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ABSTRACT

MOVEMENTS, DIVE BEHAVIOR AND TROPHIC ECOLOGY OF LEATHERBACK 
TURTLES (DERMOCHELYS COR1ACEA) IN THE NORTHWEST ATLANTIC

by

Kara Dodge 

University of New Hampshire, September 2013

The endangered leatherback turtle is a highly migratory predator that feeds 

exclusively on gelatinous zooplankton. Leatherbacks spend most of their lives submerged 

or offshore, and their at-sea biology (particularly that of males and sub-adults) is poorly 

understood throughout much of their range. I used satellite telemetry to monitor 

movements and dive behavior of nine adult and eleven sub-adult leatherbacks captured 

off Massachusetts, USA, and tracked throughout the NW Atlantic. Leatherback 

movements and environmental associations varied by oceanographic region, with slow, 

sinuous, area-restricted search behavior and shorter, shallower dives occurring in cool, 

productive, shallow shelf habitat at temperate latitudes. Leatherbacks were highly 

aggregated in temperate shelf waters during summer, early fall, and late spring, and more 

widely dispersed in subtropical and tropical habitat from late fall through early spring. 

Leatherbacks increased path sinuosity with decreasing water depth in temperate and 

tropical shelf habitats. This relationship is consistent with increasing gelatinous 

zooplankton biomass with decreasing depth, and bathymetry may be a key feature in 

identifying leatherback foraging habitat in neritic regions.

xvii



I used satellite-derived turtle tracks to examine migratory orientation cues of 

fifteen leatherbacks in the North Atlantic subtropical gyre. Individual leatherbacks were 

significantly oriented with no difference between adult and sub-adult headings, and 

turtles were significantly oriented with respect to magnetic field inclination, sunrise angle 

and sunset angle. Leatherbacks may use one or more of these features to orient during 

their open-ocean migrations between temperate and tropical latitudes.

I analyzed stable isotopes in leatherback tissues and prey to investigate feeding 

behavior. Leatherback skin and whole blood 813C values and red blood cell 815N values 

were correlated with body size, while 813C values of red blood cells, whole blood and 

blood plasma differed by sex. Mixing model results suggest that leatherbacks foraging off 

Massachusetts primarily consume. Cyanea capillata and Chrysaora quinquecirrha, and 

ctenophores, while a smaller proportion of their diet comes from holoplanktonic salps 

and sea butterflies (Cymbuliidae). My results are consistent with historical observations 

of leatherbacks feeding on scyphozoan prey in this region and offer new insight on size- 

and sex-related differences in leatherback diet.



INTRODUCTION

Leatherback turtles {Dermochelys coriacea) are long-lived, highly migratory 

reptiles listed as endangered under the U.S. Endangered Species Act and critically 

endangered worldwide (Miller 1997, IUCN Red List 2012). Their unique life history 

characteristics include rapid growth to a large body size (Rhodin 1985, Zug & Parham 

1996), the ability to elevate their core body temperature (Frair et al. 1972, Paladino et al. 

1990), deep diving capability (Eckert et al. 1986, Lutcavage et al. 1992; Doyle et al. 

2008), long-distance swimming capacity (Pritchard 1971, Ferraroli et al. 2004, James et 

al. 2005a, Benson et al. 2011) and an unusual vertebrate diet of gelatinous zooplankton 

(Bleakney 1965, Davenport 1998, Dodge et al. 2011, Heaslip et al. 2012). These 

combined adaptations allow leatherbacks to exploit a wide variety of habitats throughout 

the world’s oceans, but their enigmatic lifestyle has prevented us from fully 

understanding their life history outside of their nesting beaches.

Alarming declines of nesting leatherbacks in the eastern Pacific have raised 

concerns for the future of this population (Spotila et al. 1996, Spotila et al. 2000, 

Santidrian-Tomillo 2007, Sarti-Martinez et al. 2007) while leatherback populations in the 

Atlantic appear to be stable or increasing (Dutton et al. 2005, Girondot et al. 2007,

TEWG 2007, Witt et al. 2009). What is driving these population trends in different 

directions? Leatherbacks in both ocean basins are vulnerable to intentional harvest for 

their meat and eggs (Eckert & Sarti 1997, Spotila et al. 2000), development of their 

nesting beaches (Lutcavage et al. 1997), coastal and pelagic fishery interactions (National 

Research Council 1990, Lewison et al. 2004, Lum 2006, Alfaro-Shigueto et al. 2007), 

boat strikes (Lutcavage et al. 1997), ingestion and entanglement in marine debris (Balazs



1985, Mrosovsky et al. 2009) and climate change effects on ocean productivity (Wallace 

et al. 2006a, Saba-et al. 2008). The latter may be key to understanding differences in 

population trends: recent work by Saba et al. (2008) suggests that recruitment and 

reproductive output of leatherbacks in different ocean basins is linked to resource 

productivity and stability in migration and forage areas. Regions of consistently high 

primary production, such as the North Atlantic, may lead to higher reproductive output in 

western Atlantic leatherback rookeries (Saba et al. 2008).

As large sub-adults and adults, leatherback turtles cross long tracts of ocean 

between mid and high latitude foraging grounds to low latitude breeding and over­

wintering grounds (Carr & Ogren 1959, Musick & Limpus 1997, Plotkin 2002). The 

adaptive function of this long-distance migration strategy, similar to some tunas, sharks, 

and whales, is driven by the need for seasonal resource exploitation in productive 

temperate regions and reproduction in warmer latitudes (Lockyer & Brown 1981, Mather 

et al. 1995, Bonfil et al. 2005). There are steep energetic costs associated with extensive 

migrations, so the adaptive benefits (rapid accumulation of energy reserves, enhanced 

reproductive output) must outweigh the costs (Alerstam et al. 2003, Jorgensen et al. 2006, 

Chapman et al. 2011). The consequences of different migration strategies may directly 

impact population vulnerability to anthropogenic stressors, and impede recovery 

(Wallace et al. 2006a). Identification of leatherback migratory routes, forage grounds and 

environmental associations in the northwest Atlantic are critical to understanding 

population trends.

The Northeast US continental shelf is an extremely productive marine ecosystem 

(Sherman & Skjoldal 2002, Longhurst 2007) that seasonally supports a number of large,
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highly migratory species such as bluefin tuna (Lutcavage & Kraus 1995, Galuardi et al. 

2010), right whales (Wishner et al. 1988), humpback whales (Hain et al. 1981), giant 

ocean sunfish (Kenney 1996, Potter et al. 2011), basking sharks (Kenney et al 1985, 

Skomal et al. 2009) and leatherback sea turtles (Shoop & Kenney 1992, James et al. 

2005a). James et al. (2005a) identified a portion of the southern New England shelf as 

high-use habitat for leatherbacks satellite-tagged off of eastern Canada, and there has 

been a decades-long call for data to evaluate leatherback turtle critical habitat and threats 

to survival in the New England shelf region (Bleakney 1965, Lazell 1976, Goff & Lien 

1988, Prescott 1988, Lutcavage & Goldstein 1996, James et al. 2005a). Despite 

consistent recognition of the New England shelf as important leatherback turtle habitat, 

feeding areas and migratory movements to and from New England forage grounds are 

still largely unknown, hindering protection and recovery efforts for the Atlantic 

leatherback sea turtle in the US (Turtle Expert Working Group 2007). The proliferation 

of fixed fishing gear off New England is of particular concern since leatherbacks are 

vulnerable to entanglement in buoy lines and gillnets (Prescott 1988, Dwyer et al. 2002, 

Lum 2006), and interactions with surface system and buoy lines of pot gear fisheries may 

be a key threat to leatherbacks in coastal foraging habitats off eastern Canada and New 

England (Lazell 1976, Prescott 1988, Dwyer et al. 2002, James et al. 2005a).

The purpose of my dissertation was to investigate the movements, dive behavior, 

and trophic ecology of adult and sub-adult leatherback turtles found off New England. In 

order to access leatherbacks in this region, I partnered with commercial fishers and 

nongovernmental organizations (Provincetown Center for Coastal Studies and New 

England Aquarium) to capture leatherback turtles off the coast o f Cape Cod,
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Massachusetts, USA. I used satellite telemetry to collect data on leatherback horizontal 

and vertical movements in Northeast US continental shelf (bathymetry <200 m) and 

oceanic (bathymetry >200 m) habitats, and I applied stable isotope analyses to 

leatherback tissues and gelatinous zooplankton to examine their diet.

My first chapter is a synthesis of leatherback movements, dive behavior and 

remotely sensed environmental data. I determined leatherback occupancy of distinct 

oceanographic regions in the North Atlantic and characterized leatherback regional 

movements, dive behavior, migratory pathways and environmental associations. I 

identified seasonal, high-use habitat and used generalized linear mixed-effects models to 

investigate the relationship between leatherback search behavior and ecoregion, surface 

chlorophyll (chi a), sea surface temperature (SST), SST gradient magnitude, chi a 

gradient magnitude, and bathymetry.

My second chapter examines the migratory orientation of adult male, female and 

sub-adult leatherback sea turtles during their open-ocean movements in the Northwest 

Atlantic. I determined the orientation of individual turtles and turtles grouped by age 

class (adults vs. sub-adult), and investigated potential orientation cues used by 

leatherbacks during their southward migration through the subtropical gyre where limited 

sensory information is available to aid in navigation. Tracks were corrected for currents 

to determine the turtles’ true orientation relative to potential cues.

My third chapter focuses on the trophic ecology of leatherback turtles captured off 

Massachusetts. I determined stable isotope ratios of nitrogen and carbon in adult and sub­

adult leatherback tissues and potential prey items to test for differences in diet and habitat 

selection between sexes and ages classes. I used a Bayesian isotopic mixing model to
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estimate the contribution of different prey items to the leatherback diet, and compared 

these findings with results from stomach content analysis studies and surface 

observations of feeding leatherbacks. This chapter was published in Marine Biology in 

2011 .

My dissertation work combined complementary research tools (satellite telemetry, 

remotely sensed environmental data and stable isotope analysis) to improve our 

understanding of leatherback turtle movements, dive behavior, and trophic ecology in the 

New England region, and throughout the NW Atlantic. Identification of important 

foraging and other marine habitats, and determination of migratory pathways and 

distribution are high priority objectives in the Federal Recovery Plan for Leatherback 

Turtles in the US, Caribbean, Atlantic and Gulf of Mexico (1992). More recently, the 

Turtle Expert Working Group prioritized the identification of important marine habitats 

and expansion of in-water research on leatherbacks (TEWG 2007). Data from my study 

addresses these objectives and will be available for state and federal wildlife action plans 

and international conservation efforts for the Atlantic leatherback turtle, ultimately 

benefiting by-catch mitigation and population recovery efforts for this species.
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CHAPTER 1

LEATHERBACK TURTLE MOVEMENTS, DIVE 
BEHAVIOR AND HABITAT CHARACTERISTICS IN 

ECOREGIONS OF THE NORTHWEST ATLANTIC OCEAN

Introduction

Highly migratory marine predators such as leatherback sea turtles encounter a 

diversity of habitats during their long-distance movements. Oceanographic processes 

create regional ecosystems with distinct rates of primary productivity and ecology 

(Longhurst 2007). Predators may exhibit different behaviors in response to region- 

specific environmental conditions, with some regions optimal for foraging and (or) 

breeding while others serve as migratory habitat between breeding and feeding grounds. 

Obtaining direct measurements of foraging behavior in migratory marine species is 

challenging since the animals are difficult to observe for extended periods of time.

Studies often rely on measures of search behavior to distinguish foraging from transiting, 

with the underlying assumption that a foraging animal should increase time and search 

effort in resource-rich areas (i.e., area-restricted search behavior) and decrease search 

effort in areas with fewer resources (Kareiva & Odell 1987). Marine animal tracking data 

has been used to measure area-restricted search (ARS) behavior through analyses of 

speed, turning angle, path straightness and first passage time (Pinaud & Weimerskirch 

2007, Robinson et al. 2007, Weng et al. 2008), while switching state-space models have
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been used to statistically estimate animal behavioral modes (e.g., foraging vs. transiting) 

(Jonsen et al. 2007, Bailey et al. 2008, 2012).

Leatherback sea turtles (Dermochelys coriacea) are far-ranging marine predators, 

capable of swimming thousands of kilometers between boreal and tropical latitudes (Carr 

& Ogren 1959, Musick & Limpus 1997, Plotkin 2002). In recent decades, satellite 

telemetry has demonstrated that leatherbacks can undertake annual migrations (defined 

here as the seasonal movement between regions/habitats based on favorable versus 

unfavorable conditions, after Dingle & Drake 2007) in the Atlantic, Pacific and Indian 

Oceans (Morreale et al. 1996, Hughes et al. 1998, Ferraroli et al. 2004, James et al.

2005a, Shillinger et al. 2008, Lopez-Mendilaharsu et al. 2009, Benson et al. 2011). These 

extensive migrations take leatherbacks through a heterogeneous seascape where they 

experience strong differences in biological and physical oceanographic conditions. 

Despite an increase in broad-scale tracking studies, the relationship between leatherback 

behavior and their environment has only recently been explored (Luschi et al. 2003, 

McMahon & Hays 2006, Hays et al. 2006, Shillinger et al. 2008, 2011, Fossette et al. 

2010b, Benson et al. 2011, Witt et al. 2011, Bailey et al. 2012a,b). With the exception of 

a few studies (Benson et al. 2011), research on leatherback environmental associations 

has almost exclusively focused on the inter-nesting and post-nesting migrations of adult 

females, resulting in a paucity of data for males, sub-adults, and females during inter­

nesting years.

Leatherback foraging is likely associated with oceanographic processes that favor 

production and (or) retention of their gelatinous zooplankton prey, since targeting dense 

prey patches reduces search time and allows predators to maximize energy intake per unit
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time (MacAurther & Pianka 1966, Schoener 1971, Chamov 1976). In oceanic habitat, 

inferred foraging behavior and foraging success of leatherbacks have been linked to 

fronts, upwelling and downwelling zones, and mesoscale features (Lutcavage 1996, 

Luschi et al. 2003, Ferraroli et al. 2004, Eckert 2006, Doyle et al. 2008, Benson et al.

2011, Fossette et al. 201 la). Although leatherbacks are most often associated with an 

oceanic lifestyle, some individuals make seasonal use of highly productive continental 

shelf and slope habitats (Shoop & Kenney 1992, James et al. 2005a, Houghton et al.

2006, Benson et al. 2007, 2011, Witt et al. 2007), residing in near-shore areas for several 

months (James et al. 2005b; Eckert et al. 2006, Lopez-Mendilaharsu et al. 2009). 

Continental shelf and slope waters are productive regions where spring bloom conditions 

can lead to increased seasonal abundance of plankton (Larson 1976, Houghton et al.

