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ABSTRACT

CHLOROBENZENE AS A DIFFERENTIATING SOLVENT FOR 
THE OSCILLOMETRIC TITRATION OF WEAK ORGANIC BASES

by

K. JAGAN MOHAN RAO

An oscillometric method has been developed for the 
determination of a number of weak organic bases ranging in 
pK^ from 8.84 (p-toluidine) to 14.44 (2-fluoropyridine) 
using chlorobenzene as a solvent. Mixtures of these bases, 
having a pK^ difference (A pK^) of from 4.24 to 0.24, have 
also been analyzed. In these differential titrations, two 
inflections corresponding to the two bases present in the 
mixture have been obtained. The breaks are sharp and both 
the equivalence points are easy to evaluate accurately. A 
method has also been developed for the titration of diprotic 
bases, where two inflections corresponding to the two basic 
groups were obtained.

The excellent differentiating properties of chloro
benzene as a solvent have been demonstrated and the impor
tance of precipitate formation in oscillometric titrations 
has been pointed out.

Finally it is shown that oscillometry is an excel
lent analytical technique for the quantitative determination 
of weak bases and their mixtures using chlorobenzene as a 
solvent.

x



INTRODUCTION

For a number of years there has been great interest 
In the development of analytical methods which will permit 
the accurate quantitative analysis of weak organic acids and 
bases - a problem of considerable importance in organic, 
biological and pharmaceutical chemistry, both from the stand
point of its use in research and in industry.

A variety of results have been reported in the litera
ture in this area which have utilized non-aqueous solvent 
systems and have employed the potentiometric technique to 
monitor the titrations carried out.

It is the purpose of this investigation to extend the 
applicability of this type of analysis, not only to include 
the determination of weak bases but also to permit the analy
sis of mixtures of such bases.

The approach to solving this type of problem must in
volve at least two aspects: 1) screening solvents to obtain
one superior in its differentiating properties to those 
presently found useful, and 2) to investigate experimental 
techniques not subject to certain limitations inherent in 
the potentiometric method when used in non-aqueous solvents.

The matter of obtaining an appropriate aprotic solvent 
will be considered in the part of this thesis entitled "State
ment of the Problem".

As an experimental technique it is proposed to ex
plore the applicability of high frequency conductimetry or
oscillometry in spite of negative statements appearing in the

1 2literature as to the probable success. *
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STATEMENT OF THE PROBLEM

In recent years considerable use has been made of
such organic solvents as glacial acetic acid, acetonitrile,
and others as media for conducting acid-base titrations,

3 4 5especially for the determination of weak organic bases. * * 
Using the solvents mentioned above, it is possible to follow 
the reactions and to find the equivalence points potentio- 
metrically utilizing the glass electrode-reference electrode 
system.

At the present time increasing attention is being 
given to chemical investigations of acid-base behavior in 
organic solvents of comparatively inert character. Such sol
vents include aliphatic and aromatic hydrocarbons and halo- 
genated hydrocarbons which have very low dielectric constants 
and are characterized by being almost devoid of acidic and 
basic properties.

Having only feeble acid-base properties these sol
vents do not interact strongly with acidic solutes such as 
carboxylic acids, phenols and mineral acids or with basic 
solutes such as amines and derivatives of guanidine or pyri
dine. Consequently, they are not "leveling" or "masking" 
solvents like water and low molecular weight alcohols, but 
instead are "differentiating" solvents.

In media of such low dielectric constants it becomes 
impractical to follow acid-base titrations potentlometrically 
for the electrical resistance of the solutions is so high 
that it would be necessary to place the glass electrode and 
the reference electrode as close together as possible which 
because of uncertainty in the distance of separation would 
lead to poor reproducibility of results, but of even greater
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Importance in solvents of such low dielectric constants the 
products of the reaction are likely to precipitate, thus 
fouling the electrodes and rendering the results unsatis
factory for quantitative results.

In an attempt to extend the titration technique to the 
determination of weak bases and to the analysis of mixtures of 
weak bases, it was decided to seek a satisfactory aprotic sol
vent for such work and an experimental technique other than 
the traditional potentiometric method which would give analyti
cally acceptable results.

An examination of the literature suggested the possi
bility of using chlorobenzene as a solvent. Chlorobenzene 
has been used as a solvent in potentiometric titrations of 
single base'* (aniline, pyridine, etc.) and from a consideration 
of its properties, it was decided to investigate its use as ag
differentiating solvent. Olah and coworkers from their own 
and published data on the shifts of infrared fundamental H - X 
stretching frequencies concluded that the relative order of 
decreasing basicity of halobenzenes is as follows:

C6H6 > C6H5I > C6H5Br > °6H5C1 > C6H5F

Thus chlorobenzene should be the least basic of the four con
venient solvents. In addition, chlorobenzene is available in 
pure form at a reasonable price. Its solvating power is 
higher than that of benzene. The dielectric constant of chloro 
benzene is 5.708; consequently the conductance of its solutions 
would be very low. It was decided to investigate the proper
ties of this solvent for acid-base titrations.

The other aspect of the problem would be to find a 
suitable method for monitoring such titrations for the poten
tiometric method could not be used. As a method, it was 
decided to investigate the possible use of oscillometric
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titrations, for these are well known to be suitable for non- 
aqueous systems, since a given change in the intrinsic con
ductivity causes a greater change in the related quantity 
measured (the impedance), the lower the dielectric constant 
of the medium.
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A REVIEW OF CERTAIN ASPECTS RELATING THE SYSTEMS AND EQUIP
MENT UNDER CONSIDERATION

In this section will be presented the following 
topics: 1) a brief review of acid-base titrations in
aprotic solvents, and 2) an introduction to oscillometry 
and its applications.

ACID-BASE TITRATIONS IN APROTIC SOLVENTS:9 On the whole, 
there has been a strong inclination to use mixed solvents 
in non-aqueous titrimetry. It has been comparatively rare 
for a single non-aqueous solvent to be used for titrations, 
especially an aprotic solvent. However, titrations in com
pletely aprotic solvents are entirely feasible when a proper 
combination of reactants is selected. A brief survey of 
such titrations in which various indicator dyes or physical 
measurements were used for end-point location is given below.

Titrations with Indicator Dyes in Aprotic Solvents. 
Bromophthalein magenta E, tamarack green base, and victoria 
blue B anhydro-base are examples of indicators intended 
especially for aprotic solvents. The latter two are bases. 
p-Naphtholbenzein, an acid weaker than bromophthalein magenta 
E, is sometimes useful in benzene.

Instrumental Procedure for Detecting End Points in 
Aprotic Solvents. Aliphatic amines have been titrated with 
picric acid, trichloroacetic acid, etc., using conducto- 
metric end point methods. Bryant and Wardrop^ have studied 
the acid-base interactions in acetone and acetonitrile by 
both conductometrie and dielectrometric methods. They con
ducted dielectrometric titration of trlethylamine with tri
chloroacetic acid in benzene and also in dioxane. The dielec 
trie constant increased gradually until the equivalence point
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Chen became essentially constant. Ishidate11 and co
workers have recently explored analytical dielectrometric 
titrations in dioxane.

What are in effect photometric titrations have been 
performed frequently in spectrophotometric investigations
intended mainly to determine acid-base stoichiometry and

12 13relative strengths in solvents like benzene. ’
14Forman and Hume titrated bases with hydrogen

15bromide in acetonitrile using thermometric methods. Mead 
also performed thermometric titrations of bases with tri
chloroacetic acid in benzene. Mead's principal objective was 
to determine enthalpy changes and to correlate them, if 
possible, with relative strengths of bases.

Gur'yanoua and Beskina1** performed cryoscopic titra
tions of benzoic acid in benzene with amines like Am^N, Et^N, 
and piperidine as an adjunct to dielectrometric titrations 
in studying the association of benzoic acid with amines.
More recently, Bruckenstein and Vanderborgh1  ̂have titrated 
bases in benzene with trifluoroacetic and trichloroacetic 
acids, using an experimental apparatus for recording continu
ously the change in the freezing point depression during a 
titration.

It is only recently that much attention has been 
given to the investigation of acid-base properties in com
pletely aprotic solvents and even now there are no established 
methods for the determination of very weak bases in aprotic 
solvents of low dielectric constant like chlorobenzene.

