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ABSTRACT

PATTERNS OF CYTOSINE METHYLATION IN THE GENOME OF CAENORHABD1TIS ELEGANS

BY

KAZUFUSA OKAMOTO 

University of New Hampshire, September 2013

Recent large-scale comparative analysis of cytosine DNA methylation across 

diverse eukaryotes suggest that early features of DNA methylation present in the last 

common ancestor of all eukaryotes some 1.6 to 1.8 billion years ago included the 

methylation of gene bodies and transposable elements (Zemach, McDaniel et al. 2010; 

Parfrey, Lahr et al. 2011). These potentially ancient patterns may reflect a primitive 

role of methylation in transcriptional fidelity and as a mechanism to protect the germ 

line from transposon, or repeat, mediated mutation. Because spurious transcription 

and mutation are hypothesized to be among the critical limiting factors to genome size, 

an ancient role for methylation in support of fidelity of transcription and genome 

stability suggests a possible link with the origin of eukaryotes. As a consequence,



understanding the roles of methylation across diverse eukaryotes will be critical to 

understanding the evolution of methylation and its role in the evolution of genome 

complexity.

In light of these observations it is perplexing that one of our key model 

eukaryotes, the nematode (Caenorhabditis elegans) is assumed to lack active DNA 

methylation. In fact, C. elegans is often invoked to suggest the dispensability of 

methylation in multicellular animals (Feng, Cokus et al. 2010; Zemach, McDaniel et al. 

2010). Historically, this view has been based on crude assays using methylation sensitive 

restriction enzymes (Simpson, Johnson et al. 1986) that lack the sensitivity to identify 

low levels of methylation.

While it is clear that the genome of C. elegans is not highly methylated, in this 

thesis we used comparative genomics and genome wide bisulfite sequencing to show 

that: 1) The genome of C. elegans appears to encode at least three DNA 

methyltrasferases and a DNA methyltransferase associated protein; 2) the genome of C. 

elegans is methylated in a pattern consistent with the proposed basal eukaryotic 

pattern and 3) that that cytosine methylation is not a major contributor to the basal rate 

and pattern of mutation in the genome of C. elegans. Based on these observations we 

contend that C. elegans represents an ideal model for the study of the basal roles of 

DNA methylation shared by all eukaryotes.



INTRODUCTION

When comparing complete genomic sequences across diverse phylogenetic 

lineages, a general pattern emerges where there is an increase in genome size from 

prokaryotes to multicellular eukaryotes. The changes include increase in gene number, 

resulting from the retention of duplicate genes, and an increases in the abundance of 

spliceosomal introns and mobile genetic elements (Lynch and Conery 2003). This trend 

of evolving increased genome size and ultimately genome complexity may arise from a 

change in the drift selection balance. In that hypothesis, the balance can be shifted 

towards drift and the power of selection can be dampened when population sizes 

decrease, a common feature associated with increased complexity. Here we propose 

that epigenetic factors can also contribute to the evolution of complexity by reducing 

the deleterious effects of increased genome complexity by suppressing spurious 

transcription and the spread of transposable elements.

DNA methylation is perhaps the best characterized epigenetic mechanism. DNA 

methylation is found in the genomes of diverse organisms including both prokaryotes 

and eukaryotes. In prokaryotes, DNA methylation occurs on both cytosine and adenine 

bases and encompasses part of the host restriction system (Wilson and Murray 1991). In 

eukaryotes, methylation seems to be confined primarily to cytosine bases and is 

associated with a repressed chromatin state and inhibition of gene expression (Bird and



Wolffe 1999). DNA methylation has been proven to be involved in a number of 

biological processes such as regulation of imprinted genes, X chromosome inactivation, 

and tumor suppressor gene silencing in cancerous cells. It also acts as a protection 

mechanism against pathogen DNA and transposable elements (Chandler and Walbot 

1986; Yoder, Walsh et al. 1997; Matzke, Mette et al. 2000) and DNA methylation is 

essential for viability in mice, since targeted disruption of the DNA methyltransferase 

enzymes results in lethality (Li, Bestor et al. 1992; Okano, Bell et al. 1999).

DNA Methvltransferases and Associated Proteins in C. eleaans

The most extensively studied DNA methyltransferase enzymes are that of 

mammals. Mammalian cytosine DNA methyltransferases fit into two general classes 

based on the DNA substrate they prefer (Klose and Bird 2006). The de novo 

methyltransferases DNMT3a and DNMT3b are mostly responsible for cytosine 

methylation at previously unmethylated sites, whereas the maintenance 

methyltransferase DNMT1 copies pre-existing methylation patterns onto the new DNA 

strand during DNA replication (Okano, Xie et al. 1998). A fourth DNA methyltransferase, 

DNMT2, shows weak DNA methyltransferase activity in vitro (Hermann, Schmitt et al. 

2003) and targeted deletion of the DNMT2 gene in mouse embryonic stem cells causes 

no detectable effect on DNA methylation. This suggests that this enzyme has little 

involvement in setting DNA methylation patterns (Okano, Xie et al. 1998). In mouse 

DNMT3L is a DNMT-related protein that does not contain DNA methyltransferase
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activity, but physically associates with DNMT3a and DNMT3b and modulates their 

catalytic activity (Suetake, Shinozaki et al. 2004). In combination, these de novo and 

maintenance methyltransferases constitute the core enzymatic components of the DNA 

methylation system in mammals (Klose and Bird 2006).

Prior to this study it was not clear if Caenohabditis elegans is capable of DNA 

methylation. However, some recent studies (Lyko 2001; Zhang, Yazaki et al. 2006; 

Schaefer and Lyko 2007; Pomraning, Smith et al. 2009) have spurred interest in re

evaluating organisms that have been long believed to live in the absence of DNA 

methylation. For example, Drosphila melanagaster was also once considered a classic 

example of an organism that functions without DNA methylation (Bird and Tweedie 

1995) yet it was subsequently reported that Drosophila possesses a functioning DNA 

methylation system and low levels of genomic methylation were discovered (Lyko 

2001). This is in spite of the fact that Drosophila does not encode homologs of any of the 

known DNMT genes.

The most recent DNA methylation study in C. elegans by Gutierrez and Sommer 

(2004) proposed a recent loss of the DNA methylation system in C. elegans. This study 

was based on a BLAST search for orthologous sequences to the Drosophila dnmt-2 gene 

in the EST and genomic DNA sequences of three nematode species; C. elegans, C. 

briggsae, and P. pacificus. Although orthologous sequences were found in all 

nematodes surveyed, expression of the gene was only confirmed in P. pacificus leading



to the suggestion that functional methylation may have been lost in the lineage leading 

to C. elegans. More recently DNA methylation in a parasitic nematode (Trichinella 

spiralis) was shown to be stage specific (Gao, Liu et al. 2012). This study also concluded 

that the C .elegans genome contains a Dnmtl, but out of the 11 species of nematodes 

tested T. spiralis was the only one encoding a DNMT3 homologue. The lack of a clear 

Dnmt3 homologue and thus questionable capacity for de novo methylation is 

nevertheless a common feature across eukaryotes shown to actively methylate their 

genomes (Jeltsch 2010).

The Roles of DNA Methylation

There are two general mechanisms by which DNA methylation inhibits gene 

expression. First, modification of cytosine bases can inhibit the association of some 

DNA-binding factors with their corresponding DNA recognition sequences (Watt and 

Molloy 1988). Second, proteins that recognize methyl-CpG can elicit the repressive 

potential of methylated DNA (Boyes and Bird 1991). In mammals methyl-CpG-binding 

proteins (MBPs) use transcriptional co-repressor molecules to silence transcription and 

to modify surrounding chromatin, providing a link between DNA methylation and 

chromatin remodeling and modification (Hendrich and Bird 1998; Jones, Thomas et al. 

1998).
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Context of Heritable DNA Methylation

Cytosine residues at CpG dinucleotides are the preferred targets for DNA 

methylation in mammals, while methylation at both CpG and CpNpG (where N is any 

base) sequence contexts is also common in plants (Gruenbaum, Naveh-Many et al.

1981) (Fig. 1). The symmetry of the CpG and CpNpG sites was proposed to be important 

for stable maintenance of methylation patterns throughout DNA replication cycles. After 

replication, a maintenance methyltransferase could readily methylate C residues in the 

newly synthesized strand, if the parental strand contained an MeC in the 

complementary sequence (Gruenbaum, Cedar et al. 1982). This semi-conservative 

model predicts that the methylation pattern at non-symmetrical sequence contexts 

would not be efficiently maintained and should be lost after several cell divisions. 

However, cytosine methylation of non-symmetrical sequence contexts were reported in 

mammals (Ramsahoye, Biniszkiewicz et al. 2000; Lister, Pelizzola et al. 2009), in fungi 

(Selker, Fritz et al. 1993; Goyon, Nogueira et al. 1994) and in plants (Cao, Aufsatz et al. 

2003) and could contribute to the regulation of gene expression (Cao, Aufsatz et al. 

2003). Therefore, non-symmetrical methylation patterns have to  be maintained by a 

mechanism different to that proposed in the semi-conservative model or they have to 

be established de novo after each DNA replication cycle (Pelissier, Tutois et al. 1996).

Since, little is known about the molecular mechanisms that target DNA 

sequences for de novo methylation, it is not clear if the processes involved in de novo 

methylation of symmetrical sequences are different from those taking place in the de



novo methylation of non-symmetrical sequence contexts (Pelissier, Tutois et al. 1996). 

Because of the difficulty in analyzing cells where de novo methylation is initiated, the 

frequent appearance of symmetrical methylation patterns may simply reflect that only 

these patterns are efficiently maintained (Pelissier, Tutois et al. 1996).

DNA Methylation and Mutation

Methylation of cytosine residues was first demonstrated to be mutagenic in E. 

coli (Coulondre, Miller et al. 1978). These initial studies identified methylated cytosines 

as hotspots for spontaneous base substitutions. Mutations which occur at CpG 

dinucleotides are easily recognized because of the nature of base substitutions. 

Deamination of MeC at CpG dinucleotides results in the formation of TpG. Alternatively, 

if deamination occurs on the complementary DNA strand CpA is generated. The 

conversion of MeC to T is believed to be more likely the result of endogenous mutagenic 

processes rather than mutagenesis caused by exogenous factors (Rideout, Coetzee et al. 

1990). Methylation of cytosine at a CpG dinucleotide increases the probability of a C->T 

or corresponding G->A transition mutation between 12- and 42-fold (Cooper and 

Youssoufian 1988).

