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ABSTRACT

The modeling as well as analysis aspects of dynamics probabilistic
.
systems whose state transition processes are continuous parameter Mar-
kov chains and semi-Markov processes are investigated. The first three
chapters present the Introduction and some preliminary materials for the
research conducted. The major contributions for Markovian sysiems are

presented in Chapters 4 through 6, and that for semi-Markovian systems

are presented in Chapters 7 and 8.

A new and simplified approach is employed to derive the syslems
of differential and integral equations, which respectively govern the
dynamical be-liavior of the state probabilities of Markovian and semi-
Markovian systems. The system of differential equations for Markovian
systems are derived in Sections 4. 2 and 4, 3 of Chapter 4, whereas the
system of integral equations for semi-Markovian systems are derived in
Section 8.2 of Chapter 8. A general procedure is aeveloped for modeling
of systems having complex configurations. Simple examples of modeling

are presented in Sections 4.5 and 7. 2 through 7. 4 to illustrate the general

m.oethodology.

Using a unified matrix approach, closed form general solutions

are derived for many commonly used system effectiveness measures.

-viii-



The matrix approach is shown to be very useful and appropriate for
analysis of systems with finite state space. The solutions for Markovian
systems are developed in Sections 5. 2 through 5. 11 of Ghapter 5, and

in Section 6. 2 of Chapter 6. For semi-Markovian systeins the solu-

tions are developed in Sections 8, 3 and 8. 4 of Chapter 8.

ILxistence of asymptotic solutions for the state probabilities of
stationary ergodic Markovian and semi-Markovian systems are proved.
Matrix expressions for the solutions are developed in Sections 5.6 and 8.3

Appendix C presents a proof for the existence of the limiting solutions.

Important properties pertaining to the state transition-rate
matrix, M, of stationary ergodic Markovian systems are studied. The
most significant findings are that M is always singular, and that submatrices
of M resulted from deleting any number of rows and the corresponding
columns of M are nonsingular. This is the main theorem proved per-

taining to the properties of M. Appendix D contains the proof of this theorem.

Special contributions are made in Chapter 6 on the probability
distribution and statistical moments of the system [lirst passage time. In
particular, for a Markovian system comprised of independent subsysiems,
it is shown in Section 6. 5 that the mean-up-time and down-time of the system
are expressible in terms of those of the subsystems. Thus, computation
for mean up-time and down-time of large scale systems can be greatly

simplified by means of this approach.

..ix—



Chapter 1

INTRODUCTION

1.1 HISTORICAL BACKGROUND

It was as early as the turn of this century and before the theory
of stochastic processes were available that Erlang (1878-1929) [1]*
pioneeréd the study of trunking problems for telephone‘exchanges. This
problem was later studied by Palm in 1943 [2] after the theory of sto-
chastic processes was developed. Based on these successful experiences,
Khintchin in 1952 [3] and Palm in 1947 [4] mathematically formulated the
groundwork on machine operation and maintenance problems. After
World War II, the accelerated advances in modern sciences and engineering
have rapidly increased the magnitudes and complexity ot technological,
economical, and social problems. Keeping in siep with these increases
have been the general rise of interest in modeling and analysis of these
problems, which in turn had a profound stimulating influence on the
development of modern probability theory and the study of stochastic

processes.

5
Numbers in brackets refer to references listed at the end of this thesis.



Many books on probability theory, stochastic processes, and
their applications have been writfen in recent years. Among the impor-
tant ones are [5-14]. There have been a large amount oP'research papers
and monographs written on stochastic processes which afe related to
physical problems. In the area of waiting lines and queuing problems,
some examples are [15-23). Renewal theory was developed as the study
of probléms related to failure and replacement of components. The ori-
ginal and significant publications on renewal theory include [24-32]. The
study of machine operation and maintenance problems is the central part
of reliability theory. Motivated by the experiences during World War 1I
with unreliable complex military systems, and by the unsuccessful events
of satellite launching in the early part of the space program, reliability
theory was developed as a result of the demand for more reliable systems.
Some of the early papers in this field are [33-41). ZIconomical and social
problems were also modeled and studied in the framework of dynamic

probabilistic systems. Among the significant publications are [42-46].

As the complexity and scope of dynamic probabilistic systems
continue to evolve, much research effort has been expanded in recent
years in the development of new approaches for modeling and solutions to
the problems. As a result, a large amount of papers and textbooks have
been written in this field. References [47-71] are among the publications

which relate closely to the materials covered in this thesis.



1.2 PROBLEM STATEMENT AND THESIS SUMMARY

In order that a physical system may be accurately analyzed, a
representative math model of the system must be develdped. The dynami-
cal behavior of a physical system is generally influencea by many uncertain
physical phenomena and fluctuations of natural forces. Therefore, repre-
sentative models for physical systems, in general, are probabilistic.

This the;sis considers modeling and analysis of dynamic probabilistic
systems whose state transition processes are continuous parameter
Markov chains or semi-Markov processes. For the purpose of clarity

and so that the development is physically motivated, machine operation

and maintenance systems are considered as the underlying problems of

the development. It should, however, be noted that the concept of modeling
developed and the solutions derived are completely general and applicable
to all Markovian and semi-Markovian systems. A unified matrix approach

has been used in the problem formulations as well as in their solutions.

In Chapter 2, many commonly used system effectiveness measures
for dynamic probabilistic systems are presented. The measures are deflined
in terms of the probabilistic and statistical properties of the systems. The
definitions presented here parallel to those of Barlow et. al. [33, 49],

Truelove [34], Bellman [39], Shooman [63] and others.



éilz“q.s'ter 3 begins with a brief review on some fundamental
relationships for probabilistic system analysis. In particular, the
interrelationships between the failure-time probability density [unction,
the failure-rate function, and the reliability function ar';—: developed., New
results of this chapter include the relationship between the reliability
function and the mth order moment of the time-to-failure, In addition a

sufficient condition for the existence of the moments is derived.

Chapter 4 consicllers the math modeling of Markovian systems.
Modeling of some two unit redundant systems were considered by Barlow
and Hunter [33], Dick [53], Garver [54], Srinivarsan [65], and Osaki
[68,49]. In this chapter the modeling methodology developed by the
author in [55] is generalized. An exawnple is provided to illustrate the
general methodology. A new proof of this chapter is the
derivation of the general vector differential equation which governs the
state transition process of a Markovian system. The characterization for
stationarity in terms of the characterization of the probability density

function (p. d. . ) of the siate transition process is discussed.

Chapter 5 considers the effectiveness analysis of stationary
Markovian systems. In references [33,40, 50, 53, 54, 65, 68], for example,
effectiveness analyses were performed on some specific system con-

figurations. The work here provides solutions for general system



configurations. The results in this chapler are extensions of the work of
the author in [55-60]. This chapter', together with Appendices B .through
E, represent the main contributions of this thesis on Ma'rkovian systems
analysis, Matrix solutions for the systemn effectivenesé measures defined
in Chapter 2 are derived. The existence of the limiting solution for the
vector differential equation of the system is proved, and the solution
derived. Important propertics pertaining lo the state transition-rate
matrix of the system ave studied. Also treated in this chapter is the
first passage time of the system from one subset of system staies fo
another subset of system states., In addition, solutions for the p. d. f.

and the general mth order moment of the first passage time are developed.

Chapter 6 discusses three different types of system up-time and
down-time intervals for stationary ergodic Markovian systems in the
steady state. They are: complete up-time (down-time) intervals,
conditional and unconditional remaining up-time (down-time) intervals.
Einhorn [77] developed mean up-time (MUT) and mean down-time (MDT)
solutions for a class of systems which obey birth and death processes
[7,9, 10]. His solutions were later extended by Epstein [78] to contain
systems obeying birth and death processes with general state transition
rates. The work here further generalizes that of Epstein. In addition,

the research investigates in depth the various up-time and down-time



moments. In particular, MUT and MDT of a system comprised of inde-
pendent subsystems are thoroughly studied. The materials in this chapter

are mostly new and related to the work of the author in [62] and Buzacott [61].

Chapter 7 begins with an introduction to semi-Markov processes.
Such a process can be viewed as a combination of Markov and renewal
processes [26-30]. Pyke [51, 52] studied the properties of Markov renewal
processes. Osaki [67], -and Branson and Shah [71] employed semi- Markov
processes to model systems with general repair-time distributions. The
work in this chapter generalizes the modeling methodology for semi-
Markovian systems. A simple three unit system is employed as a vehicle
to illustrate the general methodology. The principle results are the
solutions for the state transition prohabilities of the imbhedded Markov
chain, and that for the conditional holding time‘distribution functions, of

a general semi-Markovian system.

Chapter 8 coasiders analysis of ergodic semi-Markovian systems.
The major contributions include derivation of the system of integral
equations which govern the dynamical behavior of the state transition
process, derivaticn of the limiting solutions for the integral equations,
and the development of solution for the mean first passage time for the

system to pass from one set of system states to another set.

Chapter 9 presents the conclusions and some suggested topics for

further study.



Chapter 2
SYSTEM EFIFECTIVE MEASURILES FOR DYNAMIC
PROBABILISTIC SYSTEMS

2. 1 INTRODUCTION

This section delines many probabilistic and statistical measures
of effectiveness for dynamic probhabilistic systems. The measures pre-
sented h'ere pertainto systems of machine operation and repair. It should
be noted that effectiveness measures pertaining to other types of physical
systems are generally the same or closely related to the ones presented
here. The choice of appropriate measures for a given system depends
on the function performed by the system and the coﬁdition under which the
system is operated. Therefore, in general, a measure which is suitable for
one type of system may not be suitable for another. Among the many mea-.
sures which can be used for effectiveness evaluation of dynamic probabilistic
systems, we will present the definitions of those which are considered to

be more basic and important,

2.2 DEFINITIONS OF SOMI IMPORTANT MEASURES
The following measures will be deflined:

Pointwise availability
Reliability

Interval reliability
Interval availability

> W Do
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5. Steady state availability

6. Limiting interval reliability

7. Mean time-to-first-system-failure

8. Several mean times of interest in the steady state

The first four measures are normally used in relation to an initial and
limited time period of the system operation. Except Number 7, the other
measures deal with the steady state probabilistic and statistical properties
of the system. Therefore these other measures are particularly suitable
for repairable systems which are subject to long-term operation.

Pointwisec availability: For a given initial condition

(1C), pointwise availability of a system at time t> 0

is defined as the probability that the system will be

up at that time epoch t; this measure is denoted by

At]1c). (2. 2-1)
The above measure concerns the condition of the system at the specific
time instant in question only.

Reliability: TFor a given initial condition, reliability

of a system for an interval [0,t] is defined as the

conditional probability that the system will be up during

the entire time interval [0, t] ; this measure is denoted

by R(t]1C). (2.2-2)
The measure }f{(tl 1C) is applicable to both repairable as well as non-
repairahle systems. For non-repairable systems, R(tllC) would be

equivalent to the measure A(t|IC). This is because a non-repairable

system is up at time t if and only if it is up diring the entire interval [0,t].



Interval Reliability: For a given initial condition, interval
reliability of a system for an interval [t;, {5], where

0 <ty <ty, is defined as the conditional probability that the

system is up during the entire interval [tl, t2]; this measure

is denoted by IR(t,, t2|IC). . (2. 2-3)

For a non-repairable system L[R(t1 s tZIIC) would be the same as R(tleC).
For a repairable system, however, this measure disregards the up or down

condition of the system prior to time tl.

Interval availability: For a given initial condition, the

interval availability of a system for an interval [t{, 5],

where 0 <ty <ty, is defined as the expected fraction

of time within the interval that the system will be up;

this measure is denoted by IA(tg, t2|IC). (2.2-4)

From this definition, we see the relationship between IA(tl, t2|1‘C) and

A(t|1C) defined in (2. 2-1) as:

t :
IA(t, to|IC) = E'%'{ J 2 A(|1C) at 4 (2.2-5)
2 1t

The above measures of system effectiveness are applicable to an initial and
a finite period of system operation, For a system with stationary statistics,
we say that the system is in its steady state after it has operated for a very
long period of time. The following two system effectiveness measures per-

tain to the steady state condition ol a system.



Steady State Availability: Steady State availability of an

ergodic stationary system is defined as the probability

that the system is up at a random time epoch in the

steady state; this measure is denoted by A. _ (2. 2-6)

-

In this definition, initial conditions of the system is not specified. | This is
because the initial conditions of an ergodic and stationary system has no
effect on its steady state properties. The steady state availability is
equivalent to the expected fraction of time in the long run that the system
is up. Therefore, the steady state availability is also known as the
"limiting interval availability' [39], or "limiting efficiency [33].

A= lim IA(tl,t

t =

2

2) . (2.2-7)

Limiting interval reliability: Limiting interval reliability

of an ergodic stationary system for a period of time T is

defined as the interval reliability of the system for a

period of time T in the steady state; this measure is

denoted by LIR(T) (2.2-8)

Therefore

LIR(T) = lim IR(tl,’c1+T|1C) (2. 2-9)

t, » @

where the initial condition would be arbitrary. This quantity is also known

as '"strategic reliability" [34].

In the foregoing definitions, the measures of system effectiveness

are expressed in terms of the probability measures of the system. Other

..10...



systems effectiveness measures which are of basic importance and widely
used are the statistical measures. Their definitions are presented below.
Mean time-to-first-system-failure (Repair): Fo; a
given initial condition, the Mean time-to-first-system
failure (repair) of a system is defined as the conditional
expected first passage time of the system to a sysiem down

(up) condition; this measure is denoted by MTTFSFIC

(MTTFSRIC). (2.2-10)

It can be seen that the MTTFSFIC or MTTFSRIC can be considered as
a generalized first passage time of a system from one set of system

conditions to another set of system conditions, This point will become

clear when the mathematical expressions for these measures are developed.

For ergodic stationary systems, there are other statistical mea-
sures which relate to the up and down time intervals of the system in
the steady state. They are known as: system mean up—time (MUT),
system mean down-time (MDT), unconditional mean remaining up-time
(MRUT), unconditional mean remaining down-time (MRDT), conditional
mean remaining up-time (MRUTu), and conditional mean remaining
down-time (MRDTd). The definitions for these measures are:

System MUT (MDT): MUT (MDT) of an ergodic

stationary system is defined as the average length

of time the system continuosuly stays up (down) from
an instant it just comes up (goes down) in the steady state. (2.2-11)

-.11..



System MRUT (MRDT): MRUT (MRDT) of an ergodic

stationary system is defined as the average remaining

up-time (down-time) of the system as the system is

observed at a random time epoch in the steady state. - (2.2-12)

System MRUT, (MRDT j): MRUT,, (MRDT g} of an

ergodic stationary system is deflined as the average

remaining up-time {down-time) of the system under the

condition that as the system is observed at a random

time epoch in the steady state it is found to be up (down). (2.2-13)

In definition (2. 2-12) the system's condition (up or down) at the random
observation time epoch is not given, Therefore, system MRUT (MRDT)
takes into account the probability that the system is down (up) at the random

time epoch.

_12—



Chapter 3

SOME MATHEMATICAL PRELIMINARIES

3.1 INTRODUCTION

This section introduces the failure-time density function and the
failure-rate function of a system. The failure-rate function is also known
as the hazard rate function or as the age-specific failure-rate function
[26]. By "failure-time'" of a system we mean the time to failure of the
system, or the life span of the system before it fails. It will be shown that
the failure-time density function and the failure-rate function are related
to each other. As such specification of one is equivalent to specification
of the other. Their relationship will be derived in Section 3. 2. In Section
3.3, the relationship between the mean time-to-first-system-failure and

the system reliability function will be developed.
3.2 FAILURE-TIME DENSITY AND FAILURE RATE FUNCTIONS

The time to failure of a system is a non-negative random variable.
We assume that probability density function of this random variable is
absolutely continuous over the interval (0, «). For a given initial condi-

tion of the system, let this function be denoted by f(t|lC). Then

f(t]1C) dt = the probability that the failure-time of

the system lies in the interval (t, t+dt). (3. 2-1)

...13...



Let h(tIIC) denote the failure-rate function of the system. The function

n(t|IC) is defined as:
h(t|1IC)dt = the conditional probability the system will

fail in the interval (t, t + dt) given that it
has not failed up to time t.

(3.2-2)

-]

The right-hand side (RHS) of Eq. (3.2-2) is equal to f(t|IC)dt/] f(x|IC)dx.
t

Therefore we obtain the relationship for h(tl IC) in terms of f(tl 1C).

h(t| 1C) =—-§"—J—I—gl— (3. 2-3)
[ f(x]1C)ax
t

The inverse relationship for f(t) in terms of h(t| IC) can be obtained by
expressing the integral J'w f(x|1C)dx in terms of h(t|IC).  Note that by
definition (2.2-1), this irttegral is nothing but the reliability function. That
is:

w

R(t[1C) = [ f(x|IC)dx. (3. 2-4)
t .

Differentiating the above with respect to t and multiplying by -1 we have:

f(t]1C) = - 5‘% R(t|1C) (3. 2-5)

..14...




Substituting Eqgs. (3.2-4) and (3. 2-5) into Eq. (3. 2-3) gives:

n(t}1C) = - =7 L 4 pilic)

= - 2 1 R(te|1C) (3. 2-6)

To express R(t|IC) in terms of h(t), we first integrate Eq. (3.2-6)

from 0 tot, and then simplify to obtain:

t
R(t]1C) = R(0]1C) exp{-j‘o h(x|1C)dx} (3.2-17)

where R(0|IC) is known from the given initial conditions of the system.
Note that Eq. (3. 2-4) expresses the reliability function in terms of the
failure-time density function, and Eq. (3.2-7) expresses the same function
in terms of the failure-rate function. By IEgs. (3-2-3), (3.2-4) and (3. 2-7)

we can express f(t|IC) in terms of h(t|IC).

t
£(t]1C) = R(0|IC) h(t) exp {-[ h(x|1C)dx} . (3. 2-8)
(0]

Eqs. (3.2-3) and (3. 2-8) show that the functions f(t|1C) and h(t|IC) are

espressible in terms of each other,
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3.3 MEAN TIME-TO-FIRST-SYSTEM-FAILURE

In this section we shall derive the mean time-to-first-system-
failure in terms of the reliability function. If f(t|1C) represents the
first passage time density of the system from a given initial condition to

failure, then by definition (2. 2-10) MTTFSFI is given by:

C
MTTEFSF o = [t £(t[1C) at (3.3-1)
Substitute f(t|IC) from Lq. (3.2-5) into the above we obtain:
IC

® d
MTTFSF, , = -[ t TS R(t|1C) dt. (3.3-2)
(]

Integrating by parts gives:

n

MTTESF

s R(tlIC)]: + [TRt|1C) at. (3.3-3)

0
Since R(tlIC) is bounded between 0 and 1, the first term on the RHS is
obviously 0 for t = 0. For a physical system, the failure-rate function is

always greater than zero, i.e.,
h(t) > € > 0 for all t. (3.3-4)

Under ﬂ1is condition we shall show that the first term oa the RHS of Eq. (3.3-3)

goes to 0 as t- «. Using Eq. (3.2-7) we have:
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t

tR(t{IC) = t R(O|IC) exp {~[ h(x) dx}
o
< t R(0]1C) e €. . (3. 3-5)

By L'Hospital's rule,

lim ¢t _ lim 1 .

too Tt toe _te - O coT (3.3-6)

e €e '

Therefore,

fin: t R(t]1C) < 0 (3.3-7)

But, t R(t]IC) is a non-negative quantity. Hence,

lim

e PRE[IC) =0 (3.3-8)

This shows that under the condition given by Xq: (3.3-4), the first term
on the RHS of Eq. (3.3-3) is zero. The second term can be shown to exist

under the same condition.

t

[7 retl10)at = [T R(O|IC) exp {- h(x) dx} at
(o) (o) (o]
< R(o[1C) [7 & P at
(o]
= B@—ll—c—)— < e (3.3-9)

€

We have proved the following theorem.
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Theorem 3.1

If the failure rate function of a system obeys the condition of
Eq. (3.3-4), the mean time-to-first-system-failure of the system exists
and is equal to the area under the reliability function,

=]
MTTFSF . = jo R(t|1C) dt. (3.3-10)

Under the condition of Eq. (3.3-4), we will now show that not only
the first moment (the mean) exists, but also the moments of all finite orders
exist. The nth moment is:

[t 1e) at = -7 —‘113%—_%1@ at. (3.3-11)
(o] (o]

Integrating by parts gives:

[Tt 1c)at = -[t"R@t|1C)] + [Tn 1Rt 10) at. (3.3-12)
o (o] (o]

The first term on the RHS is zero for t = 0. To evaluate for the upper limit,
by virtue of Eq. (3.3-4) we write
n n -€t
t R(t]1C) < t R(0|IC) e

tn
= R(0|1C) 3 (3.3-13)
e
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Then applying L'Hospital's rule, the RHS of Eq. (3.3-13) tends to zero

as t - », Therefore, the nth moment is

[725t}10) at = o [Tt Rt 1C) at (3.3-14)
(o] o '

Under the condition of Eq. (3.3-4), we have

n [ rtho) < [Tn 7 IR(0]10)e  at
(0] (o)

IA

1

1
R(O|IC) 2= < =, (3. 3-15)
. .

We have proved the following theorem.

