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ABSTRACT

ON REDET SUBGROUPS CONTAINING
THEIR CENTRALIZERS

by

ROBERT' E. MCDONALD

Three classes of finite p-groups for p > 2 are considerad
in this thesis, each class being defined by cunditicns which are
placed on the minimal nonabelian subgroups of a group. The non-
abellan subgroups for which each proper subgroup is abelian are called
Redel groups.

Class 3 1s the collection of nonabelian p-groups for which
the centralizer of a Redel subgroup is its center. Class K 1is the
collection of nonabelian p-groups for which each Redel subgroup is
the centralizer of its center. A third class 3 * is the collection
of all nonabelian p-groups for which all subgroups for some given index
are Redel. The three classes are shown to satisfy the following
inclusion relaticnships. R C 3 *C 3 . All three classes are
subgroup inherited.

The two properties on Redel subgroups which define class 3
and class R » respectively, are shown to extend to all nonabelian
subgroups. For G e 3 , Z(N) = CG(N) for each nonabellan subgroup
N of G 1iff Z(R) = CG(R) for each Redel subgroup R of G .



For Ge R ,N= CG(Z(N)) for each nonabelian subgroup N of G iff
R = CG(Z(R)) for each Redel subgroup R of G . A result of this
second equivalence 1s that for G e R s (Z(N): Z(M)) = (M: N) for
each palr of nonabelian subgroups N , M such that NCMCG .

It is shown that a group in class R is either a metacyclic
group or a normmetacyclic Redel group. This leads to a characterization
of non-Redel metacyelic p-groups as groups for which each Redel subgroup
1s the centralizer of its center.

It is found that class 3 * is "almost equal' to class R in
that, for p > 3, there 1s only one type of group in c? * that 1s not
in R . These groups have order p5 . For p= 3, there is also
only one type of group in 4 ¥ that 1s not in R . Each of these
groups has 1ts Redel subgroups of order pu . As a consequence,

a second characterizaticn is obtained for non-Redel metacycllc p-groups
as groups for which there 1is an abelian subgroup of order pu and for
which each subgroup of index pi is Redel if there is one Redel subgroup
of that index.

The minimal ncon-Redel subgroups of class é? are identified.
These are preclsely the nonabelian groups for which there 1is at most

one abelian maximal subgroup and for which each subgroup of index p2

is abelian.



INTRODUCTION

Several means by which a group's structure is controlled by its
minimal nonabelian subgroups are investigated for finite nonabelian p-
groups for p > 2 . The nonabelian p-groups for which each proper sub-
group is abelian have been examined by Miller-Mcoreno [19] and have been
completely described in terms of defining relations by Redel [20]., Such
nonabelian p-groups are minimal nonabelian subgroups of a group and are
called Redel groups throughout this study.

One common approach to the problem of classifying nonabelian
groups 1is to stress the type of abelian subgroups possessed by the
groups. While surveying the liferature with regard to this approach it
has became apparent that attention continually reverts to the exisfence
and the properties of the Redel subgroups. This raises the question as
to whether or not Redel subgroups can assume more than passive control
over the structure of a group. In this regard, a new approach has been
employed whereby the dominant role in examining group structures is
assigned to the Redel subgroups. This can be accomplished by placing
conditions on the minimal nonabelian subgroups whereas the previous
approach concentrated on choosing specific types of abellan subgroups.

The next few examples about well known results illustrate the

effectiveness of Redel groups in this previous approach.

Example 1: Burnside [6] classified the nonabelian groups of
order p)4 by examining the group structure through the maximal cyclic

subgroups of the group. Huppert [15] derived the same classification,



but through the maximal abelian subgroups of the group. In the cases
where the group was not itself a Redei group, both authors were required
to examine the Redel subgroups of order p3 .

Example 2: The paper of Gaschutz [9] revived interest in the
properties of the Frattinl subgroup ¢(G) , the intersection of the
maximal subgroups of a group G . Hobby [14] proved that ¢(G) for a
nonabelian p-group G carmnot have a cyclic center unless ¢(G) is
itself cyclic. This extended Burnside's result which used the cammutator
subgroup G' rather than ¢(G) in this statement. In order to prove
his result 1t was necessary for Hobby to show that nc Redel group of

order p3

can be the Frattinl subgroup of a group.

Example 3:; Several significant works dealing with simple groups
(e.g., Felt and Thompson [7], Thompson [21], and Gorenstein [10]) contin-
ually refer to a theorem of P, Hall [11]. For clarification two definitions
are first introduced. For the product G = ER to be a central product,
the properties ENRCZ(G) and EC C;(R) must be satisfied where
CG(R) is the centralizer in G of R . In addition, a group E is
defined as extraspecial if E' = ¢(G) = Z(G) and the order of E  is p .
In his theorem Hall has classified a nonabellan p-group G with no non-
cyclic characteristic abellan subgroups as a central product ER where
E=1 or E is extraspecial and R 1s cyclicor p=2 and R 1is
isomorphic to the generalized dihedral, the generalized quaternion or the
symmetric group of order 2 for m > 4 , To obtain a complete classi-
fication of these groups, Gorenstein [10] has elaborated on the class of

extraspecial p-groups. He has proved that an extraspeclal p-group G



has order p&‘*'l

3 -

ard is the central product of r > 1 Redel subgroups
of order p Indeed, here are two classes of groups, the extraspecial
groups and the groups in Hall's theorem, where the structure of the
groups 1s described in terms of Redel subgroups.

Moreover, the proof of Gorenstein's result 1s also dependent upon

Redel subgroups and their heold over the structure of the group. For this

reason an outline of the proof 1s included. Twc results are needed.

(1) P = CCp(C) if C 1s an extraspecial subgroup of the
p-group P such that [P,c]C z(G) . [P,C] is the subgroup of P
generated by the cammtators [p,c] = p_lc'lpc for any p ¢ P and any
ceC,

(2) Each extraspecial group G has a Redel subgroup R of

order p° for which [G,R]C [G,6] =¢ = 2(a) .

At this time it should be noted that each Redel group of order p3 is

an extraspecial group. By the application of (1) and (2) to an extra-
special group G , G = RCG(R) where R 1s a Redel subgroup of order

p3 . If CG(R) is abelian, then CG(R)Q Z(G) = Z(R) so that G =R .
If, on the other hand, CG(R) is nonabelian, then R CG properly. It
can be shown that CG(R) is also an extraspecial group. So, an inductive
argument can now be applied to arrive at the desired result. Although

3 control the direction of the proof, it

the Redel subgroups of order p
is significant to note that the role of the Redel subgroups is nevertheless
passive since their existence follows fram the group structure under

examination.

Example 4: In line with the approach which stresses the role of

abelian subgroups is the problem of whether or not a group possesses a



normal abellian subgroup of a given order when thils same group has an
abellan subgroup of that order. As a partial answer, Alperin [1] showed

that if a group has an abelian subgroup of index p3

then the group has
a normal abelian subgroup of index p3 . Konvisser [17] generalized the
above to show that if a normal subgrcup N of a group G has an
abellan subgroup of index p2 , then N has an abellan subgroup of
index p2 that is normal in G .

One aspect of this problem revolves around the structure of a
group with an abellan maximal subgroup. This structure is derived from
the power imparted to the Redel subgroups by the abelian maximal sub-
groups. If the group is not itself a Redel group, then there are Redel
subgroups properly contained in G . If G has two abellan maximal sub-
groups, 1t can be shown that each Redei subgroup is a normal subgroup of
G and that G can be wrlitten as a central product involving a Redel
subgroup. If G has only cne abelian maximal subgroup, then G i1s a
product of this abellan maximal subgroup and of any Redel subgroup.

This product is not a central product. However, the G-normalizer of the
Redei subgroup R has nilpotent class at most three; that is, if N

is the normalizer, then the comutators a1l € Z(N) for aeN

and beN .,

These four examples are some indicatlion of how Redel subgroups
Influence a group's structure when the group possesses particular abelian
subgroups. In contrast, this thesis Introduces a new aspect of the Redel

subgroups' hold over the group's structure--namely, through the classifi-

cation of groups according to properties possessed by their Redei sub-

groups.



Somewhat natural conditions to be examined for the minimal non-
abelian subgroups in thils approach are suggested by the maximal abelian
subgroups which, in concept, are dual to the Redei subgroups. It is
well known [15, p. 302] that M = CG(M) for each maximal abelian sub-
group M of a group G . Since each abelian subgroup is its own center,
the above equality can be written as either Z(M) = CG(M) or M= CG(Z(M)).
These two forms provide the motivation behind two of the properties which
are placed on the Redel subgroups in this work:

(1) Z(R) = CG(R) for each Redei subgroup R , and

{(2) R = CG(Z(R)) for each Redel subgroup R .

Altogether, there are three properties placed cn the Redel sub-
groups, each of which defines a class of finite nonabelian p-groups for
p>2. Class § and class R are defined by properties (1) and (2),

respectively:

J
R

*
The third class 3 is defined by the property:

{G]Z(R) = C;(R) for each Redel subgroup R of G} and

{G|R = CG(Z(R)) for each Redel subgroup R of G} ,

(3) If R is a Redel subgroup of G of index pi , then each

1 i1s a Redel group.

subgroup of index p
There are five chapters in this thesls. Chapter I contains the
prerequisite definitions and fundamental theorems needed throughout this
work.
The groups in R are classified in Chapter II. For thils purpose
a fourth class R * is introduced by means of the property:
(4) N = CG(Z(N)) for each nonabellan subgroup N of G .
This property is a stronger versicn of property (2).

A group is defined as metacyclic if there is a cyclic normal sub-



group whose factor group is also cyclic. One of the main results of
Chapter II shows that a nonabelian group G e R 1s elther a metacyelic
group or a normetacyclic Redel group. Another outcome identifles the
class of nonabelian metacycllc groups as a subclass of R *. Consequences
of these two results are equality of class R ard /2* and a new char-
acterization for the class of nonabellan metacyclic groups.

Corresponding to the method of Alperin [1] where he considered
large abelian subgroups of a group, the investigation of class 3 in
Chapter III considers groups from class 3 with a Redel maximal sub-
group, It is first determined that a group from this subclass of 3 is
one of two types:

( i) a group for which each subgroup of index p2

is abelian,or

(11) a group with no abelian maximal subgroup but with a Redel

subgroup which is not a maximal subgroup.

It is shown that the groups in (ii) are affected by the groups in (i).
Also, the groups in (1) with an abellan maximal subgroup are completely
characterdzed,

The investigation started in Chapter III is continued in Chapter
IV. The groups of type (1) for which each maximal subgroup 1s Redel are
described. These are precisely the groups in 3 * for which each sub-
group of Iindex p2 is abelian, It is found that class 3 * is "almost
equal" to class R . Furthermore, a second characterization of norn-
Redei metacyclic p-groups 1s obtained.

Chapter V contains a summary of the results presented here and
identifies unanswered related questions that provide a basis for future

investigations with respect to Redel subgroups in p-groups.




NOTATION

Only finite p-groups for primes p > 2 are considered.

|G| - order of the group G
aeh - a 1s an element of G
< 8py85y7 58, > - the subgroup generated by the elements Aps8o° "5
ACB - A 1s a subset of B
A~ B - the set of elements from A that are not elements of B
AsgG - A 1s a subgroup of G
A<G -~ A 1s a proper subgroup of G
AB - product of A and Bj; <abjlae A and be B>
(G:A) - the index of A in G
AaG - A 1s a normal subgroup of G
[a,b] - the commutator, aflb"lab, of the elements a and b
[A,B] - <[a,pllae A, beB>
G' - the comutator subgroup of G , [G,G]
Gi - the ith term of the lower central seriles where
G, =G and G = [G,G;_;]
eclass of G=¢ - Gc # 1 but Gc+1 =1
Z(a) - the center of G
¢(G) - the Frattini subgroup of G; the intersection of all

the maximal subgroups of G

nl(G) -~ the subgroup of G generated by the elements of
order p; <glgeG and g =1>

ul(G) - the subgroup of G generated by the pth powers of

elements of G; < gPlg € G >



CG(N)

N0

type

(m,n)

the G-centralizer of Nj< glge G and [g,n] =1 >
the G-normalizer of Nj< g|lg e G ard g Ng =N >

refers to an abelian group which 1s the direct product
of a cyclic group of order pm ard a cyclic group

of order pn



CHAPTER I

FUNDAMENTAL CONCEPTS

In this chapter the relationships between the classes of groups
under investigation are established, and essential background material
is provided. It should be emphasized that minimal nonabelian groups are
called Redel groups and that only finite p-groups for primes p > 2 are

considered,

Definition 1.1: Class 4§ is the collection of all nonabelian

groups G which satisfy the property:

(1.1) Z(R) = CG(R) for each Redei subgroup R of G .

Definltion 1.2: Class R is the collection of all nonabelian

groups G which satisfy the property:
(1.2) R= CG(Z(R)) for each Redel subgroup R of G .

Propecsition l.1: R - 3 . Moreover, both R and 3 are

subgroup inherited.

Proof: CG(M) < CG(N) when N sM< G . In particular
CG(R) < CG(Z(R)) for each Redel subgroup R of G . If Ge R,
then C.(Z(R)) =R . Thus C,(R) <R . Hence Ge 3 .
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Let N be a nonabelian subgroup of G e R . let R bea
Redel subgroup ¢f N . R 1s also a Redel subgroup of G , so
C;(Z(R)) =R . Thus (u(2(R)) = NN C,(Z(R)) =NAR=R . Hence
Nel . This proves that R 1is subgroup inherited.

The proof that § is subgroup inherited is similar.

Some baslc properties of Redel subgroups are established in the
next two results.

Proposition 1.2: If R 1s a Redel group, then

(a) Z(R) has index p‘2 in R, and

(b) Z(R) = ¢(R) .

Proof: Each maximal subgroup of R 1s abelian. If there is a
maximal subgroup A of R such that Z(R) £ A, then G = AZ(R) .
Consequently, G is abelian; a contradiction is reached. Thus
Z(R) 2 ¢(G) .

Let M and M* be any two maximal subgroups of R . R = MM* .
This implies that MMM has index p° in R and that MAM < Z(R) .

%
Hence Z(R) = ¢(R) =MNM .,

THECREM 1.1: If G d1s a nonabelian group which is not Redeli,

then G has at least two Redel subgroups.

Procf: Iet R be a Redel subgroup of G . Let Mg G such
that (M:R) = p . If M has at least two Redel subgroups, then G has
at least two Redel subgroups. Therefore, without loss of generality, it

can be assumed that R 1s a maximal subgroup of the group G .
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Suppose, further, that R 1s the only Redel subgroup of G .
Since G 1s not a cyclic group, 1t has at least two maximal subgroups.
Also, the number of subgroups of a given order is congruent to 1 ,
modulo p [15, p. 314]. From the fact that p > 2 , it follows that
the number of maximal subgroups of G 1is at least three. In particular,
G has at least two abellan maximal subgroups A arnd A* . g= AA* S0
that AN A < 2(G) . However, (G: Z(G)) 2 p2 which implies that
72(G) = AN A" . Therefore, G/Z(G) has order p° . Now G/2(G) has
at least two abelian subgroups A/Z(G) ard a¥/2(G) of order 1
Hence, G/Z(G) 1s elementary abelian, that is, abelian of type (1,1).
This implies that G/Z(G) has p+l subgroups of order p . Thus, G
has at least p+l abelian maximal subgroups, each corresponding to a
subgroup of G/Z{G) . But each abelian maximal subgroup contains Z(G)
(otherwise G itself would be abelian), so G has exactly p+l abelian
maximal subgroups. Thus, G has p+2 maximal subgroups in all, which
contradicts the fact that the number must be congruent to 1 , mod p .
Hence, G must have at least two Redel subgroups.

For ecach group in class Q , there is a special relatlonship

between its Redei subgroups and its maximal abelian subgroups.

THEOREM 1.2: If Ge A , then
(a) each maximal abellan subgroup of G 1s contained in a Redel sub-
group of G , ard
(b) each maximal subgroup of a Redel group is a maximal abelian sub-

group of G .
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Proof: (a) Let A be a maximal abelian subgroup of G . Let
M < G such that (M:A) =p . Since A is a maximal abellian subgroup
of G, M 1s nonabelian. M contains a Redel subgroup R . M= AR so
that p = (M:A) = (R: ANR) . By Proposition 1.1, Z(R) s ANR <A .
This implies that A < C,(Z(R)) =R . Thus M =R . Therefore, each
maximal abelian subgroup of G 1s contained in a Redel subgroup.