2006, Madin et al. 2006, Mann & Lazier 2006). Increased nutrient input from land, tidal- 

mixing, and wind-driven upwelling can trigger increases in scyphozoan populations, 

while physical discontinuities in shelf waters and along ocean fronts promote aggregation 

and retention of gelatinous organisms (Shenker 1984, Olson et al. 1994, Graham et al. 

2001, Purcell et al. 2001, Deibel & Paffenhofer 2009). Productive water masses and 

fronts in oceanic and neritic regions are also targeted by commercial fishing operations 

with fixed and mobile gear, often resulting in incidental captures of sea turtles and other 

non-target species (Lewison et al. 2004, Lum 2006, Phillips et al. 2006, Alfaro-Shigueto 

et al. 2007,2010).

In the present study, we deployed satellite tags on adult male, female and sub­

adult leatherbacks turtles captured off Massachusetts, USA. We collected geolocation and 

dive data to: 1) determine leatherback occupancy of distinct oceanographic regions in the

8



North Atlantic; 2) characterize leatherback regional movements, dive behavior, and 

environmental associations; 3) identify seasonal high-use habitat and 4) determine key 

environmental features associated with leatherback search behavior in the NW Atlantic. 

Materials and Methods 

Satellite telemetry

Twenty adult and sub-adult leatherback turtles were fitted with Wildlife 

Computers, Inc. (Redmond, WA, USA) model MK10-A (n=8) and MK10-AF (n=12) 

ARGOS-linked satellite time depth recorders (STDRs). Leatherbacks were located off the 

coast of Massachusetts, USA (-41 °N, 70°W) from August 2007 to September 2009, and 

captured with either a breakaway hoopnet (n = 11) (Asper 1975, James et al. 2005a) or 

accessed through the Massachusetts sea turtle disentanglement network (n = 9) (Fig. 1; 

Table 1). We brought turtles on board commercial fishing or research vessels using a 

custom-built stem ramp. Following the methods described in Dodge et al. (in prep), we 

attached STDRs directly to the carapace medial ridge. Leatherbacks were measured to the 

nearest 0.1 cm (curved carapace length: CCL and curved carapace width: CCW) with a 

flexible fiberglass measuring tape, and ranged from 123.0 to 161.5 cm CCL (Table 1).

We used CCL to classify turtles as adults (CCL >145 cm) or sub-adults (CCL <145 cm), 

and we determined gender based on tail length of adult turtles (James et al. 2007). Five 

sub-adult turtles were sexed based on presence of a penis, subsequent necropsy or 

evidence of nesting. We collected samples of blood and skin (Innis et al. 2010, Dodge et 

al. 2011), and all turtles were photographed, scanned for passive integrated transponder 

(PIT) tags, and given PIT and flipper tags if none were present.
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represent satellite tag deployments from 2007-2009 as listed in Table 1.

10



Table 1. Summary data for twenty leatherback sea turtles equipped with satellite tags off Massachusetts, USA. PTT: platform 
transmitter terminal; CCL: curved carapace length; S: sub-adult (<145 cm CCL); A: adult (> 145 cm CCL); M: male; F: 
female, U: unknown sex; MK10-A: Argos-only locations; MK10-AF: Argos and Fastloc GPS locations; N. Sound: Nantucket 
Sound; CC Bay: Cape Cod Bay; V. Sound: Vineyard Sound; Nantucket: waters south of Nantucket.

Turtle
ID

PTT
Number

CCL
(cm) Age Sex Capture

method Tag Model Tagging
location

Tagging
date

Days
at
liberty

Distance
(km)

No.
ARGOS
locations

No.
GPS
locations

A 68366 140.7 S M Entangled MX10-AF N. Sound 19-Aug-07 34 938 137 263
B 68364 143.2 s M Entangled MK10-AF CC Bay 29-Aug-07 •8 461 82 90

; c 68369 123.0 s U Entangled MK10-AF N.Sound 29-Aug-07 16 277 64 89
D 68370 137.5 s U Entangled MK10-AF CC Bay 22-Sep-07 183 6444 572 777
E 68365 136.0 s F Entangled MK10-AF CC Bay 1 -Oct-07 35 991 109 252
F 68365a 149.5 A M Hoopnet MK10-AF N.Sound 17-Jul-08 174 8004 1520 1067
G 68364a 146.0 A F Hoopnet MK10-AF V.Sound 26-Jul-08 199 7920 1407 1498
H 82052 161.5 A F Hoopnet MK10-A V. Sound 29-Jul-08 272 8435 2114 na
I 76988 152.2 A M Hoopnet MX10-AF Nantucket 10-Aug-08 214 8878 1932 1469
J 76990 140.4 S U Hoopnet MX10-AF Nantucket 10-Aug-08 150 5967 1147 593
K 82055 133.8 S U Hoopnet MX10-A Nantucket 10-Aug-08 152 5792 1306 na
L 82051 153.3 A M Hoopnet MK10-A Nantucket 10-Aug-08 242 9466 1846 na
M 76989 144.8 A F Hoopnet MX10-AF Nantucket 21-Aug-08 180 9191 1427 1563
N 85538 154.0 A M Hoopnet MX10-AF Nantucket 22-Aug-08 183 6528 1707 796
0 85537 138.5 S M Hoopnet MX10-AF Nantucket 22-Aug-08 181 5883 1722 307
P 82053 146.4 A M Entangled MK10-A N. Sound 23-Aug-08 234 9765 1095 na
Q 82054 140.0 S IT Entangled MX 10-A N. Sound 28-Aug-08 191 5980 1306 na
R 82056 126.5 s U Weir MK10-A N. Sound 10-Jul-09 414 14168 3570 na

! S 82057 127.7 s u Hoopnet MX 10-A N. Sound 27-Aug-09 278 11541 1616 na
T 27579 155.0 A M Entangled MX 10-A N. Sound 3-Sep-09 203 7096 1458 na
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The STDRs collected Fastloc® GPS locations (MK10-AF tags only), ARGOS- 

derived locations (all tags) and dive information (depth resolution ±0.5m and temperature 

resolution ±0.05°C) via Service ARGOS (Toulouse, France) (Table 1). Ninety-five 

percent of Fastloc GPS locations are accurate to ±55 m (Bryant 2007), while ARGOS- 

derived location error varies by location class (LC) as follows: LC3 <150 m, LC2 150- 

350 m, LC1 350-1000 m, and LC0 >1000 m. ARGOS does not provide accuracy 

estimates for LCA and LCB locations, and LCZ are considered invalid.

We defined a dive as vertical movement below two meters for at least one minute. 

The number of dives within specified depth and duration ranges and the time spent within 

depth and temperature ranges were collected as frequency histograms based on 

preprogrammed bins (Table 2). Histograms were aggregated over four 6-hour periods in 

GMT: 0:00-5:59,6:00-11:59, 12:00-17:59, 18:00-23:59. Tags deployed in 2007 and 2008 

(n=17) were programmed to transmit daily while tags deployed in 2009 (n=3) were 

programmed to transmit daily from July to December, every other day from January to 

April, and every third day from May to June.

Environmental data

We selected environmental data likely to influence production and distribution of 

gelatinous prey (Graham et al. 2001, Lilley et al. 2011), and thus leatherback movements. 

Sea surface temperature (SST), surface chlorophyll a concentration (chi a), SST gradient, 

chi a gradient and bathymetry were used as potential predictors. We used SST and chi a 

gradients as a proxy for the presence of fronts (Belkin & O’Reilly 2009). SST data were 

obtained as a blended product available at the GHRSST website (http://www.ghrsst.org) 

as 9km, daily averages. The blended SST product was derived from microwave SST data
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from three sources (Advanced Microwave Scanning Radiometer, Tropical Rainfall 

Measuring Mission Microwave Imager and WindSAT Polarimetric Radiometer) and 

InfraRed SST data from Aqua Moderate Resolution Imaging Spectroradiometer 

(MODIS). Chi a data were obtained from MODIS data as 2.5km, 8 day averages at the 

NOAA ERDDAP website

(http://coastwatch.pfeg.noaa.gov/erddap/info/erdMWchla8dav/index.htmlT Bathymetry 

was determined using 1-minute gridded global relief data (ETOPOl) from the National 

Geophysical Data Center (www.ngdc.noaa.gov/mgg/global/). SST and chi a gradients 

were generated using the Belkin-O’Reilly (BOA) oceanic front detection algorithm 

(Belkin & O’Reilly 2009).

Table 2. Bin ranges of dive parameters from satellite tags deployed on leatherback sea 
turtles from 2007 to 2009 (dive depth and dive duration) and from 2008 to 2009 (time-at- 
depth and time-at-temperature).

Years Number 
of tags

Depth 
bin (m)

Duration 
bin (min) Years Number 

of tags

Time-at- 
Depth 
bin (m)

Time-at- 
Temp 
bin (°C)

' 2007-2009 20 2-5 1-4 2008-2009 15 0-2 0-4 j
2007-2009 20 5-10 4-8 2008-2009 15 2-10 4-6
2007-2009 20 10-15 8-12 2008-2009 15 10-15 6-8 |
2007-2009 20 15-20 12-16 2008-2009 15 15-20 8-10

! 2007-2009 20 20-25 16-20 2008-2009 15 20-25 10-12____|
2007-2009 20 25-30 20-24 2008-2009 15 25-30 12-14

! 2007-2009 20 30-50 24-28 2008-2009 15 30-40 14-16 |
2007-2009 20 50-75 28-32 2008-2009 15 40-50 16-18
2007-2009 20 75-100 32-36 2008-2009 15 50-75 18-20 1
2007-2009 20 100-200 36-40 2008-2009 15 75-100 20-22
2007-2009 20 200-300 40-44 2008-2009 15 100-125 22-24 J
2007-2009 20 300-400 44-48 2008-2009 15 125-150 24-26

j 2007-2009 20 400-500 48-52 2008-2009 15 150-200 26-28 ;
2007-2009 20 >500 >52 2008-2009 15 >200 >28
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Data analysis

We filtered 30,173 raw ARGOS and GPS locations using Kalman filter methods 

outlined in Royer & Lutcavage (2008). Since our analysis included GPS data, we 

extended the original error covariance structure to include this information. Data were 

interpolated to a three-hour time step and smoothed. Environmental data were then 

extracted for the 28,253 filtered turtle locations. Rate of travel was determined using the 

distance function in Matlab (Mathworks, Natick, MA) and a daily straightness index (SI) 

was calculated as the ratio of straight-line distance to total distance traveled by each turtle 

per day (in km d '1), resulting in a dimensionless index from 0 (sinuous) to 1 (straight) 

(Batschelet 1981, Benhamou 2004). Travel rate and straightness were not calculated from 

January to June for turtles tagged in 2009 since tags were duty-cycled and did not 

transmit daily during these months. Leatherback positions and dive data were assigned to 

distinct biogeographic provinces or “ecoregions” defined by Longhurst (2007) (Fig. 2). 

We calculated the duration of leatherback occupancy in each ecoregion, and assessed 

variability in leatherback search effort, dive behavior and environmental associations 

across ecoregions. Averages are shown as mean ± standard deviation (mean ± SD) for 

normally distributed data, and median, interquartile range (Q1-Q3) where data are not 

normally distributed.

To investigate variation in seasonal habitat use, we created density utilization 

maps of filtered leatherback positions for pooled data across all turtles by season. Seasons 

were defined as: July -  September (summer), October -  December (autumn), January — 

March (winter), and April -  June (spring). Daily locations were summed into hexagonal 

area bins, with the area of each hexagon approximately 669 km2 (or 4 hexagons per
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degree). These bins are larger than the error associated with our filtered ARGOS and 

GPS location data, but small enough to identify regional high-use areas. Density 

utilization maps were produced using R (R Development Core Team 2013) and Generic 

Mapping Tools (Wessel and Smith 1991).

We applied generalized linear mixed-effects models to investigate the influence of 

ecoregion, SST, chi a, SST gradient magnitude, chi a gradient magnitude and bathymetry 

(fixed effects) on leatherback path straightness while accounting for the correlation of 

repeated observations from individual turtles (Zuur et al. 2009). Changes in path 

straightness have been used to identify purported search behavior associated with 

foraging in leatherbacks (Fossette et al. 2010a), as well as other marine predators 

(Weimerskirch et al. 2002, Kuhn et al. 2010, McCarthy et al. 2010). Density plots of the 

environmental data showed that logarithmic transformation was required for SST 

gradient, chi a, chi a gradient and bathymetry. We were primarily interested in the 

influence of SST, SST gradient, chi a and chi a gradient in regions where these surface 

features are most variable (least homogenous), and we were mainly interested in the 

effect of bathymetry in neritic habitats where leatherbacks can access the entire water 

column. Therefore, we estimated region-specific regression parameters for these 

variables: SST (Northwest Atlantic Shelves, Gulf Stream), SST gradient (Northwest 

Atlantic Shelves, Gulf Stream) and bathymetry (Northwest Atlantic Shelves, Guianas 

Coastal). We compared models where effects of SST, SST gradient, chi a, chi a gradient 

and bathymetry on SI are the same for the respective groups of regions with less 

parsimonious models that allow the effects to differ for each ecoregion (Table 3). As SI 

ranges between 0 and 1, we assumed a Gaussian error structure for the logit-transformed
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SI with continuous AR(1) autocorrelation structure for repeated observations as a 

function of time between observations (Chi & Reinsel 1989).

We fit the models by maximum marginal likelihood in R (R Core Team 2013) 

using the lme4 package and compared relative performance using Akaike Information 

Criterion (AIC) (Akaike 1973) of the fitted models. As a measure of evidence for relative 

performance of each model that we fit, we used Akaike weights (Burnham and Anderson 

1998). We chose to use AIC over a criteria adjusted for sample size (AICc) because AICc 

requires a known number of observations, and this is not straightforward for mixed- 

effects models (see Faes et al. 2009). For AR(1) error structured models as used here, the 

effective sample size depends on the correlation of the observations within each 

individual. Since the autocorrelation we estimated for our models is generally low, we 

had a large effective sample size where differences between AIC and AICc are negligible. 

For the model that provided the best fit, we used restricted maximum likelihood to obtain 

parameter estimates and predict changes in steepness with various covariates and factors 

(Pinheiro and Bates 2000).

Results

Satellite telemetry

We received data from all tagged leatherbacks: four tags transmitted for less time 

than expected and 16 tags met or exceeded predicted battery life. Tags reported between 

16 and 414 days, with a median tracking duration of 184 (152 to 219; Q1-Q3) days 

(Table 1). We pooled the percent frequency distributions of the four dive parameters: 

dive-depth (n=19), dive-duration (n=17), time-at-depth (n=15), and time-at-temperature 

(n=15), shown in Fig. 3. Three tags deployed in 2007 reported spurious dive-duration
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data (i.e., the total number of dives recorded in the >52 min bin exceeded the 6- 

hour time period) and one 2007 tag recorded insufficient dive-depth data, so these tags 

were excluded from the dive-duration and dive-depth analysis. We only included time-at- 

depth and time-at-temperature data for tags with the same lower bin ranges (2008 and 

2009).

