University of New Hampshire University of New Hampshire Scholars' Repository

Doctoral Dissertations

Student Scholarship

Spring 1959

KINETICS AND MECHANISM OF THE ACID-CATALYZED HYDROLYSIS OF ARENEBORONIC ACIDS

KEVORK VARTAN NAHABEDIAN

Follow this and additional works at: https://scholars.unh.edu/dissertation

Recommended Citation

NAHABEDIAN, KEVORK VARTAN, "KINETICS AND MECHANISM OF THE ACID-CATALYZED HYDROLYSIS OF ARENEBORONIC ACIDS" (1959). *Doctoral Dissertations*. 760. https://scholars.unh.edu/dissertation/760

This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact nicole.hentz@unh.edu.

NAHABEDIAN, Kevork Vartan. KINETICS AND MECHANISM OF THE ACID-CATALYZED HYDROLYSIS OF ARENEBORONIC ACIDS.

University of New Hampshire, Ph. D., 1959 Chemistry, organic

KINETICS AND MECHANISM OF THE ACID-CATALYZED HYDROLYSIS OF ARENEBORONIC ACIDS

BY

KEVORK VARTAN NAHABEDIAN

 (\cdot)

S. B., Massachusetts Institute of Technology, 1952 M. S., University of Vermont, 1954

A THESIS

Submitted to the University of New Hampshire In Partial Fulfillment of The Requirements for the Degree of Doctor of Philosophy

Graduate School

Department of Chemistry

June, 1959

This thesis has been examined and approved.

0

ø

14mg J. Kuivila alexanden R. ane Paul R. Joness Date May 29,1959

Acknowledgement

The author is indebted to and thanks Professor Henry G. Kuivila both for his direction of this thesis and his influence on the author's professional development.

Thanks are also extended to the Air Force Office of Scientific Research and the Office of Naval Research for their financial assistance in part of this work.

Kennk V. nahaledian

Table of Contents

	Page
Acknowledgement	1
List of Tables	111
List of Figures	iv
INTRODUCTION	1
RESULTS and DISCUSSION	3
I. Kinetic Order of the Reaction	3
II. Aqueous Sulfuric Acid	3
A. Course of the reaction B. Dependence of rate on acidity C. Mechanistic significance of the rate	3 10
correlation D. The solvent hydrogen isotope effect	22 25
composition	27
III. Formic Acid Solutions	33
IV. Aqueous Perchloric and Phosphoric Acids	38
V. The Effect of Substituents on Reactivity	46
VI. The Mechanism of the Reaction	49
EXPERIMENTAL PART	56
I. Materials	56
II. Kinetic Procedures	58
A. Temperature control B. Aqueous sulfuric acid C. Deuterosulfuric acid solutions D. Solutions verying in solvent hydrogen	58 58 61
isotope composition E. 94.8% Formic acid - 4% EGDE - 1.2% water F. Aqueous perchloric and phosphoric acids	61 62 63
III. Acidity Functions in the Formic Acid Solutions	63
TABLES OF DATA	66
Bibliography	125

List of Tables

		Page
1.	Pseudo first-order rate constants in aqueous sulfuric acid	5
2.	Values of log k _{obs} , versus -H _o slopes for aqueous sulfuric acid	18
3.	Activation energies and entropies for aqueous sulfuric acid	20
4.	Values of log k _{obs} , versus -H _o slopes for protodedeuteration	21
5.	Comparison of protodedeuteration and proto- deboronation rates	22
6.	Solvent hydrogen isotope effect	26
7.	The effect of solvent hydrogen isotope composi- tion	29
8.	Rate constants in the medium 94.8% formic acid - 4% EGDE - 1.2% water	36
9.	Pseudo first-order rate constants for aqueous perchloric acid	39
10.	Pseudo first-order rate constants for aqueous phosphoric acid.	41
11.	The effect of substituents on reactivity	48
12.	Pertinent spectral data for aqueous solutions	60
13.	Acidity functions for solutions of sodium formate	65
14.	Acidity functions for solutions of sulfuric acid	65

List of Figures

Page

1.	Rate plot for run II _s -9	4
2.	Spectra of m-nitrobenzeneboronic acid and nitrobenzene	9
3.	Log k_{obs} , versus $-H_0$ for $X = p-CH_30$ and $p-CH_3$	13
4.	Log k _{obs.} versus -H _o for benzeneboronic acid	1 4
5.	$Log k_{obs}$, versus -H _o for X = p-F and p-Br	15
6.	Log k _{obs.} versus -H _o for m-fluorobenzene- boronic acid	16
7.	$Log k_{obs}$, versus -H _o for X = m-Cl and m-NO ₂	17
8.	The effect of solvent hydrogen isotope compo- sition	30
9.	kobs. versus -Ho: formic acid solutions	35
10.	Log $k_{obs.}$ versus -H _o for p-methoxybenzene- boronic acid: T = 25°C.	42
11.	Log $k_{obs.}$ versus -H _o for p-methoxybenzene- boronic acid: T = 60° C.	43
12.	Rate plot for run I _{ph} -9	44
13.	Rate plot for run I _{ph} -5	45
14.	The effect of substituents on reactivity	47

INTRODUCTION

For a number of years work in these laboratories has been directed toward kinetic studies on the substitution reactions of areneboronic acids. In particular, the reactions involving displacement of the boronic acid group by halogen²⁴ and by hydrogen peroxide²³ have been given the most attention

$$\operatorname{Ar-B(OH)}_{2} + X_{2} + H_{2}O \longrightarrow \operatorname{ArX} + \operatorname{HBr} + H_{3}BO_{3}$$
 1

$$Ar-B(OH)_2 + H_2O_2 - ArOH + H_3BO_3$$
 2

(reactions 1 and 2). The results obtained demonstrate that, at least for the halodeboronation reaction, substitution of the boronic acid group results from an electrophilic attack by the displacing species on the aromatic carbon atom to which the boronic acid function is bonded. The bromodeboronation of meta- and para-substituted benzeneboronic acids²⁵ has therefore offered some insight into the effect of substituents in the ring on the reactivity of aromatic compounds toward an electrophile.

Ainley and Challenger¹ have reported that the hydrolysis of benzeneboronic acid is catalyzed by concentrated sodium hydroxide, by zinc and cadmium bromides, and by concentrated hydrochloric acid. The uncatalyzed reaction in water alone requires a temperature of 150° C. The hydrolysis can be represented by the equation

$$x \longrightarrow B(OH)_2 + H_2 O \longrightarrow x \longrightarrow H^2 + H_3 BO_3$$
 3

The acid-catalyzed reaction is especially of interest because

it appears to require an electrophilic substitution by a pro-² tonating species. Assuming, then, that the mechanism can be elucidated, a study of the effect of ring substituents on reactivity would offer additional insight into the applicability to aromatic electrophilic substitution reactions of Hammetttype linear free energy relations⁴. In addition, since the reaction can be studied in concentrated mineral acid solutions, a knowledge of its mechanism might allow the determination of the kinetic behavior of acid catalysts in these strongly acidic media. It was for these reasons that this research was undertaken.

The kinetics of the acid-catalyzed hydrolysis of nine areneboronic acids $(X = p-CH_30, p-CH_3, p-F, H, p-Br, m-F,$ m-Cl, m-CF₃ and m-NO₂) have been studied. Dependences of rate on the Harmett acidity function^{14,31} (see below) have been determined in the media aqueous sulfuric, perchloric and phosphoric acids, and in the solvent mixture formic acid - ethylene glycol dimethyl ether (EGDE) - water. Energies and entropies of activation have been obtained for the reactions of three areneboronic acids (X = p-CH₃0, H, m-F) in aqueous sulfuric acid solutions. The solvent hydrogen isotope effect in aqueous sulfuric acid has been determined for four of the substrates (X = p-CH₃0, p-CH₃, p-F and m-F), and the effect of solvent hydrogen isotope composition on the rate has been determined for the hydrolysis of p-methoxybenzeneboronic acid in 6.31 molar aqueous sulfuric acid at 25° C.

RESULTS and DISCUSSION

.

0

• •

o

0

С

e

I. Kinetic Order of the Reaction

Each of the areneboronic acids studied has an ultraviolet absorption spectrum sufficiently different from that of its hydrolysis product so that a spectrophotometric method of analysis proved convenient for following the rates. The method is described in detail in the experimental section.

Except for the one run mentioned below, all of the rate experiments reported here showed first-order kinetics, that is, the data fit the rate equation

 $k_{obs.}t = 2.303 \log C + constant$ (4) where k is the pseudo first-order rate constant and C is the concentration of areneboronic acid at time t. Figure 1 shows a typical first-order rate plot for m-nitrobenzeneboronic acid.

II. Aqueous Sulfuric Acid

Rates in aqueous sulfuric acid have been measured with all nine areneboronic acids at 60° C. These acids vary sufficiently in reactivity so that the region of acidities 3-97% by weight H_2SO_4 could be covered. For three of these acids $(X = p-CH_3O, H \text{ and } m-F)$ rates at other temperatures have also been obtained. All of the pertinent data are listed in table 1. A. Course of the reaction

In aqueous sulfuric acid solutions, especially in the more concentrated regions, sulfonation is a possible side reaction. Gold and Satchell¹⁰ have measured the sulfonation rates of benzene and have reported that, in 77.5% H₂SO₄ at 25° C., the first-order rate constant is 2.6 x 10⁻⁷ second⁻¹. If the sulfonation rate of benzene is 100 times greater at

ن

Table 1

Pseudo first-order rate constants, k_{obs}., for aqueous sulfuric

e

run #	Temp., ^o C.	<u>% н₂so₄</u>	-H ₀	log k _{obs} +7
	<u>x</u> =	<u>H (I)</u>		
I _s -21 22 23 24 25 26 28 30 31 32 34 36 30 41 23 44 56 46 46 48	60 25 40	71.1 70.9 60.0 67.4 67.5 74.4 62.6 62.6 54.7 54.4 49.8 50.3 44.8 445.3 445.3 42.9 41.0 72.4 70.3 75.0 72.6 70.8	5.65 4.14 4.14 5.16 1.13 6.19 2.72 2.60 4.40 5.19 2.72 2.60 5.72 5.72 5.72 5.72 5.72 5.72 5.72 5.72	3.842 3.864 2.558 2.558 2.558 2.399 3.407 4.434 4.427 2.849 2.843 2.076 2.046 1.657 1.674 1.383 1.355 1.466 1.303 1.123 0.967 3.067 2.674 2.316 3.632 3.310 3.014
	X = m	-NO ₂ (II)		
11 ₈ - 3 5 6 7 8 9 10 11 12 13	€0 ∘	92.1 91.6 89.3 89.4 97.0 96.7 88.5 88.5 88.5 83.0 82.7 78.8	8.30 8.26 8.04 8.05 8.66 8.83 7.97 7.97 7.37 7.33 6.74	2.783 2.772 2.601 2.601 3.138 3.162 2.515 2.508 1.887 1.674 1.458

acid

Table 1 (cont.)

run [#]	Temp., °C.	% H2SO4	-H ₀	log kobs.+7
<u></u>	<u> </u>	m-NO ₂ (II) (co	ent.)	o
11 ₈ -14 15 16	60	78.5 73.7 73.6	6.69 6.00 5.99	1.423 0.839 0.883
	<u>X =</u>	p-Br (III)		
III ₈ - 1 2 3 5 6 7 8	60	74.5 69.4 65.2 77.0 61.2 53.4 47.7	6.12 5.43 4.83 6.47 4.27 3.47 2.96	3.789 3.085 2.538 4.111 2.122 1.375 0.953
	<u>X</u> =	<u>m-F (IV)</u>		
IV _s - 1 2 3 4 5 6 19	60	83.8 78.5 74.1 68.5 62.2 55.2 69.4	7.48 6.70 6.06 5.30 4.41 3.64 5.43	4.196 3.423 2.739 2.007 1.403 0.821 2.152
20 7 6	25	70.3 83.3 80.9	5.55 7.64 7.29	2.193 2.817 2.318
10 11 12	40	79.0 84.2 82.4 80.4	7.00 7.67 7.42	1.960 3.520 3.180
13 14	69.4	64.9 61.0	4.76	2.068
16 17 18	79.4	65.4 61.3 57.4	3.80 4.78 4.24 3.83	2.499 2.136 1.821
	X =	m-CF ₃ (V)		
V _s - 6	60	55.4	3.66	0.499

Table 1 (c	ont.)			
run [#]	Temp., ^O C.	<u>% н₂so₄</u>	-H _o	log kobs.+7
	<u>X</u> =	<u>p-F (VI)</u>		
VI _s - 1 2 3 4	60	64.7 60.1 54.9 49.5	4.76 4.14 3.62 3.12	3.455 2.938 2.492 2.039
	X =]	p-CH3 (VII)		
VII _s - 1 2 3 4	60	55.5 49.6 40.7 28.6	3.67 3.13 2.38 1.53	3.641 3.100 2.363 1.455
	X = p-	^{CH} 3 ^O (VIII)		
VIII <mark>s-</mark> 1 2 3 4	60	29.6 20.3 10.1 5.14	1.60 1.00 0.37 -0.11	3.748 3.061 2.362 1.879
5 8 9	40	3.11 30.1 24.7	-0.37 1.62 1.28	1.603 2.891 2.476
10 HG K_s- 1* 2 3 4 5	25	20.1 16.1 29.4 40.6 50.4 54.6	0.95 0.67 1.56 2.37 3.21 3.63	2.131 1.073 2.095 3.075 3.969 4.403
* work d	lone by H. G. Ku	ivila		
	<u>X</u> =)	m-Cl (IX)		

λ	(=	m-Cl	(IX)
-	_		

IX ₈ - 1	60	59.3	4.05	1.094
2		62.9	4.51	1.411
3		66.3	4.99	1.686
4		69.9	5.50	2.075
56		74.5 79.9	6.11 6.91	2.748 3.523

 60° C., then, since the boronic acid group is deactivating ($\sigma_m = 0.006$, $\sigma_p = 0.454$)¹⁹, the value 3 x 10⁻⁵ second⁻¹ can be considered a maximum for the sulfonation rate constant of either benzene or benzeneboronic acid. The hydrolysis rate constant of benzeneboronic acid in 74.5% H₂SO₄ at 60°C. is 2.7 x 10⁻³ second⁻¹, hence the hydrolysis should be at least 100 times faster than the sulfonation of either benzene or benzeneboronic acid in this medium. Indeed, the spectrum of a kinetic sample taken after twenty half-lives showed that the extent of sulfonation was less than 1%.

Sulfonation was found to interfere with the kinetics of hydrolysis in only one experiment reported here: with mfluorobenzeneboronic acid in 83.9% H₂SO₄ at 60°C., the absorbances of kinetic samples taken after a half-life began to level off and then, after two half-lives, began to increase. Because every position available for sulfonation in this boronic acid is ortho- or para- to the boronic acid group ($\sigma_p = 0.454$)¹⁹, or meta- to the fluorine atom ($\sigma_m = 0.337$)¹⁹, sulfonation of fluorobenzene must be the side reaction. Hence the initial slope of a log C versus time plot was assumed tobe a measure of the hydrolysis rate of m-fluorobenzeneboronic acid under the conditions of the experiment.

That the hydrolysis of the areneboronic acids^o in aqueous sulfuric acid media is quantitative is illustrated in figure 2, which shows the spectra of nitrobenzene and m-nitrobenzeneboronic acid. The circles represent the spectrum of a kinetic sample taken after essentially infinite time from a rate experiment in 97% H₂SO₄; the curve represents the spectrum expected.