OSCILLOMETRY AND ITS APPLICATIONS: In 1946 Jensen41 and
42Blake independently published conductometrie titration 

curves made with electrodes that had no physical contact with 
the solution being titrated. This method of performing 
measurements at high frequencies with electrodes outside the



7

cell is called oscillometry. The uniqueness of this tech
nique lies In the fact that a chemical system absorbs electro 
magnetic energy of radio-frequency through the walls of the 
containing vessel and stores it. The resulting energy trans
formation is reflected in the operation of the generator 
that produces the electromagnetic field and, if some elec
trical parameter of the generator is measured, it is found 
to be a function of the magnitude of the energy absorption 
and hence of the composition of the chemical system. The 
advantage of this type of measurement over conventional con- 
ductometric measurements is that as the electromagnetic 
energy is transmitted through the walls of the container, 
there is no physical contact between the chemical system and 
the electrodes, and electrode polarization and fouling are 
avoided. When electromagnetic energy is transmitted through 
a cell and chemical system used in oscillometry both a 
resistance and reactance component are always present. There 
is no practical instrument which measures only the resistance 
or the reactance of the chemical system. In every case, the 
measured parameter is a rather complex function of the total 
impedance of the chemical system.

Z (impedance) = \j (resistance) + (reactance)

The measured value is not a linear function of the impedance, 
but reflects a disproportionate amount of either the resis
tance or the reactive component of the impedance. The fact 
that the measured value does not indicate the magnitude of 
any single property of the chemical system does not destroy 
its utility as an analytical tool. By means of suitable cir
cuits , the measured value does become a nearly linear function 
of the composition of the chemical system (over a relatively 
narrow concentration range) and can be used advantageously
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as the indicator in titrimetry.
There are two major types of oscillometers. One 

is the resistance type and the other, the reactance type.
The resistance type instrument measures predominantly the 
resistaice of the chemical system, while the reactance type 
measures predominantly the reactance of the chemical system. 
E. H. Sargent Company, Oscillometer Model V, which is used 
in this work, is a reactance type instrument and all titra
tion curves for a reactance type oscillometer will be "V" 
shaped, because the capacity of the cell system Increases 
with the increase in conductance and exhibits no maximum; 
however, the slope of the sides of the "V" will show con
siderable curvature if the titration is carried out in the 
region of maximum curvature of the instrument response 
curve, or the slope will be very flat if the titration is 
conducted at a point beyond the region of maximum curvature.

An excellent discussion of the principles of oscil-
43lometry is given by Burkhalter.

Oscillometry has found wide applications in analyti
cal chemistry. Numerous titrations of inorganic ions and 
organic compounds have been found to yield good end point 
detection by the oscillometric method, some of which do not 
lend themselves to accurate titration by other common electro
metric or indicator procedures. Typical of these are the

18 19 20determination of thorium , fluoride , calcium, magnesium ,
21and different metal ions with disodium EDTA. It has been

22used in the studies of composition of complex compounds ,
23in titrations involving chelation , and also in argento- 

24metric and other precipitation titrations. It has also
found use in the quantitative evaluation of paper chromato- 

25grams , in determining the induction period in gold-sol
26 27 formation , in the measurement of dielectric constants ,
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in the analysis of water-benzene-methyl ethyl ketone system
29and in the study of saponification rate of ethyl acetate.

By far the largest number of applications have been
in the determination of organic compounds. Wagner and

3 4Kauffman and also Lippincott and Timnick have studied the
oscillometric determination of nitrogen containing bases.
Mixtures of nitrogen containing bases have also been studied.
The substances were dissolved in glacial acetic acid and a
glacial acetic acid solution of perchloric acid was used as
the titrant. Oscillometry has also been used for the titra-

30 31 32 33tion of alkaloids , organic salts , phenols , acids and
34amino-acids. It has found wide application in pharma

ceutical analysis.
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EXPERIMENTAL WORK 

REAGENTS

SOLVENT: Certified monochlorobenzene was obtained from
Fisher Scientific Co., Cat. No. B-255; b.p. 131.4° - 131.9°C. 
This was used without further purification.
TITRANT: The titrant used was approximately 0.1 N perchloric
acid in glacial acetic acid containing a little acetic- 
anhydride. All the work reported here has been performed 
using perchloric acid mixture "A" obtained from G. Frederick
Smith Chemical Co., Columbus, Ohio, Item No. 71. This solu
tion is approximately 0.1 N perchloric acid in glacial acetic 
acid with a little acetic-anhydride.
GLACIAL ACETIC ACID: Reagent grade from Fisher Scientific
Co., Cat. No. A-38-C.
PERCHLORIC ACID: Baker analyzed; Cat. No. 9652. Perchloric
acid assay 71.0% from J. T. Baker Chemical Co.
POTASSIUM HYDROGEN PHTHALATE: Fisher primary standard grade,
Cat. No. P-243 from Fisher Scientific Co.
DRIERITE (Anhydrous CaSO^): Size 8 mesh, from W. H. Hammond
Drierite Co., Xenia, Ohio.
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WEAK ORGANIC BASES: Unless otherwise specified all were used
as obtained from the manufacturer without any further purifi- 
cation,

p-Toluidine: Eastman Organic Chemicals, Cat. No. 254.
Aniline: Fisher Certified, Cat. No. A-740 from Fisher

Scientific Co. 
o-Toluidine: K & K Laboratories Inc., Cat. No. 18668.
6-Nitroquinoline: Aldrich Chemical Co., Inc.,

Cat. No. N2400. This was twice recrystal
lized from "hot" ethanol.

Pyrazole: Aldrich Chemical Co., Inc., Cat. No. P5660.
4-Nitroaniline: Aldrich Chemical Co., Inc.,

Cat. No. N985.
2-Nitroaniline: Technical grade of unknown origin.

This was twice recrystallized from hot ethanol. 
2-Fluoropyridine: K & K Laboratories Inc., Cat. No.

1891.
8-Hydroxyquinoline: Reagent grade obtained from G.

Frederick Smith Chemical Co., Columbus, Ohio, 
Item N o . 142.

Nicotine: K & K Laboratories Inc., Cat. No. 13741.
p-Aminobenzoic Acid: K & K Laboratories Inc., Cat. No.

1435.



35Table 1JJ

pK^ Values of the Basesa

Name of the Compound ^ ^ 1  ^ b 2

p-Toluidine 8.84
Aniline 9.31

o-Toluidine 9.48
6-Nitroquinoline 11.28

Pyrazole 11.52
4-Nitroaniline 12.96

2-Nltroanailine 14.24
2-Fluoropyridine 14.44

8-Hydroxyquinoline 4.09 8.89

p-Aminobenzoic Acid 9.13 11.50

Nicotine 6.0 10.90

aAqueous values
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EQUIPMENT

pH METER: Corning pH meter, Model 7, distributed by Fisher
Scientific Co.
ELECTRODES: Combination Glass-Ag/AgCl electrodes, Sargent
S-30070-10.
BURET: The. buret used was obtained from Kontes Glass Co.,
Cat. No. K-351790 (class A). It is a 50 ml. Teflon stop
pered buret to which an 8" long glass tip was attached.
STIRRER: For potentiometric titrations a magnetic stirrer 
was used. For oscillometric titrations a motor-driven, 
paddle-type stirrer was used.
HUMIDITY INDICATOR: Air Guide Humidity Indicator, No. 605.
The hygrometer was used to monitor the relative humidity in 
the room.
DEHUMIDIFIER: Signature Automatic Dehumidifier 25. It was
run with the humidity control set at extra dry and the air 
flow meter set at constant high.
OSCILLOMETRIC CELL: Sargent & Co., No. S-29222. A 230 ml.
capacity cell with female ground glass cover.
SARGENT MODEL V OSCILLOMETER: The circuit arrangements of a
reactance type of oscillometer are rather more complex than 
those of resistance type. The mechanical lay out and design 
must be carefully planned to prevent the interaction of the 
tuned circuits; the stability and sensitivity of a soundly 
constructed instrument of this type exceed, however, those of 
other types of instruments. The E. H. Sargent and Co.
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Oscillometer Model V, a well designed instrument o£^^reactance 
type with excellent performance, was used in this work. It 
has a single oscillator, an amplifier stage, a frequency dis
criminator circuit, and a capacitor re-tune measuring device 
as shown in the block diagram below. The cell is connected

Disc.Osc. Z.T.V.M.Amp.

