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ABSTRACT

H-STRUCTURES ON Sp(2), SU(4) AND RELATED SPACES

by
CURTIS P, MURLEY

The classical groups Sp(2) and SU(4) can be realized as
the total spaces of fiber bundles over spheres. Associated in
a natural way with these fiberings are a number of induced
fiberings, some of whose total spaces also support H-structures.
In this paper we consider the problem of determining the number
of distinct H-structures supported by the classical group SU(4)
and by the H-spaces associated with SU(4) and Sp(2).

The technique used to solve this problem involves the
notion of localization of topological spaces. In Chapter I, we
discuss localization and prove a general theorem which allows
us to reduce the H-structure problem for a given space to a
similar problem for its associated localized spaces.

The number of H-structures supported by Sp(2) is known.
Using this number, the localization technique easily produces a
complete solution for the total spaces of the associated fiber-
ings. These computations are carried out in Chapter II,

For SU(4) the problem has not previously been solved. In

Chapter III, using the general result from Chapter I, together



with information about the structure of Sp(2) and the generators
of cervain homotopy groups of spheres, we give a partial solution

for SU(4) and its related spaces.
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CHAPTER 1
LOCALIZATION IN TOPOLOGY

The main results of this paper are obtained using the
technique of localizing topological spaces., In this chapter we
will discuss localization and some of its properties. We will
also prove an important theorem that is most useful in obtaining
our main results.

We begin with a brief discussion of algebraic localization
in the category‘ﬁ”of nilpotent groups. This is necessary since
topological localization is defined in terms of algebraic local-
ization and, further, we will later have occasion to make some
computations involving localizations of nilpotent groups.

In what follows IP denotes the set of all primes and PCIP
is any subset. The symbol <P> is used to denote the multiplicative
set genérated by P and P! will denote 1IP-P,

DEFINITION (1.1l) Geéw'is said to be P-=local if and only if the ni

power map e’:G——G is an isomorphism for all ne(P'>.

Let Zy, = {m/nGQIne'CP')} where @ denotes the set of rational
numbers, It is easily seen that EZP is P-local and in the special
cases P = P and P =g we have " %P = 7Z and ’Zp = Q.

PROPOSITION (1.2) 1If A is an Abelian group the following are

equivalent: (1) A is P-local,



(1i) A~ A®Z, and
(iii) A is a Z-module.
We denote bynﬁ% the full subcategory of #'consisting of
P~local nilpotent groups and by ipzﬂ%‘“*ndﬁ the inclusion functor.
DEFINITION (1.3) If BGA% then eeHom,(G, iPB) is said to P-localize

G if and only if given any Hewg and geHoq*xG, ipH) there exists a

unique g'eHom(m.(B, H) such that g = iP(g')oe.
P

DEFINITION (1.4) gpeHom, (G, K) is said to be a P-isomorphism if

and only if
(i) gekery =>3Ime<PH» such that g" = 1 and
(ii) for all keK there exists ne<P'> and geG such that
p(g) = k",

THEOREM (1.5) [Lazard (1954)]. There exists a functor LP:AAA-W$.

Further, for each Ge'there exists a morphism ePeHoqwxG, iPLP(G))
having the property that ep P-localizes G.

The functor LP of the above theorem is called the P-local-
ization functor and the P-local nilpotent group LP(G), usually
denoted by GP’ is called the P=localization of G, It is not

are uniquely

difficult to show that for any Ge#, the pair LG and ep

determined up to isomorphism,

THEOREM (1.6) [Hilton (1973)]. If Hel;, and Geu" then peHomy (G, i H)

P-localizes G if and only if ¢ is a P-isomorphism,

COROLLARY (1.7) LP:Aﬁ———uV¥ is an exact functor.

We now turn to a description of topological localization in
the homotopy category of simply connected pointed CW complexes. We
will denote this category bylz .

DEFINITION (1.8) Xeé is said to be P-local if and only if a1, (X)

is P-local.



We denote by dP the full subcategory of & consisting of
P-local spaces and by iP:dP——a-é the inclusion functor.

DEFINITION (1.9) If chp then feHome(X, iPY) is said to P-local-~

ize X if and only if f is universal with respect to maps from X
to P-local spaces, i.e.,
£ :Homy (X, 12) —Hom,(i,¥, i)
is an isomorphism for all Ze@P. If f P-localizes X then Y is
said to be a P~localization of X.
P-local spaces and P~localizations are characterized by
the following.

THEOREM (1.10) [Sullivan (1971)]. For feHom, (X, Y) the follow-

ing are equivalent:
(1) f P-localizes X,
(ii) f, P-localizes integral homology, i.e.,
£,:0, (X) —TH,(Y) P-localizes H,(X), and
(iii) f, P-localizes homotopy, i.e., f,:m (X)—= 7 (Y)
P-localizes 7, (X).

COROLLARY (1.11) For Xeé the following are equivalent:

(1) xeap,
(ii) ﬁ;(X)ed%, and

(111) 7, (Xewy,

COROLLARY (1.12) If fe¢Hom 4P(X, Y) then the following are equi-
valent:
(i) f is a homotopy equivalence,
(ii) £,:H,(X)——TH,(Y) is an isomorphism, and
(iii) f,:7, (X) —7,(¥) is an isomorphism.
Note that Corollary (1.12) also holds in the more general cate-

gory & .



To see that P-localizationsof spaces X¢é exist we follow
Sullivan (1971) and outline a cellular construction. We begin
by describing a P-local n-sphere.

Choose a cofinal sequence £ from <P'% and denote the

elements of this sequence by 11, £ + Choose maps li:sn;-—s“

2,0-0
of degree li and define the P-local n-sphere, denoted S;,'as

. A
n lim n i n
sP = 5 (8% —»8"),

A P=local CW complex is built inductively from a point or from a

P-local l~sphere by attaching cones over the P-local sphere using

n
P

A point to notice about the above construction is that

maps of the P-local sphere S into the lower ''local skeletons'".

since there is no P-local O-sphere, there is no P-local l=-cell.

THEOREM (1.13) [Sullivan (1971). If X is a CW complex with one

O=cell and no l-cells, then there is a P-local CW complex, denoted
L,(X), and a cellular map e,:X —=L(X) such that

(i) e, induces a bijection between the cells of X and

P
the P-local cells of LP(X) and
(ii) e

pr i (X) —m, (L,(X)) P-localizes m,(X).

COROLLARY (1.14) There exists a functor LP:G———-cp. Further,

for each Xe& there is a canonical map ePeHoma(X, iPLP(X)) having

the property that ep P=localizes X.

As before, we will write X_ for LP(X) and call X the

P
P-localization of X. Again, note that the universality condition
means that XP is uniquely determined up to homotopy equivalence.
The following proposition, which, among other places,
appears in Mimura-Nishida-Toda (1971), shows that localization
behaves nicely with respect to some important concepts and

constructions of algebraic topology.



PROPOSITION (1.15) In & P-localization preserves fibrations and

cofibrations.

COROLLARY (1.16) If X, Ye& then

(1) (Xx¥V)p o X x¥,

(ii) (XVY)P ¢ X v¥,, and
pp

where XvY denotes the "wedge product®, i.e., the one point uhion

(iii) (XAY)P o~ X

and XAY denotes the '"smash product'", i.e., the quotient space

(XxY)/(XvY).

THEOREM (1.17) [Mimura-Nishida-Toda (1971)]. For Xe& let P, ieI,

be a family of subsets of I and set P =D P, and P =\T’Pi. 1f

we let T;I XP denote the pull-back of the canonical maps
P i

eP :XP——XTD- then |X—| XP ~ XP.
i i P i

When PcIP is a singleton, P = {p}, we will denote XP by X(p).

COROLLARY (1.18) [Mimura-Nishida-Toda (1971)]. X¢& is homotopy

equivalent to T;I X(p), the pull-back of e(p):X(p)-——+-X¢ over
X¢ for all primes p.

Let 32 denote the subcategory of & of finite CW complexes,
and, as is usual, for topological spaces X and Y let [X, Y] denote
the set of homotopy classes of maps from X to Y.

THEOREM (1.19) [Hilton-Mislin-Roitberg (1973)]. Let X, YeJé

and let P, P and P be as in Theorem (1.17). Then

[, x] 'xt;l;l—ﬂ[x, Ypi] '

in the category of sets, where l I [x, T, ]is the pull-back of
i

[X’Yﬁj

of the maps ePi,:[X, YPi]———-[X,Y§]over [x, Yﬁj.



The following theorem provides a criteria for determin-
ing if a topological space is an H-space. This result appears
in several slightly differing forms in the literature, see for
example Sullivan (1971), Mimura-Nishida-Toda (1971), or Hilton-
Mislin~Roitberg (1973). Some of these versions appear to have
incorrect proof, Sullivan (1971) for example, although all
results are reported to be true. We state and prove a variation
of these results in a form which will be useful to us later.

THEOREM (1,20) Let Xe&. If (X,m) is an H-space then m induces

a multiplication m(p) on X(p) for all peP., Conversely, if
(X(p)’ n(p)) is an H-space for each p€lP and, further if the
multiplications irnduced on X¢ by n(p) and n(q) are equal for
all p, g€ P, then X is an H=-space.
PROOF Suppose (X, m) is an H-space. Localizing the multiplica-
tion m we get a map m(p):(XxX)(p) ———--X(p) for each prime pe TP,
However, (X:cX)(p) is homotopic to X(p)x}((p) and we have a map
m(p):X(p)x)((p)-——w—X(p) which is easily seen to make (X(p), m(p))
an H-space.