Theorem 3. 2

If the failure-rate function of a system obeys the condition of
Eq. (3.3-4), for anypositive integer n, the nth order moment of the time-
to-first-system-failure exists and is related to the reliability function by

Eq. (3.3-14).

Corollary 3. 2

The variance of the time-to-failure of a system whose failure-

rate-function is bound away from zero is
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Var(TTFSF|1C) = 2 tR@t|1C) dt - ([ R(t| IC)dt)z . (3.3-16)
o O

The proof for this corollary follows directly from Eq. (3.3-14).
We will present an alternative proof by using Laplace transform. Let

f'ﬁ(SllC) denote the Laplace transform of f(t|1C),

£(s]10) = [1(t}1C) & tat. (3.3-17)
0

For all positive integer n,

jot f(t|1C)dt = [(-1) . £ (s,|10)]S=0 (3.3-18)

If we denote the Laplace transform of R(t|IC) by R#(s|IC), then the

transform of Eq. (3.2-5) is

£#(s|1C) = -[sR*(s]IC) - R(0]1C)] (3.3-19)

Substituting Eq. (3.3-19) into the RHS of Eq. (3.3-18), and simplifying for

the cases of n =1 and 2 we have:
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jo ti(t|1C)at = [R*(SIIC)]S:o

and

© 2 - - .._d_. s
jo tof(tat = -2[ 3= R¥(s|IC)__,

Therefore, the Laplace transform of the Var(TTFSF) is

20(-1) 5 R¥(s|100]__ - [R¥(s| 100

Taking the inverse transform, we obtain
Var(TTFSF) = 2] tR(t|I1C)dt - [ [* R(t|IC) dt]

o O

This completes an alternative proof for Corollary 3. 2.

_21_
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Chapter 4

MODELING OF MARKOVIAN SYSTEMS

4.1 INTRODUCTION

L 4

Development of a math model for a physical syste'm is an essential
part of system analysis. Depending on the type of analysis to be performed
on the system, the model needed could be quite different. For example,
if one is’'interested in the accuracy or performance of the outputs for
different inputs, the model needed would be an input-output transfer function
of the system. In general the inputs and outputs could be either determin-
istic or stochastic. For dynamic probabilistic systems analysis, however,
the model required is quite different from an input-output model. This is
because the purpose of such analysis is not to analyze the input-output

accuracy of the system, but rather to analyze the stochastic behavior of the

state transition process of the system.

In Section 4. 2 we will give an introduction of discrete and continuous
parameter Markov chains, and classification of states in a Markov chain.
Section 4. 3 gives a definition for Markovian systems and the development of
ithe genéral vector differential equation which governs the dynamical behavior
of the probability state vector of a Markovian system. In Section 4, 4 the
general characterization of a stationary Markovian system is discussed.
Section 4. 5 gives a simple example to illustrate the consturction of a math

model for a physical system.
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4.2 MARKOV CHAINS AND STATE CLASSIFICATION

There are two kinds of Markov chains depending upon their time
parameters: discrete parameter Markov chain, and con‘f_inuous parameter
Markov chain, We shall restrict our attention to Markov chains which have
finite stéte space. The notion of discrete Markov chain having a finite
state space may be introduced by generalizing the notion of a sequence of
independent trials, Consider that a sequence of consecutive trials is per-
formed, in each of which one of the ng mutually exclusive and exhaustive

events El’ E .o En may be realized. Let the outcome of the kth trial

o
be denoted by x,, which is a random variable. We say that the sequence

K

2’

of trials or the associated random variablcs X form a Markov chain of
first order if the conditional probability of occurrence of the event
Ei’ i=1,2,..., n_ in the kth trial depends only on which event has occurred

in the (k-1)th trial and is not affected by what events have occurred in the

earlier trials. If Ei denotes the event occurs on the kth trial, then

k
Prix =E, |x =E.,x =E _,...,x,_,=E. ]
k Lo i, 1 i, k-1 i
= Prix = Liklxk_1= Eik—1} for all positive integers k

(4.2-1)
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+
We say that {xk; k€ Z } is a discrete parameter Markov chain with

state space {El, E,eoo, En }. The probability mass density function

2"
o

{Pr(xo = Ei); i=1,2,..., no}, of the random variable x , is called the

g

initial probability distribution of the Markov chain. The conditional

probabilities, Pr{xk = Ej|xk- = Ei} for alli, j=1,2,...,n, are

1
called the state transition probabilities. The Markov chain is said to be
time homogeneous if the state transition probabilities are independent of
the number of trials (the discrete time parameter k). We denote the

transition probabilities of a time homogeneous Markov chain by P, 7

H

which are defined as:

+
Pi " Prix, = Ejlxk_l— E]), forallkeZ (4. 2-2)

-+
where Z denotes the set of non-negative integers.

The transition probabilities of a time homogeneous, f{irst order, discrete

Markov chain can be arranged in a matrix form as follows:

— -
P11 Pr,2 Py Py, n,
(p; j) = { Py Pg g Py g Pg n, (4. 2-3)
pn,lpn,zpn,S"' pn,n
5 (o] (o) (o] O (o]
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In this matrix, the (i, j} clement is the state transition probabilily from
state Ei to stiate Ej of the Markov chain in a single transition. Therelore,

elements of (pi j) necessarily possess the following properties:

2
L 4

pi’j_?_O foralli,j=1,2,...,n (4. 2. 4)
n
o
jfl pi,j=1 for all i=1,2,...,n0 (4. 2. 5)

A square matrix having the above properties is known as a stochasiic matrix.

A continuous parameter Markov chain is a generalization of the
discrete parameter Markov chain in the time parameter. In this case, the
role of the one-step transition probabilitics is played by the state transition
rates (also known as transition intensities [ 9 1) which will be defined later

when we develop the differentialequations for the system state probabilities.

A continuous parameter stochastic process {s(t); t > 0} with
discrete and finite state space S=1{1,2,..., no} is said to be a continuous

parameter Markov chain if, for any set of k time points t, <t_<t_... <t

1 2 3 k
in the index set of the process,
Pr{s(tk) = lkl s(t, ) =1 s(t, o) =i _geees s(t,) = 11}
= Pr{s(tk) = 1k| s(tk_l) = 11{_1} for all i€ S (4. 2-86)



The principle property of this process is the Markov property which can
be stated as: Given the state of the process at any time t, future changes
of the process is not influenced by any past history of the.process prior to
time t. This property leads to the Chapman—Kolmogorov‘ equation for the
Markov process. Let T < r <t be time points in the index set of the
process. IFurther, let s(r) = i, and s(t) = j. The passage of the process
from state ie S at time T to state je S at time t must occur via some

state ke S at time r. This gives:

Pr{s(t) = jls(r) =i} = L Pr{s(t) = j|slr) = k, slr) = i}
ke S

Pr{s(r) = k| s(r) = i} (4. 2-7)

Applying the Markov property, we have:

Pris(t) = jls(r) =i} = £ Pr{st) =j|s(r) = k} Pr{s(r) = k| sfr) = i}
ke S
(4. 2-8)

identically for all T < r <t. This is the Chapman-Kolmogorov equation,
It is necessary that the state transition probabilities possess the following

properties:

Pris(t) = j|sr) =i} >0 foralli,je S (4. 2-9)
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and

L Pr{s(t)=jls(r)=1i} =1 forallies (4.2-10)
jes

The states of a Markov chain may be classified according to their
communicative properties. The following definitions are equivalent to
those given in [14].

An ergodic set of states: is a set in which every state

can be reached from every other state, and which cannot

be left once entered.

A transient state: is a state such that if the process

started {rom that state, the probability that the process

ever returns to the state is less than 1.

An absorbing state: is a state which once entered is

never left.

A Markov chain is said to be ergodic if it is possible to go from
every state to every other state. That is to say, an ergodic chain is one
whose states form a single ergodic set. A Markov chain is said to be

absorbing if there is at least one absorbing state, and such that an

absorbing state can be reached from every state of the chain.

In view of the algebraic theory of order relations, it can be shown
that the states of a Markov chain can be partitioned into eigenvalue classes
by some equivalence relation, and that the minimal elements of an induced
partial ordering of the eigénvalue classes are ergodic sets. This is shown

in Appendix A.
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4.3 MARKOVIAN SYSTEMS

We shall be interested in dynamical systems whose state
transition processes are special continuous parameter Markov chains.
The specialization being the following additional assumption that the chain

must satisfy.

Assumption 1: To every pair of states i, je¢ S with i # j, there corres-

ponds a continuous function m, j(t) > 0 such that as At~ 0

Rl

Pris(t+at) = j|s(t) = i} -
it mi,j(t)' (4.3-1)

The function m, ].(t) is known as the state transitioh rate from state i to

2

state j. A Markovian system is defined as a system whose state transition

process is a continuous parameter Markov chain satislying Assumption 1.

The probabilistic interpretation of Assumption 1 is: given that at
time t the system is in state i, the probability that during (t, t+At) the
system changes to state j is mi, j(t) At +0(At), and the probahility of more
than one change occurs is 0(At). The term 0(At) denotes a quantity which

is of smaller order of magnitude than at. That is to say, as At -~ 0, the

0(at)
At

ratio - 0.

Before proceeding to derive the differential equations which govern
the dynamical behavior of the state probabilities of the system, the following

notations are introduced.
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Pi(t) = Pr{s(t) = i} (4.3-2)
Pt]) = Pr{s(t) = i|-] . (4.3-3)
and i
Bt) = [P(t), Py(t), ..., P (t)] (4.3-4)
(o]

To derive the differential equations, we start with the Chapman-Kolmogorov
equation. If 7 <t and P(r) is given, then the Chapman-Kolmogorov equation

corresponding to Eq. (4.2-8) is:

Pt+At|P(r)) = I PAt+at|s(t) = kP, (t{P(r))  (4.3-5)
J keS
We use S - {j} to denote the complement of the set {j} with respect to S,
i.e., the set of elements that belong to S but not to {j}. _Then Eq. (4.3-5)

can be written as;

P (t+at| P(r)) = P (t+at|s(t)=j)P.(t| P(r)) + L P.(t+At|s(t)=k)Pk(t!§(r))
J ] J ke S-{j}

(4. 3-6)
By the necessary condition given by Eq. (4.2-10), Pj(t +A1] s(t) = j) can be
replaced by:

P.(t+at]s(t)=j)=1- & P, (t +at] s(t) = ). (4.3-17)
J ke S-{j} :
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Substituting Eq. (4.3-7) into Eq. (4.3-6), and after rearranging terms
we have:

L4

P.(t+at|P(r)) - P (t|2(r)) = T  [P.(t+at]s{t) = k)P, t|Pary)
J ] ke S-{3) ¢

-P, (t+at]s(t)=))P, (t] P(r))]

(4.3-8)

First divide both sides of the above by At, and then let At - 0, we obtain

AP (t| P(1)) P (t+at|s(t) =k)
e Lt T
ke S-{j} at-0

P, (t| B(T))

P (t +At] S(t)=j)P].(tl P(r))
At

- lim
At—0
(4.3-9)

By Assumption 1, the above can be written as:

dP_(t| P(r))
B

= £ [m (P (t|PF))-m, (&) P.(t|Pr)]
ot ke S-{ i} k,j k I k i
(4.3-10)
For notational convenience, we define mj J.(t) as:
m, (t)=- L m,  (t) (4.3-11)

33 kes-{j) OF
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Then Eq. (4. 2-24) becomes

o

3t ;8 P | B(M). (4.3-12)

P.t|PT))= £ m
J keS K,

This equation holds for all je S. Let M(t) denote the matrix of m, j('r;)
with the (i, j) element of M(t) being m, j(t), that is

M(t) = (mi j(t))' (4.3-13)

Then the system of partial differential equations can be compactly written

in the form of a vector partial differential equation:

2

¥ P P)) = PtIP(T)) M(t) (4.3-14)

In the above equation, the parameter T of the vector P(r ) is not a variable.
In fact P(r) is a given probability state vector of the process at time 7.
Therefore, Eq. (4.3-14) is simply a first order vector differential equation

with t as the only variable.

2 B(t|Per) = PG B M) (4.3-15)

When M(t) is a function of t, we say that the system is time varying. In

the case when M(t) is a constant matrix,
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M(t) = M (4.3-16)

we say that the system is time homogeneous or stationary.

We have proved the following theorem.
Theorem 4.1

The dynamical behavior of the state probabilities of a Markovian
system is governed by a system of linear differential equations described

by Eq. (4.3-15).
4.4 CHARACTERIZATION OF STATIONARITY IN MARKOVIAN SYSTI MS

In the preceeding section, we delined a Markovian system to be one
whose state transition process obeys a continuous paramxter Markov chain
and the state transition rates of the system satisfy Assumption 1. We say
that the system is stationary when the transition rates are independent of
time. Let i, j be any two states of the system such that i # j. Given that
the system is in state i, the waiting time of the transition process from
state i to state j is a random variable. We denote this random variable by
Ti,j and the probability density function by fi, j(t). In this section we study

the characterization for stationarity of a Markovian system in terms of the

characterization for the density function fi j(t) and vice versa.

L
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From Iq. (4.3-1), the interpretation for the state transition rate

function m, j(t) is

’

m, .(t) dt = the conditional probability that the system will
! be in state j at time t+dt, given that it is in
state i at time t.

(4. 4-1)

We observe the equivalence of the above interpretation to the definition for
the failure-rate function defined in Eq. (3.2-2). Therefore, by Eq. (3. 2-8)

the probability density function fi

b 2

J.(‘u) can be expressed in terms of m, j(t)

as follows:

t
i, 40 = my L) exp{-jo m, (x) dx} (4. 4-2)

If the system is given to be stationary, Eq. (4.2-2) reduces to

f. (t) = m, e ] (4. 4-3)
1] 1,

which is an exponential density function. The above shows that, if a
Markovian system is given to be stationary, then the probability density

functions for all T, 7 where i,jeS and i# j, are exponentially distributed.

2

'Now consider a Markovian system which is such that, for all

i,jeS and i # j, fi J.('c) is an exponential distribution. That is,

I
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£ - L] iy
i,j(t) a; .e (4. 4-4)
where

a. .>0 ‘ (4. 4-5)

Then by Eq. (3.2-3), the state transition rate from state i to state j is

-a, .t
a, e 9
N
m, j(t) = — p—— (4. 4-6)
I a, e " ax
t i,
Simplifying the RHS gives
mi, J.(t) = ai,j (4. 4-17)

This holds for all i ¥ j. For i =j, by Lg. (4.3-11) we have

mi’i(t) = - ke)S:—{i} ai,k (4.4'8)

Eqgs. (4.4-7) and (4. 4-8) show that all the transition rates are independent

of time, which means that the system is stationary.
We have proved the following theorem.

Theorem 4. 2

A Markovian system is stationary if and only if for all i, je S and

i # j the probability density function for TS j is exponentially distributed.

)
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We give an interpretation of the implication of this theorem on
physical systems of machine operation and repair. The states of
such a system are defined by different combinations of thé up and down
conditions of the units comprising the system. A transition from éne state
to another occurs when the condition of a unit changes, physically this
means when an operating unit fails or when a repair is completed on a
failed unit. The implicat.ion of Theorem 4. 2 is that, a physical system is
Markovian and stationary if and only if the time-to-failure and the time-

to-repair for each unit in the system are exponentially distributed.

4.5 MATH MODELING GF A TWO UNIT REDUNDANT SYSTEM

In this section we shall illustrate the methodology for construction
of the transition-rate matrix of a physical system. A very simple two unit
system will be used for this purpose. Figure 4-1 shows the block diagram

of this system.

Figure 5-1 Block Diagram of the Sample System
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It is assumed that the two A units are identical and functionally redundant.

The operation and repair policies of the system are as follows:

Operation policy: When both units are operable (up),

Repair policy:

one unit is used on-line and the
other unit is active off-line. If

the on-line unit fails, the off-line
unit is instantaneously switched on-
line provided the off-line unit is
up. Perfect switching is assumed.

. One repair crew is available to

service the failures, and the policy
for service is first-come, first-
served.

The failure and repair rates of the units are:

}\1 = failure rate of an on-line unit

A, = failure rate of an active off-line unit

By F repair rate of a unit when failed from opzsrating on-line

| By = repair rate of a unit when failed from active off-line

operation

For this system, five system states are possible. They are defined as

follows:
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Representation System State Description

1 Both units are up, one is used
on-line and the other is active
off-line. '

2 One unit is down from operating
on-line, and the other is up
on-line,

3 One unit is down from active
off-line operation, and the other
is up on-line.

4 One unit is down from operating
on-line, and the other is down
from active off-line operation.

5 Both units are down from
operating on-line. '

Note that the state that both units are down from active off-line operation.

does not exist. This is because the operation policy is such that whenever

there is only one up unit, this unit will be operated on-line.

The transition rates from one state to another can be found by

reasoning as follows:

First consider state 1 and state 2. Transition from state 1 to state 2
occurs when the on-line unit fails. Since, by hypothesis, the failure rate of

the on-line unit is ll’ we have:

m = A (4. 5-1)
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It can be seen that transition from state 2 to state 1 occurs when a repair
is completed on the unit failed from operated on-line. Since the repair

rate for such a unit is My we have .

2, 1 = My (4.5-2)

By similar reasonings, the transition rates between state 1 and state

3 are found to be:

ml’3 = Az ‘ (4. 5-3)

m = u (4. 5-4)

3,1

Now consider state 1 and state 4. A one-step transition from state 1
to state 4 is not possible since such a transition would require two or more
changes for the conditions of the units in an arbitrarily small interval.

Therefore,
m =0 =m (4. 5-5)

By using reasonings as above, transition rates between all other
pairs of states can be determined. The transition-rate matrix for the

systern is:
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-(x1+A2) Xy Xg 0 0
Hy -(A1+u1) 0 0 A
M = Mo 0 “Oytey) AL 0
0 Mo 0 Hy O
0 7 0 0 )
L 1 1 o~

(4. 5-6)

Note that the diagonal terms in this matrix are determined by applying

Eq. (4.3-11). Once M is found, the math model of the system is esiablished.
The two A units of the system are functionally redundant means that the system
is up (i. e., operating satisfactorily) if at least one A unit is operating on-line.
This in turn means that states 1, 2 and 3 are the up-states, and states 4 and

5 are the down-states of the system.

Suppose at the start of the system, the condition of both A units are
known to be up. It is customary to count the initial starting time of a

system as time 0. Then the initial probability state vector of the system
is

P(0) = [1,0,0,0,0] (4. 5-7)

Under this condition, P(t|P(0)) is the state probability vector of the system

at t time units after start.
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The preceding example, in spite of its simplicity, illustrates
the general methodology and the essential steps in developing the math
modlel of a physical system. In the next section, we will develop solutions

L4

for many measures of system effectiveness for the general Markovian

system model.
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Chapter 5
EFFECTIVENESS ANALYSIS OF STATIONARY MARKOVIAN SYSTEMS

5.1 INTRODUCTION

L 4

We recall the definitions of many system effectiveness measures
stated in Section 2. 2. The main effort of this section is to develop
general solutions for these measures for stationary Markovian systems.

First, two notations for subsets of the set of system states will be

introduced,
Su = the subset containing all up-states of the system.
(5.1-1)
Sd = the subset containing all down-sets of the system.,
(5.1-2)

Since a system state is either an up-state or a down-state, the following

relations are obvious.

(5.1-3)

w
c
[#2]
"
n

and

S NS, =¢ (5.1-4)

We shall assume the order of Su to be ko. This implies the order of Sd
to be (no- ko) since the order of S is no. Without loss of generalily, we

shall assume the elements in Su and Sd are as follows:
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wn
i

{1: 2,3’.'.’1{0} N (5. 1-5)
and

¢ +1,k + +3,... ' L 1-
{1o l,ko 2,k0 3, ,no} (5.1-86)

[92]
n

We will use lju( ‘) and _Ed(') to denote the subvectors for the system up-

states and down-states respectively. That is,

P () = [P,(), Pyle), Pyle)onu Py ()] (5.1-7)
(lxko) °

and
By = [Py (L Py (0P (P O] (6.178)

(lx(no-ko))
In terms of these subvectors, the system state vector can be written as:

P() = [Eu(') fd(')] (5.1-9)
(lxno) .

A (1 xn) vector of zeros will be denoted by:

o, =10, 0,...,0] (5. 1-10)

Two more vector notations will be introduced.

u(i, j) = a (1x(i+j)) vector with i 0's followed by j 1's.

]

[0,0,...,0,1,1,...,1] (5.1-11)

i0's jl's
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v(i, j) = a (1x(i+j)) vector with i 1's followed by j 0's.