Block Diagram of Sargent Oscillometer Model V.
Osc. = Oscillator Disc. = Discriminator
Amp. = Amplifier V.T.V.M. = Vacuum tube

volt meter

in parallel with the tank circuit of the oscillator, whose 
output is amplified and fed Into the discriminator, which 
is permanently tuned to 5 MC/Sec. The discriminator is so 
designed that its voltage output is essentially zero when 
the oscillator frequency corresponds exactly to that of the 
tuned discriminator. The voltage output of the discrimi
nator is directionally sensitive and rises sharply when the 
oscillator frequency deviates from the reference frequency 
of 5 MC/Sec. When the frequency of the oscillator is altered 
by changes in composition of the chemical system, the devia
tion is indicated by the vacuum tube volt meter, and the 
oscillator is returned to the reference frequency by means 
of a variable precision condenser in parallel with the cell; 
the number of scale divisions of capacitance necessary to 
re-tune the oscillator is used as the sensible indicator.
The details of the circuit and the method of operation are 
well described in the instrument manual and need not be in
cluded here.
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TEMPERATURE AND HUMIDITY CONTROL: Experience with the titra
tions demonstrated the importance of temperature and humidity 
control on the results obtainable. All the titrations were 
done in an "air conditioned" room maintained at constant 
temperature of within + 1°C. The relative humidity in the 
room was monitored with an Air Guide Humidity Indicator. At 
one time during the titration of a mixture of pyrazole and 4- 
nitroaniline the relative humidity in the room was above 80%. 
The high humidity appeared to interfere with the titration 
and the breaks obtained in the titration curve were not sharp. 
It was difficult to locate the equivalence point. The second 
equivalence point could be located easily but uncertainty in 
the location of the first equivalence point made the whole 
titration useless. Although relative humidity up to 65% 
could be tolerated and had no appreciable effect on the titra
tions, it is important to keep the humidity in the room as 
low as possible. During the summer months of May, June and 
July the relative humidity in the room was very high, so a 
dehumidifier was used.
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PROCEDURES

STANDARDIZATION OF PERCHLORIC ACID IN GLACIAL ACETIC ACID 
WITH POTASSIUM HYDROGEN PHTHALATE

Potassium hydrogen phthalate when dissolved in 
glacial acetic acid behaves as a base, so it is an excel
lent substance for standardizing perchloric acid in glacial 
acetic acid solution.

Primary standard grade potassium hydrogen phthalate 
was dried at 110°C for two hours and then stored in a desic
cator over "Drierite". About 0.5 gm. of the potassium hydro
gen phthalate was accurately weighed into a beaker type cell 
of 200 ml. capacity. After about 100 ml. of glacial acetic 
acid was added, the solution was stirred by means of a mag
netic stirrer. The cell was covered with a rubber stopper 
having two holes. A glass-Ag/AgCl combination electrode 
(which was soaked in glacial acetic acid for about two hours) 
was then inserted through one of the holes and the buret tip 
through the other. The pH meter was switched to the milli
volt scale and the potential recorded. Perchloric acid in 
glacial acetic acid was then added from the buret in small 
increments to the cell, and the change in potential was re
corded after each addition. A "large" change in potential 
was obtained at the equivalence point. The potential in 
millivolts was plotted against the volume of the perchloric 
acid added and the equivalence point volume read from the 
graph from which the normality of the perchloric acid solu
tion was calculated.
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GENERAL PROCEDURE FOR THE DETERMINATION OF WEAK BASES

All Che bases were stored In a desiccator which con
tained Drierite as the desiccant.

About two milliequivalents of the base were weighed 
accurately into a dry oscillometric cell and covered with 
the ground glass lid. To this was added about 100 ml. of 
chlorobenzene. This was enough to bring the upper level of 
the chlorobenzene solution more than 1 cm. above the elec
trodes. (It is necessary to fill the cell 1 cm. above the 
electrodes to include all the fringing capacitances in the 
total capacitance value so that any change in volume alone 
will not change the capacitance value).

The cell was kept in the cell holder and then fitted 
with a polyethylene cover with two holes, one for the buret 
tip and one for the stirrer. The stirrer and the buret tip 
were inserted into their respective holes. The stirring was 
started and the oscillometer was adjusted to read zero on 
the meter: i.e., brought to resonance by means of the variable 
precision capacitor. In about two minutes a steady reading 
was obtained. Then the initial reading of the oscillometer 
was recorded and 0.1 N perchloric acid in glacial acetic acid 
(standard titrant) was added in small increments (about 1 to 
2 ml. at a time) from the buret. The perchloric acid reacts 
with the base forming a salt and consequently the composition 
of the chemical system changes. This brings about a change 
in the oscillator frequency; this deviation was indicated by 
the vacuum tube voltmeter. The oscillator was returned to 
the reference frequency by means of the variable precision 
capacitor in parallel with the cell; the nuober of scale 
divisions of capacitance necessary to retune the oscillator 
after each addition of the titrant was recorded. These values
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were then plotted against the volume of the titrant added.
A sharp break was obtained at the equivalence point. The 
titration was continued well beyond the equivalence point 
to obtain the final portion of the curve. The time to attain 
equilibrium after each addition of the titrant and the sharp
ness of the break at the equivalence point depended upon the 
nature and strength of the base being titrated. This will be 
considered in more detail in the discussion.

GENERAL PROCEDURE FOR THE DETERMINATION OF MIXTURE OF BASES
About 1.5 milliequivalents of each of the two selected 

bases were weighed accurately into the dry oscillometric cell 
and approximately 100 ml. of chlorobenzene were added to it. 
(General procedure was the same as when a single base was 
titrated). The stronger of the two bases present in the solu
tion reacted with the added perchloric acid first to form a 
salt. When all of the stronger base had been titrated, the 
weaker base reacted with any further additions of perchloric 
acid. The titration was continued well beyond the weaker 
base equivalence point to obtain the final portion of the 
curve. The scale divisions of capacitance change were plotted 
against the volume of the titrant added. Two breaks, corres
ponding to the equivalence point volumes of the two bases 
present, were obtained in the titration curve. Once again 
the shape and sharpness of the breaks depended upon the nature 
and strength of the two bases present. This will also be 
considered in more detail under discussion.

GENERAL PROCEDURE FOR THE TITRATION OF DIPROTIC SUBSTANCES
The procedure for the titration of diprotic substances 

was the same as given for monobasic substances. The only 
difference was that the titration in the case of a monobasic
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substance was stopped when a few milliliters of the titrant 
were added beyond the stoichiometric equivalence point, 
whereas in the case of dibasic substances, it was continued 
until more than twice the stoichiometric amount of the 
titrant was added. As in the case of a monobasic substance, 
the scale divisions of capacitance were plotted against the 
volume of the titrant added. A curve with two breaks (only 
one break corresponding to the second pK^ in the case of 
nicotine) were obtained.
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RESULTS AND DISCUSSION

A curve showing the instrument response on the
addition of perchloric acid in glacial acetic acid to chloro 
benzene is shown in Figure 1 and Table 17 in the appendix 
shows the data.

tried as solvents. Many of the bases selected for analysis 
were not soluble in carbon tetrachloride. Fluorobenzene is 
very expensive and seemed to offer no particular advantage 
over chlorobenzene. So it was decided to do all the work 
using chlorobenzene as solvent.

oscillometer; therefore, as it was pointed out earlier, all 
titration curves should be "V" shaped. However, because the 
capacity of the cell system increases with increase in con
ductance and exhibits no maxima, the slope of the sides of 
"V" will show considerable curvature, if the titration is 
carried out in the region of maximum curvature, or the slopes 
will be very flat if the titration is conducted at a point 
beyond the region of maximum curvature. This fact should be 
kept in mind when considering the titration curves that follow.

p-TOLUIDINE CH3

n h2
Figure 2 shows the titration curve of p-toluidine 

and Table 18 in the appendix shows the data. The equivalence

Carbon tetrachloride and fluorobenzene were also

Sargent Oscillometer, Model V, is a reactance type
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point volume is 9.40 ml. and the shape of the titration curve
obtained is " \__ i.e., a deformed "V". Looking at the
instrument response curve, this would be expected, for the 
equivalence point volume (9.40 ml.) falls on the fairly 
"flat" region of the response curve.