(b) lLet R be a Redel subgroup of G and let M be a

maximal subgroup of R . Let A be a maximal abelian subgroup of G
which contains M . By Proposition 1.1, Z(R) <M < A, Thus
A< CG(Z(R)) =R. So, M=A ., Hence, each maximal subgroup of a Redei

subgroup of G is a maximal abellan subgroup of G .
Theorem 1,2 can be improved to the following result.

THEOREM 1.3: If G e R , then there exists an integer 1 > 0

such that each subgroup of G of index pi 1s a Redel group.

Proof: The theorem is trivially satisfied for Redel groups, in
which case 1 =0, Therefore, let G e R be a non-Redel group. By
Theorem 1.2(a), G has no abelian maximal subgroup. Inductively, assume
that each proper nonabelian subgroup of G satisfies the theorem. This
is possible since R 1s subgroup inherited.

Let R be a Redel subgroup of G . Let N be a subgroup of G
such that (G:N) = (G:R) . If there is a maximal subgroup M of G
which contains both N and R , then by the Inductive hypothesis N 1is

a Redel subgroup. Assume, therefore, that there is no maximal subgroup
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containing both R and N . Let M and M* be maximal subgroups of
G suchthat R<M,N<M ,RZMAM and NZMA M. Let

N <M MM such that (G:N') = (G:R) . The inductive hypothesis
applied to M yields that Nii 1s a Redel subgroup of G . Then, fram
the application of the inductive hypothesis to M* y 1t follows that N

is a Redel group. This completes the proof.

In the above theorem, once the index of one Redel subgroup is
known for a group in class R » 1t follows that each subgroup with that
same index 1s also Redei. Thus, property (1.2), by which class £ is

defined, leads to another condition on Redel subgroups.

*
Definition 1.3: Class 3 is the collection of all nonabellan

groups G which satisfy the property:

(1.3) If R 1is a Redel subgroup of G and (G:R) = p- , then

3

each subgrcoup of index pi is a Redel subgroup of G .

* *
Proposition 1.3: R C 3 C 3 . In addition, class 3 is
subgroup inherited.

Proof: Theorem 1.3 shows that R C 3 * .

Let G be a group in 5 * . Let R be a Redel subgroup of G
and let M be a maximal subgroup of R . By property (1.3) M 1s a
maximal abelian subgroup of G , so that M= CG(M) . However, M < R
implies that C,(R) 5 C;(M) =M <R . Hence G e § .

3 * i1s clearly subgroup Ilnherited.
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Proposition 1.4: Let G be a nonabelian group.

(a) [4] If N 1s a normal subgroup of G of order p2 » then C.(N)
is a normal subgroup of index at most p .

(b) If N 4is a normal abelian subgroup of type (2,1), then CG(N) has
index at most p in G .

(¢) If |G| = le , then G has an abelian maximal subgroup.

Proof: (a) Each element x of G generates an automorphism
Ty of N since N dis normal in G . The mapping x - T is a homo-
morphism of G into Aut (N) , the group of automorphisms of N ,
with kernel CG(N) . Thus, CG(N) is normal in G and G/CG(N) is
isamorphic to a subgroup A of Aut (N) . Therefore, A 1is a p-group;
the order of A divides the order of Aut (N) . Now |Aut (N)| = p(p-1)
if N is cyclic and |Aut (N)| = p(pg—-l)(p-l) if N is elementary
abelian., Hence |A| divides p and (G: CG(N)) <p.

(b) By a result of Miller [181, Aut (2,1) is isamorphic
to Aut (1,1) . As in (a), G/CG(N) is isomorphic to a subgroup A of
Aut (N) . Thus |A| divides p and (G: C.M) <p .

(¢} If G 1is a Redel group, then G has an abellan
maximal subgroup. Suppose, therefore, that G 1is not a Redel group., If
Z(G) has order p2 , then there 1s a maximal subgroup M containing
Z(G) and (M: Z(G)) = p . It follows that M is abelian. On the other
hand, if |Z2(G)| = p , then there is a normal subgroup N of G of
order p2 with 2(G) < N . From part (a), (G: CG(N)) = p . But then,
(CG(N): N) = p . However, N < Z(CG(N)) which implies that CG(N) is

abelian, Hence G always has an abelian maximal subgroup.
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Both inclusions in part (a) of Proposition 1,3 are, in fact,
proper inclusions. Part (c¢) of Proposition 1.4 indicates that a group
%
in 3 v @ has order greater than p’4 . An example of such a group

#
1s given in Chapter IV. The following example shows that 3 C 3 .

Example 1.1: If G = C, 1 Cy » the standard restricted wreath
product of the cyclic group of order 3 by the cyclic group of order 3,

then [2, p. 30] |G| = 3”

and |Z(@)]| = |C3| = 3 . By Proposition 1.1,
G is not Redel. By Proposition 1.4(c), G has an abelian maximal sub-
group. Thus G £ 3* .

Suppose that R 1s a Redel subgroup of G for which CG(R) ZR .
|R| = 33 and G = RC4(R) . Since R is nonabelian, C(,(R) <G . Now
RMC,(R) < Z(G) . Also, 3= (G:R) = (C;(R): RN C4(R)) . It then
follows that [C,(R)| = 3° , so that Cy(R) is sbelian, Hence,

CG(R) < Z(G); a contradiction is reached, Therefore, for each Redel

subgroup R, CG(R) < R . Consequently, G e 5 .

The rest of the chapter contains necessary background material,

If the result is known, its proof has been omitted.

THEOREM 1.4: [20] If G 1s a group for which each proper sub-

group 1s abellan, then G = < a,b > has defining relations:

1 1+pm_l

m I -
(1.4) aP =bP =1, b "ab=a (m>2,nz1); or

(1.5) a® =vP =cP=1,01

&
]

ac .
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If G satisfies (1.4), then |G| = p™" . If G satisfies

(1.5), then |G| = g™ |

Proposition 1.5: If {a,b] commutes with a , then [a",b] =

n
la,b] for every integer n .

Definition l.4: A group is called regular if

(xy)P = xpypgdg for each pair X, y ¢ G where d, e < x,y >' .

i
THEOREM 1.5: If G 1s a Redel group, then
(a) G has order p,

(b) G 1is a regular group.

Proof: (a) Let X,y eG. (G =¢'v (@) [15, p. 272] .
By Proposition 1.1, G' < Z(G) . By Proposition 1.5, [x,y]p = [P,y] .
However, v (G) < Z(G) so that [xP,y]1=1. Hence |G'[ =p .
(b) Because G' is cyclic, it can be concluded that G

is regular [15, p. 3221].

THEOREM 1.6: [13] If G 1is a regular group, then
(a) |G/Ql(G)| = |ul(G)| .
(b) each element of ul(G) is the pth power of an element of G and

each element of Ql(G) has order p .

THEOREM 1.7: [13] (a) If the class of G 1s less than p , then

G 1s a regular group.
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(b) If G is a two-generator 3-group in

which G' is not cyclic, then G 1s not a regular group.

THEOREM 1.8: Let G be a Redel group; then
(a) ul(G) = ¢(G) when G has defining relations (1.4),
(o) (e(@): v;(@) =p and G'M v(B) =1 when G has defining
relations (1.5).

Definition 1.5: A group G 1s called metacyclic if and only if

there exists a normal subgroup N such that both N and G/N are cyclic.

THEOREM 1.9: [16] G is a metacyclic group if and only if

G/v, (@) < p2 . Moreover, each metacyclic group is a regular group.
l 3

By reason of Proposition 1.2 and Theorem 1.8, a Redei group with

defining relations (l.4) satisfies Theorem 1.9, so it is a metacyeclic

group.

THEOREM 1.10: {3] Let G be a group for which all proper sub-
groups are metacyclic but G itself is not. Then, G 1is one of the

following.

(a) G 1s elementary abelian of order p3 .

3

(b} G 1s the nonabelian group of order p~ and exponent p .

(¢) G is a 3-group of class 3 and order 3H .
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Proposition 1.6: [5] If G 4is a nonabelian group with two

generators, then <I>(G')G3 is the only maximal subgroup of G' which is

normal in G .

Proposition 1.7: [5] If G is a nommetacyclic group with two

generators, then G/cb(c;‘)c;.3 has defining relations [a,b] =c ,

m n
P =bP =cP =1, [a,e]=[b,e] =1 in terms of two generators a,b
where G/G' 1is abelian of type (m,n) . This factor group is the Redei

group with defining relations (1.5).
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CHAPTER II
REDEI SUBGROUPS AS CENTRALIZERS COF THEIR CENTERS
The relation CG(N) < CG(R) for R< N <G implies that
property (1.1) which defines class 3 can be extended to all non-
abelian subgroups of G; that is,
Z{N) = CG(N) for each nonabelian subgroup N of G if and only if
Z(R) = CG(R) for each Redei subgroup R of G .
The question is ralsed as to whether or not property (1.2) which defines
class A can also be extended to all nonabelian groups. An affirma-

tive answer is gilven in this chapter, Moreover, the structure of the

groups in class R is completely determined.

*
Definition 2.1: Class /R  1is the collection of all nonabelian

groups G which satisfy the property:
(2.1) N = CG(Z(N)) for each nonabellan subgroup N of G .

Property (2.1) is a stronger version of property (1.2). Thus

* * ¥
R*C R . nlso, each subgroup of a group in R~ 1is a group in R .
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#
Proposition 2,1: If Ge R s then

(a) Z(N) < Z(M) if M< N

IA

G and M is nonabelian,

(by ZM) # Z(N) 4if (G:M) = (G:N) and M #N ,

Proof: (1) Since Z(M) <M < N , then Z(N) < CG(Z(M)) =M.
Thus Z(N) < Z(M) . If Z(N) = 2Z(M) , then M= C(Z0N)) = C.(Z(N)) =15
a contradiction is reached. Hence Z(N} < Z(M) .

(2) Q*Q R . By Theorem 1.3, M and N are both
abelian or both nonabelian, If both are abelian, then Z(M) =M # N =
Z(N) . On the other hand, suppose that both are not abelian. If
Z(M) = Z(N) , then M = CG(Z(M)) = CG(Z(N)) = N , which contradicts

M#N . Thus, Z(M) # Z(N) when neither M nor N 1s abelian.

Closer examination of part (a) of Proposition 2,1 yields the

following stronger result,

THEOREM 2.1: G ¢ R if and only if (Z(M): Z(N)) = (N:M)

whenever M 1s nonabelian and M <N < G .

Proof: Assume that (Z(M): Z(N)) = (N:M) whenever M is a
nonabelian subgroup of G and M<N<G. Let B<G. Bx CG(Z(B)) .
By hypothesis, Z(C,(Z(B))) < Z(B) . However, Z(B) <B < C;(2(B)) so
that Z(B) = Z(C,(Z(B))) . Thus, Z(B) = Z(C4(Z(B))) . According to the
nypothesis, it follows that B = C,(Z(B)) . Hence, G ¢ R*

The proof for the other direction wlll proceed by inducticn on

the index of the Redel subgroups in G . This is possible by Theorem 1.3,
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*
Let Ge R . If G is a Redei group, then the condition is trivially

satlsfied. Therefore, let G be a non-Redel group and let (G:R) = pi

s
i> 0, for each Redel subgroup R of G . By induction, assume that
any group in R i , for which the index of the Redel subgroups is less
than pi , satisfies the theorem in the direction under consideration.
let M be a nonabelian subgroup of G and let M<N <G . If
N <G, then (N:R) < pi where R 1is a Redel subgroup of N . N¢e Q*;
$0, by the induction hypothesis, (Z(M): Z(N)) = (N:M) . It remains to
show that (Z(M): Z(G)) = (G:M) . Let B be a maximal subgroup of G
such that M<B ., Be R' . (BiR) < p- for each Redei subgroup R
of B. Then, (Z(M): Z(B)) = (B:M) by the inductive hypothesis. By
Proposition 2.1(a), Z(G) < Z(B) . It must next be shown that
(Z{B): Z(G)) = p; then,

(Z(M): Z2(G)) = (Z(M): Z(B))(Z(B): Z(G)) = (B:M)(G:B) = (G:M) ,

which will complete the proof.

Let B be a maximal subgroup of G . Since G 1s not cyclic,
G has another maximal subgroup B* . By Theorem 1.3, both B and B*
are nonabelian, By Proposition 2.1, Z(B) # Z(B*) , Z2(G) < Z(B) and
2(G) < 2(B") . Thus,

*
(2.2) Z2(G) < 2(B)N Z(B) .
Two cases arise. In the first case, B and B* are themselves

b *
Redel groups. Then, by Proposition 1.1, Z(B) = ¢(B) and Z(B') = ¢([B") ,
*
each having index 1;)2 in B and B , respectively. Thus, (G: Z(B)) =
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(G: 2(B*)) = p3 . Now o(B) < ¢(@) < BAB', and @) < 0(c) <BNE"
[15, p. 273]. Since Z(B) # z(B*) , it follows that ¢(B) < ¢(G) and
that o(B*) < (G) . 'These, in turn, imply that ¢(G) = BAB' . Then,
¢(G) has index 1;32 in G; so, ¢(G) is a maximal abelian subgroup of

G . Also,
72(B%) < 2(B)z(B*) = o(B)¢(B") < #(G) .

Consequently, Z(B)Z(B*) = #(G@) . Thus,

p = (8(@): Z(B¥)) = (2(B): Z(B) N zZ(B%)) .

However, G = BB* . Thus, Z(B)N 2(B¥) < 2(G) . By (2.2),

Z(@) = z(B)M 2(B¥) . Hence, (2(B): 2(G)) =p .
In the second case, B and B* are not Redel groups. Then,

BN B* , which has index p°

in G , is not abelian, By the inductive
hypothesis, (Z(BMN B*): z(B*)) = (B: BNB*) =p . Since 2(B) # z(8%) ,
then Z(BNB¥*) = Z(B)Z(B*) . Therefore, (2(B): Z(B)N Z(B*¥)) = p .

But G = BB which implies that z(B)N Z(B*) < 2(8) . By (2.2) Z(G) =
ZB)N Z(B¥) . Hence (2(B): 2(@)) = p .

The proof 1s now complete,

Each Redei group is a member of both R' and R . Ir Ge R
and if G has a maximel subgroup that is a Redel subgroup, then by
Theorem 1.3, each maximal subgroup is a Redei subgroup. Consequently,
Ge R * . Thus, the restrictlons of class R and class Q* to their
minimal non-Redel groups coincide. The next theorem describes these

groups and provides the initial step toward the classificatlon of groups

in R .
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THEOREM 2.2: If Ge R and if G is minimal with the property
that i1t is not a Redel group, then G 1is metacyclic with order greater

than p5.

Proof: Let R be a Redei subgroup of G . If (G:R) > p , then
there exlsts a maximal subgroup M of G containing R . However,
MeR and M is not Redel, which contradicts the fact that G is a
minimal non-Redei group. Thus, each Redel subgroup of G is a maximal
subgroup. By the remarks preceding the theorem each maximal subgroup of
G 1s a Redel subgroup, and G ¢ @* . By Proposition 1.2, (G: Z(R)) = p3

and Z(R) = ¢(R) for each Redei subgroup R of G . By Theorem 2.1,

(2.3) G: 2(a)) = p

Also, fram Preoposition 2.1, distinct Redel subgroups have distinct

Frattini subgroups. It follows that

(2.14) G: #(G)) = p° ,

so that ¢{(G) 1s a maximal abelian subgroup of G ,

Y o1r la| = p’ , then,

Proposition 1.4(c) implies that {G| > p
from (2.3) and (2.4), |2(G)| =p , Z(R) = p2 for each Redei subgroup
R of G,and [¢(G)] =p> . Since (G) 1s maximal abelian in G ,
¢(G) = CG(cb(G)) . $(G) contalns the distinct centers of the maximal
subgroups so that ¢(G) is not cyclic. If ¢(G) is abelian of type
(2,1) , then by Proposition 1.4(b), (G: CG(¢>(G))) =p . Thus,
¢(G) < CG(fb(G)) which is a contradiction to the fact that ¢(G) 1s a
maximal abelian subgroup of G . Hence, ¢(G) is elementary abelian;

s0, ¢(G) < 2,(G) .
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Now ¢(G) 1is a maximal subgroup of each Redei subgroup R of
G . Thus |$21(R)| > p3 . From the fact that R is regular (Theorem 1.5)
and from Theorem 1.6, it follows that |ul(R)| s p . However, as a
result of Theorem 1.8 [v (R)| 2 p . Hence, |ul(R)| = p . Moreover,
by Theorem 1.5, |[R'| =p . Both v (R) and R', as characteristic
subgroups of R , are normzl in G. This implies that both ul(R) and
R' intersect 2(G) nontrivially. Therefore, Z(G) = v;(R) =R . As
a consequence of ¢(G) = G'ul(G) » |#(G)]| = p; this 1s a contradiction
to |e(a@)| =p3 . Hence, [G| > p° .