Of the 210,556 dives reported for the dive-depth parameter, over 28% were to 

depths less than 5 m and 90% were shallower than 75 m (Fig. 3a). Fifteen turtles dove 

deeper than 500 m during the study period, with males recording the deepest dives 

(>1200 m, n = 3). The pooled dive-duration data showed that close to 75% of all 

leatherback dives were less than 12 min, and more than 90% were shorter than 32 min 

(Fig. 3b). Sixteen turtles recorded extended dives lasting over 52 minutes, but these 

represent less than 3% of the total. The pooled frequency distribution of the time-at-depth 

shows that turtles spent over 25% of their time within 2 m of the surface, and over 50% 

of their time shallower than 10 m (Fig. 3c). Over 90% of their time was spent in the top 

100 m of the water column. The pooled frequency distribution of the time-at-temperature 

shows that turtles spent 86% of their time between 16°C and 28°C (Fig. 3d).

Habitat use and environmental associations

Leatherbacks ranged widely between 39°W and 83°W, and between 9°N and 

47°N (Fig. 4), over six oceanographically distinct ecoregions: the Northwest Atlantic 

Shelves (NWCS; n=20), the Gulf Stream (GFST; n=16), the North Atlantic Subtropical 

Gyral West (NASW; n=15), the North Atlantic Tropical Gyral (NATR; n=15), the 

Caribbean (CARB; n=6) and the Guianas Coastal (GUIA; n=7) (Fig. 2). All leatherbacks 

were tagged in the NWCS, and 16 turtles were tracked long enough to determine an
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average minimum residency of 79 days (± 39 days) post-tagging. Fifteen turtles left the 

NWCS between late September and mid-November, with the majority leaving between 

mid-October and mid-November (n=l 1). Most turtles spent less than a week in the GFST 

(median 6 days), but two individuals (Turtles F & D; Table 1 & Fig. 4) made more 

extensive use of this region (95 and 59 days, respectively). Between October and 

February, leatherbacks transited rapidly through the NASW (median 29 days), entering 

the NATR between November and early February. Leatherbacks either remained in the 

NATR for the remainder of the tracking period (n=7) or continued on to breeding and 

(or) foraging areas in CARB and GUI A (8). Three sub-adults and one small adult male 

were tracked long enough to observe a complete (32 and 92 days; Turtles D & R) or 

partial (83 and 56 days; Turtles P & S) overwintering period in the NATR before they 

returned to the NASW between late March and mid-May. One turtle returned to the 

NWCS in mid-May, remaining in the region for 96 days before the tag stopped 

transmitting in late August.

Turtles modified their movements and dive behavior while occupying different 

ecoregions. Leatherbacks in the NWCS had the lowest travel rates and path straightness 

of all regions (Fig. 5a,b), and they combined slow, sinuous swimming with short, shallow 

dives (Fig. 6a,b). They spent most of their time in the top 10 m of the water column at 

temperatures between 16°C and 20°C (Fig. 6c,d). Outside of the NWCS, turtles increased 

their travel rate and path straightness (Fig. 5a,b). Leatherbacks continued making shallow 

dives (< 5 m), but increasingly made deeper, longer dives as they traveled south (Fig.

6a,b). As turtles moved into subtropical and tropical ecoregions, they began spending 

more time at temperatures over 22°C and at depths over 50 m, experiencing the warmest
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Table 3. Definition of fitted mean logit straightness models for observation j  of turtle i. Turtle i is in ecoregion r,y at 
observation j, I(x) is an indicator function equaling 1 when x is true and 0 otherwise. There are K ecoregions, and K$sr, Kssrg, 
Kchia, KChiag, and Ktathy are the number of ecoregions where SST, SSTg, chla, chlag, and bathy effects are allowed. The variance 
structure is the same for all models.
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Figure 3. Frequency distributions of a) dive-depth, b) dive-duration, c) time-at-depth and 
d) time-at-temperature collected from satellite tags on leatherback sea turtles in the North 
Atlantic Ocean. Dive-depth (n = 19) and dive-duration (n = 17) from turtles tagged from 
2007 to 2009. Time-at-depth (n = 15) and time-at-temperature (n=15) from turtles tagged 
from 2008 to 2009.
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temperatures and making the deepest, longest dives in the NATR and CARB (Fig. 6c,d). 

Diving patterns in the primarily shelf waters of GUI A were distinct from other tropical 

regions: leatherbacks spread their diving effort throughout the top 200 m and most dives 

were less than 24 min (Fig. 6a,b). Leatherback surface times (0-2 m) were similar across 

most regions, with the greatest surface times recorded in the NASW (mean 30%), NWCS 

(mean 27%), CARB (mean 26%) and GFST (mean 25%). Leatherbacks spent the least 

amount of time at the surface in GUI A (mean 14%) and NATR (mean 21%).

Turtles experienced highly variable environmental conditions across ecoregions, 

where bathymetry ranged from shallow bays and sounds on the continental shelf to deep 

oceanic waters, SST from 9.6°C to 28.9°C and chi a from near zero to 64.36 mg m'3 

(Fig. 5). Leatherbacks occupied areas with SST and chi a gradients of varying 

magnitudes, with SST gradients of 0 to 1.85 °C km'1 and chi a gradients of 1.052 to 1.144 

(Fig. 5). Turtles in the NWCS used relatively shallow habitat on the shelf, staying mostly 

within the 80 m isobath and associating with the highest chi a of all regions (Fig. 5e,g). 

Turtles experienced the coolest, most variable sea surface temperatures and strongest SST 

gradients in the NWCS and the GFST (Fig. 5c,d). While the chi a gradients were similar 

across ecoregions, leatherbacks in the GUIA used areas with the most variable and 

strongest chi a gradients (Fig 5f).

Based on AIC values, the most well supported model showed that differences in 

leatherback search behavior (represented by logit-transformed SI) were best explained by 

ecoregion and effects of bathymetry and SST, with effects of SST depending on the 

ecoregion (Table 4). In the mainly neritic ecoregions (NWCS and GUIA), there was a 

positive relationship between SI and bathymetry, with leatherback movements becoming
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more sinuous as water depth decreased (Table 5; Fig. 7a). In the regions where SST was 

most variable (NWCS and GFST), the relationship between SI and SST differed. In the 

GFST, the relationship between SI and SST was positive, with leatherback path sinuosity 

increasing with decreasing SST. In the NWCS, the relationship between SI and SST was 

negative, with leatherback sinuosity increasing with increasing SST (Table 5; Fig. 7b). 

The relationship between SI and SST in the Gulf Stream region was slightly positive, 

reflecting the fact that this slope parameter was not significant in the model.

Seasonal density utilization maps showed leatherback movements were the least 

extensive during summer, with turtles tagged off Massachusetts showing a strong 

preference for the Northeast US continental shelf, concentrating movements off southern 

New England and Virginia/North Carolina (Fig. 2 ‘Summer’). Leatherbacks expanded 

their range in autumn, increasing their use of the Mid-Atlantic Bight and Gulf Stream 

before initiating a rapid, directed southward migration, following widely dispersed 

pathways through the subtropical and tropical gyral regions (Fig. 2 ‘Autumn’). Winter 

movements were restricted to tropical oceanic habitat and neritic waters of the Antilles, 

South America, and Central America, with the exception of two sub-adults and one small 

adult male that occupied subtropical oceanic waters for part of the season. Densely 

occupied winter habitat occurred off breeding beaches in the Windward Islands, 

particularly the north/northeast coast of Trinidad and the western half of the Tobago 

Basin (Fig. 2 ‘Winter’). Our limited tracking data for the spring showed that leatherbacks 

either remained in tropical breeding areas in the Windward Islands or began northward 

migrations, with one individual occupying the North Carolina shelf (Fig. 2 ‘Spring’).
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Table 4. AIC results for linear mixed-effects models where mean logit-transformed path 
straightness is a function of ecoregion, sea surface temperature (SST), logarithm of 
surface chlorophyll a concentration (chla), logarithm of SST gradient (SSTg), logarithm 
of surface chla gradient (chlag), and logarithm of bathymetry (bathy). p: number of 
parameters in the model; AAIC: difference in AIC value between best fitting model and 
other models; to: Akaike weight. a Slopes held constant in regions of interest. b Slopes 
and intercepts allowed to vary in regions of interest. *Best fitting model.

Model P AIC AAIC (O

null 4 7258.06 390.51 0
ecoregion 9 6927.63 60.08 0
ecoregion + SST2 10 6927.26 59.71 0
ecoregion x SSTb 11 6921.62 54.07 0
ecoregion + chla2 10 6908.31 40.76 0
ecoregion x chlab 15 6908.97 41.42 0
ecoregion + SSTga 10 6928.73 61.18 0 ‘ ;
ecoregion x SSTgb 11 6929.90 62.35 0
ecoregion + chlag2 10 6923.94 56.39 0
ecoregion x chlagb 15 6922.50 54.95 0
ecoregion + bathymetry3 10 6871.17 3.62 0.07
ecoregion x bathymetryb 11 6873.15 5.60 0.03
ecoTegion + SST3 + bathymetry2 11 6871.52 3.97 0-06 ']
ecoregion x SSTb + bathymetry2 * 12 6867.55 0.00 0.42
ecoregion + chla2 + bathymetry2 11 6871.76 4.21 0.05
ecoregion x chlab + bathymetry2 16 6868.89 1.34 0.21
ecoregion + SSTg3 + bathymetry3 11 6873.13 5.58 0.03
ecoregion x SSTgb + bathymetry3 12 6874.93 7.38 0.01
ecoregion + chlag3 + bathymetry3 11 6871.61 4.06 0.05 :
ecoregion x chlagb + bathymetry3 16 6870.84 3.29 0.08

Table 5. Fixed effects parameter estimates of final model. Random effect parameter 
estimate intercept was 0.196 and residual was 0.960, and estimated autocorrelation was 
0.306.

Effect Estimate Standard
Error

Intercept 1.563 0.119
GFST -0.723 0.522

' GlUA -1.312 0.235
NASW 0.303 0.125
NATR 0.337 0.121
NWCS -1.467 0.321
log(bathy) 0.231 0.030
sstJNWCS -0.032 0.014
sst GFST 0.034 0.024
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Overall, dispersal patterns differed between adult and sub-adult leatherbacks. 

Most adults followed widely spaced but highly oriented south/southeast headings during 

their southward migration until they reached latitudes between 10°N and 13°N (Fig. 4). 

Sub-adult leatherbacks had more variable headings and did not disperse as far south, with 

most turtles remaining north of 15°N (Fig. 4). Two sub-adults were tracked near land (the 

Bahamas and the Lesser Antilles) during a portion of their migrations, but most sub­

adults occupied offshore tropical and subtropical habitat during winter and early spring. 

The four largest adult males and two adult females traveled to areas off nesting beaches
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in the Lesser Antilles and Central America where they remained until tag transmissions 

ceased. Two smaller adult males and one adult female did not travel to known breeding 

areas; one male remained in the Gulf Stream into early January and the other two turtles 

overwintered in a tropical region near the convergence of the North Equatorial Current 

and North Equatorial Counter-Current.

Discussion

We deployed a mix of GPS-linked and conventional ARGOS STDRs to 

simultaneously collect data on movements and dive behavior of adult and sub-adult 

leatherbacks in the North Atlantic. This study is one of the first to obtain highly accurate 

GPS locations from leatherback turtles, allowing us to identify high use habitat, 

movement patterns and environmental associations with less observation error. We also 

used novel design and direct attachment techniques to deploy low profile, hydrodynamic 

tags. We believe our methods minimized impacts to the turtles’ natural behavior, 

resulting in a more accurate portrayal of leatherback behavior than telemetry studies 

employing harness attachments (Lutcavage et al. 2001, Fossette et al. 2007, Jones et al. 

2011, Witt etal. 2011).

Dispersal patterns and seasonal habitat use

Leatherbacks tagged off Massachusetts showed a strong affinity to the Northeast 

US continental shelf before dispersing widely throughout the northwest Atlantic. One 

individual tracked for >1 year exhibited site fidelity to the US shelf, returning in late 

spring and remaining through late summer. Surprisingly, only one Massachusetts-tagged 

leatherback moved onto the eastern Canada shelf, an important and well-documented 

leatherback foraging ground (Bleakney 1965, James et al. 2005a,b, Heaslip et al. 2012).
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In contrast, leatherbacks tagged off eastern Canada spent extended periods in both 

Canadian and Northeast US shelf waters within a single foraging season (James et al. 

2005a). Over half of the turtles tagged off Massachusetts were classified as sub-adults 

(55%) whereas sub-adults were the minority in the Canada tagging study (16%, n = 38). 

The sub-adults in our study may have been at the northern part of their foraging range. 

Migration distance depends partly on an animal’s body size and their capacity to store 

energy (e.g., adipose tissue) (Alerstam et al. 2003). Larger animals are able to swim 

longer distances at lower energetic cost (Schmidt-Nielsen 1972), as has been predicted 

for cod (Jorgensen et al. 2006) and bluefin tuna (Chapman et al. 2011). Smaller body size 

and lower lipid stores may limit the migratory range of some sub-adult leatherbacks. 

Alternatively, resources may have been sufficient on the Northeast US shelf during the 

years of our study, precluding a longer migration to more northerly foraging areas. Adult 

female leatherbacks tagged on nesting beaches in the northwest Atlantic showed different 

habitat utilization patterns than those tagged in temperate foraging grounds: high-use 

habitat tended to occur close to the nesting beaches where turtles were tagged or turtles 

were more widely distributed in oceanic and neritic regions throughout the North Atlantic 

(TEWG 2007). Although there is inherent bias in determining habitat utilization from 

tracking data from one deployment location, bias is reduced with increasing deployment 

time, and alternative methods may be used to address this in the future (Walli et al. 2009, 

Whitehead & Jonsen 2013).

There was a strong seasonal component to habitat selection, with most 

leatherbacks remaining in temperate latitudes in the summer and early autumn and 

moving into subtropical and tropical habitat in the late autumn, winter and spring. This
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latitudinal shift is consistent with previous studies of leatherbacks tracked from foraging 

grounds in the North Atlantic (James et al. 2005b, Doyle et al. 2008) and similar to 

seasonal migration patterns of other sea turtle species (Polovina et al. 2004, McClellan & 

Read 2007) and large pelagic species such as ocean sunfish Mola mola (Potter et al.

2011), basking sharks Cetorhinus maximus (Skomal et al. 2009), bluefin tuna Thunnus 

thynnus (Sibert et al. 2006, Galuardi et al. 2010), and swordfish Xiphias gladius (Neilson 

et al. 2009). Latitudinal shifts in habitat-use likely reflect seasonal changes in temperature 

and productivity at high latitudes, and, for some species, the necessity to spawn or nest in 

tropical regions.