Figure 3 and Table 19 show another titration curve 
of p-toluidine. In this case the equivalence point volume 
is 21.27 ml. This falls on the steep portion of the instru
ment response curve, so a "V" shaped curve would be expected 
and such is the case. The shapes of the titration curves of 
all the weak bases titrated follow the same pattern. Depend
ing upon where the equivalence point falls on the instrument 
response curve, the shape of the titration curve varies all 
the way from a deformed "V" ( \ ___) to a perfect "V".

Results of the quantitative determination of p-tolui- 
dine are given in Table 2. This was the strongest monoprotic 
base titrated. The reaction throughout the titration was 
fairly rapid; it took about 40 sec. to reach equilibrium after 
each addition of the titrant. The first 2 ml. of the titrant 
did not produce any precipitate (the solution was in a super
saturated state), but after about 3 ml. of the titrant had 
been added, a precipitate was obtained. As can be seen in the 
titration curve a discontinuity was obtained when precipitate 
formed. This change in the curve is due to the precipitation 
of the salt from the solution, which caused a decrease in the 
conductivity. As can be seen in the titration curves, the 
"breaks" are sharp.
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Table 2

Determination of p-Toluidine 
pl^ = 8.84

wt of the wt of the Percent
Sample base taken base found recovery

1. 0.1052 g. 0.1062 g. 100.9
2. 0.2032 g. 0.2045 g. 100.6
3. 0.2403 g. 0.2403 g. 100.0

Average percent recovery = 100.5
Percent standard deviation = 0.46

Table 3

Determination of Aniline 
pl^ = 9.31

wt of the wt of the ‘ Percent
Sample base taken base found recovery

1. 0.1330 g. 0.1323 g. 99.5
2. 0.2716 g. 0.2714 g. 99.9
3. 0.2865 g. 0.2874 g. 100.3

Average percent recovery = 99.9
Percent standard deviation = 0.42
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ANILINE NH

= 9.31

The titration curve of aniline is shown in Figure 4 and the 
data in Table 20. During the titration after each addition 
of the titrant 20 sec. was required to reach equilibrium. The 
shape of the titration curve follows the same pattern as 
described under p-toluidine. The "breaks" obtained at the 
equivalence point are sharp. The results are shown in Table
3.

o-TOLUIDINE

The titration curve of o-toluidine, shown in Figure 5 and 
Table 21, follows the same general pattern of the other bases 
titrated and as usual the "breaks" are sharp. The results 
are shown in Table 4.

6-NITR0QUIN0LINE

The titration curve of 6-nitroquinoline is shown in Figure 6 
and data in Table 22, and the results are given in Table 5. 
During the titration after each addition of the titrant, about 
20 sec. was required to reach equilibrium. The salt precipi
tated after the addition of two milliliters of the titrant.

pKb = 9.48

pl^ = 11.28
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Table 4

Determination of o-Toluidine 
pl^ = 9.48

wt of the wt of the Percent
Sample base taken base found recovery

1. 0.1376 g. 0.1359 g. 98.8
2. 0.2250 g. 0.2235 g. 99.3
3. 0.2849 g. 0.2846 g. 99.9

Average percent recovery = 99.3
Percent standard deviation = 0.55

Table 5

Determination of 6-Nitroquinoline 
pl^ = 11.28

wt of the wt of the Percent
Sample base taken base found recovery

1. 0.3004 g. 0.3009 g. 100.2
2. 0.3426 g. 0.3444 g. 100.6
3. 0.3593 g. 0.3586 g. 99.8

Average percent recovery = 100.2
Percent standard deviation = 0.40
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FYRAZOLE
pl^ = 11.52

H

Pyrazole Is a weak base with a pK^ = 11.52. It was observed 
during the titrations that, as the bases became weaker, it 
usually took more time to reach equilibrium after each addi
tion of the titrant. In the case of pyrazole it took about 
1 1/2 minutes to reach equilibrium after each addition of the 
titrant. The titration curve is shown in Figure 7 and Table 
23. As usual the "breaks" are sharp, and the equivalence point 
is easy to locate. The results are shown in Table 6.

4-NITROANILINE NHo

4-Nitroaniline when dissolved in chlorobenzene gives a light 
yellow solution. On adding the first 2 ml. of the titrant, 
the yellow color of the solution intensified, but there was 
no precipitate formation. When about 4 ml. of the titrant 
was added, precipitation of the salt took place; it took 
about 45 sec. to reach equilibrium after each addition of the 
titrant. As the titration was continued further, the yellow 
color of the solution started fading away, and, at the same 
time, the amount of the precipitate increased. After the 
equivalence point, the solution became almost colorless with 
a "bulky" white precipitate floating around in it. (The same 
type of behavior was exhibited by 2-nitroanlline.) The titra 
tion curve is shown in Figure 8 and data in Table 24. The 
"breaks" are sharp, and the equivalence point once again is

pl^ = 12.96

NO2
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Table 6

Determination of Pyrazole 
pl^ = 11.52

wt of the wt of the
Sample base taken base found

1. 0.1641 g. 0.1644 g.
2. 0.1981 g. 0.1995 g.
3. 0.2201 0.2204 g.

Average percent recovery = 100.3
Percent standard deviation = 0.32

Table 7

Determination of 4-Nitroaniline 
pl^ = 12.96

wt of the wt of the
Sample base taken base found

1. 0.2693 g. 0.2679 g.
2. 0.3124 g. 0.3113 g.
3. 0.4291 g. 0.4282 g.

Average percent recovery = 99.7
Percent standard deviation = 0.15

Percent
recovery
100.2
100.7
100.1

Percent
recovery

99.5
99.7
99.8
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easy to locate. The results are shown in Table 7,

2-NITROANILINE

AND

NH,
NO,

pl^ = 14.24

2-FLUOROPYRIDINE

N"
pKb = 14.44

2-Nitroaniline and 2-fluoropyridine are very weak bases with 
pK^^ of 14.24 and 14.44, respectively. In both cases the 
reaction was slow; it took about 2 min. to reach equilibrium 
after each addition of the titrant. In both cases a precipi
tate was obtained. The titration curves are shown in Figure 9 

and Table 25 and in Figure 10 and Table 26. As can be 
seen in both cases there is curvature at the equivalence point 
But this in no way interferes with "exact" location of the 
equivalence point. By extending the "straight" line portions 
of the curve near the equivalence point, the equivalence point 
taken as the intersection of the two lines, can be located 
easily and accurately. The results are shown in Tables 8 and 
9.
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Table 8

Determination of 2-Nitroaniline 
pK^ = 14.24

wt of the wt of the
Sample base taken base found

1. 0.2706 g. 0.2707 g.
2. 0.2960 g. 0.2948 g.
3. 0.3459 g. 0.3476 g.

Average percent recovery = 100.0
Percent standard deviation = 0.43

Table 9

Determination of 2-Fluoropyridine 
pl^ = 14.44

wt of the wt of the
Sample base taken base found

1. 0.1874 g. 0.1881 g.
2. 0.2292 g. 0.2290 g.
3. 0.2485 g. 0.2491 g.

Average percent recovery = 100.2
Percent standard deviation = 0.26

Percent
recovery

100.0
99.6

100.5

Percent
recovery

100.4
100.0
100.2
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THE ANALYSIS OF MIXTURE OF BASES

Having only feeble acid-base properties, chlorobenzene 
does not interact strongly with either acidic or basic sub
stances. Consequently, chlorobenzene is not a "leveling" or 
"masking" solvent, but instead is a differentiating solvent.
In other words, when two bases of different strengths are dis
solved in chlorobenzene, they maintain this difference even in 
solution, so it should be possible to titrate them individually 
when they are present in a mixture.

A series of four two-component mixtures of weak bases 
were prepared. The difference in the pK^ values (A pK^) of 
the two bases present in the mixtures prepared progressively 
diminished from 4,12 to 0.24. It should be kept in mind that 
all these pK^ values are valid only in aqueous solutions. In 
chlorobenzene the actual strength of the bases must be dif
ferent .

MIXTURE No. 1 - p-toluidine pK. = 8.84
and A pK. = 4.12

4-nitroaniline pK^ = 12.96

No. 2 - p-toluidine pK, = 8.84
and A pK. = 2.68

pyrazole pK^ = 11.52

No. 3 - pyrazole pK, = 11.52
and A pK. = 1.44

4-nitroaniline pK^ = 12.96

No. 4 - 6-nitroquinoline pK, = 11.28
and A pK. = 0.24

pyrazole pK^ = 11.52

When two bases of different strengths are present in 
a solution, the stronger base reacts first with the added 
titrant. In aqueous solutions p-toluidine is a stronger base 
than 4-nitroaniline and the order of basic strength was found
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to be the same in chlorobenzene; in fact, all the bases used 
to make the mixtures studied maintained their aqueous basic 
strength sequence in chlorobenzene.