1}

[1,1,...,1,0,0,...,0] (5.1-12)
il's j 0's '

Using these notations, a (1 xXk) unit vector may be expressed in two ways:

w0, k) = [1,1,...,1] = v(k, 0) (5. 1-13)
(1xKk)

5.2 POINTWISE AVAILABILITY FUNCTION

Recall definition (2. 2-1) of Section 2. 2, the pointwise availability of
a Markovian system at time t, for a given initial state vector, is the con-
ditional probability that the system is in one of the up-states at that time.
The past state history of the system is irrelevant. Suppose the initial pro-
bability state vector of the system is given to be P(0), then the pointwise
availability at time t is denoted by A(tlE(O)). Solution of the vector differ-

ential equation

< B@|HO) = Bt PO)IM (5. 2-1)

gives the probability state vector at time t. In Appendix B, the general
solution for the time varying vector differential equation is derived. By

Appendix B, the solution for Eq. (5.2-1) is .
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P (t]| P(0)) = P(0) ®{t,0) forO0<t<e (5.2-2)

where the transition or fundamental matrix ®(t, 0) is given by the Peano-

Baker series:
£ %

t
®t,0)=1+[ Mdo, +[M[ Mdo,do, +....
0 0o 0

H

1

922
1+Mt+M2—,—t— + ..,

]

= I (5.2-3)

Mt . (5. 2-4)

Due to the similarity of the series in the RHS of Eq. (5.2-3) to the exponential
series, the series is usually denoted by eMt and known as the matrix

exponential., That is,

M. oy Mt . (5. 2-5)

n=0

Therefore, the solution for Eq. (5.2-1) can be written as:

P(t|P(0) = P(0) ™ (5. 2-6)
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The probability that system is up at time t is given by the sum of the
probabilities that the system is in one of the up-states at that time. Dy
Eq. (5.1-5), we have assumed that the up-states of the sYstem are from

1 through ko, therefore
AGIRO) = PO) ™ v (0 k) foro<t<e (5. 2-7)

The following theorem has been proved.

Theorem 5.1

The states of a stationary Markovian system are such that the up-states are
denoted by 1 through ko, and the down-states are denoted by (k0+1) through
n. If M is the state transition-rate matrix and if the initial probability
state vector of the system is P(0), then the pointwise avxilability function

of the system for 0<t< = is given by Eq. (5.2-7).
5.3 RELIABILITY FUNCTION

Definition (2. 2-2) defines the reliabilily of a system for an interval
[0,t]. For an initial state vector P(0), the reliability function is denoted
by R(t]|P(0)). The essential difference between R(t]P(0)) and A(t]P(0)) is
that the former represents the probability that the sysiem is up for the

entire interval [0,t], whereas the later represents the probability that the
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system is up at the time epoch t regardless of the system condition
during [0,t]. In order to compute R(tl P (0)) it is necessary to first
compute, for each ic¢ Su, the probability that the systen} is in state i

at time t and the system has not entered any state in S, during (0, t).

d

For this, we need to treat the states in S, as absorbing states, Mathe-

d

matically, we need to set to zero the state transition rates of the states

in Sd. That is to say, the elements of M are to be modified such that

mi,j =0 forallice Sd (5.3-1)

We shall denote the resultant matrix, after such modification, by B. Then

the math model for computing the reliabilily function is

r(t| P(0)) = r(t|P(0)) B for 0<t<® (5.3-2)

where r(t| P(0)) is obviously a (1xn) vector. For each ieg S, the inter-

pretation for ri(t|_13(0)) is:
ri(t|g(0)) = Pr{s(t) = iand s(x) € Su for all 0 < x< t|1_3(0)}
(5. 3-3)

However, for each ice€ Sd’ the interpretation of ri(tll’(o)) is quite different:

il

the probability that the system started with P(0)

r.(t] B(0))
is down via state i by time t

(5.3-4)
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The solution for Eq. (5.3-2) is
r(t| (0)) = P(0) Bt : (5. 3-5)

Therefore, the reliability function is:

R(t] P(0)) = _Ij(O)eBt 'XT(kO, n k) (5.3-6)

for 0<t<=

In the above equation, evaulation of the RHS involves the summation of the
exponential series of (nox no) matrices. The smaller the value of no,the
lesser is the computation required in the evaluation. We now attempt to
develop an alternative formula which has significant computational

advantage for evaluating R(t]| P(0).

Recall the elements of Sd in Eq. (5.1-6), it can be seen that
modification of M according to Eq. (5.3-1) means setting the elements
of the last (no- ko) rows of M to 0. Therefore in the matrix B, elements
of the last (no- ko) rows are 0. This implies that elements of the last

(no- ko) rows of Bl are zero for all i> 1. This can be seen by first

partitioning B into submatrices as follows:
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B

' (koxko)

9
((n0~ko)xko

Then it is trivial to show that

It follows that

—
-
—

io |
|
———— -

|
i
1o |
|
l
1

I

i e e R

)

(no~ko)x(no‘ko)

5]
-
oy,

| —
-
| =
—
M
o

I
i
I
l

flo

L.

8

o

§
|
i
1
|
1
'
1
'

i

('5. 3-7)

(5.3-8)

(5.3-9)

In Appendix B it is shown that the type of series in the above equation is

absolutely convergent.

rewriften as

By Eq. (5.3

-9), Eq. (5.3-6) can be

R(t| P(0) = PO)[L_ +CB)] v " (k_n -k )
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where . -

C(t) = . (5.3-11)

- . —

. T
- -1 1 - 3 [ - : 2
Because of the (n0 ko) O's in v (ko, n, ko), Eq. (5.3-10) simplifies to

i
£, T
i!]K (ko’ 0)

R(t| P(0)) = _1:_'~u(0)[1k + T Bi )
o )

i=1
(5.3-12)

Theregfore, an alternative expression for the reliability function is given by

Bl, 1t

R(t| P(0)) = P (0) e _x_r_T(ko, 0) (5.3-13)

forr<t<e

Notice that Eq. (5.3-6) is of the same form as Eq. (5.3-13). IHowever,
much computational advantage can be gained by using the latter due to the
dimension of B1 1 being smaller than that of B. The following theorem

has been proved.

Theorém 5.2

For the same postulateas as in Theorem 5.1, the reliability

function of the system for an interval [0, t] is given by Eq. (5.3-13).
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5.4 INTERVAL RELIABILITY IFUNCTION

By definition (2. 2-3), given an initial state vector P(0), the
interval reliability of a Markovian system for an intervai [tl, t2] is
the conditional probability that the system will be up during the interval

[t;. t,]. This function is denoted by IR(tl,tzlg(O)). If we allow t, to

1
equal t2, the inferval [tl,tz] becomes a point at t2. Then
IR(tl,tzlg(O)) reduces to A(tzlg(o)). That is

IR(t, t| P(0)) = A(t] P(0)) - (5.4-1)

On the other hand if tl = 0, we see that A(tl, t2[_1_3(0)) reduces to

R(tzf P(0)). That is
IR(0, t| P(0)) = R(t| P(0)) = (5. 4-2)

The above shows that the interval reliability function is more general than
the pointwise availability and the reliability functions. To find the solution

for IR(tl, t2| P(0)), for 0< t; < t2 < =, we first find the probability state

vector at time tl. By Eq. (5.2-6)

Mt

(| BO)= P(O) e (5. 4-3)
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From the definition of IR(t,, t2| P(0)) we see that
5 = -4 . : -
IR(tl,tzl_I_(O)) R(t,, tllf(tlll_?(o)) . (5. 4-4)

Therefore, by Eq. (5.3-6) we have

Bltyt))
IR(t;. t,| B(O)) = B(t, | B(0))e v (k_,n -k} (5.4-5)

Substituting Iiq. (5.4-3) into (5. 4-5) yields

Mt, Blt,"t,)
= P - -
1R(t1,t2|§(0)) P(0)e e vik,n "k) (5.4-6)

Instead of using Eq. (5.3-6) we may use Eq. (5.3-13) for the reliability

function. In which case the interval reliability function is given by

~

xl(ko, 0)  (5.4-7)

B, ,(

1,1 )

t,-t
IR(t,, t,| P(0)) = B, (¢, | P(OD) e 21
It should be noted that in Eq. (5. 4-6) there are two matrix exponentials.
Only under very special situations can these two matrix exponentials be
combined into one. The special situation being that tl = t2- ’c1 and

MB = BM.

We have proved the following theorem.
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Theorem 5.3

For the same postulates as in Theorem 5.1, the interval

reliability function of the system for an interval [tl, t2], ‘

0< tl < t2 < », is given by Eq. (5.4-6) or (5.4-7).

5.5 INTERVAL AVAILABILITY FUNCTION

By definition (2, 2-4), given an initial state vector P(0), the
interval availability of a Markovian system for an interval [tl’ t2] is the
expected faction of the time interval that the system is up. This function
is denoted by 1A(t, ,tglg(o». By Eq. (2.2-5) 1A(t1,t2|g(0)) is related to
the pointwise availability function as follows:

t
IA(tl,tzlf(O)) = ;—-1;—— J’tz A(t| P(0)) dt (5.5-1)

i
2 1 1

Substituting the expression for A(tl P(0)) from Eq. (5.2-7) yields

t ® i
1 2 Mt T _
IA(tl,tzl_l_?(O)) ey j 2(0)(_2 ey ) v (ko, n ko) dt
2 1 tl i=0

(5.5-2)

Each term of the matrix exponential series on the RIIS is a continuous
function of t. In Appendix B we have shown that such a series is absolutely

and uniformly convergent. Therefore the order of summation and
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integration in Eq. (5.5-2) may be interchanged [72]. Thence

. ot
ty Mt ° ittt | 2
[T E =Sy-a= T | mnr |
tl i=0 i=0 1
i+l i
B
_ i 2 1 -
N iEO M (5. 5-3)

Substituting the above into Eq. (5.5-2) we obtain

i+]_ i+
2 1
G+

1 = ;b
-ty £O 2o
2 1 i=0

- T -
1A(t1,t2|g(0)) = v (k,n -k

(5.5-4)

Theorem 5.4

I'or the same postulates as in Theorem 5.1, the interval availability

<t,<w, is given by

function of the system for an interval [tl, t2], 0<t,<t,

Eq. (5.5-4).

5.6 STEADY STATE AVAILABILITY

vThe definition for sieady state availability, A, of a system is

given by (2. 2-6). Since this measure of effectiveness is defined for the

steady state condition, transient states of the system, if any, may
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be removed {rom consideration. Therefore, without loss of generality,
we shall assume that the system is ergodic. By Eq. (2-2-7) the steady
state availability can be considered as the limiting valuéof the interval
availability, IA(tl, t2|£‘(0)), as t2 - o, It should be notéd that Eq. (5.5-4)

gives the solution of IA(t,, t2|£(0)) for finite t,. Therefore, the steady

9°
state availability cannot be derived from Eq. (5.4-4) by taking the limit

as t2 - ©,

The following theorem, proved in Appeﬁdix C, shows the

existance of the limiting solution.

Theorem 5.5

For an ergodic stationary Markovian system, the limiting solution
of the system of differential equations governing the state probabilities
exists, and this solution is independent of the initial condition of the

system.

By this theorem, the system of equations

< Bt P(O) = PG| PO)M (5. 6-1)

in the steady state, reduces to
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0 =7 M (5.6-2)

where 7 is the steady state probability vector of the system. This
equation does not possess a unique solution since the rank of M is less

than no. Otherwise the only solution for 7 would be 0, which is impossible

since the system is ergodic and it is necessary that
T > 0 forall ieS
and

r o7 =1 (5. 6-3)

We now invoke the following important theorem which character-
izes nonsingular submatrices of M. This is the main theorem on the
properties of M. The proof for this theorem and its corollary are given

in Appendix D.

Theorem 5.6

Let M be the transition rate matrix of an no-state stationary

Markovian system which is such that n, of the states are transient states,

and the remaining (no- nl) states form an ergodic set. 1f B is an (mxm)

matrix resulted after deleting i, 1 <i< n -ng, rows and the corresponding

i columns of M pertaining to i states of the ergodic set, then B is non-singular.
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Corollary

1f M is the transition-rate matrix of an no~state stationary

L4

Markovian system which is such that n, of the states are transient
states, and the remaining (no- nl) states form an ergodic set, then M

is singular.

i3y this theorem, a matrix resulted from striking out any ith
row and the corresponding ith column of M of an ergodic system is
non-singular. Hence it follows that if M is the transition rate matrix
of an ergodic stationary Markovian system with n states, any (no- 1)
rows or any (no- 1) column of M are linearly independent, That is to

say the rank of M is (no- 1).
~

Now consider replacing the last column of M by a column of 1's,

Let the resultant matrix be denoted by W. That is,

b
w = M B (5. 6-4)
_______________ J .
moo1 ®h,2®n,n -1 1
L o o o i

it follows that M' is non-singular. By Eq. (5.6~2), we have
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n

o

£ w.m =0 forallje$8 (5. 6-5)
i=

Since the system is ergodic, T >0 forallieS. Theregc}re £q. (5.6-5)

can be written as:

~m, .,=m_ ., foralljes$S (5.6-6)
(-7 ) n_,j

Since M' is non-singular, there exists a unique set of coefficients

g=[a1,a2,...,a

n - 1] (5. 6-7)
o

such that

S S, n,jforizhz...n1 (5. 6-8)
i=1 o

By Eq. (5.6-6) the a;'s are given by:

T

a =-—— fori=1,2,...,n -1 (5. 6-9)
1 Vs (o)
nO
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Therefore, all the ai's are negative quantities, Hence

no-l (5.6-10)

L a, {1
=1 *

This shows that no linear combination of the first (no-l) rows of W can

‘yield the noth row of W. Therefore W is non-singular.

Replacing the noth scalar equation in Eq. (5.6-2) by Eq. (5.6-3)

we have

g(no-l,l) =W (5.6-11)

Since W is non-singular, we finally obtain the steady state availability of

the system as: -

- - -1 T -
A = y_(no 1,1)W " v (ko,nO ko) (5.6-12)

The following theorem is now proved.
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Theorem 5.7

The states of an ergodic stationary Markovian sxétem is such that
the up-states are dex_aoted by 1 through ko’ and the down states afe denoted
by (ko+1) through n_. 1f W denotes the resultant matrix after replacing
the last column of the system transition-rate matrix by a column of 1's,

then the steady state availability of the system is given by Iq. (5.6-12).

It should be pointed out that the above theorem may be stated in a
somewhat more generay way. If Wi denotes the resultant matrix after
replacing the ith column of M by a column of 1's, and if u, denotes a
(1 xno) vector of zeros except the ith element being 1, then Eq. (5.6~12)

generalizes to:

- 1 ‘ T - ’ -
A=, VVi v (ko, n, ko) (5.6-13)

5.7 LIMITING INTERVAL RELIABILITY FUNCTION

By definition (2. 2-9), the limiting interval reliability for a period
7, denoted by LIR(r), is defined to be the limiting value of
IR(t, t=7| P(r)) as t-=. The expressions derived for IR(t,, t2[ P(0)) in
Eqgs. (5.4-6) and (5.4-7) are valid for finite tl and t2 only. In

Theorem 5. 5, it has been established that for an ergodic stationary
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Markovian system, the limiting value of P(t| P(0)) exists and this value

is independent of the initial probability vector P(0). That is

lim P(t|P(0)) = 7 : (5.7-1)

fo o

We assume that the system is ergodic and stationary. Therefore, at
any time instant in the steady state, the probability state vector of the
system is 7. The limiting interval reliability for a period of 7 is the
reliability for a period of 7 in the steady state. The probability state
vector of the system at the beginning of the time period is 7. Therefore,

by Theorem 5.2 we obtain the expression for LIR(T).

B T
LIR() = z e = v (k,0) (5. 7-2)

In the above, T is a subvector of 7 defined as follows:

T =[ = T, ] (5.7-3)
(lkno) (1 xko) (1 x(no-ko))

Observe that the expression for LIR(r) is independent of any initial state

vector P (0).

We have proved the following theorem.
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Theorem 5. 8

The limiting interval reliability of an ergodic stationary
Markovian system exists and is independent of any initial condition of
the system. The limiting interval reliability for a period of time 7 < @

is given by Eq. (5.7-2).

5.8 DISTRIBUTION OFF TIME-TO-FIRST-SYSTEM FAILURE

For a gi;ren initial probability state vector, the first passage time
of the system to a system down-state is a random quantity. In this section
we will derive the probability distribution of this random variable. The
mean, variance and the general mth order moment of the variable will

be treated in the sections to follow.

In Section 3. 2 we derived some basic relationships between the
failure-time density function, the reliability function, and the failure rate
function of a system. Eg. (3.2-5) gives the relationship between the
failure-time density function and the reliability function. Therefore,
for an initial state vector P (0) of a Markovian system, the probability

density function of the first passage time to system failure is

5| P(0) = - == R(t] B(0)) (5. 8-1)
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But the reliability function of a stationary Markovian system has been

found in Section 5.3. Substituting Eq. (5.3-13) into (5. 8-1) we have:

Bl, 1‘l;

£(t] P(0) = - a‘%— (B (0 e y_T(ko, 0)] ' (5. 8-2)

Since the series for the matrix exponential is uniformly and absolutely

convergent, term by term differentiation of the series is valid. This

gives
i
= g Byt oo
£(t]P(0)) = -P (0) £ =~ (—%7—) v (k_,0) (5. 8-3)
u . dt i! - o
i=0
Simplifying we obtain
B, .t
£t P(O) = -P (0) B, e 1 ¢ (k_,0) (5. 8-4)
= =u 1,1 - o’ :

The above expression indicates that if the system starts from state .

ieg Su at time 0, then the first passage time density function is given by

B t
the ith row-sum of the matrix ~B1 1e 1,1 . For the case where B
‘ - ' B t

has distinct characteristic roots, the matrix exponential e ’

1,1

can be

simplified. If kl’kz’ v ,Ak are the distinct characteristic roots of
o

B then there exists [73] a matrix G such that

1,1

B, ; = GA a! (5. 8-5)
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where A is a diagonal matrix with )\1, >\2, ces ’)‘k as its diagonal

elements. Now rewrite the matrix exponential as:

Byt gagh

e = e
© -1,1i
i=0 ’

Observe that the general terms of the above infinite series simplifies to:

-1ii i -1
(‘l .
(GAql )t - GA Cr‘ t (5. 8-7)
il il
Therefore Eq. (5. 8-6) becomes
B t .-
e L1, GeA"G 1 . (5. 8-8)

*.
Since A is diagonal, the matrix exponential eA" can be written as:

e = e 2 (5. 8-9)

0 ) e kO _I

This shows that the first passage time density function can be expressed

in a closed form when B1 1 has distinct characteristic roots. We recall
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that for a stationary Markovian system, the reliability function approaches

zero as t— », That is

B, .t , »
im P @e ! vTk ,00-0 (5. 8-10)
-u - (o]
)
For the present case
lim P (0) G M ¢ Tk, 004 0 (5. 8-11)

f e

This means that the eigen values )\1, )\2, ‘e ,)Lk have negative real parts.
o
We have proved the following theorem.

Theorem 5. 9

For a given initial state probability vector P(0) of a stationary
Markovian system, the probability density function of the first passage

time to system failure is given by Eq. (5. 8-4). In the.case when Bl 1

)

has distinct eigenvalues, A, X s A

the density function can be
o At

. . . i .
expressed in closed form as a linear functionof e °, for i=1,2,..., ko-

PURERRT SN

The eigenvalues have negative real parts.

5.9 MEAN TIME-TO-FIRST-SYSTEM-FAILURE

By definition (2. 2-10), for a given initial state probability vector

P(0), the MTTFSFP(O) of a Markovian system is the average first passage
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time of the system from the initial condition _1_3(0) to a system down state.
If P(0) is such that Pi(O) =0 forallice Su’ then it is obvious that

MTTESFEF = 0 since the system is sure to start from one of the states

P(0)

in S,. More generally speaking, MTTFSF

4 = 0 only if and if Pi(O) =0

P(0)

for allice Su' Several approaches may be used to derive the mean time-
to-first-system-failure. One approach would be to apply Eq. (3.3-10)
since the reliability function R(t| P(0)) has already been found in

Eq. (5.3-13). Using this approach we have:

B, .t
MTTFSF 1,1

20) vk, 0) at

T
=11mf _Ifl‘l(O)e
T—® 0

i
T » B .
. n 1,1 1 T
= lim Eu(O)J £ t dtv (ko, 0)

. il
T 0 i=0

(5.9-1)
Since the infinite series is uniformly and absolutely convergent

on the integrating interval [0,7], the integration and summation in

Eq. (5.9-1) may be interchanged. Therefore,

i i+l
= By’ T
MTTFSF_E(O) = 'lrirz 2,0 ifo T X kg 0) (5.9-2)

From Eq. (5.3-7) we see that B1 is the resultant matrix after deleting

s 1
from M all the rows and columns which correspond to the down-states of

the system. By Theorem 5.6 such a matrix is non-singular. Therefore
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Eq. (5.9-2) can be written as

te B ]y_T_(ko, 0) (5.9-3)

MI‘TFSFP(O) = lim Pu(O) B1, l[e ko

- T -
Notice that the first term on the RHS of Iiq. (5.9-3) is the reliability

function of the system for the interval [0,7]. This function goes to 0 as

T becomes arbitrarily large.

