


## University of Windsor

## Scholarship at UWindsor

**Electronic Theses and Dissertations** 

Theses, Dissertations, and Major Papers

2019

## Comparison of two bidirectional atmosphere-surface exchange models for elemental mercury

Jingliang Hao University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

### **Recommended Citation**

Hao, Jingliang, "Comparison of two bidirectional atmosphere-surface exchange models for elemental mercury" (2019). Electronic Theses and Dissertations. 7705.

https://scholar.uwindsor.ca/etd/7705

This online database contains the full-text of PhD dissertations and Masters' theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license-CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

# Comparison of two bidirectional atmosphere-surface exchange models for elemental mercury

By

## Jingliang Hao

A Thesis
Submitted to the Faculty of Graduate Studies
through the Department of Civil and Environmental Engineering
in Partial Fulfillment of the Requirements for
the Degree of Master of Applied Science
at the University of Windsor

Windsor, Ontario, Canada

2019

© 2019 Jingliang Hao

# Comparison of two bidirectional atmosphere-surface exchange models for elemental mercury

by

## Jingliang Hao

## APPROVED BY:

X. Chen
Department of Electrical and Computer Engineering

N. Biswas
Department of Civil and Environmental Engineering

X. Xu, Advisor Department of Civil and Environmental Engineering

#### DECLARATION OF ORIGINALITY

I hereby certify that I am the sole author of this thesis and that no part of this thesis has been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon anyone's copyright nor violate any proprietary rights and that any ideas, techniques, quotations, or any other material from the work of other people included in my thesis, published or otherwise, are fully acknowledged in accordance with the standard referencing practices. Furthermore, to the extent that I have included copyrighted material that surpasses the bounds of fair dealing within the meaning of the Canada Copyright Act, I certify that I have obtained a written permission from the copyright owner(s) to include such material(s) in my thesis and have included copies of such copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions, as approved by my thesis committee and the Graduate Studies office, and that this thesis has not been submitted for a higher degree to any other University or Institution.

#### **ABSTRACT**

This study compared two bidirectional atmosphere-surface exchange models by Wang et al. (2014) and Wright & Zhang (2015) for one monitoring site in the state of Georgia in the United States of evergreen needleleaf forest and deciduous broadleaf forest in summer and winter. Input data includes observed GEM concentrations and simulated meteorological data from June 2010 to September 2010 and from December 2010 to March 2011. For evergreen needleleaf forest in summer, the net emission flux estimated by Wang's model was greater than that by Wright & Zhang's (0.5 pg m<sup>-2</sup>s<sup>-1</sup> vs. 0.18 pg m<sup>-2</sup>s<sup>-1</sup>). For deciduous broadleaf forest in summer, the net emission flux predicted by Wang's model was smaller than that by Wright & Zhang's (0.1 pg m<sup>-2</sup>s<sup>-1</sup> vs. 0.29 pg m<sup>-2</sup>s<sup>-1</sup>). However, regardless of land cover in winter, the net flux produced by Wang's model was emission flux (0.21 pg m<sup>-2</sup>s<sup>-1</sup> for evergreen needleleaf forest and 0.18 pg m<sup>-2</sup>s<sup>-1</sup> for deciduous broadleaf forest) while that simulated by Wright & Zhang's model was deposition flux (0.59 pg m<sup>-2</sup>s<sup>-1</sup> for evergreen needleleaf forest and 0.49 pg m<sup>-2</sup>s<sup>-1</sup> for deciduous broadleaf forest). Additionally, stomata resistance, in-canopy aerodynamic resistance, stomata emission velocity, GEM compensation point concentration in stomata, GEM compensation point concentration in soil, stomata emission flux, soil emission flux, and net flux had large differences (≥100%) between the two models. The dominant factors resulting in these differences were identified. Wright & Zhang's model is more appropriate for simulating GEM exchange flux in winter when a net deposition flux is expected.

## **DEDICATION**

This thesis is dedicated to my parents.

#### **ACKNOWLEDGEMENTS**

I am highly thankful to Dr. Che-Jen Lin of Lamar University and Dr.

Leiming Zhang of Environment Canada for providing the dry depositing models and the data used in my research, and their help during my research. I would like to thank my supervisor, D. Iris Xiaohong Xu, for her support, encouragement, guidance, and patience. My sincere gratitude also goes to my committee members Dr. Nihar Biswas and Dr. Xiang Chen for their comments and suggestions. I gratefully acknowledge Mr. Tianchu Zhang at University of Windsor for his help in data processing. I would like to thank my family for their continued encouragement and support. Founding of this program is provided by Environment and Climate Change Canada and The Natural Sciences and Engineering Research Council of Canada.

## TABLE OF CONTENTS

| DECLARATION OF ORIGINALITY    | iii |
|-------------------------------|-----|
| ABSTRACT                      | iv  |
| DEDICATION                    | V   |
| ACKNOWLEDGEMENTS              | vi  |
| LIST OF TABLES                | x   |
| LIST OF FIGURES               | xiv |
| LIST OF ABBREVIATIONS/SYMBOLS | xix |
| CHAPTER 1 INTRODUCTION        | 1   |
| 1.1 Background                | 1   |
| 1.2 Objective                 | 3   |
| CHAPTER 2 LITERATURE REVIEW   | 5   |
| 2.1 Mercury cycling           | 5   |
| 2.2 Dry deposition models     | 6   |
| 2.2.1 Particulate pollutants  | 6   |
| 2.2.2 Gaseous pollutants      | 11  |
| 2.2.3 GEM                     | 15  |
| CHAPTER 3 METHODOLOGY         | 21  |
| 3.1 The two models used       | 21  |
| 3.2 Land cover                | 21  |
| 3.3 Study site                | 22  |
| 3.4 Seasons                   | 23  |
| 3.5 Study period              | 24  |
| 3.6 Model settings            | 25  |
| 3.6.1 Reference height        | 25  |

| 3.6.2 GEM compensation point concentration on cuticle                      | 25  |
|----------------------------------------------------------------------------|-----|
| 3.6.3 Meteorological conditions                                            | 26  |
| 3.7 Data treatment                                                         | 27  |
| 3.7.1 Input data                                                           | 27  |
| 3.7.2 Preprocessing                                                        | 31  |
| 3.7.3 Interpolation of ambient GEM concentrations data                     | 32  |
| 3.7.4 Input data for each of the two models and conversion of units        | 33  |
| 3.8 Hours of daytime                                                       | 34  |
| 3.9 Running the two models                                                 | 35  |
| 3.10 Calculation of the percentage of difference between the two models    | 36  |
| 3.11 Analysis of variance (ANOVA) of the difference between the two models | 36  |
| 3.12 The tools                                                             | 36  |
| CHAPTER 4 RESULTS AND DISCUSSIONS                                          | 37  |
| 4.1 Resistances                                                            | 37  |
| 4.1.1 Aerodynamic resistance (R <sub>a</sub> )                             | 37  |
| 4.1.2 Quasi-laminar resistance (R <sub>b</sub> )                           | 53  |
| 4.1.3 Stomata resistance (R <sub>st</sub> )                                | 59  |
| 4.1.4 Cuticle resistance (R <sub>cut</sub> )                               | 70  |
| 4.1.5 In-canopy aerodynamic resistance (R <sub>ac</sub> )                  | 70  |
| 4.1.6 Soil resistance (R <sub>g</sub> )                                    | 75  |
| 4.2 Velocities                                                             | 83  |
| 4.2.1 Stomata emission velocity (V <sub>st</sub> )                         | 83  |
| 4.2.2 Soil emission velocity (V <sub>g</sub> )                             | 90  |
| 4.2.3 Deposition velocity (V <sub>d</sub> )                                | 97  |
| 4.3 GEM compensation point concentrations                                  | 102 |
| 4.3.1 Compensation point concentration in stomata ( $\chi_{st}$ )          | 102 |
| 4.3.2 Soil compensation point concentration (χ <sub>g</sub> )              | 109 |
| 4.4 GEM emission and deposition fluxes.                                    | 114 |
| 4.4.1 Stomata emission flux (F <sub>st</sub> )                             | 114 |
| 4.4.2 Soil emission flux (F <sub>g</sub> )                                 | 120 |
| 4.4.3 Cuticle emission flux (F <sub>c</sub> )                              | 125 |

| 4.4.4 Deposition flux (F <sub>d</sub> )                                      | 125 |
|------------------------------------------------------------------------------|-----|
| 4.4.5 Net flux                                                               | 129 |
| CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS                                    | 135 |
| 5.1 Conclusions                                                              | 135 |
| 5.2 Recommendations                                                          | 138 |
| REFERENCES                                                                   | 139 |
| APPENDICES                                                                   | 144 |
| Appendix A: Comparison of output from Matlab to original output from Fortran | 144 |
| Appendix B: Flow chart for the two models                                    | 147 |
| Appendix C: Parameterization of the two models                               | 149 |
| Appendix D: General statistics of input data                                 | 152 |
| Appendix E: Comparison of the two models.                                    | 156 |
| Appendix F: ANOVA analysis for output from the two models                    | 160 |
| Appendix G: ANOVA analysis for the difference between the two models         | 176 |
| VITA AUCTORIS                                                                | 185 |

## LIST OF TABLES

| Table 2-1. Dry deposition models reviewed.                                                                                    | 6  |
|-------------------------------------------------------------------------------------------------------------------------------|----|
| Table 3-1. GEM concentrations two-hour data points in 2009-2014.                                                              | 25 |
| Table 3-2. Settings of four meteorological parameters in each of the two models, settings in Wright & Zhang's model were used | 26 |
| Table 3-3. Hourly input data in the two models.                                                                               | 28 |
| Table 3-4. Constant values in the two models.                                                                                 | 29 |
| Table 3-5. Constant values associated with land cover in the two models                                                       | 30 |
| Table 4-1. Aerodynamic resistance (Ra, s/m) for the two models in the two seasons.                                            | 38 |
| Table 4-2. Difference (%) in aerodynamic resistance for the two models in the two seasons.                                    |    |
| Table 4-3. Analysis of variance (ANOVA) of the difference in aerodynamic resistance between the two models.                   | 53 |
| Table 4-4. Quasi-laminar resistance (Rb, s/m) for the two models in the two seasons.                                          | 54 |
| Table 4-5. Difference (%) in quasi-laminar resistance for the two land covers in the two seasons.                             | 56 |
| Table 4-6. Analysis of variance (ANOVA) of the difference in quasi-laminar resistance between the two models.                 | 58 |
| Table 4-7. Stomata resistance (Rst, s/m) for the two models in the two seasons                                                | 61 |
| Table 4-8. Difference (%) in stomata resistance for the two models in the two seasons.                                        | 64 |
| Table 4-9. Analysis of variance (ANOVA) of the difference in stomata resistance between the two models.                       | 70 |
| Table 4-10. In-canopy aerodynamic resistance (Rac, s/m) in the two models for deciduous broadleaf forest in the two seasons.  | 71 |
| Table 4-11. Difference (%) in In-canopy aerodynamic resistance for deciduous broadleaf forest in the two seasons.             | 73 |

| Table 4-12. Analysis of variance (ANOVA) of the difference in in-canopy aerodynamic resistance between the two models.               | 75  |
|--------------------------------------------------------------------------------------------------------------------------------------|-----|
| Table 4-13. Soil resistance (Rg, s/m) in the two models for evergreen needleleaf forest in the two seasons.                          | 76  |
| Table 4-14. Difference (%) in soil resistance for evergreen needleleaf forest in summer.                                             | 79  |
| Table 4-15. Analysis of variance (ANOVA) of the difference in soil resistance between the two models.                                | 83  |
| Table 4-16. Stomata emission velocity (Vst, $\mu$ m/s), 1/Rst ( $\mu$ m/s), and Rt/(Ra+Rb) for the two models in the two seasons.    | 84  |
| Table 4-17. Difference (%) in stomata emission velocity for the two models in the two seasons.                                       | 87  |
| Table 4-18. Analysis of variance (ANOVA) of the difference in stomata emission velocity between the two models.                      | 89  |
| Table 4-19. Soil emission velocity (Vg, $\mu$ m/s), 1/(Rac+Rg) ( $\mu$ m/s), and Rt/(Ra+Rb) for the two models in the two seasons.   | 91  |
| Table 4-20. Difference (%) in soil emission velocity for the two models in the two seasons.                                          | 94  |
| Table 4-21. Analysis of variance (ANOVA) of the difference in soil emission velocity between the two models.                         | 96  |
| Table 4-22. Deposition velocity (Vd, $\mu$ m/s) for the two models in the two seasons                                                | 97  |
| Table 4-23. Difference (%) in deposition velocity for the two models in the two seasons.                                             | 100 |
| Table 4-24. Analysis of variance (ANOVA) of the difference in deposition velocity between the two models.                            | 102 |
| Table 4-25. Compensation point concentration in stomata (χst, ng m-3) for the two models in the two seasons.                         | 103 |
| Table 4-26. Difference (%) in GEM compensation point concentration in stomata for the two models in the two seasons.                 | 106 |
| Table 4-27. Analysis of variance (ANOVA) of the difference in GEM compensation point concentration in stomata between the two models | 108 |
| Table 4-28. Compensation point concentration in soil (χg, ng m-3) for the two models in the two seasons.                             | 110 |

| Table 4-29. Difference (%) in GEM compensation point concentration in soil for the two models in the two seasons.                 | 112 |
|-----------------------------------------------------------------------------------------------------------------------------------|-----|
| Table 4-30. Analysis of variance (ANOVA) of the difference in GEM compensation point concentration in soil between the two models | 114 |
| Table 4-31. Stomata emission flux (Fst, pg m-2 s-1) for the two models in the two seasons.                                        | 115 |
| Table 4-32. Difference (%) in stomata emission flux for the two models in the two seasons.                                        | 117 |
| Table 4-33. Analysis of variance (ANOVA) of the difference in stomata emission flux between the two models.                       | 119 |
| Table 4-34. Soil emission flux (Fg, pg m-2 s-1) for the two models in the two seasons.                                            | 120 |
| Table 4-35. Difference (%) in soil emission flux for the two models in the two seasons.                                           | 122 |
| Table 4-36. Analysis of variance (ANOVA) of the difference in soil emission flux between the two models.                          | 124 |
| Table 4-37. Cuticle emission flux (pg m-2 s-1) in Wang's model in the two seasons.                                                | 125 |
| Table 4-38. Deposition flux (Fd, pg m-2 s-1) for the two models in the two seasons.                                               | 126 |
| Table 4-39. Difference (%) in deposition flux for the two models in the two seasons.                                              | 128 |
| Table 4-40. Analysis of variance (ANOVA) of the difference in deposition flux between the two models.                             | 129 |
| Table 4-41. Net flux (pg m-2 s-1) for the two models in the two seasons                                                           | 130 |
| Table 4-42. Difference (%) in net flux for the two models in the two seasons.                                                     | 131 |
| Table 4-43. Analysis of variance (ANOVA) of the difference in net flux between the two models.                                    | 134 |
| Table A1. Analysis of errors in Hg net flux calculated by Matlab.                                                                 | 145 |
| Table A2. Data with error>1%                                                                                                      | 145 |
| Table C1 Parameterization of resistances                                                                                          | 149 |

| Table C2. Parameterization of velocities                                                                   | 150 |
|------------------------------------------------------------------------------------------------------------|-----|
| Table C3. Parameterization of GEM compensation point concentrations                                        | 151 |
| Table D1. General statistic of input meteorology data before merging                                       | 152 |
| Table D2. General statistic of input meteorology data after merging                                        | 154 |
| Table E1. Comparison of diurnal trends in the two models.                                                  | 156 |
| Table E2. Percentage of difference between the two models.                                                 | 157 |
| Table E3. P-values for land cover, season, and interaction in the difference between the two models        | 158 |
| Table E4. Which model is better                                                                            | 159 |
| Table F1. ANOVA results for resistance in the two models.                                                  | 160 |
| Table F2. ANOVA results for velocity in the two models.                                                    | 161 |
| Table F3. ANOVA results for GEM compensation point concentration in the two models.                        | 162 |
| Table F4. ANOVA results for flux in the two models.                                                        | 163 |
| Table G1. ANOVA results for the difference in resistance between the two models                            | 176 |
| Table G2. ANOVA results for the difference in velocity between the two models                              | 177 |
| Table G3. ANOVA results for the difference in GEM compensation point concentration between the two models. | 177 |
| Table G4 ANOVA results for the difference in flux between the two models                                   | 178 |

## LIST OF FIGURES

| Figure 3-1. Location of GA40 site (base map adapted from Google Maps)                                                                                     | 23 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure 3-2. Variation of LAI for the two land covers, (a) evergreen needleleaf forest, (b) deciduous broadleaf forest.                                    | 24 |
| Figure 3-3. Seasonal average diurnal cycle for ambient GEM concentrations before and after interpolation. (a) in summer; (b) in winter.                   | 33 |
| Figure 3-4. Seasonal average diurnal cycle for coszen in summer and winter                                                                                | 35 |
| Figure 4-1. Diurnal trend for Ra caused by wind in the two models for evergreen needleleaf forest in summer.                                              | 39 |
| Figure 4-2. Time series for Ra caused by wind in the two models for evergreen needleleaf forest in summer.                                                | 39 |
| Figure 4-3. Contour plot for difference (%) versus wind speed and u* for evergreen needleleaf forest in summer.                                           | 42 |
| Figure 4-4. Hourly frequency of difference above 100% between the two models for evergreen needleleaf forest in summer.                                   | 42 |
| Figure 4-5. Diurnal trend for wind speed and u* for evergreen needleleaf forest in summer.                                                                | 43 |
| Figure 4-6. Diurnal trend for Ra caused by wind, buoyancy, and both wind and buoyancy in Wright & Zhang's model for evergreen needleleaf forest in summer | 44 |
| Figure 4-7. Hourly frequency of Ra above 4000s/m caused by buoyancy in Wright & Zhang's model for evergreen needleleaf forest in summer.                  | 45 |
| Figure 4-8. Diurnal trend for Ra in the two models without cap for evergreen needleleaf forest in summer.                                                 | 46 |
| Figure 4-9. Time series for Ra in the two models without cap for evergreen needleleaf forest in summer.                                                   | 47 |
| Figure 4-10. Hourly frequency of larger Ra in Wright & Zhang's model for evergreen needleleaf forest in summer.                                           | 47 |
| Figure 4-11. Diurnal trend for Ra in the two models with cap in Wright & Zhang's model for evergreen needleleaf forest in summer                          | 49 |

| Figure 4-12. Boxplot for Ra caused by wind and buoyancy in Wright & Zhang's model without cap for evergreen needleleaf forest in summer. | 49 |
|------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure 4-13. Time series for Ra in the two models with cap in Wright & Zhang's model for evergreen needleleaf forest in summer           | 50 |
| Figure 4-14. Diurnal trend for Rb in the two models for evergreen needleleaf forest in summer.                                           | 55 |
| Figure 4-15. Time series for Rb in the two models for evergreen needleleaf forest in summer.                                             | 55 |
| Figure 4-16. Diurnal trend for Rst in the two models for evergreen needleleaf forest in summer.                                          | 61 |
| Figure 4-17. Hourly frequency of fD below 0.1 in Wang's model for evergreen needleleaf forest in summer.                                 | 62 |
| Figure 4-18. Time series for Rst in the two models during daytime for evergreen needleleaf forest in summer.                             | 62 |
| Figure 4-19. Time series for Rst with fD>=0.1 in Wang's model during daytime for evergreen needleleaf forest in summer                   | 63 |
| Figure 4-20. Hourly frequency of fD below 0.1 in Wang's model for deciduous broadleaf forest in summer.                                  | 68 |
| Figure 4-21. Diurnal trend for Rac in the two models for deciduous broadleaf forest in summer.                                           | 72 |
| Figure 4-22. Time series for Rac in the two models for deciduous broadleaf forest in summer.                                             | 72 |
| Figure 4-23. Time series of Rac0 for deciduous broadleaf forest in Wright & Zhang's model.                                               | 74 |
| Figure 4-24. Diurnal trend for Rg in the two models for evergreen needleleaf forest in summer.                                           | 77 |
| Figure 4-25. Diurnal trend for wet soil for evergreen needleleaf forest in summer                                                        | 77 |
| Figure 4-26. Time series for Rg in the two models for evergreen needleleaf forest in summer.                                             | 78 |
| Figure 4-27. Diurnal trend for Rg in the two models for evergreen needleleaf forest in winter.                                           | 80 |
| Figure 4-28. Diurnal trend for wet soil for evergreen needleleaf forest in winter                                                        | 80 |

| Figure 4-29. Diurnal trend for surface temperature below -1°C in winter.                                                                                | 81  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Figure 4-30. Time series for Rg in the two models for evergreen needleleaf forest in winter.                                                            | 82  |
| Figure 4-31. Diurnal trend for Vst in the two models for evergreen needleleaf forest in summer.                                                         | 85  |
| Figure 4-32. Distribution of Rt/(Ra+Rb) in the two models for evergreen needleleaf forest in summer, (a) in Wang's model, (a) in Wright & Zhang's model | 86  |
| Figure 4-33. Time series for Vst in the two models for evergreen needleleaf forest in summer.                                                           | 86  |
| Figure 4-34. Diurnal trend for Vg in the two models for evergreen needleleaf forest in summer.                                                          | 92  |
| Figure 4-35. Time series for Vg in the two models for evergreen needleleaf forest in summer.                                                            | 93  |
| Figure 4-36. Diurnal trend for Vd in the two models for evergreen needleleaf forest in summer.                                                          | 98  |
| Figure 4-37. Time series for Vd in the two models for evergreen needleleaf forest in summer.                                                            | 99  |
| Figure 4-38. Diurnal trend for χst in the two models for evergreen needleleaf forest in summer.                                                         | 104 |
| Figure 4-39. Diurnal trend for GOM concentration on cuticle in Wang's model for evergreen needleleaf forest in summer.                                  | 104 |
| Figure 4-40. Diurnal trend for ambient temperature in summer.                                                                                           | 105 |
| Figure 4-41. Time series for χst in the two models for evergreen needleleaf forest in summer.                                                           | 105 |
| Figure 4-42. Diurnal trend for $\chi g$ in the two models for evergreen needleleaf forest in summer.                                                    | 111 |
| Figure 4-43. Time series for χg in the two models for evergreen needleleaf forest in summer.                                                            | 111 |
| Figure 4-44. Diurnal trend for Fst in the two models for evergreen needleleaf forest in summer.                                                         | 116 |
| Figure 4-45. Time series for Fst in the two models for evergreen needleleaf forest in summer                                                            | 116 |

| Figure 4-46. Diurnal trend for Fg in the two models for evergreen needleleaf forest in summer.       | 121 |
|------------------------------------------------------------------------------------------------------|-----|
| Figure 4-47. Time series for Fg in the two models for evergreen needleleaf forest in summer.         | 121 |
| Figure 4-48. Diurnal trend for Fd in the two models for evergreen needleleaf forest in summer.       | 127 |
| Figure 4-49. Time series for Fd in the two models for evergreen needleleaf forest in summer.         | 127 |
| Figure 4-50. Diurnal trend for net flux in the two models for evergreen needleleaf forest in summer. | 130 |
| Figure A1. Distribution of errors in ppm.                                                            | 146 |
| Figure A2. Distribution of errors in ppm with scaled frequency.                                      | 146 |
| Figure B. Flow chart for the two models.                                                             | 147 |
| Figure F1. Main effects plot for resistance in the two models                                        | 165 |
| Figure F2. Main effects plot for velocity in the two models.                                         | 166 |
| Figure F3. Main effects plot for GEM compensation point concentration in the two models.             | 167 |
| Figure F4. Main effects plot for flux in the two models.                                             | 169 |
| Figure F5. Interaction plot for resistance in the two models.                                        | 171 |
| Figure F6. Interaction plot for velocity in the two models.                                          | 172 |
| Figure F7. Interaction plot for GEM compensation point concentration in the two models.              | 173 |
| Figure F8. Interaction plot for flux in the two models                                               | 175 |
| Figure G1. Main effects plot for the difference in resistance.                                       | 179 |
| Figure G2. Main effects plot for the difference in velocity.                                         | 180 |
| Figure G3. Main effects plot for the difference in GEM compensation point concentration.             | 180 |
| Figure G4. Main effects plot for the difference in flux                                              | 181 |
| Figure G5 Interaction plot for the difference in resistance                                          | 182 |

| Figure G6. Interaction plot for the difference in velocity                              | 183 |
|-----------------------------------------------------------------------------------------|-----|
| Figure G7. Interaction plot for the difference in GEM compensation point concentration. | 183 |
| Figure G8. Interaction plot for the difference in flux.                                 | 184 |

#### LIST OF ABBREVIATIONS/SYMBOLS

ANOVA – Analysis of Variance

b<sub>vpd</sub> – empirical water vapour pressure deficit constant

C – pollutant concentration

coszen – cosine value of zenith angle

D – ambient water vapor pressure deficit

DI – gaseous elemental mercury diffusivity

DV – water vapor diffusivity

f<sub>D</sub> – water vapor pressure deficit of air

F<sub>c</sub> – gaseous elemental mercury cuticle emission flux

F<sub>d</sub> – gaseous elemental mercury deposition flux

 $f_{\text{fixed}}$  – the fraction of GOM fixed into tissue

F<sub>g</sub> – gaseous elemental mercury soil emission flux

 $f_{oc}$  – the fraction of organic carbon in topsoil (0-5cm)

 $f_{rxn}$  – the fraction of GOM potentially photoreduced to GEM

F<sub>st</sub> – gaseous elemental mercury stomata emission flux

 $f_T$  – correction factor for air temperature

 $f_{\psi}$  – correction factor for water stress of plant

GEM – gaseous elemental mercury

GOM – gaseous oxidized mercury

 $G_{st}(PAR)$  – the unstressed canopy stomata conductance

H – Henry's law constant in soil condition

Hg – mercury

k - a constant of 0.4

K<sub>LA</sub> – gaseous elemental mercury leaf-air partitioning coefficient

K<sub>oc</sub> – soil organic carbon to water partitioning coefficient

LAI – leaf area index

LAI<sub>max</sub> – maximum leaf area index in the whole year

LAP – leaf–air partitioning coefficient for GEM

LUC – land cover category

PBM – particulate-bound mercury

 $PM_{2.5}$  – particles with size smaller than 2.5 µm

 $PM_{2.5-10}$  – particles with size between 2.5 µm and 10 µm

 $PM_{10}$  – particles with size larger than 10µm

R<sub>a</sub> – aerodynamic resistance

R<sub>ac</sub> – in-canopy aerodynamic resistance

R<sub>ac0</sub> – reference value of in-canopy aerodynamic resistance

R<sub>b</sub> – qasi-laminar resistance

R<sub>c</sub> – canopy resistance

 $R_{cl}$  – exposed surfaces in the lower canopy resistance

R<sub>cut</sub> – cuticle resistance

R<sub>cutd0</sub> – reference value for cuticle resistance

R<sub>cutd</sub> – dry cuticle resistance

R<sub>cutw</sub> – wet cuticle resistance

 $R_{\text{cutw0}}$  – reference value for wet cuticle resistance

R<sub>dc</sub> – gas-phase transfer in canopy resistance

R<sub>g</sub> – soil resistance

 $R_{gs}$  – ground surface resistance

 $R_g(O_3) - O_3$  soil resistance

 $R_g(SO_2) - SO_2$  soil resistance

RH – relative humidity

R<sub>lu</sub> – cuticle or outer surfaces in the upper canopy resistance

R<sub>m</sub> – mesophyll resistance

R<sub>s</sub> - surface resistance

 $R_{\text{st}}$  – stomata resistance

$$R_t - \left(\frac{1}{R_a + R_b} + \frac{1}{R_{st}} + \frac{1}{R_{cut}} + \frac{1}{R_{ac} + R_g}\right)^{-1}$$

TGM – total gaseous mercury

T – ambient temperature

 $T_{min}$  – minimum surface temperature

U – wind speed

u\* – friction velocity

u<sub>min</sub> – maximum friction velocity when dew occurs

V<sub>cut</sub> – cuticle emission velocity

V<sub>d</sub> – deposition velocity

V<sub>ds</sub> - surface dry deposition velocity

V<sub>g</sub> – soil emission velocity

V<sub>st</sub> – stomata emission velocity

VI – air diffusivity

Z<sub>R</sub> – reference height

 $Z_0$  – roughness height

 $\alpha$  – a constant of zero

 $\beta$  – a constant of 0.1

 $\chi_{atm}$  – gaseous elemental mercury concentration in the air

 $\chi_{cnp}$  – gaseous elemental mercury concentration above canopy

 $\chi_g$  – gaseous elemental mercury compensation point concentration in soil

 $\chi_{\text{st}}$  – gaseous elemental mercury compensation point concentration in stomata

 $\Psi_H$  – stability correction factor

 $\Gamma_{st}$  – emission potential of stomata

 $\Gamma_g$  – emission potential of soil

[Hg] - total gaseous mercury depositing on foliage

 $[Hg^0]_{atm}$  – GEM concentrations at the atmosphere

 $[Hg^0]_{st}$  – GEM concentrations in stomata

[Hg<sup>0</sup>]<sub>w</sub> – GEM concentrations in cuticle

 $[Hg^0]_{sl,g}$  – GEM concentrations in soil

 $[Hg^0_{\ c}]$  – GEM bound to foliar cuticle surface

 $[Hg^0_{g}]$  – GEM bound to organic matter

[Hg<sup>0</sup><sub>s</sub>] – dissolved elemental mercury in stomata

 $[Hg^{II+}_{\phantom{II+}c}]$  – dry deposited GOM loading on cuticle

 $[Hg^{II+}_{\ \ g}]$  – GOM content in the soil

 $[Hg^{II+}_{\ \ w}]$  – GOM concentration washed-off from leaf

#### CHAPTER 1 INTRODUCTION

## 1.1 Background

Mercury (Hg) has been identified as a persistent, bioaccumulative, and toxic pollutant (UNEP, 2013) due to toxicity of most its compounds in aquatic receptors (such as aquatic plants and fish), amphibian (such as frog) and terrestrial receptors (such as terrestrial plants and mammals) (Boening, 2000). Its effects on human health by ingestion and inhalation include nervous system, respiratory system, immune system, and developing fetus (EPA, 1997; EPA, 2017).

Atmospheric Hg is released in the form of gaseous elemental mercury (GEM), gaseous oxidized mercury (GOM), and particulate-bound mercury (PBM) from both natural processes and anthropogenic activities. The natural sources consist of volcano eruption, geothermal activity, and volatilization from soil, plants, and water surfaces (Pirrone et al., 2010; Gaffney and Marley, 2014). Man-made sources include fossil-fuel fired power plants, non-ferrous metals manufacture, and cement production (Zhang et al., 2016a).

During atmospheric Hg is transported, GEM is oxidized to GOM. GOM has low volatility and higher solubility (Fu et al., 2012) compared to GEM. Particulate-bound mercury is formed by adsorption of elemental and GOM on particulate matter. The adsorption of Hg is more likely when particulate matter is rich with element carbon because mercury trends to be adsorbed on element carbon (Pirrone et al., 2000).

Atmospheric Hg is removed via dry and wet depositions. GOM and PBM are removed by both dry and wet deposition. However, the removal of GEM is mostly by dry deposition owing to its low Henry's Law constant (Wang et al., 2014). In monitoring

sites, mercury wet deposition is quantified by analysis of precipitation (Wright et al., 2016). Oxidized mercury collected in the solution is reduced to elemental mercury which is removed from the solution and analyzed by dual gold trap amalgamation and cold vapor atomic fluorescence (Prestbo and Gay, 2009). Although dry deposition is difficult to measure due to technical challenges, some methods have been developed such as surrogate surfaces, litterfall, and throughfall (Wright et al., 2016). Surrogate surfaces, such as water-based surfaces, filter-based surfaces, and membrane-based surfaces, are used to simulate surfaces where mercury deposits to (Wright et al., 2016). Uncertainties in the measurement related with selected surrogate surfaces and instrument setup are larger than a factor of two (Wright et al., 2016). Litterfall method is to measure mercury depositing on the leaves (Wright et al., 2016). Throughfall method is to monitor the summation of wet-deposited mercury above the canopy and dry-deposited mercury washed off from the canopy (Wright et al., 2016). However, all these measurement methods are time consuming and costly. It is also difficult to select an appropriate monitoring point in complicated terrain and to measure for a long-time period. Therefore, the development of dry deposition models is necessary.

In chemical transport models and at monitor networks, dry deposition is calculated using the inferential approach. The dry deposition flux is a product of atmospheric pollutant concentration and dry deposition velocity. The dry deposition velocity is calculated through multiple resistance analogy scheme, such as those by Wesely (1989), Zhang et al. (2003) and Kerkweg et al. (2006). In addition to dry deposition, GEM has a tendency to emit back to the atmosphere as a result of its high vapor pressure. Thus, GEM exchange flux is estimated by using bidirectional exchange models (Xu et al.,

1999; Bash, 2010; Wang et al., 2014; Wright and Zhang, 2015). The net flux is a summation of deposition and emission fluxes.

The first GEM bidirectional exchange model is presented by Xu et al. (1999) for providing lower boundary conditions (mass transfer velocities and GEM exchange fluxes) of regional/global atmospheric transport and deposition models. Bash (2010) introduced another GEM bidirectional scheme. It has been implemented into the Community Multi-scale Air Quality Model (Bash, 2010). An updated bidirectional exchange model is presented by Wang et al. (2014) based on Bash's (2010) scheme with surface resistances from Zhang et al. (2002b, 2003). Another bidirectional exchange model was developed by Wright and Zhang (2015) for air-terrestrial exchange of GEM.

The modeling of dry deposition using various chemical transport models shows inconsistencies between the models, up to a factor of ten, due to different dry deposition algorithms and simulated pollutant concentrations (Wright et al., 2016). Some mercury bidirectional exchange models have been developed; however, no comparison among these models has been conducted. Such a comparison would quantify the magnitude of differences between the models and identify the dominant factors leading to these differences. Knowledge gained from comparison may help researchers to understand what physical and chemical processes need considerations.

### 1.2 Objective

The objective of this study is to compare two GEM bidirectional exchange models from Wang et al. (2014) and Wright and Zhang (2015). Specific objectives of this study

- (1) quantify the magnitude of difference in
- · Resistances to GEM
- · GEM emission and deposition velocities
- · GEM compensation point concentrations in soil and stomata
- · GEM emission, deposition, and net fluxes
- (2) identify the dominant factors causing the differences.

The scope is to run these two models on one site for two land covers under the same meteorological and other conditions in summer from June to September and winter from December to March. This study aims to investigate the difference between the two models, to present the dominant factors resulting in the differences between the two models, and to analyze the significance of land cover and season in the difference between the two models.

#### **CHAPTER 2 LITERATURE REVIEW**

## 2.1 Mercury cycling

Both natural processes and anthropogenic activities are emission sources for atmospheric Hg. GEM is the most common form and accounts for more than 90% of the total Hg in the atmosphere (Zhang et al., 2016a). Atmospheric Hg undergoes local, regional, and global transport in all three forms. PBM is likely to be transported over a long distance on fine particles (<1µm) (Schroeder and Munthe, 1998). In the transport of atmospheric Hg, GEM is oxidized to GOM. The adsorption of GEM and GOM on particulate matters forms particulate-bound mercury.

Atmospheric Hg is removed from the atmosphere by dry and wet depositions. Both GOM and PBM deposit to surfaces through dry and wet processes (Fu et al., 2012). The removal of GEM mostly relies on dry deposition owing to the low Henry's Law constant (Wang et al., 2014). The residence time of GEM is estimated to be several months to over one year (Fu et al., 2012). GOM is captured by droplets and surfaces in the process of dry and wet depositions due to high water solubility. Thus, it has a shorter residence time of hours to weeks (Cole et al., 2014). PBM also has a residence time of hours to weeks.

Mercury in the surface is either emitted to the atmosphere or remained in the plants, soil or water (EPA, 1997). In all three forms of mercury, only GEM is emitted back to the atmosphere as a result of its high vapor pressure. In the soil, mercury forms either complexes with organic matters and mineral colloids or methylmercury through numerous microbial processes (EPA, 1997). The most abundant form of mercury is oxidized mercury complexes followed by methylmercury and elemental mercury (EPA,

1997). Oxidized mercury complexes could account for 97-99% (EPA, 1997). In the water, most of the Hg is bound to organic matters, which could be either dissolved organic carbon or suspended particulate matters (EPA, 1997). Methylmercury is bioaccumulative in fish and the Hg found in fish muscle tissue is almost methylmercury (EPA, 1997). Mercury is transferred to upper food chain through ingestion of fish-consuming wildlife and humans (EPA, 1997).

## 2.2 Dry deposition models

There are three types of dry deposition models, for particulate pollutants, for gaseous pollutants, and for pollutants that are re-emitted from the surface. Models that have been reviewed are shown in Table 2-1.

Table 2-1. Dry deposition models reviewed.

| Categories                        | Models                  |
|-----------------------------------|-------------------------|
| Particulate dry deposition models | Slinn (1982)            |
|                                   | Zhang et al. (2001)     |
|                                   | Zhang and He (2014)     |
| Gaseous dry deposition models     | Wesely (1989)           |
|                                   | Zhang et al. (2002b)    |
|                                   | Zhang et al. (2003)     |
| GEM bidirectional exchange models | Bash (2010)             |
|                                   | Wang et al. (2014)      |
|                                   | Wright and Zhang (2015) |

#### 2.2.1 Particulate pollutants

Dry deposition flux (F) is defined as the product of dry deposition velocity  $(V_d)$  and concentration (C) for substances of interest.

$$F = V_d \cdot C \tag{2-1}$$

The concentration of substance is known from measurement in monitor sites or from model computation. The estimation of deposition velocity is crucial. For particulate pollutants, dry deposition velocity is calculated as

$$v_{d} = v_{g} + \frac{1}{R_{a} + R_{s}}$$
 (2-2)

where  $V_g$  is gravitational settling velocity,  $R_a$  is aerodynamic resistance, and  $R_s$  is surface resistance.  $V_g$  and  $R_s$  are related particle size. The deposition velocity should include all collection mechanisms in the process of particle deposition to the surface. There are three steps as particles deposit to surface (Ruijgrok et al., 1995), (1) particles transported from free atmosphere to viscous sublayer by gravitational settling, (2) particles getting across the viscous sublayer by Brownian diffusion, interception, impaction, and gravitational settling, (3) particles getting interaction with the surface and they adhere or rebound. This type of dry deposition models developed as a function of particle size is called process oriented models (Ruijgrok et al., 1995).

Slinn (1982) presented a process oriented model for estimating particle dry deposition velocity to vegetation. His framework was based on the database of wind field in canopies and wind tunnel data of deposition velocity. Gravitational settling, Brownian diffusion, interception, impaction, and particle rebound are all considered. Aerodynamic resistance is calculated by wind speed at reference height and evaluated height and friction velocity. Friction velocity is a parameter that provides a measurement of the vertical flux of horizontal momentum in the surface layer. Larger friction velocity leads to smaller aerodynamic resistance, reflecting that particle deposition is easier with

rough surface ground. Surface resistance includes characterizing wind profile in canopy and collection efficiency that is related with Brownian diffusion, interception, impaction, and particle rebound. Brownian diffusion is decided by the property of atmosphere and particle radius. Due to the uncertainty in contribution of interception to overall collection efficiency, Slinn determined to calculate interception as a function of characteristic radius of collectors in the canopy and its fraction in all collectors. For impaction, it only depends on Stokes number. Overall, although Slinn's (1982) model is theoretical, some input parameters may not be available in the regional models.

Based on Slinn's (1982) model, Zhang et al. (2001) presented a size-segregated particle dry deposition model. It has been implemented in Canadian Aerosol Module (Zhang et al., 2001). This model considers gravitational settling, Brownian diffusion, interception, impaction, and particle rebound as in Slinn's model. The difference is the expression of particle growth under humidity. Compared with particle growth not expressed explicitly in Slinn's model, a function of particle growth is included in Zhang's model. The method is that each size bin of particles will increase as a whole and the size distribution of the all particles is fixed at the same time. After growth, the dry particle radius is replaced by the wet particle radius in the calculation of deposition velocity. Additionally, some simplified empirical parameterizations are adopted in Zhang's model because Slinn's model requires detailed canopy information that it is unavailable in regional scale transport models.

In Zhang's (2001) model, the aerodynamic resistance is adopted as the same form as Wesely (1989), which is widely used in many dry deposition models. The surface resistance is more empirical and do not need to consider wind profile in canopy as in

Slinn (1982). It depends on friction velocity, collection efficiency, and particle rebound. As for Brownian diffusion, it becomes more dependent on land cover categories as the parameter varies with land cover categories. Calculation for impaction is adopted from Peters and Eiden (1992) and is modified more dependent on land cover categories. The collection efficiency by interception is calculated as a simpler form from Fuchs (1964) because of the unavailability of data on fraction of collectors in canopy. The results from Zhang's (2001) model are reasonable in the comparison with a variety of measurements. However, it seems that this model overestimates deposition velocity of small particles (e.g.  $<0.1\mu m$ ) over smooth surfaces (Petroff and Zhang, 2010).