It is of interest to consider the shape of the titra
tion curve (see Fig. 11/12 and data in Table 27) for the 
mixture p-toluidine and 4-nitroaniline. On adding the stan
dard perchloric acid solution to the solution of this mixture, 
p-toluidine being the stronger base reacted first forming a 
salt (which precipitated out); this continued until all the 
p-toluidine had been titrated. At that point the weaker base, 
4-nitroaniline, started to react with the added acid. Since 
the composition of the two chemical systems were different, 
there was a change in the instrument response (change in im
pedance) curve after all the p-toluidine had been titrated 
and 4-nitroaniline started to react. 4-Nitroaniline did not 
form a precipitate immediately; it remained in a supersatu
rated state. When about 6 to 8 ml. of the titrant had been 
added beyond the first base equivalence point, the 4-nitro
aniline salt began to precipitate and a "large" discontinuity 
occurred in the titration curve; again the slope of the curve 
changed. Finally, when all the 4-nitroaniline had been titra
ted, the curve rose steeply giving a sharp "V" shaped curve 
for the second base equivalence point.

All of the four mixtures followed the same pattern of 
titration. After the first base equivalence point was reached, 
in every case there was a supersaturated region followed by 
precipitation of the second base salt. In each case the forma
tion of a precipitate was accompanied by a "large" discontinu
ity in the curve. This discontinuity arose from the fact that 
the ions, ion pairs, and triplets, etc., present in the super
saturated solution, were removed by precipitation, thus causing 
a large decrease in the impedance of the solution.
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Table 10

Determination of a Mixture of p-Toluidine and 4-Nitroaniline

p-toluidine pK,, = 8.84 &  = 4 12
4-nitroaniline pK^ = 12.96

wt of the wt of the Percent
Sample base taken base found recovery

1. p-Toluidine
4-Nitroaniline

0.2283 g. 
0.2595 g.

0.2257 g.
0.2586 g.

98.9
99.

2. p-Toluidine 0.1669 g. 0.1668 g. 99.9
4-Nitroaniline 0.2772 g. 0.2744 g. 99.

3. p-Toluidine 0.1379 g. 0.1368 g. 99.2
4-Nitroaniline 0.2329 g. 0.2312 g. 99.

Average percent recovery: p-Toluidine
4-Nitroaniline

99.3
99.3

Percent standard deviation: p-Toluidine 0.54
4-Nitroaniline 0.38
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It was found that the precipitation of the second 
base salt made the detection of the second equivalence point 
easy and accurate. On occasions during the titration of a 
mixture of pyrazole and 4-nitroaniline, for some reason the 
second base salt did not precipitate out. Throughout the 
titration the system remained in a supersaturated state as 
evidenced by the fact that the color of the solution remained 
yellow. (When the salt precipitates out the solution at the 
equivalence point becomes almost colorless). The titration 
curve is shown in Figure 13 and in the data in Table 28. As 
can be seen, the second equivalence point break was not sharp 
and did not have a satisfactory "V" shape. When the salt did 
precipitate out, the break was sharp as is shown in Figure 14/15 
and Table 29. In all the cases the stronger base salt preci
pitated. The titration curves and results of all the four 
mixtures are given below. In all four cases the two breaks 
corresponding to the two bases are sharp, and the location 
of the equivalence point easy and accurate. A typical titra
tion takes about 2 1/2 hr. to complete.

TITRATION OF DIPROTIC BASES
In the previous section it was shown that chloro

benzene behaves as a differentiating solvent; consequently, 
it was possible to titrate individually two bases present in 
a mixture.

Next it was decided to investigate the titration of 
diprotic bases. Since chlorobenzene is a differentiating 
solvent, it should be possible to titrate these two basic 
groups individually; i.e., to obtain two breaks in the ratio 
of 1:1 in the titration of a diprotic base.

The following three diprotic bases were chosen to
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Table 11

Determination of a Mixture of Pyrazole and 4-Nitroaniline
pyrazole pK^ = 11.52
4-nitroaniline pK^ =12.96 ^ 1*44

1.

3.

Sample

Pyrazole
4-Nitroaniline

2  Pyrazole
4-Nitroaniline

Pyrazole
4-Nitroaniline

wt of the 
base taken

0.1269 g. 
0.2519 g.

0.1187 g. 
0.3030 g.

0.1273 g, 
0.4143 g.

wt of the 
base found
0.1278 g. 
0.2485 g.

0.1160 g.
0.3010 g.

0.1259 g. 
0.4137 g.

Average percent recovery:

Percent standard deviation:

Pyrazole
4-Nitroaniline

Pyrazole
4-Nitroaniline

99.1
99.3

1.5
0.59

Percent
recovery
100.7

98.7

97.7
99.4

98.9
99.9
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Table 12

1.

Determination of a Mixture of p-Toluidine and Pyrazole

A pl^ = 2.68p-toluidine pK^ = 8.84
pyrazole pK^ = 11.52

Samples
p-Toluidine
Pyrazole

2  p-Toluidine 
Pyrazole

^ p-Toluidine 
Pyrazole

wt of the 
base taken

0.1279 g. 
0.1094 g.

0.1257 g. 
0.1127 g.

0.1654 g. 
0.1293 g.

wt of the 
base found

0.1271 g.
0.1092 g.

0.1254 g.
0.1116 g. 

0.1666 g.
0.1295 g.

Average percent recovery:

Percent standard deviation:

p-Toluidine
Pyrazole

p-Toluidine
Pyrazole

100.0
99.7

0.69
0.59

Percent
recovery
99.4

99.8

99.8
99.0

100.7
100.2
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Table 13

Determination o£ a Mixture of Pyrazole and 6-Nitroquinoline

A pl^ = 0.246-nitroquinoline pK^ = 11.28 
pyrazole pK^ = 11.52

Sample

 ̂ 6-Nitroquinoline 
Pyrazole

2  6-Nitroquinoline 
Pyrazole

^ 6-Nitroquinoline 
Pyrazole

wt of the 
base taken
0.3168 g. 
0.1064 g.

0.4407 g.
0.1162 g.

0.4652 g. 
0.1069 g.

wt of the 
base found

0.3127 g. 
0.1074 g.

0.4407 g. 
0.1158 g.

0.4636 g. 
0.1075 g.

Average percent recovery: 6-Nitroquinoline 99.5
Pyrazole 100.4

Percent
recovery

98.7
100.9

100.0
99.6

99.7
100.6

Percent standard deviation: 6-Nitroquinoline 0.65
Pyrazole 0.66
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test this possibility:

1. 8-hydroxyquinoline

2. p-aminobenzoic acid

3. nicotine

4.09

9.13

6.00

8.89

11.50

10.09

COOH

CHi
First the titration curve of 8-hydroxyquinoline was 

investigated. On adding the standard acid the stronger basic 
group reacted first accompanied by precipitation of the salt 
produced. After the stronger basic group had been titrated, 
the weaker basic group started reacting. Once again the com
position of the two chemical systems being different, there 
should be a change in the instrument response curve. However, 
this portion of the titration curve seemed to be almost flat, 
probably due to the fact that there was no precipitate forma
tion during the titration of the weaker basic group. After 
the second basic group had been titrated, the curve rose , but 
the rise was not sharp. The curve is shown in Figure 20 and 
data in Table 32. As can be seen, two breaks were obtained in 
the ratio of 1:1 (within experimental error), corresponding to 
the two pK^ values. The location of the two equivalence points 
was easy and accurate. The results are given in Table 14.

p-Aminobenzoic acid followed exactly the same pattern. 
The titration curve is shown in Figure 21 and Table 33, and 
the results are shown in Table 15. But nicotine behaved dif
ferently! although it has two pl^ values, it gave only one 
break in the titration curve as shown in Figure 22 and in the
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Table 14

Determination of 8-Hydroxyquinoline

pRbi 4.09 A pK. = 4.80
= 8.89

wt of the wt of the base found using Percent recovery using
Sample base taken primary proton secondary proton primary proton secondary proton

1. 0.1689 g. 0.1684 g. 0.1688 g. 99.7 99.9

2. 0.1710 g. 0.1714 g. 0.1713 g. 100.2 100.2

3. 0.2363 g. 0.2369 g. 0.2373 g. 100.2 100.4

primary proton = 100.0
Average percent recovery using:

secondary proton = 100.2

primary proton = 0.29
Percent standard deviation using:

secondary proton = 0.24
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Table 15

Determination of p-Axninobenzoic Acid 

pKfai = 9.13

pKb2 - 11.50 A PKb ' 2 -37

wt of the wt of the base found using Percent recovery using
Sample base taken primary proton secondary proton primary proton secondary proton

1. 0.1961 g. 0.1948 g. 0.1954 g. 99.3 99.6

2. 0.2009 g. 0.2005 g. 0.2002 g. 99.8 99.7

3. 0.1850 g. 0.1845 g. 0.1844 g. 99.7 99.7

Average percent recovery using:
primary proton = 99.6

secondary proton = 99.7

primary proton = 0.26
Percent standard deviation using:

secondary proton = 0.024
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Table 16

Determination of Nicotine

p^i= 6-°
= 10.9 pKb = 4.9

Sample

1.

wt of the 
base taken

0.3089 g.

wt of the base found using 
primary proton secondary proton

0.3021 g.