Conversely, conslder the following diagram where p and g

are primes and the e-maps are the canonical localization maps.,

YXppu) * Xpuly)

y(e(m* e(p))

neay (e ()* ©(q)’
X(

p)u(q)
®(p)

®(a) (e(p))s

(a) (e(q))¢



By Theorem (1.17) the rectangle is a pull-back diagram. Let

eﬁzx(p)L}(q)-—a-x¢. Since g<{p,ql

(e(p)) °e(p) = 4 and (e(q)),a_‘-e(q) = eg.
Thus (e(p)?’o[n(p)t’(e(l))x e(p))]
(n(pyp [(Cepyp® (o(pylp)° e (p)™ e(p)7]
(n(py)goleg x o)
and similarly (e(q)ﬁo [n(q)o(e(q)x e(q))]

= (n(q))¢° [((e(q))¢x (e(q))¢)°(e(q)x e(q))]

= (n(q))¢°(e¢x e¢)¢

But by hypothesis (n(q)?p = (n(p))¢ hence we have

(e [Py Cp® o)) = iyl [P e 2oy’
Since X(p)LJ(q) is a pull-back, the above equality means there

exists a unique map

Bp)u (@) X ul@)® X ul) T * () Ula)
which is easily seen to be a multiplication on X

(plu (q)°
Inductively one can now define a multiplication, m, on the
infinite pull-back over all primes, which by Corollary (1.18) is
homotopic to X.
Q.E.D.
If Geb is a topological group then by a theorem of
G. Whitehead, (1954), [ , G] defines a functor [ , G]: 34—~
The following is a useful relationship between algebraic and

topological localization.

PROPOSITION (1.21) [ Harrison-Scheerer (1972)]. For Xe3¢ and

G€¢ where G is a topological group there is a natural isomorphism

[x, G]P. =[x, Gp]'

COROLLARY (1.22) 1If Xe& then T, (Xp) = 7,(X) ® Z

PO



PROOF For n 2 2, m ()~ ["71,0x]. But QX = G{X) where G(X)
is a topological group, hence corollary is immediate from main
proposition if one uses Proposition (1.2) together with the fact

that 7'(n(X) is Abelian for n 2 2.

Q.E.D.
The next theorem is a restated localized version of a
result due to Copeland (1972). Its proof is the same as that
given by Copeland, since the restriction to the category of
finitely generated CW complexes that is made by the author in
the paper where the result appears is unnecessary.

THEOREM (1.23) [Copeland (1972i]. Let Xe¢é be a finite product

of spaces X = X.x X,x ...x X where Xi€6 and (Xi)P is an H-space
for each i = 1,2,...4 n and some set of primes P, For all
integers u and 8 with 1 £ u, 8 € n let o= (il’ eees 1, jl, ceey

js) be an (u + s)-tuple of integers with 1 % i, < i_ < cee¢i 4 m

1 2
and 1 ¢ j, < J; ¢ ees < 3§ % n. Set #X = u+ s, A ={a|2 ¢ #« ¢ 2n}
and
1 u 1 s
then

n
#Bpntpr %] = T ( TT #[%es (xt)P]).
n

Finally, we have the following theorem which will be most
useful in obtaining our main results. Its proof requires a lemma.

LEMMA (1.24) 1If Xe3 and Yeé then [xp, YP] e [x, YPJ as sets.,

PROOF That eP:X-———a—XP induces a surjective function

eP*:[xP, YP:I——-[X, YP]'

follows immediately from the fact that e, P-localizes X, To show

P

that eP* is injective one uses the fact that ep P-localizes X



together with the result that (X x I)P # Xp x I which follows

from Corollary (1.16).
R.E.D.

THEOREM (1.25) (Arkowitz, Murley, Shar). Let Xe& be an H-space

having the property that [XaX, Xg is trivial. Let X) X2€6 be
€ LY o
such that for some set PETP, X, (Xl)P and X, (X2)P" Then

(X))p and (X,)p, are H-spaces and

P
#RaXy X = # (XD pA Dpy (X p]# ()5, A )by (X)p]
PROOF By Theorem (1.20) it is easy to see that X, and X;, are
H-spaces so it is immediate that (Xl)P and (Xa)P' are H-spaces.

By Theorem (1.19) and the hypothesis that [XaX, xj,] is
trivial we see that

#[Xax, X] = #[XaX, xp:] # [XaX, xP,].
But by Lemma (1,24) and Corollary (1.16 (iii)) we have
#[XaX, Xp] = #[Rpakp, Xp] = #[(X))pAX)ps (X))5]
and similarly
X, X5, ] = #Rpnkpes X5, = #[)5,00,)5, (), ]
Q.E.D.

We now proceed to the main results.
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CHAPTER II
H-STRUCTURES ON SIMPLY CONNECTED H-SPACES OF TYPE (3,7)

The problem we consider in this chapter is that of deter-
mining, up to homotopy, the number of H-structures supported by
H-spaces which are total spaces of principal SB-bundles over S7.
Among these spaces are 53x 87, Sp(2), and the famous Hilton-
Roitberg H-space, Hilton Roitberg (1969), which was the first
example not involving S7 of a compact simply connected H-space
not of the homotopy type of a Lie group. Later Hilton and
Roitberg, Hilton-Roitberg (1970), showed that any simply con-
nected H~space of type (3,7) has the homotopy type of the total
space of a principal SB-bundle over S7. Thus, the problem we
consider is that of determining the number of H-structures that a

simply connected H-space of type (3,7) may support.

We are considering principal fibrations of the form

s> X

:

S7.
The classifying space for such fibrations is B83 and so t?e number
of homotopy classes of such fibrations is in one-to-one correspon-
dence with [57, B3] m %, (B;3). Using the fact that QB 3 ¥ 57 we

see that 1(7(B53)z 1'[6(.0.B83) = 1(6(83) = Z/12. Thus, there are

twelve distinct homotopy classes of such fibrations.
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The elements of ‘nb(BSB) corresponding to the distinct

homotopy classes of fibrations are called the characteristic

classes of the fibrations. For a fibration SB-——-X-——~—S7 we

will denote its characteristic class by ¥(X) and will consider
X(X) to be an element of 7(6(53) under identification via the
canonical isomorphism ﬂa(BSB)su nb(s3).

Let PBSB denote the space of based paths on BS3 and
p:PBSB-——-BSB be the projection on the terminal point. With
this notation QB3 — PB 3 —P--BS3 is a fibration and any fibra-

7

tion of the form S ——=X —5’ is induced by X(X) as follows:

> 0B _3
S
t7 xX(x) l

8 2 B3

The two unlabeled horizontal maps in the above diagram are in-
duced by X(X) in the usual fashion.

It is known that Sp(2) is the total space of a principal
S°-bundle over S’ and, further, that ¥(Sp(2)) = v'+ai(3)en%(83)
where »' and «1(3) are the Toda, Toda (1962), generators of the
direct summands Z/4 and Z/3 respectively of 7(6(S3)& Z/12.

Let n:S7-————-S7 denote a map of degree n and Xn the total space of
the principal fibration induced from s3————-5p(2)—~—*-s7 by n as

shown below.

N

-3

~ Sp(2) )

- g’ l"+"<l(3)st3

~J
=]

U0 = p =——W2
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It is now clear that with this notation X(Xn) = n(v'+dl(3))

= nv'+n«1(3) and that X , n = 0,1,2440.,11, is a complete list of

the total spaces of principal fibrations of the form si———-x-—a-s7.
Not all of the spaces Xn are of different homotopy type;

indeed, the following proposition shows that Xnet Xm if and only

if n = *m(mod 12).

PROPOSITION (2.1) [Douglas, Hilton, Sigirst (1969)]. Let X,

denote the total space of an 5°-bundle over S® with K(xy)
= aer 1 (57). Then X, ® X4 if and only if «=24.

Thus, we find that there are only seven distinct homotopy
types of total spaces Xn, namely those having the following repre-

sentatives: X Xl, X2, X3. X#' X5 and X6. Of these we are

O,

interested only in the ones that are H-spaces., The question of
deciding which of these spaces are H-spaces has been answered,
although there is a minor problem involved.

From our notation it is clear that X, = s7x 87 and X, = Sp(2)

and, hence, are H~-spaces, X_ is the Hilton-Roitberg H-space and

5

Zabrodsky (1971) has shown that X. and X6 are not H-spaces. The

2

problem lies with Stasheff's (1969) proof that both X, and Xl+ are

3
H-spaces. It seems that his proof of this fact used a result
that has subsequently béen shown to have had an incorrect proof.
However, the result Stasheff used is thought to be true, although
a correct proof has not yet appeared. To avoid this difficulty

we will argue that both X, and X, are H-spaces, using Theorem (1.20).

3
In order to use Theorem (1.20) to show that X3 and X, are

H-spaces, we must vérify that they satisfy the hypotheses of the

theorem, i.e., that (X3)(p) and (X#)(p) are H-spaces for each

prime p and, further, that the condition on the induced multipli-
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cations in (X3) and (X4)¢ is satisfied. That these facts are

¢

/
indeed true is a consequence of the following lemmas numbered

(2.3) and (2.5)., Both of these lemmas contain additional inform-
ation about X5 which will be needed later.
In order to prove Lemma (2.3) we need the next result,

which is a localized version of Lemma (2.3), Mimura-Toda (1964).

LEMMA (2.2) Let «e'mm(X), m > 2, be of finite order and X,eé&

be the total space of the fibration QX ~ X »S™ induced by o«
in the usual fashion. If n:S"——3% is a map of degree n then
(Xnu)(p) o (X“)(p) for all primes p such that (p,n) = 1.