B, .7,

1 l’lvr(k,O)

lim fu(O) Bl, 1@ vk

T

= lim R(r|P(0) B}
=1 )
T 1,1
= 0 (5.9-4)
Hence, we obtain
MTTEFSF = -P (0B} vi(k,0) (5. 9-5)
P(0) =u 11 o’ )

We will now show that the elements of the matrix -B; 11 have particular

significance. Recall that

(2] =<} <«

[ Rt|PO) at =[] rl(tlg(o))dt,f r, t| P(0)dt, . . ..
0 0 0

o BO)ad ¥, 0)
0 o

(5.9-6)
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Since Eqgs. (5.9-5) and (5. 9-6) hold for all ko’ it follows that

«©

® e ' -1
[jorl(ti3(0))dt,f0r2(t{_13(0))dt, e ,fork(()tl_lf(o))dt] = ~_13u(o-?131’ ) (5.9-7)

Now consider the case when all the elements of _lfu(O) is zero except the

ith element being 1 (obviously i€ Su)’ then the RHS of Eq. (5. 9-7)

represents the ith row of -B 1

1,1° Therefore, for all i,j ¢ Su
® -1
f r.(t[ s(0) =i)dt = the (i, j) element of -B B
o I 1,1 (5. 9-8)

The LHS of the above equation represents the expected time the system

will spend in state j before entering a syétem down-state the first time,

~

given that the system starts from state i. We denote this quantity by

¢j (i):

p.() = [ r.(t]s(0)=1i) at (5. 9-9)
] o 3

Then, we have

-
le(l) Po(1)  Pg(1) ...wkou)

D2 P2 ) ... b (2)

o (5. 9-10)

-1 o
-B1’1=(z,bj(1)) =

Bok) B0k ) Bglk) ... by (k)
_ o
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Since each qu_(i) represents the expected time the system spends in state
j before entering a system down-state the first time, given that the system

starts from state i, .

z/)j(i) >0 forallije Su (5.9-11)

That is to say all elements of B !

| 1 are non-negative. It is not hard to

see that if the up-states of the system form aun ergodic set, then the

inequality in Eq. (5.9-11) is strict.
We have proved the following theorem.

Theorem 5. 10

In a stationary Markovian system, let B1 1 be the resultant
matrix after deleting from M all the rows and columns which correspond
to the system down-states. The matrix B1 1 is non-singular. The (i, j)

element of -Bll represents the expected time the system spends in state

, 1
j before entering a system down-state the first time given that the system
starts from state i initially, If the initial state vector of the system is P(0),

then the mean time-to-first-system-failure is given by Eq. (5. 9-5).
5.10 VARIANCIE O TIME-TO-FIRST-SYSTEM-FAILURE

For a given initial state vector P(0), the variance of the first

passage time to system failure, denoted by var(TTEFSF|P(0)), can be
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found by employing Eq. (3.3-16).

4]

Var(TTEFSF| P(0)) = 2 [ t R(t| P(0)) dt - ([ R(t| B(0)) at)*
0 0

[-+]

(5.10-1)

The first term on the RHS represents the second moment of the first

passage time. We will first evaluate the integral of this term. By

Eq. (5.3-13),

[+2]

[ t R(t]2(0)) at
0

T B, .t
=lim [ tP (0)e L1 T ,0) at
—u - o
T-o® 0
Toe Bt T
=lm P (0) [ t £ —=—— dtv (k_,0)
-u . i! - o)
T 0 1i=0
Integrating by parts we have
T ® Byt
Jt & —H—at
i=0 '
£ Bt
—_—t .
= It 120 B}, 1 (w1 | f fo G
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Simplifying gives

[ t= B Looat .
0 i=0 ! !
i + i +
BRI EEY] Eo TR (5.1074)
=0 =0
Since Bl 1 is non-singular this equation can be written as:
T o i
Jt £ B, oa
0 i=0 ? ’
B, .,T B, .1
_ -1 1,1 72 1,1 _
TBl,l[e Iko] Bl,l[e I Bl, l'r]
B T B T
a -1 1,1 -2 1,1 -2 _
TBl, 1 Bl, .© + Bl, 1 (5. 1.0 5)
Substituting Eq. (5. 10-5) into Eq. (5.10-2) gives
-]
[ tR(t]P(0) at
0
B T B T -2
o -1 1,1 _-2 1,1 T
= lim _1}‘11(0)['1'Bl,1 e B,'ye +B1'1]_\; (k_,0)

T—®

) -1 . -2 -2 7T
- +
lim TR(TI Pu(O)Bl,l) lim R(TI Pu(O)Bl, 1) Pu(O)Bl, 1Y (ko, 0)

1‘-—0& T—®

(6.10-6)
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For a stationary Markovian system, the failure rate function is bounded
from below by some constant ¢ >0. Therefore, by Eq. (3.3-8) the
limiting value of the first two terms on the RHS of Eq. (’5. 10-6) is zero.
Hence, the second moment of the first passage time is:

2]

2[ tR(t] P(0)dt = 213“(0) B;Z

vi(k ,0) (5.10-17)
0 , 1 o

Substituting Eqs. (5. 9-5) and (5. 10-7) in (5.10-1) we obtain:

1
, 1

-2 T

Var(TTFSF|P(0)) = 2B (0) B, ", v  (k , 0) - [B_(0) B, XT(ko, 0)]2

(5.10-8)

We have proved the following theorem.

Theorem 5. 11

Given that the initial probability state vector of a stationary
Markovian system is P(0), the variance of the first passage time fo
system failure is given by Eq. (5.10-8).

5.11 THE mth ORDER MON[E‘NT OF TIME-TO-FIRST-SYSTEM-FAILURE

In the preceeding two sections, we have derived the first and the

second order moments of the first passage time to system failure. In this
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section we will derive an expression for the general case mth order

moment.

Theorem 5.12

Given that the initial probability state vector of a stationary
Markovian system is P(0), the mth order (m >1) moment of the
time-to-first-system failure is given by

-m
1,1

m

(-1 m! P (0) B zT(}<O.0) (5.11-1)

We will give an inductive proof. By Egs. (5.9-5) and (5. 10-7) we see that
the theorem is true for the cases of m equals 1 and 2, Now, suppose it is

true for m = i> 2. This means

o

[ t'1et] P(0y)= -0l P (0) B;ily_T(ko, 0) (5.11-2)
0 3

By LEgs. (3.3-14), the above is equivalent to

| i, -i i
1j0t R(t| P(0)) dt = (-1)" i! P (0) Bl’lzqiko, 0) (5.11-3)

We will show that the theorem is true for m = i+l, Again by Eq. (3.3-14),
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[t e ooy at

T .
lim (i+1) [t R(t| P(0)) at
0

T—c0
T, o® BJ1 P
= lim (it1) P (0) [ t* © —— dt yT (k_, 0)
Tom R R S L

Carrying out the integration by parts we have:

0 j=0
e B ¢ T - Bl
-t p SRl oty g
1 1
ETG 0 o G
. B, .7 T . B t
i_-1 1,1 1 i-1 1,1
b - — 2 - d
TB, e Ik] iB; ljl t [ Ik] t
0 o
B, .7 t
i_-1 1,1 1 i-1 71,1 -
= ’ - - ’ L -+
T B le L 1-iB " [t dt+ B
o] 0
B, .1 T B t
R T B TS LS | i-1 °1,1
= Bl,le 1Bl’1f’c e dt
0
Substituting Eq. (5. 11-5) into Eq. (5.11-4) we obtain:
+
[t i+l £(t] 2(0)) dt
’ B,

. _ T s
= (+1)[ lim 'R B(O) B] ) - lim 1P (0) [ ¢
> To® 0

1'-.00
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dtB

(5.11-5)
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For a stationary Markovian system, the first term on the RHS -~ 0 as
7o, From Eq. (5.11-3) we have:

T B, ;t ‘

yim if £ le gt = (-t 3;11 (5.11-17)
T 0 ’
Hence we obtain
@ .h}‘ '+ - 3
I poy at = (o e o) BT 0)
0 - =1u 1,1 — 0
‘ (5.11-8)

This completes the proof,

Appendix E presents an alternative derivation of Eq. (5.11-8) by

using the Laplace transform approach,
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Chapter 6

UP-TIME AND DOWN-TIME INTERVALS OF INTEREST
FOR MARKOVIAN SYSTEMS IN THE STEADY STATE

6.1 INTRODUCTION

The development in this chapter concerns three different types of
up~time and down-time intervals for ergodic stationary Markovian systems

in the steady state. These intervals are named as below:

1. Complete up-time (down-time) interval
2. Unconditional remaining up-time (down-time) interval.

3. Conditional remaining up-time (down-time) interval.

Their definitions will next be given.

If one would plot the state of the system as a function of time, it

could appear as shown in Figure 6-1.

system state
4

nipeE

3 e e

Time

Figure 6-1 State of the System Versus Time Plot.
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The system is said to be in an up-condition when it is in one of the states
of Su; and it is said to be in a down-condition when it is in one of .the states
of Sd' Therefore, from the plot of system state versus‘time, a plot of

the system condition versus time may be made. A typical plot of system

condition versus time is shown in Figure 6-2.

System Condition
} x X pd

up P~

down (c
27

—s ST =1 Time
I Y9 Y3
Steady State .

- o am | a— = m— — a—

)}

Figure 6-2 System Condition Versus Time Plot.

Each X, shown in the figure denotes a complete up-time interval, which
is a time interval beginning from the instant the system enters a state in
Su from a state in Sd up to the next time instant when it first enters a

state in Sd. Each i denotes a complete down-time interval which is
similarly defined. For simplicity, we shall use up-time and down-time

intervals to mean the complete up-time and down-time intervals,

respectively,
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As the process of the system up and down condition continues in
the steady state, if at a random time epoch an observation of the system
is made, it is with zero probability that the observatior; time epoch will
coincide with the beginning of an up-time or a down-time interval. At
the observation time epoch, the system may be in either an up condition
or a down condition. If no information is given regarding the condition
of the system at the random instant it is observed, the remaining up-time
or down-time interval is defined to be the unconditional reméining up-time

or down-time interval.

Now, suppose as the system is observed at a random time epoch
in the steady state, it is found to be in an up condition, but no information
is given on the exact state of the system. The remaining up-time based
on the condition that the system is up at the time epoch it is observed will
be called the conditional remaining up-time. In a similar manner, the

conditional remaining down-time is defined.

The following abbreviations will be used:

-UT = complete up-time interval

DT = complete down-time interval
RUT = unconditional remaining up-time interval
RDT = unconditional remaining down-time interval
RUTu = conditional remaining up-time interval

RDT .= conditional remaining down-time interval
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In the sections to follow, we will derive the probability density
functions and the moments of UT, DT, RUT, RDT, RUTu‘ and RDTd.
In addition, a discussion will be presented on their interf‘elationships.

The final section is devoted to the development of expressions for computing

system mean up-time (MUT) and mean down-time (MDT) in terms of

independent subsystems MUT's and MDT's.
6.2 COMPLETE UP-TIME AND DOWN-TIME INTERVALS

For an ergodic Markovian system, in general, there are
more than one state in Su that can be reached from some state or states
in Sd by a single transition. This means that the system may not always

begin an up-time interval from a [lixed staie in Su. Similarly, all down-time

intervals may not always begin from a fixed state in S Therefore there are

q
probability distributions governing the beginning states of the up-time and
down-time intervals. The key step in computing the probability density

functions and the moments for UT and DT lies in finding these probability

distributions.

For each je S, and for an initial state vector P(0), the probability

that the system will enter state j in the next dt time interval given that

it is now in a down state is:
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Pr{s(t+dt) = j|s(t) € S, P(0)}

i

L Pr{s(t)=i, s(t+dt) = j|s(t) ¢ S p 2(0)}

1€Sd

i

L Pr{s(t)=i]s(t) e Sy P(0)} Pr{s(t+at) = jl s(t) = i}

ieSd
after employing Markov's property
Pr{s(t) = i| P(0)}
S S P PES [P(0)} Pr{s(t+dt) = j| s(t) = i}
1€Sd dt=

r P.(t|P(0) m, .dt

ieS ' L)

= = Pk(tlf(O)) (6.2-1)
ieSd

By Theorem 5. 8, all Pi(tl_lj(o)) ~ o, as t— = Let v(jl S4) denotes the

limiting value of Eq. (6.2-1) as t- . Therefore,

z L mi dt
ieS +d

v(ils) = —S— 6. 2-2)

keS. &

d

This equation holds for all je€ S. To find the initial probability vector of
an up-time interval, we need only those u(jl Sd) such that je Su' It can

be scen that, in the steady state, for each je¢ Su
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Pr{system begins an up-time interval in state j}

v(JlSd) .
m[‘gd) . '(6. 2-3)
jeSu :

Substuting Eq. (6.2-2) into (6.2-3) results in:

Pr{system begins an up-time interval in state j}

' z . mi .
ieSd >
= 7 L mom for all J€Su (6. 2-4)
keS ieS ?
u d

Now, partition the system transition-rate matrix M into submaitrices as

follows:

Myy o o My
(k xk ) 1 (k x(n -k ))
M = I T T A (6. 2-5)
|
Mar 1 My

(e ko)xko): ((n =k )x(n -k )

—

Notice that by comparing this partition of M with that of the matrix B in

Eq. (5.3-7) shows the following equalities of submatrices:

Ml, 1 - Bl, 1 (6. 2-6)
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and

M, , =By, ‘ (6. 2-7)

Equation (6. 2-4) can be written in vector form in terms of the submatrix

M2, 1 thus

Eu(O) = : (6.2-8)

This is the initial probability vector as the system begins an up-tirﬁe

interval in the steady state.

Following a similar procedure we can readily show that the initial
probability vector as the system begins a down-time interval in the steady

state is:
Ly Mle

T
Zu Ml, 2 ¥ (no ko’ 0)

(6.2-9)

Before proceeding, we will prove the following lemma.

Lemma 6.1

For an ergodic stationary Markovian system, the following
expressions, which are functions of the steady state probabilities and the

state transition rates, are equal.
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- I r 7r.mi .= L z
jesS._ ieS 'J jes ieS
u u u

Proof:

d

7r.mi.= b r 7m, ,=- o wimi.
2 jeSy €S jeS, ies, b

-'. (6.2-10)

In terms of the submatrices Mi e Eq. (5.6-2) may be written as:

’ Ml, 1
[z, 4] "
2,1
On expanding we have
Tq My 1
and
—u Ml, 2

>

M

1,2
" = _Qno (6.2-11)
2,2
= my M (6. 2-12)
=TIy M2, 5 (6.2-13)

Recall the zero row sum property of the transition-rate matrix M. That

is

"l Ms

mi.
B

=0 forallieS (6. 2~14)
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This means,

- |
MM, v’ (k_, 0) L

. =0 (6. 2-15)
Mp,1 My o v 0,7k, 0) ©

It follows that

T . T -
M oY (nO ko, 0)=-M, ,v (ko, 0) (6. 2-16)

1, 1,1

and

T L T, 3
M, (¥ (k,0) = -M, ,v"(n -k ,0) (6. 2-17)

By Egs. (6.2-12), (6.2-13), (6.2-16) and (6. 2-17) we obtain the following

equalities:

- T = T = T - = -
My ¥k, 0) = a My vk, 0) = My ovt(n tk, 00 = g My
(6.2-18)
These are scalar quantities, and they can be written as:
-z z w.mij=E r 7r.mij= r L rm, ,=- L r ﬂimij
JESu 1eSu J€Su 1€Sd' JeSd 1€Su JQSd 1€Sd

This completes the proof.
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For expediency, we will denote the value of the expressions in Eq. (6.2-10)

by c, That is:

c =~ L rsm, .= L L rm, .= L L rm, .=-X¥ L 7.mn,

o 1 i ’ 3 i 4 : 5 s . . l:j
J€Su 1€Su 3€Su 1€Sd _]eSd mSu J€Sd 1€Sd
(6.2-19)

Since 7r'i >0 for allieS, and m, jz 0 for all i# j, we see that c, > 0.

1,

By Eq. (6.2-18), the denominators in Eqs. (6.2-8) and (6. 2-9) are
equal to c, Now applying Eqs. (6.2-12) and (6. 2-13) to the numerators of

Eqgs. (6.2-8) and (6. 2-9), respectively, we obtain:

- L -
P (0)= o T, ML1 (6. 2-20)
and
I -
B(0) = o T4 M2'2 (6. 2-21)

We have proved the following theorem.

Theorem 6.1

In an ergodic stationary Markovian system, the state probability
distributions of the system in the steady state at the beginning of the up-time
and down-time intervals are given by Egs. (6.2-20) and (6. 2-21),

respectively.
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The probability density function of thé up-time intervals will be

denoted by f___(t). Since _lfu(O) has been found, this function can now be

ur
obtained by appealing to Theorem 5. 9.

M, .t
1 2 1,1 T )
Fyp(t) = -—co T, M e v (k. 0) (6. 2-22)

Using a parallel approach, the probability density function of the

down-time intervals can be derived. We denote this function by gDT(t).

M, t '

L 2 2,2° T, _ )
(t) = P M e v (no ko,O) (6.2-23)
The mth order moments of UT and DT are obtained by applying Theorem

5,12, Thus, for m> 1,

(m)_, . m+l 1 -(m-1) T -
urT (-1) m! ""Co zuMl,l v (ko, 0). (6. 2-24)
and
(m) _ ,_,ym+l_, 1 -(m-1) T, _ - _
DT = (-1) m! 3 T4 M2,2 v (no kO,O) (6.2 2?)

It foliows that the mean and variance of UT and DT are:

lr'uxT(ko’ 0) A
MUT = = = (6. 2-26)
Cc C
0O (o)
T
1,V (n -k ,0) -
MDT = —3 c° ° = ICA (6.2-27)
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_ .2 -1 T, gy - A2 .
var(UT) = < I, Ml,l v (ko, 0) (c ) (6.2-28)
(o] : (o]
and
var(DT) = - 2~ 7. ML vr(n -k ,0) - (522 (6. 2-29)
CO =d 2,9 — o o co

Equations (6. 2-26) and (6. 2-27) yield the following relationship between

MUT, MDT and the system steady state availability:

MUT

MOT +MDT & (6. 2-30)

6.3 CONDITIONAL AND UNCONDITIONAL REMAINING UP-TIME
AND DOWN-TIME INTERVALS

Since the steady state probability vector 7z of an ergodic stationary
Markovian system is independent of time, the probability that the system
is in state i, for all ie S, at any random time epoch in the steady state
is e It follows from the definitions of RUT and RDT that the initial

probability vectors for RUT and RDT are given respectively by

P_(0) (6.3-1)

and

1

fd(O) T4 (6.3-2)
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To find the probability density functions and the mth order moments
for RUT and RDT we once again appeal {o Theorems 5.9 and 5.12. Let
fRUT(t) and gRDT(t) denote the probability density functions of RUT and
RDT, respectively. Then,

m t

fpr® = "z, M, e byt 0 (6.3-3)
gror® = g My zeMz’ 2" y_T(no-ko, 0) (6. 3-4)
RUT™ = (-1)™ m I, M;ml y_T(ko, Q) (6. 3;5)
rRoT ™ < (- 1)™ m T M'zlflz KT(no-ko, 0) (6. 3-6)

For the case of RUTu and RDT ,, the initial probability vectors

d’
in Egs., (5.13-1) and (5. 13-2)need to be normalized as follows:

R u = u -
P (0) = T A (6.3-7)
7 v (k_,0)
-u - o]
and
T T
i d Tq .
B,40) = T = TA (6. 3-8)
T,V (n k ] 0)
=d— "o o
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Once again, applying Theorems 5.9 and 5. 12 we obtain:

oz ® ° = or, Ml’leMl’lty_T(ko,O) ».' (6.3-9)
gRDTd(t) = I-'-l.& T, M, , o2 v (n_-k_,0) (6. 3-10)
RUTu(m) = (—'1—);@—’ T Mlm1 y_T(ko, 0) (6.3-11)
RDTém) = ifi—l_—);n—l’ T4 M;“; XT(no~ko, 0) (6. 3-12)

By Egs. (6.3-11) and (6.3-12) the mean and variances of RUT, RDT,

RUTu and RDTd are as follows:

MRUT = -r Ml,ly_ (k_ 0) (6.3-13)
MRDT = -7 . M.'. v (n_-k_,0) (6.3-14)
Za 2,2 — N %o’ ‘
| -t 1T, _
; MRUT = = =, M, ¥ (k_,0) (6.3-15)
..1 —1 -
MRDT = —= M, , v(n "k _,0) (6.3-16)

d 1-A Zgq V9,2

_ -2 T ) -1 T 2 )
var(RUT) = 27 M, %) v™(k, 0) - (z M, ") v™(k ,0))" (6.3-17)
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) -2 T, B -1 T, 2
var(RDT) = 27 , Mz, o ¥ (n0 ks 0) (lr_sz’ P (n, ks 0))
(6.3-18)
2 -2 T 1 -1 T 2
var(RUTu)— - Ml, LY (ko, 0) (1, Ml, L ¥k, 0))
(6.3-19)
2 -2 T, - 1 -1 T, 2
var(RDT ) = 777 74 My v 0=k, 0) = (231 g My v (n7k, 0)
(6. 3-20)

6.4 RELATIONSHIPS BETWEEN THE PROBABILITY DENSITY
FUNCTIONS AND THE MOMENTS OF THE VARIOUS UP-TIMES
AND DOWN-TIMES
In Section 6. 2, the probability density functions and the mth

order moments of UT and DT are derived. They are given in Egs. (6.2-22)

- (6.2-25). In the preceeding section, the density functions and the

moments for RUT, RDT, RUTu, and RDT , are developed. The expressions

d
corresponding to RUT and RDT are given in Eqgs. (6.3-3) - (6.3-6); and the

expressions corresponding to RUTu and RDT , are given in Egs. (6.3-9)

d
- (6.3-12).