Wu et al. (2018a) compared two particulate dry deposition models. One is presented in Petroff and Zhang (2010) and the other is in Zhang et al. (2001). Petroff and Zhang's model has been implemented into the Community Atmospheric Model (Wu et al., 2018a). Through comparison, it is found that the largest difference is velocity of fine particles. Zhang's model (2001) significantly overestimates the velocity for fine particles due to the overestimation of Brownian diffusion effect. After reduction of Brownian diffusion effect in Petroff's and Zhang's model, the velocity decreases substantially and is in better agreement with observations.

There have been numerous monitoring networks established all over the world to quantify atmospheric pollutants deposition. In these networks, bulk aerosol particles of concern are measured. Therefore, an empirical scheme called bulk dry deposition algorithm is needed for estimating deposition velocity of bulk aerosols. Wesely (1985) established an empirical bulk dry deposition model for sulfate particles based on sulfate flux measurement data over grassland. Ruijgrok et al. (1997) derived a bulk dry

deposition model for water-soluble inorganic ions based on flux data over forest and Lamaud et al. (1994) and Gallagher et al. (2002) generated formulas for bulk particles. However, none of these models is suitable for any particle species or any type of surfaces. Zhang and He (2014) developed a bulk dry deposition velocity based on the size-segregated model in Zhang et al., (2001).

In Zhang and He (2014), the particle size is grouped into three types, PM<sub>2.5</sub>, PM<sub>2.5-10</sub>, and PM<sub>10</sub>. In equation 2-2, Vg strongly depends on particle size, slightly on particle density, and not on land cover category. Therefore, in this model, it is assumed as a constant value for a fixed particle size distribution. Considering that Ra has no relation with particle size, there is no change made to it. The inverse of R<sub>s</sub>, namely surface deposition velocity (V<sub>ds</sub>), is fitted into functions for bulk particles. Equation 2-2 becomes

$$v_{d} = v_{g} + \frac{1}{R_{a} + 1/V_{ds}}$$
 (2-3)

For PM<sub>2.5</sub>, V<sub>ds</sub> is parameterized as a linear function of friction velocity (u\*).

$$V_{ds} = a_1 u_*$$
 (2-4)

where  $a_1$  is a constant dependent on land types. As for PM<sub>2.5-10</sub>, V<sub>ds</sub> is parameterized as a polynomial function of friction velocity for canopies with a constant leaf area index (LAI). LAI is the area of one-sided leaves per unit ground surface area. A correction factor (k) as an exponential function of LAI is added to PM<sub>2.5-10</sub> over canopies with LAI varying with seasons.

$$V_{ds} = (b_1 u_* + b_2 u_*^2 + b_3 u_*^3) e^{k(\frac{LAI}{LAI_{max}} - 1)}$$
(2-5)

where  $b_1$ ,  $b_2$ , and  $b_3$  are constants for each land type. LAI<sub>max</sub> is the maximum LAI in the whole year. For PM<sub>10</sub>, the same method as PM<sub>2.5-10</sub> is taken to generate the formula.

$$V_{ds} = (d_1 u_* + d_2 u_*^2 + d_3 u_*^3) e^{k(\frac{LAI}{LAI_{max}} - 1)}$$
(2-6)

where  $d_1$ ,  $d_2$ , and  $d_3$  are constants for each land type. Under this model, the estimation of dry deposition velocity for bulk particles is within  $\pm 20\%$  compared with original particulate dry deposition model in Zhang et al., (2001).

## 2.2.2 Gaseous pollutants

As for gaseous substances, the effect of gravitational settling is negligible. There are gaseous substances depositing to leaf stomata and mesophyll. A surface resistance approach called resistance oriented model was developed for dry deposition of trace gases (Ruijgrok et al., 1995). The dry deposition velocity for gaseous pollutants is

$$v_{d} = (R_{a} + R_{b} + R_{c})^{-1}$$
 (2-7)

where  $R_a$ ,  $R_b$ , and  $R_c$  represent the properties of lower atmosphere, canopy, and soil, respectively.  $R_a$  corresponds to the aerodynamic resistance of surface boundary layer and makes no difference to all gaseous substances. It depends on the atmospheric stability and friction velocity.  $R_b$  represents quasi-laminar resistance to substances when substances are transported through the thin layer related with surface elements. This resistance varies with the molecular diffusivity for the gas of interest. The value of  $R_b$  increases as surface becomes rougher as a result of higher friction velocity.  $R_a$  and  $R_b$  are commonly used in many models and their formulas are similar in various models (Wesely and Hicks, 1977; Padro, 1996).  $R_c$  represents canopy resistance to uptake by the

surface elements. This resistance is considerable various from model to model and is the most important and complex element for gaseous chemicals in dry deposition models.

Wesely (1989) presented a resistance module for estimation of gaseous dry deposition velocity over regional scales. His approach for R<sub>c</sub> is to separate R<sub>c</sub> into several components, which is commonly done in the resistance models where parallel and series resistances are set for different parts of the canopy.

$$R_{c} = 1 / \left( \frac{1}{R_{s} + R_{m}} + \frac{1}{R_{lu}} + \frac{1}{R_{dc} + R_{cl}} + \frac{1}{R_{ac} + R_{gs}} \right)$$
 (2-8)

where  $R_m$ ,  $R_{lu}$ ,  $R_{cl}$ ,  $R_{gs}$ , and  $R_{ac}$  are mesophyll resistance, cuticle or outer surfaces in the upper canopy resistance, exposed surfaces in the lower canopy resistance, ground surface resistance, and in-canopy aerodynamic resistance, respectively. These four resistances are input from lookup table for  $O_3$  and  $SO_2$ .  $R_s$  is stomata resistance and calculated as a function of solar irradiation and ambient temperature, reflecting the effect of the sunlit and temperature on stomata.  $R_s$  is artificially set to be a very large value for the closure of stomata when there is no solar irradiation or ambient temperature is too high or too low.  $R_{dc}$  is a resistance that reflects a gas-phase transfer affected by the mixing force, which is caused by buoyant convection in canopy. It is expressed as a function of solar irradiation and the slope in radians of the local terrain.

In this model, it is assumed that the concentrations in the plant mesophyll, substrates in the upper canopy, substrates in the lower canopy, and substrates in the ground surface are in equilibrium with the ambient concentration. Under this assumption, all three substrate concentrations are assumed to be zero. It is worth noting that all the resistances in the equation 2-8 correspond to properties or behaviors inferred from measurements of

net vertical fluxes from the surface, rather than to a single measurable quantity in the field (Wesely, 1989).

Wesely's model estimates not only the dry deposition velocity of O<sub>3</sub> and SO<sub>2</sub>, but also that of other gaseous substances, such as NH<sub>3</sub>, H<sub>2</sub>O<sub>2</sub>, and HCHO. According to the effective Henry's Law constant and chemical reactivity of each gaseous substance, dry deposition velocity for all other gaseous is computed. In addition, he considers the wetting of the surfaces by rain or dew and the covering of the surfaces by snow. However, resistances for many of the additional substances are assumed without the support from observation in field and laboratory. The varying of LAI with seasons is not considered in the model.

The canopy resistance (R<sub>c</sub>), in equation 2-7, is separated into two parts—stomatal and non-stomatal resistances. To some extent, separation of these two parts is necessary because stomatal uptake of substances only happens during the daytime for most canopies and dominates over the non-stomatal process (Zhang et al., 2003). As for nighttime, due to the closure of stomata under the darkness environment, non-stomatal uptake will dominate over stomatal uptake (Zhang et al., 2003). Therefore, estimation of dry deposition velocity will have a more accurate representation of diurnal variation after the canopy resistance is separated. For parameterization of stomatal resistance, it varies from a function of solar irradiation, one-big or two-big leaf methods to a multilayer leaf-resistance scheme (Zhang et al., 2003). As for non-stomatal resistance, through analysis of measurement data, it is affected by meteorological conditions, such as relative humidity, wetness of canopy, and friction velocity, as well as the properties of canopy, such as leaf area index and growing period (Zhang et al., 2003).

Zhang et al. (2003) presented an improved gaseous dry deposition model by considering a non-stomatal resistance in Zhang et al. (2002a). This model calculates the dry deposition velocity for 31 gaseous species with resistances scaled to O<sub>3</sub> and SO<sub>2</sub> according to solubility and reactivity. The canopy resistance (R<sub>c</sub>) is expressed as

$$\frac{1}{R_{c}} = \frac{1}{R_{s}} + \frac{1}{R_{ns}} = \frac{1 - W_{st}}{R_{st} + R_{m}} + \left(\frac{1}{R_{ac} + R_{g}} + \frac{1}{R_{cut}}\right)$$
(2-9)

where R<sub>c</sub> is separated into two parallel paths. One is stomatal part (R<sub>s</sub>) with relation to stomata resistance (R<sub>st</sub>) and mesophyll resistance (R<sub>m</sub>) The other one is non-stomatal part (R<sub>ns</sub>) with respect to in-canopy aerodynamic resistance (R<sub>ac</sub>), soil resistance (R<sub>g</sub>), and cuticle resistance (R<sub>cut</sub>). Wst stands for the effect of wet conditions on stomatal resistance. It will be zero for dry conditions and be a function of solar irradiation under wet conditions. R<sub>st</sub> is calculated as sunlit/shaded stomatal resistance in Zhang et al. (2002b). It considers the effect of leaf area index, sunlight, ambient temperature, ambient water vapor pressure, leaf water stress, and molecular diffusivities for pollutants of interest. During nighttime without solar irradiation, R<sub>st</sub> is assumed to be an infinite value as for the closure of stomata.  $R_{\text{m}}$  is mesophyll resistance that input from lookup table. Rac is modified from Erisman et al. (1994) as a function of leaf area index and friction velocity, which is more dependent on diurnal and seasonal variations.  $R_{\text{g}}$  is also modified from Erisman et al. (1994) and the soil resistance for SO<sub>2</sub> is considered as different values when surface is dry, when dew occurs, or when rain occurs. Rcut is modified from Zhang et al. (2002b) and it considers the effect of relative humidity and friction velocity.

In this model, it is worthwhile mentioning that there are improvements in cuticle

and soil resistances in winter. In winter, the effect of temperature below -1°C and the effect of snow cover are considered for cuticle and soil resistances. Although this model is developed to estimate dry deposition velocity for 31 gaseous species, it is not validated for some chemicals by comparisons with measurement because there are few dry deposition velocity measurements for other chemicals except SO<sub>2</sub>, O<sub>3</sub>, NO<sub>2</sub>, HNO<sub>3</sub>, and NH<sub>3</sub> (Zhang et al., 2003).

A comparison among five models for O<sub>3</sub> and SO<sub>2</sub> with five years flux database over a temperate mixed forest in southern Ontario, Canada was conducted by Wu et al. (2018b). It was found that substantial differences in the estimations of deposition velocity among gaseous dry deposition models are mainly attributable to the differences in the parameterizations of surface resistances.

#### 2.2.3 **GEM**

For substances that are re-emitted back to the atmosphere, such as ammonia and GEM, it is inappropriate to only consider deposition process and assume concentrations in canopy and soil to be zero. Instead, deposition should be coupled with emission to create a bidirectional exchange flux. The first GEM bidirectional exchange model is presented by Xu et al. (1999) for providing surface boundary conditions of regional/global atmospheric transport and deposition models. In Xu's model, sources of GEM natural emission are categories into canopy, soil, and water. The GEM emission from the canopy is calculated as a function of evapotranspiration rate and GEM concentration in the surface soil solution. The emission from the soil is parameterized as a function of soil temperature. The GEM deposition on the canopy and soil is calculated

as a product of gaseous dry deposition velocity and GEM concentration. A two-film diffusion model was adopted to calculate exchange of GEM between the atmosphere and water.

Bash (2010) presented a GEM bidirectional scheme. It has been implemented into the Community Multi-scale Air Quality Model (Bash, 2010). In this model, GEM exchange is estimated as a function of an atmospheric compensation point, air-biosphere partitioning processes, and atmospheric mixing processes (Bash, 2010). The GEM exchange is categorized into air-terrestrial, air-stomata, air-cuticle, air-soil, and air-water. In air-terrestrial exchange, GEM net exchange flux is calculated as a function of ambient GEM concentration, the compensation point concentration, and aerodynamic resistance. The compensation point ([Hg<sup>0</sup>]<sub>z0</sub>) is modeled as a weighted average of resistances and fluxes at the atmosphere, stomata, cuticle, and soil interfaces.

$$[Hg^{0}]_{z_{0}} = \frac{\frac{[Hg^{0}]_{atm} + \frac{[Hg^{0}]_{st}}{K_{LA}(r_{b} + r_{st})} + \frac{[Hg^{0}]_{w}}{K_{LA}(r_{b} + r_{w})} + \frac{[Hg^{0}]_{sl,g}}{r_{b} + r_{ac} + r_{soil}}}{r_{a}^{-1} + (r_{b} + r_{st})^{-1} + (r_{b} + r_{w})^{-1} + (r_{b} + r_{ac} + r_{soil})^{-1}}}$$
(2-10)

where [Hg<sup>0</sup>]<sub>atm</sub>, [Hg<sup>0</sup>]<sub>st</sub>, [Hg<sup>0</sup>]<sub>w</sub>, and [Hg<sup>0</sup>]<sub>sl,g</sub> are GEM concentrations at the atmosphere, stomata, cuticle, and soil, respectively. r<sub>a</sub>, r<sub>b</sub>, r<sub>st</sub>, r<sub>w</sub>, r<sub>ac</sub>, and r<sub>soil</sub> are aerodynamic resistance, laminar boundary layer resistance, stomata resistance, cuticle resistance, incanopy aerodynamic resistance and soil resistance, respectively. K<sub>LA</sub> is the leaf-air partitioning coefficient for GEM and is assumed to be the same for mesophyll and cuticle surfaces. For bare land without vegetation, all GEM concentrations related with canopy in equation 2-10 will equal to zero and all resistances related with canopy will become an infinite value.

In air-stomata exchange, GEM net flux depends on GEM concentration at the

stomata, the compensation point concentration, laminar boundary layer resistance, and stomata resistance. In air-cuticle exchange, GEM net flux is calculated as a function of GEM concentration at the cuticle, the compensation point concentration, laminar boundary layer resistance, and cuticle resistance. In air-soil exchange, GEM net flux is parameterized as a function of GEM concentration at the soil, the compensation point concentration, in-canopy aerodynamic resistance and soil resistance. It is worth mentioning that GEM concentration in the soil is decided by the partitioning coefficient for GEM and the redox reaction between GEM and GOM. In air-water exchange, though GEM net flux is modeled using the two-film resistance as Xu et al. (1999) did, Bash adopted a different parameterization. In surface water, photo-redox between GEM and GOM is considered.

The results from this model are consistent with the data from isotopic tracer studies (Bash, 2010). However, there are multiple model assumptions in the variables that have not been verified through field data, such as air-vegetation partitioning and surface reduction and oxidation processes. These assumptions could increase the uncertainty of estimation and limit the improvement of the model (Wang et al., 2014).

Based on the Bash's (2010) scheme, an updated bidirectional exchange model is presented by Wang et al. (2014). Wang integrated the bidirectional exchange scheme from Bash with in-canopy aerodynamic, stomata, cuticle, and soil resistances from Zhang et al. (2002b, 2003). The structure of Wang's model is the same as Bash. In airwater exchange, two-film mass transfer model from Poissant et al. (2000) is used to estimate GEM net flux, which depends on wind speed above the water, water temperature, and atmospheric GEM concentration. The photo-redox reaction in the water

is not considered by Wang and Bash considered it. In air-terrestrial exchange, compensation point concentration  $(\chi_{cnp})$  is also calculated by a weighted average as follows

$$\chi_{\text{cnp}} = \frac{\frac{C_{\text{atm}} + \chi_{\text{s}} + \chi_{\text{c}} + \chi_{\text{c}}}{R_{\text{a}} + R_{\text{b}} + R_{\text{st}} + R_{\text{c}} + R_{\text{ac}} + R_{\text{soil}}}}{(R_{\text{a}} + R_{\text{b}})^{-1} + R_{\text{st}}^{-1} + R_{\text{c}}^{-1} + (R_{\text{ac}} + R_{\text{soil}})^{-1}}}$$
(2-11)

where  $C_{atm}$ ,  $\chi_s$ ,  $\chi_c$ , and  $\chi_g$  are GEM concentrations at the atmosphere, stomata, cuticle, and soil, respectively.  $R_a$ ,  $R_b$ ,  $R_s$ ,  $R_c$ ,  $R_{ac}$ , and  $R_{soil}$  are aerodynamic resistance, laminar boundary layer resistance, stomata resistance, cuticle resistance, in-canopy aerodynamic resistance and soil resistance, respectively. In air-soil exchange, GEM net flux is calculated according to bare land or vegetation. For bare land, the concentration gradient is considered between the soil and the atmosphere. For vegetation, the concentration gradient is between the soil and the compensation point ( $\chi_{cnp}$ ). In air-cuticle exchange, the photo-reduction of oxidized mercury is considered and it is not considered by Bash.

The two GEM bidirectional exchange models above are developed for regional models. Wright and Zhang (2015) presented a bidirectional exchange flux model to estimate GEM net flux in monitoring sites. It is a modification of the gaseous dry deposition model in Zhang et al. (2003) and it has the same structure as the ammonia bidirectional exchange model in Zhang et al. (2010). In Wright and Zhang (2015), the GEM net flux is calculated for land and the air-water exchange is not considered. Besides, the mercury soil pool is assumed as unlimited and that is limited in Bash (2010) and Wang et al. (2014). Wright and Zhang did not considered air-stomata, air-cuticle, and air-soil exchange. The GEM emission from the cuticle is assumed to be zero and then emission sources become stomata and the soil.

In Wright and Zhang (2015), the GEM net flux is calculated as a function of atmospheric GEM concentration, compensation point concentration, aerodynamic resistance and laminar boundary layer resistance. The compensation point concentration  $(\chi_c)$  is parameterized as

$$\chi_{c} = \left[ \frac{\chi_{a}}{R_{a} + R_{b}} + \frac{\chi_{st}}{R_{st} + R_{m}} + \frac{\chi_{g}}{R_{ac} + R_{g}} \right] \cdot \left[ \frac{1}{R_{a} + R_{b}} + \frac{1}{R_{st} + R_{m}} + \frac{1}{R_{ac} + R_{g}} + \frac{1}{R_{cut}} \right]^{-1}$$
(2-12)

where  $\chi_a$  is atmospheric GEM concentration,  $R_a$ ,  $R_b$ ,  $R_{st}$ ,  $R_m$ ,  $R_{cut}$ ,  $R_{ac}$ , and  $R_g$  are aerodynamic resistance, laminar boundary layer resistance, stomata resistance, mesophyll resistance, cuticle resistance, in-canopy aerodynamic resistance and soil resistance, respectively,  $\chi_{st}$  and  $\chi_g$  are the stomata and ground compensation point, respectively. The stomata compensation point depends on ambient temperature and emission potential of the stomata. As for ground compensation point, it relies on soil temperature and emission potential of the ground. Both emission potentials of the stomata and ground are derived empirically from modeled and measured compensation points.

In my study, two models from Wang et al. (2014) and Wright and Zhang (2015) were chosen. Wang's model is based on the bidirectional exchange scheme from Bash (2010) and is updated with surface resistances from Zhang et al. (2002b, 2003). This surface resistances scheme is the same as Wright and Zhang (2015). Wang's model simulates pollutants exchange in air-terrestrial, air-stomata, air-cuticle, air-soil, and air-water. However, some parameters involving in physical and chemical processes, such as GOM concentration in soil, were assumed and needs further investigations. As for Wright and Zhang (2015), it was developed for site simulations. The physical and

chemical processes in the model were simplified under assumptions. Thus, it is convenient for site simulating and the simulation results were reasonable by comparison with measurements (Wright and Zhang, 2015). However, Wright and Zhang's model does not simulate pollutants exchange between air and water. The exchange in air-stomata, air-cuticle, and air-soil were not considered.

#### **CHAPTER 3 METHODOLOGY**

#### 3.1 The two models used

Wang's model (Wang et al., 2014) and Wright & Zhang's model (Wright and Zhang, 2015) were chosen in this study. Wang's model was developed based on Bash's model (Bash, 2010) with updated surface resistances. The simulated fluxes in United States by this model were comparable to measurements (Wang et al., 2014). The sensitivity of the simulated flux to physical and environmental parameters was examined (Wang et al., 2014). In Wright & Zhang's model, the GEM exchange flux was estimated for various land covers surrounding 24 sites in North America (Zhang et al., 2016b). The reliability and uncertainty of the model were discussed (Zhang et al., 2016b).

#### 3.2 Land cover

In Wang's model, GEM exchange flux is estimated over canopy and water surfaces. Wright & Zhang's model was developed for canopy surfaces. Through ANOVA analysis, the effect of land cover is more significant on Wang's model than that on Wright & Zhang's model (11 vs. 2, Appendix F). However, the interaction between land cover and season is similar in the two models (13 vs. 10). In this study, the two models were run over canopies. Two out of 26 land cover categories in Zhang et al. (2003) were chosen, evergreen needleleaf forest and deciduous broadleaf forest. The two models produced different results (difference>45%) in all output, except aerodynamic resistance, quasilaminar resistance, cuticle resistance, soil resistance, deposition velocity, and deposition flux, in the two land covers (Table E2).

## 3.3 Study site

The study site was chosen from National Atmospheric Deposition Program's Atmospheric Mercury Network sites. The detailed information of monitoring sites is in Zhang et al. (2016b). The study site was chosen under four considerations. (1) The site should locate in North America where meteorological data is available. (2) In order to reduce the effect of anthropogenic emission on ambient GEM concentration, the site should be located in rural areas or places without urban land cover. (3) The annual mercury emission of the site within 100km radius should be lower than 300 kg (Zhang et al., 2016b). Hence, the ambient GEM concentrations are closer to background concentration. (4) The site should have many land covers but without water because Wright & Zhang's model is only for canopies. Under all these four considerations, GA40 (33.9283° N, 85.0456° W) with evergreen needleleaf trees of 20.1%, deciduous broadleaf trees of 30.6%, and grass of 49.3% was chosen as the study site. GA40 site is at Rockmart, Georgia, United States and is 63km northwest of Atlanta, Georgia, United States (Fig. 3-1). The nearest airport is Paulding Northwest Atlanta Airport (33.9176° N, 84.9407° W) and is 9km east of GA40 site.

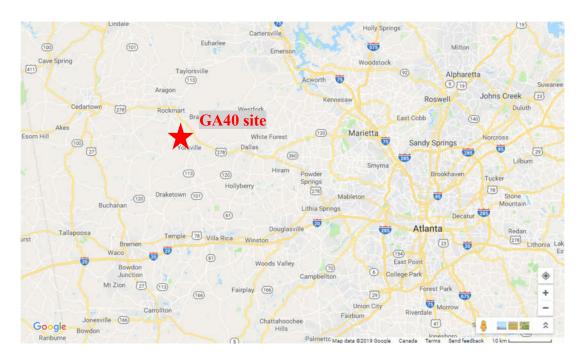



Figure 3-1. Location of GA40 site (base map adapted from Google Maps).

## 3.4 Seasons

Through ANOVA analysis, season is significant in the two models and its variability is larger than variability of land cover (Appendix F). In Wang's model, temperature is a factor in all output, except aerodynamic resistance, quasi-laminar resistance, cuticle resistance and in-canopy aerodynamic resistance. In Wright & Zhang's model, temperature is a factor in all output, except cuticle resistance and in-canopy aerodynamic resistance. Summer and winter were chosen because these two seasons have high LAI and low LAI, respectively. June-September and December-March were set as summer and winter, respectively, based on variation of LAI for evergreen needleleaf forest and deciduous broadleaf forest, as in Fig. 3-2. For both land covers, LAI is high during June-September and low during December-March. ANOVA analysis reveals that the two models provided different results (difference >45%) in all output, except aerodynamic

resistance, quasi-laminar resistance, cuticle resistance, soil resistance, deposition velocity, and deposition flux, in the two seasons (Table E2).

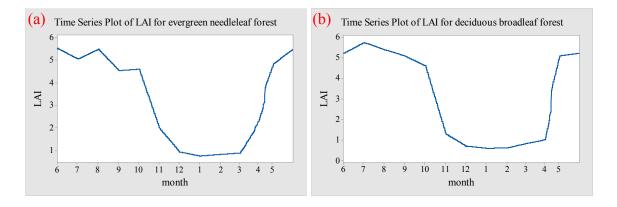



Figure 3-2. Variation of LAI for the two land covers, (a) evergreen needleleaf forest, (b) deciduous broadleaf forest.

# 3.5 Study period

There are six years hourly meteorological data and two-hour ambient GEM concentrations data in GA40—June 2009 to April 2014 (Zhang et al. 2016b). June 2010—September 2010 and December 2010—March 2011 were chosen, because of highest percentage of valid ambient GEM concentration data (88.7%), as in Table 3-1.

Table 3-1. GEM concentrations two-hour data points in 2009-2014.

| Period                                                                | Missing hours | Data points | Total hours | Percentage of data points |  |
|-----------------------------------------------------------------------|---------------|-------------|-------------|---------------------------|--|
| Jun., Jul., Aug., Sep., Dec. in 2009                                  | 506           | 2410        | 2916        | 82.6%                     |  |
| and Jan., Feb., Mar. in 2010                                          |               |             |             |                           |  |
| Jun., Jul., Aug., Sep., Dec. in 2010<br>,and Jan., Feb., Mar. in 2011 | 329           | 2587        | 2916        | 88.7%                     |  |
| Jun., Jul., Aug., Sep., Dec. in 2011<br>,and Jan., Feb., Mar. in 2012 | 632           | 2296        | 2928        | 78.4%                     |  |
| Jun., Jul., Aug., Sep., Dec. in 2012<br>,and Jan., Feb., Mar. in 2013 | 832           | 2084        | 2916        | 71.5%                     |  |
| Jun., Jul., Aug., Sep., Dec. in 2013<br>,and Jan., Feb., Mar. in 2014 | 493           | 2423        | 2916        | 83.1%                     |  |

#### 3.6 Model settings

# 3.6.1 Reference height

GEM exchange between reference height and surface was simulated by the models. The reference height in Wang's model is fixed at 10m. The reference height in Wright & Zhang's model is flexible and decided by model user. Thus, the reference height in Wright & Zhang's model was set at 10m to enable comparison of the two models. However, 10m reference height may not be a suitable height to simulate GEM exchange for evergreen needleleaf forest and deciduous broadleaf forest. This is because trees as tall as 30m are not uncommon around latitude of 30 north degree.

## 3.6.2 GEM compensation point concentration on cuticle

Wang assumed that GOM on cuticle is reduced to GEM or fixed into leaves tissue. The GEM compensation point concentration on cuticle is calculated from the difference between reduced GOM and fixed GOM. However, when solar radiation is zero at night or is weak during daytime, calculated GEM compensation point concentration is

negative, because reduced GOM is less than fixed GOM. Negative GEM compensation point concentration is unreasonable. Thus, GEM compensation point concentration on cuticle in Wang's model was set to be greater or equal to zero.

## 3.6.3 Meteorological conditions

Table 3-2 lists four parameters each with different settings in the two models. In order to run the two models under the same condition, each of the four parameters was set to be the same for the two models.

Table 3-2. Settings of four meteorological parameters in each of the two models, settings in Wright & Zhang's model were used.

| Parameters                                                                      | Wright & Zhang's model                                                     | Wang's model                                                             |  |
|---------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------|--|
| occurrence of dew                                                               | surface air temperature) > 273.15K<br>friction velocity < u <sub>min</sub> | dew point temperature ≥surface air temperature                           |  |
| occurrence of rain surface air temperature > 273.15K precipitation > 0.2mm/hour |                                                                            | precipitation > 0mm/hour                                                 |  |
| occurrence of snow                                                              | fraction of snow depth > 0.0001                                            | snow depth $> 0$                                                         |  |
| how to get relative<br>humidity                                                 | input from the meteorological data                                         | calculated using surface air<br>temperature and dew point<br>temperature |  |

- (1) In Wright & Zhang's model, dew occurs on clear night with or without weak wind, and when temperature is above zero degree celsius. In Wang's model, dew occurs when dew point temperature is greater or equal to surface temperature. The approach in Wright & Zhang's model is used in both models because this approach gets closer to physical processes.
- (2) In Wright & Zhang's model, precipitation occurs when surface temperature goes above zero degree celsius and precipitation is larger than 0.2 mm/hour. In Wang's model,

precipitation above 0 mm/hour is considered as rain. In monitor sites, both rain and snow are measured by means of liquid. Snow and rain play different roles in pollutants deposition because snow is ice crystal and rain is liquid. Only under the assumption that snow quickly melts to water as soon as snow falls on the surface, snow is seen as rain. However, when surface temperature is under zero degree celsius, it is difficult for snow to melt quickly unless there is enough solar radiation. Therefore, the approach in Wright & Zhang's model is closer to nature and used in both models.

- (3) In Wright & Zhang's model, fraction of snow depth is the ratio of snow depth to maximum snow depth of 2 m for evergreen needleleaf forest and deciduous broadleaf forest. Snow occurs when fraction of snow depth is larger than 0.0001, namely snow depth above 0.02 cm. In Wang's model, snow happens when snow depth above zero. The judgements of occurrence of snow in the two models are similar. The approach in Wright & Zhang's model is used in both models.
- (4) In Wang's model, relative humidity is calculated using surface air temperature and dew point temperature (the temperature that air becomes saturated with water vapor). This calculation is replaced by input, as in Wright & Zhang's model, because relative humidity is available in the meteorological dataset.

#### 3.7 Data treatment

# 3.7.1 Input data

Input data for the two models is listed in Tables 3-3, 3-4, and 3-5. In Table 3-3, hourly meteorological data is for the study site (GA40) during June 2010—September

2010 and December 2010—March 2011. It is archived data produced by the Canadian weather forest model and is provided by Environment and Climate Change Canada. Two-hour ambient GEM concentration data is for the GA40 site during June 2010—September 2010 and December 2010—March 2011. It is the observation data in GA40 monitoring site and is provided by Environment and Climate Change Canada. In Table 3-4, constant input data that is not related with land cover is shown.

Table 3-3. Hourly input data in the two models.

| Categories          | Input data (unit)                         | In which models |  |  |
|---------------------|-------------------------------------------|-----------------|--|--|
|                     | surface air temperature (°C)              | both            |  |  |
|                     | ambient temperature (°C)                  | Wright & Zhang  |  |  |
|                     | relative humidity (fraction)              | both            |  |  |
|                     | barometric pressure (mbar)                | both            |  |  |
| without processing  | solar irradiance (W/m <sup>2</sup> )      | both            |  |  |
| meteorological data | soil volumetric water                     | Wang            |  |  |
|                     | content (m <sup>3</sup> /m <sup>3</sup> ) |                 |  |  |
|                     | precipitation (mm/hour)                   | both            |  |  |
|                     | snow depth (cm)                           | both            |  |  |
|                     | fraction of cloud                         | both            |  |  |
| without processing  | ambient GEM concentration                 | both            |  |  |
| concentration data  | $(ng/m^3)$                                |                 |  |  |
|                     | temperature at 10m (°C)                   | Wright & Zhang  |  |  |
|                     | wind speed (m/s)                          | both            |  |  |
| preprocessing data  | friction velocity (m/s)                   | both            |  |  |
|                     | cosine value of zenith angle              | both            |  |  |
|                     | (dimensionless)                           |                 |  |  |
|                     | LAI (dimensionless)                       | both            |  |  |

Table 3-4. Constant values in the two models.

| Input parameter (unit)                                                | Value    | In which models |
|-----------------------------------------------------------------------|----------|-----------------|
| mesophyll resistance (s/m)                                            | 500      | both            |
| alpha                                                                 | 0        | both            |
| beta                                                                  | 0.1      | both            |
| GEM molar weight                                                      | 200      | Wright & Zhang  |
| dair                                                                  | 17       | Wright & Zhang  |
| dh2o                                                                  | 13       | Wright & Zhang  |
| R <sub>st</sub> for stomata closure (s/m)                             | 99999.9  | Wright & Zhang  |
| k                                                                     | 0.41     | Wang            |
| kt (cm <sup>2</sup> /s, air diffusivity)                              | 0.22     | Wang            |
| dihg0 (cm <sup>2</sup> /s, GEM diffusivity)                           | 0.13     | Wang            |
| psea (kPa, sea level atmospheric pressure)                            | 101.325  | Wang            |
| dh2o_dhg0 (water vapor diffusivity/GEM diffusivity)                   | 1.82     | Wang            |
| cos a (for visible solar radiation)                                   | 0.5      | Wang            |
| kla (GEM partitioning coefficient between air and leaf)               | 30000    | Wang            |
| foc (m <sup>3</sup> /m <sup>3</sup> , organic carbon content in soil) | 0.025    | Wang            |
| cwash (fraction of GOM washed off from cuticle)                       | 0.02     | Wang            |
| fdtgm (ng/m³, total gaseous mercury depositing on leaves)             | 0.39     | Wang            |
| tl (m, leaf thickness)                                                | 0.000152 | Wang            |
| tdiff (s, time period)                                                | 3600     | Wang            |
| koc (GEM partitioning coefficient between organic carbon and water)   | 0.000052 | Wang            |
| krxn (s <sup>-1</sup> , GOM reaction rate in soil)                    | 8*10-11  | Wang            |
| ccgs_hg2 (ng/m³, GOM concentration in soil)                           | 90       | Wang            |

Table 3-5. Constant values associated with land cover in the two models.

| Input parameter                               | Evergreen         | Deciduous broadleaf      | In which we adole |  |
|-----------------------------------------------|-------------------|--------------------------|-------------------|--|
| (unit)                                        | needleleaf forest | forest                   | In which models   |  |
| roughness height (m)                          | 0.9               | 0.4-1 (varying with LAI) | Wright & Zhang    |  |
| emission potential of stomata                 | 10                | 8                        | Wright & Zhang    |  |
| emission potential of ground                  | 10                | 10                       | Wright & Zhang    |  |
| brs (constant for R <sub>s</sub> )            | 44                | 43                       | both              |  |
| bvpd (constant for R <sub>s</sub> )           | 0.31              | 0.36                     | both              |  |
| psi1 (constant for R <sub>s</sub> )           | -2                | -1.9                     | both              |  |
| psi2 (constant for R <sub>s</sub> )           | -2.5              | -2.5                     | both              |  |
| Rac1 (constant for R <sub>ac</sub> in summer) | 100               | 60                       | both              |  |
| Rac2 (constant for                            | 100               | 100                      | Wright & Zhang    |  |
| R <sub>ac</sub> in winter)                    | 100               | 250                      | Wang              |  |
| RcutdO (constant for R <sub>cut</sub> )       | 4000              | 6000                     | both              |  |
| RcutwO (constant for R <sub>cut</sub> )       | 200               | 400                      | both              |  |
| RcutdS (constant for R <sub>cut</sub> )       | 2000              | 2500                     | both              |  |
| RgO (constant for R <sub>g</sub> )            | 200               | 200                      | Wright & Zhang    |  |
| RgS (constant for R <sub>g</sub> )            | 200               | 200                      | both              |  |
| rsmin (constant for R <sub>st</sub> )         | 250               | 150                      | both              |  |
| maximum snow<br>depth (cm)                    | 200               | 200                      | both              |  |
| tmax (constant for R <sub>st</sub> )          | 40                | 45                       | both              |  |
| tmin (constant for R <sub>st</sub> )          | -5                | 0                        | both              |  |
| topt (constant for R <sub>st</sub> )          | 15                | 27                       | both              |  |

Table 3-5 lists constant input data associated with land cover. There are five input

constants that are the same for the two land covers. Six input constants are similar for the two land covers. There are eight constants that are different for the two land covers, (1) roughness height has an effect on aerodynamic resistance, (2) constant for R<sub>ac</sub> in summer (Rac1) has an influence on in-canopy aerodynamic resistance, (3) constant for R<sub>ac</sub> in winter (Rac2) affects in-canopy aerodynamic resistance, (4) constant for R<sub>cut</sub> (RcutdO) influences cuticle resistance, (5) constant for R<sub>cut</sub> (RcutwO) has an effect on cuticle resistance, (6) constant for R<sub>cut</sub> (RcutdS) has an influence on cuticle resistance, (7) constant for R<sub>st</sub> (rsmin) affects stomata resistance, (8) constant for R<sub>st</sub> (topt) influences stomata resistance. There is only one constant that is different in the two models—constant for R<sub>ac</sub> in winter (Rac2), which has an influence on in-canopy aerodynamic resistance.

Although LAI for the two land covers are similar (Fig. 3-2), eight input constants are different for the two land covers and they have an effect on the output from the two models. The difference between the two models for the two land covers is analyzed in chapter 4.

#### 3.7.2 Preprocessing

There are five hourly input variables need preprocessing—temperature at 10m, zenith angle, friction velocity (u\*, a measurement of the vertical flux of horizontal momentum in the surface layer), LAI, and wind speed at 10m (Table 3-3). Temperatures at the surface and at the first model-layer (typically at 40-50m) are available (Zhang et al. 2016b). The temperature at 10 m is calculated under the assumption that temperature varies linearly between these two heights.

Zenith angle, u\*, and LAI were calculated with the method in Wright & Zhang's model. Wind speed at 10m was calculated back from u\* with the method in Wright & Zhang's model. u\* is related with the roughness of underlying surfaces. u\* was calculated between roughness height and the first model-layer. It was also calculated between roughness height and 10m. The two calculated u\* are the same because the underlying surface is the same.

# 3.7.3 Interpolation of ambient GEM concentrations data

Two-hour ambient GEM concentration data from Zhang et al (2016b) were measured at even hours or odd hours. Here, all even hours were moved to odd hours by adding one to each even hour. Then, average of two data in one odd hour was processed. Linear Interpolation was made for 12 odd hours of each day to get hourly ambient GEM concentrations. If there was only one even hour absent between two closest odd hours, linear interpolation was made to get this even hour. Otherwise, interpolation was not made between two closest odd hours. The seasonal average diurnal cycles for ambient GEM concentration before and after interpolation are shown in Fig. 3-3. They have similar diurnal trends and the zigzag in original ambient GEM concentrations disappears in interpolated ambient GEM concentrations. After interpolation, hourly ambient GEM concentrations data and hourly meteorological data were merged.

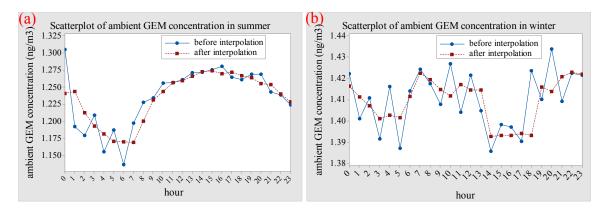



Figure 3-3. Seasonal average diurnal cycle for ambient GEM concentrations before and after interpolation, (a) in summer, (b) in winter.

# 3.7.4 Input data for each of the two models and conversion of units

Input data for two models are shown in Table 3-6. Four parameters have different units in the two models, (1) surface air temperature, conversion from degree celsius to Kelvin degree, (2) relative humidity, conversion from fraction to percentage, (3) barometric pressure, conversion from Milibar to Pascal, and (4) snow depth, conversion from centimetre to metre.

Table 3-6. Input data and units for the two models.

| Category            | Parameters                    | Units in Wright &<br>Zhang's model | Units in Wang's model |  |  |
|---------------------|-------------------------------|------------------------------------|-----------------------|--|--|
|                     | wind speed                    | m/s                                |                       |  |  |
|                     | friction velocity             | m/s                                |                       |  |  |
|                     | solar radiation               | $W/m^2$                            |                       |  |  |
| The same units      | precipitation                 | mm/                                | hour                  |  |  |
| The same units      | fraction of cloud             | fraction                           |                       |  |  |
|                     | cosine value of zenith angle  | dimensionless                      |                       |  |  |
|                     | LAI                           | dimensionless                      |                       |  |  |
|                     | ambient GEM concentration     | ng/m <sup>3</sup>                  |                       |  |  |
|                     | surface air temperature       | °C                                 | K                     |  |  |
| Different units     | relative humidity             | fraction                           | %                     |  |  |
| Different units     | barometric pressure           | mbar                               | Pa                    |  |  |
|                     | snow depth                    | cm                                 | m                     |  |  |
| Input into only one | ambient temperature           | °C                                 |                       |  |  |
| model               | soil volumetric water content |                                    | $m^3/m^3$             |  |  |

There are two parameters that are only required by one of the two models. Ambient temperature in Wright & Zhang's model is used to calculate air diffusivity and GEM compensation point concentration in stomata. In Wang's model, air diffusivity was set as a constant of 0.22cm2/s and GEM compensation point concentration in stomata is dependent on LAI and solar radiation, not ambient temperature. Soil volumetric water content in Wang's model is used for wet soil and Wright & Zhang did not consider wet soil.

# 3.8 Hours of daytime

Hours for daytime were chosen based on the diurnal cycle of zenith angle. Seasonal average diurnal cycle for cosine value of zenith angle is shown in Fig. 3-4. Daytime was decided as 6:00-18:00 and 7:00-17:00 for summer and winter, respectively.

