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Abstract

In this research, formability improvement of AA5182-O aluminium sheet during electro-

hydraulic forming (EHF) was investigated by means of experimental and finite element

analysis. Free and conical die formed EHF was carried out on grid sheet blanks and

formability improvement was measured by comparing grid analysis results at each

EHF condition with different forming limit curves (FLCs). It is found that AA5182-

O shows minor improvement in formability when formed freely into EHF. But a

significant rise in effective strain in safe grids is observed when EHF into 34, 40 and

45◦ conical dies provided a critical threshold of input energy has been used. In or-

der to understand the mechanical aspects of formability improvement, related factors

such as strain rate, stress triaxiality, and compressive through-thickness stress were

studied using finite element simulation with an accurate description of the hardening

behaviour of AA5182-O. Another advantage of the numerical simulation carried out in

this work is that unlike previously published works, the driving force for EHF deforma-

tion was not simplified as uniform pressure and it resembles the actual process of EHF.

Ignition and growth model was used in conjunction with Coupled Eulerian-Lagrangian

(CEL) approach to simulate the EHF pulse formation. Moreover, 3D solid elements

were used instead of shell elements and this facilitated measurement of stress in ele-

ments located in the bulk of sheet material. The tensile flow behaviour of AA5182-O

sheet was investigated in the strain rate range of 0.001 to 1000s−1 and at different

material directions (RD, DD, and TD) by means of both phenomenological models

and neural networks (NNs). Genetic algorithm (GA) and linear regression analysis

methods were used to calculate the constants in Johnson-Cook (JC), Khan-Huang-

Liang (KHL) and modified Voce hardening functions, and user-material subroutines

were developed and used in FE software. Moreover, in order to predict the rheological

behaviour of AA5182-O without the limitations of a mathematical function, two types

of feed-forward back-propagation neural networks were trained and used in the FE
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model. Simulation results were compared with experimental tensile flow curves and

the most accurate method is used to predict the mechanical response of AA5182-O

in FE simulations of the EHF process. FE results suggested that a combination of

EHF process related parameters including compressive through-thickness stress (neg-

ative stress triaxiality) generated during the deformation could postpone the failure,

when specimens are formed into a die cavity (EHDF). Also, the increased velocity

and significant impact pressure at the final stage of deformation not only prevent

strain localization but also help in further suppressing the damage. It is found that

very high peak strain rates develop in the sheet as it contacts the die surface which

further postpone the failure since AA5182-O exhibits positive strain rate sensitivity

at such high-strain rates. Moreover, damage mechanisms of AA5182-O sheets were

investigated during EHF tests and are compared with those occur during quasi-static

(QS) deformation. The results confirm that void nucleation, growth and coalescence

are the main damage mechanisms of AA5182-O at both high and low strain rates.

It is found that Mg2Si particles do not significantly influence void formation and the

main source of void nucleation is cracking of Al3(Fe-Mn) intermetallic particles. More

importantly, it is found that specimens deformed under QS conditions contained more

voids in areas away from the sub-fracture surface but EHF specimens exhibit higher

rate of void growth close to sub-fracture areas. Optical microscopy results confirmed

that void formation is suppressed by increasing the applied energy in EHF. And

more importantly, the growth of voids is suppressed due to the high-velocity impact

of the sheet against the die which plays an important role in increasing formability

of AA5182-O aluminium sheet in EHF. Optical microscopy showed that AA5182-O

grains experience significant shearing strain during the EHF deformation in the apex

area of conical EHDF specimens. The results of transmission electron microscopy

showed that dislocation density increases when specimens are formed using EHF pro-

cess but the magnitude of this increase is not significantly greater than in quasi-static

deformations. Finally, it is concluded that the combination of high strain rate de-

formation and compressive through-thickness stress during the deformation, leads to

formability improvement of AA5182-O in EHDF.
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Chapter 1

Introduction

1.1 Motivation for the industrial use of aluminium

alloys

The use of aluminium alloys in the automotive industry is attractive since it allows

the weight of a vehicle body to be reduced by 50% [1]. By reducing the weight of

a passenger vehicle by even 10%, Joost [2] showed that fuel efficiency can improve

by 6-8%. Besides, the low density of aluminium alloys and their excellent corrosion

resistance as compared to steels, make them a material of choice for automotive

body and structure components. Highly formable 5xxx-series aluminium alloys are

generally used for inner panel applications whereas 6xxx-series alloys which are heat-

treatable are preferred for outer panel applications [3]. However, in comparison with

steel which can show more than 50% elongation, aluminium alloys typically exhibit

lower formability at low temperatures [4, 5]. Moreover, the cost of aluminium alloys

and their manufactured parts is greater than that of steels [3].

Another difficulty is that impurities and second phase particles in aluminium alloys

lead to localized shear and final failure [6]. Besides, these alloys have low strain hard-

ening exponent which limit their ductilities compared to commercial steels especially

at room temperature deformations. Therefore, in the last decades, researchers have

focused on improving the formability of aluminium alloys [5].

Among the many aluminium alloys that are commercially produced, fully annealed

5182 aluminium alloys (AA5182-O) is of great interest to the automotive industry

due to their good formability and production price compared to 6xxx or 7xxx-series

aluminium alloys. AA5182-O is a good material for inner parts of vehicles mainly due

to its cost. However, AA5182-O low formability as compared to many commercial
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grade steels prevents the extensive use of this alloy in automotive industry.

Forming at elevated temperatures could lead to better formability improvement of

AA5182-O but has its own drawbacks including additional costs of lubrication, higher

energy consumption of heating and post forming cleaning [7]. Alternatively, high

strain rate deformation processes can be used but there are several uncertainties

regarding high strain rate forming. A clear understanding of the deformation history

and the materials’ response to high-strain rate deformation would remove hindrances

to a broad implementation of such forming processes in the automotive industry.

1.2 Objective of the research

The ultimate objective of this research was to explain the micro-mechanisms and

mechanical factors that are the root cause of the formability enhancement of AA5182-

O when it is subject to EHF. The following were secondary objectives of this research;

1. Quantitative analysis of deformation of AA5182-O sheets deformed under differ-

ent EHF conditions; electro-hydraulic die form (EHDF) and electro-hydraulic

free form (EHFF) and with different levels of input energy. The purpose of the

quantitative analyses was to determine the magnitude of formability improve-

ment in each case.

2. Due to the technical difficulties related to EHF experiments, it was needed to

obtain reliable numerical simulation of the EHF process especially to understand

the effect of factors influencing the formability of the sheets; including hydro-

static stresses. The first step toward this goal was to obtain work hardening

behaviour of AA5182-O at different strain rates ranging from QS to high-strain

rates and implement this work hardening properties to numerical simulation.

Also, this investigation helped us to understand if changes in mechanical prop-

erties could lead to any improvement in formability of the alloy at high-strain

rates.

3. Observation and quantification of failure mechanisms of AA5182-O under dif-
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ferent EHF conditions to determine the void nucleation process. Moreover, the

quantitative analysis of void growth indicated if the void growth could be influ-

enced by the EHF process.

1.3 Structure of the dissertation

This dissertation consists of seven chapters. The following is a brief description of the

contents of each chapter;

Chapter 2 presents a literature review on 5xxx-series aluminium alloys, their im-

portant alloying components. High strain rate processes including EHF are then

discussed as well as the mechanisms of hyperplasticity and changes in material con-

stitutive behaviour. Different hardening functions and two approaches to determine

phenomenological hardening functions for the alloy, genetic algorithm and artificial

neural network, are discussed briefly. Finally, fracture mechanisms by void nucleation

and growth are presented.

Chapter 3 describes the experimental measurement of formability improvement dur-

ing EHF. The importance of the die effect and input energy are discussed in this

chapter. This chapter is published in Materials Science and Technology (MS&T).

Chapter 4 discusses the constitutive behaviour of AA5182-O during quasi-static and

high-strain rate deformation. Tensile test data were fitted to various hardening func-

tions and the constants of Johnson-Cook, KHL and modified-Voce were determined

using two different approaches; regression analysis and genetic algorithm optimiza-

tion. Also, the hardening properties of the alloy are studied using different structures

of artificial neural networks. All hardening functions are implemented as ABAQUS

VUMATs and used to simulate simple tensile tests to determine the most accurate

constitutive function. This chapter is published in Journal of Materials and Design.

Chapter 5 discusses the extent of formability improvement of AA5182-O during the

EHF process by means of experimental and finite element modelling. Finite element
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(FE) analysis was performed using coupled Eulerian-Lagrangian elements and the

ignition and growth of an explosive material submerged in water. FE simulations

were conducted using obtained artificial neural network to describe the hardening

behaviour of AA5182-O and reveals the importance of strain rate, sheet velocity,

stress triaxiality and impact stress on free and die formed EHF specimens. This

chapter is accepted for publication in Journal of Materials Processing Technology.

Chapter 6 discusses the findings on fracture mechanisms of the AA5182-O sheet.

Sources of void nucleation as well as the effect of EHF process on void growth is

discussed. The work in this chapter is published in the journal of Materials Science

and Engineering A. Further material characterization performed during this work is

presented; optical microscopy of anodized specimens revealing grain structure as well

as transmission electron microscopy results including interaction of dislocations with

second-phases and intermetallic particles and dislocation density measurements are

presented in appendices A and B.

Chapter 7 presents the general discussion and concluding remarks from this re-

search. At the end of this chapter, suggestions are made for future research.
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Chapter 2

Literature Survey

2.1 5xxx-series aluminium alloys

5xxx-series aluminium-magnesium (Al-Mg) alloys were first developed in the 1930s

when there was a need for sheet materials with higher strengths, weldability, good

formability and higher levels of corrosion resistance [1]. Fig. 2.1 shows a comparison

of mechanical properties of 5xxx-series alloys with those of other major industrial

alloys [2]. Although these alloys are not typically heat-treatable and derive their

mechanical properties from solid solution hardening of magnesium atoms in the alu-

minium matrix, the mentioned favourable properties in conjunction with their ease of

being manufactured, physical properties and low cost results in their extensive usage

in the automotive, aerospace, and shipbuilding industries [3].

According to the binary Al-Mg phase diagram, 3% (mass fraction) of magnesium (Mg)

could be completely dissolved at temperatures over 190◦C in the aluminium matrix,

which contributes to the solute-drag effect. The linear misfit factor between Mg and

Al is +0.12. High stacking-fault energy of Al-3Mg makes cross-slip and climb easier

and helps provide a uniform dislocation distribution [4].

Korbel et al. [5] compared shear band formation of a pure aluminium and Al-4.5Mg

alloys and concluded that straining by shear localization inversely changes with the

magnesium content.

Manganese is usually added to aluminium alloys to provide strength and grain size

control [6, 7]. The addition of Mn can help to increase the formability of 5xxx alloys

above that of 6xxx-series alloys; Li and Ghosh [8] found better formability for strain-

hardened AA5182+Mn as compared to AA6111-T4.

Other alloying elements, such as Fe and Si, can significantly influence the damage
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(a)

(b)

Figure 2.1: Comparison of (a) tensile strength and (b) specific tensile strength of aluminium
alloys with those of other major industrial alloys [2].
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mechanisms and fracture behaviour. In alloys with low Fe content, voids play a ma-

jor role in damage whereas for alloys with high-Fe content, shear bands are more

prevalent. For example, Spencer [9] showed that by increasing the Fe content, the

effective plastic strain up to fracture (fracture strain) reduces in most testing condi-

tions.

A large variety of second-phase particles with various size distribution are present in

the microstructure of a typical commercial AA5xxx where their size and distribution

are influenced by the casting and hot rolling processes. These particles are the result

of Mg and other alloying elements, mainly Fe and Si, and impurities in the aluminium

and consist mainly of Mg2Si, Al12(Fe,Mn)3Si, Al6(Fe,Mn) and Al3Fe [10]. Kaibyshev

et al. [11] observed the presence of incoherent second-phase particles of Al3Zr, Al3Cr

and Al6Mn using TEM investigation. These incoherent particles do not contribute to

the strength or work hardening of the alloy [9].

Hadianfard et al. [12] detected three groups of second phases in AA5182; the first

category consists of mainly Al, Mg, and Si, the second category contains 10% Fe, Mg

and Mn, and finally, less common second phases contain only aluminium oxides.

2.1.1 Chemical composition of AA5182

AA5182 alloy has a range of chemical composition, as indicated in Table 2.1.

Table 2.1: Chemical composition of various AA5182 alloys from literature, wt%.

Al Mg Mn Fe Si Cr Cu Zn Ti Detail
Bal. 4.0-5.0 0.20-0.50 <0.35 <0.2 <0.10 <0.015 <0.10 <0.05 Accepted range
Bal. 4.30 0.34 0.21 0.03 – 0.01 <0.01 <0.01 [13–15]
Bal. 4.40 0.36 0.18 0.11 0.04 0.10 0.02 0.02 [16]
Bal. 4.51 0.34 0.18 0.08 0.02 0.05 – 0.02 [17]
Bal. 4.60 0.35 0.21 0.11 0.01 0.04 – – [18]

2.1.2 Forming limits of AA5182-O sheets

The concept of a forming limit diagram (FLD) was introduced by Keeler and Back-

hofen (1964) and then further developed by Goodwin (1968). Since then FLDs have

become the primary tool to evaluate the formability of sheet materials [19]. The
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forming limit curve (FLC) represents the locus of all combinations of plastic strains

beyond which there is a risk of necking in sheet materials [7].

A review of the literature shows that there is significant scatter between the experi-

mental FLC of AA5182-O sheets. This is due to the difficulty of identifying the onset

of necking as well as the range of mechanical properties. This difficulty is more promi-

nent for aluminium alloys because they tend to develop highly localized deformation

areas following by rapid cracking. This is also confirmed by damage analysis for alu-

minium alloys such as in Ref. [20]. Figure 2.2 shows different experimental FLCs of

AA5182-O developed at room temperature and reported in the literature [15, 21–24].
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Figure 2.2: Forming limit curves of AA5182-O replotted from literature [15, 21–24].

Li et al. [25] predicted the FLC of AA5182-O using FE analysis and Barlat’s Yld89

yield criterion. They observed that the minor and major strain of elements just

outside the necking area do not change significantly after the occurrence of necking,

and hence the strains at these locations are suitable to determine the FLC especially

when capturing the onset of necking is not possible.

According to Dariani et al. [26] who investigated the effect of strain rate on FLC,

6xxx-series aluminium alloys exhibit substantially improved formability at a strain

rate of 1000s−1 when compared to (AISI 1045) steel specimens. Also, Dariani et

al. [26] noticed that more formability improvement can be seen in AA6061-T6 during
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explosive forming for positive minor strain values (i.e. biaxial stretching). Conse-

quently, it is expected that the formability of AA5182-O could be improved at high

strain rate deformation.

2.2 High strain rate metal forming processes

The most common defects in conventional quasi-static sheet metal forming are shape

inaccuracy and localized deformation. The former is mostly due to wrinkling or

springback while the latter leads to localized thinning and rupture [20]. High strain

rate metal forming processes offer the potential of increasing the formability of sheet

materials.

Explosive forming (EF), electro-magnetic forming (EMF) and electro-hydraulic form-

ing (EHF) are three well-known high-strain rate, or pulse, forming processes.

In these unconventional forming processes, parts are formed into a single die surface

thus eliminating the need for matching dies. Hence, as compared to conventional

forming processes, not only the cost of production dies is significantly reduced but

friction is also eliminated from one side of the blank [27]. This elimination of friction

helps to reduce the strain localization in corners of the workpiece [28]. As a result,

sharper corner radii can be manufactured in pulse forming compared to quasi-static

forming processes [29]. Besides, due to the nature of pulse forming techniques, strain

can be redistributed across a much broader area of the workpiece [28].

2.2.1 Explosive Forming

Explosive Forming (EF) is perhaps the most commonly used high-strain rate forming

process especially in the aerospace industry, which was the main driver to explore the

use of EF [27]. In EF, the pressure needed to form the workpiece is generated by an

explosive charge usually submerged in a liquid medium that is usually water. After

detonation, pressure waves propagate through the liquid medium and reach the sheet

surface forming it either into a die or into free space [30] (Fig. 2.3).

Because of its high reproducibility and the ability to form large and geometrically
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complex parts with good accuracy, EF is commonly used in different industries to

form a wide range of parts from high strength steel to various aluminium alloys [27].

(a) (b) (c)

Figure 2.3: Schematic of EF process to form (a) a large workpiece into final shape (b) a
flat panel and (c) a cylindrical workpiece [30].

2.2.2 Electro-magnetic forming

Electro-magnetic forming (EMF) is another high-strain rate process that is used to

form sheet and tubular parts and also in impact welding processes. Fig. 2.4 shows

a schematic of the EMF process used to form sheet metal parts and tubular parts.

During EMF, once the electrical energy stored in capacitors is released, an extremely

strong transient magnetic field is produced in the coil located close to the workpiece.

This magnetic field creates eddy currents in the conductive sheet metal blank in the

opposite direction of the primary current. The resulting repulsive electromagnetic

force generated will push the sheet away from the coil and either toward a die or into

free space with significant speed. Since a pulsed magnetic field is used, the process is

limited to metals with a high electrical conductivity [30, 31]. For an in-depth review

of the EMF process, readers are referred to the article by Psyk [31].

2.2.3 Electro-hydraulic forming (EHF)

Electro-hydraulic forming (EHF) is a high-strain rate forming process in which elec-

trical energy is converted into work without involving a magnetic field. The principles
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(a) (b)

Figure 2.4: Schematic of EMF process to (a) form sheet metals and (b) expand tube-shaped
metals [31].

of EHF and EF processes are similar except that instead of using a chemical explosive

as the driving force, the electrical discharge between two electrodes is used in EHF.

Early and Dow [32] were perhaps the first researchers to present the concept of EHF

to form sheet metals. Soon after that, EHF was investigated by many researchers not

only for sheet metal forming but also for bulging process. The technology of EHF

rapidly developed in the 1960s.

The schematic design of EHF machines is shown in Fig. 2.5. During the electrical

discharge, most of the energy stored in capacitors is released in a short period of

time (typically around 100µs). As a result, the liquid surrounding the bridge wire

connecting the electrodes vaporizes and produces a high-velocity shock wave. This

shock wave propagates through the water in the chamber and forces the sheet metal

into the die [33]. Gilchrist and Crossland [34] explained the initiation and expansion

of the plasma channel without employing a wire-bridge; without the wire-bridge, a

low impedance spark channel has to be formed first and then the remaining electrical

energy in the capacitors is rapidly dissipated between the electrodes. The result is

a sudden rise in spark channel pressure generating shock waves radiating from the

channel. This creates a hot gas bubble which continues to expand into a circular-

elliptical shape [34]. This shockwave propagates towards the work-piece at very high

speed and the momentum of the water forms the sheet metal into either free space

or into a die cavity [28]. The discharged energy, released from capacitors, can be
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calculated from Eq.2.1 [35];

U =
1

2
cv2 (2.1)

where c is the capacitor capacitance and v is the input voltage. However, under

optimum testing conditions the overall conversion of electrical energy into plastic

work was found to be only around 12% without the use of a wire bridge [34].

(a)

Figure 2.5: Schematic of EHF process (revised) [36].

The EHF process can be carried out either into free space, electro-hydraulic free

forming (EHFF), or with the presence of a die which is called electro-hydraulic die

forming (EHDF). Schematics of EHFF and EHDF processes are shown in Fig. 2.6.

In EHFF, the workpiece decelerates at the end of the forming process and hence the

strain rates at the end of the process are quasi-static (QS). The same QS deformation

can happen even in EHDF process when the initial energy is not sufficient to fully

form the part. In this case, the blank speed reduces before the die cavity is completely

filled and no formability improvement would be observed. However, as discussed in
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detail in Section 2.3, the EHF process should be designed in a way that the specimen

reaches a high-impact velocity in order to obtain superior formability. Golovashchenko

et al. [28] reported that the highest possible strain rates are achieved when the sheet

contacts the die at high velocity and hence enhanced formability can only be achieved

during the EHDF process [28].

(a) (b)

Figure 2.6: Schematic of (a) EHFF and (b) EHDF processes [37].

2.2.4 Comparison of EHF with other high-strain rate forming

processes

Among the mentioned high-strain rate forming processes, EHF seems to be the most

promising technique because it is a more flexible manufacturing process than EMF.

In EHF, several successive discharges can be used to fill the die completely or to

calibrate springback without removing the die [28]. Besides, the repeatability of the

EHF can be improved significantly by using a wire bridge between electrodes. And

most importantly, experiments suggested that higher strains can be achieved in EHF

process [28]. As suggested by Noland et al. [38], when compared with EMF, larger

specimens can be manufactured with EHF process (1.2m diameter compared to 0.3m

diameter). Moreover, the tooling and capital costs are usually less in the case of EHF

even though the production speed may be less than EMF [39]. Also, during EHF

the greatest amount of formability improvement was observed in plane strain. Since

local areas close to relatively sharp corners are the most prone to failure, EHF seems
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to be a good candidate in corner filling processes [28]. Table 2.2 tabulates the main

differences between EF, EMF and EHF. Interested readers are referred to Daehn [30]

who published an in-depth review of various high-rate forming processes including

EF, EMF and EHF.

Table 2.2: Comparison between high-strain rate metal forming processes [39].

EF EMF EHF
Confined Bridgewire Spark Discharge

Diameter limit,m 1.5 0.3 1.2 1.2
Shape complexity Complex Complex Complex Complex
Capital cost Low Moderate to high Moderate Moderate
Tooling cost Moderate Moderate to high Low Low
Production rate 2-12 pts/hr up to 1000pts/min 4-12 pts/hr up to 50pts/hr

Tobe et al. [40] studied the deformation of several aluminium alloys during EHFF

tests and found that the forming limit of relatively strain rate dependent alloys can

be increased by 35%. Balanethiram et al. [33] performed EHDF experiments in which

AA6061-T4 sheets with a 1.6mm thickness were formed into a die with a 90◦ apex.

Results of EHDF were compared to QS forming into the same die. The specimens

deformed in EHDF filled the dies, whereas the QS process was unable to cause the

sheets to fill the die completely. Their circle grid analysis (CGA) showed significant

improvement in major strain; at a constant minor strain of 3.0% the major strain

increased from 21.5% in QS to 122.1% in EHDF [33].

According to Balanethiram et al. [33], during the EHDF process, the high velocity

impact of the work-piece is expected to increase the formability and not only the

high-strain rate deformation itself. Therefore, even for materials whose strain rate

sensitivity is not positive or does not change significantly with strain rate, enhanced

formability might still be observed in EHDF conditions [33].

Golovashchenko et al. [28] investigated the formability improvement and crack geome-

tries of DP600 steels in QS, EHFF, EHDF with conical and V-shaped dies. Based on

their simulations, a peak strain rate of 20,000s−1 was achieved in EHDF conditions

in the apex area of the conical and V-shaped specimens [28].

Rohatgi and his co-workers performed EHFF and EHDF experiments on AA5182-O

with 1mm thickness and published their work in Ref. [35, 37, 41]. They experimentally
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measured strains using a DIC system and reported that the duration of the EHF

process was in the range of 600-700µs for aluminium alloys. They also noticed that

by increasing the input energy, the velocity and plastic strain increased with almost

a proportional relation during forming [35]. Using their facility, the maximum sheet-

normal velocity was calculated to be 146 ms−1 in EHFF. This led to a maximum

in-plane engineering strain-rate of 3900s−1 during their EHFF tests. However, a peak

strain rate of 4230s−1 was measured in EHDF experiments [41]. Rohatgi et al. [41]

emphasized that a formability enhancement is possible even under EHFF conditions;

the local minor strains of 0.1 and 0.05 were enhanced by 2.5 and 6.5 times under

EHFF and EHDF conditions, respectively [41].

Moreover, they observed that during the EHF process, the sheet profile is generally

convex [37] as opposed to EMF process where a concave-convex profile was reported

by Takastsu et al. [42]. Their results show that strain path in the apex region of

conical specimens is linear and equi-biaxial. Even though this linearity was observed

in both EHDF and EHFF tests, it is more noticeable in case of EHFF because of the

non-symmetrical friction condition of EHDF. Perhaps, the EHDF condition is also

similar to the equi-biaxial because during the majority of the deformation time, the

sheet material in the apex region does not contact the die and hence it is deforming

without the presence of die-sheet frictional effects.

2.3 Mechanisms of Hyperplasticity in High Strain

Rate Forming

Potentially higher strains can be achieved in high-energy rate forming processes when

compared to conventional QS forming processes. Besides the work published by Bal-

anethiram and co-workers [33, 43] on AA6061-T4, in which 568% increase in major

strain was observed in near plane-strains conditions (from 21.5% in QS to 122.1% in

EHDF), hyperplasticity of another aluminium alloy (AA6111-T4) is also reported by

Golovashchenko et al. [44]. They observed that by implementing EHF deformation

process, overall formability can be improved by 11 to 29% and local deformation can
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be extended by 40 to 90%. In another work, Oliveira and Worswick [45] performed

EMF experiments on AA5182 and AA5754 sheets and measured significant engineer-

ing strains of 40-50% for AA5754 when formed into a rectangular die. Moreover,

Imbert and his co-authors [46, 47] investigated the effect of free and die forming EMF

processes on AA5754 and AA5182 sheets. They reported that the maximum engineer-

ing strains for AA5754 is 20-30% but in the QS condition this improved to 35-45% in

EMDF for a 112◦ apex angle die [46] and 65% for a 100◦ apex angle die [47].

Other researchers also observed hyperplasticity: the numerical results of Gerdooei et

al. [48] indicate that the formability of AA6061 can be improved 146% at high-strain

rates. Rohatgi’s final strain in x-direction of EHDF samples are 64% more than

EHFF samples [35].

To explain the reasons of this improved formability, three major mechanisms are

mentioned in the literature to explain this improved formability:

I The increase in flow stress (i.e. the change in material constitutive behaviour)

at high-strain rate regimes which can lead to enhanced formability [49–52] (section

2.3.1).

II Inertial effects [33, 48, 53, 54] which lead to a reduction in the growth rate of

geometric imperfections, such as voids or cracks, at high speed deformation due to

enhanced inertial forces. This effect is also called ”inertial ironing” in the literature

(section 2.3.2) and is influenced by the velocity rather than the strain rate imposed

on material [33].

III Die effects [46] which are explained in detail in Section 2.3.3.

2.3.1 Changes in hardening behaviour of material

Plastic instability and neck formation occur when the work-hardening rate of the sheet

specimen is not sufficient to prevent strain localization. According to Considère’s

criterion, diffuse necking occurs in uniaxial tension when the rate of work hardening

is balanced out with the true stress (dσ/dε = σ). As a result of this, deformation
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will be focused on localized regions which will deform more rapidly and consequently,

material deformation changes drastically from uniform to non-uniform.

Perhaps, the most important mechanical property which can influence the achievable

uniform elongation is the material strain rate sensitivity (SRS) [55, 56]. Also, the post-

uniform elongation is determined by SRS so that enhanced post-uniform elongation

can be achieved with higher SRS values [55]. When the flow stress of a material obeys

the power law relation (σ = kεnε̇m) [8], SRS is noted as m and can be calculated by

m = d lnσ
d ln ε̇

∣∣
ε,T

.

Since this parameter can affect the total elongation (fracture strain) and formability

of AA5182-O sheets significantly, the SRS of aluminium alloys is discussed in detail

in this section.

At QS strain rates; negative SRS

Generally, aluminium alloys show little dependency on strain rate and exhibit in-

significant and sometimes negative values of SRS especially at QS strain rates. To

exemplify, Chung et al. [57] showed that AA7075 (Al-Zn-Mg) exhibit negative SRSs

and the failure occurred by shear localization before the onset of necking. Jenab et

al. [58–60] also observed negative SRS at QS strain rates even at warm forming tem-

peratures in the temperature range of 200-250◦C. In case of 5xxx-series aluminium

alloys, Lloyd [61] tested 5052, 5154 and 5083 Al-Mg alloys and observed that at initial

stages of deformation the SRS has a positive value, but as the plastic strain continues,

it gradually decreases. Also, Wagenhofer et al. [62] observed negative strain rate de-

pendency for AA5086 alloy at QS strain rates (<0.36s−1). Moreover, Li and Ghosh [8]

showed that by increasing strain rates up to 1.5s−1, the total elongation of different

Al-Mg alloys (AA5754, AA5182+Mn and AA6111-T4) decreases. Also, Hadianfard et

al. [12] observed a reduction in ultimate strength for AA5182 and AA5754 by increas-

ing the strain rate from QS to 1500s−1. This reduction of ultimate strength and total

elongation was measured to be 10.6% and 14% for AA5182, respectively. Hence, by

increasing the strain, both AA5182 and AA5754 sheets soften and further deforma-

tion leads to more shear band formation [12]. But perhaps the most comprehensive
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studies were carried out by Higashi et al. [63–65] and Mukai et al. [66–69]; they ob-

served the same behaviour up to moderate strain rates (lower than 1 × 102s−1) for

different aluminium alloys [63], 5xxx-series containing different Mg concentrations [66]

and different grain size [67, 68].