5-Methyl cytosine (MeC) in DNA is genetically unstable. Methylated CpG (mCpG)

sequences frequently undergo mutation resulting in a general depletion of this

dinucleotide sequence in mammalian genomes. In human genetic disease and cancer

relevant genes, mCpG sequences are mutational hotspots. It is an almost universally
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accepted that these mutations are caused by random deamination of MeC (Gonzalgo 

and Jones 1997). However, it is plausible that mCpG transitions are not only caused by 

spontaneous deamination of MeC in double-stranded DNA but by other processes 

including, for example, mCpG-specific base modification by endogenous or exogenous 

mutagens or carcinogens (Pfeifer 2006). When adjacent to another pyrimidine, MeC 

preferentially undergoes photo-induced pyrimidine dimer formation (Pfeifer 2006). 

Furtheremore, certain polycyclic aromatic hydrocarbons form guanine adducts and 

induce G to T transversion mutations with high selectivity at mCpG sequences (Gonzalgo 

and Jones 1997).

The increased deamination rate of MeC relative to C, however, still does not 

account for the high frequency of mutagenesis observed at CpG sites. One explanation 

may be that G-T mispairs resulting from deamination of MeC are more difficult for the 

cell to repair than G-U mispairs which can result from the deamination of cytosine, since 

thymine (unlike uracil) is a normal component of DNA. A higher efficiency of repair of G- 

U but not G-T mismatches by the well characterized uracil-DNA glycosylase (UDG) 

enzyme may also contribute to the increased frequency of mutagenesis caused by MeC 

deamination (Gonzalgo and Jones 1997). Excision of U has been found to be as much as 

6000-fold more efficient than excision of T at identical template sites using extracts 

from human colonic mucosa (Schmutte, Yang et al. 1995).

7



Phylogenetic Distribution of DNA Methylation

In animals, the level and pattern of methylation varies dramatically among major 

lineages. It was believed that the nematode Caenorhabditis elegans has little to no 

methylated DNA, since the genome lacks detectable methylated cytosine (MeC) and 

does not encode a conventional DNA methyltransferase (Regev, Lamb et al. 1998; Lyko 

2001; Kunert, Marhold et al. 2003; Gutierrez and Sommer 2004; Vandegehuchte, 

Lemiere et al. 2009). Another invertebrate, Drosophila melanogaster, long thought to be 

devoid of methylation, has since been shown to  have a DNA methyltransferase-like 

gene (Hung, Karthikeyan et al. 1999) and is reported to contain very low MeC levels 

(Lyko, Ramsahoye et al. 2000), although mostly in the CpT dinucleotide rather than in 

CpG.

With the exception of Drosophila melanogaster and other insects, most other 

eukaryotic genomes have moderately high levels of methyl-CpG concentrated in large 

domains of methylated DNA separated by equivalent domains of unmethylated DNA 

(Colot and Rossignol 1999; Klose and Bird 2006). This mosaic methylation pattern has 

been confirmed at higher resolution in the sea squirt, Ciona intestinalis (Simmen,

Leitgeb et al. 1999). In vertebrate genomes, which have the highest levels of MeC found 

in the animal kingdom, methylation is dispersed over much of the genome, a pattern 

referred to as global methylation (Klose and Bird 2006).
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P. blakesleeanus 2.57 6’ 75' 1.4 2.02

P. placenta

L bicolor

Fig. 1 Normalized frequencies of DNA methylation context and evolution

The phylogenetic tree was based on the NCBI Taxonomy Browser. The values represent 
the normalized fraction in percent of methylated Cs per motif. The filled boxes on the 
right indicate high methylation of gene bodies (GB) and transposable elements (TE). 
Data obtained from; Lister et al., 2009, Zemack et al., 2010, Su et al., 2011 and this study.
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Even though methylation levels and contexts (CpG or non CpG) differ from 

organism to organism, methylation of transposons and gene bodies are common across 

eukaryotes (Zemach, McDaniel et al. 2010). The conservation of the specific 

methylation of transposons(TE) and gene bodies (GB) suggest that this is a basal pattern 

and likely crucial in the evolutionary process of eukaryotic genomes and puts forth the 

hypothesis that a complex transcriptome requires DNA methylation to suppress 

transcription errors and stabilize the genome. Therefore, it is critical to conduct a 

rigorous analysis of methylation in the C. elegans genome since it is an excellent model 

to study the basal mode of DNA methylation.
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CHAPTER I

IDENTIFICATION OF DNA METHYLTRANSFERASES IN C. ELEGANS

Background

DNA methyltransferases are distinguished as either maintenance (DNMT1 

family) or denovo methyltransferases (DNMT3 family), depending on their preference 

for hemimethylated or unmethylated DNA, respectively (Bestor 2000). DNA 

methyltransferase 1 (DNMT1), for example, is generally considered to maintain DNA 

methylation patterns associated with DNA replication (Leonhardt, Page et al. 1992), and 

it has a stronger preference for hemimethylated DNA; however, this may not always be 

the case since DNMT1 also acts on unmethylated targets(Okano, Xie et al. 1998). 

Additional evidence for de novo activity of DNMT1 in chromatin at sites of homologous 

recombination has recently been proposed (Cuozzo, Porcellini et al. 2007). The DNA 

methyltransferase associated protein (DMAP) is a co-repressor that forms a complex 

with DNMT1 and targets replication foci in the S phase of Vero (primate) cells (Rountree, 

Bachman et al. 2000). In Human cells, DMAP1 participates in the epigenetic 

reprogramming that was previously shown to be involved in homology-directed DNA 

repair (Cuozzo, Porcellini et al. 2007). This means that DMAP1 acts as a co-repressor in 

global maintenance (Rountree, Bachman et al. 2000), as well as cooperating with 

DNMT1 in epigenetic alterations associated with repair of DS DNA breaks. It has been

11



shown that DMAP1 has a strong binding preference for hemimethylated DNA and 

stimulates DNA methylation mediated by DNMT1 in maintenance methylation as well as 

de novo methylation activity in vitro (Lee, Fitzpatrick et al. 2001).

DNMT3L is another gene that shares homology with DNMT3 family 

methyltransferase genes. DNMT3L is required for the establishment of methylation 

imprints in mammalian oocytes (Hata, Okano et al. 2002). DNMT3L, which by itself has 

no detectable DNA methyltransferase activity, appears to regulate methylation of 

imprinted genes through its interaction with DNA methyltransferases, DNMT3a and 

DNMT3b (Hata, Okano et al. 2002). DNMT3L binds and colocalizes with DNMT3a and 

DNMT3b in the nuclei of mammalian cells. Accordingly, DNMT3L~/_ mutants, (DNMT3a-/“ 

, DNMT3b+/_) female mice also fail to establish maternal methylation imprints (Hata, 

Okano et al. 2002). These results provide genetic evidence that DNMT3 family 

methyltransferases and a potential cofactor DNMT3L are required for de novo 

methylation of imprinted genes in the female mammalian gamete. Thus, the 

establishment of a DMAP and DNMT3L homologues in C. elegans would provide 

evidence for the existence of essential parts to the DNA methylation machinery. 

However, we must also keep in mind that most eukaryotes have only an identifiable 

DNMT1 homolog and some have no homologues to known DNMTs yet actively 

methylate their genomes.

Furthermore, it is not enough to include only well-established

12



mammalian DNA methylation machinery in this search. It is of equal importance to 

include all classes of DNA methyltransferases, since one cannot predict the mechanism 

in which C. elegans methylates DNA. In plants, Arabidopsis thaliana is best studied 

model for DNA methylation and has at least three classes of DNA methyltransferase 

genes: the MET class, the CMT class, and the DRM class (Finnegan and Kovac 2000). 

MET1, like its mammalian homolog Dnmtl (Bestor, Laudano et al. 1988), encodes the 

major Arabidopsis CpG maintenance methyltransferase (Finnegan, Peacock et al. 1996; 

Ronemus, Galbiati et al. 1996; Kishimoto, Sakai et al. 2001). When M e tl was tested in a 

RNA directed DNA methylation (RdDM) system where a 35S:GFP transgene was 

methylated and silenced by homologous RNA virus sequences, CpG methylation of the 

35S promoter sequence was heritable in the absence of an RNA trigger and was 

dependent on the activity of MET1 (Jones, Ratcliff et al. 2001). However, suppression of 

MET1 activity did not block the establishment of RNA-directed CpG methylation in this 

system. These results suggest that MET1 is important in the maintenance of gene 

silencing that is caused by RdDM, but probably not in the initiation of RdDM. CMT-like 

genes are specific to the plant kingdom and encode methyltransferase proteins 

containing a chromodomain (Henikoff and Comai 1998). Arabidopsis CMT3 loss-of- 

function mutants show a large decrease in CpNpG methylation and more subtle and 

locus-specific effects on asymmetric methylation (Lindroth, Cao et al. 2001; Cao and 

Jacobsen 2002). The DRM genes share homology with mammalian DNMT3 genes that 

encode de novo methyltransferases (Cao, Springer et al. 2000). Previous work showed



that a double mutant of drm l and drm2 showed a lack of de novo DNA methylation 

normally associated with transgene silencing of the FWA and SUPERMAN genes (Cao and 

Jacobsen 2002). It was also observed that drm l drm2 double-mutant plants show major 

losses of asymmetric methylation and more subtle and locus-specific effects on CpNpG 

methylation at endogenous Arabidopsis loci (Cao and Jacobsen 2002).

Neither drm nor cmt3 mutants affect the maintenance of pre-established 

RNA-directed CpG methylation. However, when drm is mutated there is a nearly 

complete loss of asymmetric methylation and a partial loss of CpNpG methylation (Cao, 

Aufsatz et al. 2003). The remaining asymmetric and CpNpG methylation was dependent 

on the activity of CMT3, showing that DRM and CMT3 act redundantly to maintain non- 

CpG methylation (Cao, Aufsatz et al. 2003). It was shown that these DNA 

methyltransferases appear to act downstream of siRNAs, since drm l drm2 cmt3 triple 

mutants show a lack of non-CpG methylation but elevated levels of siRNAs 

demonstrating that DRM activity is required for the initial establishment of RdDM in all 

sequence contexts including CpG, CpNpG, and asymmetric sites(Cao, Aufsatz et al.

2003).