PROOF The following diagram commutes where n denotes the map

induced on total spaces by n.,

1l

ax X, 0x
Vos ]
I |
s n s® °‘ X

Since localization preserves fibration we may localize the

above diagram and consider the resulting homotopy exact sequences.

m

2p)* 1 R(p)*

m

(p

m

|
?(p) 1
. m
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m m
Since (p,n) = 1 and (S (p)) x ,(87) @ Za(p)we sece that
n(p); is an isomorphism., We now conclude from the 5-lemma that
H(p), is an isomorphism and thus, since all spaces are CW-complexes,
that (Xnu)(P) - (X“-)(P).
Q.E.D.
LEMMA (2.3) Let p be a prime and (p)' = IP-{p}, then
~ (S92 57 ~
~ (a2 7
(c) (XS)(p) ~ (Sp(2))(p) for all peP.
PROQOF (a) Consider the following diagrams of fibrations and

induced fibrations,.

1.3 1.3
53 S 53 S 33
A L N X, 5 sp(2)

Lemma (2.2) can now be applied to give (a).

(b) and (c) are proved similarly where in the proof of
(c) we make use of the fact that X5 o2 X7.

Q.E.D,

In what follows we will use the notation/L(X) to denote
the number of distinct homotopy classes of multiplications that a
given H-space X will support, and, as before # will be used to
denote set cardinality.

Before stating and proving Lemma (2.5) we record the
following fundamental result which is needed not only in Lemma

(2.5), but forms the basis for later computations.

THEOREM (2.4) [Copeland (1959)]. If X¢& is an H-space then
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X)) = #([Xax, X1,

LEMMA (2.5) /L((Xn)¢) =1 for n = 0,1,3,4 and 5.

_.PROOF Since all spaces Xn’ n = 0,1,3,4,5, are of type (3,7) we
know that (Xn)ﬁ ~ K(Q,3) x K(Q,7). Furthermore, we have set
bijections,

[(x A ) (xn;‘]

[anxn, K(Q,3) xK(Q"?)]

3 . 7 .

H (XnAXn,Q) ® H (XnAXn,GO.
James~Whitehead (1954, p.205), show that Xn has CW
3,.7,.10

structure Xntz SUVe'Ue and, hence for dimensional reasons
HB(XnAXn;Q) @ H7(XnAXn;Q) is trivial. Thus, by Theorem (2.4)
there is only one homotopy class of multiplications on (Xn%s.
Q.E.D,
From Lemma (2.3) we see that (X )( y (Sp(Z))( ) for all
primes p #3 while (XB)(B) ~ (s x S )(3). Since both Sp(2) and
SBx 87 are H-spaces, (X )( ) is an H-space for all primes p by
Theorem (1.20), Similarly, one sees that (xh)(p) is an H-space

for all pelP, Finally, Lemma (2.5) insures that X_, and Xu satisfy

3
the condition on induced multiplications in Xﬁ. Thus, the hypoth-
eses of Theorem (1.20) are satisfied and we may conclude that both
X3 and Xl+ are H-spaces,

We thus know that there are five distinct homotopy types
of simply connected H-spaces of type (3,7), namely s2x S7, sp(2),
X,+ and Xs.

The basic result used in solving problems concerning the

XB,

number of H-structures that a given H-space will support is
Theorem (2.4) It turns out, however, that computing the order
of the algebraic loop [XAX, X] is usually very difficult and

comparatively little has been done in the way of specific computa-
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tions, except for relatively simple spaces. However, using
algebraic techniques, Arkowitz and Curjel proved the following

general results about Lie groups.

THEOREM (2.6) [Arkowitz-Curjel (1963)]. m(X) is infinite for

X = 80(10), S0(14), sO(n) for n 2 17, SU(n) for n 2 6, Sp(n) for

v

n 8, and the representatives of the exceptional groups E6 and

E8' /L(X) is finite for X any other classical group or representa-
tive of the other exceptional structures,

This means that in particular Sp(2) has a finite number of
non-homotopic multiplications. Mimura subsequently computedlyisp(2))
by finding #[Sp(2)asp(2), Sp(2)] via a direct assault on the cell
structure of Sp(2)asSp(2).

THEOREM (2.7) [Mimura (19693]. m(sp(2)) = 2°°.3.57.7 .

The only other homotopy type of the five listed above for
which the problem has been solved is 83x 87, which solution
follows from Theorem (1.23). Using this result we carry out the
computations in Proposition (2.8) below for two reasons, the first
being that this result does not seem to appear in the literature
and the second being that we will need some details of this
computaﬁion later.

PROPOSITION (2.8) m(s’x 57) = 23%.31%.5%. 9,

PROOF Using Theorem (1.23) with P = P, the set of all primes,

] l (a. b.%. d.% .°f)
iti% %% %;

i=37

we have

#[(s%x s"n(s7x 57), 7% 7]

where

a, = #[sasas?s?, 8972 #B%°, s3] = (m, (sT),
v, = #[Boasas?, s3] = #BY7, s97]- #(1r17(sj)),

= #%s% 83 ]= # M, s3] #0m, (5T,

(¢}
[
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a, = #[soasns?, s3] = #EY2, 597 - #(”13<Sj))'

ej = #52s7, s3] = #[5%°, 897 = #r (s, and

£, = #5587, $9] - #[8%, 83 ]= #(m s,

Using Toda's results, Toda (1962), on the homotopy groups
of 83 and s’ we obtain

8y = 2%3, a, = 2-3,

b3 = 2:3-5, b7 = 2%3,

oy = 2%3.7, ¢, = 2735,

dy = 223, 4, = 2,

ey =35, e, = 223, and

25 = 223, £, =1

which gives the result.
Q.E.D.

We now come to the main result of this section, which
together with the known results concerning Ssx S7 and Sp(2),
Theorem (2.7) and Proposition (2.8), provides a complete solution
to the problem of determining the number of H-structures supported
by simply connected H-spaces of type (3,7).

First, we prove an algebraic lemma,
LEMMA (2.9) If G is a finite nilpotent group of order n then the
order of GP for any set of primes P is the product of the prime
power factors of n for those primes in P.
PROOF We first note that a finite nilpotent group of order n can
be exprescsed as a direct sum of its Sylow p=-subgroups, and that
algebraic localization preserves sums, Corollary (1.7). The
result now follows from the observation that for a p-group H,

H if g = p

H(q) a
1 otherwise.
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This last observation is an immediate consequence of

Theorem (1.6) and the definition of p-group.

THEOREM (2.10) For the total spaces X »n= 3,4 and 5,
0
52 .315' 55

* 71
238.3.55. 5. and

(a) pulxy)

(b) pe(X,,)

(e) p(xg) =p(sp(2)) = 2%%.3.5%. 7.,

PROOF Lemmas (2.3) and (2.5) show that we can use Theorem (1.25)
to obtain the following:

M) = p(8p(2) 5y, ) pu((87x 87 50,

M) = pm(59(2) 5y ) pl(87x 57 5),
and

/L(Xs) =/A(Sp(2)P)7u(Sp(2)P,) where P = {2,3,5,7}.

The proof is now reduced to some simple calculations,

With regard to the calculations dealing with the various
localizations of Sp(2), we note that Whitehead (1954) has shown
that for a topological group X, the functor E ,X] takes values in
the category of finitely generated nilpotent groups. Since Sp(2)

is indeed a topological group, we have

M(5p(2)) = #[Sp(2),a8p(2), Sp(2);]
#[5p(2)asp(2), sp(2)]

#([sp(2)asp(2), sp(2)]y)

where the above ecualities follow from Theorem (2.4), Corollary
(1.16), Lemma (1l.24) and Proposition (1.21). Since
[sp(2)AsSp(2), Sp(2)] is a finite nilpotent group, we may apply
Lemma (2.9) to obtain

220. 55 7,

}L(Sp(Z)(B).)

J(SP(2) (5y,) = 3-57 7,
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M(sp(2)y) = 22003-55- 7, and
p(sp(2)5,) = 1

The result (c¢) now follows. To obtain (a) and (b) we must compute
#((2x 87 (59 and u((s%x §7) 5)).

To make these computations we use Theorem (1l.23) along
with the observation that if X is a finite smash of spheres the
sum of whose dimensions is n 2 2 and Ye& then for any prime p,

#[x(p), Y(p)] = #[X, Y(p)] = #(m (Y1) = #(M )@ Z( ).
With this it is an easy matter to see that

/L((SBX 57)(3)) 315

and

238

3. &7
((S x S )(2))
from the computations done in the proof of Proposition (2.8).
The results (a) and (b) now are obtained.

Q.E.D.
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CHAPTER III
H-STRUCTURES ON SU(3)~-BUNDLES OVER S'7

Curtis-Mislin (1970) have shown that all SU(3)-bundles over
87 are H-spaces. These bundles, SU(3)—=7Y ———*-57, are classified

by -n,?(B ))z7r6(SU(3))ss Z/2 © Z/3. Let o(+,8€1(7(BSU(3)) be a

SU(3
suitable generator where o« has order two and @ has order three. It
is known that SU(4) is an SU(3)-bundle over 37 and that for suit-
able choice of a generator, X(SU(4)) =d+8. As in Chapter II, we
define a total space Yn’ n = 0,1,2,3,4, or 5, to be the total space
of the fibration induced from SU(3)—SU(4) —g7 by a map
n:S7——-----S7 of degree n. Again, analogous to the results of Chapter

I1I, we have six total spaces but only four distinct homotopy types,

Y. = SU(3)x S/, SU(L) = Y

o Yh and Y

1 = Y5, Yze.- 3

In this chapter we consider the problem of determining the
number of H-structures that each of the homotopy types Yn’ n =0, 1,
2, 3 will support. Unlike Sp(2) and its associated spaces, nothing
is known about this problem and, unfortunately, we will be able to
give only a partial solution.