When the strain rate is increased an aluminium alloy which exhibits negative SRS

requires lower flow stress to deform, in another words, it tends to soften with increas-

ing strain rate. Therefore, once the deformation localizes in an area of the workpiece,

it concentrates to the same region and hence the alloy exhibits low overall formabil-

ity [10, 70]. This negative SRS not only provides conditions for further localization by

reducing the flow stress in areas where stress is concentrated (localized areas). Hence,

failure occurs rapidly and with little evidence of damage before final failure [57]. Con-

sequently, the low SRS of Al-Mg alloys is the reason for their sudden failure after the

onset of necking which was observed by project partners during the QS Marciniak

tests [71].

The negative sensitivity to strain rate in 5xxx-series aluminium alloys is the result of

interactions between solute atoms and the mobile dislocations and is associated with

the occurrence of dynamic strain ageing (DSA). This phenomena is also associated

with the Portevin-Le Chatelier (PLC) effect which can be seen as large serrations

on the flow curve and the formation and propagations of Luders bands in the work-

piece [72]. As a result of DSA, clusters of solute atoms resist the motion of disloca-

tions [73, 74]. At QS strain rates, formation of large clusters is easier and hence they

can resist the motion of dislocations which lead to an increase in strain hardening.

However, at moderate strain rates (up to 1s−1) as discussed by Khan et al. [74] the

effective size of clusters becomes smaller and they offer less resistance to the motion

of dislocations. Higashi et al. [64] suggested another mechanism for this serrated flow

using the periodic interaction of dislocations with solute atoms. Their TEM obser-

vations of AA5182 specimens revealed that at QS and moderate strain rates (below

102s−1), due to the rearrangement of dislocations (formation of network-like deforma-

tion bands), the density of dislocations decreases. Consequently, the material requires

less applied stress to deform further when the strain rate increases [64].
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The occurrence of serrated flow (due to DSA and PLC) was observed for many dif-

ferent Mg containing aluminium alloys in QS deformation. For example, Lademo et

al. [75] observed this behaviour in Al-Zn-Mg and Al-Mg-Si alloys, Clausen et al. [76]

observed serrated flow in AA5083, Bazarnik et al. [77] reported it for both AA5083

and AA5483 alloys and Picu et al. [73] observed it in AA5182. Moreover, Higashi

et al. [63] observed that only Mg containing aluminium alloys (AA3004: 1.21%Mg,

AA5182: 4.52%Mg, 7N01: 1.71%Mg) show negative strain rate sensitivity at mod-

erate strain rates and AA3003, AA1050 only exhibit an increase in flow stress with

increasing strain rates [63]. Similarly, Mukai et al. [67, 68] observed serrated flow due

to the periodic interaction of mobile dislocations and Mg solute atoms in IN905XL

aluminium alloy (containing 4wt% Mg). In other work, Mukai et al. [66] studied the

flow behaviour of different Al-Mg alloys with different Mg concentrations ranging from

1.8 to 8.4 wt% and observed serrated flow in the strain range from 10−3 to 10−1s−1 in

all cases.

Since DSA is the result of interaction of rapidly diffusing solute atoms (Mg in 5xxx-

series) with moving dislocations [62, 72] it is therefore temperature and strain-rate

dependant; the effect of DSA can be diminished by increasing the strain rate.

As a result of formation of PLC bands, the necking strain of Al-Mg alloys are less

than what Considère’s criterion predicts [78]. Also, geometric inhomogeneity increases

with propagation of PLC bands which contributes to decreasing the fracture strain

and hence leads to lower formability of AA5xxx [75].

At moderate strain rates; minimum flow stress

In several Al-Mg aluminium alloys the flow stress reduces to its minimum at moderate

strain rates (between 10−1 and 103s−1) as shown in Fig. 2.7(a). Also, elongation and

ductility decrease in this range of strain rates [66].

According to Dorward and Hasse [79] the decrease of elongation and ductility is due

to adiabatic heating in specimens. At moderate strain rates a thermal gradient exists

due to the transition of isothermal to adiabatic conditions and consequently ductil-

ity decreases. Mukai et al. [67, 68] also explained the reduced flow stress due to
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the adiabatic temperature rise (adiabatic heating) which becomes more significant at

moderate strain rates than the increase in stress due to strain rate effects.

It is significant that yield stress (0.2% proof stress) only shows a positive trend with

strain rate and increases sharply at high-strain rates, as shown in Fig. 2.7(b).

(a) (b)

Figure 2.7: Changes of (a) maximum flow stress and (b) yield stress with strain rate for
different Mg containing aluminium alloys [66].

At High strain rates; positive SRS and increased elongation

Several researchers have shown that the flow stress of various aluminium alloys in-

creases with strain rate, showing a positive SRS at high-strain rates (above 103s−1).

This positive SRS delays the onset of diffuse necking [80] and hence total elongation

and formability, can be improved at high-strain rates. For instance, binary Al-Mg

alloys show a positive dependency of elongation and flow stress on strain rate at high-

strain rates (103s−1) as shown in Fig. 2.7. Similarly, Dorward et al. [79] observed

the same trend for the ductility of AA2024 and AA7075 sheets (containing 1.4 and

2.5 wt% Mg) at strain rates above 0.1s−1. Mukai et al. [67] observed an increase in

flow stress of Al-4Mg-1.5Li at 0.06 strain at the highest tested strain rates (103s−1).

Sakino [81] observed a steep increase in SRS of AA2017-O at strain rates greater than

3 × 103s−1. Wagenhofer [62] also observed a positive SRS of AA5086 at strain rates
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above 1s−1. And Hadianfard et al. [12] noticed a mild positive SRS for AA5182 and

AA5754 at dynamic strain rates (above 600s−1).

According to Mukai et al. [67], at high-strain rates, the strengthening mechanisms

due to an increase in strain rate overcome the reduction in stress due to adiabatic

heating and consequently, the flow stress of aluminium alloys tends to increase with

strain rate in the high-strain rate domain. Dorward et al. [79] also noted that at

high-strain rates, the hardening effects become dominant and hence the flow stress

and elongation increase with increasing strain rates.

Mukai et al. [66], studied the changes in yield stress (0.2% proof stress) with strain

rate and found that the yield stress is a weak function of strain rate in the strain rate

range of 10−4 to 102s−1 where it remains almost linear with strain rate. However,

As shown in Fig. 2.7(b) at higher strain rates (above 102s−1) the 0.2% proof stress

increases sharply with strain rate [66].

As a result of this increased flow stress, many researchers observed improved elonga-

tion in high-strain rate deformation. For example, Dorward and Hasse [79] measured

almost 40% increase in normalized elongation from QS to 100s−1 for AA2024-O and

AA7075-O alloys, containing 1.4 and 2.5 wt% Mg, respectively. In case of 5xxx-series

aluminium alloys, Clausen et al. [76] observed an increased elongation in AA5083 at

strain rates above 1s−1 and Smerd et al. [82] for AA5182 at relatively high-strain

rate tests performed by modified split Hopkinson bar test. Mukai et al. observed a

significant increase in total elongation for IN905XL [67] and for AA5056-O (contains

4.8 wt% Mg) [69] at high-strain rate (> 103s−1).

Figure 2.8 shows the changes of normalized failure elongation (re = ε/εf ) with strain

rate for different aluminium alloys where εf is the elongation to failure at QS strain

rate (10−3s−1) [63]. It can be seen that by increasing the strain rate the ratio of elon-

gation increases for most alloys (except 7N01) and by increasing the Mg content, this

ratio increases more significantly. Based on this figure, AA5182-O would exhibit bet-

ter response to high-strain rate deformation as compared to other studied aluminium

alloys and this makes it a good candidate for high-strain rate deformation processes.

This increased elongation is mostly due to post-uniform elongation as the uniform
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Figure 2.8: Changes of normalized failure elongation with strain rate for different alu-
minium alloys; E0 denotes the elongation to failure at QS strain rate [63].

elongation remains almost constant with increases in strain rate. Positive strain

hardening in regions of localized strain is the main reason for enhanced post-uniform

elongation [79]. This is true for many alloys including AA5454-O and AA5454-H34

as Lindholm et al. [83] indicated and also AA2024 and AA7075 as noted by Dorward

and Hasse [79].

Figure 2.9 shows the variation of total and uniform elongation of different Al-Mg

alloys. Obviously, for Mg contents of 5-6% (which is relatively close to AA5182) both

elongations decrease at intermediate strain rates but increase at high-strain rates.

However, it should be noted that in case of high Mg concentration alloys (more than

5%) even uniform elongation increases with increasing strain rate [66].

Higashi et al. [63, 64] showed that by increasing the strain rate in AA5182-O speci-

mens, the elongation to failure increases and hence the failure is postponed. At QS

strain rates (10−3s−1) the material exhibited 30% elongation whereas it increased to

more than 40% at strain rates above 2× 103s−1.

Higashi et al. [64] reported the variation of flow stress of AA5182-O at different strain

values of 0.002, 0.05, 0.1, 0.15 and 0.20 [64]; their results are shown in Fig. 2.10. In

the early stages of deformation (ε = 0.002) the flow stress is almost independent of

strain rate, but increases rapidly at high-strain rates (above 102s−1). As the deforma-
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(a)

(b)

Figure 2.9: Variation of (a) uniform and (b) total elongation with strain rate and magne-
sium content [66].
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tion continues (ε > 0.05) the flow stress decreases with increasing strain rate in the

intermediate strain rate range (up to 102s−1) and then increases again at high-strain

rate, showing positive strain rate sensitivity [64].

(a)

Figure 2.10: (a) variation of AA5182 flow stress with strain rates at different strain val-
ues [64].

Changes in material behaviour at high-strain rates were also observed by Gerdooei

and Dariani [51]. They developed analytical FLDs over a wide range of strain rates

from 0.01 (QS) to 500s−1 (intermediate) and reported that the shape and position of

the FLC changes with strain rate. The FLD0, which represents the lowest limit strains

in a plane strain mode of deformation, increases after a certain critical strain rate at

any given C value (strain rate exponent in Johnson-Cook hardening function), strain

hardening exponent (n) or thermal softening exponent (m) and is more sensitive to

strain hardening exponent. For more information regarding Johnson-Cook equation

and explanation, readers are referred to Section 2.4.1. The variation of FLD0 with

these parameters is illustrated in Fig. 2.11.

Consequently, by increasing the strain rate beyond a certain critical level, the forma-

bility improves and localized necking is delayed. Gerdooei and Dariani reported that

this increase in formability is due to inertial effects. As the density of material in-

creases, inertial effects increase, especially at high accelerations. The stress in areas
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(a) (b) (c)

Figure 2.11: Variation of FLD0 with (a) J-C parameter constant C, (b) hardening exponent
n, and (c) thermal softening exponent m [51].

of localized strain increases as a result of this inertial force and hence the deformation

is distributed to the entire sheet and neck growth stabilize.

2.3.2 Inertial effect and importance of input energy

When the input voltage is increased in EHDF, the discharge energy increases and

as a result the initial velocity of the sheet also increases. In fact, Balanethiram et

al. [33, 43] explained that in order to achieve enhanced formability, the workpiece

velocity must exceed a critical threshold. Golovashchenko et al. [28] also noticed

that by increasing the discharge energy of EHF tests, the sheet material could safely

deform to higher strains and hence the fracture strain increases with discharge energy.

Figure 2.12(a) shows the changes of elongation with workpiece velocity for AA6061-T4

based on ring expansion and uniaxial tension results [33, 43]. Figure 2.12(b) shows a

comparison of material hardness in QS testing conditions and in EHDF for different

values of true thickness strain. Both AA6061-T4 and copper show a slight increase in

hardness at high-strain rates. However, the increase is insignificant since at any given

strain it is always less than 20%. As a result, Balanethiram et al. concluded that

shock hardening could not contribute to the enhanced formability and the changes in

strain rate sensitivity are not the cause of the increase in elongation. Instead, they

discussed that the inertial effects have a more significant effect [33, 43].
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(a) (b)

Figure 2.12: (a) Comparison of AA6061-T4 elongation in uniaxial and ring expansion
tests [43] and (b) comparison of QS and EHDF Vicker’s hardness for AA6061-T4 and a
copper alloy [33].

After testing different materials at different input energy levels and studying their frac-

ture behaviour, Golovashchenko et al. [28] concluded that at low energy levels, even

in EHDF process, cracks occur in the apex region of conical specimens. Also, moder-

ate increases in such input energy do not improve the occurrence of failure and only

widens the initially formed cracks. This is basically a QS failure mode and hence the

presence of the die, could not significantly improve the formability of the workpiece.

However, once the input energy and the consequent pressure of the pulse reached

a threshold velocity of the workpiece, the strain rate, and the hydrostatic pressure

generated at the moment of impact against the die contributed to increase the level of

safe strains that were achievable before the occurrence of any fracture [28]. Oliveira

et al. [84] also reported that some AA5182 and AA5754 specimens formed with EMF

fractured well before the cavity of the die could be completely filled which is likely

due to insufficient pressure and energy of deformation. Moreover, Golovashchenko et

al. [28] noticed that aluminium specimens showed greater formability enhancement in

EHF compared to steel specimens using the same apparatus. In case of steel, much

higher voltages are required in order to overcome the critical velocity of the sheet and

observe formability enhancement as compared to aluminium.

The results of Balanethiram et al. [43] also show that inertial forces generated at high

velocities (above 5 ms−1) can spread the deformation away from the localized areas
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in specimens which contributes to increased post-uniform strain of 5% even in sheet

metals with limited sensitivity to strain rate [43].

2.3.3 Die effects

2.3.4 Effect of hydrostatic pressure and die

The presence of a die in EHDF can result in the generation of significant hydrostatic

stresses in the sheet upon impact with the die. According to Price [85] the presence

of a state of triaxial tension promotes failure mechanisms in ductile materials such

as void nucleation (also noted in Ref. [86]) and growth which are pressure-dependent

mechanisms. Consequently, the existence of a superimposed hydrostatic pressure

can prevent failure by suppressing void nucleation and growth in the deforming mate-

rial [82]. According to French and Weinrich [87] strain localization in ductile materials

can be changed from void nucleation and growth to localized shear by increasing the

superimposed hydrostatic pressure. Also, Korbel and his co-workers [5] experimen-

tally showed that the onset of localization of AA7075 in the tension is influenced by

the hydrostatic pressure.

Effect of die on void initiation and growth

The interaction between the workpiece and the die has a significant effect on forma-

bility enhancement during high-strain rate forming processes. Imbert et al. [46] per-

formed EMF on AA5754(1mm) and observed that during free forming (EMFF) forma-

bility improves for a narrow region on FLC whereas in the case of die forming (EMDF)

specimens showed a wide range of strain path formability improvement as compared

to QS deformation. They concluded that the die-sheet interaction causes a com-

plex stress state which includes compressive hydrostatic stresses that can potentially

suppress the damage that occurs during the deformation. Optical metallographic ob-

servations support this proposition as the EMFF specimens contained significantly

more damage and localization as compared to EMDF specimens.
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Moreover, Oliveira [84] also observed that the formability enhancement during EMFF

of aluminium alloys was almost insignificant, which again supports the idea that tool-

sheet interaction plays an important role in formability enhancement in high-strain

rate forming. Dariani et al. [26] also noticed that formability of both AA6061-T6 and

AISI 1045 steel sheets improved under the effect of die impact.

However, it is worth emphasizing that the presence of the die itself is not sufficient

to improve formability. Golovashchenko et al. [28] observed that some specimens fail

well before the sheet specimens fill the die cavity, especially when a high-apex angle

die is used (40◦ conical die). Hence, in this case the failure should really be considered

to occur in free-forming rather than die-forming conditions. Similarly, in the early

stages of EHDF sheet specimens are formed into open space without the influence

of any die-impact force. Therefore, the initial forming should be considered as free

forming [28].

Effect of die on strain rate

In many EHDF studies, the maximum strain rates were measured in areas close to

the apex of the conical specimens and hence the presence of the die can significantly

increase the strain rate and the material’s corresponding response. For example, nu-

merical simulation results from Golovashchenko et al. [28] shows peak strain rates up

to 20,000s−1 in EHDF whereas in EHFF strain rates of only 6900s−1 were predicted.

The reason is that the conical geometry of the die focuses the kinetic energy progres-

sively into smaller area in the centre of the specimen and this increases the effective

strain rate that is attained [28]. Golovashchenko et al. [28] also observed that the

failure mode in EHFF specimens is very similar to failures observed in hydro-bulging

tests carried out by Smith et al. [88] and concluded that without the presence of a

die, the failure mode should be considered as QS even in EHFF.
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2.4 Hardening properties of AA5182-O

2.4.1 Constitutive Equations

Constitutive equations describe a complex combination of strengthening and soften-

ing mechanisms that occur in sheet materials. Strengthening due to lattice resistance

(Peierls-Nabarro barriers), dislocation interactions, interstitial and solute atoms, sec-

ond phases and dispersoids and grain boundaries all tend to increase the flow stress of

aluminium sheet materials. Also, thermally activated processes can result in softening

of a material. Consequently, material flow stress is the product of both athermal and

thermally activated phenomena [89]. The development of such constitutive equations

is complex and beyond the scope of this work, nevertheless, many existing phenomeno-

logical constitutive equations provide a suitable mathematical relationship between

the flow stress and the effective plastic strain, strain rate and temperature. Since it is

necessary to use a hardening function during numerical simulations of the deforma-

tion of aluminium sheets, different phenomenological hardening equations discussed

in this section are used and calibrated in Chapter 4. Several hardening equations are

considered in this study based on their acceptance and wide usage in the simulation of

the forming processes. Also, another aim of this research was to compare the outcome

and accuracy of various constitutive equations so as to be able to perform accurate

simulations of EHF as described in Chapter 5.

Power-law

Fields and Backofen [90] proposed one of the earliest phenomenological models, also

known as the power law function, to determine the flow behaviour of different mate-

rials using Eq.2.2;

σ = Kεnε̇m (2.2)

where σ is the effective true stress, ε is the effective true plastic strain and ε̇ is the true
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strain rate. Also, K, n, and m are the strength coefficient, strain hardening exponent

and strain rate sensitivity exponent, respectively. The power law constitutive equation

is of interest especially because of its material-mechanical justifications: in other

words, power law parameters have been used extensively to determine, predict and

investigate the properties of materials. As discussed, strain rate sensitivity (m) is

a critical parameter in formability analysis, in flow localization [91, 92], in dynamic

material model [93, 94] and it is also linked to material deformation mechanisms

such as dynamic strain ageing of aluminium alloys [61, 95, 96]. This equation might

be used as is (i.e. in [97]) or a part of it as in warm or hot forming processes (i.e.

in [98, 99]). Moreover, mobile dislocation velocity varies with the strain rate sensitivity

exponent (m) and the strain hardening exponent (n) as explained by Dieter [100]. The

implementation of the power law for simulation of forming processes with AA5182-O

sheets are rare in the literature. Although this hardening function can be calibrated

with high accuracy to the wide range of strains and strain rates tested in this study,

its accuracy in numerical simulation is well below other constitutive equation used in

Chapter 4.

Johnson-Cook (JC)

Johnson and Cook [101] developed one of the most widely used constitutive hardening

equations in metal forming literature. The JC constitutive equation is shown in Eq.

2.3;

σ = (A+Bεnp )(1 + C ln ε̇∗p)(1− T ∗m) (2.3a)

ε̇∗p =
ε̇

ε̇0

(2.3b)

T ∗ =
T − Troom

Tmelt − Troom

(2.3c)

where εp is the equivalent plastic strain, ε̇∗p is a dimensionless strain rate equal to
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ε̇p/ε̇0, ε̇0 is the reference strain rate, T ∗m is the homologous temperature equal to

(T − Troom)/(Tmelt− Troom) in Kelvin. In this study a reference strain rate (ε̇) of 1s−1

is used and the temperature effect was not considered since the mechanical tests and

EHF experiments were performed at room temperature (T = Troom) and consequently

T ∗ = 0.

Table 2.3 presents the parameters in the JC equation calculated by Rohatgi [41] and

Smerd [82] for AA5182 sheets. Rohatgi et al. [41] did not mention the rolling direction

of the specimens and considered ε̇0 as 1s−1 and carried out tensile tests on AA5182-

O sheet with 1mm thickness at strain rates ranging from 1000 to 2400s−1. Smerd

et al. [82] calculated these constants based on a non-linear regression procedure for

AA5182-O sheets with 1.6mm thickness and tested in uniaxial tension in the rolling

direction at different strain rates ranging from 3.3 × 10−3 to 1.5 × 103s−1. Knowing

that the AA5182 alloy tested in this research has different alloying concentrations

and thickness (and hence different size and distributions of second phase particles

broken during cold rolling) an attempt was made to recalculate these parameters for

JC equations so that more accurate results could be achieved in numerical simulations

of EHF (see Chapter 5).

Table 2.3: Constants of Johnson-Cook constitutive equation for AA5182 sheet calcu-
lated by different sources.

A(MPa) B(MPa) n C m Ref.
Estimate 109 522 0.4 0.0012 3.19 [41]
Estimate 106.737 569.120 0.485 -0.001 3.261 [82]
95% lower 96.077 554.512 0.450 -0.02 3.088 [82]
95% upper 117.398 583.728 0.519 0 3.433 [82]

Khan-Huang-Liang (KHL)

This constitutive equation was first introduced by Khan and his co-workers in 1999 [102]

for BCC materials and then further developed for Ti-6Al-4V [103, 104] and AA5754 [105]
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as:

σ =
(
A+B

[
1− ln(ε̇p)

ln(Dp
0)

]n1

εn0
p

)( ε̇p
ε̇∗

)m( Tm − T
Tm − Tref

)β
(2.4)

where Dp = 106, and the reference strain rate (ε̇∗) is considered to be one. In case

of AA5182, the parameters were calculated for QS range (10−4 to 1s−1) but were not

reported in Ref. [74].

Modified Voce

The original Voce hardening function [106] is one of the most convenient equations

used to predict the flow behaviour of different materials [107, 108]. It is inherently

simple and shows remarkable fitting performance for many different materials includ-

ing aluminium alloys [109]. However, the Voce hardening function does not consider

the effect of strain rate on deformation behaviour in its original form. In order to take

both strain and strain rate sensitivity into account, it is possible to combine the Voce

strain hardening function with a strain rate hardening function in a multiplicative

manner. Hence, two multiplicative methods were used and the Voce equation was

combined with a Power-law or with a Logarithmic strain rate expression. The latter

was proposed by Rahmaan et al. [110] and showed reasonable accuracy at different

strain rates (see Chapter 4. These modified Voce equations, Voce-Power law (VP)

and Voce-Logarithmic (VL) are expressed in Eq. 2.5.

σ =

[
B −

(
B − A

)(
exp(−m1ε)

)]
× ζ(ε̇) (2.5a)

ζV P (ε̇) = k(ε̇)m2 (2.5b)

ζV L(ε̇) =
[
C ln(ε̇) + (1 + ε̇)D

]
(2.5c)

where A, B, m1, K, m2, C and D are material constants to be calculated for each
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testing condition. It is noteworthy that for JC, KHL and VP equations, A and B

ideally represent the yield and ultimate true stress of the material, but none of the

calculated values found in the literature correlated exactly with the experimental

values. It is worth noting that the early attempts made to calculate these constants,

showed that the power law multiplicative function (Eq.2.5(a) and (b)) exhibit less

accuracy at high-strain rates when compared to Voce-Logarithmic function (Eq.2.5(a)

and (c)). It can be noted that in the VP function the m2 parameter can only increase

or decrease the flow stress with increased strain rate since it will have either a positive

or negative value. However, in the VL equation, since C and D constants are assigned

to logarithmic and exponential terms, adjusting them can lead to positive or negative

strain rate sensitivity of flow stress. For this reason it is expected that the VL function

generally leads to better results.

2.4.2 Genetic Algorithm (GA)

In this work and in Chapter 4 Genetic Algorithm (GA) optimization method is used

to calculate constants of phenomenological hardening functions. Since the 1960s,

John Holland [111] worked on artificial system which has properties similar to natural

systems and published the idea of GA in 1975. Since then, GA has been widely used in

scientific studies as a successful tool for search and optimization problems [112]. GA,

unlike most conventional optimization techniques, operates on a whole population of

data points; during its search, GA uses the populations of solutions rather than a

single solution. This, improves the robustness of GA and gives it the capability to

reach the global optimum while avoiding local optima [112].

The basics of GA and its terminology are summarized below;

The first step is to define a fitness function which will be optimized during the GA

process. In case of hardening functions, the fitness function which should be minimized

is the absolute difference between the experimental flow stress and that predicted by

the constitutive equation.

GA process starts with an initial population of chromosomes which should be large

enough to contain a wide diversity of the gene pool so that the solution can be
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generated within. This initial and total population should be defined randomly for

the GA optimization within the predefined boundary conditions (BC). The main

limitation of GA comes from the determination of an appropriate BC; if the BC is

extensively wide, the GA can converge to the optima but with a high computational

cost.

Once the GA process starts with the initial population, in each iteration it follows a

sequence of selection, reproduction, evaluation and replacement processes. Fig. 2.13

shows the relation of these steps in each GA iteration.

Figure 2.13: GA Process [112].

During the selection stage, individuals are selected randomly to reproduce new gener-

ations. The randomization is biased toward the relative fitness of individuals so that

better individuals are often chosen rather than poor ones.

Reproduction is the next step which contains crossover and mutation. A crossover

function is used to create new offspring from the parent population as without it

offspring would be the exact copy of the parents. This stage is critical to GA process

as it allows characteristics from parents to be assorted. A simple function to crossover

new populations is to convert all parameters into binary data and exchange a different

portion of zeros and ones between each parent. However, it is important to maintain

the genetic chromosome and create diversity of answers so that the result converges to

the minimum value more efficiently. A mutation function is responsible for providing

diversity by creating new genomes and offspring from the previous population. The

mutation function facilitates exploring the search space within the BC more quickly.
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The next stage is to evaluate the fitness of the newly made generation. To maintain

population size, individuals with higher difference with the optima will be eliminated.

Generating populations is continued until the total number of generations is reached

or when the population converges toward the optimal solution. This is usually deter-

mined when the difference between optimal value of a certain amount of generations

is less than a predefined value (e.g. 10−6 within 50 generation intervals).

It is important that GA exhibit reasonable reliability and ease to discover global

optima within a wide BC. Also, mainly due to mutation process, unlike many other

optimization processes, GA resists being trapped in local optima. The process can

be easily modified to be used in different problems as long as the evaluated function

can be defined. The search space and input data can be large and contain noisy data.

Interested readers are referred to Ref. [112] for further details on the usage of GA.

In view of its versatility, GA method was used to calculate the constants of each

phenomenological hardening function discussed in section 2.4.1 and is presented in

Chapter 4. In short, it is found that the constants calculated using GA optimization

give more accurate results than regression analysis when compared with experimental

results.

2.4.3 Artificial Neural Network (ANN)

Although constitutive equations represent non-linear relations between mechanical

parameters (σ, ε, ε̇, T , rolling direction and etc.), they are usually limited to specific

deformation mechanisms and break down when the deformation is extended beyond

the domain for which they were determined. As a result, to represent data over large

domains (i.e. large strain rate or temperature ranges), different equation parameters

and separate equations are required.

In order to overcome the limitations of mathematical problems, artificial neural net-

work (ANN) was introduced and showed very good performance in different applica-

tions. In ANNs, rather than relying on predetermined assumptions (i.e. constitutive

equations) data is used to form the model. The idea was derived from simplified

biological neurons, Fig. 2.14(a). An ANN is a computational model of neural pro-
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cessing or logical structure with multiprocessing elements (Fig. 2.14(b)), which are

linked through interconnection weights. The knowledge is presented by the inter-

connection weights which should be adjusted during the learning phase. This makes

ANNs capable of handling complex and mathematically unresolvable relations be-

tween parameters and a suitable tool to be used in a wide range of applications. In

metal forming, many researchers utilized ANN to predict the forming behaviour of

sheet metals [113–118] either solely, or in combination with finite element simula-

tions [119, 120].

The most important benefit of neural networks is realized when a complete un-

derstanding of the physical mechanisms is very difficult, or even impossible to ac-

quire [113]. In case of hardening properties of aluminium alloys, as explained in

Section 2.3.1, AA5182-O sheet alloys will behave differently at QS, medium and high-

strain rates. Consequently, it is expected that the accuracy of most constitutive

equations, where one parameter usually dictates the sensitivity to increased strain

rate, would be low. Hence, an attempt was made in this study to use ANN to de-

scribe material behaviour rather than relying on pre-defined mathematical equations,

and to implement it into finite element simulation of the EHF process.

