 0; thus, N aoll = 0 and
a-0 = 0.l
We may also assume that the norm of the identity, if it

exists, is one.

2.1 Theorem. If N is a normed near algebra and e is the multi-

plicative identity, then there is an equivalent norm on N
such that the norm of e is one.

Proof: TFor any norm on N, llell = leell ¢ llell llell; thus
1< llell.

Let b € N be arbitrary but fixed and define Rb:lV—+IJ
by Rb(x) = xb. That is, R is the right multiplication
operator. Although not all the algebra axioms hold, we can
still show that Rb is a bounded linear operator on N*.

Rb(x +3y)=(x+y)b=xb + yb = Rb(x) + Rb(y) and Rb(tx)

= ()b = t(xb) = t(R (). HrR Il = Il £ Il Nixl.
Since R, € 8 (N") for all b € N, let Nivlll = He Il.  Tae
remainder of the proof is analogous to the normed algebra
proof. GSee [22]. I

For convenience in terminology we make the following
definition.

2.2 Definition. A near algebra N with a linear Hausdorff

topology is defined to be:

(1) A right continuous near algebra if the multipli-

cation is continuous with respect to the first
factor. That is, all right multiplication opera-

tors are continuous functions.
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(2) A left continuous near algebra if the multipli-

cation is continuous with respect to the second
factor for an arbitrary but fixed first factor.
That is, all left multiplication operators are

continuous functions.

(3) A continuous near algebra if the multiplication

is continuous with respect to both variables
simultaneously. That is, multiplication is con-
tinuous as a function on the product space.

As an example of a left and a right continuous near
algebra which is not necessarily a normed near algebra, we
consider the example given in [52] by Yamamuro. Let B(E)
= {fl fe TC(E) and f maps bounded sets to bounded sets]
where E is a Banach space. Yamamuro defines a collection of
seminorms on B(E) by “flln = sup { £l I“xllﬁ:n} and

o0

. g 4 - gll,
constructs a metric dA(f,g) = — . One can
’ — 2k T+ HE - g”k

show that multiplication is continuous in both variables sep-
arately for B(IR).

The collection of seminorms is also a sufficient
collection which determines a locally convex linear topology.
B(E) is right continuous and B(/R) is both left and right
continuous.

Finally, let N be any locally convex linear topologi-
cal space and define a product on N by the formula xy = yx = O
if x = 0 and xy = x if x # O. N becomes a near algebra and

the right multiplication operator is the identity; hence, it
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is continuous.

2.2 Proposition. Every normed near algebra is a right contin-

uous near algebra.

Proof: The proof of Theorem 2.1 shows that an arbitrary right
multiplication operator is a bounded linear operator on any
normed near algebra. In Naimark [26 P. 74] it is shown that
every bounded linear operator is continuous. 0

2.% Proposition. Every normed near algebra N is a continuous

near algebra if and only if N is left continuous.

Proof: Assume multiplication is left continuous and let x,
y € N, If {xﬁ}and {yﬁl are sequences in N such that X, X
and y_ — 7, then./[xhyn - Xyll=llxnyn - Xy, * Xy, - Xy ll
L=y, -yl + llxy, - xy [l . Although the left distri-
butive property does not hold, |/ X ~ Xyll can be made
arbitrarily small for sufficiently large n by the continuity
of left multiplication. Thus, for € >0, || %y - xy /]
£ ”Xh,_ x H)lyn“ + leyn - xyll < € for sufficently large
n and N is a continuous near algebra.

Suppose N is a continuous near algebra and let b be a
fixed element of N. For arbitrary x € N let {Xn} be a sequence
which converges to x. Let bn = b be the constant b sequence.
Since N is a continuous near algebra, ann = bxn-—>bx and
multiplication is left continuous. Therefore, N is a left
continuous near algebra. a

The following examples show that right continuity
alone is not a sufficient condition for a normed near algebra
to be a continuous near algebra, while the previous proposi-

tion shows that left continuity is sufficient.
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In example (1) above, we showed that TB(E) was a near
algebra with a norm such that ({rg]| £ /lfl’l'g)J. Iet E = IR

1, x| > 1
and let g(x) = .
0, |xI €1

1, Ix| 21
and let f(x) =

O, |x]| &£ 1
A guick calculation shows that If(x)l £ x| and /g(x)[ < | x|

for all x € R ; hence, f, g € TB(ﬂ?). We now define g =

Lﬁ_i_il g for all n € N . Clearly, g € TB(ﬂ?) for all n and

g, converges to g in the norm. Now, (fg )(x) = f((f_l_;_l_")g(}c))

n - 1)
f( n , Ix > = 0. Therefore, fgn = 0 for all n; hence,
£00), x| €1

{f(’l),lxl)’l F x| >

fg —> 0. However, (fg)(x) = £(0), x| &1 ° 0 |x| ¢ 1
= g(x); hence, fg = g # 0. Thus, fgn does not converge to fg
and left multiplication is not continuous despite the fact
that || fg ]l ¢ Nell Ngll.

As another example, consider the space of Lipschitz
functions on a normed linear space E. In example (3) above,
we proved that Lip(E) is a normed near algebra; we now wish
to prove that Lip(E) is not, in general, a left continuous
near algebra. The first proof of this fact was to construct

a rather complicated counter-example in the space Lip(/R)

consisting of the function

-x-T, x££ -7
g(x) = sin x, -TM&¢x ¢ 2T and the sequence of functions

n —oamr
x -(Z)7. =t (53)
g (X> = _12.._ sin pi X (—n)"‘ X 4(—n'—> 2"
n 7 n 7 \n-1 -7 T n-
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such that g converges to g in the norm topology of Lip(R).
ax, x 2 0
For the fixed function f(x) = , a # b, which
bx, x<£ 0
belongs to Lip(/R), we were able to show fg,  does not con-
verge to fg and hence, Lip(/R) is not left continuous. Later
a much less complicated example was discovered.
Let JR be the space of real numbers and define
x for x £ 1

f :R—IR vy £(x) = . A guick check of sev-
1 for x > 1

eral cases shows that f € Lip(/R). ILet &, =<h ;

1)1 where
I is the identity function, then g & Lip(/R) for all ne N
and g, converges to I in the Lipschitz norm.

If we assume multiplication is left continuous, then
fgn must converge to fI = f. Thus, if € = 1/4, there exists
n, € IN such that /fgn - f, & 1/4 whenever n > n,. For all

x, yelR, | (fg, - £)(x) - (g, - )M

l2(BY) %) 20 - 2((ZH)+ 2l £ 2

m > max (no, 4) and let u = Eﬁjwiﬂ and v Q%:—)ﬂ. For

yI . Choose

this pair of elements u, v € R and m > max (no, 4y,

| (fg, - £)(u) - (£, - £)(V)] =

‘mz - 2m + 1 (m-1) m2 -1 g 2
T T m > *

1] o 1 1
;-ﬁl<alu‘v|='ﬁ-

m2 m

Therefore, dividing by m, it follows that}% —’1|< % which
contradicts the choice of m » 4. Thus, fgn does not converge
to f and Lip(/R) is not left continuous.

Although a normed near algebra has been shown, in

general, not to be left continuous, it does contain a left
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continuous near algebra.

2.4 Proposition. Let N be a normed near algebra and for each

b € N let Lb be the left multiplication operator on N with

respect to b. Let N = { bl b € N and Ib is continuous on N},

IC
then NLC is a closed continuous sub near algebra of N.

Proof: NLC Z ¢, since O € NLC‘ If a, b e NLC and t is a
scalar, then a + b, ta, and ab € NLC since La+b = La + Lb,

L = tLa, and Lab = LaLb are continuous whenever La and Lb

ta
are continuous. Thus, NLC 1s a continuous sub near algebra
of N.

We now show NLC = NLC’ the closure of NLC' Let
a € Nic and let x € N, x # O. Choose € > 0. There exists

a sequence {an} - NLC such that a ,—>a and, for each n, Lan

is continuousg on N. TFor each nefN , choose sn.<. 5-,1 such that
la u - a x | < €/2 whenever flu - x Il £ ng Also, choose
m e RJ such that 'Iam -all< € /2((2/kx“)4—84). Thus,
,fLau - LaX H = ,’au - amu + amu - amx + amx - ax U
< ”am - all Null + Hamu - amX” + a, - all llxll =
(llam —all))=xl + llull) + llamu - a X Il & € whenever
llu - x1l < Snf Therefore, L, is continuous and a € NLC.U
As an example, LipLC(E) is a closed continuous sub
near algebra of Lip(E) which contains the bounded linear
operators on the normed linear space E.
We now present a sufficient condition for continuous
left multiplication.

2.% Definition. A normed near algebra N is a D-normed near

algebra if and only if for each b € N there exists Kbe'ﬂ? ,
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K, 2 0, such that for all x, y € N, llvx - by ll ¢ Kbllx - yll.
Clearly, if N is a normed algebra, then N is a D-normed near
algebra since [lox - vy il = lb(x -y)Il € llvll lIx - 1.

The following are examples of D-normed near algebras
which are not algebras.

(1) Let E be a normed linear space over IR and 1let
f be a Lipschitz functional such that f(tx) = tf(x) for all
t € Range(f) and O € Range(f). Define a multiplication on E
by xy = f(y)x for all x, y € E. Since E is a nomred linear
space, we need only to check the multiplicative properties of
the norm and semigroup structure. Clearly, multiplication
is closed and for x, y, 2z € E, (xy)z = f(z)(xy) = f(2)f(y)x
=f(f(z2)y)x = f(yz)x = x(yz). Also, (x + y)z = Xz + yz, but,
in general, x(y + z) # xy + xz. Thus, E becomes a near
algebra. Finally, llxy - xz Il = |£(y) - £(2)| = Il
< "X‘lelly - and, since £(0) = 0, lxyll 4 Kflfxl'”y“.
Thus, there is an equivalent norm on E such that E is a
D-normed near algebra. In particular, let f(x) = =1l

(2) Let ¥ = T,(R) N I (R) where To(IR) and JJ (R)

are given as examples after Definition 2.1. ILet Il fll

sup [Lf'(x)l I X elR} . N is a normed near algebra. Also,

X # O} be the norm on N and let Hf”°°

by the mean value theorem,

l£2(x) = fhG)| jeryoylgEx) - bx)]

x|

¢ lell J8G0=RGOL & pizll, J1g - nll; thus [l - nl] £
Nelly Il g - nll.

(3) The space of positive homogeneous functions on
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on the real line, Hp(ﬂ?), with the norm of Lip(/R) is a
D-normed near algebra. Since the example is of importance
later in the theory, we will develop some of its properties.
Recall that Hp(E) 1s a near algebra for an arbitrary normed
linear space E; hence, Hp(ﬂ?) is a near algebra. We will
show Hp(ﬂ?) = Lipp(n?), the positive homogeneous Lipschitz
functions on [I¥.

We first show that Hp(lR) is a finite dimensional

x, for x 2 0

0. for x £ O and let K(x)
b

near algebra. Let J(x) = {

0, for x >0
. Clearly J and K are independent functions

x, for x € 0

f(x-1) , for x 2 0
on [R and, if f € H_(/R), then f(x) = {-
P £((-x)(=1)), for x £ O

xf(1) , for x 20
{- = £(1)J(x) + (-£(-1))K(x). Thus, {J,K}

-xf(-1), for x KL 0O
forms a basis for Hp(ﬂz). It is easy to show that J, K €&
Tip(/M); hence, any linear combination of J and K belongs to
Lip(ﬂ?). Therefore, Hp(ﬂ?) = Lipp(ﬂ?) and inherits the norm
of Lip(/IR). TFor f € Hb(ﬂ?), the norm of f can be calculated
in terms of the coefficients in its basis expansion.

Let £ = adJ + bK and let M = max {1 al,lbl}. Choose
x, yelR. If x, y20o0r x, y< 0, then |l £(x) - £(y)|
= lallx - y] or |£(x) - £(y)| = |vllx - y|, respectively.
If x 20, y& 0, then [£(x) - £(y)| = |ax - vyl < |a]lx]
+1ol)yl € M Uxl +1yl) ¢ M]x - y| since x and y are of

opposite signs. Similarly for x £ 0, y 2 O. Therefore, in

all cases, |f(x) - £(y)| ¢ M]x - yl; hence, |[[£ll & M.
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Conversely, by the property of the norm of f,
If(x) - £(y)} & lslllx - y| for all x, y ¢ R . Then,
l£(1) - £C0) 1 = laf &« Hl£1l anda [£(-1) - £(0)] = |l & llzll.
Therefore, both lal and |bl are less than Il fll ana [l£ll
- max {Ial,lb[} where f = aJ + bK. We immediately get that
Hall = 1 and lIKIl = 1.

The following algebraic properties can be demonstrated
by the tedious checking of cases.

(1) For a, b2 0 J(ad + PK) = ad

K(aJ + DK) = bK

(2) For a 20, b&O J(aJd + bK) = aJ + bK
K(aJ + bK) = O
(3) For a £€0, 20 J(ad + bK) = O
K(ad + bK) = ad + DK
(4) For a €0, b4 0 J(adJ + PK) = bK

K(ad + bK) = ad
Some immediate consequences of these facts are the
properties:
(1) J and K form and orthogonal idempotent basis:
JJ = J, JK =0, KJ = 0, KK = K
(2) J(-K) = -K, J(~J) = 0, K(-J) = -J, K(-K) = 0O
(3) Although not left distributive for all f € HP(NQ),
J and K have the distributive properties:
J(ad + bK) = J(ad) + J(bK) and K(ad + bK) = K(ad)
+ K(bK).
Using the property of the norm derived above and the
various properties listed here, one can again check the numer-

ous cases involved and show that llfg - full <€ £l llg - nll.
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Therefore, Hp(ﬂ?) is a D-normed near algebra with several
"nice" algebraic properties. In addition to these algebraic
properties, one can show, either directly by a somewhat
lengthy argument or by the following proposition, that left
multiplication is continuous in Hp(ﬂ?) when considered as the
normed near algebra Lipp(ﬂ?). It is interesting to note, that,
although Lip(/R) is not a continuous near algebra in the
Lipschitz norm, it does contain a continuous sub near algebra,
Lipp(ﬂ?). This raises an interesting but still unanswered
question as to the characterization of LipLC(ﬂ?), the largest
continuous sub near algebra of Lip (/R). In addition to
Lipp(ﬂl), Lip(R)YN J(/R) with the Lipschitz norm is another
continuous sub near algebra of Lip(/R).

2.5 Proposition. If N is a D-normed near algebra, then N is

a left continuous near algebra.

Proof: Suppose b is an arbitrary but fixed element of N,

Kb # O, and let x € N. Let {Xnkbe a sequence in N such that

x, converges to x. For € > O, choosez%)enq such that

“Xn - xll < 8/%5 whenever n > n , then Ilbxn - bx |

< KE ’lxn - xll & Kﬁ( E/Ri) = € whenever n > n. Therefore,

bx, converges to bx for K # 0. If K = 0, then llbxn - bx I

= 0< & . Therefore, bXn converges to bx for all b and for

all x which implies multiplication is left continuous.ﬂ
Examples (1) and (3) above indicate that a stronger

multiplicative condition is possible in some cases.

2.4 Definition. A normed near algebra N is a strongly

D-normed near algebra if and only if N is a D-normed near

algebra and, for each b € N, K = Holl,
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2.5 Definition. A normed (D-normed) right near algebra N is

a complete normed (D-normed) right near algebra if the normed

linear space (N+, 1) is a Banach space. We will call a

complete normed (D-normed) near algebra a Banach (D-Banach)

near algebra.

Some examples of Banach and D-Banach near algebras
are given below.

(1) Lip(E), the near algebra of Lipschitz functions
on a normed space E, forms a Banach near algebra in the Lip-
schitz norm provided E is a Banach space.

Assume {fn} is a Cauchy seqguence in the norm of
Lip(E). For € >0 and x € E, x # 0, choose n_¢€ N such that

’lfn - fmll< for all n, m > ny. By the definition of

_£&
nxll

the norm of Lip(E), ,,(fn - fm)(u) - (fn - fm)(v)ll

£ s, - fmll/lu - vl < -7f2—— llu - vIl for all u, v € E and

x1]

for all n, m > ng. Choose u = x, v = O, then

- < i
llfn(x) fm(x)u <€ forn, m>» n . Therefore, {fn(x)} is
a Cauchy sequence in E for each arbitrary but fixed x € E,
x # O. Since E is a Banach space, fn(x) converges for each

11 .

x € E; thus, let f(x) = nEfL fn(x). Clearly, f: E—>E since
lim
n—ye
need to show f € Lip(E) and fn converges to f in the Lipschitz

f(x) is uniquely determined in E for arbitrary x. We

norm.
The proof of this result is similar to that of show-

ing the bounded linear operators form a Banach space [26, p.76].

Assume € > 0 and show that there exists an m which is
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independent of x and y such that Il (f - fm)(x) - (f - fm)(y)ll
< ellx - yll for all x, y € E whenever m > m . This implies

that f - fmoé Lip(E); hence, f = (f - fmo) T fmoé. Lip(E).

Also, [l £ - fm/14 € whenever m >m_; thus, f —> f.
> -

For € >0, choose m, such that llfIl fm>” < €
whenever m, n >’mo. Then, for arbitrary but fixed x, y € E
and for an arbitrary & > 0, choose n, (&, x, y) such that
n >n, implies [l £(x) - fn(x)1!< & and llf(y) - fn(y)/l< b |
For n > max (m_, nq) and m >m_, Hf(x) - f (x) - (£(y) - £ ()M

0 o m m
=lleG) - £, G0+ 1,60 - £ (0 - £(y) + £.(3) - £.(3) + £
< ¥+ //fn - me llx -yl +& ¢ 28+ €llx - yl|l. Since
X, y were arbitrary and ® was arbitrary,

I2(x) - £,0 = (23> - £, ¢ ellx - 5l for a1l x,
y € E whenever m > M. This completes the demonstration that

Lip(E) is a Banach near algebra.

(2) TB(E) is a Banach near algebra in the sup norm,
provided E is a Banach space. The completeness of this norm
also follows in a manner analogous to that for the space of
bounded linear operators on E. See [26, D. 7é].

(3) Every Banach algebra is a D-Banach near algebra.

(4) 1In the above example of a D-normed near algebra
where multiplication was defined by ab = Hblla, if E is a
Banach space, then the resulting near algebra is a D-Banach
near algebra.

As in the case for normed algebras certain properties
hold for normed near algebras because of their linear space

structure. The following are two such properties. The proofs
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can be found in [26].

2.6 Proposition. Every continuous homomorphism of the normed

near algebra N into the normed near algebra N' is a bounded
linear operator.

2.7 Proposition. Every continuous isomorphism of a Banach

near algebra N onto a Banach near algebra N' is a topological
isomorphism.

We conclude this section with several important gen-
eralizations from normed algebras.

2.2 Theorem. In a Banach (D-Banach) near algebra N, the

guotient N/I of additive cosets modulo a closed ideal I is a

Banach (D-Banach) near algebra.

Proof: Except for the definition of an ideal fThe proof is

similar to that of a normed algebra. See [EEJ. Since 1 1is

closed, N/I is a complete normed linear space and we have

indicated in Chapter I that N/I is a near algebra. It remains

to show that the multiplicative properties of the induced

norm continue to hold where /la + Ill = inf [Ha + x/l/x € I}.
Assume N is a Banach near algebra and let a + I,

b +I€N/I. For € >0, choose u, v € I such that lla + ull

<lla + Il +€& and Ho + vl ¢ b« 1l +&. 1Tet

J = {z)z € Nand z = (a + x)(b +y) - ab for x, y € IJ and

let z_ = (a + W(b +v) - ab€ JETI. Thus, H(a + I)(b + DIl

=lav + 1l <« hm{ﬁbb+-xﬂ/xé JJ élhb-+zo”

= “(a + w)(b + V)I’ < (Na+ 1l + )b + 1 I + &) for all

£ > 0. Therefore, Nl (a + ID(o + DI < Na + Tl + 1ll.
Similarly assume N is a D-Banach near algebra and let

a+ I, b+ I, and c + I € N/I. For £ > 0, choose v € I such
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that N(b -¢c) + vHE€lNm-c)+1l+e. Tet

{zlz € N and z = a(b + x) - a(c + y) - (ab - ac) for

il

x , 5y € I}; then, J € I and z, = a(b + 2v) - al(c + v)

(ab - ac) € J. Thus, l(a + I)(® + I) - (a + I)(c + D
inf{"(ab - ac) + xll(xé I} < inf{“(ab - ac) + xll!xé J_}
Z ]l (ab - ac) + zoll = lla(d + 2v) - a(e + v)'l

sK%Il(b -c) + vlil ¢ Ké(ll(b ~¢c) + Il +& ). Therefore,
H(a + I)(b + I) - (a + T)(c + Tl
¢k, o+ 1) - (¢ + DIl .

Using the above results and Theorems 1.2 and 1.3 of
Chapter I, we have the following statement analogous to that
for an algebra.

2.3 Theorem. Under a continuous homomorphism of the Banach

(D-Banach) near algebra N onto the Banach (D-Banach) near
algebra N', the kernel I of the homomorphism is a closed ideal
in N and the near algebra N' is topologically isomorphic to
N/I. Conversely, every closed ideal I of the near algebra N
induces a continuous homomorphism of the near algebra N onto
N/TI.

The following theorem is a straightforward generaliza-
tion of Berman and Silverman.[?].

2.4 Theorem. Every near algebra without identity can be

embedded isomorphically into a near algebra with identity.
The corresponding result for a normed near algebra or

Banach near algebra is presented with the additional

hypothesis of positive homogeneity. However, many near

algebras with identities do not satisfy this property;
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hence, it is not a necessary condition.

2.5 Theorem. Every normed (Banach) near algebra, N, without

identity can be isomorphically embedded in a normed (Banach)
near algebra with identity provided x(ty) = t(xy) for all

X, y € Nand t 2 0.

Proof: ©Let N be a normed near algebra such that x(ty) =

t(xy) for all x, y € N and t 20. Let B(N) = {£|r € T(I)

and Ilf(x)'l £ M for all x € E, for some M 2 Q}. B(N) becomes
a near algebra under the pointwise operations of sum, product,
and scalar multiplication. Note, the product is pointwise

and not composition of functions.

Let Il £ll = sup {“f(x))fl X € NJ. It is easy to show
that Il | is a norm. Also Ilf'glf = sup{dlf(x)- g(x)l’lx € NJ
< su;u{”f(x)l!llg(x)ll/ X € IJ} <|llell lgll. Therefore,
(B(N), I ) is a normed near algebra.

If we assume N is a Banach near algebra, then B(N) is
also a Banach near algebra. Assume {fn} is a Cauchy seguence
in B(N) and let £ > O be arbitrary. For sufficiently large
N, llfn(x) - fm(x)}’ < € whenever n, m > n, for all x € N;

hence, {fn(x)} is a Cauchy sequence in the complete space N

lim
n—3e f(x) for each x € N. Thus,

for all x € N. Let f(x) =
for an arbitrary x € N and € > O, there exists n(x, & ) such
that llf(x) - fn(x)’l4 € whenever n > n(x, € ). Choosing
m >n_ and n > max (no,ntx,a )), we have [[f(x) - fm(x)ll
H£(x) - £,(x) + £ (x) = £ (x) Il < llr(x) - £ G

an(x) = tm(x) Il < 2€& . Therefore, llf - me < 2¢€

+

whenever m > n and f = fm + (f—i&ﬁ € B(N). Thus, B(N) is
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a Banach near algebra.

For each a € N define AM(a) to be the constant 'a'
function from N to N, M (a)x = a. Consequently, H/‘*(a)x ll

= lall for all x € N and /M.(a) € B(N) for each a € N.
Therefore,/A: N—>B(N). By direct calculation, one can
show @A 1s a near algebra homomorphism which is also one-to-
one. Furthermore, /[/A(a) I = sup{ll/,((a)xﬂlx € N} =
sup {Ha”/x € N} = “a“ . Therefore,/,( is an isometric iso-
morphism of N into B(N).

Let W° = Ty(B(N) = [F|F € 2(B(D) ana [l 2(x) Il
<Mzl for all f € B(N) and some M Z O}. N2 has been shown
to be a normed near algebra with sup norm, pointwise sums and
scalar products, and composition as the multiplication. It
is also a Banach near algebra if B(N) is a Banach near algebra.
N2 contains the bounded linear operators on B(N) and hence N2
contains the identity operator I.

Let/u.(N) = S € B(N) and define a function fas follows:

f-g, for g € S
For each f € S, ?(f)g = where f.g
llgll £, for g € B(N) - S
is the pointwise product of B(N). Since S & B(N), it is clear
that @ (f): B(N) —»B(N) for each f € S. Suppose g € B(N); if
ges then P)ell = llzgll £ lisllgll ana if g€ BO) - 8,
then N P(e)gll = Il Hell £ I
”c?(f)g”é M/lg“ where M

]

“f””g“ Therefore,
Hell ana ¢ : s—->n°.

