
University of New Hampshire
University of New Hampshire Scholars' Repository

Doctoral Dissertations Student Scholarship

Spring 1971

THE DIFFRACTION OF PLANE SOUND
WAVES BY A PERFECTLY REFLECTING
QUARTER-PLANE
CURTIS SPAULDING MORSE

Follow this and additional works at: https://scholars.unh.edu/dissertation

This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has
been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more
information, please contact nicole.hentz@unh.edu.

Recommended Citation
MORSE, CURTIS SPAULDING, "THE DIFFRACTION OF PLANE SOUND WAVES BY A PERFECTLY REFLECTING
QUARTER-PLANE" (1971). Doctoral Dissertations. 955.
https://scholars.unh.edu/dissertation/955

https://scholars.unh.edu?utm_source=scholars.unh.edu%2Fdissertation%2F955&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/dissertation?utm_source=scholars.unh.edu%2Fdissertation%2F955&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/student?utm_source=scholars.unh.edu%2Fdissertation%2F955&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/dissertation?utm_source=scholars.unh.edu%2Fdissertation%2F955&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/dissertation/955?utm_source=scholars.unh.edu%2Fdissertation%2F955&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:nicole.hentz@unh.edu


71-25,417

MORSE, Curtis Spaulding, 1941-
THE DIFFRACTION OF PLANE SOUND WAVES BY A 
PERFECTLY REFLECTING QUARTER-PLANE.

University of New Hampshire, Ph.D., 1971 
Mathematics

i University Microfilms, A XEROX Company, Ann Arbor, Michigan

V THIS DISSERTATION has been microfilmed exactly as received



THE DIFFRACTION 
OF PLANE SOUND WAVES 

BY A
PERFECTLY REFLECTING QUARTER-PLANE

by

CURTIS Sx. MORSE 
M. S., University of New Hampshire, 1965

A THESIS

Submitted to the University of New Hampshire 
In Partial Fulfillment of 

The Requirements for the Degree of

Doctor of Philosophy 
Graduate School 

Department of Mathematics 
June, 1971



This thesis has been examined and approved.

Thesj/s director, James Radlow, Prof. of Mathematics

___
ET^^vansI^uHr^oe^ Pro'f. of Mathematics

L u  a  r / A . f -[re A. Noragren, Asso^/Trof. of Mathematics

f h i w  ^
Berrien Moore, III, AsSt. Prof. of Mathematics

Asim Yildiz, Prof. of Mech. Engineering



ACKNOWLEDGEMENTS

I wish to express my appreciation to those people 
who have helped make this thesis possible. First of all, 
I thank my advisor, Dr. James Radlow, for the help he has 
given me and for introducing me to the Wiener-Hopf 
technique. My gratitude is also extended to my mother, 
Mrs. Waldron Lewis Morse; my sister Sally Morse Preston 
and my friend Dr. Philip Locke. These people have helped 
me in many ways too numerous to mention. Much credit is 
also due to Miss Mary Preble for the outstanding job she 
has done in typing a difficult manuscript.

iii



TABLE OP CONTENTS

ABSTRACT ...................................  v

I. INTRODUCTION..........................  1

II. TWO-VARIABLE ANALYTIC FUNCTION THEORY AND
DOUBLE LAPLACE TRANSFORMS .................  5

III. STATEMENT OF THE PROBLEM...................... 18

IV. SEPARATION OF VARIABLES AND
INTEGRAL EQUATIONS .........................  21

V. THE FUNCTION-THEORETICAL PROBLEM ............  23

VI. FACTORIZATION OF K ( s ) ........................ 27

VII. THE SOLUTION.................................. 31

VIII. COMPARISON WITH HALF-PLANE PROBLEMS ........  38

IX. BEHAVIOR AT THE CORNER........................ 4?

BIBLIOGRAPHY..................................31

lv



ABSTRACT

THE DIFFRACTION 
OF PLANE SOUND WAVES 

BY A
PERFECTLY REFLECTING QUARTER-PLANE

by

CURTIS S. MORSE



The problem considered Is that of determining the 
diffracted field when a plane wave is incident on a per- 
flectly reflecting quarter-plane (x^ > 0, > 0, x^ = 0).
A closed-form solution is derived and shown to be unique. 
The method of solution consists of first showing that 
the physically motivated problem is equivalent to a 
function-theoretical problem in the product space of two 
complex variables. The function-theoretical problem is 
then solved by a procedure which is in essence a 
generalization of the Wiener-Hopf technique from one to 
two complex variables. The solution is shown to reduce 
in the limiting cases x.|̂ -*■ +00 and x^ -* +°° to the solu­
tions for the perfectly reflecting half-planes x^ > 0 
and x̂i > 0, respectively. The field behavior at the 
corner is also discussed.

vi



SECTION I

INTRODUCTION

A mixed boundary value problem is one in which 
the unknown function must meet a Dirichlet condition on 
part of the boundary and a Neumann condition on the rest 
of the boundary. An example is the classical Poincare/- 
Sommerfeld half-plane problem of diffraction theory.
Here a solution of the two-dimensional reduced wave equa­
tion is required to satisfy a Dirichlet condition on the 
positive x-axis and a Neumann condition on the negative 
x-axis. Copson ([4], or see Baker and Copson [l]) showed 
that the Poincare'-Sommerfeld problem can be reduced to a 
function-theoretical problem of the Wiener-Hopf type.
Such a problem involves determining two unknown functions 
of a complex-variable from a single equation. The key to 
the solution is the Wiener-Hopf factorization lemma 
(Wiener and Hopf [17]), which gives conditions under which 
a function analytic in a strip can be factored into the 
product of a function analytic in a right half-plane and 
a function analytic in a left half-plane. The half-planes 
intersect in the original strip, and it is then possible 
to solve for the unknown functions by analytic continua­
tion and Liouville's theorem.
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In acoustic terms, the half-plane problem we have 
just described is the problem of diffraction by the per­
fectly absorbent half-plane x > 0. It is also of 
interest to consider the mixed boundary value problem on 
the half-line corresponding to diffraction by a perfectly 
reflecting half-plane. Here the two-dimensional wave 
function must meet a Neumann condition on the positive 
x-axis and a Dirichlet condition on the negative x-axis. 
There are many other interesting mixed boundary problems 
on the half-line. We refer to the book by Noble [10] 
for a survey and account of these.

The diffraction problem for a quarter-plane 
generalizes the half-plane problem of Poincare’-Sommerfeld. 
Consider the perfectly absorbent quarter-plane. In this 
case a solution of the three-dimensional reduced wave 
equation is required to meet a Dirichlet condition on the 
quarter-plane (x^ >0, x2 > 0, x^ = 0) and a Neumann 
condition on the complementary three-quarter-plane 
(x^ < 0 U x2 < Oj x^ = 0). Physically, this is a three- 
dimensional mixed boundary value problem. It presents 
considerable mathematical difficulties. It remained an 
open problem until quite recently. Then it was shown 
(Radlow [11], [15]) that the problem can be reduced to a 
function-theoretical problem of a two variable Wiener- 
Hopf type, and that this problem can be solved by a 
generalization of the Wiener-Hopf method from one to two 
complex variables.
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Our purpose here Is to show that the two-variable 
Wiener-Hopf method of [11] and [13] can be applied to the 
problem of diffraction by a perfectly reflecting quarter- 
plane. In this case the mixed boundary value problem is 
to find a three-dimensional wave function which meets a 
Neumann condition on the quarter-plane and a Dirichlet 
condition on the complementary three-quarter-plane.

