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ABSTRACT

DYNAMIC PROBABILISTIC SYSTEMS WITH 

CONTINUOUS PARAMETER MARKOV CHAINS 

AND SEMI-MARKOV PROCESSES

by

CHRISTOPHER T. H. LEE



ABSTRACT

The modeling as  well as analysis  aspec ts  of dynamics probabilis tic
0

system s whose sta te  transition  p ro c e sse s  a r e  continuous p a ra m e te r  M ar­

kov chains and sem i-M arkov  p ro c e sse s  a re  investigated. The f i r s t  th ree  

chap te rs  p resen t the Introduction and some p re l im in a ry  m a te r ia ls  for the 

re s e a rc h  conducted. The m ajo r  contributions for Markovian system s a re  

p resen ted  in Chapters  4 through 6, and that for sem i-M arkovian  system s 

a re  p resen ted  in C hapters  7 and 8.

A new and sim plified approach is employed to derive the system s 

of d ifferentia l and in tegra l equations, which respec tive ly  govern the 

dynamical behavior of the sta te  p robab ili t ies  of Markovian and sem i-  

Markovian system s. The system  of differential equations for Markovian 

sys tem s  a re  derived in Sections 4. 2 and 4. 3 of Chapter 4, w hereas  the 

system  of in tegra l equations for sem i-M arkovian  sys tem s  a re  derived in 

Section 8. 2 of Chapter 8. A genera l p rocedure  is developed for modeling 

of system s having complex configurations. Simple exam ples of modeling 

a re  p resen ted  in Sections 4. 5 and 7. 2 through 7. 4 to i l lu s tra te  the genera l 

methodology.

Using a unified m a tr ix  approach, closed fo rm  genera l solutions 

a re  derived for many commonly used system  effectiveness  m easu res .



The m atr ix  approach is shown to be very  useful and appropria te  for 

analysis  of sy s tem s  with finite sta te  space. The solutions for Markovian 

system s a re  developed in Sections 5. 2 through 5. 11 of Ghapter 5, and 

in Section 6. 2 of Chapter 6. For sem i-M arkovian  system s the solu­

tions a re  developed in Sections 8. 3 and 8. 4 of Chapter 8.

Exis tence of asymptotic solutions for the sta te  probab ilities  of 

s ta tionary  ergodic Markovian and sem i-M arkovian  system s a re  proved.

M atrix exp ress ions  for the solutions a re  developed in Sections 5. 6 and 8. 3 

Appendix C p resen ts  a proof for the existence of the lim iting solutions.

Im portant p ro p ertie s  pertaining to the state, t ra n s i t io n -ra te  

m atrix , M, of s ta tionary  ergodic Markovian system s a r e  studied. The 

m ost significant findings a re  that M’ is always singular, and that subm atr ices  

of M resu lted  from  deleting any num ber of rows and the corresponding 

columns of M a re  nonsingular. This is the m ain theorem  proved p e r ­

taining to the p roperties  of M. Appendix D contains the proof of this theorem.

Special contributions a re  made in Chapter 6 on the probability  

distribution and s ta t is t ica l  moments of the system  f i r s t  passage time. In 

particu la r ,  for a Markovian system  com prised  of independent subsystem s, 

it is  shown in Section 6. 5 that the m ean-up-tim e and down-time of the system  

a re  exp ress ib le  in te rm s  of those of the subsystem s. Thus, computation 

for m ean up-tim e and down-time of la rge  scale  system s can be g rea tly  

simplified by m eans of th is  approach.



Chapter 1 

INTRODUCTION

#

1 .1  HISTORICAL BACKGROUND

It was as eaiTy as the tu rn  of this century  and before the theory 

of stochastic  p ro cesses  w ere available that E rlang  (1878-1929) [1] 

p ioneered the study of trunking problem s for telephone exchanges. This 

p roblem  was la te r  studied by Palm  in 1943 [2] a fter  the theory of s to ­

chastic  p ro cesses  was developed. Based on these  successfu l experiences, 

Khintchin in 1932 [3] and Palm  in 1947 [4] m athem atica lly  form ulated the 

groundwork on machine operation and maintenance problem s. After 

World W ar II, the acce le ra ted  advances in modern sc iences  and engineering 

have rapid ly  increased  the magnitudes and complexity of- technological, 

economical, and social problem s. Keeping in step with these in c reases  

have been the general r i s e  of in te re s t  in modeling and analysis of these 

p roblem s, which in tu rn  had a profound stimulating influence on the 

development of m odern  probability theory and the study of stochastic  

p ro cesses .

N um bers in b rackets  r e fe r  to re fe ren ces  lis ted  at the end of this thesis.



Many books on probability  theory, s tochastic  p ro cesses ,  and 

th e ir  applications have been w ritten  in recen t y ea rs .  Among the im p o r­

tant ones a re  [5-14]. T here  have been a large amount of r e s e a rc h  papers  

and m onographs w ritten  on s tochastic  p ro c e sse s  which a re  re la ted  to 

physical problem s. In the a re a  of waiting lines and queuing problem s, 

some examples a re  [15-23]. Renewal theory was developed as the study 

of problem s re la ted  to fa ilu re  and rep lacem ent of components. The o r i ­

ginal and significant publications on renewal theory  include [24-32]. The 

study of machine operation and m aintenance problem s is the cen tra l p a r t  

of re l iab il i ty  theory. Motivated by the experiences during World W ar II 

with unreliab le  complex m il i ta ry  system s, and by the unsuccessfu l events 

of sa te lli te  launching in the ea r ly  part of the space p rogram , re l iab il i ty  

theory  was developed as a re su lt  of the demand for m ore  re liab le  system s. 

Some of the ea r ly  papers  in this field a re  [33-41]. Economical and social 

p rob lem s w ere also modeled and studied in the fram ew ork  of dynamic 

probabilis tic  system s. Among the significant publications a re  [42-46].

As the complexity and scope of dynamic probabilis tic  system s 

continue to evolve, much r e se a rc h  effort has been expanded in recen t 

y ea rs  in the development of new approaches for modeling and solutions to 

the problem s. As a resu lt ,  a large amount of papers  and textbooks have 

been w ritten  in this field. References [47-71] a re  among the publications 

which re la te  closely  to the m a te r ia ls  covered in this thesis .
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1. 2 PROBLEM STATEMENT AND THESIS SUMMARY

In o rd e r  that a physical system  m ay be accu ra te ly  analyzed, a 

rep resen ta tiv e  m ath model of the system  m ust be developed. The dynami­

cal behavior of a physical sy stem  is generally  influenced by many uncertain  

physical phenomena and fluctuations of natura l fo rces . T herefo re , r e p r e ­

sentative m odels for physical system s, in general, a re  probabilistic .

This thesis  cons iders  modeling and analysis  of dynamic probabilistic  

system s whose sta te  transition  p ro c e sse s  a re  continuous p a ram e te r  

Markov chains o r  sem i-M arkov  p ro cesses .  F o r  the purpose of c la r ity  

and so that the development is physically  motivated, machine operation 

and m aintenance sys tem s a re  considered  as the underlying problem s of 

the development. It should, however, be noted that the concept of modeling 

developed and the solutions derived a re  com pletely  general and applicable 

to all Markovian and sem i-M arkovian  system s. A unified m a tr ix  approach 

has been used in the problem  form ulations as well as in their  solutions.

In Chapter 2, many commonly used system  effectiveness m easu res  

for dynamic probabilis tic  system s a re  presented . The m e a su re s  a re  defined 

in te rm s  of the probab ilis tic  and s ta t is t ica l  p ro p e r t ie s  of the system s. The 

definitions p resen ted  here  p ara lle l  to those of Barlow et. al. [33, 49], 

T ruelove [34], Bellm an [39], Shooman [63] and others.

-3-



Chapter 3 begins with a b r ie f  review on some fundamental 

relationships for probabilistic  system  analysis. In pa r t icu la r ,  the 

in terre la tionsh ips  between the fa ilu re - t im e  probability  density function, 

the fa i lu re - ra te  function, and the re liab ility  function a re  developed. New 

re su l ts  of this chapter include the re lationship  between the re liab ili ty  

function and the mth o rd e r  moment of the tim e-to -fa ilu re .  In addition a 

sufficient condition for the existence of the m om ents is  derived.

Chapter 4 considers  the math modeling of Markovian system s. 

Modeling of some two unit redundant system s w ere considered by Barlow 

and Hunter [33], Dick [53], G arver [54], S rin ivarsan  [65], and Osaki 

[68, 49], In this chapter the modeling methodology developed by the 

author in [55] is generalized. An exa.mple is provided to i l lu s tra te  the 

general methodology. A new proof of this chapter is the 

derivation of the general vector differential equation which governs the 

state transition  p rocess  of a Markovian system . The charac te r iza tion  for 

s ta tionarity  in te rm s  of the charac te r iza tion  of the probability density 

function (p. d. f . ) of the sta te  transition  p rocess  is  discussed.

Chapter 5 considers  the effectiveness analysis  of s ta tionary  

Markovian system s. In re fe ren ces  [33, 40, 50, 53, 54, 65, 68], for example, 

effectiveness analyses w ere perfo rm ed  on some specific system  con­

figurations. The work here  provides solutions for general system

-4 -



configurations. The re su l ts  in this  chap ter a r e  extensions of the work of 

the author in [55-60]. This chapter, together with Appendices B through 

E, re p re se n t  the m ain  contributions of this th e s is  on Markovian sys tem s  

analysis . M atrix solutions for the system  effectiveness measures  defined 

in Chapter 2 a re  derived. The existence of the lim iting solution for the 

vec to r  d ifferential equation of the system  is proved, and the solution 

derived. Im portant p ro p e r t ie s  perta in ing  to the s ta te  t ra n s i t io n -ra te  

m a tr ix  of the sy s tem  a re  studied. Also tre a ted  in this  chap ter  is  the 

f i r s t  p assage  tim e of the system  from  one subset of system  s ta tes  to 

another subset of system  s ta tes .  In addition, solutions for the p. d. f. 

and the general m th o rd e r  m om ent of the f i r s t  passage  tim e a r e  developed.

Chapter 6 d iscu sses  th ree  different types of system  u p -tim e  and 

down-time in te rva ls  for s ta tionary  ergodic Markovian system s  in the 

steady sta te . They a re :  complete up - tim e  (down-time) in terva ls ,  

conditional and unconditional rem ain ing  up-tim e (down-time) in terva ls .

E inhorn [77] developed m ean up - tim e  (MUT) and mean down-time (MDT) 

solutions for a c la s s  of system s  which obey b irth  and death p ro c e sse s  

[7, 9, 10], Ilis  solutions w ere  la te r  extended by Epstein  [7 8] to contain 

system s obeying b ir th  and death p ro c e sse s  with general s ta te  transition  

r a te s .  The work h e re  fu r th e r  genera lizes  that of Epstein. In addition, 

the r e s e a rc h  investigates  in depth the various  up-tim e and down-time

-5 -



m om ents. In par t icu la r ,  MUT and MDT of a system  com prised  of inde­

pendent subsystem s a re  thoroughly studied. The m a te r ia ls  in this  chapter 

a re  m ostly  new and re la ted  to the work of the author in [62] and Buzacott [61].

Chapter 7 begins with an introduction to sem i-M arkov  p ro cesses .

Such a p ro cess  can be viewed as  a combination of Markov and renewal 

p ro c e sse s  [26-30]. Pyke [51, 52] studied the p ro p ertie s  of Markov renewal 

p ro cesses .  Osaki [67], 'and Branson and Shah [71] employed sem i-M arkov  

p ro c e sse s  to model system s with general r e p a ir - t im e  distributions. The 

work in this chapter genera lizes  the modeling methodology for sem i- 

Markovian system s. A sim ple th ree  unit system  is employed as a vehicle 

to i l lu s tra te  the general methodology. The principle re su l ts  a re  the 

solutions for the sta te  transition  probabilities  of the imbedded Markov 

chain, and that for the conditional holding time distribution functions, of 

a general sem i-M arkovian  system .

Chapter 8 considers  analysis  of ergodic sem i-M arkovian  system s.

The m ajo r  contributions include derivation of the sys tem  of in tegra l 

equations which govern the dynamical behavior of the s tate transition  

p ro cess ,  derivation of the limiting solutions for the in tegra l equations, 

and the development of solution for the m ean f i r s t  passage tim e for the 

system  to pass  from  one set of system  s ta tes  to another set.

Chapter 9 p resen ts  the conclusions and some suggested topics for 

fu r th e r  study.

-6-



Chapter 2

SYSTEM EFFECTIVE MEASURES FOR DYNAMIC 
PROBABILISTIC SYSTEMS

*

2. 1 INTRODUCTION

This section defines many probabilis tic  and s ta t is t ica l  m easu res  

of effectiveness for dynamic probabilis tic  system s. The m easu res  p r e ­

sented here  per ta in  to system s of machine operation and repa ir .  It should 

be noted that effectiveness m easu res  pertaining to other types of physical 

system s a re  generally  the sam e or closely re la ted  to the ones p resen ted  

here. The choice of appropria te  m easu res  for a given system  depends 

on the function perfo rm ed  by the system  and the condition under which the 

system  is operated. T herefore , in general, a m easu re  which is suitable for 

one type of system  may not be suitable for another. Among the many m ea­

su res  which can be used for effectiveness evaluation of dynamic probabilistic 

system s, we will p resen t the definitions of those which a re  considered  to 

be m ore  basic and important.

2. 2 DEFINITIONS OF SOME IMPORTANT MEASURES

The following m e asu res  will be defined:

1. Pointwise availability
2. Reliability
3. In terval re liab ili ty
4. In terval availability

-7-



5. Steady s ta te  availability
6. L im iting in terva l re l iab il i ty
7. Mean t im e - to - f i r s t - sy s te m -fa i lu re
8. Several m ean  t im es  of in te re s t  in the steady s ta te

The f i r s t  four m e a su re s  a re  norm ally  used in re la tion  to an initial and 

lim ited  tim e period  of the system  operation. Except Number 7, the o ther 

m e a su re s  deal with the steady s ta te  p robab ilis tic  and s ta t is t ic a l  p ro p ertie s  

of the system . T h e re fo re  these  o ther m e a su re s  a re  p a r t ic u la r ly  suitable 

for re p a irab le  sys tem s which a re  subject to lo n g -te rm  operation.

Pointwisc availability: F o r  a given initial condition
(IC), pointAvise availab ility  of a sy stem  at tim e t > 0
is defined as the probability  that the system  will be
up at that tim e epoch t; this m easu re  is  denoted by
A(t| 1C). (2 .2-1)

The above m e a su re  concerns  the condition of the system  at the specific 

t im e instan t in question only.

Reliability: F o r  a given initial condition, re liab ili ty
of a  system  for an in terva l [0, t] is defined as the
conditional probability  that the system  will be up during
the en tire  tim e in terva l [0, t] ; th is  m easu re  is denoted
by R(t| 1C). (2. 2-2)

The m easu re  R (t |lC ) is  applicable to both rep a irab le  as  well as  non- 

re p a irab le  system s. F o r  n o n -rep a irab le  system s, R (t |lC ) would be 

equivalent to the m easu re  A (t|lC). This is because a n o n -repa irab le  

system  is  up at tim e t  if and only if it is  up diring the en tire  in terva l [0, t].
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In terval Reliability: F o r  a given initial condition, in terva l 
re l iab il i ty  of a system  for an in terva l [ t j ,  tg], where
0 < t j  < t 2 , is  defined as the conditional probability  that the 
system  is up during the en tire  in terva l [ tp tp ] ;  th is  m easu re  
is denoted by IR(t , t  | IC). . (2. 2-3)

F o r  a non-repa irab le  system  IR(t , t | IC) would be the sam e as R(t | IC).
X  C t  u

F o r  a rep a irab le  system , however, this  m e a su re  d is reg a rd s  the up or down 

condition of the system  p r io r  to tim e t^.

In terval availability: F o r  a given initial condition, the
in te rva l availability  of a system  for an in terva l [ t j ,  t 2 l,
w here 0 < t j  < t 2 , is  defined as  the expected fraction
of tim e within the in te rva l that the system  will be up;
th is  m easu re  is  denoted by IA(tj, t 2 1 IC). (2. 2-4)

F ro m  th is  definition, we see the re la tionsh ip  between IA (t^ ,t |lC) and

The above m e a su re s  of system  effectiveness a re  applicable to an initial and 

a finite period  of system  operation. F o r  a system  with s ta tionary  s ta t is t ic s ,  

we say that the system  is  in its  steady s ta te  a f te r  it has operated  for a very  

long period  of tim e. The following two system  effectiveness m e a su re s  p e r ­

ta in  to the steady sta te  condition of a system .

A (t|lC) defined in (2. 2-1) as:

J A(t| IC) dt (2. 2-5)
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Steady State Availability: Steady State availability  of an
ergodic s ta tionary  system  is defined as the probability
that the system  is up at a  random time epoch in the
steady state; this m easu re  is denoted by A. (2. 2-6)

In this definition, initial conditions of the system  is not specified. This is 

because the initial conditions of an ergodic and s tationary  system  has no 

effect on its  steady s tate p roperties . The steady s tate availability is 

equivalent to the expected fraction of tim e in the long run  that the system  

is up. Therefore , the steady state availability is also known as the 

"limiting interval availability" [39], or "limiting efficiency [33].

A = lim  lA(t , t ) (2 .2-7)
t 2 - .

Lim iting in terval re liability : Limiting in terval re liab ility
of an ergodic s ta tionary  system  for a period of time T is
defined as  the interval re liab ili ty  of the system  for a
period of time T in the steady state; this m easu re  is
denoted by L1R(T) (2. 2-8)

T herefore

LIR(T) = lim IR(tx, t + T |lC )  (2 .2-9)
t  CO

where the initial condition would be a rb i tra ry .  This quantity is  also known 

as "stra teg ic  re liab ili ty"  [34],

In the foregoing definitions, the m easu res  of system  effectiveness 

a re  expressed  in te rm s  of the probability m easu res  of the system . Other
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system s effectiveness m e asu res  which a re  of basic im portance and widely 

used a re  the s ta t is t ica l  m easu res .  T he ir  definitions a re  p resen ted  below.

Mean t im e - to - f i r s t - sy s te m -fa i lu re  (Repair): F o r  a 
given initial condition, the Mean t im e - to - l ' i r s t - sy s te m  
fa ilure  (repair)  of a system  is defined as the conditional 
expected f ir s t  passage  tim e of the system  to a system  down 
(up) condition; this m easu re  is denoted by MTTFSF _
(MTTFSRIC). (2.2-10)

It can be seen that the MTTFSF o r  MTTFSR ^  can be considered  as 

a generalized  f i r s t  passage  tim e of a system  from  one set of system  

conditions to another se t of sy stem  conditions. This point will become 

c lea r  when the m athem atical express ions  for these m e a su re s  a re  developed.

F o r  ergodic s ta tionary  system s, th e re  a re  o ther s ta t is t ica l  m ea ­

su re s  which re la te  to the up and down tim e in terva ls  of the system  in 

the steady state. They a re  known as: system  m ean up-tim e (MUT), 

system  m ean down-time (MDT), unconditional m ean rem aining  up-tim e 

(MRUT), unconditional m ean rem aining  down-time (MRDT), conditional 

mean rem aining  up-tim e (MRUT ), and conditional mean rem aining  

down-time (MRDT^). The definitions for these m e a su re s  a re :

System MUT (MDT): MUT (MDT) of an ergodic
s ta tionary  system  is  defined as the average length
of time the system  continuosuly s tays  up (down) from
an instant it ju s t  com es up (goes down) in the steady state. (2. 2-11)

-11-



System  MRUT (MRDT): MRUT (MRDT) of an ergodic
s ta tionary  system  is  defined as the average rem aining
up-tim e  (down-time) of the system  as  the system  is
observed  at a random  tim e epoch in the steady state. ■ (2. 2-12)

#

System  MRUTU (MRDTd): MRUTU (MRDTd) of an
ergodic s ta tionary  system  is defined as the average
rem ain ing  up-tim e (down-time) of the system  under the
condition that as  the system  is  observed  at a random
tim e epoch in the steady s ta te  it is  found to be up (down). (2. 2-13)

In definition (2. 2-12) the s y s te m 's  condition (up o r down) at the random  

observation tim e epoch is  not given. T herefo re , sy s tem  MRUT (MRDT) 

takes  into account the probability that the system  is down (up) at the random  

tim e epoch.
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Chapter 3

SOME MATHEMATICAL PRELIMINARIES

3. 1 INTRODUCTION

This section in troduces the fa i lu re - t im e  density  function and the 

fa i lu re - ra te  function of a system . The f a i lu re - ra te  function is a lso  known 

as  the h azard  ra te  function o r  as  the age-spec ific  f a i lu re - ra te  function 

[26]. By " fa ilu re - t im e"  of a system  we m ean the tim e to fa ilu re  of the 

system , o r the life span of the system  before it fails. It will be shown that 

the fa i lu re - t im e  density function and the fa i lu re - ra te  function a re  re la ted  

to each other. As such specification of one is  equivalent to specification 

of the o ther. T he ir  re la tionsh ip  will be derived in Section 3. 2. In Section 

3 .3 , the re la tionsh ip  between the m ean t im e - to - f i r s t - sy s te m -fa i lu re  and 

the system  re l ia b il i ty  function will be developed.

3. 2 FAILURE-TIME DENSITY AND FAILURE RATE FUNCTIONS

The tim e to fa ilu re  of a system  is a non-negative random  variab le . 

We assum e that probability  density function of this  random  variab le  is 

absolutely  continuous over the in terva l (0, <=). F o r  a given initial condi­

tion of the system , le t this function be denoted by f(t |lC). Then

f(t| IC) dt = the probability  that the fa i lu re - t im e  of
the system  lies  in the in terval (t, t  + dt).

J (3 .2-1)
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Let h(tjlC ) denote the fa i lu re - ra te  function of the system . The function 

h(t[ IC) is  defined as:

h (t | lC )d t = the conditional probability  the system  will 
fail in the in terva l (t, t + dt) given that it 
has not failed up to tim e t.

(3. 2-2)

The r igh t-hand  side (RI1S) of Eq. (3. 2-2) is  equal to f ( t | lC )d t /J  f(x|lC)dx.
t

T herefo re  we obtain the re la tionsh ip  for h(t| IC) in te rm s  of f(t |lC ).

h (t | lC ) (3 .2-3)
j “ f(xj IC)dx 
t

The in v erse  re la tionship  for f(t) in te rm s  of h (t |lC ) can be obtained by

expressing  the in tegra l J  f(x |lC)dx in te rm s  of h(t|lC)^ Note that by
t

definition (2. 2-1), th is  in tegra l is  nothing but the re l iab il i ty  function. That 

is:

R (t |lC ) = J* f(x|lC)dx. (3 .2-4)
t

Differentiating the above with re sp ec t  to t and multiplying by -1 we have:

f(t| IC) = - R(t| IC) (3. 2-5)
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Substituting Eqs. (3. 2-4) and (3. 2-5) into Eq. (3. 2-3) gives:

« ‘ IIC> = '  R tt f lc j  * H(tUC) .

= - ^  In R(t |lC ) (3. 2-6)

To express  R(t|lC) in te rm s  of 11(f), we f i r s t  in tegrate  Eq. (3.2-6) 

from  0 to t, and then simplify to obtain:

t
R (t |lC ) = R(0|IC) exp {-J  h(x| lC)dx} (3. 2-7)

where R(0 |lC) is known from  the given initial conditions of the system . 

Note that Eq. (3. 2-4) ex p resse s  the re liab ili ty  function in te rm s  of the 

fa ilu re - t im e  density function, and Eq. (3. 2-7) ex p resses  the same function

in te rm s  of the fa i lu re - ra te  function. By Eqs. (3-2-3), (3. 2-4) and (3. 2-7)

we can ex p ress  f(t |lC ) in te rm s  of h(t|lC ).

t
f ( t | lC )  = R(0|lC) h(t) exp { - J  h(x| IC)dx} . (3 .2-8)

o

Eqs. (3. 2-3) and (3. 2-8) show that the functions f(t |lC ) and h(t|lC ) a re  

e sp re s s ib le  in te rm s  of each other.
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3.3 MEAN TIME-TO-FIRST-SYSTEM-FAILURE

In this  section, we shall derive the m ean t im e - to - f i r s t - s y s te m -  

fa ilu re  in te rm s  of the re liab ili ty  function. If f(t |lC )  r e p re s e n ts  the 

f i r s t  passage  tim e density of the system  from  a given initial condition to 

failure , then by definition (2. 2-10) MTTFSF ^  is given by:

M TTFSF1C = J "  t f ( t |lC )  dt (3. 3-1)

Substitute f(tjlC) from  Eq. (3. 2-5) into the above we obtain:

MTTFSF = - / “ t ~  R(t| IC) dt. (3 .3-2)
o

Integrating by pa r ts  gives:

MTTFSF = [ - t  R (t |lC )]"  + j " R ( t | l C )  dt. (3.3~3)
i v  O o

Since R (t |lC ) is  bounded between 0 and 1, the f i r s t  te rm  on the RHS is 

obviously 0 for t = 0. F o r  a physical system , the fa i lu re - ra te  function is 

always g re a te r  than zero , i. e . ,

h(t) > e > 0 for all t. (3 .3-4)

Under this  condition we shall show that the f i r s t  te rm  on the RHS of Eq. (3. 3-3) 

goes to 0 as t -* ®. Using Eq. (3. 2-7) we have:

-16-



t
tR(t| IC) = t  R(0| IC) exp { -J  h(x) dx}

o

< t  R(0|IC) e" t<r. (3 .3-5)

By L 1 H ospita l 's  rule,

lim  l im  _ J _  c o. (3 . 3 - 6 )
t ~ * t e  t-»» tee ee

Therefore ,

^  t R(t| IC) < 0 (3.3-7)

But, t  R(t|lC) is a non-negative quantity. Hence,

,h m  tR ( t l lC )  = 0 (3 .3-8)!-*♦ 05

This shows that under the condition given by Eq. (3. 3-4), the f i r s t  te rm  

on the RHS of Eq. (3. 3-3) is  zero. The second te rm  can be shown to exist 

under the sam e condition.

t
J “ R(t|lC )dt = J “ r (0 |IC )  exp { - J  h(x) dx} dt 
O 0  o

< R(0|IC) J ” e "€t dt 
o

( 3 .3 - 9 )€

We have proved the following theorem.
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Theorem  3. 1

If the fa ilu re  ra te  function of a system  obeys the condition of 

Eq. (3. 3-4), the m ean t im e - to - f i r s t - sy s te m -fa i lu re  of the system  ex ists  

and is equal to the a re a  under the re liab ili ty  function,

MTTFSF c  = J ” R(t |lC ) dt. (3.3-10)
o

Under the condition of Eq. (3. 3-4), we will now show that not only 

the f i r s t  m om ent (the mean) ex is ts ,  but also the m om ents of all finite o rd e rs  

exist. The nth moment is:

j 'V f t t l l C )  dt = - f t n dt. (3.3-11)

Integrating by p a r ts  gives:

/ " t ^ t j l O d t  = - [ tnR ( t | l C ) r  + J ” n t n _ iR (t|lC ) dt. (3.3-12)r+r ■n'1'
o o o

The f i r s t  te rm  on the RHS is z e ro  for t = 0. To evaluate for the upper limit, 

by v irtue  of Eq. (3. 3-4) we w rite

tnR(t|lC ) < tnR(0|lC) e _Ct

t n= R ( 0 | 1 C ) ~  . (3 .3-13)
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Then applying L 'H osp ita l 's  rule, the RHS of Eq. (3. 3-13) tends to zero  

as  t  T herefore , the nth moment is *

j V f t t l l C )  dt = n j ” tn_1 R (t |lC ) dt (3.3-14)
o o

Under the condition of Eq. (3. 3-4), we have

n J*00 tn_ 1 R(t| 1C) < J “ n tn_1R(01 IC)e“e tdt 
o o

= R(0|IC) •“  < 03 • (3.3-15)
e

We have proved the following theorem.