A direct calculation shows that (P is linear. However,
one must show that B(N) satisfies the positive homogeneous

condition in order to show that CPis multiplicative. Since
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N has the positive homogeneous condition, f.(tg)(x)

f(x)-(tg(x)) = t(f-g)(x) for t 2 0 and x € N. Thus f-(tg)

i

t(f.g) for £, g &€& B(N) and t 2 O.
(f-h)g

For £, h € 8, P(f-h)g = -
o Pame = 4y o

fe(h-g) , for g e S
since B(N) satisfies the
[f'(llg“h), for g € B(N) - 8
positive homogeneous condition. For any g € B(N), ?(h)g € S;
tous, [@(e)e P ] (&) = Q)P (e) = £-(P(n)e)

{f-(h-g) , for g € S

]

. Therefore (f-h) = @(£)e(n)

it

f-(llgllh), for g € B(N) - S
and @ is a near algebra homomorphism.
Suppose @ (f) = @ (h) and choose g € B(N) - 8, g £ O.
O = llglit =@ = llglln; thus, lgllf = llgllh which

implies f = h and 47is one-to-one.
For £ € S and arbitrary g € B(N), g # o, ALLell

el
Lisl o ec
I ﬁg?&fjl for g€ BN) - g £ N1l for all g € B(W.
g ?

Therefore, by the definition of the sup norm /l(p(f) & llell.

However, for g € B(N) - 8, g # O, “(pﬁél’%” = N”g’”lf” =

- ”%:é;‘fl, - Ul ¢ U@l . Therefore, NPl =2l
This completes the demonstration that 4715 an isometric iso-
morphism of S into N2. The composition of 47and/u~is an
isometric isomorphism of N into N° and N° has an identity.a

It is important to point out that the standard proce-

dure for adjoining the identity does not work because the formally
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constructed near algebra multiplication is not associative.
This is a result of the missing left distributive property.

Let N be a near algebra without identity and formally construct
N' = {-te + x{x € N and t €& F} with the usual operations. If
we consider elements e + Xqs € + Xn, and € + XB, then

[(e + xq)(e + Xg)] (e + X5> =

e + (X/I + Xy o+ Xz XKy + X
(e + x,) [(e + Xg)(e + x55]=
e + (x4 + x5 + Xz + XXz + X/](X2 + X, + X X5>). Since, in

3 2
general, X,](X2 + Xy 4 X2X5> # XXy + XXz + KA¥g, the multi-

¥z X2X5 + X1X2X5> while

plication is not associative.
We now turn our attention to the completion of a normed
near algebra.

2.6 Theorem. Every non-complete strongly D-normed near algebra

can be embedded in a complete strongly D-normed near algebra.
Proof: The proof is similar to that of a normed algebra. See
[26, . 47é]. Let N be a non-complete strongly D-normed near
algebra and let M be the standard completion of the normed
space N* in terms of equivalence classes of Cauchy seqguences.
The strongly D-normed condition forces the product of two
Cauchy sequences to be a Cauchy sequence and can be used to
show that the product does not depend on the chosen represent-
atives. Passing to the 1limit in the operations on N, one can
show that M is a near algebra which satisfies the strong

D-norm property. u



Representation Theory

The representation of algebras and normed algebras by
a system of linear transformations on a linear vector space
has proved useful in the discussion of algebras. Since linear
transformations are too restrictive for a near algebra repre-
sentation, we extend the concept of a representation space to
allow for a larger class of transformations. Berman and
Silverman [7] have considered some very general representations
and embedding theorems. We have already demonstrated in this
paper that a normed near algebra without identity can be em-
bedded isometrically and isomorphically into a function space
with identity.

Given a normed algebra A, one of the most natural
representations is the left regular representation of A by
the space of bounded linear left multiplication operators on
A. We generalize this representation for a normed near algebra

and define the left regular representation of a normed near

algebra N into the space of bounded left multiplication
operators on N contained in TB(N). These left multiplication
operators are not linear, in general. Using the multiplicative
identity conditions given in [27], we show that the left
regular representation can be an isometric isomorphism.

If N is a D-normed near algebra, then there is a

representation of N into the space of Lipschitz functions on N.

40
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This important representation is an isomorphism whenever the
multiplicative identity conditions are present. The strong
D-normed condition results in an isometry.

In [HO, 44} Brown defines a distributor element and a
sequence of distributive left modules. For a near algebra
N, 0°(N) = N and D) = [w, (), W], the subspace o N*
generated by certain distributor elements. A near algebra N
is D-weakly distributive (D-w-d) of length k, if Dk(N) =0
and Dk_q(N) # 0 for k > O. We show that every left continuous
semisimple D-w-d near algebra is a semisimple algebra. TFor a
D-w-d normed near algebra N there exists a representation of
N as a space of bounded linear operators which leads to the
principle result of this section. We prove that every normed
cemisimple near algebra which contains a nonzero left distri-
butive left module is a semisimple algebra.

The following theorem generalizes the representation
of a normed algebra into the space of bounded linear operators.

2.7 Theorems Every normed near algebra N has a representation

in the space TB(N), the bounded operators on N.

Proof: For each b € N, define Lb(x) = bx for all x € N. Iy
is the left multiplication operator. As in the proof for an
algebra, Lb is a function from N to N but Lb is not linear
since left distributivity does not hold. However, Il L (x) Il
= llox Il € Null llxll for all x & N; hence, L, € Tp(I). Ve
now define the representation © : N— TB(N) to be ©®(b) = Lb.
Clearly © is a near algebra homomorphism since right distri-

butivity does hold. This homomorphism will be an isomorphism
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into TB(N) if and only if zero is the left annihilator of N.

Such a representation is called a faithful representation by

Rickart [27].“

2.6 Definition. Let N be a normed near algebra and let BL(N)

be the sub near algebra of bounded left multiplication oper-
ators on N containedin TB(N). The representation ©: N— BL(N)

defined by B(b) = I% is called the left regular representation

of W.
Using the ideas of Rickart [27] we can make the representation
norm preserving whenever certain multiplicative identity con-
ditions exists.

2.7 Corollary. Let N be a normed near algebra satisfying at

least one of the properties:
i) There exists a right identity e, such that
<
e Il £
ii) TFor each b € N there exists €y such that
< =
Hebll._ 1 and be, = Db, or
iii) There exists a net {Qu :d.éfgsuch that lleall <
for all & and for each b € N limy bey = b.
Then the left regular representation is an isometric isomorphism.
Proof: We have shown that the left regular representaion

e(b) = Lb is a near algebra homomorphism on N. For x € N,
llo)x Il = ”Lb(X)“ = Hox I £ 1ol ”X”, hence, 1O (b) |

= sup{ _e_ggg/_) £ o} < Npll. 1f conditions i) or ii)

=i
- | € ”bu /I
hold, then choose u = &, Or €. Thus, /Il b 7TE7T—

”9} Elu < sup{ _el%%lx_ } = l|l®&®)]| . Therefore,

’“B(b)}) = [lvll. Suppose condition iii) holds and let & > O
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be arbitrary. There exists @ such that Hb - bey [ L €
consequently, He(b)e"” = ”bed“ ZHb“ - €. Therefore,

b
for all £ >0, llvll - € £ %Zf;r}i < He(b)“ , which implies

HWoll € lem) Il . Therefore, in each case, @ is an isometry.
Being a linear isometry © is one-to-one. D

Two important observations are in order at this point.
First, we observe that the following statement found in
[27, . 4] remains valid for near algebras.

2.8 Theorem. If N is a normed near algebra such that

Holl - sup{xgg?%u-lx # 9}, then the left regular represent-
ation 1s an isometric isomorphism.

This allows a more "natural" adjunction of an identity to N
without the positive homogeneous condition. Identify N with
its image in TB(N) and let Nq be the sub near algebra generated
by N and the identity of TB(N). Consequently,

2.9 Theorem. Every normed near algebra such that /Ib//

= sup l%%%TU /x # O} can be embedded in a normed near

algebra with identity.

Second, the right regular representation can not be
generalized for near algebras. For, if Rb is the right
multiplication operator, then the representation 47(b) = Rb,
is not linear.

We now consider some representation theorems for
D-normed near algebras and, using the results of Brown [ﬁo, 41],
some representation theorems concerning D-w-d normed near
algebras.

2.10 Theorem. If N is a D-normed near algebra, then there
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exists a representation of N into Lip(N), the space of Lip-
schitz operators on N.
Proof: If Lb is defined to be the left multiplication
operator, then by the D-normed condition //Ib(x) - Lb(y)/{
= llbx - byll £ Ky I x - yl{ for all x, y € N. Therefore,
L, € Lip(N) for all b € N. We can define ¢ : N— Lip(w)
by @(b) = L, and, as in Theorem 2.7, @ is a near algebra
homomorphism. This is a faithful representation if and only
if zero is the left annihilator of N. [

We can now prove a corollary analogous to Corollary
2.7 in which Lip(N) has the Lipschitz norm.

2.70 Corollary. Let N be a D-normed near algebra satisfying

at least one of the following properties:
i) There exists a right identity e., such that
e Il ¢ 7,
ii) For each b € N there exists ey such that

llebl‘ £ 1 and be, = b, or

b
iii) There exists a net {ed : d.é/\-} such that

lleg Il € 1 for all & and for each b €& N limy bey = b.
Then the representation is an isomorphism into Lip(N) with
Lipschitz norm. If N is strongly D-normed, then the repre-
sentation is also an isometry.
Proof: ©Let N be such a normed near algebra and let b € N.
With Lipschitz norm, !@(v)(x) - dm)) I £ @) llx - vyl
for all x, y € N. 1If condition i) or ii) is satisfied, then
let x = e or €y respectively. Thus, /(¢(b)x - ?(b)(o)ll
= Ilbxl' = Iﬁb” < ”(P(b)llllx/[ é://¢(b)/l. If condition

iii) holds, then let £ > O be arbitrary. Choose a €/\ such
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that b - beyll <« €, then Nvll - € <llveyll. For x = eq 1
Holl - € < Hveqll = Hd(b)ey - d)(0) Il € HP o)l Il eg I
<lld)ll . Since this holds for arbitrary £ >0, [l b ll
<q (b) Il. Thus, in each case, [Ib - all ¢ P - 2) !
=/l£f(b) - &(a)// and b = a whenever &(b) = ﬁ(a).

If N is strongly D-normed, then, for b € N,
HPY(x) - @) Il = ftox - vy |l & Holl llx = yll for a11
x, v &€ N. Thus, )1¢(b)/1 ¢ vl ana @is an isometry.ﬂ

As an example, let E be a Banach space and define
multiplication on E by the formula xy = //y/‘x for all x, y € E.
We have previously shown (E, !l /l) to be a strongly D-normed
near algebra. There i1s no multiplicative identity, but con-
dition ii) of Corollary 2.10 is satisfied. That is, for each

b &€ E, b £0, let e = b/llvll. Therefore, §: E = Lip(E)

b
is an isometric isomorphism into Lip(E).

Let N be a near algebra and V be a left module of
N (V is a subspace of NY and NV € V). 1In [10] Brown called
the element n(a + ) - na - nb of V the distributor of
a, b € V with respect to n € N and denoted it by Eh, a, 5].
For A €V, A # @, and for B, a sub near algebra of N, he

denoted by DB(A) the subspace of V generated by

{[n, a, bv]

_ {Z[ni, a;, b.] {ai, b; €4 ng € B}. A is said to be
left distributive if DN(A) = O; that is, n(a + b) - na - nb

a, b €A, n €& B}. One can show that DB(A)

= O for all a, b € A and n € N. TFor a sub near algebra A,
let DA(A) = D(A). For nonempty sets S45 855 85 € N, let

[Sq, Sg, 83] be the subspace of NT generated by
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{[éq, So) 85] lsi E S;}; therefore, for AS N', A £ ¢, and a
sub near algebra B, DB(A) = [B, A, A]. Finally, let A be a
subspace of N and define D°(A) = A and Dk(A) = [N, Dk_q(A), N].
In [117 it is shown that Dk(N) is an ideal and a left
module in N for k 2 O. N is defined to be D-weakly distributive
(D-w-d) of length k if DE(N) = 0 and DX (W) # 0 for k > O.
If N is D-w-d then N is a near-c-algebra (NO = 0).
Using the above properties and definitions we prove
the following results for left continuous near algebras and
normed near algebras.

2.7 Lemma. Every D-w-d near algebra of length k > 0 with no

proper ideals is left distributive.

Proof: Let N be a D-w-d near algebra of length k » O. Then,
Dk(N) = 0 and Dk_q(N) is an ideal. Therefore, Dk_q(N) = N
and the D-w-d chain reduces to D°(N) = N and Dq(N) = 0.

This states that N is left distributive.ﬂ

2.8 Proposition. Let N be a near algebra with a linear top-

ology and let M be a nonzero left module which is left
distributive with respect to N. If the multiplication on M

is left continuous, then M is a sub algebra and the left multi-
plication operator, Lb’ is linear on M for each b € N.

Proof: M is a sub near algebra of N since M is a linear sub-
space of N and M1 € M. Being left distributive with respect
to N, M would be an algebra except for the scalar property
x(ty) = t(xy). However, since M is left continuous, the left
multiplication operator, Lb, is a continuous additive function
from the linear topological space M" to M" for each b & N.

Therefore, Lb is real homogeneous [15, . 12] and, hence,



47

linear on M for each b € N. This also impliesM is a sub
algebra since b(tx) = Lb(tx) = tLb(x) = t(bx) for all b, x € M
and te R . H

2.9 Proposition. Every left continuous D-w-d near algebra

with no proper ideals is an algebra.
Proof: Let N be such a near algebra. By Lemma 2.7, N is left
distributive and, by Proposition 2.8, N is an algebra. {

2.9 Corollary. Every left continuous D-w-d simple near

algebra is a simple algebra.

It is clear from Proposition 2.8 that every left con-
tinuous left distributive near algebra is an algebra. In
[11, D. 540] it 1s shown that a semisimple near algebra is
D-w-d if and only if it is left distributive. Combining this
result with Proposition 2.8, we get the following important
theorem.

2.11 Theorem. Every left continuous semisimple D-w-d near

algebra is a semisimple algebra.

If the linear topology on the near algebra N is
determined by a norm, then we have similar results without
assuming left continuity of the multiplication on N.

2.12 Theorem. If N is a normed near algebra and there exists

a nonzero left module M which is left distributive with re-
spect to N, then M is a sub algebra and there is a represent-
ation of N into the space of bounded linear functions on M.
Proof: Since M is left distributive, we have, for b € N and
x €M, O =10 = b(x+(-x)) = bx + b(-x). Therefore, b(-x)

= —(bx). Let b &€ N and let Lb denote the left multiplication

operator on N with respect to b. For an arbitrary X, € M,
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I\Lb(x) - Lb(xo))’ =’lbx - bxoll = I'bx + b(—xo))’

= ,Ib(x - XO>)I < ol N x - xoll. This inequality implies
that Lb is continuous on M for all b € N and, by Proposition
2.8, M is an algebra and L, is linear on M. Also l Lb(x)ll

= Nox]l ¢ /lbjlllxll; hence, L, is a bounded linear function
on M. The desired representation 4: N —f(M) is defined by
@(v) = L, for each b € N. [I

2.12.1 Corollary. Every left distributive normed near algebra

is an algebra.

2.12.2 Corollary. Every normed near algebra which contains a

left distributive left module whose left annihilator is zero
is an algebra.

Proof: Let N be such a near algebra with module M. By the
theoren, C?: N—-’B(M) is a homomorphism. The kernel of (P is
the left annihilator of M; thus, ¢ is one-to-one and N is an
algebra. ﬂ

2.1%3 Theorem. If N is a D-w-d normed near algebra of length

k 2 0, then there exists a representation of N as a space of
bounded linear functions.

Proof: Let N be such a D-w-d normed near algebra. Then,
Dk(N) = O and Dk_q(N) # 0 and, by the properties stated above,
Dk_q(N) is a nonzero left module such that DN(Dk_q(N))

[, 57w, *"an] e [w, o*'an, v - oK) - o.
Therefore, DN(Dk_q(N)) = 0 and, conseqguently, Dk_q(N) is a
nonzero left distributive left module. The result follows
from Theorem 2.12. D

2.13 Corollary. If N is a D-w-d normed near algebra of length
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k > O such that the left annihilator of DX~

(N) is zero, then
N is a normed algebra.

Proof: The result follows from the theorem and Corollary
2.12.2.10

2.4 Theorem. If N is a D-w-d normed near algebra of length

k > O with no proper ideals, then N is a normed algebra.
Proof: By Lemma 2.1, N is left distributive and, by Corollary
2.12.1, N is an algebra. 0

2.14 Corollary. Every D-w-d simple normed near algebra is a

simple algebra.

Brown showed in [10] that every cemisimple near algebra
with identity whose linear space is a Banach space such that
the left multiplication operator Ly is differentiable on N at
O for each b € N is a semisimple algebra. We have shown, in
Theorem 2.11, that every left continuous semisimple D-w-d near
algebra is a semisimple algebra. For a normed near algebra
we have the following important result.

2.15 Theorem. Every normed semisimple near algebra which

contains a nonzero left distributive left module is a semi~

simple algebra.
Proof: Let N be such a near algebra and let M be the left

module which 1s left distributive with respect to N. By
k

Theorem 1.5, N = &P Ni where each Ni is a simple near algebra.
1="

Let 11, = Ni/1 M. Each Mi is a left module of N. and is left
distributive with respect to Ni' By Theorem 2.12, there
exists a near algebra homomorphism 4’i: Ni-—’B(Mi) and, since

N, is simple, ker Cyi = 0 for each i. Therefore, @. is an
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isomorphism intojB(Mi) and N. is an algebra. Thus,
g 0
N= & N, is a semisimple algebra.
121

The following example shows that the existence of a
left distributive left module is not sufficient to have an

algebra.

2 :

Let V = Rx{o} and 1et v = {r|r € To( R, flv L VoY
and fIV is linea?}. By direct calculation it is easy to show
that N is a sub near algebra of TB(H?g) and with the sup norm
becomes a normed near algebra. Define f by the formula

(Xsy>s for J = 0
f (x,y) = (x,5), for y # 0 and | (x,y) 1l ¢ 1 .
(1,1), for y # 0 and Il (x,y)Il > 1

Then, flV is linear and maps V into V. Also, llf(x,y)l’
<20,y thus, £ € N. Now £(2£)(1,1) = (1,1), while
2(££(1,1)) = (2,2). Therefore, £f(2f) # 2ff and N is not an
algebra.

Let M = {f[f € N and f([R2 - V) = Q}. It is easy to
show that M is a linear subspace of NT. Suppose f € N and
g € M then fg(/R° - V) = £(0) = O; hence, fg € M and M is a
left module. Suppose f € N and g, h € M. For (x,y)é,ﬂ?e,
(g + h)(x,y) = f(glx,y)) + £f(u(x,y)) = (£fe)(x,y) + (fh)(x,y)
since g(x,y) and h(x,y) belong to V and f is linear on V.
Therefore, f(g + h) = fg + fh and M is a left module which is

left distributive with respect to N, but N is not an algebra.



Finite Dimensional Near Algebras

This section presents some properties of finite
dimensional near algebras. We abstract the properties of
Lipp(ﬂz) and show that a positive homogeneous finite dimen-
sional normed near algebra with orthogonal idempotent basis
is a left continuous near algebra. In particular, we define

a D-distributive property and show that positive homogeneity

and an orthogonal idempotent basis insure left continuity of
multiplication. We then prove the stronger result that a
positive homogeneous normed near algebra with orthogonal
idempotent basis such that Xi(—Xj)==—Kinj, Kij'Z 0O, becomes
a strongly D-normed near algebra with an eguivalent norm.
Eventually, we remove the D-distributive condition and the
condition xi(—xj) = _Kijxj and prove that all positive homo-
geneous normed near algebras with an orthogonal idempotent
basis can be given an eguivalent strong D-norm. The strong
D-norm insures continuous left multiplication. ZFinally, we
prove that every finite dimensional homogeneous near algebra
with orthogonal idempotent basis is an algebra.

Unless otherwise stated, we will assume all near
algebras are near-c-algebras. In particular, for function
algebras we will assume f(0) = O.

Although Lip(/R) is not a left continuous near algebra,

we did show that Lipp(lP) is left continuous, in fact, strongly

51
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D-normed. Lipp(ﬂ?) is a finite dimensional near algebra with
basis elements J and K which are orthogonal idempotents.

Also, J and K are positive homogeneous and have the property
that J(sd + tK) = J(sd) + J(tK) and K(sJ + tK) = K(sJ) + K(tK)
for all s, t € /R . We generalize these concepts to an arbit-
rary finite dimensional near algebra.

2.7 Definition. A near algebra N is said to be finite

dimensional ifand only if N" is a finite dimensional linear

space. N has an orthogonal idempotent basis {xq, Xoy® oty X,

if and only if x.x. = O..x. where .. is the Kronecker delta.
1d 1d d 1dJ

2.8 Definition. A real near algebra N is said to be positive

homogeneous if and only if x(ty) = t(xy) for all x, ye N

and t € R, t 2 0. N is said to be homogeneous if and only if

x(ty) = t(xy) for all x, y € N and t € [R.

In [16, 17] Frohlich defined a distributively generated
near ring R as one in which the additive group of R has a set
U of generators such that u(x + y) = ux + uy for all u € U and
all x, y € R. We make the following generalization to near
algebras which is a slightly weaker property.

2.9 Definition. A nonempty subset U of a near algebra N is

said to have the D-distributive property if u(EItiui)

= Zlu(tiui) for each u € U and every finite linear combination
of elements in U. A near algebra N is said to be D-distri-

butively generatea (D-d-g) if the linear space N' is

generated by a D-distributive set.
Lipp(ﬂQ) is an example of a D-distributively generated
near algebra since we have shown the basis elements J and K

have the properties J(tJ + sK) = J (td) + J(sK) and
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K(tJ + sK) = K(tJ) + K(sK). However, if we assume

f =ad + bK€ Lipp(lR) such that f(g + h) = fg + fh for all
g, h & Lipp(/R), then f(2K + (-3K)) = £ (2K) + f(-3K) implies
a = b. Therefore, f = al and Lipp(ﬂ?) is not distributively
generated.

2.10 Proposition. Let N be a finite dimensional normed near

algebra. If N has an orthogonal idempotent basis, then the
max norm on N defined by [lx Il = max{ltillx = E:tixi} is
equivalent to the given norm and satisfies the multiplica-
tive prcperty lixylll & 1 Hix 1 1y where k is the
dimension of N.

Proof: Let N be a k-dimensional normed near algebra with

basis {Xili = 1,2,o--,k}. We may assume leill = 1. Let

Nxt = max{.ltilli = 1,2,---,k} for each x = tixi E N.
For arbitrary x = Z:tixi, =1l = || Z:tixi[l

< Z,’Iltixil{ <% I+l ¢ & max{ltil{i = 4,2,...,1(}

= k Ix!ll. Also, since llxlef < llxlllllel = <l

s 1 = ”tjxj” - ltjl < lx!l for each j = 1,2,--,k.

Therefore, Hlx Il = max{ ltilli = 1,2,...,k} < JIxll
<k MMxll ana Mxy Nl £ Hxylt ¢ lix gl
<xe Nl Nyl [

2.16 Theorem. Let N be a positive homogeneous finite dimen-

sional normed near algebra. If N has an orthogonal
idempotent basis which has the D-distributive property, then
N is left continuous.

Proof: Let N be such a k-dimensional near algebra with basis

{Xili = 1,2,...,k}. By Proposition 2.710, choose the
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equivalent max norm on N where /[ x[| = max zltill i = 1,2,---,k},
2
for x = E:tixi, and [Ixyll 4 = W xUlllyll,
Let {yn} be a sequence in N with yp = Z:tnixi and let

y € N with y = EZtixi. Assume tn.

— .
i 1 tl for each

i=1,2,°+,k. Then, Ny, -yl = /& (t,, - ti)xi/l
< z: |t . - t.[. Since t_.—>t., for each i and there are
= ni i ni n i
only a finite number of i's, we choose n, sufficiently large
so that, for £ > O, Ezltni - til4.£ whenever n > n_.
Therefore, yn—é;y.