While most adult leatherbacks make seasonal migrations to the tropics to breed, 

sub-adults and reproductive females in inter-nesting years could remain at higher 

latitudes to forage. Yet the majority of these .non-reproductive individuals still migrated 

to tropical latitudes. Their choice of overwintering habitat may be tied to minimizing 

energy expenditure for thermoregulation while maximizing prey encounter-rates in the 

patchier, less productive environment o f the tropics. Sub-adults, small adult males, and a 

single inter-nesting-year female primarily remained in oceanic habitat, while large adult 

males and two reproductive females moved into coastal breeding areas. Little is known 

about the demographics of male leatherbacks, but there may be a size constraint whereby 

smaller males are unable to compete for females, and are effectively displaced from 

breeding areas by larger, more dominant individuals (Alerstam et al. 2003). Smaller 

males may direct energy toward growth rather than reproduction, and select over­

wintering habitat to maximize limited foraging opportunities in the tropics. Adult females 

in an inter-nesting year are likely to avoid breeding areas where they would be subject to
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aggressive mating attempts by males (Reina et al. 2005); by overwintering offshore, they 

can save energy and accumulate fat stores for return migration and future reproductive 

effort. Sub-adults also largely avoided breeding areas and most did not travel as far south 

as adults. The highly oriented paths taken by adult leatherbacks suggests movement 

toward a goal (e.g., specific breeding and/or foraging areas), while the more variable 

headings taken by sub-adults may indicate an opportunistic overwintering strategy, or 

lack of experience locating consistent resource patches in oceanic habitat.

Regional movements, dive behavior, and habitat characteristics 

Temperate neritic habitat

Our density utilization maps demonstrate that the Northeast US shelf, particularly 

southern New England, provides important seasonal habitat for leatherback turtles tagged 

of Massachusetts. The Northeast US shelf is one of the most well-studied and productive 

large marine ecosystems in the world (Sherman & Skjoldal 2002, Longhurst 2007). South 

of Cape Cod, peak depth-integrated primary production rates tend to occur toward the 

end of summer (Longhurst 2007), overlapping spatially and temporally with the highest 

density of leatherback locations. Waters south and east of Long Island, New York, 

including the eastern portion of the New York Bight, were heavily used by leatherbacks 

in late summer and autumn; the New York Bight has consistently high primary 

production rates associated with nitrogen input from urban sewage, strong tidal fronts and 

mixing (Longhurst 2007). Temperature and productivity decrease in late autumn and 

winter, coinciding with leatherbacks’ departure from the region. One turtle extensively 

frequented an area north of Cape Hatteras, North Carolina; anomalously high chlorophyll 

values have been measured in this region during midsummer, associated with penetration
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of high nutrient slope water onto the shelf and close proximity to Gulf Steam meanders 

(Longhurst 2007).

Leatherback search behavior (slow, sinuous swimming) in the Northwest Atlantic 

Shelves (NWCS) is consistent with area-restricted search (ARS), affirming the 

importance of this region for foraging leatherbacks (Bleakney 1965, Lazell 1980, James 

et al. 2005a, Eckert et al. 2006, Dodge et al. 2011). Leatherback locations in the NWCS 

coincided with stronger SST gradients and higher chi a than that found in other regions, 

and most dives were in the euphotic zone within the average seasonal mixed layer depth 

on the Northeast US shelf (10-20 m) (Longhurst 2007). Highly productive water masses 

and frontal zones influence the spatial distribution and movements of some top predators, 

aggregating them in relatively small areas or “hotspots” on the shelf, shelf break, slope, 

offshore and at depths where prey is concentrated (Olson et al. 1994, Schick et al. 2004, 

Mann & Lazier 2006, Bost et al. 2009). Other sea turtle species associated with enhanced 

frontal activity (Polovina et al. 2000, Seminoff et al. 2008), though some cheloniids may 

face thermal constraints, limiting their access to cooler temperate frontal zones (Seminoff 

et al. 2008). Leatherback movements coincided spatially and temporally with the 

persistent Shelf-Slope Front and tidal-mixing fronts north of Nantucket Shoals, in the 

Gulf of Maine, and around Georges Bank (Belkin et al. 2009). The tidal-mixing fronts 

occur during peak leatherback presence in summer and early autumn, and may play an

important role in consolidating seasonally abundant patches of the leatherback’s
\

gelatinous prey. Our model results showed that leatherbacks increased path sinuosity at 

shallower depths and warmer surface temperatures within the NWCS region. Decreasing 

water depth has been linked to increases in epipelagic gelatinous zooplankton biomass on
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a global scale, with greatest biomass found in shallow locations (< 10 m average depth) 

(Lilley et al. 2011). Shallow shelf habitat such as shoals, banks, and ledges may be 

important for leatherback prey searching and (or) foraging in this region, and is consistent 

with our field observations of leatherbacks feeding in shoal habitat off Massachusetts 

(Dodge et al. 2011) (Fig. 1).

The average mixed layer depth on the Northeast US shelf is also shallowest (10- 

20 m) during the summer and early autumn (Longhurst 2007), potentially aggregating 

gelatinous prey at or above the pycnocline (Graham et al. 2003, Rakow & Graham 2006). 

This would reduce ascent and descent times for foraging leatherbacks, and minimize time 

spent in cool waters below seasonal thermoclines. The relatively high chi a associated 

with leatherback locations in the NWCS could be attributed to a preference for habitat 

with a high biomass of gelatinous zooplankton. Gelatinous predators can drastically 

reduce local zooplankton biomass, decreasing grazing pressure on phytoplankton 

populations and resulting in localized phytoplankton blooms (Durbin & Durbin 1996).

This has been demonstrated on the Northeast US shelf, specifically in Narragansett Bay,
\

Rhode Island, where the ctenophore Mnemiopsis leidyi can control zooplankton biomass, 

resulting in diatom blooms (Durbin & Durbin 1996). Mean leatherback surface time in 

the NWCS (27%) was much lower than that observed by James et al. (2006) for turtles 

tagged off eastern Canada (mean 43% night and 50% day, n=T2 (0-2 m) and n=3 (0-3 

m)). The Canada-tagged turtles used habitat off the Northeast US as well as eastern 

Canada, so the disparity in surface times is somewhat surprising, but the colder water 

temperatures experienced by leatherbacks off eastern Canada may contribute to increased 

surface times in that region. James et al. (2005b, 2006) described regular observations of
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leatherbacks basking at the surface off Nova Scotia, a behavior that we rarely observed 

off Massachusetts. It is possible that leatherbacks off eastern Canada spend greater time 

at the surface for thermoregulation (James et al. (2005b) but this behavior is less 

important in the comparatively warm waters of the Northeast US shelf.

Subtropical oceanic habitat

We observed marked behavioral changes as leatherbacks left continental shelf 

habitat and began their southward migrations through subtropical oceanic habitat. As 

turtles moved through the Gulf Stream (GFST) and North Atlantic Subtropical Gyral 

West (NASW), they showed rapid, directed travel and began spending more time at 

depths >50 m. Most turtles spent minimal time in these ecoregions, suggesting that these 

are less important feeding areas for Massachusetts-tagged leatherbacks and are primarily 

used for transiting between temperate (i.e., foraging) and tropical (i.e., breeding) habitat. 

However, two individuals did make more extensive use of the GFST during summer, fall 

and early winter. The Gulf Stream’s strong horizontal SST gradient, particularly in fall 

and winter, is evident in the strong SST fronts encountered by leatherbacks there, and chi 

a was high compared to other subtropical and tropical oceanic regions. Leatherback 

movements in the GFST became slightly more sinuous at lower SST, possibly associated 

with upwelling along the Gulf Stream front, but this relationship was weak in our model. 

The GFST has been previously identified as probable foraging habitat for leatherback 

turtles (Lutcavage 1996, Fossette et al. 2010a,b), and turtles exploiting this area may take 

advantage of the enhanced productivity of energetic, mesoscale eddies characteristic of 

this region (Longhurst 2007).
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Leatherback movement patterns and dive behavior in the subtropical gyral region 

were consistent with other studies of this species in the North Atlantic (James et al.

2005b, 2006, Eckert 2006, Fossette et al. 2010a,b). Observed changes in dive behavior in 

the NASW may be partially explained by cycles of seasonal stratification and depth of 

the mixed layer and (or) deep chlorophyll maximum (DCM). In the NASW, the mixed 

layer deepens in the fall and winter when leatherbacks are present, and average mixed 

layer depth is over 50 m (Longhurst 2007). If leatherbacks target the pycnocline to search 

for prey, they would increase their diving activity to depth strata >50 m, with longer 

durations associated with increasing ascent and descent times. Leatherbacks in NASW 

may also be exploiting the intense trophic activity associated with the deep chlorophyll 

maximum (DCM), which occurs at about 100 m (Longhurst 2007). Consumption at the 

DCM follows a strong diel cycle (Longhurst 2007), and leatherbacks may be capitalizing 

on enhanced nighttime prey availability in the vicinity of the DCM by making deeper, 

longer dives (James et al. 2006). However, the rapid transit rate and limited time spent in 

the NASW suggests that foraging in this region is not as profitable for leatherbacks as in 

tropical regions. Reproductive adults would have additional incentive to move quickly 

through the NASW to reach breeding and nesting areas in the tropics.

Leatherback surface times in the GFST and the NASW were similar to the surface 

times recorded by James et al (2006) in the morning (06:00 -  12:00 GMT; mean 29%) 

and evening (18:00 -  0:00 GMT; mean 29%) periods of the southern migration, but much 

lower than their day surface time (12:00 -  18:00 GMT; mean 77%). Considering only the 

day period in our data set (12:00 - 18:00 GMT), the average surface time is still much 

lower (44%). Turtles tagged off eastern Canada and Massachusetts had similar dispersal
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and migratory patterns in the subtropical gyre, so the observed difference in surface times 

may be due to other factors such as different demographics (e.g., sex and body size) of 

our turtle sample or tagging technique (harness vs. direct attachment). Comparisons of 

these techniques showed that leatherbacks had lower travel rates (Fossette et al. 2007, 

Witt et al. 2011) and shorter dive durations (Fossette et al. 2007) when wearing a harness. 

While surface time was not directly addressed in these comparisons, it’s possible that 

leatherbacks wearing harnesses increase their surface time to recover from the energetic 

costs of increased drag caused by the harness (78 -  112 % increase in drag coefficient, 

Jones et al. 2011).

Tropical oceanic and neritic habitats

Leatherbacks overwintered in tropical ecoregions, with reproductively active 

adults primarily occupying the Guianas Coastal (GUIA) and Caribbean (CARB) while 

non-reproductively active individuals mainly used oceanic habitat in the North Atlantic 

Tropical Gyral (NATR). Turtles slowed down in the tropics compared to the subtropical 

gyre but travel was still directed compared to the sinuous movements we observed in the 

NWCS, suggesting a mix of behaviors that may include foraging, transiting and breeding. 

The GUIA and CARB regions encompass important breeding and nesting habitat for 

leatherbacks (TEWG 2007). Two adult females in our study nested in GUIA (Trinidad 

and Costa Rica/Panama) while tracked (Dodge et al. 2011), and two adult males 

remained in coastal waters off Trinidad. In the primarily shallow, shelf region of GUIA, 

leatherback movements became more sinuous in response to decreasing water depth, 

probably linked to breeding activity (James et al. 2005a,c, Eckert 2006) although some
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leatherbacks do forage during the nesting season (Myers & Hays 2006, Casey et al. 2010, 

Fossette et al. 2012).

The average mixed layer depth varies throughout the tropics, with deepest depths 

occurring in winter when leatherbacks are present (Longhurst 2007). Leatherbacks 

occupied the western side of the NATR where average winter mixed layer depths are 70- 

80 m (Longhurst 2007). This could explain the deeper, longer dives that leatherbacks 

made there if prey accumulates near the pycnocline and (or) nutricline (Eckert et al. 1989, 

Hays et al. 2004a). In the NATR, the night-time depths of diel migrants is consistently 

within the upper 50-75 m (Longhurst 2007), and leatherbacks may target prey aggregated 

in this layer (James et al. 2006), though nocturnal foraging may be light-limited based on 

studies of leatherback ocular morphology (Brudenall et al. 2008) and feeding behavior 

(Casey et al. 2010).

The convergence of the North Equatorial Current, North Equatorial Counter- 

Current and the North Brazil Current appears to play an important role for overwintering 

leatherbacks in the southern part of their range. From June to January, the upper North 

Brazil Current joins the meandering North Equatorial Counter-Current at a retroflection 

zone near 5-10°N, where large, anti-cyclonic eddies are formed (Johns et al. 1990). The 

eddies, known as North Brazil Current rings, have loop diameters of hundreds of 

kilometers, with a lifespan on the order of months, and they propagate northwest along 

the Brazil coast towards the Lesser Antilles (Johns et al. 1990, Fratantoni & Richardson 

2006). North Brazil Current rings, and the convergence of the westward-flowing North 

Equatorial Current and eastward-flowing North Equatorial Counter-Current at 10-12°N, 

are associated with enhanced wintertime productivity (Longhurst 2007). Three
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leatherbacks resided in this region during winter months, associating with meanders from

the North Equatorial Current and Counter-Current convergence and mesoscale eddies

(Fig. 8). Fossette et al. (2010a) inferred high foraging success year-round for leatherbacks

at the southern boundary of the NATR, while a single tagged leatherback resided in this

area for several months (Hays et al. 2004b). Since overall production in open tropical

oceans is low compared to temperate and boreal latitudes (Longhurst 2007), leatherbacks

may rely on enhanced productivity there to maximize foraging opportunities during

overwintering periods in the tropics.

- 63"  - 62"  - 61 "  - 60 "  - 59 °  - 58"  - 57 °  - 56 "  - 55 "  - 54 "  „

seaturtle.org/maptool Project Ion: Mercator 

( M B — — i i i i . j

20  27 34  41 48  55  62
Sea Surface Height (cm)

0 20  40  60 80
Geostrophic Currents

Figure 8. Reconstructed track of a sub-adult leatherback turtle (Turtle S) interacting with 
two mesoscale eddies that were moving NW from the GUIA toward the CARB region. 
The track represents the turtle’s movements from 23 January to 7 April. The darkened 
track segment shows the turtle’s movements on 1 February, concurrent with the AVISO 
sea surface height and geostrophic current maps (http://www.aviso.oceanobs.com). The 
arrows indicate the turtle’s direction of travel.
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River outflows have a significant impact on sea surface salinity (SSS) and 

productivity in the GUIA, CARB, and southern NATR. Fresh nutrient-rich discharge 

from the Amazon and Orinoco rivers creates large river plumes and offshore lenses of 

fresh water, with surface salinities as low as 32 ppt (Hu et al. 2004). Low SSS plumes 

extend north or northwest during the first half of the calendar year when leatherbacks are 

present. It is unknown whether leatherbacks can sense strong salinity gradients, but five 

turtles made sharp westward turns between 49°W and 57°W and 10°N and 13°N, 

overlapping with the winter extent of the plume (Hu et al. 2004). The river’s plume may 

provide orientation cues for reproductive leatherbacks navigating towards nesting 

beaches in the Lesser Antilles.