(a) (b)

Figure 2.14: NN Basics & Process [121].
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2.4.4 Basics of neural networks

The first step in designing an ANN is to decide on the network architecture. There

are different classifications for neural networks but the one used mostly in engineer-

ing field is a fully-connected, layered feed-forward neural network (FFNN). As shown

in Fig. 2.15, in FFNNs, layers of the network are connected in feed-forward manner

without any feed-back between them. Also, neurons within each layer have no con-

nection between them. The term ”fully connected” in FFNN denotes that each node

in any layer has a connection to every node in its immediate adjacent layer, as shown

in Fig. 2.15 [121].

Figure 2.15: Feed Forward NN Basics [121].

When the network structure, which contains a number of layers, a number of neurons

in each layer and a transfer function between each layer is determined, the network

is ready to be trained. During the supervised training stage the input variables are

supplied and the resultant output is compared with the desired output. The network

then adjusts the interconnection weights between layers to increase its performance.

This is done by the training algorithm. At each iteration during the training stage,

called epoch, all training examples are presented to the network once and their out-

comes are calculated. This process is repeated until the network performs well on the

training set. To control and terminate the learning process, a performance criterion

is needed which is usually the mean squared error (MSE). After training, the network

can be introduced to some new input and reasonable output is produced.

Interested readers are referred to Ref. [121] for further details and different architec-
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tures of ANNs.

2.4.5 The ANN used for AA5182

In order to implement NN to predict the flow behaviour of AA5182-O sheets, the input

parameters of the network was defined as the orientation to the rolling direction [0, 45,

90◦], strain rate [0.001, 0.1, 1, 10, 100, 1000s−1], and true plastic strain obtained from

tensile tests carried out by project partners at the University of Waterloo [110]. The

output of the network was the flow stress of the material. Many different structures of

FFNN were used and compared with each other and two optimum cases were chosen

for further study: a simplified NN called NN1 and a more complex one named NN2.

Figure 2.16 illustrates a brief overview of the neural network structure used in Chapter

4.
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Figure 2.16: Overview of neural network structure used in this study

The structure of the network consists of a symmetric sigmoid transfer function capable

of producing outputs in the range of -1 to +1 and a linear transfer function to scale
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outputs up or down. Eq. 2.6 shows the matrix form of the NN1 model used;

S =
[
w21 w21 . . . w2s

]
·tansig




w111 w112 w113

w121 w122 w123

. . . . . . . . .

w1s1 w1s2 w1s3

×

I1

I2

I3

+


b11

b12

. . .

b1s



+b2 (2.6)

where I1 to I3 are normalized values of the angle to the rolling direction, strain rate

in logarithmic scale and strain and S is the normalized stress calculated based on

input weights and biases. Data were normalized using 2× x−xmin

xmax−xmin
− 1 and tansig of

a parameter (x) is calculated from Eq.2.7;

tansig(x) =
2

1 + e−2x
− 1 (2.7)

Backpropagation training method was used according to the Levenberg–Marquardt [122]

(LM) algorithm; LM was shown to be very successful in many engineering applications

and is the training algorithm that converges the fastest. The other algorithm that

was used to train the complex network (NN2) was the Bayesian training algorithm.

The Bayesian framework was developed by MacKay [123, 124] and used successfully

to train many neural networks [125]; in the Bayesian algorithm, weights and biases

are updated according to LM optimization.

More details on the structure of NN used are discussed in Chapter 4.

2.5 Fracture Mechanism of AA5182

Although material composition (alloying elements and second phases), microstructure,

strain rate and temperature have a significant influence on the failure mechanisms

of aluminium alloys [12], in general, the damage of ductile materials includes void

nucleation and propagation [86]. Interaction of shear bands and barriers, coalescence

of voids and grain boundary sliding are the most common void nucleation mechanisms

for metals which are shown schematically in Fig. 2.17 [86]. Since in this study the

EHF and QS experiments were carried out at room temperature, the occurrence of
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grain boundary sliding (Fig. 2.17(c)) is unlikely to be a dominant failure mechanism.

(a) (b) (c)

Figure 2.17: Void nucleation by (a) plastic deformation (interaction of shear with a barrier),
(b) coalescence of cavities around hard particles in a soft matrix, and (c) grain boundary
sliding at high temperature [86].

2.5.1 Localized Shear Bands; at QS strain rates

At QS strain rates, many studies have shown that aluminium alloys fail as a result of

shear band formation prior to necking. Lademo et al. [75] observed this phenomenon

for AlZnMg alloys (AA7xxx and AA6xxx) and Pedersen et al. [126] observed this in

AA7xxx series alloys.

According to Korbel et al. [5], dynamic recovery mechanisms are due to the co-

operative motion of unpinned dislocations which result in localized softening and

are responsible for the occurrence of shear localization in Al-Mg alloys [5].

Once formed, these shear bands are preferential locations for void nucleation especially

because of the large strains present in shear bands. Carlson et al. [127] estimated that

in QS deformation of AA5182 alloys, once the necking is formed due to shear bands

and the related thermal softening, the local strain rate increases by a factor of 1000

and this may result in a 20MPa reduction in flow stress. They also concluded that

the softening process is influenced much more by negative strain rate sensitivity than

by the rise in temperature due to localized adiabatic heating [127].

Spencer [9] showed that the failure of notched AA5754 tensile specimens does not

mainly involve nucleation, growth and linkage of voids since there is insignificant
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damage prior to fracture. Also, rapid failure occurs immediately after the strain

reaches the failure strain of notched specimen. According to Hadianfard et al. [12],

in QS strain rates, the competition between strain hardening and thermal soften-

ing mechanisms governs the shear fracture. During QS experiments of AA5182 and

AA5754, localization occurred in form of intense shear bands before the final fracture;

as shown in Fig. 2.18(a). Highly damaged areas are localized inside these shear bands

or within a short distance from these shear bands, as shown in Fig. 2.18(b) [12].

(a) (b)

Figure 2.18: (a) Occurrence of shear bands in AA5754 before damage, and (b) damage on
shear bands in AA5182 [12].

Hadianfard et al. [12] concluded that in QS conditions, strain localization occurs by

shear band formation which leads to damage development and final failure. They also

observed that large particles have more tendency to cause damage as compared to

smaller ones.

According to Voyiadjis [128] at low strain rates, dislocation motion suppresses local

stress concentration zones (areas where micro-defects could lead to void nucleation),

and as a result the controlling factor for failure is plastic deformation. However, at

moderate strain rates, since more dislocations become immobilized, the local stress

increases and becomes sufficient to nucleate micro-cracks, voids or shear bands from

pre-existing weak spots such as inclusions, second-phase particles or grain boundaries.
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2.5.2 Void Nucleation, Growth and Coalescence; High strain

rates

Void nucleation, growth and coalescence are the main failure mechanisms in AA5182

at high-strain rate. At high-strain rates ranges, if any shear localization is observed,

it appears to be the result of void nucleation from inhomogenities, growth and coa-

lescence and hence shear localization effect on final failure is insignificant compared

to void nucleation mechanism [12].

Worswick et al. [80] observed both necking and void coalescence in necked AA5182

specimens deformed at dynamic strain rates. They concluded that damage mecha-

nisms play a more important role at high-strain rates and damage intensity increases

with increasing strain rate where deeper necking is observed prior to fracture under

high strain loadings [80]. Hadianfard et al. [12] also confirms that most of the damage

occurred outside the shear bands in high-strain rate forming and were associated with

second phase particles. They concluded that just before localization of deformation,

the dominant failure mode is based on void nucleation around second phase parti-

cles, growth and coalescence. By increasing strain rates, the average size of damaged

particles decreases (in contrast with QS regimes). Hence, the critical localized strain

necessary for failure decreases with increasing strain rate.

However, according to Mukai et al. [66] who investigated fracture mechanisms of dif-

ferent Al-Mg alloys using tensile tests in a strain rate range of 10−4 to 2 × 103s−1,

the main failure mechanism for Al-Mg alloys is void nucleation, growth and coales-

cence. Mukai et al. [66] indicated that the main difference between fracture surfaces

in specimens deformed at QS and high-strain rates is that at high-strain rates dim-

ples are larger and deeper compared to those observed in specimens that fractured at

QS strain rates. Also, the specimens deformed at high-strain rate showed enhanced

elongation, as compared to QS due to the change in void growth mechanisms [66].
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Void nucleation

Nucleation of voids in metals mostly occurs at or around micro-structural inhomo-

geneities. Pre-existing flaws such as voids or cracks, second-phase particles and inclu-

sions, grain boundaries and subgrains are typical nucleation sites [129].

Decohesion of the particle-matrix interface, fracture of brittle particles, or shear de-

formation are possible mechanisms for the nucleation of voids and are illustrated

schematically in Fig. 2.19. According to Hull [86], the first two mechanisms shown

in Fig.2.19(a) and (b) mostly lead to spherical and ellipsoidal voids whereas the last

one (Fig. 2.19(c)) will result in parabola-shaped dimples on the fracture surface.

(a) (b) (c)

Figure 2.19: Nucleation of voids around inclusions by (a) matrix decohesion, (b) fracture
of brittle particles, and (c) shear deformation [86].

Intermetallic particles have a significant influence on the mechanical behaviour and

formability of aluminium alloys. The existence of precipitates and inclusions may

cause micro-defects (micro-voids or micro-cracks) during the forming process which

may lead to the final failure [20]. White skeletal or plate shaped iron-bearing particles

(i.e. Al6(Fe,Mn)) and dark skeletal Mg2Si phases reside at grain boundaries and are

considered as primary particles in 5xxx-series aluminium alloys [130]. A small fraction

of particles are also Al8Mg5 particles [131]. Existence of such heterogeneous particles

and inclusions leads to strain localization in AA5182 and AA5754 alloys [132].

Li and his co-workers [130, 133] performed several microstructural analyses on as-cast

AA5182 (before cold rolling) and after different heat treatment conditions. They found

that the dominant iron-bearing primary particles are not simply Al6(Fe,Mn) particles
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but instead the ratio of Al/(Fe,Mn) is between 4.0-4.4 and hence they named these

particles Alm(Fe,Mn) particles [130]. They also concluded that Alm(Fe,Mn) particles

transform to Al3(Fe,Mn) by a eutectoid process during heat treatment of as-cast ingots

at 520 or 470oC which is believed to be beneficial for further forming as the latter

particles break up from large primary particles more easily [133]. Finally, as shown

in Fig. 2.20, Al3(Fe,Mn) particles have a long rod-like shape, whereas Alm(Fe,Mn)

particles have a skeletal shape.

(a) (b)

Figure 2.20: (a) Al3(Fe,Mn) and (b) Alm(Fe,Mn) particles observed in as cased and heat
treated AA5182 [130].

Void Growth; equi-axed and parabola

The most common void growth mechanisms in metals are in either equiaxed or

parabola-shaped dimples. The growth of equiaxed voids usually occurs when the

deformation is uniform in the sample and parabola-shaped voids are due to shear

deformation or to the separation at a major crack tip [86]. Fig. 2.21(a) represents the

mechanism of void growth in case of uniform deformation supposing that all voids

nucleate and grow at the same stress and rate. The final fracture surface shows an

array of equiaxed and matching dimples with heterogeneities inside them. However,

in case of voids nucleated during shear deformation (i.e. shear bands) cavities are

elongated at an angle of 45◦ to the applied stress which is the direction of the shear

bands [86]. This will lead to parabola-shaped dimples on the fracture surface, as
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shown in Fig. 2.21(b). It is important to note that large voids grow more preferably

and faster as compared to small voids so they cause more damage [66, 86].

(a) (b)

Figure 2.21: (a) Mode 1: schematic of equiaxed void growth, (b) Mode 2: parabola-shaped
dimples in shear deformation areas [86].
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Chapter 3

Formability of AA5182-O Sheet during Electro Hy-

draulic Forming: Influence of Input Energy

In this chapter the formability of electro-hydraulically formed AA5182-O aluminium

sheet was investigated by means of grid analysis and by comparing with different

forming limit curves (FLCs). Previously, many researchers claimed that the forma-

bility of aluminium alloys can be enhanced significantly during the EHFF and EHDF

processes. However, it is found that free-formed AA5182-O specimens did not show

any significant increase in formability. When specimens were electro-hydraulically

formed with sufficient input energy into 34, 40 and 45◦ conical dies a maximum in-

crease above the quasi-static FLC of 50, 70 and 90% were measured in the safe strains,

respectively. These results suggest that AA5182-O exhibits improved formability in

the conical dies once a critical threshold of 8-10 kJ input energy has been reached.

This threshold input energy controls a number of factors which may influence forma-

bility including the impact velocity against the die surface and the subsequent strain

rate of the material as it fills the die.
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∵ This section has been published: A. Jenab, D. E. Green, A. T. Alpas, and K. P. Boyle,

“Formability of AA5182- O Sheet during Electro-Hydraulic Forming: Influence of Input

Energy”, in MS&T, pp. 535-542, 2015.

3.1 Introduction

The use of aluminium alloys in the automotive industry is attractive as it leads to

body weight reduction [1]. The extensive use of Al-Mg alloys (5xxx-series) in auto-

motive, aerospace and shipbuilding industries is due to their high specific strength,

weldability and corrosion resistance [2]. However, in comparison to highly formable

steel sheet such as extra deep drawing quality grades, Al-Mg alloys exhibit lower

formability at room temperature [3]. To overcome this limitation, warm forming can

be used [4, 5] but forming at elevated temperatures has its own drawbacks, including

those associated with additional cost due to the use of specialized lubrication, high

energy consumption and post-forming cleaning.

An alternative approach is to use high-strain-rate forming techniques such as ex-

plosive forming, electro-magnetic forming or electro-hydraulic forming (EHF) [6–10].

These high-rate forming techniques lead to improved formability that were attributed

to ”inertial effects” and changes in material behaviour which stabilize neck forma-

tion [11, 12]. The elimination of matching dies and a decrease in press size are some

of the advantages of explosive forming techniques which result in a reduction in ini-

tial capital investment. Electro-hydraulic forming is of special interest because of

the ease with which the process can be controlled, the ability to form non-magnetic

sheets, good repeatability (especially with the use of a wire bridge) and the ability to

reach very high strain rates (∼ 104 s−1) [10]. To obtain the highest improvement in

formability with the EHF process, both high strain rate and high hydrostatic stress

are required [9]. The benefit of EHF AA5182-O sheet was demonstrated by Rohatgi

et al. [13–15], who found an increase, from the quasi-static FLC, of 150% and 550% in

the safe major strains in free-forming and conical die forming, respectively, depending

on the strain path.
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Forming limit curves are used to determine the onset of necking for a wide range

of strain paths and to provide a quantitative assessment of sheet formability. In

this study, free-formed EHF (EHFF) and die-formed EHF (EHDF) forming limits

are compared with quasi-static and EHFF forming limit curves (FLCs) in order to

quantify the formability enhancement of AA5182-O during high strain rate forming.

3.2 Experimental Procedure

3.2.1 EHF Experiments and Grid Analysis

AA5182-O sheet with a 1.5mm thickness was provided by Novelis Inc. The chemical

composition of the alloy in weight percent was Al-5.02Mg-0.37Mn-0.24Fe-0.041Si-

0.015Cu with traces of Cr, Zn and Ti as measured by spectrographic analysis. Prior

to deformation 20×20 cm square samples were electro-etched using a 2.54 mm square

grid.

The EHF experiments were performed using different input voltages and test condi-

tions. At the moment of discharge, a high voltage current generates a pressure wave

which forms the sheet into either free space (EHFF) or into a die (EHDF). Figure 3.1

shows a schematic of the EHDF apparatus. The EHDF experiments used conical dies

with die angles of 34, 40 and 45◦ (see Fig. 3.1).

Figure 3.1: Schematic of EHDF apparatus.

After forming, major and minor strains were measured at the apex and radially from
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the apex along the sheet rolling and transverse directions using a grid analyzer with a

precision of 0.5% engineering strain. Safe, necked and cracked grids were identified as

such prior to being measured. Cracked grids were stitched together by the optical

strain measurement system so as to determine the principal strains just prior to

fracture.

3.2.2 Formability Improvement Index

A formability improvement index was defined in order to compare the forming limit

data from the EHF experiments with reference FLCs. A linear strain path ρ = e2/e1 is

assumed where e1 and e2 are the major and minor principal engineering strains. The

formability improvement was calculated from the difference in magnitudes of in-plane

principal strains from the EHF experiments and the reference FLC for equivalent

strain paths. The magnitude of the in-plane principal engineering strain is given

by |e| = e1

√
1 + ρ2 and consequently, the formability improvement index may be

expressed as,

FI% =
|eEHF| − |eFLC|
|eFLC|

× 100 (3.1a)

=
eEHF1 − eFLC1

eFLC1

× 100 (3.1b)

where eEHF1 is the major principal engineering strain measured from the EHF specimen

and eFLC1 is the major principal engineering strain from the reference FLC for an

equivalent strain path. It is worth emphasizing that Eq. (3.1) determines the percent

change in the forming limit for equivalent strain paths, and not for equivalent minor

strains, as is more commonly used. To determine the formability improvement index

for each specimen, the average value of three safe grids with the highest effective

strains were chosen. Quasi-static FLCs were extracted from the work of Wu et al. [16]

and from data provided by CanmetMATERIALS [17]. An EHFF FLC from Maris [18]

was also used for comparison.
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3.3 Results and Discussion

3.3.1 EHF Experiments: Effect of Die and Input Voltage

Figure 3.2 shows selected samples formed under different EHF conditions. The EHFF

experiments are quite sensitive to the input voltage. For example, an increase in input

voltage of 0.5 kV, from 5.5 kV to 6.0 kV, consistently led to failure in EHFF specimens

(Fig. 3.2 (a)). However, the sensitivity to the applied voltage reduces significantly with

the presence of the die. Fig. 3.2(b) shows two specimens formed using the 34◦ die.

Splitting was rarely observed and mostly located at the apex area in case of 34◦ dies

(Fig. 3.2(b)-top) since the material could fill the die safely and reach a greater depth

compared to EHFF.

Typical specimens deformed using the 40◦ die are shown in Fig. 3.2(c). All failed

specimens showed failure in the apex area and some specimens exhibited signs of

concentric circumferential localized deformation on the inside of the conical specimens.

However, measured strain values suggest that much greater safe strains are reached at

locations away from these localized deformation areas. It is worth emphasizing that

the majority of cracked specimens were formed at lower input voltages (i.e. at 8.0 kV

in Fig. 3.2(c)-top) and the safe specimens were formed at higher input voltages (i.e.

at 12.0 kV in Fig. 3.2(c)-bottom).

Although many grids safely reached strain values higher than other EHDF specimens

tested at lower die angles, all specimens formed in the 45◦ die failed by showing large

cracks. An interesting observation is that the mode of failure and the location of

crack initiation changed by increasing the input energy in EHDF-45◦ condition. At

low applied voltages (11.5 kV or less) the crack nucleates and propagates radially at

the apex (shown in Fig. 3.2(d)-top) but at high applied voltages circumferential cracks

can be seen instead (i.e. with applied voltage of 12.0 kV in Fig. 3.2(d)-bottom).

In the EHDF experiments and at low voltages, cracks usually nucleate at the apex area

and the specimens were unable to fill the die cavity completely (see Fig. 3.2(b)-(d)).

Hence the cracks were formed in free forming state of the deformation. However,
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at higher input voltages, which results in higher initial velocities, circumferential

localization (in EHDF-40◦ shown in Fig. 3.2(c)-bottom) or splitting (in EHDF-45◦

shown in Fig. 3.2(d)-bottom) was observed. Similar observations were reported for

DP500 and DP980 in Ref [9]. In the 40◦ die-formed specimens, formed using high

input voltages, splitting was suppressed as the incipient circumferential neck hit the

die and the active deformation region moved away allowing the sample to fill the

die without occurrence of crack. However, due to the die geometry, localization of

the incipient circumferential neck continued in the 45◦ die-formed specimens and

consequently cracks nucleated before the die was hit. Hence, it is believed that a

certain threshold of input energy is needed to be able to apply high velocities and

strain rates in order to fill the die without cracking and safely reach high strains.

It is noteworthy that most of the safely deformed grids in the apex area of EHDF

specimens were removed as a result of either generated heat (of compressed air) or

due to the friction with the die as shown in Fig. 3.2(b) and (c).

3.3.2 Formability Improvement

Table 3.1 shows calculated formability improvement of selected samples formed in

EHFF and EHDF condition when compared with different FLCs. It can be seen

that when formed by the EHFF process, the specimens do not show any significant

improvement in formability. However, in case of EHDF, reasonable improvement can

be seen. Maximum FI% calculated for EHDF is about 50, 70 and 90% for 34, 40, and

45◦ conical dies, respectively. Also, using low voltages with high angle dies does not

result in enhanced formability in AA5182-O sheets. These formability improvements

are less than results reported in Ref. [15], where an increase in safe major strains of

150% and 550% greater than quasi-static FLC were reported for EHFF and EHDF

tests, respectively.

The input energy (U) can be calculated from U = 1
2
cv2 where c is the capacitance

of the circuit and v is the input voltage. Figure 3.3 shows the variation of FI% with

input energy for EHDF specimens. It can clearly be seen that by increasing the

input energy, above a threshold of 8-10 kJ, AA5182-O sheet was formed to higher safe
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(a) (b)

(c) (d)

Figure 3.2: Top and side view of (a) EHFF; top: 6.0 kV, bottom: 5.5 kV, (b) EHDF-
34◦ die; top: 8.4 kV, bottom: 8.0 kV, (c) EHDF-40◦ die; top: 8.0 kV, bottom: 12.0 kV, and
(d) EHDF-45◦ die; top: 11.5 kV, bottom: 12.0 kV.
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Table 3.1: FI% of selected samples compared to different FLCs.

Test Cond. Voltage, (kV)
Referenced FLD

QS [16] QS-Canmet EHFF [18]

EHFF

5.5 -3.67 13.82 -9.44
6.0 -6.4 6.05 -12.4
8.0 -6.98 9.29 -12.5
11.0 -5.92 8.67 -11.69

EHDF-34◦

8.0 50.15 66.02 37.06
8.0 50.66 66.65 37.69
9.0 32.52 45.93 22.32
9.0 19.67 32.47 9.21

EHDF-40◦

11.5 45.79 63.95 29.08
12.0 69.67 88.71 53.22
12.0 34.07 48.49 22.2
9.0 5.9 24.02 -0.41

EHDF-45◦

11.0 14.54 34.32 7.69
12.0 35.32 48.99 25.13
13.0 53.9 70.79 40.58
14.0 87.21 114.08 62.98

strains. Hence, a number of factors influencing formability, including the strain rate

and impact velocity against the die surface and the resulting hydrostatic stress of the

material, are controlled by the input energy.

3.4 Conclusions

In this study, the formability of AA5182-O sheets was investigated during the EHFF

and EHDF process. The following conclusions were obtained;

1. Formability increased slightly during EHFF; a 14% to 18% increase was observed

when compared to more conservative quasi-static FLCs.

2. In case of EHDF process, a 50, 70 and 90% increase in safe strains were measured

for 34, 40, and 45◦ conical dies, respectively, as compared to the quasi-static

FLC.

3. An important factor in reaching high safe strain in EHDF process is the input
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Figure 3.3: (a) Formability improvement of samples showing highest increase in safe strain
and FLCs and (b) variation of improvement of formability with input energy (compared
with Ref. [16]).
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energy; once a certain energy threshold of 8-10 kJ is reached, AA5182-O sheet

can be formed successfully into the conical dies.
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Chapter 4

The Use of Genetic Algorithm and Neural Network

to Predict Rate-dependent Tensile Flow Behaviour

of AA5182-O Sheets

In this chapter, the hardening properties of AA5182-O are investigated by means of

tensile tests carried out by project partner, University of Waterloo, at different strain

rates ranging from quasi-static to 1000s−1. The motivation to perform this study was

to;

• know how the material behaves at moderate and high-strain rates. If the flow

stress increases with strain rate, it could lead to strengthening in high-strain

rate processes such as EHF and consequently to better formability.

• examine how the constitutive behaviour is predicted at high strains; for some

sheet materials the flow stress saturates at high strains leading to extensive

deformation in numerical simulations of the forming process.

• understand the effect of anisotropy on constitutive equation and flow behaviour

of AA5182-O.

• obtain a reliable constitutive equation that can be used to accurately simulate

the EHF process.

Hence, in this chapter, two approaches are taken, using the conventional JC, KHL

and modified-Voce constitutive equations1, and more complex computational struc-

tures such as artificial neural networks. To determine the constants in constitutive

1Erratum: one of the methods used in the published manuscript was non-linear regression analysis
and not linear regression analysis.
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equations, a more advanced approach was taken which is the genetic algorithm opti-

mization. It is worth noting that beside the constitutive equations reported in this

chapter, different forms of modified-Voce and power-law equations were also inves-

tigated but were not included in the dissertation because they lead to less accurate

predictions of the experimental flow stress.

In brief, this chapter discusses the tensile flow behaviour of AA5182-O sheet which was

experimentally obtained in different material directions (RD, DD, and TD) at strain

rates ranging from 0.001 to 1000s−1 and predicted by means of both phenomenological

models and neural networks (NNs). Constants in Johnson-Cook (JC), Khan-Huang-

Liang (KHL), and modified Voce were calculated using genetic algorithm (GA) and

linear regression analysis and used to simulate the uniaxial tension tests. Two types

of feed-forward back-propagation neural networks were also trained and validated to

predict the rheological behaviour of the alloy without the limitations of a mathemati-

cal function. The weights and bias values of each network were then used to simulate

uniaxial tensile deformation. Subsequently, the results were compared with experi-

mental flow curves and accuracy parameters were calculated. It was found that the

modified Voce constitutive equation was able to predict the flow behaviour of AA5182-

O with better accuracy than JC and KHL models. Also, the NN was found to be

the most accurate method of predicting the anisotropic rate-dependant behaviour of

AA5182-O.
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and M. J. Worswick, “The Use of genetic algorithm and neural network to predict rate-

dependent tensile flow behaviour of AA5182-O sheets”, Materials & Design, vol. 94, pp.

262-273, Mar 2016.

4.1 Introduction

Aluminium alloys exhibit various properties that are advantageous for the manu-

facture of automobiles such as good corrosion resistance, high specific strength and

especially low density as compared to steel. Additionally, it is estimated that each

10% reduction of weight in a passenger vehicle results in a 6-8% improvement in fuel

efficiency [1]. Hence, aluminium sheets are increasingly being used to manufacture

automotive body parts so as to reduce vehicle weight [2]. Due to their good mechan-

ical properties, 5xxx-series sheet alloys are of special interest for inner panels and

body-in-white components [3]. However, limited formability at low temperature [4]

as compared to many steel grades, moderate strength and negative strain rate sen-

sitivity are limitations that prevent wide-usage of these alloys in industry. In order

to overcome these limitations, high temperature deformation [5] or high strain rate

forming techniques [6, 7] can be used to produce automotive body parts because of

their potential for increasing sheet formability. At low strain rates, many aluminium

alloys including 5xxx-series exhibit negative strain rate sensitivity which is attributed

to dynamic strain ageing and Portevin-Le Chatelier (PLC) effect [8, 9] where interac-

tions between mobile dislocations and solute atoms result in inhomogeneity of plastic

deformation and serrations in the flow curve. However, at moderate strain rates (i.e.

10-100s−1) a transition from negative to positive rate sensitivity is observed for differ-

ent Mg concentrated 5xxx-series aluminium alloys [10]. This transition is definitely

beneficial for high rate forming processes since it promotes better post-uniform flow

behaviour. But in view of the technical challenges, limited experimental data are

available for these high-strain rate processes and consequently it is necessary to carry

out numerical simulations in order to predict the outcome of the forming process.
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Therefore, it is essential to accurately model the mechanical response of the sheet

material.

Phenomenological constitutive functions are developed to implement material flow

behaviour in numerical models, particularly in finite element models used for process

simulation. Consequently, many researchers have used such rheological models to

predict the behaviour of different alloys such as AA2124-T851 [11], AA5052 [12],

AA5182 [13], AA6026 [14], and AA7075 [15, 16]. In this study, different approaches

were utilized and compared to investigate the flow behaviour of AA5182-O sheets

along different material directions (i.e. the rolling direction (RD), 45◦ to the rolling

direction (DD) and transverse direction (TD)) from quasi-static (0.001s−1) to high

strain rates (1000s−1). Genetic algorithm (GA) and linear regression (R.) methods

were used to calculate the constants in widely-accepted phenomenological constitutive

equations; Johnson-Cook (JC), Khan-Huang-Liang (KHL), and modified-Voce. These

models were selected due to their common usage in simulation of metal forming and

frequent citations in the literature.