Percent recovery using 
primary proton secondary proton

99.8

2 . 0.2233 g. 0.2192 g. 99.8

Average percent recovery using:
primary proton 
secondary proton = 99.8

Percent standard deviation using:
primary proton = ---

secondary proton = 0.07
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data in Table 34. This break corresponded to the second 
(i.e., weaker) value. In other words no break was 
obtained for the titration of p K ^  which is the stronger 
basic group. This can be explained as follows: on adding
the standard acid as usual the stronger basic group (pK^) 
should react first. But during the titration of this group, 
there was no precipitate formation and consequently there was 
no sudden change in the impedance of the system at the first 
equivalence point, the change was gradual and therefore no 
break was obtained. But when the second basic group (weaker 
group) started reacting, a precipitate was obtained and 
consequently, a sharp break was obtained at the equivalence 
point. From the behavior of nicotine and the other example 
given (mixture of pyrazole and p-nitroaniline) it was con
cluded that precipitation is an essential step in the loca
tion of equivalence point in these oscillometric titrations.

The results of nicotine determination are given in 
Table 16. The 2% error may be due to impurities in the 
sample used. No attempt was made to purify it. It is inclu
ded here only because it is a unique case and shows the impor
tance of precipitate formation in oscillometric titrations.
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CONCENTRATION RANGE APPLICABLE: The concentration range
which could be determined by this method is from about

-3 -29 x 10 M to 4 x 10 M (i.e., 0.9 milliequivalents to
about 4.0 milliequivalents of the base to be determined
dissolved in 100 ml. of chlorobenzene). Solutions of less_3than 9 x 10 M were found to be too dilute to titrate
satisfactorily; oscillometric end point detection became
difficult, for this region lies on the very steep portion
at the beginning of the instrument response curve where the

_2break would not be sharp. Above 4 x 10 M the equivalence 
point region lies on the far side of the maximum of the 
response curve where the precision in locating che equi
valence point is once again poor. Between the concentra-

-3 -2tion limits, 9 x 10 M to 4 x 10 M, the location of the
equivalence point is easy and accurate.
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CONCLUSIONS

There are many methods for the determination of
organic bases in acetic acid, dioxane, acetonitrile and

5 6 7other solvents. * ’ These are good general methods, but
do not serve to differentiate various types of amines. The
use of acetic anhydride permits the determination of ter-
tiary amines in the presence of primary and secondary 

36amines. Treatment of the mixture with salicylaldehyde,
37followed by titration in benzene-propanol or in ethylene-

38glycol-2-propanol , has been used to determine the primary 
amines.

39Fritz was the first to do differential titrations 
to distinguish between amines of different basic strength.
He carried out potentiometric titration of various bases in 
acetonitrile and was able to differentiate between aliphatic 
and aromatic amines in a mixture. The pK^'s of aliphatic 
amines generally lie around 4, and for. aromatic amines, 
usually between 9 to 12. The pK^ difference between these 
two groups is about 4 units and was therefore sufficient to 
permit their stepwise titration in a mixture. Fritz also 
carried out potentiometric differential titration of a mix
ture of aromatic amines (examples: aniline and o-chloroani-
line, pyridine and caffeine, etc.) in acetonitrile. Two 
inflections were obtained in the titration curve, but the 
breaks were not sharp and it was difficult to locate the 
equivalence point accurately. QLippincott and Timnick used oscillometric titrations

40in glacial acetic acid, and McCurdy and Galt used conductro- 
metric titrations in 1) a mixture of 1,4-dioxane + 34% formic 
acid and 2) glacial acetic acid for the differential titration
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of various aromatic amines. Here, once again, the breaks 
in most cases were not sharp, and it was difficult to evalu
ate the inflections corresponding to individual bases.

Pungorl in his book writes that "the oscillometric 
or conduc tome trie determination .of a number of nitrogen 
bases in the presence of each other can only be carried out 
with difficulty. Determination of the total bases is simple, 
but the inflections corresponding to the individual bases 
can be located only vaguely....".

Here an oscillometric method has been developed for 
the quantitative determination of weak and very weak bases, 
singly and in two component mixtures using chlorobenzene as 
a solvent. A method has also been developed for the titra
tion of diprotic bases whereby two inflection points have 
been obtained corresponding to the two basic groups (except 
in the case of nicotine, where only one break was obtained).
In every case the perchlorate salt formed, being insoluble 
in chlorobenzene, precipitated out, but this did not in any 
way interfere with the titration. In fact, it is shown that 
the precipitation made the determination of equivalence 
points easier and more accurate. In contrast to other methods, 
the breaks obtained in every case are sharp and easy to 
evaluate. Also inflections corresponding to the individual 
bases (in a mixture) could be located easily and accurately.

McCurdy and Galt titrated a mixture of 8-hydroxy- 
quinoline and o-aminobenzoic acid. Although these two bases 
are diprotic, only two inflections (not sharp) were obtained 
in the titration curve for the mixture. In the present work 
8-hydroxyquinoline and p-aminobenzoic acid (which is closely 
related to o-aminobenzoic acid) were titrated individually
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in chlorobenzene using oscillometry for end point detection. 
Two sharp breaks were obtained in the titration curve for 
each of these diprotic bases. In other words, using this 
technique, it was possible to differentiate between the two 
basic groups in the same molecule.

As mentioned earlier, a series of four, two-com
ponent mixtures of weak bases were analyzed in this work.
The least difference in the pK^ values (all of these are 
aqueous pK^ values) was in the case of a mixture of 6-nitro- 
quinoline and pyrazole, which differ by 0.24 pK^ units. Even 
here sharp breaks were obtained in the titration curve (see 
Fig. 18/19) and it was easy to evaluate the inflections cor
responding to the individual bases present in the mixture.
No cases have been reported in the literature for the dif
ferentiation of such a small difference in pK^ values (A pK^
0.24) for such a weak base mixture.

It has been demonstrated that oscillometry is a use
ful and accurate analytical technique for the quantitative 
determination of weak bases and their mixtures using chloro
benzene as a solvent.
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Table 17

Instrument Response Curve on the Addition of 
Perchloric Acid in Glacial Acetic Acid to Chlorobenzene

Normality of perchloric acid 0.1119
Height of the base taken Blank
Temperature 19.0°C
Relative humidity in the room 35%

Volume titrant added (ml.) Instrument reading

0.00 5552.0
2.00 5515.0
4.00 5485.0
6.00 5465.0
8.00 5451.0
10.00 5441.0
12.00 5436.2
14.00 5435.5
16.00 5438.0
18.00 5444.0
20.00 5451.5
22.00 5462.0
24.00 5470.5
26.00 5480.5
28.00 5489.0
30.00 5497.0
32.00 5508.0
34.00 5522.0
36.00 5537.0
38.00 5553.0
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Table 17 cont’d.

Volume titrant added (ml.)