Both adult and sub-adult leatherbacks in our study adjusted their movements and 

dive behavior in response to regional differences in environmental features. Leatherbacks 

increased their path sinuosity with decreasing water depth in temperate and tropical shelf 

habitats. This relationship is consistent with increases in gelatinous zooplankton biomass 

with decreasing water depth (Lilley et al. 2011), and bathymetry may be a key feature in 

identifying leatherback foraging habitat in neritic regions. Coastal ecosystems are under 

intense pressure worldwide, with some of the highest predicted cumulative impact in the 

North American eastern seaboard and the eastern Caribbean (Halpem et al. 2008). Parts 

of these regions constituted high-use habitat for leatherbacks in our study, putting turtles 

at heightened risk from both land- and ocean-based human activities.
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CHAPTER 2

ORIENTATION CUES OF LEATHERBACK SEA 
TURTLES IN THE NORTH ATLANTIC 
SUBTROPICAL GYRE

Introduction

Sea turtles show remarkable orientation and navigation abilities over long tracts 

of seemingly featureless open ocean, but how they accomplish these feats is still not well 

understood (Carr 1962, 1967, Schmidt-Koenig 1975, Papi et al. 1995, Sale & Luschi 

2009). Studies have revealed a myriad of cues that turtles may use to navigate in their 

coastal and oceanic environments. Extensive research on sea turtle hatchlings’ ocean- 

finding abilities demonstrates the importance of visible light (Carr & Ogren 1960, 

Mrosovksy & Shettleworth 1968) and slope elevation (Salmon et al. 1992), while 

hatchling orientation in coastal waters relies primarily on wave direction (Salmon & 

Lohmann 1989, Lohmann et al. 1990, Lohmann et al. 1995) and can be light-independent 

(Lohmann et al. 1990, Wyneken et al. 1990). In deep water beyond the reach of 

shoreward-propagating waves, hatchlings switch to other cues that may include the 

earth’s magnetic field (Light et al. 1993, Lohmann & Lohmann 1994, 1996a, Goff et al. 

1998).

Magnetic orientation has been demonstrated in many long distance migrants 

including fm whales (Walker et al. 1992), yellowfin tuna (Walker 1984), birds 

(Wiltschko & Wiltschko 1996), salmon (Quinn 1980), blue sharks (Carey & Scharold
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1990), and sea turtles (Lohmann & Lohmann 1996a). Sea turtle hatchlings are capable of 

detecting magnetic inclination angle (Lohmann & Lohmann 1994) and magnetic field 

intensity (Lohmann & Lohmann 1996b), and they appear to use these features to aid in 

migration (Lohmann et al. 2001). Juvenile sea turtles subjected to magnetic conditions 

found north and south of their capture location demonstrated orientation back to the 

capture site, further supporting a magnetic map sense (Lohmann et al. 2004). Although 

lab experiments on adult sea turtles are lacking, field studies by Luschi et al. (2007) 

demonstrated the potential importance of geomagnetic cues during open-sea homing of 

adult sea turtles.

Although magnetic features are a promising source of global positional 

information for long distance migrations, sea turtles are unlikely to rely on them 

exclusively. Experimental evidence suggests that sea turtles still navigate effectively in 

the presence of distorted magnetic fields (Papi et al. 2000, Benhamou et al. 2011), though 

results of Papi et al. (2000) failed to account for the effect of currents. Pacific 

leatherbacks have been hypothesized to travel along “persistent corridors” using 

topographic features (Morreale et al. 1996; Shillinger et al. 2008), but in the Atlantic no 

evidence of migratory corridors has been found (Ferraroli et al. 2004; Hays et al. 2004b; 

James et al 2005a). Travel adjacent to oceanic fronts has also been hypothesized (Olson 

et al. 1994, Lutcavage 1996). Additional studies point to a “multifactor navigation 

system” in turtles (Rozhok 2008) that may include a combination of visual and magnetic 

cues (Avens & Lohmann 2003), currents (Luschi et al. 2003) and possibly olfactory cues 

over shorter distances (Hays et al. 2003; but see Girard et al. 2006). Sea turtles likely rely 

on a combination of orientation cues in different situations (i.e., navigation over long
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distances versus localized movements) (Lohmann et al. 2008, Benhamou et al. 2011). 

Since the ability to navigate will impact migration distance and duration, identification of 

potential orientation cues is an important step toward understanding how leatherbacks 

optimize travel routes and minimize the energetic costs of migration.

We examined the migratory orientation of adult male, female and sub-adult 

leatherback sea turtles (Dermochelys coriacea) during their open-ocean movements in the 

Northwest Atlantic between 2008 and 2009 by analyzing satellite-derived tracks. In this 

region, leatherbacks make extensive migrations between temperate feeding and tropical 

breeding and (or) over-wintering grounds (Bleakney 1965, Ferraroli et al. 2004, Hays et 

al. 2004b, James et al. 2005a, Eckert 2006). We investigated potential orientation cues 

that leatherbacks use during their southward migration through the subtropical gyre, 

where limited sensory information is available to aid in their navigation.

Materials and Methods

Twenty adult and sub-adult leatherback turtles were fitted with Wildlife 

Computers, Inc. (Redmond, WA, USA) model MK10-A (n=8) and MK10-AF (n=12) 

ARGOS-linked satellite time depth recorders (STDRs). Leatherbacks were located off the 

coast of Massachusetts, USA (~41°N, 70°W) from August 2007 to September 2009, and 

captured with either a breakaway hoopnet (n = 11) (Asper 1975, James et al. 2005a) or 

accessed through the Massachusetts sea turtle disentanglement network (n = 9). We 

brought turtles on board commercial fishing or research vessels using a custom-built stem 

ramp. Following the methods described in Dodge et al. (in prep), we attached STDRs 

directly to the carapace medial ridge. Leatherbacks were measured to the nearest 0.1 cm 

(curved carapace length: CCL and curved carapace width: CCW) with a flexible
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fiberglass measuring tape, and ranged in size from 123.0 to 161.5 cm CCL (Table 6). We 

used CCL to classify turtles as adults (CCL >145 cm) or sub-adults (CCL <145 cm), and 

we determined gender based on tail length of adult turtles (James et al. 2007). Five sub­

adult turtles were sexed based on presence of a penis, subsequent necropsy or nesting.

The STDRs collected Fastloc GPS locations (MK10-AF tags only) and ARGOS- 

derived locations (all tags) via Service ARGOS (Toulouse, France). Nintey-five percent 

of Fastloc GPS locations are accurate to ±55 m (Bryant 2007), while ARGOS-derived 

location error varies by location class (LC) as follows: LC3 <150 m, LC2 150-350 m,

LC1 350-1000 m, and LC0 >1000 m. ARGOS does not provide accuracy estimates for 

LCA and LCB locations, and LCZ are considered unreliable. We filtered 30,173 raw 

ARGOS and GPS locations using Kalman filter methods outlined in Royer & Lutcavage 

(2008). Since our analysis included GPS data, we extended the original error covariance 

structure to include this information. Data were interpolated to a three-hour time step and 

smoothed, resulting in 28,253 filtered turtle locations. We limited our analysis to track 

segments that occurred in the North Atlantic Subtropical Gyral West province defined by 

Longhurst (2007), hereafter referred to as the subtropical gyre, where leatherback 

behavior was characterized by rapid, highly-directed travel consistent with migration 

(Dodge et al. submitted). The reconstructed track segments in the subtropical gyre 

included 3,904 filtered turtle locations for fifteen turtles.

To determine the turtles’ true headings at each time step, we corrected the 

reconstructed tracks for current drift. We subtracted an estimate of the surface current 

velocity from the observed turtle velocity at each location, following the methods 

described in Gaspar et al. (2006) and Fossette et al. (2012). To calculate the surface
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Table 6. Summary data for fifteen leatherback sea turtles equipped with satellite tags during the migratory period in the North 
Atlantic Subtropical Gyral West region. ID: turtle ID; PTT: platform transmitter terminal; CCL: curved carapace length; S: 
sub-adult (< 145 CCL); A: adult (> 145 CCL); M: male; F: female; U: unknown sex.

ID PTT
Number

Latitude
(start/end)

Longitude
(start/end)

CCL
(cm) Age Sex Tagging

date
Duration
(days)

Distance
(km)

Mean
travel
rate
(km/d)

A 68364a 37.4/25.7 -63.7/-52.9 149.5 A F 26-Jul-08 26 1755 68
B 82052 35.7/25.5 -71.2/-63.8 161.5 A F 29-Jul-08 34 1508 44
C 76988 38.3/26.0 -67.1/-61.3 152.2 A M 10-Aug-08 29- 1591 55
D 82051 37.4/26.2 -61.2/-50.7 153.3 A M 10-Aug-08 27 1616 60
E 76989 37.6/25.6 -69.6/-64.0 144.8 A F 21-Aug-08 23 1540 67
F 85538 37.7/25.6 -69.7/-57.9 154.0 A M 22-Aug-08 27 1841 68
G 82053 39.4/25.7 -58.6/-44.1 146.4 A M 23-Aug-08 38 2159 57
H 27579 37.6/25.8 -69.2/-58.9 155.0 A M 3-Sep-09 27 1768 68
I 68370 36.7/24.6 -64.7/-65.0 137.5 S U 22-S'ep-07 31 1497 48
J 76990 37.8/26.0 -59.1/-45.3 140.4 S u 10-Aug-08 64 2293 36
K 82055 37.9/25.7 -61.5/-66.2 133.8 S u 10-Aug-08 46 1945 42
L 85537 37.5/25.8 -70.0/-62.1 138.5 S M 22-Aug-08 28 1599 57
M 82054 33.4/25.6 -72.4/-67.7 140.0 S u 28-Aug-08 22 1086 49
N 82056 33.8/25.8 -71.7/-68.3 126.5 s u 10-Jul-09 35 1148 33
0 82057 37.8/25.6 -67.6/-59.2 127.7 s u 27-Aug-09 30 1724 57

46



current velocity, we extracted surface geostrophic and Ekman current data from the 

NOAA Environmental Research Division’s Data Access Program website. The 

geostrophic component was available as a 0.25-degree, daily product 

('http://coastwatch.pfeg.noaa.gov/erddap/info/erdTAgeoldav/index.htmn and the Ekman 

component was available as a 0.125-degree, weekly product

fhttp://coastwatch.pfeg.noaa.gov/erddap/info/erdOSekm8dav/index.htmIL We calculated 

turtle orientation angles (e.g., headings) for the observed and current-corrected tracks 

using the gzAzimuth function in R (R Core Team 2013).

To assess potential orientation cues in the subtropical gyre, we selected 

environmental features most likely to be detectable by and available to sea turtles 

migrating in this region: magnetic inclination angle (Lohmann & Lohmann 1994), 

magnetic field intensity (Lohmann & Lohmann 1996b) and solar azimuth (Avens & 

Lohmann 2003). We used the International Geomagnetic Reference Field model (IGRF- 

11) to determine magnetic inclination angle and total magnetic field intensity at a 0.1- 

degree spatial resolution at filtered turtle locations. Estimated values of the Earth’s 

magnetic field (typically accurate to 30 minutes of arc) were extracted from the NOAA 

National Geophysical Data Center using the Magnetic Field Calculator 

(http://www.ngdc.noaa.gOv/geomag-web/#igrfgridL Time at sunrise and sunset, and solar 

azimuth at sunrise and sunset were calculated using AstroCalc4R (Jacobson et al. 2011).

All statistical analyses were carried out using the program “circular” in R (R Core 

Team 2013) and Oriana 4.0 (Kovach Computing). For the distribution of angles for each 

leatherback, we determined a mean vector that included the mean vector length (r), 

ranging from 0 (uniformly scattered distribution) to 1 (fully concentrated distribution),
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and the mean vector angle (0). Since adult leatherbacks might be expected to navigate 

more efficiently than sub-adults, due to greater experience or goal-orientation (e.g., travel 

to specific breeding areas), we also grouped turtles by age class and used Watson’s two- 

sample test of homogeneity to test for significant differences in orientation between 

adults and sub-adults (Mardia 1972, Batschelet 1981). We calculated the grand mean 

vector, including grand mean angle, vector length and 95% confidence limits, for all 

turtles and turtles grouped by age class for both observed and current-corrected tracks 

(Batschelet 1981). We used the Hotelling’s one sample second order test to determine if 

the turtles had a significant mean direction during migration. To understand how 

leatherbacks oriented relative to potential environmental cues, we calculated the 

differences between turtle angle of orientation and the three angular environmental 

parameters: magnetic inclination angle, sunrise angle and sunset angle. We assessed the 

distribution of angular differences in individual turtles, and calculated the grand mean 

vector of angular differences for all turtles and turtles grouped by age class. We used the 

Hotelling’s one sample second order test to determine if leatherbacks showed a 

significant mean direction relative to these features. We also overlaid turtle tracks on 

maps of isoclinics (lines of equal magnetic field inclination) and isodynamics (lines of 

equal magnetic field intensity) to visually assess turtle orientation relative to these field 

lines.

Results

Fifteen of the twenty turtles were tracked for sufficient duration to observe 

migration from temperate to tropical latitudes. Leatherbacks migrated through the 

subtropical gyre for an average of 32 (±11) days, covering distances of 1093 to 2301 km
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(Table 6). Adult leatherbacks had a higher average rate of travel (mean 60.9 km d"1, sd 

8.7 km d'1) than sub-adult leatherbacks (46.0 km d"1, sd: 9.5 km d '1) (Table 6). Twelve 

track segments were successfully corrected for currents, while three track segments could 

not be corrected due to limited temporal coverage of the satellite-derived surface current 

products in 2009. There were negligible differences between the current-corrected turtle 

tracks and the observed turtle tracks in the subtropical gyre (Fig. 9), with most mean 

current-corrected turtle headings within 1° of observed mean turtle headings, but there 

was greater overall variability in current-corrected turtle headings (Table 7, Fig. 10).

Individual leatherbacks were significantly oriented in the subtropical gyre with a 

grand mean heading of 153° (observed) and 154° (current-corrected) (Table 8, Fig. 10) 

for all turtles. When analyzed by age class, adult and sub-adult leatherback groups were 

both significantly oriented with a grand mean angle of 148° (adults, observed and 

current- corrected) and 161° (sub-adults, observed) and 164° (sub-adults, current- 

corrected) (Table 8, Fig. 10). Although adult leatherbacks maintained similar within- 

group headings and showed greater overall precision in orientation (Table 7, Fig. 10), 

adult and sub-adult distributions were not significantly different (Watson test, U = 0.041, 

P > 0.10). When we analyzed the distributions of angular differences between turtle 

headings and environmental features, we found that leatherbacks were significantly 

oriented with respect to all tested features (Table 8, Fig. 10). The distributions of angles 

were highly concentrated for all parameters (r values > 0.7), with the highest 

concentrations in the adult groups (r values > 0.86). Most adult leatherbacks in our study 

maintained mean headings that were approximately orthogonal to isoclinics (Table 7), 

with a grand mean angle of 93° for both observed and current-corrected tracks (Table 8).
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Table 7. Summary statistics. Circular mean headings (± circular standard deviation) for individual turtles and angular 
differences (± circular standard deviation) between turtle headings and environmental features. Observed data are from the 
reconstructed turtle tracks (n=15); Corrected data are from the current-corrected turtle tracks (n=12).