Theorem  3. 2

If the fa i lu re - ra te  function of a system  obeys the condition of 

Eq. (3. 3-4), for any positive in teger n, the nth o rd e r  moment of the t im e- 

to - f i r s t - sy s te m -fa i lu re  ex ists  and is re la ted  to the re liab il i ty  function by 

Eq. (3.3-14).

C oro lla ry  3. 2

The variance of the t im e-to -fa ilu re  of a system  whose fa ilu re-  

ra te-function  is bound away from  zero  is
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V ar(T T F S F |lC )  = 2j°°t R(t| IC) dt - ( j “ R(t| IC)dt) 2  . (3. 3-16)
o o

The proof for this co ro lla ry  follows d irec tly  from  Eq. (3. 3-14).

We will p resen t an a lte rna tive  proof by using Laplace tran sfo rm . Let 

f (s| IC) denote the Laplace tra n sfo rm  of f(t |lC),

CO

f* (s |lC ) = J f ( t | lC )  e "Stdt. (3.3-17)
0

F o r  all positive in teger n,

co Hn
j “ t nf(t |lC )dt = [ ( - l ) n - ~  r < s | l C ) ] s = 0  (3 .3-18)
o ds

If we denote the Laplace t ra n s fo rm  of R (t |lC ) by R *(s |lC ), then the 

t ra n s fo rm  of Eq. (3. 2-5) is

f* (s |lC ) = -[sR *(s |lC )  - R(0| IC)] (3.3-19)

Substituting Eq. (3 .3-19) into the RHS of Eq. (3.3-18), and simplifying for 

the c a ses  of n = 1 and 2  we have:
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J*00 tf(t | IC)dt = [R*(s|lC)] = (3.3-20)s = 0o

and

J°°t2 f(t)dt = - 2[“  R*(s| IC ) ] s _ 0  (3.3-21)
o

T h ere fo re ,  the Laplace tra n s fo rm  of the V ar(TTFSF) is

2 [ ( - l ) ~  R * (s |lC )]s=0- [R *(s |lC )]2=f) (3.3-22)

Taking the in v e rse  tran sfo rm , we obtain

V ar(TTFSF) = 2 j " t R ( t |  IC)dt -  [ j “ R (t|lC ) dt] 2  (3.3-23)

T his  com pletes  an a lte rna tive  proof for C oro lla ry  3. 2.
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Chapter 4

MODELING OF MARKOVIAN SYSTEMS

4. 1 INTRODUCTION
0

Development of a m ath model for a physical system  is  an essen tia l 

p a r t  of system  analysis . Depending on the type of analysis  to be perform ed 

on the system , the model needed could be quite different. F o r  example, 

if one is in terested  in the accuracy  or perform ance of the outputs for 

different inputs, the model needed would be an input-output t ra n s fe r  function 

of the system . In general the inputs and outputs could be e ither  de te rm in ­

is tic  o r stochastic . F o r  dynamic probabilis tic  system s analysis , however, 

the model requ ired  is quite different from  an input-output model. This is 

because the purpose of such analysis  is not to analyze the input-output 

accuracy  of the system , but r a th e r  to analyze the s tochastic  behavior of the 

s tate transition  p ro cess  of the system .

In Section 4. 2 we will give an introduction of d isc re te  and continuous 

p a ra m e te r  Markov chains, and c lassif ica tion  of s ta tes  in a Markov chain. 

Section 4. 3 gives a definition for Markovian system s and the development of 

the general vector d ifferential equation which governs the dynamical behavior 

of the probability sta te  vector of a Markovian system . In Section 4. 4 the 

general cha rac te r iza tio n  of a s ta tionary  Markovian system  is discussed. 

Section 4. 5 gives a sim ple example to i l lu s tra te  the consturction  of a math 

model for a physical system .
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MARKOV CHAINS AND STATE CLASSIFICATION

T here  a re  two kinds of Markov chains depending upon theii' tim e
m

p a ra m e te rs :  d isc re te  p a ra m e te r  Markov chain, and continuous p a ram e te r  

Markov chain. We shall r e s t r i c t  our attention to Markov chains which have 

finite sta te  space. The notion of d isc re te  Markov chain having a finite 

s tate  space m ay be introduced by generaliz ing  the notion of a sequence of 

independent t r ia l s .  Consider that a sequence of consecutive t r i a l s  is p e r ­

formed, in each of which one of the nQ mutually exclusive and exhaustive

events E„, E . . .  . ,  E may be realized . Let the outcome of the kth t r i a l  
1 2  n J

of t r ia l s  o r  the assoc ia ted  random  v ar iab les  x, form  a Markov chain ofk
f i r s t  o rd e r  if the conditional probability  of occurrence  of the event

o
be denoted by x , which is a random  variable . We say that the sequenceK

Ej, i = 1 , 2 , . . . ,  n , in the kth t r ia l  depends only on which event has occu rred  

in the (k -l) th  t r i a l  and is  not affected by what events have o ccu rred  in the

e a r l i e r  t r ia ls .  If E. denotes the event occurs  on the kth tr ia l ,  thenl,

Pr{x. = E. |x  = E. , x = E. k i, o l 1 xk o 1

E. } for all positive in teg ers  k
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We say that {x^; k c Z  ] is a d isc re te  p a ram e te r  Markov chain with 

sta te  space {E , E , , , , , E  }. The probability m ass  density function
i  m 27O

{Pr(x = E.); i - 1, 2 , . .  . , n }, of the random  variab le  x .  is  called the o l o o

initial probability  distribution of the Markov chain. The conditional

probabilities, Pr{x. = E . |x j_ ^  = E.} for all i, j = 1, 2 , . .  . ,  n , a re
 ̂ 1  ̂ i

called the state transition  probabilities. The Markov chain is said to be

tim e homogeneous if the s ta te  transition  probabilities  a re  independent of

the number of t r i a l s  (the d isc re te  time p a ra m e te r  k). We denote the

transit ion  probabilities  of a tim e homogeneous Markov chain by p.
b 3

which a re  defined as:

p. . = P r fx ,  = E.l x. E . l  for all k e Z + (4 .2-2)
b 3 k 3 1 k- 1  l

"t”
where Z denotes the set of non-negative integers.
The transition  probab ilities  of a time homogeneous, f i r s t  o rder, d iscre te  

Markov chain can be a rranged  in a m atrix  form as  follows:



In th is  m atrix , the (i, j) elem ent is the sta te  transition  probability  from

state E. to s tate E. of the Markov chain in a single transition . Therefore ,

elem ents of (p. .) n ecessa r i ly  possess  the following p roperties :
.1

A square  m a tr ix  having the above p rop ertie s  is known as a s tochastic  m atrix .

A continuous p a ra m e te r  Markov chain is a generalization of the 

d isc re te  p a ram e te r  Markov chain in the tim e p a ram e te r .  In th is  case, the 

ro le  of the one-step  transition  probabilities  is played by the s tate tran s it io n  

ra te s  (also known as tran s it io n  in tensities  [ 9 ]) which will be defined la te r  

when we develop the differential equations for the system  sta te  probabilities.

A continuous p a ram e te r  s tochastic  p ro cess  {s(t); t > 0} with 

d isc re te  and finite s tate  space S = {1, 2, . . . ,  nQ} is said  to be a continuous 

p a ra m e te r  Markov chain if, for any set of k time points t .  < t  < t  . . . < t
1 A  o  K

in the index se t  of the p rocess ,

for all i, j = 1 , 2 , . . . , nQ (4. 2. 4)

no
E p. . = 1 for all i = 1, 2, . . . ,  n 
-1 i»3 (o

(4. 2. 5)

s f t j)  = ij}

= P r{ s ( t fe) = ijJ s(tk_1) = ik-1) for all U S (4. 2-6)
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The principle  p roperty  of th is  p ro cess  is  the Markov p roperty  which can 

be s tated  as: Given the sta te  of the p ro cess  a t any tim e t, future changes 

of the p ro c e ss  is not influenced by any past h is to ry  of the, p ro c e ss  p r io r  to 

t im e t. This p roperty  leads  to the Chapman-Kolmogorov equation for the 

Markov p ro cess .  Let r  < r  < t be tim e points in the index set of the 

p rocess .  F u r th e r ,  let s(r) = i, and s(t) = j. The passage of the p ro cess  

from  s ta te  i e S at tim e r  to sta te  j e S at tim e t  m ust occur via some 

state ke S at tim e r .  This gives:

Pr{ s(t) = j | s ( r )  = i} = E P r{s( t)  = j | s ( r )  = k, s(r) = i}'
k e  S

P r{ s ( r )  = k| s (r)  = i} (4. 2-7)

Applying the Markov property , we have:

Pr{ s(t) = j | s ( r )  = i} = E Pr{ s(t) = j |  s(r) = k] Pr{ s(r) = k| s ( t )  = i}
k e  S

(4. 2-8)

identically  for all r  < r  < t. This is  the Chapman-Kolmogorov equation.

It is  n e c e s sa ry  that the s ta te  transition  p robab ilities  p o ssess  the following 

p ro p ertie s :

P r{s( t)  = j |  s(r) = i} > 0 for all i, j e S (4. 2-9)
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and

£ P r{s(t)  = j| s(r) = i} = 1 for all ie  S (4. 2-10)
j * S

0

The s ta tes  of a Markov chain may be c lassif ied  according to their  

communicative p roperties .  The following definitions a re  equivalent to 

those given in [14],

An ergodic se t of s ta tes: is a se t in which every state 
can be reached from  every  other state, and which cannot 
be left once entered.

A tran s ien t state; is  a sta te  such that if the p rocess  
s ta r ted  from  that state, the probability that the p rocess  
ever  re tu rn s  to the s tate is  le ss  than 1 .

An absorbing sta te: is a s tate  which once entered  is
never left.

A Markov chain is said to be ergodic if it is possible to go from

every s ta te  to every  o ther state. That is  to say, an ergodic chain is one

whose s ta tes  form  a single ergodic set. A Markov chain is said to be 

absorbing if there  is a t leas t one absorbing state, and such that an 

absorbing s tate can be reached  from  every  s ta te  of the chain.

In view of the algebraic  theory of o rd e r  re la tions , it can be shown 

that the s ta tes  of a Markov chain can be partitioned into eigenvalue c la sse s  

by some equivalence relation, and that the m inim al elem ents of an induced 

partia l o rdering  of the eigenvalue c la s se s  a re  ergodic se ts .  This is shown 

in Appendix A.
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4. 3 MARKOVIAN SYSTEMS

We shall be in terested  in dynamical system s whose s tate 

transition  p ro cesses  a re  special continuous p a ra m e te r  Markov chains. 

The specialization being the following additional assumption that the chain 

must satisfy.

Assumption 1: To every  pair of s ta tes  i, j e S with i f ] ,  th e re  c o r r e s ­

ponds a continuous function m. .(t) > 0 such that as At -• 0
i n ­

state j. A Markovian system  is defined as a system  whose sta te  transition 

p rocess  is a continuous p a ram ete r  Markov chain satisfying Assumption 1.

The probabilistic  in terpreta tion  of Assumption 1 is: given that at 

tim e t the system  is in state i, the probability that during (t, t+At) the

than one change occurs  is 0(At). The te rm  0(At) denotes a quantity which 

is of sm a l le r  o rd e r  of magnitude than At. That is to say, as At -• 0, the

Before proceeding to derive the differential equations which govern 

the dynamical behavior of the s tate probabilities  of the system , the following 

notations a re  introduced.

Pr{s(t+A t) = il s(t) - i] ^ m. .(t>. (4 .3-1)
At

The function m. .(t) is known as the sta te  transition  ra te  from  state i to

system  changes to sta te  j is m. .(t) At + 0(At), and the probability of m ore
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P (t) = P r{s(t)  = i} (4 .3-2)

P.(t|- ) = P r{s(t)  = i | .  3 (4 .3-3)

and

P(t) = [P x(t), P 2 (t)J . . . , P n (t)] (4 .3-4)
o

To derive the differential equations, we s ta r t  with the Chapman-Kolmogorov 

equation. If r  < t and P(r) is  given, then the Chapman-Kolmogorov equation 

corresponding  to Eq. (4. 2-8) is:

P.(t+A t| P ( t ) )  = £ P .( t+ A t |s ( t)  = k)P ( t |P ( r ) )  (4 .3-5)
3 k e S  3 k

We use  S - [j] to denote the complement of the se t  {j} with re sp ec t  to S, 

i. e . , the set of elem ents  that belong to S but not to ( j ) .  ^Then Eq. (4. 3 “5) 

can be w ritten  as:

P .( t  + Atl P ( t)  ) = P.(t+AtI s(t) = j)P .( t |  P ( r ) ) + £ P .( t+ A t|s ( t)  = k)P (t| P ( t) )
J 3 3 keS-{ j}  3 k

(4.3-6)

By the n e c e s sa ry  condition given by Eq. (4. 2-10), P .(t+A t| s(t) = j) can be
J

rep laced  by:

P .( t + A t | s ( t ) = j )  = 1 - £ P, ( t + A t | s ( t )  = j ) .  (4 .3-7)
3 k e S-{j} k
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Substituting Eq. (4. 3-7) into Eq. (4. 3-6), and after  rea rran g in g  te rm s  

we have:

P.(t + A t |P ( r ) ) - P . ( t |P ( r ) )  = £ [P .( t+ A t|s (t)  = k ) R ( t |P ( r ) )  '
3 3 ke  S-{ j} 3 k

- P k(t+A t|s(t)= j)Pk(t |P (r))]

(4. 3-8)

F i r s t  divide both s ides of the above by At, and then let At -» 0, we obtain

9 P .( t |P ( r ) )  P .( t+ A t|s ( t)  = k)
£ [ l i m  

ke S -{j} At-* 031 " = J------Ft-------pk(tIST»

P. ( t+ A t|s (t)= j)P .( t |P (r))
-  l i m  - S -------------   1------------ • ]

A t -  0 M

(4. 3-9)

By Assumption 1, the above can be w ritten  as:

ap.<t| p (t ))
—-L—---------= £ [m (t)P , ( t |P ( r ) ) - m  (t) P ,(t |P(r)>]

dt keS-Cj} ’ 3 3

(4. 3-10)

F o r  notational convenience, we define m. .(t) as:
J* J

m . .(t) = - £ m . (t) (4.3-11)
3,5 k e S - ( j J  J' k
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Then Eq. (4. 2~24) becomes

“ p ,( t |P (T ))  - E m  ( t ) P , ( t |P ( T ) ) .  .  (4 .3-12)at 3 k e g  k , j  k

This equation holds for all j e S .  Let M(t) denote the m a tr ix  of m. .(t)
L 3

with the (i, j) elem ent of M(t) being m. .(t), that is
1« 3

M(t) = (m. ,(t)). (4 .3-13)
L 3

Then the system  of p a r t ia l  d ifferential equations can be com pactly w ritten  

in the form  of a vector p a r t ia l  differential equation:

~  P(t|P(T)) = P(t| P(t )) M(t) (4.3-14)
ot

In the above equation, the p a ra m e te r  r  of the vec to r  P (r)  is  not a variab le . 

In fact P(r) is a given probability  sta te  vec to r  of the p ro cess  at tim e r .  

Therefore , Eq. (4. 3-14) is  s im ply a f i r s t  o rd e r  vec to r  differential equation 

with t as  the only variab le .

~  P ( t |P ( r ) )  = P ( t |P ( r ) )  M(t) (4 .3-15)

When M(t) is  a function of t, we say that the system  is tim e varying. In 

the case  when M(t) is a constant m atrix ,
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M(t) = M (4. 3-16)

we say  that the system  is tim e homogeneous 01- s tationary.
0

We have proved the following theorem .

Theorem  4. 1

The dynamical behavior of the sta te  p robabili t ies  of a  Markovian 

system  is governed by a  system  of l in ea r  d ifferential equations described  

b y E q .  (4.3-15).

4. 4 CHARACTERIZATION OF STATIONARITY IN MARKOVIAN SYSTEMS

In the preceeding section, we defined a Markovian system  to be one

whose s tate transition  p ro cess  obeys a continuous p a ram e te r  Markov chain

and the sta te  transition  ra te s  of the system  sa tisfy  Assumption 1. We say

that the system  is s ta tionary  when the transition  ra te s  a re  independent of

tim e. Let j, j be any two s ta tes  of the system  such that i f  j. Given that

the system  is in sta te  i, the waiting tim e of the transition  p rocess  from

sta te  i to s ta te  j is a random  variab le . We denote this random  variab le  by

r .  . and the probability density function by f. .(t). In this  section we study 
h J J

the ch arac te r iza tion  for s ta tionarity  of a Markovian system  in te rm s  of the 

cha rac te r iza tio n  for the density function L .(t) and vice v e rsa .
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F ro m  Eq. (4 .3-1), the in te rp re ta t ion  for the s ta te  tran s it io n  ra te

function m. .(t) is 
b 3

m. .(t) dt = the conditional probability  that the system  will 
 ̂ be in sta te  j at tim e t + dt, given that it is in

sta te  i at t im e t.

(4. 4-1)

We observe the equivalence of the above in te rp re ta tio n  to the definition for

the f a i lu re - ra te  function defined in Eq. (3. 2-2). T herefo re , by Eq. (3. 2-8)

the probability  density function f. .̂(t) can be exp ressed  in te rm s  of rm ^(t) 

as follows:

t
f. .(t) = m. .(t) e x p [ - J  m. .(x) dx} (4 .4-2)
b 3 b 3 o ^

If the system  is given to be s tationary, Eq. (4. 2-2) reduces  to

-m . .t
f. .(t) = m. .e 1 , 3  (4 .4-3)
b 3 b 3

which is an exponential density function. The above shows that, if a

Markovian system  is given to be sta tionary , then the probability density

functions for all t .  ., w here i, j e S and i f  j, a r e  exponentially d istributed, 
b 3

Now consider a M arkovian sj^stem which is such that, for all

i, j e S and i f j, f . .(t) is an exponential distribution. That is, 
b 3
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(4. 4-4)

where

a. . > 0  
h j  -

(4. 4-5)

Then by Eq, (3, 2-3), the s ta te  transit ion  ra te  from  state i to sta te  j is

This holds for all i f  j. F o r  i = j, by Eq, (4. 3-11) we have

m. .(t) = - E a. , ^ (4,4-8!
IceS-CU 1>k

Eqs. (4. 4-7) and (4- 4-8) show that all the transition  r a te s  a re  independent 

of tim e, which m eans that the system  is stationary.

We have proved the following theorem .

T heorem  4. 2

A Markovian system  is s ta tionary  if and only if for all i, j e S and

i f ]  the probability  density function for t .  . is  exponentially distributed.
,1

(4. 4-6)

Simplifying the RHS gives

(4. 4-7)
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We give an in terpreta tion  of the implication of this theorem  on 

physical system s of machine operation and rep a ir .  The s ta tes  of 

such a system  a re  defined by different combinations of thp up and down 

conditions of the units com prising the system. A transition  from  one s tate 

to another o ccu rs  when the condition of a unit changes, physically this 

m eans when an operating unit fails  o r  when a re p a i r  is completed on a 

failed unit. The implication of Theorem  4. 2 is  that, a physical system  is 

Markovian and stationary  if and only if the t im e-to -fa ilu re  and the tim e-  

to - r e p a i r  for each unit in the system  a re  exponentially distributed.

4. 5 MATH MODELING OF A TWO UNIT REDUNDANT SYSTEM

In this  section we shall i l lu s tra te  the methodology for construction 

of the t ra n s i t io n -ra te  m atrix  of a physical system . A very  sim ple two unit 

system  will be used for this purpose. F igure  4-1 shows the block diagram  

of this  system .

F igu re  5-1 Block Diagram of the Sample System
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It is assum ed that the two A units a re  identical and functionally redundant.

The operation and re p a ir  policies of the system  a re  as follows:

Operation policy: When both units a re  operable  Cup), 
one unit is used on-line and the 
o ther unit is  active off-line. If 
the on-line unit fails, the off-line 
unit is instantaneously switched on­
line provided the off-line unit is 
up. P e rfec t  switching is  assum ed.

R epair policy: • One re p a ir  crew  is available to
se rv ice  the fa ilures , and the policy 
for se rv ice  is  f irs t-com e, f i r s t -  
served.

The fa ilure  and re p a i r  r a te s  of the units  are:

= fa ilu re  ra te  of an on-line unit

X9 = fa ilu re  ra te  of an active off-line unit

/j,  ̂ = r e p a i r  ra te  of a unit when failed from operating on-line

Pg = r e p a i r  ra te  of a unit when failed from  active off-line
operation

F o r  th is  system , five system  s ta tes  a r e  possible. They a re  defined as 

follows:
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Representation System State D escrip tion

1 Both units a re  up, one is used 
on-line and the o iher is  active 
off-line.

2 One unit is down from  operating 
on-line, and the other is  up 
on-line.

3 One unit is  down from  active 
off-line operation, and the o ther 
is  up on-line.

4 One unit is down from  operating 
on-line, and the other is  down 
from  active off-line operation.

5 Both units a re  down from  
operating on-line.

Note that the s tate that both units  a re  down from active off-line operation, 

does not exist. This is because the operation policy is such that whenever 

there  is  only one up unit, th is  unit will be operated on-line.

The tra n s it io n  ra te s  from  one s ta te  to another can be found by 

reasoning as  follows:

F i r s t  consider sta te  1 and sta te  2. T ransition  from  sta te  1 to state 2 

occu rs  when the on-line unit fails . Since, by hypothesis, the failure  ra te  of 

the on-line unit is we have:

m
1 , 2 = X1 (4. 5-1)
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It can be seen that transition  from  sta te  2 to s ta te  1 occurs  when a r e p a i r  

is com pleted on the unit failed from operated on-line. Since the r e p a i r  

ra te  for  such a unit is  we have ,

m 2, X '  “l <4- 5_2>

By s im ila r  reasonings, the transition  ra te s  between s tate 1 and state 

3 a re  found to be:

m X 3  = * 2  4̂‘ 5"3^

m 3, 1 = ^2 (4’ 5' 4>

Now consider sta te  1 and sta te  4. A one-step  transit ion  from  sta te  1 

to s ta te  4 is  not possible since such a transit ion  would req u ire  two o r  m ore  

changes for the conditions of the units in an a rb i t r a r i ly  sm all interval. 

Therefore ,

“ l ,  4 = °  '  m 4, X (4’ 5' 5)

By using reasonings as above, transition  r a te s  between all o ther

p a ir s  of s ta tes  can be determ ined. The t ra n s i t io n -ra te  m a tr ix  for the 

system  is:
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1+X2̂ X2 0 0

" l -(Xj+Pj) 0 0 X1

M2
0 ~(W 0

0

0 P2 0 -P 2 0

0
" l

0 0

(4. 5-6)

Note that the diagonal te rm s  in this  m a tr ix  a re  determ ined  by applying 

Eq. (4. 3-11). Once M is  found, the m ath  model of the system  is  established. 

The two A units  of the sy s tem  a re  functionally redundant m eans that the system  

is up (i. e . , operating sa tis fac to rily )  if at leas t  one A unit is operating on-line. 

This in tu rn  m eans that s ta te s  1, 2 and 3 a re  the u p -s ta te s ,  and s ta tes  4 and 

5 a re  the dow n-states  of the system .

Suppose at the s ta r t  of the system , the condition of both A units a r e  

known to be up. It is  cus tom ary  to count the initial s ta r t in g  tim e of a 

system  as  tim e 0. Then the initial probability s ta te  vec to r  of the system  

is

P(0) = [1 ,0 ,0 ,0 ,0 1  (4.5-7)

Under th is  condition, P(t[P(0)) is  the s ta te  probability  vec to r  of the system  

at t  tim e units  a f te r  s ta r t .
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The preceding example, in spite of its  s im plicity, i l lu s tra te s  

the general methodology and the essen tia l  s teps in developing the math 

model of a physical sy stem . In the next section, we will develop solutions 

for m any m e a su re s  of system  effectiveness for the general Markovian 

system  model.
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Chapter 5

EFFECTIVENESS ANALYSIS OF STATIONARY MARKOVIAN SYSTEMS

5. 1 INTRODUCTION
0

We reca l l  the definitions of many system  effectiveness m e a su re s  

s ta ted  in Section 2. 2. The m ain  effort of this section is to develop 

general solutions for these m e a su re s  for s ta tionary  Markovian system s. 