Our analysis will be organized as follows. In 
Section 2 we summarize relevant notions of the theory of 
two-dimensional Laplace transforms and of functions of 
two complex variables. In Section 3 we state our mixed 
boundary value problem. We then apply the ideas of 
Section 2 to show (Section 4, 5) that the problem is 
equivalent under two-dimensional Laplace transformation 
to a function-theoretical problem of solving a transform 
equation involving four unknown functions of two complex 
variables.

Probably the most significant feature of the 
Radlow generalization [13] of the Wiener-Hopf method is 
that the solution of the transform equation requires not 
one factorization lemma (as in the one variable case) but 
two factorization lemmas. The first one is a direct 
generalization of the factorization encountered in the 
one variable case. The second lemma is concerned with 
the analyticity domain of certain products of these fac­
tors taken two at a time.
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We state and discuss the two factorization lemmas 
in Section 6 . Then we make use of the lemmas to solve our 
mixed boundary value problem. The theorem proved in 
Section 7 yields an explicit unique solution to the prob­
lem. The uniqueness proof makes use of a recent result 
by Douglas and Howe [5]. In Section 8 we consider the 
behavior of the solution in the limits x.̂  ->• + » and 
x2 -*■ + 00. Physically, we expect the solution to reduce 
in these limiting cases to the solutions for the per­
fectly reflecting half-planes x2 > 0 and x.̂  > 0, 
respectively. We show in Section 8 that this expectation 
is borne out. Finally (Section 9) we obtain results for 
the behavior of the solution and its normal derivative as 
r = (x^ + x2 + x|)2 -»• o.
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SECTION II

TWO-VARIABLE ANALYTIC FUNCTION THEORY 
AND DOUBLE LAPLACE TRANSFORMS

The analysis used in solving our diffraction 
problem is carried out in the product space of two com­
plex variables Sj = Uj + iVj, j = 1, 2. For brevity, we 
shall frequently write x = (x-̂ , x2), s = (s-̂ , s2) etc.
In particular, this allows us to make use of the scalar 
product notation s»x = s1x1 + s2x2<

Certain definitions and theorems which are 
pertinent to the function-theoretical method presented in 
the following sections may now be stated for future 
reference.

DEFINITION 2.1: Let D be a domain in the u^Ug-
plane. The set

T(D) = [s: u e D, - » < v^ < <»}

is called a tube with basis D.
DEFINITION 2.2: Let F(s) be analytic in the tube 

T(D). For each fixed u e D, the Lm~norm (m = 1, 2) of
the function F(u + iv) is defined by

n 1/m00 CO
f f |F(u + iv)|mdv1dv2||F(u + iv) || =m

A function F(s) is said to be bounded in L -norm for ' ' m
u e S C  D provided that

||F(u + iv)|lm < oo
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for each u e S. Moreover, a function P(s) is uniformly
bounded in L -norm for u e S C  D if there is a constant m —
M > 0 such that

||F(u + iv) |(m < M

for all u e S.
We now state a basic theorem due to S. Bochner

[2] on which the Wiener-Hopf method for two complex
variables is in part based.

THEOREM 2.1: Assume that P(s) is analytic in a
domain D containing the tube T(D) with basis

D = (u: < Uj < P̂ .}

and let P(s) be uniformly bounded in Lg-norm for u e D. 
Then for s e T(D), Cauchy's integral formula yields the 
unique additive decomposition

4
F(s) = 2 P (s) (2.1)

n=l n
where Fn(s) is analytic in the tube T(Dn), the bases Dn 
being given by

D1 = (u: u-ĵ > c^, u2 > a2],

D2 = (u: u1 < px, u2 > a2),

= (u: ux < Px, u2 < Pg],

= (u: U-̂  > a ^  u2 < p2),

and where P (s) -*■ 0 as |u.| -*• » (j = l or 2) in theirri j
respective tubes of analyticity. The functions Fn (s) are 
given by
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/ n\n+l F(z)dz,dz0
Pn (s ) = “ T 2 - /  / Tz -s )'Y’z"-f"T  (2 *2)
n (2TTi) rn2rni 1 1 2 2

where r . denotes a vertical contour from 7 . - ioo to nj 'nj
7nj + ioo in the Zj-plane with

a, if n = 1, 4 fa0 if n = 1, 2
* m , (2'3)if n = 2, 3 I p2 if n = 5, 4

Proof: Let denote the boundary of a positively
oriented rectangle with vertices + ip.^ + ip̂ ^
(p1 > 0). Then for s^ inside Cauchy's formula gives

F(z,, sp)
2nlP(S) = /H1 dZl ■

f ai+ipi Pi+1Pi rai+1Pi fpi_1Pi\ p (zi* s2^
J “ J . " J + J 1 (z -s"T dziy ̂ i—̂ Pi ]̂_̂"̂Pi ®]_-̂"P]_ J ^

= I1 " I2 " I5 + I4*
We wish to show that

'jlim = 0  , j = 2, 4.
Pi “*■ 00

Since the mean value theorem for integrals gives
2t 
t

for some m e  (t, 2t), it is sufficient to show that

, 2t
Ij(t) = i- / |lj(q)|dq = |lj(m)|

lim I (t) = 0  , j = 2, 4.
t —► 00 "
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For t > 2|v^|, we have that

2t
|l2 ( t ) |< / |l2(q) |dq

1 Pn 2t |F(p+iq, sp)|
< 1- I I  1--------- r— r dqdp.
~ t a1 t lsi - P ~ lcll

An application of Schwarz’s inequality to the inner 
integral yields 

|l2(t)| <

Pii f  1a .

2t
/ |F(p+iq, sp)|2dq 
t *

2t dq
1 . t |s1 - p - iq| _

dp.

By our assumption on F, the quantity in the first square 
bracket is bounded on [o^, 3, say less than M. Also,

\s1 - p - iq| (u1-p) + (v1-q)2 -

<
(q-v^ 2 (t-t/2)2 t

and hence

|l2 (t) | < 2M(f31-a1)/t5//2.

Consequently,
lim I.(t)

* — rvi J

for j = 2, and a similar argument yields the result for 
j = 4. Letting -*■ °°, we thus obtain the additive 
decomposition
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(3-,+ioo a, +i°°\ P(z-|> Sp)
2niP(s) ■ ^  - ' a ^ J  T ^ T T  d2l (8.*)

= G(s) + H(s).
Now let Rg denote a positively oriented rectangle 

with vertices a2 + ip2* P2 - iP2 ^ 2  ^ For s2 lnside
R2, Cauchy's formula again gives

G(sv  zp)
2niG(s) = / /z~ -1  dz2 =R2 lZ2 2 ^

P2+ip2 fP2+iP2 ra2+iP2 , rP2"1P2  ̂G (sl' Z2^
J ~ J ~ J + J - dz2k ̂ 2-dP2 a2+̂ P2 a2~dP2 a2_dP2I ^

= Jl - Jg - J-j +

As before we can show that the second and fourth integrals 
vanish as p2 -*• °o and the same procedure applies to the 
function H(s) in (2.4). We conclude that F(s) may be 
addltively decomposed as in (2.1) with the functions 
Fn (s) given in (2.2).