Previous evaluations of the C.elegans genome have either not recognized 

any DNA methyltransferase homologs (Gutierrez and Sommer 2004; Zemach, McDaniel 

et al. 2010) or only a single gene homologous to the Dnm tl family (Gao et al., 2012). To 

characterize the capacity for the C. elegans genome to code for methyltransferase we

14



searched the genome with homologs of all major DNMT, and DNMT related protein 

sequences.
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Methods

Known DNMT sequences from Arabidopsis, Neurospora, mouse, and human 

were queried against the C. elegans data base (www.wormbase.org) using BLAST/BLAT 

on default settings and an e-value cut off of 0.01. Orthology was inferred by reciprocal 

best BLAST (RBB) (Li, Stoeckert et al. 2003). The motif search and discovery results 

were gathered using MEME and MAST, a part of a software toolkit that allows for motif 

discovery and motif database searching (Bailey, Boden et al. 2009).

i M O TIF  
(database

S t

Motifs

Unaligned sequences

Sequence
database

|  database

GOMO

TO M TO M
M EM E
GLAM2

F1MO
MAST

GLAM2SCAN

M EM E  
c u a m ;  
t o m t o m  
R M O  
M AST
GLAM-2SCAN Scanning w ith Gapped M otifs 

X iOtylO Gens Ontology fur M o tif*

De-novo M o tif  Discovery 
Gapped Local A lignment o f  M otifs 
M c iif  CotrtpiHtsoii 
Find Inividual M o tif Occurences 
M otif A lignm ent and Search Tool

Aligned motifs

Annotated sequences

  GO function
G O  compartment 
GO process 

* * *  GO function
GO compartment 
GO process

Annotated motifs

(Bailey, Boden et al. 2009)

Fig. 2 Overview of the MEME Suite

MEME and GLAM2 are tools for motif discovery, Tomtom searches for similar motifs in 
databases of known motifs, FIMO, GLAM2SCAN and MAST search for occurrences of 
motifs in sequence databases, and GOMO provides associations between motifs and GO 
terms. The components of the MEME Suite are implemented in ANSI C as command line 
tools. These are published as SOAP (Simple Object Access Protocol) web services using 
Opal and the Tomcat Java servlet container. Opal provides job management services 
allowing the MEME Suite to queue multiple simultaneous requests (Bailey, Boden et al.
2009).
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Results and Discussion

Initial searches for putative C. elegans DNA methyltransferases (DNMTs) yielded 

a number of prospects. Table 1 represents a list of putative DNMT homologues that 

was paired down from a larger list by functional inferences based on automatic 

annotations by InterPro (http://www.ebi.ac.uk/interpro/). The potential C .elegans 

DNMTs were then BLASTed against the non-redundant protein database to find 

annotated sequences that matched the proposed function (e. g. methyltransferase) of 

the C. elegans sequences. Once the annotated sequence was matched with an e-value 

cut off of at least 0.01, the organism/locus that corresponded to the annotated 

sequence was subsequently used for RBB analysis.

Although the prospective genes could all potentially be involved in DNA 

methylation only three (Uniprot # Q81AA7; P45968; Q9U1S4) were chosen based on 

their predicted catalytic domains and functions in addition to evidence based on RBB 

analysis. All putative C. elegans DNA methyltranferase and DNA methyltranferase 

associated genes have transcript evidence confirmed via microarray expression data and 

matching cDNAs. Furthermore, a recent publication (Gao, Liu et al. 2012) also identified 

one of the putative DNMTs (Uniprot # P45968 Wormbase ID Y75B8A.6 ) as a DNMT1 

homologue.
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WB ID Uniprot ID RBB E-Value Phenotype Annotation RBB Organism
C33C12.9 016582 RBB Confirmed 6.0E-30 NA Adenine tranferase Loa loa
C38D4.9 Q18511 RBB Confirmed 3.0E-15 NA DNMT-like Crassostrea

Y43H11AL.1 Q8IAA7 No RBB NA NA C5 methyltransferase Human
Y62E10A.5 Q2HQK2 No RBB NA NA alkyltransferase Human
Y71F9AL.1 Q9N4H1 No RBB NA NA RNA methyltransferase Human

Y105E8A.17 Q8WQA7 RBB Confirmed 5.0E-75 embrionic lethal DMAP Human
Y75B8A.6 Q9U1S4 RBB Confirmed 4.8E-08 NA DNMT1 Mouse
T09A5.8 P45968 RBB Confirmed 6.5E-06 extended life emb lethal C5 methyltransferase Arabadosis

Table 1. Candidate DNA Methyltransferases

Columns from left to right: The Wormbase ID of potential DNMTs, the corresponding 
Uniprot ID, Wether reciprocal best blast was confirmed or not, phenotype associated 
with the gene knocked out, automated annotation for the non-RBB confirmed or 
annotation based on orthology for the RBB confirmed, and finally the organism with 
which RBB was performed.

Since DMAP1 has a strong binding preference for hemimethylated DNA and 

stimulates DNA methylation mediated by DNMT1, a search for orthologous DMAP 

sequences in C. elegans was also performed. This search yielded two genes (Uniprot # 

Q8WQ87; A8QE0) with high similarity to mammalian DMAP1 (Tablel).

A closer look into the motifs of two of the most conserved putative C .elegans 

DNMTs (Uniprot # Q81AA7; P45968) revealed that the motifs required for an active 

methyltransferase are present. Aside from the domain (seen in red Fig.3 and Fig.4) that 

was used initially to implicate this protein as a putative DNA methyltransferase, 

additional motifs have been found by comparing the individual motifs from other known 

DNA methyltransferases and related proteins using the MEME toolkit (Bailey, Boden et 

al. 2009). Of the motifs and domains found in the C. elegans DNMT homologues we find
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sequence conservation as well as conservation in organization. However, not all motifs 

and domains found in some known DNMTs are found in the C. elegans homologue. In 

fact, none of the ten motifs said to be required for a functional mammalian DNMT(Goll 

and Bestor 2005) are present in their entirety in C. elegans. However, both mouse and 

Arabadopsis DNMTs do not have all ten motifs in any of the DNMT families as well. For 

instance, the mouse DNMT3 has only two of the ten and six of the ten in DNMT1.

AdoMet_MTases

S B Original C. elegans domain
E IS C. elegans
SHB A.thaliana
m m N. crassa
w m M . musculus

Fig. 3 Worm Base ID Y75B8A.6 Organization of Motifs

The black line above the legend represents the putative C. elegans DNMT sequence.
The colored boxes above the sequence represents homologous domains and motifs 
from other organisms labeled below the sequence. The C. elegans domain seen in red 
that was used initially to implicate this protein as a putative DNA methyltransferase. The 
additional motifs have been found in other known DNA methyltransferases and related 
proteins. CHROMO is a chromatin organization modifier domain. BAH is the bromo- 
adjacent homology domain. The AdoMet_MTases are catalytic domains which allow for 
the S-adenosylmethionine-dependent methyltransferases to interact with DNA.
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Fig. 4 Worm Base ID T09A5.8 Organization of Motifs

The black line above the legend represents the putative C. elegans DNMT sequence.
The colored boxes above the sequence represents homologous domains and motifs 
from other organisms labeled below the sequence. The C. elegans domain (seen in red) 
was used initially to implicate this protein as a putative DNA methyltransferase. The 
additional motifs have been found in other known DNA methyltransferases and related 
proteins. zf-CXXC is a zinc-finger motif. RFD is DNA replication foci-targeting sequence. 
ADDz is involved in protein/chromatin interactions. Conserved M otif I is involved in 
transfer of methyl from S-adenosylmethionine to cystine.

Upon further investigation conserved DNMT motifs of known functioning DNMTs 

it was interesting to note that not all of the conserved motifs said to be required for 

functionality (Goll and Bestor 2005) are actually present in the published DNMT 

sequences. With this in mind we sought to find a "universal" motif to compare the 

putative C. elegans DNMTs. By using BLAST to find known DNMTs that share high

similarity and extracting the sequences we were able to  use the MEME toolkit to search
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for conserved motifs. The results were then used in the MAST algorythm to identify the 

motifs in the putative C. elegans DNMTs. Once the motifs were found in the C. elegans 

DNMTs the motifs were BLASTed against the Uniprot database to  find functional 

assignments. This resulted in C. elegans DNMTs sharing highly similar motifs involved in 

DNA binding and catalytic activity with other cytosine-specific methyltransferases, 

specifically DNMT1 (Table.1).

21



Conclusion

Based on our analysis it appears that C. elegans encodes at least three putative 

DNMTs and one DMAP. It is important to note that these putative methyltransferases 

were already electronically annotated as DNA methyltranferases in the C. elegans 

database. While our evidence of homology to known DNMTs is strong it remains to be 

shown that C. elegans actively methylates it genome (Chapter 2). Furthermore, the 

function of these putative DNMT and other loci involved remains to be elucidated by 

classical functional assays.
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CHAPTER -  2

PATTERN OF C5 DNA METHYLATION IN C. ELEGANS:

Levels, Motifs and Patterns In an Enriched Genome Dataset

Background

C. elegans is a premier model organism in biology and the first metazoan to have 

its genome completely sequenced. However, post-synthesis modification of C. elegans 

DNA remains virtually unstudied. Although, C. elegans is a relatively simple organism, it 

shares many essential biological processes and pathways with other multicellular 

organisms with high genome content and complexity. Therefore C. elegans could be an 

important an important model for the study of DNA methylation and its role in genome 

evolution.

Recent large-scale comparative analysis of cytosine DNA methylation across 

diverse eukaryotes suggest that early features of DNA methylation included the 

methylation of gene bodies and transposable elements (Zemach, McDaniel et al. 2010). 

These potentially ancient patterns may reflect a primitive role o f methylation in 

transcriptional fidelity and as a mechanism to protect the germ line from transposon (or 

repeat) mediated mutation. Because spurious transcription and mutation are 

hypothesized to be among the critical limiting factors to genome size, an ancient role for 

methylation in support of fidelity of transcription and genome stability suggests a
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possible link with the origin of eukaryotes (Bird and Tweedie 1995; Maunakea,

Nagarajan et al. 2010).

In light of these observations it is perplexing that one of our key model 

eukaryotes, the nematode (Caenorhabditis elegans) is assumed to lack active DNA 

methylation. In fact, C. elegans is often invoked to suggest the dispensability of 

methylation in multicellular animals (Feng, Cokus et al. 2010; Zemach, McDaniel et al.

2010). Historically, this view has been based on crude, yet standard, genomic assays 

using methylation sensitive restriction enzymes (Simpson, Johnson et al. 1986).

However, while it is clear that the genome of C. elegans is not highly methylated, 

methylation maybe limited to a small subset of nuclei (e.g. the germline) as might be 

expected based on some proposed ancestral functions. It is also possible that some 

patterns of methylation will be developmentally regulated and perhaps limited to a 

subset of cell types and specific developmental stages as has been shown in the 

parasitic nematode Trichinelle (Gao, Liu et al. 2012).