Observed Corrected Observed Corrected Observed Corrected Observed Corrected

ID turtle turtle turtle- turtle- turtle- turtle- turtle- turtle-
heading heading inclination inclination sunrise sunrise sunset sunset
(±SD) (± SD) diff (± SD) diff (± SD) diff (± SD) diff (± SD) diff (± SD) diff (± SD)

A 142.4(19.9) 141.7 (33.6) 88.5 (21.0) 87.5 (33.1) 28.0 (19.0) 37.4 (25.3) 101.2(14.3) 106.5 (29.5)
B 148.9 (27.6) 148.5 (38.0) 91.9 (26.1) 91.5 (36.4) 38.7(18.7) 43.0 (23.7) 96.6 (26.9) 98.0 (29.5)
C 162.4(26.4) 161.8 (32.4) 104.9(26.0) 104.5 (32.2) 51.2(25.4) 51.7(42.1) 91.3 (21.7) 84.9 (22.8)
D 141.3 (11.8) 141.6(18.7) 87.4(13.5) 87.7 (19.8) 32.6(10.9) 31.5(14.4) 108.2(14.1) 113.0 (21.6)
E 160.7 (20.8) 161.2 (24.1) 103.2(21.3) 103.6 (24.6) 55.2 (20.4) 57.4 (22.4) 94.3 (24.0) 95.3 (27.9)
F 145.7(18.6) 145.3 (25.5) 89.9 (20.7) 89.5 (26.2) 32.2 (15.4) 35.5 (16.9) 101.2(17.6) 101.3(20.2)
G 138.2(19.1) 137.0(25.0) 85.5(19.9) 84.1 (25.6) 36.1 (21.6) 36.4(17.1) 112.8 (20.0) 119.7 (20.9)
H 146.1 (22.4) NA 90.3 (23.5) NA 32.3 (23.2) NA 99.0 (16.7) NA
I 180.1 (26.0) 181.7 (34.4) 124.8 (28.4) 126.5 (36.2) 66.3 (30.7) 74.3 (35.3) 66.2 (21.7) 70.6 (23.7)
J 133.3 (45.4) 130.5 (43.7) 80.1 (44.1) 77.3 (42.2) 29.1 (39.7) 28.8 (36.7) 109.3 (36.7) 111.2 (32.3)
K 204.3 (48.6) 204.1 (52.5) 147.3 (48.1) 147.0 (52.2) 95.5 (40.7) 95.1 (46.9) 52.8 (38.0) 53.4 (42.5)
L 155.5(18.7) 155.9(28.3) 98.5 (20.2) 98.9 (28.0) 38.1 (20.0) 42.8 (28.4) 87.5 (17.7) 85.7 (27.6)
M 149.7 (26.7) 149.8 (38.8) 93.1 (25.1) 93.3 (35.9) 39.0 (21.5) 44.0 (33.7) 98.1 (29.4) 96.8 (23.9)
N 157.8 (40.1) NA 100.4 (35.9) NA 57.1 (32.5) NA 86.7 (33.2) NA
0 150.1 (25.7) NA 94.2 (26.9) NA . 38.2 (32.2) NA 92.8 (19.9) NA
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When we overlaid the observed and current-corrected turtle tracks on maps of isoclinics 

and isodynamics, we found that the majority of leatherbacks traveled approximately 

orthogonally to both of these field lines, which are almost parallel throughout most of our 

study area (Fig. 11).
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Figure 9. Filtered locations of 12 satellite-tagged leatherback sea turtles in the North 
Atlantic Subtropical Gyral West province (defined by Longhurst 2007). Green dots 
represent observed turtle locations and red dots represent current-corrected turtle 
locations.
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Current-corrected 
Turtle Headings

Observed 
Turtle Headings

Figure 10. Observed (left) and current-corrected (right) orientation of adult (red dots) and 
sub-adult (blue dots) leatherback turtles in the North Atlantic Subtropical Gyral West 
region (defined by Longhurst 2007). The position of each dot indicates the mean angle of 
a single turtle. Data are plotted relative to geographic north (N = 0° true).

Discussion

Navigation over thousands kilometers of open ocean requires an ability to orient 

with limited sensory information. With the exception of the island platform of Bermuda, 

the North Atlantic subtropical gyre is characterized by deep water where leatherbacks 

cannot use bathymetric features to guide them. Weak ocean currents due to light and 

variable winds, and lack of stationary reference points render hydrodynamic cues as 

improbable guidance mechanisms within the subtropical gyre interior (Sargasso Sea); this 

was substantiated by the negligible differences we found between the turtles’ observed 

tracks and their current-corrected tracks. Wind- or current-borne cues disperse rapidly 

over the long distances (> 1000 km) recorded in our study and would be unlikely to keep 

leatherbacks on course (reviewed by Lohmann et al. 2008). Sea turtles’ poor eyesight 

above water likely negates the utility of celestial cues such as stars (Ehrenfeld &
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Kochi967, Bartol et al. 2002, Lohmann et al. 2008). Lacking bathymetric, 

hydrodynamic, celestial (star patterns) and chemosensory guidance, leatherbacks 

migrating through the subtropical gyre are most likely to orient to some aspect of the 

earth’s geomagnetic field (magnetic compass) and (or) the position of the sun on the 

horizon (sun compass).

Most leatherbacks in our study, particularly adults, maintained mean orientation 

angles that were approximately orthogonal to both isoclinics and isodynamics in the 

subtropical gyre. To accomplish this, leatherbacks would have to be highly sensitive to 

very small gradients in magnetic inclination angle and (or) magnetic field intensity. Little 

is known about the location of magnetoreceptors in any animal (reviewed by Johnsen & 

Lohmann 2008) or the degree of sensitivity of sea turtles to these two magnetic field 

parameters (Lohmann et al. 2008), but some birds (Semm & Beason 1990), bees (Walker 

& Bitterman 1989) and lobsters (Boles & Lohmann 2003) may be capable of detecting 

small gradients in magnetic parameters. Local anomalies in the magnetic field could 

mask small gradients over short (100s of m to a few 10s of km) distances (Walker & 

Dennis 2005), but the strength of local anomalies decreases quickly with distance 

(Lohmann et al. 2007), and the leatherbacks in our study had high daily rates of travel 

(Table 1).

Isoclinics and isodynamics are almost parallel in our study region, and unlikely to 

provide the grid necessary for position fixing based on an entirely bicoordinate magnetic 

map (Lohmann & Lohmann 1996). The features we tested varied by latitude and cues for 

longitudinal guidance are less apparent, but it’s possible that turtles may use a 

bicoordinate magnetic map once they enter tropical latitudes where isolines have larger
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Table 8. Second order statistics. Distribution of angles and Hotelling’s one sample test results for grouped turtles. N: sample 
size; r: vector length; F: Hotelling’s test statistic; p: probability level; Cl: confidence interval.

Number Grand Lower Upper Mean Hotelling’s Hotelling’s test
Group of means mean limit limit resultant test statistic probability

(iV) heading 95% Cl 95% Cl length (r) (F) level (p)

All turtles 15/12 153.4/ 142.8/ 165.5/ 0.85/ 432.99/ <0.001/<0.001(observed/corrected) 153.6 139.5 170.4 0.80 271.181
Adults 8 /7 148.0/ 137.6/ 159.1 / 0.92/ 6151.27/ <0.001/<0.001(observed/corrected) 148.0 134.6 162.1 0.87 1007.00
Sub-adults 7 /5 160.5/ 135.1/ 192.0/ 0.79/ 90.37 / <0.001/<0.01(observed/corrected) 163.2 117.4 218.9 0.71 47.16
All -  Inclination 15/12 97.6/ 87.7/ 109.1 / 0.86/ 553.61 / <0.001 / <0.001(observed/corrected) 97.9 84.7 113.8 0.81 339.77
Adults -  Inclination 8 /7 92.6/ 84.0/ 101.7/ 0.92/ 8827.12/ <0.001 / <0.001(observed/corrected) 92.6 81.4 104.2 0.86 1276.47
Sub-adults -  Inclination 7/5 104.3/ 79.9/ 135.5/ 0.79 / 116.94/ <0.001 / <0.001(observed/corrected) 107.0 64.0 163.0 0.72 60.16
All -  Sunrise 15/12 43.6/ 32.7/ 56.3/ 0.87/ 777.10/ <0.001 / <0.001(observed/corrected) 46.6 33.4 63.0 0.83 528.93
Adults -  Sunrise 8 /7 38.2/ 26.7/ 50.3/ 0.93/ 6259.37 / <0.001 / <0.001(observed/corrected) 41.4 29.2 55.5 0.90 785.96
Sub-adults -  Sunrise 7 /5 50.8/ 25.5/ 83.3/ 0.80/ 208.85 / <0.001 / <0.01(observed/corrected) 55.4 14.4 110.7 0.75 120.30
All -  Sunset 15/12 93.8/ 82.4/ 104.1 / 0.88/ 1014.77/ <0.001 / <0.001(observed/corrected) 95.5 79.4 109.9 0.85 609.82
Adults -  Sunset 8 /7 100.7/ 91.9/ 109.2/ 0.94/ 4222.36 / <0.001 / <0.001(observed/corrected) 102.7 86.3 118.8 0.89 4135.88
Sub-adults -  Sunset 7 /5 85.0/ 59.2/ 108.8/ 0.84/ 227.78 / <0.001 / <0.01(observed/corrected) 84.3 39.4 123.5 0.82 117.49
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Figure 11. Maps of reconstructed leatherback turtle track segments overlaid on international geomagnetic reference field 
(IGRF) isodynamics (left panel), isoclinics (middle panel) and both magnetic field parameters (right panel) in the Northwest 
Atlantic Subtropical Gyral region. Adjacent isoclinics differ by 5° and adjacent isodynamics differ by 1,000 nT. Green dots 
represent observed turtle locations (n=15 turtles) and black dots represent current-corrected turtle locations (n=12 turtles). For 
the twelve turtles where both observed and current-corrected track data were available, the lines are almost indistinguishable.
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angular differences (Putman et al. 2011). We found most adult leatherbacks in our study 

maintained SSE headings into the tropics, and made westward turns toward Caribbean 

breeding areas south of 15°N where isolines form a non-orthogonal grid, but that region 

was also characterized by potential hydrodynamic (North Equatorial Current) and 

olfactory (low sea surface salinity plumes) orientation cues (Dodge et al. submitted). 

Declination (the difference between true north and magnetic north) could be a potential 

longitudinal cue in this region, and some leatherbacks in our study closely followed 

isogonics (lines of equal declination) (Fig. 12). Navigation by declination is improbable, 

however, since leatherbacks would have to know the direction of true geographic north to 

use this magnetic parameter, and no animals are currently known to detect declination 

(Gould 2008; but see Akesson et al. 2005).

We expected adult leatherbacks to show greater precision in orientation since a 

proportion of this group must travel to specific beaches to breed and (or) nest. Although 

not statistically different, the mean orientation angles of adult leatherbacks were more 

concentrated (r value range: 0.86 to 0.94) than the mean orientation angles of sub-adult 

leatherbacks (r value range: 0.71 to 0.84). Our statistical power would be improved by 

larger samples sizes for both groups and by verification of age (e.g., reproductive status). 

Our age classification was based on curved carapace length, and leatherbacks show 

considerable variability in size at nesting (Stewart et al. 2007), so it’s possible that a 

proportion of the turtles classified as sub-adults were of reproductive age.

Since the parameters we tested are confounded, it is difficult to assess the relative 

importance of the different cues, and leatherbacks may use one or more of these features 

to orient. For example, during controlled experiments where juvenile loggerheads were
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Figure 12. Map of reconstructed leatherback turtle track segments (n=15) overlaid on 
international geomagnetic reference field (IGRF) isogonics in the Northwest Atlantic 
Subtropical Gyral region. Adjacent isogonics differ by 0.1° in the map center and by 2° 
elsewhere.

deprived of magnetic cues, the turtles were still able to orient based on visual cues alone 

(Avens & Lohmann 2003), and leatherbacks may also be able to interchangeably use 

magnetic and visual (e.g., sun) compasses. Other long-distance migrators, such as the 

sharp-tailed sand piper (Gronroos et al. 2010), may use both solar and magnetic cues 

during their extensive migrations. Some birds (Cochran et al. 2004, Muheim et al. 2006) 

and bats (Holland et al. 2010) calibrate their magnetic compasses by the sun, specifically 

using sunrise/sunset for directional reference. Leatherbacks in our study were 

significantly oriented to isolines as well as the position of the sun on the horizon at sunset 

and sunrise, so it’s feasible that leatherbacks are also calibrating their magnetic 

compasses using sunrise/sunset cues to reduce orientation errors over their long-distance 

migration. James et al. (2006) found that leatherbacks spent a greater proportion of time
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at and near the surface during the day during their southward migrations in Northwest 

Atlantic, and we recorded the highest leatherback surface (0-2 m) time in the subtropical 

gyre (30%) compared to other oceanographic regions (Dodge et al. submitted). Higher 

surface time during the day may be related to partial reliance on a sun compass for 

orientation (Eckert 2002a, James et al. 2006).

Our tracks recorded the leatherback turtles’ natural journeys and we could not 

control the availability of all possible environmental cues, so we can only infer the 

importance of the tested features. Our results were also obtained from small sample sizes, 

and additional leatherback tracks from the North Atlantic subtropical gyre would greatly 

improve our statistical power and help confirm our results. We also cannot rule out the 

possibility of alternative cues that have yet to be discovered and were not considered in 

this study. However, given the limited number of known available cues in the subtropical 

gyre, and the remarkable consistency of individual leatherback headings over such a 

broad swath of ocean, our results strongly support the importance of ubiquitous magnetic 

and (or) solar cues during open ocean migrations of leatherback sea turtles in the 

Northwest Atlantic Ocean.
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CHAPTER 3

FORAGING ECOLOGY OF LEATHERBACK SEA 
TURTLES IN THE WESTERN NORTH ATLANTIC 

DETERMINED THROUGH MULTI-TISSUE STABLE
ISOTOPE ANALYSES

Introduction

The leatherback sea turtle, Dermochelys coriacea, occurs in temperate and 

tropical oceans worldwide, exploiting prey in shelf, slope and oceanic habitats and at 

several hundred meters depth (Pritchard 1973, Eckert et al. 1989, Ferraroli et al. 2004, 

James et al. 2005a, Shillinger et al. 2008). Although studies of leatherback movements 

and habitat use have increased in recent years, its unique, gelatinous diet remains poorly 

defined throughout much of its range. Trophic research on leatherback turtles consistently 

indicates a diet of scyphomedusae (genera Aurelia, Chrysaora, Cyanea, Pelagia, 

Rhizostoma, Stomolophus), hydromedusae (Physalia), tunicates and siphonophores 

(Pyrosoma) (Bjomdal 1997). Few vertebrates specialize in low energy gelatinous prey 

and the only large vertebrate species associated with a gelatinous diet are leatherback 

turtles and ocean sunfishes (family Molidae) (MacGintie 1938, Fraser-Brunner 1951, 

Hooper et al. 1973, Desjardin 2005; but see Pope et al. 2010).