F i r s t ,  two notations for subsets  of the se t of sys tem  s ta tes  will be 

introduced.

Su = the subset containing all u p -s ta te s  of the system .

(5. 1-1)

Sd = the subset containing all down-sets of the system .

(5. 1-2)

Since a system  sta te  is e i ther  an u p -s ta te  or a down- state, the following 

re la tions  a re  obvious.

S U S = S (5. 1-3)u d

f and

! S f l S .  = 0  (5 .1-4)u d

We shall assum e the o rder  of S to be k . This im plies the o rd e r  of S ,u o d

to be (n ■ k ) since the o rd e r  of S is n^. Without loss  of generality , we

shall assum e the elem ents in S and S , a r e  as follows:u d
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and

S = [1, 2 , 3 , . .  . ,  k ] (5. 1-5)
u o

S = {k + l , k  + 2 ,k  + 3 , . . . , n  ) (5 .1 -6)d o o o o »

We will u se  P (*) and P^(-) to denote the subvectors  for the system  up­

s ta tes  and dow n-sta tes  respec tive ly . That is,

= [P jO ) ,  P 2( ') ,  P g( • ) , . . . ,  P k ( ')] (5 .1-7)

<lx-ko>

and

^  -  [Pk +1( 0 - P k +2<-)- P k +3<-)- " - - P „ ( ')1 <5- 1' 8). . o o o o
<lx<Vko))

In te rm s  of these  subvectors , the system  s ta te  vector can be w ritten  as:

P ( 0  = [P (*) £ , ( ' ) ]  (5 .1-9)
(lxno>

A ( lx n )  vec to r  of z e ro s  will be denoted by:

0 = [0, 0, . . . , 0] (5. 1-10)—n

Two m ore  v ec to r  notations will be introduced.

u(i, j) = a  ( lx ( i+ j))  vec to r  with i 0 's  followed by j l ' s .

= [0, 0, . . . ,  0, 1, 1, . . . ,  1] (5. 1-11)

i 0 ' s  j l ' s
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v(i, j) = a ( lx ( i+ j ) )  vec to r  with i l ' s  followed by j 0 's .

= [1, 1, . . . , 1, 0, 0, . . . , 0] (5. 1-12)

i l ' s  j 0 's
0

Using these  notations, a (1 xk) unit vec to r  m ay  be ex p ressed  in two ways:

u(0, k) = [1, 1, . . . ,  1] = v(k, 0) (5. 1-13)

(lxk)

5. 2 POINTW1SE AVAILABILITY FUNCTION

Recall definition (2. 2-1) of Section 2. 2, the pointwise availability  of 

a Markovian system  at tim e t, for a given initial s ta te  vector, is the con­

ditional probability  that the system  is in one of the u p -s ta te s  at that time. 

The past s ta te  h is to ry  of the system  is  i r re lev an t.  Suppose the initial p ro ­

bability  s ta te  vec to r  of the system  is  given to be P (0 ) , then the pointwise 

availability  at t im e t is  denoted by A(t| P(0)). Solution of the vec to r  d iffe r­

ential equation

P(t|P(0)) = P(t| P(0))M (5 .2-1)

gives the probability  s ta te  vect o r  at tim e t. In Appendix B, the general 

solution for the time vary ing  vector d ifferentia l equation is derived. By 

Appendix B, the solution for Eq. (5. 2-1) is
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P  (t| P(0)) = p(0) $(t, 0) for 0 < t < » (5. 2 - 2 )

w here the tran s it io n  o r  fundamental m a tr ix  0(t, 0) is  given by the Peano-
#

B aker se r ie s :

t t CT1

$(t, 0) = I + J* Mdcr + J M J Mda dff + ___
0 0 0

M2 t 2= I + Mt + + . . .
Li •

® , A n
= E ^ - 7 -  (5. 2-3)

n=0 n '

In the above s e r ie s ,  we have adopted the convention

„ (5. 2-4)
o

Due to the s im ila r i ty  of the s e r ie s  in the RHS of Eq. (5. 2-3) to the exponential

Mtse r ie s ,  the s e r ie s  is  usually  denoted by e and known as  the m a tr ix

exponential. That is,

e Mt = E M J ?  (5 2_5)
nln=0

T herefo re ,  the solution for Eq. (5. 2-1) can be w ritten  as:

P ( t |P (0 ))  = P(0) e Mt (5 .2-6)
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The probability  that system  is up at time t is given by the sum  of the 

p robab ili t ies  that the system  is  in one of the u p -s ta te s  at that time. By

Eq. (5. 1-5), we have assum ed that the u p -s ta te s  of the system  a re  from

1 through kQ, the re fo re

A(t| P(0)) = P(0) e Mt vT (k , n -k  ) for 0 < t < » (5 . 2-7)
1 — — — 0 0 0  —

The following theo rem  has been proved.

Theorem  5. 1

The s ta te s  of a s ta tionary  Markovian system  a re  such that the u p -s ta te s  are

denoted by 1 through kQ, and the down-s ta tes  a re  denoted by (hQ+l) through

n . If M is the s ta te  t ra n s i t io n - ra te  m a tr ix  and if the initial probability  o

sta te  v ec to r  of the system  is P(0), then the pointwise availability  function 

of the system  fo r  0 < t < “ is given by Eq. (5. 2-7).

5. 3 RELIABILITY FUNCTION

Definition (2. 2-2) defines the re liab ili ty  of a system  for an interval 

[0, t], F o r  an initial s ta te  vector P(0), the re liab ili ty  function is denoted 

by R(t|P(0)). The essen tia l difference between R(t| P(0)) and A(t|P(0)) is 

tha t the fo rm e r  re p re se n ts  the probability that the system, is up for the 

en tire  in terva l [0, t], w hereas  the la te r  re p re se n ts  the probability  that the
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system  is up at the tim e epoch t r e g a rd le s s  of the system  condition 

during [0, t]. In o rd e r  to compute R(t| P(0)) it is n ec e ssa ry  to f i r s t  

compute, for each i e S , the probability  that the system  is in sta te  i 

at tim e t and the system  has not en tered  any s ta te  in during (0, t).

F o r  this, we need to t r e a t  the s ta tes  in as absorbing s ta tes .  Mathe­

m atically , we need to se t to zero  the sta te  transition  ra te s  of the s ta tes  

in S^. That is  to say, the elem ents of M a re  to be modified such  that

m. . = 0 for all i e S . (5. 3-1)
b 3 d

We shall denote the re su ltan t  m atrix , a f te r  such modification, by B. Then 

the math model for computing the re liab ili ty  function is

r ( t |P (0 ))  = r ( t |P (0 ))  B for 0 < t < “ (5 .3-2)

where r( t |  P(0)) is obviously a ( lx n )  vector. F o r  each i e S , the in te r ­

pre ta tion  for r^(t|P(0)) is:

i \ ( t |P (0 ))  = P r{s( t)  = i and s(x) e for all 0 <  x <  t|P(0)}

(5. 3-3)

However, for each i € S , the in terp re ta tion  of m(t| P(0)) is quite different

r .( t |P (0 ) )  = the probability that the sys tem  s ta r ted  with P(0) 
is down via sta te  i by time t

(5. 3-4)
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The solution for Eq. (5. 3-2) is

r ( t |  P(0)) = P(0) eBt ('5.3-5)

T herefore , the re liab il i ty  function is:

R(t| P(0)) = P(0)eBt v T (k , n -k  ) (5 .3 -6)i _  _  — o o o

for 0 < t <°°

In the above equation, evaulation of the RI-IS involves the sum m ation of the

exponential s e r ie s  of (n x n  ) m a tr ic e s .  The sm a lle r  the value of n , the  c  o o o

l e s s e r  is the computation req u ired  in the evaluation. We now attem pt to 

develop an a lte rna tive  form ula which has significant computational 

advantage for evaluating R(t| P(0).

Recall the elem ents  of S . in Eq. (5. 1-6), it can be seen thatd

modification of M according to Eq. (5 .3-1) m eans setting the elem ents

of the las t  (n - k ) rows of M to 0. T herefo re  in the m a tr ix  B, elem ents  o o

of the la s t  (n - k ) rows a re  0. This  im plies that elem ents  of the last o o

(n - k  ) rows of B1 a re  zero  for all i>  1. This can be seen by f i r s t  
o o —

partitioning B into su b m atr ices  as follows:
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Then it is t r iv ia l  to show that

B

B
1, 1 

0

(5. 3-8)

It follows that

£ B 
i=l

E B 
i=l 1, 1 ^1 1^1 2 i=l 1>L

(5. 3-9)

In Appendix B it is  shown that the type of s e r ie s  in the above equation is 

absolutely  convergent. By Eq. (5. 3-9), Eq. (5. 3-6) can be

rew ri t ten  as

R(t|P (0)) = P(0) [I + C(t)] v (k 0 ,nQ- k o) (5 .3-10)



(5. 3-11)

TBecause of the (n - k ) 0 's  in v (k , n - k ), Eq. (5.3-10) sim plifies to o o o o o

oo # i
R(t| p (o)) = ^ ( 0 ) ^  + z: b J x f r ] z T (k0,o )

o i=l ’
(5. 3-12)

T herefo re ,  an a lte rna tive  expression  for the re liab il i ty  function is given by

P 1 -ft r„
R(t| P{0)) = P  (0) e ’ v ( k , 0 )  (5.3-13)1 ~  —u — o

for r  < t < »

Notice that Eq. (5. 3-6) is  of the same form  as  Eq. (5. 3-13). However, 

much computational advantage can be gained by using the la t te r  due to the 

dimension of B. . being sm a lle r  than that of B. The following theorem  

has been proved.

Theorem  5. 2

F o r  the sam e postu la teas  as in Theorem  5. 1, the re liab ili ty  

function of the system  for an in terval [0, t] is  given by Eq. (5. 3-13).

C(t) =

£ B 
i=l 1, 1 i! .e , b m b i ,2x=l
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5.4 INTERVAL RELIABILITY FUNCTION

By definition (2. 2-3), given an initial s ta te  vec to r  P(0), the 

in terva l re l iab il i ty  of a Markovian system  for an in terval [ t^ ,t^] is 

the conditional probability  that the system  will be up during the interval 

[ t . , t  ]. This function is denoted by IR(t , t  |P(0)). If we allow t to
X  c  X  c i J.

equal t , the in terva l [ L , t ] becom es a point at t . Then
c *  X  c i  &

IR(tj, t 2 | P (0»  reduces  to A(t2 |P(0)). That is

IR(t, t |P (0 ))  = A(t|P(0)) (5 .4-1)

On the other hand if t = 0, we see that A(t , t  | P(0)) reduces  to
X  X  c i

R(t2 1 P  (0)). That is

IR (0 ,t | P(0)) = R(t|P(0)) ^ (5 .4-2)

The above shows that the in terva l re liab ili ty  function is m ore general than 

the pointwise availability  and the re liab ili ty  functions. To find the solution 

for IR (tj,  t 2 | P (0)), for 0 < t^ < t 2 < “ , we f i r s t  find the probability  s tate

vec to r  at tim e t^. By Eq. (5. 2-6)

Mt
P f t J  P<0))= P(0) e (5 .4-3)
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From, the definition of IR(t , t | P(0)) we see that
J .  Li

IR(tr t 2 |P(0)) = R ^ - t J P f t J  P(0)) (5. 4-4)

T herefo re ,  by Eq. (5. 3-6) we have

I R ( t r  t 2 l P ( 0 »  = P f t J P f O H e
B W  Tv (k , n - k ) (5. 4-5) — o o o

Substituting Eq. (5. 4~3) into (5. 4-5) yields

Mt. B(t - t  )
lR (tr t 2 |P(0)) = P(0)e v {k , n - k  ) (5 .4-6)— o o o

Instead of using Eq. (5. 3-6) we may use Eo. (5. 3-13) for the re liab ili ty  

function. In which case  the in terval re liab ili ty  function is  given by

It should be noted that in Eq. (5. 4 _6) there  a re  two m atr ix  exponentials. 

Only under very  special situations can these  two m atrix  exponentials be 

combined into one. The special situation being that t^ = t - t^ and 

MB = BM.

We have proved the following theorem .

IR(tr  t 2 |P(0)) = P / t J P t t ) ) )  e v (k ,0 )  (5.4-7)~ o
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Theorem  5. 3

F o r  the sam e postulates as in T heorem  5. 1, the in terval 

re l iab il i ty  function of the system  for an in terva l [t^, t^L .

0 < t^ < tg < is given by Eq. (5. 4-6) o r  (5. 4-7).

5. 5 INTERVAL AVAILABILITY FUNCTION

By definition (2. 2_4), given an initial s ta te  vector P(0), the 

in te rva l availability  of a Markovian system  for an in terval [t , t ] is the 

expected faction of the tim e in terva l that the system  is up. This function 

is denoted by I A ^  , t  |P (0)). By Eq. (2 .2-5) I A ^ ,  t | P(0)) is  re la ted  to 

the pointwise availability  function as follows:

Each te r m  of the m a tr ix  exponential s e r ie s  on the RI-IS is a continuous 

function of t. In Appendix B we have shown tha t such a se r ie s  is  absolutely 

and uniform ly convergent. T herefo re  the o rd e r  of sum m ation and

(5. 5-1)

Substituting the express ion  for A(t| P(0)) from  Eq. (5. 2-7) yields

IA(t , t  | P(0)) = ~ ~  J  2 P(0) ( E ~  
1 d X2 1 t  i=0 l *

) v (k , n - k ) dt — o o o

(5. 5-2)
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in tegration in Eq, (5. 5-2) m ay  be interchanged [72], Thence

t„t a> i i to
1 2 E T T - d t =  E 
t x i=0 i=0

M1t 1+1
(i+1).'

= E M 
i=0

i+1 i+1

i *2 “ *!
(i+i): (5. 5-3)

Substituting the above into Eq. (5. 5-2) we obtain

t i+1- t i+1
IA(t l , t 2 |P(0))  = P(0) M1 vT (ko , n o - k o )

(5. 5-4)

Theorem  5. 4

F o r  the sam e postu la tes  as in T heorem  5, 1, the in terva l availability  

function of the system  for an in terval [ t ^  t ], 0 < t^< t < ro, is  given by 

Eq. (5. 5-4).

5. 6 STEADY STATE AVAILABILITY

The definition for steady s tate availability, A, of a sys tem  is 

given by (2. 2-6). Since this m easu re  of effectiveness is defined for the 

steady s tate condition, t ra n s ie n t  s ta tes  of the system , if any, m ay
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be rem oved from  consideration. Therefore , without loss  of generality , 

we shall assum e that the system  is  ergodic. By Eq. (2-2-7) the steady 

sta te  availability  can be considered  as the lim iting value*of the in terval 

availability, IA(t^, t^ | P(0)), as t^ -* co. It should be noted that Eq. (5. 5-4) 

gives the solution of IA(t^, t^ | P(0)) for finite t^. T herefore , the steady 

s ta te  availability  cannot be derived from Eq. (5. 4-4) by taking the lim it 

as  t^ -* "•

The following theorem , proved in Appendix C, shows the 

existance of the lim iting solution.

T heorem  5. 5

F o r  an ergodic s ta tionary  Markovian system , the lim iting solution 

of the sys tem  of d ifferential equations governing the s ta te  probabilities  

ex ists ,  and this  solution is independent of the initial condition of the 

system .

By th is  theorem , the system  of equations

~ P ( t | P ( 0 ) )  = P (t |P (0 ))M  (5 .6-1)

in the steady state , red u ces  to

-54-



0 = 7T M (5. 6-2)
o

where n is  the steady sta te  probability  vector of the system- This

equation does not possess  a unique solution since the rank  of M is le ss

than n . O therw ise the only solution for 7r would be 0, which is im possible o — —

since the system  is ergodic and it is n e c e s sa ry  that

7r. > 0 for all i c S 1

and

no
£ jr. = 1 (5 .6 -3)

i=l 1

We now invoke the following im portant theorem  which c h a ra c te r ­

izes  nonsingular su b m atr ices  of M. This is  the m ain theorem  on the 

p ro p e r t ie s  of M. The proof for th is  theorem  and its  c o ro lla ry  a re  given 

in Appendix D.

Theorem  5. 6

L e t M be the transit ion  ra te  m a tr ix  of an n - s ta te  s ta tionary  

Markovian system  which is such that n^ of the s ta tes  a re  tra n s ien t  s ta tes ,  

and the rem aining  (n - n^) s ta tes  form  an ergodic set. If B is an (m x m ) 

m a tr ix  resu lted  a f te r  deleting i, 1 < i < n -H j ,  rows and the corresponding

i columns of M pertain ing  to i s ta te s  of the ergodic set, then B is non-singular .
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C oro lla ry

If M is the t ra n s i t io n -ra te  m a tr ix  of an n ^ -s ta te  s ta tionary  

Markovian system  which is such that n^ of the s ta tes  a re  transien t 

s ta te s ,  and the rem ain ing  (n^-n^) s ta te s  form  an ergodic set, then M 

is s ingular.

By th is  theorem , a m a tr ix  re su lted  from  str ik ing  out any ith 

row and the corresponding  ith column of M of an ergodic system  is 

non-singular .  Hence it follows that if M is the transition  ra te  m a tr ix  

of an ergodic s ta tionary  Markovian system  with n s ta tes ,  any (nQ- 1) 

rows o r  any (n0“ 1) column of M a re  linearly  independent. That is  to 

say the rank  of M is  (n - 1).

Now consider rep lacing  the la s t  column of M by a column of l ' s .  

Let the re su ltan t  m a tr ix  be denoted by W. That is,

w  = M'

m
V 1

m . . .n , 2 o n , n - o o

It follows that M' is  non-singular. By Eq. (5. 6-2), we have
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no
E it. m  = 0  for all i e S (5. 6-5)
• -i 1i=l J

Since the system  is ergodic, 7n > 0 for all i f  S. T herefo re  Eq. (5. 6-5)

can be w ritten  as:

n -1o it.
E \ m. . = m . for all j e S (5.6-6)
i=x J v Jo

Since M' is  non-singular, there  ex is ts  a unique se t of coefficients

a = [ a ^  a 2 ' ‘ * an _ j] (5* 6_?)
o

such that

n -1 o
E a.m. . = m  . for  i = 1, 2 , . . . ,  n - 1 
i=l i i,3 no, 3

(5. 6-8)

By Eq. (5. 6-6) the a ^ s  a re  given by:

IT.
a. =  — for i = 1, 2 ,.  . . ,  n -1 (5. 6-9)

1 7 r ono
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T herefo re ,  all the a . 's  a re  negative quantities. Hence

n -1 (5. 6-10)o
E a. /- 1 
i=l 1

This shows that no l in ea r  combination of the f i r s t  (n -1) rows of W cano

yield the nQth row of W. T he refo re  W is non-singular.

Replacing the nQth s c a la r  equation in Eq. (5. 6-2) by Eq. (5. 6-3) 

we have

u(n -1, 1) = a- W (5. 6-11)— o —

Since W is non-singular, we finally obtain the steady state availability of 

the sys tem  as: v_

A = u{nQ- l ,  1) W 1 vT (ko, nQ- k o) (5.6-12)

The following theo rem  is now proved.
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Theorem  5. 7

The s ta tes  of an ergodic s ta tionary  Markovian system  is such that 

the u p -s ta te s  a re  denoted by 1 through kQ, and the down s ta tes  a re  denoted 

by (k +1) through nQ. If W denotes the re su ltan t  m a tr ix  a fter  replacing 

the la s t  column of the system  tra n s i t io n -ra te  m a tr ix  by a column of l ' s ,  

then the steady sta te  availability  of the system  is  given by Eq. (5. 6-12).

It should be pointed out that the above theorem  may be stated in a

somewhat m ore  generay way. If VL denotes the resu ltan t m atrix  a f te r

replacing the ith column of M by a column of l ' s ,  and if u denotes a

( l x n  ) vector of ze ro s  except the ith e lem ent being 1, then Eq. (5. 6-12) 
o

generalizes to:

A - u . W ?1 v T (k , n  - k  ) (5 .6-13)— 1 1 — 0 0 0 '

5. 7 LIMITING INTERVAL RELIABILITY FUNCTION

By definition (2. 2-9), the limiting in terval re l iab il i ty  for a period 

T, denoted by LIR(t), is defined to be the limiting value of 

IR(t, t = t |  P(r)) as t-*“ . The express ions  derived for IRfa^ t^| P(0)) in 

Eqs. (5. 4-6) and (5. 4-7) a re  valid for finite t j  and only. In 

Theorem  5. 5, it has been estab lished  that for an ergodic s ta tionary
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Markovian system , the lim iting value of P(tj P(0)) ex ists  and this value 

is independent of the initial probability vector P(0). That is

#

lim  P (t |P (0 ))  = 7r ' (5.7-1)
t-*»

We assum e that the system  is  ergodic and stationary. Therefore , at 

any tim e instant in the steady state, the probability  sta te  vector of the 

system  is jr. The Limiting in terval re l iab il i ty  for a period of r  is  the 

re liab il i ty  for a period of r  in the steady state. The probability state 

vector of the system  at the beginning of the time period is jr. Therefore , 

by Theorem  5. 2 we obtain the express ion  for LIR(t).

^1 i? m
LIR(t) = ir e * v (k ,0 )  (5.7-2)— u — o

In the above, ir is  a subvector of ir defined as follows:—u ~

IT - [ TT TT , ] (5.7-3)— -u  —d
( l x n )  ( l x k )  (1 x(n -k  )) o 0 0 0

O bserve that the exp ress ion  for LIR(r) is independent of any initial s tate  

vec to r  P(0).

We have proved the following theorem.
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Theorem  5. 8

The lim iting in terva l re l iab il i ty  of an ergodic s ta tionary  ' 

Markovian system  ex ists  and is independent of any initia l condition of 

the system . The limiting in terva l re l iab il i ty  for a period of tim e r  < 05 

is  given by Eq. (5 .7-2).

5. 8 DISTRIBUTION OF TIM E-TO-FIRST ~SYSTEM“F AILURE

F o r  a given initial probability  s ta te  vector, the f i r s t  passage time 

of the system  to a system  down-state is  a random  quantity. In this section 

we will derive the probability  d istribution  of th is  random  variab le . The 

mean, variance  and the genera l mth o rd e r  m om ent of the variab le  will 

be t re a te d  in the sections to follow.

In Section 3. 2 we derived  some basic re la tionsh ips  between the 

fa i lu re - t im e  density function, the re liab il i ty  function, and the failure  ra te  

function of a sj^stem. Eq. (3. 2-5) gives the re la tionsh ip  between the 

fa i lu re - t im e  density function and the re liab il i ty  function. T herefo re ,  

for an initial s ta te  vector P(0) of a Markovian system , the probability  

density  function of the f i r s t  passage  tim e to system  fa ilu re  is

f ( t |P (0 )  = - ~j|~ R(t| P(0)) (5 .8-1)
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But the re liab il i ty  function of a s ta tionary  Markovian system  has been

found in Section 5. 3. Substituting Eq. (5. 3-13) into (5. 8-1) we have:

*
, B  ’ . t  „

f(t] P(0) = - ~  [Pu (0) e v (kQ> 0)] (5. 8-2)

Since the s e r ie s  for the m a tr ix  exponential is  uniform ly and absolutely 

convergent, te rm  by te rm  differentiation of the s e r ie s  is valid. This 

gives

B* t*
f(t| P(0)) = - P  (0) E - ~ (  1 vT (k ,0 ) (5 .8-3)

—u i=o 1 -  o

Simplifying we obtain

B t
f ( t |P (0 ))=  - p  (0) B 1 .e  1,1 vT (k ,0 ) (5 .8-4)1 ~  ~u 1,1 — o

The above exp ress ion  indicates that if the system  s ta r t s  from  sta te  .

i e  S at tim e 0, then the f i r s t  passage tim e density function is given by
u B t1 1the ith row -sum  of the m atr ix  ~B. .e  ' . F o r  the case where B. .

- - ' B j j t
has distinct c h a ra c te r is t ic  roots , the m a tr ix  exponential e ’ can be 

simplified. If X .,X9j . . .  , X, a re  the d istinct c h a ra c te r is t ic  roots  ofi 6 Ko
B. then th e re  ex is ts  [73] a m a tr ix  G such that

1 ,  J.

Bj j  = G A G ' 1 (5. 8-5)
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where A is a diagonal m a tr ix  with ‘ aS ^ iaSona^
o

elem ents. Now re w rite  the m a tr ix  exponential as:

B l , l t  GAG 1t e = e

= E 
i=0

(GAG V t 1 (5. 8-6)

O bserve that the genera l te rm s  of the above infinite s e r ie s  s im plifies to:

(G A G ~ V tX _ G A V V
i : (5. 8-7)

T h e re fo re  Eq. (5. 8-6) becom es

B l , l t  _ At -1e = G e G (5. 8-8)

AtSince A is diagonal, the m a tr ix  exponential e “ can be w ritten  as:

At

Xft

e o

(5. 8-9)

This  shows that the f i r s t  passage tim e density  function can be exp ressed

in a closed form  when B. has d istinct c h a ra c te r is t ic  roots. We reca ll
X

j
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that for a s ta tionary  Markovian system , the re liab il i ty  function approaches 

zero  as  t -» ro. That is

lim  P  (0) e ’ v ( k , 0 ) - 0  (5.8-10). —u — ot  -* <*>

F o r  the p resen t case

At -1 T
lim  P  (0) G e G v (k , 0)-> 0 (5.8-11), —u -  ot -* 00

This m eans that the eigen values X^, . . . ,Xk have negative rea l  parts .
o

We have proved the following theorem .

Theorem  5. 9

F o r  a given initial s ta te  probability  vec to r  P(0) of a s ta tionary

Markovian system , the probability  density function of the f i r s t  passage

tim e to system  failure  is  given by Eq. (5. 8-4). In the case  when B^ ^

has d istinct eigenvalues, X.>Xr,«. . . ,X, the density function can be
o XT

expressed  in closed form  as a l in ea r  function of e , for  i = 1, 2, . . . ,  k • 

The eigenvalues have negative rea l  parts .