Comparison of the various density functions reveals no other

relationship except the following obvious two:
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£ (t) = Af (t) . (6.4-1)

RUT RUT
u

and

(t) . (.G. 4-2)
d

frppt® = - A) fppp

Comparison of Egs. (6.2-24), (6.3-5) and (6.3-11) reveals the following

interesting relationship between the moments.

+ + :
gr{mtl) . (I—n;i) ruT™) - (m+1)(f:‘~) RUTflm) (6. 4-3)
o (e}
In view of Eq. (6.2-26), the above can be written as:
gt | (-@-}L)(MUT) ruT™) - (m+1)(MUT)RUT1(1m)
(6. 4-4)

This shows a relationship between the (m+1)th order moment of UT and
the mth order moment of RUT or RUTu. Similarly, from Egs. (6.2-25),

(6.3-6) and (6.3-12), and in light of Eq. (6.2-27) we obtain the relationship:

(m+1) ('IP:%)(MDT)RDT(m) = (m+1)(MDT)RDTém) (6. 4-5)

DT 1

It follows from the last two equations that
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var(UT) = MUT[E MRUT - MUT] = MUT[2MRUTu" MUT]

A
, (6. 4-6)
and .
var(DT) = MDT[T?—A MRDT - MDT] = MDT[2 MRDTd- MDT]
(6.4-7)

We now compare, the first order moments of the various up-times
and down-times. Recall that the system steady state availability A is

bounded between 0 and 1, the following inequalities are obvious from

Egs. (6.4-3) and (6. 4-4).

MRUT < MRUTu (6. 4-8)
and

MRDT < MRDTd ' (6. 4-9)

There exists no such fixed inequalities between MUT(MDT) and MRUT{MRDT)
or MRUTu(MRDTd). This is illustrated by two simple examples in

Appendix F.
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6.5 RELATIONSHIP BETWEEN SYSTEM MUT (MDT) AND
INDEPENDENT SUBSYSTEM MUT'S (MDT's)
In Section 6.2, expressions for system MUT and”MDT, given by
Eqs. (6.2-26) and (6.2-27), are derived for an ergodic stationary Markovian
system in general. In the case when the system is comprised of independent
subsystems, it would be computationally advantageous to compute the system .
MUT anc.i MDT through computation of the subsystem MUT's and MDT's.
This section is devoted to the development of the general relationship

between system MUT (MDT) and independent subsystem MUT's (MDT's).

In general, a system is comprised of n>1 independent subsystems.
These subsystems could be interconnected in a complex configuration.

Figure 6-3 shows a system comprised of 5 independent subsystems.

1 2
3

5
4

Figure 6-3 Configuration of a System Comprised of 5 Independent
Subsystems.

_92_



It can be seen that the solution for any arbitrary system configuration can
be achieved once the solutions for two independent subsystems in series
as well as in parallel are developed. We shall first dev,élop the solution

for the series case.

Figure 6-4 shows the configuration of a system comprised of

2 independent subsystems in series.

Figure 6-4 Two Independent Subsystems in Series

Let S1 be the state space of subsystem 1,

82 be the state space of subsystem 2.

In addition, fori=1, 2, let

iu the set of up-states of subsystem i,

Sid

the set of the down-states of subsystem i.
It follows that

S, = S8, US (6.5-1)
and

(6.5-2)

2 - 2u 2d
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Since the 2 subsystems are independent and connected in series, the sets

of the up-states and the down-states of the system are:

Su = Slux SZu = (6.5-3)

Sd = (SluXSZd)U(SldX SZu)U(SldXSZd) (6. 5-4)

It can be seen that if n, is the order of Si’ then the order of S is n, n2.
We note that the sets Siu and Sid’ i=1,2, are disjoint. From Egs.

(6. 5-3) and (6. 5-4) we see that each state of the system is defined as a
combination of a state of subsystem 1 and a state of subsystem 2. There-

fore an ordered pair of state notation may be used to represent a state in

S. Our convention shall be as follows:

By (al, az) € S, we mean that state (al, az) in S which represents

the combination of states a1 € S1 and a2 € Sz.

Recall the basic assumption made for a Markovian system in

Section 4. 3 that the probability of two or more changes occur in the system -

within an arbitrarily small interval is zero. It follows that the relation-
ship between the state transition rates of the system and those of the

subsystems are as given below.
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For all (al, az) € S and (bl, bz) €S,

rd [ d
4 i = =
m ¥ b1 m b if a1 b1 and_ a2 b

2’72 2

" maz, b2 if a, = b1 and aZ# b2
(a, a2),(bl,b2) = 4
mal’b2 if al?‘b1 and a2=b2

| 0 if al#b1 and az‘# b2 |

(6.5-5)

By Egs. (6.2-26), MUT for an ergodic stationary Markovian system in

general is;

MUT = -C-é (6. 5-6)
o
For the series system under consideration

A= Z 7r(a a.)
(a,, az)e SluxSZU 1’72

= p» T Ty since the two subsystems

\ ' (a,,a_)eS, xS 1 72 .
: 1" 2 lu 2u are independent
- v T r ™ since Slu and S2u are
a € S1u 1 a,€ S~2u 2 disjoint

(6.5-7)
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By Lemma 6. 1, <, is given by any one of the four expressions in

Eq. (6.2-19). Therefore, for the present system,

c = z r

T
o (a
(al, az)s Su (bl’ b2)€ Sd

m

(6. 5-8)

The sets Su and Sd are given by Eqgs. (6.5-3) and (6. 5-4), respectivély.
Since the products (S1u x SZu)’ (S SZd)’ (Sld ) and (S, xS_.)

tu * 14~ "2d

are disjoint, and since the 2 subsystems are independent, Eq. (6. 5-8) can

be written as:

c = Z z T T m
o a, .a, (a,,a,),(b,,b.)
(al’aZ)G(SluXSZu)(bl,b2)€(SluXSZd) 1 72 1’72 1’72

+ E r T

T m
(a,,a0€ (5, xS, ) (b),b)e (S, x5, ) 1 %2 (@, a,). by, by)
+ Y )3 T T m
a, a, (a;,a,),(b,,b,)
(al,az)s(SluXSZu) (b b)e(Sldxszd) 1 72 1’72 1’72

\ (6.5-9)
By Eq. (6.5-5) we see that the last term in the above equation is zero, and
c, can be expressed in terms of the transition rates of subsystems 1 and

2 thus:
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c = r r 7. w m

o a, ‘a a_,
(al, az)s (Slux SZu) b2 € 82d 1 72 2
+ by r 7ra 1ra ma
(al, a2)€ (Sluxs?,u) bls Sld 1 72 1

Since the sets Slu and S2u are disjoint, we obtain:

Co=(2”)~(2 r 7 m

a a
ale Slu 1 aze S2u b2€ 82 2

+H(z 7 )( £ T 7 m

(6. 5~10)

(6. 5-11)

Let Ai be the steady state availability of subsystem i. Therefore,

In addition, let

~07-

(6.5-12)
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Then Eq; (6. 5-11)becomes

= ) + -
<, A102 Azc:1 (6. 5-14)

and Eq. (6.5-7) becomes

A = AlA2 (6. 5-15)

Substituting Egqs. (6. 5-14) and (6. 5-15) into Eq. (6. 5-6) results in:
A1A2

Ajeythgcy

MUT

N

!)—P> ""O I
NO ’w:> ‘[\Do Iw:b

[¢]
i

MUT, MUT,
" MOT,+MUT, (6. 5-16)

where

M’UTi = mean up-time of subsystem i. ‘ (6.5-17)

Eq. (6.5-16) gives the expression for system MUT in terms of the subsystem
MUT's for the case when the system is comprised of 2 independent subsystems

in series.
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To find system MDT, substitute Eqs. (6.5-14) and (6. 5-15) into
Eq. (6.2-27) we obtain:
1- A1A2

A1c2+A2c1

MDT =

_ Al(l-Az)+A2(1-A1)+(1~A1)(1~A2)
= Ac TAoG (6.5-18)
172 271 :

Dividing both the numerator and the denominator by €% the above

equation becomes:

Al 1-A A_ 1-A 1-A, 1-A

1 1 1
=)+ (D + )
c c c c c d
MDT = 1 2 2 1 1 2
A A,
1 2
—_— —=
¢, Sy
MUT MDT_+ MUT_MDT. + MDT K MDT
. 1 2 2 1 172 (6. 5-19)
MUT,+ MUT )
1 2
where
MDTi = mean down-time of subsystem i (6. 5-20)

Eq. (6.5~19) gives the expression for system MDT in terms of the subsystem
MUT's and MDT's for the case when the system is comprised of 2 independent

subsystems in series.
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The expressions for system MUT and MDT of Egs. (6.5-16)
and (6.5-19) can be generalized to the case when the system comprises

n > 2 independent subsystems in series, as shown in Figure 6-5.

Figure 6-5 Configuration of a System Comprised of n Independent
Subsystems in Series.

Define the following notations:

MUT(i. j. ---. k)S Mean up-time of subsystems i,j,..., k in series
(6. 5-21)

Mean down-time of subsystems i, j,..., k in series

MDT(i. j. ---. k)s

(6. 5-22)

To develop the expression for the general case, first consider subsystems 1

and 2, The mean up-time of these two subsystems is given by Eq. (6.5-16)

which can be written in another form as follows:
1

1 b=t
MUT1 MUT2

MUT(1- .2)s = (6. 5-23)
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Suppose it is true that

.' ~ (6.5-24)

MUT(1. 2, --~. k)s

=

1
M'UTi

™

i=1

Then for the case of (k+1) independent subsystems in series,

1
1 + 1
MUT(1.2.---. k)s MUT

MUT(1.2.---. k+1)S =

k+1

T (6. 5-25)
r 1
. MUT
i=1

“~
Therefore, for the general case of n independent subsystems in series, we

ohtain:

1 (6. 5-26)

MUT(].. 2.7 ", n)
S n 1
r

. MUT,
i=1 i

To find MDT(1.2.---. n)S we can make use of Eq. (6.2-30), which gives:

1-A

Y ] (6.5-27)

MDT(1. 2. --~. n)s = MUT(1.2.---. n)s[
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In the above equation A represents the availability of the n subsystems in

series. Since the subsystems are independent,

a
.. A = I A, (6.5-28)
. i

i=1

Substituting Eqs. (6. 5-26) and (6. 5-28) into Eq. (6. 5-27),

n
1-10I A,
1 i=1 1!
MDT(1.2. -~-.n) = (6. 5-29)
S n 1 n
>_: MUT, I:I Al
i=1 i i=1
For cach Ai substitute
MUT.
A = 1 ~ (6. 5-30)
i = MUT+ MDT, ’
Then Eq. (6.5-29) becomes
n n
II (MUT.+MDT.)- 1 MUT,
1 i=1 1 Vg J
MDT(1.2.---.n) = ———— -
S n 1 n
0 MUT.
i=1 MUT; =1 !
(6.5-31)
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We have proved the following theorem.

Theorem 6. 2 "'

For an ergodic stationary Markovian system which is comprised
of n independent subsystems in series, the system MUT and MDT’ can
be exprgssed in terms of the subsystem MUT's and MDT's. Eq. (6.4-26)
gives the expression for system MUT and Eq. (6.5-31) gives the expression

for system MDT.

To develop similar expressions for the case when the subsystems
are connected in parallel, we start with a two subsystem configuration as

shown in Figure 6-6.

Figure 6-6 Configuration of a System Comprised of 2 Independent
Subsystems in Parallel.

In this case, the sets of system up-states and down-states are as follows:

Su = (SluXSZu)U(SluX Szd)U(Sldx SZu) (6.5-32)
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Sd = (Sldx Szd) (6. 5-33)
The steady state availability of the system is: .
A = r Ta., a) (6. 5-34)
(a;,a)e8 71772

Since the sets (Slux SZu)f (SluXSZd) and (SldXSZu) are disjoint, and

since the subsystems are independent,

A = ) ”a 7ra + L 7ra 7ra + r 7ra' 7ra
(al,az)e(sl_uxs-zll) 1 °2 (al,az)e(sluxszd) 1 ‘2 (al,az)E(SldeZH) 1 72

= A1A2 + Al(l-Az) +A2(1-A1)

(6. 5-35)
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For this case, co is given by

c = T Py (6. 5-36)

T m .
0 (a- ; a ) (a s a ): (b » b )
(al’ a2)€Su (bl’ b2)€Sd 1’72 1’72 1’72

By Egs. (6.5-5), (6.5-32) and (6. 5-33), it follows that

c = z z

T m
o . (a,,a,) (a,,2,),(b,,b,)
(a;,8,)e(S; %8,,) (b, b,)e(S, xS, ) 1" 72 1’ %27 %10 P2

+ z >

(al’ a2)€ (Sldxszu) (bl’ bz)s (s, xS

T m
(a,,a,) (a,,a,),(b,,b,))
1d 2C1) 1’ %2 1’72 1’72

=( = 7Ta)( r L 7, M,
azeszd 2 blss aleslu 1 1,1

1d
.+ 7 x z r m
( a,) ( a, a,,b, )
aleSld 1 bzeszd a2€SZu 2 2’72
= - - . 5- 7
(1 Az)cl + (1 A1)02 (6. 5-37)
Therefore,
AA+A (1-A)+A_(1-A))
MUT = —>2-1 2 2 1 (6. 5-38)

(l-Az)c1 + (1~A1)c2

-105-



Dividing both the numerator and the denominator by c,C, We obtain:

Al A A, 1-A A, 1-A ‘
(D) + (2 =D + (=)
c
MUT = —L 2 1 % 2 %1
1-A 1-A
2 2
(=2 + (=)
2 1

MUTIIVIUT2 + MUTIMDTZ-I- IV[UTZMDT1

= MDT,, + MDT, (6. 5-39)

Eq. (6.5-39) gives the expression for system MUT in terms of subsystem
MUT's and MDT's for the case when the system is comprised of 2 independent

subsystems in parallel.

To find MDT for this case, we recognize that

(1-A) = (1-A1)(1~A2) (6. 5-40)
Therefore, by Eq. (6.2-27),

(1-A1)(1'A2)
(1-A2)c1+(1~A1)c2

MDT = (6.5-41)

c_, we obtain:

Dividing both the numerator and the denominator by 1 Sy
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1-A 1-A
¢

Cc Cc

( )

MDT =

MDT 1 MDT 9

.i-
MDT 1 MDT 9

(6. 5-42)

Eq. (6.5-42) gives the expression for system MDT in terms of subsystem

MDT's for the case when the system is comprised of 2 independent sub-

systems in parallel.

To solve for the general case of n indepzndent subsystems in

parallel as shown in Figure 6-7, we first introduce the following notations.

Figure 6-7 Configuration of a system comprised of n Independent

Subsystems in Parallel.
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MUT(i. j. ==~ k)p MUT of subsystems i, j, ..., k connected in parallel

(6. 5-43)

L 4

n

MDT(i. j. =--. k)p MDT of subsystems i, j, ..., k connected in parallel

(6. 5-44)

First consider for the MDT of subsystems 1 and 2. By Eq. (6.5-42),

MDT(1-2) = 1 (6. 5-45)
P 1 * 1
MDT1 MDT2
It follows that
MDT(1- 2+3)_ = 1
P 1 + 1
MDT(1. 2)p MDT3
. .
= (6. 5-46)
3
5 1
._, MDT,
i=1 i
Suppose it is true for subsystems 1,2, ..., k that
MDT(1: 2. --=-+k) = - (6. 547)
p k 1
‘_E MDT,
i=1 i
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Then for subsystems 1, 2, ..., k+1 we have

1 .
MDT(1- 2- .k+1)p 7 1

MDT(1- 2. ---k); NMDT

k+1

1

ol (6.5-48)

E—.——-—.

. MDT,.
i=1 i

Therefore, for the general case of n independent subsystems in paraliel,

we have

MDT(12° ~--- n)p = (6. 5-49)

It should be noted that the above expression holds for the case of the system
is considered to be up when at least one of the subsystem is up. By

Eq. (6.2-30),

¢ 9 m——. = ¢ Qe mm = . 5-50
MUT(1- 2 n)p MDT(1- 2 n)p A (6. 5-50)
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For this case,

n :
A=1-1010(- Ai) . (6. 5-51)
i=1 '

First substitute Eq. (6.5-30) into Iiq. (6. 5-51) and then substitute the

resultant equation into Eq. (6.5-50), we obtain after simplification

n n
I (M'UTi+ MDTi) -1 MDTj

MUT( 2 --- n) = 1 izl J=1
) n n
P - N MDT,
Z DT, 14 j

(6. 5-52)

We have proved the following theorem.,

Theorem 6.3

For an ergodic stationary Markovian system which is comprised of
n independent subsystems in parallel, the system is defined to be up if at
least one of the subsystems is up, the system MUT and MDT can be expressed
in terms of the subsystem MUT's and MDT's. Equation (6. 5-49) gives the
expression for system MDT, and Eqg. (6.5-52) gives the expression for

system MUT.
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We now coasider the case of 3 independent subsystems in parallel

as shown in Figure 6-8.

Figure 6-8 Configuration of 3 independent subsystems in Parallel.

Suppose this system is defined to be up when at least 2 of the 3 subsystems

are up. It can be seen that the sets of up-states and down-states for this

case are:
Su - (Slux Szux S3u)U (Slux S2dX SBu) U (Sl dX SZux SS u)U(SluX SZuX'SS d)

(6. 5~53)
Sq = (51g¥50 %S5 ) UCS %8, 4% 850U (5] xS, x84 U (5) x5, 3%55)

(6. 5-54)

Since the subsystems are independent, by Eq. (6. 5-53) the steady state

availability of the system is
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A = A1A2A3 + Al(l-Az)AS + (I-Al)AgA

3

We now compute the expression for C,e

c_ = .
o

z

p»

(al, 8gs aS)GSu (bl’ b2, b3)€Sd

2’73

+ -
A1A2(1 A3)

(6. 5-55)

T m
(al, a,,a,) (al, 2, a3), (bl, bz’ b3)

(6. 5-56)

Invoke the basic assumption of Markovian system that the probability of

two or more changes occur within an arbitrarily small interval is zero,

we have

m(a. a_,a
1! 2’

3)(b

(

1’b2’b3) =<

m
a

m

1,

+m
a2, b2 aS, b3

+m

ifa.=b. fori=1,2,3
1 1

if a2 =b2 and a3 =b3

if a1=b1 and a3=b3

ifa,=b, anda_=b

1 71 2 72

otherwise
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Since the subsystems are independent,

T =g 77 . (6. 5-58)
(al,az, a3) ay a, a,

Substituting Eqs. (6.5-53) and (6. 5~58) into Eq. (6.5-56), and after

incorporating Eq. (6. 5-52) we obtain:

c = L I 7 7 . m

(o] - a R
(al,az,ag)e(sluxszdxssu) blssld 172 73 1’71

+ z Y 7 7 7. m

a P
(al, a)e(S szd\S )bges3d 1 7273 7373

+ r Eﬂ'rr?rm’b

a . a, a
9! "o
(al’aZ’aS)s(SldXSZ \S ) b €S 9d 2 73 "2 2

-+ m
z L 7.7 L a.,b

: a,'a
(a.l,az,at3)€(81d~<82 xS ) bSGSSd 1 72 73

+ z E7r7r7rm.b

. a, a. a, a.,
(al,az,a3)€(Slux82u.\83d) b2€82d1 2 73 "2°72

+ z )277,7r7rm,b

a’"a a
(al, 2, a3)e(Slux82ux83d) b1€S1d 273 1

(6. 5-59)
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By Eqgs. (6.5-60) and Eq. (6.5-62) we obtain:

1-A

c
O

MDT

MD'I‘1 MDTZMUT3+ MUT 1 MDT2 MDT

+ MDT1 MDTZMDT3
MDT:2 MUT3+ MCUT1 MDT2+ MDT1 MUT

+ MUTlMDT3+ 1\’1’U'1’21\/IDT3

+MDT 1 MUT 2MUT

3 3

+ MDTl MUT

3 2

(6. 5-63)
We have proved the following theorem.