Although constitutive equations represent non-linear relations between empirical pa-

rameters such as σ, ε, ε̇, and T , they are usually limited to specific deformation

mechanisms and break down when deformation domains change. Consequently, to

overcome these limitations, different equation parameters or separate equations are

required to represent data over large domains. Many researchers have also used neural

networks to determine the rheological behaviour of materials [17, 18]. Consequently,

in addition to the phenomenological approach, artificial neural networks were also

utilized to predict the flow behaviour of AA5182-O in the same sheet orientations

and strain rate range. A feed-forward back-propagation neural network was selected

because it has previously been shown to accurately predict the flow stress for differ-

ent materials subject to both warm and hot forming conditions in a range of strain

rates [19] even when the material’s dominant deformation mechanism was changed [5].

The accuracy of these different approaches will be compared to each other as well

as with conventional linear regression calculations using well-known statistical errors,

such as mean square error (MSE) and adjusted R-square error (R2
adj). Then, the

69



most accurate results will be used to simulate the mechanical response of AA5182-O

using different user material subroutines that were developed to facilitate the use of

JC, KHL, and modified-Voce constitutive equations and the trained neural networks.

The advantages and disadvantages of the mentioned approaches will be discussed.

4.1.1 Constitutive equations

The Johnson and Cook (JC) constitutive equation [20] is one of the hardening criteria

mostly used in metal forming simulations, either in its original form shown in Eq.4.1,

or with some modifications [21].

σ =
(
A+Bεn

)[
1 + C ln

( ε̇
ε̇0

)][
1−

( T − Tr
Tm − Tr

)m]
(4.1)

where ε̇0 is the reference strain rate and A, B, C, n and m are material constants.

Tr, Tm, and T denote room, melting and test temperatures, respectively. Previ-

ously, the parameters in the JC constitutive equation were calculated by Rohatgi [22]

and Smerd [23] in the rolling direction of AA5182-O sheets considering isotropic be-

haviour and primarily mostly in the quasi-static strain rate range. However, published

research (e.g. [24–26]) suggests that AA5182-O exhibits anisotropic flow behaviour.

Consequently, these parameters were calculated for different orientations to study the

anisotropic behaviour of AA5182-O, as well as for a wide range of strain rates.

The Khan-Huang-Liang constitutive function [27] is shown in Eq. 4.2. Khan et al. [28]

and Kabirian et al. [29] modified the original KHL phenomenological function to

accommodate changes in strain rate sensitivity of AA5182-O at elevated temperatures.

σ =

[
A+B

(
1− ln ε̇

lnDp
0

)n1

εn0

](
ε̇

ε̇0

)c(
Tm − T
Tm − Tref

)m

(4.2)

where A and B are material constants and c is the overall factor for strain rate

sensitivity. m is the temperature exponent and n0 and n1 represent the work hardening

exponent and the strain rate sensitivity of the work hardening, respectively. Dp is an

arbitrary upper bound strain-rate and is usually assumed to be 106s−1.

70



The Voce hardening function [30] is one of the most convenient equations used to

predict flow behaviour of different materials [31, 32]. It shows remarkable fitting

performance and inherent simplicity for different materials including aluminium al-

loys [33]. However, the Voce hardening function does not consider the effect of strain

rate on deformation behaviour in its original formulation. To consider both strain

and strain rate sensitivity, a multiplicative method was used to combine the Voce

equation with a Logarithmic-Exponential strain rate expression. This modified Voce

equation (VM) is expressed in Eq. 4.3.

σ =

[
B −

(
B − A

)(
exp(−m1ε)

)]
× ζ(ε̇) (4.3a)

ζ(ε̇) =
[
C ln(ε̇) + (1 + ε̇)D

]
(4.3b)

where A, B, m1, C and D are material constants to be calculated for each testing

condition. It is worth noting that by adjusting C and D in Eq.4.3b according to

the material’s response, ζ(ε̇) can be changed to accommodate variations in strain rate

sensitivity for the wide range of strain rates used in this study. This model was shown

to successfully predict increase of flow stress at high strain rate regimes for different

materials in Ref. [13].

4.1.2 Genetic algorithm method

Genetic algorithm (GA) is an optimization method widely used in scientific and en-

gineering studies because of its ability to reach optimum conditions, e.g. the global

minimum. One advantage of the GA approach is the ease with which parameters can

be calculated without the need to make the equation linear or to calculate each pa-

rameter separately using partial equations. The various GA parameters will briefly be

defined and explained. The first step is to create a function, which will be minimized

during the GA process. The initial population is a set of parameters used to calculate

the first minimum value of the function randomized within a predefined boundary
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condition. New generations are created from the parent population by crossover.

However, it is important to maintain the genetic chromosome and create diversity of

answers so that the result converges to the minimum value more efficiently; a muta-

tion function is responsible for providing diversity during the crossover process. The

populations that correspond to greater differences from the minimum values (con-

stants) obtained are eliminated, and populations continue to be generated until the

total number of generations is reached or the difference between the minimum value

of a certain amount of generations is less than a specified value (i.e. 1 × 10−6 for

50 generation intervals). Readers are referred to Ref. [34] for further details on GA

concepts and theory.

In particular, GA have been used to describe the behaviour of materials under a

variety of conditions. For instance, Lin and Yang [35] determined the constitutive

equation of Ti6Al4V super-plastic alloy using GA, Zain-ul-abedin et al. [36] used

GA to study the thermo-mechanical behaviour of AA6056 at low strain rates, Yin et

al. [37] implemented GA to optimize the parameters of microstructural evolution of

GCr15 steel during hot compression and Aguir et al. [38] used GA-ANN hybrid model

to calculate material parameters of an anisotropic material.

4.1.3 Artificial neural network

Artificial neural networks (ANNs) are computational logical structures with multipro-

cessing elements, which are linked through interconnection weights. In NNs, rather

than relying on predetermined assumptions (i.e. that a function is able to describe

the constitutive behaviour) data is used to form the model. When the structure of

the network is determined, the input variables are supplied during the training stage

and the resulting output is compared with the desired output using a convergence

criterion. The interconnection weights are then adjusted between layers to increase

its performance. This process is repeated until the network performs well on the

training set. In the validation stage, the trained network will be assessed on data not

included in the training set to estimate its performance and adjust weights and biases

if necessary. Consequently, ANNs are capable of handling complex and mathemat-
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ically unresolvable relations between parameters and this makes this approach very

useful for many applications. In the field of metal forming, many researchers have

utilized ANN to predict the forming behaviour of different materials. To exemplify,

Elangovan et al. [39], Derogar et al. [40], and Forcellese et al. [41] used NN to pre-

dict the forming limit of sheets and Fu et al. [42] used it in conjunction with GA to

successfully design an air-bending punch. Kessler et al. [43] implemented ANN into

finite element simulation and Abbasi et al. [44] identified mechanical ductile damage

using NN.

4.2 Experimental and Computational Procedures

Tensile tests were performed on AA5182-O sheet specimens taken at 0, 45, and 90◦

with respect to the rolling direction (corresponding to RD, DD, and TD). Quasi-static

tests (ε̇ =0.001, 0.1s−1) were performed on ASTM-E8 tensile specimens using an In-

stron 1331 servo-hydraulic testing machine. Intermediate strain rate tests (ε̇ =1, 10,

100s−1) were carried out using a specialized Hydraulic Intermediate Strain Rate appa-

ratus, and a split Hopkinson bar apparatus was used for strain rate of approximately

1000s−1 both using sub-size tensile specimens. The specimens were strained until

fracture where load-displacement data were recorded and converted to stress-strain

values according to standard methods. In order to measure experimental strain dis-

tributions, Digital Image Correlation (DIC) technique was used. First, each specimen

was painted in white and then a black stochastic speckle pattern was applied. High

speed image acquisition was used to record images of specimens being formed where

the deformation of the applied speckle pattern was used as virtual extensometers to

measure longitudinal and width strains. Data processing of the recorded images taken

from quasi-static and high strain rate specimens were conducted using ARAMIS from

GOM and VIC-2D from Correlated Solutions, respectively. More detailed information

about testing procedures can be found in Ref. [13, 45].
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4.2.1 Genetic algorithm approach

Different minimization functions were developed to calculate the parameters of phe-

nomenological constitutive functions based on the fact that the final goal is to have

zero difference between the flow stress (σ) and the right hand side of each constitu-

tive equation (Eqs. 4.1, 4.2, and 4.3). The mean square error (MSE) was chosen to

measure the difference between predicted and measured stress values and it can be

calculated using Eq.4.4;

MSE =
1

n

n∑
i=1

(
σ − σ̂

)2
(4.4)

where σ represents the experimental true stress and σ̂ is the predicted stress. Each

function will be considered as optimized when the minimum value of this difference for

all samples tested in each material direction is reached. During the first trials, it was

realized that this technique will provide much more reliable results specially when the

experimental data contains noise or serrations and was obtained for a wide range of

strain rates. To avoid complication, the reference strain rate (ε̇ in JC and ε̇0 in KHL)

was considered to be unity, and since tests were carried out at room temperature, the

temperature-dependent term in the rheological equations was dismissed.

The population size and the fraction of parent-to-children populations were set to 50

and 0.35, respectively. Also, a migration fraction of 0.2 and 20 intervals were used.

MATLAB (R2014a) default crossover fraction and mutation function was employed.

The maximum number of generations in each optimization was decided by the number

of constants to be calculated and a multiplier, and was equal to 250 for JC and 350

for KHL and VM hardening functions. The boundary condition shown in Table 4.1

were chosen based on values obtained from rough curve fitting. To avoid premature

termination of the GA process and to obtain superior results, loops were designed

to re-run the optimization several times; each loop ends if the value of the fitness

function in each algorithm (800 for JC and KHL and 600 for VM), or the maximum

number of 100 GAs is reached. Fig. 4.1(a) illustrates the GA process used in this

study. The result of each GA was saved and the ones leading to minimum MSE were

74



Table 4.1: Boundary values of each parameter

JC KHL VM
A: 50 – 200 A: 0 – 120 A: 100 – 200
B: 300 – 800 B: 200 – 500 B: 300 – 400
n: 0 – 0.5 n0: -0.5 – 0.5 m1: 5 – 15
C: -0.1 – 0.5 n1: 0 – 1 C: -1 – 0

c: -0.5 – 0.5 D: 0 – 0.1

chosen for further comparisons and are shown in Table 4.3.

4.2.2 Artificial neural network approach

Several structures of back-propagation neural networks with different transfer func-

tions, layers, and numbers of neurons were tested and two networks with reasonable

performances were selected to present in this study. The first and simplest network,

”NN1” was trained with the Levenberg-Marquardt training algorithm. It consists of

two layers; an input layer with the material orientation, the strain rate in logarithmic

scale and the true plastic strain as input values and the output layer with true stress

as the target. The other network, ”NN2”, consists of three layers with normalized ori-

entation, logarithmic strain rate and strain values as the inputs and logarithmic stress

as the output. In case of NN2, the Bayesian regulation backpropagation training algo-

rithm was used as it produced better weights and biases than Levenberg-Marquardt.

Basically, the Bayesian regulation takes place within the Levenberg-Marquardt algo-

rithm and is capable of reaching a minimized combination of weights and errors. Table

4.2 summarizes the structure of networks used in this study where θ and θ̃ represent

orientation and normalized orientation of the specimens, respectively. The analytical

form of NN1 and NN2 networks are shown in Eqs. 4.5a and 4.5b, respectively.

σ̃(1,1) = wO(1,i) × f1

(
wI(ij) × Ĩ(j,1) + bI(i,1)

)
+ bO(1,1) (4.5a)

log(σ̃(1,1)) = wO(1,i)×f1

[
wL1(i,i) × f1

(
wI(ij) × Ĩ(j,1) + bI(i,1)

)
+ bL1(i,1)

]
+bO(1,1) (4.5b)
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Figure 4.1: Schematic of (a) GA and (b) ANN structure used in this study.
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Table 4.2: Neural Network structures used

NN1 NN2
Number of layers 2 3

Inputs I =[θ; log(ε̇); ε] I =[θ̃; log(ε̇); log(ε)]

Input range

 (0 : 90)
(−6.908 : 6.908)
(0.002 : 0.192)

  (0 : 1)
(−6.908 : 6.908)

(−6.215 : −1.650)


Output σ log(σ)
Output range (126.19:335.55) (4.838:5.816)
Input layer 6 15
First hidden layer - 15
NNmax 1000 100
Target MSE 1 1× 10−6

Training algorithm Levenberg-Marquardt Bayesian regulation

f1(x) =
2

1 + e−2x
− 1 (4.5c)

where Ĩ and σ̃ represent normalized inputs and stress values, W and b represent

weights and biases, respectively. The subscripts I , L1 and O denote input, first and

output layers, respectively. i and j are the numbers of neurons in the input layer

and the number of inputs, respectively. f1 is the hyperbolic tangent sigmoid transfer

function (Eq. 4.5c) which is capable of producing outputs in a range of −1 to +1. A

pure linear transfer function is used in both NN structure to scale outputs up and

down for the output layer.

Since the goal is to obtain a network with enhanced accuracies for further studies and

specially for simulation purposes, 70% of randomly chosen data were used to train

the network and the remaining 30% was used as new experimental data to validate

and test its performance. To obtain better results, loops were generated to repeat

the process until the desired mean square error (MSE) or the maximum number of

training loops was reached. Fig. 4.1(b) graphically shows the neural network structure

used in this study.
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4.2.3 Simulation procedure

To further study the accuracy of each constitutive equation and calculated parameters,

uniaxial tensile tests were simulated using ABAQUS dynamic explicit finite element

software. The specimen geometries used in the simulations are shown in Fig. 4.2

and correspond with the experimental specimens for quasi-static (Fig. 4.2(a)) and

moderate and high strain rates (Fig. 4.2(b)), respectively. In the simulation of quasi-

static tests, a quarter symmetry was used (Fig. 4.2(a)) and the region of the specimen

that would be locked in the grips was shortened in order to reduce computation

time. The boundary condition along the symmetry line that is perpendicular to the

specimen axis and in the centre of the gauge area was such that nodal displacements

in the loading direction were prevented. Moreover, nodal displacements perpendicular

to the loading direction were prevented along the entire symmetry line that is parallel

with the specimen axis. A reference point located 10 mm above the top boundary

of the specimen (Fig. 4.2(a)) and corresponding with the free edge of the grips was

coupled with the top edge. The velocity of the grips measured experimentally in the

tensile test was applied to this reference point to ensure that the specimen would

deform at the same strain rate in the numerical simulation. For the specimen used to

simulate high strain rate deformation (Fig. 4.2(b)), two reference points, each located

at 10 mm from one end of the specimen in the region that would be held in the grips

of the testing machine, were each coupled to one end of the specimen. For one of

these reference points all degrees of freedom were locked and the required velocity

was applied to the other reference point.

ABAQUS user material subroutines (VUMATs) were developed and tested accord-

ingly to implement JC, KHL, and VM hardening functions as well as the developed

NNs. It is worth pointing out that since the built-in JC constitutive function in

ABAQUS does not accept negative strain rate sensitivities, the development of a VU-

MAT for JC was required. However, simulations were also performed using ABAQUS

built-in JC function disregarding the strain rate exponent calculated from GA and

Regression results. Python scripts were created and called from MATLAB to run
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simulations and extract the required information from simulation results. Simulations

were carried out at tensile head velocities that were equivalent to the experimental

values and using the calculated constants in the hardening functions.

Mesh sensitivity was considered and the optimum conditions were used to simulate

the tensile tests at different strain rates considering computational costs. The speci-

mens were discretized using reduced-integration 8-node linear brick elements. Biased

element sizes ranging from 0.05-0.175mm and 0.15-0.75mm were used along the gauge

length of quasi-static and high strain rate specimens where the gauge widths were di-

vided into 9 and 10 elements as shown in Fig. 4.2(a) and (b), respectively. Mass scaling

was used to reduce computational costs, specially to simulate material behaviour at

low strain rates. Instead of measuring stress-strain from a set of elements in the gauge

area of specimens, the load-displacement data of the constrained reference point on

top of the specimen were used to calculate the flow curve up to the onset of necking

which was then compared with the experimental and calculated curves from Eq.4.1,

4.2, and 4.3. It is worth noting that the AA5182-O tested showed minimal varia-

tion of r-value with testing direction and strain rate [13]. Consequently, isotropy was

assumed in the VUMAT at this stage of development in order to reduce computa-

tional complexity. Nevertheless, to minimize error in simulation due to this isotropic

assumption, tensile tests were simulated in each direction using the corresponding

calculated parameters in order to evaluate the overall performance of the hardening

functions and the corresponding user material subroutines.

4.3 Results and Discussion

4.3.1 Flow behaviour of AA5182-O

The parameters calculated for each constitutive equation using Eqs.(4.1), (4.2), and

(4.3) are shown in Table 4.3. The constants vary slightly with loading direction.

Fig. 4.3 shows stress-strain curves of selected specimens obtained from experiments as

well as constitutive functions and the trained neural network. In general, by utilizing
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Figure 4.2: Specimen used to simulate (a) QS and (b) high strain rate tensile tests.

the calculated constants shown in Table 4.3, numerical methods successfully predict

the flow behaviour of AA5182-O in any direction and strain rate tested. However,

some discrepancies can be seen in case of phenomenological methods, especially at

low and high strain values (Fig. 4.3(a)and (b)). These inaccuracies seem to diminish

as a result of increased scatter in high strain rate experimental data (100-1000s−1)

but JC and KHL calculated stress values tend to be larger at low strain and smaller

at higher strains, as shown in Fig. 4.3(c).

Fig. 4.4 shows the predicted true stress determined by each method against the exper-

imental values of all tested specimens. It can be seen that the selected methods are

able to predict the flow behaviour of AA5182-O sufficiently well since the predicted

results lie mostly on the line of exact fit. However, the predictions using phenomeno-

logical models loose their precision at low strain values, as evidenced by the difference

in stress values in Fig. 4.4(a)-(c). Judging by the scattered data in Fig. 4.4(a) and

(b), the prediction of the flow stress values using the JC and KHL models are less ac-

curate when compared to the modified-Voce (VM) and ANN approaches. In fact, JC
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Figure 4.3: Comparison of calculated AA5182-O flow stress with experimental data for (a)
RD: 0.001s−1, (b) DD: 1s−1, and (c) TD:1000s−1.
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Table 4.3: AA5182-O parameters calculated by GA and regression analysis

Genetic Algorithm Regression analysis
RD DD TD RD DD TD

JC

A 95.789 96.008 98.575 90.394 86.739 88.577
B 497.051 481.434 473.433 492.812 479.7 464.872
n 0.4488 0.4520 0.4571 0.4268 0.4194 0.4187
C -0.00086 -0.00134 -0.00073 -0.0014 -0.0021 -0.0017

KHL

A 89.739 98.695 99.715 85.8 79.4 82.5
B 486.302 481.936 473.565 478.56 456.925 436.35
n1 -0.1274 -0.1077 0.0127 -0.2885 -0.2231 0.0641
n0 0.4271 0.4625 0.4601 0.4202 0.3968 0.3798
c -0.00748 -0.00659 -0.00017 -0.016 -0.014 0.0013

VM

A 133.383 132.422 134.952 134 128 136
B 347.445 344.597 343.478 342 339 328
m1 10.327 9.700 10.091 11.11 10.31 11.11
C -0.00574 -0.00624 -0.00094 -0.003 -0.006 -0.003
D 0.00876 0.00873 0.00004 0.008 0.012 0.009

(Eq. 4.1) and KHL (Eq. 4.2) underestimate the flow curve at low strain values whereas

VM (Eq. 4.3) overestimates it. However, both trained neural network structures were

able to calculate the flow stress of AA5182-O within the entire strain domain with a

smaller and almost constant deviation from perfect fit (Fig. 4.4(d)).

4.3.2 Determination of accuracy

The accuracy of each method to calculate the flow curves of AA5182-O was examined

using adjusted R-squared given in Eq. 4.6 and MSE parameter (Eq. 4.4).

R2
adj = R2 − (1−R2)

p

n− p− 1
(4.6a)

R2 = 1−
∑n

i=1 (σ − σ̂)2∑n
i=1 (σ − σ̄)2

(4.6b)

where σ, σ̂, and σ̄ represent the experimental, predicted and mean stress values. R,

n and p in Eq.4.6 are the regression coefficient, sample size and total number of

regressors in a given model, respectively. In case of ANN, p was considered to be

the number of neurons in the input layer. When accuracies are compared together
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Figure 4.4: Comparison of calculated true stress values with experimental data for (a) JC,
(b) KHL, (c) VM, and (d) ANN.
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using adjusted R-squared error, all methods exhibit their ability to determine the flow

behaviour of AA5182-O for any direction with calculated values always above 0.98,

as shown in Fig. 4.5(a).

The overall comparison of accuracy for each of the prediction methods using MSE

is shown in Fig. 4.5(b). It can be seen that the modified-Voce equation leads to

more accurate predictions when compared with the other hardening functions stud-

ied. However, the difference between predictions with JC and KHL is insignificant and

they both exhibit reasonable accuracies when used with the GA-calculated constants.

In fact all GA calculations lead to more accurate results when compared to parame-

ters derived by regression analysis. In the case of the modified-Voce GA calculations

improved the adjusted R-squared from 0.983 to 0.998 for the transverse direction.

The superiority of GA compared to the regression method for determining constants,

as shown in Fig. 4.5, is due to the calculation procedure taken to determine these

parameters; in order to use the regression method, constants related to strain hard-

ening were calculated first and then the strain rate related constants were calculated

to avoid the necessity of making the equation linear. In fact, it is a common approach

to calculate parameters of such equations separately (e.g. in Ref. [29]). However,

in case of GA, all parameters were calculated at the same time and change relative

to each other in order to maximize the overall performance. The other obvious ad-

vantage of the GA method is the ease of mathematical calculations for the operator.

Consequently, the usage of GA to determine the parameters in complex equations is

preferable for engineering studies and hence for further analysis of AA5182-O flow

behaviour, only GA-calculated parameters will be used.

Besides, Fig. 4.5(b) suggests that the trained simple (NN1) and the more complex

(NN2) structures were able to calculate the flow behaviour of AA5182-O better than

the rheological constitutive equations. However, the more complex NN2 structure

with logarithmic scaled input-output values leads to enhanced accuracy as seen in

Fig. 4.5(b). Although only one network was trained on a range of sheet directions

in each case, their outcomes show the most accurate agreement with experimentally

determined values when compared to individual directions. This ability of NNs to
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study the mechanical behaviour of materials makes them useful tools.
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Figure 4.5: Comparison of accuracies of JC, KHL, VM and NN structures based on (a)
adjusted R-square, (b) overall MSE values.

4.3.3 Predictions of strain hardening rate and flow stress at

different strain values

Fig. 4.6 shows examples of the evolution of strain hardening rate (dσ/dε)|ε̇,θ calculated

by each method with true plastic strain in selected specimens. Serrations in exper-

imental values at high strain rates are due to the experimental noise (Fig. 4.6(a)),

however, at low strain rates, the serrations are due to plastic strain inhomogeneity

caused by the PLC effect, as shown in Fig. 4.6(b).

It can be seen in Fig. 4.6(a)-(b) that, although all approaches used in this study are

able to satisfactorily calculate the overall strain hardening behaviour of AA5182-O at

low and high strain rates, the accuracy is inadequate at low strain values. Although

experimental data contain serrations, the inaccuracy of JC and KHL can be seen by

their excessively high work hardening rate values at low plastic strains. Consequently,

among all prediction methods, VM and the trained NN structures exhibited the most

accurate determination of the work hardening rate at low strains whereas the JC and

KHL showed the least accuracy.

Fig. 4.7(a) to (d) show the flow stress of AA5182-O at true strains of 0.02 and 0.14,
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Figure 4.6: Variation of the slope of the true stress vs. true plastic strain curve for (a) RD:
1000s−1, (b) TD: 0.001s−1.
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respectively, corresponding to low and high ends of the reliable range of true stress

in split-Hopkinson bar experiments. The error bars in experimental curves shown

in Fig. 4.7 were derived from maximum and minimum measured flow stress from

repeated tests.

The difference between the calculated and experimental stress values is of importance

in process simulations and hence the preferred approach is the one leading to the

minimum difference. A significant observation from Fig. 4.7 is that the flow stress

corresponding to the 0.02 to 0.14 strain range decreases to a minimum at low strain

rates and then increases at higher strain rates. This trend suggests that the material

exhibits negative strain rate sensitivity at low- to moderate-strain rates but positive,

although small, values at higher strain rates. This is consistent with the observations

of Higashi et al. [46, 47], Mukai et al. [10, 48–50] and Rahmaan et al. [13] for Al-Mg

alloys. However, the amount of decrease in flow stress at lower strain rates can be

more or less significant, as seen for the DD specimens at 0.02 strain in Fig. 4.7(b).

It can be seen from Fig. 4.7(a)-(d) that the NN structures were able to accurately

predict the transition in strain rate sensitivity of AA5182-O at a given strain for the

entire range of strain rates. Although NN2 calculations seem to fluctuate somewhat

with strain rate, these variations are within the experimental accuracy represented

by the error bars. In fact, for experimental strain rates NN2 predictions were so

close to the experimental results that the curves almost lie on top of each other. NN1

predictions were also very close to the experimental flow stress making it superior than

all phenomenological approaches studied. Phenomenological approaches were able to

estimate the flow curves reasonably well but when a single strain rate expression

is used (such as in JC Eq. 4.1) they fail to predict its variation with strain rate.

However, for most loading directions and strain values, the VM hardening function

was also able to replicate the increased stress values at high strain rates (i.e. as shown

in Fig. 4.7(a)-(c)).

It is worth emphasizing that the increased stress level of AA5182-O at high strain rates

is of importance as it may lead to improved formability [7] considering a simple JC

damage model [20]. In fact, the AA5182-O sheets used showed increased formability
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Figure 4.7: Variation of AA5182-O flow stress with strain rate at (a) 0.02 strain in RD,
(b) 0.02 strain in DD, (c) 0.14 strain in DD, and (d) 0.14 strain in TD.

when deformed in an electro-hydraulic forming process which can locally reach strain

rates above 1× 104s−1 [51]. Consequently, the use of NN in finite element simulations

can be very useful in that they are capable of predicting flow curves without the

limitation of a single strain rate exponent. Further analyses of the changes of stress

with strain rate are beyond the scope of this paper and will be discussed elsewhere.

4.3.4 Simulation results

FEM simulations were carried out as explained in section 4.2.3 and the region which

exhibits the onset of necking is investigated in more detail. Fig. 4.8 shows contours of
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effective strain in tensile specimens at the onset of localized necking predicted by FE

simulations using the different approaches studied. In order to increase the clarity of

these images, the mesh lines were removed from Fig. 4.8. Fig. 4.8(a) corresponds to

quasi-static (0.1s−1) and Fig. 4.8(b) represents specimens deformed at moderate strain

rates (100s−1). Severe shear bands can be seen in quasi-static specimens but their

severity reduces at high strain rates. The diffused neck is observable in all cases but

the intensity of localization differs depending on the method used to define the work

hardening behaviour. In case of JC and KHL models, the deformation is more uniform

in the gauge area since at the onset of necking, the sample experienced larger strains

overall. On the other hand, results from NN2, NN1 and especially VM suggest that

necking is very localized in a specimen that, overall, was strained less when necking

occurred. In other words, strains localized earlier when VM or NNs user subroutines

were used. In both cases, judging by the intensity of the effective strains, failure is

expected to start inside the gauge area where shear bands intersect. Fig. 4.9 shows

the strain distribution at the onset of necking in a tensile specimen formed under

quasi-static strain rates. It can be seen that not only the strain distribution around

the localized area are close to VM, NN1 and NN2 predictions, but the equivalent

strain values are also very close to the simulation results for VM, NN1 and NN2

(Fig. 4.8(a)).

In order to quantify the accuracy of each approach in modelling the tensile behaviour,

the flow curves calculated from the load-displacement data predicted by finite element

analysis at different strain rates and material orientations were compared with the

experimental flow curves, and the MSE was calculated in each case. Fig. 4.10(a)

shows overall MSE using each method used. It can be seen from Fig. 4.10(a) that the

developed subroutines were able to predict the mechanical response of this sheet ma-

terial with acceptable accuracy especially when compared with the ABAQUS built-in

JC hardening function. Also, disregarding the negative but insignificant strain rate

exponent in JC will result in 14.7% less accuracy in the predicted flow curve. Fur-

thermore, the KHL formulation leads to the most accurate simulation results among

the phenomenological hardening functions considered, followed by VM and JC which
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Figure 4.8: Contours of effective strain values predicted by different hardening models at
the onset of necking for specimens deformed at (a) 0.1s−1 and (b) 100s−1 strain rates.
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Figure 4.9: Experimental strain distribution at the onset of instability for specimen formed
under (a) quasi-static and (b) 100s−1 strain rate.

also show reasonable accuracy. The NN2 structure was the most accurate method

used, with 19.5% better performance than KHL. The NN1 overall performance was

between that of KHL and NN2.