5.9 MEAN TIM E-TO-FIRST-SYSTEM-FAILURE

By definition (2. 2-10), for a given initial s ta te  probability  vec to r  

P(0), the MTTFSFp^gj of a Markovian system  is the average f i r s t  passage
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tim e of the system  from  the initial condition P(0) to a sy s tem  down state. 

If P(0) is such that P^(0) = 0 for all i e S , then it is  obvious that 

M T T F S F p ^  = 0 since the system  is sure  to s ta r t  from  one of the s ta tes  

in S^. More genera lly  speaking, M T T F S F p ^  = 0 only if and if P..(0) = 0 

for all i e S^. Several approaches may be used  to derive the m ean tim e- 

to - f i r s t - sy s te m -fa i lu re .  One approach would be to apply Eq. (3. 3-10) 

since the re liab il i ty  function R(t| P(0)) has a lready  been found in 

Eq. (5. 3_13). Using this approach we have:

T B t
M T T F S F „ ,rt. = lim  f P  (0) e ' v (k , 0) dtP(0) d —u — o— f-,co o

• î7* CO g

= lim  P  (0) r E — t1 dt v T (k , 0)- u  „ i ! ~ o’r-co 0 i=0

(5. 9-1)
Since the infinite s e r ie s  is  uniform ly and absolutely  convergent 

on the in tegrating in te rva l [ 0 , t ],  the in tegration and sum m ation in 

Eq. (5. 9-1) m ay be interchanged. T herefore ,

» Bi Ti+1
M TTFSFp(0) = lim  Pu (0) E —  ZT (kQ. 0) (5. 9-2)

— ' f - t c a  1 = 0

F ro m  Eq. (5. 3-7) we see that B. is the re su ltan t  m a tr ix  a f te r  deletingX, i

from  M all the rows and columns which co rrespond  to the dow n-states of 

the system . By T heorem  5. 6 such a m a tr ix  is  non-singular. T herefo re
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Eq. (5. 9-2) can be w ritten  as

-1 ^1 l r  TM T T F S F ^ .n. = lim  P  (0) EL , [e ’ - I. ] v jk  , 0) (5 .9-3)P(0) —u 1,1 k — * o— 7--tco o

Notice that the f i r s t  te rm  on the RHS of Eq. (5. 9-3) is the re liab ili ty  

function of the system  for the in terval [0, r ] ,  This function goes to 0 as 

T becom es a rb i t r a r i ly  la rge .

B  T r
l im  P  (0) ST1, e l j  1 vT (k , 0) —u 1, 1 ~ oJ-jCO

= lim  R (r | P(0) B _1 . 
T~*co ~ U  h V

= 0 (5. 9-4)

Hence, we obtain

M TTFSF0 /n . = - P  (0) B_1 vT (k ,0 ) (5 .9-5)P(0) - u  j o

We will now show that the e lem ents  of the m a tr ix  “B.. * have p a r t ic u la r
1 y  A

significance. Recall that

J* R(t| P(0)) dt = [ J r (t|P(0))dt,J r t |P (0)dt,  
0 0 0

J r k (t|P(0))dt] v T (ko,0) 
0 o

(5. 9-6)
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Since Eqs. (5. 9-5) and (5. 9-6) hold for all k , it follows that

-1[f r i ( t |P (0 ))d t ,f  r _ ( t |P ( 0 ) ) d t , . . . ,  f r  (t [ P(0))dt] = - P  (0)B. . (5 .9-7)
0 1 0 2 0 ko _ u  1,1

Now consider  the case  when a ll the elem ents of P  (0) is zero  except the—u

ith e lem ent being 1 (obviously i e S^), then the RHS of Eq. (5. 9-7) 

r e p re s e n ts  the ith row of - B ^ ^ .  T herefo re ,  for all i, j e S^

J  r .( t |  s(0) = i)dt = the (i, j) e lem ent of -B -1 

1, 1
(5. 9-8)

The LHS of the above equation re p re se n ts  the expected time the system  

will spend in s ta te  j before entering  a system  down-state the f i r s t  time,
V_

given that the sys tem  s ta r t s  from  sta te  i. We denote this  quantity by

* <i>:

$ .(i) = J r  (t| s(0) = i) dt 
3 o J

(5. 9-9)

Then, we have

* 2u> ^ ( 1 )  . ■ ■ (1)
o

* j(2 ) * 2( 2) « 3<2> . . . 0 k (2) (5. 9
•

o

w *2<ko> W •• K  <ko>
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Since each ip.(i) re p re se n ts  the expected tim e the system  spends in s ta te  
3

j before en tering  a system  down-state the f i r s t  time, given that the system  

s ta r t s  from  s ta te  i, #

ip .(i) > 0 for all i, j e S (5 .9-11)
3 ^

That is  to say  all e lem ents of B * a r e  non-negative. It is  not hard  to1 , 1

see that if the u p -s ta te s  .of the system  form  an ergodic set, then the 

inequality in Eq. (5. 9-11) is  s tr ic t .

We have proved the following theorem .

Theorem  5. 10

In a s ta tionary  Markovian system , le t B j  ̂ be the resu ltan t

m atr ix  a f te r  deleting from  M all the rows and columns which correspond

to the system  down-states. The m atr ix  B. . is  non-singular. The (i, j)1,1

elem ent of -B 1 re p re se n ts  the expected time the system  spends in sta te  
1,1

j before entering  a system  down-state the f i r s t  tim e given that the system  

s ta r t s  from  sta te  i initially. If the initial s ta te  vec to r  of the system  is P(0), 

then the m ean t im e - to - f i r s t - sy s te m -fa i lu re  is  given by Eq. (5. 9-5).

5. 10 VARIANCE OF TIME-TO-FIRST-SYSTEM-FAILURE

F o r  a given initial s ta te  vec to r  P(0), the variance  of the f i r s t  

passage  tim e to system  fa ilu re , denoted by var(T TFSF | P(0)), can be
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found by employing Eq. (3. 3-16).

V ar(T TFSF | P(0)) = 2 J t R(t| P(0)) dt - (J R(t| P(0)) dt)2
0 0

(5. 10-1)

The f i r s t  t e r m  on the RHS re p re s e n ts  the second moment of the f i r s t  

passage  tim e. We will f i r s t  evaluate the in tegra l of this te rm . By 

Eq. (5.3-13),

J  t R ( t |P ( 0 ) ) d t

0 T B 1 l 1 T= lim  f t P  (0) e ’ v (k , 0) dt J . —u — or-*a> o
■oi A X 00 ]3 t

= lim  P  (0) f t L ~ V p   dt v T (k , 0) (5. 10-2)—u n x. — o0 x=o

Integrating by p a r ts  we have

r  » b ) t 1 
j  t e  - i j f  —  dt 
0 i=0

“ . i+1 t  ® b !  . t 1+^

■ [t £  B i ,  i  nm ]To - =0 - i w ) T -  dl <5- 10- 3)
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Simplifying gives

T "  i t1
S  ‘ E B ! !  —  dt
0 i=0 ’

i i+1 _ i  i+2
00 B  .. T ® B  1 T

= T “ S i n r -  - *0 - s S n —  <*• “ »-*>

Since B 1 . is non-singular this equation can.be w ritten  as: 

T "  t t1'
I  ‘ E E ! 1 -  dl0 i=0 ’

o o

"1 ^1 1T ~2 ^1 1T -2  TB e - B e 1,1 + B /  (5.10-5)X,A i 1^1

Substituting Eq. (5. 10-5) into Eq. (5. 10~2) gives

J  tR ( t |P (0 ) )d t  
0

“ 1 ”̂ 1 I7* -2 ^1 1T 2 T■ U m P ( 0 ) [ TB e ' - B  e '  + B ]v ‘ (kQ. 0)
7*-*00

= lim t R(t | P  ( O j B ^ J - l i m  R(r | P  <0)b “2 ) + P (0)B1"21vT (k , 0)
u  1 , 1  1 — U  1 , 1  — U  1 , 1 “  O

y - * c o  J - » C O

(5. 10-6)
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F o r  a s ta tionary  Markovian system , the failure ra te  function is bounded 

from  below by some constant e > 0. Therefore , by Eq. (3 .3 -8) the

limiting value of the f i r s t  two te rm s  on the RHS of Eq. ( 5 .10- 6) is zero.

Hence, the second moment of the f i r s t  passage time is:

CO

2 F tR (t |P (0 ))d t  = 2 P  (0) b " 2, v T (k ,0 )  (5.10-7)1 — —u 1 , 1 — o

Substituting Eqs. (5. 9“5) and (5. 10-7) in (5. 10~1) we obtain:

V ar(T T F S F |P (0 ))  = 2 P  (0) B 2 vT(k , 0) - [P (0) b "* v T(k , 0)]21 — —U 1, 1— O —U 1 ,1 — o

(5. 10-8)

We have proved the following theorem.

Theorem  5. 11

Given that the initial probability s tate vector of a  s ta tionary  

Markovian system  is P(0), the variance of the f i r s t  passage tim e to 

system  fa ilure  is  given by Eq. (5. 10-8).

5. 11 THE mth ORDER MOMENT OF TIME-TO-FIRST-SYSTEM-FAILURE

In the preceeding two sections, we have derived the f ir s t  and the 

second o rd e r  m oments of the f i r s t  passage time to system  failure. In this



section we will derive an express ion  for the general case  mth o rd e r  

moment.

Theorem  5. 12

Given that the initial probability sta te  vec to r  of a s ta tionary  

Markovian system  is P(0), the mth o rd e r  (m > 1) moment of the 

t im e - to - f i r s t - sy s te m  fa ilure  is given by

( - l ) m m! Pu (0) vT (ko> 0) (5.11-1)

We will give an inductive proof. By Eqs. (5. 9-5) and (5. 10-7) we see that 

the theorem  is tru e  for the ca ses  of m  equals 1 and 2. Now, suppose it is 

t ru e  for m = i> 2. This means

CO

J t 1f(t|P(0))= ( -D 1 i! P (0) B ' ^ v ^ k  , 0) (5.11-2)
0 U ’

By Eqs. (3.3-14), the above is equivalent to

CO

i f  t1_1R(t| P(0)) dt = (-1)1 iJ P  (0) b ”1 ,v ^ k  , 0) (5.11-3)- u  1 ,1“  o

We will show that the theorem  is tru e  for m = i+1. Again by Eq. (3. 3_14),
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03 .
J  t  f ( t |P (0 ) )d t

0
T .

= lim  (i+1) J  t1 R(t|P(0)) dt
7--*co 0 •

T “  B3 t3
= lim  (i+1) P  (0) f t1 E — dt vT (k ,0 )  (5. 11-4)—II t) -j — o

T-» 0 j=0 3

C arry ing  out the in tegration by p a r ts  we have:

r  . » B3 1t J
J  t 1 E - i f f - d t

0 j=0 3'

. ~ B3 t3+1 T . » B3 t3+1
= t 1 E —1-.'--^ - -  “ J i t  E - r -tT V "  dt

j=0 (3+1)J 0 j=0 (3+1)J

. B. iT , T . . B. , t
- I fc ]- iB j  j  J  t 1 l [e h  - X ] dt

L’ 1 o ’ 0 O

i - l  , B l ,  1T , -1 r>T, i - 1 B l,  1* . -.1 i= r  B [e - I  ] - i B  J t  e dt + B r
0 1,1 o ’

i - l  B 1,1T . -1 . i - l  B l ,  1* .. ,-x= r B 1 1 e - i B 1 1 J t e  dt (5. 11-5)
0

Substituting Eq. (5. 11-5) into Eq. (5. 11-4) we obtain:

CO

J  t1+1 f(t| P(0)) dt

1 T B t
= (i+l)[ l im  t ^ t | P(0) b " ^ )  - lim  i P ^ O j J t ^ e  lj 1 dt B ^ v 1̂ ,  0)

7"-.00 ’ f-iOl 0

(5 .11-6)
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F o r  a s ta tionary  Markovian system , the f i r s t  te rm  on the RHS -♦ 0 as

r  -* ro. F ro m  Eq. (5. 11-3) we have:

T  .  - B  . t  . ,

l im  i J t1" e * dt = (-1)1 ii B~ (5.11-7)
X-,® o ’

Hence we obtain 

00
J* t1+1f(t| P(0)) dt = ( - l ) 1+1(i+l) ' P (0) B~ .+ v T (k , 0)—u 1,1 -  o

(5.11-8)

This com pletes the proof.

Appendix E p re sen ts  an a lternative  derivation of Eq. (5. 11-8) by 

using the Laplace tra n s fo rm  approach.
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Chapter 6

UP-TIM E AND DOWN-TIME INTERVALS OF INTEREST 
FOR MARKOVIAN SYSTEMS IN THE STEADY STATE

6. 1 INTRODUCTION

The development in this chap ter  concerns th ree  different types of 

up-tim e and down-time in terva ls  for ergodic s ta tionary  Markovian system s 

in the s teady  sta te . These in te rva ls  a re  named as below:

1. Complete up-tim e (down-time) in terval

2. Unconditional rem ain ing  up-tim e (down-time) interval.

3. Conditional rem ain ing  up-tim e (down-time) interval.

T he ir  definitions will next be given.

If one would plot the s ta te  of the system  as  a function of time, it 

could appear  as shown in F igure  6-1.

system  sta te  

n - ---------------------

Tim e

F ig u re  6-1 State of the System V ersu s  Tim e Plot,
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The system  is said  to be in an up-condition when it is in one of the s ta te s

of S : and it is sa id  to be in a down-condition when it is in one of the s ta tes  u
of S^. T herefo re ,  from  the plot of sy stem  sta te  v e rsu s  time, a plot of 

the system  condition v e rsu s  time m ay be made. A typical plot of system  

condition v e rsu s  tim e is shown in F igure  6-2.

System Condition 

up

down

Steady State

Tim e

F igu re  6-2 System Condition V ersu s  T im e Plot.

Each shown in the f igure  denotes a complete up-tim e in terva l, which

is a tim e in terva l beginning from  the instant the system  e n te rs  a sta te  in

S from  a s ta te  in S , up to the next tim e instant when it f i r s t  en te rs  a u d

sta te  in S Each  y. denotes a complete down-time in terva l which is d 1

s im ila r ly  defined. F o r  sim plicity , we shall use  up-tim e and down“tim e 

in te rva ls  to m ean the complete up-tim e and down-time in terva ls ,  

respectively .
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As the p ro cess  of the system  up and down condition continues in 

the steady state, if at a random  tim e epoch an observation  of the system
m

is  made, it is with zero  probability that the observation  tim e epoch will 

coincide with the beginning of an up-tim e o r  a down-time in terval. At 

the observation tim e epoch, the system  may be in e ither  an up condition 

o r  a  down condition. If no inform ation is given regard ing  the condition 

of the system  at the random  instant it is  observed, the rem ain ing  up-tim e 

o r  down-time in terva l is  defined to be the unconditional rem ain ing  up-tim e 

o r  down-time interval.

Now, suppose as the system  is observed at a  random tim e epoch

in the steady state, it is found to be in an up condition, but no inform ation

is  given on the exact s ta te  of the system . The rem aining  up-tim e based 

on the condition that the sy s tem  is up at the tim e epoch it is observed  will 

be called the conditional rem aining  up-tim e. In a s im i la r  m anner, the 

conditional rem aining  down-time is defined.

The following abbreviations will be used:

UT = complete up-tim e in terval

DT = complete dow'n-time in terva l

RUT = unconditional rem ain ing  up-tim e in terval

RDT = unconditional rem ain ing  down-time in terva l

RUTu = conditional rem ain ing  up -tim e  in terva l

RDT^ = conditional rem ain ing  down-time in terval
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In the sections to follow, we will derive the probability  density

functions and the m om ents of UT, DT, RUT, RDT, RUT and RDTu d

In addition, a discussion will be presented  on their  in terre la tionsh ips .

The final section is devoted to the development of express ions  for computing

system  m ean up-tim e (MUT) and mean down-time (MDT) in te rm s  of 

independent subsystem s MUT's and MDT's.

6. 2 COMPLETE UP-TIME AND DOWN-TIME INTERVALS

F o r  an ergodic Markovian system , in general, there  a re

m ore  than one sta te  in S that can be reached  from some sta te  o r  s ta tesu

in by a single transition . This m eans that the system  may not always 

begin an up-tim e in terval from  a fixed state in S^. Sim ilarly , all down-time 

in terva ls  may not always begin from  a fixed sta te  in S^. T herefo re  there  a re  

probability  distributions governing the beginning s ta tes  of the up-tim e and 

down-time in terva ls .  The key step in computing the probability density 

functions and the m om ents for UT and DT lies in finding these probability 

d istributions.

F o r  each j e S, and for an initial s ta te  vec to r  P(0), the probability  

that the system  will en te r  state j in the next dt tim e in terva l given that 

it is  now in a down state is:

-78-



P r{ s ( t  + dt) = j | s ( t ) e  S , P(0)}

E Pr{ s(t) = i, s ( t+  dt) = j | s(t) e S ,, P(0)}
ie S , d

E P r{s( t)  = i| s(t) e S ., P(0)} P r{ s( t  + dt) = j j s ( t )  = i}
U S .d

af te r  employing M arkov's  p roperty

Pr{ s(t) = i| P(0)}
PrE s (t)  € s '  | P ( 0 )} p r £ s ( t  + dt) = j|s<t> = ij

E P . ( t |P ( 0 ) m .  .dt
ieS.  1 1,3d_________________

E P  (t|P (0))
ie S , d

(6 . 2 - 1 )

By Theorem  5. 8, all P^(tj P(0)) -* as t -* Let y(j| S^) denotes the 

lim iting value of Eq. (6 .2-1) as t -  00. Therefore ,

E 7r. m. .dt 
U S .  1

K ( J | S ^ ) °  ■ag ' - T-------  ( 6 . 2 -2 )
k c sd k

This equation holds for all j e S. To find the initial p robability  vec to r  of 

an up-tim e in terval, we need only those y(j| S^) such that j e S^. It can 

be seen that, in the steady state, for each j e S
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Pr{ system  begins an up-tim e interval in sta te  j]

y(j| s d)
T 7 ( I [ s d)

J u

Substuting Eq. (6. 2-2) into (6. 2-3) re su l ts  in:

Pr{ system  begins an up-tim e in terva l in sta te  j]

(6. 2-3)

L 7r. m . .
ieS i i.D

ke S ie S . u d

 -------------- fo r  all jeSE it. m. . J ul i , k
(6. 2-4)

Now, partit ion  the system  tra n s i t io n -ra te  m a tr ix  M into subm atr ices  as 

follows:

M =

M
1 . 1  1

M1 , 2
(k x k  ) | (k  x(n - k ))o o o o o

M M
2, 1 I 2, 2

((n “ k )xk )[ ((n - k )x(n - k )) o o o o o o o

(6. 2-5)

Notice that by com paring this partition  of M with that of the m atr ix  B in 

Eq. (5. 3-7) shows the following equalities of subm atrices :

Ml ,  1 " B l,  1 (6. 2 - 6)
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and

<6. 2-7)

Equation (6. 2-4) can be w ritten  in vec to r  form  in te rm s  of the subm atrix  

M 1 thus
X

This is  the in itia l probability  vec to r  as  the system  begins an up-tim e 

in terva l in the s teady state.

Following a s im ila r  p rocedure  we can read ily  show that the initial 

probability  vec to r  as  the sys tem  begins a down-time in terva l in the steady 

sta te  is:

Before proceeding, we will prove the following lem m a.

Lem m a 6. 1

F o r  an ergodic s ta t io n ary  Markovian system , the following 

express ions, which a re  functions of the steady s ta te  p robab ili t ies  and the 

sta te  transition  r a te s ,  a r e  equal.

Pu<°> (6. 2 -8 )

P d <°>
(6. 2-9)
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- E E 7r.m. . = E E ir.ro.. . = E E ir.ro.. . ■= -  E E 7T.m. .
jeS ieS 1 1,3 jeS ieS , 1 1,3 jeS .  ieS 1 1,3 je S ,  i e S , ' 1 1,3J u d J d u J d du u

(6 . 2 - 10)

Proof:

In te rm s  of the su b m atr ices  M. Eq. (5. 6-2) may be w ritten  as:
1» 3

[tt it J  —u — d

Ml,  1 Ml ,  2

M2, 1 M2, 2

= 0-n (6 . 2 - 11)

On expanding we have

IT  , M 1 = ~7T M .—d 2, 1 —u 1, 1 (6 . 2 - 12)

and

7T M = *” 7T M - u  1,2 - d  2, 2 (6. 2-13)

Recall the zero  row sum  p ro p erty  of the t ra n s i t io n -ra te  m a tr ix  M. That

is

n
E m . . = 0 for all i e S 

3 = 1 X’ 3
(6. 2-14)
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This m eans,

M 2 , l  M2 , 2

vT (ko , 0)

v^(n  -k  , 0) — o o

= 0 T
•n (6. 2-15)

It follows that

M. 9vT (n -k  ,0 )  = -M  1vT (k , 0) 1 ,2  o o  1)1 o

and

(6. 2-16)

M lVT (k ,0 )  = _M vT (n -k  0) (6.2-17)2, l ~ o  2, 2— o o

By Eqs. (6. 2-12), (6. 2-13), (6. 2-16) and (6. 2-17) we obtain the following 

equalities:

' % M1. A  °> = ~ d M2, °> '  * u Ml.  22T(no - ko' °> = ~ ^ M2, °>

(6. 2-18)

These  a re  s c a la r  quantities, and they can be w ritten  as:

-  E £  7r.m. . = E E 7r.m. . = E E 7r.m . . = -  E E n .ra . .
j e S ,  i t s ,  1 1>] jeSu ieSd 1 j £ Sd ieSu 1 ' • 3 jeSd i£ Sd 1 115u u

This com pletes  the proof.
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F o r  expediency, we will denote the value of the express ions  in Eq, (6, 2-10) 

by c . That is:

By Eq. (6. 2-18), the denom inators in Eqs. (6, 2-8) and (6, 2-9) are  

equal to c . Now applying Eqs. (6. 2-12) and (6. 2-13) to the num era to rs  of 

Eqs. (6. 2-8) and (6. 2-9), respectively , we obtain:

We have proved the following theorem.

Theorem  6. 1

In an ergodic s ta tionary  Markovian system , the sta te  probability 

d istributions of the system  in the steady sta te  at the beginning of the up-tim e 

and down-time in terva ls  a re  given by Eqs. (6. 2-20) and (6, 2-21), 

respectively .

o

c

(6. 2-19)

Since i t .  > 0 for a ll  ieS, and m. . > 0 for all i^  j, we see that c > 0.

P  (0) = -u
(6 . 2- 20)

and

(6. 2 - 21)
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The probability  density  function of the up-tim e in te rv a ls  will be 

denoted by f ^(t). Since £ u (0) kas been found, th is  function can now be

obtained by appealing to Theorem  5. 9. '

1 2 ^ 1  T
W t) = r % Mi , i e ' 2  < v ° >  <6- 2- 22>0

Using a p a ra lle l  approach, the probab ility  density function of the 

down-time in terva ls  can be derived. We denote this function by gp-pft)-

1 2 ^ 2  2  ̂ T
e DT (t) T i d < 2 '  s  W 0) (6- 2 - 2 3 )O

The m th o rd e r  m om ents of UT and DT a re  obtained by applying Theorem  

5.12. Thus, for m > 1,

UT(m)= ( - l ) m+1m.’ —  7r ,0). (6 .2-24)c - u  1, 1 -  o

and

DT(m) = ( - l ) m+1mi —  tr vT (n -k  , 0) (6 .2-25)
C Q 2* f  £  O OO

It follows that the m ean and variance  of UT and DT a re :

7r vT (k , 0) .
MUT = —--------° = —  (6. 2-26)c co o

H a  XT (n _ k  » ° )  i a
MDT = — --------   = (6. 2-27)c co o
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var(UT) = - —  7T M ~ \  v T (k , 0) - (—  )2 (6.2-28)
C —u  1 , 1 “  o  co o

and

var(DT) = - —  t t  . M_1 vT (n -k  , 0) - ( ^ - ) 2 (6.2-29)
cq “ d 2.2 “  o o cq

Equations (6. 2-26) and (6. 2-27) yield the following re la tionsh ip  between 

MUT, MDT and the system  steady sta te  availability:

MUT = A (6. 2-30)MUT + MDT

6. 3 CONDITIONAL AND UNCONDITIONAL REMAINING UP"TIME 
AND DOWN-TIME INTERVALS

Since the s teady  s ta te  probability  vector t t _  of an ergodic s ta tionary

Markovian system  is independent of tim e, the probability  that the system

is in s tate i, for  all ie  S, a t  any random  tim e epoch in the steady sta te

is t t . .  It follows from  the definitions of RUT and RDT that the in itial 
i

probability  vec to rs  for RUT and RDT a re  given respec tive ly  by

and

P (0) = t t  (6.3-1)—u —u

P ,(0 )  = t t ,  (6 .3-2)—a —a

-86-



To find the probability density functions and the mth o rd e r  m om ents

for RUT and RDT we once again appeal to T heorem s 5. 9 and 5. 12. Let
0

f1->TTrn(t) and g (t) denote the probability density functions of RUT and RU1 KJJ JL

RDT, respectively . Then,

m i 1̂  T
W (t) = Mi, i e ’ 2  ° v 0) <6- 3 ' 3 )

% D T (t> = — d M2, 2e ^  0) <6' 3' 4)

RUT(m) = ( '-l)m m! tr M “  vT (k 0) (6 .3-5)—u 1, 1 — o,

RDT(m) = ( - l ) m  mj £  . M~m_ vT (n -k  , 0) (6. 3-6)
Q u  t  d* O O

F o r  the case of RUTU and the initial probability  vectors

in Eqs. (5. 13-1) and (5. 13"2)need to be norm alized  as follows:

P  (0) = ------ £ -------  = - f -  (6 .3-7)

and

-u T. n. A
1LU X (V  0)

P d(0> - ~ - fT, ■ 7 ^ .  <6- 3 - 8)7r . v (n “k , 0)— d — o o

-87-



Once again, applying Theorem s 5, 9 and 5. 12 we obtain:

fEUT (t) '  T  “ i .  I 6 i T(1V 01 '  <6- 3' 9>u

«BDT «•> = f h .  Z ,  M2. 2 ^  W  0) <6' 3 ' 10>d

RUT (m) = (~1)/ 'rn! * M"m vT (k 0) (6.3-11)u A —u 1, 1 — o

RDT(m) = ^  M-m  2 T (n<). ko>0) ( 6 .3- 12)

By Eqs. (6. 3-11) and (6. 3-12) the mean and variances  of RUT, RDT,

RUT and RDT , a re  as follows: u d

MRUT = -ir M~* vT (k ,0 )  (6.3-13)—u 1 , 1 — o

MRDT = -7r . M"1 vT (n -k  ,0) (6.3-14)
Cl c t  ,  C t 0  0

MRUT = 7  i  M"1, vT (k ,0) (6.3-15)u A —u 1 , 1 “  o

MRDT = 7 ~  t t .  m "^ v(n -k ,0 )  '(6 .3-16)d 1-A —d 2, 2 — o o

var(RUT) = 2 tt m“2, v T(k , 0) - (tt m"* v T (k , 0))2 (6.3-17)
“ U  1 , 1 “  O “ U  1 , 1  o
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var(RDT) = 2 2(J m ' ^  o) - vT <no -ko, O))2

(6. 3-18)

var(KUTu)= f  %  vT <k0, 0) - ( i  £ u  vT (ko, O))2

(6. 3-19)

var(RDTd> = £ d 0) - M ^ v ' h n ^ ,  O))2

(6. 3-20)

6. 4 RELATIONSHIPS BETWEEN THE PROBABILITY DENSITY
FUNCTIONS AND THE MOMENTS OF THE VARIOUS UP-TIMES 
AND DOWN-TIMES

In Section 6. 2, the probability density functions and the m th 

o rd e r  m om ents of UT and DT a re  derived. They a re  given in Eqs. (6. 2-22)

- (6. 2_25). In the preceeding  section, the density  functions and the 

m om ents for RUT, RDT, RUT^, and RDTd a re  developed. The express ions  

corresponding to RUT and RDT a re  given in Eqs. (6. 3-3) - (6. 3-6); and the 

express ions  corresponding  to RUT^ and RDT^ a r e  given in Eqs. (6. 3-9)

- (6. 3-12).