Let us check that P-L(s) is analytic in T(D1) as 
asserted. For s e T(D1), Schwarz's inequality gives

(zj - “j + V
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P(z)dz^dz2

r12ru  (*].-=!) ( v s2>

oooo |p(z)|dy1dy2 
-00 - 00 I ( ZJ-S1) (Z2~32^ ̂

< ||P(a + iy)||2 I I
dy-,dy2

- o o - o o  | ( Z 1 - S 1 )  ( Z g - S g )  | ‘

TT ||P(a + iy)||2 (u1-a1)"2(u2-a2)"2.

Since this last quantity Is bounded for u^ - > e > 0,
we have that P-̂ (s) Is analytic in T(D1). A similar 
argument shows that Fn (s) is analytic in T(l>n) for 
n = 2, 3, 4 as desired.

The uniqueness proof may be found in [7]. It is 
based on the requirement that Fn (s) -+ 0 as |uj| -*• oo 
(j = 1 or 2). Clearly, the functions given in (2.2) 
satisfy this condition.

Before stating a useful corollary to the above 
theorem, it is convenient to introduce the notations

F +U) = *]>) + F4(s), (2.5)

P .(s) = P1(s) + P2(s)

Also, let Aj and Bj denote vertical contours from - i°o
aj + ioo and from 0^ ioo to Pj + i», respectively.

COROLLARY 2.1: If P(s) satisfies the conditions
of theorem 2.1, then

n F(zv  sp) (2.6)
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, P(s-,, z0)
V (s) = an: / (s's.zj  d°2 • <2-?>

Furthermore,
[F ( s )  ] = [F ( s ) ]  . = FM). (2.8)

1+ 2 2 1 i

Proof: As In the derivation of (2.4), Cauchy's
formula gives

* ( V  zp)
(s2-z2) dz2 ’ 2̂*9^F(z^, Sg) - gTTi (f f

\ 2 B 2 /

Now multiply both sides of (2.9) by l/2TTi(s1-z1) and 
integrate over A.̂ to obtain

, F(zn, s9)
2TTI -̂ A (Si-Zf) dZl = (2.10)

(2ni)

1
/ \ F(z)dz9dz,

V a 2’ V B2 / ^ 1"S1M Z 2‘S2) '

By Schwarz's inequality, both of the iterated integrals 
on the right side of (2.10) converge absolutely. Thus 
Fubini's theorem (see [9], p. 155) implies that the order 
of Integration may be interchanged. Equation (2.6) now 
follows from (2.5) and theorem 2.1. The verification of 
(2 .7) is analogous.

To establish (2.8) we note that

P +(sl' z2^
[F1+^S^ 2+ = 1(s2-z2) dz2 =

( 2TTi )

2
, F(z)dz,dz0
72 f f Tz ~s ) (z -s r =Ti) A, Ẑ1 31m z 2 s2} Lx2 "1
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and a similar computation yields the second half of (2.8 ).
We can put theorem 2.1 In a slightly more general

form.
THEOREM 2.2: Let D be a convex domain In the

ulu2-plane whlch contains the origin and assume P(s) is 
analytic in T(D) and uniformly bounded in Lg-norm on 
compact subsets of D. Then for each u e D, Cauchy's 
integral formula gives the unique additive decomposition

4
F(s) = 2 F (s) (2.11)

n=l n
where Fn (s) is analytic in the tube T(<D U Qn>) with qn 
denoting the nJiJl quadrant of the u^Ug-plane and the 
brackets < > indicating the convex hull of the set
enclosed.

Proof: We may cover D with a countable number of
closed rectangles

Dk Û: akJ < Uj < ,

j = 1, 2j k = 1, 2, •••. For each domain Dk, we may use 
theorem 2.1 to write

4
F(s) = 2^ Pkn(s) , s € T(Dk).

Since the functions pkn(s) are unique, for each fixed n 
they constitute analytic continuations of each other.
Hence F(s) has the representation (2.11) with each Fn (s) 
being analytic in a tube Tn containing T(D) and clearly 
Tn = T(<D U qn>).
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We shall have occasion to use the restricted two- 
dimensional Laplace transformation £n defined for 
n = 1, 2, 5, 4 by

Pn (s) = £ntf(x)] = Jf f(x)exp(-s-x)dx1dx2 (2 .12)
Qn

where Qn denotes the n—  quadrant of the x^Xg-plane 
(hereafter written X) and f(x) vanishes outside of Qn . A 
basic theorem concerning the existence of Pn (s) is the 
following:

THEOREM 2.5: If
// |f (x) |exp(-7n -x)dx1dx2 < oo

where 7n = (7nl> 7n2) (see (2*3) for the definitions of 
7nj), then £n [f(x)] converges absolutely and uniformly in 
the tube T(Dn). Consequently, pn (s) is analytic in T(Dn ).

Now let us turn our attention to the Laplace trans­
form over the full x^x^plane,

F(s) = £[f(x)] = // f(x)exp(-s*x)dx1dxp .
x

If f(x) vanishes outside then £[f(x)] = £n[f(x)] and 
the content of the preceding paragraph applies. In case 
f(x) does not vanish on any quadrant we Introduce 
the functions
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fx(x) = f(x)g(xx)g(x2),

f2(x) = f(x)g(-x1)g(x2),

f5 U) = f(x)g(-x1)g(-x2)

fj].(x) = f(x)g(x1)g(-x2),

Heaviside function

(2.13)

:(xj) =

This allows us to write

0 if xj < 0

1 if Xj > 0.

4
f(x) = 2 f (x),

n=l n
and therefore,

4
£[f(x)] = 2 £ [f (x)]. (2.14)

n=l n n
The next theorem will aid us in obtaining a 

function-theoretical equivalent of our mixed boundary 
value problem.

THEOREM 2.4: (see [3], Chapter VI, 8, 9)
Let f(x) be a measurable function on X. If, for each 
u e D,

Ilf(x)exp(-u.x)||m < «

for m = 1, 2, then P(s) = £[f(x)] is analytic in T(D) and
bounded in L -norm for u e D. Conversely, if F(s) is m
analytic in T(D) and bounded in Lm-norm for u e D, then 
there exists a unique inverse,



which is Independent of u.
Remark: This theorem is also true for m = 2

only.
We now state two convolution theorems.
DEFINITION 2.3: The convolution of the functions

f and g is the function
(f*g)(x) = // f(?)g(x-^)dM^.

X x ^
The operation * is commutative:

f*g = g*f.
THEOREM 2.5: (see [8 ], p. 10) If

Hffxjexpf-u-x)!^ < <=o and ||g(x)exp(-u*x) |lm < « for
m = 1 or 2 and some u = (u-̂ , u2), then

£[f*g] = £[f]£[g].
It is worth noting that additive decomposition

(2 .1) is a consequence of our second theorem on 
convolution.