Conversely, assume Iy and let &€ 2 0O, then there
exists n_ such that llyn -yl = | Zz(tni - ti)xi[!
= max:{[tni - ti[l i= 4,2,---,k} £ € whenever n > n_. Thus,

for arbitrary i = 1,2,°*°*,k,[t . - tilé £ whenever n > n_

ni

and tn.-g t;. Therefore, tni——-;;ti, for i = 1,2,++-,k, if

i
and only if yn—9 Ve
Let x € N and let Xy be an arbitrary basis elemént.
Assume tnxi-—z*txi. If x = O, then O (tnxi) =00 = O(txi).
If x # O, then, by the above, with Yy, = tyx; and y = tx., we
have that tn——>t. For £€ > 0O, choose n, such that
t, -t < 5/(k2lell) whenever n > n_. Let E@(a) be the
algebraic sign of a € IR. If t # O, we can choose n suf-
ficiently large so that &(t) = e(tn) for n zn . Thus,
ItxCtx) = xCex ) = 1t 1 Ge (8(6)x)) - 18] (x(®Ct)x; )]
2
_ < - < .
éltn‘ tlllx(e(t)xi)ll < k ltn t] lIxll <€, for n >n
If t = 0, then /| x(t x;) - x(0) Il = 1 X(tnxi)ll
P4 kz)tnlllxllé.ﬁ , for n > n_ . Therefore, x(tnxi)—;}x(txi)
for arbitrary i = 1,2,°°°,k.

Let x € N and let {yn} be a sequence in N such that
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yn-—;y. We wish to prove that multiplication is left contin-
uous in the max norm by showing X, XY . Assume x

= 2t.x., Io = 23sp;%; and y = EZsiXi are the basis expan-

i71
sions where yn—é y. By the first property above, Spi o Si
for all i = 1,2,++-,k. Thus, s ;x -~ s;x Il = Isni - 54|

which implies snixm-—z+sixm for all 1, m = 1,2,+++,k. In

particular, s *—?sixi and, by the second property above,

ni¥i "o
for i, J = 1,2, ,k, xj(snixi)-—E?Xj(siXi). Since the indices
i and j can assume only a finite number of integer values, we
can choose, for £ >0, an n, such that llxj(snixi) - xj(sixi)]l
L &€ for all i, J = 1,2,***,k whenever n > n,-

Using the D-distributive property, llxyn - xy |

= /{'E:tj (E:(Xj(snixi) - Xj(sixi)))[[' Applying the triangle
J i
inequality, /[xyn - xy || & z:[tj] 'Ejﬂxj(snixi) - Xj(SiXi>”
J i

é_kgllfllg,. Therefore, for sufficiently large n,
xy, - xy 1l ¢« € and xy,~— Xy in the max norm. Since the
given norm is equivalent, xyn——?xy'in the given norm. H

As in the case of Lipp(ﬂ?) we can show that a strong
D-norm condition holds in certain cases. A partial result is
given below. A stronger statement is proved later.

2.1 Proposition. Let N be a positive homogeneous finite

dimensional normed near algebra. If N has basis {Xi} such that
Xixj = Sijxj and xi(-xj) = —Kijxj where 513 is the Kronecker
delta and Kij 2 O, then there is an equivalent norm on N such
that N is a strongly D-normed near algebra.

Proof: Let N be a k-dimensional near algebra with basis
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gxi} satisfying the given properties. By Proposition 2.10 we
may choose the max norm, /| x/l, which satisfies []xy/l
5k2 llxl |yl and is equivalent to the given norm.

Let x be an arbitrary basis element, 1 £ n < k.

X (Z’t X5 ) = anixi and, multiplying both sides on the left

by Xy, we have Xn(tjxj) = s_.x, for j = 1,2,+++,k. For tj Z 0,

ng J
Xn(tjxj) = anjtjxj and, for tj £ 0, Xn(tjxj> = 't,jxn(_xj)
S. nbss for 5 20
= K .t.x.. Therefore, S 4 = J . Let us
nJJ4J d KthJ for t; £ 0

define a new function which will allow us to express Snj in

1, for t 2 0
amore convenient form. Let sgn(t) = and
-1, for t £ 0O

1 + (t.) 1 - (t.)
define O(i, t) =[ Sin J ]5ij + [ Sin J]Kij.

A quick check shows sy ~9(n t )t and, thus, Xn(thXJ)

=Z’9(n, tj>tjxj for n = 1,2,++,k.

For x, y, 2z € N with basis representation x= Zrixi, y

= Zsixi, and z = Ztixi, we have Xy - xz = ( rixi)( -ijj>

(_rixl ( : a> Z ( ( _ )) 2?11 jtaxa
Zr (Z[@(l S. )s - 6(i,t. )tﬂx)

o [y (ois pag - 0C e eIy Thus, M1y - xal
3 i

max { l Zri(e(i,sj)sj - G(i,tj)tj)l lj = ’1,2,...,1{}.
i
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For fixed j, /Zri(e(i,sj)sj - G(i,tj)tj(
1

NN ICCIEENE 6(1,t )t |
i

< i . - i ) . i
< x| E:]G(l,sa)sa 9(1,ta)tal and a check of the various

1

cases for each i = 1,2,+++,k shows that “9(i,sj)sj -G(i,tj)tjl

< (1 + Kij)lsj - tj{' For example, for fixed j, if S and
£ > 0, then e(l,sj) = 513

l@(i,sj)sj - e(i,tj)tjl = Iaijsj - sijtj , < [sj -t

and.e(l,tj) = 5;3. Thus,

5

< (1 + Kij)[sj - tj] for all i = 1,2,+++-,k. Therefore,

z:le(i,sj)sj - e(i,tj)tj, < kK]sj - tjl < kK lly - z 1l where

1

K = max {.1 + Kijli’ J = 1,2,---,?}. Therefore, llxy - xz Il

<kK llxIl lly - zll. The desired equivalent norm is ]| x| '
- kK =il []

2.11.1 Corollary. Every positive homogeneous finite dimen-

sional normed near algebra with basis elements satisfying the
conditions of the theorem is a left continuous near algebra.
Procf: By the proposition there is an equivalent strong

D-norm and the existance of such a norm implies left continuity.”

2.711.2 Corollary. Every positive homogeneous finite dimen-

sional near algebra with basis elements satisfying the
conditions of the theorem is a D-distributively generated near
algebra.

Proof: In the theorem we showed, independent of the norm,
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that, if xn(iftixi) = Efsnixi, then multiplying both sides on
the left by Xj’ we have Xn(tjxj) = Snjxj’ for J = 1,2, ,k.

. + .
Thus, Xn(iztixi) = Z:xn(tixi). Since N’ is spanned by the

basis, N is D-distributively generated. ﬂ

2.12 Proposition. Let N be a positive homogeneous near

algebra and let V be a nonempty D-distributive subset of N.

If M = V V (-V) forms a multiplicative semi-group in N, then
the linear subspace generated by V forms a D-distributively

generated sub near algebra of N.

m

n
Proof: Let x = Ezztiui and y = jzzsjvj be elements of the
i=" ="

linear space, £ V >, generated by V where u;, Vi € V. Then,

= . .) = . . . = . (= .
xy = (265w (Fsvy) 2065 (Zus (s v ) = Tby(Zls luy (2 v4)

- + .
= Z:(j;tilsj)wij) where Wy o= ui( Vj) € M; hence,
w5 € L VY. Therefore, xy e <V, and < V> is a D-distri-
butively generated sub near algebra by Lemma 1.1. U
Lipp(ﬂ?) is one example of the above ideas. As another

example, let H be an n-dimensional real Hilbert space with

basis {Xi}. For each x = Z:t.xi &€ H, define

IN p
IN

J(ti)xi , for 1 i n
P.(x) = where t. = (x, xi)

1 K(ti )Xi—n’ for n + 1 i< 2n

in

-n
is the inner product of x and X . Since J and K are positive
homogeneous, it is clear that Pi is positive homogeneous.
Also, for x = z:tixi and y = z:sixi, we have “Pi(x)—Ii(y))’

£ lti - si)since J, K € Iip(/R). By Bessel's inequality
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2
,ti—si’ éZ]ti—si]2 i”x—y“g. Thus,
Ilp, ) - P, Il Ilx - yIl ana P; € Lip (H). A straight-

forward but tedious check shows that Pin = ngpj and, for

0 , if JAn+1i
1€1én, Pi(—P.) = ; and
J P, if J=mn+i

0 ,if 3 #i-n
Pi(—P.) = , forn + 1 £ i 4 2n. Finally,
J -Ps, if j=i-n

en

an
one can show that P. t.P. )| = P.(t.P.). Therefore, let
i i ZE; iNITd
J:

V = {Pili = 4,2,---,2q}; then, by Propositions 2.11 and 2.12,

§=1

<: V> is a strongly D-normed near algebra with basis V and
norm equivalent to the Lipschitz norm.

As a final example, let V be a finite dimensional
linear space and define a multiplication on V by the formula

Xy = §:si)tilxi for each x = 23s;x. and y = E:tixi belonging

to V. This multiplication is closed, associative and right
distributive, but not left distributive; hence, V becomes a

finite dimensional near algebra with the basis {Xi} of V.

_ - O -
X and xi( Xj) = ..XJ. Also Xi(EZtixj) t.X.

. X
iy Iy iJ i7i

= Lx;(t5xy) and for £ 20, x(ty) = Losglttdlx, = £ 20s ]t ] x;

(X
1d

= t(xy). Therefore, V is a positive homogeneous finite dimen-
sional near algebra with orthogonal idempotent basis which

has the D-distributive property. Finally, define the max
norm on V, HxIl = max{]tillx = tixi}. This is a norm

and, for x, y €V, llxyll = N ssltsl x5l = max{]si)ti'l}
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= max:{lsi)ltﬂ.} < x|}yl . Therefore, V is a normed near
algebra with this norm and, by Theorem 2.16, V is left contin-

uous. Notice, also, that V is strongly D-normed, since
NNxy - xz 1] = llﬁfrilsi)xi - Z?filtilxi |
_ _ _ - <
- |l ZZri(lsil [til)xiH = max{ﬂlrilllsil 'tily} -
maxn{[ri]lsi —'@i[} lixll Ny - z .
We will now show that positive homogeneity and an
orthogonal idempotent basis are sufficient conditions for
the strongly D-normed condition and left continuity of multi-

plication in the finite dimensional case.

2.13 Proposition. If N is a finite dimensional positive homo-

geneous near algebra with orthogonal idempotent basis {Xi}’

then either X, (-x.) = -K..x. where K.. = 0 or 1 for all i and
1 dJ id J 1J

J or there exists a basis {yi} such that y. yJ = EiJMJyJ, Mj >0

and yi<—yj) = -8; 574 where S, Z0, for i # J, and 8;;, 2 O

or Sii = -1.

Proof: Let N be a k-dimensional positive homogeneous near
algebra with orthogonal idempotent basis {Xi}. For arbitrary

but fixed i, 1 ¢ i €k, and for j = 1,2,...,k, Xi(—Xj)

= t,(1,3)%) +e+ot £, (3,9)%x,. For n # j, xi(—xj>xn =0

= tn(i,j)xn. Therefore, tn(i,j) =0 for n # J and, since i
was arbitrary, Xi(—Xj> = tj(i,j)xj for i, j = 1,2,««4,k.

Again, let i1 be arbitrary but fixed and assume there

exists j # 1 such that t. (1,3) > 0. Then t. (1,3)x = X; (-x.)

J
—(x X. )( X ) = X; (X (- X )) = x. (t (1,J)x ) = t. (l,J)X XJ =0
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and hence tj(i,j) = 0. Therefore, for arbitrary i there exists

tj(i,J)

—Kij for j = 1,2,+++,k, j # i such that Kij 2 0 and

Xi(—Xj) = —Kijxj' Applying X5 to this last equality, we get
2 _ . .
Kij - Kij = 0. Thus, Kij = 0 or 1 for i # j.

Let ti(i,i) = K. and consider the two cases: K. < 0

for all 1 = 1,2,+++,k or Ki > O for some i, 1 £ 1 £ k.

Case 1. If K, < 0 for all i = 1,2,***,k, then

. . 2
xi(—xi) = K;x; and applying x; to both sides we get K, + K, = 0.

Thus, Ki = 0 or -1 and this case results in the orthogonal

idempotent basis X5 such that Xi(—Xj> = Kijxj where Kij

= 0 or 1.

Case 2. If Ki 2> O for some io’ then reorder the basis
o}

elements, if necessary, so that Ki'> O for 1€ 1 < n and Kifa 0

for n <. 1 £ k where 1 < n &£%k. Let y; = éin, 1< 1 &€ n, and
i

let i = X3, 1 < i £ k. The set zyi} forms a new basis such

that Yi¥5 = O for i # j. Also, for 1 4 i 4 n, Yi¥5 = é%yi and,
i

. < - - )
for n £ 1 £k, YiX; = X5 = Y5 Therefore, yiyj = iijyj
where Mj"> .

For 14 i 4€nand i # j, if 14 j £ n, then yi(—yj)

-K.
_ 1 _ i _—
= szgﬁc(—xj)) = 7 T4 If n< j £ k, then yi(—yj)
-K. . -K. .
= —=d x. = —3=d y.. If we now consider i, n £ i £ Kk,
Ki J K. J

and the same two cases for J # i, we find that yi(—yj) = —Kijyj
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in both cases. Therefore, for i # j, there exists Sij 20

such that yi(—yj) = _Sijyj'

. . . . 1
Finally, for i = j, 14 i ¢ n, yi(—yi) = EE(X1<_Xi>)
i

4 - < -
K?(Kixi> =y;. Ifn<iék, yi(—yi) = X

3 (-%5) = Kyxy

1

Kiyi' Therefore, combining these results with the above,

we have yi(—yj) = ;47 where B, 2 0 fori# jand Sy, 20

or S.. = =-1. ﬂ
ii

2.717 Theorem. If N is a finite dimensional positive homogeneous

normed near algebra with orthogonal idempotent basis, then N
can be strongly D-normed with an equivalent norm and the basis
has the D-distributive property. That is, N is a D-distri-
butively generated left continuous near algebra.

Proof: Let {Xi} be an orthogonal idempotent basis for the
k-dimensional near algebra N. By Proposition 2.13%, two cases
exist. If xi(—xj) = -Kinj where Kij = 0 or 1, then the
results follow from Proposition 2.711 and Corollary 2.11.2.

Otherwise, let {y.tbe a new basis such that y.y. = & M.y
i i

J 137373
where Mj >0 and@YiGyﬁ) = _Sijyj where the basis elements are
so ordered that 8. . 2 0, for i # j and 8;; = -1 for 1 £ i< ng

—

and Sii.> O for n ) & i £k. We now choose the equivalent max
norm on N and proceed in a manner similar to that of
Proposition 2.11.

Y-

For arbitrary y_, 1 $n &k, yn(ZZtiyi) = 2T s

If we apply Tir 3 = 1,2,+++,k, then yn(tijyj) = ranjy..

.y. for

Since Mj > 0, it factors out and yn(tjyj) = rnJ i
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Jj=1,2,*°,k and arbitrary n. Therefore, for arbitrary n,
EZyn(tjyj) Z:rng j = yn(Z:tjyj) and the basis set has the

D-distributive property. This implies multiplication is left
continuous. We now wish to show that N can be strongly
D-normed.

From the above, if t. Z O, then t.y.) = si.M.t. )
’ j=" Inlb5730 = "M%

and, if tj < 0, then yn(tjyj) = -t 39 (—y ) = Snatayj'

we have the following
{() , forn #

MJtJ for n = J

Therefore, using the properties of Snj’

description for Thi® For tj >0, r_.= and,

ng

S .t., for all n # j or n < n €k, j=n

for t. £ 0, ros = nj-y’ .
J J -t. , for14€nén, j=n
J 0
For tj = 0, Thi = 0 for all n. TFTor 1 £1i & n,, define G(i,tj)
1 t. &. .t.)-1
[ +sgn( >',6- s )+sgn( iit5)
JlJ ij 2

. L
+ [égn(ékjtj) + sgn((ékj - 1)tjizsij and for nb'é i< k,

. _ T+ sgn(ts) ] 1 - sgn(tj)‘z
define 9(1’tj) =[ > %ﬁMJ +[ =~ JSij‘

A check of the various cases shows that rnj =:9(n,tj) tj for

all £ and for j, n = 1,2,°++,k. Therefore, y, E:tjyj
J
Z’@(n,tj)tjyj for all n = 1,2,-++,k.
J
For x, y, z € N with basis representation x =Z:fiyi,

= Zsiyi and z = Ztiyi and for © defined above, we have
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Xy - X2z = Z[—Z (ri(e(i,sj)sj) - G(i,tj)tj))]yj. Thus
J i

“Xy - XZ” = max{ ,Zr1<6(l’sa)sa - 6(1ata){ {J = /]sga"‘,kJ.
i
For fixed jJ, eri(e(i,sj)sj - Q(i,tj)tj)l

< (x|l Zle(i,sj)sj - e(i,tj)tjl. For fixed j and this new
i
function &, a check of the various cases shows that

le(i,sj)sj - e(i,tj)tjl < (’I+Mj)(’l+lsijl)}sj - tjl for each

i=1,2,+++,k. As an example, consider the case for

M., for s, 2 0
1€ 14 n, and j = i. ©(i,s.) = J J , similarly
J -1, for s5£.0

for e(i,tj). Therefore,
lM.s. - M.t.l , for s.
J

J

, Lo
M - s. 7
leJ (t)l for s, 2

'—SJ. - thj] , for 55 &

)—sj - (—tj)] , for 5 < 0,

|eCi,s )85 - 01,80t =

If we now consider each instance separately, we find that in

the first case |M.s. - M.t.| £ M.|s. - t.l. In th e
e lJSJ JJI__ JIsJ JI n the second

case, for S 2 0, tj 4 0, we have )I"Ia.sJ + t | € MJSJ - tj
4(’I+Mj)|sj - tjl. Case three, for s £ 0, tJ 2 0, is

similar to case two with the roles s and t interchanged.

Finally, for s, t; 4 0, I-s - (-t )l lsj - tjl. Thus, in
6(i,s.)s. -O(i,t.)t.1 & (1+M.)(1+18. . .- t.l.
all cases | (l’SJ)SJ G(l,tJ) 3’ < (1+ J)( +ISJJI)ISJ JI

The other choices for i are similarly tedious and will be
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omitted.

Thus, for arbitrary j, > le(i,sj)sj - G(i,tj)tj{
i

f_kK[sJ. - tj[ < %K lly - zll where K
= max {(1+Mj)(1+lsijl)’ i, § = 1,2,---,k] and, hence,
Hxy - xzll € kK llx!l lly - zIll. The desired equivalent norm

is Nxll = xglix!l. 0O

2.18 Theorem. Every finite dimensional homogeneous near

algebra with orthogonal idempotent basis is an algebra.
Proof: If N is homogeneous, then, by Theorem 2.17, N is
D-distributively generated by the basis. (This result did
not depend on N being normed.) Let x, y, z € N with basis

representation = T.X. = S.X., an z::}Z (X .
epre on x i¥i0 7 1710 d tl i

Then, x(y + z) = e (Z(sj + t,j>Xj>
i J

Z r, (in(sj + tj)xj) = Z ry (Z (si + ti)xixj)
i J i J

It

r.s.X. + r.t.x. = Xy + X2z. U
17171 1°171



CHAPTER III

SPECIAL FUNCTION NEAR ALGEBRAS

Lipschitz Punctions

This section is devoted to the discussion of the
special function near algebra of Lipschitz functions on a
normed linear space E. The Lipschitz functions are an immed-
iate generalization of the bounded linear operators which are
so important in analysis. The first few results do not depend
upon the algebraic structure of Lip(E) but demonstrate that
the Lipschitz functions have range properties and conditions
for invertibility similar to those for bounded linear
operators. We show that if f & Lip(E), then f(K) is closed
for all closed sets K whenever there exists t > O such that
I£(x) - £(y)Il 2 tllx - yll . A Lipschitz function f is
invertible if and only if its range is dense and there exists
t > 0 such that N f(x) - £(y)Il 2 tlx - yli.

Altvhough, as a near algebra, Lip(E) is not D-normed,
it is a normed near algebra which is a Banach space whenever
E is a Banach space. It plays a role similar to that of the
bounded linear operators in representation theorems. One
such representation was the normed linear space E with multi-
plication defined by x-y = |[y|]lx. If S is the image of E

in Lip(E), we then show that f € TC(E) is linear whenever f

66
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is left distributive with respect to all the functions in S.
The most important algebraic property of Lip(E) is
that Lip(E) is a near algebra with continuous inverse and the
set of invertible elements is an open set which forms a
multiplicative group. Brown [40] showed this to be wvalid for
a finite dimensional Banach near algebra. Using Lip(E) as a
representation space, we can remove the finite dimensional
condition and replace it by the strongly D-normed condition.
We are able to show that every strongly D-normed Banach near
algebra with identity is a near algebra with continuous
inverse and the set of invertible elements is an open set.

3.1 Proposition. Let E be a Banach space and let f € Lip(E).

If there exists t > 0 such that | f(x) - £f(y)I 2 tllx - yli
for all x, y € E, then f(K) is closed for all closed sets K.
Proof: Let f be such a function in Iip(E) and let K be a
closed set. Let {yh} be a sequence in f(K) which converges to
y such that f(xn) = y,- If t is the constant associated with
f, then tilx_ - Xmll < llf(xn) - f(xm)ll = llyn - ymll for all
n, m €N . Since {yh}is a Cauchy sequence, we have that{xn}
is a Cauchy sequence and by completeness X, —?X. Since K is
closed, x € K and, by the continuity of f, f(xn)~+ f(x) = y.
Thus, ¥ = £(x) & £(B) and f(B) is closed. [

3.2 Proposition. Let E be a Banach space and let f € Lip(E).

f is invertible if and only if its range is dense in E and
there exists t > 0O such that Hf(x) - £(y)ll 2 tllx - yll for
all x, y € E.

Proof: Assume f is invertiable. Then, f is one-to-one and

f(E) = E; thus, the closure f(E) = E. Also,
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Wx - yil = e ey - s e e e e - syl

1
thus, W”X - :)7” ﬁ ”f(X) - f(y)”.

Conversely, assume f(E) is dense in E and

Il £(x) - £f(y)!l 2 tlx - yll for some t > O and all x, y & E.

By Proposition %.1, f(E) is closed, hence f(E) = f(E) = E.

If £(x) = £(y), then llx - y 1 & 2/r(x) - £(3) I = 0 which
implies x = y. Therefore, f is one-to-one and onto and f_q
exists. Also llf"q(u) - f_q(v)‘( = llf—q(f(x)) - f_q(f(y))ll
= llx - yll & %-Hf(x) - f(y) il = %llu - vil. Therefore
e 1ipE). 0

Let E be a normed linear space and define multipli-
cation on E by x+y = |llyll x. We have shown that there exists
a representation.@: E >Lip(E) which is an isometric isomor-
phism into Lip(E). We let S = @(E) and show that linearity

of a function and left distributivity are related through S.

3.% Proposition. Let E be a real normed linear space and let

f e TC(E). Then f is linear if and only if f is left distri-
butive with respect to all functions in S.
Proof: Clearly, if f is linear then it is left distributive
with respect to all functions in TC(E).

Conversely, assume f is left distributive with respect
to S. Let x, y € E and choose z € E, Ilzll = 1. Define

£ fy : E—E by fx(u) = Hullx and fy(u) = llully for all

u €& E. f_and fy belong to S and fx(z) = x and fy(z) =y,
for all x, y € E. For x, y € E, f(x +y) = f(fx(z) + fy(z))
= (f(fx + fy))(z) = (ffX + ffy)(z) = (ffx)(z) + (ffy)(z) =
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= f(x) + f(y). Since f is additive and continuous then f is
real homogeneous. ﬂ

The proposition states that Lip(E) is an algebra of
bounded linear functions if 8§ is left distributive with
respect to Lip(E). This result is similar to those following
Theorem 2.12 except that S is not a left module and Lip(E) is
not left continuous.

The concept of an algebra with continuous inverse is
central in the study of topological and normed algebras. For
example, every topological division algebra with continuous
inverse is isomorphic to the field of complex numbers
[26, . 175]. Although such strong results will not hold for
true near algebras, we can investigate the concept of contin-
uous inverse.

3.1 Definition. A near algebra with a Hausdorff topology and

an identity e is called a near algebra with continuous inverse
if there exists a neighborhood of the identity, U(e), possess-
ing the properties:

i) Every element x € U(e) has an inverse x_q,

ii) x"q is a continuous function of x at the point
X = e.

In EﬂO] Brown defines a topological near algebra as a
near algebra with a Banach linear space. He then proves that
a finite dimensional topological near algbra is a near algebra
with continuous inverse and the map x-—)x_q is continuous on
the unit group. We will examine these concepts in the setting
of normed near algebras.

First, we observe that Brown's proof does not require
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the completeness of the norm; hence, we get the following
result.

3.1 Theorem. Let N be an n-dimensional left continuous normed

near algebra with identity e. Then, N is a near algebra with
continuous inverse and xu—;x71 is a continuous map on the
group of invertible elements.

We will prove that the finite dimensional condition
can be removed for a strongly D-normed near algebra; but, as
the next example illustrates, the strong D-norm condition
and finite dimensionality can not both be removed.