40.00
42.00
44.00
46.00
48.00
50.00

Instrument reading

5569.5
5589.0
5609.0
5630.0
5651.5
5675.0
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Table 18

Titration of p-Toluidine in Chlorobenzene 
with Perchloric Acid in Glacial Acetic Acid

Normality of perchloric acid 0.1054
Weight of the base taken 0.1052 g.
Temperature 28.0°C
Relative humidity in the room 71%

titrant added (ml.) Instrument reading
0.00 5956.0
2.00 5933.5
4.00 5898.0
5.00 5885.5
6.00 5873.0
7.00 5862.5
8.00 5852.0
9.00 5841.0
10.00 5837.5
11.00 5836.5
12.00 5837.0
13.00 5837.5
14.00 5838.5
15.00 5840.0
16.00 5840.5
18.00 5836.8
20.00 . #► 5836.0
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Table 19

Titration of p-Toluidine in Chlorobenzene
with Perchloric Acid in Glacial Acetic Acid

Normality of perchloric acid 0.1054
Weight of the base taken 0.2403 g.
Temperature 27.0°C
Relative humidity in the room 72%

Volume titrant added (ml.) Instrument reading

0.00 5920.5
2.00 5897.0
4.00 5863.0
6.00 5842.0
8.00 5821.0
10.00 5804.0
12.00 5788.5
14.00 5776.0
15.00 5770.5
16.00 5765.0
17.00 5761.0
18.00 5757.2
19.00 5752.8
20.00 5749.5
21.00 5746.5
22.00 5750.0
23.00 5759.0
24.00 5768.3
25.00 5777.0
26.00 5780.6
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Table 19 cont'd.

Volume titrant added (ml.)

27.00
28.00
30.00
32.00
36.00
40.00

Instrument reading

5783.0
5786.0
5792.0
5799.0
5819.0
5844.0
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Table 20

Titration of Aniline in Chlorobenzene
with Perchloric Acid in Glacial Acetic Acid

Normality of perchloric acid 0.1121
Weight of the base taken 0.2716 g.
Temperature 21.0°C
Relative humidity in the room 72%

Volume titrant added (ml.) Instrument reading

0.00 5932.5
2.00 5898.0
4.00 5864.0
6.00 5833.0
8.00 5804.5

10.00 5778.0
12.00 5753.0
14.00 5730.0
16.00 5707.0
18.00 5686.0
20.00 5666.5
22.00 5648.0
23.00 5638.5
24.00 5630.0
25.00 5621.5
26.00 5619.5
27.00 5617.6
28.00 5621.0
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Table 20 cont'd.

Volume titrant added (ml.)

29.00
30.00
31.00
33.00
35.00

Instrument reading

5624.5
5627.5
5631.0
5640.0
5650.00
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Table 21

Titration of o-Toluidine in Chlorobenzene
with Perchloric Acid in Glacial Acetic Acid

Normality of perchloric acid 
Weight of the base taken 
Temperature
Relative humidity in the room

0.1121 
0.2250 g, 
19.0°C 
70%

Volume titrant added (ml.) Instrument reading

0.00 5664.0
2.00 5635.0
4.00 5605.0
6.00 5578.5
8.00 5554.5
10.00 5533.5
12.00 5513.5
14.00 5494.5
16.00 5477.0
17.00 5469.5
18.00 5461.0
19.00 5458.5
20.00 5461.5
21.00 5465.1
22.00 5469.1
23.00 5474.0
24.00 5479.2
25.00 5484.5
26.00 5491.2
28.00 5504.5
30.00 5520.0
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Table 22

Titration of 6-Nitroquinoline in Chlorobenzene
with Perchloric Acid in Glacial Acetic Acid

Normality of perchloric acid 0.1121
Weight of the base taken 0.3444 g.
Temperature 20.5°C
Relative humidity in the room 75%

Volume titrant added (ml.) Instrument reading

0.00 5673.5
2.00 5638.5
4.00 5600.1
6.00 5565.2
8.00 5532.5
10.00 5500.0
12.00 5471.5
13.00 5457.3
14.00 5443.5
15.00 5431.1
16.00 5417.8
17.00 5404.8
18.00 5398.3
19.00 5397.6
20.00 5397.4
21.00 5396.8
22.00 5397.0
23.00 5397.1
24.00 5398.4
25.00 5400.0
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Table 23

Titration of pyrazole in Chlorobenzene
with Perchloric Acid in Glacial Acetic Acid

Normality of perchloric acid 0.1119
Weight of the base taken 0.1971 g.
Temperature 21.0°C
Relative humidity in the room 60%

Volume titrant added (ml.)

0.00
2.00
4.00
6.00
8.00
10.00 
12.00
14.00
16.00
18.00
20.00 
22.00
24.00
26.00 
26.50
27.00
28.00
29.00
30.00
31.00
32.00

Instrument reading

4989.1
4962.2
4920.4
4888.0
4857.0
4830.3
4805.0
4783.0
4763.4
4743.5
4727.0
4711.1
4698.0
4687.0
4687.8
4688.0
4691.0
4694.5
4701.0
4705.7
4711.0
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Table 24

Titration of 4-Nitroaniline in Chlorobenzene
with Perchloric Acid in Glacial Acetic Acid

Normality of perchloric acid 0.1121
Weight of the base taken 0.2693 g.
Temperature 20.0°C
Relative humidity in the room 74%

Volume titrant added (ml.)

0.00
2.00
4.00
6.00
8.00
10.00
12.00
14.00
15.00
16.00
17.00
18.00
19.00
20.00
21.00
22.00
23.00
24.00

Instrument reading

5913.5
5872.5
5824.5
5783.0
5744.5
5708.0
5674.0
5641.5
5623.7
5609.0
5594.3
5590.1
5589.7
5590.0
5590.0
5591.5
5593.0
5595.0
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Table 24 cont’d.

Volume titrant added (ml.)

25.00
26.00
28.00
30.00

Instrument reading

5598.0
5600.5
5608.2
5617.2
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Table 25

Titration of 2-Nitroanlline in Chlorobenzene
with Perchloric Acid in Glacial Acetic Acid

Normality of perchloric acid 0.1121
Weight of the base taken 0.3459 g.
Temperature 20.0°C
Relative humidity in the room 62%

Volume titrant added (ml.) Instrument reading
0.00 5705.5
2.00 5668.0
4.00 5630.0
6.00 5596.0
8.00 5564.5
10.00 5535.5
12.00 5508.2
14.00 5483.5
16.00 5463.5
18.00 5447.0
20.00 5432.5
21.00 5425.8
22.00 5422.0
23.00 5919.0
24.00 5418.0
25.00 5420.5
26.00 5422.0
27.00 5423.5
28.00 5426.0
30.00 5434.5
32.00 5444.5
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Table 26

Titration of 2-Fluoropyrldlne In Chlorobenzene
with Perchloric Acid In Glacial Acetic Acid

Normality of perchloric acid 0.1118
Weight of the base taken 0.2292 g.
Temperature 24.0°C
Relative humidity in the room 5470

Volume titrant added (ml.) Instrument reading

0.00 5653.0
2.00 5628.0
4.00 5601.5
6.00 5575.0
8.00 5534.5
10.00 5505.2
12.00 5477.4
14.00 5453.1
15.00 5441.9
16.00 5432.3
17.00 5422.0
18.00 5412.9
19.00 5405.4
20.00 5399.2
21.00 5395.5
22.00 5392.5
23.00 5391.5
24.00 5391.5
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Table 26 cont'd.

Volume titrant added (ml.)

25.00
26.00
27.00
28.00
29.00
30.00

Instrument reading
5393.2
5394.7
5397.3
5399.6
5403.0
5407.8
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Table 27

Titration of a Mixture of
p-Toluidine and 4-Nitroaniline in Chlorobenzene
with Perchloric Acid in Glacial Acetic Acid

Normality of perchloric acid 0.1118
Weight of p-toluidine taken 0.1669 g.
Weight of 4-nitroaniline taken 0.2772 g.
Temperature 20.0°C
Relative humidity in the room 65%

Volume titrant added (ml.) Instrument reading

0.00 5712.5
2.00 5690.0
4.00 5652.6
6.00 5626.5
8.00 5602.5

10.00 5578.6
11.00 5568.5
12.00 5557.6
13.00 5548.0
14.00 5539.8
15.00 5536.6
16.00 5534.5
17.00 5533.0
18.00 5531.2
19.00 5529.0
20.00 5527.5
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Table 27 cont'd.

Volume titrant added (ml.)