The first proposition of this chapter gives several

equivalences that enable us to separate the solvable parts of the

problem from the unsolvable,
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PROPOSITION (3.1) Let IP denote the set of all primes, then
7 o (a3, 5. &7
(a) (8U(3) x ST oy = (87x 87°x 5 Yp_ i3 1
5
(v) su(h)(B) = (Sp(2)x 573y and
» (S7x S7x S7HP-

ST 3, 21 {3,2}°
~ 5 ~ 7
(c) (YZ)(3) > (Sp(2)x S )(3), (Ya)(z) ~ (SU(3)x S )(2)

3. 5. &7
and (YZ) (5% 8”°x 8 HP-{B,Z} and

P-{3,2}

(@) (Tgdp_gpy ¥ (87x 87x 87)p_15y snd (T) 5y = SUH) (.
PROOF £U(3) is the total space of an 57-bundle over S° with X(SU(3))
having order two., A map of degree two Ss-———----s5 then induces the
product bundle, So—— S°x §2 ——8°, from §°— SU(3) —=5 and
(a) now follows from Lemma (2.2).

A map S7—--—----S7 of degree six induces the product bundle
SU(3) —— SU(3)x 8" —58" from SU(3)— SU(4) —5" since X(SU(4))
has order six, thus the second part of (b) follows. To show that
the first part is true, one uses the fact that SU(4) is an Sp(2)-
bundle over S° with K(SU(A)emg(Bg (5)) % M, (Sp(2)) = Z/2. As in
the proof above, one now sees that SU(h)(B) x (Sp(2)x S%(3)°

(¢) and (d) follow in similar fashion using the fact that if
one views Y2 and Y3 as SU(3)=-bundles over S7 then X(YZ) has order
three and %KYB) has order two.

Q.E.D.

Each of the sapaces, Yn’ n=0,1,2,3, is of the type(3,5,7)
and, as in the case of the spaces X of Chapter II, [YnAYn, (Yn)¢]
is trivial for dimensional reasons. Thus, we may use Theorem (1.25)
which with the above proposition would give a complete solution to
our problem, provided we could compute each of the following

numbers:

(1) pu((s(3)x 87) ),
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(15)  p(ST(H) (5)),
(111) p((sp(2) x 57) (5,
(iv) )&((SBX 57x% S7EP-{2})’ and
(v) }L((SBx 57x s7)]P_{3’2}).
Of the above list (iv) and (v) are easily computed using
Theorem (1.23). (iii) is computable but requires a knowledge of
the cellular structure of Sp(Z)(B)together with information about
the generators of the 3-primary homotopy groups of certain spheres.
(1) and (ii) are essentially non-computable by the techniques that
yield (iii), (iv) and (v). The reason for this is that these
methods would require a knowledge of the 2-primary unstable homotopy
of certain spheres which is well beyond the range for which it has
been computed., We will, however, be able to give a rough upper
bound for (i) and (ii), modulo the cardinalities of some undetermined
2-primary homotopy groups of spheres.
We begin our computations with the easiest, namely (iv)
and (v).
PROPOSITION (3.2)
(a) ,u((s3x 57x s7)jp_{2}) =3
(v) FX(SBX Ssx S7%P-{3,2}) = 530.79.115.13.

105, 539, 59.11°. 13 and

PROOF Using Theorem (1.23) with P = IP-{2} we have

# [(s%x s7x 87, a (8%x 57x 57Dy, (87x 87x 7))
5 7 L

! 2 3 L1 5 .6
_ a b % d e, T,
SRR R

j=3,5,7 k=1 h=1 m=1

where the values of the gquantities 8y bh.’ cj, dm.’ and ej are

3 J J
given by the table below,



¢c

£

1 € T = (d(gs)gtu)# =3
¢ g€ ¢ = () %mp =Fe
G.¢ T TT-¢ =} %Cuy# =gﬁp

L
Le€ ¢ G-¢ = cd(ps)gtxo# ="¢,
¢ T G-¢ = (d(;S)Z‘T')L)# ='c2p
C
1 I ¢ = (d(ps)gFu)# ='1,
¢ T G-¢ = (Jp %y =Fo
¢ So € ¢ = (&(gs)‘au)# =£Aq
C
¢ ¢ L6 = do¥ur =Ty,
1 ¢ T = cd(cs)gzu)# =ng
c
T 2 ¢ = (o Twr <Fa,
c
T G-¢ T = (d(?s)atn)# =<4
_ ,d 11 L
1 1 T = AT =g,
C
T ¢ 1 = (d(ES)Su)# =1,
_ ,d 0¢ L
€T-4-Gy6 T £ = (A up =g,
T aar: T = o =ty
C
1 L€ ¢ = Ao wr =T,
G-< 1 (o€ = o)ty =t
1 T ¢ = (9w Fr,
L=t c=¢ | ¢=¢
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The cardinalities of the homotopy groups above are
obtained from Toda (1962) and Toda (1965)., (a) is verified by
adding appropriate exponents while (b) follows from (a) by
setting P = P-{3,2}.

Q.E.D.

In order to compute ﬂ&(Sp(a)x S%(B)) we must first give
some details about the cellular structure of Sp(2)(3), compute
some homotopy groups, and develop some information regarding
generators of the homotopy groups of certain spheres. We begin
with a result about the cell structure of Sp(2)(3) and some of its
related spaces.

Let X2 be as in Chapter II, i.e., the total space of an
s> _bundle over S’ having XKXZ) o N1(3), a generator of the
3-primary component of ﬂB(SB) ~ Z/12. Using Lemma (2.2) it is

easy to see that (XZ)(B) ) Sp(2)(3).

LEMMA (3.3)
3 7 10
(a) X2 has cell structure S \Jui(B)e Ve ,
k k+3 k+7 k+10
(b) for kz2, E (xz) & (S \Jql(k+3)e )vs ,
k ~ (k6 k+10 _k+10 k+1h
(C) E (X2/\X2) ~ (S Uql(k+6)e vS )UE e v
k+13 k+17 k+13 k+17,,,k+20
with E%G ='az(k+9) vV o, (k+10) where a;(k+9) gkt
Sk+6\qu(k+6)ek+lo is a coextension of ql(k+9):sk+12———— Sk+9
and
(@ (x.ax)/s® = (s3% 5% ucs i si9visBu ey
2"%2 o (13)
(Y3 17 1
«1(13) *

PROOF (a) is a result due to James-Whitehead (1954,p.205). (b)
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follows immediately from Mimura (1969, Lemma 2.1(ii)) and (c¢) and
(d) are obtained from Mimura (1969, Proposition 4.1). In the latter
three cases the proofs are essentially the same as those given by
Mimura, one merely ignores 2-primary generators. This is justified
by the fact that Sp(2) has cell structure SB\JV,+ u1(3)e7\Jelo’

which differs from that of X_ only in that the attaching maps have

2

2-torsion as well as 3-torsion since U'eﬂé(SB) has order four.
Q.E.D.

In later computations we will need to know the cardinalities

of the homotopy groups ﬂ&((xa)(B) for 8¢i%£30. 1In order to compute

these we first need some information about the homotopy of 53(3)

and 57(3). In what follows the notation for the generators of the

homotopy groups of spheres is that of Toda as found in Toda (1962),

(1965) and (1966).

LEMMA (3.4)

i= 24 25 26 27 28
ﬂi(s3(3)) | o Z/3 Z/3 ® Z/3 Z./% 0
x&(3) u6(3) “3(°’ﬁ1ﬂ1)
generators _
«1(3),81(6),81(16)
i= 29 30
3 z
—ni(s (3))% Z/3e Z/3 Z/30 Z/3
P, () «,(3)
generators > -
p,Q (B4, P.Q (B8,)

The following compositions also generate:
(1) wl(B)u5(6) =1¥,(3),
(2) & (3)xg(6) =2p,0°W),
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2
(3) «1(3)«1(6)ﬁ1(9lﬂ1(19) =%p,Q Qﬂyﬂl)o and
- ~2

(%) u3(0”6mﬂi)al(27) = £p,Q° (A8,
PROOF The entries in the table come from Toda (1966) since ﬂi(s3(3))z
ﬂ&(SB:B) by Corollary (1.22). The only facts requiring proof are
that the compositions (1), (2), (3), and (4) also generate.

Using the exact sequence
7.2y-8, 5,276 3.2y 702y — o ...

—> T, (57:3) 7,,(87:3) y5(S7:3) 7’25(5 :3)

and information concerning A and G given in Toda (1962, Proposition
13.3) together with the facts that T, (57:3) ® %/3 has generator
q5(5), n26(57:3)z Z/3 has generator «5(7) = E2«5(5). and
7(25(53:3)x Z/%, we see that

A(o(5(7))

{]
LI}

2
A(E 45(5)) 3«5(5) =0

and

G(q5(5)) al(B)Eus(s) = «1(3)u5(6).
Thus, G is an isomorphism and «1(3)u5(6) generates més(s3:3).
This proves relation (1). To prove (2) and (3) one first notes
the following concerning groups and generators: 130(57:3) x Z/9e%/3
has gemerators o (7) = B (5) of order 9 and « (7)A, (10)4,(20) =
Ez(dl(S)ﬂl(S)ﬂl(lB)) of order 3, 7r30(s5:3) % %Z/9eZ/3 has generators
ag(5) of order 9 and “1(5)ﬁ1(8E51(18) of order 3,
By Toda (1962, Proposition 13.3), -

8@ (7)) = 8E%(5) = 3ag(5) # 0, and
8(ax, (7)A, (10)4, (20)) = BEZ( (5)8,(8)A, (18)) = 3u, (5)4,(8)8,(18) = O.
Hence, G(x,(5)8,(8)4(18)) = & (3)& (6)8,(9)A,(19) generates and
since dé(S);ﬁ imd , G(o(é(5)) = otl(B)O(é(6) generates also.