Consider the Banach normed near algebra TB(HQ) with
sup norm. If we assume TB(ﬂ?) is a near algebra with contin-

d

uous inverse, then there exists an € > O such that f ' exists

whenever Il f - I 1< €. That is, f is one-to-one whenever

If - TIl < €. Let d = min(€/2,1) and define f: R— R by
the formula

X , for x &
(1+d)x, for O E

1+ a , for 1
X , for 1 +

f(x) =

By direct calculation, lf(x)l £ (1+0) x| for all x; thus,
f e TB(H?). Also, |f(x) - I(x)| = lx - x| = 0 for x< 0O and
| £(x) - T(x)| = 1f(x) - x| ¢d x| for x 2 O3 therefore,
Itr - Il £ d < € . However, f isnot one-to-one since it is
constant on the interval (1, 1+&). This shows that TB(ﬂ?)
can not be a near algebra with continuous inverse.

We will now establish that Lip(E), with Lipschitz
norm, 1s a near algebra with continuous inverse provided E is

a Banach space. We will proceed to this result through a
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sequence of lemmas.

3.1 Lemma. Every normed linear space E with the norm topology

is connected.
The proof is straightforward and will be omitted.

3.2 Lemma., Let E be a normed linear space and let f e Lip(E).

Ifllf - Tl £ 1, then there exists a t, 0 £ t £ 1, such that

llx - yll & 2H8(x) - £(y)H £ (2 - ) l1x - yll for all x,

vy € E. In particular, for y = O, llxIl £ %Jlf(x)” < (2 - t)lxll.
Proof: Suppose f € Lip(E) and lf - Tl <1, Let t =1

- Ilf - Tll, then 0O t &€ 1. For all x, y€& E,

H(E - D(x) - E -D@H =x-y) - & -t
<Jlf - Il Hx =yl = (1 - t) Ix - yll . Therefore,
Hx -yl = Wi - £ ¢ H(x -y - £(x) - £

£(1 - t)llx - yil. This implies llx - yll¥4 %l‘f(x) - r(pll.

Similarly, || £(x) - £()Il -l (x - Il £llf(x) - £(y) ~&=y) I
Z(1 - t)lx - yll. Thus, lHf(x) - £(yx)I & (2 - t)IIx - y/’. I
3.3 Lemma. Let E be a Banach space and let f € Lip(E) such

that Il £ - TH £1, If K is a closed subset of E, then f(K)
is closed in E.
The proof follows from Lemma 3.2 and Proposition 3%.1.

3.4 Lemma. Let E be a Banach space and let f € Lip(E) such

that Il f - I1l £ 1. If U is an open subset of E, then f£(U)
is an open subset of E.

Proof: See [23, p. 131]. TLet t =1 -llf - TIl. 1If t =1,
then £ = I and f(U) = U is open, thus, we may assume

O« t &1, For arbitrary b € E and r > O, we adopt the no-

tation B(b,r) = {x'x €E, I|x-n1pll ¢ rJ'for the closed ball
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about b with radius r and S(b,r) = {Xlx € E, |lIx - vll ¢ 1?}
for the open ball about b with radius r.

For arbitrary b € E and arbitrary s > 1/t, we wish to
show that S¢(®), r/s) ¢ £[B(b,r)] for all r > 0. Assume not,
then there exists r > O such that, for S = S(f(b),r/s) and
B = B(b,r), S ¢& £(B). Choose v €& S such that v ¢ £(B) and
let p = inf{uv - ull[u € f(B)}. Let 8' = S(v,p), then
S'M £(B) = #. This implies P & r/s; for, if r/s <P, then
[lv - £(0) 1< p and £(b) € 8'/\ £(B). Also, for any P, >P
there exists £(x) € £(B) such that llv - r(x) Il £ P,.

Since P <& 7L, choose z = £(u) € £(B) such that
Hv - z ]| € P/ﬂ—t. We can now construct the following inequal-
ities. For z = f(u), Hf(u + (v = 2)) - vl
= lHHf(u+ (v-2) -z+z-u~+u-vlil
= Ilf(u+ (v - 2)) - f(w) - ((u+ (v -2))-wll
= -D@w+ (v-2)) - -DWl
< lf -1 u+ (v -2) -ull
(1 -t)lv -zl £ (1 -1t)(P/1-t) =P. Therefore,

Hf(u + (v - 2)) = vUH<4LP and f(u + (v - z)) € S'. Also,
Hu+ (v -2)) -dH=Hu+ (v-2)-b+ £(b) - f£(b)ll
I (£(b) = 2) - (b —u) + (v - £(b) I

(£ = £(w) = (b - u) + (v - )

Sir -1l = uwll + Uv - £

£(1-t) r + r/s since u € B and v € S. Since

(1 -tr +1r/s =2((1-1t) + 1/s)<r, Hu+ (v -2) -1l

{ r which implies u + (v - z) € B. Therefore, we have the

contradiction that £ (u + (v - z)) € £(B) and f(u + (v - 2z))

€S'. Thus, S(£(b), r/s) € £[B(v,r)] for b € E, s > 1/t and
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r > 0. In addition, for b € E, s >1/t, and r > O,
B(b,r/2) € S(b,r) and, hence, S(f(b), r/2s) & £(B(b,r/2))
€ f£(s(b,r)).

We are now ready to show that f(U) is open. Let U be
an open subset of E and let y = f(x) € £(U). Since U is open
and x € U, there exists r > O such that x € S(x,r) € U.
Choose s >1/t, then, ty the above, y € S(f(x), r/2s)
€ f(sS(x,r)) € £(U). Therefore U is open. {

3.5 Lemma. Let E be a Banach space. If f € Lip(E) such that

Il - Il <1, then f is invertible in ILip(E).
Proof: Let f € Lip(E) such that [ f - IIl <1 and let t

=1 -Nlf -TH. By Lemma 3.2, for all x, y &€ E, llx - yll

< %-“f(x) - £(y)Il ; thus, if f(x) = £(y), then x = y and f is
one-to-one. Since E 1s both open and closed, then, by Lemmas
3.% and 3.4, f(E) is both open and closed. Therefore, f(E)
= E since E is connected. Thus, f is both one-to-one and
onto, and f—/I exists as a function from E to E.

Suppose u, v € E, then there exist x, y € E such that

f(x) = u and f(y) = v. Applying Lemma 3.2, we have

He 'y - £ = Nx - g1l € 2ex) - 2@l
= %llu - vIl. Therefore, £ € Lip(E) and eV & %} a
3.6 Lemma. ILet E be a Banach space. In Lip(E), r~>r" is a

continuous function of f at the point f = I.

Proof: Suppose £ > 0 and choose & « mirx(ﬁéiyﬂ). For f such

that I} £ - T 11 <&, we know £~ exists by Lemma 3.5 and, for
all x, y€ E, Il f(x) - £f(y) - (x - y) 1l
= (s - D) - (- €8x - yll. Therefore,
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Wx -yl - Hex) - £(y) N ¢ &lx - ylland Il x - y

f-ngllf(x) f(y)Il for all x, y € E. Suppose u, v € E such

that f(x) = u and f(y) = v, then llf—q(u) - f-q(v)\l

= llx -yl & 7%3'“f<x) - f(y)'l = 7%7§“u - vil. Thus,

el < 7§3" Therefore, I T T o A Pl |

= N1 - f)f-q H f.—%?s < € which implies f-—#f—q is continuous
at I. |l

Combining Lemmas 3.5 and 3.6, we have the following
theorem.

3.2 Theorem. For every Banach space E, Lip(E) is a near

algebra with continuous inverse.

5.5 Theorem. If E is a Banach space then the set of invert-

ible elements in Lip(E) is an open set and forms a group under
multiplication.

Proof: Let E be a Banach space and let

G = {r|f € Lip(E) and T is invertible}. Clearly, G is a
multiplicative group.

/]
"

Suppose g € G with inverse g_q. et v =1/g
then S(g,r) is an open neighborhood of g. If f € S(g,r),
then |If - gll & r and Il I - fg—ql| = 1188_1 - fg_lI I
= |l (g - f)g—qll < 1. By Theorem 3.2, Ji‘g;"/I = h is invertible;
hence, f = hg € G is invertible. Therefore, for each g € G,
s(g, 1/Ilg—qN ) € G and G is open. [l

3.3 Corollary. The set of non-invertible elements in Lip(E)

is a closed subset of Lip(E).

Although we have shown that r— £~ is continuous at
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I, it remains an open guestion as to whether f-—*f_q is con-
tinuous on the group of all invertible elements in Lip(E). A
sufficient condition is given in the following proposition.
If the group of invertible elements of Lip(E) is contained in
LipLC(E), the sub near algebra of left continuous elements,
thenf—'?f—/| is continuous on all invertible elements.

5.4 Proposition. Let N be a near algebra with continuous

inverse and let G be the group of invertible elements. If

G € NLC’ the sub near algebra of left continuous elements,
then Xﬁ—)X_q is a continuous function on G.

Proof: The proof is similar to that given in [26, . 17{].
However, we must be careful not to use left distributivity.
Let x be an arbitrary element of G and let U(z_q) be an open
neighborhood of 2. Since g € Nigo x—xz" ! and x — 2™ 'x

are both continuous functions for all x €N. Using the left
continuity at e, choose an open neighborhood U(e) such that

x € U(e) implies 2 x é'U(z_qe) = U(z—q). The continuity of
X-—)qu at e implies X"/| € U(e) whenever x & V(e) for some
open neighborhood V(e). Finally, using right continuity at

z, choose an open neighborhood U(z) such that x € U(z) implies
xz~ € V(zz_q) = V(e). Combining these results, we have that
x € U(z) implies z—/](xz_/l)_/1 = z—q(zx—q) -x e U(z—q).
Therefore x-—)x—/I is continuous on G. [

3.5 Proposition. Let N be a near algebra with continuous

inverse. If M is a sub near algebra of N which contains the
identity of N and is left continuous in the relative topology,
then M is a near algebra with continuous inverse and X-—>X_/l

1s continuous on the group of invertible elements of M with
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respect to the relative topology.
Proof: ©Let G be the group of invertible elements in N. Since
G is open in N, G' = G/ M is relatively open and there exists
a neighborhood of e contained in G'. Clearly x-—)x-q is
continuous at e in the relative topology. The remainder of
the proof follows from Proposition 3.4. ﬂ

In particular, if M is a left continuous sub near
algebra of Lip(E) which contains the identity of Lip(E), then

i is a continuous function on the set of invertible

f—>f"
elements in M.

For a strong D-Banach near algebra we have the follow-
ing important theorem which removes the finite dimensional

property in the theorem of Brown [10].
3.4 Theorem. Let N be a strong D-Banach near algebra with

identity. Then, the group G of invertible elements is an

open set and the map x-—)x'q is a continuous function on G.
Proof: By Corollary 2.10, there exists a function

@: N— Lip(N) which is an isometric isomorphism into Lip(IN)
such that @(b) = L,. If e is the identity of N, then @(e) = I.
Therefore, gince ¢ is an isometry,(p(N) is a strongly D-normed
sub near algebra of Lip(N) which contains the identity I. By
Proposition 3.5, the set of invertible elements in @Q(N) is

/l

open and f —f ' is a continuous function on this set. Con-

sequently, N has these properties. ﬂ



Locally Lipschitz Functions

In this section we investigate near algebras of
functions on a normed linear space E which are Lipschitz in
nature. We construct two near algebras: the near algebra of

bounded locally ILipschitz functions denoted B-Lip(E) and the

near algebra of locally ILipschitz functions denoted L-Lip(E).

A function f belongs to B-Lip(E) whenever f is ILipschitz on
every closed bounded sphere about O € E; while, f belongs to
L-Lip(E) if, for each x & E, there exists a neighborhood of
x on which f is Lipschitz. Both of these near algebras are
a generalization of the Lipschitz functions of the previous
section and both are sub near algebras of TC(E), the contin-
uous functions on E. In general, Lip(E) is a proper sub
near algebra of B-Lip(E); however, the sub near algebra of
positive homogeneous functions in B-Lip(E) is equal to the
positive homogeneous functions in Lip(E). B-Lip(E) is a sub
near algebra of L-Lip(E) and for a finite dimensional normed
linear space B-Lip(E) = L-Lip(E).

The natural Lipschitz norm of Lip(E) does not extend
to B-Lip(E) or L-Lip(E). We do, however, construct a collec-
tion of seminorms on B-Lip(E) which determine a locally
convex linear topology on the linear structure of B-Lip(E).
With this topology B-Lip(E) becomes a right continuous near

algebra. Although Lip(E) # B-Lip(E), if the seminorm of f

7
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is bounded for each seminorm, then, the Lipschitz norm of f
is equal to the least upper bound of the seminorms of f.
Finally, we show that the relative topology on Lip(E) deter-
mined by the topology of B-ILip(E) is strictly weaker than the
Lipschitz norm topology of Lip(E).

We begin by stating the two definitions for locally
Lipschitz functions. In the discussion to follow, for a
normed linear space E, let S(b,r) = {XWX e E, Ix -bvll L r)
and B(b,r) = {X‘X € E, |lx-Dbll ﬁ.%} be the open and closed
spheres about b of radius r, respectively.

5.2 Definition. Let E be a normed linear space. A function

f € TO(E) is said to be bounded locally Lipschitz if and only
if, for every x € E and every bounded sphere B(x,r) about x,
there exists Kf(B(x,r)) > 0 such that [[f(u) - £(v) I
éZKf(B(X,r))/Iu - vl for all u, v € B(x,r). A function

fe TO(E) is said to be locally Lipschitz if and only if, for

each x € E, there exists a neighborhood Uf(x) and K(Uf(x)) Z0
such that Il £(u) - f£(v) Il £ K(Uf(x))llu - vll for all

u, v & Uf(x).

3.7 Lemma. Let E be a normed linear space and let f € TO(E).

Then f is bounded locally Lipschitz if and only if f is

Lipschitz on every sphere B(O,r) about O.

Proof: Let f € TO(E). Clearly, if f is bounded locally

Lipschitz, then f is Lipschitz on B(O,r) for all r > O.
Conversely, assume f is Lipschitz on every sphere

B(O,r) and let x € E and s > O. Choose r > 0O such that

B(x,s) € B(O,r). Thus, for u, v € B(x,s),

[l£(u) - £(v)Il & Kf“u - vil  where K. is the Lipschitz
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constant for f on B(O,r). ﬂ

We now define the following subsets of functions con-
tained in TO(E) where E is a normed linear space. Let B-Lip(E)
= {f(f € TO(E) and f is bounded locally Lipschitz} and call

B-Lip(E) the B-locally ILipschitz space. Also, let L-Lip(E)

= {flf € TO(E) and f is locally Lipschitz} and call it the

IL-locally Lipschitz space.

5.6 Proposition. Let E be a normed linear space. Then

i) L-Lip(E) and B-Lip(E) are both sub near algebras
of TC(E), the near algebra of continuous functions
on E, and

ii) As near algebras, Lip(E) € B-Lip(E) € L-Lip(E).

Proof: The proof of ii) is immediate once i) is established.
For i), we will first show that I-Lip(E) & To(E). Let

f € L-Lip(E) and let x € E. Choose € >0 and let Uf(x) be a
neighborhood of x such that f is Lipschitz on S(x,r) E-Uf(x).
Choose & £ min.{ﬁ/(K+1),r} where K is the Lipschitz constant
on Uf(x). Thus, if [[u - x 1| € &, then Hf(w) - f(x)l,

<K llu - xll <« € and f is continuous at x.

Now show L-Lip(E) is a near algebra. Let T,

g € I-Lip(E) and let x € E. If Uf(x) and Ug(x) are the neigh-
borhoods of x on which f and g are Iipschitz, respectively,
then V(x) = Uf(x)/f\Ug(x) is a neighborhood of x and a direct
calculation shows Il (f + g)(u) - (£ + g)(v) Il

& (K(Up(x)) + K(Ug(x)))”u - villfor all u, v € V(x). If t is
a scalar and u, v € Ug(x), then H(te)(u) - (£)(v)

= 1tl He(u) - £(») 1l é:lth(Uf(x))llu - v ll. Therefore,
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I-Lip(E) is a linear space.

Let Uf(g(x)) be a neighborhood of g(x) on which f is
Lipschitz. Since g is continuous, W(x) = g—q(Uf(g(X))/q Ug(X))
is a neighborhood of x and, for u, v € W(x),

H(sg)(w) - () I £ KU (eI NIlg(n) - g(v) Il
< K(Uf(g(x))K(Ug(X))lIu - vil. Thus, fg € L-Lip(E) and
L-Lip(E) is a near algebra.

The proof that B-ILip(E) is a linear space is similar
to the above and is omitted. ILet f, g € B-Lip(E) and let
B(x,r) be any closed sphere about x for arbitrary x é€ E. If
v € g(B(x,r)), then y = g(u) for some u € B(x,r) and
y - gx) I = llgw) - gx) !l & K (B(x,r))r. Let &
= Kg(B(X,r))r, then g(B(x,r)) € B(g(x),®). Thus, for
u, v € B(x,r), Il (fg)(u) - (£g)(v) Il
£ Kp(Bg(x),8) [l g(w) - g(v) Il £ Kp(B(g(x),r))K (B(x, ) Mu - ll.]

Although Lip(E) is contained in both B-ILip(E) and
I-Lip(E), they are, in general, not equal. Let f & TC(ﬂQ) be
defined by f(x) = x°; then, f € B-Lip({R) but r £ Tip(/R).

3.7 Propogition. Let E be a normed linear space and let

L—Lipp(E) be the sub near algebra of positive homogeneous
functions in I-Lip(E). Then L—Lipp(E) = Lipp(E).

Proof: Let f € L—Lipp(E) and let Uf(O) be the neighborhood
of O on which f is Lipschitz. Choose r > O such that
B(0,r) € U.(0). Suppose x, y € E, then let s = Hxl +« Uyl

+ 1 and let u = gx and v = %y. Thus, u, v € B(O,r) and

2Gx) - £ 1 = 2l - £(v) Il < £ k@0l - vl

= K(U (0Nl x - vyl . Therefore, f &€ Lipp(E) and L—Lipp(E)
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= Lipp(E) O

5,8 Lemma. Let E be anormed linear space and let u, v € E,

u #£ v. If ?\[O,ﬂ] - fis the line segment from u to v and

< 1

b

S(x,r)N\ X # @, then there exists t, and t,, 0 £ t < t

/17
such that A([to,t,l]) € s(x,r) = B(x,r). If v ¢ B(x,r),

then 7\(t,]) € B(x,r) - S(x,r) and A(%t) ¢ B(x,r) for all t,

/l

t, Lt £ 1.

1
Proof: Let t ,t, be the minimum and maximum, respectively,
0’1

of the closed bounded set A_/](B(X,r)/\ A£). By the convexity
of B(x,r), A (Lt ,t,]) € B(x,r).

Assume v & B(x,r). Then, since A(1) = v, t, < 1. By

the maximum condition of t,l,/l)\(t/\) - x1l = r and

A(t) & B(x,r) for all t, t, < t £ 1.1

/‘
5.8 Proposition. Let E be a finite dimensional normed linear

space. Then IL-Lip(E) = B-Lip(E).
Proof: By Proposition 3.6, B-Lip(E) € IL-Lip(E); hence, we
need only show L-Lip(E) € B-Lip(E).

Let £ € L-Lip(E) and let B(O,r) be any closed sphere
about 0. For each x € B(O,r), there exists EX such that T
is Lipschitz on B(x, €X) and, since B(O,r) is compact in a

finite dimensional normed space, there exists X: i
n

= 1,2,*++,n, such that B(O,r) & US(Xi’£X ). For convenience,
1=" i

let s(xi,exi) - 8., B(Xi,sxi
For any u, v € B(O,r), if u, v belong to the same set

B;, then HNt(w) - sl & K, Nu - vil £ K llu - vll where

K=n max[Kili = 1,2,---,n}. If u & Si and v ¢ Bi’ then
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assume, without loss of generality, that i = 1 and consider
the line segment.f from u to v defined by A(t) = (1-t)u + tv.

By Lemma 3.8, there exists tq, 0<£L t,< 1, such that

/\
Ao, e.]) ¢ B, and A(t,) € B, - S,. Therefore, A(t,) belongs

to another Si’ say 82. By continuity oihk, there exists

t £ t, such that Alt) € S, and, by the above, A(t) € 843

therefore, (8,M8,) NA 4 #. Tet z, = A(t,) € (B, NBINL,
If v ¢ Bg, we can then apply the above procedure to

z, and v and get t,, t, < t,< 1, such that A([t,,t,]) ¢ B,

and A(tg) € B, -8 Also, K(tg) must belong to another S,

-
say 85' By the same argument as above, (85/"\82)/1z?# @ and
2, = At,) € (B, BN K.

We may continue this process as long as v ¢ Bk for the

th

k step. However, there exists only a finite number of dis-

tinct sets B hence, after m applications, m € n, we must

k;
have v & Sm Q,Bm. We have constructed the points
= ...< - — —
0=t < t,<t,< Lt =1, where)\(to) —zo—u,A(t,])

= 24,°+75A(t,) = 7, = v all belong to £ and z,_,, 2z, € B,
for k = 1,2,¢+-,m.

For any k, k = O, 1,+++,m-1, l[zk 2Rl
= A = Ao D= 1 - s u+ s v=-0-t, Du-t vl
= ltkm -t e - v £ Hu - vIil. Taus, Il f(uw) - £(v) Il
=l t() - £(z,) + £(z )4 =2(z_4) + £(z,_) - £(N)
2l - £z I+ lle(zy) - £(z ) Haeees ez, _p) - £
éK,l lu - z 1l + Ky ”z,l - 22H+---+KmH Zoq = vi[£Kllu - v“,
where K = n max{ki]i = 1,2,---,n}. Therefore, [| f(u) - f(v)t'
2Kllu - vll for all u, v € B(O,r) and f & B-Lip(E).[]

The preceding discussion was not dependent on the
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topological structure of the spaces involved. We now construct
a sufficient collection of seminorms on B-Lip(E) and prove

that B-Lip(E) is a right continuous near algebra in the top-
ology determined by the seminorms.

3.9 Proposition. Let E be a normed linear space and let

f € B-Lip(E). For each r € [RT, let P (£)
= inf{Krt HE(w) - £(v) 1] £ KrHu - vlil for all u, v € B(O,r)}.
Then the collection.{I}lI‘é H?+ }forms a sufficient system of
seminorms on B-Lip(E) and defines a locally convex linear
topology on the linear space structure of B-Lip(E).
Proof: Let r e [R¥. If f € B-Lip(E), then f is Lipschitz on
B(O,r) and there exists K. = Kf(B(O,r)) > 0 such that
itr(w) - £(v) Il & K, lla - vll for all u, v & B(O,r). Thus,
P.(f) is well defined and P_(f) 2 O.
r Hr(w) - () I > Pr(f)llu - vil for some u,
v € B(O,r), u # v, then P () llu - vl £ K, llu - vll for all
K. and; hence, Pr(f) £ K, for all K . Therefore,
I £(w) - £(v) Il é:I}(f)/lu - v Il for all u, v € B(O,r).
Suppose f, g € B-Lip(E) and u, v € B(O,r).
H(t + gdu- (£ +gvil £ls) - ()l + [l glu) - g(v)ll
£(P.(£) + P (g)) llu - v Il; thus, P.(f + g) & P (f) + P.(8).
If t is a scalur, then Il (tf)(u) - (t£)(v)ll= el 1) - £()
< 181 P (£) Hlu - vl for all u, v € B(O,r). Thus, P.(tf)
<ItIP(£). Similarly, for t # 0, Hf(uw) - £(v) |

- Ay @) - (s2) () I & Thp (be) lu - vl Tous,

lthr(f) < I}(tf) for t # O and, clearly, ltlf}(f) é.Pr(tf)

for t = O. Therefore, P, is a seminorm for each r € R*.
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If f € B-Lip(E) and f # O, then choose x & E, x # O,
such that f(x) # O and choose r = /l xIll. Thus, 0< Il £(x) Il
= £(x) - £(0) Il £ P(£)lIxIl. Therefore, P.(f) > 0 and the
collection of seminorms is sufficient.

Naimark [26] shows that such a system defines a
locally convex linear topology on the linear space structure
of B-Lip(E). [

5.5 Definition. Iet E be a normed linear space and let

f € B-Lip(E). For re& R™* define P.(f)
= inf{Krl He(w) - £(v) 1l & Krllu - vl!l for all u, v € B(O,r)

to be the Lipschitz seminormed determined by r.

2.9 Lemma. Let E be a normed linear space and let f,

g € B-Lip(E). For re IR, if P.(g) # 0, then P_(fg)

<P (f)Pr(g) and if Pr(g) = 0, then Pr(fg) = 0.

rP_(g)
Proof: Let f, g € B-Lip(E) and let r e M*. If ué€ B(O,r),
then llg(u) - g(o) Il £ P (g)llull £ rP_(g) and g(B(O,r))
QIKO,rPr(g)) whenever P}(g) # 0. For u, v € B(O,r),

I (fg)(w) - (£g) () !l é:E}P£<g)(f)llg(u) - g(v)

LP
= rP_.(8)

If Pr(g) = 0, then [lglu) - g(O) Il < rPr(g) = 0 and
g(u) = g(0) for all u € B(O,r). Therefore, Il f(g(u)) - £(g(v))
=lr(g(0)) - £(g(0)) !l = 0 ana P.(fg) = O. 1

(D)P.(8) lu - vl

3.10 Proposition. Let E be a normed linear space. Then

B-Lip(E) is a right continuous near algebra in the locally

convex linear topology determined by the sufficient collection
. +

of seminorms {Prlr e IR }.