Fig. 4.10(b) shows the average computational cost and MSE that were achieved in

order to carry out the simulation of the complete tensile test with each hardening

function. All tests were performed on a computer with an 8-core 3.40GHz CPU

and the run time was measured by MATLAB which was used to create, submit and

finalize the simulation. It can be seen that JC and KHL were the most cost efficient

methods used, with JC being the least accurate method. The enhanced accuracies

in case of NN2 came with more than twice the computational cost when compared

with the KHL hardening function. Although, the simple structure of NN (NN1)

was reasonably accurate, its computational cost was unreasonably higher than that

of the more complex NN (NN2) studied. Hence, NN1 structure network would not

be a preferred approach to simulate complex forming processes. Another interesting

observation is that although the VM hardening function was able to predict the flow

91



ABAQUS-JC (GA) JC (GA) KHL (GA) VM (GA) ANN (NN1) ANN (NN2)

S
um

 o
f a

ll 
di

re
ct

io
na

l M
ea

n 
S

qu
ar

e 
E

rr
or

 (
M

S
E

)

1200

1300

1400

1500

1600

1700

1800

(a)

Average computational cost, s
2000 3000 4000 5000 6000 7000 8000

A
ve

ra
ge

 M
S

E
ex

p

90

100

110

120

130

140

150

ABAQUS_JC_GA
JC_GA
KHL_GA
VM_GA
ANN_NN1
ANN_NN2

(b)

Figure 4.10: (a) Comparison of simulation accuracies and (b) Computational cost vs accu-
racies.

curves of AA5182-O with much greater accuracy compared to KHL and JC (Fig. 4.5),

its accuracy reduced to just below that of the KHL model in the simulations of the

tensile tests but with added computation cost. The reason for this reduced accuracy

is the intensity of strain localization in the necked region which is more pronounced

when the VM hardening function is used, as shown in Fig. 4.8(a). The combination

of this extensive localization and the lower strain hardening rate at high strain values

and low strain rate deformations (shown in Fig. 4.6(b)) leads to significant reduction

in the load measured from the reference point and subsequently VM exhibited reduced

accuracy compared to KHL hardening function.

4.4 Conclusions

In this study, the flow behaviour of AA5182-O in the strain rate range from 0.001

to 1000s−1 and along the three major directions of the sheet (RD, DD, and TD)

was investigated using two computational methods; genetic algorithm was used to

successfully determine the parameters in commonly used constitutive equations and

artificial neural network was used to directly calculate flow stress from experimental

variables. The predicted flow curves were then compared to experimental data and

the accuracy was evaluated with linear regression method calculations. The following
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conclusions can be made;

1. Genetic algorithm is able to solve problems without mathematical limitations

and exhibits enhanced performance compared to linear regression analysis. Pa-

rameters in the hardening functions calculated by genetic algorithm lead to the

most accurate predictions when compared with experimental data.

2. The flow stress of AA5182-O decreases to its minimum at intermediate strain

rates (from approximately 10 to 100s−1) and then increases with increasing

strain rate. Among the hardening models studied, the neural network was the

only approach capable to replicate this behaviour. The strain rate term in

JC and KHL constitutive equations used were unable to predict such a tran-

sition and predicted small negative values of strain rate sensitivity. However,

the modified-Voce with logarithmic and exponential strain rate terms exhibited

better capability to predict the trend of increasing flow stress at high strain

rates. Also, disregarding this small but negative strain rate exponent can lead

to considerable inaccuracies in finite element simulations of the tensile tests.

3. Flow stress values calculated using the modified Voce hardening function shows

better agreement with experimental data when compared with KHL and JC

models. However, KHL results were slightly more accurate when used in finite

element simulation.

4. The most accurate calculations of flow stress values for any given direction,

strain, and strain rate were predicted using ANN when compared analytically

with experimental results or when used in finite element simulation. However,

its computational costs were considerable when used in finite element simulation

when compared with KHL or JC hardening functions.
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[36] M. Zain-ul abdein, D. Nélias, J.-F. Jullien, and A. I. Wagan, “Thermo-mechanical
characterisation of AA 6056-T4 and estimation of its material properties using Genetic
Algorithm,” Materials & Design, vol. 31, pp. 4302–4311, Oct. 2010.

[37] F. Yin, L. Hua, H. Mao, X. Han, D. Qian, and R. Zhang, “Microstructural modeling
and simulation for GCr15 steel during elevated temperature deformation,” Materials
and Design, vol. 55, pp. 560–573, 2014.

[38] H. Aguir, H. BelHadjSalah, and R. Hambli, “Parameter identification of an elasto-
plastic behaviour using artificial neural networks–genetic algorithm method,” Materials
& Design, vol. 32, pp. 48–53, Jan. 2011.

[39] K. Elangovan, C. S. Narayanan, and R. Narayanasamy, “Modelling the correlation be-
tween the geometrical features and the forming limit strains of perforated Al 8011 sheets
using artificial neural network,” International Journal of Material Forming, vol. 4,
pp. 389–399, Nov. 2010.

[40] A. Derogar and F. Djavanroodi, “Artificial Neural Network Modeling of Forming Limit
Diagram,” Materials and Manufacturing Processes, vol. 26, pp. 1415–1422, Nov. 2011.

[41] A. Forcellese, F. Gabrielli, and M. Simoncini, “Prediction of flow curves and forming
limit curves of Mg alloy thin sheets using ANN-based models,” Computational Materials
Science, vol. 50, pp. 3184–3197, oct 2011.

[42] Z. Fu, J. Mo, L. Chen, and W. Chen, “Using genetic algorithm-back propagation
neural network prediction and finite-element model simulation to optimize the process
of multiple-step incremental air-bending forming of sheet metal,” Materials & Design,
vol. 31, pp. 267–277, Jan. 2010.

[43] B. S. Kessler, a. S. El-Gizawy, and D. E. Smith, “Incorporating Neural Network Ma-
terial Models Within Finite Element Analysis for Rheological Behavior Prediction,”
Journal of Pressure Vessel Technology, vol. 129, no. 1, p. 58, 2007.

[44] F. Abbassi, T. Belhadj, S. Mistou, and A. Zghal, “Parameter identification of a mechan-
ical ductile damage using artificial neural networks in sheet metal forming,” Materials
and Design, vol. 45, pp. 605–615, 2013.

96



[45] A. C. Thompson, High Strain Rate Characterization of Advanced High Strength Steels
by. PhD thesis, University of Waterloo, 2006.

[46] K. Higashi, T. Mukai, K. Kaizu, S. Tsuchida, and S. Tanimura, “Strain rate Depen-
dence on Mechanical Properties in Some Commercial Aluminum Alloys,” Le Journal
de Physique IV, vol. 01, pp. C3–341–C3–346, Oct. 1991.

[47] K. Higashi, T. Mukai, K. Kaizu, S. Tsuchida, and S. Tanimura, “The microstructural
evolution during deformation under several strain rates in a commercial 5182 aluminium
alloys,” Le Journal de Physique IV, vol. 01, pp. C3–347–C3–352, Oct. 1991.

[48] T. Mukai, K. Ishikawa, and K. Higashi, “Influence of strain rate on the mechanical
properties in fine-grained aluminum alloys,” Materials Science and Engineering: A,
vol. 204, pp. 12–18, dec 1995.

[49] T. Mukai, K. Ishikawa, and K. Higashi, “Strength and ductility under dynamic loading
in fine- grained IN905XL aluminum alloy,” Metallurgical and Materials Transactions
A, vol. 26, pp. 2521–2526, oct 1995.

[50] T. Mukai, M. Kawazoe, and K. Higashi, “Strain-rate dependence of mechanical proper-
ties in AA5056 Al–Mg alloy processed by equal-channel-angular-extrusion,” Materials
Science and Engineering: A, vol. 247, pp. 270–274, jun 1998.

[51] A. Jenab, D. E. Green, A. T. Alpas, and K. P. Boyle, “Formability of AA5182-O Sheet
during Electro-Hydraulic Forming : Influence of Input Energy,” in MS&T, 2015.

97



Chapter 5

Experimental and Numerical Analyses of Formabil-

ity Improvement of AA5182-O Sheet during Electro-

Hydraulic Forming

This chapter discusses the mechanical aspects of formability improvement of AA5182-

O using finite element analysis. Factors such as strain rate, stress triaxiality and

hydrostatic pressure were calculated from the results of numerical simulation of the

EHFF and EHDF process. And in order to verify that the FE model was reliable,

simulation results were extensively compared with experimental EHF data.

In order to simulate the loading in EHF, different attempts were made following

approaches made in the literature. In each case, deformation, force, acceleration or

explosive weight were calibrated based on EHFF experimental results and FE analysis

were compared carefully with other EHFF and EHDF experimental results. Since only

one of these approaches was selected for publication, the following brief description is

worth noting here:

• In a first approach, the effect of the water was neglected by not representing

this medium in the EHF simulation. Instead, the EHF pulse was simulated by

applying a constant pressure with non uniform distribution on the sheet. This

approach was used in earlier attempts to simulate EHF since it was used by

Rohathi et al. [32] and Melander et al. [27]. However, it was found that although

it gives good correlation between experimental strain measurements and FE

analysis, the predicted values of strain rate and velocity were unreasonably

high. Besides, the total internal energy had not reached a plateau suggesting

that the FE analysis was erroneous.

• In a second approach, FE analysis was performed considering the water in cham-
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ber as eulerian material and the effect of EHF pulse was simplified by using an

accelerated surface. This attempt was similar to that used by Hassannejadasl

et al. [13] and Maris et al. [26]. This approach gives satisfactory results when

compared with experimental strain measurements, and more specifically, more

realistic strain rate values were obtained with this approach. However, follow-

ing discussion with Prof. Golovashchenko, it was noticed that the hydrostatic

pressure generated in the sheet upon impact with the die is significantly lower

that what would be expected based on the velocity of the sheet.

• Lastly, the FE analysis was performed using the ignition and growth model

considering JWL equation of state for an explosive material located inside the

water chamber and at the exact location where EHF electrodes were located. It

was found that, since this approach closely resembles the EHF process, it leads

to more accurate predictions and hence was used to carry out the research that

is reported in the following publication.

It is noteworthy that since the latter loading system were based on Coupled Eulerian-

Lagrangian (CEL) approach with significantly more elements involved, the computa-

tional costs to perform, calibrate and fine-tune the simulations were significant.

Consequently, in this chapter, the formability of electro-hydraulically formed AA5182-

O aluminium sheet was investigated by means of experimental testing and numerical

modelling. The experimental results were compared with quasi-static, as-received

forming limit curve (FLC) and were used to calibrate a finite element model of EHF.

It is found that the formability improvement of AA5182-O sheets was insignificant

when electro-hydraulically formed without a die. However, when specimens were

electro-hydraulically formed with sufficient energy into 34 or 40◦ conical dies, the

effective strain measured in safe grids increased by 40 and 70% respectively when

compared with a conservative quasi-static FLC.

Finite element simulation results suggested that a combination of different mechani-

cal parameters contributed to the formability improvement. The increased strain rate

in areas close to the apex of the specimen, the negative stress triaxiality just before
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specimens contact the die, and significant compressive through-thickness stress gen-

erated by high-velocity impact all contributed to the improvement of formability in

electro-hydraulic die forming.
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∵ This section is accepted for publication: Arash Jenab, Daniel E. Green, Ahmet T. Alpas,

Sergey F. Golovashchenko, “Experimental and Finite Element Modelling of Formability

Improvement of AA5182-O Sheet during Electro-Hydraulic Forming”, Journal of Materials

Processing Technology, December 2017.

5.1 Introduction

According to Polmear (2006) the extensive use of Al-Mg alloys (5000-series) in auto-

motive, aerospace and shipbuilding industries is due to their high specific strength,

weldability and corrosion resistance. However, Taleff et al. (1999) indicated that in

comparison to highly formable steel sheets Al-Mg alloys exhibit lower formability at

room temperature. To overcome this limitation, warm forming or hot deformation

can be used but forming at elevated temperatures has its own drawbacks, including

those associated with additional cost due to the use of specialized lubrication, high

energy consumption and post-forming cleaning. An alternative approach is to use

high-strain-rate forming techniques such as explosive forming carried out by Balan-

ethiram and Daehn, Balanethiram and Daehn (1992, 1994), electro-magnetic forming

(EMF) as performed by Imbert et al. (2005) or Golovashchenko et al. (2013) work on

electro-hydraulic forming (EHF). Balanethiram et al. (1994) and Balanethiram (1996)

attributed improved formability achieved from these high-rate forming techniques to

”inertial effects” and changes in material behaviour which stabilize neck formation.

To exemplify the improved formability, Seth et al. (2005) observed 30-40% increase

in failure strains of different low alloy steels during EMF process. In case of alu-

minium alloys, Seth (2006) also investigated formability changes of AA6063-T6 during

EMF tube expansion and reported that the true strains increased from 8-11% under

quasi-static deformation to range of 10-55% in EMF tube expansion tests. More-

over, Oliveira et al. (2005) performed EMF experiments on AA5754(1-1.6mm) and

AA5182(1mm) alloys and using numerical simulations estimated the strain rate to

be about 3500s−1 and the maximum velocity to be 250-300m/s. Their simulations

suggested that higher strains can be reached when the input energy or applied voltage
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is increased. Furthermore, Imbert et al. (2005) investigated free and die form EMF

(EMFF and EMDF) behaviour of AA5754 sheet. They reported that the major engi-

neering strains in QS condition for the alloy is 20-30% and this number improved to

35-45% in EMDF with an apex angle of 112◦ apex angle die Imbert et al. (2005) and

65% for the 100◦ apex angle die).

The effect of high strain rate forming process on forming limit curves (FLC) was

also studied by different scholars. Thomas et al. (2007) investigated the changes of

forming limit curves of AA6063-T6 aluminium alloy using EMF ring expansion tests

and reported two to three-fold increase in the forming limit. Gerdooei et al. (2009)

used the Marciniak and Kuczynski model to predict the FLC and increase of 146% in

AA6061 formability.

Elimination of matching dies and a decrease in press size are some of the advantages of

explosive forming techniques which result in a reduction in initial capital investment.

According to Imbert and Worswick (2011), one of the uses for explosive forming is

to sharpen corner radii that can be impossible to achieve via conventional forming

techniques.

Among all high-strain-rate forming processes, electro-hydraulic forming is of special

interest because of the ease which the process can be controlled, the ability to form

sheets with lower electrical conductivity, good repeatability (especially with the use

of a wire bridge) and the ability to reach high strain rates (i.e. by Hassannejadasl

et al. (2014) results ∼ 15 × 103s−1 for die formed DP590 steel and 3.9 × 103 for free

formed AA5182-O aluminium alloy with 1mm thickness carried out by Rohatgi et al.

(2014).

At the moment of discharge, most of the energy stored in capacitors passes through

electrodes and the liquid surrounding the wire bridge vaporizes and produces a high-

velocity shock wave that propagates through the chamber and forces the sheet metal

into either free space (EHFF) or into a die (EHDF).It is noteworthy that during the

deformation the sheet is being formed freely before it reaches the die even when the

sheet material is being formed into EHDF.

Golovashchenko et al. (2013) results shows that to obtain the highest improvement
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in formability with the EHF process, both high strain rate and high hydrostatic

stress are required. The benefit of EHF was demonstrated by Rohatgi et al., Rohatgi

et al., Rohatgi et al. (2011, 2012, 2014) on 1mm-thick AA5182-O sheet, who found

an increase, relative to the quasi-static FLC, of 150% and 550% in the safe major

strains in free-forming and conical die forming, respectively. Evidently, the increase

in formability is dependent on the strain path. Due to high inertial forces generated in

EHF process, less wrinkling can be observed. Also, Daehn (2006) noted that reduced

springback is expected due to high pressure and velocities generated which let the

plastic wave propagation through the sheet thickness and eliminating the residual

stresses. Another benefit of EHF process explained by Daehn (2006) which is that

since there is no friction between the punch and sheet, strain distribution is more

uniform.

Rohatgi et al. (2011) measured final strain of EHDF specimens are ∼64% more than

EHFF specimens. Rohatgi et al. (2012) performed EHDF and EHFF experiments on

AA5182-O sheets with 1mm thickness. The specimens tested was deformed at 21.1kJ

(using 7.5kV) and showed a peak strain rate of 1213s−1. Balanethiram and Daehn

(1994) compared quasi-static (QS) and EHDF behaviour of AA6061-T4 in a die with

a 90-degree apex angle. Their results show a 568% increase in major strain in near

plane-strain conditions: in QS conditions the major engineering strain was observed to

be 21.5% whereas it increased to 122.1% in EHDF conditions. Balanethiram (1996)

observed around 100% increase in plane-strain as a result of EHF of AA2024-T4

specimens. Golovashchenko et al. (2003) stated that, based on the overall formability

can be improved in the range of 11 to 29% while local deformation can be extended

in the range of 40 to 90%. They performed EHDF tests on AA6111-T4 in V-shaped

dies and measured a major strain of ∼67% as compared to ∼35% in quasi-static

conditions. More recently, Maris et al. (2016) studied the effect of EHFF on the FLC

of DP600 steel and AA5182-O aluminium sheets by means of experimental and FE

simulation studies. They measured the increase of major strain from quasi-static to

EHFF forming to be around 8%. Cheng et al. (2017) also studied the effect of EHDF

on the FLC of DP600 and reported an increase of 60% in biaxial-tension mode and
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120% when specimens were formed into a V-shape die.

It is well known that the strain rate sensitivity of many materials increases signifi-

cantly at strain rates above 104s−1 (i.e. as Daehn (2006) reported). In previous work

on high strain rate deformation of AA5182-O, Jenab et al. (2016) studied different

phenomenological models and observed that at relatively high strain rate regimes

(ε̇ > 100s−1), the true flow stress of AA5182-O increases with strain rate. This pos-

itive trend is of importance since it helps to postpone neck formation in high strain

rate forming.

Previously, Jenab et al. (2015) showed that by increasing the input energy, above a

threshold of 8-10 kJ, AA5182-O sheet can be formed to greater safe strains. There

are a number of factors that influences sheet formability, including the strain rate,

the impact velocity against the die surface and the resulting hydrostatic stress in the

material, that are controlled by the input energy. Also, Jenab et al. (2017) studied

the microstructure of both safely formed and failed AA5182-O EHFF and EHDF

specimens and reported that the area percentage of voids is suppressed by increasing

the input energy in the EHF process and more significantly by the presence of a die.

Finally, the amount of post uniform deformation in EHF formed specimens is found

to be greater than that for quasi-static formed specimens.

A better understanding of the deformation history and material response to high strain

rate forming in EHF would help to implement this forming process more broadly in the

automotive industry. Hence, in this study, the formability of AA5182-O aluminium

sheet is investigated during EHFF and EHDF processes by means of experimental

and numerical analysis. The grid analysis results are compared with quasi-static

and EHFF forming limit curves and the magnitude of formability improvement is

determined. A model to perform finite element (FE) simulation of the EHF process is

developed and after validation with experimental results, is used to predict mechanical

factors influencing the formability improvement such as strain rate, stress triaxiality

and through-thickness stress.
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5.2 Experimental and Computational Procedures

5.2.1 EHF experiments and grid analysis

AA5182-O sheet having a thickness of 1.5mm was provided by Novelis Inc. The chem-

ical composition of the alloy was measured by spectrographic analysis and contained

5.02 Mg, 0.37 Mn, 0.24 Fe, 0.041 Si, and 0.015 wt% Cu with small traces of Cr, Zn

and Ti and the balance of Al.

The EHFF experiments, were performed without the use of a die so that the specimens

were free to deform. The EHDF experiments used conical dies with die angles of 34

and 40◦, noted respectively as EHDF-34◦ and EHDF-40◦ in the present work.

The EHF experiments were performed using different input voltages and test condi-

tions. In order to measure the strains in specimens, 20×20 cm square blanks were

electro-etched prior to deformation using a 2.54 mm square grid. After forming, major

and minor strains were measured at the apex and radially from the apex along the

sheet rolling and transverse directions using a grid analyzer with a precision of 0.5%

engineering strain. Safe, necked and fractured grids were identified as such prior to

being measured. Grids that lay over a crack in the specimens were stitched together

by the optical strain measurement system so as to determine the principal strains just

prior to fracture. When specimens exhibited worn or missing grid lines either from

the friction with the die or by air entrapment, only the readable grids were measured.

A formability improvement index was defined in order to compare the forming limit

data from the EHF experiments with the quasi-static reference FLCs. Quasi-static

FLCs were extracted from Wu et al. (2003) work and from data provided by Can-

metMATERIALS, reported in Jenab et al. (2015) work. An experimental EHFF FLC

from Maris (2014) was also used for comparison. In order to measure the formability

improvement, a consistent linear strain path is assumed between the QS FLC and

the true strain data measured on the EHF specimen. The formability improvement

was calculated from the difference in magnitudes of in-plane effective plastic strain

values from the EHF experiments and the reference FLC for equivalent strain paths.
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Considering volume constancy, effective plastic strain values can be calculated using

ε̄ = 2
√

1
3
(ε2

1 + ε2
2 + ε1ε2) where ε represents the plastic engineering strain for each

grid. Consequently, the formability improvement index (FI%) may be expressed as:

FI% =
ε̄
EHF
− ε̄

FLC

ε̄
FLC

× 100 (5.1)

where ε̄
EHF

and ε̄
FLC

are the effective plastic strain values at the grid points where

strain data were measured and that at the point on the reference FLC that intersects

with the experimental strain path, respectively. It is worth emphasizing that Eq. (5.1)

determines the percent change in the forming limit along a given strain paths, and not

merely the difference in major strain from the QS-FLC, as is more commonly used.

To determine the formability improvement index for each specimen, the average value

of three safe grids with the greatest effective strains were chosen.

5.2.2 Finite element modelling procedure

Due to the cost of carrying EHF experiments, finite element simulation is an essential

part of the development and optimization of the EHF process.

ABAQUSr 2016 is used to simulate the EHF tests that were carried out on AA5182-O

aluminium sheet. The three-dimensional finite element model of the EHF process con-

sisted of an Eulerian mesh to represent the water and void sections, whereas the sheet

was modelled using Lagrangian solid elements. The EHF die and water chamber were

created as 3D discrete rigid parts. In order to capture the complex non-symmetrical

changes in the pressure wave in the EHF chamber, the whole model was simulated

without considering symmetry conditions. It is noteworthy that more accurate pre-

dictions of velocity, strain rate and impact pressure can be obtained with a formable

solid die and EHF chamber. However, using solid die and EHF chamber dramatically

increases the computational cost and can be preventive to focus on the main aim of

this work. Hence, following previously published works, EHF die and water chamber

are simulated using rigid parts.

To obtain accurate simulation results, it is essential to define the mechanical re-
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sponse of the sheet material to strain and strain rate precisely. Previously, Jenab

et al. (2016) investigated the mechanical properties of AA5182-O using different con-

stitutive equations (Johnson-Cook, Khan-Huang-Liang, Modified-Voce and artificial

neural networks (ANN)) and developed different ABAQUS user material subroutines

to be used in FE simulations. The benefit of using ANN over conventional hardening

functions are three fold:

• It is common to disregard the negative but insignificant strain rate exponent

of aluminium alloys during finite element simulations, especially when Johnson-

Cook hardening function is being used. Jenab et al. (2016) found that this leads

to 14.7% less accuracy in the predicted flow curve in case of AA5182-O.

• The results suggest that ANN provides better agreement with experimental

values when compared with analytical calculations and when used in finite el-

ement simulations at a given direction, strain and strain rate, even though the

computational costs are greater.

• Most importantly, a comparison between ANN outputs and the experimental

flow behaviour of AA5182-O shows that, unlike analytical hardening functions,

the developed ANN structure is capable to predict the rise of flow stress at high

strain rates.

Consequently, instead of using tabular data for flow stress or relying on ABAQUS’s

built-in hardening functions, the developed ANN VUMAT is used to model the me-

chanical response of AA5182-O in EHF process.

The water was simulated using the Mie-Gruneisen (Us-Up) equation of state consid-

ering a reference speed of sound of 1450 × 103 mm/s, a viscosity of 1 × 10−8 MPas,

and density of 1× 10−3 g/mm3.

Since the interaction of the sheet with the die generates significant through-thickness

compressive stress, the sheet was meshed with 3D Lagrangian solid elements with

reduced integration (C3D8R). The sheet had an element size of 1 mm and the thickness

of the sheet was divided into 9 elements giving an approximate element height of

0.167mm in the thickness. The Eulerian part consisted of 2 mm 3D elements with

107



reduced integration and hourglass control (EC3D8R). The Eulerian part was sectioned

so that it represents the water beneath the sheet and the void region above the sheet.

The total number of elements in the sheet, Eulerian part, explosive material, upper

conical die, and water chamber was 123516, 207588, 160, 7654, and 9446, respectively.

Since the experimental tests were carried out without the presence of any lubrication,

the static and kinetic coefficients of friction between the aluminium sheet and the

steel dies were set to 0.61 and 0.47 (i.e. as reported by Serway and Beichner (2000)),

respectively instead of commonly used values of 0.15 and 0.05 which are related to lu-

bricated condition. General contact with ABAQUS default properties was assigned to

other parts involved in FE simulation, including the interaction between the Eulerian

part and the sheet as well as between the Eulerian part and the water chamber.

To prevent translational and rotational movements, the sheet edges, the upper conical

die and water chamber were encastered.

To simulate pulse formation in the EHF process, Golovashchenko et al. (2013) used en-

ergy deposition in the discharge channel. Mamutov et al. (2015) performed a complex

multi-physics simulation of the generation of the shock wave in EHF. However, Me-

lander et al. (2011) simulated EHF of different steel grades using a spherical pressure

wave originating from the location where the discharge occurs between the electrodes.

Rohatgi et al. (2014) used the same approach and used a non-uniform pressure based

loading for EHF. Moreover, Hassannejadasl et al. (2014) and Maris et al. (2016) used a

pulse acceleration surface instead of time-consuming and complex modelling of EHF

pulse formation or discharge itself. Furthermore, another approach to obtain high

velocity impact is to use the ignition and growth model based on Jones-Wilkins-Lee

(JWL) ( Lee et al. (1968)) equation of state. Hassannejadasl (2014) studied the EHF

process using the same approach and with Composition B as the explosive mate-

rial and a reasonable correlation between simulation and experimental results were

obtained in both EHFF and EHDF.

Since the aim of this study is to identify the parameters affecting formability improve-

ment of AA5182-O and not the EHF process itself, the same ignition and growth model

was used in this study to simulate the pulse formation. This simplification allows the
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authors to focus on material aspect of formability rather than the pulse formation

phenomena. Hence, an explosive material was located at the same distance from the

sheet as the EHF electrodes and followed the JWL equation of state which can be

written in terms of the internal energy per unit mass as:

p = A
(

1− ωρp
R1ρ0

)
exp
(
−R1

ρ0

ρp

)
+B

(
1− ωρp

R2ρ0

)
exp
(
−R2

ρ0

ρp

)
+ ωρpEm (5.2)

where according to Lee et al. (1973), p is the pressure generated by the release of

chemical energy upon the explosion, Em is the initial energy per unit mass and A, B,

R1, R2 and ω are explosive material constants; ρ0 is the density of the explosive ma-

terial and ρp is the density of the detonation products. Table 5.1 shows the constants

for the explosive material used in this study.

Table 5.1: Ignition-and-growth parameters for explosive material.

Detonation Wave Speed [mm/s] 8.53E+06
A [MPa] 5.41E+05
B [MPa] 9.22E+04
ω 0.35
R1 4.5
R2 1.1
ρ0 [g/mm3] 1.74E-03

To calculate the detonation energy density of the explosive material (ρ) as a function

of input voltage used during EHF experiments, the consistency of energy was con-

sidered acknowledging energy loss using an efficiency parameter. Electric potential

energy, UEHF , of a charged capacitor can be calculated from UEHF = 1
2
CV 2 where C

and V represent the capacitance and charged voltage of EHF apparatus. The deto-

nation energy density of the explosive material is calculated using UEHF and its mass

considering a multiplicative efficiency factor, η. η is assumed to incorporate energy

loss due to wire resistance, heat generation and other factors. The value of η was

calibrated so that the difference between the maximum height of the simulated sheet

specimen and the maximum height of the safely formed EHFF specimen (at 4.8kJ

input energy) is less than 0.01 percent. It was found that, using the parameters for

the explosive material that are given in Table 5.1, the EHF numerical model was
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calibrated with an efficiency factor of 0.785.

FE simulations were carried out using ABAQUS scripts (instead of GUI) and through

MATLAB terminal. In this way, MATLAB controls parameters such as mesh size and

input energy and hence the mesh sensitivity and calibration studies were performed

automatically in different loops. Codes were developed not only to generate and run

FEA but also to extract required data automatically from FE results and imported

to MATLAB for post-processing. Fig. 5.1 shows the FE simulation models used in

this study for both EHFF (Fig. 5.1(a)) and EHDF (Fig. 5.1(b)).