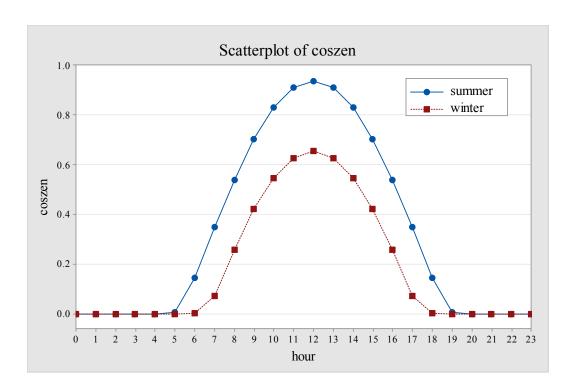



Figure 3-4. Seasonal average diurnal cycle for cosine of zenith angle in summer and winter.

# 3.9 Running the two models

The resistances and velocities were output from the two models with hourly meteorological data, because resistances and velocities only need meteorological data as input. The GEM compensation point concentrations and fluxes were output from the two models with merged hourly meteorological data and ambient GEM concentrations. Both meteorological data and ambient GEM concentrations are from 0:00 to 23:00. The general statistics of meteorological data before merge (Table D1) is similar to that after merge (Table D2).

## 3.10 Calculation of the percentage of difference between the two models

In the tables of chapter 4, all percentages of difference between the two models were calculated as equation 3-1.

Percentage of difference = 
$$\frac{\text{value from Wang's model-value from Wright \& Zhang's model}}{0.5*(\text{value from Wang's model} + \text{value from Wright \& Zhang's model})}*100\%$$
 (3-1)

## 3.11 Analysis of variance (ANOVA) of the difference between the two models

General Linear Model, one type of Analysis of Variance (ANOVA) in Minitab (version 18 developed by Minitab, Inc), was used to analyze the effect of land cover and season on difference within and between the two models. The difference between the two models is calculated as equation 3-1. When the p-value of land cover or season was less than 0.1, land cover or season was considered to be significant in the difference between the two models. Otherwise, land cover or season was considered to be insignificant in the difference between the two models. Main effect and interception figures were also plotted to analyze the effect of land cover and season on difference within and between the two models.

#### 3.12 The tools

The two models were run on Matlab (developed by MathWorks). All data analysis and figures plotting were made on Minitab (version 18 developed by Minitab, Inc).

#### **CHAPTER 4 RESULTS AND DISCUSSIONS**

## 4.1 Resistances

# 4.1.1 Aerodynamic resistance (R<sub>a</sub>)

Wright & Zhang considered the turbulence caused by wind (mechanical turbulence) and buoyancy (thermal turbulence). Wang only considered the turbulence caused by wind. Wright & Zhang assumed that the maximum  $R_a$  to be 1000 s/m and Wang did not.

# Evergreen needleleaf forest in summer

- a) Compare the turbulence caused by wind in Wright & Zhang's model (without cap) with that in Wang's model
  - (1) R<sub>a</sub> caused by wind in the two models

Table 4-1 shows values of  $R_a$  caused by wind in the two models.  $R_a$  caused by wind in the two models has similar diurnal trend with low values during daytime and high values during nighttime (Fig. 4-1 and Table E1). Aerodynamic resistance in Wang's model is always larger than that in Wright & Zhang's model (Fig. 4-2).

Table 4-1. Aerodynamic resistance  $(R_a,\,s/m)$  for the two models in the two seasons.

| Season | Land cover                | Model                                    | Minimum | First<br>quartile | Median | Third quartile | Maximum                                                    | Mean |
|--------|---------------------------|------------------------------------------|---------|-------------------|--------|----------------|------------------------------------------------------------|------|
|        |                           | Wang (wind)                              | 7       | 16                | 22     | 40             | 268020                                                     | 1167 |
|        |                           | Wright & Zhang (wind)                    | 6       | 12                | 16     | 28             | 4504                                                       | 65   |
|        | evergreen<br>needleleaf   | (buoyancy)                               | -12     | -1                | 1      | 12             | 23761                                                      | 226  |
|        | forest                    | (wind+buoyancy)                          | 6       | 12                | 16     | 36             | 28266                                                      | 331  |
| summer |                           | Wright & Zhang (wind+buoyancy, with cap) | 5       | 12                | 16     | 36             | 1000                                                       | 123  |
|        |                           | Wang (wind)                              | 7       | 15                | 21     | 39             | 259817                                                     | 1127 |
|        |                           | Wright & Zhang (wind)                    | 5       | 12                | 16     | 27             | 4339                                                       | 63   |
|        | deciduous                 | (buoyancy)                               | -12     | -1                | 1      | 12             | 23430                                                      | 262  |
|        | forest                    | (wind+buoyancy)                          | 5       | 11                | 16     | 35             | 27769                                                      | 325  |
|        |                           | (wind+buoyancy,                          | 5       | 11                | 16     | 35             | 1000                                                       | 122  |
|        | Wang (wind)               | 5                                        | 11      | 14                | 25     | 257065         | 561                                                        |      |
|        |                           | (wind)                                   | 4       | 8                 | 11     | 17             | 4296                                                       | 36   |
|        | Wright & Zhang (wind)   6 | 4                                        | 22662   | 139               |        |                |                                                            |      |
|        |                           | (wind+buoyancy)                          | 4       | 8                 | 11     | 21             | 259817<br>4339<br>23430<br>27769<br>1000<br>257065<br>4296 | 174  |
| winter |                           | (wind+buoyancy,                          | 4       | 8                 | 11     | 21             | 1000                                                       | 85   |
| Willer |                           |                                          | 8       | 17                | 23     | 40             | 390761                                                     | 844  |
|        |                           | (wind)                                   | 6       | 12                | 17     | 28             | 6965                                                       | 58   |
|        |                           | (buoyancy)                               | -14     | -0.1              | 0.4    | 5              | 27485                                                      | 169  |
|        |                           | (wind+buoyancy)                          | 6       | 12                | 17     | 32             | 34450                                                      | 227  |
|        |                           | (wind+buoyancy,                          | 6       | 12                | 17     | 32             | 1000                                                       | 102  |

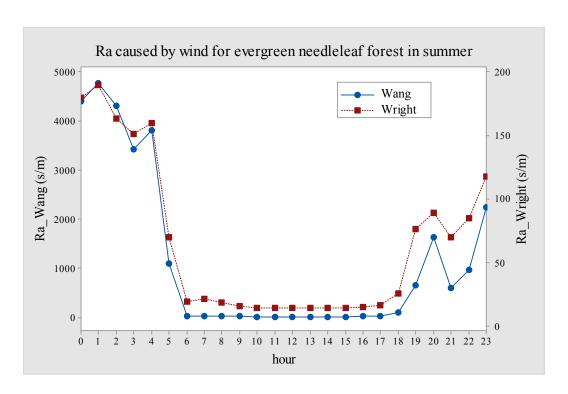



Figure 4-1. Diurnal trend for aerodynamic resistance caused by wind in the two models for evergreen needleleaf forest in summer.

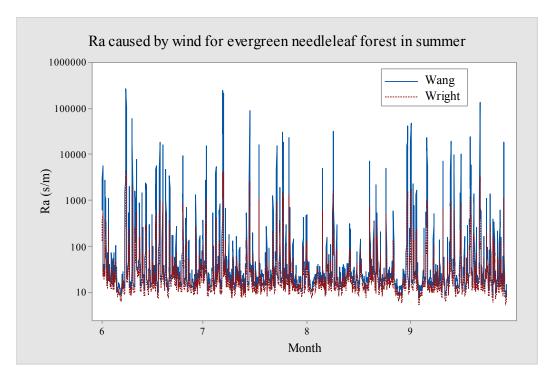



Figure 4-2. Time series for aerodynamic resistance caused by wind in the two models for evergreen needleleaf forest in summer.

## (2) The difference between the two models and why

The two models have the same input for R<sub>a</sub> caused by wind, but their equations are different. R<sub>a</sub> in Wang's model was developed based on direct measurement of the turbulence (Hicks et al., 1987), and R<sub>a</sub> in Wright & Zhang's model was developed based on micrometeorological approaches (Wesely and Hicks, 1977). As in Table 4-2, the difference between the two models is in the range of 11-193% (mean of 47%). The mean (47%) is greater than median (30%) because of the influence of large differences (>100%, 329 out of 2899) that are caused by low u\* and wind speed (Fig. 4-3). Large differences between the two models mostly happen during nighttime (Fig. 4-4) when u\* and wind speed are relatively low (Fig. 4-5). This is because low u\* and wind speed result in larger R<sub>a</sub> in both models, but to a greater degree in Wang's model. Schwede et al. (2011) also found that large values of R<sub>a</sub> are associated with low wind speed during nighttime. This is similar to R<sub>a</sub> in Wang's model.

Table 4-2. Difference (%) in aerodynamic resistance for the two models in the two seasons.

| Season   | Land<br>cover                     | Settings in Wright & Zhang's model | Minimu<br>m | First<br>quartile | Median | Third quartile | Maxim<br>um | Mean of<br>absolute<br>differen<br>ce |
|----------|-----------------------------------|------------------------------------|-------------|-------------------|--------|----------------|-------------|---------------------------------------|
|          |                                   | wind                               | 11          | 26                | 30     | 48             | 193         | 47                                    |
|          | evergreen<br>needleleaf           | wind+buoancy<br>(without cap)      | -129        | 12                | 28     | 34             | 162         | 32                                    |
| summar   | forest                            | wind+buoancy<br>(with cap)         | -129        | 13                | 29     | 35             | 199         | 36                                    |
| summer   |                                   | wind                               | 11          | 26                | 30     | 48             | 193         | 47                                    |
|          | deciduous<br>broadleaf<br>forest  | wind+buoancy<br>(without cap)      | -131        | 11                | 28     | 34             | 161         | 33                                    |
|          |                                   | wind+buoancy<br>(with cap)         | -131        | 13                | 29     | 35             | 198         | 36                                    |
|          |                                   | wind                               | 12          | 29                | 31     | 39             | 193         | 45                                    |
| winter - | evergreen<br>needleleaf<br>forest | wind+buoancy<br>(without cap)      | -129        | 20                | 28     | 31             | 162         | 30                                    |
|          |                                   | wind+buoancy<br>(with cap)         | -129        | 20                | 28     | 31             | 198         | 32                                    |
|          |                                   | wind                               | 12          | 29                | 30     | 38             | 193         | 44                                    |
|          | deciduous<br>broadleaf<br>forest  | wind+buoancy<br>(without cap)      | -116        | 22                | 29     | 30             | 168         | 30                                    |
|          |                                   | wind+buoancy<br>(with cap)         | -116        | 22                | 29     | 30             | 199         | 32                                    |

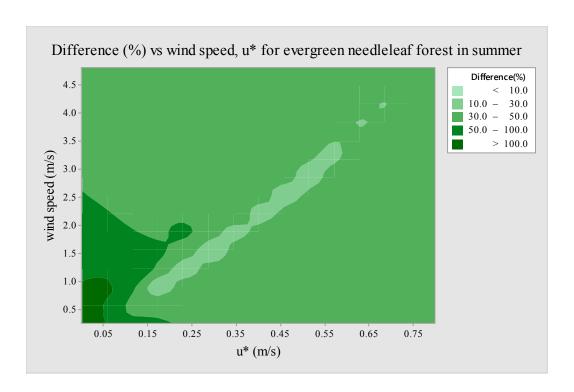



Figure 4-3. Contour plot for difference (%) versus wind speed and friction velocity for evergreen needleleaf forest in summer.

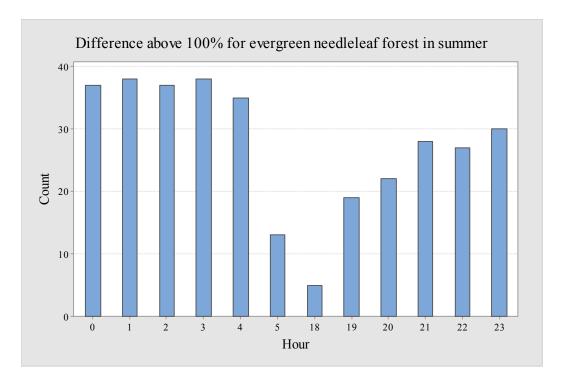



Figure 4-4. Hourly frequency of difference above 100% between the two models for evergreen needleleaf forest in summer.

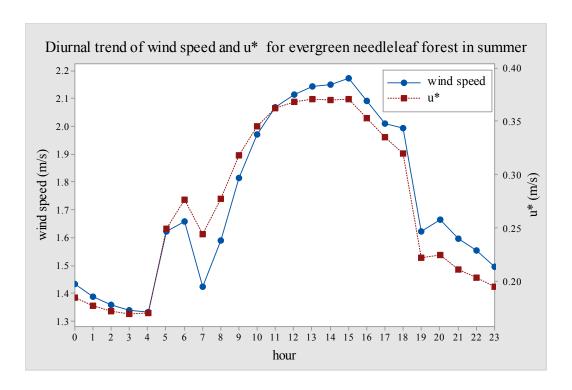



Figure 4-5. Diurnal trend for wind speed and friction velocity for evergreen needleleaf forest in summer.

# (3) Which model is better

Aerodynamic resistance caused by wind in Wright & Zhang's model is more appropriate for representation of gaseous pollutants air-surface exchange, including GEM. This is because there are always some exchanges of gaseous pollutants between the atmosphere and the surface under weak wind conditions. Extreme large R<sub>a</sub> leads to small velocity, as in Wang's model.

# b) R<sub>a</sub> caused by buoyancy in Wright & Zhang's model

As seen in Table 4-1, Ra caused by buoyancy in Wright & Zhang's model is in the

range of -12s/m to 23761s/m and mean of absolute values is 266s/m. The value of  $R_a$  is positive during nighttime (Fig. 4-6) because thermal turbulence cause by buoyancy inhibits GEM air-surface exchange under stable atmosphere. Extreme large values above 4000s/m also happen during nighttime (Fig. 4-7). The value of  $R_a$  is negative during daytime (Fig. 4-6) because thermal turbulence accelerates GEM air-surface exchange under unstable atmosphere.

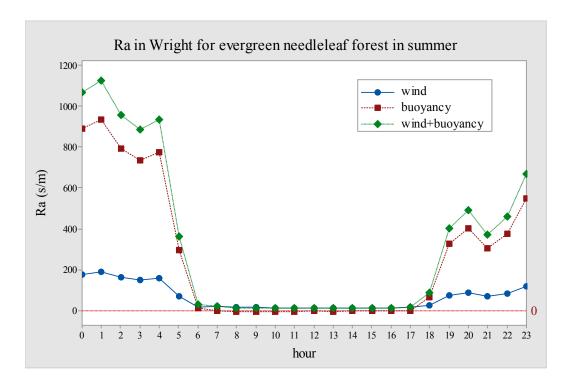



Figure 4-6. Diurnal trend for aerodynamic resistance caused by wind, buoyancy, and both wind and buoyancy in Wright & Zhang's model for evergreen needleleaf forest in summer.

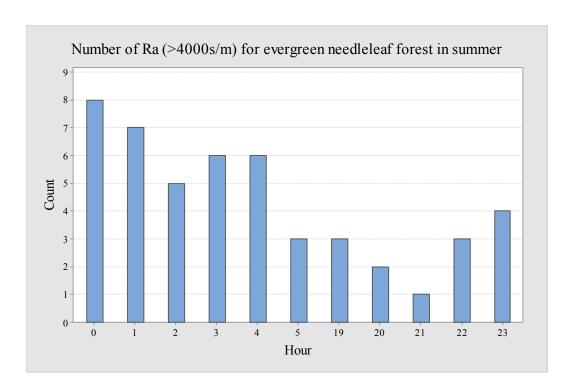



Figure 4-7. Hourly frequency of aerodynamic resistance above 4000s/m caused by buoyancy in Wright & Zhang's model for evergreen needleleaf forest in summer.

c) Compare the turbulence caused by wind and buoyancy in Wright & Zhang's model without cap with the turbulence caused by wind in Wang's model

## (1) R<sub>a</sub> caused by wind and buoyancy in Wright & Zhang's model

As seen in Table 4-1, R<sub>a</sub> caused by wind and buoyancy in Wright & Zhang's model is in the range of 6-28266s/m (mean of 331s/m). Its value is always positive, because Wright & Zhang assumed that R<sub>a</sub> caused by wind and buoyancy is 5s/m when R<sub>a</sub> is smaller than 5s/m. R<sub>a</sub> caused by wind and buoyancy is similar to that caused by wind during 6:00-17:00 (Fig. 4-6) due to small values of R<sub>a</sub> caused by buoyancy. R<sub>a</sub> caused by wind and buoyancy is much larger than that caused by wind during 0:00-5:00 and 18:00-23:00 (Fig. 4-6) owing to large values of R<sub>a</sub> caused by buoyancy. R<sub>a</sub> caused by wind and

buoyancy in Wright & Zhang's model and R<sub>a</sub> in Wang's model have similar diurnal trend with low values during daytime and high values during nighttime (Fig. 4-8).

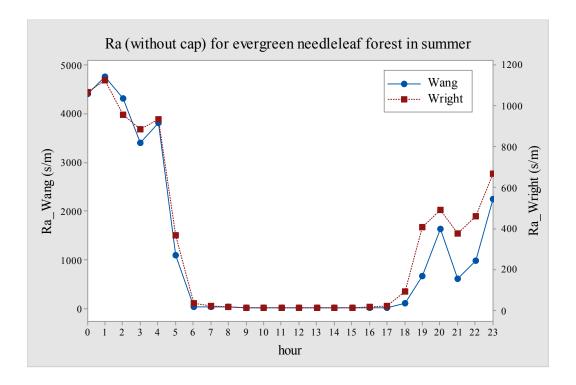



Figure 4-8. Diurnal trend for aerodynamic resistance in the two models without cap for evergreen needleleaf forest in summer.

## (2) The difference between the two models and why

Table 4-2 shows the difference between the two models. Fig. 4-9 shows the time series of  $R_a$  in the two models and the difference between the two models is smaller compared with the difference in Fig. 4-2. This is because  $R_a$  caused by buoyancy results in larger  $R_a$  in Wright & Zhang's model.  $R_a$  in Wang's model smaller than that in Wright & Zhang's model mainly happens during nighttime (Fig. 4-10) because of large positive values in  $R_a$  caused by buoyancy (Fig. 4-7) in Wright & Zhang's.

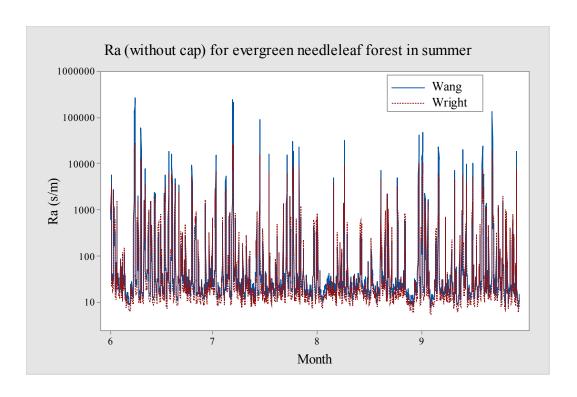



Figure 4-9. Time series for aerodynamic resistance in the two models without cap for evergreen needleleaf forest in summer.

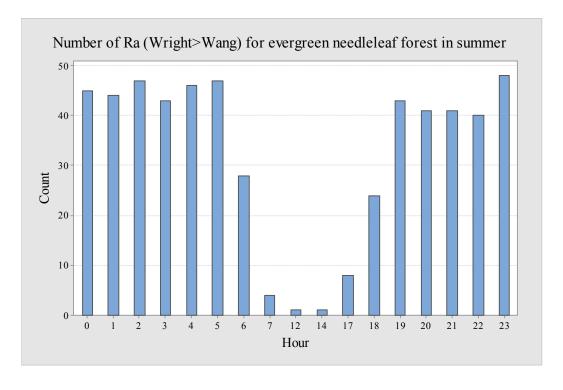



Figure 4-10. Hourly frequency of larger aerodynamic resistance in Wright & Zhang's model for evergreen needleleaf forest in summer.

#### (3) Which model is better

Aerodynamic resistance in Wright & Zhang's model is more appropriate for representation of GEM air-surface exchange. This is because Wright & Zhang considered the turbulence caused by wind and buoyancy. In nature, gaseous pollutants are transported from the atmosphere to the surface by both mechanical and thermal turbulence.

- d) Compare the turbulence caused by wind and buoyancy in Wright & Zhang's model with cap with the turbulence caused by wind in Wang's model
  - (1) R<sub>a</sub> caused by wind and buoyancy in Wright & Zhang's model with cap

6% of R<sub>a</sub> in Wright & Zhang's model was capped and 99% of the capped R<sub>a</sub> was at night. Table 4-11 shows capped R<sub>a</sub> caused by wind and buoyancy in Wright & Zhang's model. R<sub>a</sub> in the two models has similar diurnal trend with low values during daytime and high values during nighttime (Fig. 4-11). But trends at 2:00-4:00 and 19:00-22:00 are different in the two models because extreme large values of R<sub>a</sub> in Wright & Zhang's model were capped. There is only one extreme large value (>10000s/m) at 3:00 and two extreme large values at 2:00 and 4:00 (Fig. 4-12). After R<sub>a</sub> in Wright & Zhang's model was capped, R<sub>a</sub> at 3:00 is relatively larger than that at 2:00 and 4:00. There is one extreme large value at 20:00 (Fig. 4-12). After R<sub>a</sub> in Wright's model was capped, R<sub>a</sub> at 20:00 is relatively smaller than that at 19:00 and 21:00.

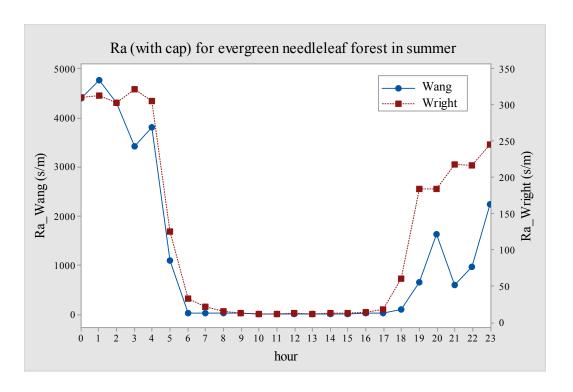



Figure 4-11. Diurnal trend for aerodynamic resistance in the two models with cap in Wright & Zhang's model for evergreen needleleaf forest in summer.

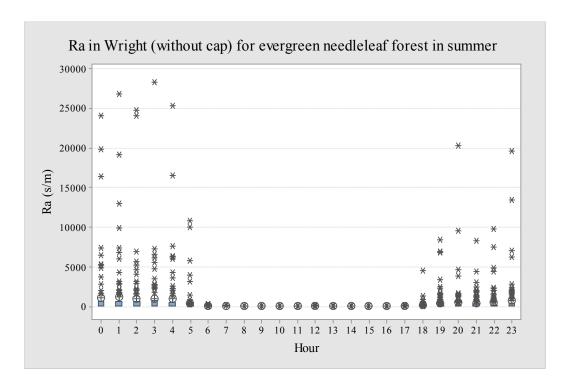



Figure 4-12. Boxplot for aerodynamic resistance caused by wind and buoyancy in Wright & Zhang's model without cap for evergreen needleleaf forest in summer.

# (2) The difference between the two models and why

The difference between the two models is shown in Table 4-2. Fig. 4-13 shows the time series for  $R_a$  in the two models and the difference between the two models is larger compared with the difference in Fig. 4-9. This is because large  $R_a$  in Wright & Zhang's model was capped to 1000 s/m.

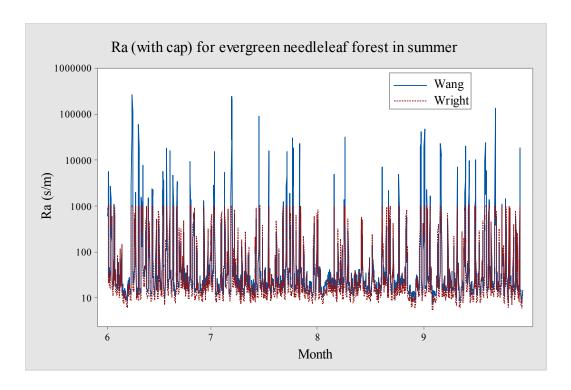



Figure 4-13. Time series for aerodynamic resistance in the two models with cap in Wright & Zhang's model for evergreen needleleaf forest in summer.

#### (3) Which model is better

Aerodynamic resistance in Wright & Zhang's model is more appropriate for representation of GEM air-surface exchange (Table E4). This is because Wright & Zhang considered the turbulence caused by wind and buoyancy. In nature, gaseous pollutants are transported from the atmosphere to the surface by both mechanical and

thermal turbulence. In Wright & Zhang's model, the cap that prevents  $R_a$  to be extremely large reflects that there is always some exchange of gaseous pollutants between the atmosphere and the surface under weak wind conditions.

### Deciduous broadleaf forest in summer

In R<sub>a</sub>, only wind speed and roughness are related with land cover. In summer, wind speed for deciduous broadleaf forest is similar to that for evergreen needleleaf forest (Table D1). For evergreen needleleaf forest, roughness was assumed as a constant of 0.9m. For deciduous broadleaf forest, roughness is dependent on LAI. In summer, LAI ranges from 4.6 to 5.7 (mean of 5.3) and roughness is in the range of 0.87-1m (mean of 0.95m). Roughness for evergreen needleleaf forest (0.9m) is close to that for deciduous broadleaf forest (mean, 0.95m). Thus it is expected that the difference between the two models is similar for the two land covers in summer. As in Table 4-1, R<sub>a</sub> in the same case is similar for the two land covers in summer. As seen in Table 4-2, the difference between the two models is also similar for the two covers in summer (36% vs. 36%), as expected.

#### Evergreen needleleaf forest in winter

As in Table 4-1, R<sub>a</sub> caused by wind in Wang's model is larger than that caused by wind and buoyancy in Wright & Zhang's model (mean, 561m/s >85m/s). The reason is similar to that for evergreen needleleaf forest in summer. Higher wind speed in winter (Table D1) results in smaller R<sub>a</sub> caused by wind in both models, but to a great degree in

Wang's model. Higher wind speed in winter also caused smaller R<sub>a</sub> caused by buoyancy in Wright's model. Table 4-2 shows the difference between the two models is similar to that for evergreen needleleaf forest in summer (32% vs. 36%).

#### **Deciduous broadleaf forest in winter**

In R<sub>a</sub>, only wind speed and roughness are related with land cover. In winter, wind speed for deciduous broadleaf forest is similar to that for evergreen needleleaf forest (Table D1). For evergreen needleleaf forest, roughness was assumed as a constant of 0.9m. For deciduous broadleaf forest, roughness is dependent on LAI. In winter, LAI ranges from 0.6 to 1 (mean of 0.72) and roughness is in the range of 0.4-0.44m (mean of 0.41m). Small roughness leads to large R<sub>a</sub> in both models, to a greater degree in Wang's model. As in Table 4-1, R<sub>a</sub> in Wang's model is larger than that in Wright & Zhang's model (mean, 844s/m>102s/m). As seen in Table 4-2, the difference between the two models is similar to that for evergreen needleleaf forest in winter (32% vs. 32%).

#### Summary

Regardless of season and land cover, R<sub>a</sub> in Wang's model is larger than that in Wright & Zhang's model (mean, 927s/m>108s/m). For the same land cover and different seasons, the difference between the two models is similar (36% vs. 32% for evergreen needleleaf forest, 36% vs. 32% for deciduous broadleaf forest). Although higher wind speed in winter leads to smaller R<sub>a</sub> in both models and to a greater degree in Wang's model, higher wind speed does not cause significant influence in the difference between

the two models. As in Table 4-3, season is insignificant in the difference between the two models (p=0.926).

Table 4-3. Analysis of variance (ANOVA) of the difference in aerodynamic resistance between the two models.

| Parameter         | p-value |
|-------------------|---------|
| season            | 0.926   |
| land cover        | 0.052   |
| season*land cover | 0.026   |

For different land covers and the same season, the difference between the two models is similar (36% vs. 36% in summer, 32% vs. 32% in winter). In summer, this is because of similar wind speed and roughness in the two land covers. In winter, although small roughness causes larger R<sub>a</sub> in both models and to a great degree in Wang's model, small roughness does not cause significant effect on the difference between the two models. Wind speed in winter is similar for the two land covers. However, land cover is significant in the difference between the two models (p=0.052).

#### 4.1.2 Quasi-laminar resistance (R<sub>b</sub>)

For R<sub>b</sub>, two parameters are different in the two models—air diffusivity (VI) and GEM diffusivity (DI), and other parameters are the same (Table C1). Wang assumed VI to be 0.22cm<sup>2</sup>/s and DI to be 0.13cm<sup>2</sup>/s. The ratio of VI to DI is 1.69. In Wright & Zhang's model, VI and DI are dependent on ambient temperature, and are not related with land cover.

# Evergreen needleleaf forest in summer

# a) $R_b$ in the two models

Table 4-4 shows  $R_b$  in the two models.  $R_b$  in the two models has similar diurnal trend with low values during daytime and high values during nighttime (Fig. 4-14 and Table E1).  $R_b$  in Wang's model is always smaller than that in Wright & Zhang's (Fig. 4-15).

Table 4-4. Quasi-laminar resistance (R<sub>b</sub>, s/m) for the two models in the two seasons.

| Land cover              | Season | Model          | Minimu<br>m | First<br>quartile | Median | Third quartile | Maximu<br>m | Mean |
|-------------------------|--------|----------------|-------------|-------------------|--------|----------------|-------------|------|
| COVEI                   |        | Wana           |             | -                 |        | -              |             |      |
|                         |        | Wang           | 9           | 19                | 25     | 43             | 7004        | 101  |
| evergreen<br>needleleaf | summer | Wright & Zhang | 10          | 21                | 29     | 50             | 8302        | 118  |
| forest                  |        | Wang           | 6           | 12                | 16     | 27             | 6680        | 56   |
| Torest                  | winter | Wright & Zhang | 7           | 15                | 20     | 33             | 8257        | 69   |
|                         |        | Wang           | 9           | 18                | 25     | 43             | 6907        | 99   |
| deciduous<br>broadleaf  | summer | Wright & Zhang | 10          | 21                | 29     | 49             | 8186        | 116  |
| forest                  |        | Wang           | 7           | 15                | 20     | 22             | 8102        | 68   |
| forest                  | winter | Wright & Zhang | 8           | 18                | 24     | 39             | 10014       | 83   |

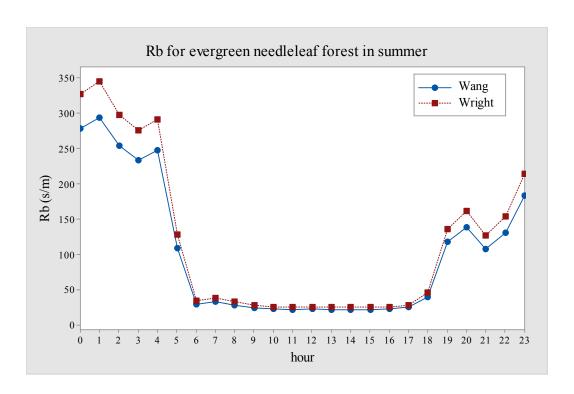



Figure 4-14. Diurnal trend for quasi-laminar resistance in the two models for evergreen needleleaf forest in summer.

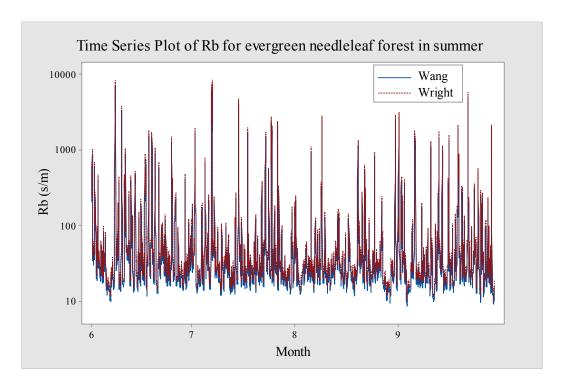



Figure 4-15. Time series for quasi-laminar resistance in the two models for evergreen needleleaf forest in summer.

## b) The difference between the two models and why

The two models have the same equation for R<sub>b</sub>, however their settings on VI and DI are different. Wang assumed that VI is  $0.22 \text{cm}^2/\text{s}$  and DI is  $0.13 \text{cm}^2/\text{s}$ . The ratio of VI to DI is 1.69. In Wright & Zhang's model, VI and DI are dependent on temperature. The difference between the two models is listed in Table 4-5. In summer, ambient temperature varies between  $12.6\,^{\circ}\text{C}$  and  $35.5\,^{\circ}\text{C}$  (mean of  $26.9\,^{\circ}\text{C}$ ). In Wright & Zhang's model, the range of VI is  $0.18-0.19 \text{cm}^2/\text{s}$  (mean of  $0.18 \text{cm}^2/\text{s}$ ) and VI is larger in Wang's model ( $0.22 \text{cm}^2/\text{s} > 0.18 \text{cm}^2/\text{s}$ ). The range of DI is  $0.08-0.1 \text{cm}^2/\text{s}$  (mean of  $0.09 \text{cm}^2/\text{s}$ ) and DI is also larger in Wang's model ( $0.13 \text{cm}^2/\text{s} > 0.09 \text{cm}^2/\text{s}$ ). The ratio of VI to DI is in the range of 1.97-2.15 (mean of 2.04) and the ratio is smaller in Wang's model (1.69 < 2.04). Smaller ratio leads to smaller R<sub>b</sub> in Wang's model.

Table 4-5. Difference (%) in quasi-laminar resistance for the two land covers in the two seasons.

| Land cover              | Season | Minimum | First<br>quartile | Median | Third<br>quartile | Maximum | Mean of<br>absolute<br>difference<br>(%) |
|-------------------------|--------|---------|-------------------|--------|-------------------|---------|------------------------------------------|
| evergreen<br>needleleaf | summer | -18     | -15               | -15    | -14               | -13     | 15                                       |
| forest                  | winter | -23     | -21               | -19    | -18               | -15     | 19                                       |
| deciduous<br>broadleaf  | summer | -18     | -15               | -15    | -14               | -13     | 15                                       |
| forest                  | winter | -23     | -21               | -19    | -18               | -15     | 19                                       |

## c) Which model is better

Quasi-laminar resistance in Wright & Zhang's model is more appropriate for GEM air-surface exchange (Table E4). This is because R<sub>b</sub> in Wright & Zhang's model reflects

the effect of ambient temperature on air diffusivity and GEM diffusivity. When the ratio of air diffusivity to GEM diffusivity is large, exchange of GEM is difficult.

#### **Deciduous broadleaf forest in summer**

The difference between the two models is only dependent on ambient temperature, and is not related with land cover. It is expected that the difference between the two models is the same for two land covers in summer. Table 4-4 shows that R<sub>b</sub> in Wang's model is smaller than that in Wright & Zhang's model (mean, 99s/m<116s/m). As seen in Table 4-5, the difference between the two models is the same as that for evergreen needleleaf forest in summer, as expected (15% vs. 15%).

### Evergreen needleleaf forest in winter

The difference between the two models is only dependent on ambient temperature, and ambient temperature is lower in winter (Table D1). In Wright & Zhang's model, VI in winter (mean, 0.17cm²/s) is similar to that in summer (mean, 0.18cm²/s). DI in winter (mean, 0.08cm²/s) is also similar to that in summer (mean, 0.09cm²/s). The ratio of VI to DI in winter (mean, 2.18) is similar to that in summer (mean, 2.04). In Wang's model, the ratio of VI to DI is a constant of 1.69. Thus, it is expected that the difference between the two models is similar in the two seasons. As seen in Table 4-4, R<sub>b</sub> in Wang's model is smaller than that in Wright & Zhang's model (mean, 56s/m<69s/m). As in Table 4-5, the difference between the two models is similar to that for evergreen needleleaf forest in summer (19% vs. 15%), as expected.

#### **Deciduous broadleaf forest in winter**

The difference between the two models is only dependent on ambient temperature, and is not related with land cover. It is expected that the difference between the two models is the same for two land cover in winter. Table 4-4 shows that R<sub>b</sub> in Wang's model is smaller than that in Wright & Zhang's model (mean, 68s/m<83s/m). As shown in Table 4-5, the difference between the two models is the same as that for evergreen needleleaf forest in winter, as expected (19% vs. 19%).

### **Summary**

Regardless of season and land cover, R<sub>b</sub> in Wang's model is smaller than that in Wright & Zhang's model (mean, 79s/m<94s/m). For the same land cover and different seasons, the difference between the two models is similar (15% vs. 19% for evergreen needleleaf forest, 15% vs. 19% for deciduous broadleaf forest) because of similar values of VI and DI as well as the ratio of VI to DI in Wright & Zhang's model. However, as in Table 4-6, season is significant in the difference between the two models (p=0.001).

Table 4-6. Analysis of variance (ANOVA) of the difference in quasi-laminar resistance between the two models.

| Parameter         | p-value |
|-------------------|---------|
| season            | 0.001   |
| land cover        | 0.99    |
| season*land cover | 0.99    |

For the same season and different land cover, the difference between the two models

is the same (15% vs. 15% in summer, 19% vs. 19% in winter). This is because VI and DI are not dependent on land cover. Table 4-6 shows that land cover has little effect on the difference between the two models (p=0.99).

# 4.1.3 Stomata resistance (R<sub>st</sub>)

For R<sub>st</sub>, constant values for stomata closure, visible solar radiation, water vapor diffusivity (DV), GEM diffusivity (DI), and the range of correction factor for water vapor pressure deficit of air (f<sub>D</sub>) are different in the two models, and other parameters are the same (Table C1). (1) Wang and Wright & Zhang set a constant value for R<sub>st</sub> as 1820500s/m and 296120s/m, respectively, to represent stomata closure. (2) Parameterizations of visible solar radiation in the two models are different. Wang assumed that visible solar radiation is calculated from a constant solar radiation of 600W/m<sup>2</sup> at the top atmosphere. In Wright & Zhang's model, visible solar radiation is calculated from input solar radiation. Both Wang and Wright & Zhang assumed that barometric pressure has an effect on visible solar radiation. However Wang required input barometric pressure and Wright & Zhang assumed barometric pressure to be 101.3kPa. The difference in visible solar radiation between the two models is not related with land cover.

(3) In Wang's model, DV and DI were assumed to be 0.237cm²/s and 0.13cm²/s, respectively. The ratio of DV to DI is 1.82. In Wright & Zhang's model, DV and DI are dependent on ambient temperature. However the ratio of DV to DI is a constant of 2.96. The difference in ratio of DV to DI between the two models is not related with land cover and season. (4) f<sub>D</sub> reflects the effect of water vapor pressure deficit on stomata.

Water vapor pressure deficit is the difference between actual air moisture and saturated air moisture. Water vapor pressure deficit is large when actual air moisture is much lower than saturated air moisture.  $f_D$  has different ranges in the two models. Wang assumed  $f_D$  to be in the range of 0-1.0, and Wright & Zhang set its range to be 0.1-1.0.

#### Evergreen needleleaf forest in summer

# a) R<sub>st</sub> in the two models

Table 4-7 shows R<sub>st</sub> in the two models. R<sub>st</sub> in Wright & Zhang's model always keeps small values during daytime, and that in Wang's model has large values during 11:00-16:00 (Fig. 4-16 and Table E1). Large values in Wang's model is caused by f<sub>D</sub> smaller than 0.1 (Fig 4-17). Small f<sub>D</sub> leads to large R<sub>st</sub> in Wang's model. Assuming that f<sub>D</sub> in Wang's model is greater or equal to 0.1, as in Wright & Zhang's model, R<sub>st</sub> in Wang's model always keeps small values during daytime (Fig. 4-16). During daytime, 85% of R<sub>st</sub> in Wright & Zhang's model is larger than that in Wang's model. However, R<sub>st</sub> in Wang's model has extreme large values (>10<sup>6</sup>s/m) (Fig. 4-18). Most of large values in Wang's model is due to  $f_D$  smaller than 0.1. Assuming that  $f_D$  in Wang's model is greater or equal to 0.1, large values in Wang's model are much fewer (Fig. 4-19). However, there are still large values in the two models in September. This is because daytime was set from 6:00 to 18:00 in summer. In September, sunrise occurs later and sundown occurs earlier. Solar radiation at 6:00 and 18:00 are weaker, and thus R<sub>st</sub> in the two models are large. Overall, R<sub>st</sub> in Wang's model is larger than that in Wright & Zhang's model (mean, 891108s/m>136953s/m).