Proof: Let f be an arbitrary but fixed element of B-Lip(E)
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and let U(O) be an arbitrary neighborhood of O in the topology
of B-Lip(E) determined by £ > 0 and T, e RY, 5 =1,2,+-+,n.

U(0) ={n|B, (M) <E § - 1,2,---.m)
J

If P, (f) = 0 for all Jj, then, by Lemma 3.9, P, (gf)
J J

O0< & for all g € B-Lip(E). Thus, for any neighborhood of

]

O, if g € V, then gf € U(0).

If P, (f) # O for some j, then let J
J

{jljé N and Prj(f) # O} and let M = max{Prj(f)lj 3 J}.

Let & = £/M and let s; = v P, (£) for j & J. Then, V(0)
J

={n[p, (W)<& je J} is a neighborhood of O in B-Tip(E)
J

and, for g € V(0), P, (gf) £ P (£)(8F, (£) = P, (&)P, (£)
r.

r.
J J 3 dJ J dJ

<&M <« £. Thus, right multiplication is continuous at O and
this is sufficient for continuity on all of B-Lip(E) since
right multiplicatiqn is a linear function. ]

Previously we have shown that if f € B-Lip(E) and f
if positive homogeneous, then f € Lip(E). We now show that if
f € B-Lip(E) and P}(f) is bounded for all r & {R', then
f € Lip(E).

3.11 Proposition. Let E be a normed linear space and let

f € B-Lip(E). Then f & Lip(E) and the ILipschitz norm of f
equals sup {Pr(f)lré I'R+J if and only if sup{Pr(f)[ré n?+}
is finite.

Proof: Let f £ B-Lip(E). If f & Lip(E), then, clearly,
sup{Pr(f)lr € IR+} <llsl| is finite.
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Conversely, assume su;>{I}(f)lr € ﬂ?+} = M is finite.
For u, v € E, there exists an r € R”' such that u, v € B(O,r)
and; thus, [l f(u) - £(v) |l é-E}(f)llu -vill € Mlu - vll.
Therefore, f € Lip(E) and /|f!l £ M. ILet r € IRT and u,
v € B(O,r), then [lf(u) - £(v) N £ lsll lu - vil. Thus,
P}(f) < Wfll for all re R and sup{:Pr(f)lr € n2+} = el 0l
The final result of this section compares the relative
linear topology of B-Lip(E) on Lip(E) with the Lipschitz norm
topology of Lip(E).

5.10 Lemma. Let E be a normed linear space and let U and V be

subsets of E. If f € TC(E) is Lipschitz on U and on V, then
f is Lipschitz on U UV V whenever the line segment from u to v
intersects UMYV for all u € U and v € V, u # v.
Proof: Let K1 and K2 be the Lipschitz constants for f on
U and V, respectively, and let K = max:{Kﬁ‘Ka}. Let x,
vy € UUV. Clearly, if x, vy € Uor x, vy € V, then
IN£(x) - £(y) Il ¢ Kllx - yll.

If x € Uand y€ V, x # y, then there exists z € U
nvn 2 where X is the line segment from x to y. For some
t, 04t 41, z = (1-t)x + ty and / £(x) - £(y) !l

HNe(x) - £(z) + £(z) - £(y) || £ qulx -zl 4 K, Hz — v

K(tllx =yl + (1-t) llx - yll) = Kllx - yll. Therefore,
f is Lipschitz on U U V where Hf(x) - f(y) Il £ K lix - yll
for all x, y e uUv. [

3.12 Proposition. Let E be a normed linear space and con-~

sider Lip(E) as a sub near algebra of B-Lip(E). The relative
topology on Lip(E) determined by the collection {I&Jr'e ﬂ?+J

of seminorms on B-Lip(E) is strictly weaker than the Lipschitz
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norm topology of Lip(E).
Proof: ILet T be the norm topology and let 7' be the relative

topology. Let U(0) ={f[re Lip(E), P, (£)4 €, § = 1,2,+++,n}
J

be an arbitrary relative 9-'-basic open neighborhood of O.
Then V(0) = {f[f € Lip(E) Iz ]l < a‘} is a T-basic open neigh-

porhood of O and if f € V(0), then P_ (£)<lltll < € rfor all
J

J=1,2,***,n. Thus V(0) € U(0) and U(0) is T-open set
T'cT.

Let V(0) = {£|r € Lip(®) llzll <€ } ve an arbvitrary
T—open neighborhood of 0. We will show that there is no
T'~-open neighborhood contained in V(0). ILet U(0O) =

1]t € Lip(®), P, (£)<& j = 1,2,++-,n} be an arbitrary but
J

fixed T'-open neighborhood of 0. Lot r = max {rq,r2,"'rn,2}

2
and choose t > maxZ%—, r}. Define the function f : E—E

be the formula

-g—x , if x € B(O,r)
£(x) = { & uxlix, if x € B(0,t) - 8(0,T)
T
%x , if x € E- 8(o,t)
T

If u, v € B(O,r), then [lf(u) - £(v)Il = -__?-”u - vl
and f is Lipschitz on B(O,r). Also, if u, v € B(O,t) - S(O,r),

then llf(u) - £(v) 1l = —6:2 Ianw - Nvll v

T

= % Hiwinw - lviiw + Uvllu = Nivilv ]|

(Huh + v Hu - VHSQ%E“u - vl. Thus, f is
T

<

Hl\)b'\ H
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Lipschitz on B(O,t) - S(0,r).

Let C(O,r) = B(O,r) - 8(0,r), then B(O,r)
MN(B(0,t) - 8(0,r)) = ¢(0,r) # # and, for u & B(O,r) and
v € B(0,t) - 8(0,t), the line segment.f from u to v must
intersect C(O,r). Thus, by Lemma 3.10, f is Lipschitz on
B(0,t) = B(0O,r) UV (B(0,t) - s(0,r)).

If u, v € E - 8(0,t), then }l £f(u) - £(v) ]}

==é%llu - vill. Thus, f is Lipschitz on E-S(0,t). By an
T
argument similar to the above, f is Iipschitz on E

= (E - 8(0,t)) U B(0,t).

For arbitrary j, 14 j <« n, B(O,rj) € B(O,r); thus,
He(w) - £() I = ;/Wu - vl for all u, v € B(O,rj). There-

fore, P, (f)< & for all j and f € U(O).
J
However, if Null = t, then N f(u) - £(0) !l

- Stiull £ g ) lull. Thus, g1l 285 ana £ £ V(0).
r ‘ T

Therefore, U(0) ,¢ V(0) and, since U(0O) was arbitrary, there

is no P'-basic open neighborhood of O contained in V(O0).

Thus, T"% T. 1



CHAPTER IV
FINITE DIMENSIONAL FUNCTION NEAR ALGEBRAS

The Determination of Sub Near Algebras of Tc(ﬂ?n)

In sectionthree of Chapter I1 we considered finite
dimensional normed near algebras and generalized the basis
properties of Lipp(ﬂ?). We now use the properties of Lipp(ﬂ?)
and the basis elements J and K to investigate the finite
dimensional sub near algebras of TC(nQn), the continuous
functions on [R™.

On [R a complete characterization of the finite dimen-
sional sub near algebras of Tc(ﬂ?) is possible. We first
determine, up to an isomorphic equivalence, all the one-
dimensional sub near algebras of TC(ﬂ?). Every one-dimensional
sub near algebra of 'I‘C(ﬂ?) has the form N(a,b) = < aJ + K>
where (a,b) is any ordered pair of real numbers such that

a#0or b #0. If (a,b) = s(c,d), then N(a,b) = N(c,d) and
if ad = bc or ac = bd, then N(a,b) g'N(c,d)' Otherwise, we

have non-isomorphic one-dimensional sub near algebras of Tc(ﬂ?).
Thus, unlike the case for an algebra, we can show there is an
uncountable number of non-isomorphic one-dimensional near
algebras.

We then show that every one-dimensional near algebra

is isomorphic to a sub near algebra of To(ﬂ?) or has trivial

89
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multiplication. In addition, if multiplication is left con-
tinuous, then every one-dimensional near algebra is isomorphic
to a sub near algebra of Tc(ﬂ?). In this case, the multipli-
cation of such a one-dimensional near algebra is completely
determined. Using the positive homogeneity of J and K, we
show that left continuity of multiplication and positive
homogeneity are equivalent in the one-dimensional case.

Higher dimensional sub near algebras of Tc(ﬂ?) are not
as ''mumerous" as the one-dimensional near algebras. In fact,
we show that Lipp(ﬂ?) is the unigue two-dimensional sub near
algebra of Tc(ﬂ?) and there are no n-dimensional sub near
algebras of TC(H?) for n 2> 3.

Motivated by the characterization of finite dimensional
sub near algebras of Tc(ﬂ?), we investigate those of Tc(ﬂ?n)
for n 2 2. The results are inconclusive for arbitrary sub
near algebras of TC</RP)’ since, in general, there exist
finite dimensional sub near algebras of all dimensions.
However, if we restrict our attention to finite dimensional
sub near algebras of TC(JRn) which contain B(/JR™), all the
linear functions on.Rn, then we arrive at the principle result
of this paper: There is no finite dimensional sub near
algebra of TC(IRn) which properly contains @(/R") for n > 2.

We now begin the discussion of the one-dimensional
near algebras. Unless otherwise stated, we will assume all
near algebras are near-c-algebras. In particular, for func-
tion algebras we will assume f(0O) = O.

Iq Chapter I we showed that TO(V), the set of all

functions on the linear space V into V such that f£(0) = O,
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is a near algebra with composition as the multiplication. If
V is a linear topological space, let TC(V)

= {flf € TO(V) and f is continuou§}. TC(V) has been shown to
be a sub near algebra of TO(V). We wish to discuss the finite
dimensional sub near algebras of TC(ﬂ?n) and begin with an
important theorem which completely characterizes the one-
dimensional sub near algebras of Tc(ﬂ?).

4.1 Theoremn.

i) Every one-dimensional sub near algebra of TC(ﬂ?)
is of the form: N(a,b) = <:aJ'+ bK:> for some ordered pair
of real numbers (a,b) where J and K are the constructed basis
elements of Lipp(ﬂ?).

ii) N(a,b) = N(c,d) if and only if (a,b) = (sc, sd)
for some s &€ IR , s # O.
iii) N(a b) is a one-dimensional near algebra if and
b

2 2 .
d ab < O = b. N -
+ b= £ 0 and a or a (a,b) is a one

only if a

dimensional algebra if and only if a = b. In particular,

Nea,a) = N1,1) = £ I2 and Neq, 1) = { A2 where A(x) =] xl.
iv) N(a,b) = N(c,d) if and only if ad = bc or ac = bd

2 2

and a“ + b2 A 0 and c“~ + d2 £ O.
Proof: i) Let N be a one-dimensional sub near algebra of
Tc(ﬂ?) and, for convenience in notation, let R™
={X|Xélp and x >O} andn?-= {x'xém and x <& O}. Also,
for any £ € N, let R(f) denote the range of f.

Let £ €N, £ # 0, such that N = {f 2 . Let g be an
arbitrary element of N, g # O. Then, f = tg and fg = sf for

some t, s &€ f/R both of which depend on g. Therefore,
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fg = sf = s(tg) = ag where a = st depends on g. Thus, for
each g € N, g # 0, there exists a constant a=a(g)such that
f(x) = ax for x € R(g).

We first consider the case in which there exists
g € N such that R(g)N MR" £ @ and R(g)N IR~ # #. ILet
u € R(g)NM" and v € R(g)N M~ and let t = min{lul, } V'}.
Then, since g is continuous, [-t, t] € R(g) and, by the above,
there exists a = a(g) € [K such that f(x) = ax for all
x €[ —t,t]. For k € N, kg € N and there exists a(kg) € MR
such that f(x) = a(kg)x for all x € f-—kt,kt] € R(kg). Since
[-t,t]<€ [-xt,kt] for all ke N , £(t) = at = a(kg)t and,
thus, a = a(kg) for all k€N . If x €IR , then

a(kg)x = ax. There-
Lal + ak ).

Assume for all g € N that either R(g) N R* = ¢ or
R(g)N TR~

R(e)N IR ~
=v >0 and -g(u) = -v < 0. Since g is continous and g(0) = 0O,

X € [—kt,kt] for some k € N and f(x)

fore, in this case, f = ad + aK and N

#. Choose g € N such that R(g)N MR* £ @ and
#. Then, there exists u € M such that g(u)

[0,v] € R(g) and [-v,0] € R(~g). As in the first case, there
exists a = a(g) and b = b(-g) such that f(x) = ax for

X € [O,v] and f(x) = bx for x € E—V,O]. Let k be an arbitrary
natural number. There exists a(kg), b(-kg) & IR such that
f(x) = a(kg)x for x € I:O,kv] and f(x) = b(-kg)x for

x € [—kv,O]. Thus, using v and -v, we have that a = a(kg)

and b = b(~kg) for all k € N. 1f x € IRY, then x € [0,kv]
for some k € IN and f(x) = a(kg)x=ax and, if x € IR™, then

x € [-nv,0] for some n € IN and f£(x) = b(-ng)x = bx. Thus,
f=aJ+bKand N= Jal + bK> . This completes the proof
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of part i).

ii) If N(a,b) = N(c,d) then aJ + bK = s(cJ + dK) for

some s € [R , s # 0. Therefore, a = sc and b = sd and (a,b)

= (sc, sd). Conversely, if (a,b) (sc, sd), s # 0, then,

for f € N( = t(ad + PK) = ts(cd + dK) and f & N(c

a,b)’ £
Similarly, if g € N

,d)”

(c,d)’ then g = t(cd + dK)
b]

_t _ L
= S(SCJ + sdK) = S(aJ + bK) € N(a,b)'

We prove iii) by considering the various choices for
a and b. Either a = b or a # b and, in the latter case, we
need only consider the cases a > 0, b > 0 or a >0, b< 0 or
ab = O since N(a,b) = N(-a,—b).

If a =D, then No, yy = N, oy = Ny 4y = L1y is
the algebra of linear functions on IR . Also, if N(a,b) is not
an algebra, then a # b and ab £ 0.

If a # b and a >0, b =20, then, using the properties
of J and K, we have that (aJ + bK)(aJd + bK) = a°J + b°K
- saJ + sbK for some s e R . Thus, a = s = b. Therefore, if
a # b and ab # 0, then a >0, b < 0. Again, using the pro-

perties of J and K, we get (aJ + bK)(ad +bK) = agJ - abK and

(aJ + bK)(-(ad +bK)) = -abd - boK. If Ny py S assumed to be
b]

an algebra, then a®J - abK = -(~-abd - b2K) and we have that

a(a-b) = O and -b(a+b) O. BSince the only solution is

a=>b =0, N( is not an algebra. ZFinally, if ab = O,

a,b)
then either a = O or b

O and N(a,O) = <aJ> or N(O,b)
= <ibK:> , both of which are not algebras. Thus, if N is an
algebra, then a = b and, if ab 4 O then a # b and N is not an

algebra.
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iv) Assume N TN . If N i

iv) (a,b) (c,d) (a,b) IS an algebra,

then N(c a) is an algebra and a = b and ¢ = d. Thus ac = bd
9

and ad = . i i

nd a be If N(a,b) is not an algebra, then N(c,d) is not

an algebra and we may assume a 2 O, b £ 0 and ¢ 20, d < O.

Let q’be the isomorphism from N< and let f

a,b) onto N(c,d)
= ad + bK and g = ¢J + dK be the respective basis elements.

By checking the various cases and using the properties
of J and K and the fact that a, ¢ 20 and b, d £ 0, one can
show that

tasf, for s 2 O tcsg, for s 2 0
(t£)(sf) = tbsf, for s« 0 2nd (tg)(sg) = tdsg, for s < O

for all t € R . For example, if s 2 0, (tf)(sf)

t[aJ(sad) + aJ(sbK) + bK(sad) + bK(sbKj]
t[asaJ + a(—sb)(—K)] = tasf.

I

For the isomorphism @ there exists t € ﬂQ, t £ O,
such that @ (f) = tg. Using the above formulas, if t > O,
@(af) = atg = P(O)P(£) = (vg)(te) = tocg.
Thus, a = tc. Also P(£(-f)) = @(bf) = -tbg = P(£) P(-1)
(tg)(-tg) 2

-t“dg. Thus, b = td. Therefore, ad = tcd
bec., If t £ O, then a similar argument shows that ac = bd.

then @ (£f)

H

1l

Conversely, assume ad = bc or ac = bd and 32 + b2 #Z 0
and c© + d&° £ 0. If a = b, then ¢ = d and, by ii) and iii),

= = N . 1f b =0, then d = O or ¢ = O.
Na,0) = N1,1) = Ne,ayr L 2AP =0

If d = O, tben C ?4 0] and N(a’o> = Ng(a O) = N(C,O). If ¢ = O,
a k]

then d £ O and N y =X = £J) while N y =N

(a,0 (1,0) (0,a
- {K” . Define Y N(’I,O)_’ N(O,’l.) by W (sJ) = skK.

(0,1)

Clearly, W is a linear space isomorphism and
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Y(std) stK, for t >0
= { = (sK) (tK)

({J((SJ)“?J)) ={w(o) 0 , for t<£0

=Y(sd)W(tJI). Therefore, N<1,O> ~ N(O,ﬂ)‘ A similar argu-
ment holds when O = a # b and d = O or ¢ = O.
Finally, if a # O, b # 0 and a # b, then ¢c # 0, d # 0

and ¢ # d and we may assume a > 0, ¢ > 0 and b< 0, d< O.
First, we will consider the case ad = bc. ILet k = a/c = b/d
>0 and define @: N(a,b)_9 N(c,d) by §(£f) = kg where f

= ad + bK and g = ¢dJ + dK are the respective basis elements.
Extend @ linearly so that @ becomes a linear space isomor-
hi f N ocnto N .

phism of Nea,p) %0 N(e,q)

ktasg, for s 2 O

?((tfxsf)) = { while @ (t£) @(sf)
ktbsg, for s« O

= (kte)(ksg) = k°(te)(sg)
{k2tcsg ZTae/c2)tcsg (a/c)tasg {Eﬁasg, for s 2 0

2 (b2/3%)tdse (b/d)tbsg Kktbsg, for s & O

k" tdsg
Therefore, q)is a near algebra isomorphism and N(a b) X N(C a)-
2 9

If ac = bd, then let w = a/b d/c £ 0 and let

M N(a,bf—a N(c,d) be defined by/M(f) = wg where f = ad + DbK
and g = ¢cJ + dK. The proof that/u is a near algebra isomor-
phism is similar to the above and the details are omitted.ﬂ
Theorem 4.1 leads to several important results. It
is well known that the only one-dimensional algebras over a
field F are F itself and a one-dimensional linear space with
trivial multiplication. The following discussion indicates
the the one-dimensional near algebras are more "numerous'.
Let M be the collection of all one-dimensional sub

near algebras of TC(/R) and define an equivalence relation on
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N by the following: N(a,b)'v N(c,d) if and only if N(a,b)

= N(C a)e Let Mbe the set of equivalence classes for a # b.
3

4.2 Theorem. There is a one-to-one correspondence from the

closed interval [—1,0] to the collection of equivalence
classes ;i. In particular, there exists an uncountable

number of non-isomorphic one-dimensional sub near algebras

of T,(MR).

Proof: For each té€ [-4,0], define @ (%) =‘ﬁ(1,t)’ the equiv-
alence class determined by N(ﬂ,t)' For s,t € [-4,0], if
ﬁ?ﬂ,t) =‘~k4,8)’ then N(ﬂ,t) = N<4,S) and, by Theorem 4.1,

s =t or1 = st. However, st =1, for s, t € [-4,0], implies
s =t = -1. Therefore, ¢ is one-to-one.

—

Let N(a,b) e . Ifa=0o0rb-=0, then N(a’b)

IR

Neq o) and @ (0) = ﬁ(ﬂ,O) ='1‘\f(a,b). If a £0 and b £ O,
then Ne, 4y = Ty b, Ny 3y Assuming £ 240, then

¢ (-E) = ’ﬁ(a,b)' Otherwise, -1 £ %é O and ¢ (%) = ‘ﬁ(a,b)'
Thus, ¢ is one-to-one and onto.

One should observe that there is only one equivalence

class which is an algebra and its representative can be

chosen as N(q,q).

4.1 Proposition. Every one-dimensional sub near algebra of

Tc(ﬂ?) is a positive homogeneous near algebra.

Proof: The functions J and K are positive homogeneous; hence,
any linear combination is positive homogeneous. Every one-
dimensional sub near algebra of TC(ﬂ?) has a basis in terms

of J and K. [l
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4.2 Proposition. Every one-dimensional near algebra is iso-

morphic to a sub near algebra of To(ﬂ?) or is a one-dimensional
linear space with trivial multiplication.
Proof: Let N be such a near algebra with basis element e. If
e(te) = O for all t € IR, then, for x, y € N, xy = (se)(te)
= s(e(te)) = sO = O and the multiplication is trivial. Other-
wise, there exists toé R to # 0, such that s(toe) = 5.
# 0. Let z = toe, then z2 = 8,2 and we choose z as a new
basis element.

Define a function f: MR —IR by assigning to each t € R
the uniquely determined coefficient in the expression z(tz)
= f(t)z. The function f is not identically zero since f£(1)
= s, # 0 and £(0) = O; hence, £ € T_(IR). ILet CZ =LY,
the linear space generated by f. We wish to show <3Z is a
sub near algebra of To(ﬂ?).

For each t € R , (z(tz))z = (£f(t)z)z = f(t)z2
= 2((t2)z) = z(tz°); thus, £(t)z° = z(tz°) for all t € IR,
For all s € IR, we must show f(sf) = rf for some r € [R. To
this end, let t € /R and, since z(sz) = rz for some r € IR, we
have (z(sz))(tzg) = z(sz(tz2)) = z(sf(t)zg) = f(sf(t)zz. Also
(2(s2))(t2°) = r2(tz°) = rf(t)z°. Since z° £ O, then f(sf(t))
= rf(t) for all t € R ; thus, f(sf) = rf and (ZZ is a one-
dimensional sub near algebra of TO(R?). Note that r = f(s);
hence, f(sf) = f(s)f.

Define ¢(z) = f and extend ¢ linearly so that ¢(tz)

1]

t P(z) = tf. @ is a linear isomorphism of N onto CZ. Let
x = sz and y = tz be elements of N. Then, @(xy) = P((sz)(tz))
P(s(£(t)z)) = sf(E)f = (s£)(tf) = gv(x)@(y). Therefore,
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is a near algebra isomorphism. ﬂ

4.5 Theorem. Every one-dimensional left continuous near

algebra is isomorphic to a sub near algebra of TC(”?) or has
trivial multiplication.

Proof: Let N be such a near algebra. By Proposition 4.2 N
has trivial multiplication or N % (fz where dz is a one-
dimensional sub near algebra of To(ﬂ?) and z is a basis ele-
ment in N such that z° # O. The basis element of CZ is a
function f defined by z(tz) = f(t) z for each t € R . We will
show f is continuous, then (fz c TC(ﬂ?).

Since N is a finite dimensional space, its topology is
given by a complete norm. ILet s e R and let € > 0. Since
multiplication is left continuous, there exists & > 0 such
that [lz(tz) - z(sz) ll € €l zll whenever lltz -~ sz ]| < § .
That is, [| £(t)z - £(s)zll = [£(t) - £(s)| Nzl] < €zl
whenever |t - s| )izl € & . Thus, [ £(t) - £(s)] < € whenever
|t - s| < 8/ ) zll and f is continuous on [R since s was
arbitrary. [

In Chapter II we showed that positive homogeneity and
an orthogonal idempotent basis lead to left continuity and a
strong D-normed condition. In the one-dimensional case these
are equivalent.

4.4 Theorem. A one-dimensional normed near algebra is positive

homogeneous if and only if it is left continuous.

Proof: TLet N be a one-dimensional normed near algebra. If N
has trivial multiplication, then N is an algebra and multi-
plication is continuous. If N is positive homogeneous with

nontrivial multiplication, then let e be a basis element such
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that {lell = 1. Let b € N and suppose {tne} is a sequence in
N such that tne-ate. For € >0, there exists n, such that

“tne - tel] = ltn - tl| € & whenever n >n . Let e(t)

= sgn(t). If t # O, then choose n, sufficiently large so that
©(t) =6(t, ) and lv(t e) - b(te) ll

= £ [p(B(t)e ~ Itib(OMI) Il £ Lt -t bl £ Elpll
whenever n > n,. If t =0, the proof is similar except 8 (t)
is not needed. Therefore, in each case, b(tne)-—?kwte) and
multiplication is left continuous.