THEOREM 2.6: (see [8 ], p. 10) If 
||f(x)exp(-£»x)||g < oo and ||g(x)exp[-(u-§) *x] ||2 < « for 
some u = (ux, u2), £ = (^, £2), then

£[fg] = £[f]*£[g],
that is,
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00 00

/ / f(x)g(x)exp(-s-x)dx1dx2 =
— 00 — 00

where Tj denotes a vertical contour from (-j - loo to

To see that additive decomposition (2.1) follows
immediately from this result, let g(xj) be the Heaviside
function and define fn (x) as in (2.13). Then by (2.14) 
and theorem 2 .6,

as desired.
Our last theorem in this section is an 

asymptotic result.
THEOREM 2.7: Let f(x) be a function of the real

variable x and denote its one variable Laplace transform 
by F(s). If F(s) has a unique singularity s = sq with 
greatest real part that is either a pole or an isolated 
essential singularity, then

4
F(s) = £[f(x)] = 2 £n [fn (x)]

n=l

F(z)dz1dz2
(z1-s1)(z2-s2)

f(x) ~ Res esxF(s) (2.15)

as x —► + oo.
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The proof of this result may be found in [15]
(pp* 99-100). In particular, If sQ Is a simple pole, 
then (2.15) may be written as

— S X
11m e 0 f(x) = 11m (s-so)P(s). (2.16)

X -*■ +00 s -*■ s„o
In the case s =0, (2.16) Is sometimes called the final o
value theorem.
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SECTION III

STATEMENT OP THE PROBLEM

We consider a plane wave which Is Incident on the 
quarter-plane > 0, x2 > 0, = 0. The incident wave
(j)0 Is given by

4>0(xr  x2 ’ = exP(“aixi " a2x2 “ ^.l)

where a.̂  = ik sin aQ cos PQ, a2 = ik cos aQ,
a^ = ik sin aQ sin with k = p - iq (p > 0, q > 0 ) and
0 < a < IT/2, 0 < < n/2.

If the total wave field is (j)t = (j) + <j)Qj then the 
scattered wave f is a function which satisfies the reduced 
wave equation

(V2 + k2)(j) = 0 (3.2)
for -00 < X1 < CO J -00 < x2 < 00, X^ > 0.

In the case of a perfectly reflecting quarter-
plane, the boundary conditions that (j) must satisfy on the
xlx2-plane are

dx.3

for (x1, x2) e Q15

x,=0 
3

= a^ exp(-a1x1 - a2x2) (3 -3)

M x ^  x2, 0) = 0 (3A)

for (x̂ , x2) 6 X ~ Q1.
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In order to obtain a function-theoretical 
equivalent of our mixed boundary value problem and Insure 
uniqueness, we require that the functions

<|)(x, 0) If x e Q-̂
f(x) = <

0 If x e X ~ Q,

and

;(x) = {

exp(-a«x) If x e Qj

d<{)
5x1

x-,=03
satisfy the conditions

|f (x)exp(-u.x) ||m < oo

for Uj > -Rea^, m = 1, 2;

(3.5)

(3.6)||g(x)exp(-u-x)||2 < oo

Q Q Ofor Uj > -Reaj fl u^ + u| < q . In particular, f(x) is

absolutely integrable and square integrable while g(x) is 
square integrable.

It is.-,customary in diffraction theory to require 
that the diffracted field satisfy Sommerfeld's radiation 
condition

lim r(g^ + ik<J)) = 0, 
r —* oo

p P p .A.where r = (x^ + x| + x^)2. Since k is complex, we may
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replace (see [1], pp. 15^-155) the above condition by the 
requirement that <|) be outgoing at infinity. This means 
that <{) must have the behavior of exp(-ikr)/r for large r. 
We note that this requirement is implicit in conditions 
(3.5)* (3-6). Thus we need not make an independent 
requirement of the radiation condition. The solution we 
construct will, in fact, be outgoing at infinity. This 
is verified in Section J: see the remarks following

equations (7 .7)* (7.8).
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SECTION IV

SEPARATION OP VARIABLES AND INTEGRAL EQUATIONS

Karp [6 ] has shown how to deduce one-variable 
Wiener-Hopf transform equations by the method of separa­
tion of variables. The method can be generalized to the 
two-variable case. To obtain a solution of (3.2) by 
separation of variables, set

(J)(x-[̂, Xg, = (^2 ̂ X3 ̂^3 ̂ *

The wave equation now becomes

X1 + X2 + 3^ X3 + k = 0

which gives
Xx = exp(s1x1), X2 = exp(s2x2), X^ = exp(x^/2K(s)) 

where Sj = u^ + iVj are the separation constants and

K(s) = |(s2 + s2 + k2)"^,

the branch of K(s) being determined by the choice 
Re K(s) < 0. The function K(s) is analytic in the tube 
T(D) with basis

D = (u: u2 + u2 < q2}
Q O

and for sufficiently large values of Iŝ  + s2 | with 
s e T(D),

K (s) -  o[(sf +
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The separation solutions are thus seen to be 
<|)(x1, x2, x^) = exp[s • x + x^/2K(s) ] (4.1)

and upon multiplying the right side of (4.1) by 
2F(s)/(2TT) and applying the principle of superposition,

we obtain
< f ) ( x 1 ,  X g ,  X - j ) =

(4.2)
— i-g / / F (s)exp[s• x + x3/2K(s) jdv^Vg.
( 2 IT) -CO-CO J

This formal solution of (3.2) is recognizable as the in­
verse Laplace transform of F(s)exp[x3/2K(s)] and boundary 
condition (3.3) will be met provided that

H r  = 7^T2 i ! ijffi} exp(s.x)dVldv2 (4.2)
5 x,=0 (2n)3

= a^ exp(-a*x) 

for x e Q1 whereas condition (3.4) requires that

_ 00 00

<j)(x, 0) =  g / / F(s)exp(s.x)dv1dv2 (4.4)
(2 TT)  - o o - o o

for x e X ~ Q1# The requirement that (() given in (4.2) 
satisfy boundary conditions (3.3) and (3.4) is thus seen 
to be formally equivalent to requiring that F(s) satisfy 
the dual integral equations (4.3) and (4.4). The dual 
integral equation formulation of the one-variable 
Wiener-Hopf problem dates back to Karp [6 ]. See [13] 
for the extension to two variables.
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SECTION V 

THE FUNCTION-THEORETICAL PROBLEM

We now show that the mixed boundary value problem 
of Section 3 is equivalent to the function-theoretical 
problem of determining the unknown function F(s).

THEOREM 5.1: The function <j) given In (4.2) sat­
isfies requirements (3 -1) through (3 -6 ) of our mixed 
boundary value problem if and only If:

(l) F is analytic In T(A) and bounded In Lm~norm 
(m = 1, 2) for u e A.

(ii) The first term in the additive decomposition 
of F/2K Is

[F/2K]1 = a ^ ^  + a1)“1(s2 + a2)_1.

Proof: Assume that (j) given in (4.2) meets the
requirements of our mixed boundary value problem. Let 

F(s) = // f(x)exp(-s.x)dx,dx0.

In view of (3-5) and theorem 2.4, F(s) satisfies condition 

(i).
Next, we show that S(j)/dx̂  at x^ = 0 may be calcu­

lated from (4.2) by differentiation under the integral 
sign. Choose e > 0 and take x2 > 2e. Since 
Re[K(s) ]“■*■ < 0, we have

|F(s)exp[iv•x + x^/2K(s)]| < |F(s)|exp{eRe[K(s)]_1).