5.3 Results and Discussion

5.3.1 EHF experimental results

It is noticed that the EHF experiments are quite sensitive to input voltage. For

example, Fig. 5.2(a) shows safely formed and cracked specimens formed under different

EHFF condition where an increase of 0.5 kV in input voltage, from 5.5 kV to 6.0 kV,

consistently led to failure in EHFF specimens (Fig. 5.2 (a)). However, the sensitivity

to the applied voltage decreases significantly with the presence of the die. Fig. 5.2(b)

shows two specimens formed using the 34◦ conical die. Splitting was rarely observed

in EHDF-34◦ experiments and mostly located at the apex area of the conical die

(Fig. 5.2(b)-top) since the material could fill the die safely and reach a greater depth

compared to EHFF.

Typical specimens deformed using the 40◦ die are shown in Fig. 5.2(c). All failed

specimens showed failure in the apex area and some specimens exhibited signs of

concentric circumferential localized deformation on the inside of the conical specimens.

However, the measured strain values suggest that much greater safe strains are reached

at locations away from these localized deformation areas. It is worth emphasizing that

the majority of cracked specimens were formed at lower input voltages (i.e. at 8.0 kV

in Fig. 5.2(c)-bottom) and the safe specimens were formed at higher input voltages

(i.e. at 12.0 kV in Fig. 5.2(c)-top).
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Figure 5.1: Schematic of FE model used to simulate (a) EHFF and (b) EHDF-40◦.

111



(a) (b) (c)

Figure 5.2: Top view of (a) EHFF; top: 6.0 kV, bottom: 5.5 kV, (b) EHDF-34◦ die; top:
8.4 kV, bottom: 8.0 kV, (c) EHDF-40◦ die; top: 12.0 kV, bottom: 8.0 kV.

It is noteworthy that in the EHDF experiments and at low voltages, cracks usually

nucleate in the apex area and the specimens were unable to completely fill the die

cavity (see Fig. 5.2(b) and (c)). Hence, the cracks were formed during the free forming

stage of the deformation. Moreover, the apex of the specimen formed in the 40◦ die

was punctured, and can be seen as a hole in Fig. 5.2(c)-top which was due to the die

design and not due to failure in the AA5182-O specimen. Furthermore, most of the

safely deformed grids in the apex area of EHDF specimens were removed as a result

of either generated heat (of compressed air) or due to the friction with the die, as

shown in Fig. 5.2(b) and (c).

Table 5.2 shows the calculated formability improvement of selected samples formed in

EHFF and EHDF relative to the different FLCs found in the literature for the same

alloy. It can be seen that the EHFF specimens do not show significant improvement

in formability. The negative values reported in Table 5.2 denotes that not only forma-

bility have not improved for the grids with maximum effective strain values, but also
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Table 5.2: FI% of selected samples compared to different FLCs.

Test Cond. Voltage, (kV) Energy, (kJ)
Referenced FLD

QS∗ QS-Canmet EHFF

EHFF

5.0 4.0 -54.0 -43.2 -56.5
5.5 4.8∗∗ -3.7 13.8 0
6.0 5.8 -6.4 6.1 -12.4
6.9 4.8 -9.4 12.4 -14.4

EHDF-34◦

7.0 4.9 18.3 34.1 10.4
8.0 6.4∗∗ 39.8 54.1 28.8
9.0 8.1 21.7 35.6 12.9
10.0 10.0 19.7 32.5 9.2

EHDF-40◦

10.5 12.1 17.9 30.2 9.5
11.0 13.2 19.4 36.6 11.3
11.5 14.4 45.8 64.0 29.1
12.0 14.4∗∗ 69.7 88.7 53.2

* QS FLC is derived from Wu et al. (2003), QS-Canmet was used in Jenab
et al. (2015) and the EHFF FLC was reported by Maris (2014).

** Safe specimens showing the highest improvement in formability at each
testing conditions. EHF condition of such samples are chosen for FE anal-
ysis.

magnitude of the strain values were less than the referenced FLC. However, in case

of EHDF, significant formability improvement can be seen. It can also be seen that

the maximum FI% compared with Wu et al. (2003) for EHDF is 39.8% for specimens

formed in the 34◦ conical die and 69.7% for specimens formed in the EHDF-40◦ conical

die. Finally, it is noteworthy that these formability improvements are less than results

reported by Rohatgi et al. (2014), where an increase in safe major strains of 150%

and 550% greater than quasi-static FLC were reported for EHFF and EHDF tests,

respectively. At each testing condition, EHF conditions where the formed specimens

showed the greatest improvement in formability (marked with “∗” in Table 5.2) were

further studied.

5.3.2 Deformation history

Fig. 5.3 shows the deformation profile and dome height of EHFF (Fig. 5.3(a)) and

EHDF (Fig. 5.3(b) and (c)) specimens. The time required to form the EHFF specimen

to its final shape is calculated to be less than 460µs, and the time required for the

specimens to fully fill the EHDF-34◦ and EHDF-40◦ dies are about 410µs and 380µs,
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respectively. Moreover, it can also be seen that for all EHF formed specimens, the

vertical displacement of the sheet is delayed at the centre of the specimen relative to

the displacement around the periphery. This delay is overcome as the deformation

progresses (i.e. between 165 and 201µs for EHFF, 152 and 194µs for EHDF-34◦

and 159 and 191µs for EHDF-40◦) which leads to increased strain rate as a result

of a whiplash effect as the sheet finally fills the apex of the conical die. It is worth

noting that the delay in the central region is also reported in EHDF of steel sheets

by Hassannejadasl (2014) and Golovashchenko et al. (2011) using the same chamber

geometry and also by Melander et al. (2011) using different die geometries. Imbert

et al. (2005) also noticed the same delay in the central region during electromagnetic

forming of AA5754 conical specimens. Furthermore, Rohatgi et al. (2012) showed a

very slight delay in the central region of deformation for 1 mm thick AA5182 sheets

at about 504-548µs, where the entire forming process took about 700µs based on

their experimental setup. However, the total time to fill the EHDF specimen is

reported to be much longer than what is seen in this study and reported in other EHF

literature (i.e. by Cheng et al., Golovashchenko et al., Hassannejadasl et al., Maris

et al. (2017, 2013, 2014, 2016)) which is likely due to the difference in the pulse unit

that was used.

It is also noteworthy that based on the FE simulation, specimens formed under EHDF

experienced a more extensive delay as compared to EHFF specimens. This is in

agreement with the observations of Hassannejadasl et al. (2014) for DP590 steel sheet

subject to EHFF and EHDF conditions. Another observation from Fig. 5.3 is that

even in EHDF conditions, the initial stages of forming can be considered as free

forming. According to Golovashchenko et al. (2013), the reason is that the sheet

material accelerates into the space inside the die cavity without being in contact with

the die, and it is not until the end of the process that the sheet fully contacts the

apex of the conical die.
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Figure 5.3: Progress of EHF deformation at different times, calculated from the FE model,
compared with experimental results for (a) EHFF specimen formed with 4.8kJ input energy,
(b) EHDF-34◦ specimen formed with 6.4kJ input energy and (c) EHDF-40◦ specimen formed
with 14.4kJ input energy.
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5.3.3 Strain distribution and strain path

Fig. 5.4(a)-(c) show a comparison of the experimental and predicted strain distribu-

tions for EHFF, EHDF-34◦ and EHDF-40◦ specimens, respectively. It can be seen

that the FE model is able to predict the major and minor strain values reasonably well

at different locations of the specimen for both EHFF and EHDF processes. Major and

minor engineering strains measured experimentally along the rolling direction (RD)

and transverse direction (TD) of specimens are shown in Fig. 5.4 with hollow square

and diamond markers, respectively. Beside the scatter in experimental results for the

EHFF specimen formed with 4.8kJ input energy, the FE model was able to predict

major and minor strains very accurately. In case of specimens formed into 34 and 40◦

conical dies with 6.4 and 14.4kJ input energies, shown in Fig. 5.4(b) and (c) respec-

tively, the major strain matches the experimental results for any radial location from

the apex. However, in case of the minor strain in the apex region, the FE simulation

predicts higher values than the experimental measurements. It is believed that the

deviation between the predicted minor strain values and the experimental measure-

ments is due to the isotropic conditions considered in the simulation for AA5182-O

sheets.

Fig. 5.5 shows grid analysis results and the predicted strain path compared with

the experimental FLC of the alloy taken developed by Wu et al. (2003). In case of

the EHFF specimen formed with 4.8kJ input energy, the experimental grid analysis

suggests that the strain path is almost equi-biaxial in all measured locations including

areas close to the apex, shown in Fig. 5.5(a). Also, FE analysis results confirm

the linear equi-biaxial strain path and matches reasonably well with experimental

measurements with a slight deviation at the apex. In case of EHDF-34◦ specimens

formed with 6.4kJ, final strains in areas away from the apex are almost linear near to

equi-biaxial strain, but after about 20% straining the strain state deviates and moves

towards plane strain. However, FE simulation results still suggest a linear balanced

biaxial strain path in the apex region which does not match closely with experimental

measurements. This discrepancy decreases when the specimen is formed into the 40◦
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Figure 5.4: Comparison of experimental and predicted strain distributions for (a) EHFF
specimen formed with 4.8kJ input energy, (b) EHDF-34◦ specimen formed with 6.4kJ in-
put energy and (c) EHDF-40◦ specimen formed with 14.4kJ input energy; major (e1) and
minor (e2) strains are shown as blue and green points, respectively, where experimental
measurements in the RD and TD are shown as square and diamond points.
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die mainly since the experimental results tend toward the equi-biaxial region. The

fact that strains are close to equi-biaxial near the apex is similar to the experimental

strains reported by Rohatgi et al. (2012) at the apex of their conical specimens.

Once again, the differences between the FE results and the experimental strain values

mainly concern the minor strain values since the major strain values are very well

predicted. As mentioned before, since in FE analysis, the sheet was considered to

be isotropic, it is believed that the anisotropy of the material is responsible for this

discrepancy.

It is noteworthy that strain values of elements selected at different locations across

the sheet thickness (i.e. elements at the mid-thickness, elements on the side in contact

with the water and elements in contact with the die) are all very similar.

5.3.4 Strain rate

One of the main goals of this study was to analyze and understand the different me-

chanical factors that contribute to the formability improvement of sheet specimens

deformed in EHF. Hence, unlike previous studies where sheet specimens were mod-

elled using shell elements (i.e. Hassannejadasl, Maris, Maris et al., Melander et al.

(2014, 2014, 2016, 2011)), the sheet material was modelled using 3D elements. Hence,

parameters such as strain rate, stress triaxiality and through-thickness stress were

calculated not only on one side of the sheet specimens (i.e. side facing the die or

the water) but also were derived from elements located across the thickness of the

AA5182-O specimen. Fig. 5.6 shows the average value of peak strain rates measured

from different elements across the thickness of the AA5182-O specimen: at the die

side, at the mid-thickness and at the water side of the specimen. It can be seen that

the sheet material experiences significant strain rate at the apex of the EHDF spec-

imens where the peak strain rate decreases as the distance from the apex increases.

This reduction of the maximum peak strain rate with the distance from the apex

was also reported by Golovashchenko et al. (2013), Hassannejadasl et al. (2014) and

Hassannejadasl (2014), and in case of EHDF specimens, is probably correlated to

the velocity of the sheet when it impacts the die wall. It can be seen that the sheet
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Figure 5.5: Comparison of experimental grid measurement of EHF formed specimens with
quasi-static FLC derived from Ref. Wu et al. (2003) and deformation strain path at different
locations of (a) EHFF specimen formed with 4.8kJ input energy, (b) EHDF-34◦ specimen
formed with 6.4kJ input energy and (c) EHDF-40◦ specimen formed with 14.4kJ input
energy; + and× denote measurements carried out in the RD and TD directions, respectively.
The reported distance on FEM lines is relative to the apex of each specimen.
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material formed under EHFF process with 4.8kJ input energy has not experienced

significant strain rate as compared to other specimens. Moreover, the peak strain rate

for EHFF specimen was recorded during the deformation and not at its final stage of

deformation (discussed in Section 5.3.5).

However, the peak strain rate for the apex region of the EHDF-34◦ specimen formed

with 6.4kJ is 3.5 times greater than that of the EHFF specimen (about 5×104s−1). It

is noteworthy that experimental measurements of Lagrangian strain rate presented by

Rohatgi et al. (2012) for AA5182 specimens suggest that the maximum strain rate at

the apex of EHDF specimens is about 4 times greater than that in EHFF specimens.

Similarly, Hassannejadasl et al. (2014) estimated the peak strain rate in EHDF to

be 5.2 times greater than in EHFF. Moreover, this measured value is slightly more

than 3 times of the value (15,000s−1) Hassannejadasl et al. (2014) reported in which

14.4kJ input voltage was used to safely form DP590 steel sheet into the same conical

die. Since the density and mass of aluminium specimens used in this study is about

one-third that of the DP590 sheet, it was indeed expected to obtain such high strain

rate values when the AA5182-O sheet is deformed in EHDF using the same input

energy.

Moreover, as the input energy of the EHF process increases (from EHFF at 4.8kJ to

EHDF-34 at 6.4kJ and EHDF-40 at 14.4kJ) the peak strain rate increases. Based on

the positive trend of AA5182-O flow stress with strain rate, as discussed by Jenab

et al. (2016), the effect of such high strain rate deformation should not be ignored

as an influencing factor of formability. It is worth noting that the high strain rates

calculated by the FE model can promote positive strain rate sensitivity in AA5182-O

and consequently enhance the strength of the material as it shows positive relation

between flow stress and strain rate at high strain rates. Furthermore, as discussed

before, the maximum strain rate in EHFF specimens is much less than that in EHDF

specimens. This could be one of the reasons that there is little or no formability

improvement in EHFF of AA5182-O, as shown in Table 5.2.
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Figure 5.6: Comparison of peak strain rates predicted at different locations from the apex
and averaged through the thickness of AA5182-O specimens; EHFF specimen (yellow line)
was formed with 4.8kJ input energy, EHDF-34◦ specimen (blue line) formed with 6.4kJ
input energy and EHDF-40◦ specimen (red line) formed with 14.4kJ input energy.

5.3.5 Equivalent strain, stress triaxiality and strain rate his-

tory

Fig. 5.7 shows the evolution of normalized values of predicted strain rate, equivalent

plastic strain and stress triaxiality in an element located at the apex of the specimen

and at the mid-thickness of the sheet during EHF. Small serrations in strain rate and

triaxiality values are mainly due to the iterative calculations in explicit FE model.

The results show that in case of EHFF (Fig. 5.7(a)), the strain rate increases at a

relatively constant rate as the specimen deforms up to its maximum strain rate and

then the strain rate reduces to zero in the final stages of the deformation. How-

ever, In case of EHDF (Fig. 5.7(b) and (c)), the strain rate suddenly increases as

the sheet contacts the die wall and completely fills the die cavity. Moreover, in ad-

dition to the peak strain rate at the end of the deformation, in all cases the strain

rate also increases to another smaller peak during the deformation and well before

the specimen reaches its final shape (around 200-300µs). This observation is due

to the effect of first shock wave reaching the specimen and the consequent increase
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in the plastic effective strain shown in Fig. 5.7(a)-(c). In case of EHDF specimens

(Fig. 5.7(b) and (c)) when the strain rate suddenly increases during the deforma-

tion, the stress triaxiality correspondingly decreases to negative values. However,

in case of EHFF specimen, the stress triaxiality practically remains positive during

the whole deformation process. Many studies showed that once the stress triaxiality

decreases, the damage accumulation is suppressed and the fracture strain increases,

Golovashchenko et al., Hassannejadasl, Hopperstad et al. (2013, 2014, 2003). More

specifically, Shabrov and Needleman (2002) studied the effect of inclusion morphology

on void nucleation and observed that, in general, by increasing the stress triaxiality,

the effective strain required for void nucleation decreases. Moreover, an effective

void nucleation stress depends linearly on the overall hydrostatic stress. Hence, it

is thought that the combination of a negative stress triaxiality and increased strain

rate influence void formation and coalescence and hence postpone the failure by void

nucleation and growth observed by Jenab et al. (2017).

5.3.6 Sheet Velocity

The changes in vertical velocity (normal to the sheet surface) of the AA5182-O sheet

during EHF at different locations across the specimens is shown in Fig. 5.8. Compar-

ison of Fig. 5.8(a) and (b) shows that the material experiences significant differences

in velocity from one location to another as the distance from the apex increases.

Fig. 5.8(a) shows that the peak velocity (at about 100µs) of material located at a

40mm radial distance away from the apex reaches 119, 170 and 178m/s in EHFF,

EHDF-34 and EHDF-40◦ specimens, respectively. Moreover, in case of EHDF spec-

imens, similar to the second peak in strain rate mentioned in Section 5.3.5, another

smaller peak velocity can be seen in Fig. 5.8(a) where the velocity increases at about

250µs. As the distance from the apex decreases, this second velocity peak increases

and overcomes the first peak. For the material close to apex, this velocity reaches

values much higher than the first peak as shown in Fig. 5.8(b).

At the apex of EHF specimens, the two velocity peaks are very distinguishable. The

first peak is the result of the first pressure wave generated by the electrical discharge
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Figure 5.7: Variations of normalized equivalent plastic strain, strain rate and stress triax-
iality at the apex for (a) EHFF specimen formed with 4.8kJ input energy, (b) EHDF-34◦

specimen formed with 6.4kJ input energy and (c) EHDF-40◦ specimen formed with 14.4kJ
input energy.
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and reaches about 173, 197 and 288m/s for specimens formed in EHFF, EHDF-34

and EHDF-40◦ conditions, respectively. Emphasizing that not only the die geometry

changes in these different test conditions, but also the input energy is different in each

case: 4.8kJ in EHFF, 6.4kJ in EHDF-34◦ and 14.4kJ in EHDF-40◦. In case of the

second velocity peaks, the difference between the tests is more significant as the peak

for the EHFF specimen is about 169m/s, whereas it reaches 332m/s for the EHDF-34

specimen and 446m/s for the EHDF-40◦ specimen.

It is thought that this second velocity peak is of importance in EHDF tests as it pushes

the sheet toward the die at high velocity which leads to the significant compressive

stress in the through-thickness direction and the consequent negative stress triaxiality

values mentioned earlier. Since the velocity reaches its maximum before the sheet fills

the die cavity, the impact pressure generated as a result of this impact contributes to

the closure of voids and postpones the failure as observed by Jenab et al. (2017).

5.3.7 Compressive through-thickness stresses

Fig. 5.9(a)-(c) shows the changes of through-thickness stress at different locations of

EHFF and EHDF specimens for elements located at the mid-thickness of the AA5182-

O sheets. It can be seen that in all three simulated EHF tests, the through-thickness

stress reaches negative values (compressive stress state) once at the beginning of the

forming process ( 50-100µs) as the first pressure wave forces the sheet to deform, and

again several times as the deformation progresses. The magnitude of the through-

thickness stress increases significantly when the sheet contacts the die wall. This

increased compressive through-thickness stress is of importance as it can postpone the

occurrence of failure by void nucleation and growth and has been called the ironing

effect.

It can be seen from Fig. 5.9(a) that in the case of EHFF conditions, the magnitude

of the through-thickness stress remains insignificant at all locations when compared

to specimens formed under EHDF conditions (Fig. 5.9(b) and (c)). In EHFF, the

maximum compressive stress the material experiences is considerably less than its

yield stress (i.e. reported by Jenab et al. (2016)) and hence, this compressive stress
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Figure 5.8: Variation of velocities for elements located (a) 40mm from the apex and (b) at
the apex during EHFF and EHDF processes.
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is not sufficient to close the voids or to postpone the onset of failure. This is in

agreement with the fact that EHFF specimens show insignificant improvement in

formability (Section 5.3.1) and as demonstrated by Maris et al. (2016) for AA5182-O

sheets.

However, in case of EHDF specimens shown in Fig. 5.9(b) and (c), the through-

thickness stress reaches compressive values close to the yield stress of AA5182-O

(120-150MPa) at the beginning of deformation (i.e. peak 1 in Fig. 5.9(b)). Then this

negative through-thickness stress further increases in magnitude to -300 and -500MPa

during EHDF-34 and EHDF-40◦ deformation, respectively. This significant negative

through-thickness stress occurs approximately when the first pressure wave hits the

sheet as shown in Fig. 5.7. Finally, just before the specimen contacts the die wall and

further on, another peak of significant negative through-thickness stress can be seen

which corresponds to the continues pressure generated as the sheet impacts the die.

It is believed that these significant compressive stress components could have a major

effect on in the closure of existing voids which positively affect AA5182-O formability.

To exemplify, the effect of compressive stress components can be seen in Fig. 5.10

which shows a comparison between void percentages in safely formed EHF specimens

formed at different input energy. It can be seen from Fig. 5.10 that by increasing the

EHDF energy, from 8.1kJ to 19.6kJ, the void percentage in the bulk of AA5182-O

sheet reduces from above 0.3% to less than 0.1%.

5.3.8 Impact stress

Fig. 5.11 shows the magnitude of the pressure generated upon impact of the sheet with

the die at different locations of the AA5182-O EHF specimens. To plot Fig. 5.11 two

approaches were taken; first the maximum compressive stress generated through the

thickness of the specimen were measured once the element reaches the die using FE

software. The second approach was based on analytical calculations and the predicted

sheet velocity. According to Daehn (2006) the pressure generated upon the impact of

126



Time, µs
0 50 100 150 200 250 300 350 400 450

M
in

im
um

 p
rin

ci
pa

l s
tr

es
s,

 M
P

a

-200

-150

-100

-50

0

50

100

0.0mm
10.0mm
20.0mm
40.0mm

(a)

Time, µs
0 50 100 150 200 250 300 350 400 450

M
in

im
um

 p
rin

ci
pa

l s
tr

es
s,

 M
P

a
-900

-800

-700

-600

-500

-400

-300

-200

-100

0

0.0mm
10.0mm
20.0mm
40.0mm

(b)

Time, µs
0 50 100 150 200 250 300 350 400 450

M
in

im
um

 p
rin

ci
pa

l s
tr

es
s,

 M
P

a

-3000

-2500

-2000

-1500

-1000

-500

0

0.0mm
10.0mm
20.0mm
40.0mm

(c)

Figure 5.9: Evolution of the through-thickness stress at different radial distances from
the apex for (a) EHFF specimen formed with 4.8kJ input energy, (b) EHDF-34◦ specimen
formed with 6.4kJ input energy and (c) EHDF-40◦ specimen formed with 14.4kJ input
energy; values were taken from elements located at the mid-thickness of the sheet.
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the sheet against the matching die (Pi) can be estimated using Eq.5.3;

Pi = Vi

(
ρStρAlCStCAl

ρStCSt + ρAlCAl

)
(5.3)

where Vi is the impact velocity, ρAl and ρSt are the density of the aluminium sheet

and of the die steel, respectively. CAl and CSt are the longitudinal wave speed in the

aluminium and steel, respectively, which can be calculated based on the bulk modulus

(K), density (ρ) and Poisson’s ratio (ν) using Eq.5.4. The values used to calculate

the wave speed are shown in Table 5.3.

C =

√
3K(1− ν)

ρ(1 + ν)
(5.4)

Table 5.3: Steel and aluminium properties.

Steel Al.
ρ [kg/m3] 7.8×103 2.65×103

ν 0.3 0.33
K [Pa] 160×109 EAl/3(1− 2νAl)

It can be seen from Fig. 5.11 that considering all the approximations used to calculate

the wave speed, bulk modulus, and simplification made in Eq.5.4 itself, the impact

pressure calculated based on analytical and FE analysis are quite close. This is an-
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based on the analytical approach, Eq.5.3, and lines with open markers are derived directly
from FE model (σ3max).

other confirmation that the results predicted by the FE model are reasonably accurate.

Similar calculations were carried out based on a model developed by Ibrahim et al.

(2014) and the same trend was observed, except that at the apex the predicted im-

pact pressures were calculated to be 0.5GPa greater than those obtained from Eq.5.3.

Moreover, as shown in Fig. 5.11 elements located at the apex (0mm in Fig.5.9) and

close to the apex (10mm from the apex) experience significant compressive stress.

According to French and Weinrich (1977) when the superimposed hydrostatic pres-

sure is increased void nucleation and growth can be suppressed and hence localized

deformation is postponed. This is also confirmed by Xiang et al. (2017) using molecu-

lar dynamics simulations showing that existing void in microstructure collapse under

shock compression.

In fact, several high strain rate deformation studies (i.e. Imbert et al. (2005) for

AA5754 sheets, Jenab et al. (2017) for AA5182-O sheets, Samei et al. (2014) for

DP steel sheets), showed that as a results of the impact of the sheet against the die

void growth and coalescence are suppressed. Consequently, the damage accumulation

decreases as the impact pressure increases and hence the die effect leads to increased
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formability of the sheet material.

Finally, two main mechanisms which contributed to improvement of formability of

AA5182-O sheets can be outlined. Firstly, the material response to high strain rate

deformation might change when compared to conventional quasi-static or moderate

deformation processes. Increased strain rate and deformation velocity could be enough

to change constitutive behaviour of AA5182-O as suggested by the slight positive

strain rate sensitivity reported by Jenab et al. (2016). Secondly, the combination

of EHF process related parameters including compressive through-thickness stresses

generated during the deformation could postpone the failure. Also, the increased

velocity and significant impact pressure at the final stage of deformation not only

prevent material sliding across the die surface and strains localizing, but also helps in

further delaying the failure mechanisms. The combination of these mechanical aspects

which suppress the damage and positively influence formability were discussed as tool-

sheet interaction or ironing effect to explain such improved mechanical response in

earlier high strain rate forming studies.

5.4 Conclusions

The purpose of this study was to investigate the formability improvement of com-

mercial AA5182-O sheets during electro-hydraulic forming. Experimental and finite

element analyses were therefore carried out on EHFF and EHDF specimens. The

effect of different process-related parameters such as strain rate, sheet velocity, stress

triaxiality and impact pressure was investigated on the magnitude of formability im-

provement. And, the following conclusions were obtained:

1. Although, formability improvement during EHFF experiments was insignificant,

EHF specimens formed using 34 and 40◦ conical dies showed 40% and 70%

improvement in effective strain values when compared with quasi-static FLC

curve.

2. Reasonable correlation between simulation and experimental results were achieved

by coupled Eulerian-Lagrangian model and using the ignition and growth model
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to simulate the EHF pulse formation. The FE model was able to accurately

predict the strain distribution and the shape of deformed specimens. Similar to

EHF studies carried out on steel sheets, AA5182-O specimens experience some

delay in deformation in the central region relative to the periphery of the speci-

men. Moreover, experimental results show that AA5182-O sheet was formed in

biaxial strain path during EHFF and showed a slight deviation towards plane

strain tension after 20-30% engineering strain when EHDF into a conical die.

3. Simulations showed significant peak strain rate values when sheet specimens

were formed using EHDF process. In case of EHFF, the peak strain rate occurs

during the deformation where triaxiality is positive (tension state). However,

when sheet specimens were formed using EHDF, the peak strain rate occurred in

the final stage of deformation when the sheet contacted the die at high velocity.

4. Velocity changes during EHFF and EHDF deformation showed that there was

a significant difference between velocity changes in the apex region and areas

away from the apex. At areas away from the apex, only one peak was seen.

However, in the apex region, at least two separate velocity peaks were observed.

The peak velocity increased with the input energy when AA5182-O sheet was

formed using EHDF.

5. When AA5182-O sheet was formed using EHDF, significant compressive stress

was generated through the thickness during the deformation, especially in areas

close to the apex. However, in case of EHFF the peak through-thickness stress

occurred in the early stages of deformation and was significantly lower than that

predicted in EHDF specimens.

6. The impact stress decreased as the radial distance from the apex increased.

Moreover, comparison between the FE model predictions and analytical calcu-

lations confirms that the FE model is able to adequately predict this compressive

impact stress. Furthermore, FE simulation predicted greater impact stress in

the EHDF specimens which also showed greater improvement in formability
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than the EHFF specimens.