Conversely, if multiplication is left continuous,
then, by Theorem 4.3, N has trivial multiplication or is
isomorphic to a one-dimensional sub near algebra of Tc(n?).
In either case, using Proposition 4.1, N is positive homogeneous.ﬂ

Also, as a consequence of Theorem 4.%, if N is a one-
dimensional left continuous near algebra with basis {e} such
that x = se and y = te are arbitrary elements of N, then

multiplication is characterized by one of the following:

i) xy = 0, ii) xy = asy for some fixed a € IR,

bsy, if t 2 0
iii) xy = o, ift(Ofor some fixed b € IR, or

for some fixed ¢, d € R, The first

csy, if t 2 0
iv) xy =

dsy, if t < O
two multiplications result in algebras while the last two
d to N and N respectively and are near
correspon 0 (a,o> n (a,b) P 1 Yy
algebras.
Althought there are an uncountable number of non-

isomorphic one-dimensional sub near algebras of Tc(ﬂ?), there
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exists a unique two-dimensional sub near algebra and no n-

2 3. We proceed

—

dimensional sub near algebras of TC(IR) for n
to this important result throught a series of lemmas.

4.1 Lemma. Let né MN and let f; € TC(IR) for i = 1,2,++-,n.

If the set {fi} is linearly independent on IR, then there
exists a, > O such that {fi} is linearly independent on
[-a, ,a,.].
Proof: We will prove this by induction on n. For n = 2,
assume fq, f2 are linearly independent on R and choose
X, € R such that £,(x,) # 0. Using the linear independence,
—fg(x/‘)f/| + fq(xq)fg = 0 can not hold for all x € [R; thus,
let x, € R such that - £,(x)f,(x,) + £,(x)f,(x,) # O.
Choose a € [R such that X, %, € [ -a,a] and assume tf, + tofs
= 0 on [—a,a]. For X4 Xéaé [—awa] we have tqfq(xq)
+t2f2(xq) = 0 and tqfq(xg) + tgfg(x2) = 0. The determinant of
coefficients is fq(xq)f2(xg) - fq(xg)f2(x1) # 0; therefore,
tq = t2 = 0 and fq, f2 are linearly independent on.[—a,a].
Assume the statement holds for n and let

f,,f0,f ,f be linearly independent on ﬂ?; but dependent

12 n’ n+1

on every closed bounded symmetric interval of IR. By the
induction hypothesis, there exists arlé IR = > 0, such that

f/l’fg’..

[—a,a] for all a 2 a - However, fq,f2,"-,fn+1 are linearly

-,fn are linearly independent on [—an,an] and hence on

dependent on f—an,an] ; hence, there exist scalars tie R such

that £ = t,f +---+tnfn on_[—an,anJ . Similarly, for

n+" 11
a > a s there exist scalars ti(a)é R such that f

—

n+1
= tq(a)fq+---+tn(a)fn on f—a,a]. Therefore, on [—an,an ,
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tq(a)fq+---+tn(a)fn = t1f1+"‘+tnfn for all a > a, - Since the

fi are linearly independent on_[—an,aa], then ti(a) = ti for

all a > a, and i = 1,2,,--+,n0.

Let x € R, then x € [ -a,a] for some a 2 a,. There-

fore, fn+1(x) = tq(a)fq(x)+---+tn(a)fn(x)
= tqfq(x)+---+tnfn(x). This contradiction implies there

exists 8,1 2 0 such that f,,f -, T are linearly inde-

1ot n+1

pendent on [_an+1’an+{]' ﬂ
4,2 Lemma. Let n€/MN, n 2 2, and let £, € TC(fR) for

i=1,2,---,n. If the set {fi} is linearly independent on an
interval S, then there exists a set of n elements in S,
fx/l,xg,---,xn} € 3, such that det Fn # O where Fn is the n

square matrix whose ijth

entry is given by fj<Xi)'

Proof: For n = 2, assume that det F2= O for all pairs

Xﬂ’xéfé S. Let x € S be arbitrary but fixed and then, for all
£,(0  £,(x)
£y £5()

Thus, fq(x) = fg(x) = O for x € S; hence, f

y € S, det F = fq(x)fg(y) - fg(x)fq(y) = 0.

2:

q = O and f2 = 0 on
S. This contradiction implies there exist Xq,Xéfﬁ S such that
det F2 # 0.

Assume for any n £ k that, if fq,fg,---,fn‘are linearly
independent, then there exists a set of n elements
{x,‘,xg,---,xn} € S such that det F  # O. For n = k, let
fq,f2,---,fk be linearly independent on S and suppose that,
for all sets of k elements in S, det Fk = 0. By the induc-
tion hypothesis, however, there exists a set of k-1 elements,

{xq,xg,---,xk_q} such that det F,_, ¥ O. Let x be an

arbitrary element of S. Then, for the set
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th

{Xq’xg""’xk_q’x}’ det Fk = O where the k row of Fk is

(fq(x) fg(x)... fk(x)). If we expand the kth row by minors,

we get Aqfq(x) + A2f2(x)+---+Akfk(x) = 0 where Ai =

det (minor of fi(x)) and does not depend on x. Since x was

arbitrary, A,|f,I + A2f2+---+Akfk = 0 on S and since the fi are

linearly independent on S, Aq = A2 Zeee= Ak = 0. But,

Ak = det Fk—1 # O which is a contradiction. Therefore, for

n = k, there exists a set of k elements such that det Fk # O.u
In what follows, if f € TC(ﬂ?) let R(f) denote the

range of f and let R’ = {XlX > O} and R~ = {X{X £ O}.

4.2 Temma. Let neMN , n 22, If N is an n-dimensional sub

near algebra of Tc(ﬂ?), then there exists a function h € N
such that R(h)N R Z @ and R(W)NMNIR™ £ ¢@.
Proof: Assume not, then for all h € N, R(h) € R*U{0} or
R(h) g,ﬂQ_U{O}. In particular, let f, g be basis elements
such that R(f) & H?+U{C} and R(g) C n?ﬂjfoj and choose
x, v € IR such that £(x) > 0 and g(y) > O.

If f(y) = O, then let t > g(x)/f(x) and let h = tf - g.
Then, h(x) = tf(x) - g(x) = £f(x)(t - g(x)/f(x)) > 0 and
n(y) = tf(y) - g(y) = -g(y) € 0. Thus, h € N and R(h) N K™
# @ and R(W N R # 4.

If £(y) > 0, then let t = g(y)/f(y) >0 and let h = tf.
Since h # g, there exists z € R such that h(z) # g(z). If
h(z) = O, then let H= 2h - g. H(z) = -g(z) £ 0 and
H(y) = 2n(y) - 8(y) = 2t£(y) - g8(y) = g(y) > 0. Therefore,
R(H) N\ R" # g and R(E)N IR~ # 4.

Assume h(z) # 0. Let s = h(z%hzz%(z) and let
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H = sh - g. Then, H(y) = sh(y) - g(y) = stf(y) - g(y)
= (s - Vg(y) and H(z) = sh(z) - g(z) =

h
(e uce)

h(z) > g(z) 2 0 and; hence, 1 > h(Z%hZZ%(Zl = s. Thus,

- g(z) = B(2) = B(2) | 1f H(z) >0 then

s - 1< 0 and H(y) € 0. If H(z) € 0, then h(z) € g(z) and
1 & s. Therefore, s - 1 >0 and H(y) > O. Finally, if
H(z) = O then h(z) = g(z) which is a contradiction. There-
fore R(H) N IR™ # ¢ and R(H) N\ R™ £ ¢.

In all cases we have constructed a function whose
range intersects n?+ and R~ which is a contradiction. 0

4.4 TLemma. Let n € N , n 2 2., If N is an n-dimensional sub

near algebra of TC(N?) with basis {fi} such that R(fk)fW R+
Z ¢ and R(fk)/\ R~ # ¢ for some k, then the identity
function. I, belongs to N.

Proof: Let n be an arbitrary natural number, n 2 2. By
reordering the basis elements, we may assume R(fq)/W R+ £ 0
and R(fq)/\ IR~ # ¢g. By Lemma 4.1, there exists an'> 0 such
that £,,f,,¢-
Since R(fq)/\ R* £ ¢ and R(fq)lﬂ IR~ # @, there exists t >0

-,f_ are linearly independent on [—an,an].

- (o8 cee
such that [ an,an] € R(tf,) and consequently f,,f,, ,f, are
linearly independent on R(sfq) for any s 2 t. For s 2 t,
consider the equations fi(sfq) = Siqfq + si2f2+°--+sinfn for
i=1,2,*"*,n and the linear transformation qg(f) = f(sfq)
from N to N. (?s has matrix representation S(s) = (Sij)
relative to the basis {fi}where the Sij are the coefficients
in the above equations. Suppose 42(f) = 42(g), then

(f - g)(sfq) = 0. Thus, for y = (sfq)(x) € R(sfq),
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(f - &)(y) = (£ - g)(sf,)(x) = 0. However, if f - g
= (t,I - rq)fq + (t2 - r2)f2+---+(tn - rn)fn = 0 on R(sfq),
then ti =T, i=1,2,¢¢0,n, where f = z:tifi and g = rifi.

Therefore, f = g and <?S is one-to-one and S(ST4 exists. Thus,
det S(s) # 0, for all s 2 t.

Let y = (sfq)(x) be an arbitrary element of R(sfq).

Then, fi(y) fi(sfq)(x) = Siﬂfﬂ(x>+°"+sinfn<x) for

i=1,2,ec.,n. Solving this system of equations for fq(x)

we get
i (y) S see g
B e m) get s, det S_
60 =1 = Tt 5 A igeg g ()

fn(y) Sn2 *°° ®nn

det S

where Si is the minor of fi(y). Therefore. y = (sfq)(x)

1l

(dq(s)fq + dg(s)f2+---+an(s)fn)(y) where di(s) is the scalar

s det S.
1

—3et § ° Since y € R(sfq) was arbitrary, the function hs

dq(s)f1+---+dn(s)fn is the identity on R(sfq).

By Lemma 4.2, there exists a set of n elements

{yq,yg,---,yn} contained in R(tf,) such that det F # O where

th

F is the n square matrix with ij entry given by fj(yi).

For arbitrary s 2 t, solving the system of equations
= ai(s>f/](yi)+00o+an(s>fn(yi), i = 1,2,...’_‘[1,

hs(yi) = yi

for ai(s), we get
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F4(yq) 2o yq oo £.(3)

aﬁ(s) = f1<y2> Tt Yottt fn(y2> Since the Yi depend only

Ta(yy) oee vy o T0)
det F

on t, for all s = t, di(s) = di(t) for i = 1,2,+++,n. There-

fore, ht = hS =T on R(sfq) for all s 2 t.

Suppose x € R, then there exists an s 2 t such that
X € R(sfq) and ht(x) = X. Therefore, h, = I. [
We will now show that there is only one two-dimensional

sub near algebra of TC(/R).

4.5 Theorem. If N is e two-dimensional sub near algebra of

TC(ﬂ?>, then N = Lipp(ﬂ?).

Proof: Let N be a two-dimensional sub near algebra of Tc(ﬂe).
By Lemma 4.3 and the replacement property of basis elements,
we may choose a basis such that at least one of the functions
has a range which intersects both R* and IR™. By Lemma 4.4,
the identity, I, belongs to N and we may choose {I, f} as a

basis for N. Choose ué€ R , u >0 and let g = f - flu)l

u

These new functions, g and I, are linearly independent and
g(u) = f(u) - f(u) = 0. Thus, we have constructed basis
elements I and g where I is the identity and g(u) = O for
some u > O.

For each t € IR , g(tg) = sI + rg for some r, s € IR.
Then g(tg)(u) = 0 = su + rg(u) = su. Thus, s = 0 and £ g » ,
the linear subspace generated by g, is a one-dimensional sub

near algebra of TC(ﬂ?). By Theorem 4.1, g = aJ + bK for some
a, belR ; g(u) = O = au implies g = bK. Since I = J + K, we



106

may choose J, K as a basis for N and N = Lipp(ﬂ?). [
The following important theorem states that there are
no sub near algebras of TC(ﬂ?) with dimension greater than 2.

4.6 Theorem. For n 2 3, there are no n-dimensional sub near

algebras of TC(ﬂ?).

Proof: Tor n = 3, assume N is a three-dimensional sub near
algebra of TC(ﬂ?). Using Lemma 4.% and 4.4 and the replace-
ment property for basis elements, we may choose {I, fg, fB}

as a basis where I is the identity function. Let u € R,

f2<u)1 fo(u)
u > 0, and let h2 = = -f2 and h5 = I- f5' A
straightforward check shows that I, h2, h5 are independent;

hence, they form a basis. Also, h2(u) = ha(u) = 0.

For arbitrary s, t € IR, we have ho(sh, + thB)
= dq(s,t)l + dg(s,t)h2 +¢15(s,t)h5. Then, hg(shg(u) + thB(u))
= hg(O) =0 = qq(s,t)u. Therefore, for all s,t € IR,
h2(5h2 + th3> = dg(s,t)hg + aa(s,t)hB. Similarly,
hg(shy + thy) = By(s,t)h, + P,(s,t)h, for all s, t€ R,
These results combined with right distributivity imply that
<:h2,h3 > , the linear space generated by h2 and h5, is a
two-dimensional sub near algebra of Tc(ﬂ?). By Theorem 4.5,
I e <h2,h5> which contradicts the fact that 1, h, and h5 are
independent. Therefore, there is no three-dimensional sub
near algebra of TC(IR).

Assume that there are no n-dimensional sub near
algebras of TC(HQ) for all n £ k. Suppose there is a k-
dimensional sub near algebra of TC(ﬂQ). Once again, by

Lemmas 4.3 and 4.4 and the replacement property for basis
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elements, we may choose a basis{ T, f2, f}""fk}' Choose

f,(a)
uée MR, u>0, and let by =

T - f, for i = 2,3,--+,k.

As before, hi(u) = fi(u) - fi(u) =0 for i = 2,3,+--,k and
{I, h2, h5""’hk} form a basis since they are linearly
independent. We will now show that <:h2, hB""’hk:> , the
linear subspace generated by’{hz, h}""’hk}’ forms a (k-1)-
dimensional near algebra.

For an arbitrary but fixed i, 2 € 1 ¢ k,
hi(t2h2+---+tkhk) = diI + d2h2+---+“khk where <1i depends on
tj’ j=2,+++,k. Using u, we get hi(tghg(u)+---+tkhk(u))
= hi(O) =0 = dqu. Therefore, for arbitrary i, 2 £ i £ k,
iy (tohgtes sty hy ) = @ohgreees & 1 Thus, <h2,---,hk> is a

272 k'k*®
(k-1)-dimensional near algebra which contradicts the induction
hypothesis. Therefore, there is no k-dimensional sub near
algebra of TC(HQ). ]

Although the above theorems have completely determined
the finite dimensional sub near algebras of TC(H?), we have
not been able to completely determine the finite dimensional
sub near algebras of Tc(ﬂ?n) for n 2 2. However, we shall now
prove the principle result of this section which states that
there is no finite dimensional sub near algebra of TC(ﬂ?n)
which properly contain d?([RIl), the bounded linear functions
on [RY, for n > 2.

Before beginning the proof of this result, we will
construct an example to show that there are finite dimensional

sub near algebras of Tc(ﬂin), n 2 2, of arbitrarily prescribed

dimension. These, however, do not contain all the linear
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operators on R-.

Let Lq and L2, where Lq(x,y) = (x,0) and L2(x,y)
= (y,0), denote two of the standard basis elements for the
space of linear functions on ﬂ?g. For each k € IN, define
Pk(x,y) = (ka,O); then P,_ € TC(IRg). For arbitrary ne R ,
let <:Sj> be the linear subspace of TC(ﬂ?g) generated by

S ={Lq, L2, Pq, Pg,---,Pn}. Since Lq acts like the identity

and L. acts like the zero function on first coordinates, it

2

is an easy check to show that LqF = F and L2F = O for arbit-

rary F e £ 87 . Similarly P.F = 0 for i = 1,2,+--,n.

Therefore, if F = ZZSiPi + thq + t2L2 and G, H are elements

of £ 8>, then FG = ZsiPiG + t,1,G + t,LG = t,G. Thus,

th + tqH

= FG + FH and F(dG) = tq(dG) - dFG. Therefore, £ S is an

FG = £,66<8> . Also, F(G + H) = t,(G + H)

algebra, though not an algebra of linear operators. It is
easily shown that S is a set of (n+2) linearly independent
functions on ﬂ?g. Thus, £ 87V is an (n+2)-dimensional sub
algebra of TC(IRZ) for arbitrary n € N
For convenience in the discussion below, we will

adopt the following notation. A vector or n-tuple in ﬁ?n
will be denoted by X = (Xﬂ’X2’X5""Xn> where the xi's are
the components of the n-tuple. The standard basis elements
of R™ will be given by &, = (0,0,°++,1,0,+-+,0) where the 1

th

appears in the i position. The standard basis elements for

B(R™) will be denoted by Aij where Aij(i) = ngi‘ That is,
A.. is the linear transformation whose matrix representation

ij
th

has a 1 in the i] position and O everywhere else. Unless
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otherwise specified, (A ={Aijli,j - 1,2,---,n}»wi11 denote

this set of n2 linear functions. Finally, an arbitrary
function P € T(ﬂ?n) will often be denoted by P =

th coordinate func-

(PyyPsy ==+, P, ) where Pi:n(“-—alR is the i
tion of P.

4,% Proposition. Let n € RJ , n > 2. There does not exist an

(n2+1)—dimensional sub near algebra of TC(ﬂQn) which contains
B(R™).

Proof: Let n be an arbitrary natural number, n 2 2, and
assume N is an (n2+1)—dimensional sub near algebra of Tc(ﬂ?n)
such that &3(ﬂ{n) € N. There must exist a non-linear function
P € N such that CznkjiiP} forms a basis for N. Multiplying

P on the left by Ai.,i,j = 1,2,***,n, we get AiJP = B.

J ij

+ tijP where Bij is a linear combination of functions from

A,- If t,, & spectrum (4,,), then (A, - t,,I)7 exists and

-1 . . .
P = <A11 - tqu) B, which is linear. Therefore, t,, €

11
spectrum (Aqq) and tqq = 0 or 1.

If ¢t = 0, then A, P = B Thus, for all J

11 11 11°

= 1,2,°++,0, Aqq(quP) = quP = AﬂqBﬂj + tququ =
which is linear. However, quP =

AgqaByy * T84

(O,O,---,PJ,O,-'-,O) which implies Pj is linear for J

= 1,2y+*+,n. Therefore, P is linear.

If ¢ = 1, then A,,P = B, + P and Aﬂn(AﬂﬂP)

1 11 11
=0 = Aanqq + Aan Therefore, Aan = ‘Aanqq° Also,
A (A B = A P = Ay (B + S8 P = Ay By = B8 By
Thus, P = A4P = Byy = 4B - (b4, 1) B,, is linear.

In all cases P is linear. Thus, since n was artitrary,
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there are no (n2+1)—dimensional sub near algebras of Tc(ﬂ?n)
which contain 3 (R™). [

We now proceed to prove a series of lemmas and to
facilitate the discussion, we will make the following con-
ventions in notation. For k, n € N, k, n > 2, an
(n2+k)—dimensional sub near algebra of TC(ﬂ?n) which contains
B(Rn) will be called an (n,k)-near algebra. Since an
(n,k)-near algebra contains I?(/RIU, we will choose Czn as
part of the basis. Thus, when proving properties of the basis,
we will be concerned with only the non-linear portion.

4.5 Lemma. Let k, nelN, k, n 2 2. If N is an (n,k)-near

algebra, then a basis CZIIL/{EEJi = 1,2,---,k} may be chosen
such that Pi(EJ.) =0 for i = 1,2,see,k and j = 1,2,+«+,0.
Proof: Let n and k be arbitrary natural numbers; n, k 2 2.
Let {Qili = 1,2,---,k} be the non-linear portion of the basis
for N where Qizz(Qiﬂ’Qi2""Qin)° For an arbitrary but
fixed s, 1 £ s € k, we will replace QS by a function RS such
that Rs(gi) - 0 for all i = 1,2,--+,n. This new collection
{Qq’Qg""’Rs""’Qn} will be a basis and, since the construc-
tion does not depend on the particular choice of s, we can
repeat the process and replace each QS with the corresponding
RS. The new non-linear portion of the basis
{Rq’Rgv"‘ka} will have the desired property that Ri(gj) =0
for all j = 1,2,¢e-,n and i = 1,2,+++,Kk.

For fixed s, 1 £ s £ k, we construct a sequence of
functions iPS,i = 0,1,+++-,n, defined recursively, such that

— = - ‘ . = .
iPS(ep) O for p ¢ i. 1Let PS QS and define

o)



111

n

iPs = E 5.1 Sm(e YA mi = i-1fg for i =1,2,--+,n where
m="

. th . . .
i—ﬂPsm is the m coordinate function of i_/IPS. By direct

n

calculation, iPs(ei) = E i1 Sm(e )A (ei) - i—ﬂPs(ei)
m="1
n
z:1 1Pem(€sden = 3 qPg(ey) = 5 4Bg(ey) - 5 4P (ey)
m="1

for i =1 2,«++,n.
Using the recursive property and the fact that

- - . _ — - L .
mi(ep) = 0 for p # i, we can show that iPs(ep) =0 for p 4 1i.

For example, 2PS(§2) -0 by the above and 2Ps<€1)

E 1Psm(e2)Am2(eﬂ> - 1Ps(eq) =0 -0 =0. In particular,

nPs(€b> = 0 for p £ n.

Let Si
= Czn(/’{Rmim = 1,2,-+¢,k, R =Q form# s and R, = .P_
for i = 0,1,2,**+,n. Now, S, = a u{a|n=1,2,.--,x}is

the original basis and S1 is the original basis with Qs

replace by 1Ps' It is a straightforward check to show Sq is
a linearly independent set and after n replacements Sn is
linearly independent. Thus, S  1is a basis and RS(Ei) =0
for i = 1,2,---,n.ﬂ

4.6 Lemma. Let k, néN, k, n 2 2. If N is a (n,k)-near

algebra, then a basis Czn(/-{IEIi = 1,2,---,k} may be chosen
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such that A; B, BA; and PP, belong'm><I}[i = 1,2,-00,k >,
the linear subspace generated by {Pig, for all i, J =
1,2y*++y,n and m, T = 1,2,+-,k.
Proof For arbitrary n 2 2 and k Z 2, we may choose, by
Lemma 4.5, a basis whose non-linear portion has the property
that Pi(Ej) =0 for i = 1,2,+++,k and j = 1,2,++-,n. Then,

n n k

for arbitrary A&, /3 and m , AyaBu = Z tiinj + t.P. .

i=1 §=1 i=1

Using the property of Ty M= 1,2,+++,n, we have O = Adp(6)

n
Adpgu(em) = E ti € + 0. Therefore, t. = O for
i-1

i=1,2yeeey,nandm-= 1,2,+++,n. Thus, AdpE)&
K

- E t.P, € {P, i=1,2,-++,k>. A similar direct compu-
121

tation holds for IﬁAij and PmPr'

4.1 Definition. A function P: R™— /R™ which projects onto
th

the i

5'0 soordinate function. Let S be a subset of T(R™. If,

coordinate axis, P = (0,0,---Pi,---,O), is called an

for each P€ S, P is an ith coordinate function for some

i, 1€ i4 n, then S is said to be a collection of coordinate

functions.

4.7 Lemma. The sum and the scalar multiple of ith coordinate

functions are ith coordinate functions. Composition on the
left by an ith coordinate function with any function in

Tc(ﬂ?n) is also an i'P coordinate function.



115

Proof: Since sums and scalar multiples are done component-

wise, the first two results are immediate. If P is an ith

coordinate function, P = (0,0,"’,Pi0,0,"‘,O) and f &€ TC(ﬂ?n),

f = (fq,f --,fn), then Pf(X)

o’
= (0,004, Py (2,0, E5(X) 4 uen, £, (3)),0,...,0) is an i®% co-
ordinate function.ﬂ

4.8 Lemma. Let k, néMN ; k, n 2 2. If N is an (n,k)-near

algebra, then there exists a basis Czn(j {I}Ji = 1,2,---,k}
such that {Pi[i = 4,2,---,k} is a collection of coordinate

th coordinate

functions. Further, not all the Pi's can be m
functions for any fixed m, 1 £ m 4 n.