The proof that G is metacyclic will be by contradiction. There-
fore, suppose that G 1is not metacyclic. By Theorem 1.10 there exists
a subgroup of G that 1s not metacyclic. Because the metacyclic property
is subgroup inherited, there is then a maximal subgroup R of G that
is not metacyclic. By Theorem 1.9, (R: ul(R)) > p2 . Since R is
Redei, then from Proposition 1.2, (R: &(R)) = p° . From Theorem 1.9,
[R'| = p . These last two relations imply that R'N v (R) =1, so
(R: ul(R)) = p3 . Moreover, R' 1s characteristic in R which implies
that R' < Z(G) . If u(R) < Z(6) , then Z(R) = ®(R) 5 Z(G); this is

a contradiction to Proposition 2.1. Hence,
(2.5) v1(R) £ Z(G) .

Suppose that ul(G) = ul(R) . From Theorem 1.8, it follows that
(M: ul(M)) < p3 for each Redel subgroup M of G . Thus ul(G) = UZL(M)
for each maximel subgroup M of G . This implies that ul(G) < Z(M)
for each maximal subgroup M of G . By Theorem 2.1, (2Z(M): 2(G)) =p
for each maximal subgroup of G . Then, Z(G) 1s the intersection of

the centers of the maximal subgroups; so ul(G) < Z(G) . However, this
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contradicts (2.5). So,

(2.6) ul(R) < Ul(G) .

Now from Theorem 1.9 {G: ul(G)) > p‘2 . However, (G: ul(R)) = pLl .
Consequently,

(2.7) (6: vy(6)) = p> .

Suppose that Z(GQ) < ul(G) . M' 1is a characteristic subgroup
of M for each maximal subgroup M of G which implies that
M' < Z(G) for each maximal subgroup M of G . Then, Z{M) = &(M) =
M'ul(M) < ul(G) for each maximal subgroup M . But (M: Z(M)) = p3 SO
that zZ(M) = ul(G) . This is a contradiction to Proposition 2.1(b).
Hence, Z(G) £ ul(G) . Consequently, ul(G) is not the center of any

maximal subgroup. Furthermore,

(2.8) M £ ul(G) for each maximal subgroup M of G .

Assume that there are two maximal subgroups Rl and R2 such

2 11
Dencte R1R2 by A. If G/A 1s

abelian, then ¢' <A. In particular, M' < A for each maximal subgroup

T 1 | . |
that R; #Ry . Then |RR;| =p

M of G . Suppose that G/A 1s not abellan. G/A has two abelian
maximal subgroups R,/A and R,/A . Thus, Z(G/n) = Ry/AN R,/A and
Z(G/A) has index p2 in G/A . Also, ¢(G/A) < Z(G/A) . However,

(G/A: @(G/A)) = p2 since

(G/A: o(G/A)) = (G/A: o(G)/A) = (G: @(G)) .
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Hence, Z(G/A) = ¢(G/A) . It then follows that each maximal subgroup of

G/A 1s abelian. Tﬁerefore M' < A for each maximal subgroup M of G .
Suppose that the commutators are distinet for distinet maximal

subgroups. Since (G: #(@)) = p2 , then G has p+ 1 maximal sub-

groups, However, A 1is elementary abelian of order p2 , SO that A

has p + 1 subgroups of order p . Thus each subgroup of A of order

p is the commutator subgroup of a maximal subgroup. From (2.8) it

follows that AMu(G) = 1 . However, (2.4) and (2.7) imply that

AN ul(G) # 1; a contradiction is reached. Thus G has at least two

maximal subgroups M. and M2 for which M' = Mé . Dencte this sub-

1 1
*
group Mi by A . By assumption, Ri # Ré . Thus G/A* is not abelian.

However, G/A* has two abelian maximal subgroups Ml/A* and M2/A* .

2 4n o/ia¥ and z(aa®) = s(a/n®) .

Therefore Z{(G/A¥) has index D
Consequently each maximal subgroup of G/A¥ is abelian., In particular,
Ri = Ré = A; a contradiction 1s reached. Hence, the coamutator subgroups
of the maximal subgroups are equal. Denocte this subgroup of G of order
p by R* .

*

If G =R', then G' < Z(G) . By Proposition 1.5, [xP,y] =

[x,y]p . But [x,y]p = 1 . It follows that ul(G) < Z(G) . Then

¢(G) < Z(G) which contradicts (2.3) ard (2.4). Tmus |G'| 2 p2 . Now
each maximal subgroup of G/R* is abelian, but G/R* is not abelian;
so, G/R° 1is a Redei group. Hence, ig'| = p2 . But then, from (2.2)
and (2.7), [6'M v(G)} =p .

Suppose G' £ Z(G) . R*

< Z(G) , which implies that G'M %(G) =
R® . Inaddition, G'M vy(G) « G . Thus G M uy(G) < Z(G) . There-
fore, G'M v (G) =GN 2(@) =R* . Thus M' < v (G) for each maximal

subgroup M , which contradicts (2.8). Thus G' < Z(G) .
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By Proposition 1.5, [x,y]p = [xp,y] . If G' 1s elementary
abelian, then [xp,y] = 1 . Therefore, ul(G) < Z2(G) , which contradicts
(2.6). G' dis thus a cyclic subgroup. Then, R¥ =G'N ul(G) which
contradicts (2.8).

Since all possible avenues have been exhausted, it follows that
the grocup G must be a metacyclic group. Thls completes the proof.

Example 2.1: Given G = < a,b|apu = bp2 =1, [a,b] = ap2 > .
This group is used to illustrate Theorem 2.2 and tc show that there are
groups in class R wnich are not Redei groups .

For this group, |G| = p6; v (G) = < aP >< b° > , and Ul(G) has
index p2 in G . By Theorem 1.9, G 1is metacyclic. Also,

G'=<a° > and G 5 2(G) .

et M=<a><bP>, Let M* = < aP ><b> . The relations
bParP = o3P g b laPp = aPHP° imply that M' = M*' = < a0 s
Let A = < aP3 > ., G/A is metacyclic but is not abelian. M/A and
M¥/A  are abellan maximal subgroups, so that Z(G/A) = M/an M¥/a =
¢(G/A) . Each maximal subgroup of G/A is abelian; A 1is the commuta-
tor subgroup of each nonabelian maximal subgroup. Because Z(G) is a
characteristic subgroup, Z(G) < ¢(@); in particular, Z(G) < Z(M) and

7(G) s ZM") . But Z(M) = < aP > and zZ(M*) = < aP2 >< bP > so that
72(G) s < ap2 > . Hence Z(G) = < a5 =g,

Suppose that G has an abellian maximal subgroup A*¥ . Since
Z(M) < ¢(G) , then Z(M) < A¥ . Thus, 2z(M) < Z(G) , which contradicts

2
the fact that Z(G) = < aP > < Z(M) . Therefore, each maximal subgroup
of G 1s nonabellan.

Since B' = A 5 Z(G) for each maximal subgroup B , then in view
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of Proposition 1.5 [xP,y] = [x,y]" = 1. Tt follows that v (B) < Z(B) ,
and consequently, ¢(B) < Z(B) . Since G is metacyclic, then B is
metacyclic and (B: ¢(B)) = p2 . Therefore, Z(B) = #(M) which implies
that each maximal subgroup of B 1is abelian. B 1s thus a Redei sub-

group. Moreover, Z(G) < Z{(B) which leads tc B = CG(Z(B)) . Hence,

GEQ

THEOREM 2,3: If G e R and G is not a Redei group, then G

is metacyclic,

Proof: By Theorem 1.3, an inductive proof on the index of the
Redel subgroups can be applied., Let R be a Redel subgroup of G and
let (G:R) = pk . Since G is not a Redel group, k21 . If k=1,
then G 1s metacyclic by Theorem 2.2. Also, |G| > p6 . Therefore,
let k>1. Let M be a maximal subgroup of G . Me R . For each

Redel subgroup R of M, (M:R) = p¥1 .,

By the Inductive hypothesis,
M 4is a metacyclic group. Hence, each proper subgroup of G 1s meta-
cyclic. Because of Theorem 2.2, |G| 2 pl . Therefore, it follows from

Theorem 1,10 that G 1s itself metacyclic.

The above theorem places all non-Redel groups of class R in
the class of metacyecllc groups. The next theorem leads to the reverse

incluslion.

THEOREM 2.4: If G 1s a nonabelian metacyclic p-group, then

*®
G e ﬁ?
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Proof: Iet G be a counterexample of minimal order, G 1s not

i . There exists a subgroup M, such that

a Redel group and |G| > p .

M0 < CG(Z(MO)) .

Suppcse that G has a nonabelian subgroup N, such that

0
(G:NO) > p . For any nonabelian subgroup N of G such that (G:N) > p,
there 1s a maximal subgroup N¥ such that N < N¥ . N¥ is metacyclic.
By hypothesis, N* ¢ R* . Thus, N = Ce(z(N)) = N¥N Cyzn) . If
CG(Z(N)) =G, then N = N*; a contradiction has been reached. Therefore,
CG(Z(N_)) < G . Denote CG(Z(N)) by B . B is metacyclic and nonabelian.

By hypothesis, B e R*; so, N = C,(z(N)) = C4(ZM)N B =B . Tus,
(2.9) N = CG(Z(N)) whenever N 1is nonabelian and (G:N) > p .

In particular, N = CG(Z(NO)) . Furthermore (G:MO) = p . Thus,

G = CG(Z(MO)) which implies that

(2.10) z{My) < Z(G) .

2 #*

By Theorem 1.9, (G: ¢(G)) =p If Ny 1s a maximal subgroup

of G containing N, , then N; e R* and (Ng : (@) =p < (N;:NO) .

By Theorem 1.3, ¢(G) 1s nomabelian. By (2.9), ¢(G) = C;(Z(#(G))).

Thus Z(G) < ¢(G) < My

Let M be any maximal subgroup of G other than M

. From (2.10) it follows that Z(MO) = 7(Q) .

O -

Z(M) = 2(G) < ¢(G) < M which implies that Z(My) < Z(M) . Now Me R*
since ¢(G) 1s nonabelian. But then, by Theorem 2.1,

(Z($(G)): Z(M)) = p . In the same way, (Z(¢{G)): Z(MO))= p . Thus
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z(M) = 2(M;) . Therefore,

(2.11) Z(G) = Z(M) for each maximal subgroup M of G

From Theorems 1.9 and 1.6 it follows that |a,(0)] = p° . If
Ql(G) £ Z(G) , then CG(Ql(G)) 1s a maximal subgroup of G by Proposi-
tion 1.4(a). By (2.11) Z(CG(Ql(G)))= Z2(G) . However,

Ql{G) < Z(CG(nl(G))). Thus, Ql(G) < Z(G) which is a contradiction.
Therefore, ,(G) < Z(G) , and accordingly, Z(G) is not cyclic.

Now G' is cyclic since G 1s metacyciic. There is then a
subgroup A of Z(G) such that |A| =p amd A £ G' . G/A 1is non-
abelian and metacyclic. Since |G/A| < |G| , G/ae R* . Let Z* <@
such that 2°/A = Z(G/A) . [2*,6]1 < ANG' =1, so that 2" < Z(G) .
Hence 2Z(G) = z* , that 1s, Z(G/A) = Z(G)/A .

Let M/A be a maximal subgroup of G/A . M/A 1s nonabelian.
By Theorem 2.1, (Z(M/A): Z(G/A)) =p . Let M* < M such that
M*/A = Z(M/A) . Thus (M*: 2(G)) = p . However, [M*,M] < AN G' = 1;
S0, w* < Z(M) . By (2.11), M* < 2(G); a contradiction is reached,
Hence, G has no nonabelian subgroup of index greater than p .
Consequently, My is a Redei group, and Z(M;) < 2(G) .

Since MO is nonabelian, then

(2.12) 2{G) < vy(®) = e(G) .

Thus, CG(ul(G)) <G . ul(G) is abelian, however; and, this implies both
that  (C;(u;(G)): v1(G)) < p and that C,(v,(G)) 1s abelian. Let

y e CG(UI(G)) . Foreach xeG , [x°,y]=1. Now G is regular so
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that [x°,y] = [x,y*], [12, p. 185]. Thus,
(2.13) ul(CG(ul(G))) < Z2(G) .

Suppose that Ul(CG(ul(G))) < Z(MO) . Let geG. ge M for
some maximal subgroup M* of G, If M* is abellan, then
* *
M = CG(ul(G)) . But then £ ¢ v (M) = v (Ch(u1(6))) < z(My) . If,

on the other hand, M*

is nonabelian, then g e v (M%) = ¢(u") = Z(°) .
- #* *
Now Z(My) = u,(My) < o(G) < M < C4(Z(My)) so that Z(My) < Z(M°) .
Since both M, and M are Redei groups, |Z(Mp)| = |2(M*)| . Trus
¥
2(My) = Z(M') so that g e Z(M,) . Therefore, uy(G) < Z(G) , which
contradicts (2.12). Therefore, vy (Coluy(@))) £ 2(My) . Since
(u3(B): v (My)) = p , 1t follows that vy(G) = Z(My)u,(CaCu;(G))) .
Thus, from (2.13) ul(G) < 2(@) which contradicts (2.12).

Since no other cases are possible, no such minimal counterexample

exists.

A new characterization of nonabelian metacycliec p-groups is

obtained as a corollary to the above theorem,

Corcllary 2.4.1: If G is nonabelian and is not Redel, then G
is metacyclic if and only if G ¢ /2 and G has an abelian subgroup of

order pu .

Proof: If G 1is a nonabellan metacyclic group which is not a
Redei group, then G ¢ R *C R by Theorem 2.4, Since G is not
Redel, there exists a Redel subgroup R < G . Purthermore, there exists
*

*
a subgroup R° of G suchthat R<R* <G and (R:R) =p. R' is
a minimal non-Redel group which belongs to R . In view of Theorem 2.3,
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|R*| > p6 . Moreover, if M 1is a maximal subgroup of R , then M is
abelian, But |M| > pl& . Hence G has an abelian subgroup of order

4
D .

The converse ls Theorem 2.3.
Corollary 2,4,2: R¥* =R .

Proof: Let Ge R . If G is elther abelian or a Redel
group, then G e R* . Therefore, suppose that G 1s a non-Redel group

in R . By Theorem 2.3, G is a metacyclic group., By Theorem 2.4,
Geﬁ*. Thus ﬁ - @*.

If a group G e R , then Corollary 2.4.2 states that each non-
abelian subgroup of G is a centralizer in G , namely, the centralizer
of its center. This result supplements the investigation of Gaschutz
[8] where he has dealt with groups, for which each subgroup is a centralizer.
Furthermore, Theorem 2.3 and Corollary 2.4.1 give a complete
description of the groups in class R as either metacyclic or normeta-
cyclic Redel. The metacyclic groups are described by defining relations

in the following theorem.

THEOREM 2.5: [15] If G is a metacyclic group then G has the

defining relations:

]
1Y)

(2.14) aP =1,pbP =aP ,pab

i

n
where £ >0, K = 1(mod p°) and pf’(k-l) O(mod p™) . Furthermore,



A group in class A has elther the defining relations (1.5)
or the defining relations (2.14).

33
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CHAPTER IIT

REDET SUBGROUPS WHICH CONTAIN THEIR CENTRALIZERS

Unlike the situation for a group from class [/ where all
Redel subgroups have the same index, no relationship is known for the
Redel subgroups of a group from class j§ . For this reason, atten-
tion 1s first focused upon groups from class 2? which have a Redel
maximal subgroup. The particular groups that have an abelian maximal
subgroup as well as a Redel maximal subgroup are characterized in this

chapter.

Proposition 3.1: If G ¢ é? ard G 1s not a Redel group,

then G has at most one abellan maximal subgroup.

Proof: Suppose that G has two abelian maximal subgroups,
A and A" . From G=AA" , it follows that Z(G) = AMA' and that
(G: Z(6)) = p° . Since Ge 3 , then Z(G) < Z(R) for each Redel
subgroup R . However, (R: Z(R)) = p2 , for each Redel subgroup by
Proposition 1.1, Thus, G =R , which 1s a contradiction. Hence, G

has at most one abelian maximal subgroup.

Proposition 1.4(c) states that each nonabellan, non-Redei group
of order pu has at least one abelian maximal subgroup. The group in
Example 1.1 is one such group, and it has been shown that this group 1s
in fact an element in ,3) . This group is, therefore, included in the

following proposition.
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Proposition 3.2: If [G| = pll and 1f G has exactly one

abelian maximal subgroup, then G € 3

Proof: Let A be the abelian maximal subgroup of G . Let

3 and M is a Redel

M be any nonabelian maximal subgroup. [M| =p
group. Thus, M' = ¢(M) = Z(M) with order p . Since A 1is abelian,
z(@) < A .