That they map to the indicated generators is seen as follows:

By Toda (1965, (2.12)), H = I°H(2)

and by Toda (1965 (6.3) and
Lemma 6.1)

H(p,ﬁe(us)) = IoH(Z)(p.Qz(as)) - IQl(ué) = I»I'(ué(s)) = 0, and
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H(p,32(A 8,0 =11 ) (5,0%(8,8,))=TQ 68, 8 )=ToT" (¢ (5)8, (B4, (18))=0
since ToI' is two steps in exact sequence, Toda (1965, (2.5)). Hence
each of the generators of ﬂ29(53:3) is the image of an element of
ﬂé8(55’3) under G.

By Toda (1965, (1.3)),

(2), 3. 1,
H .1r29(s 23) —= T, (Q7533)

is an isomorphism and by Toda (1966, (10.1)),

2 (2)

12 (et (3) (6)8, (98, (19)) = BP) (e (3))x, (3)B, (6)8, (16)).
H(a)(dl(B)) generates nB(QlZ:B) which in Toda's notation, (1965, (6.4)),
is I'L5 so using Toda (1965, (2.6),(6.3) and Lemma 6.1), we have

(2) '
H (al(B)dl(6L81(9Xﬂl(l9)) = (I Ls)dl(BLﬂl(6bﬁl(l6)
I UsﬁfﬁﬁJSMlﬂﬁn
I (d1(5L61(8X61(18))
1
By
1% (p,02(8,8,)).
Thus dl(B)d1(6Zﬂl(9Zﬂ1(l9) =:tp,Q296Lp1), and relations (2) and (3)

are established.

To see that relation (4) holds, consider the following. By
%
Toda (1966, (11.1)) we have an exact sequence
2 2
—_— 1, __E_ 3. H N 1,
so e ’7f28(s 03) 7“30(5 -3)_"7(27(Q 2‘3) '7'('27(3 -3)—.'00.

which means that H(z):wgo(SB:B)——-mé7(O12:3) is an isomorphism.
By Toda (1965, Lemma 6.1 (i))
12 (p,52(8,81)) = £ T (e 80

and from Toda (1966, (10.1) and (11.7)) we have

(2),- (2) =

H (uB(Oﬁﬂlﬂl)“1(27)) = H (u3(0,ﬂlﬂl))«l(24)
=1
=1Q (B,8,)%, (2h).

In the exact sequence Toda (1965, (2.5))

— 7.2y 8 5.2y L L 1 702y o
7’31(5 13) frrzg(s :3) 1r27(Q 2.3) 1r30(s :3)
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A is an isomorphism [Toda (1966, (vi) p.24lﬂ , and so kerI & O.

By definition [Toda, (1965, 6.3 (ii))]

*

E”I(zﬁl(al,al,al)) =ta.pp

and by Toda (1965, (2.6)) end Toda (196
EVI(£T (8,4 )%, (24) = £ 8

=tp

= 10

But E*®

is an injection in this case wh

=1 =1
Q (B8 )= [£77 (B8 Iy

2, (3.4))
A Ba 27)
A

Iﬂlﬂl'

ich means

(2uﬂ e kerI.

Thus Ql(alplﬂl) = t@l(ﬁlﬁl)al(EM and since H(?) is an injection,
relation (4) now follows.
Q.E.D.
LEMMA (3.5)
i= 2L 25 26 27 28
7
UAS (3))% 0 Z/3 Z/3 z/3 z/3
generators d5(7) A (7)8,(17) uﬁl,ﬂl)
i= 29 30 31
7 a o
generators P.Q (4,)
dl(7lﬁl(10)ﬁl(20)

where u3(l,ﬁ1)<*l(28)= ip,ngﬂl).

PROOF As in previous lemma, table entries come from Toda (1965,

1966) while the relation u3(1,ﬁ1)u1(28) = tp,ngﬁl) is proven by

Toda (1966, p.242).

Q.E.D.
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As stated earlier, for the most part all we will need to
know about the homotopy groups of (X2)(3) is their cardinalities;
however, where possible in the next lemma we have specified the

groups themselves,

LEMMA (3.6)
i= 8 19|10 11 | 12 | 13 14 | 15| 16
7g((x2)(3))z o|o |z/3.] .0 0 o} 7Z/3 o] O
i= 17 18 19 {20 | 21 22 23 | 24

'iri((xz)(”)z o) Z/9 0 0 0 Z/3 0 0

i= 25 26 27 | 28 29 30

Wi((xa)(B))z Z/3 Z/3 0 0 Z/9 Z/9 or
Z/3 @ Z/3

PROOF Entries for 8 £ i £ 23 appear in Mimura-Toda (1964) since
(XZ)(B) e Sp(2)(3) and‘ﬂi(sp(2)(3)) ~ ﬂi(Sp(2):3). The entries for

2h & i & 30 are computed from the exact sequences

4n43
l(S

ﬂ;(Sp(n+1):3)———*-ker(b:ﬂi(Shn+3:3)-——*—ﬂ&_l(Sp(n):B)) —0

(3.6.1) O——coker(a:'lri+ :3)-———-7ri(Sp(n):3))———--—

which are obtained from the fiberings Sp(n)-——f?Sp(n+l)-—»rsun+3.
d is the boundary map and for the case n=1 the following table
gives the action of b:w‘+1(S7:3)———w-ﬂi(33:3) on the various

generators.
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i= 25 26 27
& = . (7) p1(7)A,(17) u3(1,,81)
d(e) = £Y,(3) o, (3)B, (6)4, (16) 133(0,/11/31)

i= |28 29 30
4
x - (7 | (798,108, (20) | p,@%(A))
d) = £9.3° (o) $0,0°(8.8) | 20,87 (8 A)

Mimura-Toda (1964a, Thm. 5.1) show in general that for
4n+3)

uEﬁeﬂ&(S
(3.6.2) d@ES) = B .
Now 3(z,) = ¥(X,) =o,(3) which is a generator of 1(6(53:3). Thus
for oe 7ri(s7:3) which is a suspension element, that is « = E4 for
some /Sevri_l(s6:3), we have

2(E8) = d(z,ER)
CIOWY.
ozl(E),d .

For i = 25, 26 and both 29's, ® in the above table is a

{]

suspension element and the images under O for these entries follow
immediately from the above observation and Lemma (3.4). It remains
to check the euntries for i = 27 and 30.

Unfortunately neither u3(1,ﬁ1) nor P*thﬂl) are suspension
elements so the technique used above does not apply. The entry
for i = 27 will be needed to establish the entry for i = 30. We
will establish the entry for i = 27 by showing that ﬂé7((x2)(3))

% TMyg((X,)(3y)) ® 0. That this gives d(uy(1,4,) = £u,(0,4,4,)
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follows from the exact sequence
3. — —_— 7 o 3
7 3 -
by noting that 7%8(83‘3)" ker(b.ﬂé7(s7.3)-——-'ﬂé6(53.3)) ~ O and

1(28(57:3) ] 7{27(53:3)z Z/3. Also note that this sequence implies

Mimura-Toda (1964.3) show that 7(28(Sp(6):3)z 7(27(51:(6):3)

2 0. Using exact sequence (3.6,1) with n=2, 4 and 5, i = 27 and 28

together with the facts that 7r29(sll:3) " 1(28(511:3) = 1(27(511:3)

~ 19, 19, 23, 23, 23, 2«
. 8(s 13) = (877:3) = 7(29(5 13) ™ '”28(3 t3) 7727(5 :3)

7“27
~ O one can see that 7 8(Sp(5):3)=s'ﬁ27(Sp(4):3) ~ O and

Consider now the following pieces of exact sequences obtained

bn+3

from the fiberings Sp(n) —= Sp(n+l) ——3S for n = 3 and k.

(3'6.3) LA

755(51713) = a5 (5P(4) 13) —— 1,5 (SP(5)13) —= ...

(3.6.4) oo e, (5753) —— 7,0 (5D(3)33) —— 17t 55 (SP(4) :3) ——
Tyg(517:3) —— 20, (5D(3)13) —= 7, (SP(W) 13) —— ..t

Since 7(28(Sp(5):3) % 0 and 7r29(sl9:3) ~ Z/3 by (3.6.3) it must

be that 7r28(sp(4):3) X% 7Z/3 or 0, If 7 8(s;>(l+) 3) =% O then since

m,g(517:3) = z/3 and 7r29(s15:3) % 0 we see from (3.6.4) that

Mog(Sp(3):3) = O and m, (Sp(3)=3) % 7%Z/3 which is a contradiction

since this means that w,g((X,) ;) # %,,((X,) 5)). Thus

T,q(Sp(4):3) & Z/3. Consider now the homomorphism d:7. 8(515 3)

—— 7,,(5p(3):3) in sequence (3.6.4). By Toda (1962) = 8(515 3R Z/3

is generated by «,(15)8,(18) and thus 2(«,(15)4,(18)) = 3(x,(15))A,(17)

by (3.6.2). But a(«1(15))c-7rl7(3p(3):3) which is shown to be trivial

by Mimura-Toda (1964a). Thus ® is trivial in (3.6.4) and we see
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that ﬂé7(Sp(3)=3) ~ 0. Hence, we have shown that wés((xa)(3)) =
ﬂé7((X2)(3)) =~ O and have also established the entry in boundary
homomorphism table for i = 27.

To establish entry for i = 30 we first note that Mimura-
Toda (1964, Thm. 2.5) show in general that 3(wxA) = E*(E2x)A)
where E*:n&*l(su)———-Ni(Ss) has the property that E*eE = 1,

Using the relations given in Lemmas (3.5) and (3.4) we have

2(p.0 " (8))

b(u3(1yal)ul(28))

E*((Ebu3(lyﬂl))“1(28)) = E*aE(EB(lgﬂlﬂl)“l(27))
- =2
tug(0,4,8) )%, (27) = £p,Q"(8,4)).