Table 4-7. Stomata resistance (R<sub>st</sub>, s/m) for the two models in the two seasons.

| Season   | Land cover              | Model             | Minimum | First quartile | Median  | Third quartile | Maximum | Mean    |
|----------|-------------------------|-------------------|---------|----------------|---------|----------------|---------|---------|
|          | evergreen<br>needleleaf | Wang              | 691     | 1410           | 17372   | 1820500        | 1820500 | 871108  |
| cummer   | forest                  | Wright &<br>Zhang | 936     | 2185           | 12900   | 296120         | 1123590 | 136953  |
| summer   | deciduous<br>broadleaf  | Wang              | 610     | 897            | 1820500 | 1820500        | 1820500 | 986362  |
|          | forest                  | Wright &<br>Zhang | 731     | 1240           | 4078    | 296120         | 778415  | 135133  |
|          | evergreen<br>needleleaf | Wang              | 807     | 1718           | 1820500 | 1820500        | 1820500 | 1070650 |
| winter   | forest                  | Wright & Zhang    | 1072    | 3080           | 296120  | 296120         | 870393  | 178713  |
| de<br>br | deciduous<br>broadleaf  | Wang              | 953     | 2305           | 1820500 | 1820500        | 1820500 | 1152673 |
|          | forest                  | Wright & Zhang    | 1391    | 4696           | 296120  | 296120         | 487310  | 192182  |

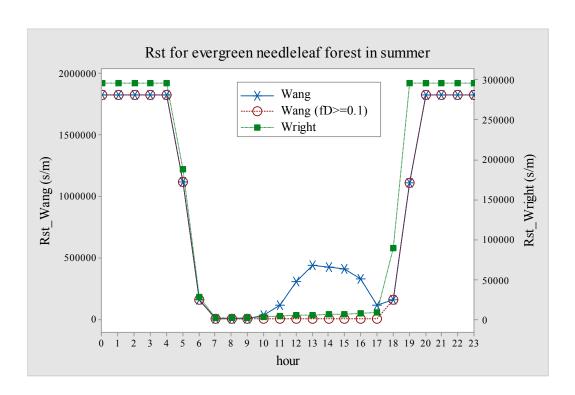



Figure 4-16. Diurnal trend for stomata resistance in the two models for evergreen needleleaf forest in summer.

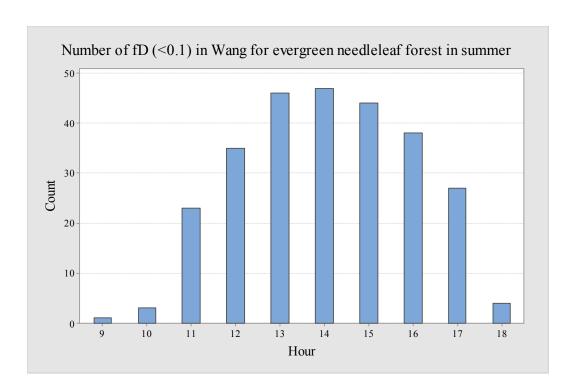



Figure 4-17. Hourly frequency of the correction factor for water vapor pressure deficit below 0.1 in Wang's model for evergreen needleleaf forest in summer.

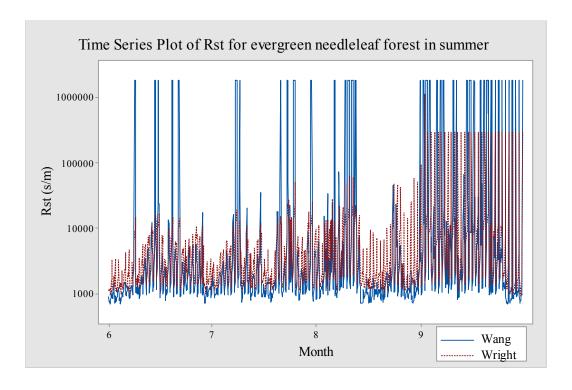



Figure 4-18. Time series for stomata resistance in the two models during daytime for evergreen needleleaf forest in summer.

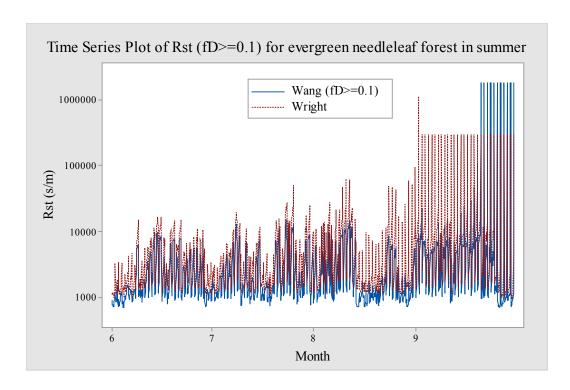



Figure 4-19. Time series for stomata resistance with correction factor for water vapor pressure deficit >=0.1 in Wang's model during daytime for evergreen needleleaf forest in summer.

# b) The difference between the two models and why

# (1) The difference between the two models

As seen in Table 4-8, the difference between the two models varies between -197% and 199%, and mean of absolute difference is 98%. The difference is mainly caused by  $f_D$  and constant values for stomata closure.

Table 4-8. Difference (%) in stomata resistance for the two models in the two seasons.

| Season | Land<br>cover                     | Settings in the two models                                              | Minimu<br>m | First<br>quartile | Median | Third quartile | Maximu<br>m | Mean of<br>absolute<br>differenc<br>e<br>(%) |
|--------|-----------------------------------|-------------------------------------------------------------------------|-------------|-------------------|--------|----------------|-------------|----------------------------------------------|
|        |                                   | no change                                                               | -197        | -36               | 11     | 144            | 199         | 98                                           |
|        | evergreen<br>needleleaf           | visible solar<br>radiation in<br>Wang's<br>model<br>(Wright &<br>Zhang) | -195        | -33               | 10     | 144            | 199         | 93                                           |
| summer | forest                            | DV/DI=1.82<br>(Wright &<br>Zhang)                                       | -195        | -4                | 55     | 164            | 199         | 94                                           |
|        |                                   | $f_D \ge 0.1$ (Wang)                                                    | -197        | -40               | -26    | 144            | 144         | 91                                           |
|        | deciduous<br>broadleaf<br>forest  | no change                                                               | -197        | -24               | 144    | 144            | 199         | 104                                          |
| winter | evergreen<br>needleleaf<br>forest | no change                                                               | -195        | -42               | 144    | 144            | 144         | 108                                          |
| WIIICI | deciduous<br>broadleaf<br>forest  | no change                                                               | -194        | -42               | 144    | 144            | 144         | 113                                          |

# (2) Effect of constant values for stomata closure

Stomata will close when there is no solar radiation during nighttime. Wang and Wright & Zhang assumed that  $R_{st}$  will be constants of 1820500 s/m and 296120 s/m for stomata closure, respectively. These two constant values are not affected by land cover and season.

# (3) Effect of visible solar radiation

Both Wang and Wright & Zhang assumed that barometric pressure has an influence on visible solar radiation. Wang required input barometric pressure and Wright & Zhang

assumed barometric pressure to be 101.3kPa. In summer, input barometric pressure is in the range of 97kPa and 99kPa (mean of 98kPa) and is close to 101.3kPa. Different treatments on barometric pressure have little effect on visible solar radiation.

Wang assumed that visible solar radiation is calculated from a constant solar radiation of 600W/m² at the top atmosphere. Visible solar radiation ranges from 0W/m² to 534W/m² (mean of 337W/m²). Wright & Zhang assumed that visible solar radiation is calculated from input solar radiation. Visible solar radiation varies between 0W/m² and 403W/m² (mean of 179W/m²). Large visible solar radiation leads to small R<sub>st</sub> in Wang's model. Assuming that visible solar radiation in Wright & Zhang's model is the same as that in Wang's model, the difference between the two models is in the range of -195% to 199% and mean of absolute difference is 93% (Table 4-8). This difference is similar to 98%. Different parameterizations of visible solar radiation have little effect on the difference between the two models.

### (4) Effect of ratio of DV to DI

In Wang's model, DV and DI were assumed to be 0.237cm<sup>2</sup>/s and 0.13cm<sup>2</sup>/s, respectively. The ratio of DV to DI is 1.82. In Wright & Zhang's model, DV and DI are dependent on temperature, and the ratio of DV to DI is a constant of 2.96. Small ratio of DV to DI results in small R<sub>st</sub> in Wang's model. Assuming that the ratio of DV to DI is 1.82 in Wright & Zhang's model, the difference between the two models is in the range of -195% to 199% and mean of absolute difference is 94% (Table 4-8). This difference is similar to 98%. Different ratios of DV to DI have little effect on the difference between the two models.

# (5) Effect of f<sub>D</sub>

The range of  $f_D$  is different in the two models. Wang assumed  $f_D$  to be in the range of 0-1.0, and its range was 0.1-1.0 in Wright & Zhang's. When ambient water vapor pressure deficit is high,  $f_D$  is small because stomata will partially close to protect leaves from losing too much water.  $f_D$  below 0.1 leads to large  $R_{st}$  in Wang's model.  $f_D$  below 0.1 in Wang's model is only produced during daytime (Fig. 4-17). Assuming  $f_D$  in Wang's model is greater than or equal to 0.1, as in Wright & Zhang's model, the difference between the two models is in the range of -197% to 144% and mean of absolute difference is 91% (Table 4-8). This difference is smaller than 98%. Different ranges of  $f_D$  have an effect on the difference between the two models.

### c) Which model is better

Wright & Zhang's model is more appropriate for representation of GEM air-surface exchange (Table E4). The parameterization of visible solar radiation in Wright & Zhang's model is more appropriate for the simulation of solar radiation received by leaves. This is because the calculation of visible solar radiation from input solar radiation reflects the effect of clouds. In Wright & Zhang's model, the dependence of DV and DI on ambient temperature is better. f<sub>D</sub> above 0.1 is better because leaves in forest will close partially when ambient water vapor is deficient during daytime.

#### Deciduous broadleaf forest in summer

In R<sub>st</sub>, only LAI and f<sub>D</sub> are related with land cover. Larger LAI for deciduous broadleaf forest (Table D1) causes more visible solar radiation received by leaves and smaller R<sub>st</sub> in both models. In f<sub>D</sub>, water vapor pressure deficit (D) is not dependent on land cover, but empirical water vapour pressure deficit constant (b<sub>vpd</sub>) is a constant for each land cover (Table C1). b<sub>vpd</sub> was set as 0.31kPa<sup>-1</sup> and 0.36kPa<sup>-1</sup> for evergreen needleleaf forest and deciduous broadleaf forest, respectively. Larger b<sub>vpd</sub> leads to smaller f<sub>D</sub> and more f<sub>D</sub> below 0.1 in Wang's model (Fig. 4-20) for deciduous broadleaf forest compared with Fig. 17. More f<sub>D</sub> below 0.1 causes larger R<sub>st</sub> in Wang's model. As in Table 4-7, R<sub>st</sub> in Wang's model is larger than that for Wright & Zhang's model (mean, 986362s/m>135133s/m) and the reason is similar to that for evergreen needleleaf forest in summer. As seen in Table 4-8, there are more R<sub>st</sub> in Wang's model larger than that in Wright & Zhang's model, compared with that for evergreen needleleaf forest in summer. However, the overall difference between the two models is similar to that for deciduous broadleaf forest in summer (104% vs. 98%).

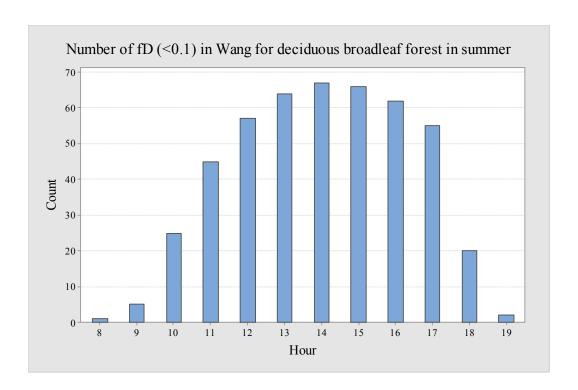



Figure 4-20. Hourly frequency of the correction factor for water vapor pressure deficit below 0.1 in Wang's model for deciduous broadleaf forest in summer.

# Evergreen needleleaf forest in winter

In R<sub>st</sub>, solar radiation, LAI, and f<sub>D</sub> are related with season. Smaller solar radiation in winter (Table D1) leads to larger R<sub>st</sub> for both models. Longer nighttime results in more stomata closure and more large values of R<sub>st</sub> in the two models. Smaller LAI in winter (Table D1) also causes larger R<sub>st</sub> in both models. f<sub>D</sub> below 0.1 does not happen in winter because water vapor content in the air is high, which results in smaller R<sub>st</sub> in Wang's model. As in Table 4-7, R<sub>st</sub> in Wang's model is larger than that in Wright & Zhang's model (mean, 1070650s/m>178713s/m). As seen in Table 4-8, the difference between the two models is larger than that for evergreen needleleaf forest in summer (108% vs. 98%). For R<sub>st</sub> that is smaller in Wang's model, the difference between the two models is larger because of f<sub>D</sub> above 0.1. For R<sub>st</sub> that is larger in Wang's model, the difference

between the two models is also larger because of more stomata closure.

#### **Deciduous broadleaf forest in winter**

In  $R_{st}$ , only LAI and  $f_D$  are related with land cover. Smaller LAI for deciduous broadleaf forest (Table D1) causes fewer visible solar radiation received by leaves and larger  $R_{st}$  in both models.  $f_D$  is always larger than 0.1 in Wang's model. Table 4-7 shows that  $R_{st}$  in Wang's model is larger than that for Wright & Zhang's model (mean, 1152673 s/m > 192182 s/m). As seen in Table 4-8, the difference between the two models is similar to that for evergreen needleleaf forest in winter (113% vs. 108%).

### **Summary**

Regardless of season and land cover,  $R_{st}$  in Wang's model is larger than that in Wright & Zhang's model (mean, 1019048s/m>160435s/m). For the same land cover and different seasons, greater difference between the two models is in winter (98% vs. 108% for evergreen needleleaf forest, 104% vs. 113% for deciduous broadleaf forest) because of  $f_D$  above 0.1 and more stomata closure under longer nighttime. For  $R_{st}$  that is smaller in Wang's model, the difference between the two models is larger because of  $f_D$  above 0.1. For  $R_{st}$  that is larger in Wang's model, the difference is also larger because of more stomata closure. As in Table 4-9, season is significant in the difference between the two models (p=0.001).

Table 4-9. Analysis of variance (ANOVA) of the difference in stomata resistance between the two models.

| Parameter         | p-value |
|-------------------|---------|
| season            | 0.001   |
| land cover        | 0.001   |
| season*land cover | 0.002   |

For different land cover in summer, although smaller  $b_{vpd}$  leads to more  $f_D$  below 0.1 and larger  $R_{st}$  in Wang's model for deciduous broadleaf forest, the difference between the two models is similar (98% vs. 104%). For different land cover in winter, the difference between the two models is similar (108% vs. 113%) due to  $f_D$  above 0.1 in Wang's model in winter. However, Table 4-9 shows that land cover is significant in the difference between the two models (p=0.001).

# 4.1.4 Cuticle resistance (R<sub>cut</sub>)

 $R_{\text{cut}}$  is the same in the two models, and thus there is no difference between the two models regardless of season and land cover.

### 4.1.5 In-canopy aerodynamic resistance (R<sub>ac</sub>)

For evergreen needleleaf forest, regardless of season, there is no difference between the two models because  $R_{ac}$  is the same in the two models. For deciduous broadleaf forest, only one parameter is different in the two models—reference value of  $R_{ac}$  ( $R_{ac0}$ ), and other parameters are the same (Table C1). Wang assumed  $R_{ac0}$  to be a constant of 250s/m for deciduous broadleaf forest. In Wright & Zhang's model,  $R_{ac0}$  is dependent on LAI.

# Deciduous broadleaf forest in summer

# a) R<sub>ac</sub> in the two models

Table 4-10 shows  $R_{ac}$  in the two models.  $R_{ac}$  in the two models has similar diurnal trend with low values during daytime and high values during nighttime (Fig. 4-21 and Table E1).  $R_{ac}$  in Wang's model is always larger than that in Wright & Zhang's model (Fig. 4-22).

Table 4-10. In-canopy aerodynamic resistance ( $R_{ac}$ , s/m) in the two models for deciduous broadleaf forest in the two seasons.

| Land                   | Season | Model          | Minimu | First    | Median | Third    | Maximu              | Mean    |
|------------------------|--------|----------------|--------|----------|--------|----------|---------------------|---------|
| cover                  |        |                | m      | quartile |        | quartile | m                   |         |
|                        |        | Wang           | 581    | 2651     | 4862   | 14460    | $3.8*10^{8}$        | 1431131 |
| deciduous<br>broadleaf | summer | Wright & Zhang | 220    | 1022     | 1877   | 5657     | 1.5*10 <sup>8</sup> | 556848  |
| forest                 |        | Wang           | 240    | 1009     | 1865   | 5100     | 3*10 <sup>8</sup>   | 485466  |
|                        | winter | Wright & Zhang | 59     | 246      | 455    | 1242     | 7*10 <sup>7</sup>   | 117880  |

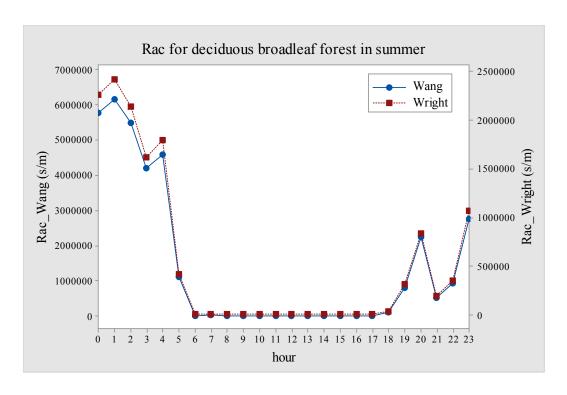



Figure 4-21. Diurnal trend for in-canopy aerodynamic resistance in the two models for deciduous broadleaf forest in summer.

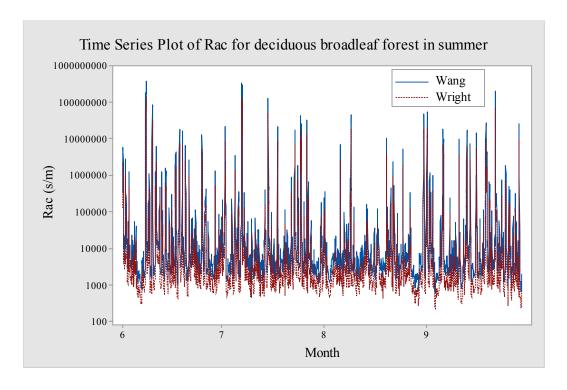



Figure 4-22. Time series for in-canopy aerodynamic resistance in the two models for deciduous broadleaf forest in summer.

## b) The difference between the two models and why

The two models have the same equation for  $R_{ac}$ , but their settings on  $R_{ac0}$  are different. Wang assumed  $R_{ac0}$  to be a constant of 250s/m for deciduous broadleaf forest. In Wright & Zhang's model,  $R_{ac0}$  is related with LAI. As in Table 4-11, the difference between the two models is in the range of 86-93% (mean of 89%). For deciduous broadleaf forest in summer, LAI ranges from 4.64-5.75 (mean of 5.3) and  $R_{ac0}$  in Wright & Zhang's model is in the range of 91-100s/m (mean of 96s/m). Larger  $R_{ac0}$  results in larger  $R_{ac}$  in Wang's model.

Table 4-11. Difference (%) in In-canopy aerodynamic resistance for deciduous broadleaf forest in the two seasons.

| Season | Minimum | First<br>quartile | Median | Third quartile | Maximum | Mean |
|--------|---------|-------------------|--------|----------------|---------|------|
| summer | 86      | 87                | 88     | 90             | 93      | 89   |
| winter | 119     | 121               | 122    | 123            | 123     | 122  |

## c) Which model is better

 $R_{ac}$  in Wright & Zhang's model is more appropriate for representation of GEM airsurface exchange (Table E4). This is because  $R_{ac0}$  in Wright & Zhang's model reflects the effect of canopy growth on GEM exchange through canopies. When LAI is large, it is difficult for GEM to be transported through canopies.

#### Deciduous broadleaf forest in winter

The difference between the two models for deciduous broadleaf forest is only

dependent on LAI. For deciduous broadleaf forest, LAI in summer ranges between 4.64 and 5.75 (mean of 5.3) and that in winter is in the range of 0.6-1 (mean of 0.72). In Fig. 4-23, R<sub>ac0</sub> in summer and winter is plotted with daily data from Wright & Zhang's model. Smaller LAI in winter (mean, 0.72<5.3) leads to smaller R<sub>ac0</sub> and smaller R<sub>ac</sub> in Wright & Zhang's model. In Wang's model, R<sub>ac0</sub> is a constant of 250s/m. Therefore, it is expected that greater difference between the two models for deciduous broadleaf forest is in winter. As seen in Table 4-10, R<sub>ac</sub> in Wang's model is larger than that in Wright & Zhang's model (mean, 485466s/m>117880s/m). Table 4-11 shows the difference between the two models is greater in winter (89% vs. 122%), as expected.

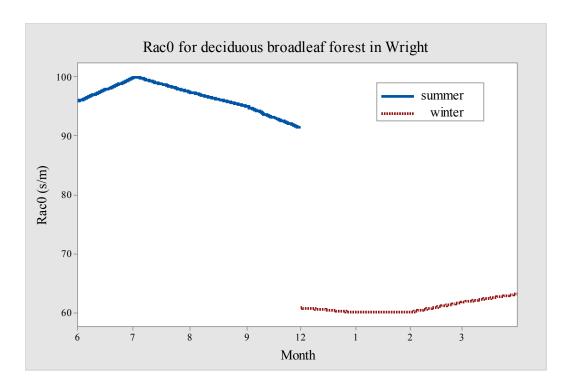



Figure 4-23. Time series of reference value for in-canopy aerodynamic resistance for deciduous broadleaf forest in Wright & Zhang's model.

#### **Summary**

Regardless of season,  $R_{ac}$  for evergreen needleleaf forest is the same in the two models. For deciduous broadleaf forest,  $R_{ac}$  in Wang's model is larger than that in Wright & Zhang's model (mean, 964244s/m>340124s/m). This is because larger  $R_{ac0}$  leads to larger  $R_{ac}$  in Wang's model. For deciduous broadleaf forest and different seasons, greater difference between the two models is in winter (89% vs. 122%). This is caused by smaller LAI (mean, 0.72<5.3), smaller  $R_{ac0}$  (mean, 61s/m<96s/m), smaller  $R_{ac}$  in Wright & Zhang's model. As in Table 4-12, both season and land cover are significant in the difference between the two models (p=0.001).

Table 4-12. Analysis of variance (ANOVA) of the difference in in-canopy aerodynamic resistance between the two models.

| Parameter         | p-value |
|-------------------|---------|
| season            | 0.001   |
| land cover        | 0.001   |
| season*land cover | 0.001   |

# 4.1.6 Soil resistance (R<sub>g</sub>)

Soil resistance is not related with land cover in both models, thus the difference between the two models is not related with land cover. For R<sub>g</sub>, Wang considered both dry and wet soil, and Wright & Zhang only considered dry soil. Wang assumed that R<sub>g</sub> for dry and wet soil are 2000s/m and 5000s/m, respectively. Wet soil will occur when soil volumetric water content is greater than or equal to  $0.2m^3/m^3$ . Wright & Zhang assumed R<sub>g</sub> to be 2000s/m, regardless of dry and wet soil. Wright & Zhang considered surface temperature below -1°C in winter and Wang did not. In Wright & Zhang's model, R<sub>g</sub> increases by as much as two times when surface temperature is below -1°C (Zhang et al.,

## Evergreen needleleaf forest in summer

# a) R<sub>g</sub> in the two models

Table 4-13 shows  $R_g$  in the two models.  $R_g$  in Wright & Zhang's model has no diurnal variation and that in Wang's model has an obvious diurnal trend with low values during daytime and high values during nighttime (Fig. 4-24 and Table E1). The diurnal trend in Wang's model corresponds to the diurnal trend for wet soil (Fig. 4-25). Wet soil results in larger  $R_g$  in Wang's model.  $R_g$  in Wang's model is always greater than or equal to that in Wright & Zhang's model (Fig. 4-26).

Table 4-13. Soil resistance ( $R_g$ , s/m) in the two models for evergreen needleleaf forest in the two seasons.

| Season | Model          | Minimum | First<br>quartile | Median | Third quartile | Maximum | Mean |
|--------|----------------|---------|-------------------|--------|----------------|---------|------|
|        | Wang           | 2000    | 2000              | 2000   | 5000           | 5000    | 2979 |
| summer | Wright & Zhang | 2000    | 2000              | 2000   | 2000           | 2000    | 2000 |
|        | Wang           | 2000    | 2000              | 2000   | 5000           | 5040    | 2950 |
| winter | Wright & Zhang | 2000    | 2000              | 2000   | 2036           | 4450    | 2315 |

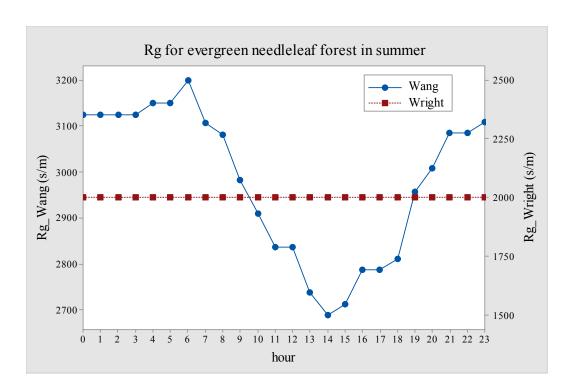



Figure 4-24. Diurnal trend for soil resistance in the two models for evergreen needleleaf forest in summer.

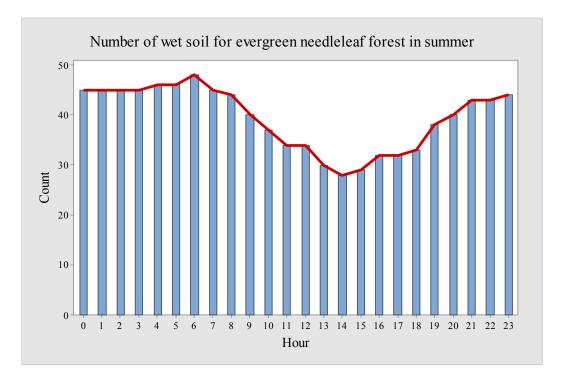



Figure 4-25. Diurnal trend for wet soil for evergreen needleleaf forest in summer.

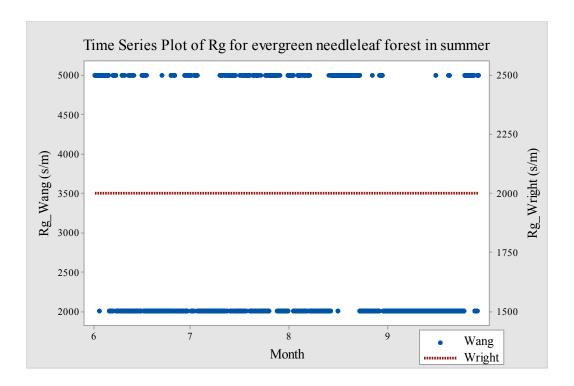



Figure 4-26. Time series for soil resistance in the two models for evergreen needleleaf forest in summer.

### b) The difference between the two models and why

For dry soil,  $R_g$  in the two models is the same (2000s/m). For wet soil,  $R_g$  is 2000s/m and 5000s/m in Wright & Zhang's model and Wang's model, respectively. As in Table 4-14, the difference between the two models is in the range of 0-86% (mean of 28%). Wet soil leads to larger  $R_g$  in Wang's model. Wesely and Hicks (2000) introduced that wet soil leads to small surface deposition velocity for ozone (with low solubility). This proves that wet soil causes large soil resistance.

Table 4-14. Difference (%) in soil resistance for evergreen needleleaf forest in summer.

| Season | Minimum | First<br>quartile | Median | Third<br>quartile | Maximum | Mean of<br>absolute<br>difference<br>(%) |
|--------|---------|-------------------|--------|-------------------|---------|------------------------------------------|
| summer | 0       | 0                 | 0      | 86                | 86      | 28                                       |
| winter | -67     | 0                 | 0      | 86                | 86      | 32                                       |

### c) Which model is better

 $R_g$  in Wang's model is more appropriate for representation of gaseous pollutants airsurface exchange, including GEM. This is because Wang considered the effect of wet soil on exchange of gaseous pollutants through soil. When there is more water in the soil, it is difficult for gaseous pollutants to be transported through soil.

### Evergreen needleleaf forest in winter

# a) R<sub>g</sub> in the two models

 $R_g$  in the two models is shown in Table 4-13. Diurnal trend of  $R_g$  in the two models is different (Fig. 4-27). The diurnal trend in Wang's model corresponds to the diurnal trend for wet soil (Fig. 4-28). Wet soil results in larger  $R_g$  in Wang's model. The diurnal trend in Wright & Zhang's model corresponds to the diurnal trend for surface temperature below -1°C (Fig. 4-29). Surface temperature below -1°C leads to larger  $R_g$  in Wright & Zhang's model. Overall,  $R_g$  in Wang's model is larger than that in Wright & Zhang's model (mean, 2950s/m>2315s/m).

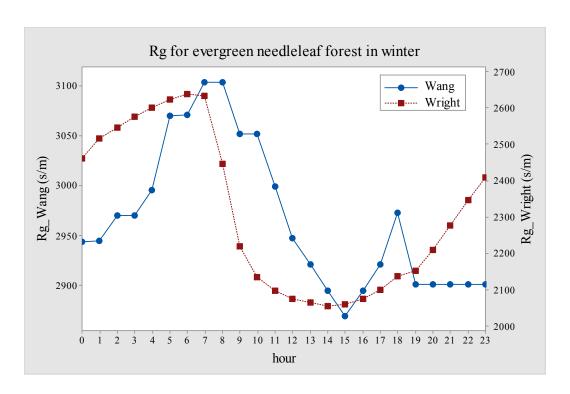



Figure 4-27. Diurnal trend for soil resistance in the two models for evergreen needleleaf forest in winter.

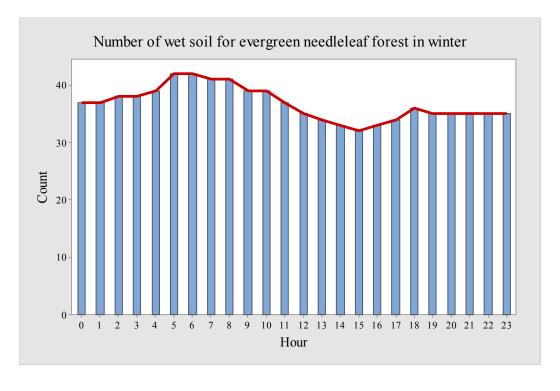



Figure 4-28. Diurnal trend for wet soil for evergreen needleleaf forest in winter.

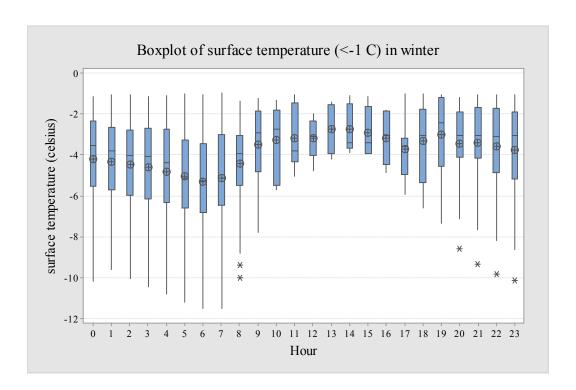



Figure 4-29. Diurnal trend for surface temperature below -1°C in winter.

### b) The difference between the two models and why

Both wet soil and surface temperature below -1°C have an influence in the difference between the two models. For dry soil,  $R_g$  in the two models is the same (2000s/m). For wet soil,  $R_g$  is 2000s/m and 5000s/m in Wright & Zhang's model and Wang's model, respectively. Wet soil leads to larger  $R_g$  in Wang's model. With surface temperature below -1°C,  $R_g$  in Wright & Zhang's model is larger and at most 4450s/m. As in Table 4-14, the difference between the two models is in the range of -67% to 86% and mean of absolute difference is 32%. Surface temperature below -1°C during December-February causes small difference between the two models, and surface temperature above -1°C during February -March leads to large difference between the two models (Fig. 4-30).

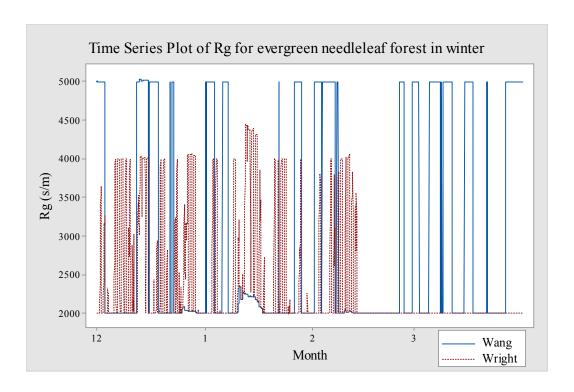



Figure 4-30. Time series for soil resistance in the two models for evergreen needleleaf forest in winter.

### c) Which model is better

Each model has its own strength for representation of gaseous pollutants air-surface exchange (Table E4). Wang considered the effect of wet soil on exchange of gaseous pollutants through soil. When there is more water in the soil, it is difficult for gaseous pollutants to be transported through soil. Wright & Zhang considered the effect of surface temperature on exchange of gaseous pollutants. When the water in the soil is frozen, it is difficult for gaseous pollutants to move through soil. If Wright & Zhang consider the effect of wet soil, their model will be more appropriate.

# **Summary**

Regardless of season and land cover,  $R_g$  in Wang's model is larger than that in Wright & Zhang's model (mean, 2965s/m>2155s/m) because wet soil leads to larger  $R_g$  in Wang's model. For different land cover and the same season, the difference between the two models is the same because  $R_g$  is not dependent on land cover. For the same land cover and different seasons, the difference is similar in the two seasons (28% vs. 32%), however the reason is different. In summer, wet soil results in larger  $R_g$  in Wang's model. In winter, surface temperature below -1°C leads to larger  $R_g$  in Wright & Zhang's model, and wet soil results in larger  $R_g$  in Wang's model. As seen in Table 4-15, season is significant in the difference between the two models (p=0.001).

Table 4-15. Analysis of variance (ANOVA) of the difference in soil resistance between the two models.

| Parameter         | p-value |  |  |  |  |
|-------------------|---------|--|--|--|--|
| season            | 0.001   |  |  |  |  |
| land cover        | 0.99    |  |  |  |  |
| season*land cover | 0.99    |  |  |  |  |

#### 4.2 Velocities

### 4.2.1 Stomata emission velocity $(V_{st})$

The parameterization of  $V_{st}$  is the same in the two models (Table C2).

#### Evergreen needleleaf forest in summer

# a) V<sub>st</sub> in the two models

Table 4-16 shows  $V_{st}$  in the two models.  $V_{st}$  in the two models has similar diurnal trend with high values during daytime and low values during nighttime (Fig. 4-31 and

Table E1).  $V_{st}$  is calculated from all six resistances, (1)  $R_a$  is larger in Wang's model (section 4.1.1), (2)  $R_b$  is smaller in Wang's model (section 4.1.2), (3)  $R_{st}$  is larger in Wang's model (section 4.1.3), (4)  $R_{cut}$  is the same in the two models (section 4.1.4), (5)  $R_{ac}$  is the same in the two models (section 4.1.5), and (6)  $R_g$  is larger in Wang's model (section 4.1.6).

Table 4-16. Stomata emission velocity ( $V_{st}$ ,  $\mu m/s$ ),  $1/R_{st}$  ( $\mu m/s$ ), and  $R_t/(R_a+R_b)$  for the two models in the two seasons.

| Season | Land cover                        | Model          | $V_{st}$ , $1/R_{st}$ , or $R_t/(R_a+R_b)$ | Minim<br>um | First<br>quartil<br>e | Media<br>n | Third<br>quartil<br>e | Maxim<br>um | Mean |
|--------|-----------------------------------|----------------|--------------------------------------------|-------------|-----------------------|------------|-----------------------|-------------|------|
| summer | evergreen<br>needleleaf<br>forest | Wang           | $V_{st}$                                   | 0           | 1                     | 56         | 591                   | 1355        | 293  |
|        |                                   |                | $1/R_{st}$                                 | 0           | 1                     | 57         | 616                   | 1448        | 310  |
|        |                                   |                | $R_t/(R_a+R_b)$                            | 0.32        | 0.96                  | 0.97       | 0.98                  | 0.99        | 0.96 |
|        |                                   | Wright & Zhang | $V_{st}$                                   | 1           | 3                     | 74         | 386                   | 934         | 199  |
|        |                                   |                | 1/R <sub>st</sub>                          | 1           | 3                     | 76         | 400                   | 983         | 207  |
|        |                                   |                | $R_t/(R_a+R_b)$                            | 0.76        | 0.96                  | 0.97       | 0.98                  | 0.99        | 0.97 |
|        | deciduous<br>broadleaf<br>forest  | Wang           | $V_{st}$                                   | 0           | 1                     | 1          | 927                   | 1560        | 401  |
|        |                                   |                | $1/R_{st}$                                 | 0           | 1                     | 1          | 974                   | 1640        | 426  |
|        |                                   |                | $R_t/(R_a+R_b)$                            | 0.2         | 0.96                  | 0.98       | 0.99                  | 1           | 0.97 |
|        |                                   | Wright & Zhang | $V_{st}$                                   | 1           | 3                     | 224        | 656                   | 1197        | 335  |
|        |                                   |                | 1/R <sub>st</sub>                          | 1           | 3                     | 230        | 686                   | 1271        | 352  |
|        |                                   |                | $R_t/(R_a+R_b)$                            | 0.7         | 0.96                  | 0.97       | 0.98                  | 0.99        | 0.97 |
| winter | evergreen<br>needleleaf<br>forest | Wang           | $V_{st}$                                   | 0           | 1                     | 1          | 543                   | 1176        | 237  |
|        |                                   |                | $1/R_{st}$                                 | 1           | 1                     | 1          | 560                   | 1238        | 245  |
|        |                                   |                | $R_t/(R_a+R_b)$                            | 0.83        | 0.97                  | 0.98       | 0.99                  | 1           | 0.98 |
|        |                                   | Wright & Zhang | $V_{st}$                                   | 1           | 3                     | 3          | 302                   | 899         | 143  |
|        |                                   |                | 1/R <sub>st</sub>                          | 1           | 3                     | 3          | 309                   | 933         | 147  |
|        |                                   |                | $R_t/(R_a+R_b)$                            | 0.79        | 0.97                  | 0.98       | 0.99                  | 1           | 0.98 |
|        | deciduous<br>broadleaf<br>forest  | Wang           | $V_{st}$                                   | 0           | 1                     | 1          | 398                   | 990         | 187  |
|        |                                   |                | $1/R_{st}$                                 | 1           | 1                     | 1          | 409                   | 1049        | 194  |
|        |                                   |                | $R_t/(R_a+R_b)$                            | 0.79        | 0.97                  | 0.99       | 0.99                  | 1           | 0.98 |
|        |                                   | Wright & Zhang | $V_{st}$                                   | 2           | 3                     | 3          | 194                   | 688         | 111  |
|        |                                   |                | 1/R <sub>st</sub>                          | 2           | 3                     | 3          | 199                   | 719         | 115  |
|        |                                   |                | $R_t/(R_a+R_b)$                            | 0.83        | 0.97                  | 0.98       | 0.98                  | 0.99        | 0.98 |

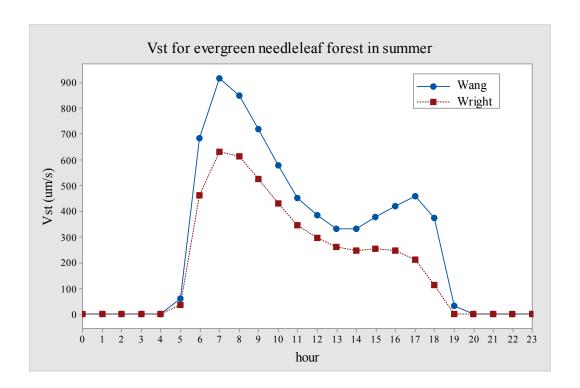



Figure 4-31. Diurnal trend for stomata emission velocity in the two models for evergreen needleleaf forest in summer.

 $V_{st}$  in each of the two models is mainly controlled by  $1/R_{st}$  because  $R_t/(R_a+R_b)$  is close to one (Fig 4-32).  $1/R_{st}$  is close to  $V_{st}$  in each model (Table 4-16). In  $R_{st}$ , the constant value for stomata closure and  $f_D$  below 0.1 cause large difference in large values of  $R_{st}$  between the two models (section 4.1.3). However these two parameters cause little difference in  $V_{st}$  between the two models because large  $R_{st}$  corresponds to small  $V_{st}$ . For high values,  $V_{st}$  in Wang's model is larger than that in Wright & Zhang's model (Fig. 4-33). This is because larger visible solar radiation and smaller ratio of DV to DI lead to smaller  $R_{st}$ , larger  $1/R_{st}$ , and larger  $V_{st}$  in Wang's model. Overall,  $V_{st}$  for Wang's model is larger than that for Wright & Zhang's model (mean,  $293\mu m/s > 199\mu m/s$ ) due to larger visible solar radiation and smaller ratio of DV to DI in Wang's model.

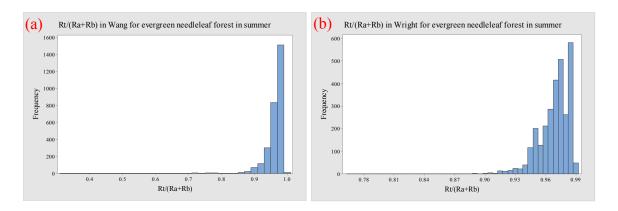



Figure 4-32. Distribution of  $R_t/(R_a+R_b)$  in the two models for evergreen needleleaf forest in summer, (a) in Wang's model, (a) in Wright & Zhang's model.