24

Schwarz's inequality and the boundedness of F(s) in 
Lg-norm now yield

OO OO
/ / IP(s)|exp{eRe[K(s)]" Idv-jdVg <

||F(u + iv)||2l|exp{eRe[K(u + iv)]_1}||2 < oo.

Thus the double integral in (4.2) converges absolutely 
and uniformly for -oo < < oo, -oo < x2 < oo, x^ > 0. In
particular, we conclude that

x-=03
(2TT)

00 00 / K

1 1  2Ktfr expfs.xJdv^Vg.

which defines d^/dx^ at = 0 as the inverse Laplace 
transform of F/2K. Thus by (3.6) and theorem 2.4, F/2K 
is analytic and bounded in Lg-norm for u e A D D. Conse­
quently, theorem 2.2 implies the existence of the unique 
additive decomposition

4_F
2K (5.1)

with the functions Gn (s) being analytic in their respec­
tive tubes T(<(A (1 D) U Qn>).

Now set

3n (x) =<

d<b
S Z

0

if x e Q
X - z = 03

n

if x e X - Qn .
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Then

2K
P

2 £n[gn(*)]n=l n n
(5.2)

and upon comparing (5*1) with (5.2) we have by uniqueness 
that

[P/2K]1 = G-^s) = a5 (s1 + a1)"1(s2 + a'g)-1.

Thus condition (ii) is satisfied.
Conversely, assume that F(s) satisfies conditions 

(i) and (ii). Again, by dominated convergence, the first 
and second partial derivativies of (|) given (4.2) may be 
computed by differentiation under the integral signs. We 
conclude that (j) given in (4.2) is a solution of (5 .2).

first half follows by dominated convergence. Now consider 

the function G2 (s) anci s2* ^hen ^2 as a function of 
s1 is analytic for u1 < q and since G2 (s-L, s2) -*• 0 as 
| s^ | —► oot we have

for some 6 > 0. Upon completing a straight line contour 

from u^ -ir to u^ + ir by a semi-circle to the left, 
applying Cauchy's integral theorem and letting r -*• +°o we 
obtain that

Gn (s) = £n[gn<x >]

whence

To show that (J) satisfies (4.5) we note that the

G2 (si, s2) = 0 [l/s®]
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/ G2 (s1, s2)exp(s*x)dv1 = 0

for n = 2, 3, 4 and x^ > 0.

The residue theorem now gives

ad>
xv=03

oo oo exp(s*x)dv1dv2 
(2TT)2 - o o - o o  ŝl+al̂  (s2+a2^

= a^ exp(-a-x),

for Xj > 0 as desired.

Since F(s) satisfies condition (i) there exists 
a measurable function f(x) such that

f ( x )  = C_1 [P(b) ]

n 00 00 (5.3)
= ----2 / / P (s)exp(s x)dv1dv2.

(2TT) -00-00
But the analyticity of P(s) in T(A) together with Cauchy's 
integral theorem imply that f(x) = 0 for x e X ~ Q.̂ . 
Furthermore (5.3) implies that f(x) = (j)(x, 0) and 
therefore, (4.4) is satisfied. Requirements (3-5) and
(3.6 ) are also met in view of theorem 2.4.
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SECTION VI 

FACTORIZATION OF K(s)

Our solution depends on the factorization of

K(s) as

where the functions Kn (s) are required to be analytic and 
nonvanishing in their respective tubes T(<D U Qn>)- This 
factorization is precisely the one given by Radlow in
[11] and generalizes the usual Wiener-Hopf factorization 
from one to two complex variables. The result is that

n = 1
(6.1)

of the second Kina ana r = ^x^ + x2;̂ . 'rne uransrorm 
£^[H^2)(kr)] is given explicitly in [14] with the result 
being

where IP (kr) = JQ(kr) - iNQ(kr) is the Hankel function

where
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If we set Hn (s) = £n[H^2^(kr)], it follows that

= ®2^* sg) = ^2. (~^1* ”^2 ̂ *
H4(S2L■» s2̂  = ^i^sî  -s2̂  *

The fact that Kn (s) is analytic in T(<D U <ln>) is
a consequence of theorem 2.6. For example, if we set 

{2)h(x) = Hv (kr) and g(x) = 1 for Xj > 0 and zero other­
wise, then

(o\ i H(z)dz,dz?
£ [H<2)(kr)] = £[hg] = ■ ■ 1-g / / -( -s )(z J  )1 o (2TTi) [ 1 1^ ' 2 2

where (see [11]) H(s) = £[h(x)] = -4i/(s2 + s| + k2) and
Tj denotes a vertical contour from 7 j - ic» to 7  ̂ + ioo
with 7 . > -q. Since H(s) is analytic in T(D) and bounded

( P ̂in Lg-norm for u e D, it follows that £-|JHo (kr)l ls 
analytic in T(<D U qn>) because it is the first term in 
the additive decomposition of H(s).

The growth estimates given for Kn (s) in [13] are

K„(s) - 0[(sf + s|)-l/8) (6.2)

with validity for large |s2 + s|| and s e T(<D U Qn>)*

The second major result concerning the factoriza­
tion of K(s) is again given in [lj5]. It is shown that

H2 + H4 = -2i£2[NQ(kr)] = -2i£4[NQ(kr)]. (6.5)

The arguments given in [15] (see also [12]) establish 
that £0[N (kr)] ls analytic in the tube T(Dq fl q9) with
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D2 = (u: u2 - u1 > q), 

whereas £^[NQ(kr)] is analytic in the tube T(D^ fl q^)
with

= {u: ux - u2 > q} .

Observe that the tubes T(D2 D q2) and T(D^ n q^) are dis­
joint but both of them have a non-empty intersection 
with T(D). We now denote

= exp

K ^ s )  = exp

k
f k£2[No(kr)]dk

-i J kJfy[NQ(kr)]dk

(6.4)

(6.5)

Clearly K2(s)K^(s) is analytic in T(D) whereas K2^(s) 
and K^2(s) are analytic in the disjoint tubes T(D2 fl q2) 
and T(D^ H q^), respectively. Moreover, according to 
(6 .3)* the same analytical expression represents all 
three functions. Hence this analytical expression may be 
considered as a function which is analytic in any one of 
the tubes T(D), T(D2 fl q2) and T(D^ fl q^). Our use of 
the respective notations K2(s)K^(s), K2^(s), K^2(s) will 
indicate that we are considering the function in the 
respective tubes T(D), T(D2 fl q2), T(D^ (1 q^). We are 
not allowed to continue analytically from one of these 
tubes to another. But we can, for example, interpret 
K2 (s)K^(s) as either K2^(s) or K^2(s) provided we have 
made no prior determination of the tube of analyticity in 
which we are working.