Using the table together with Lemmas (3.4) and (3.5) one

can easily compute cokerd and kerd. This information, when used
in exact sequence (3.6.1) with n = 1 establishes results ﬂ&((XZ)(B))
for i = 24, 25, 26, 29 and 30.
Q.E.D.
The next lemma completes the preliminary information needed
to compute/L((Sp(2)x 55(3)).>

LEMMA (3.7)

i-= 8 9 10 11 12 13 14 15 16

ﬂ}(Ss(B))z Z/3 0 0 0 Z/3 0 0 Z/9 %Z/9

generators | d (5) o, (5) A, (5) aé(S)

i= 17 18 19 20 21 22
w&(s5(3))x 0 /3 Z/3 Z/3 0 0
generators 0(1(5),81(8) p*as(oll) 0(4(5)
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i= 23 24 25 26 27 30
7, ( s5( 5))® Z/3 z/3 | z/3 z/3 z/9 | o
generators p‘§3(a2) a5(5) p,QBQﬂl) 3%(5)

where the following relations hold:
(1) «,(5)« (12) =34, (5),
(2) ,81(5)«1(15) dl(S)ﬁl(S),
(3) o (5t (16) = 2,3 (),

i}

(%) p,6_3(«2)a1(23) = 0,

H

(5) 0L5(5)0L1(24) 133’2(5), and

o.

(6) o, (5)«,(20)
PROOF The tabular entries can be obtained directly from Toda (1962)
and Toda (1966). We will prove that the six relations hold below,

Mimura (1967) shows that «,(3)a,(10) =fa& (3)a,(6). Toda
(1962, Lemma 13.8) shows that dl(E)al(B) = t}ﬂl(s), thus

o, (5)& (12) = E°(«,(3)at) (10)) = +EZ(x; (3)0,(6)) = ol (5)ex,,(8)
and (1) follows.

E“:Wig(ss)———*—(3-primary component of stable 13-stem) is an
injection. The stable generators anti-commute, Toda (1962, (3.4)),
hence

E”(ﬁl(S)O(l(IS)) =p¥, =B = E“(al(5)/91(8)) and
(2) holds.

To show that relation (3) holds it suffices to show that
N;(E)ul(IG) # O since the group involved is Z/3.

Consider the homomorphisms

*, 5.2y o 5.
p1(19) .1r19(s :3) 1r29(s :3)
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and

", 2:3) 2,
o, (26) 1m0, (S57:3) Myq(57:3).

AL(19) 7 (@5 (5); (16)) = &y (5)e (16)B, (19)
3(5L£1(16)“ (26)
=« (26) (oc3(5),81(16)).
By Toda (1966, p.242) we see that p,§3gﬁl)dl(26) generates ﬂé9(55:3)
and since p*QBQﬂl) generates ﬂé6(55:3) we conclude that a1(26)‘ is an
isomorphism. Thus, to show that u;(s)a1(16) # 0 it suffices to show
that «;(5)8,(16) # 0.
By Toda (1966, (10.1) ond Lemma 11.5)
(2),.,' (2)
H (d3(5251(16)) (« (5))ﬂ1(13)
Q W1M1U3
where 182 (a, 3(5)8,( 16))em: (Q :3). By Toda (1965, (6.4))

7(23(Q2.3)z Z/3 and has generator 72 (o 8,).
By definition,
E"L(T (a,8))) = .8,
and from Toda (1965, (2.6))
=2 ~2
E*I(G% ()8, (13)) = E*[(1(Q%(x,))p, (16)]
E®(13° () )EB, (16)
= %8
From the exact sequence Toda (1966, (11.2)) we see that

. 3.2y o 13,
is an isomorphism and since E® is an injection we see that
=2 =2
Q) )p, (13) = QU B,).
]
This implies that «3(5»ﬁ1(16) # O and we have demonstrated (3).

By Toda (1966, (10.1)) and Toda (1965, Lemma 6,1 (iii)) we have
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12 (5,30 uy (23)) = 13 (9,8 (w,) ), (20)

2 1
+
*Q (“3)“1(20)'
From the exact sequence Toda (1966, (11.1)) and the fact that

ﬂé4(53=3) is trivial we see that

(2), 5. 3,
H .1r26(s $3) ——> 7r23(Q2.3)

is an injection.
Similarly, from the exact sequence Toda (1966, (11.2)) and

the fact that ﬂés(sll:B) is trivial we see that

. 3, 13,
I.71’23(Q,2.3)——- 7‘26(5 :3)

is an injection. But

) 3)
(1 (oc3(11))«1(23)

2, ! 2
1(Q (0(3)011(20)) = 1(Q"(« )Nl(23)

=0
1
by Toda (1965, (2.6)), definition of the generator Qe(us), and the
1
fact that IeI is two steps in an exact sequence. Thus
2 ]

+ -

1Q («3)«1(20) =0
and (4) follows.

5. . 5. PRSI 60

ocs(s)cxl(zh)ewz?(s :3) and E.7(27(S :3) M,q(S7:3) is an

injection. Using Toda (1962, Proposition 3.1) we have

E(«5(5)«1(24)) = «5(6)«1(25)

3 22
B (3)E «4 (3)

3 6
~E°«, (3)E «5(3)

E(-«1(5)x5(8)).
2
Thus as(s)al(zu) = -u1(5)d5(8) = -E (x1(3)x5(6)). By Lemma (3.4)
relation (1), |
“1(3)“5(6) ='t¥2(3)

and by Toda (1966, (11.8))

2

E (32(3) = 38}(5)
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thus as(s)ul(au) = 13¥,(5) and (5) is established.

Finally, as above one can show that

o, (5),(20) = - (5)a, (8).
But oy (5)%,(8) = E2(x, (3)%,(6)) with & (3)x,(6)€ T, (s7:3). Toda
(1966) shows that "21(53‘3) ~ %Z/3 and that it is generated by an
element whose double suspension is trivial, hence au(s)al(zo) =0
and we have (6).
Q.E.D.
We are now ready to compute u((Sp(2)x SS)(B)).

PROPOSITION (3.8)

5 L6

PROQF Since (Sp(2)x 55)(3) o Sp(2)(3)x 55(3) 2 (X )(3) 5( ) it
suffices to compute/k((sz SS)(B)). Using Theorem (1.23) we have

5 5 5 5
MUK x 87) (53) = #fBXZx 87) (A (K% 87) 5y, (X yx 8 )(3ﬂ

i=1 j=1
where
a, = #[x As5Ax2As5, (X)) (5] = #[E0x NSR (Xa)(3>] = 3°
a, = #[XAS7AX A8, 8 (3)] = #[E*(xnx), s % 5y] = 3
ag = #[X ax,, (XE)(B)] - 3t
ay = #0NK,, 87(5)] = 30
ag = #[s As5, (X,) (5] = #mo((X,) 53 = 3

ag = #[s7As”, s5(3)] = #(my (87 30

(3))) = #(T(5713)) =
#[szs5Ax2 (X,) (5)] = #[55(X2Ax2), (x,) (3)] = 37
5 = #DASAX,, 87 53] = #[E7(XAK,), S %5y] =

= #lXas%s?, (X, 5] = #EC®), 25l = 3°

1O 5
#las7rs%, (823 (55] = #[E00X), 87(5)] = 50

(o o o
1 it il

o’
F—
1]
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5

by #[XZAS , (X )(3)] = #[E’ (X,), (xa)(a)] = 30
5 -

b6 #[le\s ’ (3)] = #[E (XZ), (3):! = 3 .

The final result follows by adding exponents so it remains

to verify the twelve values a, and bj for lei<6.

Since (X )(3) ~ Sp(2)(3), a 31 follows from Mimura's

(1969) computation of m(Sp(2)). ag 31 and ag = 30 comes from

Lemmas (3.6) and (3.7).
By Lemma (3.3 (ii)) we have

5 ~” oS 12 .15
E (X2) ~ g \J“l(g)e v S

and
10 N <13 17, 420
(xz)- S u“1(13)e vS
Thus
5 5 ~ 8 12 5 5
Ex), 7] [Ty (gye™ 75yl @ ms(s7 50,
5 8 12
[E2(x,), & )(3)] [s ua1(8)e , (XZ)G)] o o ((X,)5),
BP0, 751~ [sPu, <13>°17' e Mol (5))s
and
10 17
BP0 () 5] [0 asye™s () (591 @ (X)) 5.
Letting Z represent 55(3) or (X )(3), from the cofibrations
La® . %, (9)
11 : 12 L12 9
S S S \Jul(g)e -— S S e o
and ; oy (13) . «, (14) .
1 13 3 17 17 1
S S s Ud1(13)e b S S . [] .

we obtain exact sequences

« (8) & (9"

7, (2) ~—— 7r8(z)—~—[s Uy (8) %, 2] ~— m ,(2) Ty (2) ..
and o (13) o (1)

(2) —— my5(2) ~— [s%%u Y7, 2]— - (2)-—
16 « (13)¢ 17 T h :
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5 ~ 5 ~ 5 5 ~
Now 7r11(S (3)) ~ 719(5 (3)) 0 and 7(8(8 (3)) = 7r12(S (3)) Z/3

12

means #[Sngdl(g)e ’ 85(3)] = 32 which together with wis(SS(B))fz Z/9

implies b6 = 3“.