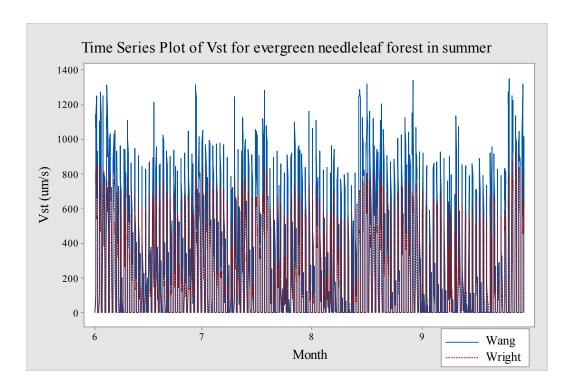



Figure 4-33. Time series for  $V_{st}$  in the two models for evergreen needleleaf forest in summer.

## b) The difference between the two models and why

As seen in Table 4-17, the difference in  $V_{st}$  between the two models is in the range of -199% to 197% and mean of absolute difference is 98%. Larger visible solar radiation

and smaller ratio of DV to DI lead to smaller  $R_{st}$ , larger  $1/R_{st}$ , and larger  $V_{st}$  in Wang's model. Larger constant value for stomata closure and  $f_D$  below 0.1 result in larger  $R_{st}$ , smaller  $1/R_{st}$ , and smaller  $V_{st}$  in Wang's model.

Table 4-17. Difference (%) in stomata emission velocity for the two models in the two seasons.

| Season | Land cover                        | Minimum | First<br>quartile | Median | Third quartile | Maximum | Mean of<br>absolute<br>difference<br>(%) |
|--------|-----------------------------------|---------|-------------------|--------|----------------|---------|------------------------------------------|
|        | evergreen<br>needleleaf<br>forest | -199    | -144 -11 34       |        | 197            | 98      |                                          |
| summer | deciduous<br>broadleaf<br>forest  | -199    | -144              | -143   | 23             | 196     | 104                                      |
| winter | evergreen<br>needleleaf<br>forest | -151    | -144              | -144   | 41             | 195     | 108                                      |
|        | deciduous<br>broadleaf<br>forest  | -153    | -144              | -143   | 42             | 194     | 113                                      |

### **Deciduous broadleaf forest in summer**

Table 4-16 shows that  $V_{st}$  in Wang's model is larger than that in Wright & Zhang's model (mean,  $401\mu\text{m/s}>335\mu\text{m/s}$ ) and the reason is similar to that for evergreen needleleaf forest in summer.  $V_{st}$  is mainly controlled by  $1/R_{st}$ . In  $R_{st}$ , only LAI and  $f_D$  are related with land cover. Larger LAI for deciduous broadleaf forest (Table D1) results in more visible solar radiation received by leaves, smaller  $R_{st}$ , and larger  $V_{st}$  for both models. In  $f_D$ , larger  $b_{vpd}$  for deciduous broadleaf forest leads to smaller  $f_D$  and more  $f_D$  below 0.1 in Wang's model (section 4.1.3). More  $f_D$  below 0.1 results in larger  $R_{st}$  and smaller  $V_{st}$  in Wang's model. Thus, the negative values of difference between the two models are smaller (Table 4-17). However, the mean of absolute difference between the

two models is still similar to that for evergreen needleleaf forest in summer (Table 4-17, 98% vs. 104%).

#### Evergreen needleleaf forest in winter

Table 4-16 shows that V<sub>st</sub> in Wang's model is larger than that in Wright & Zhang's model (mean, 237μm/s>143μm/s) and the reason is similar to that for evergreen needleleaf forest in summer. V<sub>st</sub> is mainly controlled by 1/R<sub>st</sub>. In R<sub>st</sub>, solar radiation, LAI, and f<sub>D</sub> are related with season. Smaller solar radiation in winter (Table D1) leads to larger R<sub>st</sub> and smaller V<sub>st</sub> in both models. Smaller LAI in winter (Table D1) also causes larger R<sub>st</sub> and smaller V<sub>st</sub> in both models. f<sub>D</sub> above 0.1 in winter results in smaller R<sub>st</sub> and larger V<sub>st</sub> in Wang's model. The negative values of difference between the two models are smaller than that for evergreen needleleaf forest in summer (Table 4-17). This is because longer nighttime in winter causes more constant values of R<sub>st</sub> for stomata closure, larger R<sub>st</sub>, and smaller V<sub>st</sub> in Wang's model. The mean of absolute difference between the two models is larger than that for evergreen needleleaf forest in summer (Table 4-17, 98% vs. 108%).

#### **Deciduous broadleaf forest in winter**

As shown in Table 4-16,  $V_{st}$  in Wang's model is larger than that in Wright & Zhang's model (mean,  $187\mu\text{m/s}>111\mu\text{m/s}$ ) and the reason is similar to that for evergreen needleleaf forest in summer. In  $R_{st}$ , only LAI and  $f_D$  are related with land cover. Smaller LAI for deciduous broadleaf forest (Table D1) causes fewer visible solar radiation

received by leaves, larger  $R_{st}$ , and smaller  $V_{st}$  in both models.  $f_D$  is always above 0.1 in Wang's model in winter, which is the same as that for evergreen needleleaf forest in winter. As in Table 4-17, the difference between the two models is similar to that for evergreen needleleaf forest in winter (108% vs. 113%).

### **Summary**

Regardless of season and land cover,  $V_{st}$  in Wang's model is larger than that in Wright & Zhang's model (mean,  $280\mu\text{m/s} > 198\mu\text{m/s}$ ). The difference in  $V_{st}$  between the two models is mainly caused by the visible solar radiation, the range of  $f_D$ , and water vapor diffusivity and GEM diffusivity.

For the same land cover and different seasons, greater difference between the two models is in winter (98% vs. 108% for evergreen needleleaf forest, 104% vs. 113% for deciduous broadleaf forest) because longer nighttime in winter causes more constant value of  $R_{st}$  for stomata closure, larger  $R_{st}$ , and smaller  $V_{st}$  in Wang's model. As in Table 4-18, season is significant in the difference between the two models (p=0.001). For different land cover and the same season, the difference between the two models is similar (98% vs. 104% in summer, 108% vs. 113% in winter). However, Table 4-18 shows that land cover is significant in the difference between the two models (p=0.001).

Table 4-18. Analysis of variance (ANOVA) of the difference in stomata emission velocity between the two models.

| Parameter         | p-value |
|-------------------|---------|
| season            | 0.001   |
| land cover        | 0.001   |
| season*land cover | 0.002   |

## 4.2.2 Soil emission velocity (Vg)

The parameterization of  $V_{\rm g}$  is the same in the two models (Table C2).

### Evergreen needleleaf forest in summer

# a) $V_g$ in the two models

Table 4-19 shows  $V_g$  in the two models.  $V_g$  in the two models has similar diurnal trend with high values during daytime and low values during nighttime (Fig. 4-34 and Table E1).  $V_g$  is calculated from all six resistances, (1)  $R_a$  is larger in Wang's model (section 4.1.1), (2)  $R_b$  is smaller in Wang's model (section 4.1.2), (3)  $R_{st}$  is larger in Wang's model (section 4.1.3), (4)  $R_{cut}$  is the same in the two models (section 4.1.4), (5)  $R_{ac}$  is the same in the two models (section 4.1.5), and (6)  $R_g$  is larger in Wang's model (section 4.1.6).

Table 4-19. Soil emission velocity ( $V_g$ ,  $\mu$ m/s),  $1/(R_{ac}+R_g)$  ( $\mu$ m/s), and  $R_t/(R_a+R_b)$  for the two models in the two seasons.

| Season  | Land cover              | Model  | $V_g$ ,1/ $(R_{ac}+R_g)$ , or $R_t/(R_a+R_b)$ | Mini<br>mum | First<br>quartil<br>e | Media<br>n | Third<br>quartil<br>e | Maxim<br>um | Mean |
|---------|-------------------------|--------|-----------------------------------------------|-------------|-----------------------|------------|-----------------------|-------------|------|
|         |                         |        | $V_{g}$                                       | 0           | 105                   | 166        | 293                   | 445         | 188  |
|         |                         | Wang   | $1/(R_{ac}+R_g)$                              | 0           | 109                   | 172        | 301                   | 449         | 194  |
|         | evergreen<br>needleleaf |        | $R_t/(R_a+R_b)$                               | 0.32        | 0.96                  | 0.97       | 0.98                  | 0.99        | 0.96 |
|         | forest                  | Wright | $V_{g}$                                       | 0           | 122                   | 244        | 317                   | 445         | 219  |
|         | Torest                  | &      | $1/(R_{ac}+R_g)$                              | 0           | 127                   | 252        | 325                   | 449         | 225  |
| summer  |                         | Zhang  | $R_t/(R_a+R_b)$                               | 0.76        | 0.96                  | 0.97       | 0.98                  | 0.99        | 0.97 |
| Summer  |                         |        | $V_{g}$                                       | 0           | 55                    | 118        | 185                   | 384         | 124  |
|         | deciduous               | Wang   | $1/(R_{ac}+R_g)$                              | 0           | 58                    | 123        | 189                   | 388         | 128  |
|         | broadleaf<br>forest     |        | $R_t/(R_a+R_b)$                               | 0.2         | 0.96                  | 0.98       | 0.99                  | 1           | 0.97 |
|         |                         | Wright | $V_{g}$                                       | 0           | 124                   | 249        | 322                   | 446         | 223  |
|         |                         | &      | $1/(R_{ac}+R_g)$                              | 0           | 131                   | 258        | 331                   | 451         | 229  |
|         |                         | Zhang  | $R_t/(R_a+R_b)$                               | 0.7         | 0.96                  | 0.97       | 0.98                  | 0.99        | 0.97 |
|         |                         |        | $V_{g}$                                       | 0           | 173                   | 281        | 401                   | 478         | 271  |
|         | 2712828222              | Wang   | $1/(R_{ac}+R_g)$                              | 0           | 177                   | 286        | 408                   | 483         | 274  |
|         | evergreen<br>needleleaf |        | $R_t/(R_a+R_b)$                               | 0.83        | 0.97                  | 0.98       | 0.99                  | 1           | 0.98 |
|         | forest                  | Wright | $V_{g}$                                       | 0           | 226                   | 355        | 419                   | 477         | 310  |
|         | 101051                  | &      | $1/(R_{ac}+R_g)$                              | 0           | 229                   | 363        | 427                   | 483         | 316  |
| winter  |                         | Zhang  | $R_t/(R_a+R_b)$                               | 0.79        | 0.97                  | 0.98       | 0.99                  | 1           | 0.98 |
| Willter |                         |        | $V_{g}$                                       | 0           | 115                   | 177        | 285                   | 442         | 192  |
|         | deciduous               | Wang   | $1/(R_{ac}+R_g)$                              | 0           | 118                   | 180        | 290                   | 446         | 196  |
|         | broadleaf               |        | $R_t/(R_a+R_b)$                               | 0.79        | 0.97                  | 0.99       | 0.99                  | 1           | 0.98 |
|         | forest                  | Wright | $V_{g}$                                       | 0           | 237                   | 371        | 429                   | 481         | 322  |
|         | 101031                  | &      | $1/(R_{ac}+R_g)$                              | 0           | 242                   | 381        | 438                   | 486         | 329  |
|         |                         | Zhang  | $R_t/(R_a+R_b)$                               | 0.83        | 0.97                  | 0.98       | 0.98                  | 0.99        | 0.98 |

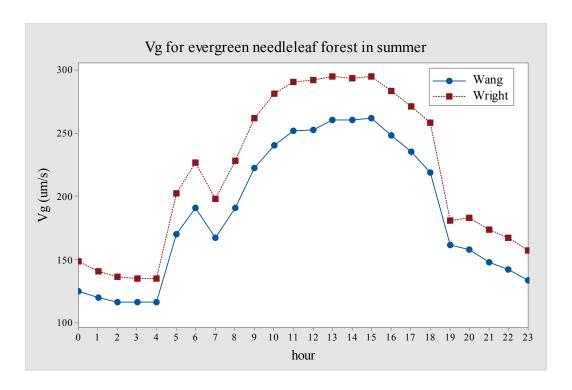



Figure 4-34. Diurnal trend for  $V_g$  in the two models for evergreen needleleaf forest in summer.

 $V_g$  in each of the two models is mainly controlled by  $1/(R_{ac}+R_g)$  because  $R_t/(R_a+R_b)$  is close to one (Fig 4-32).  $1/(R_{ac}+R_g)$  is close to  $V_g$  in each model (Table 4-19). Most of  $V_g$  in Wang's model is smaller than that in Wright & Zhang's model (Fig. 4-35). This is because  $R_{ac}$  is the same in the two models and wet soil results in larger  $R_g$ , smaller  $1/(R_{ac}+R_g)$ , and smaller  $V_g$  in Wang's model. Overall,  $V_g$  in Wang's model is smaller than that in Wright & Zhang's model (mean,  $188\mu m/s < 219\mu m/s$ ) due to wet soil.

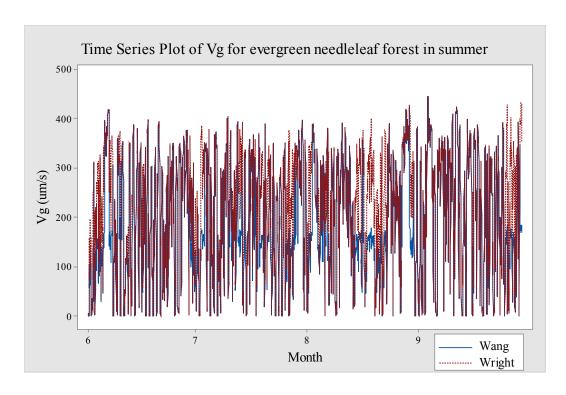



Figure 4-35. Time series for  $V_g$  in the two models for evergreen needleleaf forest in summer.

## b) The difference between the two models and why

As seen in Table 4-20, the difference in  $V_g$  between the two models is in the range of -102% to 12% and mean of absolute difference is 16%.  $V_g$  is mainly controlled by  $1/(R_{ac}+R_g)$ .  $R_{ac}$  is the same in the two models. Wet soil results in larger  $R_g$ , smaller  $1/(R_{ac}+R_g)$ , and smaller  $V_g$  in Wang's model. Larger  $V_g$  in Wang's model is caused by larger  $R_t/(R_a+R_b)$ .

Table 4-20. Difference (%) in soil emission velocity for the two models in the two seasons.

| Seasons | Land cover                        | Minimum | First<br>quartile | Median | Third quartile | Maximum | Mean of<br>absolute<br>difference<br>(%) |
|---------|-----------------------------------|---------|-------------------|--------|----------------|---------|------------------------------------------|
| summer  | evergreen<br>needleleaf<br>forest | -102    | -102 -27 -1       |        | -0.01          | 12      | 16                                       |
| Summer  | deciduous<br>broadleaf<br>forest  | -171    | -87               | -72    | -47            | -15     | 67                                       |
| winter  | evergreen<br>needleleaf<br>forest | -84     | -39               | -1     | 0.1            | 61      | 24                                       |
|         | deciduous<br>broadleaf<br>forest  | -134    | -94               | -62    | -32            | 43      | 64                                       |

#### **Deciduous broadleaf forest in summer**

 $V_g$  is mainly controlled by  $1/(R_{ac}+R_g)$ .  $R_g$  is not related with land cover. For deciduous broadleaf forest, larger  $R_{ac0}$  results in larger  $R_{ac}$ , smaller  $1/(R_{ac}+R_g)$ , and smaller  $V_g$  in Wang's model.  $V_g$  in Wang's model is much smaller, thus it is expected that the difference between the two models is greater for deciduous broadleaf forest in summer. Table 4-19 shows that  $V_g$  in Wang's model is smaller than that in Wright & Zhang's model (mean,  $124\mu m/s < 223\mu m/s$ ). As in Table 4-20, the difference between the two models is larger than that for evergreen needleleaf forest in summer (16% vs. 67%), as expected.

### Evergreen needleleaf forest in winter

As shown in Table 4-19,  $V_g$  in Wang's model is smaller than that in Wright & Zhang's model (mean,  $271\mu m/s < 310\mu m/s$ ) because wet soil results in larger  $R_g$ , smaller

 $1/(R_{ac}+R_g)$ , and smaller  $V_g$  in Wang's model.  $V_g$  is mainly controlled by  $1/(R_{ac}+R_g)$ .  $R_{ac}$  is the same in the two models. In  $R_g$ , soil volumetric water content and surface temperature are related with season. Soil volumetric water content is similar in the two seasons (Table D1). Surface temperature is much lower in winter (Table D1). Surface temperature below -1°C causes smaller  $R_g$ , larger  $1/(R_{ac}+R_g)$ , and larger  $V_g$  in Wang's model. However, as seen in Table 4-20, the difference between the two models is similar to that for evergreen needleleaf forest in summer (16% vs. 24%).

#### **Deciduous broadleaf forest in winter**

 $V_g$  is mainly controlled by  $1/(R_{ac}+R_g)$ .  $R_g$  is not related with land cover. In  $R_{ac}$ , LAI is related with season. Smaller LAI in winter (Table D1) results in larger  $R_{ac0}$ , smaller  $1/(R_{ac}+R_g)$ , and smaller  $V_g$  in Wang's model.  $V_g$  in Wang's model is much smaller, thus it is expected that the difference between the two models is greater for evergreen needleleaf forest in winter. As seen in Table 4-19,  $V_g$  in Wang's model is smaller than that in Wright & Zhang's model (mean,  $192\mu\text{m/s}<322\mu\text{m/s}$ ), because larger  $R_{ac0}$  and wet soil lead to smaller  $1/(R_{ac}+R_g)$  and smaller  $V_g$  in Wang's model. As in Table 4-20, the difference between the two models is larger than that for evergreen needleleaf forest in winter (24% vs. 64%), as expected. However, the difference is similar to that for deciduous broadleaf forest in summer (67% vs. 64%).

### **Summary**

Regardless of season and land cover,  $V_{\rm g}$  in Wang's model is smaller than that in

Wright & Zhang's model (mean,  $193\mu\text{m/s}$ <268 $\mu\text{m/s}$ ). The difference in  $V_g$  between the two models is mainly due to wet soil, surface temperature below -1°C, and  $R_{ac0}$ . For the same land cover and different seasons, the difference between the two models is similar (16% vs. 24% for evergreen needleleaf forest, 67% vs. 64% for deciduous broadleaf forest) and the reason is different. For evergreen needleleaf forest, it is because  $R_{ac}$  is the same in the two models and surface temperature below -1°C in winter causes little effect on the difference between the two models. For deciduous broadleaf forest, this is because  $R_{ac0}$  and surface temperature below -1°C have little effect on the difference between the two models. However, season is significant in the difference between the two model (p=0.001), as in Table 4-21.

Table 4-21. Analysis of variance (ANOVA) of the difference in soil emission velocity between the two models.

| Parameter         | p-value |  |  |  |
|-------------------|---------|--|--|--|
| season            | 0.001   |  |  |  |
| land cover        | 0.001   |  |  |  |
| season*land cover | 0.001   |  |  |  |

For different land cover and the same season, greater difference between the two models is for deciduous broadleaf forest (16% vs. 67% in summer, 24% vs. 64% in winter).  $R_g$  is not related with land cover. For deciduous broadleaf forest, larger  $R_{ac0}$  results in smaller  $V_g$  in Wang's model. Table 4-21 shows that land cover is significant in the difference between the two models (p=0.001).

## 4.2.3 Deposition velocity (V<sub>d</sub>)

The parameterization of  $V_d$  is the same in the two models (Table C2).

## Evergreen needleleaf forest in summer

# a) $V_d$ in the two models

Table 4-22 shows  $V_d$  in the two models. Negative sign represents that deposition velocity is downward.  $V_d$  in the two models has similar diurnal trend with high values during daytime and low values during nighttime (Fig. 4-36 and Table E1).  $V_d$  is calculated from all six resistances, (1)  $R_a$  is larger in Wang's model (section 4.1.1), (2)  $R_b$  is smaller in Wang's model (section 4.1.2), (3)  $R_{st}$  is larger in Wang's model (section 4.1.3), (4)  $R_{cut}$  is the same in the two models (section 4.1.4), (5)  $R_{ac}$  is the same in the two models (section 4.1.5), and (6)  $R_g$  is larger in Wang's model (section 4.1.6).

Table 4-22. Deposition velocity ( $V_d$ ,  $\mu m/s$ ) for the two models in the two seasons.

| Season    | Land cover                       | Model          | Minimum | First quartile | Median | Third quartile | Maximum | Mean |
|-----------|----------------------------------|----------------|---------|----------------|--------|----------------|---------|------|
|           | evergreen<br>needleleaf          | Wang           | -2491   | -995           | -519   | -284           | -1      | -640 |
| gumana on | forest                           | Wright & Zhang | -1809   | -832           | -526   | -295           | -4      | -576 |
| summer    | deciduous<br>broadleaf<br>forest | Wang           | -2309   | -1178          | -331   | -159           | -1      | -613 |
|           |                                  | Wright & Zhang | -1801   | -1034          | -566   | -278           | -4      | -646 |
|           | evergreen                        | Wang           | -1744   | -945           | -519   | -335           | -1      | -617 |
|           | needleleaf<br>forest             | Wright & Zhang | -1511   | -795           | -543   | -316           | -4      | -562 |
| winter    | deciduous                        | Wang           | 1463    | -639           | -319   | -187           | -1      | -424 |
|           | broadleaf<br>forest              | Wright & Zhang | -1184   | -638           | -464   | -284           | -3      | -478 |

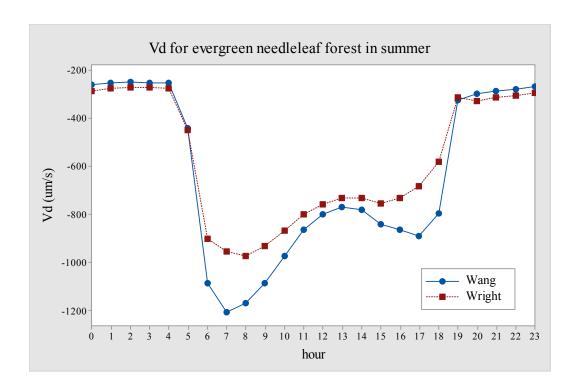



Figure 4-36. Diurnal trend for deposition velocity in the two models for evergreen needleleaf forest in summer.

For high values of  $V_d$  (>900 $\mu$ m/s), 91% of  $V_d$  (784 out of 859) is larger in Wang's model (Fig. 4-37). 99.7% of these larger  $V_d$  (782 out of 784) in Wang's model happens during daytime. This is because smaller  $R_b$  and smaller  $R_{st}$  lead to larger  $V_d$  in Wang's model. The low values of  $V_d$  in the two models are similar (Fig. 4-37). Overall,  $V_d$  in Wang's model is larger than that in Wright & Zhang's model (mean, 640 $\mu$ m/s>576 $\mu$ m/s).

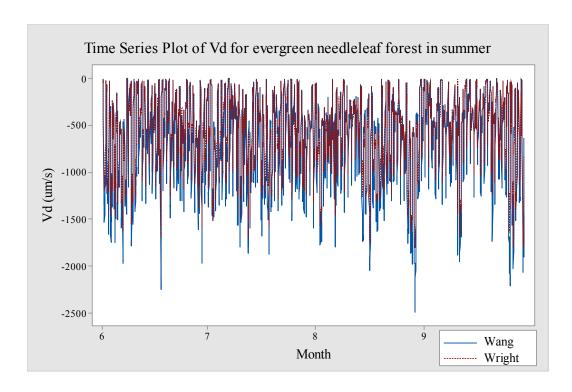



Figure 4-37. Time series for deposition velocity in the two models for evergreen needleleaf forest in summer.

## b) The difference between the two models and why

As seen in Table 4-23, the difference in  $V_d$  between the two models is in the range of -116% to 168% and mean of absolute difference is 15%. The difference between the two models is dependent on joint effect of  $R_a$ ,  $R_b$ ,  $R_{st}$ , and  $R_g$  because  $R_{ac}$  and  $R_{cut}$  are the same in the two models. Larger  $R_a$  and  $R_g$  lead to smaller  $V_d$  in Wang's model. Smaller  $R_b$  and  $R_{st}$  result in larger  $V_d$  in Wang's model. Wu et al. (2018b) found that the difference in  $R_a$  and  $R_b$  among dry deposition models caused little effect on modeled deposition velocity.

Table 4-23. Difference (%) in deposition velocity for the two models in the two seasons.

| Season | Land cover                     | Minimum | First<br>quartile | Median | Third quartile | Maximum | Mean of<br>absolute<br>difference<br>(%) |
|--------|--------------------------------|---------|-------------------|--------|----------------|---------|------------------------------------------|
| summor | evergreen<br>needleleaf forest | -116    | -6                | -0.5   | 17             | 168     | 15                                       |
| summer | deciduous<br>broadleaf forest  | -161    | -45               | -29    | 7              | 175     | 37                                       |
| winter | evergreen<br>needleleaf forest | -137    | -6                | -0.3   | 21             | 82      | 20                                       |
|        | deciduous<br>broadleaf forest  | -146    | -69               | -28    | 5              | 71      | 40                                       |

#### Deciduous broadleaf forest in summer

As in Table 4-22,  $V_d$  in Wang's model is smaller than that in Wright & Zhang's model (mean,  $613\mu\text{m/s}$ < $646\mu\text{m/s}$ ) because larger  $R_a$ ,  $R_{ac}$ , and  $R_g$  leads to smaller  $V_d$  in Wang's. As shown in Table 4-23, the difference between the two models is larger than that for evergreen needleleaf forest in summer (15% vs. 37%). This is because smaller ratio of air diffusivity to GEM diffusivity leads to smaller  $R_b$  and larger  $V_d$  in Wang's model.

### Evergreen needleleaf forest in winter

As seen in Table 4-22,  $V_d$  in Wang's model is larger than that in Wright & Zhang's model (mean,  $617\mu\text{m/s}>562\mu\text{m/s}$ ) and the reason is similar to that for evergreen needleleaf forest in summer. As in Table 4-23, the difference between the two models is also similar to that for evergreen needleleaf forest in summer (15% vs. 20%).

#### **Deciduous broadleaf forest in winter**

As in Table 4-22,  $V_d$  in Wang's model is smaller than that in Wright & Zhang's model (mean,  $613\mu\text{m/s}$ < $646\mu\text{m/s}$ ) the reason is similar to that for evergreen needleleaf forest in winter. As in Table 4-23, the difference between the two models is larger than that for evergreen needleleaf forest in winter (20% vs. 40%). This is because smaller ratio of air diffusivity to GEM diffusivity leads to smaller  $R_b$  and larger  $V_d$  in Wang's model. However, the difference between the two models is similar to that for deciduous broadleaf forest in summer (37% vs. 40%).

### **Summary**

Regardless of season, for evergreen needleleaf forest,  $V_d$  in Wang's model is larger than that in Wright & Zhang's model (mean,  $629\mu\text{m/s}>569\mu\text{m/s}$ ) due to smaller  $R_b$  and smaller  $R_{st}$  in Wang's. For deciduous broadleaf forest,  $V_d$  in Wang's model is smaller than that in Wright & Zhang's model (mean,  $520\mu\text{m/s}<563\mu\text{m/s}$ ) as a result of larger  $R_a$ ,  $R_{ac}$ , and  $R_g$  in Wang's. The difference in  $V_d$  between the two models is mainly owing to air diffusivity and GEM diffusivity.

For the same land cover and different seasons, the difference between the two models is similar (15% vs. 20% for evergreen needleleaf forest, 37% vs. 40% for deciduous broadleaf forest). However, as in Table 4-24, season is significant in the difference between the two models (p=0.001). For different land cover and the same season, greater difference between the two models is for deciduous broadleaf forest (15% vs. 37% in summer, 20% vs. 40% in winter). This is because smaller ratio of air diffusivity to GEM diffusivity leads to smaller R<sub>b</sub> and larger V<sub>d</sub> in Wang's model. Land cover is significant in the difference between the two models (p=0.001), as in Table 4-

Table 4-24. Analysis of variance (ANOVA) of the difference in deposition velocity between the two models.

| Parameter         | p-value |
|-------------------|---------|
| season            | 0.001   |
| land cover        | 0.001   |
| season*land cover | 0.001   |

### 4.3 GEM compensation point concentrations

## 4.3.1 Compensation point concentration in stomata ( $\chi_{st}$ )

The parameterization of  $\chi_{st}$  is different in the two models (Table C3). Wang assumed that deposited GEM in stomata is the difference between dry deposited total gaseous mercury (TGM) on leaves and dry deposited gaseous oxidized mercury (GOM) on cuticle. Deposited GEM in stomata is emitted back to the atmosphere or fixed in stomata, and the fraction of emitted GEM is dependent on LAI.  $\chi_{st}$  in Wright & Zhang's model is assumed as the concentration at which there is equilibrium between the different phases (Wright and Zhang, 2015). It is derived from the Clausius-Clapeyron equation and is only related with ambient temperature. Mercury pool in stomata is infinite in both models.

#### **Evergreen needleleaf forest in summer**

## a) $\chi_{st}$ in the two models

Table 4-25 shows  $\chi_{st}$  in the two models. The diurnal trend of  $\chi_{st}$  in the two models is different (Fig. 4-38 and Table E1). In Wang's model, low values happen during daytime

due to high values of GOM concentration on cuticle (Fig. 4-39). Wang assumed that dry deposited TGM on leaves is a constant of 2566 ng m<sup>-3</sup>, as a summation of GOM concentration on cuticle and GEM concentration in stomata. Larger GOM concentration on cuticle leads to smaller GEM concentration in stomata. In Wright & Zhang's model, high values occur during daytime owing to relatively high ambient temperature (Fig. 4-40).  $\chi_{st}$  in Wang's model is always smaller than that in Wright & Zhang's (Fig. 4-41). van Hove et al. (2002) found that the diurnal trend of ammonia compensation point concentration in stomata has high values during 8:00-16:00. Ammonia is a substance that tends to emit back to the atmosphere, like GEM. It is expected that GEM also has a tendency to emit to air and has a high compensation point concentration in stomata during daytime.

Table 4-25. Compensation point concentration in stomata ( $\chi_{st}$ , ng m<sup>-3</sup>) for the two models in the two seasons.

| Season | Land cover                       | Model          | Minimum | First<br>quartile | Median | Third quartile | Maximum | Mean |
|--------|----------------------------------|----------------|---------|-------------------|--------|----------------|---------|------|
|        | evergreen<br>needleleaf          | Wang           | 0.02    | 0.02              | 0.06   | 0.06           | 0.06    | 0.04 |
| Gummar | forest                           | Wright & Zhang | 0.04    | 1.5               | 1.8    | 2.5            | 4.6     | 2    |
| summer | deciduous<br>broadleaf<br>forest | Wang           | 0.02    | 0.02              | 0.06   | 0.06           | 0.06    | 0.04 |
|        |                                  | Wright & Zhang | 0.03    | 1.2               | 1.5    | 2              | 3.7     | 1.6  |
|        | evergreen<br>needleleaf          | Wang           | 0.02    | 0.05              | 0.07   | 0.07           | 0.07    | 0.06 |
| winter | forest                           | Wright & Zhang | 0.04    | 0.13              | 0.23   | 0.45           | 1.7     | 0.34 |
| winter | deciduous<br>broadleaf           | Wang           | 0.04    | 0.06              | 0.07   | 0.07           | 0.07    | 0.06 |
|        | forest                           | Wright & Zhang | 0.03    | 0.1               | 0.18   | 0.36           | 1.3     | 0.27 |

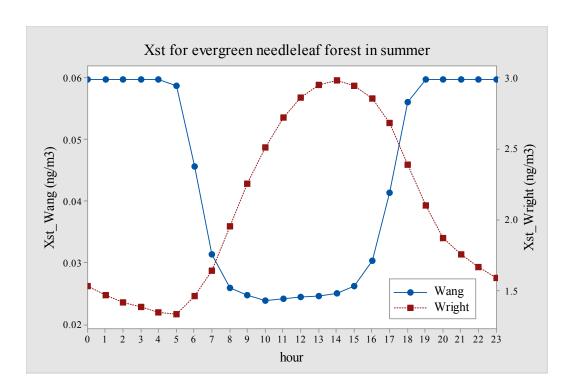



Figure 4-38. Diurnal trend for GEM compensation point concentration in stomata in the two models for evergreen needleleaf forest in summer.

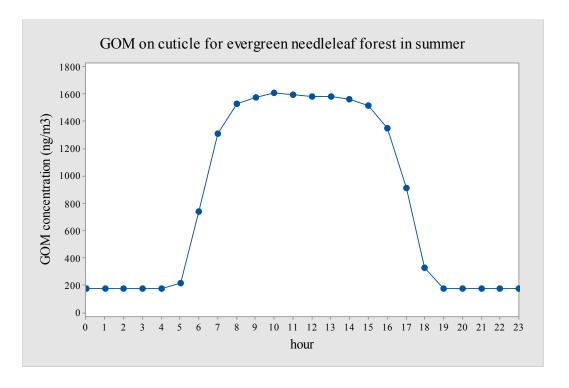



Figure 4-39. Diurnal trend for GOM concentration on cuticle in Wang's model for evergreen needleleaf forest in summer.

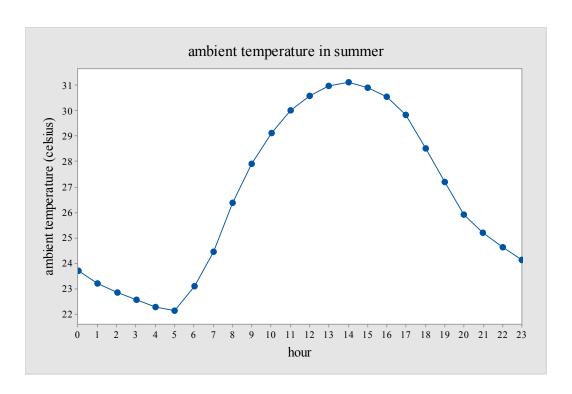



Figure 4-40. Diurnal trend for ambient temperature in summer.

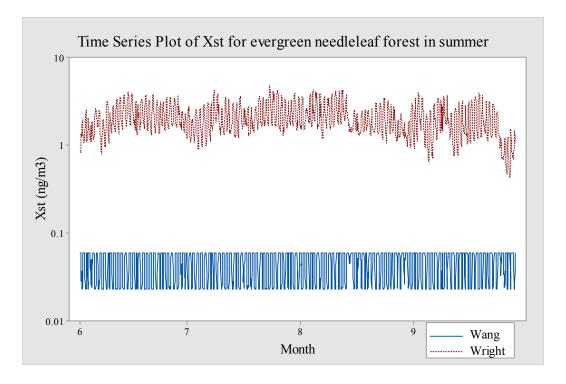



Figure 4-41. Time series for GEM compensation point concentration in stomata in the two models for evergreen needleleaf forest in summer.

## b) The difference between the two models and why

As shown in Table 4-26, the difference between the two models ranges from -198% to -152% and mean of absolute difference is 189%. Wright & Zhang considered that  $\chi_{st}$  is dependent on ambient temperature. In Wang's model,  $\chi_{st}$  is dependent on GOM concentration on cuticle and GOM concentration on cuticle is related with solar radiation and LAI.

Table 4-26. Difference (%) in GEM compensation point concentration in stomata for the two models in the two seasons.

| Season | Land cover                     | Minimum | First<br>quartile | Median | Third quartile | Maximum | Mean of<br>absolute<br>difference<br>(%) |
|--------|--------------------------------|---------|-------------------|--------|----------------|---------|------------------------------------------|
| gummar | evergreen<br>needleleaf forest | -198    | -196              | -189   | -185           | -152    | 189                                      |
| summer | deciduous<br>broadleaf forest  | -198    | -195              | -187   | -181           | -142    | 187                                      |
| winter | evergreen<br>needleleaf forest | -195    | -155              | -117   | -70            | 53      | 110                                      |
|        | deciduous<br>broadleaf forest  | -187    | -141              | -96    | -43            | 78      | 93                                       |

### c) Which model is better

Wright & Zhang's model is more appropriate for GEM compensation point concentration in stomata (Table E4). This is because the diurnal trend of  $\chi_{st}$  in Wright & Zhang's is reasonable. When solar radiation is strong during daytime, more GOM is chemically reduced to GEM. GEM in stomata also trends to emit from stomata to the air under high ambient temperature. Thus, the  $\chi_{st}$  is expected to have high values during daytime.

#### Deciduous broadleaf forest in summer

In Wang's model, only LAI is related with land cover. LAI for the two land cover in summer is similar (Table D2). In Wright & Zhang's model, only emission potential of stomata ( $\Gamma_{st}$ , Table C3) is dependent on land cover.  $\Gamma_{st}$  for evergreen needleleaf forest (10) and deciduous broadleaf forest (8) are similar. Thus, it is expected that the difference between the two models is similar for the two land cover in summer. As shown in Table 4-25,  $\chi_{st}$  in Wang's model is smaller than that in Wright & Zhang's (mean, 0.04 ng m<sup>-3</sup><1.6 ng m<sup>-3</sup>). As seen in Table 4-26, the difference is similar to that for evergreen needleleaf forest in summer (189% vs. 187%), as expected.

### Evergreen needleleaf forest in winter

In Wang's model, LAI and solar radiation is related with season. Smaller LAI and solar radiation in winter (Table D2) lead to smaller GOM concentration on cuticle, larger GEM concentration stored in stomata, and larger  $\chi_{st}$ . In Wright & Zhang's model, lower ambient temperature in winter (Table D2) causes smaller  $\chi_{st}$ . Thus, it is expected that the difference between the two models is smaller for evergreen needleleaf forest in winter. As in Table 4-25,  $\chi_{st}$  in Wang's model is smaller than that in Wright & Zhang's model (mean, 0.06 ng m<sup>-3</sup><0.34 ng m<sup>-3</sup>). The difference between the two models is smaller than that for evergreen needleleaf forest in summer (Table 4-26, 189% vs. 110%), as expected.

#### **Deciduous broadleaf forest in winter**

In Wang's model, only LAI is related with land cover. LAI in winter is smaller for deciduous broadleaf forest (Table D2). Smaller LAI leads to smaller GOM concentration on cuticle, larger GEM concentration stored in stomata, and larger  $\chi_{st}$ . In Wright & Zhang's model,  $\Gamma_{st}$  for evergreen needleleaf forest (10) and deciduous broadleaf forest (8) are similar. Thus, it is expected that the difference between the two models is smaller for deciduous broadleaf forest in winter. As shown in Table 4-25,  $\chi_{st}$  in Wang's model is smaller than that in Wright & Zhang's (mean, 0.06 ng m<sup>-3</sup><0.27 ng m<sup>-3</sup>). The difference between the two models is smaller than that for evergreen needleleaf forest in winter (Table 4-26, 110% vs. 93%), as expected.

## **Summary**

Regardless of season and land cover,  $\chi_{st}$  in Wang's model is smaller than that in Wright & Zhang's model (mean, 0.05 ng m<sup>-3</sup><1.1 ng m<sup>-3</sup>). For the same land cover and different seasons, greater difference between the two models is in summer (189% vs. 110% for evergreen needleleaf forest, 187% vs. 93% for deciduous broadleaf forest). This is because large LAI and solar radiation lead to small  $\chi_{st}$  in Wang's model, and high ambient temperature results in large  $\chi_{st}$  in Wright & Zhang's model. Table 4-27 shows that season is significant in the difference between the two models (p=0.001).

Table 4-27. Analysis of variance (ANOVA) of the difference in GEM compensation point concentration in stomata between the two models.

| Parameter         | p-value |
|-------------------|---------|
| Season            | 0.001   |
| Land cover        | 0.001   |
| Season*land cover | 0.001   |

For different land cover in summer, the difference between the two models is similar (189% vs. 187%) owing to similar LAI and  $\Gamma$ st for the two land cover. For different land cover in winter, greater difference between the two models is for evergreen needleleaf forest (110% vs. 93%) because larger LAI leads to larger GOM concentration on cuticle, smaller GEM concentration stored in stomata, and smaller  $\chi$ st in Wang's model. As seen in Table 4-27, land cover is significant in the difference between the two models (p=0.001).

## 4.3.2 Soil compensation point concentration ( $\chi_g$ )

The parameterization of  $\chi_g$  is different in the two models (Table C3). Wang assumed that GOM stored in soil is chemically reduced to be GEM. The GOM concentration in soil and GOM chemically reduction rate were assumed to be 90ng/g and  $8*10^{-11}$  s<sup>-1</sup>, respectively. In Wright & Zhang's model,  $\chi_g$  is similar to  $\chi_{st}$  (section 4.3.1). It is also derived from the Clausius-Clapeyron equation and is only related with surface air temperature. Wright assumed that  $\chi_g$  will be zero when snow covers the soil. Both  $\chi_g$  in Wang's model and Wright & Zhang's model is not related with land cover. Mercury pool in soil is infinite in both models.

#### **Evergreen needleleaf forest in summer**

# a) $\chi_g$ in the two models

Table 4-28 shows  $\chi_g$  in the two models. The diurnal trend of  $\chi_g$  in the two models is similar with high values during daytime and low values during nighttime (Fig. 4-42 and

Table E1).  $\chi_g$  in Wang's model is always larger than that in Wright & Zhang's (Fig. 4-43).