0

Figure 2

٥

Spectra of m-nitrobenzeneboronic acid and nitrobenzene

Table 1 lists only one rate constant for m-(trifluoromethyl)-benzeneboronic acid determined in 55.4% H₂SO₄. Experiments at higher acidities showed erratic kinetics. Evolution of hydrogen fluoride was detected, and flasks containing the kinetic solutions became etched. The erratic kinetics were therefore attributed to hydrolysis of the trifluoromethyl group in the substrate. With the one experiment reported, firstorder kinetics were observed through 30% reaction, and the observed rate constant was assumed to be a measure of the hydrolysis rate of the boronic acid function in the substrate.

B. Dependence of rate on acidity

The Hammett indicator acidity function^{14,31} is a quantitative measure of acidity derived from acid-base equilibria of the type

$$B + H^+ = BH^+$$
 5

where B is an uncharged Bronsted base and BH+ is its conjugate acid. The function is defined by the equation

$$H_{o} = pK_{BH^{+}} - \log \frac{C_{B}}{C_{BH^{+}}}$$
(6)

where C_B and $C_{BH^{+}}$ are the spectrophotometrically determined concentrations of B and BH⁺, and $K_{BH^{+}}$ is the thermodynamic ionization constant of the acid BH⁺ referred to infinite dilution in water. Since $pK_{BH^{+}}$ is defined by

$$pK_{BH^+} = -\log K_{BH^+} = -\log \frac{C_B f_B}{C_{BH^+} f_{BH^+}} -\log a_{H^+}$$
(7)

(f = molar activity coefficient), the definition of H_0 reduces to

$$H_{o} = -\log a_{H^{+}} \frac{f_{B}}{f_{BH^{+}}}$$
(8)

In general the value of H_0 is independent of the dissolved base and depends only on the composition of the acidic solution. Hence the function H_0 is assumed to measure the ability of an acidic medium to protonate a dissolved neutral base.

The following discussion illustrates the importance of the acidity function in kinetic and mechanistic studies of acid-catalyzed reactions. If a given acid-catalyzed reaction, in which a single reactant is converted into products, has a transition state composed of a reactant molecule and a proton, i. e.

$$S + H^{+} \xleftarrow{K^{*}} \left[S \xrightarrow{+} H \right]^{*} \xrightarrow{k_{1}} \text{ products}$$
 9
transition state

the observed rate constant can be expressed by the equations

$$-\frac{dC_{S}}{dt} = k_{1}K^{*} a_{S}a_{H^{*}} = k_{obs}.C_{S}$$

log k_{obs}. = log k_{1}K^{*} + log a_{H^{*}} + log \frac{f_{S}}{f^{*}} (10)

Substitution of equation (8) into equation (10) yields

$$\log k_{obs.} = \log k_1 K^* - H_0 + \log \frac{f_s f_{BIF}}{f^* f_B}$$
 (11)

Since S and $[S^+H]^*$ are similar in charge to B and BH⁺, respectively, the activity coefficient ratio in equation (11) can be expected to remain constant with changing acidity. If this condition obtains, plots of log k_{obs} , against -H_o should be linear with unit slope. In figures 3, 4, 5, 6 and 7 the logarithms of the pseudo first-order rate constants, $k_{obs.}$, for runs in aqueous sulfuric acid are plotted against the acidity function. The values of H_o, shown in table 1, are for the indicated temperatures and are taken from the data of Gelbshtein, Sheglova and Temkin⁸. Subject to the qualifications described and discussed below, these plots establish the correlation of rate by the acidity function.

To simplify further discussion, values for the log k_{obs} , versus $-H_0$ slopes are shown in table 2. These slopes are generally non-unit in value. At 60°C, and for media weaker in acidity than about 70% H_2SO_4 the values of the slopes appear to be decreasing with decreasing reactivity of the substrate S.

Other characteristics of the correlation for this reaction are perhaps unique among those studied thus far. For example, for a given substrate a change in slope occurs on passing from media weaker to media stronger than about 70% H_2SO_4 (-H₀ = 5.5). This change in slope on passing from the weaker to the stronger acid region is emphasized by the dependence of slope on temperature. In the lower acid region the slope appears to be independent of temperature, while in the higher acid region the slope appears to decrease with increasing temperature (for example see X = m-F).

The data in table 1 allow the determination of the Arrhenius activation energies and entropies for $X = p-CH_30$, H and m-F. The values of ΔE^* , ΔH^* and ΔS^* obtained by plotting the logarithms of kobs. against the reciprocal of temp-

Log k_{obs} . versus -H_o for X = p-CH₃O and p-CH₃

Figure 3

0

٥

Log k_{obs} , versus $-H_0$ for X = p-F and p-Br

Log k_{obs} . versus $-H_0$ for X = m-Cl and $m-MO_2$

Figure 7

Table 2

° .

•

.

•

•

<u>x</u>	Temp., ^o C.	Acid region % H ₂ SO ₄	log k _{obs.} vsH _o slope
p-CH30	60 40 25	3-30 20-30 16-55	1.10 1.15 1.15
р -СН 3	60	29- 56	1.03
p-F	60	50-65	0.86
H	60 40 25	41-75 71-71 70-74	0.90 1.10 1.16
p-Br	60	4 8- 70 70-84	0.87 1.0
m-F	60 25 69.4 79.4	55-70 70-84 80-84 79-83 57-65 57-65	0.72 1.0 1.14 1.35 0.69 0.71
m-Cl	60	59-70 70-80	0.65 1.0
m-NO ₂	60	75-97	o .8 4

Values of log kobs. versus -Ho slopes for aqueous sulfuric acid

erature are listed in table 3. Values of log k_{obs} , were read from plots of log k_{obs} . versus percent H_2SO_4 .

There are two outstanding features evident in these activation data. In the weaker acid region (below 70% H₂SO₁) the activation energies are remarkably independent of substrate. Differences in reactivity appear to result from differences in the activation entropies. In this regard the data are similar to results obtained from a study of the protodedeuteration of alkylbenzenes in sulfuric acid - trifluoroacetic acid media²⁸. The second feature arises from a comparison of the activation energies and entropies in the weaker and in the stronger (above 70% H2SOL) acid media. It is evident that the activation energy drops remarkably, even for a given substrate, on passing from the weaker to the stronger acid region, while the activation entropy continues to decrease. This change in activation energy, combined with the change in the value of log kobs. versus -Ho slopes, clearly indicates that two kinetically distinguishable regions exist in aqueous sulfuric acid media for the hydrolysis of areneboronic acids.

Gold and Satchell have studied the kinetics of the protodedeuteration of several deuteroaromatic compounds in aqueous sulfuric acid solutions at 25° C., and have found that the rates are correlated by the acidity function. Of particular interest are their results with the substrates d-benzene⁹, p-d-toluene¹¹ and p-d-anisole¹². In order to compare the relative rates of deboronation and dedeuteration, the data for dedeuteration have been plotted against -H_o values from the

Table 3

. Barrow St.

٠

Activation energies and entropies for aqueous sulfuric

300

acid (T 60°C.)

X	% H2SO4	AE [#] Kcal. mole	$\Delta H^{*} \frac{\text{kcal.}}{\text{mole}}$	∆S [#] e.u.
р-СН ₃ 0	20 25 30	21.8 21.4 21.3	21.1 20.7 20.6	-13.7 -13.0 -11.7
	average:	21.5	20.8	-12.7
m- F	- 58 64	22.8 22.7	22.1 22.0	-19.7 -17.6
	average:	22.8	22.1	-18.7
	81 83	18.4 17.1	17.7 16.4	-20.3 -22.9
	average:	17.8	17.1	-21.6
H	72 74	18.3 18.1	17.6 17.4	-19.8 -18.7
	average:	18.2	17.5	-19.3

same source as those in table 2. In contrast to the nonequal slopes which Gold and Satchell obtained from plots in • which older values¹⁴ of $-H_0$ were used, the slopes obtained with the newer values of $-H_0$ are essentially equal and are shown in table 4. The data for dedeuteration summarized in table 4 cover the acid region 28-83% H_2SO_4 continuously. A comparison of these slopes with those in table 2 illustrates

Table 4

Values of log kobs. versus -Ho slopes for protodedeuteration

Substrate	Acid region (-H _o)	log k _{obs.} vsH _o slope
d-benzene	5.2-7.6	1.26
p-d-anisole	1.5-3.4	1.28

the difference in the nature of the correlation of rate by the acidity function for the two reactions. While the log $k_{obs.}$ versus $-H_0$ slopes for dedeuteration appear to be independent of substrate reactivity, below 65% H_2SO_4 the slopes for deboronation decrease with decreasing substrate reactivity. In addition the slopes for dedeuteration are greater than those for deboronation. The rate of deboronation relative to dedeuteration, k_{dB}/k_{dD} , should therefore decrease with increasing acidity. Values of k_{dB}/k_{dD} are shown in table 5.

Ar in the substrate Ar-Y	-H _o	kdB/kdD
с6н5 р-сн ₃ ос6н _ц	6.40	15.1
	5.60	17.8
	3.40	20.0
	1.60	36.3

Comparison of protodedeuteration and protodeboronation rates

C. Mechanistic significance of the rate correlation

Following Zucker and Hammett⁴⁰, the assumption has generally been made that correlation of rate by the acidity function requires a mechanism in which an acid-base equilibrium involving the substrate is followed by a unimolecular ratedetermining step in which the conjugate acid of the substrate proceeds to products. This mechanism, designated A-1, is illustrated by equations 12 and 13. The Bronsted rate equation

$$S + H^+ \rightleftharpoons SH^+$$
 (equilibrium) 12
(A-1)
 $SH^+ \stackrel{k_2}{\longrightarrow} products + H^+ (rate-determining)$ 13

for this mechanism is equation (14) in which $K_{SH^{+}}$ is the ther-

$$k_{obs.} = \frac{k_2}{K_{SH^+}} a_{H^+} \frac{f_S}{f^{\#}} = -\frac{1}{C_S} \frac{dC_S}{dt}$$

$$\log k_{obs.} = \log \frac{k_2}{K_{SH^+}} + \log a_{H^+} + \log \frac{f_S}{f^{\#}}$$
(14)

modynamic ionization constant of the acid SH⁺. Substituting equation (8) into equation (14) yields equation (15) which is similar to (11) above.

Table 5

$$\log k_{obs.} = \log \frac{k_2}{K_{SH^+}} - H_0 + \log \frac{f_S f_{BH^+}}{f^* f_B}$$
 (15)

Recently²⁶ attention has been directed toward the possibility that, in aqueous mineral acid solutions, reactions resulting from a rate-determining protonation of substrate might also show rate dependence on the acidity function. Mechanisms involving rate-determining protonation are designated $A-S_E^2$ and can be represented generally by the equations

$$S + H^{+} \xrightarrow{k_{1}} SH^{+}$$
 (rate-determining) 16
 $SH^{+} + Y \xrightarrow{k_{2}} products + H^{+}$ (fast) 17

The kinetic expression obtained by applying the Bronsted rate equation to this mechanism depends on how one chooses to represent the solvated proton in aqueous solution. If the solvated proton is assumed to be hydronium ion, one obtains

$$k_{obs.} = -\frac{1}{c_{S}} \frac{dc_{S}}{dt} = k_{1}a_{H_{3}0^{+}} \frac{f_{S}}{f^{*}}$$

$$k_{obs.} = k_{1}c_{H_{3}0^{+}} \frac{f_{S}f_{H_{3}0^{+}}}{f^{*}}$$
(18)

On the other hand, if one chooses to associate no structural significance to the nature of proton solvation in aqueous media, the Bronsted rate expression becomes

$$k_{obs.} = k_1 a_{H^+} \frac{f_s}{f^*}$$
(19)

Equation (19) is similar to equations (14) and (10) above,

and shows that, provided the activity coefficient ratio f_S/f^* changes similarly to the ratio $f_B/f_{\rm BH^+}$ with changing acidity, a reaction proceeding by the A-S_E² mechanism will show rates which parallel the acidity function. However, if instead the activity coefficient ratio shown in equation (18) remains constant with changing acidity, the rates will be correlated by the molar concentration of hydronium ion. Whether the rate of a given A-S_E² reaction is correlated by the acidity function or by the concentration of hydronium ion therefore depends on whether the behavior of f[#] with changing acidity parallels that of $f_{\rm BH^+}$ or of $f_S f_{\rm H_30^+}$, respectively. In this regard it should be noted that Deno and Perizzolo⁵ have suggested that the behavior of the activity coefficient of a cation with changing acidity depends more on the disposition of the charge in the ion than on the composition of the ion.

It is apparent from the above discussion that until the kinetic requirements of $A-S_E^2$ reactions in aqueous mineral acid solutions are determined, correlation of rate by the acidity function alone cannot serve as a means for distinguishing between A-1 and $A-S_E^2$ mechanisms.

Experimental techniques which allow such a distinction are available, however. These other techniques take advantage of an inherent difference in the two mechanisms. In the A-1 mechanism the protonation of the substrate occurs in an equilibrium which precedes the rate-determining step, while in the $A-S_E^2$ mechanism the protonation of the substrate is the rate-determining step. An A-1 mechanism should therefore

show (1) specific hydrogen ion catalysis^{26,40}, (2) rates faster in deuterium oxide as solvent than in protium oxide^{33,38}, and (3) a dependence of rate on the composition of D_20 -H₂0 mixtures which is predictable by the Gross-Butler theory^{30,34}. A reaction proceeding by the A-S_E² mechanism, however, should show (1) general acid catalysis under appropriate conditions²⁶, (2) rates in deuterium oxide as solvent either smaller than or equal to rates in protium oxide^{27,38}, and (3) a dependence of rate on the composition of D_20 -H₂0 solvent mixtures which is perhaps linear²¹ but in any event is not predicted by the Gross-Butler theory.

Each of these three criteria have been investigated. The results are described and discussed below.

D. The solvent hydrogen isotope effect

Rates of hydrolysis of four areneboronic acids (X = p-CH₃O, p-CH₃, p-F and m-F) have been measured in solutions of deuterium sulfate in deuterium oxide at a temperature of 60° C. Values of the solvent hydrogen isotope effect, $k_{\rm H}/k_{\rm D}$, for a given percent by weight acid, are shown in table 6.

In section C were listed three experimental criteria which would allow one to distinguish between the A-1 and $A-S_E^2$ mechanisms. According to the second criterion, the k_H/k_D ratio for an A-1 reaction would have a value less than unity. The values of k_H/k_D shown in table 6 strongly suggest, therefore, that the hydrolysis of areneboronic acids does not occur by the A-1 mechanism.

An interesting feature is illustrated by the values of $k_{\rm H}/k_{\rm D}$ for X = m-F. Above 68% acid the value of this ratio

appears to be increasing and then, above 72% acid, leveling off. This is exactly the region of acidity in which the break in the correlation of rate by the acidity function and the change in the value for the activation energy occur. Therefore the solvent hydrogen isotope effect for X = m-F further substantiates the existence of two kinetically distinguishable acid regions for the hydrolysis of areneboronic acids in aqueous sulfuric acid.

. . . .

Table 6

<u>x</u>	% Acid	$\frac{k_{\rm H}}{k_{\rm D}}$
p-CH30	22.4 32.5	2.02 1.93
p-CH3 ^a	40 45 50 55	1.60 1.64 1.69 1.74
p-F	60.6 65.4	2.16 2.27
_{т-} ғъ	64 68 72 7 6 80	2.40 2.48 2.68 2.99 2.99

Solvent hydrogen isotope effect

a. k's interpolated from log k versus Ho plots

b. k's interpolated from log k versus percent acid plots
E. The effect of solvent hydrogen isotope composition

A theory for the effect of composition of H_2O-D_2O solvent mixtures on reaction rates and equilibria has been developed by Gross and Butler, and has recently been evaluated by Purlee³⁴. The theory relates acid-base equilibrium constants and rates of certain reactions to the activities of protons and deuterons in the H_2O-D_2O solvent mixtures.