50

In the next section, we will need to apply the 
ideas set forth in the preceding paragraph. Specifically, 
we will need the fact that K^s.^, -a2)Kjj_(ŝ , -a2) may be 
interpreted as K2^(s^, +a2), that is, a function which is 
analytic for u^ < Rea2 - q. It is clear from the last 
paragraph that K^s.^, -a2)K^(s1, -a2) may be interpreted 
as K ^ C s ^  -a2). Moreover, we now show that K ^ C s ^  -a2) 
(and hence K2(s^, -a2)K^(s^, -a2)) may be interpreted as 

K24(si, +a2 *̂ Recall that K^2(s1, -a2) is defined in
(6 .5) by means of

// N0(kr)exp(-s1x1 + agXgJdx-jdXg

while Kg^(s^, +a2) is defined in (6.4) by means of

ff No(kr)exp(-s1x1 - a2x2)dx1dx2.
Q2

The two double integrals yield precisely the same 
analytical expression, since K^2 (s1, -a2) by definition 
has u-̂  > q - Rea2, while Kg^s.^, +a2) by definition has 
u.̂  < Rea2 - q. This is why K2(s1, -a^)K^(s^, -a2) can 
be interpreted either as K^2 (s1, -a2) or Kgĵ s.̂ , +a2).



31

SECTION VII

THE SOLUTION

We now make use of the factorization lemmas of 
the last section to determine the unknown function P(s). 
The result is a unique closed form solution to the mixed 
boundary value problem of Section J>.

THEOREM 7.1: The unique function <j)(x̂ , x2, x^)
meeting conditions (3-1) through (3.6) is 

(j)(x1, x2, x,) =
(7.1)

_ 00 00

 2 I f F (s)exp[s•x + x,/2K(s)]dv1dv2
(2  TT)  - o o - o o  ?

where
F(s) = ia5P(s)/Q1(s) (7.2)

and
P (s) = K1(s)Kg (-a1, s2)K5 (-a1, -a2 )K^(s1, -a2),

Qx(s) = (s1 + a1)(s2 + a2).

Proof: It must be shown that F(s) given by (7.2)
satisfies conditions (i) and (ii) of theorem 5.1. First 
we show that F(s) is analytic in T(A). Clearly Q1(s) is 
analytic in T(A). The function P(s) is analytic in the 
tube T(B) with basis

B = (u: Uj > -bj)

where b2 = q2 - (Rea2)2, b| = q2 - (Rea^ 2 and bj > 0.
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To see this, consider the factors on the right side of
(7.2.1): K^s) is analytic in T(<D U q1>); K ^ - a ^  Sg)

is analytic for Ug > -bg; K^(-a^t -a2) is a constant; 
K^Sf, -a2) is analytic for u-̂  > -b-̂  and the intersection 
of these analyticity domains in T(B). Since A C  B, it 
follows that F(s) is analytic in T(A). In view of growth 
estimate (6.2), F(s) is bounded in Lm-norm (m = 1, 2) for 
u e A.

It remains to be shown that the first term in the 
additive decomposition of F/2K is a^(s^ + a1)-1(sg + ag)"3 
To this end divide both sides of (7.2) by 2K(s) and make 
use of factorization (6 .1) to obtain

ip(o \ Kp(-a.i, s?)K-, (-a,, -ap)Kj, (s., ~&n)
2KTiT = a5 (s1 + a1)(Sg + a2)Kg(s)K4(s)K5(s) *

Now multiply both numerator and denominator of the right 
side of (7.5) by Kg(s1, -a2) to get

F
2K U T  (7.4)

Kg(_a^, sg)K^(-a^, —a2)Kg(s^, ~a2)K2̂ (ŝ , —a2)
a5 '(s-l + a1)(sg + ag)Kg(s)Klf(s)K5(s)Kg(s1, -ag)

and consider the function Kg(s1, -agjK^s.^, -a2) which 
appears in the numerator on the right side of (7.^). In 
the present argument, we have not yet discussed the 
analyticity domain of this function. Thus we are at 
liberty to choose from among three alternatives: (i) we
can consider it as Kg(s)K^(s) evaluated at Sg = -a2; (ii)
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we can consider it as Kg^(s) evaluated at Sg = +a2 (see 
the last paragraph of Section 6); (iii) we can consider 
it as K^2(s) evaluated at s2 = -a2. In other words, the 
function can be regarded as having analyticity domain:
(i) |u1 | < b ^  (ii) ux < Rea2 - q or (iii) ux > q - Reag.

For present purposes, we choose alternative (ii) 
and write

K2(s1, -agjK^s^ -a2) = Kg^fsj^, +a2) (7.5)

meaning that the same analytical expression may be inter­
preted as the left side or as the right side.

Making use of (7.5)* we rewrite (7«*0 as

,(7.6)
2̂̂ *""̂ ’l, 32 ^ ^ ~ al* ~^2^̂ "24-̂  ̂11 +a2̂  

a3 (s1 + a1)(s2 + a2)K2^(s)K5 (s)K2 (s1, -a2) *

The right side of (7*6) is analytic in the tube T(C) with 
basis (see Figure 7.1)

C = [u: u2 - ux > q, 0 < Ug < q)

except for a simple pole at s.̂ = -a^.
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FIGURE 7.1

“NRea

-Rea

-b

To see that this is so, consider the factors on the right 
side of (7 .6 ): the functions KgC-a^ s2), K2^(s1, +a2),
K2^(s), (s), K2 (s1, -a2) are analytic in
u 2 >  - b 2 ,  u*j^ <  R e a 2 -  q ,  T ( D 2 fl  q 2 ) ,  T ( < D  U 

respectively. The intersection of these analyticity 
domains is T(C).

Let r1 denote a vertical contour from 7  ̂ - ioo to
7 .̂ + i«> with 7  ̂> - Rea-̂ . Then the residue theorem 
together with (2 .6 ) and (7.6 ) yields



[p/2K]i+ = jTiT ̂  aTFpi’ jKfz-rFp “

F ^ ,  s2)
ZiRf  ,ai s2) -

(z-i+a, )P(z,, sp)
Zi1i»_ai 2(s1-z1)k(zi; s2) '

___________ ~̂ ~g)Kgi|.( *  *̂ ~ag)
3 (s^+a^) (Sg+ag)Kg(—a-̂ , ~ag) ( -a^, Sg)K||(-a-̂ , Sg)

This last expression is analytic for Ug < bg with the
exception of a simple pole at Sg = -ag. Let Tg denote a
vertical contour from 7g - i«> to 7g + i°o with 7g > - Reag.
Then the residue theorem in conjunction with (2.7) and
(2.8) gives

[F/2K] = [(F/2K) ]1 ±+ 2+

1 [F(sr  z2)/2K(S;l, Zg) ] +
2TTi rg (s2 - Zg) “  dZ2

1 ~\= a5(s1 + a1)“ (sg + a2)" .

We have used the fact that (7-5) holds for s-̂ = -a-̂ .

We now proceed to show uniqueness. By dominated
convergence, the right side of (7.1) may be written as

n loo ioo
 p / / 2F(s)K(s)exp[s*x + x,/2K(s) Jds-,dsD
.(2111)* -ico-ico ^ 1 *3
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and applying theorem 2.5 to the above bracket, we find 
that

that the diffracted field results from a distribution of 
point sources with density f(x) over Q^. Also, in view of
(7.8), (j) is outgoing at infinity.

and Howe [5] have recently shown that a Wiener-Hopf 
operator on the quarter-plane is invertible if its symbol 
doesn't vanish. The symbol in our case is simply the two- 
dimensional Laplace transform of the kernel 3{(x) of 

(7.10). Since

(j)^, x2, x^) =

where

R = [ (x^ - y ^ 2 + (x2 - y2)2 + x2]2 (7.8)

and f = £~1[F], The physical interpretation of (7.7) is

If Xj = 0 and x.̂  € Q^, then (7*7) takes the form

IS f(y)K(x - y )dy,dy, (7.9)

where

(7.10)

p p p X.with r = (x^ + x2 + x p 2 and g(x) = a^ exp(-a*x). Douglas
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5
we see that £[3<(x)] does not vanish in T(D).