Table 4-28. Compensation point concentration in soil ( $\chi_g$ , ng m<sup>-3</sup>) for the two models in the two seasons.

| Season    | Land cover                       | Model          | Minimum | First<br>quartile | Median | Third quartile | Maximum | Mean |
|-----------|----------------------------------|----------------|---------|-------------------|--------|----------------|---------|------|
|           | evergreen<br>needleleaf          | Wang           | 4.2     | 6                 | 6.5    | 7.2            | 8.7     | 6.6  |
| gumana an | forest                           | Wright & Zhang | 0.4     | 1.4               | 1.8    | 2.6            | 4.7     | 2    |
| summer    | deciduous<br>broadleaf<br>forest | Wang           | 4.2     | 6                 | 6.5    | 7.2            | 8.7     | 6.6  |
|           |                                  | Wright & Zhang | 0.4     | 1.4               | 1.8    | 2.6            | 4.7     | 2    |
|           | evergreen<br>needleleaf          | Wang           | 2.1     | 2.9               | 3.5    | 4.3            | 6.4     | 3.7  |
| winter    | forest                           | Wright & Zhang | 0       | 0.1               | 0.2    | 0.4            | 1.7     | 0.3  |
| winter    | deciduous                        | Wang           | 2.1     | 2.9               | 3.5    | 4.3            | 6.4     | 3.7  |
|           | broadleaf<br>forest              | Wright & Zhang | 0       | 0.1               | 0.2    | 0.4            | 1.7     | 0.3  |

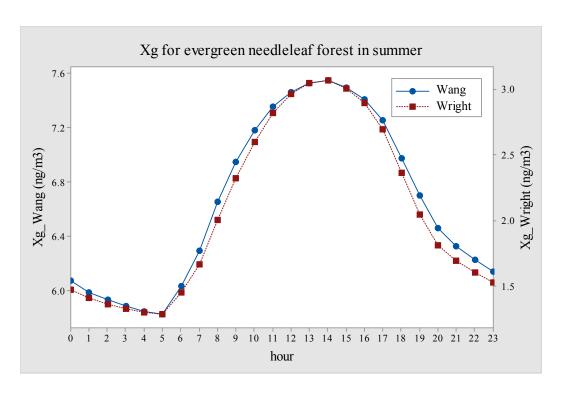



Figure 4-42. Diurnal trend for GEM compensation point concentration in soil in the two models for evergreen needleleaf forest in summer.

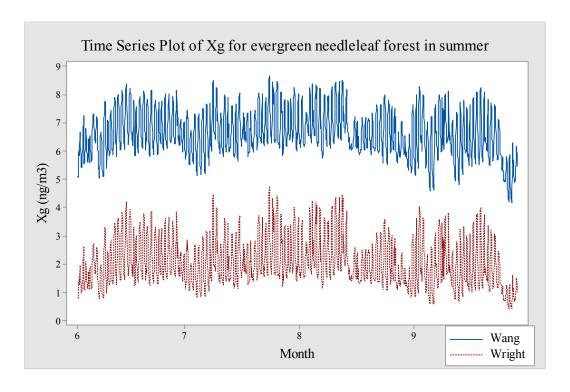



Figure 4-43. Time series for GEM compensation point concentration in soil in the two models for evergreen needleleaf forest in summer.

## b) The difference between the two models and why

As shown in Table 4-29, the difference between the two models ranges from 58% to 165% (mean of 110). Wright & Zhang assumed that  $\chi_g$  is dependent on surface air temperature. In Wang's model, GEM in soil is chemically reduced from GOM. Wang assumed that GOM content in soil is a constant of 90 ng/g and chemically reduction rate of GOM is also a constant of  $8*10^{-11}$  s<sup>-1</sup>.  $\chi_g$  is calculated with Henry's law constant between soil and air, thus  $\chi_g$  is related with ambient temperature. The mercury in soil is infinite in both models.

Table 4-29. Difference (%) in GEM compensation point concentration in soil for the two models in the two seasons.

| Season | Land cover                     | Minimum | First<br>quartile | Median | Third quartile | Maximum | Mean |
|--------|--------------------------------|---------|-------------------|--------|----------------|---------|------|
| summer | evergreen<br>needleleaf forest | 58      | 95                | 113    | 124            | 165     | 110  |
|        | deciduous<br>broadleaf forest  | 58      | 95                | 113    | 124            | 165     | 110  |
| winter | evergreen<br>needleleaf forest | 115     | 162               | 177    | 186            | 200     | 174  |
|        | deciduous<br>broadleaf forest  | 115     | 162               | 177    | 186            | 200     | 174  |

#### c) Which model is better

Wang's model is more appropriate for representation of GEM compensation point concentration in soil (Table E4). In Wang's model, GEM in soil is reduced from GOM and  $\chi_g$  is related with organic carbon content in soil and Henry's law constant.

#### Deciduous broadleaf forest in summer

Both  $\chi_{\!\scriptscriptstyle g}$  in the two models are not related with land cover. Thus the difference

between the two models is the same as that for evergreen needleleaf forest in summer (Table 4-29, 110% vs. 110%).

#### Evergreen needleleaf forest in winter

As in Table 4-28,  $\chi_g$  in Wang's model is larger than that in Wright & Zhang's (mean, 3.7 ng m<sup>-3</sup>>0.3 ng m<sup>-3</sup>). In Wang's model, lower ambient temperature in winter (Table D2) results in fewer GEM emitting into air and smaller  $\chi_g$ . In Wright & Zhang's model, lower surface air temperature in winter (Table D2) leads to fewer GEM in soil and smaller  $\chi_g$ . However, the difference between the two models is greater than that for evergreen needleleaf forest in summer (Table 4-29, 110% vs. 174%).

### Deciduous broadleaf forest in winter

Both  $\chi_g$  in the two models are not related with land cover. Thus the difference between the two models is the same as that for evergreen needleleaf forest in winter (Table 4-29, 174% vs. 174%).

### **Summary**

Regardless of season and land cover,  $\chi_g$  in Wang's model is larger than that in Wright & Zhang's model (mean, 5.2 ng m<sup>-3</sup>>1.2 ng m<sup>-3</sup>). For different land cover and the same season, the difference between the two models is the same (110% vs. 110% in summer, 174% vs. 174% in winter) because  $\chi_g$  in both models is not related with season. Table 4-30 shows that land cover is insignificant in the difference between the two

models (p=0.99). For the same land cover and different seasons, greater difference between the two models is in winter (110% vs. 174% for evergreen needleleaf forest, 110% vs. 174% for deciduous broadleaf forest). In Wright & Zhang's model, lower surface air temperature leads to smaller  $\chi_g$ . In Wang's model, lower ambient temperature results in smaller  $\chi_g$ . As in Table 4-30, season is significant in the difference between the two models (p=0.001).

Table 4-30. Analysis of variance (ANOVA) of the difference in GEM compensation point concentration in soil between the two models.

| Parameter         | p-value |
|-------------------|---------|
| season            | 0.001   |
| land cover        | 0.99    |
| season*land cover | 0.99    |

## 4.4 GEM emission and deposition fluxes

## 4.4.1 Stomata emission flux (F<sub>st</sub>)

In both models,  $F_{st}$  is a product of  $V_{st}$  and  $\chi_{st}$ .

## Evergreen needleleaf forest in summer

### a) F<sub>st</sub> in the two models

Table 4-31 shows  $F_{st}$  in the two models.  $F_{st}$  in the two models has a similar diurnal cycle with high values during daytime and low values during nighttime (Fig. 4-44 and Table E1). But  $F_{st}$  for Wang's model has a peak at 18:00 due to more visible solar radiation, smaller  $R_{st}$ , and large  $V_{st}$  in Wang's (Fig. 4-31).  $V_{st}$  in Wang's model is larger than that in Wright's model (mean,  $293\mu\text{m/s}>199\mu\text{m/s}$ ).  $\chi_{st}$  in Wang's model is smaller

than that in Wright's model (mean, 0.04 ng m<sup>-3</sup><2 ng m<sup>-3</sup>). Overall,  $F_{st}$  in Wang's model is smaller than that in Wright & Zhang's model (Fig. 4-45), reflecting that  $F_{st}$  in the two models is mainly controlled by  $\chi_{st}$ .

Table 4-31. Stomata emission flux  $(F_{st}, pg m^{-2} s^{-1})$  for the two models in the two seasons.

| Season | Land cover                        | Model          | Minimum | First<br>quartile | Median | Third quartile | Maximum | Mean |
|--------|-----------------------------------|----------------|---------|-------------------|--------|----------------|---------|------|
| summer | evergreen<br>needleleaf<br>forest | Wang           | 0       | 0                 | 0      | 0.02           | 0.08    | 0.01 |
|        |                                   | Wright & Zhang | 0       | 0.01              | 0.18   | 0.85           | 1.71    | 0.41 |
|        | deciduous<br>broadleaf<br>forest  | Wang           | 0       | 0                 | 0      | 0.02           | 0.09    | 0.01 |
|        |                                   | Wright & Zhang | 0       | 0                 | 0.28   | 1.12           | 2.19    | 0.59 |
| winter | evergreen<br>needleleaf<br>forest | Wang           | 0       | 0                 | 0      | 0.02           | 0.05    | 0.01 |
|        |                                   | Wright & Zhang | 0       | 0                 | 0      | 0.06           | 0.86    | 0.06 |
|        | deciduous<br>broadleaf<br>forest  | Wang           | 0       | 0                 | 0      | 0.02           | 0.06    | 0.01 |
|        |                                   | Wright & Zhang | 0       | 0                 | 0      | 0.03           | 0.68    | 0.05 |

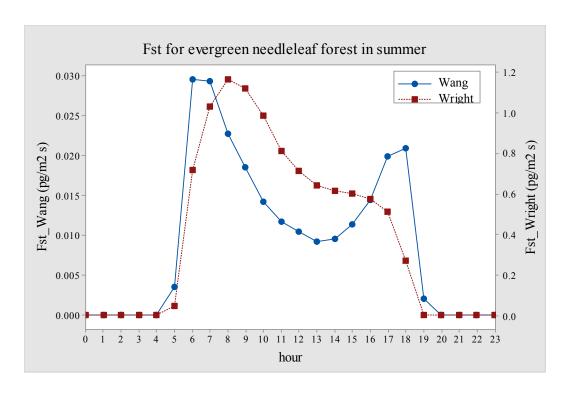



Figure 4-44. Diurnal trend for stomata emission flux in the two models for evergreen needleleaf forest in summer.

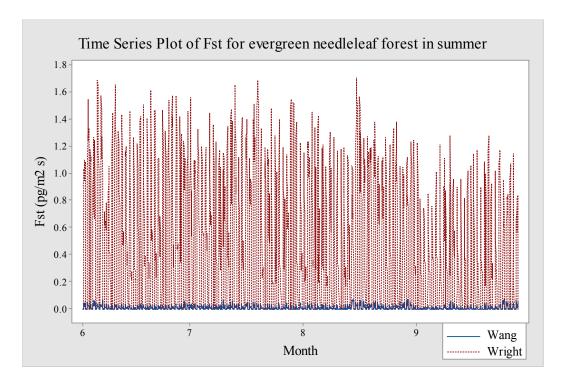



Figure 4-45. Time series for stomata emission flux in the two models for evergreen needleleaf forest in summer.

## b) The difference between the two models and why

As in Table 4-32, the difference between the two models ranges from -200% to 65% and mean of absolute difference is 190%.  $V_{st}$  in Wang's model is larger than that in Wright & Zhang's model (section 4.2.1).  $\chi_{st}$  in Wang's model is smaller than that in Wright's model (section 4.3.1). The difference in  $F_{st}$  is dominant by different parameterizations of  $\chi_{st}$ . For  $\chi_{st}$ , Wang assumed that dry deposited GEM in stomata is the difference between dry deposited TGM on leaves and dry deposited GOM on cuticle. Dry deposited GEM in stomata is emitted back to the atmosphere or fixed in stomata, and the fraction of emitted GEM is dependent on LAI.  $\chi_{st}$  in Wright & Zhang's model is assumed as the concentration at which there is equilibrium between the different phases (Wright and Zhang, 2015). It is derived from the Clausius-Clapeyron equation and is only related with ambient temperature.

Table 4-32. Difference (%) in stomata emission flux for the two models in the two seasons.

| Season | Land cover                     | Minimum | First<br>quartile | Median | Third quartile | Maximum | Mean of<br>absolute<br>difference<br>(%) |
|--------|--------------------------------|---------|-------------------|--------|----------------|---------|------------------------------------------|
| summer | evergreen<br>needleleaf forest | -200    | -198              | -196   | -193           | 65      | 190                                      |
|        | deciduous<br>broadleaf forest  | -200    | -197              | -196   | -192           | 125     | 190                                      |
| winter | evergreen<br>needleleaf forest | -197    | -184              | -166   | -128           | 145     | 148                                      |
|        | deciduous<br>broadleaf forest  | -196    | -177              | -159   | -123           | 147     | 142                                      |

#### **Deciduous broadleaf forest in summer**

As seen in Table 4-31, F<sub>st</sub> in Wang's model is smaller than that in Wright & Zhang's

model (mean, 0.01 pg m<sup>-2</sup> s<sup>-1</sup><0.59 pg m<sup>-2</sup> s<sup>-1</sup>), and the reason is similar to that for evergreen needleleaf forest in summer. The difference between the two models is also similar to that for evergreen needleleaf forest in summer (Table 4-32, 190% vs. 190%).

### Evergreen needleleaf forest in winter

As in Table 4-31,  $F_{st}$  in Wang's model is smaller than that in Wright & Zhang's model (mean, 0.01 pg m<sup>-2</sup> s<sup>-1</sup><0.06 pg m<sup>-2</sup> s<sup>-1</sup>), and the reason is similar to that for evergreen needleleaf forest in summer. Smaller solar radiation in winter (Table D1) leads to larger  $R_{st}$  and smaller  $V_{st}$  in both models. Smaller LAI and solar radiation in winter (Table D2) result in smaller GOM concentration on cuticle, larger GEM concentration stored in stomata, and larger  $\chi_{st}$  in Wang's model. Lower surface air temperature in winter (Table D2) causes smaller  $\chi_{st}$  in Wright & Zhang's model. The difference in  $F_{st}$  is dominant by  $\chi_{st}$ . Larger  $\chi_{st}$  in Wang's model and smaller  $\chi_{st}$  in Wright & Zhang's model lead to smaller difference in  $F_{st}$  between the two models (Table 4-32, 190% vs. 148%).

#### **Deciduous broadleaf forest in winter**

Table 4-31 shows that  $F_{st}$  in Wang's model is smaller than that in Wright & Zhang's model (mean, 0.01 pg m<sup>-2</sup> s<sup>-1</sup><0.05 pg m<sup>-2</sup> s<sup>-1</sup>), and the reason is similar to that for evergreen needleleaf forest in winter. The difference between the two models is also similar to that for evergreen needleleaf forest in winter (Table 4-32, 148% vs. 142%).

#### Summary

Regardless of season and land cover,  $F_{st}$  in Wang's model is smaller than that in Wright & Zhang's model (mean, 0.01 pg m<sup>-2</sup> s<sup>-1</sup><0.29 pg m<sup>-2</sup> s<sup>-1</sup>). The difference between the two models is mainly controlled by  $\chi_{st}$ . For different land cover and the same season, the difference between the two models is similar (190% vs. 190% in summer, 148% vs. 142% in winter). This is because, regardless of season,  $\chi_{st}$  in each model is similar between the two land cover. In summer, larger LAI for deciduous broadleaf forest results in smaller  $R_{st}$  and larger  $V_{st}$  in both models. In winters, smaller LAI for deciduous broadleaf forest causes smaller  $V_{st}$  in both models. Table 4-33 shows that land cover is significant in the difference between the two models (p=0.001).

Table 4-33. Analysis of variance (ANOVA) of the difference in stomata emission flux between the two models.

| Parameter         | p-value |
|-------------------|---------|
| Season            | 0.001   |
| Land cover        | 0.001   |
| Season*land cover | 0.097   |

For the same land cover and different seasons, smaller difference between the two models is in winter (190% vs. 148% for evergreen needleleaf forest, 190% vs. 142% for deciduous broadleaf forest). This is because smaller LAI and solar radiation result in larger  $\chi_{st}$  in Wang's model, and lower surface air temperature causes smaller  $\chi_{st}$  in Wright & Zhang's model. Smaller solar radiation and smaller LAI in winter lead to smaller  $V_{st}$  in both models. As seen in Table 4-33, season is significant in the difference between the two models (p=0.001).

## 4.4.2 Soil emission flux (Fg)

In both models,  $F_g$  is a product of  $V_g$  and  $\chi_g.$ 

## Evergreen needleleaf forest in summer

# a) F<sub>g</sub> in the two models

Table 4-34 shows  $F_g$  in the two models.  $F_g$  in the two models has similar diurnal trends with high values during daytime and low values during nighttime (Fig. 4-46 and Table E1).  $V_g$  in Wang's model is smaller than that in Wright & Zhang's (mean,  $188\mu\text{m/s}<219\mu\text{m/s}$ ).  $\chi_g$  in Wang's model is larger than that in Wright & Zhang's (mean, 6.6 ng m<sup>-3</sup>>2 ng m<sup>-3</sup>). Overall,  $F_g$  in Wang's model is larger than that in Wright & Zhang's (Fig. 4-47), reflecting that  $F_g$  in the two models is mainly controlled by  $\chi_g$ .

Table 4-34. Soil emission flux  $(F_g, pg m^{-2} s^{-1})$  for the two models in the two seasons.

| Season | Land cover                        | Model          | Minimum | First quartile | Median | Third quartile | Maximum | Mean |
|--------|-----------------------------------|----------------|---------|----------------|--------|----------------|---------|------|
| summer | evergreen<br>needleleaf<br>forest | Wang           | 0       | 0.6            | 1.07   | 1.96           | 3.54    | 1.27 |
|        |                                   | Wright & Zhang | 0       | 0.19           | 0.42   | 0.7            | 1.66    | 0.47 |
|        | deciduous<br>broadleaf<br>forest  | Wang           | 0       | 0.33           | 0.75   | 1.23           | 3.05    | 0.83 |
|        |                                   | Wright & Zhang | 0       | 0.19           | 0.43   | 0.71           | 1.67    | 0.48 |
| winter | evergreen<br>needleleaf<br>forest | Wang           | 0       | 0.56           | 0.95   | 1.47           | 2.95    | 1.04 |
|        |                                   | Wright & Zhang | 0       | 0.01           | 0.07   | 0.16           | 0.74    | 0.11 |
|        | deciduous<br>broadleaf<br>forest  | Wang           | 0       | 0.39           | 0.66   | 1.05           | 2.71    | 0.74 |
|        |                                   | Wright & Zhang | 0       | 0.01           | 0.07   | 0.17           | 0.74    | 0.12 |

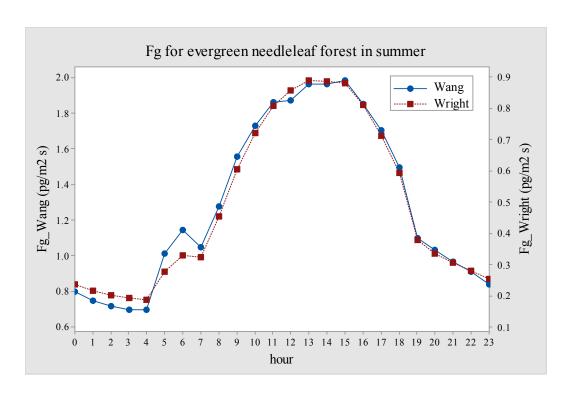



Figure 4-46. Diurnal trend for soil emission flux in the two models for evergreen needleleaf forest in summer.

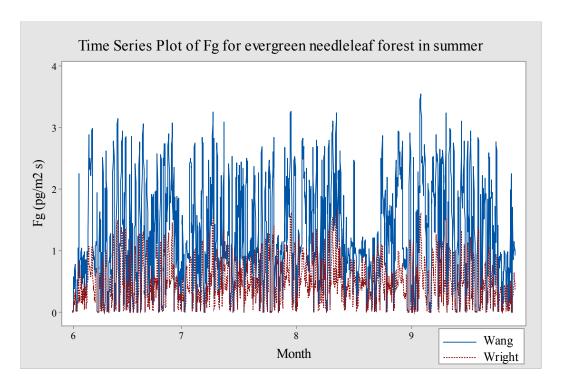



Figure 4-47. Time series for soil emission flux in the two models for evergreen needleleaf forest in summer.

# b) The difference between the two models and why

As seen in Table 4-35, the difference between the two models varies between 8% and 161% (mean of 98%).  $V_g$  in Wang's model is smaller than that in Wright & Zhang's (section 4.2.2).  $\chi_g$  in Wang's model is larger than that in Wright & Zhang's (section 4.3.2). Larger  $F_g$  in Wang's model is owing to larger  $\chi_g$ . The difference in  $F_g$  is dominant by different parameterizations of  $\chi_g$ . Wang assumed that GOM stored in soil is reduced to be GEM and  $\chi_g$  is only dependent on ambient temperature. In Wright & Zhang's model,  $\chi_g$  is derived from the Clausius-Clapeyron equation and is only related with surface air temperature.

Table 4-35. Difference (%) in soil emission flux for the two models in the two seasons.

| Season | Land cover                     | Minimum | First<br>quartile | Median | Third quartile | Maximum | Mean of<br>absolute<br>difference<br>(%) |
|--------|--------------------------------|---------|-------------------|--------|----------------|---------|------------------------------------------|
| a      | evergreen<br>needleleaf forest | 8       | 80                | 100    | 117            | 161     | 98                                       |
| summer | deciduous<br>broadleaf forest  | -111    | 36                | 51     | 70             | 132     | 53                                       |
| winton | evergreen<br>needleleaf forest | 85      | 151               | 171    | 186            | 200     | 168                                      |
| winter | deciduous<br>broadleaf forest  | 52      | 132               | 150    | 175            | 200     | 152                                      |

#### **Deciduous broadleaf forest in summer**

As shown in Table 4-34,  $F_g$  in Wang's model is larger than that in Wright & Zhang's model (mean, 0.83 pg m<sup>-2</sup> s<sup>-1</sup>>0.48 pg m<sup>-2</sup> s<sup>-1</sup>) and the reason is similar to that for evergreen needleleaf forest in summer. In  $F_g$ ,  $\chi_g$  is not related with land cover in both models.  $V_g$  in Wang's model is much smaller than that in Wright & Zhang's (section

4.2.2). This is because larger  $R_{ac0}$  leads to smaller  $V_g$  in Wang's model. The difference between the two models is smaller than that for evergreen needleleaf forest in summer (Table 4-35, 98% vs. 53%).

## **Evergreen needleleaf forest in winter**

As seen in Table 4-34,  $F_g$  in Wang's model is larger than that in Wright & Zhang's (mean, 1.04 pg m<sup>-2</sup> s<sup>-1</sup>>0.11 pg m<sup>-2</sup> s<sup>-1</sup>) and the reason is similar to that for evergreen needleleaf forest in summer. In  $F_g$ ,  $V_g$  in Wang's model is smaller than that in Wright & Zhang's (section 4.2.2). Lower ambient temperature results in smaller  $\chi_g$  in Wang's model and lower surface air temperature leads to smaller  $\chi_g$  in Wright & Zhang's. However, the reduction of  $\chi_g$  in Wright & Zhang's is larger.  $\chi_g$  in Wang's model is much larger than that in Wright & Zhang's (section 4.3.2). The difference between the two models is larger than that for evergreen needleleaf forest in summer (Table 4-35, 98% vs. 168%).

#### **Deciduous broadleaf forest in winter**

As shown in Table 4-34, F<sub>g</sub> in Wang's model is larger than that in Wright & Zhang's model (mean, 0.74 pg m<sup>-2</sup> s<sup>-1</sup>>0.12 pg m<sup>-2</sup> s<sup>-1</sup>) and the reason is similar to that for evergreen needleleaf forest in summer. The difference between the two models is larger than that for deciduous broadleaf forest in summer (Table 4-35, 53% vs. 152%), and the reason is the same as that for evergreen needleleaf forest in winter.

### **Summary**

Regardless of season and land cover,  $F_g$  in Wang's model is larger than that in Wright & Zhang's (mean, 0.98 pg m<sup>-2</sup> s<sup>-1</sup>>0.31 pg m<sup>-2</sup> s<sup>-1</sup>). The difference in  $F_g$  between the two models is dominant by  $\chi_g$ . For different land cover and the same season, the difference between the two models is smaller for deciduous broadleaf forest (98% vs. 53% in summer, 168% vs. 152% in winter), because larger  $R_{ac0}$  leads to smaller  $V_g$  in Wang's model.  $V_g$  in Wang's model is much smaller than that in Wright & Zhang's.  $\chi_g$  in Wang's is larger than that in Wright & Zhang's, however  $\chi_g$  is not related with land cover. As shown in Table 4-36, land cover is significant in the difference between the two models (p=0.001).

Table 4-36. Analysis of variance (ANOVA) of the difference in soil emission flux between the two models.

| Parameter         | p-value |
|-------------------|---------|
| season            | 0.001   |
| land cover        | 0.001   |
| season*land cover | 0.001   |

For the same land cover and different seasons, greater difference between the two models is in winter (98% vs. 168% for evergreen needleleaf forest, 53% vs. 152% for deciduous broadleaf forest). This is because lower ambient temperature results in smaller  $\chi_g$  in Wang's model and lower surface air temperature leads to smaller  $\chi_g$  in Wright & Zhang's. The reduction of  $\chi_g$  is larger in Wright & Zhang's.  $\chi_g$  in Wang's model is much larger than that in Wright & Zhang's. V<sub>g</sub> in Wang's model is smaller than that in Wright & Zhang's. As seen in Table 4-36, season is significant in the difference between the two

models (p=0.001).

## 4.4.3 Cuticle emission flux (F<sub>c</sub>)

Wright & Zhang assumed that  $F_c$  to be zero and Wang considered it. As seen in Table 4-37,  $F_c$  in Wang's model in all cases is negligible, compared with  $F_{st}$  (Table 4-31) and  $F_g$  (Table 4-34). In all cases,  $F_c$  accounts for 0-1.6% (mean of 0.07%) of the total emission flux.

Table 4-37. Cuticle emission flux (pg m<sup>-2</sup> s<sup>-1</sup>) in Wang's model in the two seasons.

| Season | Land cover                     | Minimu<br>m | First<br>quartile | Median | Third quartile | Maximu<br>m | Mean  |
|--------|--------------------------------|-------------|-------------------|--------|----------------|-------------|-------|
| gummar | evergreen needleleaf<br>forest | 0           | 0                 | 0      | 0.001          | 0.018       | 0.001 |
| summer | deciduous broadleaf<br>forest  | 0           | 0                 | 0      | 0.001          | 0.009       | 0.001 |
| winter | evergreen needleleaf<br>forest | 0           | 0                 | 0      | 0.004          | 0.01        | 0.004 |
| winter | deciduous broadleaf<br>forest  | 0           | 0                 | 0      | 0.001          | 0.003       | 0.001 |

## 4.4.4 Deposition flux (F<sub>d</sub>)

In both models,  $F_d$  is a product of  $V_d$  and GEM concentration in the air  $(\chi_{atm})$ .  $\chi_{atm}$  is the same in the two models, thus  $F_d$  in the two models is controlled by  $V_d$ .

# Evergreen needleleaf forest in summer

# a) F<sub>d</sub> in the two models

Table 4-38 shows  $F_d$  in the two models. Negative sign represents downward flux.  $F_d$  in the two models has similar diurnal trend with high values during daytime and low

values during nighttime (Fig. 4-48 and Table E1).  $V_d$  in Wang's model is larger than that in Wright & Zhang's model (mean,  $640\mu m/s > 576\mu m/s$ ).  $\chi_{atm}$  is the same in the two models. However,  $F_d$  is similar in the two models (Fig. 4-49).

Table 4-38. Deposition flux  $(F_d, pg m^{-2} s^{-1})$  for the two models in the two seasons.

| Season | Land cover                       | Model          | Minimum | First<br>quartile | Median | Third quartile | Maximum | Mean  |
|--------|----------------------------------|----------------|---------|-------------------|--------|----------------|---------|-------|
|        | evergreen<br>needleleaf          | Wang           | -3.29   | -1.18             | -0.62  | -0.33          | -0.002  | -0.78 |
| summer | forest                           | Wright & Zhang | -2.91   | -1.02             | -0.63  | -0.34          | -0.005  | -0.7  |
| summer | deciduous<br>broadleaf           | Wang           | -3.5    | -1.41             | -0.4   | -0.19          | -0.001  | -0.75 |
| _      | forest                           | Wright & Zhang | -3.13   | -1.25             | -0.68  | -0.32          | -0.005  | -0.79 |
|        | evergreen<br>needleleaf          | Wang           | -3.76   | -1.23             | -0.7   | -0.46          | -0.001  | -0.84 |
| winton | forest                           | Wright & Zhang | -3.19   | -1.07             | -0.74  | -0.41          | -0.004  | -0.77 |
| winter | deciduous<br>broadleaf<br>forest | Wang           | -3.23   | -0.77             | -0.43  | -0.25          | -0.007  | -0.57 |
|        |                                  | Wright & Zhang | -2.86   | -0.85             | -0.63  | -0.36          | -0.004  | -0.66 |

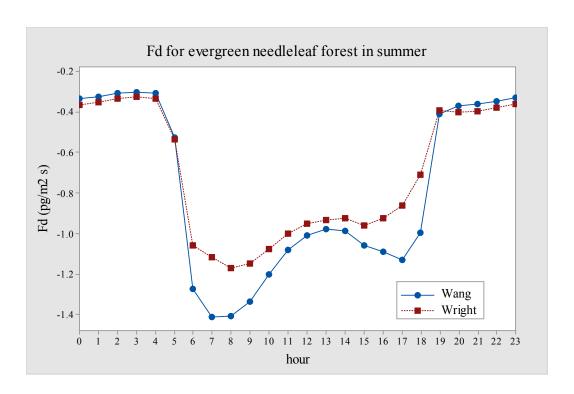



Figure 4-48. Diurnal trend for deposition flux in the two models for evergreen needleleaf forest in summer.

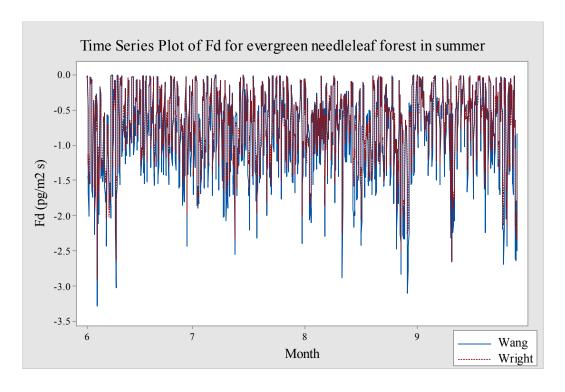



Figure 4-49. Time series for deposition flux in the two models for evergreen needleleaf forest in summer.

## b) The difference between the two models and why

As shown in Table 4-39, the difference between the two models ranges from -116% to 168% and mean of absolute difference is 15%. The difference is dependent on  $V_d$ . The difference in  $F_d$  is similar to that in  $V_d$  (section 4.2.3).

Table 4-39. Difference (%) in deposition flux for the two models in the two seasons.

| Season | Land cover                     | Minimum | First<br>quartile | Median | Third quartile | Maximum | Mean of<br>absolute<br>difference<br>(%) |
|--------|--------------------------------|---------|-------------------|--------|----------------|---------|------------------------------------------|
| cummor | evergreen<br>needleleaf forest | -116    | -6                | -1     | 16             | 168     | 15                                       |
| summer | deciduous<br>broadleaf forest  | -155    | -48               | -29    | 7              | 175     | 36                                       |
| winton | evergreen<br>needleleaf forest | -137    | -5                | -0.3   | 22             | 82      | 20                                       |
| winter | deciduous<br>broadleaf forest  | -146    | -69               | -30    | 4              | 71      | 41                                       |

## For other three cases

 $F_d$  in Wang's model is similar to that in Wright & Zhang's (Table 4-38).  $F_d$  is dependent on  $V_d$ . The difference in  $F_d$  between the two models is similar to that in  $V_d$ .

#### **Summary**

Regardless of season and land cover,  $F_d$  in Wang's model is similar to that in Wright & Zhang's model (mean, -0.74 pg m<sup>-2</sup>s<sup>-1</sup> vs. -0.73 pg m<sup>-2</sup>s<sup>-1</sup>). The difference between the two models is similar to that in difference in  $V_d$ . For different land cover and the same season, the difference between the two models is larger for deciduous broadleaf forest (15% vs. 36% in summer, 20% vs. 41% in winter). For the same land cover and different

seasons, the difference between the two models is similar (15% vs. 20% for evergreen needleleaf forest, 36% vs. 41% for deciduous broadleaf forest). Table 4-40 shows that both season and land cover are significant in the difference between the two models (p=0.001).

Table 4-40. Analysis of variance (ANOVA) of the difference in deposition flux between the two models.

| Parameter         | p-value |
|-------------------|---------|
| season            | 0.001   |
| land cover        | 0.001   |
| season*land cover | 0.001   |

#### **4.4.5** Net flux

# Evergreen needleleaf forest in summer

# a) Net flux in the two models

Table 4-41 shows net flux in the two models. Negative sign stands for net deposition flux and positive sign represents net emission flux. Net flux in the two models has similar diurnal trends with high values during daytime and low values during nighttime (Fig. 4-50 and Table E1). But net flux in Wang's model has a valley value at 7:00 because larger deposition (Fig. 4-48). F<sub>d</sub> is similar in the two models (section 4.4.4). F<sub>c</sub> is negligible in Wang's model and is not considered by Wright & Zhang (section 4.4.3). F<sub>g</sub> in Wang's model is much larger than that in Wright & Zhang's (mean, 1.27 pg m<sup>-2</sup> s<sup>-1</sup>>0.47 pg m<sup>-2</sup> s<sup>-1</sup>). F<sub>st</sub> in Wang's model is smaller than that in Wright & Zhang's model (mean, 0.01 pg m<sup>-2</sup> s<sup>-1</sup><0.41 pg m<sup>-2</sup> s<sup>-1</sup>). Overall, net flux in Wang's model is larger than that in Wright's model (mean, 0.5 pg m<sup>-2</sup> s<sup>-1</sup>>0.18 pg m<sup>-2</sup> s<sup>-1</sup>), reflecting that net flux between the two models is mainly affected by F<sub>g</sub>.

Table 4-41. Net flux (pg m<sup>-2</sup> s<sup>-1</sup>) for the two models in the two seasons.

| Season    | Land cover                       | Model          | Minimum | First quartile | Median | Third quartile | Maximum | Mean  |
|-----------|----------------------------------|----------------|---------|----------------|--------|----------------|---------|-------|
|           | evergreen<br>needleleaf          | Wang           | -2.49   | -0.01          | 0.32   | 1.12           | 2.91    | 0.5   |
| gumana on | forest                           | Wright & Zhang | -2.44   | -0.12          | 0.02   | 0.51           | 1.54    | 0.18  |
| summer    | deciduous<br>broadleaf           | Wang           | -2.89   | -0.32          | 0.08   | 0.57           | 2.53    | 0.1   |
|           | forest                           | Wright & Zhang | -1.85   | -0.05          | 0.05   | 0.66           | 2       | 0.29  |
|           | evergreen<br>needleleaf          | Wang           | -1.61   | -0.001         | 0.16   | 0.5            | 1.87    | 0.21  |
| inton     | forest                           | Wright & Zhang | -2.25   | -0.82          | -0.57  | -0.34          | 0.08    | -0.59 |
|           | deciduous<br>broadleaf<br>forest | Wang           | -1.43   | -0.001         | 0.18   | 0.38           | 1.59    | 0.18  |
|           |                                  | Wright & Zhang | -2.04   | -0.65          | -0.49  | -0.32          | -0.004  | -0.49 |

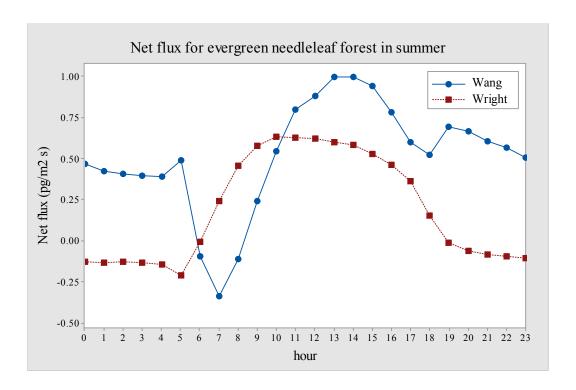



Figure 4-50. Diurnal trend for net flux in the two models for evergreen needleleaf forest in summer.

Castro and Moore (2016) conducted a GEM flux measurements at a site surrounded

by deciduous forests during July 2009 to 6 July 2010. They found that GEM emission flux is larger than GEM deposition flux in summer (mean, 16.8 ng m<sup>-2</sup> h<sup>-1</sup>>15.5 pg m<sup>-2</sup> s<sup>-1</sup>). In winter, GEM emission flux is smaller than GEM deposition flux in summer (mean, 13.9 ng m<sup>-2</sup> h<sup>-1</sup>>15.2 pg m<sup>-2</sup> s<sup>-1</sup>). Their measurements indicated that GEM net flux was emission in summer and deposition in winter.

## b) The difference between the two models and why

As seen in Table 4-42, the difference between the two models ranges from -99874% to 111608% and mean of absolute difference is 882%. The difference in net flux between the two models is mainly caused by  $F_{st}$  and  $F_g$ .  $F_g$  in Wang's model is much larger than that in Wright & Zhang's (mean, 1.27 pg m<sup>-2</sup> s<sup>-1</sup>>0.47 pg m<sup>-2</sup> s<sup>-1</sup>).  $F_{st}$  in Wang's model is smaller than that in Wright & Zhang's model (mean, 0.01 pg m<sup>-2</sup> s<sup>-1</sup><0.41 pg m<sup>-2</sup> s<sup>-1</sup>).

Table 4-42. Difference (%) in net flux for the two models in the two seasons.

| Season | Land cover                     | Minimum | First<br>quartile | Median | Third quartile | Maximum | Mean of<br>absolute<br>difference<br>(%) |
|--------|--------------------------------|---------|-------------------|--------|----------------|---------|------------------------------------------|
| gummar | evergreen<br>needleleaf forest | -99874  | -62               | 70     | 207            | 111608  | 882                                      |
| summer | deciduous<br>broadleaf forest  | -142634 | -83               | 69     | 241            | 313273  | 914                                      |
| winter | evergreen<br>needleleaf forest | -101274 | -411              | -160   | -397           | 285765  | 1698                                     |
| winter | deciduous<br>broadleaf forest  | -502272 | -580              | -263   | -57            | 185056  | 2245                                     |

#### Deciduous broadleaf forest in summer

 $F_d$  is similar in the two models (section 4.4.4).  $F_c$  is negligible for Wang's model and is not considered by Wright & Zhang (section 4.4.3).  $F_g$  in Wang's model is larger than

that in Wright & Zhang's (mean, 0.83 pg m<sup>-2</sup> s<sup>-1</sup>>0.48 pg m<sup>-2</sup> s<sup>-1</sup>), however the difference is smaller compared with that for evergreen needleleaf forest in summer. F<sub>st</sub> in Wang's model is smaller than that in Wright & Zhang's (mean, 0.01 pg m<sup>-2</sup> s<sup>-1</sup><0.59 pg m<sup>-2</sup> s<sup>-1</sup>). As in Table 4-41, net flux for Wang's model is smaller than that for Wright & Zhang's model (mean, 0.1 pg m<sup>-2</sup> s<sup>-1</sup><0.29 pg m<sup>-2</sup> s<sup>-1</sup>). This is because reduction of F<sub>g</sub> is larger in Wang's model. The difference between the two models is similar to that for evergreen needleleaf forest in summer (Table 4-42, 882% vs. 914%).

### **Evergreen needleleaf forest in winter**

 $F_d$  is similar in the two models (section 4.4.4).  $F_c$  is negligible in Wang's model and is not considered by Wright & Zhang (section 4.4.3).  $F_g$  in Wang's model is larger than that in Wright & Zhang's model (mean, 1.04 pg m<sup>-2</sup> s<sup>-1</sup>>0.11 pg m<sup>-2</sup> s<sup>-1</sup>).  $F_{st}$  in Wang's model (mean, 0.01 pg m<sup>-2</sup> s<sup>-1</sup>) is similar to that in Wright & Zhang's model (mean, 0.06 pg m<sup>-2</sup> s<sup>-1</sup>). As seen in Table 4-41, net flux in Wang's model is emission flux (mean, 0.21 pg m<sup>-2</sup> s<sup>-1</sup>) and that in Wright & Zhang's is deposition flux (mean, -0.59 pg m<sup>-2</sup> s<sup>-1</sup>). This is because of large  $F_g$  in Wang's and small  $F_g$  in Wright & Zhang's. The difference between the two models is greater than that for evergreen needleleaf forest in summer (Table 4-42, 882% vs. 1698%).