For reactions in which an acid-base equilibrium involving the substrate precedes the rate-determing step and in which the rate-determing step does not show an appreciable solvent isotope effect (i.e. A-1 and some A-2 reactions), the theory shows that the effect of solvent hydrogen isotope composition is described by equation (20) (page 28). Since $(a_{H_20})_n = (1-n)^2$, $(a_{D_20})_n = n^2$ and $L = 11.0^{-3/4}$, equation (20) reduces to equation (21).

The effect of solvent hydrogen isotope composition has been determined for p-methoxybenzeneboronic acid in 6.31 molar sulfuric acid at a temperature of 25° C. The observed rate constants, k_n , are tabulated in table 7, and are plotted against n in figure 8. The broken line describes values of k_n calculated according to equation (21).

That equation (21) does not apply to the hydrolysis reaction is clearly demonstrated by figure 8. Instead the data fit the equations

$$k_n = k_H(1-n) + k_D n \tag{22}$$

$$k_n = k_H (a_{H_20})_n^{\frac{1}{2}} + k_D (a_{D_20})_n^{\frac{1}{2}}$$
 (23)

The Gross-Butler equation

$$\frac{k_{n}}{k_{H}} = \frac{1}{Q'(n)} \left[(a_{H_{2}0})_{n}^{\frac{1}{2}} + \frac{k_{D}(a_{D_{2}0})_{n}^{\frac{1}{2}}}{k_{H}(L)^{\frac{1}{2}}} \right]$$
(20)

where

a = activity $n = \text{atom fraction of deuterium in the solvent} = \frac{D}{H + D}$ $k_H = \text{observed rate constant when } n = 0$ $k_D = \text{observed rate constant when } n = 1$

Q'(n) is a function of the activities of the various isotopic solvent species. Its definition and values at various temperatures are given by Purlee³⁴

$$L = \frac{(a_{H_30^+})^2 (a_{D_20})^3}{(a_{D_30^+})^2 (a_{H_20})^3}$$

$$k_{n} = \frac{1}{Q'(n)} \left[k_{H} + n \left(\frac{k_{D}}{3.316} - k_{H} \right) \right]$$
 (21)

Table 7

run	n	$k_n \times 10^4 \text{ sec.}^{-1}$
VIII _{HD} -1	0	3.45
¹¹¹ 5	1.00	0.940
6	•799	1.45
7	•598	2.02
8	•799	1.54
9	•598	1.96
10	.498	2.20
1 1	.221	3.02
12	.443	2.42

The effect of solvent hydrogen isotope composition

This lack of correlation by the Gross-Butler equation satisfies the second criterion for the $A-S_E^2$ mechanism listed in section C above, and further substantiates the non-applicability of the A-1 mechanism.

There is a third possible mechanism, of the A-2 type, which can be disposed of at this time. This mechanism has two steps: the first a rapidly established acid-base equilibrium in which the conjugate acid of the substrate is formed, the second a rate-determining proton abstraction from the conjugate acid intermediate; it can be represented by the equations

$$Ar - B(OH)_{2} + H^{+} = \begin{bmatrix} OH \\ B - OH \\ H \end{bmatrix}^{+}$$
24

$$\begin{bmatrix} 0H \\ Ar'_{B}-0H \\ H \end{bmatrix}^{+} base = \begin{bmatrix} 0H \\ Ar'_{B}-0\cdots H\cdots base \end{bmatrix}^{+}$$
transition state
$$ArH + HBO_{2} + H-base^{+} \longleftarrow$$
25

The effect of solvent hydrogen isotope composition

Figure 8

The boronic acid function has two hydrogens which probably equilibrate rapidly with the solvent. Since a transfer of one of these protons occurs in the transition state, this mechanism does not require correlation of the solvent hydrogen isotope composition effect by the Gross-Butler equation. Purlee³⁴ has shown that a mechanism of this type has k_n values at least as large as those predicted by equation (20). Figure 8 shows, however, that the values of k_n are substantially lower than those predicted by equation (20).

Another experimental fact also rules out an A-2 type mechanism. According to the Hammett-Zucker hypothesis an A-2 reaction occurring in aqueous mineral acid should show correlation of rate by the concentration of hydronium ion. Figure 2 shows that for $X = p-CH_{30}$ the rate of hydrolysis in a diagnostic region of acidities $(3-30\% H_2SO_4)$ is correlated by the acidity function and therefore not by the concentration of hydronium ion.

The linear dependence of k_n on n deserves further comment. To the author's knowledge such a linearity has previously been observed for only one reaction, and that is the acid-catalyzed mutarotation of glucose¹³. Two mechanisms might account for this linear relationship. These are a concerted A-2 type mechanism and, of course, the A-S_E2 mechanism. The concerted A-2 mechanism can be represented by the equation

H⁺ + SH + base
$$\iff$$
 [H…S…H…base]⁺
transition state
SH + H-base⁺ \longleftarrow _____

In this equation SH is a substrate containing a hydrogen atom which rapidly equilibrates with the solvent. This is a termolecular mechanism in which transfers of a hydrogen ion from the medium to the substrate and from the substrate to the medium occur simultaneously in the rate-determining step.

Long and Watson²⁷ have recently concluded that the magnitude of the solvent hydrogen isotope effect, $k_{\rm H}/k_{\rm D}$, for the transfer of a proton from the medium to the substrate depends on the strength of the acid species involved in the transfer, the weaker acid species showing the greater isotope effect. Indeed, their study of the hydrogen isotope effect on the acid-catalyzed enolization of methylacetylacetone shows that, for the neutralization of methylacetylacetone enolate ion by hydronium ion (or solvated proton), the solvent hydrogen isotope effect is small $(k_{\rm H}/k_{\rm D}=1.1)$.

In keeping with the results of Long and Watson, Purlee³⁴ has interpreted the results for the mutarotation of glucose in terms of the concerted A-2 type mechanism by assuming that the solvent isotope effect for hydrogen ion transfer from hydronium ion to glucose is negligibly small, and that the experimental value of $k_{\rm H}/k_{\rm D}$ arises from the effect of the equilibrated hydrogen atom in the glucose molecule; that is, the isotope effect results from the transfer of hydrogen from glucose to the medium. Purlee has shown that these assump-

tions are adequate for explaining the linear dependence of k_n on n. Of course, the alternative assumption that the value of k_H/k_D arises from the medium-to-glucose hydrogen ion transfer, although at first glance inconsistent with the findings of Long and Watson, might also account for the effect of solvent hydrogen isotope composition. This latter assumption would assume that an $A-S_E^2$ type reaction would show linear dependence of k_n on n also.

A discussion as to whether the $A-S_E^2$ mechanism or the concerted A-2 mechanism is a better description for the course of the protodeboronation reaction is deferred until later.

III. Formic Acid Solutions

In the preceding section we saw that the results obtained from a study of the solvent hydrogen isotope composition effect on the rate of areneboronic acid hydrolysis indicated that the reaction occurred by either an $A-S_E^2$ or a concerted A-2 mechanism. Therefore, under appropriate conditions, the hydrolysis reaction should show general acid catalysis. Since a demonstration of this property would make the two mechanisms suggested by the isotope work that much more compelling, a study of the catalysis in media having competing acidic (or basic) species was undertaken.

The hydrolysis of p-methoxybenzeneboronic acid has been studied at 25° C. in the medium 94.8% formic acid - 4% ethylene glycol dimethyl ether (EGDE) - 1.2% water. The EGDE was used as a cosolvent so that solutions of the boronic acid in the formic acid medium could be prepared rapidly. Values of the acidity function for solutions of sodium formate or sulfuric acid in this medium were determined colorimetrically by using o-nitroaniline as the indicator base. The effect of sodium formate and sulfuric acid on the rate of reaction has also been determined. These data are all listed in table 8, and figure 9 shows a plot of the observed pseudo first-order rate constants against the acidity function.

The data in table 8 qualitatively demonstrate that the hydrolysis reaction in this medium is general acid-cata-This fact is borne out by the following observations. lyzed. In a series of sodium formate solutions in which the acidity of the medium changes by a factor of ten (runs $VIII_{f}$ -24, 25 and 26) the rate is essentially constant ($k_{obs.} = 1.8 \times 10^{-5}$ second-1). This fact requires a reaction involving catalysis by molecular formic acid, a species whose concentration is essentially unaffected by a change in the acidity of the medium. When the acidity of the medium increases to values of -Ho above 0.2 an increase in rate is observed. This increase in rate with increasing acidity can qualitatively be accounted for by incursion of reactions involving the more acidic lyonium ions; formic acidium, (HCOOH2+), and hydronium, $(H_{3}0^{+}).$

A rigorous quantitative treatment of these data cannot be made. However, there are sufficient data describing formic acid media reported in the literature so that a semiquantitative treatment, which will account for the general shape of the curve in figure 9, can be given.

>

c.

k versus -Ho: formic acid solutions

Table 8

0

Rate constants in the medium 94.8% formic acid - 4%

_run#	NaCHO ₂ molar	H2SOL molar	<u>-H</u>	k x ob served	10 ⁵ sec1 calculated
VIII _f -17 18 19			1.31	4.90 4.67 4.58	4.76
20		0.0482	2.58	17.9	17.8
21		0.0413	2.51	14.5	15.9
22		0.0258	2.34	11.8	12.4
23		0.01032	2.00	7.87	8.34
24	0.1963		-0.84	1.86	
25	0.0982		-0.14	1.78	
26	0.0491		0.17	1.89	
27	0.0295		0.33	2.12	2.43
28	0.00982		0.72	3.06	3.10
29	0.00491		0.92	3.61	3.58

EGDE - 1.2% water

Sulfuric acid behaves as a strong monoprotic acid¹⁵ in formic acid solutions; hence there are four possible acidic species in the solutions under discussion. These are molecular formic acid, bisulfate ion, hydronium ion and formic acidium ion (represented here by H⁺). In the solutions containing sulfuric acid the concentration of bisulfate ion is low enough so that its role as a catalyst, compared to that of molecular formic acid, is small and can be neglected. Then the rate equation for these solutions, neglecting activity coefficients, is

$$k_{obs.} = -\frac{1}{C_S} \frac{dC_S}{dt} = \sum k_{HA_1} C_{HA_1}$$

$$k_{obs} = k_0 + k_{H_30^+} C_{H_30^+} + k_{H^+} C_{H^+}$$
 (27)

In all of these solutions the concentration of water is 0.891 molar, therefore the concentration of hydronium ion can be expressed as

С

$$C_{\rm H_3O^+} = \frac{0.891 \ C_{\rm H^+}}{K_{\rm H_3O^+} + \ C_{\rm H^+}}$$
(28)

where $K_{H_30^+}$ is the molar concentration dissociation constant for hydronium ion. Substituting into equation (27) yields

$$k_{obs.} = k_{o} + 0.891 k_{H_30^+} \frac{C_{H^+}}{K_{H_30^+} + C_{H^+}} + k_{H^+}C_{H^+}$$
 (29)

The constants in equation (29) can be evaluated provided a means is found for determining $C_{\rm H^+}$ in the solutions studied.

Hammett and Deyrup¹⁵ have measured acidity functions for solutions of sodium formate and sulfuric acid in anhydrous formic acid. This study shows that, in these solutions, there is a linear relationship between pH (-log C_{H^+}) and H_0 , specifically

$$pH = H_0 + 4.85$$
 (30)

It appears reasonable to assume that sodium formate and sulfuric acid behave as a strong base and acid, respectively, in the solvent 96% formic acid - 4% EGDE, just as in anhydrous formic acid. This means that an equation of the type (30) obtains in the binary solvent also. To a crude first approximation, let us assume that equation (30) adequately describes the relationship between pH and H₀ in the binary solvent. Then $C_{\rm H}$ + is given by the equation

$$C_{H^+} = antilog(-H_0 - 4.85)$$
 (31)

With equation (31) we can now evaluate the constants $k_{\rm H_30^+}$, $k_{\rm H_30^+}$ and $k_{\rm H^+}$ by using the rate and H_0 data for three of the solutions in table 8 (VIII_f-23, 24 and the average of VIII_f-17, 18 and 19). Taking $k_0 = 1.80 \times 10^{-5}$ second⁻¹, the values for the other constants become

 $k_{H_30^+} = 4.2 \times 10^{-5} \text{ second}^{-1}$ $k_{H_30^+} = 1.7 \times 10^{-4} \text{ mole liter}^{-1}$

$$k_{H^+} = 2.3 \times 10^{-2} \text{ second}^{-1}$$

Using these constants in equation (29) we can now calculate a value of k_{obs} for each of the solutions in table 8. These calculated values are shown in the last column of the table.

While $K_{\rm H_30^+}$ is fairly insensitive to the value chosen for the constant in equation (31), the ratio $k_{\rm H^+}/k_{\rm H_30^+}$ is extremely sensitive. Since equation (31) represents a very crude approximation, the values of the constants derived from it are regarded only as reflections on their relative orders of magnitude. Nevertheless, because the curve in figure 9 is so well approximated through the use of these values, the above treatment is regarded as a semiquantitative demonstration that the hydrolysis in these solutions is general acidcatalyzed.

IV. Aqueous Perchloric and Phosphoric Acids

The rates of hydrolysis of two substituted benzeneboronic acids $(X = p-CH_30 \text{ and } p-CH_3)$ in aqueous perchloric acid solutions and three benzeneboronic acids $(X = p-CH_30, p-CH_3 \text{ and } H)$ in aqueous phosphoric acid solutions have been determined, and the values of the pseudo first-order rate constants, $k_{obs.}$, are listed in tables 9 and 10. The values of H_o for the aqueous phosphoric acid solutions are for the indicated temperatures and are taken from the data of Gelbshtein, Sheglova and Temkin⁷. Those for the perchloric acid solutions are for 25°C. and are taken from the data of Hammett and co-workers^{1/4,16}.

The rates in aqueous perchloric acid are correlated by the acidity function. In aqueous phosphoric acid, however, the rates are not correlated by the acidity function, the activity of molecular acid or water⁶, or by a combination of these parameters. These facts are illustrated in figures 10 and 11 in which the values of log k_{obs} , for the hydrolysis of p-methoxybenzeneboronic acid in these two media and in aqueous sulfuric acid are plotted against the acidity function.

Table 9

Pseudo first-order rate constants, k_{obs}., in aqueous

perchloric acid

λ	Temp., °C.	, HCLOI	-Ho	log kobs.+7
р-сн ₃ 0*	25 ° *	30.0 110.7 114.0 50.5	1.37 2.23 2.58 3.48	1.815 2.667 2.967 3.672
	60°	58.2 33.85 30.95 25.50 18.57	4.40 1.63 1.43 1.10 0.72	4.445 3.884 3.708 3.347 2.915
p-CH3	250	64.7 60.5 56.3	5.80 5.19 4.42	3.371 2.582 1.827

* work done by H. G. Kuivila

ð

Figure 10 allows a qualitative comparison of the data derived from the studies in aqueous perchloric and sulfuric acids. The line drawn through the two sets of data has unit slope. As the acidity increases, values of log kobs. for the two acids deviate from this line in opposite directions. These deviations are almost certainly due in part to specific effects of the different anions in the two acids²⁵. The greater increase of log k_{obs} , with increasing acidity in the sulfuric acid solutions might also be partly due to catalysis by bisulfate ion. The values of the activation energy and entropy in 30% HClO₁, derived from the data obtained at the temperatures 25°C. and 60°C., are $\Delta E^* = 23.6$ kcal./mole and $\Delta S^* =$ -5.2 e.u. (T = 60° C.). The corresponding values for 30%H₂SO_L (table 3) are 21.3 kcal./mole and - 11.7 e.u., respectively. In view of the specific effects by the two acids on the rates, these differences are perhaps to be expected.