Suppose there exists an M, , nonabeldan, such that CG(MO) #
z(My) . Thus C.(My) # My . If C;(My) 1s a maximal subgroup of G ,

_ 2
then G = MOCG(MO) and MyN CG(MO) has order p

But My N C,(M,)

1s then abellen, which forces My M CG(MO) < Z(MO); a contradiction is
reached, Therefore, Co(M ) has index p° in G . However, Cy(My) is
then abelian. Since G = MOCG(MO) s 1t follows that CG(MO) = Z(G) . Now,
if N 1is any other subgroup of index p2 different from Z(G) , then

N 1s abellan. This forces Z(G)N to be abellan. Thus, A = Z(G)N

and A contains every subgroup of index p2 . Purthermore, each non-
abelian maximal subgroup contains exactly one maximal subgroup, its-
intersection with A . The nonabelian subgroup is then cyeclic; and a
contradiction 1s reached.

Therefore, CG(MO) = Z(MO) for each nonabelian maximal subgroup,
and Ge J .

Proposition 3.3: If Ge S and if G has both a Redel

maximsl subgroup ard an abelian maximal subgroup, then for each Redel

subgroup R of G, R is maximal in G and Z(G) = Z(R) .
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Proof: Let RO be the Redel maximal subgroup and let MO

the abelian maximal subgroup. Then G = MORO . Mof\ RO 1s, therefore,

a maximal subgroup of RO . Since Z(RO) < Mof\ RO < MO , 1t follows

that Z(R) < Z(0) . However, 2(G) < Z(R) since Ge J . Thus

be

2(G) = Z(R)) . But (R, : Z(Ry)) = p° since R, is Redel. This implies
that Z(G@) has index p3 in G . Consequently, Z(G) = Z(R) for each

Redei subgroup R , and R is maximal in G .

The groups from 3 with a Redel maximal subgroup can be separated
Into two types:
( 1) groups with each Redei subgroup as a maximal subgroup, or
(11) groups with a Redei subgroup that is not maximal.
Because of Proposition 3.3, no maximal subgroup of a group of type (il)

is abelian.

Proposition 3.4: Let Ge § . Let G have a Redel maximal sub-
group RO and a maximal subgroup that is nonabelian and non-Redel. Then,
each nonabelian, non-Redel subgroup N of G has exactly one abellan
maximal subgroup, and all Redel subgroups of N have the same index in
N . Furthermore, (Z(R): Z{(G)) < p for each Redel subgroup R of G
different from RO .

Proof: Let N be a nonabelian, non-Redel proper subgroup of
G . Let R be a Redel subgroup of N . Since G = RON , then Roﬁ N
1s a maximal abelian subgroup of N . Because class 3 is subgroup
inherited, N € 5 . However, by Proposition 3.1 Roﬂ N 1s the only
abelian maximal subgroup of N .
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Let R be a Redel subgroup of N . Then N = (Roﬂ N)R ,
which implies that Roﬁ R 1is a maximal subgroup of R . Therefore,

Z(R) < ¢(R) < RyMR < RyMN ., Hence, Z(R) < Z(N) . But from (1,1)

0 0
Z(N) < Z(R) . Hence, Z(N) = Z(R) . Now (R: Z(R)) = p2 for each Redei
subgroup R of N from which it follows that all Redel subgroups of
N have the same index in N .
To prove the index relation for Redel subgroups, let R* be any

*
Redel subgroup of G and let N be a maximal subgroup of G contain-

* * #
ing R . By the first part of the proof, Z(N ) = Z(R') . Thus

2(G) . On the other

N < Cu(2(®)) . If CLZ(R)) =G, then Z(R)

# * *
hand, let N = CG(Z(R )) . Since N N R, is a maximal abelian sub-

0

#*
group of both N and R, , then Z(R)Z(R') <N AR, . But

0
Z(R" )4 Z(Ry) , which forces the equality z(RO)z(R*) = ¥ M R, . Hence,
(Z(R*): Z(RO) N Z(R*)) = p . However, Z(RO) ! Z(R*) = 72(G). This
leads to the conclusion that (Z(R): Z(G)) < p for each Redei subgroup
R of G different from RO .

The above theorem shows that 1f a group from class 3 with a
Redel maximal subgroup is of type (ii), then no proper nonabelian, non-
Redei subgroup of G can belong to either class 3 * orclass R .
Therefore, any group in 3 W 3 * has only the groups of type (i),

with an abelian maximal subgroup,as minimal non-Redel subgroups.

THEOREM 3.1: If Ge § and if G has both an abelian maximal

subgroup and a Redel maximal subgroup, then G 1s one of the following
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normetacyclic groups.

2 2
(1) G = Ry< cle3” = 1 > where R, = < a,b|ad = b3 = 1, [a,b] = ad >

O 2
[e,b] = 1, [a,e]l = b and ¢ = a%% where u # O(mod 3). |g| = 3t
= p= = p: p: p:
(2) G = My< b|b” = 1 > vhere My = < aqla] =1 8¢ a2|a2 1 >@x a3|a3 1>,
(a;,b] = a, , [a,,b] = ay - |G| = pu .
2
(3) G = My< c|c3 = 1> where Mj =< a,bla3” = b3 = 1, [a,b]l =1 >,
[c,al =b and [c,bl = al | G| = cal
2
4) G = R0< c|c3 = 1 > where RO = < a,bla3 = b3 =1, [a,b] = a3 >
[c,al] =b and [b,e] =1 . la] = 3“ .
m
(5) G = Ry< b|b® = 1 > where Ry = < a,claP =cP =dP =1, a=1[a,cl,la,dl=lc,dl=1 >
[a,bl=c, [b,e] =[b,d]l =1. |G| = pm-l-3 > p5 .
m m-1
(6) G = Ry< c|cP = 1 > where R, = < a,blaP = pP =1, [a,p] =aP >,
[asel =b and [b,e]l =1. |a] = pm‘*.2 > pu .
2
(7) G = My< ¢|c® = 1 > where My = < a,blaP" =bP =1, [a,p] = 1>,
[a,c] = b and [b,c] = a"P where r is either 1 or a quadratic non-
residue for p>3 and r=1 for p=3. |G| = pu .

2
(8) G = Ry< d|dP” = 1 >where Ry= < a,blad™=bP=cP = 1, c=[a,b],[a,cl=[b,cl= 1 > ,

[a,d] = b, [b,d] =1 and ¢

a® for r Z 0(mod p) . |G| = pm+3 > p5 .

m=1

(9) G =Ry < ¢|cP = 1 > where R, = < a,blaP" = bP = 1, [a,b] = &P >,

0
[b,el] =1 and [a,c] =aP . |a| = Pm+2 p .

v
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m=1

(10) G = Rye cleP = 1 » where R, = < a,blaP™ = bP2 =1 [a,b] = aP >,

0
[a,c] = bP  and [e,p]l =1, G| = pm-*.3 > p5 .

2 m .2
(11) G = Ry< d|dP =1>where R.= < a,b|aP =bP =cP=1, c=[a,bl,[a,cl=[b,c]<1 > ,

0
P =c,[dbl=1 and [d,a]l =c'2°® for r=0 or 1 amd

s Z O(mod p) . |Gl =p" " =2p .

Each of the next seven lemmas constitutes a part of the proof
of Theorem 3.1. The basic hypotheses are the same for all of these
lemmas., For convenience these hypotheses are summarized as follows.

(3.1) Ge é? . G has a Redel maximal subgroup R, , an

abelian maximal subgroup M and a normetacyclic

O ]
maximal subgroup.

Lemma 3.1: Given hypotheses (3.1). Then the index of ¢(G) in
G 1is elther p2 or p3 . In the case where {(G: ¢(G)) = p2 , then

2

both |G'| = p° and all the nonabelian subgroups have the same commtator

subgroup of order p . When (G: ¢(G)) = p3 , then G 1is a regular group.

Proof: Since R,y 1s maximal in G, (G: ¢(Ry)) = p> . From

0
#(R,) < #(G) 1t follows that (G: #(6)) <p> . Since G is mot cyelic,
@: (@) > p> . Thus, p° < (G: (@) < ps .

Suppose that (G: ¢(G)) = p2 . To show the commutators are the
same, consider G/Ré . G/Ré has two abelian maximal subgroups Ro/Ré
and My/R) , which implies that Z(G/Rj) = @(G/Ré) . Then each maximal
subgroup of G/R, 1is abelian, Since |Rj| =p , Ry 1s the commutator

subgroup of each nonabelian maximal subgroup of G .
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If G/Ré is abelian, then g = Ré < Z(RO) . Thus, by Proposi-
tion 3.3, G' < Z(G) . By Proposition 1.5, [xP,y] = [x,y]p =1 for
each palr of elements X,y from G . Therefore, ul(G) < z(G) . Prom
$(G) = G'ul(G) , 1t now follows that @(G) < Z{(G) . This is a contra-
diction to Proposition 3.3 by which 2(G) = @(RO) < ¢(G) . Hence,

G/Ré 1s a Redel group, which leads to |G'| = p° .
If (G: 3(G)) = p3 , then @(G) = Z(G) . Since G' < o(G) = Z(G) ,

the class of G is 2 . By Theorem 1.7(a), G is regular.
Lemma 3.2: Given hypotheges (3.1), then p3 < |QI(G)| < pq

Proof: By hypothesis, there ls a nommetacyclic maximal subgroup

3 . Since NO is either Redel

is regular., Consequently, by Theorem 1,6,

Ny . By Theorem 1.9, [Ng/v;(N)| > p

or abelian, then N
3

0

2, (N 2 p° . But a;(Np <2,(6) sothat [a(@)] »pd.

For the other inequallty in the conclusion, two cases are derived

from Lemma 3.1, which states p2 < (G: (@) < p3 . First, if

(G: ¢(G)) = p3 , then G 1s regular. By Theorem 1.8, (N: ul(N)) < p3

for each nonabelian maximal subgroup. Thus, (G: ul(N)) < pLl for each

nonabelian maximal subgroup. Since ul(N) < ul(G) , then (G: ul(G)) < pu .

From regularity, it follows that |91(G)| < pu . On the other hand, if

(G: (@) = p2 , then by Lemma 2.1, |G'| = p2 . By Proposition 1.6,

Q(G')G3 is the only maximal subgroup of G' which is normal in G .

[ L ]
Thus ¢(G )G3 =Ry .
metacyclic Redel group. This in turn implies that (G/Ré: ”1(G/R6)) = p3

But, Pruposition 1.7 implies that G/Ré is a non-

by Theorem 1.8. Fram the regularity of Redei groups, |91(G/R6)| = p3 .
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] t 1
Now Ry < 9,(G) . Thus 9,(G)/R; < @,(G/Ry) , from which it can be
concluded that |szl(c;)| < pu .
Hence, p3 < |91(G)| < pu .

Lemma 3.3: Assume hypotheses (3.1). If (G: ¢(G)) = p2 and

if |a (@) = pu

, then elther G = Ql(G) or ¢(G)91(G) 1s a maximal
subgroup. If G = Ql(G) , then G 1s the group of type (2), type (3),
or type (4). If G # ,(G) , then G is the group of type (5).

Proof: If Ql(G) < ¢(G) , then Ql(G) <R But then,

0 [ ]
8,(6) = Ql(RO) . However, R, 1s regular which, from Theorems 1.8
and 1.6, implies that [ﬂl(RO)] < p3; a contradiction is reached. Hence,
elther G = nl(G) or rb(G)Ql(G) is a maximal subgroup of G .

Case 1: G = Ql(G) . By Lemma 3.1 and Proposition 3.3,

]

¢(@) =G and |2{@)| =p . Thus, Gy = [6,G'] = 2(G) and the class
of G is 3.

If p> 3, then G 1s regular by Theorem 1.7(a). This implies
that ul(G) = 1 by Theorem 1.6. Thus, the abelian maximal subgroup My

has the form

My = < a;]laj] =1>8 <a,la; 1>®<513|a3 1> .

It may be assumed that G' = < 8525 > and that () = < a; > . Let
b ‘pe any element In G ~ MO . Then,
_ P _ _.rs = aF
G = My< bjp¥ = 1>, [al,b] = s, and [a,,b] as
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From Lemma 3.1, G/Z(G) 1is nonabelian, which implies that r Z O(mod p).
Since a, £ Z(G) , t £ O(mod p) . Let

- _ s - _ .rt
a2 = a2 and a3 = a3 .

' —— - -_—
Then, G = < 85,83 > and [al,b] =a

o Also, by Proposition 1.5,

[Eé,b] = 55 . Thus,

G=M0<blbp=1>whereMO=<al]aI{=1>®<§2|§g=1>®<'é'{£p=1>

[a),b] = a

> and [a,,b]= Eé . .

This is the group of type (2) in Theorem 3.1.

Now consider p = 3 . The normetacyclic maximal subgroup NO R

which is either Redei or abelian, has order 33 . Then, ul(NO) =1 by

Theorem 1.9. Thls implies that ﬂl(NO) =N,. But G , Wwhich has order

0

p° , is contained in N, so that G 1s elementary abelian. If

0
ul(G) =1, then G automatically satisfies the definition of regularity.

However, by Theorem 1.7(a), G is not a regular group. Hence, ul(G) 1.
Since G 1is not metacyclic, it then follows that ul(G) = Z(G) . This
implies that G must have a metacyclic maximal subgroup.

By Proposition 1.4(a), the abelian maximal subgroup M, is the

0
G-centralizer of G' . MO 1s either metacyclic or normetacyclic.

Suppose first that M. 1s metacyclic. Thus,

0

3?3
My = < a,pla® =b’ =1, [a,b] =1>
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t
Since G 1is elementary abelian, then
G'=91(M0)=<a3>®<b> and Z(G)=<a3>.

There exists an element ¢ in G~ M_ such that ¢ = 1 (otherwise,

0
2,(G) < M) . Hence, G =M< c|c3 =1> . Now G'<c> is a non-

metacyclic group; denote G'<c > by N If [e,b] = 1, then

0 L)
Z(G) = < a3 >@® < b >, which is a contradiction to |Z(G)| = p . Hence,
[c,b] # 1. But [e,b] e [G,G'] = 2(G) , which implies that

[e,b] = a%3  where o« Z 0(med 3) .

Ir [c,al € Z(G) , then 1t follows that G' = Z(G) , Which is a contra-

diction to [G'| = p2 . Consequently, [c,ale G w~ < a3

> , so that
[c,a] = a¥3pP  where B Z O0(mod 3) .

There exists a 6 such that 86 = 1(mod 3) . Let a, =& and b, =a b,

1 1
By Proposition 1.5, [c,al] = b, , [al,b] =1, and [c,bl] = am63 =
2
ags 3 . It is possible, then, to drop the subscripts, so the group is

defined by

2
G = My< clc3 = 1 > where Mg =< a,b|a3 = = (a,bl = 1>,
(3.2)
[c,al =b and [e,b] = a3 for r Z O(mod 3) .
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The relations in (3.2) lead to

Ip* = xyr3bxcy and c¥a* = &% + y(y+l)xr3/2

which in twrm give

a[l + £(t+l)r/2 + 26(2t+1)r/2]13q

(3.3) d3 = where @ = a,qbsct

Suppose that d3 = 1 , Then,

[1+ (5t%+3t)r/2]q = O(med 3) .

i

If r=1 and q Z O(mod 3) , then 1 + (5t%3t)/2 = O(mod 3) . It
follows that t° = 2(mod 3) , which has no solution, If r =1 and

q=0(med 3) , then de N

o =G'<c >, which implies that Q,(G) = N .

This is a contradiction to G = Ql(G) . For r =2, consider the
element ac which is not an element of N, . By (3.3), (ac)3 =1.
Consequently, ﬂl(G) = G . Hence, in defining relations (3.2), r =2,
This group is the group of type (3) in Theorem 3.1.

For the other peossibility where M, 1s not a metacyclic group,

0
it follows that G has a metacyclic maximal subgroup Rl . Let

2
R, = < a,bla3” = B3 =1 , [a,b] = ad > .

Since G' 1s elementary abelian, then

G'=<33>®<b> and Z(G)=<a3> ]



b5

There exists an element c¢ e MO n NO such that c3 =1 . Then

[b,e]l =1 . If [c,al e Z(G) , then G = 2(G) which is a contradic-

' 2
tion to |G| = p° . Thus,

[bye] =1 and [ec,a] = b5a'3 where s # 0(mod 3) .