Com parison of the various density functions re v ea ls  no o ther 

re la tionsh ip  except the following obvious two:
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W 1’ ■ A W  (t) <6- 4 - I >u

and ,

W (,1 = (‘ - A ) t  R O T ™  <6' 4 ' 2)d

Com parison of Eqs. (6. 2-24), (6. 3-5) and (6. 3-11) rev ea ls  the following 

in teresting  re la tionsh ip  between the moments.

UT(m+l) = (2 ± 1  ) RUT(m) = (m+1) ) R U T ^  (6. 4~3)
o o

In view of Eq. (6. 2-26), the above can be w ritten  as:

UT(m+l) = (H1±1)(MUT) RUT(m) = (m+l)(MUT)RUT(m)
A U

(6. 4-4)

This shows a re la tionship  between the (m+l)th o rd e r  moment of UT and 

the m th o rd e r  m oment of RUT or RUT^. Similarly, from  Eqs. (6. 2~25),

(6. 3-6) and (6. 3-12), and in light of Eq. (6. 2-27) we obtain the relationship:

DT(m+l) = ( S ^ ) ( MDT)RDT(m) a (m+i)(MDT)RDT^m) (6 .4 -5)

It follows from  the la s t  two equations that
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var(UT) = M U T [ | MRUT - MUT] = MUT[ 2MRUT - MUT]
x x  U

(6.4-6)
0

and

var(DT) = M D T [ - ~  MRDT - MDT] = MDT[2 MRDT - MDT]

(6. 4-7)

We now compare, the f i r s t  o rd e r  m om ents of the various u p -tim es  

and down-times. Recall that the system  steady sta te  availability A is 

bounded between 0 and 1, the following inequalities a re  obvious from  

Eqs. (6. 4-3) and (6. 4-4).

MRUT < MRUT (6. 4" 8)u

and

MRDT < MRDTd (6. 4-9)

T here  ex ists  no such fixed inequalities between MUT(MDT) and MRUT(MRDT) 

o r  MRUT (MRDT^). This is  i l lu s tra ted  by two s im ple  examples in 

Appendix F.
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6. 5 RELATIONSHIP BETWEEN SYSTEM MUT (MDT) AND 
INDEPENDENT SUBSYSTEM MUT'S (MDT's)

In Section 6. 2, express ions  for system  MUT and'MDT, given by 

Eqs. (6. 2-26) and (6. 2~27), a re  derived for an ergodic sta tionary  Markovian 

system  in general. In the case  when the system  is com prised  of independent 

subsystem s, it would be computationally advantageous to compute the system . 

MUT and MDT through computation of the subsystem  MUrJUs and MDT's,

This section is devoted to the development of the general re lationship  

between system  MUT (MDT) and independent subsystem  MUT's (MDT's).

In general, a system  is  com prised  of n> 1 independent subsystem s. 

These subsystem s could be interconnected in a complex configuration.

F igu re  6-3 shows a system  com prised  of 5 independent subsystem s.

F igu re  6-3 Configuration of a System C om prised  of 5 Independent
Subsystems.
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It can be seen that the solution for any a rb i t r a ry  system  configuration can 

be achieved once the solutions for two independent subsystem s in se r ie s  

as well a s  in para lle l  a r e  developed. We shall f i r s t  develop the solution 

for the s e r ie s  case.

F igure  6-4 shows the configuration of a system  com prised  of 

2 independent subsystem s in se r ie s .

1 2

F igure  6-4 Two Independent Subsystems in Series

Let S^ be the s tate space of subsystem  1, 

S^ be the s tate space of subsystem  2.

In addition, for i = 1, 2, let

S.u = the se t  of u p -s ta te s  of subsystem  i,

S.^ = the se t of the dow n-states of subsystem  i.

It follows that

S1 (6. 5-1)

and

(6. 5-2)
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Since the 2 subsystem s a re  independent and connected in s e r ie s ,  the se ts  

of the u p -s ta te s  and the dow n-states of the system  a re :

S = S, x S., (6. 5-3)u lu  2u

Sd * <S l u ’tS 2d,D (Sld x S 2u)T,(Sl d !tS2d> <6 ' 5' 4)

It can be seen that if n. is the o rd e r  of S., then the o rd e r  of S is n. n„.l x 1 2

We note that the se ts  and i = l , 2 ,  a r e  disjoint. F ro m  Eqs.

(6. 5-3) and (6. 5-4) we see that each sta te  of the system  is defined as a 

combination of a s ta te  of subsystem  1 and a sta te  of subsys tem  2. T h e re ­

fore  an o rd e red  pa ir  of sta te  notation may be used to re p re se n t  a s ta te  in 

S. Our convention shall be as follows:

By (a , a ) e S, we m ean that sta te  (a , a ) in S which re p re se n ts  
X ^  X c i

the combination of s ta te s  a^ e and a^ e S^.

R ecall the basic  assum ption made for a Markovian system  in 

Section 4. 3 that the probability of two o r m ore  changes occur in the system

within an a rb i t r a r i ly  sm all in terva l is  zero . It follows that the re la t io n ­

ship between the s ta te  transition  ra te s  of the system  and those of the 

subsys tem s a re  as  given below.

-94-



F o r  all (a^, a 2) e S and (b ^  b2) e S,

m

m . + m 
a l ' b l a 2‘ 2

m

(ar  a2), (br  b 2) H a2 ' b2

m
a l ’ b2

if a = b and a = b
X X  • &  c*

if a. = b and a i  bX X  (j 6

if a ^  b and a 2 = b2

(6. 5-5)

By Eqs. (6. 2-26), MUT for an ergodic s ta tionary  Markovian system  in 

general is:

MUT = (6. 5-6)

F o r  the se r ie s  system  under consideration

A = E n, .
(al ’ a 2 ) e S l u x S2 u a i ’ &2

since the two subsystem s 

a re  independent

E i t  E T T
p S. - p 3.0a , e S .  1 a p S . 2 1 lu  2 2u

since S. and Sn a re  lu  2u
disjoint

(6. 5-7)
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By L em m a 6. 1, c is given by any one of the four express ions  in o #

Eq. (6. 2-19). Therefore , fo r  the p resen t system,

c £ E 7t* \ m, * /. , \
° (a r  a 2) e Su (b ^  bg) e Sd (a l* a 2* (al '  a 2)j ( 1' 2}

(6. 5-8)

The se ts  Su and a re  given by Eqs. (6. 5-3) and (6. 5-4), respectively . 

Since the products ( S ^ . S ^  ( S j ^ y ,  ( S ^ S J  and 

a re  disjoint, and since the 2 subsystem s a re  independent, Eq. (6. 5-8) can 

be w ritten  as:

C° <a l - a2) f< S luXS2u)(bl , b2) f ( S luXS2d) I a i  ’ra2 m ‘a l - a2U b 1' b2)

+ E E 7T 7T m  . .

<* r ‘2, t ®iuxS2u)(br b2)‘ <si d * V  "2 “ i - V ' V V

+ E E 7T 7T m . . . . .
(a1, a 2 k ( S 1uXS2ii) ( b 1, b 2>e(Sld ^ 2 d ) E1 a 2 V ’ (tV  b2>

(6.5-9)

By Eq. (6. 5-5) we see that the las t  te rm  in the above equation is zero , and 

cq can be exp ressed  in te rm s  of the transition  ra te s  of subsystem s 1 and 

2 thus:
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c = £ E 7r ir m  .

°  b2 f S 2d a ‘ "2 a 2 ' 2

+ £ £ ir 7r m , . (6. 5~10)

< V a2)f(SluXV  bleSld &1 &2 V  1

Since the se ts  S„ and S„ a re  disjoint, we obtain: lu  2u J

c =( £ ir ) ( £ £ 7T m )
°  a e S, a l a e S b„e S „ , a 2 a 2' 2 1 lu  2 2u 2 2d

+ ( £ 7r ) ( £ £ ir m  )
a  c S 2 a ^ S ,  b . e S , ,  1 V I 2 2u 1 lu  1 Id

(6. 5-11)

L et be the steady s ta te  availab ility  of subsystem  i. T herefo re ,

A. = £ 7r (6.5-12)i 0 s..a.e S. i
1 1U

In addition, let

c. = £ £ 7T m  . (6. 5-13)
i o l. o a - a., b.a.e S. b.e S. . i i i

i  i u  i  i d
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Then Eq. (6. 5-H )becom es

Co = A l ° 2 + A 2 ° l  - (6.5-14)

and Eq. (6. 5-7) becom es

A = A A (6.5-15)JL Ct

Substituting Eqs. (6. 5-14) and (6. 5-15) into Eq. (6. 5-6) re su lts  in:

A^A
MUT =

Al V A2Cl

A1 A2

C1 C2

t l  + S  

C1 °2 

MUTj MUT2 

MUTj+MUTg (6. 5-16)

where

MUT. = m ean up-tim e of subsystem  i. (6. 5-17)l

Eq. (6. 5-16) gives the express ion  for sy stem  MUT in te rm s  of the subsystem  

MUT's for the case  when the system  is com prised  of 2 independent subsystem s 

in s e r ie s .
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To find system  MDT, substitute Eqs. (6. 5~14) and (6. 5_15) into 

Eq. (6. 2-27) we obtain:

1 “ A 1 A 2MDT =
A 1C2+ A 2C1

A. (1 -A ) + A (1 - A . ) + (1 -A. )(1 -A )
— -------^ ---- ~ - A~------------ i ~  (6.5-18)

1°2 + A2C1

Dividing both the n u m era to r  and the denominator by the above

equation becomes:

A  1 - A  A  1 - A  1 - A  1 - A

MDT “ a  Ay
+ "

C1 °2

MUT MDT + MUT MDT + MDT MDT1 Ct ’   !-a__  1___  X____  6
MUT^+ MUT (6. 5-19)

where

MDT^ = m ean  down-time of subsystem  i (6. 5~20)

Eq. (6. 5-19) gives the exp ress ion  for system  MDT in te rm s  of the subsystem  

M UT's and MDT's for the case  when the system  is com prised  of 2 independent 

subsys tem s in s e r ie s .
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The expressions for system  MUT and MDT of Eqs. (6. 5-16) 

and (6. 5-19) can be generalized to the case  when the system  com prises  

n >  2 independent subsystem s in se r ie s ,  as shown in Figtire 6-5.

F igu re  6-5 Configuration of a System Com prised of n Independent 
Subsystems in Series.

Define the following notations:

MUT(i. j .  . k) = Mean up-tim e of subsystem s i, j, . . . , k in se r ie ss
(6. 5 - 21)

MDT(i. j .  . k) = Mean down-time of subsystem s i, j , . . . ,  k in se r ie ss
(6. 5-22)

To develop the express ion  for the general case, f i r s t  consider subsystem s 1 

and 2. The mean up-tim e of these two subsystem s is given by Eq. (6. 5-16) 

which can be w ritten  in another form  as  follows:

MUT(1«2) = ---- ” ------ ;-----  (6.5-23)
S 1 , 1

MUTj MUT2
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Suppose it is t ru e  that

MUT(1. 2 .  . k) = ~ —  ------  .  (6.5-24)s k

. , MUT. i=l l

Then for the case  of (k+1) independent subsystem s in se r ie s ,

MUT(1. 2. k+ l)g =----------------------   j----

MUT(1. 2. k)s + MUTk+1

r r r -   5“25)k+1 ^

. E MUT.
1=1 l

T herefo re ,  for the general case  of n independent subsystem s in se r ie s ,  we 

obtain:

MUT(1. 2 . - ~ . n )  = ~ —  ----- (6.5-26)s n

,E m r r T  1=1 i

To find MDT(1. 2 . ---- . n) we can make use of Eq. (6. 2-30), which gives:s

MDT(1. 2. — .n) = MUT(1. 2 . - - - .  n) [ i- r— ] (6.5-27)
S  S  A
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In the above equation A re p re s e n ts  the availability  of the n subsystem s in 

s e r ie s .  Since the subsystem s a re  independent,

A = A. A , .  . . ,  A = IT A. (6 .5-28)
1=1

Substituting Eqs. (6. 5-26) and (6. 5-28) into Eq. (6. 5-27),

n
1 - n  A.

1 '  =  1 1
MDT(1. 2 .  . n) =  --------------  ~ - (6.5-29)s n n

L MUT. n  Aii=l i 1=1

F o r  each A. substitute 
i

MUT.

Ai = MUT. + MDT. *6, 5“3°*l l

Then Eq. (6. 5-29) becom es

n n
n  (MUT.+ MDT.) - n  MUT.

i -1 1 1 i - t  1
MDT(1. 2. — .n )  =---  =-------  — ---------------------------------------s n n

E---------—  n  MUT.
i= l  M UTi j=l  J

(6. 5-31)
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We have proved the following theorem .

Theorem  6. 2 m

F o r  an ergodic s ta t ionary  Markovian system  which is com prised  

of n independent subsys tem s  in s e r ie s ,  the system  MUT and MDT can 

be ex p ressed  in te rm s  of the subsystem  MUT's and MDT's. Eq. (6. 4-26 ) 

gives the exp ress ion  for system  MUT and Eq. (6. 5-31) gives the expression  

for system  MDT.

To develop s im i la r  express ions  for the case  when the subsystem s 

a re  connected in p a ra l le l ,  we s ta r t  with a two subsystem  configuration as 

shown in F igure  6-6.

F igu re  6-6 Configuration of a System C om prised  of 2 Independent 
Subsystem s in P ara l le l .

In th is  case , the se ts  of system  u p -s ta te s  and dow n-states  a re  as  follows:



s d '  (6- 5-33>

The steady state availability  of the system  is:

A = E ir, v (6. 5-34)
( a i , a 2) c S u

Since the se ts  (s lu x S 2u^ Ŝi ux S 2d  ̂ and Ŝld x S 2u^ a re  dis0oint» and 

since the subsys tem s a re  independent,

A =  E 7 T 7 T +  E 7 T 7 T +  E ^
( a r a 2 k ( s l u x S 2J a i a 2 (a1, a 2 )e (S l u x S 2d) a l  a2 ( a ^ a ^ t S ^ x S ^ )  1 2

( S ) ( E 7Ta ) +( E 7Ta ) ( E 7Ta )
a i eSlu  1 a2eS2u 2 a i eSlu  1 a 2eS2d 2

+ ( E E >
a eS1 , 1 a 0eSo 21 Id 2 2u

A1A2

(6. 5-35)

I
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F o r  th is  case, cq is given by

c = E £ 7T, , m . . '  , .
0 (a r a 2)eSu ( b ^ ) ^  (a l ' a 2} (a l ’ a 2}’ (bF  2}

By Eqs. (6. 5-5), (6. 5-32) and (6. 5-33), it follows that

c = £ E it. .m

° <al- a2>£<SluXS2d> (bl' b2)f (SldxS2d> r **’ "2

E E 7T, %m.

<ara2k<sidxS2u> <brb2k(sidxS2d> r 2 r

( £ « ■ ) (  £  £ I  m  . )
V S2d 2 V SldVSlU 1 1

+ . E 7 T . . E  E 5r m u .

' ‘ V BM V S2u "2 2’ 2

- (1 - A gk^ + (1 - A1)c2

T herefo re ,

Ai A„+ A. (1-A ) + A (1-A )
Tyj-TTrp =  i—e.---i------tL-----------

( i - a 2 ) Ci  + ( i - A j )c 2



Dividing both the num era to r  and the denominator by c c we obtain:1 Ci

A, A A 1-A A 1-A,
(— >(“ > + <t t > ( - r ^ )  + ( — )(— “ ) 

1 2 1 2 2 1 MUT =  —
i - a 9 i - a _

( c > + ( c > 2 1

MUT MUT + MUT MDT + MUT MDT
__________ A___________6 ___  A____   c*__________ A

MDT + MDT
A

(6. 5-39)

Eq. (6. 5-39) gives the exp ress ion  for sy stem  MUT in te rm s  of subsystem  

MUT's and MDT's for the case  when the system  is com prised  of 2 independent 

subsys tem s in paralle l .

To find MDT for th is  case , we recognize that

(1-A) = (1-A1)(1-A2) (6.5-40)

T herefo re , by Eq. (6. 2-27),

(1-A )(1-A )

MDT ■ ( i - A 2)c i H-(l' -A'~)7 2 <6' 5' 4 l >

Dividing both the num era to r  and the denominator by c^ c2> we obtain:
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MDT =

1-A, 1-A

C1 2 
1 - A _  1-A,

(— i ) 
2 C1

MDT MDT_____1______a
MDT + MDTX o

(6. 5-42)

Eq. (6. 5-42) gives the express ion  for system  MDT in te rm s  of subsystem  

MDT's for the case  when the system  is  com prised  of 2 independent sub­

system s in para lle l .

To solve for the general case  of n independent subsys tem s in 

p a ra lle l  as shown in F igure  6-7, we f i r s t  introduce the following notations.

F igure  6-7 Configuration of a system  com prised  of n Independent 
Subsystem s in P a ra lle l .
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MUT(i. j .  . k) = MUT of subsys tem s i, j, . . . , k connected in p a ra lle l
P

(6. 5-43)

MDT(i. j .  . k) = MDT of subsys tem s i, j, . . . ,  k connected in paralle l
P

(6. 5-44)

F i r s t  consider fo r  the MDT of subsys tem s 1 and 2. By Eq. (6. 5-42),

MDT(1- 2)p =  j  ------—  (6‘ 5"45)
MDTj + MDT'2

It follows that

MDT(1*2*3) = ------- :-----------   :---
P _____1 + _ J ___

MDT(1* 2) MDT_
P 3

=  -----1-------  (6. 5-46)
I  —!—

. , MDT.
1=1 l

Suppose it is  t ru e  for subsys tem s 1, 2 , . .  . ,  k that

MDT(1- 2 k) = -j ------------------------  (6. 5-47)
P K i

P .  MDT .1=1 l
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Then for subsystem s 1 , 2 , . . . ,  k+1 we have

MDT(1- 2------ . k+1)
P ______ L______  + 1

MDT(1- 2- — -k) MDTp k+1

 --------  (6. 5-48)k+1 t

. ^  m d t T
1=1 l

T herefo re ,  for the genera l case  of n independent subsystem s in paralle l,  

we have

MDT (1*2 n) = ----- ---------  (6.5-49)
P n 1

MDT.
1=1 l

It should be noted that the above express ion  holds for the case  of the sys tem  

is  considered  to be up when at le a s t  one of the subsystem  is up. By 

Eq. (6. 2-30),

MUT(1* 2 n)p = MDT(1- 2 n)p (6. 5-50)
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F or th is  case,

n
A = 1 - n (1 - A.) 

i=l 1
(6 , 5-51)

F i r s t  substitute Eq. (6. 5-30) into Eq. (6. 5-51) and then substitute the 

resu ltan t  equation into Eq. (6. 5-50), we obtain a fter  simplification

MUT(1 2
■ V n i

MDT.
1=1 l

n n
n  (M UT.+ MDT.) - II MDT-j

• 1 1  1  -  i  Ji=l_________________ j f l _____
n
n MDT,

3 = 1 3

(6. 5-52)

We have proved the following theorem.

Theorem  6. 3

F o r  an ergodic s ta tionary  Markovian system  which is com prised  of 

n independent subsys tem s in paralle l, the system  is defined to be up if at 

leas t  one of the subsystem s is up, the system  MUT and MDT can be expressed  

in te rm s  of the subsystem  MUT's and MDT's. Equation (6. 5-49) gives the 

expression  for system  MDT, and Eq. (6. 5-52) gives the expression  for 

system  MUT.
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We now consider the case  of 3 independent subsystem s in para lle l  

as  shown in F igure  6-8.

F igure  6-8 Configuration of 3 independent subsystem s in P ara lle l.

Suppose this  system  is defined to be up when at le a s t  2 of the 3 subsystem s 

a re  up. I t  can be seen that the se ts  of u p -s ta te s  and dow n-states for this 

case  are :

Su " Ŝ lu XS2ux S 3u^U Ŝlu x S 2dx S 3u^ U Ŝld x S 2uXS3u^U ŜluXS2uX'S3d)

(6. 5-53)

Sd " Ŝ ld x S 2dxS3u) U(Slu XS2dx S 3d)U Ŝld x S 2ux S 3d)U Ŝld x S 2dx S 3d^

(6. 5-54)

Since the subsystem s a re  independent, by Eq. (6. 5-53) the steady state 

availability  of the system  is



A - Aj A2A3 + A1(1-A2)A3 + (1-A 1)A2A3 + A jA ^ l-A g )

(6 . 5-55)

We now compute the exp ress ion  for cq.

'  — 2 j  2 j  7T t \  * x i  • v / «  .  t _  \

°  (ar  a2, a3 )eSu (br  bg)<rSd (a l' &2' V  (al '  V  a3)j (bl ’ b2' V

(6. 5-56)

Invoke the basic  assum ption  of Markovian system  that the probability of 

two o r  m o re  changes occur within an a rb i t r a r i ly  sm all in terva l is  zero, 

we have

m  . +m  . +m , 
a l ’ 1 a2 2 a3 3

if a^= b^ for i = 1, 2, 3

m
' v v f i ' W

m a 1, b 1 i f V b2 a n d V b3

m  , if a = b, and a = b_ 
a 2 ’ 2 1 1  3 3

m
V  b3

- 0

if a = b and a = b 
1 1 & &

otherw ise

(6, 5-57)
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Since the subsystem s a re  independent,

I T ,  , = 7T 7T 7T •  (6 .

1’ a 2' a3 a l a2 a3

Substituting Eqs. (6. 5-53) and (6. 5-58) into Eq. (6. 5~56), and after 

incorporating  Eq. (6. 5-52) we obtain:



- f r l l -

(29-9 ’9) (SV-T)(SV-T)(TV -I)  +

(SV-T)Sv f v - l )  + (S¥-T )(2V-T)TV + SV(2V-T)(TV-X) = V -I

p3q; 90S 9M. (fcg-s *9) *ba -uioaa

(19-9 *9)

Si a M SlLnjAi+s .LcnA[Txn]Ai+

_ _  Z  J j  ra rc 1 J j a w  + 0 J - n w 1 j l q h  + z  s / m .  T x n w  + 8 x ii ia i  z  i ^ a w  

s xaiAis lLn]A[I j,nM +

s i,mAiz xniM1 i a w  + s xniMz jlctm t x n w  + 8xniAiz xni/vtT xiuai

{(sv - i )zv to  + (sv - t)z=>tv  +

SoZ¥ ( IV-T) + SV ZQ(TV-T) + S3(ZV - I ) TV + SV(ZV - I ) T:3 3 _ 
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By Eqs. (6 . 5-60) and Eq. (6 . 5~62) we obtain:

MDT = c
o

MDT MDT MUT + MUT MDT MDT + MDT MUT MDT
X ^ O X <5 x  ci o

+ MDT MDT MDT
X ci o

= MDT MUTg + MUT j MDT ' + M DT x  MUT™ + MDT 1 M UT2 

+ M U ^ M D ^  MUTgMDTg

(6. 5-63)

We have proved the following theorem .

Theorem  6. 4

F o r  an ergodic s ta tionary  Markovian system  which is com prised  

of 3 independent subsystem s in para lle l ,  and the system  is defined to be up 

if at le a s t  2 of the 3 subsys tem s a re  up, then the MUT and MDT of the 

system , when ex p ressed  in te rm s  of the subsystem  MUT's and MDT's, a re  

given by Eqs. (6. 5-61) and (6. 5-63), respec tive ly .

In the special case  where the 3 subsys tem s a re  identical,

Eqs. (6. 5-61) and (6. 5-63) reduce to:
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MUT
MUT.(MUT.+ 3 MDT.) 

1 1 l (6 . 5-64)6 MDT.l

MDT.(MDT.+ 3 MUT.)l i  lMDT 6 MUT. (6. 5-65)
l

where i is  e i th e r  1,2 o r  3.

The following co ro lla ry  follows.