7. Finally, it is thought that the combination of high strain rate, negative stress

triaxiality, increased velocity, compressive through-thickness stress and impact

pressure all contributed to the formability improvement of AA5182-O in EHDF.
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Chapter 6

Microscopic investigation of failure mechanisms in

AA5182-O sheets subjected to electro-hydraulic form-

ing

In this chapter, damage mechanisms in AA5182-O aluminium sheets were investi-

gated using quasi-static (QS) Marciniak tests and high strain-rate electro-hydraulic

forming (EHF) process. The results confirm that void nucleation, growth and coa-

lescence are the main damage mechanisms of AA5182-O at both high and low strain

rates. The EDS analysis suggests that cracking of Al3(Fe-Mn) intermetallic particles

is the main source of void nucleation, whereas Mg2Si particles do not majorly influ-

ence void formation. Void growth analysis suggests that specimens deformed under

QS conditions contained more voids in areas away from the sub-fracture surface but

specimens deformed at high-strain rate exhibit more significant rate of void growth

close to sub-fracture areas. Void formation is suppressed by increasing the applied

energy in EHF. And more significantly, the growth of voids is suppressed due to the

high-velocity impact of the sheet against the die which plays an important role in

increasing formability of AA5182-O aluminium sheet in EHF process. When the void

percentage increase remains less than about 0.5% AA5182-O can be formed safely.

However, when the void percentage increases beyond 0.6-0.8% fracture becomes in-

evitable.
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∵ This section has been published: A. Jenab, D. E. Green, A. T. Alpas, “Microscopic inves-

tigation of failure mechanisms in AA5182-O sheets subjected to electro-hydraulic forming”,

Materials Science & Engineering A, vol. 691, pp. 31-41, Mar 2017.

6.1 Introduction

Al-Mg alloys (AA5xxx alloys) were developed due to the need for sheet materials

with greater strength, weldability, formability and corrosion resistance [1]. Today,

AA5182-O aluminium alloys are used extensively for inner-parts of vehicles to reduce

body weight and fuel consumption [2]. Aluminium sheets can be formed at elevated

temperatures in order to improve their formability and facilitate their implementation

in automotive applications. However, high temperature forming has its drawbacks

including the application and removal of lubrication and high energy consumption.

Alternatively, new forming techniques, mainly at high-strain rates, are of interest.

Electro-hydraulic forming (EHF) is one of the most promising high-strain rate forming

techniques investigated in recent years in which higher formability was reported for

different alloys (i.e. AA6061-T4 in [3, 4], AA5182-O in [5–7], and different dual-

phases steels [8–10]). Fig. 6.1 shows a schematic of the EHF process in which a

high-voltage current is discharged between two electrodes submerged in water. The

pressure pulse generated in the water chamber causes the sheet to deform at high-

strain rate, either in free space (Fig. 6.1(a)) or into a die (Fig. 6.1(b)).

Golovashchenko et al. [9] experimentally investigated the effect of the applied energy in

electro-hydraulic die forming (EHDF) for different dual phase steels and reported that

by increasing the discharge energy of EHF tests, sheet material could safely deform to

higher strains and hence fracture strain increases with discharge energy. Moreover, the

strain rate of EHDF tests were calculated to be as high as 20,000s−1 in apex regions

of 34◦ conical dies where during electro-hydraulic free forming (EHFF) it reaches

6900s−1. Hassannejadasl et al. [10] carried out numerical simulation of EHFF and

EHDF of DP590 steel sheets using the Johnson-Cook constitutive and damage models

and accurately predict the onset of failure in EHF. Their finite element simulation
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(a)

(b)

Figure 6.1: Schematic of (a) EHFF and (b) EHDF apparatuses.
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estimated the deformation strain rate to be 3,000s−1 during EHFF and 15,000s−1

when EHF into a 34◦ conical die [10].

Rohatgi et al. [5–7] studied the mechanical response and formability improvement of

AA5182-O aluminium during EHFF and EHDF. Their results suggested a significant

increase in major strain in the order of 2.5-6.5 times in EHFF and EHDF, respectively.

Rohatgi et al. [5] measured the maximum measured in-plane engineering strain-rate

of AA5182-O sheets during EHFF to be 3900s−1 and estimated 4230s−1 for EHDF

experiments [7]. According to Rohatgi et al. [5] plastic strain with almost proportional

relation can be achieved during the EHF process where the strain path at the apex

region of specimens is linear and close to equi-biaxial strain state.

During the EHDF deformation, the interaction of die and the workpiece generate super

imposed triaxial or hydrostatic pressure. The existence of such hydrostatic pressures,

can prevent or postpone the failure [11]; Kao et al. [12] experimentally shown the

positive effect of hydrostatic pressure on workability of 1045 steel and Wu et al. [13]

numerically showed that void or microcracks nucleation, growth and coalescence can

be delayed or completely eliminated by such superimposed pressures.

The term ”hyperplasticity” was used to describe the improved formability of sheet

materials during the EHF process [3] in which high-strain rate deformation causes

“inertial effects” [14] to the specimen and the impact of the sheet against the die

causes “die effects” [15, 16]. However, very few researchers have characterized the

microstructural phenomena that occur in the material as a result of die impact; most

of the research carried out on high-strain rate forming processes only investigated the

effects of process related parameters on formability improvement.

Samei et al. [8] studied microstructural changes in DP500 and DP780 steels and

correlated the improved formability with the increase in formability of the individual

phases (20% for ferrite and 100% for martensite) by using the rule of mixture. Samei

et al. [17] also analysed the failure mechanisms prevalent in DP steels in EHDF and

concluded that impact of the sheet against the die plays a major role in suppressing

voids and delaying the onset of failure.

Previously the authors [18] reported a formability improvement of AA5182-O alu-
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minium in both EHFF and EHDF, however the measured improvement was much less

in the case of EHFF. Jenab et al. [19] also studied the tensile behaviour of AA5182-

O aluminium at different strain rates and reported that at strain rates above 10s−1

the flow stress increases with strain rate for any level of strain. This may explain

why AA5182-O aluminium sheets exhibited higher safe strains when formed at high-

strain rate in EHF [18]. However, it is still not well understood how the onset of

failure is postponed during EHDF and why in EHFF formability improvement was

not significant.

Ductile damage occurs as a result of void nucleation, growth and coalescence. Nucle-

ation of voids mostly occurs at, or around, microstructural heterogeneities. Therefore,

alloying elements can significantly influence the damage mechanisms and fracture be-

haviour. It is well known that the existence of intermetallic particles and precipitates

can facilitate the final fracture by either acting as barriers in front of shear zones or

by promoting the coalescence of cavities [20].

There are three possible mechanisms for void nucleation around intermetallic parti-

cles [20]; decohesion of the particle-matrix interface as shown in Fig. 6.2(a), fracture of

a brittle particle (Fig. 6.2(b)), and grain boundary sliding or shear deformation which

can cause decohesion of an interface as illustrated in Fig. 6.2(c). The first two lead

to spherical and ellipsoidal dimples whereas the last one will lead to parabola-shape

dimples [20].

The growth of equiaxed voids leads to a final fracture surface with an array of matching

equiaxed dimples with heterogeneities inside them. However, in case of voids nucleated

in shear deformation areas (i.e. shear bands) cavities become elongated at an angle

of 45◦ to the applied principal stress which is the direction of the shear bands [20].

This will also lead to parabola-shaped dimples at the fracture surface.

Previously, Spencer [21] investigated the fracture mechanism of AA5182-O aluminium

in quasi-static tension and showed that addition of Fe negatively influences the forma-

bility of Al-Mg alloys as it reduces the ductility and the fracture strain [21].

Hadianfard et al. [22] studied the damage mechanisms of AA5182-O aluminium using

tensile tests at strain rates ranging from 1.3×10−4 to 1500s−1 and concluded that void
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(a) (b) (c)

Figure 6.2: Void nucleation around inclusions; (a) matrix decohesion, (b) cracked brittle
particles, and (c) shear deformation (adapted from Ref. [20]).

nucleation, growth and coalescence are the dominant damage mechanisms particularly

at high-strain rate deformations.

The objective of this study is to identify the microstructural causes of formability

enhancement of AA5182-O aluminium during the EHF process so as to facilitate the

implementation of this novel forming technique into automotive production. Since

AA5182-O aluminium contains Mg, Fe, Mn and Si as alloying elements which form

different intermetallic particles of different sizes, the effect of each type of intermetallic

particle and the EHF process on its deformation and fracture mechanisms was inves-

tigated. More specifically, the damage mechanisms of AA5182-O aluminium were

investigated by analysing what occurs at void nucleation sites. Finally, differences in

void growth between specimens deformed in biaxial tension under quasi static condi-

tions and in EHDF conditions were analysed in order to understand the effect of the

high-velocity impact against the die on the microstructure of AA5182-O aluminium.

6.2 Experimental and Analysis Procedures

Table 6.1 shows the optical emissions spectroscopy analysis of as-received AA5182-O

aluminium 1.5mm thickness sheets used in this study. The analysis was performed

using Baird One-Spark Optical Emissions Spectrometer equipped with tungsten elec-
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trode following the ASTM-E1251 [23] standard.

Table 6.1: Chemical composition of the as-received AA5182-O aluminium, wt%.

Mg Mn Fe Si Cr Cu Zn Ti Al

5.02 0.37 0.24 0.041 0.004 0.015 <0.01 <0.05 Bal.

Tensile tests were carried out at quasi-static (ε̇ =0.001s−1) and dynamic (ε̇ = 100s−1)

strain rates. For quasi-static strain rates, specimens were cut by wire EDM follow-

ing the ASTM-E8 [24] standard and deformed until fracture using an Instron 1331

servo-hydraulic testing machine. For high-strain rate tensile tests, sub-size dog-bone

specimens were cut by wire EDM and deformed using a specialized Hydraulic Inter-

mediate Strain Rate apparatus. The reader is referred to Ref. [19, 25–27] for more

details about specimen geometries and test conditions.

In order to also consider the equi-biaxial strain domain, quasi-static (QS) Marciniak

tests were carried out with a punch velocity of 0.1mm/s leading to a nominal strain

rate of 0.01-0.04s−1. Interstitial-free (IF) steel sheet having a thickness of 1mm was

used to make carrier blanks for the Marciniak tests.

The EHF experiments were performed using a Magnapress pulse unit with 200µF

capacitance and pulses were supplied with different input voltages ranging from 6.8

to 14kV in order to form 200mm by 200mm square gridded AA5182-O sheets. The

input energy of EHF can be calculated from U = 1/2cv2 where c is the capacitance

of the EHF apparatus (capacitors) and v is the input voltage [9, 28]. The radius of

opening of the EHF chamber and hence the area of sheet specimens being deformed

is 120mm. EHDF experiments were carried out with different conical dies with die

angles of 34, 40 and 45◦, and EHFF experiments were carried without any die. Minor

and major strains on the surface of the deformed specimens were then measured using

an optical strain measurement system. For fractured specimens, only the safe grids

close to the crack were measured. Table 6.2 summarizes the specimens used in this

study, the status of the location where the subsurface was studied as well as the strain

state at each location. It can be seen that all specimens were deformed in a biaxial

or near-biaxial strain state, including the QS Maciniak specimens.

A Philips XL30 Scanning Electron Microscope equipped with EDAX Energy Disper-
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Table 6.2: Deformation history, status and maximum safe strains measured
in studied specimens.

Test Die angle Voltage, kV Energy, kJ Studied Location e1 e2

QS Marciniak
- - - Fractured 34.3 33.0
- - - Safe 29.9 29.5

EHFF
Open 7 4.9 Fractured 36.8 28.2
Open 13.9 19.4 Fractured 43.6 26.1

EHDF

34◦ 8.6 7.4 Fractured 37.4 17.9
34◦ 9 8.1 Safe, apex 56.4 24.4
40◦ 10 10 Fractured 48.8 39.3
40◦ 12 14.4 Safe, apex 62.4* 22.8*

45◦ 11 12.1 Fractured 56.0 34.2
45◦ 14 19.6 Safe, apex 61.0* 24.2*

* Maximum strains measured in areas where grids were not removed due to impact. In
such specimens, the grids at the apex were removed due to the severe impact against
the conical die.

sive Spectroscopy was used to investigate the fracture behaviour and chemical analysis

of second phases. In order to perform fractography experiments, all specimens were

cut by wire EDM and fractured areas apart from cutting edges were examined. Speci-

mens were cleaned in an ultrasonic ethanol bath for at least two minutes before being

placed inside the SEM.

Transmission Electron Microscopy (TEM) was carried out on samples cut from safe

QS and EHF specimens using a Tecnai Osiris FEI machine with 200kV X-FEG field

emission gun equipped with SuperEDS X-ray detection system.

All sub-fracture samples were cut using wire EDM and then cold-mounted to avoid

the temperature affecting their microstructure. Sample preparation was carefully

performed on mounted samples in order to achieve reproducible results and reduce

side effects such as pull-outs, comet tails and embedded abrasive. Abrasive disks

were used in successively finer steps. To reduce the amount of deformation, grinding

started with 600 SiC papers and was then followed with commercial polishing surfaces

from Struderr with successively 9, 6, and 3µm diamond suspension, and finally with

0.5µm OPS abrasive solutions each used with a specific lubricant. Between each step,

samples were cleaned with running water, then with an industrial cleaner, and finally

in subjected to ultrasonic cleaning in ethanol bath for 5 minutes to remove the residues

of previous steps, especially from fine shrinkage gaps in the cold mount that develop
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during the curing of the mounts.

To analyse the results, a large-mosaic consisting of at least 10 images (with at least

200× magnification) taken from sub-fracture surfaces using Clemexr motorized stage

and specified pattern. The images were digitally enhanced using a pre-defined Adobe

Photoshopr routine which adjusted the brightness of images and increased the con-

trast. To measure the void percentage (V P ) at each location, a specialized MATLABr

code was developed. After calculating the pixel density of each image based on the

scale bar, areas belonging to the mount were removed and then the large mosaic im-

age was divided into smaller images. After thresholding, the void percentage of each

image was calculated using Eq.6.1 and by considering black pixels to be voids and

white pixels to be the matrix.

V P =

∑
(P •)∑

(P •) +
∑

(P ◦)
× 100 (6.1)

where P • and P ◦ are black and white pixels, respectively. It is worth noting that

the result of this method showed good agreement with Clemex Pror calculation

but provides much better flexibility to automatically study V P changes in large im-

ages. Also, using the image enhancing method (i.e. changing the brightness, contrast

and thresholding), a void percentage of 0.0054 (0.54%) was determined for this as-

received AA5182-O sheet material which is in agreement with 0.5% value reported

by Orlov [29]. Finally, all void percentages reported in this work were determined

by subtracting the initial void percentage of the as-received material from the void

percentage measured from images of the deformed microstructure.

6.3 Results and Discussion

6.3.1 Strain distribution in EHF specimens

The strain distribution in all studied specimens shows that the strain increases grad-

ually from the bottom to the apex of each specimen. For example, Fig. 6.3(a) and (b)

show the strain distribution of EHDF conical specimens deformed with 7.4 and 8.1kJ
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input energy, respectively. The specimen in Fig. 6.3(a) cracked in the apex region and

hence the apex grids could not be measured. However, as shown in Fig. 6.3(b), the

specimen formed successfully with 8.1kJ input energy exhibited higher strains com-

pared to the specimen formed with 7.4kJ. This shows that a threshold energy level

must be exceeded in order to obtain enhanced formability in EHDF.

Grid distance from edge of die, mm
0 20 40 60 80 100 120

0

10

20

30

40

50

60

70

80

90

100
RD-e1

RD-e2

RD-"eff

TD-e1

TD-e2

TD-"eff

(a)

Grid distance from edge of die, mm
0 20 40 60 80 100 120

0

10

20

30

40

50

60

70

80

90

100
RD-e1

RD-e2

RD-"eff

TD-e1

TD-e2

TD-"eff

(b)

Figure 6.3: Major (e1), minor (e2) and effective (εeff ) strain distributions of EHDF-34◦

specimens deformed at (a) 7.4kJ (fractured) and (b) 8.1kJ (safe) input energies; RD and
TD refer to measurements carried out at rolling and transverse directions of the as-received
rolled sheet, respectively.

6.3.2 Fracture Mechanism

Fig. 6.4 shows subfracture and low magnification SEM images of AA5182-O samples

deformed and fractured under QS, EHFF and EHDF conditions. It can be seen that

all specimens show similar dimpled fracture topography. Also, Fig. 6.4(a) shows that

specimens deformed under QS conditions, did not exhibit significant post-uniform de-

formation. This can be quantified by the change in thickness strain from -0.696±0.001

in areas of uniform deformation away from the fracture to -0.783±0.004 just before

fracture. This insignificant through-thickness strain localization is the reason that it

was not possible to interrupt the Marciniak tests at the onset of necking. This obser-

vation is in agreement with the fact that in the QS strain rate domain, from 10−4 to

1s−1, the flow stress of AA5182-O aluminium decreases with increasing strain rate [19].

145



The rapid failure that occurs immediately after reaching the limiting strain was also

reported by Spencer [21], who indicated that high rates of shear strain occurring at

sub-fracture surface as well as flow softening were reported to be the main reasons

for this limited post-uniform deformation. Unlike QS specimens where the failure

occurs as a result of a single fracture surface (slip plane), two separated fracture sur-

face were involved in the final failure of EHF specimens. Also, EHF specimens failed

with significant through-thickness strain localization and post-uniform deformation

as shown in Fig. 6.4(b,c). The thickness strain in the EHFF specimen, Fig. 6.4(b),

reduces from -0.540±0.001 in areas of uniform deformation away from the fracture to

about -0.940±0.005 at the subfracture surface. The same significant post-uniform de-

formation is also observed in EHDF specimen, Fig. 6.4(c), where the thickness strain

reduces from -0.528±0.001 in areas away from the fracture to -1.004±0.019 at the

subfracture surface.

Fig. 6.5 shows high magnification SEM fractography images of QS and EHF speci-

mens. It can be seen that the fracture surface contains dimples indicating that void

nucleation and growth is the major failure mechanism in both high and low strain

rate conditions. It is worth emphasizing that due to the through-thickness shearing

strain in EHF samples, parabola-shaped dimples can be seen on the fracture surface

of AA5182-O aluminium (Fig. 6.5(b)-(d)).

6.3.3 Void Nucleation; Intermetallic Particles

Closer examination of the surface reveals that equiaxed and parabola-shaped dimples

coalesce around hard particles. Fig. 6.6(a) and (b) shows the fractography of an EHFF

specimen formed at 19.4kJ input energy at ×2000 magnification. Several second

phase particles residing in the dimples can be seen; some are located at the bottom

of dimples and some are on the side of the dimples. The EDS analysis confirmed that

these particles are mainly (Fe,Mn)- and (Mg,Si)-enriched intermetallic particles and

not residues or artifacts of sample preparation.

Point EDS analysis was performed on more than 170 particles residing at the bottom

and side of the dimples. The results indicate that there are at least two types of
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Figure 6.4: Polished subfracture and low magnification fractography of (a) QS Marciniak
(e1 = 34.3%, e2 = 33.0%), (b) EHFF; 4.9kJ (e1 = 36.8%, e2 = 28.2%), and (c) EHDF-40◦;
10kJ (e1 = 48.4%, e2 = 39.3%).
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Equiaxed dimples

(a)

Parabola-shaped dimples

(b)

Parabola-shaped dimples

Broken intermetallic particles

(c)

Parabola-shaped dimples

(d)

Figure 6.5: Fracture surface of AA5182-O aluminium at 800× magnification deformed
under biaxial strain state in (a) QS Marciniak, (b) EHFF; 4.9kJ, (c) EHDF-34◦; 7.4kJ, and
(d) EHDF-40◦; 10kJ conditions.
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Particles residing at side of dimples

(a)

Broken particles residing at the bottom of dimples

(b)

Figure 6.6: Fracture surface of EHFF specimens deformed at 19.4kJ showing different
dimple sizes and cracked second phase particles at 2000× magnification; (a) at side of
dimples and (b) at the bottom of dimples.

intermetallic particles that contributed to the final failure in AA5182-O. Table 6.3

shows the average quantity of alloying elements, with standard error (σp̄) calculated

from Eq.6.2, in each type of second phase particle and a description of their typical

shape and location.

σp̄ = tα/2

√√√√√ n∑
i=1

(p̄− pi)2

n(n− 1)
(6.2)

where tα/2 is the probability distribution calculated for 95% confidence level, n is the

number of measured particles of each type, and pi and p̄ are the individual and mean

percentages of alloying element.

Table 6.3: Chemical composition and description of second phases existing on the
fracture surface of AA5182-O subject to either quasi-static or high-strain rate forming.

Type
Average alloying elements, wt%

Specification Position
Al Mg Mn Fe Si

I 71.2±3.6 3.6±0.6 4.1±1.5 21.0±2.9 0.00 broken particles inside dimples
II 57.4±7.7 23.3±4.3 0.06±0.06 0.1±0.1 18.1±3.9 small, spherical on dimples’ side

The first type (I) intermetallic particles are Fe- and Mn-based particles with average

Fe and Mn concentrations of 21% and 4% wt, respectively. Regardless of their size,
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these particles mostly have sharp edges and reside deep inside dimples and were

mostly cracked. Typically, relatively larger particles can be seen at the bottom of

large dimples, suggesting that the dimple size directly depends on the size of the

second phase particle. It is thought that cracking of these intermetallic particles leads

to early nucleation of voids. It is worth noting that Fe-Mn containing particles are one

of the most important intermetallic particles in AA5182 [30] where coarse particles are

undesirable for sheet forming or stamping processes [31]. Depending on the history

and heat treatment of the as-received material, AA5182-O aluminium may contain

coarse skeletal Alm(Fe,Mn) or lamellar shaped Al3(Fe,Mn) particles [32]; the former

particles can be transformed to the latter by eutectoid process (heat treatment at

470-520◦C) and the results will be an increase in the material formability [31].

The second type (II) of intermetallic particle found on fracture surfaces of AA5182-O

aluminium contain mainly Mg and Si. It is worth noting that the concentrations

obtained by EDS analysis are influenced by the interaction of the X-ray beam with

surrounding materials. Hence, the chemical composition of these small intermetallic

particles should be Mg2Si which is commonly observed in AA5182 alloys [30, 31].

These particles mainly reside at the side of the dimples, and hence it is believed that

they most probably were de-bonded from the matrix in the final stages of failure,

during void growth and coalescence.

The presence of iron-enriched and silicon-based intermetallic particles was also ob-

served in other aluminium alloys such as in AA7075 [33] and was considered to be the

main source of initial void nucleation prior to fracture of AA7075-T651 [34].

These results are in agreement with the assumption of Worswick et al. [35] where

voids nucleate more preferentially at particles with larger size and as strain increases

the fraction of voids nucleated from smaller particles increases.

Fig. 6.7(a) and (b) show void formation by cracked intermetallic particles in EHFF

and EHDF specimens, respectively. The EDS analysis of these particles also confirms

that the voids nucleated from (Fe,Mn) enriched intermetallic particles. However, due

to their size, void formation from Mg2Si particles was not observed in sub-fracture

surfaces.
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(a)

(b)

Figure 6.7: Void nucleation sites from sub-fracture surface of (a) EHFF; 4.9kJ (e1 = 36.8%,
e2 = 28.2%) and (b) EHDF-45◦; 12.1kJ (e1 = 56.0%, e2 = 34.2%) specimens.
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More detailed analysis of void formation was achieved from TEM results. Fig. 6.8(a)-

(f) show TEM images of specimens safely deformed under QS and EHDF conditions,

respectively (see Table 6.2). The samples were selected from areas away from the

fracture surface and where the highest level of strains was reached. Fig. 6.8(a), (c), and

(e) show the location of nucleated voids using high angle annular dark field images with

overlaid bright field images. Fig. 6.8(b), (d), and (f) show scanning TEM (STEM)

maps of selected alloying elements at the same locations. Void nucleation from particle

cracking can be clearly seen in Fig. 6.8(a) and (b) where an (Fe,Mn) enriched particle

cracked in the QS Marciniak specimen. Such void nucleation sites are also observed

in EHF specimens. Fig. 6.8(c) and (d) shows an example of particle debonding in a

specimen formed under EHDF conical die with 19.6kJ input energy. As mentioned

earlier, voids are created when the matrix between a large (Fe,Mn)-containing particles

and a small Mg2Si particle yields causing a void to form. Fig. 6.8(e) and (f) shows

the particle-matrix debonding from an (Fe,Mn)-containing particle which probably

was previously broken and subsequently filled by the flow of aluminium during the

hot rolling stage of AA5182-O sheet production.

Since (Fe,Mn)-containing intermetallic particles are larger in size than other particles

observed, they are more prone to cracking at lower strain values [36]. Cracking of

these large particles can be described by a stress-controlled model based on brittle-

type fracture [37]. Also, due to their large interface, irregular shapes, and high internal

surface defects, these intermetallic particles can cause void nucleation at lower strains

when compared to smaller ones.

However, small Mg2Si and Al-Mg particles, tend to be spherical or equiaxed in shape

and usually participate in the failure by debonding from the matrix. The debonding

can occur as a result of dislocation pile-ups which is a strain-controlled process [38]

or by separation of the interface which is a stress-controlled process that depends on

the hydrostatic stress [39, 40].

It is worth mentioning that the presence of a die in EHDF causes significant hy-

drostatic stresses to be generated in the sheet upon impact with the die. Imbert

et al. [16] performed Electro-Magnetic Forming (EMF) of AA5754 sheets with and
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Mg2Si particle
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Voids

(e) (f)
Figure 6.8: Transmission electron microscopy results of AA5182-O aluminium showing
void nucleation by (a,b) cracking of (Fe,Mn)-containing particle in QS Marciniak speci-
men (e1 = 29.9%, e2 = 29.5%), (c,d) particle debonding from interface of Mg2Si and
(Fe,Mn)-containing intermetallic particle in EHDF-45◦; 19.6kJ specimen (e1 = 61.0%, e2 =
24.2%), and (e,f) particle-matrix debonding in EHDF-40◦; 14.4kJ specimen(e1 = 62.4%,
e2 = 22.8%).
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without the presence of a conical die and observed that during free forming EMF

formability improves for a narrow region where in case of die forming EMF specimens

show a wide range of formability improvement as compared to the QS forming limit

curve. They concluded that as a result of die-sheet interaction a complex stress state

is created which includes compressive (hydrostatic) stresses that potentially can re-

duce the effect of damage and suppress the damage evolution. Also, Hassannejadasl

et al. [10] numerically simulated EHDF and showed that once the initial velocity suffi-

ciently high, the specimens experience a negative stress triaxiality upon filling the die.

This negative stress triaxiality increases toward the apex region of conical specimens,

similar to the safe locations that were studied here.

6.3.4 Void Growth

Fig. 6.9(a) shows the void percentage growth as a function of distance from the fracture

surface for EHFF and QS Marciniak specimens. It can be clearly seen that void

formation is suppressed in the bulk of the material at high-strain rates (EHFF at 4.9kJ

and 19.4kJ) compared to QS deformation. However, near to the fracture surface, the

specimen deformed at high-strain rates contains more voids as compared with QS

specimens. Moreover, by increasing the input energy of EHFF from 4.9kJ to 19.4kJ,

lower void percentages can be seen in areas away from the fracture surface and sub-

fracture surfaces. This change in material response to increased input energies during

EHF of AA5182-O is in agreement with strain measurements which showed that

higher values of safe strains were reached in AA5182-O aluminium EHFF specimens

formed with greater input energy [18]. The same trend was also seen in case of

tensile samples deformed at QS and high-strain rates (100s−1) as shown in Fig. 6.9(b).

Fig. 6.10(a) shows the effect of input energy on void suppression in safely formed

EHDF specimens. The same void suppression phenomenon can also be seen in safely

formed EHDF specimens as shown in Fig. 6.10(a). For safely formed specimens,

the distance is measured relative to the point of maximum strain. The maximum

thickness strain for specimens formed at 8.1, 14.4, and 19.6kJ input energy were -

0.431±0.001, -0.701±0.002 and -0.690±0.002, respectively. Since all samples shown
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Figure 6.9: Variation in void percentage with distance from the fracture surface in speci-
mens formed at low and high-strain rates in (a) biaxial and (b) uniaxial tension.
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in Fig. 6.10(a) were formed into a die, the significant through-thickness compressive

stress generated at the moment of impact against the die leads to closure of voids.

It can be seen that the specimens formed with higher energy (14.4 and 19.6kJ) and

consequently higher strain rates and impact velocities show lower void percentage.

Moreover, even though the thickness strain of 8.1kJ specimen is less than that for 14.4

and 19.6kJ specimens, it exhibited at least twice the void percentage. This confirms

the significant effect of the through-thickness compressive stress on void closure in

EHF process. It is worth emphasizing that the same non-linear least squares curve

fits were used to show the gradient of void percentages. In case of safely formed

specimens, the slope of the curves is negative in areas close to the location of maximum

strain. Realistically, this confirms that by increasing the strain rate and compressive

stresses, void closure increases and less voids should be expected in these specimens.

Comparison between void percentages in safely formed and failed samples, as shown

in Fig. 6.9(a) and Fig. 6.10(a), suggest that during EHF when the void percentage

remains less than 0.5%, AA5182-O aluminium can be formed safely but when the void

percentage increases above 0.6-0.8% fracture becomes inevitable. This observation is

in agreement with the critical void percentage reported by Chen and Worswick [41]

who used a finite element-percolation damage model to predict that the presence of

0.5% of voids would cause final failure in AA5182-O and AA5754 aluminium.