There exists a t such that st = 1(mod 3) . Since [[c,al, cl=1,

Proposition 1,5 implies that [cU,a]l = ba®®3 , Let c, = ¢’ and

1
bl = art3 . Then, it is possible to drop the subscripts to get the

defining relations:

2
G = Ry< c|c3 = 1 > vhere R, = < a,blad = p3 =1 , [a,b] = a3 >

[c,al = b and [b,e]l =1 .

This is the group of type (4) in Theorem 3.1.
Case 2: ¢(G)91(G) is a maximal subgroup of G . Then,
2,(G) = 2,(¢(G)2,(G)) . Fram Theorems 1.6 and 1.8, ]Ql(R)I < p3 for

each Redei subgroup R . Thus, @(G)Ql(G) =M the abelian maximal

0 2
subgroup of G .

Since (My: ¢(G)) = p , then @(G)MN a;(G) 1s a maximal sub-
group of 9,(G) and has order p3 . Moreover, @.(G) is abellan which
implies that ¢(G)N ﬂl(G) = Ql(¢(G)) . In view of the fact that
,(e(G))

91(¢(G))

IA

M for each maximal subgroup M of G , it follows that

1A

Ql(M) . Thus, each nonabelian maximal subgroup is nonmetacyclic.
By Lemma 3.1, G/Ré is a Redel group. From Propositions 1.6



L6

and 1.7,

1 N L _pn -p — — — —_
G/I:{O=<a.,b5p =p =¢ =1, ¢ = [a,b], [a,c] = [b,c]

n
[
v

. m-1 __pn-l
If myn>2, then Ql(G/RO)=<§p >®<b

>®<c > 5¢(G)/’R(') .
However, nl(G)/RC') < 9,(G/A) so that 9,(G) < #(G) . This is a contra-
diction., Thus, one of myn must be 1; say n =1 . There exists an

1 —

- J
0= ;bp=l. Now as:M/RO

for some maximal subgroup M of G . There exists an element a ¢ M

element b e Rl(G) v~ ¢(G) such that bR

hthat aR' =3 . T " ¢ R
suc g= 2 - hen a eRO. 0

<a,b > = MR, , which is a contrediction. Thus, M # M, . Since M

If M=M., then G/RC'J=

is normetacyclic and Redei, M'N ul(M) =1 . However, M' = R! so that

0
m —_
aP =1, Let c=[a,b] . Then cR(')= C. Both b and ¢ are elements
in My from which 1t follows that [b,c] =1 . Furthermore, [a,c] # 1

(otherwise G' = Ré) . Let 4 =[a,c] . Hence,

[#p]
U}

Ry < b|bP = 1 > where

m
R, = < a,c|aP =cP=d° =1, d="[a,cl, [a,d] = [c,d] =1> ,

1

[a,b] = ¢ and [b,e] = [b,d] =1 .

This is the group of type (5) in Theorem 3.1.

Lemna 3.4: @iven hypotheses (3.1). If (G: #(G)) = p2 and if

Iﬂl(G)[ = p3 , then either ¢(G)§21(G) is a maximal subgroup or
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nl(G) < ®(G) . If Ql(G) < ¢(G) , then G 1is the group of type (8).

If ﬂl(G) £ %(G) , then G 1is the group of type (6) or type (7).

Precof': For the normetacyclic maximal subgroup N0 s
|91(NO)| = p3 = ]ﬂl(G)| . This implies that ,(6) < G . Thus, either
Ql(G) < ¢(G) or @(G)ﬂl(G) is maximal.

Case 1: Let ¢(G)91(G) be a maximal subgroup of G . Then,
<1>(G)91(G) = N0 . Ny is thus the only normetacyclic maximal subgroup of
"G . Let M bea metacyclic maximal subgroup. If Ql(M) £ ¢(G) , then
Q(G)ﬂl(M) 1s maximal in G . But then, M= @(G)nl(M) < @(G)Ql(G) =Ny s

which is a contradiction tc N, normetacyclic. Thus Ql(M) < ¢(G) for

0
each metacyclic maximal subgroup M , that is, Ql(M) < Ql(tb(G)) .

Let R be a nonabellan maximal subgroup different from N0 .
Then R 1s metacyclic and ul(R) = ¢(R) where (R: ul(R)) = p2 . G,
however, is not metacyclic, which implies that (G: ul(G)) > p3 . From

ul(R) < ul(G) , 1t follows that ul(G) = ul(R) = Z(R) . In particular,

(3.4 v, (G) = 2(G) .
Suppose first of all that |G} > pl& . If Ny is nonabelian,
' - ' 2
then Ny v (Nj) =1 by Theorem 1.8, and |Np2y (o (N[ 2 B .

However, N(‘)Ql(ul(No)) < ¢(N0) < #(G) , so that N(')Ql(ul(NO)) < Ql(¢(G)) .
2 !
But [9(#(G))| = p° since a,(G) £ () . Thus, Ny2,(v;(Ny)) 1s an
elementary abellan subgroup of order p2 which is contained in ¢(G) .
t
Therefore, Ng@, (v, (Ny)) = 9,(¢(G)) . Since 2,(M) < @,(¢(G)) for a
metacyclic maximal subgroup M , 1t follows that ;M) = N(')ﬂl(ul(NO)) .
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Since N, 1is nonabelian, tb(NO) = Z(NO) = Z(G) . Consequently,

0
$(Ny) = v1(G) . Now, (2(G) 3 v (@) = p , which implies that G ¢ e(N,) .

1 ]
Furthermore, since G < R and since nl(R) = Nonl(ul(NO)) < @(NO) = ul(G) s

2
then G' £ Ql(R) . Therefore, G' is cyclic, Let g' =< cleP =1> .

P ! ' ' '
Then ¢ eﬂl(G) . By Lenma 3.1, N, Ql(G). Since G < Nj,

N ul(NO) # 1 , which contradicts the fact that

0

NO is nonmetacyclic., Hence, NO must be abellan, that is, N0 = MO .

By (3.4), v;(G) hes index p> in G . This implies that

P
et € ul(NO) . Thus, N

ul(G) = Ul(M) for each metacyclic maximal subgroup M , whereby
ul(Mo)g ul(M) . Moreover, G' £ ul(G) from which 1t can be concluded
that G' £ v (Mp). If G M v (M) =1, then G' , as a subgroup of
My » must be elementary abelian of order p2 . Then, G'nl(ul(MO)) < ¥(G) .
! 3 oAt
But |G Ql(ul(l‘-’lo))| 2 p° from which it follows that @,(M,) = G0 (v, (M) < $(G).

This 1s a contradiction to Ny = My = 8(6)a,(6) . Thus, &' N uvy(M,) # 1 .

]
0 »
Consider now G/Rc') . Derote this by G . Since Ql(G) £ ¢(3) ,

0
By Lema 3.1, G N uy (M) =R

then nl('G') < ¢(G) . From Lemma 3.1 and Propositions 1.6 and 1.7, G is

— - - — —
of the form < a,b|a® =bP =2 =1, ¢ = [a,b], [d,c] = [b,c]l =1> .

— t
et a and b be elements of G such that aRE} = a and bR0 =b .

-_— J
Let ¢ = [a,b] . Then cR(') =¢ and cP e Ry . In addition,

M, = cp'(G)'n'l‘(G) < @(’G‘)nl(ﬁ) . If M« ¢(§)91(6) , then G = e, (@) .

Since G is Redel and normetacyclic, it follows that 01(5) =1 ., Thus,

m=1 and |G| = p3 . This is a contradiction to |G| > p‘4 . Hence,

My = «p(é‘)nl(e) . Since be M, , then beM;.
[a,b1° = [a,bP] . But, b° € v (G) = Z(G) which implies

By Proposition 1.5, this

leads to P

il

1. In particular, P =1, Consequently, G' is ele-
2

that [a,bP)

mentary abellan., From [nl(¢(G))| =p° and from G ¢ v1(G) , it follows
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that |Ql(ul(G))l =p . This, in turn, implies that u;(G) 1s cyclie,
It is now possible to describe the metacyclic maximal subgroups

of G . Let M be such a subgroup. Then,
m 1
M= <a,b|laP =1bP =1, [a,b] = B O

There exists an element c ¢ MO v M such that cP =1, Then,

G=MclcP=1>,

Both [b,c] and [a,c] belong to G . Also, b e Ql(M) < #(@) , so

that b e 9,(e(G)) = G' . But then, be M, . Hence,
m-1

[byel =1 and [a,c] = a’? p°

, S Z 0(mod p) .

Let ¢, = ct where t 1s such that ts = 1(mod p) . Since

g » then [[a,c], ¢ =1 . By Proposition 1.5, [a,c]t = [a,ct] .
trp“*l
Thus, {a,c.] =2 b .

[a,c] € M

trptL p
Let bl =a b, then bY =1 and bl £ 2(G) (otherwise,

m— m-1
b e z(G) . Now [a,b;]=[a,a®P 'b)=aP since

£ m=1

atfP " ¢ Z2(G) = v,(G) . Also [bj,e;1=1 and b, ¢ ¢(M) . Thus,

m m~1
M= < a,bllaP = b2 =1, [a,p;]=aP = >and G =M< c

D _
1 1=1>

1le

where [a,clj =b; and [bl,cl] =1,

This is the group of type (6) in Thecrem 3.1.

Now suppose that |G} = pl‘l . Then, Njy=ga,(N;) =2,(@) ,

7(G) = R. = v (@) with order p , and G' has order p2 . Since N
1

0 0
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is regular (elther abelian or Redei), then UI(NO) =1, It follows

from G' < NO that G' is elementary abellan of order p2 .

Suppose that NO i1s abelian. There exlsts then a nonabelilan
metacyclic maximal subgroup M with defining relations

2
M=<a,blaP"=bP =1, {a,p] =aP > .,

There exists an element c ¢ NO v M, By the argument that has been used

for |G| > p” , 1t follows that

G =M< cjc® =1 > where [a,e] =b and [b,e] =1,

which is the group of type (6) in Thecrem 3.1,

If, on the other hand, NO is nonabelian, then the abellan

maximal subgroup M. 1s metacyclic and has defining relations

0

2
M,=<alaP =1>®<b|oP =15,

0
Then G =<a’ >®<b > and Z(G) =R6=ul(G)=<ap>. There exists
an element czNomMO and

G = [Myl< el =15,

' t
- - p
RO = Ul(G) = < a >

Since both b and c¢ belong to N, [b,c]l e N

Also, [a,c] e G' ~ Z(G) . Thus,

[b,el =a™ , r Z 0(mod p) and [a,c] = aSPpt , t Z 0(mod p)
= 55P,C D _
Let by, =a™b” . Then, by =1 and Dby e My~ Ul(MO) . Then

2
M,=<alaP =1>@«< b1|b1i 1>. [by,el= [aSpbt,c] = [bt,c] . Now

0
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[b,c] € Né = Z(}fy) so by Lemma 1.3, [bt,c] = [b,c]t . Denote tr by u.,
Then u Z O(mod p) and [by,e] = a’P
It is now possible to drop the subscripts to get G = My< cleP =1 >

2
where My = < a,plaP =b”’ =1, [a,b] =1>, [b,e] = a"P where

u Z O(mod p) and [a,c] = b . These relations glve rise to [b,c®] = a®¥P

and [a,c%] = a0(a-1)p/Z 0 . For o Z0(mod 3), G-= Mg< ¢® > . Thus,

o aa(u—l)p/2ba

for C;=c¢ , and bl = , then
- P2 _ P
(3.5) G = Mg< ¢y > vhere M, = < a,blla =b; =1, [a,b1] =15,
la,e;] =1, and [b.,c.] = 202up
%1 1 12€1 .
Now u Z O(mod p) so there exists v such that wvu = 1(mod p) .

If u 1s a quadratic residue, then v 1s a quadratic residue, that is,
there exists a k such that k2u =1. If u 1s not a quadratic residue
and t 1s not a quadratic residue, then from tvu =t it follows that
tv 1s a quadratic residue. Then there is a k such that kgu =t .,
Thus for s e {1,t} where t 1s a quadratic nonresidue, there exists a
k such that k2u = s , Hence, it can be assumed, without loss of
generality, that u2u is either 1 or a quadratic nonresidue.

Since Z(G) < G’ s, G hasclass 3 , If p> 3, then from
Proposition 1.7(a), G is regular; it follows that a group will exist
for each value of r . However, if p = 3, then the proof of Lemma 3.3
has shown that @,(G) = G when the quadratic nonresidue ou is equal
to 2. Hence, for p=3, a2u can only be 1 ,

The groups satisfying (3.5) are the groups of type (7) in

Theorem 3.1.
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Case 2: Ql(G) < ¢#(G) . Then, nl(M) = Ql(G) for each maximal
subgroup M , whereby each nonabellan maximal subgroup is normetacyclic.

By Proposition 1.6, Rj

normzl in G . Since M'M ul(M) = 1 for each nonabelian maximasl sub-

is the only maximal subgroup of G' which is

group M , it follows that G'M v (M) = 1 . Now by Lemma 3.2,

lg'| = p2 . If G' 1s eyclic, then M < v, (M) which is a contradic-
tion to G N ul(M) =1 . Thus, ¢ is elementary abelian, This implies
that ul(M) is cyelic., Consequently, for the ncnabelian Redei subgroup
RO R

Ry =<ablal =bP=cP=1,c=1[ab], [byel=la,cl=1> .
To determine the relation between G' and ul(G) suppose that
G'M v (@) =1. Since (¢(G): ¢(M)) = p for each nonabelian maximal
subgroup M , then ul(G) = ul(M); SO ul(G) is cyclic. Let G/G' =
<X>@®<y> where | and '§pB=l . Let x and y be
elements from G such that xG =X and yG' =F . Then 2 e '

B ' B
and y* ¢ G' where o, 83> 1. Since G'Nu(G) =1, ' =y" =1,

However, since Ql(G) < &(G) , then a, 8 > 2 . Thus, #(G/G")

<> @« ;p > . Now ¢(G/G') is isomorphlc to ul(G) , which 1s cyclic;
1

accordingly, either e or yp eG . Thus, one of o« or B = 1j

a contradiction is reached. Hence, G'N v (@ # 1.

f

0
It now follows that G/R, 1is nommetacyclic and Redel. &(Ry/Ry) is

In view of Proposition 1.6, R, < ul(G) . Then (G: ul(G)) = p3 .
L]

isomorphic to v (R,) and has index p° in RyRy . Since Ry/R; is

abelian, ﬂl(Ro/Ré) has order p2 . But, since G/Ré is nonmetacyclic,

nl(G/R(')) has order p3 . Thus, there exists an element d ¢ G/Ré
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such that d° = 1 and G/R('J (RO/R(')) <@ > . Then, there exists a

1]
0 such that dRO

It may be assumed that aP

de G~ R d . Hence, dp=1anddpeR(')=<c>.

¢ ( If not, then d° = ¢® where o ¥ O(mod p).

There exists a y such that vyo 5 1(mod p) and (cl"f)p =c¢ ., Then &

can be replaced by d' ). Consequently,
G=R0<d|dp=l> where & =c¢c .

Moreover, there is a maximal subgroup M such that deM . If M is

nonabelian, then dP = Réﬂ ul(M) =M N ul(M) =1, which is a contra-

diction. Thus, M 1s abelian, that is, M =M, . Since be Ql(G) <M

0 b ]
then

[by,d] =1.

Ir [a,d] € Ry , then it follows fram G/Ry = (Ry < d >)/R; that G/R)

is abelian, which 1s a contradiction. Thus,
fa,d] = b"a°F , r # O(mod p)

Let d) = a® where t 1is such that tr = 1(mod p) . [a,d] e My » sO

that [[a,dl, d] = 1. Then by Proposition 1.5, [a,d;] = bdlP . Let

b, = bd°P ., Then by # Z(G) = &(R)) and by e @,(G) < #(G) . Also,

1 1
[a,by] = d{p . Hence,

1

G = Rye d1|d11) = 1 > yhere < a,blla =bIlJ=cp=l,c=[a,bl],[a,c]=[bl,c]=1 >

[a,dl] = by, [bl,dlj =1 and ¢ = I:fL'p for r Z O(mod p) .

This is the group of type (8) in Theorem 3.1.
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Lemma 3.5: Given hypotheses (3.1). If (G: #(G)) = p3 , then
la @] =

Proof: By Lemma 3.2, p3 < lnl(G)l < pu . Suppose that

b

l2,(@)| =p . By Lemma 3.1, G is regular. Then, (G: vy(G)) = pu

and (¢(G): ul(G)) =p . Since (M: ul(G)) = p3 for each nonabelian
maximal subgroup M , then Ul(G) = ul(M) and M is nonmetacyclic.

T —
Now, M'M vy(G) =M M v, (M) =1 sothat G =G/uy(6) , which has order

pLI , has precisely one abelian maximal subgroup Mo/ul(G) = MO . @ has

1

crder p and G =M = Z(M) for each nonabelian maximal subgroup M

of G .