Both figures 10 and 11 show that at a given value of H_0 , the rate in aqueous phosphoric acid is much greater than those in the other two acids. Since the reaction has already been shown to be general acid-catalyzed, and since in addition to hydronium ion there is also a large concentration of molecular H_3PO_4 (pK_a = 2) in the aqueous solutions of this acid, the greater rate at a given value of H_0 is to be expected. The system is sufficiently complicated so that no quantitative treatment has been attempted.

In solutions having a high concentration of phosphoric acid a kinetic complication was observed which was not investigated further. For example, in 82.7% H₃PO_L at a temperature Pseudo first-order rate constants, $k_{obs.}$, for aqueous phosphoric acid

r un#	T	<u>% нзроц</u>	-H _o	log k _{obs.} +7
		<u>x = </u>	<u>1</u>	
I _{ph} -5 6	60 °	74.3 65.7	2.38 1.69	3.587 2.702
(9	25°	82 .7	see fir	1.733 ure 11
		X = p - 0	^{2H} 3	
VII _{ph} -1 ع	60°	72.4 66.6 56.3	2.22 1.76 1.16	4.641 4.044 2.998
4 5	25 °	42.7 71.3	0.61 2.40	1.945 3.273
0 7 8		63.9 60.7	1.75	2.007 2.379 2.054
9 10		56.3 73.5 76.7	1.32 2.63 2.92	1.574 3.657 4.133
**		X = p - (CH 30	+•=>>
	600	3 0 0	<u> </u>	2 280
۲۱۱۱ _{ph} -۱ 2 3 لا	80 -	39.9 57.5 49.2 27.1	0.90 1.22 0.82 0.00	3.209 4.663 3.962 2.489
$\frac{HGK_{ph}-1*}{2}$	250	36.0 45.5 53.6	0.40 0.82 1.18	1.613 2.316 3.048
4 5 6		60.9 61.2 67.9	1.56 1.58 2.06	3•877 3•959 4 •75 7

* Work done by H. G. Kuivila

Log kobs. versus -Ho for p-methoxybenzene-

boronic acid: $T = 25^{\circ}C$.

42

c

Figure 11

Log k_{obs} . versus -H_o for p-methoxybenzeneboronic acid: T = 60° C.

.

of 25°C., the pseudo first-order rate constant for the hydrolysis of benzeneboronic acid increased with time. This is illustrated by the rate plot for run I_{ph} -9 shown in figure 12. That this complication was not encountered in solutions weaker in acidity than 80% H₃PO₄ is illustrated by figure 13 which shows a first-order rate plot for run I_{ph} -5.

V. The Effect of Substituents on Reactivity

The data obtained in sulfuric acid solutions at a temperature of 60° C. (table 1) allow a determination of the areneboronic acid reactivities relative to that of benzene-boronic acid. Values of log (k_X/k_{X-H}) have been determined for two different solutions. The first of these, 55.5% H₂SO₄ (-H₀ = 3.66), is below the region of acidities in which a change in the nature of the acidity correlation occurs (-H₀ = 5-5.5), and the other solution, 74.5% H₂SO₄ (-H₀ = 6.12), is above the region. Both sets of values are listed in table 11 and, in figure 14, are plotted against the σ^+ substituent constants of Brown and Okamoto⁴.

Two remarkable facts are illustrated by the plots in figure 14. The upper plot shows that the σ^+ constants give a fairly accurate measure of the substituent effects on reactivity. The lower plot, however, shows that while the constants correlate the effects on reactivity of the ringactivating substituents (X = p-CH₃0, p-CH₃ and p-F), they do not correlate the effects of the ring-deactivating substituents. The correlation represented by the upper plot might appear fortuitous inasmuch as the relative reactivities for

¢

 $X = p-CH_30$, $p-CH_3$ and p-F were obtained from extrapolations of log k_{obs}. versus H₀ plots through the region $-H_0 = 5-5.5$. This is the region in which the log k_{obs}. versus H₀ plots for X = p-Br, m-F and m-Cl show curvature. However, the degree of this curvature decreases in the order m-Cl, m-F, p-Br, and it seems likely that with a more reactive substrate (i.e. $p-CH_30$ or $p-CH_3$) such curvature would disappear. This point is raised at this time because the assumption that neither of the plots in figure 14 is fortuitous leads to a mechanistic picture which is consistent with the nature of the acidity function correlations. This picture is developed in the following section.

Table 11

The effect of substituents on reactivity

100 (k /k)

<u> </u>	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	$-H_0 = 3.66$	$-H_0 = 6.12$	
p-CH30	778	3.88*	1+•1+1+**	
p-CH3	311	1.51	1.82*	
p-F	073	• 0.39	0.32*	
H	0	0	0	
p-Br	.150	-0.57	-0.53	
m - F	• 352	-1.27	-1.50	
m-Cl	· • 399	-1.28**	-1.60	
m-CF3	.520	-1.52		
m-NO ₂	.674		-3.39	

* Obtained by extrapolation of log k_{obs}. versus H_o plots.

VI. The Mechanism of the Reaction

The protonolysis of p-methoxybenzeneboronic acid is general acid-catalyzed and, in aqueous sulfuric acid, the reaction shows a linear dependence of rate on the hydrogen isotope composition of the solvent. It was shown above that two different mechanisms are consistent with both of these facts. These are the $A-S_E^2$ and the concerted A-2 (termolecular) mechanisms.

Electrophilic aromatic substitution reactions have been shown to proceed through a σ -complex. Schubert and Myhre³⁶ have recently reviewed the evidence and have also shown that the protodecarbonylation of sterically hindered aromatic aldehydes in concentrated solutions of sulfuric acid proceeds through the σ -complex with either the rate of its formation or its decomposition into products being rate-determining, depending on the composition of the acid medium.

The protonolysis of areneboronic acids is just another example of electrophilic aromatic substitution in which the electrophile is a protonating species. If the requirement that the reaction proceeds through a σ -complex intermediate is invoked, then the concerted A-2 mechanism can be eliminated as a possible mechanism. The A-S_E2 mechanism is therefore adopted as the correct one for the protonolysis of areneboronic acids. The mechanism for catalysis by hydronium ion is shown in the following scheme which includes a possible structure for the transition state.

......

Since this scheme requires a proton transfer from a solvated proton in the rate-determining step, the fact that a substantial solvent hydrogen isotope effect is observed might appear inconsistent with the insignificant effect found by Long and Watson for the protonation of an enclate ion by solvated proton²⁷. However the lack of an isotope effect in the latter reaction can be explained by invoking the Hammond postulate¹⁷. Because the neutralization of an enolate ion by solvated proton requires a collapse of oppositely charged species, one might assume that the transition state closely resembles the reactants in structure, and therefore that the solvent to proton bond in the transition state is essentially intact. In this regard it is interesting to note that for the protonation of 2,4,6-triisopropylbenzaldehyde in 80% H_2SO_4 to form the σ -complex, Schubert and Hybre have reported a value of $k_{\rm H}/k_{\rm D}$ = 2.0.

By using the structural representation for the transition state in the above mechanistic scheme an attempt will be made to explain the following experimental facts.

1.) The rates in aqueous sulfuric and perchloric acid solutions for the more reactive substrates are correlated by the acidity function.

2.) Plots of log $k_{obs.}$ versus $-H_0$ for the less reactive substrates in sulfuric acid solutions below 70% H_2SO_4 show diminishing slopes with decreasing substrate reactivity.

3.) Below 70% H_2SO_4 the activation energy is essentially independent of substrate reactivity, with the decrease in activation entropy accounting for the decrease in substrate reactivity.

4.) For the less reactive substrates there are two kinetically distinguishable acid regions; these are the region below 66% H₂SO₄ and the region above 70% H₂SO₄.

5.) In 74.5% H_2SO_4 the σ^+ constants give an accurate measure of the substituent effects. In 55.4% H_2SO_4 the less reactive substrates have reactivities greater than those predicted by the σ^+ constants.

In the transition state two changes are occurring which result in the formation of the σ -complex; the solvent to proton bond (bond <u>a</u>) is breaking while the proton to ringcarbon bond (bond <u>b</u>) is forming. It is reasonable to assume that the degree of bond breaking at <u>a</u> is directly dependent on the degree of bond formation at <u>b</u>. If in the transition state bond <u>b</u> is essentially completely formed, the transition state will resemble the system: solvent + σ -complex (structure I). This is a situation that might be expected to obtain

if X is a sufficiently activating (electron releasing) group. Then, since the σ -complex represents one of the possible conjugate acid species of the reactant molecule, for a sufficiently activating substituent, X, a correlation of rate by the acidity function may be expected. On the other hand, if in the transition state bond formation at <u>b</u> has not developed to a significant extent, that is, the bond at <u>a</u> is essentially intact, the transition state will resemble the system: solvent-H⁺ + boronic acid (structure II). This latter situation is to be expected if the substituent, X, is a sufficiently

deactivating (electron withdrawing) group, and, to the extent to which it prevails, a greater dependence of rate on the acid concentration^{20,22} rather than on the acidity function is to be expected. One way in which this latter situation would reveal itself would be in the exhibition of abnormally low $\log k_{obs}$, versus -H_o slopes. The slopes of the $\log k_{obs}$, versus $-H_0$ plots below 70% H_2SO_4 suggest that the former situation (structure I) prevails in the case of the more reactive substrates (i.e. $X = p-CH_30$ and $p-CH_3$), while for the less reactive substrates (i.e. X = m-F and m-Cl) a prevalence to a certain degree of the latter situation (structure II) appears to be making itself evident.

This picture is consistent with the difference in the activation entropies of the substrates having $X = p-CH_3O$ and m-F. With $X = p-CH_3O$ the activation entropy is expected to be higher because in the formation of the transition state solvent molecules are being "melted away" due to the greater degree of bond breaking at <u>a</u> which leads to greater dispersal of the positive charge into the ring. The fact that the activation energies for both substrates appear to have the same value suggests that the change in potential energy accompanying the formation of the transition state is remarkably independent of the extent of bond formation at <u>b</u>. This would mean that a greater degree of solvation at <u>a</u> in the transition state can make up the increase in energy resulting from a lower degree of bond formation at <u>b</u>.

The existence of two kinetically distinguishable acid regions for the substrates X = m-Cl, m-F and probably p-Br will now be discussed by considering possible structural changes in the transition states which can account for the kinetic complication. Since there are two reactants which combine to form the transition state, either of these might be responsible for the structural change.

The kinetic complication occurs in the region 66-70%

 H_2SO_{11} . As the acidity increases the medium becomes a stronger dehydrating system. One possible explanation, then, is the conversion of the areneboronic acid to a boronic anhydride species, with the latter predominating as the reactant entering the transition state as the acidity is increased. If this is the actual cause for the kinetic complication, then two conclusions can be made. The reaction continues to show firstorder kinetics with increasing acidity both through the acid region in which the complication occurs and in the region of higher acidities. This fact requires any intervening anhydride species to be monomeric. Secondly, since now we would have two different species for one of the reactants, the correlation of substituent effects in 74.5% H₂SO₄ by the σ^+ constants would indeed be fortuitous. However this was shown to be unlikely in section V.

The other alternative is that a dramatic change in the nature of the solvated proton occurs in the region 66-70% H_2SO_4 . As will be shown this alternative gives a more plausible account for the kinetic complication in this region.

In recent years^{2,37,39} there has been an increasing amount of evidence supporting the fact that, in aqueous solutions, protons are hydrated by four water molecules, provided that these are available for hydration. In this regard it is interesting to note that 64.5_{2} H₂SO₄ has the stoichiometric composition H₂SO₄.3H₂O and 73.1% H₂SO₄ the composition H₂SO₄ ·2H₂O. This means that in solutions having intermediate compositions the greatest number of protons may have the structure H(H₂O)⁺₃ and H(H₂O)⁺₂, with the latter becoming more predomi-

nant as 73.1% H₂SO₄ is approached. This structural change in the nature of the solvated proton should be accompanied by a change in the acidity of the proton, that is, H(H₂O)⁺₂ should be a stronger acid than H(H₂O)⁺₃.

A greater solvated proton acidity would be expected to cause a greater extent of bond breaking at <u>a</u> and bond formation at <u>b</u>. Also, since the reactivity of one of the reactants is enhanced, the activation energy should be smaller. Indeed, the activation energy for X = m-F decreases by 5 kcal. mole⁻¹ on passing from below to above the acid region 66-70% H_2SO_4 (table 3). This decrease in activation energy is accompanied by an increase in the solvent hydrogen isotope effect $(k_H/k_D$ changes from 2.4 to 3.0), thus indicating a greater degree of bond breaking at <u>a</u> in the higher acidities.

These arguments can be extended to include an explanation for the correlation by the σ^+ constants of the substituent effects in 7h.5% H₂SO₄. Because of the enhanced solvated proton acidity in this solution, the transition states for the less reactive substrates will resemble the corresponding. $\sigma^$ complexes to a greater extent than in lower acid solutions (i.e. 55.4% H₂SO₄). This means that the structure of the transition state will become less dependent on the nature of the substituent, and hence a greater probability for correlation of substituent effects by the σ^+ constants will result. The experimental facts suggest that, in 74.5% H₂SO₄, the structural nature of the transition state has become essentially independent of the substituent.

EXPERIMENTAL PART

.

٠

• •

.

.

•

.

I. Materials

The preparations of all but one $(X = m-CF_3)$ of the areneboronic acids used in this study have been referred to previously^{23,25}. m-(Trifluoromethyl)-benzeneboronic acid was prepared by the method of Bean and Johnson³.

m-(Trifluoromethyl)-benzeneboronic acid: - A one liter three necked r.b. flask equipped with a stopcock on the bottom, a stirrer, a condenser and a dropping funnel was charged with 6.0 g. of magnesium, 100 ml. of diethyl ether and 5 ml. of mbromobenzotrifluoride (Matheson, Coleman and Bell). After refluxing had started m-bromobenzotrifluoride was added dropwise until a total of 50 g. (0.22 mole) had been added to the system, and the system was stirred for an additional thirty minutes. The flask containing the Grignard reagent was then attached to a one liter three necked r.b. flask equipped with a stirrer, cooled in an acetone - dry ice bath, and containing a solution of 25 g. (0.24 mole) of methyl borate in 100 ml. of diethyl ether. The Grignard reagent was added dropwise during one hour, the bath was then removed, and stirring was continued for an additional ten minutes during which 50 ml. of diethyl ether was added to the system to unclog the stirrer. The resulting ether solution was hydrolyzed with 100 ml. of 2.5N hydrochloric acid. The aqueous layer was separated and extracted twice with diethyl ether. The combined ether solutions were extracted with a total of 100 ml. of 5N aqueous sodium hydroxide, then with 40 ml. of water. The combined aqueous extracts surprisingly had a volume of about 250 ml.

56

á

Acidification with 6N hydrochloric acid caused the separation of an organic liquid. The aqueous layer was extracted with ether, the combined organic layers were dried with anhydrous magnesium sulfate, and the ether was finally removed by heating on a steam bath. The resulting gummy residue weighed 28.5 g. and had a strong phenolic odor.