Similarly, "‘8(()(2)(3)) = «12((){2)(3)) = 7rl5((x2)(3)) = 0

0]
gives b_ = 3 , and likewise ﬂiB(Z)=%'#17(Z) = “éo((xz)(3)) = 0

5
together with ""20(35(3)) ~ Z/3 gives b, = 31 ang by = 30,

To compute a), we use the cofibering

6___ . e 6 7
S szxa (Xz"xa)/s s E(XZAXE)—-—. . .

which gives an exact sequence

5 5
7, (S )a— [X_AX_, S [ 6 .5 —-— 5
6" (3) 2Moe 27(3) [(xzaxz)/s y 8%(5)] (87 5y) =
which, since 7%(85(3)) = '717(55(3)) = 0, means that

6 5
ay, = #[(X8X,)/8°, 8751
By Lemma (3.3 (iv)) we see that
[(le\xa)/s6‘ 55(3)jm[(sloVSlO)UC(SIBVSl9), 55(3)3 D

17

13 17 5 13 5
[77Vg (13077 87(5)d @ L5V a3y 87(5)]-

But [SlBkJ 7, 85(3)] « 0 so we have

1
e
«1(13)

6 5 10, ,10 13 .19 5
[(x,ax,)/8°, 87 5 ] = [(87VvsTHVa(s™vs™), 575y ].
As before, we use the appropriate cofibering to get an

exact sequence

5 5 v 5 5
My o(87(3)) @ Ty3(57 (5))=——m (87 (5y) @ 7y 5(57(5y)

<10, .10 13,19, .5 5
(s vs ™ )wve(s~vs™7), s (3)] (87 (5)) @

(3
5 5 5 -
Using the fact that "‘10(55(3)) w «11(55(3)) % 'rr14(s5(3)) %0

and 7r20(S5(3))z Z/3 we see that
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[ s1%u c(stPvst?), 55(3)]z Z/3
and so0 a, = 3 .

By Lemma (3.3 (ii)),

5 o 11 15 .15 19
E7(X,AX,) [(s Udl(ll)e vsT )LD /6 ]
v(slgu‘x (18)e2 )v(smuq (18)e22)v525
1 1
hence
11 15,.15 19
b, = #[(s utxl(ll)e VSTV pog e, ;) (3)d
a8, 22 .
(#[s U"‘l(lg)e , (X )(3)]) #(1r25((x )(3)),
and

11 15,415 19 &5 .
b, = #[(S Uo‘l(ll)e v3 )\/Eﬁﬁe y S (3)]
18 22 .5 2, 5

From Lemmas (3.6) and (3.7) we have
- 5 .zl
#(1’( ((X )(3))) = #(71‘25(5 (3))) = 3.
The cofibering

«, (18) 0( (19)
21 °) 18 18 22 g22 1 19

’ L d * L] L *

gives an exact sequence
X (18)" 18 22
51(2) 2,818) 4 18¢(2) [s U“1(18)e y Z)—

(z)-9‘1<—l-9—) 7r19

(Z)"_—_o e o o o

o2
which since 7r21(z) ~ vr22(s (3)) = m ((X )(3)) x 0, T 8((X )(3))*5 Z/9,

((X )(3)) & . 8(S (3)) x 7Z/3 produces the cardinalities.

. 22
AP0y 1g)® (5] = P

and >

18 22 5 Ll
s Ve 18)° ™ 875l = 37



Lo

From the cofibering

edyst?) — (st

18 11
5 (s uo(l(ll)

———

15,15 19
« (1€ VE YU g5 e

S19 (SlZ 16v516)

e
«1(12)

we get an exact sequence

ll 15
(3.8.1)  4(2) (EBY [ Vo (ay® s 21 @ m5(2) —

6 *

o, (11) /;

16

12
L(s Uo(l(lz)e

v Z] e Trlé(Z) ———— 4 s ¢ o o .

The exact cofibration sequence
*®

o (11) 1 15 r
(3.8.2) ™, (B) =122 o (2) —— [8 Y, [an® 7] ~E—

41(12)

ﬂiS(Z)

’n‘lz(z) 4 ¢ ¢ ® o
is needed to compute the group

11 15

For Z = (X )(3) we have wil((X )(3)) & ﬂ15((X )(3)) ~

~ 15
7(19(()(2)(3)) A 0 and we get [t udl(ll)e , (X )(3)] o 1r15((x )(3))

from (3.8.2) Thus exact sequence (3.8.1) gives

11 15, .15 19 ~
[¢s Ve, (1) Y8 VEg e (X051 = ©

and we have

The computation for 2 = 55(3) is not as simple because of the

existence of non-trivial homotopy groups. We begin by determining

11 15 5
[S \1«1(11)3 s S (3)].

From Lemma (3.7) we have 'n'll(s5 ))’3 0, 'r(’ls(s5 ))% %Z/9

(3 (3
with generator /81(5) and 1(12(55(3)) = %Z/3 with generator a2(5). The
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*
group in question is thus seen to be isomorphic to coker«l(lZ)
which is isomorphic to %Z/3 since

*
- =+
o, (12) (,(5)) = o,(5),(12) = *38 (5)
by Lemma (3.7 relation 1). Thus we see that

11 15 .5 ~
[s Y () " ® (3] * 2/3

and has generator
r‘(ﬂ1(5))

where r* is induced by the collapsing map r:Sll\J« (ll)els 15
1

—_— S .

Since 11'19(55(3))& Z/3 with generator p*Q'B(cxl) and
11,‘18(85 )) ~ Z/3 with generator dl(Sbﬂl(S), to compute the group

11 15 .15 19 5
[(sttu vS )UE%e ,3(3)]

(3
o, (11)°
from the exact sequence (3.8.1) we must determine ker(E°8) and
coker(EéB)*.

By Lemma (3.3 (i11)), E% = & (15)ve (16) and so (£8)"~
(&‘i(15))* @o(l<16)*. But o<1(16)' applied to the generator oc;(s) of
7"16(35(3)) is «;(5)«1(16) which generates 7r19(s5(3)) by relation (3)
of Lemma (3.7). Thus coker(EG/?.)*z 0.

Similarly, B8 & & (14)va (15) and (898) = (&(14)" @ « (15)".
Thus ker(E’8) is determined by the images (%(14))*(1-*(,91(5))) and
& (15)*(B, (5)). Now

o (15)* (8, (5)) = A, (5), (15) = ta (5)8,(8)
by relation (2) of Lemma (3.7). Thus we see that ker«l(ls)* & Z/3.
For & (14)* we get
(1) (r*(B,(5))) = r* (B (5)AT(LY) = A (5)rR (14).
By Toda (1962, (1.18)) we have
ro(14) = Eaq(14) = &, (15)
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which means
(1) (r*(,(5))) = B, (5)&,(15) =1« (5)8,(8)
by relation (2) Lemma (3.7). Thus ker(X (14)*) &0 and we conclude
ker(E°8)* & Z/9.
Thus, from exact sequence (3.8.1) we see that

[(snuoq(n)els" S Ugget?s 751 = 2/3

and we have shown that

5
b2 = 3 .
As in the above computations for b1 and b2 it is similarly
seen that
16 20, .20 24 .
al = #[(S udl(lé)e VS )UEl%e 9 (XZ)(B)]
. ey 27 2, s
(#1[s U“1(23)e ' (XZ)(B)]) #(WBO(\xz)(B)))
and
16 20 .20 24 5 .
a, = #[(s Uotl(16)e vS )UEloﬁe s S (3)]
23 27 &5 2,, 5
(#[s YV (23)° 0 ® (3)1) #5087 (5900

Beginning with the right-most cardinalities in the above
products we have
2
#(1r30((x2)(3))) =3
and

5 _ 20
#(1!’30(8 ))) =3

(3
from Lemmas (3,6) and (3.7).

The exact cofibration sequence

o. (24)*
23 27 1
7(23(z)-.-—-[s U s 2] -<~—¢(2,7(z)-._—_---_1-(ZL+

o, (23)*
«,(23)°

1r26(Z)

together with the fact that ﬂéB((XZ)(B))‘z ﬂé7((X2)

23 27 0
#ls Ve, (25)° (X3)(5)] = 37

(3)) = 0 gives
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For Z = 85(3) all relevant homotopy groups in the above exact
sequence are non-trivial so we must determine kerul(23)* and
coker«l(Zh)*.

From Lemma (3.7) we have the following information about
groups and generators:

'12‘24(85 )) =~ %Z/3%, generator 0(5(5)

(3
7!‘27(55(3)) =~ 7Z/9, generator Y2(5) and
7?’23(35(3)) = 7%Z/3, generator p,,-Q_B(O(Z).

By relations (4) and (5) of Lemma (3.7) we have
%, (23)* (2,8 (2,)) = p,@(&,)a (23) = O
and
%) (28)* (% (5)) = &g (5)ety (2h) = 3%, (5)
and we thus conclude that
ker«l(23)* & cokera(l(2‘+)* & Z/3
which means

23 27 5 g2
87Uy (23107 (51 = 5

The cofibration sequence
(3.8.3) %"
T3 (2)

o
(52U 166 20 @ (8 ~—

1

A

17 21

is used to determine the remaining factors of ay and e To use

this sequence we must first compute
16 20
50s a6y 2

and
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These groups are obtained from the exact sequence

(3.,8.4) o (16)* i*
1 20
6(z)-——ljs Uul(lé)e A

r* d (17)*

(Z) 921’ ZJ

17
My o(2) =— [s uotl(17)

— T, (2)=~— . . .

where i* is induced from inclusion and r* by collapsing map.

For 2 = (X )(3) computations are easy since ﬂi6((X2)(3))z

ﬂéo((x )(3)) ((X )(3))==0 = ﬂéh((xa)(B)) which in (3.8.4) and

(3.8.3) easily give

[s**u, (16)"20"520)UE195 e, (x 2)(3)d ®
that is

#[(sl6u«1(16) 20, 520y 1%e2“, (X,) (5)] = 30,
At this point we may conclude that a, = 32.

For 7 = §7 4 we have «21(55(3)) = 1(17(55(3))'»:0 and from
(3.8.4) we see that
[517V«1<17>e21' (31 = ©.