C oro llary  6. 4

If the 3 subsystem s of the hypothesis of T heorem  6. 4 a re  identical, 

then system  MUT and MDT a re  given by Eqs. (6. 5-64) and (6. 5-65), 

respectively .
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Chapter 7

MODELING OF SYSTEMS OBEYING SEMI"MARKOV PROCESSES

7. 1 INTRODUCTION

In the la s t  th ree  chapters, we have devoted our effort to the 

modeling and analysis  of s ta tionary  system s obeying continuous p a ram e te r  

Markov chains. By Theorem  4. 2 , the random time of the transition  p ro ­

cess  between any two s ta tes  of such a system  n ecessa r i ly  p ossesses  

exponential probability distribution. F o r  a physical system  this m eans 

that the t im e-to -fa ilu re  and t im e - to - re p a ir  of the units com prising the 

system  n ecessa r i ly  possess  exponential probability distributions. In this 

section we will consider system s which obey a m ore  general sem i-M arkov 

model. A descrip tive definition of a sem i-M arkov p ro cess  is given below.

A sem i-M arkov  process  is a stochastic  p ro cess  which moves 
from  one sta te  to another of a countable num ber of s ta tes  
with the successive s ta tes  visited forming a Markov chain, 
and that the p rocess  stays in a given s tate for a random 
length of time, the d istribution function of which is general 
and may depend on this sta te  as well as on the next s tate  
to be visited.

(7. 1-1)

We will be mainly concerned with sem i-M arkov  p ro cesses  with finite 

s tate  space. As before let the state space S be
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(7. 1-2)

The s ta te  transition  probability m atrix  for the imbedded'M arkov chain 

will be denoted by

P  =

1 , 1

2, 1

Pl ,  2

2, 2

Pn i Pn on , 1 n j uo o

1 , n

2, n

n , n o o

(7. 1-3)

Suppose i, j e S a re  such that the p rocess  can go from  sta te  i to sta te  j

by a single transition. Define the conditional holding time w. . as  follows:
i, J

w, . = the holding time of the p rocess  in state i given 
1‘ ** that the p rocess  next v is its  s tate j.

(7. 1-4)

The probability  d istribution function of w. . is denoted by F^ ..(t). Therefo re

F. .(t) = P r{ w . . < t} 
i,3 1 .3 -

(7. 1-5)

Note that F. _.(t) is the conditional holding time distribution function in 

state i, given that the p rocess  next v is its  s tate j. If w^ denotes the
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unconditional holding time in sta te  i before the next transition, and if 

EL(t) denotes the d istribution  function for w^, then it follows that

H.(t) = P r{w ^< t}

= E p. . F. .(t) (7 .1-6)
jeS ^  ^

F o r  sim plicity  of notation, define

Q. .(t) = p. . F. .(t) (7. 1-7)
3 h 3 i, ]

Then Eq. (7. 1-6) becomes

H.(t) = E Q. .(t) ^ (7.1-8)
1 3<rS XlJ

The m a tr ix  (Q. .(t)) is  known as the m atrix  of transition  distributions [51], 
1» 3

In the l i te ra tu re ,  a sem i-M arkov  p rocess  is denoted by 

(z(t); t > 0 ) .  Let N.,(t) denote the number of t im es the p ro cess  en ters  

s ta te  i in the half open in terva l (0, t]; and let N(t) denote the vector

N(t) = [Nl (t), N2( t ) , . . . ,  Nn (t)] (7. 1-9)
o

-119-



Then the s tochastic  p ro cess  {N(t); t >0} is known as the Markov renewal 

p ro cess .  It can be seen that the z(t) p ro c e ss  and the N(t) p ro cess  a re  

different aspec ts  of the sam e underlying s tochastic  p ro cess .  T herefore , 

studying of one is equivalent to studying of the other.

In the following sections we will consider modeling of sy s tem s  with 

general d istributions for the t im e - to - re p a i r .  It will be shov/n that such 

system  models take the form  of sem i-M arkov  p ro c e sse s .

7. 2 MODEL CONSTRUCTION FOR SYSTEMS WITH
GENERAL REPAIR-TIME DISTRIBUTIONS

This section cons iders  modeling of system s com prised  of units  with 

exponential d istributions for t im e-to -fa ilu re ,  and general d istributions for 

t im e - to - re p a i r .  The num ber of r e p a i r  c rew s available for serv ic ing  the 

failed units is  r e s t r ic te d  to one so that the s ta te  space of the sys tem  is 

finite.

The f i r s t  step in modeling is to define the various system  sta tes .  

S im ilar  to the case  of Markovian system s, the s ta te s  for the m ore  general 

type of system  considered  here  a re  a lso  defined according to the different 

combinations of the up and down conditions of the units com pris ing  the s y s ­

tem. T here  is, however, one im portant difference due to the general
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probability  distributions for the t im e - to - re p a ir .  In the case  of 

Markovian system s, given the p resen t system  state, the.future behavior
0

of the system  is  independent of the past. In the p resen t type of system , 

the t im e - to - fa ilu re  of the units  would still be independent of the past.

But the t im e - to - re p a i r  would not be so except at the so-ca lled  regen ­

era tion  points. Starting from  a regenera tion  point, the future behavior 

of the system  is s tochastica lly  independent of the past. Therefore , in 

defining s ta tes  for the m ore  general system , we will need to identify the 

regenera tion  points in addition to the different combinations of the up and 

down conditions of the units. F o r  the purpose of c larity , the 3 -unit system  

shown in F igure  7-1 will be used as a vehicle to i l lu stra te  the general 

methodology.

F igure  7-1 Configuration of a System C om prised of 3 Identical
Units in P ara lle l.
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The following operation  and re p a i r  policies a re  assum ed.

Operation Policy: 0

All units  will be turned  on for a s  long as and as soon 

as  they a re  operable.

R epair Policy:

One re p a i r  crew  se rv ices  the fa ilu res  on the f irs t-co m e  

f i r s t - s e rv e d  bas is .

At any given tim e instant, the units  of the system  may be in any one of 

the following four conditions.

(a) All 3 units a re  up

(b) One unit has  failed and 2 units a re  up

(c) Two units have failed and 1 units is up

(d) All 3 units  have failed.

If the system  w ere  Markovian, the above four system  conditions would be 

the four s ta te s  of the system . However, for the m ore  genera l type of system  

under consideration, we need to identify the regenera tion  point o r  points 

within each condition. It can be seen that at the time instants  when the 

system  en te rs  condition (a) o r  (b), its  future behavior is s tochastica lly  

independent of the past.  T herefore , conditions (a) and (b) begin with 

regenera tion  points, and there  a re  no other regenera tion  points
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within (a) o r  (b). T herefo re ,  we define States 1 and 2 of the sy s tem  as 

follows:

State 1: re p re se n ts  the state that at the tim e epoch 
the system  en te rs  th is  state, all the 3 units 
a re  up.

(7. 2-1)

State 2: r e p re se n ts  the state that the tim e epoch the 
system  en te rs  this s ta te , 1 unit has failed 
and r e p a i r  is  in itiated  on it.

(7. 2-2)

Now consider condition (c), th is  condition could be a r r iv e d  from  

condition (b) due to fa ilure  of another unit before completion of re p a ir  

on the failed unit. On the o ther  hand, it could also be a r r iv e d  at from  a 

condition in which all the units  have failed and r e p a i r  on one of them  has 

jus t been completed. T herefore , there  a re  two regenera tion  points for 

condition (c). Hence, two sys tem  s ta te s  a re  defined corresponding  to this  

condition. L e t  s ta tes  3 and 4 be defined as follows:

State 3: r e p re se n ts  the sta te  that at the tim e epoch the 
system  e n te rs  this s ta te , 2 units  have failed 
and one of the failed units has been in r e p a i r  
for some tim e.

(7. 2-3)

State 4: r e p re se n ts  the s ta te  that at the tim e epoch the 
system  e n te rs  this s ta te , 2 units  have failed 
and none of the failed units have received  any 
rep a ir .

(7. 2-4)
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Note that according to the re p a ir  policy, during the tim e the system  is in

State 3, r e p a ir  will be continued on the unit which already has been in
0

r e p a i r  for some tim e. As the system  en te rs  State 4, r e p a i r  is initiated 

on the unit which has failed f irs t.

S im ilar  to condition (c), condition (d) also has two regenera tion  

points. They correspond  to the situations of different p a r t ia l  re p a i r s  

completed on one of the failed units. Let State 5 and 6 be defined as 

follows:

State 5: r e p re se n ts  the sta te  that at the tim e epoch the 
system  en te rs  this state, all 3 units have failed 
and re p a ir  on one of the units  has been s ta r ted  
p r io r  to the fa ilu res  of the o ther two.

(7. 2-5)

State 6: r e p re se n ts  the s ta te  that a t the tim e epoch the 
system  en te rs  this  state, all 3 units have failed 
and re p a ir  on one of the units has been s ta r ted  
p r io r  to the fa ilu re  of only one of the o ther  two 
units.

(7. 2-6)

T herefo re ,  the s ta te  space for this  system  is

S = {1,2, . . . , 6 }  (7.2-7)

F ro m  the sta te  definitions, we obtain the s tate tran s it io n  d iagram  of the

system  as  shown in F igure  7-2.
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Figure  7-2 State T ran s itio n  Diagram  of the 3-Unit System.

F ro m  the above example, we see that the general methodology in 

defining s ta tes  for sy stem s with general re p a i r - t im e  distributions consis ts  

of two steps. The f ir s t  is to enum erate  the various possible system  condi­

tions corresponding to the combinations of the up and down conditions of 

the units. The second is to define system  s ta tes  based on the regenera tion  

points within each system  condition. Since each state is  defined based on 

a regenera tion  point, the future s tate transition  probabilities a re  indepen­

dent of the past. Therefore , the sta te  transit ion  p ro cess  of the system  

obeys a Markov chain. Due to the general re p a i r - t im e  distributions, the 

conditional holding tim e in each s tate has a rb i t r a ry  distribution. Hence 

the dynamical model of the sta te  transit ion  p ro cess  is semi-M arkovian.
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We have proved the following theorem . 

Theorem  7. 1

The dynamical behavior of a system  com prised  of un its  with 

exponential fa i lu re - t im e  and general r e p a i r - t im e  d istr ibu tions can be 

modeled as a  sem i-M arkov  p ro cess .

We will call sy s tem s which can be modeled as sem i-M arkov  

p ro c e sse s  as  sem i-M arkovian  system s. The next two sections consider 

the computation of the s ta te  transit ion  probabilities , p., and the condi­

tional holding tim e distribution functions, F^ _,(t).

7. 3 COMPUTATION OF STATE TRANSITION PROBABILITIES

This section cons iders  the computation of s ta te  transition  

probab ili t ies  for the imbedded Markov chain of a sem i-M arkovian  system .

Since the fa i lu re - t im e  and re p a i r - t im e  of the units  in each s tate a r e  inde­

pendent random  variab les , computation of p^ involves the computation 

of conditional p robabili t ies  of independent random  v ar iab les .  F i r s t  consider 

the following general problem.

L e t x , , x „ , . .  . ,  x be n independent random  v ar iab les  on the 1 2 n

interval [0, “ ] with probability  density  functions (p. d. f. ) f (t), f r (t),. . . ,  f (t)
X  * X n  X
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respectively . Denote the d istribution function for x. by F  (t). That is
X  •

1

t
F  (t) = J  f (a) da (7.3-1)X. X.1 O 1

Let a random  variab le  y be defined as

y = m in(x ., x , . .  . ,  x ) (7 .3-2)l z n

Then, it follows that

P r{ y  = Xj} = P r{x^<  x.. for  all j f  i}

= f P r{ a < x .  < a +  da and x. > a  for all i /  i}
0 “  1 3

(7 .3-3)

Since the random  v ar iab les  a re  independent, we obtain

oo n
P r{ y  = x.} = J  f (a) n  [1 - F  (a)] da (7 .3-4)

0  Xi j=l Xj

This is  the general equation for computing the sta te  transition  probabilities. 

Before i l lu s tra ting  the use  of Eq. (7. 3-4), an expression  will be developed 

for the computation of rem ain ing  r e p a i r - t im e  distributions. Now consider 

the following genera l problem .
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Let a random  variab le  77 be defined as

77 = min(x2, xg, . .  . ,  xn ) (7 .3-5)

Next denote the difference between x^ and 77 by £. That is,

£  = X j  -  77 ( 7 . 3 - 6 )

Since x^ and 77 a re  random  variab les , £ is  a random  variab le . The 

conditional p. d. f. of £ under the condition x^ > 77 will now be developed.

P r ( £ < t | x 1> 77}

CO t+/J

= ^  [ -T f X  77 I x  ^  d S

o r

J* CJ fx p lx  ^o a r t  X1 ^ I X1 ^
da

( 7 . 3 - 7 )
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The conditional p. d. f. of £ under the condition x^ > 77 is  obtained by- 

differentiating Eq. (7. 3-8) with resp ec t  to t.

6f!

o r

o r

f f i ^ ( a , a - t | t > 0 )  da
0 I x i>7?

J  f
; 0 Xl ,7y___________

P r{ x 1 > 77]

S fx ( a .a - t ) d a  
0  1 ’ ”

P r{ x 1 >773
(7. 3-8)

Since the random  variab les  x ^ s  a re  defined only on the positive re a l  line,

f (a, c r t )  is  zero  for a  < t. Therefore , the lower l im it of integration in Xj ,77

the alternative  express ion  on the RI-IS of Eq. (7. 3-8) can be se t to t. By 

the independent p roperty  of the random variab les , Eq. (7. 3 - 8) becomes

f  f (t +/?) f 03) dfi J  f (a) f fart) da

= = t  p l l x f v i  (7*3_9)
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We will find an express ion  for Pr{xj>?7}.

P r{x  >?7} = J P r { a < x  < a  + da and 17 < a} 
0

o r  J P r{ x f< a  and a  < 77 < a  + da} 
0

= f f (a) F  (a) da
V  Ti

0 x i  *

o r  I* [1 - F  (a)] f (a) da (7.3-10)
0 x i V

But,

F  (a) = P r{m in (x „ ,x  , . . .  , x  ) < a} 
77 o n

1 - Pr{min(Xg, Xg, . . . ,  xfl) > a}

n
1 - 1 1  Pr(x.> a) 

i = 2  1

n
1 - n [1 - F  (a)] (7.3-11)

• o x -1 = 2  1
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Differentiating Eq. (7.3-11) with re sp ec t  to a  gives

n n
f (a) = E f (a) n  [1 - F  (a)] '  (7.3-12)
"  j - 2  Xj i - 2  Xi

Substitute Eqs. (7. 3-11) and (7. 3-12) into Eq. (7. 3-10) we obtain

co 21

Pr[x.>ri) = J  f (a) [1 - n  [ 1 - F  (a)]} da 
1 0  X 1 i = 2  1

“ n n
o r  J  [ 1 - F  (a)] [ E f (a) n  [1 - F  (a)]} da (7.3-13)

0  X 1 j = 2  Xj i = 2  Xi

We have proved the following lemma.

L em m a 7. 1

If x . ,  x , . . . ,  x a re  independent random  v ar iab les  which a re  such i ^ n

that the probability  density and distribution functions of x^ a re  denoted by

f (■), respectively . If 77 = min(x9, x„, . . . ,  x ) and £ = x - 77, then the x . d* o n x
1

conditional p. d. f. of £ under the condition x^> 77 is  given by Eq. (7. 3~9),

in which the express ions  for f (•) and Pr{x,>? 7} a re  given by Eqs. (7.3-12)
V 1

and (7.3-13), respectively .
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Now consider the case  when the p. d. f. of x_, xQ, . . . ,  x a reLi ij n

exponentially distributed as follows.
m

f (t) = X.e for i = 2, 3 , . . . , n (7.3-14)
1

Then, by Eq. (7.3-12)

s

where

n - \ . a  n - L a  
f (a) = L X. e 3 n  e 
V j = 2  3 i = 2

-X a
= X e (7.3-15)

n
X = E X- ( 7 .3 - 1 6 )

S i = 2  1

B y E q .  (7.3-13)

«° n ~X .o:
P r f x 1 > 77} = J  f (a) { 1  - II e 1 }da

X X  ̂  n
0  1 i = 2

® -X a
= 1 -  f f (a) e s do: (7.3-17)

U V  
0  X 1

Substitute Eqs. (7. 3-15) and (7. 3-17) into Eq. (7. 3-9) we obtain
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f . l  . J t )

* “Xj8 X t “ 8
X f f <H£) e d£ X e  J f (/?)e c(S

b  A j  b  v  . A 4o 1 t 1

£ IX1 >7? 1 (a) e s a da 1  ̂ J*°° f (a)e s0ida
0 X1 0 x i

(7. 3-18)

We have proved the following theorem.

Theorem  7. 2

If x . , x„, . . . .  x a r e  independent random  variab les  which a re  such 
1 2  n - k t

that the p. d. f. of x, is f (•), and X.e is the p.d. f. of x. for
1 Xj 1 1

i = 2, 3 , .  . . ,  n. If r\ - min(x , x , . . . ,  x ) and £ = x ~ r } ,  then the conditioml
1

p. d. f. of £ under the condition x^ > 77 is given by Eq. (7. 3-18), in which

X is defined by Eq. (7.3-16). s

To i l lu s tra te  the use  of Eq. (7. 3-4) for computing the sta te  transition  

probabili t ies  of F igure  7-2, we assum e that the fa i lu re - t im e  p. d. f. of each 

unit in F igure  7-1 is

f(t) = Xe~Xt (7. 3-19)

The r e p a i r - t im e  p. d. f. is  assum ed to be the second E rlang  distribution with 

p a ra m e te r  n as  follows:
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... . 2 , ~2 jutg(t) = 4 u t e (7. 3-20)

By inspection of F igure  7-2, it is  obvious that

1 , 2

5,4

6 ,4

(7. 3-21)

Now consider  State 2. If r e p a i r  on the failed unit is  completed before 

another unit fails , the system  goes to State 1, o therw ise the system  goes to 

State 3. T he re fo re  by Eq. (7. 3-4),

2  - 2 jut - 2 \ t
>, ! = J* 4/i t e e dt

JL
(X +nY

and

(7. 3-22)

- i .  „ _ \<\+2u)
2 3 2 1 2

* * (X+Ai)
(7. 3-23)

Next consider State 3. By Theorem  7. 2, the p. d. f. of the rem ain ing  

r e p a i r - t im e  on the unit under r e p a i r  is
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2Xe2«  jV “ e - 2ft+t,)V

«r (» p “  2  - 2 ( \ + n ) u
1 - J 4p a  e da

2 M2 [2 (X+At)t + l]e~2A<t (7.3-24)
X + 2ju

Therefo re , by Eq. (7. 3-4)

Pq 9  = J gr (t) e "Xt dt (7.3-25)
6 , i  0 r

Substuting Eq. (7. 3-24) into Eq. (7. 3-25), we obtain a f te r  s im plification

p „ = ( 7 . 3 - 2 6 )
3 ,2  ( X+2 p r

and

P3 4 = i - p3 2 = t e ' f L-) ( 7 . 3 - 2 7 )
3,4 3,2 (X + 2ju)

Next consider  State 4. The p. d. f. for the r e p a i r - t im e  in this s ta te  is 

g(t). It follows that

CO

p 4  2  = -T g(t) 6  Xtdt 
0

,  2
= —^ ----   ( 7 . 3 - 2 8 )
(2p+X)
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and

(7. 3-29)

Thus a ll s ta te  tran s it io n  probab ili t ies  a re  found by using Eq. (7. 3-4) and 

Theorem. 7.2.

7. 4 CONDITIONAL HOLDING TIME DISTRIBUTION FUNCTIONS

This section cons ide rs  the computation of conditional holding time

distribution functions for sem i-M arkovian  system s. We will s ta r t  by

trea ting  the problem  from  a general point of view in the context of multiple

independent random  variab les . Recall the random  v ar iab les  x , x_, . . . ,  xi ^ n

and y defined in Section 7. 3.  Define an index set J  as  follows:

J = { 1 , 2 n} (7.4-1)

Then,

P r { y < t | x ^ <Xj  for all j e  J  - [i}}

P r{x .< t,  x .<x. fo r  all je  J  - {i}}

-136-



T his  is  the general equation for computing the conditional holding time 

distribution  functions for sem i-M arkovian  system s.

We have proved the following lemma.

L em m a 7. 2

If Xj, x 2> . . . ,  xn a r e  independent random  v ar iab les  which a r e  such

that the probability  density and distribution  functions of x,. a re  denoted by

f (• ) and F (•), respectively . If y - m in (x . ,x  , . . , , x  ), then the x. x. 1 6  ni i
conditional d istribution function of y under the condition that x. < x. for

J i 3
all j e  J  - {i} is  given by Eq. (7. 4-2).

We now compute the F. .(t) for the 3“ unit sy s tem  d iscussed  in the
L J

preceeding  section.



F i r s t  consider State 1 in F igure  7-2. It is  obvious that

t
F  (t) = J* 3 \e  da 

L’ * 0

= 1 - e"3Xt (7. 4-3)

Next consider State 2. The system  will go to State 1 if re p a ir  is  completed 

before another unit fa ils . Therefore , applying Eq. (7.4-2),

J  g(a) e 2Xada

F 2 l (t) = 4 ------------------- - <7' 4‘ 4 >

Substituting Eq. (7. 3-20) into the above, and a f te r  sim plification we obtain

F 2 l (t) = 1 " + 2 ^ +A<)t]e " 2(X+^ )t (7.4-5)

By s im i la r  reasoning,

/  2Xe"2Xa[l - f  g{B) d/J]da

F 2 ,3 (t) = - = --------------------a --------------------------------- (7’ 4' 6)
J* 2 Xe"2Xa[l -J* g(0 ) d/J]da 

0 0



Substituting Eq. (7. 3-20) into the RI-IS of Eq. (7. 4~6) we obtain after  

ca rry ing  out the integrations,

^  rX+2jU - 2 ( \ + u ) t r  . u t  . X+2u nN um erator = 2X1------  —r* - e LtT~ + ------- o J-*
2 (\+/u)2 X+M 2 (X+m)2

(7.4-7)

and

Denominator = (7 . 4 - 8 )
(x+jur

Therefore ,

F 2, 3(t) = 1 " [1+ 0+2m)~ ] e“2(X+M)t (7- 4-9)

Following a s im ila r  approach, the rem aining F. .(t) a re  obtained.
1> J

t
J gr (a> e a  da

F 3,2<‘> “ i  - 7 ^ 5 - -  (7- 4- 10)J g (a) e da
0

Substituting g^(a) from  Eq. (7 .3-24) into the above, we obtain a fter  

simplification
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Sim ilarly , t

J* Xe‘Xa[l-J*  g 03) d,S] da 

F„ e(t) ° °

a

3 ,5  [>“ _Xari pa
"  Sf X e  A“ [l dfi] da

0 0

= 1 - [ i  + M k & l L t] e -(X+2/i)t (7 . 4 - 1 2 )
X +6Xp+6 p

J g(a) e Xo!da 

F A n(t) = °4 , 2 p“  / x "Xa ,J g(a) e da
0

= 1 - [ 1  +  (X +2ju)t]e~^X+2^ t  ( 7 . 4 - 1 3 )

t  _x a  
J Xe a [ l  - J gOS) d£] da

F 4 , 6<‘ > ■ - - -/  X e '“ ( l  - fg O S )  48] eta 
0 0

= 1 - [ 1  + M k t2 ti_ )t ] e -(X+2M)t (7 . 4 - 1 4 )
X+4p

By inspection  of F ig u re  7. 2, we see that F,. ^(t) and F^ ^(t) a re  the 

rem ain ing  re p a ir- tim e  d istribu tion  functions due to uncom pleted re p a irs  

in S tates 3 and 4, respective ly . T h ere fo re , by T heorem  7. 2,
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CO

A e ^ J  g (a)e ^a da

f c , ( t )  = 45»4 1 _ /„,\„-Aa
Jr1 - J g r(“>e A“da 

0

2m2(3A +4A)+4m2(A +m)(A + 3 # )t e "2A<t ^  4 - 1 5 )
A2+6A/u+6 /u 2

In teg ra ting  from  0 to t  gives

F 5, 4 (t) " f  £5, 4 (“ > ““

= 1 - [1 + ^ k+^)(X +|u)_ t je " 2 ^ 1 (7 .4 -16)
A +6Am+6 ju*

S im ilarly ,
CO

A J* g(a) e da

6 , 4  i - J “  g(a) e *a da 
0

2
^ - [ 1  +(A+2ju) t] e~2̂  (7. 4-17)A+4ju

In tegrating  from  0 to t gives

F .(t) = 1 - [1 + -1] e " 2Mt (7 .4-18)o, 4 A+4/i

Thus a ll the conditional holding tim e d istribu tion  functions a re  found.
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C hapter 8

ANALYSIS OF SEMI-MARKOVIAN SYSTEMS
m

8. 1 INTRODUCTION

This chap ter considers the analysis  of two im portan t m easu res  

of effectiveness for sem i-M arkovian  system s. One is the steady sta te  

availab ility  which p erta in  to the lim iting probab ilities of the system , and 

the o ther is  the m ean f ir s t  passage tim e of the system  to a system  down- 

s ta te . In Section 8. 2, the system  of equations which governs the dynam ical 

behavior of the sta te  p robab ilities  of a general sem i-M arkovian  system  is 

derived. E x p ressio n s for the steady s ta te  availab ility  and the m ean f ir s t  

passage tim e of the system  to fa ilu re  a re  developed in Sections 8. 3 and 

8. 4, respectively .

8. 2 SYSTEM OF EQUATIONS FOR THE STATE PROBABILITIES

In th is section, the system  of equations which govern the dynam ical 

behavior of the sta te  p robab ilities  of a sem i-M arkovian  system  will be 

derived. The conditional probability  that the system  is in s ta te  j at tim e 

t  > 0 given that it was in sta te  i in itia lly  will be denoted by

P. It) = Pr{ z(t) = j | z(0) = i) (8. 2-1)
1.3
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F i r s t  consider the case when i = j. The system , initially in sta te  i, can

be in the sam e sta te  i at tim e t due to e ith er one of the following events:

0

1. The system  has never left s ta te  i during the en tire  

in terva l [0, t] .