The crude product melted when added to hot water. Acetone was added until the oil dissolved, and the resulting solution was treated with norite. An oil separated on cooling. The mixture was heated on a steam bath to remove acetone, then the oil was separated. The aqueous solution was extracted with diethyl ether. The combined organic layers were again dried with anhydrous magnesium sulfate and evaporated to dryness. The residue, a gummy solid, weighed 21 g.

This residue was recrystallized twice from benzene after treatment with norite. The resulting crystals were then dissolved in hot water and the solution was treated with norite. An oil separated from solution but crystallized when cooled to room temperature.

Yield of m-(trifluoromethyl)-benzeneboronic acid: 12.5 g. (30%)

Melting point: sinters when placed in a bath at 60°C. but then dries and finally melts at 160-162°C.

The boronic acid was converted to the anhydride by heating in an oven at 110° C. for thirty minutes. Recrystallization of the anhydride from benzene yielded 9.5 g. of a crystalline solid (m.p.160-162°C.)

Analyses:	calculated	found
% carbon % hydrogen	48.91 2.35	49.03 2.59
neutralization equivalent	171.9	171.8

The deuterium oxide was obtained from the Stuart Oxygen Company, and, according to the supplier, contained 99.5%D₂0. All of the other materials used were either analytical reagent grade or the best grade available commercially.

II. Kinetic Procedures

A. Temperature control

Each of the experiments reported here was done at one of the following temperatures: 25.0, 40.0, 60.0, 69.4 and 79.4°C. Two constant temperature baths were used, each of which controlled the temperature to within $\pm 0.02°$ C. The differential thermometers in the baths were calibrated against a thermometer standardized at the National Bureau of Standards.

B. Aqueous sulfuric acid

Two different procedures, methods A and B, were used for following the rate of reaction. Method A was used for all except the slowest of the runs with benzeneboronic acid at 60° C. Method B was used in all of the other experiments except for the fastest runs with p-methoxy-, m-fluoro- and pbromobenzeneboronic acids at 60° C.

The kinetic solutions were prepared by diluting appropriate amounts of sulfuric acid and an aqueous stock solution of the areneboronic acid to the desired volume. For the runs with m-nitrobenzeneboronic acid concentrated sulfuric acid

(96%) was used as solvent for the boronic acid stock solutions. The initial concentration of the boronic acid in the kinetic solution depended on the absorptivity of the boronic acid at the wavelength used to follow the rate of reaction, and was usually in the range 10^{-3} to 10^{-4} molar.

Method A: - A 10 ml. aliquot of the kinetic solution was pipetted into each of several 100 ml. volumetric flasks. These flasks were placed in the bath for appropriate times. The reaction was quenched by simultaneously cooling in an ice bath and diluting to 100 ml. with distilled water.

Method B: - A 125 ml. glass-stoppered Erlenmeyer flask containing the kinetic solution was placed in the bath and, at appropriate times, aliquots were removed with a 10 ml pipette. The reaction was quenched by adding the aliquots to 100 ml. volumetric flasks containing ice-cold water.

Since each of the boronic acids has an ultraviolet absorption spectrum different from that of its hydrolysis product, it was found that the rate of the reaction could be followed conveniently by measuring the absorbances of the diluted kinetic samples in a Beckman DU spectrophotometer. The absorptivities of each boronic acid and its hydrolysis product at the wavelength used for following the reaction are listed in table 12.

For all but one $(X = m-NO_2)$ of the areneboronic acids, the absorptivity of the corresponding hydrolysis product, relative to that of the boronic acid, is negligibly small; therefore the absorbance of a kinetic sample is essentially a direct

		Absorptivity	$(mole^{-1})^{a}$
X	(m/s.)	хс ₆ н _ц в(он) ₂	с6н5 х
Н	218	81+50	55 ^b
m-NO ₂	228	4254	2206
p-Br	232	13700	50
m-F	218	7 300	25
p-F	218	7380	•
p-CH3	226	10800	30
р - СН30	236	28200 °	600°
	238	>12000 ^d	. 70 ^d
m-Cl	228	3000	63

Pertinent spectral data for aqueous solutions

a. In 10-14% aq. H2SO4 unless otherwise stated.
b. In 75% aq. H2SO4.
c. In water.
d. In 1% aq. HCOOH.

measure of the boronic acid concentration C, in the sample. Consequently rate constants were obtained from slopes of log absorbance versus time plots (k_{obs} = 2.303 x slope).

For $X = m-NO_2$, the absorptivities of substrate and product are of the same order of magnitude. For this reason, values of k_{obs} , were obtained from slopes of log C versus time plots, where

$$C = \frac{\text{absorbance} - e_2 C_0}{e_1 - e_2}$$

e1 = absorptivity of the substrate
e2 = absorptivity of the product
Co = initial concentration of the substrate

The amount of acid in a given kinetic solution was determined as follows. A weighed sample of the kinetic solution was diluted to an appropriate volume with water. Aliquots of the resulting solution were then titrated with standardized 0.1N sodium hydroxide.

C. Deuterosulfuric acid solutions

Solutions of deuterium sulfate in deuterium oxide were prepared by the method of Schubert and Burkett³⁵. This method involves the evaporation of sulfur trioxide into deuterium oxide in a closed system under reduced pressure. Sulfur trioxide was introduced into the system before the addition of deuterium oxide by evaporating fuming sulfuric acid (20 wt.% SO₃). Despite the precautions taken to keep traces of moisture out of the system, the sulfur trioxide condensed as a silky white crystalline solid.

The kinetic procedure used for the rate measurements in these solutions was the same as with aqueous sulfuric acid (method B) except for minor changes. The total volume of each kinetic solution was only 10 ml., therefore kinetic samples were taken with a 1 ml. pipette and diluted to 10 ml. for the spectral measurements.

D. Solutions varying in solvent hydrogen isotope composition

A prepared solution of deuterium sulfate in deuterium oxide was found to have the composition 43.85% D₂SO₄. The density of this solution was found to be 1.442 and, therefore, the molar concentration of acid was 6.316M.

An aqueous solution of sulfuric acid having the com-
position 45.73% H₂SO₄ was then prepared. Since the specific gravity of this solution is 1.354 (interpolated)¹⁸, the molar concentration of acid was 6.313M. Experimentally it was found that the combination of 5 ml. of this solution with 5 ml. of the deuteroacid solution resulted in a volume contraction amounting to 0.032% of the expected combined volume. This contraction was regarded as negligibly small.

The kinetic procedure was the same as described in section C above with only one change. Instead of using deuterium oxide, the solvent for the boronic acid stock solutions was either the protoacid or the deuteroacid having the concentration 6.31M. In this regard a minor difficulty was encountered; the boronic acid dissolved very slowly in these two solvents. This difficulty was overcome by pipetting samples of the stock solutions with sufficient care so that no solid boronic acid entered the kinetic solutions. The absorbance readings for these runs were therefore necessarily lower than originally desired.

E. 94.8% Formic acid - 4% EGDE - 1.2% water

A single batch of formic acid (Matheson, Coleman and Bell, 98-100%) was used as the main solvent constituent throughout this work. Karl Fischer titration²⁹ showed that this solvent contained 1.37% by weight water.

By dissolving a known weight of either sodium formate or sulfuric acid (97.0%) in the formic acid solvent, a stock solution of known concentration was prepared immediately prior to a series of runs. A stock solution of the boronic acid in

freshly distilled EGDE (b.p. 85°C.) was also prepared. Appropriate amounts of the formic acid stock solution and solvent were added to a 50 ml. volumetric flask, 2 ml. of the boronic acid stock solution was added, and the volume was raised to 50 ml. with the formic acid solvent. The kinetic solution was then transferred to a 125 ml. glass-stoppered Erlenmeyer flask and the flask was placed in the constant temperature bath. At appropriate times aliquots were removed with a 1 ml. pipette and diluted to 100 ml. with water.

F. Aqueous perchloric and phosphoric acids

The procedures used in these solutions were identical to those described in section B above.

III. Acidity Functions in the Formic Acid Solutions

Only one indicator base, o-nitroaniline (recrystallized from ethyl alcohol, m.p. $72-3^{\circ}$ C.) was used in this work. The required amount of a solution of this indicator in diethyl ether was pipetted into a 10 ml. volumetric flask. The flask was then heated on a steam bath to remove the diethyl ether. The solution whose acidity function was desired was added to the flask. The resulting solution was transferred to a colorimeter tube, the tube was placed in a Bausch and Lomb Spectronic Colorimeter, and the percent transmission at the wavelength 380mµ was recorded. The percent transmission of solutions having a value of H₀ less than 0.36 decreased with time, the rate of decrease increasing with increasing acidity of the solution. For these solutions timed readings of percent transmission were extrapolated to zero time, and the zero-time percent transmission was used to calculate a value for the acidity function. The value -0.29^{31} was used for the pK_p of o-nitroaniline.

0

It is interesting to note at this time that Hammett and Deyrup¹⁵, and Plattner, Heilbronner and Weber³² reported no difficulty when o-nitroaniline was used as an indicator in anhydrous formic acid solutions. In the present work both o-nitroaniline and p-nitroanile were found to be unstable in 98.6% aqueous formic acid. It appears, therefore, that the cause of the complication was the presence of water in the solvent.

In formic acid solution the absorptivities at the wavelength 380 m, of o-nitroaniline and its conjugate acid were found to be 3007 mole^{-1} and 56 mole⁻¹, respectively. To check the absorptivity of the conjugate acid a solution of the indicator in 75% aqueous sulfuric acid was prepared and the absorptivity of the indicator in this solution was found to be 48 mole^{-1} .

Values of the acidity function for solutions of sodium formate and of sulfuric acid in 94.8% formic acid - 4% EGDE - 1.2% water are listed in tables 13 and 14, respectively. The value for 0.1963M sodium formate was obtained by extrapolation of an H_o versus log concentration plot.

-64

Table 13

Acidity functions for solutions of sodium formate

[NaCHO2] molar	[Indicator] molar	<u>% Т</u>	-Ho
0 0 .00508 .00508 .01016 .02032 .03048 .0508 .1016 .1963	.000466 .0000931	71.4 72.5 51.5 53.1 40.1 26.5 74.0 72.4 61.1	1.31 1.34 0.82 0.94 0.72 0.47 0.36 0.31 -0.21 -0.81

3F	extrapolated,	see	page	614
			•	

Table 14

Acidity functions for solutions of sulfuric acid

[H2SO4] molar	[Indicator] molar	% Т	-Ho
0	.000931	49.5	1.29
.01004 .01004 .02008 .03012 .0502	.00466	78.9 77.9 37.1 43.8 46.9	2.01 1.97 2.20 2.43 2.58
.1496		51.8	3.06

.

.

.

ò

TABLES OF DATA

•

ø

.

ŧ

.

٠

•

```
Run I<sub>s</sub>-21
```

71.1% H2S04; 60°

time (minutes)	absorbance	log absorbance
13	2,20	.342
18	1.875	.273
23	1,592	.202
30	1.105	.043
l‡O	.751	124
50	.460	337
60	.318	498
66	.243	614

kobs.: 6.95 x 10⁻⁴ sec.⁻¹

Run I_s-22

70.9% H2SO4; 60°

6	1.396	.145
10	1.149	.060
15	.915	039
22	.684	165
30	.1,80	319
40	.294	532
<u>5</u> 5	.163	788

 k_{obs} : 7.31 x 10⁻⁴ sec.⁻¹

Run $I_s - 23$

	60.0% H ₂ so ₄ ; 60°	
10	• 1.620	.210
110	1.312	.118
205	1.078	•033
375	•739	131
520	•537	270
885	.245	611

k_{obs}.: 3.61 x 10⁻⁵ sec.-1

•

.

```
Run I<sub>s</sub>-24
```

60.0% H2SO4; 60°

time (minutes)	absorbance	log absorbance
10	1.554	.191
120	1.256	•099
2140	•958	019
393	.688	162
470	•598	223
720	•339	1,70
945	.211	670
1205	.114	943

 k_{obs} : 3.61 x 10⁻⁵ sec.⁻¹

Run I_s-25

67.4% H2SO4; 60°

5	1.713	.234
20	1.402	.147
40	1.05 1	.022
60	.761	119
90	•498	303
130	• .265	577
160	.123	910

kobs.: 2.51 x 10⁻⁴ sec.⁻¹

Run I_s-20

*

07.5, H2SOL; 60°

5	1.671	.223
15	1.482	.171
30	1.199	.079
45	.955	020
70	.677	169
105	.396	402
144	.215	668
175	.129	889

k_{obs}: 2.55 x 10⁻⁴ sec.-1

يە

```
Run I<sub>s</sub>-27
```

74.4% н ₂ so ₄ ; 60°					
time	(minutes)	absorbance	<u>log</u>	absorbance
	L 7 9 12 15 18 21		2.09 1.397 1.105 .683 .381 .205 .132		.320 .145 .043 166 419 688 879
		k _{obs} .:	2.72 x 10-3	secl	
		R	un I _s -28		
		74.6	% н ₂ so ₄ ; 60°		
	5 7 10 13 15 17 19 21		1.751 1.345 .840 .530 .380 .246 .195 .136	·	.243 .129 076 276 420 609 710 867
		k _{obs.} :	2.67 x 10-3	secl	

Run **I_s-**29

٠

62.6% H2SO4; 60°

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
---	--

4

٠

•

Run I_{B} -30

62.6% H2SO4; 60°

time (minutes)	absorbance	log absorbance
10	1.738	. 240
120	1.132	.100 .054
180 270	•598	223
355 495	.1430 .226	367 646
560	.164	785

 $k_{obs.}: 6.97 \times 10^{-5} \text{ sec.-1}$

Run I_s-31

54.7% H2S04; 60°

0	1.583	.200
300	1.321	.121
1090	.760	119
1419	.617	210
2039	• 392	407
2638	.237	625

$k_{obs.}$: 1.19 x 10⁻⁵ sec.⁻¹

Run **I_s-32**

54.4% H2SO4; 60°

0 734 1024 1368 2193 2506 3127 3730	1.613 1.005 .838 .641 .390 .305 .193	.208 .002 077 193 409 516 714 870
3 730	.135	870

k_{obs}.: 1.11 x 10⁻⁵ sec.-1

¢

.

•

¢ʻ

.