Proof: For arbitrary k, n 2 2, choose a basis
G, U {Pi{ i= 1,2,“-,1«:} such that P; (&) = O for all
i="1,2,ec+s,kand j = 1,2,-¢,0n. Let m be an arbitrary but
fixed natural number, 1 £ m £ k, and consider the sets Si

= Czn(“’{IH’PE’.."Pﬁ—W’ AiiPm’ Pm+4"'

m
-,Pk} for each

1 ="1,2,°°°,n.
If the sets Sim are all linearly dependent sets of

functions for i = 1,2,++-,n, then there exists scalars tij

+ t. AP tece+t. P

such that AiiPm 1 iz2"2 im-1"m=-"1

Bi + tiﬂp
+ tim+1fﬁ+1+'°°+tikPk where Bi 1s an appropriate combination

of linear functions. Also, by Lemma 4.6, AiiPm = SiﬂPﬂ

+ si2P2+---+sium+---+sikPk for i = 1,2,-++,n. For

i=1,2,--«,n, if we equate the two expressions for AiiPm’

then we get Sip = O because of the linear independence of the

Pi' However, if we add the latter expressions for AiiPm’ we

get A Py + A B +ecc+A P o= (A,‘,| + A22+---+Ann)Pm =
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Since the Pi are linearly independent, this implies E Sim

i=1
- 1 = 0. This contradicts the fact that Sim = O for i =
1,2,**+,n; thus, the assumption that the sets Sim are all
linearly dependent sets must be false. Therefore, there
exists & such that Sctm is a linearly independent set and may
be chosen as a new basis.

Clearly, AgqPy(€5) = Agq(0) = 0 for j = 1,2,--+,n;
hence, this new basis satisfies the conditions of our original
basis. Therefore, since m was arbitrary, we can repeat this
process and, for each m = 1,2,---,k, there exists im such that

Pm can be replaced by Rm = Aimium' The resulting basis is a
collection of coordinate functions since AiiP is an ith

coordinate function for all i and any P.

Finally, if there exists a J such that the Rm's are

all jth coordinate functions, choose i ¥ J and apply Ai. to

J

R, = (0,0,+e¢,R,.,0,0++,0). TFor x € IR?, we get Ainq(f)

13
k k
= qu(x)ei = E tmRm(X) = tmij(X) ej. Since 1 # j,
m="1 m="

qu(i) = 0 for all x € R which implies R, = O. This con-
tradicts the fact that Rq is a basis element.ﬂ
4.9 Lemma. ILet k, n ¢ N, k, n 2 2. If N is an (n,k)-near

algebra, then k = gn for some g 2 1 and there exists a basis
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of the form A, U{F |1 - 1,2,---,q}U{A2,IPili = 1,2,++4,0}
v...v A P L= 4,2,---,q} where P, is a first coordinate
function for i = 1,2,+.--,q.
Proof: For arbitrary k, n 2 2, let N be an (n,k)-near algebra
with basis anU{Ri|i - 4,2,---,1{_'}. By Lemmas 4.5 and 4.8,
we may assume that Ri(gj) -0 for 1 = 1,2,+++,k and
g ="1,2,++«,n and each Ri is a coordinate function.

Let h be the number of non-linear basis functions
which are non-zero in the ith coordinate. If there exists a
coordinate position, say Jj, such that qj = 0, then, from the
non-linear portion of the basis, choose an ith coordinate
function R such that i # j. By Lemma 4.6, AjiR = t R,
+ t2R2+---+thk. Since there are no jth coordinate functions
in the set{Ri]i - ’I,2,---,k}, and, for x & R, AjiR(;)

th coordinate function, we have that R(%) =0

- R(SZ)EJ. is a J
for all x € IR™. This contradiction implies g5 # 0 for
J=1,2,-+¢,n. Since 4q + Qpteee+q, = Kk, we now need to show
that Qq = 9y === Q. then letting q, = g, we have
gn = k.

Since each non-linear basis element is a coordinate
function, let us denote these functions in the following

fashion:

R ={R_..R..,.--.R
1 { 112712 ’ 1q1} are the 1st

R, ={R21 ozt oy,

)Qn ={an,Rn2,...,ann} are the n

coordinate functions,

} are the 2nd coordinate functions, «--

th coordinate functions.

If we assume that it is not true that qQq = 9p == Qp> then

there exists at least two elements which are not equal.
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Without loss of generality, assume a4 > Ase Let S
= anu R/IU{AQ’IR’IJ'{R’IJ' e R,]} URBUH'URn’ the original

basis with the second coordinate functions &lereplaced by

n n 94
ququa for j = ’1,2,...,q/|. If Z Zaiinj + Zb’IjR’lj
i=1  J=1 J="1
94 n i
+ E quququ + :Ej binij = O for any linear com-
3= i=%  j="

binations of elements from S, then, by using Ej for
J = 1,2,*+,n, we have that aij = 0 for all 1 and j. Also,

since each coordinate must be zero, cquqq(x) +eeot quqquq(X>

= O and, hence, Cﬂj = 0 for all J = 1,2,---,q1. Similarly,

bij = 0O for i = 1,%,4,»+-,0n and J = 1,2,---,qi. Therefore, S
is an independent set of functions and the number of such
2

) . 2
functions is n“= + qq + Q, + q5+---+qnl> n- + g + Qgoteeetq, =

n2 + k. This contradiction implies that dq = Qp=+--=q, = g.

Choose as a basis the set of linearly independent

functions O\nUR 1 UA2’I R’l v ---UAn,Iﬂ where Ai,ln/l

1

={841181

4,2 Definition. Let S be a non-empty subset of TC(ﬁ?n). If

J"tj=/|,2"°°,qJ fOI’i'—:/],E,.-.’n.ﬂ

S is a set of coordinate functions such that S8 =
8, LIqusth ces LIAnqsq where S, is a set of first coordinate

functions, then S is said to be a completely symmetric set of

coordinate functions generated by Sq.

The preceding lemma states that every (n,k)-near alge-
bra has a basis such that the non-linear portion is a completely

symmetric set of coordinate functions generated by a set of
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first coordinate functions. For convenience in notation, if
{Pi{i = 1,2,°+,0; k = nq} is the set of first coordinate
functions in the non-linear portion of the basis of an
(n,k)-near algebra, then we let CZn(J fpk(Pi) denote the

entire basis where F%(Pi) is the completely symmetric set

of coordinate functions generated by {Pili = 1,2,¢¢+,9; k = qn}.
We will also assume Pi(gj) - 0.

This characterigation of the basis of an (n,k)-near
algebra indicates that the properties of the first coordinate
functions are shared by all the non-linear basis elements.
Thus, we need only prove our results for the first coordinate
functions.

4,10 Lemma. Let k, néMN, kx, n 2 2. If N is an (n,k)-near

algebra with basis CZnLJ Jok(Pi), then Pi(xgj) - 0 for x 2 0,
i="1,2,°+,gand j = 1,2,++0+,n.

Proof: Let n and k be arbitrary natural numbers, n, k 2 2,
and let A_ U P, (P,) be a basis with {P,|i = 4,2,.--,q]

the first coordinate function such that Pi = (Piq,0,0,---,O).
For each 1 = 1,2,+-,q, define the functions Qi(x)

for x € [R. Thus, Qi € TC(HQ).

Py q(xeq)

Consider the linear space < Q,] ,Q2, o ,Qq > For

q
any x € R and i, 1 4 i & q, Qi(Z thJ')(X)
J=1

q q
= Qi (Z tij’l(Xe’l )) = Pi’l ((z tij,l(xe,I)>e,l) . However, for
j="1 j="1




118

fe]

q
the same 1 and scalars tj’ Pi(’E tjPi) = E Sium' Thus,
J=1 m="

for X-e-,l e R", P (Zt P) (Xe = P4 ((Zt PJ,\(xe )) >

( (ZtaQa) (X) - (gsium (xe )

d q
(:Ejsiumﬂ(Xeﬂ>> e, =:(EZ:siQO(X2) e,- Therefore,
m="1 m="1

I

q g
C%_(Si;thj> (x) = EZ;SiQO) (x) for all x € R and
J= m=

<:Q4,Q2,---,Qq:> is a finite dimensional sub near algebra
of Tc(ﬂ?). We have shown that such a near algebra is
positive homogeneous; hence Qi(ﬂ) = Piq(eq> = 0 and Piq(xeq)
= Q;(x) = xQ;(1) = 0 for x 2 0. Therefore, Pi(xga) = 0 for
x 20 and i = 1,2,+++q.

Finally, by Lemma 4.7, PiA31 = t,lP,|+---+thq for

i=1,2,++,9q and j = 1,2,«++,n; thus, Piqu(xgq) = Pi(xgj)
= £1Py (8, )4+ - -+t P (x8;) = O for all i and j. [

4.11 Lemma. Let k, n €N ; k, n > 2. If N is an (n,k)-near

algebra with basis Canj Egk(Pi), then P, is positive homo-
geneous for each i = 1,2,+++,3g.

Proof: For arbitrary k and n; k, n2 2, let N be such an
(n,k)-near algebra with basis Cznﬁj FEKI&). Lemma 4.10
states that Pi<XEj) =0 for x 20, i = 1,2,++-,q and

j = 1,2,0-D,n. By Lemma 4.7, fOI‘ ; = (X/‘l ,X2.-.,Xn) e Rn
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arbitrary i, 14 i 4 g, there exist scalars t,]j(§), tm(;) e R

n
such that Pi<X1A11 + X2A24+"'+XnAn1) = E tqj(x)qu
3="

q
+ E tm(x)Pm. For arbitrary x € R" ana ep, p=2,%3,*++,n,
m="1

Pi<X1A11 + x2A2q+---fannq)ep =0 = tqp(x)eq + O,
Thus, tqp(§> = 0 for all p = 2,%,-+-,n and x € [R™. Also,

- n _ ——
for x e R, Pi(x,\A,‘,| + x2A24+---+annq)eq = Pi(x) = tqq(x)eq.
Since Pi(a._e'/]) = dPi(E,]) - 0 for & > O, we have that pi(d;)

1 phpqte e +lx by e,
= Py (A, + Xoho teeetx A L) @e,) = o, (X)@e,) = adP; (x)
for d 2 0 and i = 1,2,+++,Q. I

The following lemma indicates that a sub near algebra
of Tc(ﬂ?n) which contains certain special functions must
contain an arbitrarily large number of linearly independent
functions. This will show that such a sub near algebra can
not be finite dimensional. The special set of functions is
given as follows: For n 22, let
)'(n - {Jij IJij(}') - J(XJ-)gi for x e R%; i , § = 1,2}
U{Kileij(;) = K(xj)gi for x € R, i, § = ’I,2} where
J, K are the constructed basis elements of Lipp(ﬂQ). ,%(n is
a set of linearly independent functions for n 2 2. The
proof of the lemma consists of actually constructing an

arbitrarily large number of linearly independent functions.
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4,12 Lemma. For né N , n 2 2, there is no finite dimensional

sub near algebra of TC(ﬂ?n) which contains }(n.
Proof: ILet n be arbitrary, n 2 2, and assume N is a g-
dimensional sub near algebra of TC(ﬂ?n) which contains }(n.
For each m € N | 1let F = J11<Jqq + Ky - m(J,]2 + qu));
thus, ¥ € N for each m. ILet C_ = )'(nU{Fi’i - 1,2,---,m}.
We will show, by induction, that Cnlis a linearly independent
set of functions for all m € N which will contradict the
fact that N had dimension q.

For m = 1, if cﬁ is not a linearly independent set,

then F, = t,,J + bt Ad + tA.d + tTAsd

1= Tqadan ¥ Tapdao F Foqdog * Topdop o8k

'41 + s,~,K

12712
+ 8oqKoq + Spokone F(Ey + Bp) = 0 = (b + )8,

+ (tgq + t22)€2 and F,|(2€/I + 52) = 5% = (2t41 + ‘5,12)5,|

+ (2t + t22)€2. These equalities result in the two

equations 1:,],l + t,|2 = 0 and 2t44 + tq2 = ‘1 which have solu-

tion tqq = 1 and t,]2 = -1. However, Fq(Eq + 252) =0
= (b + 21:,]2)3/, + (tpq + 2t22)52 which implies that

t + 2t12 = O. Therefore, Cq is an independent set.

11
Assume cnlls an independent set. If cm+1 is a

dependent set, then Fm+4 = t,!,]J,M+---+522K22 + d1F1+"'+dem‘
If x, y 2 0, then Fer,l(xe,I + yeg)

(x - (m+1)y)§%, if x 2 (m+1)y

0 , if x & (m+1)y

(tqqx + tq2y +-li,'(x-y)*»---+llm(x—my))g,I + (tgqx + t22y)€2

(amx + bmy)éﬁ + (tgqx + t22y)€2 where
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Let x = m+1 and y = 1, then 1*“m+,[(x"e",I + ygz) =0

= (a (m+1) + bm)E1 + (to (m+1) + % If X = m+2 and

24 ( ppl)ese

y =1, then e, = (am(m+2) + bm)e,l + (t21<m+2)+ t22)e2.

These equations imply a, = 1 and bm = -(m+1). However, if

x = m(m+2) and y = m+1, then we get O = am(m)(m+2) + bm(m+1)

= m(m+2) - (m+1)(m+1) = -1. Therefore, ¢ is a linearly

m+"]
independent set. This completes the induction and the
proof.ﬂ

4.1% Lemma. Let k, n €N ; kx, nZ2 2. If N is an (n,k)-near

algebra with basis Czn(j Jgk(Pi), then P, is homogeneous for
each 1 = 1,2,--+qg.
Proof: For arbitrary k and n, k, n 2 2, let N be an (n,k)-
near algebra with basis CInlJ Kak(Pi) such that each Pi is
positive homogeneous and Pi(gj) =0 for i = 1,2,°**,q and
J=1,2,°°°,n.

If P, (-&,) = 0 for each i = 1,2,+++,q, then, for

x e R, p.(xe,) = [x|P, (¥e,) = 0. By Lemma 4.7, P.A_,

= t1P1+'°'+thq; hence, PiAmq(Xeq) = Pi(xem) = 0 for all

i=1,2,+++,gandm-=1,2,~+-,n and all x € R . This is the
condition found in the proof of Lemma 4.11 except in this
case it holds for all x € R ; thus, by an argument similar to
that of Lemma 4.1, each Pi 1s homogeneous.

However, if P, (—Eq) # O for some i,» then, by reord-
0

ering, we may assume PH(“€4> = —EA. IHAqq(X) =
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_ X1P1(€ﬁ> 0 , if X, >0
= Py(x,8,) = _ = - . Therefore,
—quq(—eq) X €4, 1f x, £ 0
Pihgg = Kgqand Jyq = Ay - Prhgy. Pihyo(x) = Pi(xge,)
x.P, (e.) 0 if x, 20
={ e 1_ = _ , e « Therefore, Pqug = qu
_XEIH<_81> X5€. if X5 4 0
and J,5 = App = Pihyse Also Ay Kpg = Koyy Appdgg
= Joqy BoqKyp = Koy and Apndy s = Jooe

Therefore, )<n_g N and, by Lemma 4.12, N can not be
finite dimensional. Thus, only the first case can hold and
the functions Pi are homogeneous.a

We are now in a position to complete the development
of the major result of this paper. We proceed by letting
n = 2 and, by induction on k, we show that there is no finite
dimensional sub near algebra of Tc(ﬂzg) which contains
B(IRE). We then complete the induction on n.

4.14 Lemma. For ké N, ii‘{Rq,Rz,---,Rk} is a set of linearly

independent, homogeneous, first coordinate functions contained
in T,(R?) such that F,(1,0) = R.(0,1) = (0,0), then there
exist a collection of linearly independent functions
{Pq,Pg,---, k} and a collection of non-zero real numbers
{Z1’22""’Zk} such that the functions are contained in

~< Rﬂ’R2’°"’Rk:> , the linear space generated by the Ri's

and Py(1,z;) = (9. 0).

i3%3°
Proof: For k = 1, let R, be such a function. Choose x # O,

y # O such that Rq(x,y) = (u,0), u # 0. Let z, = % and let

P,‘ = %R/\. Clearly, P/\ 4 <R/‘> and P,‘</I,Z,‘) =(Z/\,O).
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Assume for m £ k that we can construct the collection
of functions and the real numbers Z4 whenever the functions
Ri exist, i = 1,2,-++,m. Let {RW’R2""’RK} be a collection
of linearly independent, homogeneous, first coordinate func-
tions such that Ri(ﬂ,O) = Ri(O,ﬂ) = (0,0). By the induction

hypothesis, there exists k-1 functionslﬁQq,Qg,---Qk_q}

- <R’l"'°’Rk 1> and elements z,,25,%%«,2; 4,

that Q.(’Lz.) = (5. .z.,O), i, § = 1,2,-++,k=1. Let Q.

Zs # 0, such

kﬂm z5)
zzj Q;, where R = (qu’o). Clearly,

Q, € <R,1,R2,-.-,Rk> . 12{Q;,Q5,++,Q } is a dependent

set, then @ € < Q;,Q5,+,Q, 4> € < Ry,Ry, -+ 1R, _, > and,

consequently, Ry e &£ RyyRyyee+ 3By > . Therefore,

{Qq,Qg,--o,Qk} is a linearly independent set. Also, for
arbitrary Z 5 Jo= 1,2, ,k=-1, Qk(ﬂ,zj) = (0,0).
Choose x # O, y # O such that Qk(x,y) = (u,0), u # 0.

- L
Let Ze = % and let Pk

- I%Qi/l(/],zk)Q’k’ 1= /],29""1{"/], where Ql = <Qi/\’0).

= 4Q,.- Also, let P,

= Q.

1

The set {Pq,Pg"‘°’Pk} is a linearly independent set of
functions contained in <Q,|,...,Qk>§ < Ryseee Ry > and a
direct calculation shows Pi(ﬂ,zj) = (6;3 T ,0) for

i, j = 1,2,+++,k. This completes the induction. D

4.15 Lemma. Let k € N, k 2 2. If N is a (2,k)-near algebra,

then there exists a basis C}2LJ EDK(Pi) such that Pi is homo-
geneous and Pi(ﬂ,O) = Pi(O,ﬂ) = (0,0) for each
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i=1,2,+++,9, k = 29, and there exist non-zero Z3

i=1,2,¢++,q, such that Pi(ﬂ,zj) = (égjzj,o).

Proof: For any k 2 2, we may choose, by Lemmas 4.9 and 4.13,
a basis ng L/JQ]{(Ri) such that Ri is homogeneous and Ri(q,o)
= Ri(O,ﬂ) = (0,0). By Lemma 4.14, there exists a collection
{P,],Pg,---,Pq} §<R,I,---,Rq> and there exists a set of
non-zero real numbers {zq,zg,---,zq} such that the functions
are linearly independent and Pi(ﬂ,zj) = (égjzj,o). The
desired basis is Cig(J J?k(Pi). [l

4.16 Lemma. TLet ke N , ¥ 2 2. If N is a (2,k)-near algebra,

then there exists a basis ngﬂjlok(Pi) such that P, is
homogeneous and Pi(ﬂ,O) = Pi(O,ﬂ) = Pi(ﬂ,ﬂ) = (0,0) for
i="1,2,++-,9, k = 2qg.

Proof: By Lemma 4.15, we may choose a basis CZEZL/JQK<Pi>
such that P, is homogeneous and Pi(ﬂ,O) = Pi(O,ﬂ) = (0,0).
Also, there exist a set.{zq,z2,---,zq}, Zj # 0, such that
P;(1,23) = (8..2.,0). Let j be arbitrary, 1< j £ q, and

1d d

let F = A,],l + A22 - A21Pq—---—A21Pq; then, PjF

= tqquq + t12A12 + thH+---+thq by Lemma 4.7. Using,
successively, the elements (1,0), (0,1) and (1,zi)
i=1,2,---,9, we find that P,F = 0. For any x € R,

f is a continuous function from Mto R . If f(x) = 0 for all

X € R [} then P/lq(x,y>+"'+Pq/|(X,y) = X(P/l/](/l ’}ZC')'F"'qu/](/*,%))

x(%) =y, for all x # 0. However, Paq(o,y)+---+qu(O,y) = 0.

This contradicts the fact that the sum P11+...+Pq4 is a
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continuous function from ﬂzg-—élR. Therefore, f is not
identically equal to zero.

If there exists u €I such that f(u) = b > O, then,
for y€ MR, 0 ¢y ¢ b, there exists x € IR such that f(x) = ¥
and Pj(ﬂ,y) = Pj(ﬂ,f(x)) = PJF(ﬂ,X) = (0,0). TFor any €,

04 € 4D, let F, = A

1 qq * EAy, + A

op = ApqPq=rr-Ap P By

Lemma 4.7, Pqu = tqq(ﬁ)Aqq + tqg(E)Aq2 + tq(E)PH+---+tq(€)Pq.

Using (1,0), (0,1), and (1,Zi), i="1,2,+++,q, and
the fact that Pj(ﬂ,y) = (0,0), 04y £ b, we find that Pqu
= 0. Thus, Pj(ﬂ, E+ f(x)) = Pqu(ﬂ,x) = (0,0) for all xe R
and for all €, O &£ € € b. If &€ = 0, then f(x) + €& assumes
all values y, 0 £y £ b, and Pj(ﬂ,y) = Pj(ﬂ,f(x)) = (0,0).

If € = b, then f(x) + € = f(x) + b assumes all values Yy,
b 4 y4 2b, and Pj(ﬂ,y) = Pj(ﬂ,f(x) + b) = (0,0). Therefore,
Pj(ﬂ,y) = (0,0) for all y, O & y & 2b.

Assume Pj(ﬂ,x) = (0,0) for all x, O ¢ x £ mb and

proceed as above. For £ , 0 & € £ mb, let F o= A +EA,,

+ An = AP —eee-A Pq. Then, Pij = r,l,](E)A,I,l + rqg(e)qu

22 2171 21

+ rq(E)PH+---+rq(£)Pq and, as above, using (1,0), (0,1), and
(1,zi), i=1,2,+°+,9, we have that Pij = Q. Therefore,
Pj(ﬂ, £+ £(x)) = (0,0) for all x € /MR and all € ,

Pij(ﬂ,X)
0O4& £ ¢ mb. For € = mb, f(x) + € = f(x) + mb is a continuous
function which assumes all the values y, mb & y 4 (m+1)b;
thus, combining this with the induction hypothesis, we have
that Pj(ﬂ,y) = (0,0) for all 04 y & (m+1)b. Therefore, by
induction, Pj(ﬂ,x) = (0,0) for all x, O £ x £ mb, for all

m e IN.
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If, on the other hand, f(u) £ O for all ue€ R, then

let G = A - A + A, P,+ee+A P . By Lemma 4.7, P.G

2171 217 g J
Using (1,0), (0,1) and

11 22
= S,|,]A,‘/I + S,]2A,|2 + S/]P/|+"'+S P

Q7 q’
(1,zi), i=1,2,-..,q, we find that PjG = 0. Thus, PJG(ﬂ,X)
= PJ(W—X+P44(1,X)+P21(1,X)+---+qu(1,x)) = Pj(ﬂ,—f(x)) for
all x € [R . Since -f(x) > 0 for all x € R , we can proceed
as above and show that Pj(ﬂ,x) = (0,0) for all x, 0 £ x £ mv,
for all m € AN and some v > O.

Therefore, in either case, we can show Pj(ﬂ,ﬂ) =

(0,0) by choosing m € N sufficiently large. This implies
that Pi(ﬂ,ﬂ) = (0,0) for i = 1,2,+++,0.

4.17 Lemma. There is no finite dimensional sub near algebra

of TC(ﬂ?g) which properly contains the linear functions
B(R?).

Proof: Proposition 4.% shows that there is no 5-dimensional
sub near algebra of Tc(ﬂqg) which contains EB((Rg). We will
assume there exists a (4+k)-dimensional sub near algebra,

k 2 2, and show that this leads to the contradiction that

P,

= 0.

If there is a (4+k)-dimensional sub near algebra of
TC(ﬂQE) which contains dB(TR2), k 2 2, then, by Lemma 4.16,
there exists a basis CZ2L/61KPi) such that Pi is homogeneous
and P;(1,0) = P;(0,1) = P;(1,1) = (0,0) for i = 1,2,---,q,

k = 2q. Jgk<Pi) is a completely symmetric set of coordinate
functions generated by the first coordinate functions

{Piji - 1,2,-o-,q}.

By Lemma 4.7, for any z & ﬂa, there exists scalars
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tqq(z), t12(z) and ti(z), i=1,2,++-,9, such that

P1<A11 + Ay, zA22) = tqq(z)Aqq + t12(Z>A12 + tq(z)P1+.-.
---+tq(z)Pq. Using (1,0), (0,1) and the fact that EH(W,W)

= P(O,u) = (0,0) for u € IR, we have that tqq(z) = tqg(z) =0
for all z e R . TFor any z € IR and (x,1) € ﬂ?g, PH(X,X+Z)

= P1<Aqq + qu + zA22)(X,4) = tq(z)PH(X,1)+---+tq(z)Pq(X,1).
Thus, for all y e R, IH(ﬂ,y) = P1(1,4+(y—4)) = tq(y—ﬂ)Pq(1,1)+
---+tq(y—1)Pq(1,1) = (0,0). Therefore, for (u,v) € ﬂ?% if

u # 0, then Pq(u,v) = qu(ﬂ,%) = (0,0) and, if u = O, then
Pq(O,v) = (0,0). Thus, Pq(u,v) = (0,0) for all (u,v) & ﬂ?za I
We now state and prove the major result of this paper.