2. The system  left s ta te  i a t leas t once during the in terva l 

(0, t), and re tu rn s  back to s ta te  i by tim e t.

Since these two events a re  m utually exclusive, the sum  of th e ir  probabilities  

gives the probability  that the system  is in sta te  i at tim e t. T herefo re ,

t
P, ,<t) •= [1 - H ( t ) ]  +  L f [p. , f, ,.(T ) P. ,<t- r )  dT] (8. 2-2)

‘■l 1 k e S O  1>k l A  k’ 1

The f ir s t  b racketed  te rm  on the RI-IS is the probability  that the system  has 

never left s ta te  i during the in terva l [0, tj. The bracketed  expression  of the 

rem aining  te rm  re p re se n ts  the probability  of the sequence of events w here 

the system  left s ta te  i fo r sta te  k a t som e tim e r ,  0 < r  < t, and then 

re tu rn s  to s ta te  i in the rem ain ing  tim e in terva l ( T , t]. This probability  

is  sum m ed over a ll possib le s ta te s  k and in teg ra ted  over all tim e r  

between 0 and t.

F o r  the case  when i /  j, it is obvious that

t
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F o r s im p lic ity  of notation, we denote the convolution in teg ra l in the 

p receed ing  equation a s  follows.

(8. 2-4)

By a change of v a riab le  it is  sim ple to show that

(8. 2-5)

Equations (8. 2-2) and (8. 2-3) m ay be w ritten  in the com bined form

P. (t) = [1 -H .(t)]6 . ,+ L p. . [f. . (t) © P . .(t)] fo r a ll i, j e S
J-j j i k c s

( 8. 2 - 6)

w here 6. . is the K ronecker delta which is defined such that 
3

6 . . = 
l> J

1 if i = j

0 o therw ise

(8. 2-7)

We have proved the following theorem .
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Theorem  8 . 1

\

The dynam ical behavior of the sta te  p ro b ab ilitie s 'o f a sem i- 

M arkovian system  is governed by a system  of in teg ra l equations given 

by (8 .2 -6 ).

8. 3 SYSTEM STEADY STATE AVAILABILITY

To determ ine the steady s ta te  availab ility  A of an ergodic sem i-

M arkovian, we need to solve for the lim iting values of P. .(t) from  the
b J

system  of in teg ra l equations (8. 2-6). Let us denote the m atrix  with elem ents

P  .(t) by $(t).
J

$(t) = (P. .(t)) ^ (8 .3-1)
1» 3

Since i, j e S, and S has o rd e r  nQ, 4>(t) is  an (nQX nQ) m atrix .

L et R.(t) denote com plem entary  d istribu tion  functions of the 

unconditional holding tim e in s ta te  i. That is

R.(t) = 1 - H.(t) (8. 3-2)

Substituting Eq. (8. 3 _2) into Eq. (8. 2-6) and then taking the L aplace tran sfo rm , 

we have
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To w rite  th is system  of equations in m atrix  form , define the "box" operation  

of two m a tric e s  to be elem ent by elem ent m ultip lication  as follows:

B. □  C = (b. . c. .) (8 .3 -4)
<V n2> < V n2> (n^ | ' 3

Then, the system  of equations in (8. 3 _3) can be w ritten  as

$*(s) = D*(s) + [ F O f \ s ) W \ s )  (8. 3-5)

# % 
w here D^(s) and _f (s) a re  defined by



7

F ro m  Eq. (8 .3-5), we obtain

$V(s) = [I - P O f * ( s ) f 1 D*(s) (8 .3 -8)
o *"

By final value th eo rem  of L aplace transfo rm ,

lim  $(t) = lim  s $  (s) (8. 3-9)
t-*00 • s-*0

We will denote th is lim iting  m atrix  by $. Now from  Eq. (8. 3-5) we have

= { lim  s[l - PO_f (s)] 1} ( l im D  (s)} (8 .3-10)
s-*0 no “  s-*0 r

Note that for a ll i e S

lim  R*(s) = J  R.(t) dt (8 .3-11)
s-*0 1 0 1

By T heorem  3. 1, the RIIS of the above equation is the m ean unconditional

holding tim e in s ta te  i, we will denote this m ean by w^ It then follows that

lim  D*(s) = D_ (8 .3-12)n r  w
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w here

D _
w

w.

w.

\ —
wn

(8 . 3-13)

Now w rite  Eq. (8 .3 -10 ) as

$  = ( lim  T(s)) D _  
s-»0

(8. 3-14)

w here

T(s) = s[I - P Q f ( s ) ]  n =o
(8. 3-15)

This gives

T(s)[I - P D f ’(s)] = s n —o
(8. 3-16)

Note th a t fo r a ll i, j e S

lim  f.' .(s) = P f. .(t) dt = 1 
s-*0 ^  o

(8. 3-17)

T h erefo re , by taking the lim it s-*0 in Eq. (8. 3-16) we obtain

T - T P (8.3-18)
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V

in which

T = lim  T(s) 
s-*0

(8 . 3-19)

Since the system  is  ergodic, the steady s ta te  p robab ility  v ec to r £  of the 

im bedded M arkov chain is  the unique solution of the following se t of 

equations.

and

7r = 7T P

E jr. = 1li t s

(8. 3-20)

T h erefo re , each row of T m ust be p ropoertional to £ . Let t_  ̂ denote the 

ith  row of T. Then fo r a ll ie  S,

t . = k. ir —x i -
(8. 3-21)

w here k  ̂ is  som e p roportionality  constant. T herefo re ,

jr (8. 3-22)

n
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Substituting Eq. (8 . 3-22) into Eq. (8 . 3-14) we have

(* u > '

k.

n

7T D —— w (8 . 3-23)

To determ ine the constants k., we im pose the n ec e ssa ry  condition

E 0 . . = 1 fo r a ll i c S
i>3

(8. 3-24)

T herefo re , from  Eq. (8 .3-23), fo r a ll ie  S

E 7r. w. 
je S  3 3

(8. 3-25)

Note th a t k. is not a function of i. It follows from  Eq. (8. 3-23) thatl

• 7T. W.

-r-3— for a ll i e S
E 7T. W .

jeS 3 3

(8. 3-26)

O bserve that the RHS is independent of i. We will th e re fo re  denote 0^

by 0 .. Hence the steady s ta te  availab ility  of the system  is  
3
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(8 . 3-27)

We have proved the following theorem .

T heorem  8. 2

F o r  an ergodic sem i-M arkovian  system , the lim iting  s ta te  

p ro b ab ilitie s  of the sy stem  a re  independent of the in itia l condition of the 

system , and depend only on the lim iting  p ro b ab ilities  of the im bedded M arkov 

chain  and the m ean unconditional holding tim es of the s ta te s . F o r all ie  S, 

if 7i\ is the  lim iting  s ta te  p robab ility  of the im bedded M arkov chain for 

s ta te  i, and if w. is  the m ean unconditional holding tim e in s ta te  i, then the
1 Vw

steady  s ta te  availab ility  of the system  is given by Eq. (8. 3-27).

8 .4  MEAN TIM E-TO -FIRST-SYSTEM -FAILU RE

Follow ing our p rev ious notations, we w ill u se  S^ and S^ to denote 

the se ts  of u p -s ta te s  and dow n-states, re sp ec tiv e ly , fo r a sem i-M arkovian  

system . Without lo ss  of g en era lity  the elem en ts of S^ and S^ a re  

assum ed  to be the sam e as p rev iously  defined.

it. w. 
3 3

A u

E It. W. 
• o i l  leS

S = { 1 ,2 ,.u (8. 4-1)
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s d = ! V l - ko+2- - - - ' n0) (8 . 4-2)

R ecall from  Eq. (7. 1-4) th a t w. . is  the conditional holding tim e of the
i» 3

p ro c ess  in s ta te  i given that the p ro ce ss  next v is its  sta te  j. We denote the

expected value of w. . by w. .
i» J i» 3

w . . = r t  f. .(t) dt 
i,3 J0 1.3

(8. 4-3)

L e t W denote the m a trix  of w. ..
1.3

W = (w. .) 
1.3

(8. 4-4)

Now p artitio n  the m a tr ic e s  P, _f(t), and W into su b m atrices  as follows.

P  =
1. 1

2 , 1

1 . 2

2, 2

(8 .4 -5 )

f(t) =
U . i ®  

=2, 1 ^  | =2, 2 ^

(8 .4 -6 )
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w
1 , 1

w.1 , 2
W = • (8 .4-7)

W2, 1 W2, 2

In the above p a rtitio n s , the dim ension of the (1, 1) su b m atrices  is Icqx  kQ;

the dim ension of the (1, 2) su b m atrices  is  k x(n -k  ); the d im ension ofo o o

the (2, 1) su b m atrice s  is  (n -k  )xk ; and the dim ension of the (2, 2)o o o

su b m atrices  is  (n ~k )x(n -k  ).o o o o

Now le t g. ,(t) denote the p. d. f. of the f i r s t  passage tim e from  l, a

s ta te  i e to a sy stem  down s ta te  in S^. By using s im ila r  reason ings

as in Section 8. 2, the system  of in teg ra l equations governing g (t) is1, a

(8. 4-8)

The f ir s t  sum m ation on the RHS accounts fo r the f i r s t  passage tim es that 

the system  en te rs  a dow n-state in one tran sitio n  a f te r  s ta r tin g  s ta te  i. 

W hereas the second sum m ation accounts fo r the f i r s t  passage  tim es that 

the system  e n te rs  a dow n-state a f te r  two o r  m ore tra n s itio n s  a f te r  s ta r tin g  

from  s ta te  i. Taking the L ap lace  tra n s fo rm  of Eq. (8, 4-8) we have
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<  d(s>= . e pi, j *1, j<s> + e pi, kfr, k<s> «k, d(s> f°r au 15 su 
** d u

To w rite  the above equation in vec to r form , define a (kQx l )  v ec to r

(8 . 4-9)

g ‘(s) =

*1. d(s)

h .  d(s)

%  , d(s>O

(8.4-10)

Then the se t of equations in (8. 4-9) can be w ritten  as

g ''(s) = [ P ^  20  2(s)] vT (no -k o, 0) + [P ^  jO  1(s)]g'r(s)

(8. 4-11)

The solution fo r g (s) from  Eq. (8. 4-11) re p re se n ts  the L aplace tra n sfo rm  

of the v ec to r of p. d. f. 's  of the f ir s t  passage  tim es to a dow n-state in 

when the system  s ta r ts  from  the s ta te s  in S^.

L e t ^ denote the random  f ir s t  p assag e  tim e when the system

s ta r ts  from  s ta te  i. We w ill u se  r.  , to denote the expected values ofi, d

r .  Define the v ec to r t as l, d
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T =

l , d

2, d

k , d o

(8. 4-12)

It then follows that

t  - & /(B>s-'O
(8 .4-13)

Now, rew rite  Eq. (8. 4-11) as follows:

‘ P l .  1D £ ,  l ' s)] s " (s) = [P1, 2D £ ,  2(s»  o) (8. 4-14)

D ifferentiating the above w ith re sp e c t to s gives

~ P l ,  1D =  1, 1^S^  ds g " P̂ l ,  1° ds =1, i^ s ^ g

= [ P l , 2 Q | 4 2 ( s )^ T ( V ko ' 0)

(8 .4 -15)

Taking the lim it a s  s-» 0, and making use  of Eq. (5. 3-17) we obtain

' tIko - p i , i t + [p i , i a  w i . i ]i rr(ko -0) = - ^ , 2n w i , 2 k T < V !V 0>

(8 .4-16)
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Since P 1 is  such that P ,->0 a s  k-»°°, by the m a trix  inversion1 j  A J-i

L em m a 5. 1, [I. - P 1 J  is non-singu lar. T h erefo re ,K l i  *o #

D W 1( 2)2T (n0 -k 0, 0)]
o

(8. 4-17)

O bserve that the ex p ress io n  in the second b racket on the RHS is  a column

v ec to r of dim ension (kQx l ) ,  and the ith elem ent of th is  vec to r is  equal

to L p. . w. which is  the m ean unconditional holding tim e in s ta te  i. 
jeS ^  ^

If we le t co denote the v ec to r

(8. 4-18)

then, Eq. (8 .4 -17 ) tak es  the sim ple fo rm

T = [I. “ P , . f 1 W (8 .4-19)— k 1, 1 ~o

Since th is  equation gives all the m ean f ir s t  passage  tim es  from  the in itia l 

s ta te s  in S^ to a system  dow n-state in S^, it is  the fundam ental equation 

req u ired  fo r com puting the m ean f ir s t  passage tim e fo r any given in itia l
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sta te  v ec to r P(0). T h e re fo re  it follows that

M TTFSF } = P u(0)[lk - P 1 j ] " 1 ^  (8 .4 -20)
— o

We have proved the following theorem .

T heorem  8. 3

In a sem i-M arkov ian  system  which c o n s is ts  of tra n s ie n t s ta te s  and

one re c u r re n t  chain, and the se t of s ta te s  S . is such that it does not containd

any tra n s ie n t s ta te , then the m ean f i r s t  passage tim e  of the sy stem  from  

any s ta te  i e to a s ta te  in  depends only on the su b m atrix  P^  ̂ and 

the m ean unconditional holding tim es of the s ta te s  in S^. If the in itia l 

p robab ility  s ta te  v ec to r of the system  is  P (0 ), then the M TTFSF of the 

system  is  given by Eq. (8. 4-20).
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C hapter 9

CONCLUSIONS AND RECOMMENDATIONS

#
9. 1 SUMMARY OF RESULTS

The p ro c e sse s  of M arkovian and sem i-M arkovian  system s trea ted  

in th is  th e s is  can be considered  as  genera liza tions of d isc re te  p a ra m e te r  

M arkov chains as w ell as  b irth  and death p ro ce sse s . T h ere  a re  m any 

physical sy stem s whose s ta te  tra n s itio n  p ro c e sse s  obey the M arkovian 

and sem i-M arkov ian  m odels. F o r  exam ple: single o r  m ulti-channel 

w aiting line and trunking prob lem s, m achine operation  and serv ic ing  

prob lem s, m arketing  prob lem s, inventory and production problem s, 

e le c tr ic a l power supply problem s, etc. In th is  th esis  we have considered  

both the m odeling as  well as  analysis  a sp ec ts  of system s vvhich a re  

M arkovian and sem i-M arkovian .

The system  of d ifferen tia l equations which governs the dynam ical 

behavior of the s ta te  p ro b ab ilitie s  of a g en era l M arkovian system  is 

derived, and solutions fo r the equations a re  given. The ch a rac te riza tio n  

of s ta tio n a rity  of a M arkovian system  in te rm s  of the ch a rac te riza tio n  

of the p. d. f. 's  of the tran s itio n  tim es among the s ta te s  a re  d iscussed .

The ex istance of and solutions fo r the lim iting  s ta te  p ro b ab ilitie s  of 

ergodic sy stem s a re  estab lished .
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The developm ent of m ath m odels for a physical system  consis ts  

of sev e ra l basic steps. The f ir s t  is  to identify and define all possible
m

s ta te s . The second is to determ ine the tran sitio n  ra te s  o r the t ra n s i­

tion  p robab ilities  among the s ta te s  for the imbedded M arkov chain. In 

addition, fo r sem i-M arkovian  sy stem s, a ll conditional holding tim e 

probability  density  o r d istribu tion  functions of the s ta te s  m ust be d e te r­

m ined. To enhance c larity , sim ple m achine operation  and m aintenance 

prob lem s a re  used as vehicles to illu s tra te  the general m ethodologies 

for m odeling of M arkovian as well as sem i-M arkovian  system s.

Many commonly used  m easu re s  of system  effectiveness for 

dynamic p robab ilis tic  system s a re  defined. These m easu res  can be 

grouped into th ree  ca tegories:

1. T im e dependent p robab ilis tic  m easu res

2. Steady sta te  p robab ilis tic  m e asu res

3. S ta tis tica l m easu res

A unified m atrix  approach is used to develop the general ex p ressions for 

the various effectiveness m easu res  for sta tionary  M arkovian system s. 

The re su lts  developed a re  p a rtic u la rly  suitable for analyzing la rge  scale  

com plex system s by employing a digital com puter.
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Of the many s ta tis tic a l m ea su re s  trea ted , sy stem  MUT and 

MDT in the steady s ta te  a re  among the v e ry  im portan t ones. T h e re - 

fo re  sp ec ia l em phasis  has been given in the tre a tm en t of system  MUT 

and MDT. E x p ressio n s  fo r system  MUT and MDT in te rm s  of independent 

subsystem  M UT's and M DT's a re  derived. T hese re su lts  a re  especia lly  

valuable from  the com putational standpoint when solving for la rg e  scale 

system s.

It is  shown th a t sy stem s com prised  of un its  with exponential 

p. d. f. 's  fo r th e ir  tim e -to -fa ilu re , and genera l p. d. f. 's  for th e ir  tim e- 

to - re p a ir  a re  sem i-M arkovian  system s. The dynam ical behavior of 

the s ta te  tra n s itio n  p ro cess  of a sem i-M arkovian  system  is governed by 

a system  of in teg ra l equations involving convolution in teg ra ls . Since the 

convolution of two functions is tran sfo rm ed  to m ultip lica tion  a f te r  Laplace 

o r L ap lace -S tie ltje s  transfo rm ation , such tran sfo rm atio n  is an effective

tool fo r solving the system  of in teg ra l equations. E x p ressio n s  fo r sy s ­

tem  effective m easu re s  which p e rta in  to the lim iting  s ta te  p robab ilities  

and the f ir s t  passage  tim e s ta tis tic s  of sem i-M arkov ian  system s a re  

developed.

9. 2 SUGGESTIONS .FOR FURTHER STUDY

The tre a tm e n t of M arkovian sy stem s in th is th e s is  can be 

considered  to be quite com plete. Any o ther effectiveness m easu res
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which a re  not tre a te d  h e re  m ay e ith e r be in fe rred  from  the re su lts  a lread y

developed, o r  they m ay be derived  by using s im ila r  p ro ced u res  em ployed
0

in h e re . In the case  of sem i-M ai’kovian sy stem s, however, the t r e a t ­

m ent has been le s s  com plete. In p a rtic u la r, ex p ress io n s  for the tim e 

dependent p ro b ab ilis tic  e ffectiveness m easu re s  have not been developed. 

This is  because genera l analy tica l solutions fo r the system  of in teg ra l 

equations in (8. 2-6) a re  by no m eans easy. The following suggestions for 

fu r th e r  study perta in ing  to sem i-M arkovian  sy stem s a re  recom m ended.

1. Instead  of solving fo r the m ost g en era l solutions for 

the system  of equations in (8. 2-6), it is  suggested 

that the system  of equations be solved for a p a r tic u la r  

c la s s  of conditional holding tim e p. d. f. 's , fo r exam ple 

the fam ilie s  of E rlan g  o r  W eibull p. d. f. 's .  Once the 

tim e dependent so lutions a re  obtained, ex p ress io n s  

fo r the tim e dependent sy stem  effectiveness m easu res  

can be developed.

2. In Section 8. 4, the  genera l ex p ress io n  fo r the m ean 

f ir s t  p assag e  tim e to system  fa ilu re  is  developed.

Since system  MUT in the steady  s ta te  can be con­

s id e red  as the m ean f ir s t  p assag e  tim e co rrespond ing  to a 

p a r tic u la r  in itia l p robab ility  s ta te  vecto r, it would not be
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difficult to develop exp ress ions  for sy stem  MUT and

MDT fo r sem i-M arkov ian  sy stem s. The develop-
0

m ent of th ese  ex p ress io n s  a re  suggested.

3. As a sequel to the p receed ing  developm ent, it is 

suggested that ex p ress io n s  for system  MUT and 

MDT in te rm s  of independent subsystem  M UT's and 

MDT’s fo r sem i-M arkov ian  sy stem s be developed.

4. In m achine operation  and m aintenance problem s, 

under c e r ta in  operation  and m aintenance po lic ies, 

the s ta te  space of the system  could becom e countably 

infin ite when th e re  a re  m o re  than one re p a ir  crew  

serv ic in g  the fa ilu re s . It is  suggested  that m odeling 

and an aly sis  of m ultip le r e p a ir  crew  sy stem s be 

studied.
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APPENDIX A

AN ALGEBRAIC THEORETIC CLASSIFICATION OF THE 
STATES OF A MARKOV CHAIN

0

C onsider the following b inary  re la tio n  defoned on the se t of s ta te s  

S of a M arkov chain. An elem ent ie  S is said  to b ea r a re la tio n  T to 

je  S, denoted by iT  j, if it is  possib le  for the chain to reach  s ta te  j from  

s ta te  i. The following p ro p ertie s  of T on the e lem ents of S a re  obvious:

Reflexive: iT i fo r all ie  S (A -l)

T ran s itiv e : iTj and jTk im ply iTk for a ll i, j, keS (A-2)

T h erefo re , the re la tio n  T is  reflex ive and tran sitiv e . Now define a b inary  

re la tio n  R on S based on T. An elem ent ie  S is sa id  to b ea r a re la tio n  

R to an alem ent of j e S if iTj and jT i. In te rm s  of com m unicative 

p ro p e rtie s  among s ta tes  of a M arkov chain, two s ta te s  will have the 

re la tio n  R if it is  possibly to reach  from  e ith er s ta te  to the o ther sta te .

It is  not hard  to see that R is  reflex ive, tra n s itiv e  as well as sym m etric  

which is defined as follows:

Sym m etric: iRj im plies jR i fo r all i, j e S  (A-3)

T herefo re , R is an equivalence re la tio n  on S. F o r any ie  S, le t

R(i) denote the se t of all e lem ents j in S which a re  equivalent to i, that
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is  je  R(i) if and only if i R j .  R(i) is known as an R -subse t o r  an 

equivalence c la ss  of S. It can be shown [74] that the R subsets  have the 

following p ro p ertie s :

1. F o r a ll i, je  S, iR j  if and only if R(i) = R(j)

2. Two R -su b se ts  a re  e ith e r identical o r  have no elem ents in 

common, and the collection of a ll R -su b se ts  is  a p artitio n  of S.

In te rm s  of these  p ro p ertie s  the s ta te s  of a M arkov chain can be grouped 

o r c la ssified  according to the R -su b se ts . The c lassifica tio n  w ill be such 

th a t any two s ta te s  of the chain w ill belong to the sam e R -su b se t if and only 

if it is  possib le  to reach  from  one sta te  to the o ther.

Now, we w ill consider a p a rtia l o rd e r  re la tio n  induced by T.

Define a re la tio n  T* on the se t of equivalence c la s se s  as follows. F o r 

any two R -su b se ts  u and v, uT*v holds if every  elem ent of u b ea rs  the 

re la tio n  T to ev ery  elem ent of v. It can be seen that T* is  reflex ive, 

tra n s itiv e  and an tisy m m etric  which is  defined as follows:

A ntisym m etric : If uT*v and vT*u, then u = v (A~4)

T h erefo re , T* is  a p a rtia l o rd e r  rela tion . It is known as a p a rtia l o rd e r  

induced by T. The m inim al e lem ents of the p a r tia l o rd erin g  of equivalent
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c la s se s  a re  c la ss if ied  as the ergodic se ts  of the M arkov chain. By the 

m inim al condition of p a r tia lly  o rd e red  se ts , th ere  ex is ts  at lea s t one 

ergodic se t fo r every  M arkov chain.



APPENDIX B

SOLUTION OF THE VECTOR DIFFERENTIAL EQUATION OF A 
LINEAR HOMOGENEOUS SYSTEM .

In th is  appendix we shall derive  a solution fo r the vecto r 

d ifferen tia l equation:

x (t)  = x (t)  A(t) 
lxn  lx n  nxn

(B -l)

w here the elem ents of A(t) a re  continuous functions of tim e on the in terva l 

t  < t < T. Suppose ^(t, t Q), . .  . ,  gLn (t, tQ) a re  solutions of Eq. (3-1) fo r 

the follov/ing boundary conditions, respec tive ly .

Xi<to) = [1, 0, 0 ,. . . ,  0]

X2 (to} = [0,

xn(tQ) = [o, 0, 0, , 0, 1] (B-2)

L et 3>(t, t ) denote the sq u are  m a trix  form  by 0 ,  (t, t  ), £ „ ( t , t ) , . . . ,  <£_ (t, t ) o jl o u o n o

as  follows:

$(t, t Q) =

V

(B-3)
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This is known as  the tran sitio n  [75] o r  fundam ental [76] m a trix  of the 

lin e a r  system  governed by Eq. (B -l) . Since ^ ( t ) ,  for a ll i = 1, 2 ,. . .  n, 

a re  the solutions of Eq. (B -l)fo r the boundary conditions of Eq. (B-2), it 

follows th a t the solution for any in itia l vecto r x (tQ) would be

x (t)  = x ( t  ) 3>(t, t  ). (B-4)— — o o

The m a trix  <5(t, tQ) is  given by the solution of the m a trix  d ifferen tial

equation

~  $(t, t o) = 3>(t, t Q) A(t) (B-5)

fo r the boundary condition

^ U  = In* ( B “ 6)o o n

The following theo rem  es tab lish es  a s e r ie s  solution fo r $(t, tQ).

T heorem  B. 1

If A(t) is  a square  ( nxn)  m a trix  whose e lem en ts a re  continuous 

functions of tim e on the in te rva l t < t < T, then the s e r ie so  —  —

This is  often known as the P eano-B aker se rie s .



is  a solution of the m a trix  d ifferen tia l Eq. (B-5) for boundary condition 

Eq. (B-6) on the sam e in terva l.