49.8% H2SO4; 60°

time (minutes)	absorbance	log absorbance
0 1034 2499 3716 6680 7211 7940	$\begin{array}{ccccc} 0 & 1.671 \\ 1034 & 1.269 \\ 2499 & .858 \\ 3716 & .602 \\ 6680 & .272 \\ 7211 & .238 \\ 7940 & .190 \end{array}$	
· ^k ob	s.: 4.54 x 10 ⁻⁰ se	c1
	Run I_s- 34	
2	50 .3% н₂so₄; 60°	
0 1033 2496 3715 6681 7208 7936	1.675 1.269 .852 .595 .260 .223 .170	.224 .104 070 226 585 652 770
kob	s.: 4.72 x 10 ⁻⁶ se	c1
	Run I _s -35	
l	44.8% H2SO4; 60°	
0 1722 2878 5683 6379 7179	1.213 .967 .816 .537 .472 .430	.084 015 088 270 326 367

70

 k_{obs} : 2.42 x 10⁻⁶ sec.⁻¹

	Run I _s -36		
	44.8% н ₂ so ₄ ; 60°		
time (minutes)	absorbance	<u>log</u>	absorbance
0 1720 2878 5683 6379 7180	1.213 .968 .835 .565 .520 .457		.084 014 078 248 284 340
	$k_{obs.}: 2.27 \times 10^{-6}$	secl	
	Run 1 _s -39		
	46.6% H2S04; 60°		
0 1410 2188 2948 6648 8702 9226 11000	1.806 1.445 1.254 1.109 .593 .401 .346 .269		.257 .160 .098 .045 227 397 461 570
	^k obs.: 2.92 x 10 ⁻⁶	sec1	
	Run I _s -40		
	45.3% H2SO4; 60°		
0 1410 2188 2948 6648 9226 10752	1.803 1.550 1.428 1.311 .831 .595 .510		.256 .190 .155 .118 080 226 292
	k _{obs} .: 2.01 x 10 ⁻⁶	secl	

ø

•

ъ

```
Run I<sub>s</sub>-41
```

42.9% H2SOL; 60°

time (minutes)	absorbance	log absorbance
0	1.795	.254
1410	1.629	.212
6648	1.063	.027
9226	.866	063
10980	.764	117
16690	.477	322

 k_{obs} : 1.33 x 10⁻⁶ sec.⁻¹

•

	. Run I _s -42	
	41.0% H2SO4;	60°
0 1410 6648 9226 10980 16690	1.810 1.662 1.238 1.075 .981 .681	.258 .221 .093 .032 008 167

k_{obs}: 9.27 x 10⁻⁷ sec.⁻¹

•

Run I_s-43

74.8% H2SOL; 25°

39	.792	101 ·
106	• 507	295
176	.314	503
243	. 185	733
315	•093	-1.032

$k_{obs.}$: 1.17 x 10⁻⁴ sec.⁻¹

	Run I _s -lili				
	72 . 4% н ₂ so ц; 25°				
time (minutes	absorbance •	log absorbance			
43 246 319 489 597	•937 •562 •461 •283 •186	028 250 336 548 731			
	k _{obs} .: 4.72 x 10 ⁻⁵ sec	-1			
	Run I_s -45				
	70.3% н ₂ so ₄ ; 25°				
45 323 595 704 820 945	1.031 .747 .520 .465 .395 .330	.013 127 284 332 403 482			
	k _{obs} .: 2.07 x 10 ⁻⁵ sec	·-1			
Run I _s -46					
	75.0% H2SO4; 40°				
5 10.5 15 24 30.25 38.25	1.646 1.455 1.296 1.044 .880 .711	.216 .163 .113 .019 056 148			

.

•

.

•

.

k_{obs.}: 4.29 x 10⁻⁴ sec.-1

ø

•

Run I_s-47

72.6% н₂so₄; 40°

time (minutes)	absorbance	log absorbance
12 29	1.434 1.169	.157 .068
90 72 96 123	.706 .512 .354	151 291 451

 k_{obs} : 2.04 x 10⁻⁴ sec.⁻¹

Run I_s-48

•

.

۲

	70.8% н ₂ so ₄ ; 40°	
8	1.646	.216
33	1.426	.154
68	1.139	.057
138	•743	129
163	.631	200

k_{obs}.: 1.03 x 10⁻⁴ sec.⁻¹

.

.

Run II₈-3

Co:	1.021	x 10 ⁻⁴ M;	92 .1% н ₂ so ₄ ;	60°
time	(minute	es)	absorbance	<u>log</u> C
	15 53 95 145 250 341 584		.429 .400 .384 .358 .315 .284 .274	-3.988 -4.055 -4.070 -4.174 -4.344 -4.527 -4.883
		k _{obs.:}	6.07 x 10 ⁻⁵ s	secl

Run II_s-4

 k_{obs} : 5.92 x 10⁻⁵ sec.⁻¹

Run II_s-5

20	.424	-3.999
58	.396	-4.065
150	.364	-4.155
255	.341	-4.234
345	.315	-4.344
589	.296	-4.608
1069	.257	-5.094

. Co: 1.021 x 10⁻⁴M; 89.3% H₂SO₄; 60°

k_{obs}.: 3.99 x 10-5 sec.-1

Run II_s-6

c _o : 1.	.021 x 10 ⁻⁴ M;	89.4% н ₂ so ₄ ;	60°	
time (mi	lnutes)	absorbance	1	og C
22 60 152 257 347 593 1071	2) 2 ,	•422 •398 •362 •339 •314 •289 •254	-, -, -, -, -,	4.004 4.060 4.161 4.241 4.349 4.582 5.094

kobs.: 3.99 x 10-5 sec.-1

Run II_s-7

 C_0 : 1.376 x 10⁻⁴M; 97.0% H₂SO₄; 60°

27	•551	-3.907
47	•514	-3.976
69	•476	-4.063
116	.422	-4.226
166	• 384	-4.395
217	•352	-4.617
263	• 336	-4.793
327	•325	-4.976

k_{obs}: 1.37 x 10⁻⁴ sec.⁻¹

Run II_s-8

C₀: 1.376 x 10⁻⁴M; 96.7% H₂SO₄; 60°

29 119	•543	-3.920 -3.984
71 71	•474	-4.068
119	•417	-4.245
168	• 382	-4.400
222	•349	-4.645
265	•333	-4.836
329	• 322	-5.043

 k_{obs} : 1.45 x 10⁻⁴ sec.⁻¹

Run II_s-9

\mathbf{C}_{0} : $\mathbf{T} \cdot \mathbf{J} 0 \times \mathbf{T} 0 + \mathbf{M}$; 00.5% n2504; V	00-
time (minutes)	absorbance	log C
32 169 330 549 721 857 1463	•570 •509 •452 •407 •374 •354 •319	-3.873 -3.986 -4.128 -4.285 -4.453 -4.599 -5.122
k _{ob} s.:	3.27 x 10 ⁻⁵ se	c1
Run	II _s -10	
c _o : 1.376 x 10-41	м; 88.5% H ₂ SO ₄ ;	60°
34 171 332 551 723 860 1466	•574 •506 •459 •406 •374 •359 •323	-3.867 -3.993 -4.108 -4.294 -4.453 -4.558 -5.019
kobs.:	$3.22 \times 10^{-5} se$	c1
מוות	TT _]]	
		< 0
C _o : 1.258 x 10-4M	; 83.0% H ₂ SO _L ;	600
21 198 485 1015 1211 1415 1664 kobs :	•535 •516 •481 •439 •425 •413 •399 7.71 x 10 ⁻⁶ se	-3.886 -3.920 -3.986 -4.088 -4.128 -4.165 -4.165 -4.212
** 8 d O **		

o

Run II_s-12

time (minutes) absorbance log	<u>z</u> C
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	888 929 972 089 125 155 205

co: 1.258 x 10⁻⁴M; 82.7% H₂so_h; 60°

 $k_{obs.}$: 7.48 x 10⁻⁶ sec.⁻¹

Run II_s-13

c_o: 1.258 x 10⁻⁴M; 78.8% H₂So₄; 60°

25 489 1035 1215 1671 1897	•537 •513 •492 •485 •469 •462	-3.883 -3.925 -3.966 -3.980 -4.015 -4.031
1897	.462	-4.031
2742	•439	-4.089

 k_{obs} : 2.87 x 10⁻⁶ sec.⁻¹

Run II_s-14

co: 1.256 x 10⁻⁴M; 78.5, H₂SO₄; 60° -3.897 27 •529 491 511 -3.929 1037 -3.960 •495 1217 -3.972 .489 1673 -4.012 .470 1899 -4.015 .469 2744 -4.075 4165 -4.184 .407

 k_{obs} : 2.65 x 10⁻⁶ sec.⁻¹

Run II_s-15

с _о : 1.258 x 10-4м;	73.7% H ₂ SO ₄ ; 60°	
time (minutes)	absorbance	<u>log C</u>
30 500 1225 1905 2690 5630 7360	•532 •529 •522 •514 •506 •483 •474	-3.892 -3.897 -3.909 -3.923 -3.938 -3.984 -4.004

k_{obs}.: 6.90 x 10-7 sec.-1

Run II_s-16

Co: 1.258 x 10⁻⁴M; 73.6% H₂SO4; 60°

•

0

•535	-3.886
.527	-3.900
.521	-3.911
.514	-3.923
·502	-3.946
•474	-4.004
.458	-4.040
	•535 •527 •521 •514 •502 •474 •458

k_{obs}: 7.64 x 10-7 sec.-1

Run III_s-1

74.5% H₂SO₄; 60° 。

time (minutes)	absorbance	log absorbance
5	.630	201
10	•533	273
17	•414	383
26	• 300	523
140	.167	773
55	.100	-1.000.

k_{obs} : 6.15 x 10⁻⁴ sec.-1

Run III_s-2

69.4; H2SOL; 60°

13	.703	153
	•591	228
67	•459	338
115	• 343	1,65
100	.207	684

 $k_{obs.}$: 1.22 x 10⁻⁴ sec.⁻¹

Run III_s-3

65.2% H2SO4; 60°

.

¢

19	.710	149
182	.501	300
368	•338	471
468	.290	538
670	.175	757

kobs.: 3.45 x 10-5 sec.-1

Run III_s-5

77.0% H₂so₄; 60°

time (minutes)	absorbance	log absorbance
4 5 6 10 12 14 16	.727 .661 .611 .533 .1464 .392 .322 .284	139 180 214 273 334 407 492 547
20	.209	680
k	$bbs.: 1.29 \times 10^{-3} sc$	ecl

Run III_s-6

61.2% H2SO4; 60°.

15	•879	056
155	•801	096
485	•621	207
1155	•394	405
1365	•317	499
1530	•288	541
1530	.288	541
1725	.226	646
2530	.111	955

k_{obs}: 1.32 x 10-5 sec.-1

•

٠

۲

p-Bromobenzeneboronic acid

Run III₈-7

53.4% H2804; 600

25 2280 3720 5200				2280 2960 3660	20 1610	time (minutes
.890 .786 .722 .722	47.7% H2SO4; 600	Run III ₂ -8	kobs.: 2.37 x 10-6 sec	.531 .524 .516	.868 .675	absorbance
051 105 142 142			· • • •	200 257 287	062 111 171	<u>log absorbance</u>

•

.

kobs.:

8.97 x 10-7 sec.⁻¹

•

•

e

m-Fluorobenzeneboronic acid

Run IV_s-1

83.8% H2SO4; 60°

time (minutes)	absorbance	log absorbance
3	.681	167
6	•522	282
9	• 390	409
12	• 309	÷.510
15	.275	561
18	• 23 8	623
21	· 242	616
24	.259	587

From the initial slope; k_{obs}.: 1.57 x 10⁻³ sec.-1

Run IV₈-2

78.5% H2804; 60°

11	1.106	· 044
25	.938	028
40 40	.700	155
64	.481	318
90	• 330	482
127	.184	735
150	.124	907

kobs.: 2.65 x 10⁻⁴ sec.⁻¹

Run IV₈-3

74.1% H2SO4; 60°

14 66 130	1.262 1.068 822	.101 .029
189 239	.721 .602	- 142 - 220
413 5 3 5	•492 •347 •222	460 654

a

Run IV_s-4

68.5% H2804; 60°

time (minutes)	absorbance	log absorbance
16	1.243	•094
132	1.189	•07Š
240	1.103	.043
415	.981	008
538	•924	034
723	.810	092

k_{obs} : 1.02 x 10⁻⁵ sec.-1

Run IV₈-5

62.2% н ₂ so ₄ ; 60°			
0	1.692	.228	
1120	1.467	.167	
2570	1.174	.070	
5175	.795	100	
10890	.323	491	
12570	.255	594	

kobs.: 2.53 x 10⁻⁶ sec.⁻¹

Run IV_s-6

55.2% H2804; 60°

0 1120	1.639 1.591	•215 •212
5175	1.380	.140
10890	1.089	•037
12570	1.025	.011
15660	.891	050
19750	•755	122

kobs.: 6.62 x 10-7 sec.-1

m-Fluorobenzeneboronic acid

6

•

Run IV_s-19

%2³¹

69.4% H2SO4; 60°

absorbance	log absorbance
1.115	.047
1.030	.013
•930	032
•744	128
.679	168
. 345	462
	<u>absorbance</u> 1.115 1.030 .930 .744 .679 .345

k_{obs}.: 1.42 x 10⁻⁵ sec.-1

Run IV₈-20

kobs.: 1.56 x 10-5 sec.-1

Run IV₈-7

83.3% H2SO4; 25°

25	.751	124
168	.438	- 359
305	• 253	597
479	.136	867

kobs.: 6.56 x 10⁻⁵ sec.⁻¹

m-Fluorobenzeneboronic acià

4

Run IV_s-8

80.9% H2804; 25°

time (minutes)	absorbance	log absorbance
27	.901	045
310	.642	193
584	.455	342
655	.420	-•377
715	•381	419

k_{obs} : 2.08 x 10⁻⁵ sec.⁻¹

Run IV₈-9

79.0% H2804; 25°

31	.961	017
588	.712	118
710		181
830	.620	208
950	•581	236

 $k_{obs.}$: 9.12 x 10⁻⁶ sec.⁻¹

Run IV_-10

84.2% H2SO4; 40°

10	.918	037
23 37	.698 .537	156 270
47 68	·441	356
91	.221	523 656

 k_{obs} : 3.31 x 10⁻⁴ sec.⁻¹

m-Fluorobenzeneboronic acid

Run IV_s-11

82.4% H2SOL; 40°

time (minutes)	absorbance	log absorbance
14	•992	004
43	•752	124
73	.561	251
118	•377	424
153	. 266	575
195	.201	697

 $k_{obs.}$: 1.51 x 10⁻⁴ sec.⁻¹

Run IV₈-12

80.4% H2804; 40°

18	1.091	.038
77	.824	084
123	.672	173
199	•480	319
306	•286	544
369	.213	572

k_{obs}.: 7.66 x 10⁻⁵ sec.⁻¹

Run IV_a-13

64.9% H2SO4; 69.4° 1.144 1.025 .941

17	1.144	.058
180	1.025	.011
371	.941	026
540	.800	097
690	.710	149
1065	•549	260
	_ _	

k_{obs.}: 1.17 x 10⁻⁵ sec.-1

61	Run IV ₈ -14	
time (minutes)	absorbance	log absorbance
21 375 693 1069 1315 2455	1.127 1.011 .913 .850 .781 .551	.052 .005 040 071 107 259
kobs	: 5.25 x 10 ⁻⁶ s	ec1
	Run IV ₅ -15	
56	6.9% н ₂ so ₄ ; 69.4°	
26 380 698 1072 1319 2460	1.167 1.098 1.046 .999 .959 .807	.067 .041 .020 .000 018 093
^k ob s .	: 2.51 x 10 ⁻⁶ s	ec. ⁻¹
	Run IV _s -16	
65	5.4% н ₂ so ₄ ; 79.4°	
4 138 263 372 500 613	1.195 .979 .765 .628 .483 .384	.077 009 116 202 316 416
kobs.	: 3.16 x 10 ⁻⁵ s	ec1

.

m-Fluorobenzeneboronic acid

Run IV₈-17

61.3% H2804; 79.4°

absorbance	log absorbance
1.235	.092
1.060	.025
•917	038
. 836	078
•757	121
•685	164
	absorbance 1.235 1.060 .917 .836 .757 .685

 $k_{obs.}$: 1.37 x 10⁻⁵ sec.-1

Run IV₈-18

57.4% H2804; 79.4°

20	1.238	.093
268	1.115	.047
504	1.017	•007
730	•939	027
1354	•730	137

kobs.: 6.62 x 10⁻⁶ sec.⁻¹

•

m-(Trifluoromethyl)-benzeneboronic acid

Run V_s-6 55.4% H₂804; 60°

•

time (minutes)	absorbance	log absorbance
0	1.639	.215
1120	1.591	.202
5175 .	1.380	• JHO
10890	1.089	.037
12570	1.025	.011
15660	.891	050
19750	.755	122
	7	٦

 $k_{obs.}$: 3.16 x 10⁻⁷ sec.⁻¹

Run VIs-1

64.7% H2SOL; 60°

time (minuter	<u>B)</u>	absorbance	<u>lo</u>	g absorbance
5		.769		114
11		•749		126
21		.635		197
30		.526		279 ·
42		.422		375
62	•	• 30,9		510
81		.214		670
107		•089		-1.051
	kobs.:	2.85 x 10 ⁻¹	4 sec1	

Run VI₈-2

60.1% H2SO4; 60°

	-	
14	.781	107
32	.691	161
57	.608	216
79	.561	251
109	•457	340
135	.420	377
181	• <u>3</u> 28	484
	-	• •

 k_{obs} : 8.67 x 10⁻⁵ sec.-1

Run VI₈-3

54.9% H2SO4; 60°

18 71 137 192 254 327 412 556	.791 .708 .624 .600 .539 .442 .407 .283	102 150 205 222 268 355 390
556	. 283	548

k_{obs.}: 3.11 x 10⁻⁵ sec.⁻¹

c ~ 5

ف

٦

p-Fluorobenzeneboronic acid

.