Fig. 6.10(b) shows the effect of the impact against the die on void formation. It can be

seen that in the presence of a die in the EHF process, the material exhibited less void

formation in areas away from the fracture compared to the EHFF specimen which

exhibited the least void percentage (EHFF; 19.4kJ).

It is worth noting that Samei et al. [42] concluded that in case of dual phase steels,

the plastic compatibility between different phases improves during the high-strain rate

deformation due to their individual formability enhancement and hence, formation of

voids is suppressed during the EHDF. However, in case of AA5182-O sheets it is diffi-

cult to distinguish between closure of preformed voids and suppression of newly formed

voids. Even though, this void suppression effect of EHDF can explain the reason that

AA5182-O aluminium shows significant formability improvement when deformed in
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Figure 6.10: (a) The effect of input energy on void evolution in safely formed EHDF
specimens, (b) effect of die presence on void formation in different EHFed specimens.

157



EHDF condition and very little improvement when formed under EHFF [18]. Since

tensile hydrostatic stresses promote void growth [20] it is reasonable to conclude that

compressive hydrostatic stresses in EHDF conditions lead to lower void growth rate

than EHFF conditions.

Consequently, it is thought that as a result of the large through-thickness compres-

sive stresses that develop due to the high velocity impact of the sheet against the

die and improved hardening behaviour of AA5182-O aluminium at high-strain rates,

nucleation and growth of voids in EHDF specimens is significantly suppressed.

6.4 Conclusions

In this study, the failure mechanisms of 1.5mm AA5182-O sheets were investigated by

means of quasi-static Marciniak tests and EHF experiments. The cause of final failure

is understood by investigating the void nucleation sites and formability improvement

observed during the EHF process was explained by suppression of void growth. The

following conclusions were obtained;

1. Ductile damage occurs by void nucleation, growth and coalescence in AA5182-O

aluminium sheets deformed in biaxial tension both in QS conditions (Marciniak)

and at high-strain rates (EHF).

2. Cracking of large (Fe-Mn)-based intermetallic particles is the main source of

void nucleation at lower strains. However, small Mg2Si particles can contribute

to failure by debonding from the matrix, especially in areas close to (Fe-Mn)

containing particles. No significant difference was observed in void nucleation

of QS Marciniak and EHF deformed specimens.

3. The specimen formed in QS Marciniak condition exhibited limited post uniform

deformation and contained more voids in areas close to, and at distance from,

the subfracture surface when compared to EHF specimens.

4. Void formation is suppressed by increasing the applied energy, and more sig-

nificantly by the presence of a die. By increasing the applied energy, the sheet
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reaches greater velocities just prior to the impact against the die wall. As a

direct result of large through-thickness compressive stresses, void growth is sup-

pressed and AA5182-O aluminium final failure is postponed.

5. AA5182-O aluminium can be formed safely when the void percentage increase

resulting from EHF remains less than 0.5%. However, fracture becomes in-

evitable when the void percentage increases beyond 0.6-0.8%.
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Chapter 7

General Discussion and Conclusions

7.1 General Discussion

In this study, the formability of 1.5mm AA5182-O aluminium sheet formed by electro-

hydraulic forming was investigated by means of experimental and computational work.

Electro-hydraulic forming tests were carried out on sheet specimens using 34, 40 and

45◦ conical dies and also without any dies (free forming) using different input volt-

ages. Formability improvement was measured as compared to quasi-static forming

limit curves. Moreover, a novel approach was used to predict the mechanical response

of AA5182-O from low- to high- strain rates along the three major directions of the

sheet (RD, DD, and TD): to determine the constants of commonly used hardening

equations, instead of non-linear regression, genetic algorithm approach was used and

it was shown that it leads to better accuracy compared to non-linear regression fitting

procedure. More importantly, the experimental results show that the flow stress of

AA5182-O alloys exhibit a positive trend with strain rate at moderate to high strain

rates. Consequently, an advanced approach was taken in which artificial neural net-

work was used to describe the hardening of AA5182-O during FE simulations. This

step was essential as it provides a reliable description of hardening for FE simulations

without disregarding the strain rate exponent, as it is commonly ignored for alu-

minium alloys during FE simulations. The positive strain rate sensitivity at higher

strain rates could potentially postpone failure strain to larger values and contribute

to the formability improvement in EHF.

Furthermore, the failure mechanisms of quasi-static Marciniak specimens and of EHF

specimens were investigated using optical and electron microscopy, and the results

were compared. The cause of final failure can be understood by investigating the void
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nucleation sites, and the formability improvement observed during the EHF process

was achieved primarily by suppression of void growth. The OM results suggest that

the void nucleation sites are mainly large (Fe,Mn)-enriched particles which break

during deformation as a result of dislocation pile up. It is found that a threshold

of void percentage is necessary to cause failure in AA5182-O specimens during EHF.

More importantly, it is found that void percentage in the bulk of sheet material

decreases as the strain rate increases or when higher input energies are used to deform

the AA5182-O sheet material.

To further investigate the effects of EHF on AA5182-O, the effect of different param-

eters such as strain rate, sheet velocity, stress triaxiality and impact pressure was

investigated using finite element simulations. To do this, the most accurate descrip-

tion of hardening, ANN, is used to simulate EHF using the ignition and growth model

and coupled Eulerian-Lagrangian approach with solid elements. It is found that a sig-

nificant peak of compressive stress occurs in the sheet material during EHDF at the

moment of impact and this sudden negative stress triaxiality reduces void growth

observed in OM. The impact pressure decreases as the radial distance from the apex

increases and hence supports the observation that most of the formability improve-

ment occurred in the apex region of conical specimens.

It is also found that AA5182-O does not show significant formability improvement

during EHFF and most of the formability improvement is due to the impact with

the EHF dies (EHDF). This is in agreement with work done by Maris [1] who de-

termined the FLC of AA5182-O using EHF experiments. Hence, it is believed that

the hardening effect due to positive strain rate sensitivity is not the dominant factor

in formability improvement, or at least is not significant to improve formability of

AA5182-O during EHFF.

Moreover, numerical simulation results show that peak strain rate achieved during

EHFF is significantly lower, by an order of magnitude, than in EHDF. It is note-

worthy that in the final stages of EHFF deformation, the strain rate where the final

failure is expected to occur, is much lower than during the majority of the deforma-

tion process. Hence, the final stages of EHFF are actually closer to a quasi-static
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process. Furthermore, the stress triaxiality is positive during the entire EHFF pro-

cess and therefore cannot prevent void growth. These simulation results explain why

the formability improvement of AA5182-O specimens during EHFF is insignificant as

compared to quasi-static FLC.

However, the formability of AA5182-O can be improved significantly in EHDF pro-

vided the input energy exceeds a certain threshold. Numerical simulation results

show that at such high energy levels, not only does the AA5182-O sheet specimens

experience higher strain rate deformation, but also significant compressive through

thickness stresses at the moment of impact against the die. Also, the specimens reach

high velocity just before the sheet material fills the die completely and this generates

large impact stress on the sheet. Since OM results show that the void percentage

reduction is noticable during EHDF once a threshold of input energy is exceeded,

it is thought that the combination of high strain rate deformation and compressive

through-thickness stress, leads to formability improvement in EHDF.

Finally, since the deformation in EHF is carried out at high strain rates, it was neces-

sary to investigate possible changes in deformation mechanisms. The grain structure

of AA5182-O EHDF specimens safely formed with a high input energy showed a twin-

like microstructure, which according to Gray [2, 3] could be mechanical twinning even

in case of high-stacking fault alloys such as Al-Mg alloys. However, further TEM

investigation disproved the presence of twinning in AA5182-O specimen formed by

EHF. No indication of changes in deformation mechanisms were observed, although

the dislocation density increases mildly with increasing strain rate.

7.2 Conclusions

The following important conclusions can be drawn from the experimental and FE

simulation studies carried out in this research:

• Formability improvement during EHFF was insignificant when compared with

quasi-static forming limit curves. Also, AA5182-O sheet specimens were safely

formed into 34, 40, and 45◦ conical dies and showed respectively 40%, 70%, 87%
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increase in maximum effective strain values as compared to quasi-static FLC.

• The input energy of EHF should exceed a certain threshold in order to reach

significant safe strains in EHDF. It was found that AA5182-O specimens could

be successfully formed into conical dies if at least 8-10kJ of input energy was

used in the EHF process.

• Flow stress values calculated using the modified Voce hardening function shows

better agreement with experimental tensile data as compared with KHL and JC

models. However, KHL results were slightly more accurate when used in finite

element simulation of the EHF tests.

• Genetic algorithm was successfully used to determine parameters of commonly

used constitutive equations. Implementing GA parameters into FE analysis

software leads to the most accurate predictions of the rate-dependent hardening

functions when compared with experimental data. However, The most accurate

calculations of flow stress for any given direction, strain, and strain rate were

predicted using ANN when compared analytically with experimental results or

when used in finite element simulation. However, its computational cost is

considerable when used in finite element simulation when compared with the

use of KHL or JC hardening functions.

• The flow stress of AA5182-O decreases to its minimum at intermediate strain

rates (from approximately 10 to 100s−1) and then increases for strain rates

greater than 100s−1. Among the hardening models studied, the ANN was the

only approach capable to replicate this behaviour. The strain rate term in

JC and KHL constitutive equations used were unable to predict such a transi-

tion and consistently predicted small negative values of strain rate sensitivity.

However, the modified-Voce with logarithmic and exponential strain rate terms

exhibited better capability to predict the trend of increasing flow stress at high-

strain rates. It is also found that disregarding the small, negative strain rate

exponent in FE analysis can lead to considerable inaccuracies in finite element

165



simulations of the tensile tests.

• AA5182-O aluminium sheets fracture in a ductile manner by void nucleation,

growth and coalescence in biaxial tension both in QS conditions (Marciniak)

and at high-strain rates (EHF).

• The main source of void nucleation at lower strain values is the cracking of

large (Fe-Mn)-based intermetallic particles. However, small Mg2Si particles can

contribute to failure by debonding from the matrix, especially in areas close

to (Fe-Mn) containing particles. No significant difference was observed in void

nucleation of QS Marciniak and EHF specimens.

• Specimens formed in QS Marciniak tests exhibited limited post-uniform defor-

mation and contained more voids in areas close to, and at distance from, the

subfracture surface when compared to EHF specimens.

• Void formation is suppressed by increasing the applied energy in the EHF pro-

cess, when the sheet is formed into a die. By increasing the applied energy,

the sheet reaches greater velocities just prior to the impact against the die wall.

As a direct result of large through-thickness compressive stresses that occur

upon impact, void growth is suppressed and AA5182-O aluminium final failure

is postponed.

• AA5182-O aluminium can be formed safely when the void percentage increase

resulting from EHF remains less than 0.5%. However, fracture becomes in-

evitable when the void percentage increases beyond 0.6-0.8%.

• Reasonable correlation between simulation and experimental results was achieved

by a coupled Eulerian-Lagrangian model when the ignition and growth model

was used to simulate the EHF pulse formation. This FE model was able to

accurately predict the strain distribution and shape of deformed specimens as

a function of time.
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• There is a significant difference between velocity changes in the apex region of

EHF specimens and in areas away from the apex. In areas away from the apex,

only one velocity peak can be seen. However, in the apex region, at least two

separate large velocity peaks can be seen. The peak velocity increases with the

input energy in both EHFF and EHDF specimens.

• Simulations show significant peak strain rate values when sheet specimens are

formed using EHDF. In case of EHFF, the peak strain rate occurs during the

deformation where triaxiality is positive (tension state). However, when EHF

specimens are formed into a die, the peak strain rate occurs at the final stage

of deformation and when triaxiality is negative (compressive state).

• When AA5182-O sheet is formed using EHDF, significant compressive stress

is generated through the thickness especially in areas close to the apex when

they contact the die. However, in case of EHFF the peak through-thickness

stress occurs in the early stages of deformation and is significantly lower than

predicted values for EHDF specimens.

• At the moment of the impact between AA5182-O sheet and the EHF die, sig-

nificant pressure is generated. This impact pressure decreases as the radial

distance from the apex increases. Moreover, comparison between FE model

predictions and analytical calculations confirms that the FE model is able to

reasonably predict this compressive impact stress. Furthermore, FE simulation

predicted greater impact pressures for the EHDF specimen which showed most

improvement in formability.

• Finally, it is thought that the combination of increased sheet velocity, high-

strain rate, compressive through-thickness stress, and negative stress triaxiality

all contributed to the formability improvement of AA5182-O.
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7.3 Originality of the research

In this study, the formability improvement of commercial AA5182-O sheet formed

using EHF process was studied. It was found that AA5182-O sheets exhibit lower

formability improvement compared to values previously reported by other researchers,

especially in case of free formed EHF.

The root cause of formability improvement during EHF was explained with the help of

meticulous and extensive material characterization as well as by varying EHF process

parameters. Material flow behaviour was studied in a range of strains. Constants of

selected constitutive equations were calculated using genetic algorithm and shown to

be more accurate than regression analysis. Moreover, flow behaviour of AA5182-O

sheet was further studied by an advanced computational approach, artificial neural

network, and the outcome shown to be more accurate that predefined hardening func-

tions. EHF simulations were carried out with coupled Eulerian-Lagrangian approach

using the optimum hardening function and the parameters that affect the formability

of AA5182-O were studied in detail. It is lucidly shown that a combination of com-

pressive through thickness stress and high strain rate sensitivity lead to formability

improvement of AA5182-O in die formed EHF.

Material characterization on both failed and safely formed specimens identified the

main source of void nucleation in AA5182-O and showed that void suppression is the

main reason AA5182-O exhibits improved formability in EHF process.

The tools developed during this research were shown to be more precise than existing

models and offers new insights into the EHF process and the deformation and damage

mechanisms that occur during EHF.

7.4 Future Work

1. It would be useful to have experimental stress-strain data of AA5182-O at QS,

moderate and high-strain rates up to higher strain values. The reason is that all

flow curves used in this work were derived from tensile tests, and the true strain
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values remained less than 0.2. This is a relatively low strain value when com-

pared with the strains measured on EHF specimens. Hence, it is suggested to

perform biaxial or compression tests at different strain rates. Using stress-strain

data up to higher strain values would result in better calibration of hardening

functions, and consequently, more accurate finite element simulations of EHF

experiments would be achieved.

2. Since high-strain rate deformation imposed by EHF may increase the local tem-

perature to a significant level, it might be useful to perform warm-hot tem-

perature tests on AA5182-O to investigate the effect of temperature on grain

microstructure and correlate the temperature-dependant hardening function in

the FE model. By having temperature dependant FE simulation, it is possible

to study the effect of this important effect on AA5182-O sheet behaviour during

EHF.

3. Since ANNs have excellent capabilities to predict mathematically unpredictable

relations between various parameters, it is thought that ANN might have the

ability to accurately predict the onset of instability of AA5182-O for a given

strain path and strain rate.

4. During the grid analysis studies, it was decided to use the conventional North-

American method to determine forming limit curves. To develop such diagrams,

only safe and necked grids are used and any specimens containing a fracture

or crack are dismissed [4]. However, according to the ISO 12004-2 (2008) [5]

method grids that contain a crack should also be used to calculate limiting

strains. The reasoning behind this approach is that once a fracture occurs in a

grid, the load-bearing capacity of such grid becomes zero and hence its strain

does not change significantly (i.e. Li et al. [6]). Hence, it would be interesting to

perform a comparative study to determine the FLC of AA5182-O sheets using

both the ISO and conventional North American approaches with quasi-static

Marciniak and bulge test specimens or even EHF specimens.
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Appendix A

Further Microscopic Material Studies; OM, TEM

In this section, further investigations were carried out on the microstructure of AA5182-

O sheet formed using QS and EHF by means of optical metallography and transmis-

sion electron microscopy. The motivations to perform these investigations are to

examine if there is a correlation between micro and macro strain measurements, and

to understand if grain structure changes are different between quasi-static and high-

strain rate deformation. Moreover, it was necessary to understand if adiabatic heat-

ing generated as a result of high-strain rate deformation had any influence on grain

structure. Another motivation was to investigate if high-strain rate deformation of

AA5182-O could result in different deformation mechanisms such as mechanical twin-

ning. Finally, it was necessary to examine if dislocation density increases significantly

beyond conventional cold rolled deformations suggesting new sources of dislocations

being activated at high-strain rate deformation.
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A.1 Microscopic deformation of grains

A.1.1 Polished and anodized surface of as-received AA5182

Fig. A.1(a) shows polished surfaces of AA5182-O at different orientations to the rolling

direction and at 500x magnification. Dark grey areas noticeable in Fig. A.1(a) are

second phase particles and black spots are either voids or residue of removed second

phase particles. Fig. A.1(b) shows the microstructure of as-received AA5182-O as

seen in the orthotropic material orientations. It can be seen from Fig. A.1(b) that

for the as-received sheets, the annealing process was successfully done as most of the

grains are equi-axed. For more information about sample preparation, polishing steps

and anodization solutions please refer to Chapter 6 as well as Appendices B.1 and

B.2.

A.1.2 Deformed specimens

The effect of void area percentage change on fracture strain and failure of AA5182-O is

discussed in Chapter 6 for both quasi-static and EHF deformation processes. Fig. A.2

shows mosaic images of the subfracture grain structure of (a) a quasi-static Marciniak

specimen and (b) a free formed EHF specimen. It can be seen that the quasi-static

specimen fractured with 45◦ angle shear deformation whereas the EHFF specimen

showed extensive localized deformation; comparison of thickness strain measurements

were discussed in Section 6.3.2 of Chapter 6.

Fig. A.3(a) and (b) show mosaic images at the apex of EHDF specimens formed into

40◦ and 45◦ conical die, respectively.

Closer examination of the grain structure of QS and EHF specimens are shown in

Fig. A.4. Fig. A.4(a) shows the anodized microstructure of QS deformed specimen.

It can be seen that although grains are clearly distinguishable, at large strain values,

tracking of grain boundaries is challenging due to the low contrast between each

grain. Fig. A.4(b) shows the microstructure of EHFF specimen formed with 6kV input

energy using 320µF capacitor. It can be seen that grains are significantly deformed
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(a)

(b)

Figure A.1: As-received microstructure of AA5182 in RD, TD, and ND, (a) polished and
(b) anodized.
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(a)

(b)

Figure A.2: Mosaic images of subfracture surface of (a) QS Marciniak specimen and (b)
EHFF specimen deformed with at 6.0kV input voltage.
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(a)

(b)

Figure A.3: Mosaic images of EHDF specimens formed into (a) 40◦ conical die with 10kV
input voltage and (b) into 45◦ conical die with 14kV input voltage. Both images were taken
at the apex, where greatest levels of major and minor strain were measured.

and patterns of large shear deformation are observable. Fig. A.4(c)-(f) show the

microstructure of EHDF specimens formed into 34◦ (c), 40◦ (d) and 45◦ (e,f) conical

dies with 9, 10 and 14kV input energies, respectively. Similar to Fig. A.4(b) a shear

deformation pattern can be seen among groups of grains. Moreover, the material

near the apex of AA5182-O specimens formed by EHF reaches the largest strain

values and also exhibits twin-like microstructure (Fig. A.4 (b)-(f)). These twin-like

grain structures are of interest due to the fact that, according to Gray [1–3], the

occurrence of twinning is possible even in case of high stacking fault energy alloys

(including Al-Mg alloys[1, 2]) when the material is deformed at extreme strain rates.

A.2 Transmission electron microscopy

Transmission Electron Microscopy (TEM) studies were carried out to investigate if the

twin-like observations in OM are actual twinning or not. Moreover, since the AA5182-

O alloy was safely deformed to larger strain values (as discussed in Chapter 3, 5, and

6.3.2), TEM studies were needed to investigate if dislocation density increases to

significantly larger values as a result of new sources being active at high-strain rates.
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(a) (b)

(c) (d)

(e) (f)

Figure A.4: Microstructure of specimens formed using (a) QS Marciniak, (b) EHFF at 6kV
input voltage, (c) 34◦ die formed EHF using 9kV input voltage, (d) 40◦ die formed EHF
using 10kV input voltage, (e) and (f) 45◦ die formed EHF using 14kV input voltage. Images
were taken at largest values of strain shown in Fig. 3.3 of Chapter 3.
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A.2.1 The effect of beam orientation

To study dislocation densities, care was taken to adjust the beam orientation so that

the images are taken where beams are aligned to [110] planes. This alignment is

an essential part of a proper TEM analysis. An example of such orientation effect is

shown in Fig. A.5. Fig. A.5(a) shows the diffraction pattern in a specimen deformed by

EHDF in a 40◦ conical die with 10kV input voltage and the two selected planes A and

B (shown with arrows). Fig. A.5(b) and (c) show the different dark field (DF) images

when the beam is aligned on either A or B planes, respectively. Fig. A.5(d) and (e)

show the bright field (BF) images taken at [011] orientation at different magnifications.

It can be seen that dislocation lines can be seen vividly from Fig. A.5(e) without any

bending contour.

A.2.2 Dislocation Density Measurements

Since most of the dislocations are visible at low index zone axis ([011] in aluminium),

all High Angle Annular Dark Field (HAADF) images were taken in such directions.

To measure dislocation densities, at least 5 images were used and local thickness

values were measured by electron energy loss spectroscopy (EELS) beam using Mal-

is/Egerton formula. Equation A.1 is used to measure dislocation density. The re-

ported dislocation density values are an average of at least 5 measurements along the

vertical and horizontal directions.

ρ =

∑
ny/

∑
Ly +

∑
nx/

∑
Lx

t
(A.1)

where ρ is the dislocation density, nx and ny are the number of times a horizontal

or vertical line crosses dislocation lines. Lx and Ly are the length of horizontal and

vertical lines and t is the average thickness of the studied region measured by EELS

beam.

Fig. A.6 illustrates how the mentioned method is used to measure the dislocation

density of as-received and deformed AA5182-O sheet specimens.
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A

B

(a)

(b) (c)

(d) (e)

Figure A.5: The effect of beam alignment on the observation of dislocation lines; (a)
diffraction pattern, (b) DF image at plane A, (c) DF image at plane B, (d) DF image at
[011] plane and (e) BF image from [011] plane.
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Figure A.6: Measurement of dislocation densities in as-received AA5182-O

Fig. A.7 shows the dislocation density measured for different studied specimens which

showed the highest value of formability improvement (refer to Chapter 5). Fig. A.7

shows the variation of dislocation density with effective strain for selected specimens.

All EHF specimens were chosen and TEM specimens were prepared at the exact grid

location where the largest strain value was measured. The EHDF-40 specimen was

deformed with 10kV input voltage and the EHDF-45 specimen was deformed into

the 45◦ conical die with 14kV input voltage. The QS Marciniak specimen that was

selected was deformed along the same biaxial strain path as the EHDF specimens.

It can be seen that the dislocation density increases with strain. It can be seen

from Fig. A.7 that dislocation density increases by an order of magnitude from as-

received to deformed specimens. More specifically, dislocation density increases from

3.59× 1013m−2 for as-received AA5182-O sheet to 3.23× 1014m−2 for QS specimen.

However, the changes of dislocation density with deformation process are insignificant

as it increases from 3.23 × 1014m−2 in quasi-static deformation to 3.70 × 1014m−2

in high-strain rate deformation. Although dislocation density increases with plastic

strain, it seems that either the material experienced a sort of relaxation phenomenon

that prevents intense dislocation density increase during EHF process or dislocations
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Figure A.7: Variation of dislocation densities of as-received AA5182-O sheet and specimens
deformed under QS Marciniak, EHDF-40 safely formed with 10kV input voltage and EHDF-
45 safely formed with 14kV input voltage with effective strain in different specimens.

where able to climb over obstacles and keep moving to facilitate further deformation.

A.2.3 Dislocation-second phase particles interaction

Fig. A.8 shows the interaction of dislocations and intermetallic particles which result

in improvement of hardening of the sheet material. It can also be seen that the Fe-Mn

enriched particles are larger in size as compared to Mg-Si enriched particles.

Fig. A.9 shows the brittle fracture of an Fe-Mn particle during QS deformation which

leads to void nucleation (refer to Chapter 6). The presence of a void can be seen

by the dark spot on the bright field image (Fig. A.9(a)) and by the absence of the

aluminium matrix in Fig. A.9(b).

According to Horstmeyer et al. [4], deformation at lower temperatures promotes both

cracking and debonding due to increased work hardening rates. Small particles (i.e.

Mg2Si) tend to be spherical or equiaxed and tend to cause inter-facial fracture due to

the pile-up of dislocations at the particle-matrix interface. Also, equiaxed particles

are less sensitive to the loading direction [5]. However, they tend to result in void

formation by debonding from the matrix [6, 7] which relates to dislocation kinetics

and can thus be considered strain-dependent [6]. Particle debonding can also be
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(a) (b)

Figure A.8: (a) Dislocations interaction with second phase particles (b) chemical analysis
of second phases showing Fe-Mn and Mg-Si enriched second phases.

(a)

El. Wt%
Mg 1.09
Al 58.26
Si 0.2
Mn 6.21
Fe 32.08
Ni 1.06
Cu 0.96

El. Wt%
Mg 5.49
Al 93.94
Mn 0.2
Fe 0.02

(b)

Figure A.9: Initiation of a void by cracking of an Fe-Mn enriched second phase particle;
(a) bright field image showing the void as a dark spot and (b) chemical analysis showing
the void by the absence of aluminium matrix.
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described as stress-controlled since the separation of the interface is dependent upon

the hydrostatic stress [8, 9]. It is noteworthy that the existence of particle debonding

was scarce in samples prepared either from QS or EHF specimens.

However, large particles with radius greater than 1µm (i.e. containing Fe and Mn) are

prone to cracking at lower strains [10] than smaller sub-micron particles (i.e. particles

containing Mg and Si). Also, nucleation occurs earlier for these large particles because

they contain more internal defects, have a larger interface and have irregular shapes.

The nucleation of large particles due to cracking can be described using a stress-

controlled model since this is a brittle-type fracture [7].
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Appendix B

Optical metallography sample preparation

B.1 Grinding and Polishing

Abrasive disks were used in successively finer steps so as to remove material mechan-

ically; the abrasive disks, lubricant, force and speed were chosen based on AA5182-O

hardness and brittleness. Table B.1 illustrates the steps taken to mechanically polish

samples. Care was taken to reduce side effects of pull-outs, comet tails and embedded

abrasive; between each step, samples were cleaned with running water, an industrial

cleaner and ultrasonic ethanol bath for 5 minutes to remove the residues of previous

steps especially from the fine gap made by shrinkage, although very small.

Table B.1: AA5182-O sample polishing steps

Step Grinding disk, abrasive Lub. DP/Lub. ratio Force, N Speed, rpm Time, min
1 SiC-Paper grit #400 Water - 25 300 until plane
2 MD-Largo, DP 9µm Blue 10/13 30 150 5
3 MD-Dur, DP 6µm Blue 10/13 30 150 4
4 MD-Mol, DP 3µm Red 10/14 25 150 3
5 MD-Nap, OPS 0.5µm OPS - 10 150 2

where the Blue, Red and OPS chemical composition is as follows:

• Blue Lubricant: 70-85% Ethanol, 5-15% Propanol, 5-15% Ethanediol.

• Red Lubricant: 70-85% Ethanol, 5-15% Propanol, 5-15% Propylee glycol, 5-15%

Ethanediol.

• OPS: 30-50% Butane, 30-50% Ethanol, 5-15% Propane, 1-5% Propanol, <3%

Diamond.
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B.2 Anodizing, Etching and Electro-polishing

Table B.2 summarizes the literature survey conducted on the best etchant used for

5xxx-series aluminium alloys. In this dissertation, only Barker solution was used to

anodize OM specimens (see Chapter 6 and A).

Table B.2: Most common etchant used for AA5xxx-series metallography observation

Anodize/Etchant Composition Applying method Alloy Ref.
40% (H3PO4) (Phosphoric acid) AA5754-O [11]

10% (H3PO4) (Phosphoric acid)
Temp=50◦C, 1-2min,
Can be used for HT samples:
Shear band decohesion)[12]

AA5182
AA5754

[12, 13]

40ml H2O, 32ml H3PO4, 12ml HF,
68ml Diethylene Glycol Mono-
Ethyl Ether (C6H14O3),
3g Oxalic Acid (powder),
5.2g Boric Acid (powder).

Temp=30◦C,
30V DC,
1-2 A,
1-1.5 min

AA5754 [14]

4-5ml HBF4 (48% conc.),
200ml H2O.

Barker’s reagent,
Same procedure as above,
but with 20V DC

AA5754 [15, 16]

6% HCl, 21% HNO3, 5% HF.
Modified Keller’s reagent
Pour on samples,
reveal macro-structure

AA5754 [14, 16]
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