It is also enigmatic that the genome of C. elegans appears to encode multiple 

DNA methyltrasferases (DNMT; uniprot: Q8IAA7, P45968 and Q9U1S4), and a DNA 

methyltransferase associated protein (uniprot:Q8WQA7) as discussed in Chapter 1. One 

of these DNMT genes (P45698) was independently identified in a screen for co

suppressors of germline transgenes in C. elegans, suggesting a role in repeat inactivation 

(Robert, Sijen et al. 2005). More recently, this same gene has been implicated as being

a DNMT1 homologue of a parasitic nematode in which DNA methylation has been

24



confirmed (Gao, Liu et al. 2012). It is also noteworthy that C. elegans contains 

transposable elements that actively transpose in the soma yet are suppressed in the 

germline (Emmons and Yesner 1984). Based on these observations, a more sensitive and 

detailed examination of the C. elegans DNA methylome is warranted.

In this chapter we explore the existence of cytosine DNA methylation in 

the genome of C.elegans. Methods for analysis of DNA methylation can be divided 

roughly into two types: global and gene-specific. For global methylation analysis, there 

are methods which measure the overall level of MeCs in genomes such as 

chromatographic methods and methyl accepting capacity assay (Selker, Tountas et al. 

2003). For gene-specific methylation analysis, a number of techniques have been 

developed. Earlier studies used methylation sensitive restriction enzymes to digest DNA. 

The digest is followed by Southern hybridization based detection or PCR amplification 

(Rollins, Haghighi et al. 2006). Recently, bisulfite reaction based methods, such as 

methylation specific PCR (MSP) or bisulfite genomic sequencing PCR have become 

popular (Rakyan, Hildmann et al. 2004). For this study, methylation in genome wide or 

global terms will be the focus. Furthermore, because of the known paucity of 

methylation in C. elegans, for this initial analysis we have employed an enrichment step 

to focus our sequencing efforts on the DNA sequences containing 5-methyl Cytosines 

(MeC).

The core method used to detect MeC in our assay is bisulfite treatment. 

Treatment of DNA with bisulfite converts cytosine residues to uracil, which are read as
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thymine residues in the sequencing process. MeC residues, however, are unaffected by 

bisulfite. Current bisulfite treatment protocols have become incredibly robust with 

conversion rates greater than 99.9% and inappropriate conversion (conversion of MeC 

to U) rates less than 0.78% (Genereux, Johnson et al. 2008). Therefore, bisulfite 

treatment introduces specific changes in the DNA sequence that depend on the 

methylation status of each cytosine residue, at high accuracy and low error rates 

yielding single-nucleotide resolution information about the methylation status of a 

segment of DNA (Rakyan, Hildmann et al. 2004).
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Methods

C. elegans (N2) were grown under normal conditions (Brenner 1974) and DNA 

was extracted from mixed stage worms using the Qaigen genomic tip protocol. Given 

the fact that we anticipate if C. elegans actively methylates it genome that the levels will 

be low, we chose to conduct this first analysis using an enrichment step where DNA 

fragments containing MeC are enriched in the sample using a MeC binding protein 

attached to a substrate. To enrich the sample for methylated strands we fragmented 

the DNA using the Gene Machine Hydro shear to ~ 500bps and used the Invitrogen 

MethylMiner DNA enrichment Kit, a methylation binding enzyme attached to magnetic 

beads to pull down fragments containing methylated C(s). This DNA was subjected to 

bisulfite treatment using the Invitrogen MethylCode Bisulfite Conversion Kit, which 

converts rion-methylated Cs to T. This MeC enriched and bisulfite treated DNA sample 

was then sequenced using lllumina Sequencing technology. This method relies on the 

attachment of randomly fragmented, adapter ligated, genomic DNA to a planar, 

optically transparent surface. Attached DNA fragments are extended and bridge 

amplified to create an ultra-high density sequencing flow cell with hundreds of millions 

of clusters, each containing ~1,000 copies of the same template(Quail, Kozarewa et al. 

2008). These templates are sequenced using a four-color DNA sequencing-by-synthesis 

technology that employs reversible terminators with removable fluorescent dyes. 

Together with the lllumina data analysis pipeline, this sequencing technology achieves

an error rate of less than 0.9% (Quail, Kozarewa et al. 2008).

27



The resulting sequence data is then analyzed by aligning the bisulfite 

treated sample sequence to the current published reference genome. From this 

reference genome, two "in silico bisulfite treated" references must be prepared. First is 

the reference genome with all cytosines changed to thymines and second is a reference 

with all the guanines changed to adenines to account for the complimentary strand.

The C-T, T-C, G-A, and A-G transitions can then be examined to elucidate potential 

methylated sites (Pomraning, Smith et al. 2009). Mapping high-throughput bisulfite 

reads to the reference genome is a challenge due to reduced complexity of bisulfite 

sequence, and asymmetric cytosine to thymine alignments (Xi and Li 2009). BSMAP is 

based on the open source software SOAP (Short Oligonucleotide Alignment Program) 

(Li, Li et al. 2008). This analysis results in a report for every C on either strand. This 

report gives the chromosome, position, the number of times a read mapped to that 

position and the number of times that read had a C that was not converted to a T. 

BSMap parameters were set to a fragment size of 100-280 bps, 8 processors were used, 

seed size was set to 14, 4 mismatches were allowed in the alignment, and the max 

number of equal best hits to count was set to  10.
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Results and Discussion

Cytosine methylation levels in C. eleaans - Previous studies have failed to produce any 

evidence of methylated DNA in C. elegans. This may stem from a level of methylation 

that is too low to detect using HPLC and methylation sensitive restriction enzyme 

analysis (Simpson, Johnson et al. 1986). To improve our detection ability we set out to 

enrich the DNA for methylated DNA. We started with fragmented genomic DNA at a 

total weight of 97.6 ug 98.8 ug and 98.2 ug. The resulting yield after three rounds of 

methylated DNA enrichment was 1.46 ug, 1.52 ug, and 1.56 ug respectively. The 

average yield of methylated DNA was a 1.5% most of which is likely unmethylated. This 

low level of MeC containing DNA is consistent with the lack of detectability in previous 

attempts to elucidate DNA methylation in C. elegans as > 1% DNA methylation would 

likely be undetectable by differential restriction enzyme analysis. This DNA was then 

pooled and treated with bisulfite, lllumina libraries (Paired-End 76 base pair) were 

prepared and sequenced at Vanderbilt University and at Expression Analysis.

Out of the original bisulfite treated reads (74,285,412), a total of 70,004,089 

reads were not mapped due to either low quality, being unpaired, or having no match 

due to the decreased complexity of bisulfite treated DNA. The resulting 4,281,323 

mapped reads were included in the analysis with an average read coverage across the 

genome of 3.81 and the fraction of the reference covered was 0.81. As shown below 

the successfully mapped reads are not randomly distributed across the genome.
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Based on the predicted rate of bisulfite non-conversion (>1%) that would result 

in a C remaining in a bisulfite treated read and the sequencing error rate of T to C 

(>0.1%) that would change a converted MeC back to a C we filtered all data to focus 

only on position in the genome that were covered by at least 3 bisulfite reads that had a 

putative MeC at a specific position. When filtered for 3 or more methylated C 

confirming reads, 160,988 putative methylated sites remained. This is about 0.5% of the 

Cs in the genome. At these 160,998 sites, the average coverage was 31.27.

Methylation patterns and motifs in C. elegans - It has been shown that C residues at 

CpG dinucleotides are the preferred targets for DNA methylation in mammals, while 

methylation at CG and CHG and asymmetric sites CHH are common in plants fungi and 

insects (Gruenbaum, Naveh-Many et al. 1981) (Cao, Aufsatz et al. 2003). To evaluate 

the distribution of putative MeCs among these motifs in C. elegans we counted the 

contexts for each of the 16 triplets beginning with C. In C. elegans we find a bias (63%) 

toward methylation of non-symmetric (CHH) sites where H is any base. However,as can 

be seen in Figure 5 when normalized for the abundance of each triplet in the genome, 

context methylation seems to be randomly distributed.
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Normalized Methylated Context Frequency
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Fig. 5 Asymmetric vs. Symmetric Methylation

Each putative MeC containing site was assigned to one of 16 possible triplets beginning 
with MeC. In this figure the frequency of each sequence context is shown where the 
first C meets the criteria as a MeC site. Each triplet motif of MeC was normalized by the 
number of each triplet occurring in the reference genome.
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The distribution of methylation in C. eleaans -  To examine the genome wide 

distribution of methylated Cs we first determined the number of MeCs for each 

chromosome. The distribution of DNA methylation per chromosome is significantly 

different at the 95% confidence levels when normalized against the total number of Gs 

and Cs per chromosome (Fig.6). The highest level of DNA methylation was found in 

Chromosome I and the lowest in the X chromosome.

To further investigate the intra-chromosomal spatial pattern of 

methylation, the putative MeC containing positions were divided into 1 Mb bins along 

each chromosome by position and the frequency was plotted on the same scale to show 

the relative levels of methylation across each chromosome (Fig 7). Multiple regions 

were found to have extremely high frequencies of MeC. As discuss further below, the 

high density at the end of chromosome I is an artifact and the result of the highly 

methylated rRNA genes. The high density region in chromosome V appeared to be a 

consequence of very high coding density of known protein coding genes.. One overall 

pattern is that the core regions of the autosomes appear to have higher levels of MeC 

than the arms a pattern not found in the X chromosome. This pattern is correlated with 

several biological patterns including lower rate or recombination and higher gene 

densities in the cores regions of autosomes than in the arms (Cutter, Dey et al. 2009; 

Rockman and Kruglyak 2009).
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Fig. 6 Normalized Levels of DNA Methylation per Chromosome

Frequencies of MeCs at each position were normalized by correcting for every C/G in 
each chromosome by dividing the total number of methylated C per chromosome by the 
total number of C/G occurrences in the reference per chromosome. A 6-sample test for 
equality of proportions between chromosomes shows that the normalized frequencies 
are significantly different (p-value < 2.2e-16).