Run VI_s-4

49.5% H2SO4; 60°

time (minutes)	absorbance	log absorbance
24	•789	103
184	.684	165
366	.611	214
560	•579	237
780	.501	300
1360	.313	505
1025	•279	554

k_{obs}.: 1.09 x 10-5 sec.-1

.

6

Run VIIs-1

55.5% H2804; 60°

time (minutes)	absorbance	<u>log absorbance</u>
15	.764	117
22	.661	180
30	.514	289
41	.402	396
50	- 314	503
59	• 2 25	648
68	.169	772
79	•142	848

 k_{obs} : 4.38 x 10⁻⁴ sec.⁻¹

Run VII_s-2

49.6% H2SO4; 60°

18	•	• •900	046
43		•740	131
55		.667	176
71	:	.615	211
90		•538	269
130		•440	- • 35/
151		• 277	
+/-		•	~•474

 k_{obs} : 1.26 x 10⁻⁴ sec.⁻¹

Run VII_s-3

40.7% H2804; 60°

25	.996	•	002
75	.918		037
138	.838		077
201	•792		101
294	.709		149
375	.622		206
509	•525		280
686	.431		366

 k_{obs} : 2.31 x 10⁻⁵ sec.⁻¹

0

.

p-Tolylboronic acid

Run VII_s-4 ..:

28.6% H2SO4; 60°

time (minutes)	absorbance	log absorbance
34	•997	001
134	•956	020
299	.933	030
513	.922	035
690	.898	047
1320	.781	107
1580	.768	115

kobs.: 2.85 x 10-6 sec.-1

•

•

p-Methoxybenzeneboronic acid

Run VIII_s-1

29.6% H2SOL; 60°

time (minutes)	absorbance	log absorbance
4	1.353	.131
6	1.274	.105
9	1.164	.066
11	1.091	.038
15	.931	031
18	•843	074
2 2	•735	134
27	.630	201
	1.	9

 $k_{obs.}$: 5.60 x 10⁻⁴ sec.⁻¹

Run VIII_-2

20.3% H2SO4; 60°

15	.899	046
22	.871	060
35	•770	114
47	•727	139
57	•695	158
67	.628	202
86	•553	257
104	.481	318

k_{obs}.: 1.15 x 10⁻⁴ sec.⁻¹

Run VIII_s-3

10.1% H2SO4; 60°

18		•938	028
49		.908	042
84		.863	064
120		.826	083
197		.741	130
300		.640	194
430		•531	275
542	•	•454	343

 $k_{obs.}$: 2.30 x 10⁻⁵ sec.⁻¹
Run VIII_-4

6

5.14% H2SO4; 60°

time (minutes)	absorbance	log absorbance
20 80 182 313 432 544 1234 1328	.905 .880 .831 .796 .743 .709 .522 .500	043 056 080 099 129 149 282 301
k _{ob}	s.: 7.57 x 10 ⁻⁰ se	ac1
	Run VIII _s -5	
	3.11% н ₂ 80 ₄ ; 60°	
19 180 495 1196 1806 2608 4350 5405 k ob	.969 .932 .852 .739 .620 .529 .334 .267 s.: 4.01 x 10 ⁻⁶ so	014 031 070 131 208 277 476 574

Run VIII_s-8

30.1% H2SO4; 40°

16	1.506		.178
66	1.202	•	•080
128	.901	•	045
250	.521		283
306	• 396		402
415	•232		635

 $k_{obs.}$: 7.78 x 10⁻⁵ sec.⁻¹

Run VIII₈-9

24.7% H2SO4; 40°

absorbance	log absorbance
1.549	.190
1.410	• 149
1.012	•005
.819	087
.615	211
	absorbance 1.549 1.410 1.012 .819 .615

$k_{obs.}$: 2.99 x 10⁻⁵ sec.⁻¹

Run VIII_s-10

20.1% H₂SO₄; 40°

22	1.584	.200
262	1.311	.118
535	1.040	.017

 $k_{obs.}$: 1.35 x 10⁻⁵ sec.⁻¹

¢

```
Run IX_-1
```

59.3% H2804; 60°

time (minute	absorbance	log absorbance
11	•905	043
2094	•791	101
4050	.670	174
5542	.610	214
6390	.564	249
7290	•531	275

,

k_{obs}: 1.24 x 10⁻⁶ sec.⁻¹

Run IX₈-2

62.9% H2SO4; 60°

13	.916	038
732	• 8 24	084
2100	.675	171
2770	.607	217
3305	.551	259
4518	.462	335
7115	•335	475

 $k_{obs.}$: 2.58 x 10⁻⁶ sec.⁻¹

.

Run IX₈-3

66.3% H₂SO₄; 60°

15	.906	043
737	.761	119
1312	.660	181
2101	.489	311
2775	.396	402
3306	.351	455

k_{obs}.: 4.85 x 10⁻⁶ sec.⁻¹

2

•

	Run IX ₈ -4	
69	.9% н ₂ so ₄ ; 60°	
time (minutes)	absorbance	log absorbance
17 172 491 737 1312 2101	.911 .819 .675 .551 .377 .190	041 087 171 259 424 721
k_{obs} : 1.19 x 10 ⁻⁵ sec. ⁻¹		
	Run IX ₈ -5	
74	.5% H2804; 60°	
14 46 94 162 209 269 386	•357 •311 •271 •226 •182 •152 •103	447 507 567 646 740 818 987
k_{obs} : 5.60 x 10 ⁻⁵ sec. ⁻¹		
	Run IX _s -6	

79.9% H₂SO₄; 60°

.345	462
.331	480
.268	572
.213	672
.182	740
.148	830
.107	971
	.345 .331 .268 .213 .182 .148 .107

Ф

k_{obs}: 3.33 x 10⁻⁴ sec.⁻¹

,

ø

.

Run VII_{pe}-1 64.7% нс104; 25°

time (minutes)	absorbance	log absorbance
5 16 26 35 45 56 75	.861 .741 .641 .568 .491 .417 .358 .323	065 130 193 246 310 380 447 491
kob	s.: 2.35 x 10 ⁻⁴ s	ec1
	Run VII _{pe} -2	
	60.5% нс10 ₄ ; 25 ⁰	
7 39 64 98 143 171 203 230	1.202 1.105 1.045 .955 .872 .820 .758 .718	.080 .043 .019 020 060 086 120 144
k op	s.: 3.82 x 10 ⁻⁵ s	ec1
	Run VII _{pe} -3	

56.3% HC104; 25°

14 64	1.196	.078
154	1.145	.059
213	1.111	.046
265	1.078	.033
413	1.022	.009
520	.978	008

 $k_{obs.}$: 6.71 x 10⁻⁶ sec.⁻¹

0

Rup VIII_{pe}-1

33.9% HClo4; 60°

time (minutes)	absorbance	log absorbance
10	.720	143
19	• 500	301
30	.285	- • 545
51	.109	963

 k_{obs} : 7.66 x 10⁻⁴ sec.⁻¹

Run VIII_{pe}-2

31.0% HClo4; 60°

13	•698	156
33	• 380	420
53	.195	710
71	.117	932
•	•	

k_{obs}: 5.11 x 10⁻⁴ sec.⁻¹

Run VIII_{pe}-3

kobs.: 2.22 x 10⁻⁴ sec.⁻¹

0

£.

•	Run VIII _{pe} -4	
	18.6% HC104; 60°	
time (minutes)	absorbance	log absorbance
12 21 32 42 62 82 102 119	.780 .744 .714 .671 .602 .562 .500 .461	108 128 146 173 220 250 301 336
_	0	-1

 $k_{obs.}$: 8.22 x 10⁻⁵ sec.⁻¹

.

.

.

.

_	Run I _{ph} -5	
o	74.3% H3P04; 60°	
time (minutes)	absorbance	log absorbance
10 15 20 25 35 45 55 65 70 75 80 85 90 95 100	1.256 1.178 1.022 .943 .757 .614 .471 .375 .341 .288 .259 .234 .192 .177 .160 bs.: 3.86 x 10 ⁻⁴ s	.099 .071 .009 026 121 212 327 426 467 541 587 631 717 752 796
	Run I _{ph} -6	
	65.7% н ₃ ро ₄ ; 60°	
25 60 85 142 214 295 . 350 715	1.644 1.509 1.387 1.170 .962 .753 .622 .339 .195	.216 .179 .142 .068 017 123 206 470 710

.962 .753 .622 .339 .195 $k_{obs.}$: 5.04 x 10⁻⁵ sec.⁻¹

. .

.

0

Ð

•

.

.

.

.

	Run I _{ph} -7	
5	2.9% H ₃ PO ₄ ; 60°	
time (minutes)	absorbance	log absorbance
30 145 420 720 1425 1750 2795	1.539 1.494 1.389 1.254 1.017 .914 .622	.187 .174 .143 .098 .007 039 206
k _{obs}	: 5.41 x 10 ⁻⁶ se	1
	Run I9	

	num ph	
	82.7% н ₃ ро _ц ; 25°	
11	1.421	.153
26	1.258	.100
50	1.008	.003
79	.740	131
111	.534	273
171	.260	585
200	.159	799
226	.102	991

	Run VII _{ph} -1	•
	72.4% H3P04; 60°	
time (minutes)	absorbance	log absorbance
2 5 8 11	.530 .252 .110 .026 k _{obs} .: 4.38 x 10 ⁻³	276 599 959 -1.569 sec. ⁻¹
	Run VII _{ph} -2 66.6% H ₃ PO ₄ ; 60 ⁰	
10 18 25 34 41 50	•790 •480 •325 •177 •098 •045	102 319 488 752 -1.011 -1.347
	k _{obs.} : 1.11 x 10-3	secl
•	Run VII _{ph} -3	
	56.3% H3P04; 60°	
15 41 83 128 145 181 237 328	1.005 .842 .671 .520 .461 .388 .270 .144	.002 075 173 284 336 411 569 842
1	^k obs.: 9.95 x 10 ⁻⁵	sec. ⁻¹

•

•

.

ø

105

•

Run VII_{ph}-4 42.7% H₃PO₄; 60°

absorbance	log absorbance
1.030	.013
.730	137
.612	213
.470	327 。
• 330	482
	absorbance 1.030 .730 .612 .470 .330

k_{obs} : 8.81 x 10⁻⁶ sec.⁻¹

Run VII_{ph}-5

71.3% H3P04; 25°

7	1.074	.031
12	1.007	.003
20	•933	030
30	.825	084
40	•734	134
50	.660	181
62	.582	235
71	.517	287

k_{obs}.: 1.88 x 10⁻⁴ sec.⁻¹

Run VII_{ph}-6

68.3% н₃ро_ц; 25°

	-	
9	1.110	.045
28	1.028	.012
49	.911	041
69	.837	077
98 · ·	•743	129
130	.627	203
161	• 549	260
184	•494	306

 $k_{obs.}$: 7.71 x 10⁻⁵ sec.⁻¹

	Run VII	oh-7		
	63.9% НзР(04; 25°		
time (minutes)	absoz	bance	log	absorbance
10 68 133 195 250 319 372 430		138 046 955 968 913 943 968 936		.056 .020 020 062 090 129 175 197
	^k ob s. : 2.39	x 10 - 5	secl	
	Run VII _I	h-8		
	60.7% нзро	04; 25°		
8 225 415 610 840 1460	1.1 .9 .7 .6	64 88 78 72 50 30		.066 005 057 112 187 367
	k _{obs} : 1.13	3 x 10-5	secl	
	Run VII _r	oh ⁻⁹		•
	56.3% н _з рс	₄ ; 25°	•	
15 425 1005 1430 1865 • 2485	1.1 1.0 .6 .7	.77 956 937 955 966 974	•	.071 .024 028 068 116 171

Γ

kobs.: 3.75 x 10⁻⁶ sec.⁻¹

٠	Run VII _{ph} -10	
7	73.5% н ₃ ро ₄ ; 25°	
time (minutes)	absorbance	log absorbance
9 17 25 38.5 47 55 65 k ol	•792 .628 .518 .360 .265 .216 .158 .158	101 202 286 444 577 666 801 sec1
	Run VII _{ph} -11	
•	76.7% нзроц; 25°	

5 9 13 18	.516 .394 .292 .176	287 405 535 755 903
22	.125	903

kobs.: 1.36 x 10⁻³ sec.⁻¹

0

0

108

•

ø

۰

÷

.

	Run VIII _{ph} -1	
	39 .9% н₃ро₄; 60°	
time (minutes)	absorbance	log absorbance
11 18 23 28 38 58 98	1.293 1.227 1.156 1.105 .939 .780 .468	.112 .089 .063 .044 027 108 330
k	obs.: 1.95 x 10 ⁻⁴	sec. ⁻¹
	Run VIII _{ph} -2	
	57.5% н ₃ ро ₄ ; 60°	
2 3 4 5 . 7 10	•584 •494 •325 •296 •137 •081	234 306 488 529 863 -1.092
k	obs.: 4.60 x 10-3	sec. ⁻¹
	Run VIII _{ph} -3	
	49.2% H3P04; 60°	
4 8 12 16 20 24 28 32	.984 .789 .631 .527 .411 .330 .283 .211	007 103 200 278 386 482 548 676

kobs.: 9.16 x 10⁻⁴ sec.-1

o

.

,

.

.

•

.

•

	Run VIII _{ph} -4			
27.1% H ₃ PO ₄ ; 60°				
time (minutes)	absorbance	log absorbance		
17 80 148 212 325 450 684	1.089 .942 .862 .749 .613 .493 .306	.037 026 065 126 213 307 514		
k,	obs.: 3.08 x 10 ⁻⁵ se	.c. ⁻¹		
	Run VIII _{ph} -5			
	10.6% н ₃ ро ₄ ; 60°			
20 705 1050 1495 2155	1.157 1.011 .923 .845 .751	.063 .005 035 073 124		
k	obs.: 3.40 x 10 ⁻⁶ se	1		

•

0

ψ

	Ru	n IV _D -1			
	72.9%	D2804;	60 ⁰		
time (minutes	<u> </u>	absorba	100	100	absorbance
6 124 199 349 490 660	•	1.085 .988 .936 .835 .820 .650			.036 005 029 078 086 187
	k _{obs.} :	1.30 x	10-5	sec1	
	Ru	n IV _D -2			
	66.9%	D2804;	60°		
8 200 910 1535 2285 3025		1.206 1.176 1.050 .941 .803 .729	·		.081 .071 .021 026 095 137
	kobs.:	2.81 x	10-6	secl	
	Ru	n IV _D -3		,	
	76.4%	D2S04;	60 °		
15 74 136 197 . 255 312		1.386 1.182 1.028 .840 .728 .639		•	.142 .073 .012 076 138 195

k_{obs}: 4.42 x 10⁻⁵ sec.-1

•

•

•

•

•

m-Fluorobenzeneboronic acid

.