Now suppose that FQ(s) is another solution of our 
transform equation (5.1) and let fQ(x), correspondingly, 
be a second solution of integral equation (7.9). If we 
set h(x) = f(x) - f0(x), then

If h(y)M(x - y)dy.dyp = 0
Ql

and since our Wiener-Hopf operator is invertible we 
conclude that h(x) = 0. Thus our solution is unique.
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SECTION VIII 

COMPARISON WITH HALF-PLANE SOLUTIONS

The purpose of this section is to show that our 
diffraction problem for the quarter-plane is asymptot­
ically equivalent (when x2 approaches infinity) to 
diffraction by the perfectly reflecting half-plane x-̂  > 0. 
The corresponding result for the half-plane x^ > 0 is 
also true. We treat the case of the half-plane x^ > 0 
in detail and indicate the results for the half-plane

Consider a plane wave (3.1) which is incident on 
the half-plane H^: x^ > 0, -oo < x2 < oo, x^ = 0. The 
field (j)-̂ scattered by this half-plane is clearly of the 
form

where ^  is the solution of the following boundary value 
problem:

x2 > 0.

(j)1(x1, x2, x^) = exp(-a2x2)^1(x1, x^)

(8.1)

for -oo < < oo, > 0, = k + a2, Imk12 .2 , 2 -q-L < 0;

35T  = a3
hi]/. (8.2)

for x.̂  > Oj
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(8.3)

for x-, < Oj

f 1 , 0)| exp(-u1x1)dx1 < ~ (8.4)

for u, > - Rean, m = 1, 2;

I
cty,
sir (xi* 0)

3

exp(-u1x1)dx1 < (8.5)

for > - Rea.̂  D | u-̂  | < q^.

The Sommerfeld radiation condition for is

lim V t7 (-c—  + ik^, ) = 0,r1 oo x ori x

2 2 —  where r-̂ = (x^ + x^)2.

The above boundary problem may be solved using 
the one variable Wiener-Hopf method. We include some of 
these details. The wave equation (8.1) possesses 
separation solutions given by

^(x.L, x-ji s1) = exp[s1x1 + x5/2K(s1, -ag)] (8.6)

and upon multiplying the right side of (8.6) by P+(s1)/2TT 
and using superposition, we obtain 

■^(x^, xjĵ =
(8.7)

1 002TT f p+ (s1)exP[s1x1 + x5/2K(s1, -a2)]dv1.
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This formal solution of (8.1) will satisfy boundary con­
dition (8.2) provided that

dV'x
5xT3

, oo .̂(s-j)
= 20 / 2K(s,, -a„) e*P(si*i)dv1

v -n 1 23“ (8.8)
= a^ exp(-a1x1)

for x^ > 0. Also boundary condition (8.3) will be satis­
fied if

] 00^1(x1, 0) = / P+(s1)exp(s1x1)dv1 = 0 (8.9)
- 0 0

for x^ < 0.
Since

00

P+(s1) = ^ [ ^ ( x ^  0)] = / ^ ( x ^  0)exp(-s1x1)dx1,

it follows from condition (8.4) that F+(s^) is analytic 
and bounded in Lm-norm for u^ > - Rea^. Moreover by
(8.5)j P+(s1)/2K(s1, -a^) is analytic and bounded in Lg- 
norm for u^ > - Rea^ fl |u1 1 < q^. Therefore, Cauchy's 
formula may be used to obtain the unique additive decom­
position

P.(si)
2K(s1, -a2) = G+^sl̂  + G-^sl̂  (8.10)

where G+(s-̂ ) is analytic for u^ > - Rea^ and G_(s^) is 
analytic for u.̂  < q ^  However, by (8.8) and (8.2)
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P.(Bi) 00 C^,
gK(Sl, -ag) ° 33J (xl>

i 0 bfa
= a-5(s1+a;L) + / (x1, 0)exp(-s1x1)dx1

^ -00 5

whence

^+(sl) = a^(si+a )̂

Thus our transform equation (8.10) becomes

2K (s 1V'1-ag)" = a3^Si+al^_1 + G-(sl) (8ai)

where the unknown functions ^(s-^) and G_(s1) are analytic
for u2 > “ Rea.̂  and u1 < q.̂ , respectively, and F+(S]_) is
bounded In L -norm for u-, > - Rean.m i i

The factorization of K(s) needed to solve (8.11)
Is decidedly simpler than the factorization required In
the case of the quarter-plane. In the present problem
we factor K(s) as

K(s) = | K+ (s)K_(s)
(8.12)

= ■|[s1+l(s2+k2)2 ] 2 [ s^-1 (s^+k2)2 ]"2

whereas In the case of the half-plane H^: < x^ < oo,
Xg > 0, x^ = 0 we would factor K(s) as

K(s) = | K+(s)K"(s)

(8'15)
= |{ Sg+l (s2+k2)2 ] ™2 [ Sg-l (s2+k2)2 ] ”2.
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In (8.12), s2 Is fixed In the strip |u2 | < q while In
(8.13), Is fixed In the strip |u1 | < q.

We now use (8.12) to rewrite (8.11) as

P+(S;L) K_(sr -a2)
iK+(s^-ag) ~ a3 (s1+a1) + K_(s1,-a2)G_(s1). (8.14)

The additive decomposition
K_(s1,-a2 ) K_(-a1,-a2) K_(s1,-a2) - K_(-a1,-a2)
(s 2+ a j) (s -̂+ 3-̂ ^

allows us to rewrite (8.14) as

t,/_ \ P+^sl̂  K_(-ax,-a2)
E(sl) = 1K+(s;l, -a2) “ a3 (s1+a1)

(8.15)K^(s-.j"cip) - K_ (-a., -ap)
= (s1+a1) + K_(si^_a2^G-(si)*

The second part of (8.15) is analytic for u1 > a1 =
maxt-q^, -Rea-j,} while the third part is analytic for
u-ĵ < = q.̂  and this equation holds in the strip
c*! < Ui < P-̂ . Hence by analytic continuation E^-^) is an
entire function. Furthermore is bounded and
E^.^) -*■ 0 as u.̂  ->■ +00. By Liouville's theorem, E^.^) = 0.
Consequently,

F+(s^) = ia^K+ (s-̂ ,-a2)K_(-a^,-a2) (s-j+â ) . (8 .16)

The solution for the half-plane H-̂  is therefore

exp(-apxp) 00
2n J F+(si )exp[s^x^ + x^/2K(s1,-a2) Idv̂ ^

(8.17)
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with P+ (s1) given as In (8.16) and the corresponding 
solution for the half-plane H2 ls

4>2(xp  x2* x 3̂  =
(8.18)

exp(-a,x,) oo
 2Tf  f P (s2)exp[s2x2 + x5/2K(-a1,s2) ]dvg

where

F+ (s2 ) = la5K+(-a1,s2)K"(-alJ-a2)(s2+a2)_1.