33



£ §

5 C9fOe 1 Ge+07

CM
1 3e+07 n.Oe+OO

-T-------------r
3 0 9 * 0 8  1 0 6*07

I ! f-------- i—'----1--------T“
(5 9 4 4 7  0  0 9 *0 0  *  0 0 *0 6  8.00+00 t .2 « *0 7

Chrltl

0.03 *-00 3.09+06 109+07 7 59+07 0 09+00 3.09*05 1.09+07 159+07 2 00+07 0.00+00 • 5.09+05 100+07 1 5©+07

Chriv ChiV Cnrx

Fig. 7 Distribution of Methylated Cytosines per Chromosome

Methylcytosine counts (MeC sites) were divided into 1Mb bins along each chromosome 
by position and the frequency was plotted on the same scale to show the relative levels 
of methylation across each chromosome. The spike at the end of Chromosome I is due 
to an artifact. The ~55 copies of tandemly repeated ribosomal DNA is not included in 
the reference, only one repeat is annotated at the end of Chromosome !..
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To investigate the distribution of MeC with respect to coding vs non-coding we 

first assigned each putative methylated position a category based on functional 

annotation of the genome. Figure 8 clearly shows that when we divide the positions 

into two catagories, genic and intergenic, the proportion of genic are vastly 

overrepresented (Fig. 8). Based on an analysis of the distribution of MeCs across diverse 

coding sequence functions we conclude that several functional categories appear to be 

actively methylated based on their overrepresentation. Most notably the two 

categories with the highest density of methylation are the transposable elements (TE) 

and small nuclear RNAs (snRNAs) followed by pseudogenes. In addition, the transcribed 

regions (gene bodies) of protein coding genes and the transcribed regions of the 

ribosomal RNA encoding repeat also show significantly greater density of methylation 

than intergenic regions. Together these observations suggest that while the number of 

methylated DNA molecules in C. elegans may represent only a fraction of the nematode 

genomes the pattern of methylation is strikingly similar to that expected for all 

eukaryotes including the details of methylation within protein coding genes which 

follows the exact same pattern observed in other eukaryotes with the highest density of 

methylated sites in the exons followed by introns and much reduced methylation in the 

at the gene termini (Fig. 8).
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Fig. 8 Genic vs. Intergenic Methylation per Chromosome

To assign each position to category of genic or intergenic we used the C. elegans 
reference WS187 and the corresponding WS187 GFF files for alignment and 
categorization. All annotated coding genes positions regardless of function were 
considered genic, regions not assigned a functional coding annotation were inferred to 
be intergenic.
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Fig. 9 Categorical Distribution of Methylation

C. elegans reference sequences were used for alignment and categorization of all 
putative methylated sites. Data were normalized based on all Cs in the C. elegans 
genome. Categories included; Intergenic (IG), exons(coding), 5'UTR s, introns, non
coding RNAs (ncRNA), pseudogenes (pseudo), small nuclear RNAs (snRNA), 3'UTRs, 
transposable elements (TE), transfer RNAs (tRNA) and ribosomal RNAs (rRNA). A two- 
sample test for equality of proportions revealed that the fraction of 5-methylcytosines 
in each category were significantly different from intergenic levels at a=0.045 after 
Bonferroni correction. P-values: exon<2.2e-16, 5'utr=0.0001171, intron<2.2e-16, 
ncRNA=9.585e-05, pseudo<2.2e-16, snRNA<2.2e-16, 3'UTR<2.2e-16, TE<2.2e-16, 
tRNA=6.538e-05, rRNA<2.2e-16.
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One of the criteria used to define putative MeC containing positions is that this 

call must be made by at least 3 independent (C) reads. However, there can be hundreds 

of reads covering the base call per locus. In fact, as stated above the average coverage 

of the putative methylated sites is 31.27. When we plotted the number of reads at a 

site versus the number that contain C (i.e. putative MeC) we observe 2 distinct groups of 

MeC containing positions (Figure 10). The first group is comprised of cases where the 

vast majority of reads contain MeC and the second group where the majority of the 

reads at a site are not MeC. It is not clear from this data whether the second group 

represents MeC containing positions in a subset of individual worms and/or cell nuclei 

within individuals. From here forward we will describe the second group as facultative 

and the first group as constitutive. When we look at this pattern across the 

chromosomes it is very clear that chromosomes I and III are extremely different in 

having a large number of positions that appear to show deep coverage at constitutively 

methylated sites. While the enrichment step precludes us from making definitive 

estimates of frequency, the comparisons of chromosomes within this datasets appears 

to be remarkable. It is potentially noteworthy that these two chromosomes (I and III) 

were previously shown to be uniquely enriched for histone modifications of 

transcriptionally active chromatin and to have the most highly expressed genes and the 

fewest genes with low levels of expression(Liu, Lin et al. 2011). If we do a similar plot of 

MeC reads vs. coverage by functional category (Figure 10) we see that the sites with 

very high number of reads (>100) that are nearly all MeC are limited to exons.



If we quantify the two categories (constitutive and facultative), and greater or 

less than the 50% of the reads showing MeC respectively we can make broad 

comparisons across chromosomes and functional categories. A comparison between 

chromosomes reveals that the DNA methylation observed is dominated (by these 

definitions) by constitutively methylated sites (Fig.9).

A comparison of facultative and constitutive MeC across functional categories 

reveals that like the chromosomal comparison the number methylated sites are 

dominated by constitutive methylation (Fig. 11). However, the rRNA is almost 

completely facultatively methylated (99.9%) and snRNAs (77%) and tRNAs (51%) also 

show reduced proportions of constitutive MeC sites. Although these categories only 

comprise a very small fraction of the total methylated sites, a bias towards facultative 

methylation in these categories could have strong implications. The observation of a 

reduced proportion of constitutive sites in chromosome I (Figure 11) is also explained by 

the fact that Chromosome I encodes ~55 copies of ribosomal DNA which are dominated 

by facultative MeC patterns.

Since rRNA gene transcription accounts for most of the nuclear transcription in 

an actively growing cell (controlling the pace of ribosome production and subsequent 

establishment of protein synthesis rates) the role of regulation of this pathway is of 

great import. It has been shown in A. thaliana that rRNA dosage compensation is 

controlled by DNA methylation (Lawrence, Earley et al. 2004). Related to this rRNA
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pathway are the upstream epigenetic switch that is controlled by expression of snRNA, 

which are required for rRNA maturation (Tycowski, Shu et al. 1994) and the downstream 

switch, which involves tRNAs. Together, the bias towards facultative methylation of 

these particular categories of genes is expected and further illustrates the similarity of 

DNA methylation in C. elegans to other organisms.
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Fig. 10 Constitutive vs. Facultative Methylation per Chromosome per Category

Scatter plot of the density of two distinct groups of methylated Cs. Darker shading 
represents more cases in that position of the scatterplot. The Y axis scale varies from 
chromosome to chromosome (A) and among functional categories (B), and is the total 
number of reads from the same locus that provide evidence for methylation. The X axis 
is the number of reads covering a specific position.
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Fig. 11 Constitutive vs. Facultative Methylation per Chromosome per Category

Constitutively methylated Cs where called at a cut o ff of %50 or more of the total reads 
for the loci that show evidence for methylation (3 or more putative MeC). Facultative or 
differentially methylated loci where called at a cut off of %50 at those sites.
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Conclusion

While the direct comparison of methylation levels across phylogenetically 

diverse taxa is complicated by different methods of measurement, C. elegans is clearly 

much less extensively methylated and less biased toward symmetric motifs than 

canonical methylation systems (humans and Arabodopsis). In our analysis of C. elegans, 

only about 0.4% of the Cs are methylated in the enriched population of 5- 

methylcytosine containing molecules and there is virtually no bias toward symmetrical 

motifs. This relatively unbiased and low level of methylation is shared by most animals, 

some plants and some fungi and may in fact be an additional primitive characteristic of 

eukaryotic methylation (See Figure 1 in Introduction).

Based on their overrepresentation, we conclude that several functional 

categories appear to be actively methylated. Most notably, the two categories with the 

highest density of methylation are the transposable elements (TE) and small nuclear 

RNAs (snRNAs), followed by pseudogenes. In addition, the transcribed regions (gene 

bodies) of protein-coding genes and the transcribed regions of the ribosomal-RNA 

encoding repeat also show significantly greater density of methylation than intergenic 

regions. Together, these observations suggest that while the number of methylated 

DNA molecules in C. elegans may represent only a fraction of the nematode cells, the 

pattern of methylation is strikingly similar to the basal eukaryotic pattern. Most notably 

the details of methylation within protein-coding genes follows the same pattern
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observed in other eukaryotes with the highest density of methylated sites in the exons 

followed by introns and much reduced methylation at gene termini.

As a core experimental model, the further characterization of DNA methylation 

in C. elegans represents an important opportunity to test the specific role of this process 

in transcriptional fidelity and genome stability and the potential role of methylation in 

the transition to eukaryotic genome complexity.
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CHAPTER - 3 

SHIFTING PATTERNS OF DNA METHYLATION 

Genome Wide Bisulfite Sequencing of Three Stains of C. eleaans

Background - Preliminary findings from an analysis of methylation of the C. elegans 

genome clearly show low levels of active methylation. The pattern of methylation was 

relatively unbiased with respect to symmetric and asymmetric motifs however, 

significant biases were found with respect to the sequence function. In that case the 

frequency of MeC containing sites was much higher in gene bodies, including 

transposable elements snRNAs and rRNAs (CH-2, Fig. 9). In addition, in the MeC 

enriched DNA analysis we found two distinct categories of MeC containing sites, those 

where the vast majority of reads covering the site contain MeC and those where only a 

minority of the reads appear to be methylated. While these patterns are clear, there 

relative proportions and therefor the representation of these patterns in the native 

genome may be biased by the enrichment step prior to bisulfite treatment.

To test the possibility that the MeC enriched analysis was biased we repeated 

the process of bisulfite sequenced the entire genome of C. elegans using a new culture 

of the same laboratory strain (N2). This analysis will allow us to  not only examine the
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biases associated with enrichment but allow us to explore the reproducibility of our 

analysis albeit on enriched and non-enrich fractions.

Furthermore, because the laboratory strain N2 has been propagated for many 

generations outside normal selective conditions and with potentially reduced 

population sizes since it was isolated from compost by Sidney Brenner in 1974 (Brenner 

1974), the patterns of methylation found in in the laboratory strains could be different 

from patterns found in natural populations. To explore differences among strains we 

chose a recently isolated strain that is also one of the most divergent con-specific 

isolates of C. elegans (PB306). This strain displays variation in fecundity (Harvey and 

Viney 2007) and differs in patterns of natural base-substitution polymorphism (Denver, 

Wilhelm et al. 2012).