### Deciduous broadleaf forest in winter

Similar to that for evergreen needleleaf forest in winter, as in Table 4-41, net flux in Wang's model is emission flux (mean, 0.18 pg m<sup>-2</sup> s<sup>-1</sup>) and that in Wright & Zhang's is

deposition flux (mean, -0.49 pg m<sup>-2</sup> s<sup>-1</sup>). This is also caused by large  $F_g$  in Wang's (mean, 0.74 pg m<sup>-2</sup> s<sup>-1</sup>) and small  $F_g$  in Wright & Zhang's (mean, 0.12 pg m<sup>-2</sup> s<sup>-1</sup>). The difference between the two models is larger than that for evergreen needleleaf forest in winter (Table 4-42, 1698% vs. 2245%).

## Summary

For evergreen needleleaf forest in summer, net flux in Wang's model is larger than that in Wright & Zhang's model (mean,  $0.5 \text{ pg m}^{-2} \text{ s}^{-1} > 0.18 \text{ pg m}^{-2} \text{ s}^{-1}$ ) because of large  $F_g$  in Wang's. For deciduous broadleaf forest in summer, net flux in Wang's model is smaller than that in Wright & Zhang's model (mean,  $0.1 \text{ pg m}^{-2} \text{ s}^{-1} < 0.29 \text{ pg m}^{-2} \text{ s}^{-1}$ ) because  $F_g$  in Wang's is smaller. Regardless of land cover in winter, net flux in Wang's is emission flux (mean,  $0.2 \text{ pg m}^{-2} \text{ s}^{-1}$ ), and that in Wright & Zhang's is deposition flux (mean,  $-0.54 \text{ pg m}^{-2} \text{ s}^{-1}$ ). This is due to large  $F_g$  in Wang's and small  $F_g$  in Wright & Zhang's model. The difference in net flux between the two models is mainly affected by  $F_g$ .

For different land cover and the same season, greater difference is for deciduous broadleaf forest (882% vs. 914% in summer, 1698% vs. 2245% in winter). For the same land cover and different seasons, larger difference is in winter (882% vs. 1698% for evergreen needleleaf forest, 914% vs. 2245% for deciduous broadleaf forest). As seen in Table 4-43, both season and land cover are significant in the difference between the two models.

Table 4-43. Analysis of variance (ANOVA) of the difference in net flux between the two models.

| Parameter         | p-value |
|-------------------|---------|
| season            | 0.068   |
| land cover        | 0.007   |
| season*land cover | 0.004   |

#### **CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS**

#### 5.1 Conclusions

In this study, two bidirectional air-surface exchange models for GEM were compared over evergreen needleleaf forest and deciduous broadleaf forest with the two models run under the same meteorological condition in the summer of June 2010—September 2010 and the winter of December 2010—March 2011. Resistances, velocities, GEM compensation point concentrations, and fluxes estimated by the two models were compared and the following conclusions were found.

For evergreen needleleaf forest in summer, the net emission flux in Wang's model was greater than that in Wright & Zhang's model (0.5 pg m<sup>-2</sup>s<sup>-1</sup>>0.18 pg m<sup>-2</sup>s<sup>-1</sup>). For deciduous broadleaf forest in summer, smaller net emission flux was in Wang's model (0.1 pg m<sup>-2</sup>s<sup>-1</sup><0.29 pg m<sup>-2</sup>s<sup>-1</sup>). Regardless of land cover in winter, net flux in Wang's was emission flux (0.21 pg m<sup>-2</sup>s<sup>-1</sup> and 0.18 pg m<sup>-2</sup>s<sup>-1</sup>) while that in Wright & Zhang's was deposition flux (0.59 pg m<sup>-2</sup>s<sup>-1</sup> and 0.49 pg m<sup>-2</sup>s<sup>-1</sup>).

There are five categories for the difference in diurnal trend of output from the two models: (1) a similar diurnal trend and similar value for quasi-laminar resistance, incanopy aerodynamic resistance, stomata emission velocity, soil emission velocity, deposition velocity, and deposition flux; (2) a similar diurnal trend and different values for aerodynamic resistance, stomata resistance, GEM compensation point concentration in soil, and soil emission flux; (3) a similar diurnal trend and small difference at a few hours of the day for stomata resistance and stomata emission flux; (4) different diurnal trends and similar value for soil resistance and net flux; and (5) different diurnal trends and different values for GEM compensation point concentration in stomata.

The magnitude of the differences in resistances, velocities, GEM compensation point concentrations, and fluxes between the two models was quantified. Small differences (<35%) between the two models were found in quasi-laminar resistance, cuticle resistance, and soil resistance. Median differences (≥35% and <100%) were found in aerodynamic resistance, soil emission velocity, deposition velocity, and deposition flux. Large differences (≥100%) between the two models were found in stomata resistance, in-canopy aerodynamic resistance, stomata emission velocity, GEM compensation point concentration in stomata, GEM compensation point concentration in soil, stomata emission flux, soil emission flux, and net flux.

The dominant factors causing the large differences between the two models were identified: the discrepancies in

- (1) stomata resistance and stomata emission velocity were caused by a) stomata resistance constant values for no exchange flux when stomata is closed, b) the setting of diffusivities (water vapor and GEM diffusivities), c) the calculation of visible solar radiation reaching leaves, and d) when the correction factor by water vapor pressure deficit ( $f_D$ ) being less than 0.1 in Wang's model, otherwise this correction factor is the same in the two models;
- (2) in-canopy aerodynamic resistance were caused by the setting of a reference value for in-canopy aerodynamic resistance ( $R_{ac0}$ ) (250 s/m in Wang's model and 60-100 s/m in Wright & Zhang's model);
- (3) GEM compensation point concentrations in stomata and stomata emission flux were because Wang's model considered GOM chemically-reducing to GEM, GOM washing off from leaves, GOM fixing on the leaves, and GEM partitioning between air and

leaves, all of which were not considered in Wright & Zhang's model;

- (4) GEM compensation point concentrations in soil and soil emission flux were because Wang's model considered GOM chemically-reducing to GEM and GEM partitioning between air and soil, all of which were not considered in Wright & Zhang's model;
- (5) net flux were due to soil emission flux. For other components of net flux, deposition fluxes were similar in the two models; stomata emission fluxes were different in the two models, but their values were small; cuticle emission flux was negligible in Wang's model and was zero in Wright & Zhang's model.

The difference in all output, except aerodynamic resistance, between the two models is related to the land cover. The difference in all output, except quasi-laminar resistance, soil resistance, and GEM compensation point concentration in soil, between the two models is associated with the season.

For aerodynamic resistance, quasi-laminar resistance, stomata resistance, in-canopy aerodynamic resistance and GEM compensation point concentration in stomata, Wright & Zhang's model is more appropriate. However, for GEM compensation point concentration in soil, Wang's model is more appropriate. For soil resistance, neither of the two models is appropriate because Wang's model did not considered the effect of frozen soil on GEM exchange and Wright & Zhang's model did not considered the effect of wet soil on GEM exchange. Overall, Wright & Zhang's model is more appropriate for GEM exchange flux, because the estimated net deposition flux in winter is reasonable.

#### 5.2 Recommendations

In this study, the difference between the two models was analyzed for two tall canopies, evergreen needleleaf forest and deciduous broadleaf forest, where both LAI values and seasonal variability of LAI are similar in the two land covers. Future studies could investigate the difference between the two models for a low canopy with a different of LAI, such as crops or grass. In this study, the two models were run under the same meteorological conditions in summer and winter, while future studies could compare the two models in all four seasons. Future studies should compare fluxes estimated by the two models and the measured GEM exchange flux. One of the major limitations in both models is the infinite mercury pool in stomata and soil, which may not be unreasonable. Future studies may want to set the mercury pool in stomata and soil as finite values. In future studies, wet soil may be considered in Wright & Zhang's model and surface temperature below -1 °C may be considered in Wang's model.

#### REFERENCES

Bash, J.O., 2010. Description and initial simulation of a dynamic bidirectional air surface exchange model for mercury in Community Multiscale Air Quality (CMAQ) model. J. Geophys. Res., 115, D06305, doi:10.1029/2009JD012834.

Boening, D.W., 2000. Ecological effects, transport, and fate of mercury: a general review. Chemosphere, 40, 1335–1351.

Castro, M. and Moore, C., 2016. Importance of Gaseous Elemental Mercury Fluxes in Western Maryland. Atmosphere, 7, 110. doi: 10.3390/atmos7090110.

Cole, A.S., Steffen, A., Eckley, C.S., Narayan, J., Pilote, M., Tordon, R., Graydon, J.A., St. Louis, V.L., Xu, X., and Bran-fireun, B.A., 2014. A survey of mercury in air and precipitation across Canada: patterns and trends. Atmosphere, 5, 635–668.

EPA (Environmental Protection Agency), 1997. Mercury Study Report to Congress. EPA -452/R-97, United States. <a href="https://cfpub.epa.gov/ols/catalog/advanced\_brief\_record.cfm?">https://cfpub.epa.gov/ols/catalog/advanced\_brief\_record.cfm?</a> &FIELD1=SUBJECT&INPUT1=Mercury%20Toxicology%20United%20States%2E&T YPE1=EXACT&LOGIC1=AND&COLL=&SORT\_TYPE=MTIC&item\_count=21. Acc essed April, 2019.

EPA (Environmental Protection Agency), 2017. Biomonitoring Mercury. <a href="https://www.epa.gov/sites/production/files/2017">https://www.epa.gov/sites/production/files/2017</a> -09/documents/ace3 mercury updates 081017 508.pdf. Accessed May, 2019.

Erisman, J.W., Pul, V.A., and Wyers, P., 1994. Parametrization of surface resistance for the quantification of atmospheric deposition of acidifying pollutants and ozone. Atmospheric Environment, 28, 2595–2607.

Fuchs, N.A., 1964. The Mechanics of Aerosols. Pergamon, Oxford, New York.

Fu, X.W., Feng, X.B., Sommar, J., and Wang, S.F., 2012. A review of studies on atmospheric mercury in China. Sci. Total Environ., 421–422, 73–81.

Gaffney, J.S. and Marley, N.A., 2014. In-depth review of atmospheric mercury: sources, transformations, and potential sinks. Energy and Emission Control Technologies, 2, 1–21.

Gallagher, M.W., Nemitz, E., Dorsey, J.R., Fowler, D., Sutton, M.A., Flynn, M., and Duyzer, J., 2002. Measurements and parameterizations of small aerosol deposition velocities to grassland, arable crops, and forest: Influence of surface roughness length on deposition. J. Geophys. Res., 107, 4154. doi:10.1029/2001JD000817.

Hicks, B.B., Baldocchi, D.D., Meyers, T.P., Hosker, R.P., Jr., and Matt, D.R, 1987. A preliminary multiple resistance routine for deriving dry deposition velocities from measured quantities. Water, Air, and Soil Pollution, 36, 311–330.

Kerkweg, A., Buchholz, J., Ganzeveld, L., Pozzer, A., Tost, H., and Jöckel, P., 2006. Technical Note: An implementation of the dry removal processes DRY DEPosition and SEDImentation in the Modular Earth Submodel System (MESSy). Atmos. Chem. Phys., 6, 4617–4632.

Lamaud, E., Fontan, J., Lopez, A., and Druilhet, A., 1994. Parametrization of the dry deposition velocity of submicronic aerosol particles. International Conference on Air Pollution – Proceedings, Barcelona, Spain, 27–29 September 1994, 2, 433–440.

Padro, J., 1996. Summary of ozone dry deposition velocity measurements and model estimates over vineyard, cotton, grass and deciduous forest in summer. Atmospheric Environment, 30, 2363–2369.

Peters, K. and Eiden, R., 1992. Modelling the dry deposition velocity of aerosol particles to a spruce forest. Atmospheric Environment, 26, 2555–2564.

Petroff, A. and Zhang, L., 2010. Development and validation of a size-resolved particle dry deposition scheme for application in aerosol transport models. Geosci. Model Dev., 3, 753–769. doi:10.5194/gmd-3-753-2010.

Pirrone, N., Cinnirella, S., Feng, X., Finkelman, R.B., Friedli, H.R., Leaner, J., Mason, R., Mukherjee, A.B., Stracher, G.B., Streets, D.G., and Telmer, K., 2010. Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmos. Chem. Phys., 10, 5951–5964.

Pirrone, N., Hedgecock, I.M., and Forlano L, 2000. Role of the Ambient Aerosol in the Atmospheric Processing of semi-volatile contaminants: A parameterized numerical model (GASPAR). Journal of Geophys. Res., 105, D8, 9773–9790.

Poissant, L., Amyot, M., Pilote, M., and Lean, D., 2000. Mercury water-air exchange over the Upper St. Lawrence River and Lake Ontario. Environ. Sci. Technol., 34, 3069–3078.

Prestbo, E.M. and Gay, D.A., 2009. Wet deposition of mercury in the U.S. and Canada, 1996–2005: Results and analysis of the NADP mercury deposition network (MDN). Atmos. Environ., 43, 4223–4233.

Ruijgrok, W., Davidson, C.I., and Nicholson, K.W., 1995. Dry deposition of particles implications and recommendations for mapping of deposition over Europe. Tellus 47B, 587–601.

Ruijgrok, W., Tieben, H., and Eisinga, P., 1997. The dry deposition of particles to a forest canopy: A comparison of model and experimental results. Atmos. Environ., 31, 399–415.

Schroeder, W.H. and Munthe, J., 1998. Atmospheric mercury – An overview. Atmos. Environ., 32, 809–822.

Schwede, D., Zhang, L., Vet, R., and Lear, G., 2011. An intercomparison of the deposition models used in the CASTNET and CAPMoN networks. Atmos. Environ., 45, 1337–1346.

Slinn, W.G.N., 1982. Predictions for particle deposition to vegetative surfaces. Atmos. Environ., 16, 1785–1794.

UNEP (United Nations Environment Programme), 2013. Global Merucry Assessment, 2013 – Sources, Emissions, Releases, and Environmental Transport. UNEP Division of Technology, Industry and Economics, Chemicals Branch International Environment House.

van Hove, L.W.A., Heeres, P., and Bossen, M.E., 2002. The annual variation in stomatal ammonia compensation point of rye grass (Lolium perenne L.) leaves in an intensively managed grassland. Atmos. Environ., 36, 2965–2977.

Wang, X., Lin, C.-J., and Feng, X., 2014. Sensitivity analysis of an updated bidirectional air-surface exchange model for elemental mercury vapor, Atmos. Chem. Phys., 14, 6273–6287.

Wesely, M.L., 1989. Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models. Atmos. Environ., 23, 1293–1304.

Wesely, M.L., Cook, D.R, Hart, R.L., and Speer, R.E., 1985. Measurements and parameterization of particulate sulfur dry deposition over grass. J. Geophys. Res., 90, 2131–2143.

Wesely, M.L. and Hicks, B.B., 1977. Some factors that affect the deposition rates of sulfur dioxide and similar gases on vegetation. Journal of the Air Pollution Control Association, 27, 1110–1116.

Wesely, M.L. and Hicks, B.B., 2000. A review of the current status of knowledge on dry deposition. Atmos. Environ., 34, 2261–2282.

Wright, L.P. and Zhang, L., 2015. An approach estimating bidirectional air-surface exchange for gaseous elemental mercury at AMNet sites. J. Adv. Model. Earth Syst., 7, 35–49.

Wright, L.P., Zhang, L., and Marsik, F.J., 2016. Overview of mercury dry deposition, litterfall, and throughfall studies. Atmos. Chem. Phys., 16, 13399–13416.

Wu, M., Liu, X., Zhang, L., Wu, C., Lu, Z., Ma, P., Wang, H., Tilmes, S., Mahowald, N., Matsui, H., and Easter, R.C., 2018a. Impacts of aerosol dry deposition on black carbon spatial distributions and radiative effects in the Community Atmosphere Model CAM5. Journal of Advances in Modeling Earth Systems, 10, 1150–1171.

Wu, Z., Schwede, D.B., Vet, R., Walker, J.T., Shaw, M., Staebler, R., and Zhang L., 2018b. Evaluation and intercomparison of five dry deposition algorithms in North America. Journal of Advances in Modeling Earth Systems. Journal of Advances in Modeling Earth Systems, 10, 1571–1586.

Xu, X., Yang, X., Miller, D.R., Helble, J.J., and Carley, R.J., 1999. Formulation of bidirectional atmosphere-surface exchanges of elemental mercury. Atmos. Environ., 33, 4345–4355.

Zhang, L., Brook, J., and Vet, R., 2002a. On Ozone dry deposition With emphasis on non-stomatal uptake and wet canopies. Atmos. Environ., 36, 4787–4799.

Zhang, L., Brook, J.R., and Vet, R., 2003. A revised parameterization for gaseous dry deposition in air-quality models. Atmos. Chem. Phys., 3, 2067–2082.

Zhang, L., Cheng, I., Wu, Z., Harner, T., Schuster, J., Charland, J., Muir, D., and Parnis, J. M. 2015. Dry deposition of polycyclic aromatic compounds to various land covers in the Athabasca oil sands region. Journal of Advances in Modeling Earth Systems, 7, 1339–1350.

Zhang, L., Gong, S., Padro, J., and Barrie, L.A., 2001. A size-segregated particle dry deposition scheme for an atmospheric aerosol module. Atmos. Environ., 35, 549–560.

Zhang, L. and He, Z., 2014. Technical Note: An empirical algorithm estimating dry deposition velocity of fine, coarse and giant particles. Atmos. Chem. Phys., 14, 3729–3737.

Zhang, L., Lyman, S., Mao, H., Lin, C.-J., Gay, D.A., Wang, S., Gustin, M.S., Feng, X., and Wania, F., 2017. A synthesis of research needs for improving the understanding of atmospheric mercury cycling. Atmos. Chem. Phys., 17, 9133–9144.

Zhang, L., Moran, M.D., Makar, P.A., Brook, J.R., and Gong, S.L., 2002b. Modelling gaseous dry deposition in AURAMS: a unified regional air-quality modelling system. Atmos. Environ., 36, 537–560.

Zhang, L., Wang, S., Wu, Q., Wang, F., Lin, C.-J., Zhang, L., Hui, M., Yang, M., Su, H., and Hao, J., 2016a. Mercury transformation and speciation in flue gases from anthropogenic emission sources: a critical review. Atmos. Chem. Phys., 16, 2417–2433.

Zhang, L., Wright, L.P., and Asman, W.A.H., 2010. Bidirectional air-surface exchange of atmospheric ammonia—A review of measurements and a development of a big-leaf model for applications in regional-scale air-quality models. J. Geophys. Res., 115, D20310, doi: 10.1029/2009JD013589.

Zhang, L., Wu, Z., Cheng, I., Wright, L.P., Olson, M.L., Gay, D.A., Risch, M.R., Brooks, S., Castro, M.S., Conley, G.D., Edgerton, E.S., Holsen, T.M., Luke, W., Tordon, R., and Weiss-Penzias, P., 2016b. The Estimated Six-Year Mercury Dry Deposition Across North America. Environ. Sci. Technol., 50, 12864–12873.

#### APPENDICES

# Appendix A: Comparison of output from Matlab to original output from Fortran

Because Fortran software is not available in University of Windsor and Matlab software is available, the original Fortran code of Wright and Zhang (2015) was recompiled as the Matlab code. Therefore, it is necessary to compare output from Matlab to original output from Fortran. The two codes are run with meteorological data of GA40 site under 26 land cover in Zhang et al. (2003) during Jun. 2009-Sep. 2009 and Dec. 2009-Apr. 2010.

The analysis of percentage of errors in net flux is shown in Table A1. The percentage of error is calculated as

$$Error = \frac{|Flux_{Matlab} - Flux_{Fortran}|}{|Flux_{Fortran}|} *100$$
 (A1)

There are three hours with errors larger than 1%. Then the net fluxes of three hours are listed in Table A2 for checking. Although the errors of the hours are larger than 1%, it can be seen that these errors are all caused by round-off. Compared with mean net flux of -6.43 pg m-2s-1, these three errors are small enough. Apart from these three errors, the largest error is 0.325% and is acceptable.

From Figure A1 and Figure A2, the results from Matlab are acceptable and the Matlab code can be used as a replacement of original Fortran code to simulate GEM bidirectional exchange flux. In order to analyze the distribution of errors more clearly, the errors are scaled to a new set of errors without three errors larger than 1%. From Figure A1, almost all the errors concentrate around zero. Then, the frequency was scaled to 5000 for better identification the distribution of errors near zero, as in Figure A2.

Table A1. Analysis of errors in Hg net flux calculated by Matlab.

| Error in Hg net fluxes from Fortran and Matlab | Total number of<br>Hg fluxes | Total number of errors exceeding the threshold | Percentage (%) |
|------------------------------------------------|------------------------------|------------------------------------------------|----------------|
| >1%                                            |                              | 3                                              | 0.004          |
| >0.1%                                          |                              | 15                                             | 0.018          |
| >0.01%                                         | 84994                        | 441                                            | 0.52           |
| >0.001%                                        |                              | 6054                                           | 7.12           |
| >0.0001%                                       |                              | 8862                                           | 10.4           |

Table A2. Data with error>1%

| Values from Fortran | Values from Matlab | Error (%) |
|---------------------|--------------------|-----------|
| 0.00087             | 0.00088            | 1.15      |
| 0.00030             | 0.00029            | 3.33      |
| -0.00062            | -0.00063           | 1.61      |

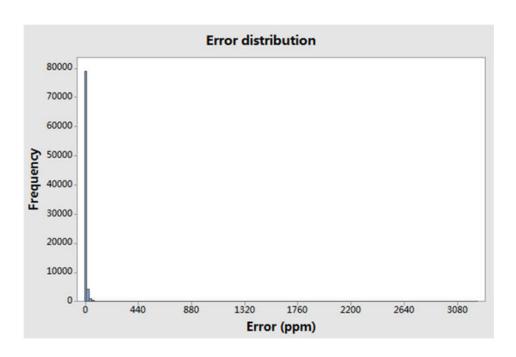



Figure A1. Distribution of errors in ppm.

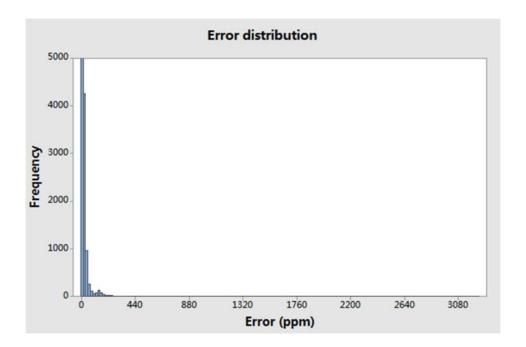



Figure A2. Distribution of errors in ppm with scaled frequency.

# Appendix B: Flow chart for the two models

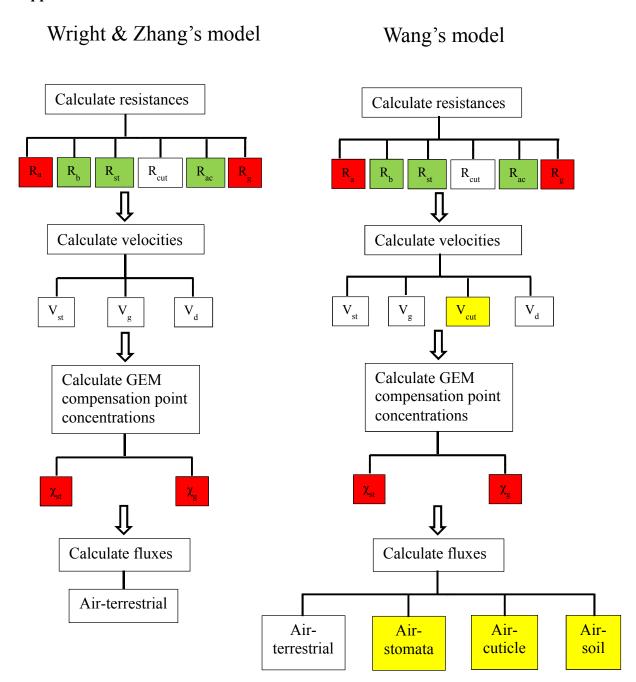



Figure B. Flow chart for the two models.

<sup>\* :</sup> equations were different in the two models

: equations were the same and some parameters were different in the two models

: considered by only one model

# Appendix C: Parameterization of the two models

Table C1. Parameterization of resistances

| Resistances                                         | Wright & Zhang' model                                                                                                                                  | Wang's model            |  |
|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--|
| aerodynamic resistance (R <sub>a</sub> )            | $R_a = \frac{\ln\left(\frac{Z_R}{Z_0}\right) - \Psi_H}{ku_*}$                                                                                          | $R_a = \frac{U}{u_*^2}$ |  |
| qasi-laminar resistance (R <sub>b</sub> )           | $R_b = \frac{2}{ku*} \left(\frac{VI}{DI}\right)^{2/3}$                                                                                                 |                         |  |
| cuticle resistance (R <sub>cut</sub> )              | $R_{\text{cutd}} = \frac{R_{\text{cutd0}}}{e^{0.03\text{RH}}L\text{AI}^{1/4}u_{*}}$ $R_{\text{cutw}} = \frac{R_{\text{cutw0}}}{L\text{AI}^{1/2}u_{*}}$ |                         |  |
| stomata resistance (R <sub>st</sub> )               | $R_{st} = \frac{1}{G_{st}(PAR) f_T f_D f_{\psi}} \frac{DV}{DI}$ where $f_D = 1 - b_{vpd}D$                                                             |                         |  |
| in-canopy aerodynamic resistance (R <sub>ac</sub> ) | $R_{ac} = \frac{R_{ac0} LAI^{\frac{1}{4}}}{u_*^2}$                                                                                                     |                         |  |
| soil resistance (R <sub>g</sub> )                   | $\frac{1}{R_g} = \frac{\alpha}{R_g(SO_2)} + \frac{\beta}{R_g(O_3)}$                                                                                    |                         |  |

\*Note.  $Z_R$  is reference height;  $Z_0$  is roughness height;  $\Psi_H$  is stability correction factor; k is a constant of 0.4; U is wind speed;  $u_*$  is friction velocity; VI is air diffusivity; DI is GEM diffusivity;  $R_{cutd}$  is dry cuticle resistance;  $R_{cutw}$  is wet cuticle resistance;  $R_{cutd0}$  is reference value for  $R_{cutd}$ ; RH is relative humidity;  $R_{cutw0}$  is reference value for  $R_{cutw}$ ;  $G_{st}(PAR)$  is the unstressed canopy stomata conductance;  $f_T$  is correction factor for air temperature;  $f_D$  is correction factor for water vapor pressure deficit of air;  $f_{\psi}$  is correction factor for water stress of plant; DV is water vapor diffusivity;  $b_{vpd}$  is empirical water vapour pressure deficit constant; D is vapor pressure deficit;  $R_{ac0}$  is reference value of  $R_{ac}$ ;  $\alpha$  is a constant of zero;  $\beta$  is a constant of 0.1;  $R_g(SO_2)$  is  $SO_2$  soil resistance; and  $R_g(O_3)$  is  $O_3$  soil resistance.

Table C2. Parameterization of velocities

| Velocities                                          | Equations                                                                                                                                                                                                                                                        |
|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| stomata<br>emission<br>velocity (V <sub>st</sub> )  | $V_{st} = \frac{1}{R_{st}} \frac{1}{R_a + R_b} \left( \frac{1}{R_a + R_b} + \frac{1}{R_{st}} + \frac{1}{R_{cut}} + \frac{1}{R_{ac} + R_g} \right)^{-1} = \frac{1}{R_{st}} \frac{1}{R_a + R_b} R_t$                                                               |
| soil emission velocity (V <sub>g</sub> )            | $V_g = \frac{1}{R_{ac} + R_g} \frac{1}{R_a + R_b} \left( \frac{1}{R_a + R_b} + \frac{1}{R_{st}} + \frac{1}{R_{cut}} + \frac{1}{R_{ac} + R_g} \right)^{-1} = \frac{1}{R_{ac} + R_g} \frac{1}{R_a + R_b} R_t$                                                      |
| cuticle<br>emission<br>velocity (V <sub>cut</sub> ) | $V_{cut} = \frac{1}{R_{cut}} \frac{1}{R_a + R_b} \left( \frac{1}{R_a + R_b} + \frac{1}{R_{st}} + \frac{1}{R_{cut}} + \frac{1}{R_{ac} + R_g} \right)^{-1} = \frac{1}{R_{cut}} \frac{1}{R_a + R_b} R_t$                                                            |
| deposition velocity (V <sub>d</sub> )               | $V_{d} = \frac{-1}{R_{a} + R_{b}} + \left(\frac{1}{R_{a} + R_{b}}\right)^{2} \left(\frac{1}{R_{a} + R_{b}} + \frac{1}{R_{st}} + \frac{1}{R_{cut}} + \frac{1}{R_{ac} + R_{g}}\right)^{-1} = \frac{1}{R_{a} + R_{b}} \left(\frac{R_{t}}{R_{a} + R_{b}} - 1\right)$ |

\*Note. 
$$R_t = \left(\frac{1}{R_a + R_b} + \frac{1}{R_{st}} + \frac{1}{R_{cut}} + \frac{1}{R_{ac} + R_g}\right)^{-1}$$

The equations are the same in the two models.

Table C3. Parameterization of GEM compensation point concentrations

| GEM compensation point concentrations | Wright & Zhang' model                                                                                                             | Wang's model                                                                                                                                                                                                                      |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| in stomata $(\chi_{st})$              | $\chi_{st} = \frac{8.9803 \times 10^9}{\frac{T}{T}} \times \Gamma_{st}$ $\times \exp\left(-\frac{8353.8}{T}\right) \times 8.2041$ | $\begin{split} \chi_{st} &= \frac{[Hg_{s}^{0}]}{LAP} \\ [Hg_{s}^{0}] &= (1\text{-}f_{fixed})([Hg]\text{-}[Hg_{c}^{II+}]) \\ \text{where } [Hg_{c}^{II+}] &= \frac{[Hg_{w}^{II+}]}{1\text{-}f_{rxn}\text{-}f_{fixed}} \end{split}$ |
| on cuticle $(\chi_c)$                 | _                                                                                                                                 | $\chi_{c} = \frac{[Hg_{c}^{0}]}{LAP}$ $[Hg_{c}^{0}] = (f_{rxn} - f_{fixed})[Hg_{c}^{II+}]$ where $[Hg_{c}^{II+}] = \frac{[Hg_{w}^{II+}]}{1 - f_{rxn} - f_{fixed}}$                                                                |
| in the soil $(\chi_g)$                | $\chi_{g} = \frac{8.9803 \times 10^{9}}{T_{s}} \times \Gamma_{g}$ $\times \exp\left(-\frac{8353.8}{T_{s}}\right) \times 8.2041$   | $\chi_g = \frac{[Hg_g^0] H}{f_{oc} K_{oc}}$ where $[Hg_g^0] = f_{rxn}[Hg_g^{II+}]$                                                                                                                                                |

\*Note. T is ambient temperature;  $\Gamma_{st}$  is emission potential of stomata;  $[Hg_s^0]$  is dissolved elemental mercury in stomata;  $f_{fixed}$  is the fraction of GOM fixed into tissue; [Hg] is total gaseous mercury depositing on foliage;  $[Hg_c^{II+}]$  is dry deposited GOM loading on cuticle;  $[Hg_w^{II+}]$  is GOM concentration washed-off from leaf;  $f_{rxn}$  is the fraction of GOM potentially photoreduced to GEM;  $[Hg_c^0]$  is GEM bound to foliar cuticle surface; LAP is leaf–air partitioning coefficient for GEM between leaves and air;  $\Gamma_g$  is emission potential of soil;  $T_s$  is surface temperature;  $[Hg_g^0]$  is GEM bound to organic matter; H is Henry's law constant in soil condition;  $f_{oc}$  is the fraction of organic carbon in topsoil (0-5cm);  $K_{oc}$  is soil organic carbon to water partitioning coefficient;  $[Hg_g^{II+}]$  is GOM content in the soil.

# Appendix D: General statistics of input data

Table D1. General statistic of input meteorology data before merging.

| Input parameters (unit)                 | Seasons | Range      | Mean | Median |
|-----------------------------------------|---------|------------|------|--------|
| surface air temperature (° C)           | summer  | 10.1-37    | 26.5 | 26.1   |
| surface an temperature (*C)             | winter  | -11.5-25.8 | 6.1  | 5.7    |
| ambient temperature (°C)                | summer  | 12.6-35.5  | 26.8 | 26.9   |
| amoient temperature (C)                 | winter  | -11.4-25   | 6.9  | 6.4    |
| relative humidity (%)                   | summer  | 14.9-100   | 67.9 | 68.1   |
| Telative numbers (70)                   | winter  | 22.2-99.9  | 68.7 | 69.6   |
| soil volumetric water content           | summer  | 0.11-0.44  | 0.19 | 0.17   |
| $(m^3/m^3)$                             | winter  | 0.12-0.48  | 0.2  | 0.18   |
| wind speed (evergreen needleleaf        | summer  | 0.26-4.8   | 1.74 | 1.74   |
| forest, m/s)                            | winter  | 0.28-7.17  | 2.68 | 2.61   |
| wind speed (deciduous broadleaf         | summer  | 0.26-4.78  | 1.72 | 1.72   |
| forest, m/s)                            | winter  | 0.29-7.87  | 2.93 | 2.85   |
| u* (evergreen needleleaf forest, m/s)   | summer  | 0.001-0.8  | 0.27 | 0.28   |
| u* (evergreen needleicar forest, fil/s) | winter  | 0.001-1.19 | 0.42 | 0.42   |
| u* (deciduous broadleaf forest, m/s)    | summer  | 0.001-0.8  | 0.27 | 0.28   |
| u* (deciduous broadical forest, fil/s)  | winter  | 0.001-1    | 0.35 | 0.35   |
| LAI (evergreen needleleaf forest)       | summer  | 4.54-5.52  | 5.05 | 5.14   |
| LAI (evergreen needicical forest)       | winter  | 0.74-2.23  | 1.01 | 0.85   |
| LAI (deciduous broadleaf forest)        | summer  | 4.64-5.75  | 5.3  | 5.34   |
| LAI (ucciduous vivauicai iviesi)        | winter  | 0.6-1      | 0.72 | 0.67   |
| barometric pressure (mbar)              | summer  | 970-990    | 981  | 970    |
| barometre pressure (moar)               | winter  | 962-998    | 984  | 984    |
|                                         |         |            | 1    |        |

| solar radiation (W/m <sup>2</sup> ) | summer | 0-867  | 217  | 62   |
|-------------------------------------|--------|--------|------|------|
|                                     | winter | 0-781  | 120  | 0    |
| precipitation (mm/hour)             | summer | 0-57   | 3    | 0    |
|                                     | winter | 0-46   | 2    | 0    |
| snow depth (cm)                     | summer | 0      | 0    | 0    |
|                                     | winter | 0-16.6 | 0.69 | 0    |
| fraction of cloud (fraction)        | summer | 0-1    | 0.3  | 0.2  |
|                                     | winter | 0-1    | 0.36 | 0.14 |
| cosine value of zenith angle        | summer | 0-0.98 | 0.33 | 0.18 |
| (dimensionless)                     | winter | 0-0.86 | 0.18 | 0    |

Table D2. General statistic of input meteorology data after merging.

| Input parameters (unit)               | Seasons | Range      | Mean  | Median |
|---------------------------------------|---------|------------|-------|--------|
| surface air temperature (°C)          | summer  | 10.1-37    | 26.3  | 25.9   |
| Surface an temperature (C)            | winter  | -11.5-25.3 | 5.1   | 4.3    |
| ambient temperature (°C)              | summer  | 10.7-36.6  | 26.3  | 26     |
| amorem temperature ( c)               | winter  | -11.5-24.9 | 5.6   | 4.4    |
| relative humidity (%)                 | summer  | 14.9-1     | 68.8  | 69.5   |
| Total ve mannatory (70)               | winter  | 23.2-99.9  | 68.9  | 69.9   |
| soil volumetric water content         | summer  | 0.11-0.44  | 0.2   | 0.17   |
| $(m^3/m^3)$                           | winter  | 0.12-0.44  | 0.2   | 0.17   |
| wind speed (evergreen needleleaf      | summer  | 0.26-4.8   | 1.72  | 1.71   |
| forest, m/s)                          | winter  | 0.28-7.04  | 2.68  | 2.62   |
| wind speed (deciduous broadleaf       | summer  | 0.26-4.78  | 1.7   | 1.69   |
| forest, m/s)                          | winter  | 0.29-7.74  | 2.93  | 2.86   |
| u* (evergreen needleleaf forest, m/s) | summer  | 0.001-0.8  | 0.27  | 0.27   |
| a (evergreen necessian rotess, mas)   | winter  | 0.001-1.17 | 0.42  | 0.42   |
| u* (deciduous broadleaf forest, m/s)  | summer  | 0.001-0.8  | 0.27  | 0.27   |
| a (accidated ciculated forest, in s)  | winter  | 0.001-0.98 | 0.35  | 0.35   |
| LAI (evergreen needleleaf forest)     | summer  | 4.54-5.52  | 5.05  | 5.14   |
| En (Cycigicon neculcidar 101656)      | winter  | 0.75-1.86  | 0.93  | 0.84   |
| LAI (deciduous broadleaf forest)      | summer  | 4.64-5.75  | 5.3   | 5.34   |
| (decidations of outside for forth     | winter  | 0.6-0.95   | 0.7   | 0.66   |
| barometric pressure (mbar)            | summer  | 970-990    | 981   | 982    |
| outomouto prossure (mout)             | winter  | 963-998    | 984   | 985    |
| solar radiation (W/m <sup>2</sup> )   | summer  | 0-866.9    | 213.4 | 40.1   |

|                                         | winter | 0-751.3 | 115.9 | 0    |
|-----------------------------------------|--------|---------|-------|------|
| precipitation (mm/hour)                 | summer | 0-57    | 3     | 0    |
| r · · · · · · · · · · · · · · · · · · · | winter | 0-39    | 2     | 0    |
| snow depth (cm)                         | summer | 0       | 0     | 0    |
|                                         | winter | 0-16.6  | 0.78  | 0    |
| fraction of cloud (fraction)            | summer | 0-1     | 0.29  | 0.15 |
|                                         | winter | 0-1     | 0.35  | 0.12 |
| cosine value of zenith angle            | summer | 0-0.98  | 0.32  | 0.11 |
| (dimensionless)                         | winter | 0-0.83  | 0.17  | 0    |

# Appendix E: Comparison of the two models.

Table E1. Comparison of diurnal trends in the two models.

| variables        | evergreen<br>needleleaf forest<br>(summer)                         | evergreen<br>needleleaf forest<br>(winter)       | deciduous<br>broadleaf forest<br>(summer)                          | deciduous<br>broadleaf forest<br>(winter)        |  |  |
|------------------|--------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------|--|--|
| R <sub>a</sub>   | S                                                                  | similar diurnal trend                            | and different value                                                | es                                               |  |  |
| R <sub>b</sub>   |                                                                    | similar diurnal tren                             | d and similar value                                                |                                                  |  |  |
| R <sub>st</sub>  | similar diurnal<br>trend and small<br>difference at a<br>few hours | similar diurnal<br>trend and<br>different values | similar diurnal<br>trend and small<br>difference at a<br>few hours | similar diurnal<br>trend and<br>different values |  |  |
| R <sub>cut</sub> |                                                                    | the same in the two models                       |                                                                    |                                                  |  |  |
| R <sub>ac</sub>  |                                                                    | similar diurnal trend and similar value          |                                                                    |                                                  |  |  |
| R <sub>g</sub>   | different diurnal trends and similar value                         |                                                  |                                                                    |                                                  |  |  |
| V <sub>st</sub>  | similar diurnal trend and similar value                            |                                                  |                                                                    |                                                  |  |  |
| $V_{g}$          | similar diurnal trend and similar value                            |                                                  |                                                                    |                                                  |  |  |
| $V_d$            | similar diurnal trend and similar value                            |                                                  |                                                                    |                                                  |  |  |
| χ <sub>st</sub>  | different diurnal trends and different values                      |                                                  |                                                                    |                                                  |  |  |
| χg               | similar diurnal trend and different values                         |                                                  |                                                                    |                                                  |  |  |
| $F_{st}$         | similar diurnal trend and small difference at a few hours          |                                                  |                                                                    |                                                  |  |  |
| F <sub>g</sub>   | similar diurnal trend and different values                         |                                                  |                                                                    |                                                  |  |  |
| F <sub>d</sub>   | similar diurnal trend and similar value                            |                                                  |                                                                    |                                                  |  |  |
| net flux         | different diurnal trends and similar value                         |                                                  |                                                                    |                                                  |  |  |

Table E2. Percentage of difference between the two models.

| variables        | evergreen<br>needleleaf forest<br>(summer) | evergreen<br>needleleaf forest<br>(winter) | deciduous<br>broadleaf forest<br>(summer) | deciduous<br>broadleaf forest<br>(winter) |
|------------------|--------------------------------------------|--------------------------------------------|-------------------------------------------|-------------------------------------------|
| R <sub>a</sub>   | 36                                         | 32                                         | 36                                        | 32                                        |
| R <sub>b</sub>   | 15                                         | 19                                         | 15                                        | 19                                        |
| R <sub>st</sub>  | 98                                         | 108                                        | 104                                       | 113                                       |
| R <sub>cut</sub> | 0                                          | 0                                          | 0                                         | 0                                         |
| R <sub>ac</sub>  | 0                                          | 0                                          | 89                                        | 122                                       |
| R <sub>g</sub>   | 28                                         | 32                                         | 28                                        | 32                                        |
| $V_{st}$         | 98                                         | 108                                        | 104                                       | 113                                       |
| $V_{g}$          | 16                                         | 24                                         | 67                                        | 64                                        |
| $V_d$            | 15                                         | 20                                         | 37                                        | 40                                        |
| χ <sub>st</sub>  | 189                                        | 110                                        | 187                                       | 93                                        |
| χg               | 110                                        | 174                                        | 110                                       | 174                                       |
| $F_{st}$         | 190                                        | 148                                        | 190                                       | 142                                       |
| F <sub>g</sub>   | 98                                         | 168                                        | 53                                        | 152                                       |
| F <sub>d</sub>   | 15                                         | 20                                         | 36                                        | 41                                        |
| net flux         | 882                                        | 1698                                       | 914                                       | 2245                                      |

Table E3. P-values for land cover, season, and interaction in the difference between the two models.

| Variables       | Season | Land use | Season*LUC |
|-----------------|--------|----------|------------|
| R <sub>a</sub>  | 0.926  | 0.052    | 0.026      |
| R <sub>b</sub>  | 0.001  | 0.99     | 0.99       |
| R <sub>st</sub> | 0.001  | 0.001    | 0.002      |
| R <sub>ac</sub> | 0.001  | 0.001    | 0.001      |
| $R_{g}$         | 0.001  | 0.99     | 0.99       |
| $V_{st}$        | 0.001  | 0.001    | 0.002      |
| $V_{g}$         | 0.001  | 0.001    | 0.001      |
| $V_d$           | 0.001  | 0.001    | 0.001      |
| Χst             | 0.001  | 0.001    | 0.001      |
| χg              | 0.001  | 0.99     | 0.99       |
| F <sub>st</sub> | 0.001  | 0.001    | 0.097      |
| F <sub>g</sub>  | 0.001  | 0.001    | 0.001      |
| F <sub>d</sub>  | 0.001  | 0.001    | 0.001      |
| net flux        | 0.068  | 0.007    | 0.004      |

Table E4. Which model is better.