These solutions of the two half-plane problems may be con­
verted Into expressions analogous to (7.7). Since

- •§ / exp(-s1x1)H^2  ̂[kx(x2 + x2)2]dx., =
-0 0

2K(s1,-a2)exp[x^/2K(s1,-a2)]

we have by the one variable convolution theorem that 
^ ( x ^  x2, x?) =

(8.19)
^ exp(-a2x2) g|- / f1(y1)H^2^{k1[ (y1-x1)2 + x2]ir}dy1

with ^(y^) denoting the inverse transform of F+ (s^).
The integral representation

exp(-a2x2)H^2^(k1[(y1-x1)2 + x2]*) =

± oo exp(a2y2 - ikR)
IT f R dy2— 00

where R is given by (7.8) allows us to rewrite (8.19) as
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V xl' V  V  -

_ 1 J L  f°°f“ R (v v ) g3£P-(~lkR) dv dv W  3x“ J -L SiVYi* y2} R dy^yg 3 -oo o

with g1(y1, y2) = exp(-a2y2)f1(y1). Thus, as in the case 
of the quarter-plane, the field produced from scattering 
by the half-plane results from a distribution of point 
sources with density g^(x^, Xg) over H^. By symmetry, 
(8.18) may be written as

x2* =

■ W  sir f f M yl' y2 > '6?CPR"'lkR  ̂ dyidy2i o -oo

where ggty-^ y2) = exp(-a1y1)fg(y2) and fg(y2) is the 
inverse transform of F+(sg).

We are now in a position to show that the field 
scattered by the quarter-plane behaves for large posi­
tive Xg like the field scattered by the half-plane H^.
That is, we must show that

f(x1, Xg) ~ exp(-a2Xg)f1(x1)

as Xg -+• +oo which is the same as

lim exp(agXg)f(x-j^, Xg) = f,(x,). (8.20)
Xg -»■ +oo

To verify (8.20) we first prove that it is equiv­
alent to

lim (sg + ag)F(s) = F+(s-L). (8.21)
Sg -*■ -a2
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Suppose that (8.20) holds and set
00

P(x1; s2) = / f(xi, x2)exp(-s2x2)dx2.

By (2 .16),
11m exp(a2x2)f(x,, xg) =

x0 -*■ +oo
(8.22)

lim (s2 + a2)P(x1; Sg).
S2 “a2

Now multiply both sides of (8.22) by exp(-s1x1), Integrate 
from 0 to oo, and use (8 .20) to obtain 

11m (s2 + a2)P(s) =

/ f1 (x1)exp(-s1x1)dx1 = P+(s1).

Since the above steps are reversible (take an Inverse 
transform In s^ and then use (8.22)), the equivalence of
(8 .20) and (8 .21) is established.

To show that (8.21) (and hence (8.20)) holds we 
observe that straightforward calculations give

K-JsjK^s) = K+ (s),

Kp(s)K,(s) = K (s),
2 5 (8.25)

K^sjKgfs) = K+ (s),

K5 (s)K4(s) = K“(s).

Making use of the first two equations In (8.25), we have
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lim (s2 + a2)F(s) =

iâ K.̂  (ŝ,> “Q-g)K2 (-a.̂ ,  ̂̂5 ̂ ""̂ 1 * —̂ 2^^4 ̂ ® i*—̂ 2 ̂ ̂ ̂l"̂ "̂ l ̂ —

ia^K^_( ~a2)K_(- a - a 2) (3-̂ +a-̂ ) = F̂ _(s-̂ )

as desired. A similar calculation which makes use of the 
last two equations in (8 .25) gives the corresponding 
result for the half-plane H2:

lim e x p ^ x ^ f ( x 1# x2) = f2 (x2).
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SECTION IX

BEHAVIOR AT THE CORNER

In this section, we investigate the radial
behavior of our solution (7.1) near the origin. Since
the right hand side of (7 .1) still represents the solu­
tion for Uj = 0, we may write

<J)(x1, x2, x ) =
(9.1)

_ 00 00

 2 f f F(v)exp[ivx - x,M(v) ]dv1dv2
(2 TT) - o o - o o  ^

2  2 2 ~where M(v) = (v^ + v2 - k )2 with choice of branch deter­
mined by ReM(v) > 0. Introducing the spherical
coordinates
x.̂ = r sin a cos (3, x2 = r sin a sin p, x^ = r cos a

(0 < a < n/2, 0 < p < 2TT) and the polar coordinates
v1 = p cos 7 , v2 = p sin y

(0 < 7 < 2TT) gives the relations

x^ + ix2 = r sin ae1 ,̂ v1 + iv2 = pe^. (9.2)

Substitution of (9.2) into (9.1) yields

4>(r, a, p) = — •
(2TT r

“ 2TT 2 2 i
I I P(p^7 )exp[ipr sin a cos(p~7 ) - r cos a(p -k )^]pd7dp. 
0 0
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Now fix a and define the mean values
2TT

= 211 / a> P)dP>

i 2TT
Pm (P)ss2TT{ P(p, 7)d7. (9.3)

Using Hansen's integral (see [16], p. 20), that is, the
result

1 2TT/ exp[iA cos(p-7 )]dp = J (?0 an 0 o

we have that the two mean values are related by

<U r' a) = ,m (9.4)
1 00 2 2 ”2ff Fm (p)exP(“r cos a (p "k )2)J0(pr sin a)pdp.

The change of variable t = pr in (9.4) gives

*24>m(r, a) =
(9.5)

f F (;r)exP[“cos a(t2-r2k2)2]J (t sin a)tdt.2TT jq m r o

It is clear from (9-5) that

r2(b (r, a) ~ rm v * '
(9.6)

i i “
2TT Pm̂ r̂  £ exP(_t cos a )J0(t sin a )dt

as r -*■ 0. But since the one variable Laplace transform 
of t JQ(at) is s/(s2 + a2)-^2, (9.6) becomes

r2t(r, a) ~ ^  Fj±) (9.7)
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as r -*• 0. If we set
, n/2

*m(r) “ TT {, a)da

and average each side of (9.7) over the interval 
0 < a < TT/2, we obtain

as r -*■ 0.
Growth estimate (6.2) yields

P(p, P) = 0(p‘ 5/4)
and clearly

Q1(p, p) = 0(p2)

so that

P(p, P) = o(p"11/4) (9.9)
for large p. In view of (9.5) and (9.9)

Fm (̂ ) = 0(rll/4) (9.10)

for small r. Since (j) (x*) -*•<{) as r 0, (9.8) and (9.10) 
give

(J) = 0(r5/4) (9.11)
and

| | _ = 0(r“l/4) (9.12)
5

as r -*■ 0.
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Estimates (9.H) and (9.12) tell us that the 
scattered wave remains finite near the corner whereas 
its normal derivative does not. In contrast, the 
exponents given in [lj] for diffraction by a perfectly 
absorbent quarter-plane are 1/4 for the scattered wave 
and -2/4- for its normal derivative.
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