Finally, as discussed in Chapter I we have identified multiple putative DNA 

methyltransferase genes in C. elegans. One such gene has been independanly described 

(Gao, Liu et al. 2012) and appears to be homologous to DNMT1. To explore the 

potential contribution of this DNMT to the pattern of MeC in the genome we conducted 

a parallel genome wide bisulfite sequencing analysis of a homozygous deletion strain 

(VC2864) provided by the C. elegans knockout consortium 

(http://celeganskoconsortium.omrf.org/).
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Methods

All strains were cultured and propagated using standard methods 

(Brenner 1974) and DNA was extracted from mixed stages using the Qaigen genomic tip 

protocol. The lllumina sequencing libraries were constructed using the Nextflex Bisulfite 

Sequencing kit (Bioo Scientific) and were then sequenced (lOObp paired-end lllumina 

Hiseq 2000). The resulting reads were then mapped to the reference genome WS187 

using the BSMap program detailed in Chapter 2. This report gives the chromosome, 

position, the number of times a read mapped to that position and the number of times 

that read had a C that was not converted to a T. BSMap parameters were set to a 

fragment size of 100-500bps, 8 processors were used, seed size was set to 14, 5 

mismatches were allowed in the alignment, and max number equal best hits to count 

was set to 10. All methylated Cs included in the analysis must have at least 3 confirming 

reads that mapped uniquely and also had its paired end map uniquely at an appropriate 

distance. Maximum coverage was set to 2000 to account for the errors associated with 

extremely deep coverage of bisulfite sequencing such as read duplicates and sequencing 

error that may skew the MeC to non-MeC ratio and contribute to  false positives and 

false negatives. Furthermore, the ratio per methylated C site to be included in the 

analysis was at least 2% of the total coverage must be methylated C to account for any 

false positives due to incomplete conversion of non-methylated Cs (> 0.01%) and 

sequencing error (> 0.9%) (Genereux, Johnson et al. 2008; Quail, Kozarewa et al. 2008).
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All strains were verified by de novo and reference assembly. The contigs 

that resulted from the de novo assembly were queried for the deleted gene confirming 

that the putative DNMT gene Y75B8A.6 in VC2864 was deleted and was not deleted in 

N2. Similarly, reference assembly showed reads mapping to the putative DNMT gene 

Y75B8A.6 in N2 and no reads mapping in VC2864. Verification o f the PB306 strain was 

inferred from the identification of known PB306 polymorphisms (Denver, Wilhelm et al. 

2012).
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Results and Discussion

The initial bisulfite sequencing analysis in Chapter 2 involving the 

enrichment for DNA fragments containing MeC using an MeC binding protein based 

approach resulted in bisulfite treated reads that numbered 74,285,412. A total of 

70,004,089 reads were not mapped due to low quality, being unpaired, or having no 

match. 4,281,323 reads were included in the analysis with an average read coverage of 

3.81 and the fraction of the reference covered was 0.81. This means 6% of the reads 

were included in the analysis and resulted in a fraction of the genome with high read 

coverage as is expected from enriching for areas of methylated DNA in an organism with 

low levels of methylation. In the enrichment analysis there were 160,988 sites with 3 or 

more MeC containing reads and an average coverage at those sites of 31.27.

By contrast, in our genome wide bisulfite sequencing (GWBS) the 

percentage of reads aligned improved dramatically (Table 1). In addition to the number 

of sites that mapped and the number of positions that met the criteria for inclusion (>3 

and > 2% of reads showing evidence of MeC) was almost an order of magnitude greater 

in N2 and VC2864 samples. This improvement could be a result of a number of 

variables such as the longer read length with additional complexity per read, going from 

76 bp to lOObp, or a more robust library preparation protocol. Also the greater 

percentage of reads mapped could reflect the unbiased nature of GWBS and the 

inclusion of all methylated sites not enriched for constitutively or facultatively
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methylated sites resulting in a more uniformly distributed mapping of reads to the 

genome from the greater diversity of sequence. If enrichment by MeC binding protein 

strongly favors fragments with multiple MeC containing positions this could 

simultaneously bias the reads to a smaller, more densely methylated fraction of the 

genome and reduce the mapping efficiency of the enriched reads when mapping to the 

reference.

The specific filters applied to these analyses that define a putative MeC 

containing site are different across samples. For the enriched samples, we limit the 

analysis to sites with 3 or more reads containing a C, while for the N2, VC2864 and 

PB306 data we required 3 or more reads containing C and greater than 2% of the total 

reads. This was done because with such deep coverage the errors will contribute 

erroneously to the generation of false positives due to either non conversion or 

sequencing error. We also increased the threshold for constitutive verses facultative 

sites from 50% in the enriched analysis to 80% in the GWBS analysis to again account for 

the scale of read coverage and the contribution of error that could result from a tenfold 

increase in reads analyzed.

In this chapter we compare all datasets using an 80% MeC containing 

reads definition of constitutive. While these filters are stringent based on the estimated 

rates of errors false positive that do arise will be strongly biased toward positions 

showing facultative patterns of MeC. Therefore in this analysis we focus primarily on the
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differences between facultative and constitutive patterns and compare each across the

four datasets.

Strain
Total Read 

Pairs

Aligned 

Read Pairs

Percent

Aligned

Valid

Mappings

Average C 

Coverage

Analyzed 

Sites After 

Filtering

Coverage 

After Filter

N2 Enriched 74,285,412 4,283,932 6% 4,019,408 3.81 160,988 31.27

N2 37,767,748 25,177,722 67% 44,405,906 16.92 1,010,585 4.70

VC 76,801,941 62,616,272 82% 110,314,818 43.30 1,585,465 11.03

PB 957,524 359,736 38% 656,102 3.12 8,243 6.90

Table. 2 Assembly Statistics of Genome Wide Bisulfite Sequencing

Assembly statistics for GWBS for three strains N2 laboratory strain (N2), the DNMT knock 
out strain (VC2846) and the natural isolate PB306 (PB). BSMap parameters were set to a 
fragment size of 100-500bps, 8 processors were used, seed size was set to 14, 5 
mismatches were allowed in the alignment, and max number equal best hits to count 
was set to 10.

Symmetric vs. Asymmetric Methylation

In Figure 12 the proportion of symmetric vs. asymmetric patterns 

represented by the MeC positions differ consistently for when all sites are considered, 

when only facultative sites are considered and when only the constitutive sites are 

considered between the enriched sample and the three GWBS datasets.
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Fig.12 Ratios of Symmetric vs. Asymmetric Constitutive Methylation

Ratios of constitutive methylation are calculated by normalizing counts for asymmetric 
or symmetric methylation by all asymmetric or symmetric sites in the reference then 
divided by the total constitutively, facultatively and all methylated sites. Constututive
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sites were defined as >80% of reads containing Cs in all cases. A 3-sample test for 
equality of proportions reveals that the ratios of asymmetric and symmetric methylation 
are significantly different when comparing all strains; p-value < 2.2e-16 (asymmetric) 
and p-value < 2.2e-16 (symmetric).

In a comparison between the initial analysis in Chapter 2 where the 

sample was enriched for methylated DNA, constitutively methylated sites dominated, 

however in the GWBS analysis of N2 and VC2684 it appears that facultative methylation 

is dominant with over 90% of the methylated sites being facultatively methylated in all 

categories and chromosomes (Figure 15 and 16). One explanation for this is that the 

GWBS data for N2 and VC2864 includes a more inclusive representation of MeC 

containing sites not enriched in the DNA methylation binding protein derived dataset.

An alternative explanation is that the N2 and VC datasets contain a significant fraction of 

false positives. In support of this second hypothesis the GWBS analysis of PB306 

resulted in a very high proportion of constitutive sites which could be explained by the 

much lower number of reads and thus much lower level of false positives using the same 

filtering parameters. However, this observation could also reflect a difference in pattern 

in the PB306 genome. To test this, we analyzed a random subset of the data for VC2864 

and N2 normalized to the coverage for PB306. We found the ratios of constitutive to 

facultative methylation remained consistent (Table 2). Furthermore, when analyzing the 

entire dataset for each strain and filtering out the facultative sites by using a cutoff of 

80% methylation ratio we find that there are more constitutive sites in PB306 (5,812)
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than VC2864 (684) and N2 (745) combined. Taken together these data suggest that 

while the GWBS datasets for N2 and VC may include some false positives that bias the 

facultative ratio upward there appears to be a significant increase in both the ratio and 

number of constitutively methylated sites in the natural isolate PB306.

Strain
Total Read Aligned Percent Valid Average C Analyzed Sites Constitutive Facultative

Pairs Read Pairs Aligned Mappings Coverage After Filtering sites Sites
N2 942,131 534,261 57% 3,064,814 4.15 7,374 606 6,768
VC 1,153,865 655,245 57% 2,953,871 5.1 14,417 863 13,554
PB 957,524 359,736 38% 656,102 3.12 8,243 5,812 2,431

Table. 3 Assembly Statistics of Genome Wide Bisulfite Sequencing

Assembly statistics for GWBS for three strains N2 laboratory strain (N2), the DNMT knock 
out strain (VC2846) and the natural isolate PB306 (PB). The number of reads per strain 
were normalized based on a random subset of data from VC2864 and N2. The last two 
columns of the table show that the constitutive verses facultative site ratios remain 
consistent with all data included when the analysis is started with a normalized number 
of reads. BSMap parameters were set to a fragment size of 100-500bps, 8 processors 
were used, seed size was set to 14, 5 mismatches were allowed in the alignment, and 
max number equal best hits to count was set to 10.

As observed in the enriched N2 analysis (Chapter 2), scatter plots (Figure 

15) reveal that the GWBS datasets all still show two distinct groups of methylated MeC 

containing sites. However, in stark contrast to the enriched analysis the large number of 

positions with deep coverage (up to 300-400 fold) with nearly all MeC base calls 

observed exclusively in chromosomes I and III are no longer observed in N2, VC or the 

PB306 datasets. This observation may suggest that the original observation in the 

enriched data is due to those sites on Chromosome I and III have a much higher affinity 

for the enrichment step.
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Fig. 13 Comparison of Enriched vs. GWBS Constitutive vs. Facultative Methylation per 
Chromosome per Category

A comparison between categories and chromosomes reveals the different modes of 
methylation in the enriched N2 (A) verses GWBS (B)N2; (C) VC2684 and (D) PB306. For 
the enriched dataset constitutively methylated Cs where called at a cut off of %50 or 
more of the total reads for the loci that show evidence for methylation (3 or more 
putative MeC). Facultative or differentially methylated loci where called at a cut off of 
%50 at those sites. For the GBWS data maximum coverage was set to 2000 and the 
ratio per methylated C site to be included in the analysis was at least 2% of the total 
coverage must be methylated C and must have at least 3 MeC containing reads. 
Constitutively methylated Cs where called at a cut off of 80% or more of the total reads 
per loci providing evidence for methylation. Facultative or differentially methylated loci 
where called at a cut off of 80% or less of the total reads for the loci provide evidence 
for methylation. The Y axis is the total methylated sites and the percentage of 
facultative methylation (red) and the percentage of constitutive sites (blue) of that total.