0(S (3)) % Z/3 with generator «,(5), (s (3)) % 0 and kera, (16)"

~ 7%Z/3 since oy (16)* applied to the generator g (5) of T 6(S (3))~ 7Z/9
generates ﬂig(s (3))ziz/3. We also note at this point that since
3«;(5) = q3(5) we may use q3(5) as a generator of kerql(l6)*. In

any event, we conclude from (3.8.4) that

Z/3 & Z/3
16 20 5
[s Vo (16)¢ 0 S (31 % or
z/9

and that both r*(au(S)) and u3(55 are non-zero where one or both
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may be generators. The symbol «3(5) represents an element having
the property that i‘(a3(5)) = «3(5), i.e. a3(5) is an extension of
[+4 o
3(5)
Using exact sequence (3.8.3) we can determine the cardinality

of 20 .20 4

16 2 5
[(s \&1(16)13 VS )uE:Lc/)Se , S (3)]
by noting that it is equal to the product

#ler(B2%) ) #(10,(5% 1))

(3
By Lemma (3.3 (iii)),
E'% = &3 (19)ve (20)

50
ker(EIQﬂ)* = ker&I(l9)* @ ker«1(20)*.

By relation (6) of Lemma (3.7),
«1(20)*(«u(5)) = «4(5)«1(20) =0
g0
* 5
k.ero(l(ZO) R 7(20(3 (3)) = 7Z/3

i.eo #(ker“1(2o>*) = 310

We now show that #(ker&{(l9)‘) = 3° by demonstrating that
both r* (0(&(5)) &\i(l9) and JS) 5(\‘1(19) are trivial.
We first consider the composition &;?33&;(19). By Toda
(1962, Proposition (1.7)) the set of all compositions {&;f§3&5(19)}
is equal the secondary composition
{orB(S), o, (16), o, (190}
16

which is a coset of 1(20(85:3) 0(1(20) @a3(5) 71’23(5 :3). However,

w}O(SS:B) «1(20)~& O by relation (6) of Lemma (3.7) and

dB(S)ﬂéB(Sl6:3) & 0 since « (5)a2(16) = Ea(d3(3)q2(14)) and Toda

3
(1966) observes that the generator of ﬂ23(35:3) is not in the image

of E°. Thus the coset {a,(5), «,(16), «1(19)} contains the single
g
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element “3(5)&1(19)' We may now use Toda (1962, Proposition (1.9))

to conclude that

T\~
r*(q3(5)«1(19)) = a3(5)di(16)
where as before r* is induced by collapsing map

.19 23 23
r:S U“1(19)e ~—S

and «1(16) is an extension of «1(16) to Slgkjal(lg)e23.

Using the cofibration sequence

o (19)*

5 1 5 it 19 25 .5
55(57(3)) TM9(87 (5y) ~——[5 uo<1(19)e v 57(3y]
r* o (20)*

P 5 1 5 oy
Ty3(57(3)) 50(87(3)) - ..

and observing that dl(20)* is trivial we see that r* is an injection.
Thus, to show that aB(S)QI(l9) = O it suffices to show that
a3(5)«1(16) = 0,
That this is indeed the case comes from the following observations:
' ]

(1) u3(5)a1(16) = (3a3(5))a1(16) = 3(a3(5)«1(16)) =0
by relation (3) of Lemma (3.7),

(2) u3(5)o&(16) may be chosen to be q3(5)d1(16) since their
restrictions to 519 are equal, and finally
(3 «3(5)“1(16) is an extension of a trivial map and hence

may be chosen to be trivial.

Finally, as to the triviality of r‘(a4(5))&;(19), we note that

r* (e, (5))87(19) = &, (5) r &7(19) = «,(5) Ba, (19)

0(4(5)0(1(20) =0
by Toda (1962, (1.18)) and relation (6) Lemma (3.7).

Thus
16 2b .5 4
#[(s Ual(16)° )UEl‘,’ae , S (3)] =3

ZQVSZO
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and we conclude that

a = 3 P QoEnD'

The next, and final lemma will be used to compute an upper
7
bound for the numbers }KSU(&)(z)) and m((SU(3)x S )(2)).
LEMMA (3.9)
Let n,, i=1,2,... ok be a sequence of positive integers

greater than 1 and X be any space, then

=

n n n n
ale 1 2 3 k | | .
#s Uy e U e’U ...\ e ", X] & #l, (X)),
[ &n <y olpn oy i =1 n,

PROOF

n n
For k = 2 the inequality #[S lu e 2, XJ& #(w (X))-#(mw. (X))
% g ! 2
1
follows from the cofibration sequence
*
%n ) n n (E«n )
1l n o ’ n n+1

-3 1 ny 2 1

since #(kera )& #(T (X)) and #(cokerEx ) & #(m (X)).
nl nl nl na

The result for any integer k =2 2 now follows easily by
induction.
Q.E.D.
For a given X and set of primes P we will use the symbol
/+P(X) to denote the number of distinct homotopy classes of

multiplications that the space X_ will support.

P
The main and final result of this chapter is the following

theorem.
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THEOREM (3.10) Let I denote the set of all primes, then
L6

(@) Mp_gpy (SU) = 37057099127 13,

(0) php_ gy (5U()x 87 = 3192550 7% 12515,

46 30 9 ..5.

(@) pp_gp (T3) = 3105,530,59,115.13,
s Y = 210. 2 . . .
(&) puygy BT = sy (¥3) £ 277 C0 57 C50,3  %30,5 " ©30,7, ana
7y - 235,62 . : .
(£) pag0 (SUGIx 87 = upy (¥) & 2 27,3 " C30,3 “C30,5 30,7

where C . = #(ﬂi(sj:2)).

is3
PROOF (a), (b), (c) and (d) follow immediately from Theorem (1,25)
and Propositiomns (3.1), (3.2) and (3.8).
Since Yn has cellular structure
53\1e5k1e7kJe8\Jelok/elZ\Je15
it is easy to see that YnAYn has cells in the numbers and dimensions

given by the lattice below.

18 20 22 23 25 27 30
15 17 19 20 22 2k 27
13 15 17 18 20 22 25
11 13 15 16 18 20 23
10 12 14 15 17 19 22
8 10 12 13 15 17 20




ko

We may use Lemma (3.9) to obtain the following inequality.
(3,10.1)
2 3
My (SUM)) & #(m (ST :2)) - [[#(mg(sU(H):2))]- [#(r o (sU(H):2)) ]

[#(m  (sU(4):2))] -2[#(1(12(SU(4) :2))] ?[#(7(13(511(!») :2) ):]L-}
#(10), (SU(B) :2)) - [#(wls(su(u)zzn]s- AT ((SU(8):2)) -
[#(m, ,(sU(k):2) )]tf[#(vrlg(su(u) :2))] fF[aét(frllg(su(u) :2) )]2
[, S0k :20)] e, (5040 1 200] - [T (5904 :2)7]
(T, (SU(L):2)) « [#(T, (sU(h) :2) )f[#(vra?(su(u) :2) >:|2~

#(g (SU(H) :2)).
The cardinalities of all the groups involved, with the except-
ion of the last four can be found in Mimura-Toda (1964). We may
.estimate the last four using the exact fibration sequence
. - $2) e 745y
.« o s «i(su(3).a) ﬂi(SU(u).Z) 7T, (S :2) o o o
wherein we estimate w&(SU(3)32) for i = 24, 25, 27 and 30 using the
fibration sequence
3, . 5,
e o o ——'-’T(i(s 02) '—"'ﬂi(sU(3>-2) ""_'-'n'i(s Da) o o o .
For SU(3) we get
13 '3- o 5- poy - l+ -— 5
#(méu(su(3).2)) £ #(m,, (87:2)) #(10,, (S 12)) = 2-2 = 27,
, 3,00, 5.5)) = 2.23 -
#(ﬂés(su(B).z))é. #(ﬂés(s fa)) #(ﬂés(s 12)) = 2.27 = 27,

]

Q

N
W

. .2)) & 3.5y 2,

#(wé7(su(3).2))- #6né7(s :2)) #(T0, (S :2))
and

.2)) & 3.5)y. >, - .

#(ﬂBO(SU<3).2))- #(ﬂ3o(s :2)) #(ﬂso(s 12)) = C30,3 " C30,5
where the numerical values of the cardinalities involved are
obtained from Toda (1962), Mimura-Toda (1963), and Mimura (1965).
[Ssee Appendix I for tabulation of cardinalitiesy

Combining the above results for SU(3) with the fact that
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#(ﬂé4(37:2))
#(1tyg(s7:2))

n ]
n n
- -

and #(né7(s7:2)>

we have

i
he)
O

#(ﬂé#(SU(h):Z))
#(ﬂéE(SU(#):Z)) .

. and #(ﬂé7(SU(#):2)) £ Con.3 2.

i
N

Inequality (3.10.1) now becomes
2 3 2 2 L
0. (25 @M T2 - (22) - (2B) - 27 (2
L L 2 5 4 2 2
28 (23 3 @3 @8 2N 2228
2 2
6y
027'3 (27)
2
29,3 " %30,3 "C30,5 " C31,7

6

4) .27,

"

Mooy (ST

30,3 ©30,5 " ©30,7

- 2210

and we have demonstrated (e). [See Appendix I for a tabulation of
cardinalities,]

In a similar fashion one can check that (f) holds.
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APPENDIX I--Continued

i #(m, (%)) #(m, (5)) #(m (s7)) A, (SU(3))) | #(m (ST(H)))
21 2 '31 22 25'31 21'31 25
22 22.3t.11t 2" 25.31.51 223t | 8.st.gt.nt
>3 2 25.51 b 23,31 27,51
24 2t 2*.3t.11? 2 |
25 21.31.51_71 23_31 24_31
26 026’3'32'51'71'131 22.31 2’-1-.31.111
27 C27’3-31'51 23‘32.51 23.31
o8 028’3 C28,5'33'51'71'131 22_.31
29 C29,3-32 C29'5-31-51 26.32
30 Cs0,3°3 C30.5 C30, 5730571137

14
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