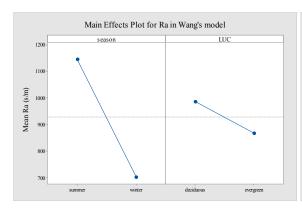
| variables        | which model is better                           | reasons                                                                                                                                                                                                                                                                                                    |
|------------------|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| variables        | Willest filoder is better                       |                                                                                                                                                                                                                                                                                                            |
| R <sub>a</sub>   | Wright & Zhang                                  | <ul> <li>consider both mechanical and thermal turbulence</li> <li>the cap prevent extreme large values</li> </ul>                                                                                                                                                                                          |
| R <sub>b</sub>   | Wright & Zhang                                  | • consider the effect of ambient temperature on air diffusivity and GEM diffusivity                                                                                                                                                                                                                        |
| R <sub>st</sub>  | Wright & Zhang                                  | Wang • input barometric pressure $ \label{eq:washing}  \begin{tabular}{ll} \hline & wright \& Zhang \\ • calculate visible solar radiation from input solar radiation \\ • correction factor for water vapor pressure deficit of air (f_D) \ge 0.1 • the dependence of diffusivity on ambient temperature$ |
| R <sub>ac</sub>  | Wright & Zhang                                  | consider canopy growth                                                                                                                                                                                                                                                                                     |
| $R_{\mathrm{g}}$ | neither (add wet soil in Wright & Zhang' model) | Wang • consider wet soil  Wright & Zhang • consider surface temperature below -1 <sup>0</sup> C                                                                                                                                                                                                            |
| χst              | Wright & Zhang                                  | diurnal trend with high values during daytime                                                                                                                                                                                                                                                              |
| χ <sub>g</sub>   | Wang                                            | Wright & Zhang • zero when soil is covered by snow  Wang • photo-reduced from GOM • related with organic carbon content in soil and Henry's low                                                                                                                                                            |

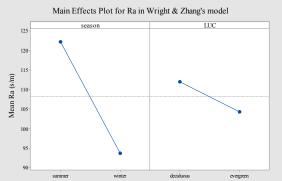
## Appendix F: ANOVA analysis for output from the two models

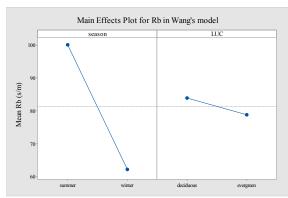
Table F1. ANOVA results for resistance in the two models.

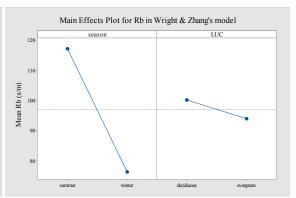
| Resistances      | Parameters     | p-values or R-sq<br>values in Wang's | p-values or R-sq<br>values in Wright & |
|------------------|----------------|--------------------------------------|----------------------------------------|
| Resistances      | 1 arameters    | model                                | Zhang's model                          |
|                  | Season         | 0.025                                | 0.001                                  |
|                  | LUC            | 0.539                                | 0.097                                  |
| $R_a$            | Season*LUC     | 0.414                                | 0.051                                  |
| T a              | R-sq (%)       | 0.05                                 | 0.38                                   |
|                  | R-sq (adj) (%) | 0.03                                 | 0.36                                   |
|                  | Season         | 0.001                                | 0.001                                  |
|                  | LUC            | 0.447                                | 0.432                                  |
| $R_{b}$          | Season*LUC     | 0.334                                | 0.323                                  |
| 0                | R-sq (%)       | 0.29                                 | 0.24                                   |
|                  | R-sq (adj) (%) | 0.27                                 | 0.21                                   |
|                  | Season         | 0.001                                | 0.001                                  |
|                  | LUC            | 0.001                                | 0.03                                   |
| R <sub>st</sub>  | Season*LUC     | 0.321                                | 0.004                                  |
| 51               | R-sq (%)       | 1.34                                 | 2.97                                   |
|                  | R-sq (adj) (%) | 1.31                                 | 2.94                                   |
|                  | Season         | 0.001                                | 0.001                                  |
|                  | LUC            | 0.001                                | 0.001                                  |
| R <sub>cut</sub> | Season*LUC     | 0.001                                | 0.001                                  |
|                  | R-sq (%)       | 1.49                                 | 1.48                                   |
|                  | R-sq (adj) (%) | 1.46                                 | 1.46                                   |
|                  | Season         | 0.001                                | 0.001                                  |
|                  | LUC            | 0.001                                | 0.766                                  |
| R <sub>ac</sub>  | Season*LUC     | 0.169                                | 0.994                                  |
|                  | R-sq (%)       | 0.23                                 | 0.2                                    |
|                  | R-sq (adj) (%) | 0.21                                 | 0.17                                   |
|                  | Season         | 0.264                                | 0.001                                  |
|                  | LUC            | 0.99                                 | 0.99                                   |
| $R_{g}$          | Season*LUC     | 0.99                                 | 0.99                                   |
|                  | R-sq (%)       | 0.01                                 | 9.99                                   |
|                  | R-sq (adj) (%) | 0                                    | 9.96                                   |

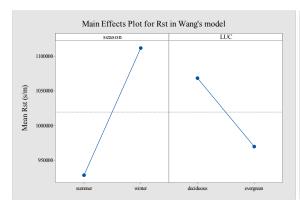
Table F2. ANOVA results for velocity in the two models.

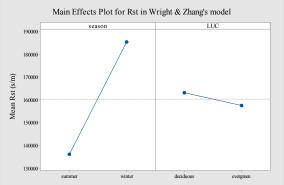

| Velocities       | Parameters     | p-values or R-sq<br>values in Wang's<br>model | p-values or R-sq<br>values in Wright &<br>Zhang's model |  |
|------------------|----------------|-----------------------------------------------|---------------------------------------------------------|--|
|                  | Season         | 0.001                                         | 0.001                                                   |  |
|                  | LUC            | 0.001                                         | 0.001                                                   |  |
| $V_{st}$         | Season*LUC     | 0.001                                         | 0.001                                                   |  |
|                  | R-sq (%)       | 4.12                                          | 9.73                                                    |  |
|                  | R-sq (adj) (%) | 4.09                                          | 9.71                                                    |  |
|                  | Season         | 0.001                                         |                                                         |  |
|                  | LUC            | 0.001                                         |                                                         |  |
| V <sub>cut</sub> | Season*LUC     | 0.073                                         | N.A.                                                    |  |
|                  | R-sq (%)       | 13.37                                         |                                                         |  |
|                  | R-sq (adj) (%) | 13.35                                         |                                                         |  |
|                  | Season         | 0.001                                         | 0.001                                                   |  |
|                  | LUC            | 0.001                                         | 0.001                                                   |  |
| $V_{g}$          | Season*LUC     | 0.001                                         | 0.103                                                   |  |
|                  | R-sq (%)       | 17.06                                         | 12.27                                                   |  |
|                  | R-sq (adj) (%) | 17.03                                         | 12.25                                                   |  |
|                  | Season         | 0.001                                         | 0.001                                                   |  |
|                  | LUC            | 0.001                                         | 0.286                                                   |  |
| $V_d$            | Season*LUC     | 0.001                                         | 0.001                                                   |  |
|                  | R-sq (%)       | 3.58                                          | 2.61                                                    |  |
|                  | R-sq (adj) (%) | 3.56                                          | 2.58                                                    |  |

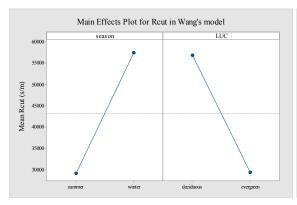

Table F3. ANOVA results for GEM compensation point concentration in the two models.

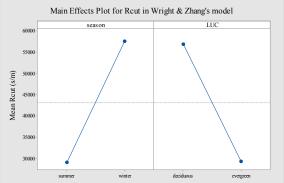

| GEM compensation     | Parameters     | p-values or R-sq | p-values or R-sq   |  |
|----------------------|----------------|------------------|--------------------|--|
| point concentrations |                | values in Wang's | values in Wright & |  |
|                      |                | model            | Zhang's model      |  |
|                      | Season         | 0.001            | 0.001              |  |
|                      | LUC            | 0.001            | 0.001              |  |
| $\chi_{\mathrm{st}}$ | Season*LUC     | 0.001            | 0.001              |  |
|                      | R-sq (%)       | 29.91            | 66.67              |  |
|                      | R-sq (adj) (%) | 29.88            | 66.66              |  |
|                      | Season         | 0.001            |                    |  |
|                      | LUC            | 0.054            |                    |  |
| χ <sub>cut</sub>     | Season*LUC     | 0.054            | N.A.               |  |
|                      | R-sq (%)       | 8.89             |                    |  |
|                      | R-sq (adj) (%) | 8.87             |                    |  |
|                      | Season         | 0.001            | 0.001              |  |
|                      | LUC            | 0.99             | 0.99               |  |
| $\chi_{ m g}$        | Season*LUC     | 0.99             | 0.99               |  |
|                      | R-sq (%)       | 74.37            | 63.94              |  |
|                      | R-sq (adj) (%) | 74.36            | 63.93              |  |


Table F4. ANOVA results for flux in the two models.


| Fluxes              | Parameters     | p-values or R-sq<br>values in Wang's<br>model | p-values or R-sq<br>values in Wright &<br>Zhang's model |
|---------------------|----------------|-----------------------------------------------|---------------------------------------------------------|
|                     | Season         | 0.001                                         | 0.001                                                   |
|                     | LUC            | 0.001                                         | 0.001                                                   |
| $F_{st}$            | Season*LUC     | 0.001                                         | 0.001                                                   |
|                     | R-sq (%)       | 1.01                                          | 22.92                                                   |
|                     | R-sq (adj) (%) | 0.98                                          | 22.9                                                    |
|                     | Season         | 0.001                                         |                                                         |
|                     | LUC            | 0.001                                         |                                                         |
| F <sub>cut</sub>    | Season*LUC     | 0.001                                         | N.A.                                                    |
|                     | R-sq (%)       | 8.1                                           |                                                         |
|                     | R-sq (adj) (%) | 8.07                                          |                                                         |
|                     | Season         | 0.001                                         | 0.001                                                   |
|                     | LUC            | 0.001                                         | 0.297                                                   |
| $F_{g}$             | Season*LUC     | 0.001                                         | 0.718                                                   |
|                     | R-sq (%)       | 8.37                                          | 30.02                                                   |
|                     | R-sq (adj) (%) | 8.34                                          | 30                                                      |
|                     | Season         | 0.001                                         | 0.001                                                   |
|                     | LUC            | 0.001                                         | 0.132                                                   |
| $F_d$               | Season*LUC     | 0.001                                         | 0.001                                                   |
|                     | R-sq (%)       | 2.59                                          | 1.09                                                    |
|                     | R-sq (adj) (%) | 2.56                                          | 1.06                                                    |
|                     | Season         | 0.001                                         | 0.001                                                   |
|                     | LUC            | 0.001                                         | 0.001                                                   |
| total emission flux | Season*LUC     | 0.001                                         | 0.001                                                   |
|                     | R-sq (%)       | 8.3                                           | 31.57                                                   |
|                     | R-sq (adj) (%) | 8.27                                          | 31.55                                                   |
|                     | Season         | 0.001                                         | 0.001                                                   |
|                     | LUC            | 0.001                                         | 0.001                                                   |
| net flux            | Season*LUC     | 0.001                                         | 0.78                                                    |
|                     | R-sq (%)       | 5.09                                          | 45.46                                                   |
|                     | R-sq (adj) (%) | 5.06                                          | 45.44                                                   |













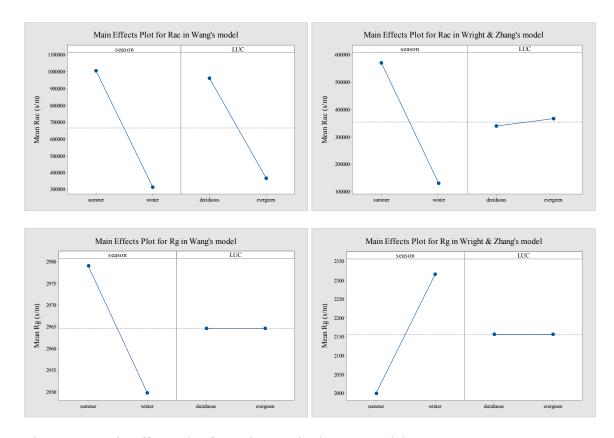




Figure F1. Main effects plot for resistance in the two models.

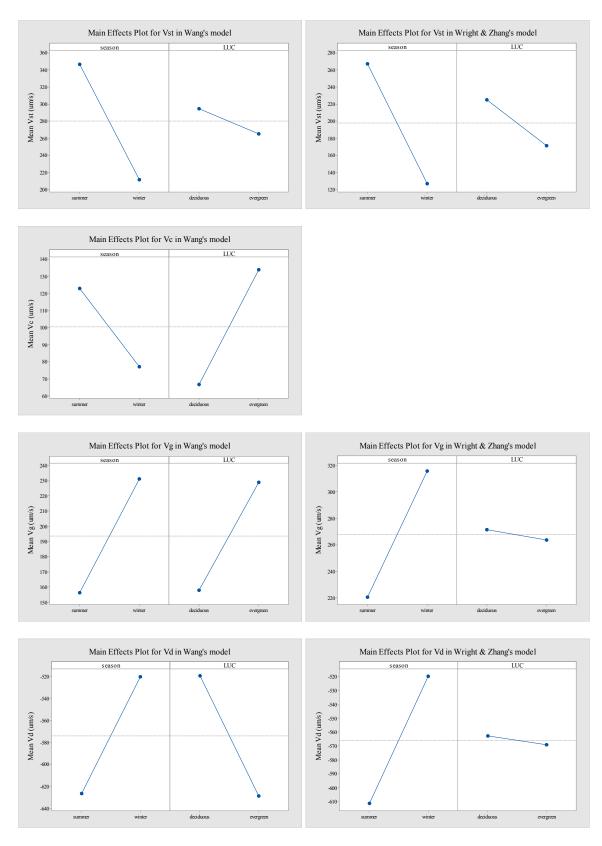
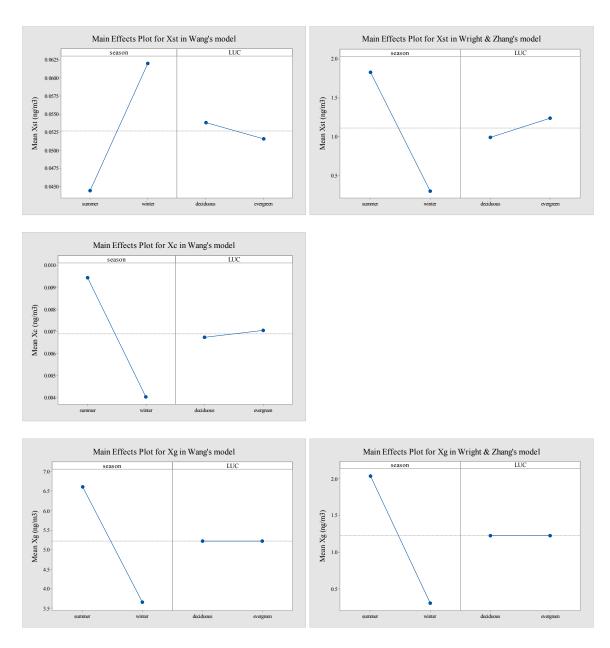
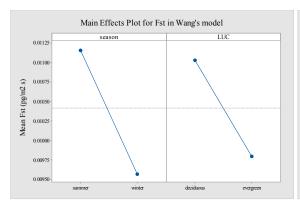
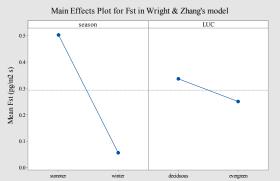
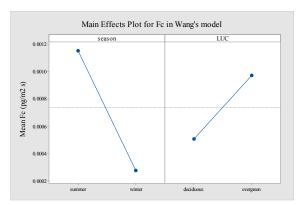
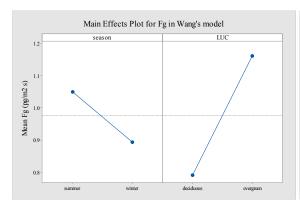
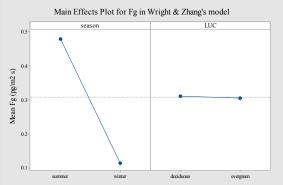
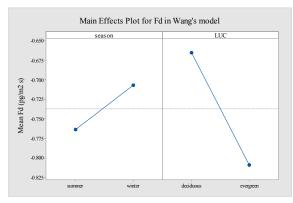
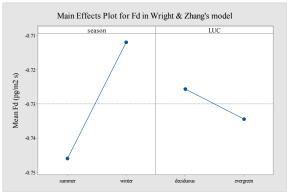



Figure F2. Main effects plot for velocity in the two models.



Figure F3. Main effects plot for GEM compensation point concentration in the two models.













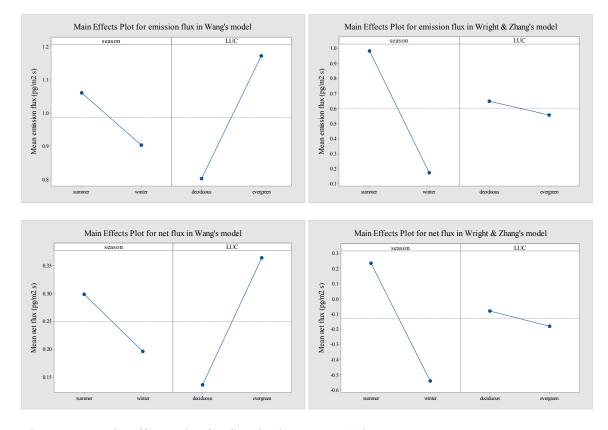
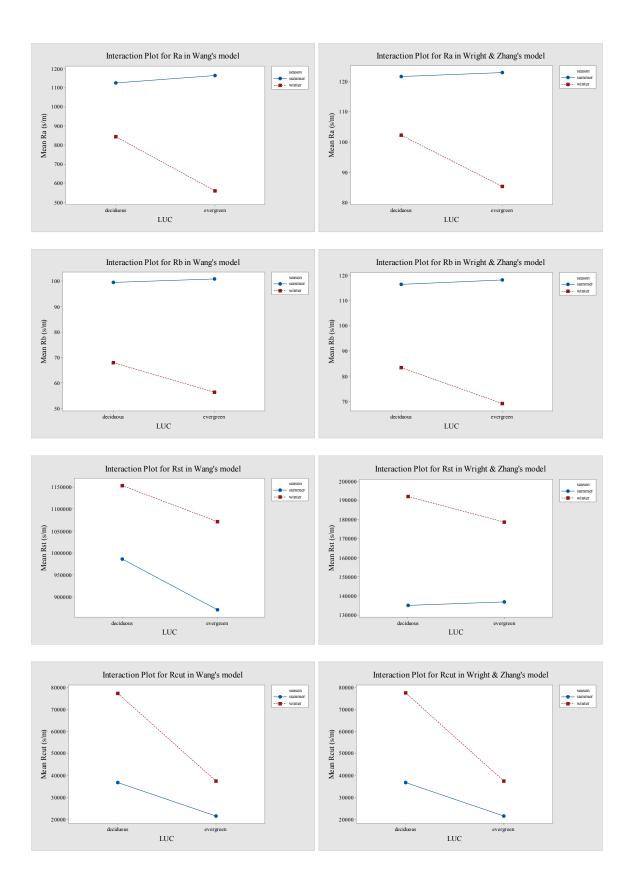





Figure F4. Main effects plot for flux in the two models.



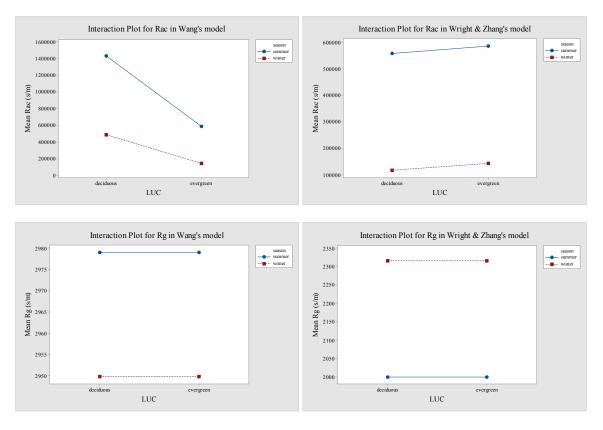



Figure F5. Interaction plot for resistance in the two models.

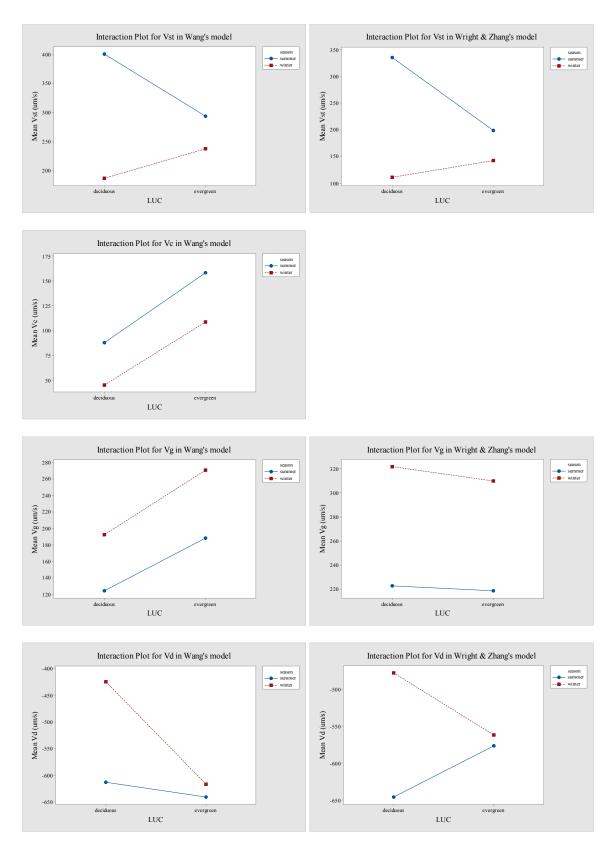
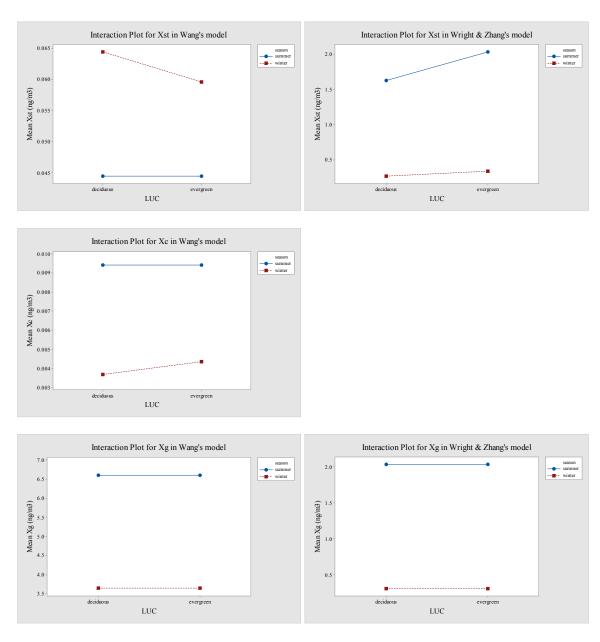
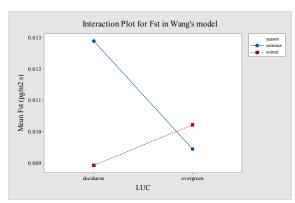
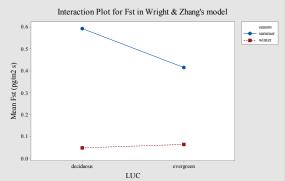
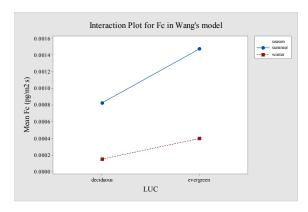
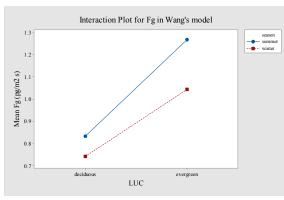
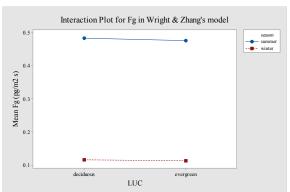
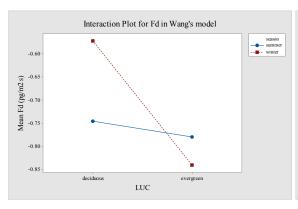
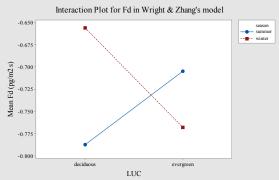



Figure F6. Interaction plot for velocity in the two models.



Figure F7. Interaction plot for GEM compensation point concentration in the two models.













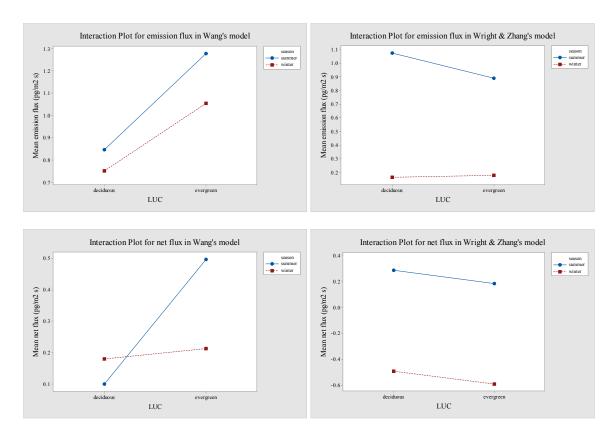




Figure F8. Interaction plot for flux in the two models.

## Appendix G: ANOVA analysis for the difference between the two models

Table G1. ANOVA results for the difference in resistance between the two models.

| Resistances     | Parameters  Season                            | p-values or R-sq values in the<br>difference<br>(Wang-Wright)/<br>(Wang+Wright)/2*100% |
|-----------------|-----------------------------------------------|----------------------------------------------------------------------------------------|
| R <sub>a</sub>  | LUC Season*LUC R-sq (%) R-sq (adj) (%)        | 0.052<br>0.026<br>0.08<br>0.05                                                         |
| R <sub>b</sub>  | Season LUC Season*LUC R-sq (%) R-sq (adj) (%) | 0.001<br>0.99<br>0.99<br>69.97<br>69.96                                                |
| R <sub>st</sub> | Season LUC Season*LUC R-sq (%) R-sq (adj) (%) | 0.001<br>0.001<br>0.002<br>0.69<br>0.66                                                |
| R <sub>ac</sub> | Season LUC Season*LUC R-sq (%) R-sq (adj) (%) | 0.001<br>0.001<br>0.001<br>99.96<br>99.96                                              |
| $R_{g}$         | Season LUC Season*LUC R-sq (%) R-sq (adj) (%) | 0.001<br>0.99<br>0.99<br>1.72<br>1.7                                                   |

Table G2. ANOVA results for the difference in velocity between the two models.

| Velocities | Parameters     | p-values or R-sq values in the<br>difference<br>(Wang-Wright)/<br>(Wang+Wright)/2*100% |
|------------|----------------|----------------------------------------------------------------------------------------|
|            | Season         | 0.001                                                                                  |
|            | LUC            | 0.001                                                                                  |
| $V_{st}$   | Season*LUC     | 0.002                                                                                  |
|            | R-sq (%)       | 0.67                                                                                   |
|            | R-sq (adj) (%) | 0.64                                                                                   |
|            | Season         | 0.001                                                                                  |
|            | LUC            | 0.001                                                                                  |
| $V_{g}$    | Season*LUC     | 0.001                                                                                  |
|            | R-sq (%)       | 38.89                                                                                  |
|            | R-sq (adj) (%) | 38.87                                                                                  |
|            | Season         | 0.001                                                                                  |
|            | LUC            | 0.001                                                                                  |
| $V_d$      | Season*LUC     | 0.001                                                                                  |
|            | R-sq (%)       | 18.78                                                                                  |
|            | R-sq (adj) (%) | 18.76                                                                                  |

Table G3. ANOVA results for the difference in GEM compensation point concentration between the two models.

| GEM compensation point concentrations | Parameters     | p-values or R-sq values in the<br>difference<br>(Wang-Wright)/<br>(Wang+Wright)/2*100% |
|---------------------------------------|----------------|----------------------------------------------------------------------------------------|
|                                       | Season         | 0.001                                                                                  |
|                                       | LUC            | 0.001                                                                                  |
| χ <sub>st</sub>                       | Season*LUC     | 0.001                                                                                  |
|                                       | R-sq (%)       | 56.68                                                                                  |
|                                       | R-sq (adj) (%) | 56.66                                                                                  |
|                                       | Season         | 0.001                                                                                  |
|                                       | LUC            | 0.99                                                                                   |
| $\chi_{ m g}$                         | Season*LUC     | 0.99                                                                                   |
|                                       | R-sq (%)       | 73.21                                                                                  |
|                                       | R-sq (adj) (%) | 73.2                                                                                   |

Table G4. ANOVA results for the difference in flux between the two models.

| Fluxes              | Parameters     | p-values or R-sq values in the<br>difference<br>(Wang-Wright)/<br>(Wang+Wright)/2*100% |
|---------------------|----------------|----------------------------------------------------------------------------------------|
|                     | Season         | 0.001                                                                                  |
|                     | LUC            | 0.001                                                                                  |
| $F_{st}$            | Season*LUC     | 0.097                                                                                  |
|                     | R-sq (%)       | 20.91                                                                                  |
|                     | R-sq (adj) (%) | 20.89                                                                                  |
|                     | Season         | 0.001                                                                                  |
|                     | LUC            | 0.001                                                                                  |
| $F_g$               | Season*LUC     | 0.001                                                                                  |
|                     | R-sq (%)       | 74.07                                                                                  |
|                     | R-sq (adj) (%) | 74.06                                                                                  |
|                     | Season         | 0.001                                                                                  |
|                     | LUC            | 0.001                                                                                  |
| $F_d$               | Season*LUC     | 0.001                                                                                  |
|                     | R-sq (%)       | 19.37                                                                                  |
|                     | R-sq (adj) (%) | 19.35                                                                                  |
|                     | Season         | 0.001                                                                                  |
|                     | LUC            | 0.001                                                                                  |
| total emission flux | Season*LUC     | 0.001                                                                                  |
|                     | R-sq (%)       | 55.23                                                                                  |
|                     | R-sq (adj) (%) | 55.22                                                                                  |
|                     | Season         | 0.068                                                                                  |
|                     | LUC            | 0.007                                                                                  |
| net flux            | Season*LUC     | 0.004                                                                                  |
|                     | R-sq (%)       | 0.18                                                                                   |
|                     | R-sq (adj) (%) | 0.15                                                                                   |

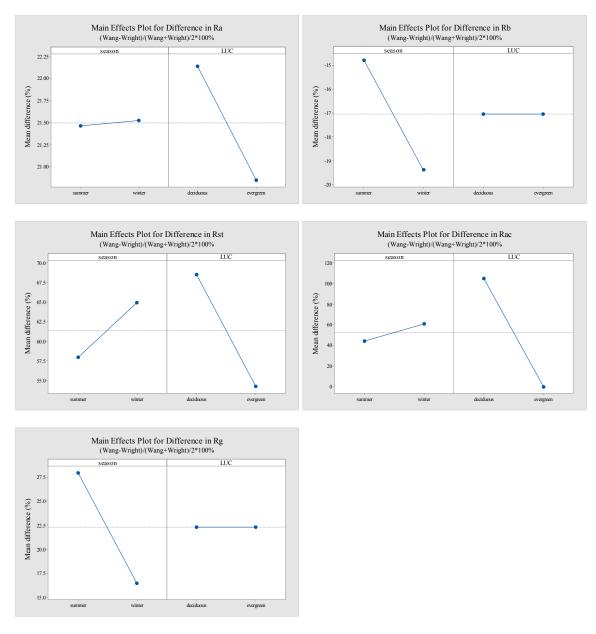



Figure G1. Main effects plot for the difference in resistance.

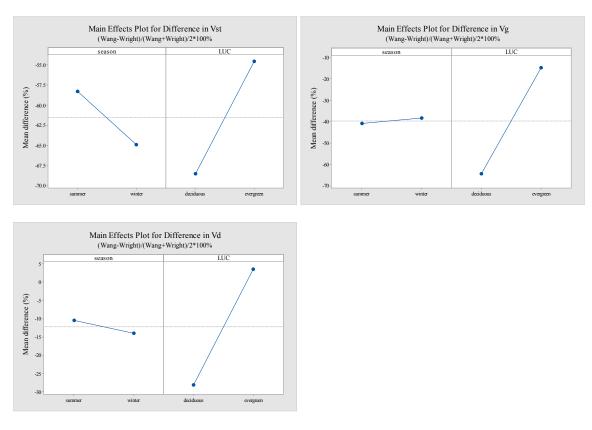



Figure G2. Main effects plot for the difference in velocity.

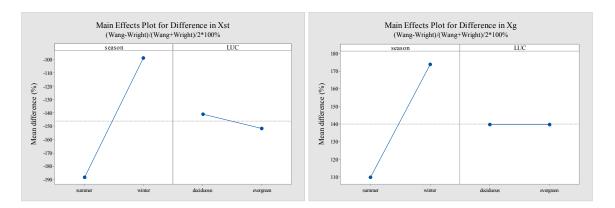



Figure G3. Main effects plot for the difference in GEM compensation point concentration.

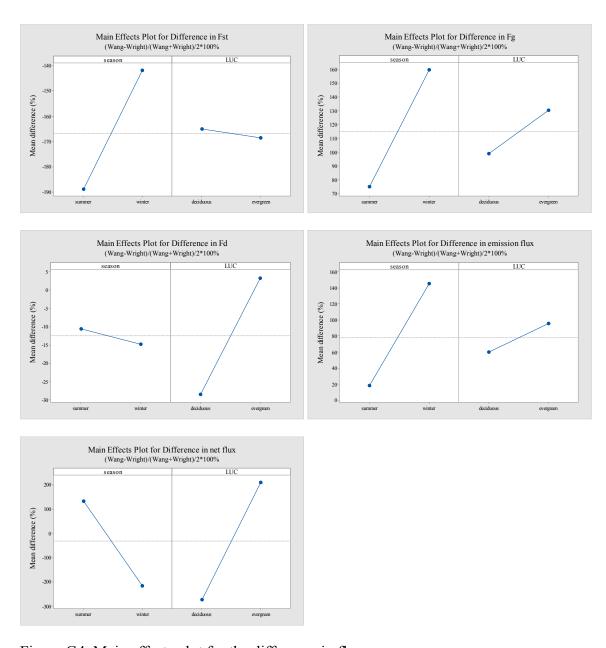



Figure G4. Main effects plot for the difference in flux.

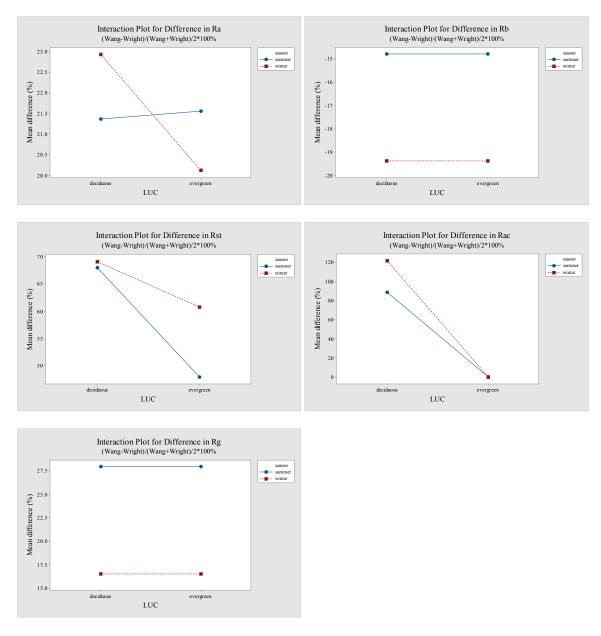



Figure G5. Interaction plot for the difference in resistance.

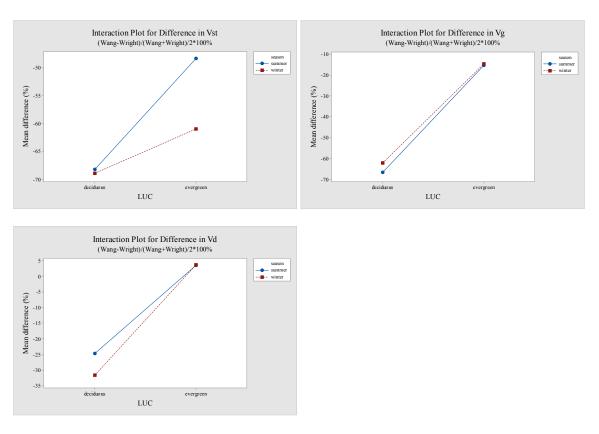



Figure G6. Interaction plot for the difference in velocity.

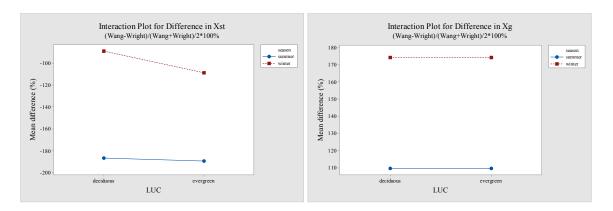



Figure G7. Interaction plot for the difference in GEM compensation point concentration.

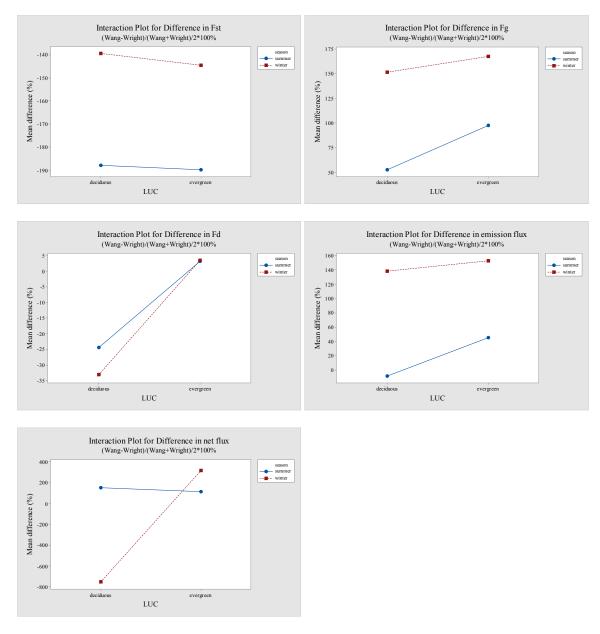



Figure G8. Interaction plot for the difference in flux.

## **VITA AUCTORIS**

NAME: Jingliang Hao

PLACE OF BIRTH: China

YEAR OF BIRTH: 1994

EDUCATION: Nanjing University of Information Science &

Technology, B.Sc., Atmospheric Physics,

Nanjing, Jiangsu, 2013-2017