Unbiased, long-term leatherback diet data are often difficult to obtain using 

conventional approaches. Most leatherback diet studies to date have been based on 

stomach content analysis (SCA) of dead turtles (Bleakney 1965, Brongersma 1969, den 

Hartog & van Neirop 1984, Frazier et al. 1985, Davenport & Balazs 1991) or rare
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observations of leatherbacks feeding at the surface (e.g., Duron 1978, Eisenberg &

Frazier 1983, Grant & Ferrell 1993, James & Herman 2001). These studies describe 

recent ingestion events, and reveal diet in coastal ecosystems where live or dead 

leatherbacks are readily accessible. Leatherbacks in the North Atlantic are seldom 

exploited and are now largely protected by international agreements and national laws 

(TEWG 2007). Leatherbacks incidentally captured at sea are rarely brought on board 

vessels so most sampling opportunities come from stranded specimens that may not be 

representative of healthy turtles. Furthermore, SC A of a gelatinovore is of limited utility 

unless the prey is undigested (Arai 2005) or the digested prey has identifiable parts (e.g., 

nematocysts in cnidarians).

An alternative approach for elucidating leatherback turtle feeding habits is stable 

carbon (13C/I2C; 513C) and nitrogen (15N/14N; 815N) isotope analysis (SIA). Due to 

selectivity of heavier isotopes during metabolic processes, stable isotope ratios of 

nitrogen (15N/14N) and carbon (13C/12C) in consumer tissues tend to be elevated relative to 

their diet. Discrimination factors, the difference in isotopic values between consumer and 

prey tissues (Martinez del Rio & Wolf 2004), reflect relatively predictable changes (i.e., 

generally between 0-2%o for 813C and 2-4%o for 815N) for each trophic level (DeNiro & 

Epstein 1978, 1981, Minagawa & Wada 1984, Vanderklift & Ponsard 2003, Sweeting et 

al. 2007a,b), although values can vary across species and tissue types (Hobson & Clark 

1992, Vanderklift & Ponsard 2003, Reich et al. 2008, Caut et al. 2009). Since nitrogen 

isotope ratios tend to have greater discrimination factors than carbon isotope ratios 

(DeNiro & Epstein 1978, Fry & Sherr 1984, Minagawa & Wada 1984, Peterson & Fry 

1987), 815N measurements are often used as a proxy for an animal’s trophic position.
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Stable isotope values reflect a time-integrated diet, with the time scale determined 

by the metabolic activity of the tissue and species analyzed (Peterson & Fry 1987). 

Dietary information can be estimated over a broad temporal scale by using multiple tissue 

types with different turnover rates (Tieszen et al. 1983). Liver and plasma tend to have 

faster turnover rates (reflecting recent diet) while slower rates in muscle and whole blood 

(Tieszen et al. 1983, Hobson et al. 1993, Hobson et al. 1999) indicate feeding patterns on 

longer time scales. In turtles, reported plasma turnover rates were weeks to months, while 

whole blood, red blood cells, and skin required months or longer (Seminoff et al. 2007, 

Reich et al. 2008).

In addition to trophic studies, stable isotope analyses are used to investigate the 

origin and broad movement patterns of migratory species (Hobson 1999). In marine 

ecosystems, 813C varies between inshore versus offshore regions or benthic versus 

pelagic environments (Hobson et al. 1994, France 1995). Carbon isotope ratios tend to 

decrease from low to high latitudes due to oceanographic parameters such as water 

temperature and CO2 concentration effects on carbon fixation by phytoplankton (Rau et 

al. 1982). Nitrogen stable isotopes also vary across oceanographic regions due to spatial 

differences in nitrogen sources (Saino & Hattori 1987).

SIA is particularly useful for diet studies of highly migratory, pelagic species like 

sea turtles (Reich et al. 2007), and has been used to investigate sea turtle feeding ecology 

among species (Godley et al. 1998), within species (Hatase et al. 2002, Hatase et al.

2006, Reich et al. 2007, Caut et al. 2008, Reich et al. 2009, McClellan et al. 2010) and in 

populations occupying different ocean basins (Wallace et al. 2006b). Size-related 

differences in feeding habitats have been found in loggerhead sea turtles in Japan (Hatase
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et al. 2002) and the Cape Verde Islands (Hawkes et al. 2006), suggesting habitat selection 

may be a function of body size in this species. Although SIA has revealed a dichotomy in 

habitat selection and nutrient sourcing in leatherback sea turtles (Wallace et al. 2006b, 

Caut et al. 2008), studies to date have been limited to adult females. We collected 

samples from sub-adult and adult leatherbacks of different sexes in US east coast 

foraging grounds. Based on estimated turnover rates for turtles (Seminoff et al. 2007, 

Reich et al. 2008), we selected leatherback tissues that represented long-term (whole 

blood, red blood cells and skin) and recent (blood plasma) diet. We conducted carbon and 

nitrogen stable isotope analyses of leatherback tissues and potential prey items to 1) test 

for differences in diet and habitat selection between sexes and size classes and 2) estimate 

contribution of different prey items to the leatherback diet, and to compare these findings 

with results from diet studies.

Materials and Methods 

Sampling

Tissue samples (skin (n=26), whole blood (n=15), red blood cells (n=15), and blood 

plasma (n=13)) were collected from live leatherback turtles captured off Massachusetts, 

USA (~41°N, -70°W) from July to October, 2007-2009 (Fig. 14), and northern Florida, 

USA (30° 35’N, -80° 57’W) during March, 2007. Skin (n=6), muscle (n=7), and liver 

(n=8) were collected from freshly dead leatherbacks stranded in Massachusetts (Fig. 14) 

and Florida, USA between 2005 and 2010. Samples from dead leatherback turtles were 

taken with sterile scalpels and samples from live leatherbacks were taken via sterile 

syringes (blood) and disposable 4-6 mm biopsy punches (skin). Whole blood was 

centrifuged within 5 to 900 min after collection at 1500 x g  for 5 min to harvest red blood
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cells and blood plasma solutes (Innis et al. 2010). Tissues were stored on ice during 

sampling and frozen until preparation for analysis. At the time of sample collection, all 

turtles were measured to the nearest 0.1 cm (curved carapace length, CCL, and curved 

carapace width, CCW) with a flexible fiberglass measuring tape. Measurements were 

obtained from 31 turtles, ranging in size from 13 to 161.5 cm CCL (mean ± SD: 139 ± 26 

cm). For live turtles larger than 145 cm CCL, we determined gender based on tail length 

(James et al. 2007). Five turtles < 145 cm CCL were sexed based on presence of a penis 

(James 2004), subsequent necropsy or evidence of nesting..

We collected likely prey items off northern Florida in March, 2007, and off 

Massachusetts from August to October, 2007 and July to September, 2008 (Table 9, Fig. 

13). Gelatinous prey were collected from the surface with a dip net or at depth by towing 

a lm2 multiple opening/closing net (335-pm mesh size) and environmental sensing 

system (MOCNESS) in Massachusetts only (Wiebe et al. 1976, 1985). We collected prey 

where we observed leatherbacks foraging or in regions we identified as potential foraging 

habitat based on feeding behavior (i.e., diving patterns) of leatherbacks monitored via 

satellite tags (Dodge et al. submitted). Potential foraging habitat was sampled within 24 - 

72 hours of receiving satellite telemetry data. All samples were stored frozen until 

analysis.
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Table 9. Stable isotope signatures of leatherback sea turtles and potential prey items. 
513C values are lipid-corrected. Values are means (± SD) and n = sample size. a 
Combined sample(s) of multiple individuals; b N. Lysiak, unpublished data; c McClellan 
et al. 2010; d Wallace et al. 2009.

Sample__________________________________ 515N (%o) S13C (%o)
Coastal waters of Massachusetts, USA
Leatherback

Blood plasma (n=12) 11.33 (1.78) -19.19(0.39)
RBC (n=15) 10.39(1.12) -18.45 (0.25)
Whole blood (n=15) 10.61 (1.03) -18.51 (0.44)
Skin (n=27) 11.13 (1.29) -17.84 (0.67)
Muscle (n=4) 11.32(0.87) -18.40 (0.83)
Liver (n=5) 11.99(1.34) -18.03 (1.43)

Potential prey
Cyanea capillata (n=16) 10.90(1.39) -20.31 (0.82)
Chrysaora quinquecirrha (n=9) 10.83 (0.82) -19.30(0.53)
Pelagia noctiluca (n=l) 7.59 -20.81
Beroe ovata (n=2a) 9.65 (1.61) -20.55 (2.12)
Mnemiopsis leidyi (n=Ta) 9.48 -18.37
Pleurobrachiapileus (n=la) 8.82 -20.83
Thalia democratica (n=la) 6.34 -21.04
Cymbuliidae (n=la) 5.36 -20.33

Coastal waters of Florida & Georgia, USA
Leatherback

Blood plasma (n=l) 11.13 -19.27
Skin (n=4) 11.65 (0.56) -17.87 (0.45)
Muscle (n=2) 11.74 (0.23) -18.39(0.04)
Liver (n=2) 11.86 (0.74) -17.81 (0.39)

Potential prey
Stomolophus meleagris (n=l) 8.90 -18.89
Stomolophus meleagris (n=3b) 9.01 (0.38) -20.44 (0.92)

Gulf Stream off North Carolina, USA
Potential prey

Cyanea capillata (n=lc) 5.29 -17.46
Chrysaora quinquecirrha (n=6c) 5.19(0.25) -17.20 (0.68)
Pelagia noctiluca (n=8c) 4.61 (0.68) -17.95 (0.51)
Aurelia aurita (n=5c) 8.52 (0.55) -19.50(0.58)

Coastal waters of North Carolina, USA
Potential prey

Stomolophus meleagris (n=5d) 7.92 (0.22) -18.85 (0.08)
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Figure 13. Locations of tissue collection for stable isotope analysis off Cape Cod, 
Massachusetts, USA. Stars represent leatherback sampling locations from 2005-2009 and 
crosses represent gelatinous zooplankton sampling locations from 2007-2008.
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Sample preparation

Leatherback tissue samples and whole prey items were used for isotopic analyses. 

Multiple individuals of some prey items (salps, pteropods, and ctenophores; Table 9) 

were combined when necessary to produce sufficient dry material for measurements. 

Samples were thawed and dried at 65°C for a minimum of 48 hours and homogenized 

with a mortar and pestle (gelatinous zooplankton) or with a Mixer/Mill® (SPEX 

SamplePrep, LLC, Metuchen, New Jersey, USA) with stainless steel vials (leatherback 

tissues). Aliquots of homogenized sample (0.6 -  1.2 mg for leatherback tissues, 0.6 -  3 

mg for gelatinous zooplankton) were packed into 4 x 6  mm tin cups and analyzed for 

613C, 8I5N, % carbon, and % nitrogen by continuous flow using a Costech EDS4010 

elemental analyzer (Costech Analytical Technologies, Inc, Valencia, California, USA) 

coupled with a DELTApius XP isotope ratio mass spectrometer (Thermo Scientific, 

Bremen, Germany) at the University of New Hampshire Stable Isotope Laboratory 

(UNH). Because of the high salt content of gelatinous zooplankton, the cups containing 

prey samples were nested into a second silver cup in order to prevent potential damage to 

the mass spectrometer. Lipids can cause a negative bias in 5I3C values (Abelson & 

Hoering 1961, Park & Epstein 1961), requiring correction through chemical extraction or 

mathematical models. In place of lipid extraction, we used a post hoc lipid correction 

factor on carbon isotope ratios for all samples with C:N >3.5 (Post et al. 2007). 

Correction models derived from different species or tissue types can produce inaccuracies 

in 813C estimates (Kiljunen et al. 2006, Logan et al. 2008), so our results likely contained 

some error.
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Stable carbon and nitrogen isotope ratios are reported in conventional notation as 

parts per thousand (% o )  differences from a standard according to the following equation: 

5X = [(R-sample/ Rstandard) — 1 ] * 1000

where X is l3C or 15N and R is the corresponding ratio 13C/12C or ,5N /14N (Peterson & 

Fry 1987). Vienna Pee Dee belemnite (VPDB) and atmospheric nitrogen (AIR) were 

used as the carbon and nitrogen standards, respectively. At UNH, two internal standards 

(tuna and turtle white muscle), the NIST standard 1515 (apple leaves), and Acetanilide A 

were analyzed throughout each run to assess analytical precision, which was within 0 .2 % o 

for both 613C and 615N for all four reference materials. Samples run in duplicate had SD 

< 0.2%o for 615N and SD < 0.3%o for 613C (n=13).

Statistical analyses

All statistical analyses were carried out using the program R (R Development 

Core Team 2008). Blood plasma, red blood cells, whole blood, and skin were grouped by 

sex, and comparisons were made among groups for 615N and 613C (Table 10). 

Homogeneity of variance among groups was tested with Levene’s test. Where variances 

were homogenous, we made comparisons with a one-way analysis of variance 

(ANOVA), and where heterogeneous, a one-way test was used. Student’s /-tests were 

used to compare 615N and 6I3C values among grouped samples, and a Holm adjustment 

was applied to P values to account for multiple comparisons. Simple linear regressions 

were performed for tissue 815N and 8l3C relative to curved carapace length (CCL) to 

examine potential effects of body size (CCL) on tissue 815N and 813C. Significance level 

was set at alpha = 0.05 unless otherwise noted.
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Isotope mixing models are used to infer diet composition by estimating 

proportional contributions of potential prey isotope values to values observed in 

consumers (Phillips & Gregg 2003). We used a Bayesian isotopic mixing model available 

as the open source package ‘SIAR’ (Parnell et al. 2010) in the program R (R 

Development Core Team 2008). The SIAR mixing model produces posterior 

distributions that represent true probability densities for the parameters of interest (e.g., 

prey contribution to diet), and the probability estimates are robust since the model 

incorporates uncertainty and variability in isotope signatures of fractionation factors, 

consumers, and prey (Pamell et al. 2010). Eight prey species were collected off 

Massachusetts for use in the mixing model (Table 9). Before running SIAR, we grouped 

species with similar functional significance and isotopic values (Phillips et al. 2005). The 

model consisted of one sea turtle group and four prey groups (group 1 = Chrysaora 

quinquecirrha (sea nettle), and Cyanea capillata (lion’s mane); group 2 = Beroe ovata, 

Mnemiopsis leidyi, and Pleurobrachia pileus (ctenophores); group 3 = Pelagia noctiluca 

(mauve stinger); and group 4 = Thalia democratica (salps) and sea butterflies 

(Cymbuliidae) (Fig. 16). We used blood plasma values of 615N and 613C from 

leatherback turtles captured off Massachusetts during late summer (29 July -  3 

September, n = 9) in order to obtain isotope values likely equilibrated to local diet. The 

model was only run for all turtles pooled because of limited sample sizes and minimal 

differences in isotope values by sex for the subset of samples used in the model. 