.

۲

	Ru	n IV _D -4			
	69.0%	6 D ₂ so ₄ ;	60°		
time (minutes)	-	absorbar	100	<u>log</u>	absorbance
20 315 757 1455	o	1.419 1.304 1.142 .920			.152 .115 .058 036
	k _{obs} .:	5.06 x	10-6	sec1	
	Ru	n IV _D -5			
	80.49	5 D2804;	60°		
8 29 48 67 91 • 110		1.369 1.111 .920 .770 .636 .570		•	.136 .046 036 114 197 244
	k _{obs} .:	1.63 ж	10-4	sec1	
	Ru	m IV _D -8		•	
	64.59	6 D ₂ so ₄ ;	60°		
30 1640 2890 4395		1.238 1.052 .885 .771			.093 .022 053 113
0 0	k _{obs} .:	1.91 x	10-6	secl	•
	Ru	m IV _D -9			
	63.19	6 D ₂ SO ₄ ;	60°	i.	
35 1640 3120 44400		1.204 1.105 .994 .902			.081 .043 003 045
	k _{obs} .:	1.14 x	10-6	sec1	

	Run VI _D -1	
	65.4% D2804; 60°	
time (minutes)	absorbance	log absorbance
10 33 48 80 108 145	1.213 1.050 .875 .655 .507 .358	.084 .021 058 184 295 446
	k _{obs} .: 1.55 x 10 ⁻⁴ se	1
	Run VI _D -2	
	60.6% D2804; 60°	
13 44 84 147 206 259	1.213 1.114 1.000 .858 .730 .629	.084 .047 .000 067 137 201
	1 A E	

k_{obs} : 4.39 x 10⁻⁵ sec.-1

.

0

٠

.

•

0

Run VII_D-2

39.8% D2804; 60°

time (minutes)	absorbance	log absorbance
740 900 1040 1230 1460	1.203 1.060 .962 .858 .695	.080 .025 017 067 158
	k _{obs} .: 1.22 x 10-5	secl
	Run VII _D -3	
	43.5% D2804; 60°	
140 240 369 478 1188	1.022 .923 .797 .690 .272	.009 035 099 161 565
	k _{obs} .: 2.10 x 10-5	sec1
	Run VII _D -4	
	36.4% D2804; 60°	
480 1140	.966 .781	016 107

•

a.

 k_{obs} : 6.67 x 10⁻⁶ sec.⁻¹

G

 (\cdot)

Run VII_D-5 55.3% D₂SO₄; 60°

time (minutes)	absorbance	log absorbance
20	1.202	.080
10	.900	046
60	.678	169
80	•490	310
103	• 349	457
121	. 274	562

c.

•

k_{obs}.: 2.46 x 10⁻⁴ sec.-1

.

•

.

p-Methoxybenzeneboronic acid

•

•

	Run VIII _D -1	
	32.5% D ₂ 80 ₄ ; 60°	
time (minutes)	absorbance	log absorbance
12 27 56 88	1.204 .748 .303 .096	.081 126 519 -1.018
к ^{ор}	s.: 4.65 x 10 ⁻⁴ se	c1
	Run VIII _D -2	
	22.4% D ₂ SO ₄ ; 60°	
15 83 211 324	1.533 .967 .420 .205	.185 015 377 688
k ^{op}	s.: 8.30 x 10 ⁻⁵ se	c1

٠

Run VIII_{HD}-1

6.31M sulfuric acid; n: 0; 25°

time (minutes)	absorbance	log absorbance
4	.276	559
13.75	.201	697
24.25	.177	752
35.25	.130	886
<u>4</u> 6	.115	939
58.25	.080	-1.095

 $k_n: 3.45 \times 10^{-4} \text{ sec.}^{-1}$

Run VIII_{HD}-5

6.31M sulfuric acid; n: 1; 25°

6.25	. 370	433
20.25	• 339	470
39.75	•299	524
57.75	.280	- • 553
80.25	.243	614
,96	.218	662
113.5	• 209	680
125.75	.188	726

kn: 9.40 x 10-5 sec.-1

Run VIII_{HD}-6

6.31M sulfuric acid; n: .799; 25°

122.75 .138	545 648 688 770 860 860
-------------	--

 $k_n: 1.45 \times 10^{-4} \text{ sec.}^{-1}$

Run VIII_{HD}-7

6.31M sulfuric acid; n: .598; 25°

time (minutes)	absorbance	log absorbance
12.5	• 321	494
36.5	•250 •250	602 682
69.5 86.75	•154 •154	813 827
99•5 110	.115 .099	939 -1.005

 $k_n: 2.02 \times 10^{-4} \text{ sec.}^{-1}$

Run VIII_{HD}-8

6.31M sulfuric acid; n: .799; 25°

4.75	.425	372
14.5	.368	434
25.75	.334	476
36	.315	502
45.5	.275	561
54.5	.255	594
63.25	.248	606
71.75	.216	666
54•5	• 255	59
63•25	• 248	60
71•75	• 216	66

 $k_n: 1.54 \times 10^{-4} \text{ sec.}^{-1}$

Run VIII_{HD}-9

6.31M sulfuric acid; n: .598; 25°

7.5	•375	426
17.5	• 336	474
29	. 282	550
39	.251	600
48	• 235	629
57.5	.196	708
65.75	.181	742
78.75	.166	780
	$k = 1.96 \times 10^{-4} = -1$	
	Kn: 1.70 X 10 ' 86C	

p-Methoxybenzeneboronic acid

e

۲

Run VIII_{HD}-10

6.31M sulfuric acid; n: .498; 25°

ansol natica	TOR ADBOTOBILCE
.345 .298 .267 .227 .200 .186 .154 .130	462 526 573 646 699 731 814 886
	.345 .298 .267 .227 .200 .186 .154 .130

 k_n : 2.20 x 10⁻⁴ sec.⁻¹

Run VIII_{HD}-11

6.31M sulfuric acid; n: .221; 25°

5.5	.670	174
13	•590	229
21	•499	302
28.75	.442	355
36.75	• 377	424
46.5	.313	504
58	.265	577
69.5	.212	674

 $k_n: 3.02 \times 10^{-4} \text{ sec.}^{-1}$

Run VIII_{HD}-12

6.31M sulfurio acid; n: .443; 25°

8.75	.677	169
16	.61 8	209
25.25	•535	272
33.75	•470	328
43.25	.429	368
55	• 349	457
73	.261	583
89.25	.206	686

 $k_n: 2.42 \times 10^{-4} \text{ sec.}^{-1}$

.

•

•

	Run VIII ₁ -17	
	25°	
time (minutes)	absorbance	log absorbance
27 82 150 191 248 298	•711 •596 •480 •424 •372 •325	148 225 319 373 430 488
ko	bs.: 4.90 x 10 ⁻⁵ s	ec1
	Run VIII ₁ -18	
	25°	
29 84 152 193 250 300 k o	.694 .584 .471 .410 .363 .315 .58.: 4.67 x 10 ⁻⁵ s	159 234 327 387 440 502
	Run VIII19	
	250 250	
30 46 65 90 121 174 230 308 405 507 612	 .711 .672 .613 .582 .540 .460 .375 .332 .246 .187 .154	148 173 213 235 268 337 426 479 609 728 813

k_{obs}: 4.58 x 10⁻⁵ sec.-1

Run VIII_f-20

4.86×10^{-2} M sulfuric acid; 25°

time (minutes)	absorbance	log absorbance
8	.722	142
11.25	.701	154
14	.661	-,180
18	.640	194
23	.611	214
33.5	•542	266
46.5	.480	319
58 .7 5	.412	385
93.5	•295	531

 $k_{obs.}$: 1.79 x 10⁻⁴ sec.⁻¹

Run VIII₁-21

4.13 x 10^{-2} M sulfuric acid; 25°

23	•568	246
43	•492	308
53	·///1	356
64	.411	386
87	•335	475
103	•277	558
121	• 256	592
141	•205	688

kobs.: 1.45 x 10-4 sec.-1

Run VIII_r-22

 2.58×10^{-2} M sulfuric acid; 25°

•593 •516 •437 •361 •334 •253 24 45 88 105 143 177 220 -.227 -.287 -.360 -.443 -.476 - • 597 .190 -.721 .154 -.813

kobs.: 1.18 x 10⁻⁴ sec.⁻¹

Run VIII₁-23

1.032 x 10⁻²M sulfuric acid; 25°

time (minutes)	absorbance	log absorbance
26	.631	200
67	•490	310
106	.422	375
<u>בווור</u>	• 357	447
179	.296	529
222	.246	609
252	• 207	684
278	.189	724
	F	. 1

 k_{obs} : 7.87 x 10⁻⁵ sec.⁻¹

C

Run VIII₁-24

1.963 x 10 ⁻¹ M sodium formate; 25°		
time (minutes)	absorbance	log absorbance
29 90 148 218 295 390 550 680	.401 .353 .348 .307 .273 .267 .226 .188	397 452 458 513 564 574 646 726
1	^c obs.: 1.86 x 10 ⁻⁵ s	ecl
	Run VIII _f -25	
9 .82 x]	10 ⁻² M sodium formate;	25°
30 91 149 219 296 392 551 681	.700 .640 .599 .560 .513 .460 .415 .359	155 194 223 252 290 337 382 445
1	obs.: 1.78 x 10-5 s	ec1
	Run VIII ₁ -26	
4.91 x 1	10 ⁻² M sodium formate;	25°
31 92 150 220 297 552 651	.706 .632 .590 .550 .500 .395 .346	151 199 229 260 301 403 462

k_{obs}.: 1.89 x 10-5 sec.-1

Run VIII_r-27

2.95 x 10^{-2} M sodium formate; 25° time (minutes) absorbance log absorbance 32 94 151 221 -.175 -.222 .668 .600 .552 .510 - 258 -.292 298 554 653 .449 -.348 -.479 •332 •305 $k_{obs.}$: 2.12 x 10⁻⁵ sec.⁻¹ Run VIII₁-28 9.82 x 10^{-3} M sodium formate: 25° .749 -.126 20 93 161 -.201 .569 .509 -.245 -.293 211 256 .465 • 333 301 .346 361 -.390 .407 <u>1</u>06 - . 1.38

 $k_{obs.}$: 3.06 x 10⁻⁵ sec.-1

Run VIII_f-29

4.91 x 10-3M sodium formate; 25°

21	•717	145
94	•598	223
162	.510	292
212	• 4447	350
257	•424	373
302	.382	418
362	•333	478
407	•313	-•505

$k_{obs.}$: 3.61 x 10⁻⁵ sec.-1

Bibliography

- 1. A. D. Ainley and F. Challenger, J. Chem. Soc., 2171 (1930).
- K. N. Bascombe and R. P. Bell, Disc. Faraday Soc., 158 (1957).
- 3. F. R. Bean and J. R. Johnson, J. Am. Chem. Soc., <u>54</u>, 4415 (1932).
- 4. H. C. Brown and Y. Okamoto, <u>ibid.</u>, <u>80</u>, 4979 (1958).
- 5. N. C. Deno and C. Perizzolo, <u>ibid</u>., <u>79</u>, 1345 (1957).
- 6. K. L. Elmore, C. M. Mason and J. H. Christensen, <u>ibid.</u>, <u>68</u>, 2528 (1946).
- 7. A. I. Gelbshtein, G. G. Sheglova and A. I. Temkin, Zhur. Neorg. Khim., <u>1</u>, 282 (1956).
- 8. A. I. Gelbshtein, G. G. Sheglova and A. 1. Temkin, <u>ibid.</u>, <u>1</u>, 506 (1956).
- 9. V. Gold and D. P. N. Satchell, J. Chem. Soc., 3619 (1955).
- 10. V. Gold and D. P. N. Satchell, *ibid.*, 1635 (1956).
- 11. V. Gold and D. P. N. Satchell, *ibid.*, 2743 (1956).
- 12. V. Gold and D. P. N. Satchell, *ibid.*, 3911 (1956).
- 13. W. H. Hamill and V. K. LaMer, J. Chem. Phys., <u>4</u>, 395 (1936).
- 14. L. P. Hammett and A. J. Deyrup, J. Am. Chem. Soc., <u>54</u>, 2721 (1932).
- 15. L. P. Hammett and A. J. Deyrup, <u>ibid.</u>, <u>54</u>, 4239 (1932).
- 16. L. P. Hammett and M. A. Paul, <u>ibid.</u>, <u>56</u>, 827 (1934).
- 17. G. S. Hammond, <u>ibid.</u>, <u>77</u>, 334 (1955).
- 18. Handbook of Chemistry and Physics, 31st ed., Chemical Rubber Publishing Co., Cleveland, 1949, p. 1661.
- 19. H. H. Jaffe, Chem. Revs., <u>53</u>, 191 (1953).
- 20. M. M. Kreevoy, J. An. Chem. Soc., <u>79</u>, 5927 (1957).
- 21. M. M. Kreevoy, <u>ibid.</u>, <u>81</u>, 1099 (1959).

Bibliography (cont.)

- 22. A. J. Kresge and D. P. N. Satchell, Chem. and Ind., 1328 (1958).
- 23. H. G. Kuivila and A. G. Armour, J. Am. Chem. Soc., <u>79</u>, 5659 (1957).
- 24. H. G. Kuivila and E. K. Easterbrook, <u>ibid.</u>, <u>73</u>, 4629 (1951).
- 25. H. G. Kuivila and A. R. Hendrickson, <u>ibid</u>., <u>74</u>, 5068 (1952).
- 26. F. A. Long and M. A. Paul, Chem. Revs., 57, 935 (1957).
- 27. F. A. Long and D. Watson, J. Chem. Soc., 2019 (1958).
- 28. E. L. Mackor, P. J. Smit and J. H. van der Waals, Trans. Faraday Soc., <u>53</u>, 1309 (1957).
- 29. J. Mitchell, Jr. and W. Hawkins, J. Am. Chem. Soc., <u>66</u>, 1797 (1944).
- 30. W. J. C. Orr and J. A. V. Butler, J. Chem. Soc., 330 (1937).
- 31. M. A. Paul and F. A. Long, Chem. Revs., <u>57</u>, 1 (1957).
- 32. P. A. Plattner, E. Heilbronner and S. Weber, Helv. Chim. Acta, <u>35</u>, 1036 (1952).
- 33. J. G. Pritchard and F. A. Long, J. Am. Chem. Soc., <u>78</u>, 6008 (1956).
- 34. E. L. Purlee, <u>ibid.</u>, <u>81</u>, 263 (1959).
- 35. W. M. Schubert and H. Burkett, <u>ibid.</u>, <u>78</u>, 64 (1956).
- 36. W. M. Schubert and P. C. Myhre, *ibid.*, 80, 1755 (1958).
- 37. D. G. Tuck and R. M. Diamond, Proc. Chem. Soc., 236 (1958).
- 38. K. B. Wiberg, Chem. Revs., <u>55</u>, 713 (1955).
- 39. P. A. H. Wyatt, Disc. Faraday Soc., 162 (1957).
- 40. L. Zucker and L. P. Hammett, J. Am. Chem. Soc., <u>61</u>, 2791 (1939).