4.7 Theorem. There is no finite dimensional sub near algebra

of Tc(ﬂ?n) which properly contains {2 ({R™) for n 2 2.
Proof: We proceed by induction on n. For n = 2, the result
follows from Lemma 4.17. Assume there is no finite dimen-
sional sub near algebra of TC(ﬂ?S) which properly contains
l;(ﬂ?s) for 2 € s £ n and show this implies there is no
finite dimensional sub near algebra of TC(ﬂ?n) which properly
contains 3(RM).

If there exists an (n2+k)-dimensional sub near
algebra of TC(an) which properly contains @ ({R™), then
k 2 2 by Proposition 4.3. Therefore, by Lemmas 4.9 and 4.13,
there exists a basis C&lL/Fi(Pi) such that Jgk(Pi) is a
completely symmetric set of coordinate functions generated
by the first coordinate functions {Pi‘i = 1,2,---,q}, k = nqg,
and each P, is homogeneous with Pi(Ej) - 0 for

i=1,2,¢++,q and j =1,2,-++,n. We will proceed to reach
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the contradiction that P, = O.

/“
We first show that Pi‘V =0 for 1 = 1,2,++-,q and
r

e is the linear

r =1,2,+++,n-1 where Vr = <:Ea,€2,---,
subspace of ﬂ?n spanned by the first r basis elements of IR,
If this is not the case, then there exists io and p,

2 £ p < n-1, such that P, IV £ 0 and we let M
o' 'p
=={&J1 < i £ g and P.I # O}. Note, the case for r = 1
1 Vp

trivially holds since Pi(xgq) = XPi(Ea) = 0. By reordering,
we may assume, without loss of generality, that
Pﬁ::{ﬂ,E,--o,m} for some m, 1% m £ q.

a,,d ---,Ep}'be the standard basis set for n?p
and let B - {Bijli, §o= 1,2, e, } be the standard basis
for W(RP). For i = 1,2,...,m, define R, : R?— RY by the
formula Ri<x454+...+xp5p> = Pi1<x4€4+...xpéé)aa. Each Ri

is a continuous homogeneous first coordinate function such
that Ri(aj) - 0 for i = 1,2,+++ym and j = 1,2,-..,p. Also,
Ri is non-zero and non-linear on /R® since this would imply
Piq(x1€1+...+xp€b) = XﬂPiﬂ(Eﬂ)+"'+XpPi1<€b) = 6, for all
x1€4+...+xp“p € V. Tet R - R({Ri{i - 4,2,---,m}) be the
completely symmetric set of coordinate functions generated by
the first coordinate functions {R [i = 1,2,-+-,m}. Let N be
the linear subspace of TC(]RP) spanned by ‘Bp U R. We wish
to show N is a sub near algebra of TC(ﬂ?p) which properly
contains @ (IRP). This will contradict the induction
hypothesis.

Since the spanning set Bp U R consists of coordinate

functions and R is a completely symmetric set of coordinate
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functions, we only need to consider closure with respect to
multiplication on the left by Ri and Bij‘ Any linear coordin-
ate function Bij merely shifts coordinates; hence Bink =0

or B, Ry € [ for all i, j and k. Thus, for F € N, B;;F € N.

Tet F = Zz 55 4By + ZZtlaBﬂRaeN
7 4 321

i=1

For an arbitrary element X, = ana+---+xpab € ﬂ?p, let

d

Xg = Xﬂeﬂ+"'+xpgb be the corresponding element of R". Thus,

for arbitrary R, 1 £ k 4 m,

k,

D D m _
2. (Z Si4%5 ¥ tiij’l(Eey di)
521 \ 327 52
p D
o (o o
i= j=

j="

it

RkF(SEd)

1l

However, by Lemma 4.7, there exist scalars dﬂi andd.l such

P m
that P :Ej ;E: ij 13 :E: jz:tlg 11 J>

i=1 g=1

Z“ﬂiA’li + Zaipi' Using ej, J = p+1, p+2,*°°,n,

we get that¢1ij = 0 for j = p+1, p+2,°*+,n. Also, the Ee

which corresponds to Ed belongs to Vp; hence,

g m
jzjdiPi(xe) = jg:diPi(xe) since Pi!V = 0 for i =
i=1 i=1 P

m+1, m+2,--+,q. Therefore,
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i=1 =1 i=1 J="1
P P m
= [Pkﬂ (f:g: (’E Sijxj + E{:ti3P31<Xe>> ei>] e,
i=1 3=1 =1
b P m
= D da(x) - Zd P;(xg) = (Zdﬂixi ¥ ZaiPi’l<Xe)> €
i /1 i:’l i=/]
Setting the coefficients of Ea equal,

RkF(X

3

[k’l(z <Z 13%; Ztla 31<X >) Jﬂ
(gd’li}ci ¥ mdipmﬁze)) 44
(m e 2o %

Therefore, RkF € N for all F € N and k = 1,2,+++,m. This,

along with right distributivety in TC(HQP) and the completely
symmetric property oi‘&z, completes the proof that N is a
near algebra.

Since none of the Ri can be linear, there exists an
Ri such that Bpu {Ri} 1s a linearly independent set.
Therefore, N is a finite dimensional sub near algebra of
TC([RP), 2 & p &n-1, which properly contains 8 (RF). Thus,
Pi)vr -0 for all i = 1,2,-++,q and T = 1,2,«««,n-1.

Iet r ¢ N be arbitrary, 1 £ r &£ n-1, and let

{esq’ese""’esr}'be an arbitrary collection of r distinct
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standard basis elements of R™. Also, let Sr

= <:eS 1€ st j> be the r-dimensional linear subspace

of IR™ spanned by this collection. By Lemma 4.7, for arbit-

rary i, 1 4 1 £ g, there exists scalars t.,. and t. such that
13 J

}?i(ASqq + A822+--.+A E t1J 13 thpj. Using
—

ey M = 1,2,+++,n, we have that tqj = 0 for all j = 1,2,+++,n.

X, + XAE  teeetX_ € be an arbitrary element of
d 2 S5 s,

Let ;

54
Sr and let x_ = X 84 + Xo€otesotX @

e be the corresponding

T
element in V_ = <:5a,52,---,€r:> described above. Then,

Pi(A + AS oteeeth X = Pi(i) = tﬂPﬂ(§e> + t2 2(x Yteoo

s, T e

s, 5 T

/‘
---+thq(X ) = 0 by the previous discussion. Therefore,

P = 0O for i = 1,2,+--,9 where S is any r-dimensional

il S
linear subspace of ﬂ?n'spanned by r distinct standard basis
elements of R™, 1 £ r< n-1.

We can now complete the proof of the theorem by show-

ing that P, = 0. Let x = (X,,X~,+++,%X.) be an arbitrary
1 1772 n

n
element of R and let Fo o= Xqh g + Xphooteeetx, 4A 0 4

+ XnAnﬂ' By Lemma 4.7, there exist scalars tqj(x) and tj(x)

g
such that B,F_ = Zt,la(x)A,IJ th(E)PL_j. Using

€., m=1,2,2++,n, we have that P,]FX(Em) = P,l(xmgm), m#£ 1,
and PqFX(Eq) = Pq(xng + Xngh). In either case, by the above

discussion, PHFX(em) =0 = tqm(x)em. Thus, tqm(x) = 0 for
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— n — — -_—
all X 6 lR and m = /],2,-on’n. Let e = e/l+e2+...+ n—/‘

€V, _, and let X be an arbitrary element of [R™. Then,
PqFX(e) = Pq(x) = tq(x)Pq(e)+o--+tq(x)Pq(e) = O since
p. = 0. Therefore, P, = O. This completes the

i Vn—4 1

induction and the proof. ﬂ



The Representation of a Finite Dimensional

Near Algebra as a Function Space

We showed, in Proposition 4.2 of section one, that
every one-dimensional near algebra can be represented as a
function space by identifying the near algebra with the
space generated by the coefficient function in the expression
e(te) = (t)e. This is similar to the construction of a
representation for a finite dimensional algebra as a matrix
algebra given in [1]. Consider a finite dimensional algebra

n

A with basis B =:{u4,u2,---,un}. If x = t.u., then

J- 3
J="

n n
- :z ’ . - kJ
Xu; = tijuj for i = 1,2,++-,n where tij = zz:tkri and
3=1 k="
the r?a are multiplication constants determined by

n
ukuj = E r?aui. Let U be the one-columned matrix whose

i="1
elements are Uy yln,y s s U and let X = (tij) be the matrix of
coefficients, then the above equations for Xu. , 1i="1,2yee-,n,
become xU = XU. This defines a correspondence x — X from
the algebra A to the set M of all matrices X. This corre-
spondence is an algebra homomorphism and the algebra M of

matrices is called the regular representation of A with

125
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respect to the basis UgaUny=oerU . The correspondence is an
isomorphism if and only if there is no quantity x # O in A
such that xa = O for every a of A.

Although, at the present time, there is no generalized
near algebra of matrices, we can construct a linear space of
coefficient functions which we will designate as the linear
coefficient function space determined by the given basis.
However, unlike the case for an algebra, we have not been
able to show that, in general, the linear coefficient space
is a near algebra. To accomplish this, we introduce the
concept of a basis with an annihilator set; for example, an
orthogonal idempotent basis, and prove that the linear
coefficient space becomes a near algebra. The resulting
representation theorem generalizes the result of Theorem 3.9
and is equivalent to the matrix algebra approach whenever
the near algebra is an algebra.

We proceed by first defining the construction of the
linear coefficient space and then the special annihilator
condition. Repeated use of this condition and the properties
of a finite dimensional near algebra results in the principle
theorem of this section which states that every n-dimensional
near algebra with a basis which has an annihilator set can
be represented by a sub near algebra of T(ﬂ?n).

4.3 Definition. Let N be an n-dimensional near algebra and

let B = {xq,xg,---,xﬁ} be a basis for N. For each

i=1,2,-++,n, define the coefficient functions 7\i : R —R™

in the following manner: For w = (wq,w2,---,wh) € R™ define
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A (@) = (A, GO, Aig(w>,...,ain(w>) where the Aijm) are the
coefficients in tEe expression Xi(Wqu + w2X2+...+wnxn)

= Riq(w)xq + Aig(w)x2+...+>3n(w)xn. Let CEB =
<:A1,A2,---,Anj> be the linear space generated by the

functions )i’ i=1,2,¢¢°,n.

4.4 Definition. Let N be an n-dimensional near algebra and

let B = {Xq,X2,o--,Xn} be a basis for N. If there exists a
set of n elements (yﬂ’yg""’yn} € N such that Xiyj =0
for i # j and XY # 0, then {yq,yg,---?yn} is called a set

of annihilators for the basis B and B is said to be a basis

with a set of annihilators.

An orthogonal idempotent basis B, as defined in
Chapter II, is an example in which B is its own set of
annihilators.

Although, in general, we are unable to show whether
or not(?B is a near algebra, the above condition is sufficient
for this result.

4.18 Lemma. If N is an n-dimensional near algebra with basis

B = {xq,xg,---,xn} which has a set of annihilators

- n
{yq,yg,---,yn} such that XYy = 5;323, then, for w &€ R™ and

Ai e G’B’ Aij(ﬁ)zj = Xi(wjzj) and Zij(ﬁ) = Aij(ﬁ} whenever

W, = U.e.
J J

Proof: Let N be such a near algebra with basis B =

{Xq,xg,...,xn} and let;[yﬁ’yg"“’yn} be the set of annihil-
ators such that Xiyj = 6;323'
and let Ai be an arbitrary element of ch' For any

Let W = (Wq,Wy,ce-,u ) € RE



1%6

n n
j, 1€ J <& n, Ai,j(w)zj = E /\ik(w)xkyj = (Xi Zwkxk> yj
k'—'/l k:’]
= x.(w.z.). Let T € R™ such that Wyo= ugs then, Aij(ﬁ)zj

= X.(W.Zj) = x.(u.z.) = Aij(a)zj. Since Zj £ 0, Aij(ﬁ)

4.8 Theorem. If N is an n-dimensional near algebra with basis

B = qu,X2,"',Xn} which has a set of annihilators, then the
linear coefficient space (fB is an n-dimensional near algebra.
Proof: Let N be such a near algebra with basis B =
{Xq,xg,---,xn} and let {yq,yg,---,yn} be the set of annihil-
ators such that Xiyj = 5;323.

In order to show that the linear space <2B is a near

algebra, it is sufficient, along with right distributivity, to

prove that there exists scalars bij such that

n n
. . To thi
Ay (E akkk>= E bik;\k for each i = 1,2,°*»1 © this
n

end, let E aé}k be an arbitrary element of C?B and let p
k=1

and m be arbitrary but fixed natural numbers such that 1 £ p,

n
m < n. Let E 8%y be the element in N with the same scalar
k="

n
coefficients and choose scalars bpj such that x? (T Eqakx;>=
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— . th
zgjbpkxk. Also, let W € R™ with m

k="

n n
[Xp gakxk)](wmzm) = X kzz‘/’l(akxk)wmz@=
n
- Xp(;'(ak}km(;)) z) 7\ (u) z  where uy Z, )ka(w)
n n
Also, [Xp (Zakxk>](wmzm) = prkxk) (wmzm) =
Kk="1 k="

(prk)\m(w)) Z . Therefore, equating the two expressions,
k=1

coordinate W Then,

(u) E b )m(w) Using the coordinatewise sum of

n

<f§£:ak)g> ()
k="
n

Therefore, (u) = épm >) (w) = (Z bpl«]km) (w)
k=1

for all weé R™ and for arbitrary p and m. Thus, for w & R™

and i, 1 £ (k (z ap § (W) =

= @ (z ak;k)] © o)) 0P (5 aka]W}

n-tuples, we can rewrite u as the sum u
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n n n
= Zbik)k) (w). Hence, Ai (Z ak}k) = Zbikxk for all
=1 =1 =1

i and C?B is a near algebra.

n
Assume Zak;\k = 0. Then, for all we /IR™ and for
=1

J=1,2yeee,n, let y. = tjﬂxﬂ + t32X2+---+tann be the
. - n
expansion of Y5 and let tj = (tjﬂ’tj2""’tjrp € R, We
now proceed to show that a; = O for all 1 = 1,2,+++,n.
Let k be an arbitrary but fixed integer, 1 € k £ n.

Then, for i = 1,2,«++,n, XV = Xi<tkﬂxﬂ+tk2x2+"'+tann>

= xiﬂ(tk>xﬂ+xi2(tk>x2+°"+2in(tk)xn = S&kzk' Since Xy

l

=z, # 0, there must exist m, 1€ m £ n, such that ka(€k> £ 0.

For 1 7£ k, Xiyk = 0 and Al/\(-Ek> = Ai2<€k)="'=ain(—k) = Q.

In particular, for all i, 1 £ i 4 n, i # k, Ki ) = 0 for

e

the fixed m. Therefore, anqm(tk)+a232m(tk)+---+an3nm( k)

= aklkm(fk) = 0 and a, = 0. Since k was arbitrary,
a, = ay =+++= a, = O. Thus,{jaq,7b,o--,2n] is a linesarly
independent set and CB is n-dimensional. []

4.9 Theorem. Every finite dimensional near algebra with a

basis B which has an annihilator set is near algebra isomor-
phic to the coefficient function space C?B.

Proof: Let N be such an n-dimensional near algebra with basis

B = {xq,xg,---,xn} and annihilator set {yq,yg,---,yn} such
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that Xiy,j = gijzj'

near algebra with basis{;\,],ﬂg,-.-,;\n}. For x; € B, define

By Theorem 4.8, CB 1s an n-dimensional

@(Xi) =/‘i and extend linearly. Clearly, (P is a linear space

isomorphism; we wish to show ¢preserves multiplication.

n n
Let x = Zthk and y = E Sy Xy be arbitrary
k=1 k=1

elements of N and let t = (t,],tg,---,tn); g = (54,82,"',8 ).

Then, @ (xy) = (P(i:kxky) - lZ: cf(ij;tk}lki(E)) X,

1=1 \k=

For the same x, y € N, 47(}() ﬂ(y) =

n n n
= Z’tk)k) (Z s:A; |- For any u e RY, let w = Zsj}\j w).
k=1 i="1

3=

n

n

tk}\k:'L(g) Ai'
/\

Then, @(x) P(y) (W) =@&) (W) =

n

n n -
Ztkhk,l (w), Z ty Ay (W) oo e, Z’ tk}lkn@Q. The desired
k=1 k=1

k="
result will follow, if we compute Aij(ﬁ) for all i,
j=/l,2,"',l'l.
Let i, J be arbitrary natural numbers such that

n
14 i, j £ n and recall that W = kZ,ISkAkpGD is the pJCh

coordinate of w.
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)\ij(w)zj = Xi(wjzj) where wJ.zJ. =

n
X5 ( Z kak) J
k="1

n
Z S SNGHES
k="

n n

Z(Skxk(ujzj)> =<Zskxk (ujzj).

k=1 Ic="1

Therefore, A (w)z = X (w Z ) = ( (Z ka>)<uij> =
n

n
(ZA k<s>AkJ<E>) z5. Thus, Aij@ - ZAH{(E)ARJ(G) for
k="

all i, j = 1,2,«++,n. Using this in the expression for

Cp (x) qﬁ (y)(u) we get, after collecting the coefficients

n n
for A; (@), that ) @ = 27 (2 6h:(3)) A @,
i=1 Mk=1

n n
Therefore, @(x) P (y) = Z(Z’thki('s‘) A, = @(xy) and
i=1 k="

QD is a near algebra isomorphism i:om N to CB’ ﬂ

4.9.1 Corollary. If N is an n-dimensional near algebra with

basis B = {X,],X ---,Xn} such that Xi(txj) = Sijtxj for all

2‘)
t € IR , then N is an algebra.
Proof: Let N be an n-dimensional near algebra with such a

= X. (uJ+V )x = 5 (u V5 )X ;‘ij(ﬁ)xj + Aij(;b(j' There-

fore, ;\ij(u+v) = Aij(u) + ')\ij(V). Similarly,
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)ij(ta) = Xi(tujxj) = 5;j<tuj>xj = t,Aij(H) for all t € R and

T e R™, Therefore,,ﬂi is linear for all i = 1,2,+--,n and
CB is an algebra. ﬂ
For emphasis we repeat the following result.

4.9.2 Corollary. Every one-dimensional near algebra over (R

with non-trivial multiplication is near algebra isomorphic
to C?B‘

We close this section with two examples and some
facts concerning a finite dimensional near algebra with a
basis which has a set of annihilators.

First, let V be an n-dimensional linear space with
basis B = {xq,xg,---,xn}. For x, y € V where x = a,%,

+oAsXoteeeta X and y = b,]x1 + b2x2+---+bnxn, define xy

= a, b, 0%, + a,lb,lx+--e+ a b |x . With this product as

multiplication, V becomes an n-dimensional near algebra which

J. .x..

SRR I
The second example demonstrates that a basis with a

is not an algebra and XX

set of annihilators is not a necessary condition for the
linear coefficient space to be a near algebra. Let N be an
n-dimensional linear space with basis B = {Xq,XE,---,Xn}.
For x, y € N, define xy = x if x # O and y # O and let

Ox = xO = 0. N becomes a near algebra with this multiplica-
tion and the coefficient functions have the following form.
For u € R™, 4 £ 0, Ai(ﬁ) = Ei and Ai(5> - 0. It is easily
verified that GB is a near algebra and N ¥ CB. However,
for the basis B or any given basis, if XY = O then Yo = 0

and the condition XoY 5 # 0 can not be satisfied. Therefore,
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there is no basis of N which has an annihilator set.
We conclude with the following propositions.

4.4 Proposition. If N is an n-dimensional near algebra with

a basis having an annihilator set, then each basis element
generates a minimal left module and N is a direct sum of these
minimal left modules.

Proof: Let N be such a near algebra with basis B =
{Xq,Xg,---,Xn} and annihilator set {yq,yg,--o,yn}. Let M

= <fxi> be the linear space generated by x, for i = 1,2,-++,n.
For x € N, x(axi) = t,.X

171

annihilator element T3 J£ i, we get X(axi)yj =0 = tjxj'

Therefore, tj =0 for j # i and X(axi) = t.x; € M. Thus,

+ t2 2+---+tan and, using the

Mi is a left module for each 1i.

Clearly, N = M, + Mytecetl . If x€ Mi/j Mj’ i #£ 3,

n
then x = tx, = =3 which imples x = O. Therefore, N = @Mi.u
i=1

4.5 Proposition. If N is an n-dimensional near algebra with

a basis having an annihilator set, then there exists a basis
B = {Xﬂ,Xg,'°',X } having an annihilator set {yq,yg,---,yn}
such that x.y.
%35 = 65475

Proof: Let N be such a near algebra with basiszruq,ug,...,un}
and annihilator set {vq,vg,...,vn}. Let 1 be arbitrary but

. < i 2 _ .
fixed, 1 € i &« n. Then, u;ve = boguy + byouste..+bs uy £ 0O
thus, there exists k, 1< k ¢ n, such that by # 0. Let

' -— — * o @ * o @ .
v o= aik(ukvk) where v, = aiqu1+ +84 gt +a; u, and let

a.
_ ik
W. = bik(ukvk). Thus, Vi 1 (blk K k) = bikwi. Also
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uvy o= ui(ai1u4+...+ainun) = biquq + bi2u2+"'+binun and,

multiplying by vy, we get ui(aikukvk) = UVl o= by u vy

"

=Wy # 0. Furthermore, u.v!

54 (ujvi)vk = ka =0 for j # i.

Therefore, for each i, 14 i1 & n, we can construct elements
a. a. a.

vi and w, such that v = Bigwi and Eik # 0. Letcii = Eik
ik ik ik

a choose a is B = { . e . =d.u..
nd ch new basis Xq1%X0, ’Xn} where X 194

Let v, =0 .w,; then, XY 5 =(diui)(v5) = 0 for i # jJ and

i71i? J
. . = . . . = d . . = ! = .
lel (dlu1>vl 1w1 Vi yl’ n



CHAPTER V
CONCLUDING QUESTIONS

The purpose of this paper has been to extend the
knowledge of near algebras in the area of analysis. In
particular, we have gtudied normed near algebras and function
near algebras. In the course of our study several specific,
as well as general, open gquestions have arisen.

In Chapter I we showed that the characterization of a
near algebra generated by a non-empty set S is not necessarily
all the finite linear combinations of finite products in S.
In general, is there a characterization of such a generated
near algebra?

Positive homogeneity, finite dimensionality and
orthogonal idempotency have played a central role in showing
continuity of multiplication in various near algebras. In
particular, Lipp(ﬂ?), the positive homogeneous Lipschitsz
functions on.ﬂ?, forms a finite dimensional positive homo-
geneous strongly D-normed near algebra with orthogonal
idempotent basis. What are the properties of Lipp(E) for an
arbitrary normed linear space E? Can Lipp(E) be given a
D-norm? 1Is there a characterization of LipLC(E), the sub near
algebra of Lip(E) with continuous left multiplication in the
Lipschitz norm topology® Can the positive homogeneous and

orthogonal idempotent conditions of section three in

<y
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Chapter II be removed to prove that all finite dimensional
normed near algebras are D-normed near algebras”

Adjoining an identity to a normed near algebra
required the positive homogeneous condition; can this condi-
tion be removed” Can an identity be adjoined to a D-normed
near algebra? Also, the completion of a normed near algebra
required a strong D-normed condition. Can a normed or
D-normed near algebra be completed® Finally, does the con-
tiruous inverse property of a strongly D-normed near algebra
hold for a D-normed near algebra?

In Chapter IV we considered finite dimensional sub
near algebras of TC(ﬂ?n) which were not necessarily normed
near algebras. Although finite dimensional sub near algebras
of arbitrarily large dimension have been constructed, there
are no finite dimensional sub near algebras of TC(ﬂ?n) for
n 2 2 which properly contain all the linear operators on R™.
Is 1t necessary that all linear operators be included? Can
finite dimensional sub near algebras of TC(/Rn) of arbitrarily
large dimension be constructed which contain Lipschitz
functions or only some of the linear functions?

In addition to these questions, there are more general
questions which arise. The D-norm condition is not the only
condition which insures continuous multiplication in both
variables. For example, if llxyllé.Kyllxlland Nbx - byl
é.KbllX - yll for each x, y, and b and for some Ky, Kﬁ 2 0,
then multiplication is continuous in both variables. What

other norm or weak distributive conditions will insure the
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continuity of left and right multiplication?

We have restricted our study to real normed near
algebras. What does the theory of complex near algebras
reveal? What can be said about near algebras with an involu-
tion or symmetric near algebras? Can the representation
theory be improved and expanded?

We trust that this paper serves as a starting point

for the answering of these questions.
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