Proof:

F o r s im p lic ity  of notation, let the given s e r ie s  be denoted by

BQ(t) + B x(t) + B2(t) + . . .  (B-7)

F ir s t  we show that the s e r ie s  converges uniform ly on the in terva l 

t  < t  < T. R ecall that a s e r ie s  is said  to converge uniform ly  if the 

sequence of its  p a rtia l sum  converges uniform ly. L et S^(t) denote the 

g en era l te rm  fo r the p a rtia l sum  of the given s e r ie s : 

k
S. (t) = E B.(t)

k i=0 1

t t a l CTn - l
= 1 + 1  A ( a 1 )dcr1 + . . .  +  J  A(or2 ). . . J  A f e - j ^ d a ^ a ^ . . .  d o ^

t  t  t to o o o

(B-8)

To show that the sequence of m a tric e s  { Sk(t)} converges uniform ly, we have 

to show the sequence of each elem ent of Sk(t) converging uniform ly. Let

E. .[. ] denote the (i, j)th  elem ent of m a trix  [• ]; "a" denotes h 3
the m axim um  absolute value of the elem ents of A(t) on the 

in terva l t < t < T.



r

That is,

a =  m ax |a . . ( t ) |  (B~9)
(i, i) 13

t  < t < T  
o —  ~

Note that "a" ex is ts  s ince the elem ents of A(t) a re  given to be continuous

functions on the in te rv a l t < t < T. The absolu te values of the elem entso — —

in the te rm s  of the p a rtia l sum  Eq. (B-8) a re  bounded as follows:

|E ..[B  ]] < 1 
1 13 o  -

T
l E ^ B ^ I  < J* a d a l = a (T -to) 

^o

|E i  [B2]| < J T a J  Xa d a  d a 2 = a. . ^  V
13 1 t t 1 * 2.'o o

T o ,_______ a __, ak(T -tQ)k
| E y lB ]| <S  a j  1 a . . . J  do =

J t  t  t
0 0  o

(B-10)

The above is  tru e  fo r any (i, j)th  elem ent of the m a tric e s  B . We now 

invoke the W e ie rs tre s s  M_te s t  theorem  [72] which s ta te s  that if th e re
CO

e x is ts  a convergent s e r ie s  E M., w ith M. independent of t, such that
n=0 1 1

|u  (t)| < 1VL fo r a ll t on the closed in terv a l a < t < b, then the s e r ie s
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£ u.(t) is  absolutely and uniform ly convergent on that in terval. We observe  
n=0 1

that the s e r ie s  ,

a 2(T-t )2 aX(T -t  )X
l + a ( T - t ) + — -~ — + . . .  +  ( B - l l )

a (T -t  ) ois nothing but the M aclaurin 's  expansion of e . T herefo re , the s e r ie s  .

( B - l l )  converges, and each te rm  of the s e r ie s  is  independent of t. Hence,

th is  e s tab lishes  the uniform  and absolute convergence of the given m atrix

s e r ie s  on the in te rva l t < t < T. We now compute the t e rm -b y - te rmo ~  ~

deriva tives  of the se r ie s :

ST Bo(t> ■ 0 

5T B 1(t> = Alt)

j  1
B 2(t) = A(t) J* A(a2) d a 2 = A(t) B ^ t)

*o

In general,  for k > 2

5 - B k(t) = Aft) J  A(c72) / 3Afa3 ) . . .  J'% ' 1Afak)dcrkd a k_:l. . . * r 2
t t to o o

= Aft) Bk l (t) ( B - l2)
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O bserve that the e lem ents  of the derivatives  —  B, (t), fo r  k = 1, 2, 3 , ,at k
00

a re  continuous functions on the in terva l t < t  < T. In addition £ i r B ,  (t)o -  -  dt k '» k=0
is  uniform ly convergent on the in terva l t < t < T. This can be seen  from

GO CO

£ B ,(t)  = A(t) £ B, (t) (B.-13)
k=0 k=0

00
T herefo re ,  £ —  B, (t) is  uniform ly and absolutely convergent. Since

k=0

CO CO

the s e r ie s  £ B, (t) and £ —  B, (t) a r e  uniform ly  convergent on the
k=0 k=0

in terva l t < t < T, we have:o  —  ~

CO 00

j r  E B (t) = E 4 - B  (t)
dt k=0 “ k=0 dt k

= A(t) £ B. (t) (B-14)
k=0

O bserve that
00
E B, (t ) = I (B-15)

k=0 °  n

By uniqueness theo rem  on the solution of d ifferential equations, we conclude 
00

tha t £ B, (t) is  the solution of the m a tr ix  d ifferentia l Eq. (B-5) for the 
k=0

boundary condition Eq. (B~6) on the in terva l t < t < T.
°  Q. E. D.
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APPENDIX C

LIMITING SOLUTION OF AN ERGODIC STATIONARY 
MARKOVIAN SYSTEM

In this  Appendix we shall es tab lish  that for an ergodic Markovian 

system , the system  of equations

^ - P ( t |P ( 0 ) )  = P(t)| P(0))M (C - l)

p o sse s se s  a lim iting solution as t -* F u rth e rm o re ,  we shall show that 

this  lim iting solution is independent of the initial condition P(0).

Let S denote the se t  of system  s ta tes  of the system . F o r  each 

ie S, le t gV(t, 0) be the solution of Eq. (C -l)  when the given initial 

vector P(0) is  such that the ith e lem ent of P(0) is 1 and all o ther 

e lem ents a re  0. In o ther words gL(t, 0) is  the probability  s tate vector 

at t im e t > 0 given that the system  is in s ta te  i at tim e 0. Denote the 

elem ents of gL(t, 0) as follows:

^ ( t ,  0) = [0. ^ t ,  0), 0. 2(t, 0), . . . ,  0. n (t, 0)] (C-2)
’ ' ’ o

It follows that for all i, j e S

0 . .(t, 0 )>  0 (C-3)
*■» 1
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and

E 0. , ( t ,  0) = 1 
keS l' k

' (C-4)

The system  being ergodic, s tr ic t  inequality  holds in Eq. (C-3). That is

(C-5)

The sys tem  tran s it io n  m a tr ix  $(t, 0) is

0. .(t, 0) > 0 for all i, j e S 
1» 3

0 1, l (t’ 0) 0 j  2^' ^  . . . . 0 (t, 0) 
* o

$(t, 0) = 0 2 j l (t , o) 0 2 2 ^  . . . . *2.„  (t-0)o
(C-6)

0 n ^ t . o )  
o,

0 9 *̂ ^  . . . .n , 2.0 * n , n (t' 0)o o

It follows that the solution for Eq. (C~l) is

P(t|P(0)> = P (0 )$ ( t ,0 )  

But in Eq. (5. 2-3) we have shown that

$ (t,0 )  = e Mt

(C-7)

(C-8)
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F o r a ll r  > 0,

$ ( t+ T ,0 )  = e M<t+T)

Mr Mt = -e e

= $(r, 0) $(t, 0) (G-9)

Now, for each j e S, let

j U S  *i, j

and

a M  s 0, At.O) (C-10)

<C- U >

This m eans a .( t)  and 8.(t) a re  re spec tive ly  the m axim um  and minimum 
3 3

elem ents  of the jth  column of <3>(t, 0). F o r  all i, je  S, the (i, j) e lem ent of 

$(t+T , 0) is

0 . ( t+ r ,  0) = E 0. A t , 0 )0  (t, 0)
i,3 keS i ,k

< E 0 . , (r, 0) a .(t)  = a.(t) (C-12)
keS l ,k  3 3

Sim ilarly ,

0. . ( t+ T ,0 )>  ^ 0 . ( r ,0 ) j8 .( t )  = j3.(t) <C-13)
3 KC D 1, K j j
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Since E qs. (C-12) and (C-13) hold for a ll i e  S, it follows that

a . .( t+ r)  < a.(t) (C-14)
J J

and

j8.(t+T) > jS.(t) (C-15)
J J

This es tab lishes  that, for  all je  S, a .( t)  is a monotone non-increasing
J

function, and ,3.(t) is  a monotone non-decreasing  function. Since these 
3

functions a r e  bounded between 0 and 1, the ir  l im its  exist. Let

Jirn a.(t) = a.  (C-16)
t - ro ] 1

and

p (t) = P " (C-17)
t - ®  J 3

We will now prove that these  l im its  a re  equal. Le t d.(t) denote the
3

difference of a .(t)  and ,8.(t). That is  
3 3

d.(t) = a .(t)  - 8 .(t) ( C - l 8)
3 3 3

We will show that d . ( t ) -» 0 a s  t By Eqs. (C-14) and (C-15) it
3

follows that
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d.(t) > d .( t+ r)  > 0  
3 ~  3 “

This m eans d.(t) is  a monotone non-increasing  function. 
3

Now let

c = m in 0 . .(t ,0)  
i, 3 1,3

Recall tha t $(r, 0) is  an n x n  m atrix . It follows from  Eqs. (Co o

(C-5) that

0  < c < —  no

By Eq. (C_9) we have for a ll positive in teger n and all r  > 0,

0 . .((m+1) t , 0) = E 0 . , ( r , O ) 0 , . (m r ,  0)
i,3 keS *»3

L et i be chosen such that

0 . 0 ) = a .((m + 1 ) r ,  0 )
i, 3 3

Now let q be chosen such that

0 (m r ,  0) = 0  ( m t ,  0) 4> 3 3

Then by Eq. ( 0 2 2 )
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+ E 0  (r, 0) 0  (m r ,  0)
keS-[q} ’ ,J

< 0 , J r ,  0) p (m r ,  0) + a  (m r ,  0) E 0  , ( t , 0)
I ,q  3 J keS-fq} l ik

= 0  ( T , O ) l ( m r , O ) + a  (n iT ,O )[ l - 0  (r, °)]
^  4  J 3 * i 4

= t t i m r ,  0 ) - [ n i m r ,  0 ) - £ . (m r ,  0 )] 0  ( t,  0 )
3 J 3 1> 4

< a . ( m r ,  0 ) - [a .(m r,  0 ) - j3.(mr, 0 )]c 
3 3 3

Sim ilarly , should i be chosen such that

0  ((m + l ) r ,  0 ) = £ ((m + l ) r ,  0 )
3 3

and should q be chosen such that

0  ((m + l ) r ,  0 ) = a  ((m + l ) r ,  0 )
4* 3 J

then by following a s im ila r  p rocedure  as  above would re su l t  in

0 .((m + l ) r ,  0 ) > /S.(mr, 0 ) + [a .(m r ,  0 ) - p A m r ,  0 )]c 
3 3 3 3

(C-25)

(C-26)

i

( 0 2 7 )

( 0 2 8 )
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Subtracting Eq. ( 0 2 8 )  from  Eq. ( 0 2  E) we obtain:

a .((m  + l ) r ,  0) - /3.((m + l ) T ,  0) < (1 -2c)[a (m r ,  0) - 0 (m t , 0)] 
3 3 3 3

( 0 2 9 )

The above equation im plies that

d .(m r ,  0) < (1 - 2c)m  d.(T> 
3 3

( 0 3 0 )

Since the o rd e r  of S, nQ, is  g re a te r  o r  equal to 2. Therefore , by ( 0 2 1 )

Since a.(t)  and ,S.(t) a re  respective ly  the m axim um  and the minimum 
3 3

elem ents of the jth  column of <£>(t, 0), Eq. ( 0 3 3 )  indicates that all

elem ents  of the sam e column of $(t, 0) converge to one lim it as  t->“ .

We shall denote by jr. the lim iting value of the elem ents  of the jth column
3

of $(t, 0). That is, for all ie  S

( C - 3 1 )

Hence Eq. ( 0 3 0 )  shows that

m-*
( 0 3 2 )

We have estab lished  that

a.  = P. for a ll j e S 
3 3

( 0 3 3 )
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jr. = lim  0 . .(t, 0) 
3 t - .  1‘ *

If <i> denotes the lim iting value of <i>(t, 0) as  t-*«>, then

$  =

7T< 7Tn . . . 7T1 2  n

7T- 7T0 • • • 7T1 2  n

7T ̂  7T0 . . . 7T1 2  n

It follows that for any initial probability  vector P(0)

lim P(t| (0)) = P(0) $  
t-* 00

T his  com pletes the proof.

(C-34)

(C-35)

(C-36)
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APPENDIX D

MAIN THEOREM FOR STATE T RAN SITION - RATE 
MATRIX OF MARKOVIAN SYSTEMS

#

F o r  convenience we re s ta te  Theorem  5. 6 of Section 5. 6 here . 

Theorem  5. 6

Let M be the transit ion  ra te  m a tr ix  of an n - s ta te  s ta tionary  

Markovian sys tem  which is such that n^ of the s ta tes  a re  transien t  sta tes, 

and the rem aining  ( n ^ n ^ )  s ta tes  fo rm s an ergodic set. If B is an (m xm ) 

m a tr ix  re su lted  a f te r  deleting i, 1 < i < n - n^, rows and the corresponding 

i columns of M pertaining to i s ta te s  of the ergodic set, then B is 

non-singular.

The proof of th is  theorem  re q u ire s  the following m atrix  inversion

lem m a.

Lem m a

If A is  an n x n  m atr ix  such that A tends to_0 (zero  m atrix )  a s  k

tends to infinity, then (I -A) has an inverse , andn
CD

(I -A )-1 =1 +A + A2 +A3+. . .  = E A  (B -l)
n  n k=0

P roof  of L em m a

Consider the identity

(I -A)(I +A + A2+. . . +Ak_1) =1 - A k (D-2)n n n
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which can easily  be verif ied  by multiplying out the LHS. By hypothesis,

the RHS tends to I a s  k -* ®. Since the determ inan t of I is 1, for. suffi- n n

ciently la rge  k the determ inent of I - Ak is non-zero , i f  follows that for 

sufficiently large  k, the determ inent of the LHS is non-zero . But the d e te r ­

m inent of a  product of two m a tr ic e s  is equal to the product of th e ir  de te r-  

m inents. Hence (I^- A) has a  non-zero  determ inent. This is  equivalent 

to saying that (I - A) p o sse se s  an inverse. Multiplying both s ides ofn
.-1Eq. (D-2) by (I - A) we have:

(I -A )"1 (I -Ak) = I +A+A2+A3+ . . .+Ak 1 n n n
(D-3)

Now taking the l im it as k -» » we obtain Eq. (D -l).

P roo f  of T heorem  5. 6

Q. E. D.

Each s ta te  of the system  being e ither  transien t o r  r e c u r re n t  

all diagonal e lem ents  of M a re  negative. T he refo re  the diagonal e le ­

m ents  of B a re  negative and B m ay be w ritten  as 

1! ’

1 , 1

2, 2 
N

m, m

[I -Q ]L m (D-4)

w here Q is the following (m x m ) m atrix .

A r e c u r re n t  s ta te  is defined to be a sta te  of an ergodic set.
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Q =

0

2 , 1

'b2, 2 
I 
l

3m, 1
-b m, m -b

1 , 2  

*1. 1

0

)m , 2 
>m, m

-b
t , 3  

1, 1
b2, 3 

}2, 2
-b

1, m  

1

)2, m

2, 2
(D-5)

Since all b..  ̂< 0, the diagonal m a tr ix  of b..  ̂ i s  non-singular. Then B

will be non-singular if I - Q is non-singular. If we can show that

Q*C -» 0 as k -» then by the m a tr ix  inversion  lem m a, [lm _ Q] is non-singular.

The following p ro p ertie s  hold for the elem ents of Q:

(i)

(ii)

(iii)

q. . > 0 
1 . 3  “m

0 < E q. . < 1

m
for at le a s t  one value of 2 , E q . < 1

3=1

(D-6)

(D-7)

(D-8)

Let be the sum of the ith row of Q, i. e . ,

m
V.  = E q. . 

1 3 = 1 l*3
(D-9)



By p ro p e r t ie s  (D~6) - (D~8), it follows that

m  •

E q. ,y. < 1 for all i * (D-10), , i k k  k=l

m
L et 0 = max { E q v ,}  (D - l l )

i k=l

T he re fo re

m
E q. , v ,  < 6< 1 fo r  all i 

t=l x>k k

Denote the (i, j) e lem ent of by q. .(k), i. e . ,
1

2
The (i, j) e lem ent of Q is:

m  m

3
The (i, j) e lem ent of Q is:

m  m

(D-12)

Qk = (q. .(k)) (D-13)
J

q i , j t2) '  kf x \ k% , J  <D- 14>

q ‘. j<3) '  k n  q ‘. k“ k. j <2> S kfx qi ' = " i<! ( D ' I 5 )
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4
The (i, j) elem ent of Q is:

m m

qi i(4) = E qi k \  i( 3 ) -  E qi kUk 6 - G it J k=i " k-1

In genera l we have:

and

(D-16)

q. ,(2k) < 0k for k > 1 (D-17)
3

q. . (2 k + l)< y .0 k for k > 1 (D-18)
3 ^

Since 0 < 1 and v. < 1, for all (i, j) e lem ents, q. .(k) is a non-increasing  
i 3

function of k, and q. .(k) -  0 as  k -  ». T herefo re , by lem m a 5. 1
3

[Im - Q] is non-singular. Hence B is  non-singular.

Q. E. D.

The co ro l la ry  s ta te s  that the m a tr ix  M is singular. The following 

is a proof for the coro lla ry .
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P roof of C oro lla ry

L e t M' re p re se n t  the m atr ix  resu lted  from  s tr ik ing  out the las t
m

row and the la s t  column of M. T herefo re  M' is an (n - l)x(n - 1) m atrix .o o

M' =

m
1, 1

m
1 , 2 m

m 2 , 1
m

mn -1, 1o

2, 2

m  , _ n -1, 2 o

. . m

1, n -1 o

2, n -1 o

mn -1, n -1 o o

(D-19)

By T heorem  5. 6, M' is  non-singular. T herefore , there  ex ists  a unique 

vec to r

a — [a ,,  & , . . . ,  a  .]  (D—20)-  1 2  n “ lo

such that

a M 1 = [m , m J  (D-21)-  n , l n , 2 n , n -1o o o o
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The preceeding equation re p re se n ts  the following se t of s c a la r  equations:

n -1 o
E a. m. . = m  . for i = 1, 2, . . . , n - I  (D- 22)
i = l  i  x,3 nQ, ]

Summing over j gives

n -1 n -1 n - 1o o o
E E a. m. .= E m  (D~23)

j= l 1=1 1 “ o-J

Interchanging the o rd e r  of summ ations on the LHS, and recognizing the 

fac t that

n -1 o
E m. . = -m . for all i e S , (D-24)

,j=l ^

we obtain

n-1
E a. m ., = m  (D-25). , l l n n , n

1 = 1  o o o

By Eqs. (D-22) and (D-25), it follows that

a ,m ,  + a„ni + .. . + a ,m  . = m (D-26)1—1 2—2 n-1— n-1 —no

where rru denotes the ith row of M. Hence M is singular.

Q. E. D.
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APPENDIX E

AN ALTERNATIVE APPROACH OF DERIVING THE mth 
MOMENT OF THE TIME-TO-FIRST-SYSTEM-FAILURE

In this  Appendix the express ion  for the general mth moment of the 

t im e - to - f i r s t - sy s te m -fa i lu re  will be derived through Laplace tra n sfo rm  

approach. In con trast to the tim e domain approach used in deriving 

Eq. (5. 11-8), the Laplace tran sfo rm  approach is m ore  form al but revea ls  

le s s  insights to the problem.

F i r s t  define the following vec to r  notations:

£  (t|P (0))  = [ r 1(t| P(0)), r 2( t | P ( 0 ) ) , . . . , r k (t|P(0))] (E - l)
o

£ d(t|P(0)) = [ rk +1( t |P ( 0 ) ) , r k +2(t| P(0) ) f . . . ,  r n (t|P(0))] (E-2)
o o o

The Laplace t ra n sfo rm  of the above vec to rs  are :

00

r *  (s |P (0 ))  = J  r u ( t |P (0 ))e"Stdt (E-3)

CO

r !  (s |P (0))  = f  r ^ a l ^ O J e ^ d t  (E"4)
0

Using the notations of Eqs. (E"l)  and (E>2), Eq. (5. 3-2) can be w ritten  as



Taking the L aplace tra n sfo rm  of Eq. (E-5), we have

*
sr*(s |P<0)) - P  (0) = r V(s |P (0))  B, ,—u —u ~ u  l— 1, 1

sr* (s| P(0)) - P ,(0 )  = r * ( s |  P(0)) B .
— d  " " a  1 , 1

% ^

Solving for £^(^1 P(0)) from  Eq. (E-6) we obtain:

/ < s |  P<0)> = Pu (0) [s lk- B j ^ r 1

Substituting Eq. (E-8) into Eq. (E-7) re su l ts  in:

sr*|<s| P(0)> - Pj(0)  = Pu (0)[slk- B 1_ j ] " ^  2

The probability  d istribution function of the t im e - to - f i r s t - sy s te m  

is:

t  T
I  f(t| P(0))dt = r d(t| P(0)) v ( n ^ ,  0) 
o

Differentiating gives

f<t| P(0)) = r d(t| P(0)) vT (no -koi 0)

(E - 6 )

(E-7)

(E-8)

(E-9)

failure

(E-10)

( E - l l )
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The Laplace t ra n sfo rm  of Eq. ( E_l l )  is:

f*(s| P(0)) = [sr*<s| P (0»  - P,(0)] vT (n -k  , 0) (E-12)i — —cl —a o o

Substituting Eq. (E~9) into Eq. (E-12) we obtain:

f* (s |P (0))  = P  (0)[slk -B 1] " 1B 1 2 ZT (no -k o>0) (E" 13)
o ’ ’

Since the e lem ents  of B a r e  such that each row run is zero,

B 1 o / ° )  = “ B i i ZT (k  » ° )  ( E - 1 4 )1^2 o o  l j l  o

By substituting Eq. ( E-14) into Eq. (E-13), we obtain f (s |P (0 ))  in te rm s

o f B i , r

f* (s |P (0 »  = - P u (0)[slk -B j  jVT (ko,0 )  (E-15)

This  is the Laplace t ra n s fo rm  of the probability  density function of the 

t im e - to - f i r s t - s y s te m -fa i lu re  (TTFSF). The m th o rd e r  moment, TTFSF^m ,̂
j ,

is  re la ted  to the limiting value of the m th derivative of f (s | P(0)) as 

follows:

T T F S F (m) = lim  C(-l)m ~ -  f*(s|P(0))3 (E-16)
s-0  ds



Substituting Eq. (E-15) into (E~16) and carry ing  out the derivative we 

obtain:

0

TTFS.F(m) = l im  - P  (0) m! [sL -B , 1f (m+l>B 1 1vT ( k , 0 )  
s-»0 “ U ko ^  ^  °

= ( - l )m m: Pu ( 0 ) b ‘ “  vT (ko,0 )  (E

This com pletes the derivation.

-17)
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APPENDIX F

ILLUSTRATIVE EXAMPLES OF RELATIVE MAGNITUDES 
BETWEEN MUT(MDT) AND MRUT (MRDT)

0

F i r s t  consider System 1 with transition  d iagram  as shown in 

F ig u re  F - l .

*T X2

- \

F ig u re  F - l  T rans ition  D iagram  of System 1 

F o r  th is  system , let

Su = [1,2} (F - l )

S . = {3} (F-2)a

System 1 could rp e re se n t ,  for example, a  physical system  with two 

identical units in para lle l  where at leas t one is needed for the system  to be 

up. E ith e r  o r  both units a re  opera ted  un less  under rep a ir ,  i. e . , a unit 

is  opera ted  as long as  and as soon as  it is  operable. T herefo re , the system  

always s ta r t s  from  state 2 a f te r  it is  re s to re d  from  sta te  3, the only down 

sta te . It follows that
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MUT = MTTFSFj-0 x Qj (F~3)

Since sta te  3 is  the only down state, by inspection of F ig y re F -1 ,  we see 

that

M TTFSF[1, 0. 0] =• M TTFSF[0> 0] (F-4)

The conditional m ean rem aining  up-tim e for system  1 is:

MRUT = — f —  M TTFSFn  ,  —  MTT FSF r ,u jt1+7t2 [1 ,0 ,0 ]  ^ + ^ 2  [0 ,1 ,0 ]

(F-4)

Subtracting Eq. (F~3) f ro m  Eq. (F-5) re su l ts  in:

*1MRUT - MUT = — ~ — [M TTFSFr n M TTFSFfn ,] 
u V1 2 LI, o, 0J L0, 1,0]

(F-6)

By Eq. (F-4), the RHS of the above equation is  g re a te r  than 0. Hence 

for system  1

MUT < MRUT (F-7)u

The m ean down-tim es of the system  can be found by inspection of F igure  

F - l .
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MDT = —  = MRDT (F-8)

and
7Tg #

MRDT = —  (F-9)

Since vr„ < 1, the above two equations imply that for system  1J

MDT > MRDT (F-10)

By actually  evaluating the express ions  for MUT and MRUT of system  1, it 

can be shown that th e re  ex ists  no definite re la tionship  between these  two 

m ean tim es  for th is  system . Depending on the re la tive  m agnitudes of 

X. and (i = 1, 2), e i th e r  of th ese  two m ean tim es  can be la rg e r  than the 

other.

Next consider system  2 with transit ion  d iag ram  as  shown in 

F igu re  F-2.

X

2

F igu re  F -2  T rans ition  D iagram  of System 2
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Let the se ts  of up -s ta te s  and down-states be the sam e as that specified 

in Eqs. (F - l )  and (F-2). In te rm s  of a physical system , system  2

could re p re se n t  the sam e 2 units in para lle l  (as for system  1) except 

that the operational procedure is changed. F o r  this case, when both 

units have failed, r e p a i r s  m ust be completed on both units before 

operating the system  again.

F o r  system  2, the expression  for MRUT^ is the sam e as that 

given by Eq. (F-5), but the values for the 7rJs (i = 1, 2) for system  2 

a re  different from  those of system  1. By inspection of F igure  F-2 , we 

see that

MUT = M T T F S F ^ ^ qj ( F - l l )

Therefore , for system  2

MRUT, - MUT -  - f f -  [M T T F S F ^  0]- M T T F S F ^  ^  Q]]

(F-12)

Since Eq. (F-4) rem ains  tru e  for sy stem  2, the r e v e rse d  inequality of 

Eq. (F-7) holds for system  2.
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MUT > MRUT (F-13)u

These  two sim ple examples show that th e re  ex ists  no fixed 

relationship  between the magnitudes of MUT and MRUT o r  MRUT^. 

S im ilarly, o ther simple exam ples may read ily  be constructed to demon- 

state the nonexistance of fixed relationships between MDT and MRDT or 

MRDT d
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