Theorem 6.4

For an ergodic stationary Markovian system which is comprised
of 3 independent subsystems in parallel, and the system is defined to be up
if at least 2 of the 3 subsystems are up, then the MUT and MDT of the
system, when expressed in terms of the subsystem MUT's and MDT's, are

given by Egs. (6. 5-61) and (6. 5-63), respectively.

‘In the spacial case where the 3 subsystems are identical,

Eqs. (6.5-61) and (6. 5-63) reduce to:
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MUTi(MUTi+ 3 MDTi)

MUT = 6 MDTi (6. 5-64)

MDTi(MDTi+ 3 MUTi)

MDT = MU, (6. 5-65)

where i is either 1,2 or 3.

The following corollary follows.

Corollary 6. 4

If the 3 subsystems of the hypothesis of Theorem 6. 4 are identical,
then system MUT and MDT are given by Eqs. (6.5-64) and (6. 5-65),

respectively.
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Chapter 7

MODELING OF SYSTEMS OBEYING SEMI-MARKOV PROCESSES

7.1 INTRODUCTION

In the last three chapters, we have devoted our effort to the
modeling and analysis of stationary systems obeying continuous parameter
Markov chains. By Theorem 4.2, the random time of the transition pro-
cess between any two sta'tes of such a system necessarily possesses
exponential probability distribution. For a physical system this means
that the time-to-failure and time-to-repair of the units comprising the
system necessarily possess exponential probability distributions. In this
section we will consider systems which obey a more general semi-Markov

model. A descriptive definition of a semi-Markov process is given below.

A semi-Markov process is a stochastic process which moves
from one state to another of a countable number of states
with the successive states visited forming a Markov chain,
and that the process stays in a given state for a random
length of time, the distribution function of which is general
and may depend on this state as well as on the next state
to be visited.
(7.1-1)

We will be mainly concerned with semi-Markov processes with finite

state space. As before let the state space S be
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S={1,2,...,no} (7.1-2)

The state transition probability matrix for the imbedded*Markov chain

will be denoted by

- -
P11 P Pi,n
O
p p A
b - 2,1 2,2 2.n, (7. 1-3)
pn , 1 pn , 2 pn , n
B (o] (o) (o] O_

Suppose 1i,je S are such that the process can go from state i to state j

by a single transition. Define the conditional holding time W, j as follows:

t

“w, , = the holding time of the process in state i given
' that the process next visits state j.

(7.1-4)

3

The probability distribution function of w, . is denoted by Fi j(t)' Therefore

Fi, j(t) = Pr{wi’j < t} (7.1-5)

Note that Fi J.(t) is the conditional holding time distribution function in

state i, given that the process next visits state j. If w, denotes the
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unconditional holding time in state i before the next transition, and if

Hi(t) denotes the distribution function for Wi’ then it follows that

it

Hi(t) Pr{ w, < t}

r p. .F.  (t) (7.1-6)
jes iL,j 7L, , .

For simplicity of notation, define

Qi, j('C) Py Fi, j('f:) (7.1-7)

Then Eq. (7.1-6) becomes

H@{) = £ Q, .(t) N (7.1-8)
1 . 1,
jes

The matrix (Qi j(t)) is known as the matrix of transition distributions [51].

In the literature, a semi-Markov process is denoted by
{z(t); t>0}. Let Ni(t) denote the number of times the process enters

state i in the half open interval (0, t]; and let N(t) denote the vector

N(t) = [N, (t), N,(t),.. .,Nno(t)] (7.1-9)
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Then the stochastic process {E(t); tzO} is known as the Markov renewal
process. It can be seen that the z(t) process and the N(t) process are
different aspects of the same underlying stochastic process. Therefore,

studying of one is equivalent to studying of the other.

In the following sections we will consider modeling of systems with
general distributions for the time-to-repair. It will be shown that such

system models take the form of semi-Markov processes.

7.2 MODEL CONSTRUCTION FOR SYSTEMS WITH

GENERAL REPAIR-TIME DISTRIBUTIONS

This section considers modeling of systems co.mprised of units with
exponential distributions for time-to-failure, and general distributions for
time-to-repair. The number of repair crews available for servicing the
failed units is restricted to one so that the state space of the system is

finite.

The first step in modeling is to define the various system states.
Similar to the case of Markovian systems, the states for the more general
type of system considered here are also defined according to the different
combinations of the up and down conditions of the units comprising the sys-

tem. There is, however, one important difference due to the general
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probability distributions for the time-to-repair. In the case of
Markovian systems, given the present system state, the future behavior
of the system is independent of the past. In the presentftype of system,
the time-to-failure of the units would still be independent of the past.

But the time-to-repair would not be so except at the so-called regen-
eration points, Starting from a regeneration point, the future behavior
of the system is stochastically independent of the past. Therefore, in
defining states for the more general system, we will need to identify the
regeneration points in addition to the different combinations of the up and
down conditions of the units. For the purpose of clari‘cy, the 3-unit system
shown in Figure 7-1 will be used as a vehicle to illustrate the general

methodology.

Figure 7-1 Configuration of a System Comprised of 3 Identical
Units in Parallel.
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The following operation and repair policies are assumed.

Operation Policy: .

All units will be turned on for as long as and as soon

as they are operable.

Repair Policy:
One repair crew services the failures on the first-come

first-served basis.

At any given time instant, ihe units of the system may be in any one of

the following four conditions.

(a) All 3 units are up
(b) One unit has failed and 2 units are up
(c¢) Two units have failed and 1 units is up

(d) All 3 units have failed.

if the system were Markovian, the above four system conditions would be

the four states of the system. However, for the more general type of system
under consideration, we need to identify the regeneration point or points
within each condition. It can be seen that at the time instants when the
system enters condition (a) or (b), its future behavior is stochastically
independent of the past. Therefore, conditions (a) and (b) begin with

regeneration points, and there are no other regeneration points
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within (a) or (b). Therefore, we define States 1 and 2 of the system as

follows:

State 1: represents the state that at the time epoch
the system enters this state, all the 3 units

are up.
(7.2-1)
State 2: represents the state that the time epoch the
) system enters this state, 1 unit has failed
and repair is initiated on it.
(7.2-2)

Now consider condition (c), this condition could be arrived from
condition (b) due to failure of another unit before completion of repair
on the failed unit. On the other hand, it could also be arrived at from a
condition in which all the units have failed and repair on one of them has
just been completed. Therefore, there are two regeneration points for
condition (c). Hence, two system states are defined corresponding to this
condition. Let states 3 and 4 be defined as follows:

State 3: represents the state that at the time epoch the

system enters this state, 2 units have failed

and one of the failed units has been in repair
for some time.

(7.2-3)
State 4: represents the state that at the time epoch the
system enters this state, 2 units have failed
and none of the failed units have received any
repair.
(7.2-4)
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Note that according to the repair policy, during the time the system is in
State 3, repair will be continued on the unit which already has been in

repair for some time. As the system enters State 4, repair is initiated

on the unit which has failed first.

Similar to condition (c), condition (d) also has two regeneration
points. 'They correspond to the situations of different partial repairs
completed on one of the failed units. Let State 5 and 6 be defined as
follows:

State 5: represents the state that at the time epoch the

system enters this state, all 3 units have [ailed

and repair oa one of the uniis has been started
prior to the failures of the other two.

(7. 2-5)
State 6: represents the state that at the time epoch the
system enters this state, all 3 units have [ailed
and repair on one of the units has been started

prior to the failure of only one of the other two
units,

(7.2-8)

Therefore, the state space for this system is
S =1{1,2,...,6} (7. 2-7)

From the state definitions, we obtain the state transition diagram of the

system as shown in Figure 7-2.
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Figure 7-2 State Transition Diagram of the 3-Unit System,

From the above example, we see that the general methodology in
defining states for systems with general repair-time distributions consists
of two steps. The first is to enumerate the various possible system condi-
tions corresponding to the combinations of the up and down conditions of
the units. The second is to define system states based on the regeneration
points within each system condition. Since each state is defined based on
a regeneration point, the future state transition probabilities are indepen-
dent of the past. Therefore, the state transition process of the system
obeys a Markov chain. Due to the general repair-time distributions, the
conditional holding time in each state has arbitrary distribution. Hence

the dynamical model of the state transition process is semi- Markovian,
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We have proved the following theorem.

Theorem 7.1 .

The dynamical behavior of a system comprised of units with
exponential failure-time and general repair-time distributions can be

modeled as a semi-Markov process.

We will call systems which can be modeled as semi-Markov
processes as semi-Markovian systems. The next two sections consider
the computation of the state transition probabilities, P, 7 and the condi-

£

tional holding time distribution functions, F, j(t).

7.3 COMPUTATION OF STATE TRANSITION PROBABILITIES

This section considers the computation of state transition
probabilities for the imbedded Markov chain of a semi-Markovian system.
Since the failure-time and repair-time of the units in each state are inde-
pendent random variables, computation of pi,j involves the computation
of conditional probabilities of independent random variables. First consider

the following general problem.

Let x seees X be n independent random variables on the

1’ *9

interval [0, =] with probability density functions (p.d.f.) f\{ (t), f‘{ (t),..., fX (t),

1 2 n
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respectively, Denote the distribution function for X, by Fx (t). That is
i

t
F @)= [ () do , (7.3-1)
i o i

Let a random variable y be defined as

y = min(xl,x ,X) (7.3-2)

2,.:- n

Then, it follows that

Pr{y=xi} = Pr{xi< X5 for all j # i}
(=
= [ Prlosx,<a+dy and x; > ¢ for all it i}
0
(7.3-3)
Since the random variables are independent, we obtain
© n
Priy=x}=[ £ (@ 0 [1-F_ (2)] da (7.3-4)
1 X. . X,
0 "1 j=1 h]
it

This is the general equation for computing the state transition probabilities.
Before illustrating the use of Eq. (7.3-4), an expression will be developed
for the computation of remaining repair-time distributions. Now consider

the following general problem.
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Let a random variable 5 be defined as

n = min(x %) ‘ (7.3-5)

Xy oo
2° 78’ n

Next denote the difference beiween x, and 7 by ¢. That is,

1

£=% -1 (7.3-6)

Since X, and 7 are random variables, £ is a random variable, The

conditional p. d.{. of £ under the condition x, > 7 will now be developead.

1
Pr{t <t x> 7}

= £ (0, Bla>B)dx d3
(o, B):x-B<t xl,n|x1>n '

© t—}-ﬁ
LU gy flazB) el a8

or

LU, nlxpn@Flo>) o8] o

(7.3-7)
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The conditional p. d.f. of ¢ under the condition X, >0 is obtained by

differentiating Eq. (7.3-8) with respszct to t.

[=+]

= [t
T xon® J‘O X1,77|X1>77(t+ﬁ"8’t>0)dﬁ

w

f ,a-t|t>0) d
or -I;) xl,n|x1>17(0£ o-t|t>0) du
f t18,
j(‘) X1”7( B, B) dB
Pr{x1>77}
or

J . (o, 1) do
o *p°7
Pr{ X, >n)

(7.3-8)

Since the random variables xi's are defined only on the positive real line,

fx 77(oz,oz-t) is zero for o < t. Therefore, the lower limit of integration in
1!
the alternative expression on the RHS of Eq. (7.3-8) can be set to t. By

the independent property of the random variables, Eq. (7.3-8) becomes

J‘O fxl(t+ﬁ) £, @) a8 _ J‘t fxl(a) f t) do
Pr{x1>n} B PP{X1>11}

(7.3-9)

f

glx>n™
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We will find an expression for Pr{x1> n}.

©

Pr{x1> n} = [ Prie<x <a+dy and m <o}
0

1

<]

or [ Pr{x1<a and o <79 < a+do}
0

= IO fxl(a) Fﬂ (o) dx

1- f do
or Io[ Fxl(oz)] n(a)

But,.

F (@) = Pr{ mm(x2, Xgpenes xn) < al

1 - Pr{ m1n(x2, Xosenes xn) > o}

n
=1-1 Prx>aq)
. i
i=2
n
=1-1I{{1-F ()]
. X,
i=2 i
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Differentiating Eq. (7.3-11) with respect to o gives

n n '
fl =2 f (@ O[t-F_ (] ‘ (7.3-12)
n =2 %j  i=2 *i ~
it

Substitute Eqs. (7.3-11) and (7. 3-12) into Eq. (7.3-10) we obtain

© n
Pr{x >n} = IO fxl(oz) {(t-0[1-F @] d

i=2 i

© n n
or [[1-F_(@I{Z( (@ IO[1-F (@]} d (7.3-13)
o 1 =2 ¥ =2 *i
it

We have proved the following lemma.,
Lemma 7,1

If X4 Kpooos xn are independent random variables which are such

2
that the probability density and distribution functions of x, are denoted by
fx.(')’ respectively. If 9 = mm(xz, Xgs oo ,xn) and ¢ = X" then the

1

conditional p. d.f. of ¢ under the condition x,>n is given by Eq. (7.3-9),

1
in which the expressions for fn(-) and Pr{ x1>n} are given by Egs. (7.3-12)

and (7.3-13), respectively.
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Now consider the case when the p. d. £, of Xgs x3,
exponentially distributed as follows. y
-Ait .
fx.(t) =Aie fori = 2,3,...,n
i
Then, by Eq. (7.3-12)
n  -\an A0
fla) = £ X.e I e
n j=2 9 i=2
i#j
A
= A e s
s
where
n
A= L A
§ o9 I
By Eq. (7.3-13)
@ n ‘)tia
Prix>n} = [ £ @ {1- 0 }dx
b 4 .
071 i=2
Ao
= s da

1- f (@e
Io %

Substitute Eqs. (7.3-15) and (7. 3-17) into Eq. (7.3-9) we obtain
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(7.3-15)
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- sV Ate A8
xsfo fxl(Hﬁ) e dg )\Se ft fxl(ﬁ)e ds
T W =T
Elx>n 1-[%f () e s % 1~ 71 (e "%
0o *1 0o *1

(7.3-18)
We have proved the following theorem.

Theorem 7. 2

It X2 X e oo X are independent random variables which are such
-t
that the p.d.f. of x; is £_(-), and Ae ' is the p.d. f. of x, for
1 -
i=2,8,...,n Ifn = min(xz, Xgseeos Xn) and ¢ = XN then the conditioml

p. d. f. of ¢ under the condition X, > 7 is given by Eq. (7.3-18), in which

>‘s is defined by Eq. (7.3-16).

“~

To illustrate the use of Eq. (7.3-4) for computing the state transition
probabilities of Figure 7-2, we assume that the failure-time p. d. {. of each

unit in Figure 7-1 is

At

f(t) = Xe (7.3-19)

The repair-time p. d. {. is assumed to be the second Erlang distribution with

v

parameter u as follows:
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2 2ut

g(t) =4 ute (7.3-20)
By inspection of Figure 7-2, it is obvious that .
’ \
P1,2
Ps 4 f =1 (7.3-21)
%
6,4 |

Now consider State 2. If repairon the failed unit is completed before
another unit fails, the system goes to State 1, otherwise the system goes to

State 3. Therefore by Eq. (7.3-4),
® 2 -out -2t
= Teut T
Py 1 _ft4u te e “Mat

- M ' (7.3-22)

and

. _ A0 +2u) -
Py 3 =170y (7.3-23)

Next consider State 3. By Theorem 7.2, the p.d.{. of the remaining

repair-time on the unit under repair is
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Z)Lezm‘f 4u2a e-z('\+“)ada
t

g,.(t) = m
s 1-f 4u2a ¢ 20wy,

o .

2 (20 )t + 1]e M

At2u

(7.3~-24)
Therefore, by Eq. (7. 3-4)

o
_ -At , -
Pg g * Io g (the " dt (7.3-25)
Substuting Eq. (7.3-24) into Eq. (7.3-25), we obtain after simplification

2
o 2u (M t4u) 4 (7.3-26)

p
3.2 Q.+2M)3

and

A0 4erut6u®)
(\+ 2;.1)3

Py 41795 5 (7.3-27)

Next consider State 4. The p.d.f. for the repair-time in this state is

g(t). It follows that

]
< 8

o
~~
—
e
(¢

1

>

L
o,
or

. - (7. 3-28)
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and

Ppg =170, 4 - )2 ' (7.3-29)
’ ’ (2u +2) .

Thus all state transition probabilities are found by using Eq. (7.3-4) and

Theorem 7. 2.

7.4 CONDITIONAL HOLDING TIME DISTRIBUTION FUNCTIONS

This section considers the computation of conditional holding time
distribution functions for semi-Markovian systems. We will start by

treating the problem from a general point of view in the context of multiple

independent random variables. Recall the random variables xl, x2, cees Xn
and y defined in Section 7.3. Define an index set J as tollows:
J=1{1,2,...,n} (7.4-1)

Then,

Pr[ygtlxi<xj for all je J - {i}}

Pr{xis_t, %< X, for all je J - {i}}
Pr{xi<xj for all je J - {i}}
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t .
‘f Pr{cx_<_xi<oz+da, xj>oz for all je J - {i}}
O .

ImPr{agxi<a+da, xj>oz for all je J - {i}}

0 .
t
: j;) fxi(oz) je.III—{i} [1- in(a)] do
Io fxi(a)j€l}_{i][1 - ij(oz)] dov

(7. 4-2)

This is the general equation for computing the conditional holding time

distribution functions for semi-Markovian systems.
We have proved the following lemma.
Lemma 7,2

If xl, xz, oo Xn are independent random variables which are such

that the probability density and distribution functions of X, are denoted by
fx (-) and F,‘X (-), respectively, If y = min(xl, X

i i
conditional distribution function of y under the condition that X, < Xj for

gr e xn), then the

all jeJ - {i} is given by Eq. (7.4-2).

We now compute the Fi j(t) for the 3- unit system discussed in the

3

preceeding section.
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First consider State 1 in Figure 7-2., It is obvious that

t
[ 3re
0

- .
Fy 0 o ,

-3At
e

=1 - (7. 4-3)

Next consider State 2. The system will go to State 1 if repair is completed

before another unit fails. Therefore, applying Eq. (7.4-2),

t -
J‘ gla) e ZAOKda

0

Fo @ = (7.4-4)

«©

J‘Og(a) e 2

do

Substituting Eq. (7.3-20) into the above, and after simplification we obtain

-2 Hu)t

F2 1(t) =1 - [1+20+u)tle (7. 4-5)

- By similar reasoning,

t -Na «
[ 2xe 71 -[ g(8) dBld
0

(7. 4-6)

«©

[ 2xe
0

,Fz’ 3(‘c) =

_ o
Aoy -J"Og(B) dg]da
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Substituting Eq. (7.3-20) into the RHS of Eq. (7. 4-6) we obtain after

carrying out the integrations,

Numerator = 2)\{—)&1'-23—-—2- - e'z(km)t[)!\-t: L At 2]}
20:+) Hooaom)
(7.4-7)
and
Denominator = M&i%zlﬂ (7. 4-8)
O u)
Therefore,
o1 -1 2Ot o -2(0u)t i
Fo gt =1 - [I%mmy Je , (7. 4-9)

Following a similar approach, the remaining Fi J.(t) are obtained.

t “AQ
J glo)e™

F, ()= (7.4-10)

3. 2 ,f: g, e MY 4y

Substituting gr(oz) from Eq. (7.3-24) into the above, we obtain after

simplification
-1 - 2O ) +2u) -(A+F2u)t _
FS, 2(t) 1 -1+ (3% +4y0) tl e (7.4-11)
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Similarly,

t o
J e T1-] g (B) d8] dx
0 0o *

[Pxe™1 - [%g (B) dB] du
0 0o *

Fg 5(t)

2u ) O +2u) t]e‘(>\+2/.z)'c

2

=1-[1+
' A A ut6u

(7. 4-12)

t S
[ gle) e Y
0
G T —
4, 2 ‘]\ g(a) e Aad{x
0

=1 -[1 +()\+2,u)t]e_(>‘+2“)t (7. 4-13)

t

- o
J;Ae A%y - [ g(8) dB) da
0

j:xe"‘“[l - [%(8) d8) dx
0

Fy, gt) =

-1 -[1 +2!§2‘;“—5ﬂt] e F2ut (7. 4-14)

By inspection of Figure 7. 2, we see that F5 4(t) and FG 4(t) are the

remaining repair-time distribution functions due to uncompleted repairs

in States 3 and 4, respectively. Therefore, by Theorem 7. 2,
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Ae)ttj- gr(a)e-kadnc
t

(]

£, () = -
5 4 1- ‘[(‘) g (e A gy

. 2u’ @003t -2ut (7. 4-15)
l2+6ku+6,u2

Integrating from 0 to tgives

t
Fy 4 = Io Iy (o) da
=1 - [1+3’i(““)(“§“) tle” 2Kt (7.4-16)
A B ut6u
Similarly,
A em‘j’ gla) e M g
_ 1
f6, 4(t) =

1 - ["gle) e
0

2

Au -2ut -qn
H%[1 +(\+2u) t] e (7.4-17)

Integrating from 0 to t gives

L 2u\+2u) o -2ut -
F6,4(t) =1-[1+ v t] e (7.4-18)

Thus all the conditional holding time distribution functions are found.
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Chapter 8

ANALYSIS OF SEMI-MARKOVIAN SYSTEMS

8.1 INTRODUCTION

This chapter considers the analysis of two important measures
of effectiveness for semi-Markovian systems. One is the steady state
availability which pertain to the limiting probabilities of the system, and
the other is the mean first passage time of the system to a system down-
state. In Section 8.2, the system of equations which governs the dynamical
behavior of the state probabilities of a general semi-Markovian system is
derived. Expressions for the steady state availability and the mean [irst
passage time of the system to failure are developed in Sections 8.3 and

8. 4, respectively.