Let xe G M then ¢(G)< X > has order p2 s 1s elementary

0 3

abelian, and is normal in G , Denote ¢(G)< X > by A . By Proposition

1.4a), (G: Cc_(A))< p; also, Z(C (8)) . If G=C_(R), then
G G

<
X e Z(G) . It follows from G = I‘vfo > that G is abelian, which is

a contradiction. Thus Ca-('fl) is maximal in @ . Since (CE(K): R) =
Cﬁ(i) is abelian. Consequently, CG-(K) = I_VI'O , which implies that

X € MO; a contradiction is reached., Hence, lﬂl(G)l =

Lemma 3.6: Given hypotheses (3.1). If (G: ¢(G)) = p3 and if

1

G then ¢(G)91(G) is a maximal subgroup of G . Furthermore,

1
_— RO s
G 1s the group of type (9).

Proof': Ql(G) is clearly a proper subgroup of G . Thus, three
cases must be considered.

Case 1l: Suppose that Ql(G) < #(G) . Then each maximal subgroup
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of G 1s normetacyclic., ILet x e G~ MO . There exists a maximal sub-
group R to which X belongs. R 1s nonabelian, which implies that
R'N ul(R) =1, Let G = G/ul(RO) , which has order pu . (@< X >

has order p° , 1s elementary abelian, and is normal in G . Let

=

=¢G)<x>. If K< Z(@G) , then K < Z(R) since K < R; consequently,

=l

is abelian, which is a contradiction to R'N ul(R) = 1 . Hence,
K £ 2(G) . By Proposition 1.4(a), CE(A_) has index p in G . But
R < Z(Cﬁ(ﬁ)) , Whence CE(K) is abelian. Thus, X ¢ MO from which it
follows that x e My; a contradiction is reached, Thus 0,(G) £ ¢(G) .
Case 2: Suppose that ¢(G)2;(G) has Index p2 in G . Then
@(G)ﬂl(G) is abelian and nonmetacyclic. Dencte ¢(G)91(G) by A .
There exists a maximal subgroup A* which contains A . A* 1s non-
metacycllic since A 1is nonmmetacyclic.

The regularity of G implies that (G: Ul(G)) = p3 . Thus,

L]
G < ul(G) . If each element x , for which xP e ' , 1s contained in

¥
A, then G' < v (A) <v (") . If A" were nonabelian, then
A*¥'n ul(A*) =GN ul(A*) # 1 , which is a contradiction. Therefore,
A* is abelian. If, on the other hand, there exists an x e G such

that x £ A but such that x* € G' , then A< x > 1is maximal in G ,
is normetacyclic, and G' < ul(A< X>) . By the same argument used to
show that A* was abelian, it can be concluded that A< x > is abelian.

In either situwation, A 1is contained in the abelian maximal subgroup MO .

Suppose that there exists a normetacyclic nonabelian maximal sub-

1 _ — ]
group Ny . NyN ul(NO) =1. Let G= G/ul(NO) , which has order p' .

G has order p and G has precisely one abelian maximal subgroup

M

5 - Now, ul(E) = ulZGf , which has order p . From the regularity of
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- 3 = o
G, |nl(c';')| =p” . Then, Ny=a,@ . Let xeN

xP ¢ vy (Ny) 5 but X g zZ(Ny) = 2(@) = ¢(@ . By Proposition 1.4(a),

~ 9(G) .

C-G-(¢(§)< X >) has index p . Thus, it follows that C—G—(da(§)< X ») is

abelian, that is, c6(¢('§)< X>) = My -

= CE(E) for each x e N

In view of the fact that x

o v o), M, 0
However, for X e ¢(G) < M, , -I\'/TO = CG(D . Thus, MO = CG(N-O) , which

is arbitrary in N v o (G) .

implies that Moﬁ Ny = Z(NO) . Hence, Nj

diction is reached. Then, IVI0 is the only normetacyclic maximal sub-

1s abelian, and a contra-

group, and MO 1s the only maximal subgroup containing A .

Let R be any metacyclic maximal subgroup. Ql(R) = Ql(fb(G)) s
so that R has the defining relations R =
< a,b|apm= bP = 1, [a,b] = apm-l ,m,n»2>., G =< apm—l > and
#(G) = #(R) = < a® > ® < bP > . There exlsts an x e Mg ~ R such that

x®=1. Then, A=2¢(G)< x> . Now A< b > 1s a maximal subgroup of

I

G . Thus, A< b > = MO . However, A< a > 1s a maximal subgroup of G;

so, A<a>=M Hence, R=<a,b > = MO » which is a contradiction.

0 -
Consequently, (G: ¢(G)$21(G)) # p2 .

Case 3: ¢(G)a,(G) is a maximal subgroup of G . Denote
#(@)2,(G) by M. Then, 2,(6) = 2,(M) . Since |a,(@)] =p>, M is
not metacyclic. Now, |¢(G)N ﬂl(G)l = p2 . Since G 1is regular, then
by Theorem 1.6, each element of Ql(G) has order p . Therefore,
Ql(tb(G)) = 3(G) N Ql(G) , Wwhich implies that ¢(G) 1is cyclic. Let
y e #(G) such that y® =1, G'<y > is both elementary abelian and
normal in G , so that by Proposition 1.4(a), (G: CG(G'< y>)) <p.
Since y ¥ Z(G) , CG(G'< ¥y >) 1s a maximal subgroup of G . But,
2(@)< y > £ Z(C(G'<y >)) and (C (G'<y >): e@<y >) =p, from

which it follows that CG(G'< y >) 1is abelian, that is, cG(G'< y>) =M, .
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Since y 1s arbitrary, Ql(G) < MO . Thus, ¢(G)91(G) = MO .

Let R be a maximal subgroup of G , R # My . RN Ql(G) has

order p2. Therefore, R 1s metacyclic with &(R) = #(G) cyclic.

m
Then, R =< a,blaP =b’ =1, [a,b] = aP™ 1 . | There exlsts an

element c¢ e MD ~R suchthat c® =1 and G=R<c > . Since
be Ql(G) < MO , [byel =1 . Moreover, a' <<a>, whereby <a>qaG.

Now, < a > has index p2 in G; then, < a »><c > is a maximal sub-
m1
group of G which is not abelian. Thus, [a,c] = a'P . let t Dbe

such that tr z l(mod p) and let ¢, = tog < Z(G) so that by

1=¢
t m—1 1
Proposition 1.5 [a,c;] = [a,ct] = [a,c) = AP 2 P . Hence,

m m-1
G = R< cl|0§ =1>uhere R= <a,blaP =v°=1, [a,p] =a° >,

m-1
[2,c,0 =aP ~ and [b,e;]=1.
This 1s the group of type (9) in Theorem 3.1.

Lemma 3.7: Gilven hypotheses (3.1). If (G: ¢(@)) = p3 and

if Ré < G , then elther 2,(G) < #(G) or (G)2,(G) has index o2 .
If Ql(G) < ®(G) , then G is the group of type (11). If

Ql(G) < ®(G) , then G is the group of type (10).

Proof: Let A be a normal subgroup of G, minmimal with the
preperty that M' < A for each nonabellan maximal subgroup M . Each
maximal subgroup of G/A 1s abelian, so that G/A 1s elther Redel or
abelian. If G/A is Redel, then (G/A: 2(G/A)) = p2 , which contradicts

the hypothesis that (G: #(G)) = p5 . Thus G/A is abelian. Hence,
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t

G = A . This implies that

(3.6) G has at least two maximal subgroups with distinect commutator

subgroups.

Furthermore, ' is elementary abelian.

Since G is regular, then by Theorem 1.6, each element of
2,(G) has order p . Therefore, since 6 < 2, @), le(G)N Ql(G)I > p2
and (2,(G): (@) N 2,(G)) < p . This implies that (&(G)(G): ¢(G)) < p
and that ¢(G)91(G) is abellan.,

Case 1: ¢(6)2y(G) has index p° in G . Denote (G)2y(G)
by Ay . ¢(G)ﬂﬂl(G) has order p2 and by Theorem 1.6 equals
,0¢(G)) . Since l¢'] > p2 , 1t follows that G = f,(e(@) .

There exlsts a maximal subgroup M such that Ql(G) A M.,
Then, [Ql(M)| = p2 , which implies that M is metacyclic. Thus,
ul(M) = ¢(G) . For each maximal subgroup M* of M, G < (@) =
ul(M) <M so that M* a @ . Hence, M*nl(G) is a maximal nonmetacylic
subgroup of G . M has p+l maximal subgroups in all, each of which
determines a noermetacyclic maximal subgroup of G . G then has at least
p+tl nommetacyclic maximal subgroups, of which at most one could be

abelian. Thus, let R be a nonabelian, nonmetacyclic maximal subgroup

of G . Since Ql(R) £ ¢(G} = ¢(R) , then R 1is of the form
R=<a,nlal =P =cP =1, c=[anbl, [a,c] = [bye] =1 »

Suppose that the abellan maximal subgroup M, 1s metacyclic,

0
Then, ul(MO) =¢(R) =<aP>@<c> . By Theorem 1.6, there exist
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elements x and al in I‘J’l0 such that % =¢ and a‘lj =aP .,

However, x ¢ R so that My=<x>®<a; > . Let R* = ¢(G)< x > .
2

* * * *
R «G and (G:R") =p Also, b £ R , since R 1s a subgroup

of the metacyclic group MO . Thus, R*< b > is a maximal subgroup of
G , is nommetacyclic, and is nonabelian., In view of the fact that

b £ o(G) = ("< b >) , then [a (e(R% b )| = »° . Since

(R*< b >)'N ul(R*< b >) =1, it follows that ul(R*< b >) 1s cyclic,
But xP ¢ ul(R*< b >) and ap2 £ ul(R*< b >) so that

xP e ﬂl(ul(R*< b>)) =< At Thus, ¢ € < am L , which is a
contradiction unless m= 1 . Consequently, |R| = p3 , |g] = pll and
|G'| < |#(@G)| = p; a contradiction is reached. Therefore, the abelian
maximal subgroup MO of G 1is normetacyclic.

Consider G = G/v (R) , which 1s nonabellan of order pu . R
is a nonabelian maximal subgroup of G . Since |u1('§)| = p , then by
the regularity of T , it follows that ©(®) = 2,(R) =R . Let R’
be a normetacyclic, nonabelian maximal subgroup different from R .

[ 3]

—H —_ — — —
If R' <v(R), then RN My=2(@ . Then, &,=25(G) . But,

A05

r*' £ ul(R) and R* 1is nonabelian. Moreover, ﬂl(ﬁ*) = RN 91(5) .

R, so that K 1s abellan, which is a contradiction. Hence,

Thus, |ﬂl(ﬁ*)| = p2 , from which it follows that R* is metacyclic.
Therefore, there exists an element x In R* such that <% > =R¥' =
Z(R*) . Since X £ Z(R*) , X £ 2(G) . By Proposition 1.4(a),

C§(<3'('>) is maximal in G . But <X > < Z(C-G-(<§>)); thus,

Cxl< X >) dis abelian. Since R* = <X><bB >, D ¢ Cxl< X ») . However,
b e W , which implies that Cg(< X >) 1s not the image of any non-
metacyclic maximal subgroup of G . There exlsts, then, a metacyclic

— —_ 1
maximal subgroup M such that M = C§(< X>). Thus, M =< s,
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From G = MM , it follows that Z(G/M') has index p° and
that Z(G/M') « RO/M' . There exists a y ¢ M such that y # R and
wY=ceR' . G'<y> 1s abelian of type (2,1) but y ¢ Z(G) . By
Proposition 1.4(b), cG(G'< y >) 1s a maximal subgroup of G .
¢(B)< y > < 2CH(a"< y »)) , which implies that C,(G <y >) is

abelian, that is, CG(G'< y>) =M Thus, y e M,A M . If o is

0 ° 0
the natural homomorphism a: G -+ oM’ , then ya e Z2(G/M') . Further-

more, [a%,y*1 =1, [(b*y*1 =1, and [c%y"] =1 . Since both b

< aPmml > 80 that

and y belong in My, [b,yl=1. [a,yle M

l,,]cm—l
[a,y] = & ,  Z 0(mod p) (otherwise a' = R(')) .
S

. Then y113=y5p=c . Let

Iet s be such

that rs = 1(mod p) and let ¥y = yS

S S

=c® and let b, =b Since [a,b]l =c e G < Z(G) and

¢ 1
1
[a,y] € G < Z{(G) , then by Proposition 1.5 [a,bl] = ¢y and
m=1
[a,yl] = gP . Thus,

m 2 m-1
G= 8§ < bl|b§ =1 > where S = < a,yllap = yll) =1, la,y;]1 = aP >,

[a,o;] = y> and [b,y;1=1.

1291
This is the group of type (10) in Theorem 3.1.

Case 2: Ql(G) < #(G) . Then, each maximal subgroup of G is
normetacyclic, From the regularity of G , (G: ul(G)) = p3 and
#(G) = v(G) . Let R; and R

0 1
with RE) # Ri . Two such subgroups exist by (3.6). Consider G = G/R('j .

be two nonabellan maximal subgroups,

This factor group has two abelian maximal subgroups R, and M, , so

that Z(F) has index p° in G . Tt follows that G has at least p+l

abelian maximal subgroups. Let A

1 be a maximal subgroup of Rl .
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Ry < ¢(G) = ¢(R)) < A, , and Z(B) A, 1is abelian maximal in G . Thus,

each maximal subgroup of Rl determines an abellan maximal subgroup of

G . Conversely, 1f M 1is an abelian maximal subgroup of G , then

Z(G) <M (otherwise, G would be abelian). Mnﬁl is maximal in R,

which is nonabelian and Redei. Thus, (MNR)Z(@E) = Z(E)ﬁlﬁ M=
GNM=T. Hence, there is a one-to-one correspondence between the
maximal abelian subgroups of G and the maximal subgroups of R, , that
is, G has exactly pt+l abelian maximal subgroups. Therefore, G has
exactly p nonabelian maximal subgroups with the commutator subgroup

t
RO . In view of the fact that RO is arbitrary, the nonabelian sub-

groups of G are separated into classes where the subgroups in each
class all have the same commutator subgroup. Moreover, there are p
subgroups 1in each class. Since there are p2+p+l maximal subgroups
[15, p. 311] of which p2+p are nonabellan, there are pt+l distinct

classes, that is, ptl distinct commutator subgroups.

Let NO be a nonabelian maximal subgroup. Noﬁ M, has index

0
p2 in G and is normal in G . There exists a y ¢ N0 N MO such that

wWEL. Ny = (MO(‘\ N0)< y> and G=My<y>. Also, there exists an

X ¢ My~ Ny such that =P #1,My= (MNN)J<x> and G=Ny<x>.

0 0
#(G) Ny » which is a contradiction.

If [x,y]l =1, then x e Z(G)

1A

In

Thus, [x,y] # 1 . Now, N6< [x,y] > < G' and |N(']< [x,y] >] < p2 .