Consistent with the hypothesis that the primary mode of DNA 

methylation in the natural isolate PB306 is constitutive methylation, we observe most 

categories to be dominated by constitutive methylation (Fig. ). The only exception to 

this is the ribosomal DNA category, however, the same pattern was shared with the 

methylation enriched dataset in Chapter 2, where there is strong evidence to support 

that the enrichment step biases the sequencing of constitutively methylated sites. 

Furthermore, since there are multiple copies of ribosomal DNA in the form of ribosomal 

repeats it is not surprising that the ribosomal DNA category is not consistent with the 

rest of the categories that contain unique sequence. The multicopy nature of the rRNA 

repeat precludes us from knowing if this results from a subset o f nuclei with a position 

methylated in all cases or a subset of the repeats methylated in all nuclei.

57



N
tm

be
r 

al 
M

Kf
yia

iW
 

Cs
 

N
ur

tw
rfM

eP
yi

at
ec

C
s 

h&
m

ta
ro

fM
ef

fiy
ia

itd
C

s

Methylation Pulldown

Chrom osom e IK 2

I
S

o

8

o

1000o

C hrom osom e I) N2 C hrom osom e 111 N2

100 200 300 400

Genome Wide Bisulfite Sequencing

Chrom osom e IN 2

o

0 500 1500;ooo

C hrom osom e H N2 C hrom osom e Hi N2

8
R
o

S
8

Murnb« d  Reads

0 200 400 600 800 1000 1200

Number or Reads

a

0 500 1500

Number o* Reads

Chrom osom e I VC C hrom osom e n VC C hrom osom e tn VC

■
iS  -

- 8  - *

v r 8  ~ t  
♦  ,

8  -

^ o
3 r

-  .  * / fc *  ' ; g  -

f e i '  *  *  -■ * s k i  *

8  -

o  .  

o  .  

o  -

«

500 1000 1500

Nwneer of Reads

C hrom osom e I PS

500 1000 1500

C hrom osom e II PB

500 1000 1500 2000

Chrom osom e m PS

50 100

NurrOo of Reads

58



Nt
fvt

oe
r 

d 
fiŴ
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Fig. 14 Comparison of The Distribution of Constitutive vs. Facultative Methylation per 
Chromosome

A comparison between chromosomes,reveals that the mode of DNA methylation 
observed has consistent distribution between chromosomes. The scatter plots are 
divided in two, the first division being Chromosome I -  III and the second being 
Chromosome IV-X. The top rows are methylated C enriched data from Chapter 2, the 
bottom three rows are GWBS data from this chapter.

The distribution of methylated sites per chromosome differed between 

the natural isolate and laboratory strains as well (Fig.20-22). MeC counts were divided 

into 1Mb bins along each chromosome by position and the frequency was plotted on 

the same scale to show the relative levels of methylation across each chromosome. For 

the GWBS analysis of N2 and VC2684 the pattern observed in the enriched data is lost. 

By contrast the same pattern observed in the enrich sample (biased toward the gene 

rich chromosome cores) was observed in the PB306 GWBS analysis. Together these 

observations are similar in pattern to the shared biased toward constitutive sites found 

in the enriched N2 datasets and PB306.
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Fig. 15 Distribution of MeC per Chromosome l-lll N2 Enriched vs. GWBS

MeC counts were divided into 1Mb bins along each chromosome by position and the 
frequency was plotted on the same scale per strain to show the relative levels of 
methylation across each chromosome.
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MeC counts were divided into 1Mb bins along each chromosome by position and the 
frequency was plotted on the same scale per strain to show the relative levels of 
methylation across each chromosome.
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Analysis of the functional distribution of putative MeC containing sites from the GWBS
analysis

In a comparison between the original data from Chapter 2 and the GWBS 

data of N2 in this chapter (figure 23), the core patterns of bias toward methylation of 

gene bodies and transposable elements are not only reproduced but more extreme in 

the GWBS datasets.
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Fig. 17 Comparison of Constitutively Methylated Sites per Category N2 GWBS vs. N2 
Enriched

C. elegans reference sequences were used for alignment and categorization of all 
putative methylated sites. Data were normalized based on all Cs in the C. elegans 
genome. Categories included; Intergenic (IG), exons(coding), 5'UTR s, introns, non
coding RNAs (ncRNA), pseudogenes (pseudo), small nuclear RNAs (snRNA), 3'UTRs, 
transposable elements (TE), transfer RNAs (tRNA) and ribosomal RNAs (rRNA). For the 
enriched dataset constitutively methylated Cs where called at a cut off of %50 or more
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of the total reads for the loci that show evidence for methylation (3 or more putative 
MeC). Facultative or differentially methylated loci where called at a cut off of %50 at 
those sites. For GWBS data the maximum coverage was set to 2000 and the ratio per 
methylated C site to be included in the analysis was at least 2% of the total coverage 
must be methylated C and must have at least 3 MeC containing reads. Constitutively 
methylated Cs where called at a cut off of 80% or more of the total reads per loci 
providing evidence for methylation.

In a comparison across all taxa, the only significant difference between 

the lines was a shift in the proportion of constitutive MeC sites in the 5' UTRs. While 

both enriched and GWBS datasets for N2 had comparable levels of MeC in both 5' and 3' 

UTRs VC2864 showed a much reduced proportion of MeC in the 5" UTR. Interestingly a 

pattern similar to that observed in the PB306 datasets

Applying the same comparison to the natural isolate PB306, we find 

correlation in UTR methylation patterns between VC2864 constitutive sites when all 

sites are considered in PB306 (Fig.18), as well as, when only constitutive sites are 

considered (Fig.18). Despite UTR methylation patterns being shared between VC2864 

and PB306, we find all other categories to be significantly different in comparison to N2 

and VC2864. Another observation is that when comparing all methylated sites to only 

constitutive sites in PB306 the pattern does not change with the single exception being 

the disappearance of rRNA methylation in the constitutive only analysis. This suggests 

that in natural isolates, constitutive methylation is the dominant mode while laboratory 

strains have developed an abundance of facultatively methylated sites.
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Fig. 18 Comparison of All MeC Sites vs. Constitutive Sites per Category N2 GWBS vs. 
PB306 vs. VC2864

C. elegans reference sequences were used for alignment and categorization of all
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putative methylated sites. Data were normalized based on all Cs in the C. elegans 
genome. Categories included; Intergenic (IG), exons(coding), 5'UTR s, introns, non
coding RNAs (ncRNA), pseudogenes (pseudo), small nuclear RNAs (snRNA), 3'UTRs, 
transposable elements (TE), transfer RNAs (tRNA) and ribosomal RNAs (rRNA).
Maximum coverage was set to 2000 and the ratio per methylated C site to be included in 
the analysis was at least 2% of the total coverage must be methylated C and must have 
at least 3 MeC containing reads. Constitutively methylated Cs where called at a cut off 
of 80% or more of the total reads per loci providing evidence for methylation. In PB306 
(last frame) the ncRNA and rRNA categories were ignored due to lack of significant data.

Reproducibility and conservation of Methylated sites

Expected Shared Sites of Methylation Between Data Sets
N2 Enriched N2 GWBS VC GWBS PB GWBS

N2 Enriched 160,988
N2 GWBS 3 606
VC GWBS 4 0 863
PB GWBS 26 0 0 5,812

Table.4 Expected Shared Sites of MeC Between Datasets

In a final comparison among strains we set out to compare the specific 

sites that were methylated in each analysis. To focus this comparison we limited our 

analysis to the constitutively methylated positions. Table 4 shows the total number of 

constitutively methylated sites in each dataset (above diagonal) and the expected 

number of overlapping sites is we assume a random distribution (below diagonal).
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Focused PCR and direct sequencing of Bisulfite treated DNA.

As a method to confirm the existence of constitutively methylated sites in 

these genomes we designed PCR primers that flank putative constitutive MeC sites and 

amplified two regions using bisulfite treated DNA as a template. The PCR products were 

sequenced directly using traditional Sanger sequencing. The sequences were aligned 

with Clustal W (Li 2003) to the region of the reference that the primers were targeted to. 

The region of the reference that corresponds to the PCR product was also confirmed by 

BLAST as being the best hit. We have confirmed 33 out of 36 MeC sites tested (28 in N2 

and 5 in VC2864). As can be seen in Figure 19 complete conversion of non-methylated C 

to T is observed and several positions are clearly dominated by MeC in the direct PCR 

sequencing experiments consistent with our lllumina data.
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Fig.19 Clustal W Alignment MeC Conformation PCR Product Against the Reference

Alignment and corresponding chromatogram of PCR product sequenced in the reverse 
direction (N2 Bisulfite Seq Product) targeted to a region in Chromosome IV (ChrlV 
Reference) where, in N2, there is a high concentration of constitutively methylated C. 
Bases shaded blue in the alignment represent confirmed MeC sites and the bases shade 
in red are sites that were converted during the bisulfite treatment process.
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Conclusion

In the first genome wide analysis of DNA methylation in three strains of C. 

elegans we have shown that the genomes of these strains are indeed methylated. After 

confirming the strains validity, we have shown that the modes of DNA methylation differ 

between the natural isolate PB306 and the laboratory strain. Initially, the laboratory 

strain N2 was shown to primarily methylate constitutively, however, we now have strong 

evidence to suggest that this was an artifact of enrichment bias. Through the use of 

genome wide bisulfite sequencing we have discovered that the primary mode of 

methylation in the laboratory strain is in fact facultative since both laboratory strains 

primarily methylate this way. Also when filtering the GWBS data for exclusively 

constitutively methylated sites we find a shift from completely different categorical 

methylation patterns to almost identical categorical methylation patterns.

Furthermore, we have found that the natural isolate is dominated by constitutively 

methylated sites and in comparison to the laboratory strain, has over three times more 

constitutively methylated sites. There are differences in distribution of methylation 

along the chromosomes, however, the targeting of contexts are similar when comparing 

all strains studied, but differ in levels with all strains having a preponderance for non- 

symmetric methylation yet PB306 having a more even non-symmetric to symmetric ratio 

and N2 and VC having 4-5 times more non-symmetric methylation than symmetric.