8.2 SYSTEM OF EQUATIONS FOR THE STATE PROBABILITIES

In this section, the system of equations which govern the dynamical
behavior of the state probabilities of a semi~Markovian system will be
derived. The conditional probability that the system is in state j at time

t > 0 given that it was in state i initially will be denoted by

P, j(t) = Pr{z(t) = j|2(0) = i} (8. 2-1)
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First consider the case when i = j. The system, initially in state i, can

be in the same state i at time t due to either one of the following events:

1. The system has never left state i during the entire

interval [0, t].

2. The system left state i at least once during the interval

(0, t), and returns back to state i by time t.

Since these two events are mutually exclusive, the sum of their probabilities

gives the probability that the system is in state i at time t. Therefore,

Pi, i(t) =[1- Hi(t)] + T j‘t[pi K fi, k(7') Pk, i'(t'T) dr] (8. 2-2)
keS 0 7
The first bracketed term on the RHS is the probability that the system has
never left state i during the interval [0, t]. The'bracketed expression of the
remaining term represents the probability of the sequence of events where
the system left state i for state k at some time 7, 0 <71 <t, and then
returns to state i in the remaining time interval (7, t]. This probability

is summed over all possible states k and integrated over all time 7

between 0 and f¢.

For the case when i # j, it is obvious that
t

Pyt = Ty [ 5 ) By (e dr (8.2-3)
keS 0
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For simplicity of notation, we denote the con;rolution integral in the

preceeding equation as [ollows.

t
P 0O 1§ 1) =j0 P T g ) ar (8. 2-4)

By a change of variable it is simple to show that

Pk,j(t) ® fi, k(’C) = fi, k(t) ® Pk, j(lt) (8.2-5)

Equations (8. 2-2) and (8. 2-3) may be written in the combined form

P, j(t) = [1-HW®b, £ L b, NEAN) ®Pk,j(t)] for all i,j€ S

7 k€ S l) rl
(8. 2-6)
where 6i . is the Kronecker delta which is defined such that
1 ifi=j
6. . = (8. 2-7)

i, j
0 otherwise

We have proved the following theorem,
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Theorem 8.1

N

The dynamical behavior of the state probabilities®of a semi-
Markovian system is governed by a system of integral equations given

by (8. 2-6).

8.3 SYSTEM STEADY STATE AVAILABILITY

To determine the steady state availability A of an ergodic semi-

Markovian, we need to solve for the limiting values of Pi j(‘c) from. the

2

system of integral equations (8.2-6). Let us denote the matrix with elements

Pi, j(t) by &(t).
®(t) = (Pi, j(t)) - (8.3-1)

Since i, je S, and S has order n_ &(t) is an (nox no) matrix.

Let Ri(t) denote complementary distribution functions of the

unconditional holding time in state i. That is

R.(t) = 1 - Ht) (8.3-2)

Substituting Eq. (8.3-2) into Eq. (8. 2-6) and then taking the Laplace transform,

we have
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(s) R(s)+ L p; (s)P (s) for alli,je S
! ke S k

(8.3-3)

To write this system of equations in matrix form, define the 'box" operation

of two matrices to be element by element multiplication as follows:

B O C =(b, .c . (8. 3-4)

i,j L]
(nlxnz) (nlxn2) (nlxnz)

Then, the system of equations in (8. 3-3) can be written as

tb*(s) = Df‘(s) + [PEl:f*(s)]@*(s). (8.3-5)

%k sk
where Dr(s) and f (s) are defined by

Riz(s) 0
b3
D (s) = R,(s) (8. 3-6)
r N
AN
N
0 R (s)
_ o
and - '
é" (s) = (¢, ne) (8. 3-7)
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~]

From Eq. (8.3-5), we obtain
$(s) = [I_ -POL ()] T D) ' (8.3-8)
o

By final value theorem of Laplace transform,

lim &(t) = lim s& (s) (8.3-9)
tooo . s-0

We will denote this limiting matrix by ¢, Now from Eq. (8.3-5) we have

® = {lim s{I - PO (s)] 1}{ lim D' (s)} (8. 3-10)
s-0 o - s+0 T

Note that for all ie¢ S

lim R (s) = [ R.(t) at (8.3-11)
g0 o !

By Theorem 3.1, the RHS of the above equation is the mean unconditional
holding time in state i, we will denote this mean by ;’i' It then follows that

lim D;(s) =D (8.3-12)

W
s-0
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where

W, 0
D_ = v72 : (8.3-13)
w \
0 “w
n
L o_
Now write Eq. (8.3-10) as
® = (lim T(s)) D_ . (8.3-14)
@ 4
s-0
where
T(s) = slI_ - PO (s)) ] (8. 3-15)
5 =
This gives
T(s)I, - PO (s)] = s _ (8.3-16)
o =
Note that for all i,je S
- w
lim £, (s)=[ f. .(t)dt=1 (8.3-17)
s-0 9 o J

Therefore, by taking the limit s- 0 in Eq. (8.3-16) we obtain

T =TP (8.3-18)
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in which

T = lim T(s) . (8.3-19)
s~0 - ‘

Since the system is ergodic, the steady state probability vector z of the

imbedded Markov chain is the unique solution of the following set of

equations.
z=zP
and (8.3-20)
. =1
. i
ies

Therefore, each row of T must be propoertional to 7. Let t_i denote the

ith row of T. Then for all ie S,

t.=k.7w (8.3-21)

T = . z (8.3-22)
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Substituting Eq. (8.3-22) into Eq. (8.3-14) we have

6. )= 7 D= . . (8.3-23)

To determine the constants ki’ we impose the necessary condition

L ¢..=1 forallieS (8.3-24)
. i,j
je€sS

Therefore, from Eq. (8.3-23), for all ie S

R (8. 3-25)

L 7r.v_v.
j€S 3]

Note that ki is not a function of i. It follows from Eq. (8.3-23) that

¢. .= —t—— forallies (8. 3-26)

»

Observe that the RHS is independent of i, We will therefore denote ¢i i

by ¢J.. Hence the steady state availability of the system is
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L oW,
j€sS J
A = — (8. 3-27)
z LA y
ie S ¢

We have proved the following theorem.,

Theorem 8. 2

For an ergodic semi-Markovian system, the limiting state
probabilities of the system are independent of the initial condition of the
system, and depend only on the limiting probabilities of the imbedded Markov
chain and the mean unconditional holding times of the states. For all i€ S,
if T is the limiting state probability of the imbedded Markov chain for
state i, and if ;i is the mean unconditional holding time in state i, then the

~

steady state availability of the system is given by Eq. (8.3-27).
8.4 MEAN TIME-TO-FIRST-SYSTEM-FAILURE

Following our previous notations, we will use S_u and S d to denote

the sets of up-states and down-states, respectively, for a semi-Markovian

system. Without loss of generality the elements of Su and Sd are

assumed to be the same as pi-eviously defined.

Su = {1,2,...,k0] (8.4-1)
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Sd = [ko+1, ko+2, cees no} (8. 4-2)

Recall from Eq. (7.1-4) that wi . is the conditional holding time of the

process in state i given that the process next visits state j. We denote the

£

expected value of w, j by wi,j

[ee)
w. .= [ tf .(t)dt 8. 4-3
TREIAE (8.473)

Let ’\_V— denote the matrix of V;i j'

s

W (8. 4-4)

W = (Wi, j)

Now partition the matrices P, f(t), and -V—V into submatrices as follows.

Pi,i P,
P=|l-— —|— —— (8. 4-5)
!
Po,1 1 Fa,2

(8. 4-6)
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- P
_ Wit : Wi 9
W = ._.__._'.__._.._ ) . (8.4:—7)
Wo 1 I Wy :
» | .

In the above partitions, the dimension of the (1, 1) submatrices is kox ko;
the dimension of the (1, 2) submatrices is kox(no-ko); the dimension of
the (2, 1) submatrices is (no-ko)xko; and the dimension of the (2, 2)

submatrices is (n_-k )x(n -k ).
o o o o

Now let g; d(1;) denote the p. d. f. of the first passage time from
state ie Su to a system down state in Sd' By using similar reasonings

as in Section 8.2, the system of integral cquations governing g. .(t) is
g g i, d

gi, d('c) = j?S P;. jfi, j(t) + k?S P; 18k, d(t)@ fi, k(1;) for all ie Su
d u

(8. 4-8)

The first summation on the RHS accounts for the first passage times that
the system enters a down-state in one transition after starting state i.
Whereas the second summation accounts for the first passage times that
the syétem enters a down-state after two or more transitions after starting

from state i. Taking the Laplace transform of Eq. (8.4-8) we have
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gi’d(s)= L op, ,f (s)+ Z p;

(s)g (s) forallusS
JGS i,j 74,3 keSu k1,k k, d

- (8.4-9)

To write the above equation in vector form, define a (kox 1) vector
g, o)
g(s)= | 82,4 (8. 4-10)

g; as)
| o _

Then the set of equations in (8. 4-9) can be written as

\

g (s) = P, BL 2(S)] v (n "k, 0) + [P, 0O f—1 1(S)]g (s)
(8.4-11)

The solution for g*(s) from Eq. (8.4-11) represents the Laplace transform

~

of the vector of p. d. f. 's of the first passage times to a down-state in Sd

when the system starts from the states in Su'

Let T 4 denote the random first passage time when the system

starts from state i. We will use ;i 4 to denote the expected values of

T Define the vector ; as

~

i, d’
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2,d .

It then follows that

- 4. —d__ sk
T = lim as & (s)
s-0

Now, rewrite Eq. (8,4-11) as follows:

[Iko‘ P 1D=fi, 1(S)]E (s) =[P, O _1 2(s)] v (n "k, 0)

Differentiating the above with respect to s gives

4 *
[Iko- P1 1El_f_1 L(s)] 3s & (s) - [P} D"* fl 1(S)]g (s)

; 4 T, -
- [Pl, ZD ds =f1, 2(5)] A4 (no ko’ 0)

Taking the limit as s- 0, and making use of Eq. (5.3-17) we obtain

- = Pre T _ e T,
(L, ~Py o +P AW, Ik, 00 =[P ,OW, v (n k0

o
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(8.4-13)

(8. 4"14)

(8. 4-15)

(8. 4-16)



Since P is such that Pk

-0 as k-«, by the matrix inversion
1,1 1,1

Lemma 5.1, [Ik - P1 is non-singular., Therefore,

o)

/]
7= -P, Jle, oW, Jvik,0 +(®, .OW, v (n -k, 0]
~ 1 1,1 1,1= Yo’ 1,2 1,2'= Yo 0o’

k 1,
o

(8.4-17)

Observe that the expression in the second bracket on the RHS is a column

vector of dimension (koxl), and the ith element of this vector is equal

to X P, LW, oL which is the mean unconditional holding time in state i.
jes 7 ’

If we let @ denote the vector

w = Wa (8. 4-18)

(8. 4_‘1 9)

|
"
W‘H
]
d

Since this equation gives all the mean first passage times from the initial
states in Su to a system down-state in Sd' it is the fundamental equation

required for computing the mean first passage time for any given initial
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state vector _13(0). Therefore it follows that

. —1 - '
MTTFSFP(O) 1, 1] we (8. 4-20)

=P ()1, -P
(o]

We have proved the following theorem.

Theorem 8. 3

In a semi-Markovian system which consists of transient states and
one recurrent chain, and the set of states Sd is such that it does not contain
any transient state, then the mean first passage time of the system from
any state ie Su to a state in Sd depends only on the submatrix Pl, 1 and
the mean unconditional holding times of the states in Su' If the initial

probability state vector of the system is P (0), then the MTTFSF of the

system is given by Eq. (8. 4-20).
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Chapter 9
CONCLUSIONS AND RECOMMENDATIONS

9.1 SUMMARY OF RESULTS ;

The processes of Markovian and semi-Markovian systems treated
in this thesis can be considered as generalizations of discrete parameter
Markov cilains as well as birth and death processes, There are many
physical systems whose state transition processes obey the Markovian
and semi-Markovian models. For example: single or multi-channel
waiting line and trunking problems, machine operation and servicing
problems, marketing problems, inventory and production problems,
electrical power supply problems, etc. In this thesis we have considered
- both the modeling as well as analysis aspects of systemswhich are

Markovian and semi-Markovian.

The system of differential equations which governs the dynamical
behavior of the state probabilities of a general Markovian system is
derived, and solutions for the equations are given. The characterization
of stationarity of a Markovian system in terms of the characterization
of the p. d. f.'s of the {ransition times among the states are discussed.
The existance of and solutions for the limiting state probabilities of

ergodic systems are established.
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The development of math models for a physical system consists
of several basic steps. The first is to identify and define all possible
states. The second is to determine the transition rates ;)r the transi-
tion probabilitie‘s among the states for the imbedded Markov chain. In
addition, for semi-Markovian systems, all conditional holding time
probability density or distribution functions of the states must be deter-
mined. To enhance clarity, simple machine operation and maintenance
problems are used as vehicles to illustrate the general methodologies

for modeling of Markovian as well as semi-Markovian systems.

Many commonly used measures of system effectiveness for
dynamic probabilistic systems are defined. These measures can be

grouped into three categories:

‘1. Time dependent probabilistic measures
2. Steady state probabilistic measures

3. Statistical measures

A unified matrix approach is used to develop the general expressions for
the various effectiveness measures for stationary Markovian systems.
The results developed are particularly suitable for analyzing large scale

complex systems by employing a digital computer.
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Of the many statistical measures treated, system MUT and
MDT in the steady state are among the very important ones. There-
fore special emphasis has been given in the treatment of ;ystem MUT
and MDT. Expressions for system MUT and MDT in terms of independent
subsystem MUT's and MDT's are derived. These results are especially
valuable from the computational standpoint when solving for large scale

systems.

It is shown that systems comprised of units with exponential
p. d.f.'s for their time-to-failure, and general p. d. f.'s for their time-
to-repair are semi-Markovian systems. The dynamical behavior of
the state transition process of a semi-Markovian system is governed by
a system of integral equations involving convolution integrals. Since the
convolution of two functions is transformed to rnultiplication after Laplace
or Laplace-Stieltjes transformation, such transformation is an effective
tool for solving the system of integral equations. Expressions for sys-
tem effective measures which pertain to the limiting state probabilities
and the first passage time statistics of semi-Markovian systems are

developed.
9,2 SUGGESTIONS FOR FURTHER STUDY

The treatment of Markovian systems in this thesis can be

considered to be quite complete. Any other effectiveness measures
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which are not treated here may either be inferred from the results already

developed, or they may be derived by using similar procedures employed

L4
in here, In the case of semi-Markovian systems, however, the treat-

ment has been less complete. In particular, expressions for the time

dependent probabilistic effectiveness measures have not been developed.

This is because general analytical solutions for the system of integral

equations in (8. 2-6) are by no means easy. The following suggestions for

further study pertaining to semi-Markovian systems are recommended.

1!

Instead of solving for the most general solutions for
the system of equations in (8. 2-6), it is suggested

that the system of equations be solved for a particular
class of conditional holding time p. d. f.'s, for example
the families of Erlang or Weibull p. d.f.'s. Once the
time dependent solutions are obtained, expressions
for the time dependent system effectiveness measures

can be developad.

In Section 8.4, the general expression for the mean
first passage time to system failure is developed.

Since system MUT in the steady state can be con-
sidered as the mean first passage time corresponding to a

particular initial probability state vector, it would not be
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difficult to develop expressions for system MUT and
MDT for semi-Markovian systems. The develop-

L 4

ment of these expressions are suggested.

As a sequel to the preceeding development, it is
suggested that expressions for system MUT and
MDT in terms of independent subsystem MUT's and

MDT's for semi-Markovian systems be developed.

In machine operation and maintenance problems,
under certain operation and maintenance policies,
the state space of the system could become countably
infinite when there are more than one repair crew |
servicing the failures. It is suggested that modeling
and analysis of multiple repair crew systemé be

studied.
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APPENDIX A

AN ALGEBRAIC THEORETIC CLASSIFICATION OF THE
STATES OF A MARKOV CHAIN ‘

L 4

Consider the following binary relation defoned on the set of states
S of a Markov chain. An element ie S is said to bear a relation T to
je S, denoted by iT j, if it is possible for the chain to reach state j from

state i. The following properties of T on the elements of S are obvious:
Reflexive: iTi for all ieS (A-1)

Transitive: iTj and jTk imply iTk for all i, j, keS (A-2)

Therefore, the relation T is reflexive and transitive. Now define a binary
relation R on S based on T. An element ie¢ S is said to bear a relation

R to an alement of je S if iTj and jTi. In terms of communicative
properties among states of a Markov chain, two states will have the
relation R if it is possibly to reach from either state to the other state.

It is not hard to see that R is reflexive, transitive as well as symmetric

which is defined as follows:
Symmetric: iRj implies jRi for alli, je S (A-3)

Therefore, R is an equivalence relationon S. For any i€ S, let

R(i) denote the set of all elements j in S which are equivalent to i, that
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is je R(i) if and only if iRj. R(i) is known as an R-subset or an
equivalence class of S. It can be shown [74] that the R subsets have the

following properties:

1. For alli,jeS, iRjif and only if R(i) = R(j)
2. Two R-subsets are either identical or have no elements in

common, and the collection of all R-subsets is a partition of S,

In terms of these properties the states of a Markov chain can be groupead
or classified according to the R-subsets. The classification will be such
that any two states of the chain will belong to the same R-subset if and only

if it is possible to reach from one state to the other.

Now, we will consider a partial order relation induced by T.
Define a relation T on the set of equivalence ciasses as follows. For
any two R-subsets u and v, uT%*v holds if every element of u bears the
relation T to every element of v. It can be seen that T#* is reflexive,

transitive and antisymmetric which is defined as follows:
Antisymmetric: If uT#*v and vT*u, thenu = v (A-4)

Therefore, T is a partial order relation. It is known as a partial order

induced by T. The minimal elements of the partial ordering of equivalent
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classes are classified as the ergodic sets of the Markov chain. By the
minimal condition of partially ordered sets, there exists at least one

ergodic set for every Markov chain.
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APPENDIX B

SOLUTION OF THE VECTOR DIFFERENTIAL EQUATION OF A
LINEAR HOMOGENEOUS SYSTEM

In this appendix we shall derive a solution for the vector

differential equation:

%) = x(t) A(t) | (B-1)
1xn Ixn nxn : :

where the elements of A(t) are continuous functions of time on the interval
t <t<T. Suppose @_l(t, to), R Qn(t, to) are solutions of Eq. (3-1) for

the following boundary conditions, respectively.

_>g_1(to) = [1,0,0,7..,0]

it

%, (¢ ) = [0,1,0,...,0]

x;l(to) [0,0,0,...,0, 1] (B-2)

Let &(t, to) denote the square matrix form by gl(t, to), _@_Z(t, to), cees Q_n(t, to)

as follows:

o

g, (tt)

&t t ) = g5t 1) (B-3)

Lin('[:, to) J
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This is known as the transition [75] or fundamental [76] matrix of the
linear system governed by Eq. (B-1). Since _q_s_l(t), foralli=1,2,...n,
are the solutions of Eq. (B-1)for the boundary conditions of Eq. (B-2), it

follows that the solution for any initial vector x (to) would be
x(t) = x(t ) ot t ). ' (B-4)

The matrix &t, to) is given by the solution of the matrix differential

equation

d el : -

at &(t, to) = &t, to) Alt) (B-5)
for the boundary condition

@(to, to) = In . (B-6)
The following theorem establishes a series solution for &t, to).

Theorem B. 1

If A(t) is a square (nxn) matrix whose elements are continuous

¥

functions of time on the interval to < t< T, then the series

This is often known as the Peano-Baker series.

-167-



t t !
Afo,)do, +J; Alg,) jt Aloy) doydo,+. ..