Since G' < 2(G) , then Ny< [x,y]> <G . Let a be the natural

o
0

(Mg N N0)°‘< Xt >)ey® > . Bug, (MgN NO)“< y* > =Nj , which is

mapping a: G - GMNj< (x,9] > . 0% = G/MNg< [xy] > . 6% =M<y > =
a

abelian. This implies that < y* > < CoalMgN Ny~ . Also, since

[x,y] € N(')< [x,y] >, then < y% > < CG°(< x* >) . Thus,

<y* >« CGa((Moﬁ No)u< x*5) = CGG(MS) . Since Mg 1s abellan, 1t
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follows that G* =M< y* > is abelian, that s, G' g Nc')< [x,5] > .
In addition, since |G'| > p° , then [x,y] # N(') and G = N(;[x,y] .
Since G 1s regular, then by Theorem 1.6, each element of ul(G)
is the pth power of an element of G . Since d:(NO) = ul(G) s there
exists 2 2z ¢ G such that < z° > = N(') . However, Nc')(‘\ Ul(NO) =1
whereby z £ Ny . Now, G'<z> is normal in G , is abelian of type
(2,1) but is not contained in Z(G) = ¢(G) . Thus, cG(G'< z >) 1is
a maximal subgroup of G by Proposition 1.4(b). Purthermore, Z(G)< z >
has index p in CG(G'< z >) and Z(G)< z > < Z(CG(G'< z >)) . These
imply that CG(G'< z >) 1s abelian. Thus, M0 = CG(G'< z >); and
accordingly, Ny < uy(My) . From the fact that N, 1is an arbitrary
nonabelian subgroup of G , it follows that G < u (M) .
For each subgroup 2, (for 1 =1,2,+++,ptl) of G of order
p , there exists, by the argument used in the paragraph above, an element
2; € My~ #(G) such that z1D2 =1, and such that 2, = < 2 > ., Let

i 1 1
*

My =< z|i=1,2,"",pFl > . Then, Mj is abelian but is rot contained

1 *
in ¢(G) . The exponent of M, is p2 ,and G = nl(MO) = ul(ME) .
M

*
0

% ¥, 2 ¥
Tnerefore, fram the regularity of G , (My: v;(My)) =p°, Mgl =p
and Mg has exactly ptl maximal subgroups. Each maximal subgroup of
M; corresponds to a distinct commutator subgroup of a nonabelian maximal

subgroup of G ; that is, G'< Zy >, for each 1 = 1,2,¢¢+,p+l , is a
*

0 - If ¢(G)M; 1s properly contained in M, ,
* % *
then ¢(G)N My 1s a maximal subgroup of M, . But then, (G N My =

G'< 2y > where < zg > = Zi < G¢' for some 1= 1,2,°,ptl . Consequently,

e ¢(G) , which is a contradiction, Thus, <I=(G)M; =My, and M

maximal subgroup of M

*
i 0

contained in no nonabelian maximal subgroup of G . Then, for a nonabelian

Z is
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_ # * *y _ *
maximal subgroup NO , G = NOMO . (MO. Nofﬁ MO) =p , so that Nor\ M,
is a maximal subgroup of M; . Or\ M; =G<z>

for some 2z e My~ ¢(G) of order p2 . Herce, z e N, , and

This 1mplies that N

< 2P > = Ni for some nonabelian maximal subgroup Nl different from

N0 .

m
Suppose that N, =< a,bjaP = pP? = P = 1, ¢ = [a,b], [a,c] =

0
[b,e] =1> . Since Ql(G) = Ql(NO) < @(NO) , then both m, n> 2,
rs t

Let z=ab’c” . 2z ¢ ¢(G) , so that at least one of r, s # O(mod p);
2 2 2
say s #0(med p) . 1=2F = (a'd°)?" . By Definition 1.4, (a'b°)P =
2 ane D 2 2 and
a'P P gdg where di € < a,b ', Thus, (arbS)P = g" P3P - ,
2

2
from which it follows that &' =1b"P , Then, r = O(mod p“hg) and

s = 0(mog pn'2) . But then, s = O(mod p) , which is a contradiction

% =2 _R 2
unless n = 2 . Therefore, z = a" P b5’ and b = @ TP g t) s

for some r . Let ¢, = [a,z] = ¢® . It follows that
B . g0t - P
N, = < a,z|aP = zP = cij =1, ¢ = [a,z], [a,cl] = [z,cl] =1> .,

By the argument used earlier in the proof, there exists an element

2
weM. ~vN. forwhich P =1 and o = c

0 0 Then,

2
G=Ng<wle® =1> .

Since both z and w are in MO R

[Zyw] = 1. -

D

Now, [w,a] € G' =<z sCp > but [w,a] £ < c, > (otherwlse <w > aG

1
and < w >< a > 1s a nonabelian subgroup of index p2 in @).
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Let
[w,a] = c?sz where v # 0 .
If u # O(mod p) , then there exists an x such that xu = 1l(med p) .
Let
=a* and z, = 2" .

a1 1

Then [al,zl] e Ny

< Z(@) , so that by Proposition 1.5, [a),2,]1=cy .
Then
P p®_ p
NO = < a,leal = Zl = Cl = l, Cl= Eal,zlj, [al’C].] = [21,01] =1> .

Also, [m,a1] e G < Z(G) , which implies that [m,al] = clz}{gvp . Hence,

2
G =Ng< w[eP” = 1> where P =c; and

(3.8)
[m,al] = clzkp for k Z 0(med p) .

If u=20, then

m 2
<a,zlaP =2P" =cP =1, ¢c=1[a,z]>,

2
G = Ny< w|wP =1 > where N,
(3.9)

W* = ¢ and (w,a] ZP for r Z 0{(mod p) .

The groups in (3.8) and (3.9) are the groups of type (10) in

Theorem 3.1,

Proo? of THEOREM 3.1: Let M, be the abelian maximal subgroup

0

and let R, be the Redel maximal subgroup. By Proposition 1.1,

0
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Z(RO) < ¥G) ¢ M It follows from G = ROMO that Z(RO) < Z2(G) .

O .

But Z(G) = Z(Ry) , since G ¢ 4 . Thus, 2(G) = Z(R)) and

A

(G: Z2(G)) p3 . Furthermore, by Proposition 3.3, each Redei subgroup

R is a maximal subgroup and Z(R) = Z(G) .

If G 1is metacyclic, then by Theorem 2.4, G e /¥; so, each
maxlmal subgroup is a Redel group. This 1s a contradiction to the fact
that MO is abellan. Hence, G 1s not a metacyclic group.

Two possible situations arise. Either each maximal subgroup of
G 1s metacyclic or there is at least one nonmetacyclic maximal subgroup.
The case where there is a nommetacyclic maximal subgroup has been
examined in Lemmas 3.1 through 3.7 , and the groups have been character-
ized,

For the case where each maximal subgroup 1s metacyclic, by
Theorem 1.10, it fellows that G 1s a 3-group of class 3 and order 3“ .
By Theorem 1.9 (G: v (6)) = p . Thus, vy(6) = 2(6@) = Z(R) = v (R)
for each Redel subgroup. Also, since the class of G 1s 3, || = 32,

If there exists an element x £ G~ G such that xP = 1, then
there exists a maximal subgroup M such that x £ M. Is'zl(M)[ =32,

Thus, Iﬂl(M)< x> = 33 . But Ql(ﬂl(M)< X >} = nl(M)< x > , so that
gl(M)< x > 1s not metacyclic, which is a contradiction. Hence, ¢ = Ql(G) .
Then, ul(G) =< a3 > and G = < a3,b > . There is an element

2
¢ceM ~R, suchthat o3 =1 . Then,

0 0

2
G=R0<c|c3 =1>, (b,el] =1 and 3 =2 for r Z 0(mod 3) .

Now, [a,c] = bsa.3t where s Z O(mod 3). There exists s* such that
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ss® = 1(mod 3). Let

S*

Cl=C and b. =

3st
1 bx .

Then, by Proposition 1.5, [a,cl] = by . Also, [a,bl] =33 , and
[bl,clj = 1, Hence,

G=R.x<c |c32 = 1 > where R, = < a,b [a32 = b3 =1, [a,b,] = 33 >
o "1'71 0 1 ? 1

3

[cl,blj =1, [a,clj = b, and cg = 2% yhere u Z 0(mod 3) .

This 1s the group of type (1) in Theorem 3.1,

Each of the eleven types has been constructed from a specific
case which relates the characteristic subgroup Ql(G) to the character-
istic subgroup ¢(G) . It is clear, then, that these groups are palr-

wise nonisamorphic.

It should be noted that the group of type (2) in Theorem 3.1

1s the group Cs 1 C, of Example 1.1.
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CHAPTER IV

ALL SUBGROUPS OF A FIXED INDEX ARE REDEI

In this chapter the groups in 3’ *A @ with a Redel maximal
subgroup are characterized., It follows as a consequence of this char-
acterization that class A is "almost equal" to class 3
Furthermore, for p > 2 a second characterization is found for the

nonabellan metacyclic groups.

THEOREM 4.1: If Ge J ~R andif G has a Redel maximal
subgroup, then

(a) G has a normetacyclic maximal subgroup,

(b) Z(G) = vy(@) »

(e) ' is elementary abelian of order p3 .

@ (G: ¢@) = p° ,

(e) no two Redel subgroups have the same commutator subgroup.

Proof: Since G has a Redel maximal subgroup, then by Defini-
tion 1.3, each maximal subgroup of G 1s Redei. Since G ¢ A , there
exists a Redel subgroup Rj such that Ry < C,(Z(Ry)) . Then,

G = CG(Z(RO)) and Z(Ry) < Z(G) . But Proposition 1.3 implies that
Z(G) < Z(Ry) . Thus, Z(G) has index p°> in G . In addition, it
follows that Z(G) = Z(R) for each Redel subgroup R of G .

If all the maximal subgroups of G are metacyclic, then by

Theorem 1.10 elther G is itself metacyclic or |G| = 3, However, if

G 1is metacyclic, then by Theorem 2.4, G e R* , Which 1s a contradiction
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to G ¢ R . If, on the other hard, |G| = 3%, then G has an sbelian

maximal subgroup by Proposition 1.U4(c), which is a contradiction to
G e é?* . Hence, G has at least ocne nonmetacyclic maximal subgroup,
say Ny . Since Ny 1s Redel, then (Ny: uj(Ny)=p> and Ny v (Ng) = 1.
To show that 2Z(G) = ul(G) , first suppose that ul(G) = ul(NO) .
Since each maximal subgroup M is a Redel group arnd since (M: ul(M)) < p3,
it then follows that v (G) = v (M) . Thus, (M: v,(M) = p> for each
maximal subgroup M . Also, NyM v (G) = 1, which implies that G/u(G)
is nonabelian. By Proposition 1.4(e), G/ul(G) has an abelian maximal
subgroup Mo/ul(G) . Then, Mé < ul(G) = Ul(MO)5 consequently, @(MO) =
ul(MO) , and (MO: @(MO)) = p3 . This is a contradiction to the fact that
My 1is a Redel subgroup. Therefore, ul(NO) < Ul(G) . Moreover, for each
X € G , there exists a maximal subgroup M such that x € M . Then
e v (M) < ¢(M) = Z(M) = Z(6) . Thus, v (G) £ Z(G) . Since
(2(G): vy (Ny)) = p , then v (G) = 2(G) .
Now Ul(NO) , @s a characteristic subgroup of Ny , is normal in
G . G/ul(NO) is nonabelian of order pu , but by Proposition 1.4(c),
G/vy (Ng)has an abelian maximal subgroup My/(v (N,)). Since Né{j v, (N = 1,
it follows that NgM has order p° . Demote NgMy by A . A is normal

in G since both Né and M' are characteristic subgroups of N, and

0 0
MO’ respectively. G/A has at least two abelian maximal subgroups NO/A
and My/A . Also, Z(G/A) has index p° in G/A .

If G/A is abellan, then G =A . But A < Z(G) which implies
that the class of G 1s 2 . By Theorem 1.7(a), G 1is regular. Then,
by Theorem 1.6(b), each element in Ul(G) is the pth power of an element

'

in G . In particular, since N, < ul(G) " ul(NO) , there exists an

X e G~ Ny such that Ny = < x® > . Inview of the fact that G' < 2(@) ,
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G'<x><G; then G'< x > 1is abelian of type (2,1). By Proposition
1.4(b), CG(G'< X>) has Index at most p in G . Now, since

Z(@) = Z(NO) , then x ¢ Z(G); therefore, CG(G'< x >) 1is a maximal
subgroup of G . However, Z{G)< x > < CG(G'< X >) with index p .
It follows that CG(G'< x ») 1s an abelian maximal subgroup, which is

a contradiction., Thus,
(4.1) G/A 1s nonabelian and |G'| 2 p> .

Suppose that (G: ¢(G)) = p3 , that is, ¢(G) = ul(G) =Z(G@) .
Then, G < 2(@) and the class of G is 2 . By Theorem 1.7(a),

G 1is a regular group.

Let K be a subgroup of G minimal with the property that it
contains the comutator subgroup of each of the maximal subgroups.
A<E<G . RsZ(G) sothat K< G . Each maximal subgroup of G/&
is abelian, which implies that G/A is either an abelian group or a
Redel group. If G/A is a Redel group, then ¢(G/A) has index p2 in
G/A . But, (G: #(G)) = (G/A: ¢(G)/A) = (G/A: ¢(G/R)) . This is a
contradiction to (G: ¢(G)) = p3 . Thus, G/A is abelian and & = ¢ .

Since G/A 1is nonabelian, A < A . Therefore, there exists a
maximal subgroup R of G such that R' £ A . Since G' < Z(G) , then
AR' 1is elementary abellan of order p3 . Also, AR' < NO , which implies
that AR' < Ql(NO) . Let 3 be a maximal subgroup of G different from
R, N

and M, . AR'S' <E< Ny and AR's' 1s elementary abelian so

0 0
that AR'S' < @ (N,) . However, lﬂl(No)l =p3 since N, 1is normeta-
cyclic. Therefore, AR's' = AR' » Since S 1is any maximal subgroup,
AR' is a minimal subgroup of G' containing the comutator subgrcup of

each maximal subgroup. Hence, AR' =K =G . Thus, |G| =p3 and G
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is elementary abelian.
]
G < M for each maximal subgroup so that G' < nl(M) < Ql(G) .

However, since G is a regular group and since (G: ul(G)) = p3 , then

o, (@] = p?

. Thus, G =a,(M) = 2,(G) . It follows, therefore, that
(M: Ul(M)) = p3 and that M d1is nonmetacyclic. Each maximal subgroup,
then, 1s a nonmetacyclic subgrcoup.

The fact that G/3(G) is elementary abelian of order p3
implies that G/¢(G) has p2+p+1 maximal subgroups [15, p. 311]. Thus,
G has ptptl maximal subgroups. If M =N' for two distinct maximal
subgroups M and N , then by Theorem 1.6(b), there exists an x e G
such that M'= <x? > . Both M and N are nonmetacyclic, which iImplies
that x ¢ M and x £ Nj in particular, x ¢ Z(G) < MAN , However,
<x>494M and <x>aN ., It follows that < X > 4 G, By Proposition
1.4(p), CG(< x >) 1s a maximal subgroup of G . However,
Z(G)< x > < Z(C,(< x >)) and (Cy(< x >): Z(G)< x >) = p , whereby
CG(< X >) 1s an abelian maximal subgroup of G . This is a contradic-
tion to G e 3 ¥ Hence, no two maximal subgroups of G have the
same camutator subgroup.

Now, G/NC‘J has precisely one abelian maximal subgroup, ard
p2+p nonabelian maximal subgroups. Let MO be a maximal subgroup
different from Ny . My < u,(G) , so there exists, by Theorem 1.6, an
element x e G such that < xP > = M(; . In addition, MO is non-
metacyclic which implies that x ¢ My . Denote G/NC') by G. X has
'

1 i — ——
order p2 since MO#NC') . Moreover, G has order p2 ard G < x >

= -
has order p> . Since G' < Z(G) , it follows that & < X > 1s abelian

of type (2,1). By Proposition 1.4(b), Ca-(f}"< X >) has index at most p .

Ir G<X><2@ ,then 2@ = 7)< X > , which has index p° in G .
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This implies that Z(G) 1s contained in no maximal subgroup other

than N0

Z(<y > 1s maximal in G; so Z(G)<

. Let T beany element of G~ 2(@ . If ¥ =1, then

>=N,. If ¥ # 1, then since

<

(@) < 2@ ,ZG)<y> 1smaximl in G, ard Z(@<y >=1H, .
Thus §=N'O,
which it follows that Cx(@ < X >) is maximal in G . Hovever,

which is a contradiction. Hence, T < X > £ Z(G) from

Z(@)< X > < Z(Ca-('('}"< X >)) and (CE(G‘< X >):Z(@)<x>)=p . Con-
sequently, C-G-(E'< X >) 1is abelian. This implies that x e N ,
that is, My < v (Ny) . Since M, is arbitrary, M' s u,(N,) for each
of the p2+p maximal subgroups different from NO .

Since N(’)ﬁ ul(NO) =1, ﬁl(ul(NO)) is elementary abelian of
order p2 . Then, Ql(ul(NO)) has pt+l subgroups of order p .
Therefore, G has at most pt+2 distinct commutator subgroups assoclated
with the maximal subgroups. This contradicts the fact that G has
p2+p+1 maximal subgroups with distinct commutator subgroups when
(G: 9(G)) = p3 . Hence, (G: 2(G)) = p2 , which proves part (d).

Fram (4.1), 1t now follows that G/A is a Redei group, that is,
'] =p> . Since vy(6) = Z(G) and since (8(G): v, (@) = p , then

1

G' # 2(G) . However, G' 1is abellan. If G' d1s abellan of type (2,1),
then by Proposition 1.4(b), CG(G') is a maximal subgroup of G . But
then, Z(G)G' < Z(CG(G')) and (CG(G'): Z(6)G') = p . These force
CG(G') to be an abelian maximal subgroup, which is a contradiction.
Hence G 1is elementary abelian of order p3 .

For the last part of the theorem et M and N be any two
maximal subgroups such that M' =N' ., Then GAN' has two abelian
meximal subgroups M/N' and N/AN' . It follows that Z(GN 'Y has index

p2 in G/AN' and that Z(G/N') = ¢(GN') . Therefore, each maximal
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subgroup of G/N' s abelian, whence G/MN' is itself abelian or Redei.
In elther case, |G'| < p° , which is a contradiction, Henice, no two

maximal subgroups have the same commutator subgroup.