21.00
22.00
23.00
25.00
27.00
29.00
31.00
32.00
33.00
34.00
35.00
36.00
37.00

Instrument reading

5525.0
5518.2
5460.0
5434.5
5411.0
5391.0
5371.0
5369.0
5374.2
5381.0
5388.0
5395.0
5403.3
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Table 28

Titration of a Mixture of
Pyrazole and 4-Nitroaniline in Chlorobenzene
with Perchloric Acid in Glacial Acetic Acid

Normality of perchloric acid 0.1054
Weight of pyrazole taken 0.1538 g.
Weight of 4-nitroaniline taken 0.1755 g.
Temperature 22.0°C
Relative humidity in the room 61%

Volume titrant added (ml.) Instrument reading
0.00 5871.0
1.00 5856.5
2.00 5836.5
3.00 5815.0
4.00 5796.0
5.00 5778.0
6.00 5761.5
7.00 5746.5
8.00 5731.5
9.00 5715.7
10.00 5701.5
11.00 5687.5
12.00 5676.5
13.00 5664.5
14.00 5652.5
15.00 5639.5
16.00 5628.5
17.00 5618.8
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Table 28 cont'd.

Volume titrant added (ml.)
18.00
19.00
20.00
21.00
22.00
23.00
24.00
25.00
26.00
27.00
28.00
29.00
30.00
31.00
32.00
33.00
34.00
35.00
36.00
37.00
38.00
40.00

Instrument reading 
5609.6
5601.8
5594.0
5586.0
5581.5
5576.8
5574.0
5570.5
5567.2
5564.6
5563.5
5560.0
5559.5
5558.5
5558.0
5559.0
5564.5
5570.5
5578.0
5584.6
5592.0
5609.5
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Table 29

Titration of a Mixture of
Pyrazole and 4-Nitroaniline in Ghlorobenzene
with Perchloric Acid in Glacial Acetic Acid

Normality of perchloric acid 0.1118
Weight of pyrazole taken 0.1269 g.
Weight of 4-nitroaniline taken 0.2519 g.
Temperature 22.0°C
Relative humidity in the room 44%

Volume titrant added (ml.) Instrument reading
0.00 5720.5
4.00 5648.5
8.00 5587.0
9.00 5577.4
10.00 5563.0
11.00 5549.5
12.00 5536.8
13.00 5523.8
14.00 5513.2
15.00 5502.0
16.00 5493.0
17.00 5484.0
18.00 5477.3
19.00 5470.8
20.00 5465.5
21.00 5460.2
22.00 5455.0
23.00 5450.0
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Table 29 cont’d.

Volume tltrant added (ml.)
24.00
25.00
26.00
27.00
28.00
29.00
30.00
31.00
32.00
33.00
34.00

Instrument reading
5446.5
5442.0
5438.5
5384.5
5376.5
5370.0
5363.0
5356.5
5350.5
5350.5
5355.3
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Table 30

Titration of a Mixture of
Pyrazole and p-Toluidine in Chlorobenzene

with Perchloric Acid in Glacial Acetic Acid

Normality of perchloric acid 0.1054
Weight of p-Toluidine taken 0.1257 g.
Weight of pyrazole taken 0.1127 g.
Temperature 20.5°C
Relative humidity in the room 47%

Volume titrant added (ml.) Instrument reading
0.00 5850.4
1.00 5836.0
2.00 5822.1
3.00 5809.0
4.00 5786.5
5.00 5772.0
6.00 5759.0
7.00 5745.8
8.00 5733.0
9.00 5721.5

10.00 5710.5
11.00 5703.0
12.00 5700.0
13.00 5700.0
14.00 5702.2
15.00 5703.6
16.00 5705.0
17.00 5689.0



93

Table 30 cont'd.

Volume titrant added (ml.)
18.00
19.00
20.00
21.00
22.00
23.00
24.00
25.00
26.00
27.00
28.00

Instrument reading
5684.0
5676.8
5667.5
5659.5
5650.8
5644.2
5637.0
5631.0
5625.5
5623.0
5625.6
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Table 31

Titration of a Mixture of
6-Nitroquinoline and Pyrazole in Chlorobenzene
with Perchloric Acid in Glacial Acetic Acid

Normality of perchloric acid 0.1121
Weight of 6-nitroquinoline taken 0.3168 g.
Weight of pyrazole taken 0.1064 g.
Temperature 19.5°C
Relative humidity in the room 61%

Volume titrant added (ml.) 
0.00
2.00
4.00
6.00
8.00
10.00
12.00
13.00
14.00
15.00
16.00
17.00
18.00
19.00
20.00
21.00
23.00
25.00

Instrument reading
5647.0
5625.5
5571.1
5737.2
5503.5
5473.0
5442.0
5929.5
5418.0
5408.0
5399.0
5391.5
5389.5
5386.5
5369.0
5361.5
5347.6
5332.0
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Table 31 cont'd.

Volume titrant added (ml.)
26.00
27.00
28.00
29.00
30.00
31.00
32.00
33.00
34.00
35.00
36.00
38.00
40.00

Instrument reading
5324.8
5317.6
5313.2
5307.3
5302.5
5306.0
5310.5
5316.5
5321.0
5329.0
5335.0
5348.0
5362.5
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Table 32

Titration of 8-Hydroxyquinoline in Chlorobenzene
with Perchloric Acid in Glacial Acetic Acid

Normality of perchloric acid 0.1118
Wieght of 8-hydroxyquinoline taken 0.1689 g. 
Temperature 19.5°C
Relative humidity in the room 70%

Volume titrant added (ml.) Instrument reading
0.00 5653.0
2.00 5614.5
4.00 5575.5
6.00 5538.5
7.00 5521.0
8.00 5504.0
9.00 5486.8

10.00 5471.3
11.00 5464.5
12.00 5464.7
13.00 5463.2
14.00 5458.4
15.00 5454.5
16.00 5451.0
17.00 5446.2
18.00 5444.8
19.00 5445.0
20.00 5444.0

I
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Table 32 cont'd.

Volume titrant added (ml.)
21.00
22.00
23.00
24.00
25.00
26.00
27.00
28.00
29.00
30.00

Instrument reading
5444.5 
5445.9
5447.5
5449.5
5451.8
5456.0
5458.0
5461.8
5466.8
5470.5
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Table 33

Titration of p-Aminobenzoic Acid in Chlorobenzene
with Perchloric Acid in Glacial Acetic Acid

Normality of perchloric acid 0.1119
Weight of p-aminobenzoic acid taken 0.1961 g. 
Temperature 23.0°C
Relative humidity in the room 42%

Volume titrant added (ml.) Instrument reading
0.00 5848.0
1.00 5839.5
2.00 5821.2
3.00 5802.0
4.00 5783.5
5.00 5766.5
6.00 5749.0
7.00 5732.5
8.00 5716.2
9.00 5701.0

10.00 5686.0
11.00 5671.0
12.00 5657.6
13.00 5647.5
14.00 5644.5
15.00 5641.6
16.00 5640.2
17.00 5638.5
18.00 5636.5
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Table 33 cont'd.

Volume titrant added (ml.)
19.00
20.00
21.00
22.00
23.00
24.00
25.00
26.00
27.00
28.00
29.00
30.00
31.00
32.00
33.00
34.00
35.00

Instrument reading
5634.8
5634.0
5633.8 
5634.3
5635.0 
5635.7
5636.6
5638.7
5642.0
5645.0
5649.0
5652.7
5657.5 
5662.2
5667.5
5671.9
5677.8

I
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Table 34

Titration of Nicotine in Chlorobenzene
With Perchloric Acid in Glacial Acetic Acid

Normality of perchloric acid 0.1118
Weight of nicotine taken 0.3089 g.
Temperature 25.0°C
Relative humidity in the room 44%

Volume titrant added (ml.) Instrument reading
0.00 5668.0
3.00 5681.0
5.00 5670.5
7.00 5656.0
8.00 5649.5
10.00 5622.0
11.00 5606.8
12.00 5592.0
13.00 5576.3
14.00 5560.5
15.00 5546.0
16.00 5530.8
17.00 5515.0
18.00 5500.5
19.00 5485.5
20.00 5471.3
21.00 5457.6
22.00 5444.0
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Table 34 cont'd.

Volume titrant added (ml.)
23.00
24.00
25.00
26.00
27.00
28.00
29.00
30.00
31.00
32.00
33.00
34.00
35.00
36.00
37.00
38.00
39.00
40.00

Instrument reading
5430.5
5417.8
5404.8
5391.3
5379.3
5367.0
5355.5
5318.3
5306.5
5293.8
5281.0
5280.5
5284.1
5287.5
5291.1
5293.8
5298.5
5302.0
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