(0] (o] (0]

I+ [
t

is a solution of the matrix differential Eq. (B-5) for boundary condition
Eq. (B-6) on the same interval.
Proof:

For simplicity of notation, let the given series be denoted by
+ +... -
Bo(t) + Bl(t) Bz(t) (B-7)

First we show that the series converges uniformly on the interval
to <t < T. Recall that a series is said to converge uniformly if the
sequence of its partial sum converges uniformly. Let Sk(t) denote the

general term for the partial sum of the given series:

k
Sk(t) = L B/t
i=0
t t 71 Tn-1
=1 +J; A(cl)dol+...+{ A(ol)Jt” A(cz)...ft Alp,)do, doy ;... do,
O (¢] (¢] (o]

(B-8)

To show that the sequence of matrices {Sk(t)} converges uniformly, we have

to show the sequence of each element of Sk(t) converging uniformly. Let

Ei j[-] denote the (i, j)th element of matrix [-]; "a" denotes

the 1f1aximum absolute value of the elements of A(t) on the

interval to <t<T,
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That is,
a = max |a_(t}| ' (B-9)
. ij :
(i, j) .
t <t<T .
o='=
Note that "a'" exists since the elements of A(t) are given to be continuous
functions on the interval to <t< T. The absolute values of the elements

in the terms of the partial sum Eq. (B-8) are bounded as follows:

|E4[B <1

T
IEij[Bl]l < J't a do, = a(T-t )
o
(3 2 2
T 1 _a (T-t)
IEij[Bz]l <[ af "a do,do, * 0
t t 2! N
o o
T o O-1 ak('r -to)k
lEij[Bk]l SJ‘t aJ; a"'j; adO'kdO'k_l... d0'1= '——‘k‘r‘—
o o o
(B-10)

The above is true for any (i, j)th element of the matrices Bm' We now

invoke the Weierstress M-test theorem {72} which states that if there
Ree]
exists a convergent series I Mi’ with Mi independent of t, such that
n=0
|ui(t)[ < Mi for all t on the closed interval a <t < b, then the series
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w

> ui(t) is absolutely and uniformly convergent on that interval. We observe

n=0
that the series ,‘
2%t ) al(r-t )"
1+a(T_to)+_—§T-_—+"'+-T—+'“ (B-11)
a(T —to)
is nothing but the Maclaurin's expansion of e . Therefore, the series .

(B-11) converges, and each term of the series is independent of t. Hence,
this establishes the uniform and absolute convergence of the given matrix
serigs on the interval to <t<T. We now compute the term-by-term

derivatives of the series:

d . ~
Et— Bo(t) =0
d _ ~
I By®) = Al
d t .
3 Byt = Alt) { Alp,y) do, = Alt) B, (t)
(o]

f In general, for k> 2

; 4 B (1) = A®) " ae 3860 ™ AG e, d &
' 3 By lt) = It o, It 0'3...‘j"t o, )do do, ...,

o

= A(t) B,_,@®) (B-12)
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Observe that the elements of the derivatives aqt- Bk(t), fork=1,2,3,...,

[=2]

are continuous functions on the interval t,<t<T. In addition I —d(—lf Bk(t)
. k=0

is uniformly convergent on the interval to <t<T. This can be seen from

@« [+~]
T -C%-Bk(t) = AW £ B (1) (B-13)
k=0 k=0 4 :
® 4a
Therefore, I at Bk(t) is uniformly and absolutely convergent. Since
k=0
the series L B, (t) and L = B, (t) are uniformly convergent on the
k=0 k k=0 dt Tk

interval to <t< T, we have:

d d

— I B, (t) = & —B5B ()

dt =0 k 120 at "k |
= A(t) © Bk(t) (B-14) '

k=0
Observe that

[=+]

L B {t)=1 (B-15)

k=0 ko n

By uniqueness theorem on the solution of differential equations, we conclude
[
that ¢ Bk(t) is the solution of the matrix differential Eq. (B-5) for the
: k=0
boundary condition Eq. (B-6) on the interval t <t< T.
°T - Q.E.D
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APPENDIX C

LIMITING SOLUTION OF AN ERGODIC STATIONARY
MARKOVIAN SYSTEM

In this Appendix we shall establish that for an er'godic Markovian

system, the system of equations

SPEIBO) = BwBOIM (c-1)

possesses a limiting solution as t - . Furthermore, we shall show that

this limiting solution is independent of the initial condition P(0).

Let S denote the set of system states of the system, For each
ie S, let Q_i(t, 0) be the solution of Eq. (C-1) when .the given initial
vector P(0) is such that the ith element of P(0) is 1 and all other
elements are 0. In other words g_b_i(t, 0) is the probability state vector
at time t> 0 givlen that the system is in state i'at time 0. Denote the
elements of gi(t, 0) as follows:

B0 = (B, ((50), B (6 0),...,0,  (t0)] (C-2)
L] 3 3 o

It follows that for all i, je S

¢i, j(t,O)z_ 0 (C-3)
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and

Lo, (t,0) =1 .
keS Lk ; .

The system being ergodic, strict inequality holds in Eq. ‘(C—3).

¢i j(1;, 0)>0 foralli,jeS

»

The system transition matrix ®(t, 0) is

B 7]
6, (0 ¢, (L0 ... g (t0)
2 3 ] fo)
(£, 0) = | gy 4(0) g, ,(t0) By B0)
¢no 1(1:, 0) ¢no, 2(t, 0).... ¢no no(t, 0)

It follows that the solution for Eq. (C-1) is
P(t| P(0)) = P(0) &(t, 0)
But in Eq. (5.2-3) we have shown that

&(t,0) = e
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Forall 7> 0,

o(t+r,0) = e KEFT)
_ .. Mr Mt .
= ‘e e .
= &(r, 0) ®(t, 0) (C-9)
Now, for each je S, let
a;(t) = :?ZX 85, (60 | (C-10)
and
Byt = s 35,6 0) (C-11)

This means ozj(t) and Bj(t) are respectively the maximum and minimum
elements of the jth column of &(t,0). For alli, je S, the (i, j) element of

d(t+7,0) is

. t+1,0) = £ ¢, (7,009, .t 0)
i,j ke S i, k k,j

. , 0 ; = Q. C-1
< Eo; W72 0) a(t) = ) (C-12)
Similarly,
8 {t+7,0) 3ka 35 (T 0V B,8) = Bi(0) (C-13)
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Since Egs. (C-12) and (C-13) hold for all i¢ S, it follows that

o:j(t+7') < ozj(t) . (C-14)
and

Bj(t +r) > Bj(t) (C-15)

This establishes that, for all je S, aj(t) is a monotone non-increasing
function, and Bj(t) is a monotone non-decreasing function. Since these

functions are bounded between 0 and 1, their limits exist. Let

lim B _

fm o0 ozj(t) = ozj (C-16)
and

lim _ = -

tow B = By (C-17)

We will now prove that these limits are equal. Let dj(t) denote the

difference of cxj(t) and ’Bj(t)' That is

dj(t) = ozj(t) - Bj(t) (C-18)

We will show that dj(t) -0 as t- = By Egs. (C-14) and (C-15) it

follows that
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d,(t) > d{t+7) > 0 (C-19)

This means dj(t) is a monotone non-increasing function.

Now let

¢ = min ¢i

J.(1', 0) : (C-20)
i,j

2

Recall that &(r, 0) is an n xn matrix. It follows from Eqgs. (C-4) and

(C-5) that

1
0<cc< o (C-21)
By Eq. (C-9) we have for all positive integer n and all 7 > 0,

¢i, j((m+1)'r,0) = k?S ¢i’ k(T’0)¢k, j(mT’Oi (C-22)

Let i be chosen such that

s j((nrrFl)'r,O) = ozj((m+1)1',0) (C-23)
Now let q be chosen such that
(mT,0) = 8, (m7,0 C-24)
b, J( , 0) BJ( ) (

Then by Eq. (C-22)
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ozj((m+1)'r, 0) = ¢i, q('r, 0) ¢q, j(m'r, 0)

+ E ¢. (7,0)¢. .(m7,0)
keS-{q) i, k k,j

[ 4

<¢. (r,0)8.(mT,0)+a.(m7,0) =L ¢.  (r,0)
i,q i o keS-{q} i, k

o q(T, O)ﬁj(m'r, 0) + aj(m'r, 0)[1 "85 q(T, 0)]

= ozj(m'r, 0) - [on.(mT, 0) - Bj(m'r, 0)] 3 q('r, 0)

< aj(mr, 0) - [aj(mr, 0) - ﬁj(m‘r, 0)]c

Similarly, should i be chosen such that

¢i, j((m+1)r, 0) = Bj((m+ 1)r,0)
and should g be chosen such that

?q, j((m+1)r, 0) = ozj((m+ 1)r,0)

then by following a similar procedure as above would result in

Bj((m+ 1)r, 0) zﬁj(m'r, 0) + [aj(m'r, 0) - Bj(m'r, 0)le
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Subtracting Eq. (C-28) from Eq. (C-25 we obtain:

aj((m+1)'r, 0) - Bj((m+1)7, 0)<(1 '20)[aj(m'r, 0) - ,3j(mr, 0)]

(C-29)
The above equation implies that A
dmr,0) < (1~ 2c)™ a(r) (C-30)
Since the order of S, no,‘ is greater or equal to 2. Therefore, by (C-21)

0<c< -12- (C-31)

Hence Eq. (C-30) shows that

lim d.(m7,0) =0 (C-32)
- ®

We have established that

aj = Bj for all jeS (C-33)

Since aj(t) and Sj(t) are respectively the maximum and the minimum
elements of the jth column of &(t, 0), Eq. (C-33) . indicates that all
elements of the same column of &(t, 0) converge to one limit as t-=,

We shall denote by ﬁj the limiting value of the elements of the jth column

of &(t, 0). That is, for all ie S
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7. = lim .t 0
i ¢1,;|( )

too

If ® denotes the limiting value of &(t, 0) as t-«, then -

T Ty T
(o)
T T o T
& = 1 2 n0
T 72 7rn
o
s ~ad

It follows that for any initial probability vector P(0)

lim  P(t[(0))

t—

P(0) o

2,...,7rn]
o

= [7r1,7r

This completes the proof.
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APPENDIX D

MAIN THEOREM FOR STATE TRANSITION-RATE
MATRIX OF MARKOVIAN SYSTEDMS

-

For convenience we restate Theorem 5. 6 of Section 5. 6 here.

Theorem 5.6

_Let M be the fransition rate matrix of an no—state stationary
Markovian system which is such that n, of the states are transient states,
and the remaining (no- nl) states forms an ergodic set. If B is an (m xm)
matrix resulted after deleting i, 1< i< n - n;, rows and the corresponding

i columns of M pertaining to i states of the ergodic set, then B is

non-singular.

The proof of this theorem requires the following matrix inversion

lemma.

Lemma

If A is an nxn matrix such that Ak tends to 0 (zero matrix) as k

tends to infinity, then (In-A) has an inverse, and

-8 -1 +ara+ab . -z A" (D-1)
k=0

Proof of Lemma

Consider the identity

(I -AXI +A+A2+...+_Ak_1) -1 - AF (D-2)
n n : n
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which can easily be verified by multiplying ou;*. the LHS. By hypothesis,

the RHS tends to In as k- =, Since the determinant of In 'is 1, for. suffi-
ciently large k the determinent of In - Ak is non-zero. If follows that for
sufficiently large k, the determinent of the LHS is non-zero. But the deter-
minent of a product of two matrices is equal to the product of their deter-
minents. Hence (In- A) has a non-zero determinent. This is equivalent

to ‘saying that (In— A) posseses an inverse. Multiplying both sides of

Eq. (D-2) by (In- A)-1 we have:

3 k-1

- 2
(1 -A) 1(I ~Ak) =1 +A+A +A +. .. +A (D-3)
n n n

Now taking the limit as k- « we obtain Eq, (D-1).

Proof of Theorem 5.6

*
Each state of the system being either transient or recurrent

all diagonal elements of M are negative. Therefore the diagonal ele-

ments of B are negative and B may be written as

B =, )
i bl, 1 0 —1

= by o (1 -Ql (D-4)
o o i

where Q is the following (m xm) matrix.

“A recurrent state is defined to be a state of an ergodic set.
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r -
e P Pus o0 Pum
by g byt 1
b b b -
Q - 21 2d - .- ARG (D-5)
2,2 2,2 2,2
:
1
bm,l bm,2 ________ 0
- 5
m, m m, m
— -

Since all bi i < 0, the diagonal matrix of b, i is non-singular. Then B

will be non-singular if I - Q is non-singular. If we can show that

Qk - 0 as k — », then by the matrix inversion lemma, [Im- Q] is non-singular.

The following properties hold for the elements of Q:

~

@ g 20 (D-6)
3
(ii) 0< T q, .<1 (D-7)
=k i,j=
j=1
m
(iii) for at least one value of g, L qz j< 1 (D-8)
o

‘Let Vi be the sum of the ith row of Q, i.e.,

v. = L q. . (D-9)
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By properties (D-6) - (D-8), it follows that -

q. .v, <1 foralli

k=1 Lk k
m
Let 6 = mf:tx{ i: 9 50 vk}
i k=1
Therefore
m

z

o qi,kvki 6<1 foralli

Denote the (i, j) element of Qk by 9 j(k)’ i. e.,

Q" = (q )

The (i, j) element of Q7 is:

m m
9, 43 = oy i, k%, = kfl 9 Y
The (i, j) element of Q3 is:
m m
9 J.(3) = k)=:1 9 1, J.(2) < k)=:1 9; ®
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(D-12)

(D-13)
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The (i, j) element of Q4 is:

m m e

G, {87 T a8 (@B E gy n0s o* (D-16)
In general we have:

9 j(2k) < Gk | fork > 1 (D-17)
and

qi, J.(2k~l-1) gvif)k for k > 1 (D-18)

Since 6 <1 and v, < 1, for all (i, j) elements, q j(k) is a non-increasing

3

function of k, and qi

j(k) -+ 0 as k= », Therefore, by lemma 5.1
[Im- Q] is non-singular. Hence B is non-singular.

Q. E. D.

The corollary states that the matrix M is singular. The following

is a proof for the corollary.

-184-



Proof of Corollary

Let M' represent the matrix resulted from striking out the last

row and the last column of M. Therefore M' is an (no-,l)x(no~ 1) matrix.

Ml

By Theorem 5.6, M' is non-singular.

vector

such that

™1 ™y ooy n -1
m2,1 mz’2 ""m2,n -1
. o
my, -1,1 "y '1,2""mn -1,n -1
L o o 0 o}

a = [al,az,..~., N _1]
o
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The preceeding equation represents the following set of scalar equations:

n -1
o
Y am, .=m . for j=1,2,...,n -1
s 1 1] n.,j) o
i=1 ¢}
Summing over j gives
n -1 no-l no-l
r z a, m, .= z mn
j=1 i=1 A s B

(D-22)

(D-23)

Interchanging the order of summations on the LHS, and recognizing the

fact that
n -1
o
L m,., .= -m, forallie S
. i, j i,n
j=1 o
we obtain
n-1
a. m., = m
i=1 S o' o

By Egs. (D-22) and (D-25), it follows that

+ oot =
817 T %Sy "n-1%n-1 7 P

where m, denotes the ith row of M. Hence M is singular.
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APPENDIX E
AN ALTERNATIVE APPROACH OF DERIVING THE mth
MOMENT OF THE TIME-TO-FIRST-SYSTEM;FAILURE
In this Appendix the expression for the general mth moment of the
time-to-first-system-failure will be derived through Laplace transform
approach. In contrast to the time domain approach used in deriving
Eq. (5.11-8), the Laplace transform approach is more formal but reveals

less insights to the problem.

First define the following vector notations:

r (] 2() = [r, ] B(0), r (| 2O, ..., rko(tl P(o)] (E-1)

1

;d(tl_l_’(o)) | BO), r t[B(on,..., r, (t| B(ON] (E-2)

[r) 41 k +2
(o] (o] o]

The Laplace transform of the above vectors are:

-+ ]

o (s|BO) = [ £ ¢ PoNe*at (E-3)
0

£y (s|BO) = [zt BoNetat (B4
0 A

Using the notations of Eqs. (E-1) and (E-2), Eq. (5.3-2) can be written as

Bi1 Byo

[£ (t]X0)) £ (t[B(ON)] = [£ (] B(0)) r,(t| E(OD)] (E-5)

g

fio
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Taking the Laplace transform of Eq. (E-5), we have

st (s|B(O) - B (0) = x (s|BON B, | - -6)
sry(s| 2(0)) - B4(0) = x (s| BOD B, (E-7)

Solving for g_::(slg(o)) from Eq. (E-6) we obtain:

-1

r (s|B() = B (0) [sI, - B, | (E-8)
Substituting Eq. (E-8) into Eq. (E-7) results in:
sk _ _ -1 _
sry(s|B(0) - B4(0) = B (0)s1,-B, |1 "B, , (E-9)

The probability distribution function of the time-to-first-system-failure
is:
t T
J ] BONdt = r ] PO) v (n -k ,0) (E-10)
o :

Differentiating gives

f(tlf(o)) ) Edt— £d(t|-13(0)) zT(no"ko' 0) - (E-11)
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The Laplace transform of Eq. (E-11) is:
o ) T, o of R
£'(s| B(0)) = [sry(s] B(O)) - B(O)] ¥ (n -k , 0) (E-12)
Substituting Eq. (E-9) into Eq. (E-12) we obtain:

£ (s| B(0)) = Eu(O)[sIko-B

-1 T _ _
1,1] Bl,zz (no ko, 0) (E-13)

Since the elements of B are such that each row run is zero,

T _ T _
Bl, g ¥ (no ks 0) = Bl, ¥ (ko, 0) (E-14)

By substituting Eq. (E-14) into Eq. (E-13), we obtain f*(sl_l?(o)) in terms

of Bl, 1

*(s| BO) = B (O)s1, -B, 17'B,
: o 7 ’

¥ (k,0) (E-15)
This is the Laplace transform of the probability density function of the

time-to-first-system-failure (TTFSF). The mth order moment, TTFSF(m),

is related to the limiting value of the mth derivative of fﬂz(slf(o)) as

follows:
m d
= lim {(-1) — £ (s|B(O)} (E-16)
s-0 ds

rTFsF™)
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Substituting Eq. (E-15) into (E-16) and carrying out the derivative we

obhtain:
(m) _ .. _ , _ -(m+1) T
TTFSF = lim _lju(O) m! [sIk Bl, 1] Bl, A (ko, 0)
s-0 o
= -1 m P (0B ™ vik,0) (E-17)
=u 1,1 — 7o’

This completes the derivation.
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APPENDIX F

ILLUSTRATIVE EXAMPLES OF RELATIVE MAGNITUDES
BETWEEN MUT(MDT) AND MRUT (MRDT)

L d

First consider System 1 with transition diagram as shown in

Figure F-1.

Figure F-1 Transition Diagram of System 1

For this system, let

w0
1

= {1: 2} (F-l)

wn
H

{33 (F-2)

System 1 could rperesent, for example, a physical system with two
identical units in parallel where at least one is needed for the system to be
up. Either or both units are operated unless under repair, i.e., a unit

is operated as long as and as soon as it is operable. Therefore, the system
always starts from state 2 after it is restored from state 3, the only down

state. It follows that
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MUT = MTTFSF (F-3)

(0,1, 0]

Since state 3 is the only down state, by inspection of Figufe F-1, we see

that

MTTFSF[I’ 0, 0] > MTTFSF[O’ 1, 0] (F-4)
The conditional mean remaining up-time for system 1 is:
T Ty
MRUT = g MTTFSF[I’ 0, 0]~ e MI‘TFSF[O’ 1, 0]
1 72 1 72
(F-4)
Subtracting Eq. (F-3) from Eq. (F-5) results in:
!
MRUTu- MUT = ”1+7r2 [MTTFSF[I’ 0, 0]— MTTFSF[O-’ 1, 0]]
(F-6)

By Eq. (F-4), the RHS of the above equation is greater than 0. Hence

for system 1
MUT < MRUT ' (F-7)

The mean down-times of the system can be found by inspection of Figure

F-1.
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MDT = L—‘l— = MRDT (r-8)

9 d
and
7T3 o
MRDT = — (F-9)
2
Since Ty < 1, the above two equations imply that for system 1
MDT > MRDT (F-10)

By actually evaluating the expressions for MUT and MRUT of system 1, it
can be shown that there exists no definite relationship between these two
mean times for thic system. Depending on the relative magnitudes of

Ai and My (i =1,2), either of these two mean times can be larger than the

other.

Next consider sysiem 2 with transition diagram as shown in

Figure F-2.

Figure F-2  Transition Diagram of System 2
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Let the sets of up-states and down-states be the same as that specified
in Egs. (I'~1) and (F-2). In terms of a physical system, system 2
could represent the same 2 units in parallel (as for systém 1) except
that the operational procedure is changed. For this case, when both
units have failed, repairs must be completed on both units before

operating the system again.

For system 2, the expression for MRUTu is the same as that
given by Eq. (F-5), but the values for the 7ri's (i=1, 2) for system 2
are different from those of system 1. By inspection of Figure F-2, we

see that

MUT = MTTFSF[L 0, 0] (F-11)

Therefore, for system 2

_ T2
+
L

MRU'I‘u - MUT = [MTTFSF - MTTFSF

[1,0,0] [0,1,0]]

(F-12)

Since Eq. (F-4) remains true for system 2, the reversed inequality of

Eq. (F-7) holds for system 2.
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MUT > MRUTu (F-13)

These two simple examples show that there exists no fixed
relationship between the magnitudes of MUT and MRU’f or MRUTu.
Similarly, other simple examples may readily be constructed to demon- 7
state the 'nonexistance of fixed relationships between MDT and MRDT or

MRDT g
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