It is clear that in all strains surveyed, the ancestral pattern of methylation
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is shared when filtered for constitutive sites and when all sites are considered. Even 

though gene body methylation is consistent, surprisingly the mode of methylation differs 

tremendously between the natural isolate and the laboratory strain leaving one to 

question if these modes and patterns of methylation are a derivative of a long life in the 

laboratory or if the natural isolate is an exception.

Another striking observation is that only one methylated site is shared 

between data sets. One would expect that if the methylated sites are in fact constitutive 

and these constitutive sites are heritable then at least the constitutive sites would be 

conserved in at least the comparison between the enriched N2 and GWBS N2 data sets. 

However, we only find one shared site between VC2864 and N2 GWBS. Even though 

there is only one shared site, all share the same preponderance for gene body 

methylation and when looking at constitutive categorical methylation levels and 

patterns, they are conserved between the two N2 datasets. Therefore it seems that 

while methylation targets remain heritable, "hitting the bull's eye" or exact site of 

methylation may not be as important. This may explain the random distribution of 

symmetric and asymmetric methylation and may shed light on a possible mechanism to 

overcome the deleterious effects of DNA methylation by not consistently methylating 

and destabilizing the same C. On the other hand, this may be the result of the 

mutagenic effects of methylation. While in some nuclei, the target C remains un- 

methylated, in other nuclei it is methylated and the mutagenic effects of methylation 

cause the deamination of the MeC and make heritability of this mark no longer possible.
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Therefore the intergenerational conservation of the exact site of methylation is not 

inherited and the methylation pattern is reset and the re-targeting of gene bodies is 

initiated.

IBSlPiBiiWBWHBH

Fungi

L. bicolor

Fig. 20 Normalized frequencies of DNA methylation context and evolution

The phylogenetic tree was based on the NCBI Taxonomy Browser. The values represent 
the normalized fraction in percent of methylated Cs per motif. The filled boxes on the 
right indicate high methylation of gene bodies (GB) and transposable elements (TE). 
Data obtained from; Lister et al., 2009, Zemack et al., 2010, Su et al., 2011 and this study.
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CHAPTER- 4

THE MUTAGENIC CONSEQUENCES OF DNA METHYLATION

Background

Methylation of cytosine residues was first demonstrated to be mutagenic in E. 

coli (Coulondre, Miller et al. 1978). These initial studies identified methylated cytosines 

(MeC) as hotspots for spontaneous base substitutions. Mutations which occur at CpG 

dinucleotides are easily recognized because of the nature of base substitutions. 

Deamination of MeC at CpG dinucleotides results in the formation of TpG. Alternatively, 

if deamination occurs on the complementary DNA strand CpA is generated.

Methylation of cytosine at a CpG dinucleotide has been shown in mammalian 

cells to increases the probability of a C->T or corresponding G->A transition mutation 

between 12- and 42-fold (Cooper and Youssoufian 1988). The increased deamination 

rate of MeC relative to C, however, still does not account for the high frequency of 

mutagenesis observed at CpG sites (Gonzalgo and Jones 1997). The G->T mispairs 

resulting from deamination of MeC are also believed to be more difficult for the cell to 

repair than G->U mispairs which can result from the deamination of cytosine, since 

thymine unlike uracil is a normal component of DNA. The high efficiency of repair of 

G->U but not G->T mismatches by the well characterized uracil-DNA glycosylase (UDG) 

repair pathway may also contribute to the increased relative frequency of mutagenesis
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caused by MeC deamination (Gonzalgo and Jones 1997). Excision of U has been found 

to be as much as 6000-fold more efficient than excision of T at identical template sites 

using extracts from human colonic mucosa (Schmutte, Yang et al. 1995).

In the context of genome wide MeC there remains a conundrum. If DNA 

methylation is mutagenic or causes increases in cytosine deamination, we would expect 

to see a higher occurrence of G/C to A/T base substitutions subjecting MeC containing 

positions to a directional mutation pressure. In fact, this is inherent in the logic used to 

explain the existence of CpG islands where hypomethylation near promoters results in a 

presumed lack of said directional mutation pressure and the accumulation of CpG 

Islands. To test the hypothesis that sites containing MeC are mutagenic in Celegans, we 

set out to compare the methylation landscape (those sites identified as MeC containing) 

to the spontaneous mutation landscape in C. elegans (Denver, Dolan et al. 2009). We 

are in fortuitous position having a single nucleotide resolution map of positions that 

have undergone spontaneous mutation in Mutation Accumulation (MA) lines of C. 

elegans strain N2.

73



Methods

Mutation positions were provided by Denver et al., (Denver, Dolan et al. 2009) 

using two different C. elegans reference versions WS170 and WS185. Since the 

methylation analysis was conducted using the C. elegans reference version WS187, the 

mapping of the methylation datasets were all redone using C. elegans reference 

versions WS170 and WS185 for direct comparison between positions of MeC sites and 

sites of high mutation rates. Mapping parameters and filters were set identically to the 

analysis in Chapter 2 for the enriched dataset and Chapter 3 for the GWBS datasets.
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Results and Discussion

Recently, Denver et al. (Denver, Dolan et al. 2009) performed a genome wide 

mutation study on C. elegans using Mutation Accumulation (MA) lines. By bottlenecking 

and reducing the effective population size, this study has characterized the mutational 

landscape of C. elegans. Interestingly, a strong mutational bias from G/C to A/T 

nucleotides was detected in the MA lines. By comparing the positions of these 

mutations to the positions found to be methylated, the effects of DNA methylation on 

single nucleotide polymorphisms can be explored.

In their work Denver and colleagues identified mutations at 393 sites across 12 

different lines. Of these sites 220 were G and C positions reflecting a very strongly 

biased pattern of spontaneous mutation toward G/C to A/T transitions. By comparison, 

sites of methylation as presented in Chapters 2 and 3 were confined predominately to 

genic regions or regions of high gene density and numbered 160,988 for the enriched 

N2 dataset, 1,010,585 for the N2 GWBS dataset, 1,585,465 for VC2864 GWBS, and 8243 

for PB306. When we compare the specific positions containing MeC in the methylated 

DNA enriched dataset from Chapter 2 with the MA line mutation, we find no base 

substitution mutations that share the same position with methylated positions, at 

random we would expect 1 site to be shared when only G/C is considered (Table2).

When analyzing the N2 and VC2864 GWBS data from Chapter 3 we also find that none
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of the sites of methylation overlap with sites of mutation even though we expect 6 and 

10 respectively.

An implication of this is that DNA methylation may not contribute to an increase 

in base substitution mutation rate or that the pattern of methylation is not conserved in 

the MA lines.

Ratios of Expected Shared Sites Methylation and Mutation
G/C Sites Total Bases Expected Shared Sites Observed Shared Sites

N2 Enriched 160,988 35,539,203 1.00 0
N2 GWBS 1,010,585 35,539,203 6.26 0

VC2864 GWBS 1,585,465 35,539,203 9.81 0
PB306 GWBS 8,243 35,539,203 0.05 0

Table. 5 Expected vs. Observed Frequency of Shared Sites Enriched and GWBS Datasets.

Expected ratios were calculated as the product of the ratios of occurring sites in 
mutations and methylation. G/C sites only include the total sites occurring at G and C. 
Total bases is every G and C in the reference. Expected ratios were calculated as the 
product of the ratios of occurring sites in mutation sites, methylation sites and total G/C 
sites. We find that there is no obvious correlation between methylated sites and 
observed mutations.

The lack of correlation between sites of DNA methylation and mutation may 

reflect an absence of DNA methylation in the germline or different pattern of 

methylation restricted to the germline and not reflected in our methylation assays. 

Another explanation could be that DNA methylation may not have a large effect on 

mutation or may target repair mechanisms to counteract the mutational effects 

(Cuozzo, Porcellini et al. 2007). It should also be noted that while we might expect MeC
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sites to be hotspots for mutation and among the first to appear in MA experiments the 

mechanisms giving rise to the preponderance to G/C to A/T mutations in the C. elegans 

MA lines is just not likely to be MeC residues. As pointed out in Denver and Colleagues 

(with the "knowledge" that C. elegans does not have MeC) the likely mechanisms based 

on spontaneous damage would be oxidative resulting in 5-hydroxyuracil (resulting from 

the oxidative deamination of cytosine) and 8-oxoguanine. Similarly, as pointed out in 

chapter 3, while the patterns of methylation are strongly reproducible across lines the 

positions defined as MeC in each analysis show no overlap. This is not surprising given 

these are epigenetically inherited but also dramatically reduces the effectiveness of a 

directional mutation model where if sites were consistently methylated over many 

generations their existence would be short lived. When this is taken into account, given 

the low level of methylation in C. elegans and the shifting positions containing MeC it is 

unlikely that MeC is a significant mutagenic force in the C. elegans genome. However, 

since we find no intergenerational conservation of methylated sites, there remains a 

possibility that not inheriting the specific site of methylation is due to depletion of C/G 

nucleotides. Additionally, if loss of C/G sites due to mutation is tied to methylation we 

would observe higher rates of mutation in areas of higher rates of methylation and not 

specifically the site of methylation. With this reasoning we would expect to see 

mutation rates increase in areas of gene bodies. In fact, in MA experiments Denver et 

al., did observe a higher rate of mutations in coding regions (Fig.20).
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C. elegans Mutation Rates
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Fig. 21 C.elegans Intergenic vs. Genic Mutation rates

Sites of mutation were categorized and divided into counts of intergenic and genic sites 
of mutation. These positions were then filtered for only C or G as the original base in 
the reference. The rates were calculated as the number of intergenic or genic C/G 
mutation divided by the total number C/G sites in the reference in intergenic or genic 
regions A test for equality of proportions reveals that the mutation rates for intergenic 
regions differ significantly from the rate of genic mutation; p-value < 2.2e-16.
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Conclusion

Since patterns of methylation differ from generation to generation, we find no 

correlation between methylated sites and sites of high mutation rate. However, we find 

strong correlation in genomic regions of high methylation rates and high mutation rates. 

Moreover, the mutational bias within those regions of C/G to T/A also suggests the 

involvement of methylation mediated deamination and ultimately depletion of C/G 

sites.

While we may not expect a site specific directional mutation effect of MeC, the 

strong spatial bias observed in chapters 2 and 3 toward methylation of genes bodies 

could result in higher mutation rates in genes compared to intergenic regions and a 

potential directional mutation pressure that could lower GC content within gene bodies.
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