THEOREM 4.2: Ir Ge § ~ R , if |G|3p6 for p > 3
and if each subgroup of index p° is abelian, then G has an abelian

maximal subgroup.

Proof: Since G £ R s G 1s not itself a Redel group. There

exists a Redei subgroup Ry < G such that Ry < CG(Z(RO)) . By

0
hypothesis, R, 1s a maximal subgroup of G ard G = CG(Z(RD)) .
It follows, therefore, that Z(RO) = Z(G) . By Proposition 3.1, G
has at most one abellan maximal subgroup.

Suppose that G has no abelian maximal subgroups, that is,

*
G e 5 . By Theorem 4.1, G has a nonmetacyclic maximal subgroup N
2

0 L]
I6'] = p3 = (6: 2(8)), 2(G) = v1(G), (G: ¢(G)) =p° , and ¢ is
elementary abelian. Now, G £ 2(G) , but (G : G' N Z(g)) =
(6'2(6): 2(6)) = (#(G): Z(G)) = p . Therefore, Gy = [6,G'] 5 Z(G)

and the class of G 1s 3. Thus, G 1s a regular group by Theorem
t

3 . Hence, G =Ql(G) .

th

1.7(a). By Theorem 1.6, Inl(G)l = (G: v (@) =p
Also by Theorem 1.6, each element of ul(G) is the p”"" power of an
element of G .

Let M be any maximal subgroup of G different from NO .
Ul(G) , there exists an X € G such

il

Since M' < o(M) = 2(M) = Z(Q)
that M' = <xP >, |g'<x>| = p“ , which by hypothesis, implies that
G'< x > is an abelian subgroup of G . Denote G/Né by G . By
Thecrem 4,1(e), ﬁo is the only abelian maximal subg;?oup of G .
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Then G < x > 1s an abelian subgroup of G of order p3 ard of
type (2,1). By Proposition 1.4(b), (G: CE(G <x>)) <p. If

G'< x> < 2(8) , then G'<x>_<_NO.

G< x> £7Z(G) , then CG(G'< X >} 1s a maximal subgroup of G .

If, on the other hand,

It follows from (Cﬁ(G'< x >): G'Z(G)) = p that CG(G < x>) is

abelian. Thus, G'< x > 1is always contained in N, - Consequently,
X e N0 and Mé < ul(NO) . Since M 1s an arbitrary maximal subgroup
different from NO , then the comutator subgroup of each nonabelian
subgroup different from Ny 1s contained in ul(No) .

4

Now, ul(NO) a G and |G/ul(N0)| =p . G/ul(NO) has the

nonabelian maximal subgroup No/ul(NO) . However, every other maximal
subgroup of G/ul(NO) is abelian., Hence G/ul(NO) has precisely one Redei
subgroup, which contradicts Theorem 1.1. Therefore, it is impossible

for each maximal subgroup to be nonabelian. So, G ¢ 3 ~ 3 * , that

is, G has an abelian maximal subgroup.

The above theorem shows that, for p > 3 , the minimal non-Redel

5

groups of class 5 ~ 0 with order greater than p~ are actually

groups of class 3 v 3 ¥ | These groups are included in Theorem 3.1.
To cbtain a complete classification of the groups in g v R with
each subgroup of index p2 abelian, there remains for p > 3 only the
classification of the groups in 3 ¥ R of order less than or equal
5

to p Fram Proposition 1.4(c), it follows that only groups of order

p5 must be considered.

THEOREM 4.3: If |G| =p° for p>3 andif Ge 3%~ R
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2
then G =My< c|cP =1>

2
where M, = < a,blaP = bP =1, d = [a,b] > ,
(4.,2)
[a,c] = b, cP = d° for s Z 0(mod p) and [b,c] = a'PctP

where r 1is 1 or a gquadratlc nonresidue mod p .

Proof: By hypothesis, G is not Redel. By Proposition 1.4(c),

G has at least one abelian subgroup of order p3 . Thus by Definition

1.4, each subgroup of order p3

pLI is Redei. By Theorem 4.1, G has a nommetacyclic maximal subgroup

is abelian and each subgroup of order

t

N G 1is elementary abelian of order p3 , 2(Q) = ul(G) , and G/N(')

0 L]
has precisely one abelian maximal subgroup NO/NS . G/N(') 4 3 * , but
by Proposition 3.2, Gy ¢ 5

A

Now, G3 = [G,G'] < Z(G) which implies that G has class 3 .
Thus, by Theorem 1.7(a), G 1is regular. But then, from Thecrem 1.6,
it follows that G' = @,(G) . Also, since Ny < Z(Ny) = Z(G) = v, (G) ,
g Such that < xP > N('J (Theorem 1.6). Let
G = G/Nc') , which has order pl1l . Now X e 91(5) , and G< x> < Ql(G) .

there exlsts an x ¢ G v N

Moreover, since G 1s regular, then |nl(@| = (G: ul(ﬁ')) = p3 . Thus,

91(5) is a maximal subgroup of G , Since x ¢ N Ql(f}_) is not

0 >
abelian. By Lemma 3.4, G 1is then the group of type (7) in Theorem 3.1.

Hence,

2
G=ﬁ<3l3p=l>whereﬁ =<3,b|ld® = =1[a,b]l=1>

0
[a,cl =

|
ol
2
-

B,cl = &P for r = 1 or a quadratic nonresidue mod p .

1 - —_—
There exlst elements a,b from NO such that aNO =ga and bNE) =Db,
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o Such that cN(')=€. Let

d=[ab] . Ten cPe<dld®=1>=Ny. Since c£G' =a,0),

and there exists an element ¢ e G v N

P#1. Tus cP =d° where s Z 0(mod p).

Now, [a,c] =bd? for some u . Let b, = bd” . Then
5, =5 and [a,b;] =d . Since [5,6] = &P , then [b),c] =2a™Pa" =
arpctp for some t .

The groups described in Theorem 4,3 provide examples which show
that class 3 * properly contains class Q . The next few thecrems
lead to the conclusion that for p > 3 , these groups are the only
groups 1in 3 * which are not in @ .

THEOREM 4.4: Ir p>3 andif Ge § ~ R , then 6| 2 p°

and each Redei subgroup has order pLI .

Proof: Since G e 3 * v R s there exists an integer 1 > 1
such that each subgroup cf index p:L is a Redel group. By Proposition
1.4(e), |G| _>_p5 .

Suppose that G has an abelian subgroup of order pu . Then,
each subgroup of order pl‘l is gbelian, Since G 1s not a Redel group,
it follows that |G| > p6 . Let R, be a Redel subgroup of G .
|RO| > p5 . There exists a subgroup R* of G such that Ry < R
and (R*: R) =p . 3 * isa subgroup inherited class, so that by
Theorem 4.2, R' has an abelian maximal subgroup, which is a contradic-

*
tion to R non-Redei. Thus, G has no abellan subgroup of order th .

THEOREM 4.5: If Ge § ~ R and if 6] »p% for p>3,
then Gtg*.
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Proof: Suppose that G e 3 *~ RO By Theorem 4.4, each
Redeil subgroup of G has order pll . Each subgroup of G of order
p6 also belongs to 3 *¥ . In particular, by Theorem 2.2 G ¢ R
Therefore, if a contradiction is reached for a subgroup of order p6 ,
then a contradiction is also reached for G . Without loss of generality,
it may thus be assumed that |G| = p6 .

Since each subgroup of order pq 1s Redel, then there is at
least one normal Redel subgroup R, . Z(RO) , as a characteristic sub-
group of R, , is normal in Gj G/Z(RO) has order pu . By Proposition
1.4¢e), G/Z(RO) has an abelian maximal subgroup MO/Z(RO) . Thus,

M('J < Z(RO) . By Theorem 2.2 My ¢ /£ . But then, as a consequence of

Theorem 4.1, Mé £ Z(G) , and a contradlction has been reached. Hence,

aft 3% .

Corollary 4.5.1: If p>3 andif Ge £~ R , then G is
a group described by (4.2).

The next thecrem characterizes for p = 3 the groups in 3 * R
with each Redel subgroup as a maximal subgroup. This result, along with
Theorems 2.2, 3.1, and 4.3, glves a camplete classification of the groups

in 5 , for which each subgroup of index p2

is an abelian subgroup.
THEOREM 4.6: If p=3,1f Ge "~ R ,andif G hasa
Redel maximal subgroup, then |G| = p5 and G is one of the following.
2 2
(1) G=Ngs ¢|e3"=1 > where Ny =< a,b|a3 =b3=d3=1, d=[a,b] >

3,.ds

is a nonmetacyelic group, [a,c] = b, c° = for same

s Z 0(mod 3) and [b,c] = 23?3 for some ¢ .
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2 2
(2) G = Ny c|e37=1 > where Ny = < a,bla3 =b3=d3=1, d=(a,b] >

is a normetacyclic group, [c,al = b, e3 = & for some

s # 0(mod 3) and [c,b] = a6ct3 for some t .

Proof: Since G has a Redel maximal subgroup, then each

maximal subgroup of G 1s Redei. It follows from Proposition 1.4(c),
>, By Theorem 4,1 ¢ is elementary abelian of order
2

that || > p

p3 , Z2(@) = Ul(G) , and (G: ¢(@)) =p By Theorem 1.7(b), G 1is not

a regular group. Since G' < ﬂl(R) for each Redel subgroup R , then
it follows both that each maximal subgroup of G 1is normetacyclic and

that @' = Ql(R) . Moreover, since each element is in some maximal
' .

subgroup, then Ql(G) =G .

et N, be a maximal subgroup of G . Dencte G/Nc') by G .

0
G is a nonabelian group, which by Theorem 4.1 has precisely one abelian

N — 1 —
maximal subgroup NO . Since Noﬁ ul(NO) =1, N

M be any subgroup of G of index p2 such that M £ WO . M< Ca-("l\"f) .

is metacyclic., Let
If V< C-G-(M) , then either C(—}-('IVD =G or Cﬁ(ﬁ) is a maximal subgroup
of G . If CE(IVI') =G, then M < Z(G) which i1s a contradiction. If
Ca(ﬁ) is a maximal subgroup, then C—G-('IVT) is abelian, which is a contra-
diction. Thus, M is a maximal abelian subgroup of G . This implies
that Cﬁ(ﬁ) < Cg(ﬁ) =M when M<R. Hence, Ge¢ 3 .

By Lemm 3.2, 3° < |,@| <3 . Now, §' <o @ and |o]=p.
If there exists X e ¢(G) v G such that X° = 1 , then there exists
an x e $(G) such that x32 =1 and %3¢ N{') .
implies that Ny < v (N,) , which is a contradiction, Thus,

But x e NO » which

g = 2, (2@) and o(@ < ¢(@a, (@ .
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case 1: |o,(@®] =33 . Men +@a,@ ismaximal in T .

Since ﬁo is metacyclic, Lemma 3.4 implies that & is the group of

type (7) in Theorem 3.1, that is,

= < 3|3°

- - =|—=2 -
0 1 > where N = < a,b|a3 =b3=[a,ﬂ=1> ,

0
(5,31 =5 ad [5,3) =3 .

@

Moreover, |G| 3°

o sSuch that aN(') =a and
1 s

tiy=5 . Let ceG suchthat oNy=70. Since G =2,(0) <Ny,

then c3 # 1 . Thus, Né = < c3 > . Since Nér\ ul(NO) =1, then

32 3 3 S
a°> =b° =1, Let d=[a,b]l. Then ¢’ =@ forsome s Z O(mod 3).

ILet a and b be elements of N

b . Then b, =b and

1
a3ct3 for some t .

Now [a,c] = bd" for some u . Iet b

1
[a,b;] =d . Since [b,c] = 73 s [bl,c]

Case 2: Ql(é') = 3Ll . Then, since |Ql(¢(G))| = 32 , 1t follows

1l

that o,@) = G . Since N, 1s metacyclic, it follows from Lemma 3.3

that G is the group of type (3) in Theorem 3.1. Thus,

@|
1]
=|
Fal
ol
=Y
(W8
il
'_!
v
=\
1]
¥
o
o
W]
1]
o
(W8]
1l
—_
i
|
1]
'_.l
v

Let a and b be elements of Ny such that aN(') =3 and

3

- 1 -
bN0=b. Let CEG'\JNO such that cNO=c. Then ¢

a3 =p3=1. Let d=[a,b]l. Consequently, ¢3 =d® for same

1 and

u

s # O(mod 3) . Since [e,a] = bd” for same u , let by = bd" . There-

fore, b. 6,t3

;=0 and [a,b;]1=d . Since [E,El] = 56 , then [c,bl] =a
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for some t .

Corollary 4,6,1: If p=3 and if G ¢ 3* ~ 0, then each

Redel subgroup has order 311l .

Proof: Let R be a Redei subgroup of G . There exists a sub-
group R° of G such that (R*: R) = 3 . By Theorem 4.6, |R'| = 3,
Hence, R has order 34 . By the definition of 3 * s each Redel

subgroup ¢f G has order 3“ .

A new characterization is obtained for non-Redel metacyclic

groups.

THEOREM 4.7: A p-group G is a non-Redel metacyclic group if
and only if G has an abelian subgroup of order pLl and there exists an

integer 1 > 1 such that each subgroup of G of index pi 1s Redei.

Proof: Suppose that G 1s a non-Redel metacyclic group. In
view of Corollary 2.4.1, G has an abelian subgroup of order pu and
Ge R . Thus Ge é? *.

Conversely, suppcse that G 1is non-Redei, that G has an
abelian subgroup of order pu and that G e 3 * . Then G| > p6 .

If p> 3, then by Theorem 4.4, Ge A . If p =3, then by Corollary

4h,6.1, G e R . Thus, by Corollary 2.4.1, G is metacyclic,
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CHAPTER V

SUMMARY

Three classes of finite p-groups for p > 2 have been con-
sidered in this thesis, each class having been defined by conditions
which are placed on the minimal nonabelian subgroups cf a group. The
role of the Redel subgroups has therefore been emphasized, and the
resulting influence of these conditions on the structure of the group
has been examined. Several results of this work are summarized here
together with directions for future investigation with respect to Redel
subgroups of a group.

The study of the two classes Q and 3 * has led tc two new
characterizations for the class of metacyclic groups in terms of Redel
subgroups. As mentioned previously, both extraspecial groups and groups
with no noncyclic metacyclic characteristic subgroups can be described
by means of their Redel subgroups. The question is raised as to whether
or not other lknown classes of nonabelian groups can be defined in terms
of their Redel subgroups. Such Information could provide alternate areas
for the application of these classes.

All nonabelian groups of class é? , for which each subgroup
of index p2 is abelian and for which there is at most one abelian
maximal subgroup, have been characterized in Theorems 2.2, 3.1, 4.3, and
4,6, The number of different types shows the extenslve nature of class
é? . One should recall, however, that the formulation cf thls class was
motivated by a property inherent to the maximal abelian subgroups of a

group. It is not surprising, then, that the carry-over of the property
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to Redei subgroups would result in a collection of groups whose properties
need to be more sharply defined. Classes R and (3’ * are two steps
in this general direction.

Theorem 1.1 points out that each ncn-Redel group has at least
two Redel subgroups. It is natural then to ask about the total number
of such subgroups and the corresponding conjugate classes of such groups.
In this connection, since the metacyclic property is invariant, the
question can be raised about the structure of groups for which each
Redei subgroup is metacyclic. Information of this sort would extend the
result of Blackburn (Theorem 1,10) which classifies groups for which
each subgroup is metacyclic. A partial answer to this question is supplied
in the present work. Theorems 3.1 and 4.1 indicate that there is only
one type of minimal non-Redei group from class 3 v Q which has each
Redei subgroup as a metacyclic group. This same question could be posed
with respect to the nonmetacyclic Redel subgroups. -

In both class R and class § , it is seen that there must
always exist a normal Redei subgroup. One then wonders if there must
always be a normal Redel subgroup. If not, one could look for condltions
which would ensure the exlstence of such normal subgroups. In this
regard, there is also raised the question about the structure of a group
which possesses characteristic Redel subgroups; twe examples would be to
consider ¢(G) amd G as Redel subgroups.

It should be noticed that Redel subgroups are nilpotent of
class 2. Each Redel subgroup, then, is contained in a subgroup maximal
with the property of having class 2. An investigation in thls area would

clarify the position of such subgroups in the theory of finite groups.



In particular, cne could consider groups for which the Redel subgroups
are maximal with the property of having class 2. The thecrems here,
dealing with the minimal non-Redel groups, provide some information

in this respect.
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