Discrimination factors for plasma from juvenile leatherback turtles reared in captivity (Adt 

613C: -0.58 ± 0.53%o, A* 615N: 2.86 ± 0.82%o) were included in the mixing model 

(Seminoff et al. 2009).
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Results

Linear regression showed 613C was correlated with body size for skin (Fig. 14a) 

and whole blood (Fig. 14c), and 615N was correlated with body size for red blood cells 

(Fig. 14b). Although not significant in all cases, the general trend in most tissues showed 

increasing values of 515N and decreasing values of 5,3C with body size (Fig. 14a-d). 

While not included in our analysis, the skin values from a single small juvenile (CCL =

13 cm) were also consistent with this trend (515N = 6.87 % o , 513C = -16.64 % o ). For S13C, 

female leatherback red blood cell values were significantly higher than males (7*2,5 = 

12.09, P = 0.01) (Fig. 15b, Table 10), and female whole blood values were significantly 

higher than males and turtles of unknown gender (7*2,12 = 7.26, P < 0.01) (Fig. 15c, Table 

10). Turtles of unknown gender had higher blood plasma S13C values than female turtles 

(7*2,6 -  6.89, P < 0.03) (Fig. 15d, Table 10). There were no significant differences in 6l3C 

values of leatherback skin among male, female, and unknown gender turtles (7*2,28 -  1-86, 

P = 0.17) (Fig. 15a, Table 10), and no significant differences in 815N values were 

detected between sexes for any tissue type (Fig. 15a-d, Table 10).

Based on the results of the SIAR mixing model, leatherback turtles foraging off 

Massachusetts primarily consumed lion’s mane (C. capillata) and sea nettles (C. 

quinquecirrha) (95th% credibility interval: 5-59%) and ctenophores {B. ovata, M. leidyi, 

and P. pileus) (95th% credibility interval: 0.4-61%) (Fig. 16). They foraged to a lesser 

extent on mauve stingers (P. noctiluca) (95th% credibility interval: 0-38%), salps (T. 

democratica) and sea butterflies in the family Cymbuliidae (95th% credibility interval: 0- 

36%) (Fig. 16).
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Figure 14. Linear regressions of a) skin, b) RBC, c) whole blood and d) blood plasma 
813C and 815N values relative to curved carapace length (CCL) for leatherback turtles.
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Discussion

Multi-tissue isotopic analysis revealed that leatherback turtles of different size and

gender had dissimilar diets. Less metabolically active tissues like skin have slower

11isotopic turnover (Reich et al. 2008), so higher 8 C values in the skin of smaller
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leatherbacks may reflect a dietary history of feeding primarily on a food web 

characterized by high 813C. There are few observations of juvenile leatherbacks (CCL < 

100 cm), and their distribution is largely unknown, but existing distribution data and 

physiological attributes (Musick & Limpus 1997, Witt et al. 2007, Bostrom et al. 2010) 

indicate that they are restricted to warmers waters (>26°C) during the first years of life 

(Eckert 2002b). Stable isotope values of 813C and 815N in the skin of smaller leatherbacks 

in our study reflected a food web depleted in 15N and enriched in I3C, characteristic of 

offshore food webs associated with Sargassum (Rooker et al. 2006) and Trichodesmium 

(Wada & Hattori 1991). Organic matter derived from these sources is enriched in 13C 

(and depleted in 15N) compared to phytoplankton.

Notably, gelatinous zooplankton sampled from the Gulf Stream revealed isotopic 

values enriched in 13C and depleted in 15N relative to the same species collected off 

coastal Massachusetts in our study (McClellan et al. 2010) (Table 9). Warm, Sargassum- 

rich waters of the Gulf Stream and central North Atlantic provide important 

developmental habitat for juvenile loggerhead sea turtles and may serve a similar 

function in juvenile stages of other sea turtle species (Musick & Limpus 1997, Reich et 

al. 2007). We found high 513C and low 815N values in the skin of the small juvenile 

leatherback relative to larger turtles in our dataset, providing additional evidence that 

offshore food webs may be important for early life stages. Sub-adult and juvenile 

leatherbacks may spend a larger proportion of time feeding on prey from the Gulf Stream 

recirculation region, retaining higher 613C and lower 615N values in their skin as they 

transition to subsequent foraging habitats such as the northeast US continental shelf. 

Observations of these early life stages and characterization of juvenile habitat remain an
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area of important research in leatherback ecology, and collection of additional skin 

samples from juvenile leatherbacks is needed to better understand size-related differences 

in 813C and 815N.

Table 10. Stable isotope signatures of leatherback sea turtle tissues grouped by sex. 
Values in the same column for a given tissue type with different superscript letters are 
significantly different (P < 0.05).

Group
Sample 
size (n)

815N ( % o )  

Mean (SD)
813C ( % o)  

Mean (SD)
Skin
Female 7 11.57 (0.46)a -17.56 (0.75)a
Male 15 11.21 (1.34)a -18.06 (0.47)a
Unknown 9 10.88 (1.45)a -17.71 (0.74)a
Whole Blood
Female 4 11.08 (0.36)a -18.02 (0.47) a
Male 5 10.76(1.44)a -18.82 (0.19)b
Unknown 6 10.17 (0.89)a -18.58 (0.28)b
Red Blood Cells
Female 2 11.17 (0.36)a -18.15 (0.08)a
Male 7 10.72 (0.87)a -18.55 (0.14)b
Unknown 6 9.74 (1.31)a -18.43 (0.32)ab
Blood plasma
Female 2 11.74 (0.87)a -19.28 (0.01)a
Male 6 11.40 (1.92)a -19.40 (0.43)ab
Unknown 5 11.04 (1.92)a -18.93 (0.20) b

The trend in whole blood was similar to that in skin, with S13C values decreasing 

as turtles increased in body size (Fig. 14a,c). The lack of significant correlation between 

8i3C and body size in the other two tissues may be explained by several factors: 1) 

difference in turnover rate between tissues 2) no difference in habitat use and diet 

between turtles sampled for RBCs and plasma, and 3) small sample sizes. Assuming that 

blood plasma has fast turnover and reflects local diet, we would not expect to find size- 

related differences in this tissue. Most samples were taken from similar locations, and
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there is probably overlap in prey selected by leatherbacks of different sizes feeding off 

Massachusetts. Red blood cells in sea turtles have a slower turnover rate than blood 

plasma (Reich et al. 2008). Since whole blood is a combination of RBCs and plasma, we 

would expect RBCs to have a slower turnover rate than whole blood. In this case, 

turnover rate would not explain why we did not detect a size effect in 813C. A more likely 

explanation is that small leatherbacks (< 130 cm CCL) were under-represented in our 

RBCs group (n=2) relative to our whole blood group (n=4).

When leatherbacks were grouped by gender, the general trend was elevated 813C 

and 815N values in female tissues relative to males (Fig. 15a-d, Table 10). In contrast, the 

blood plasma values of 513C were significantly higher in turtles of unknown gender than 

females (Fig. 15d, Table 10). Although we and others have documented that adult male, 

female, and sub-adult leatherbacks mix on their temperate foraging grounds in the 

northwest Atlantic (James et al. 2007; this study), satellite telemetry studies have 

revealed different migratory patterns among these groups (James et al. 2005b; Dodge et 

al. submitted). Most sub-adult and female leatherbacks in their inter-nesting years spend 

winter offshore in the pelagic realm, whereas adult males and nesting females spend 

several months in coastal waters adjacent to nesting beaches (James et al. 2005b; Dodge 

et al. submitted). Red blood cell samples in females (Fig. 15b, Table 10) came from two 

females that nested the following spring after we had sampled them (one confirmed 

nesting, one unconfirmed but probable based on satellite telemetry data). Given the 2-3 

year remigration interval between nesting seasons for the majority of Atlantic 

leatherbacks (Boulon et al. 1996, TEWG 2007), these two turtles likely spent the 

previous winter/spring offshore before we sampled them off the Massachusetts coast.
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Whole blood samples in females (Fig. 15c, Table 10) were taken from one adult turtle 

that likely nested nine months after sampling and three sub-adults (sampled alive, later 

died and sexed during necropsy). All of these turtles likely over-wintered offshore during 

the winter/spring before we sampled them off Massachusetts. The elevated 613C values in 

the red blood cells and whole blood of these females therefore most likely reflects time 

spent foraging in offshore open ocean habitat during the over-wintering period.

Blood plasma 613C differences between females and those with unassigned sex 

can be attributed to two samples with higher 613C values from the latter group. Both 

samples, taken in early July, 2009, were the earliest we had acquired samples from 

Massachusetts leatherbacks, and our results suggest that recent migrants had not yet 

equilibrated to local diet, rather than a foraging dichotomy between female and sub-adult 

turtles. The overall trend of elevated 613C and 615N values in female samples relative to 

males (Table 10) could also be explained by the energetic demands of nesting. Nutritional 

stress from migration, egg production and deposition, and starvation during reproduction 

could lead to elevated 513C and 815N values in female leatherbacks relative to males 

(Hobson et al. 1993). Another factor to consider is isotopic routing, the process in which 

isotopes of different dietary components are preferentially distributed to specific tissues 

or compounds (Gannes et al. 1997, Gannes et al. 1998, Wolf et al. 2009). Differences in 

routing between sexes or maturity stages could explain observed isotopic differences, 

although diet items were all gelatinous prey composed mainly of protein (Clarke et al. 

1992, Doyle et al. 2007). Given that leatherback turtles are highly migratory and the 

various tissues sampled vary widely in isotopic turnover rates (Seminoff et al. 2007,

Reich et al. 2008), the different timescales of dietary and migratory information
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represented by these tissues is a more likely explanation for observed differences than 

condition or routing. Comprehensive sampling across a range of tissues is warranted to 

better understand sex-related differences in 613C values.

The Bayesian two-isotope mixing model showed that leatherback turtles off 

Massachusetts primarily consume some scyphozoan species (lion’s mane and sea nettle) 

and ctenophores (Fig. 16). Supplementary prey may include mauve stingers, salps, and 

sea butterflies (Table 9, Fig. 16). Leatherback turtles feed on lion’s mane on the western 

North Atlantic shelf off eastern Canada (Bleakney 1965, James & Herman 2001) and 

New England (Lazell 1980). Lion’s mane jellyfish are common worldwide in Arctic and 

boreal waters where they reach their maximum size and abundance, and medusae can be 

found off New England in late winter through summer (Johnson & Allen 2005). 

Leatherbacks in the Pacific feed on several species of sea nettle (Benson et al. 2007), and 

we have observed leatherbacks swimming in mixed patches of sea nettles and lion’s 

mane jellyfish off New England. Multiple species of ctenophore also occur regularly off 

New England during summer and fall when leatherbacks are present. The most common 

and abundant near-shore ctenophore in our study area is M. leidyi, which can reach 

extremely high densities (> 100/m3) given the right conditions (Johnson & Allen 2005). 

Tidal-mixing fronts north of Nantucket Shoals, in the Gulf of Maine, and around Georges' 

Bank occur in summer and early fall (Belkin et al. 2009), and may provide enhanced 

foraging opportunities by consolidating patches of these gelatinous species. The 

combination of abundant medusae and ctenophores and seasonally persistent fronts 

makes the New England shelf reliable foraging habitat for leatherbacks and justifies their 

energetically costly migrations from lower latitudes and forays into cold water.
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Figure 16. Results of the SIAR (95, 75 and 50% credibility intervals) mixing model 
showing estimated prey contributions to leatherback turtle diet off Massachusetts, USA. 
Cy Cyanea capillata', Chry Chrysaora quinquecirrha', Mne Mnemiopsis leidyi; Ber Beroe 
ovata; Pleu Pleurobrachia pileus\ Pel Pelagia noctiluca', Thai Thalia democratica; Cym 
Cymbuliidae spp.

Mixing model results should be interpreted with caution because of unknowns in 

our discrimination factors, the large number of prey sources analyzed with similar isotope 

values, and the relatively large credibility intervals for our estimates and associated 

uncertainty (e.g., 95% credibility intervals included zero for mauve stingers and salps/sea 

butterflies). While our mixing model included species- and tissue-specific discrimination
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factors for leatherback turtles, these discrimination factors were derived from juveniles 

raised in captivity and without any lipid corrections for plasma (Seminoff et al. 2009). 

Discrimination factors for nitrogen and carbon likely vary for sea turtles raised on 

different diets and during different developmental stages, as growth contributes 

significantly to the rate of isotopic incorporation in hatchlings and juveniles (Reich et al. 

2008). We also assumed that blood plasma collected in late summer/fall was equilibrated 

with local diet, and that leatherbacks consume whole prey rather than select body parts 

(e.g., gonads and oral arms) with higher nutritional value (Doyle et al. 2007). Although 

most late season plasma samples showed similar isotope values, one turtle had a lower 

815N value that likely reflected previous offshore feeding and recent arrival to the coastal 

foraging grounds. While diet segregation cannot be ruled out as an alternative 

explanation for this outlier, this turtle would have had to feed nearly two trophic levels 

below co-occurring turtles to derive the observed plasma value. Biases associated with 

past feeding in regions with different isotopic baselines are difficult to completely avoid 

when studying highly migratory species, although compound specific analyses may 

provide a mechanism for distinguishing between baseline and trophic shifts in future 

studies (Popp et al. 2007).

This is the first study to report stable isotope values of 513C and 815N for male, 

female, and sub-adult leatherback turtles in their feeding areas. Previously published 

studies included only nesting females (Wallace et al. 2006b, Caut et al. 2008). By 

sampling multiple tissues across gender and age class, we were able to examine the effect 

of size and sex on stable isotope values o fS l3C and 815N in leatherback turtles foraging in 

the northwest Atlantic. Concurrent sampling of gelatinous prey species at the surface and
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at depth allowed for a realistic mixing model and diet characterization of leatherbacks 

feeding off Massachusetts, USA. Interestingly, we found a large disparity in isotope 

values of gelatinous zooplankton collected on the shelf (this study) and the Gulf Stream 

(McClellan et al. 2010). This emphasizes the importance of using local prey in isotopic 

mixing models rather than relying on published isotope data. Highly migratory predators 

like the leatherback turtle occupy multiple “ecoregions” within an annual migratory cycle 

(Longhurst 2007), and interpretation of their isotope values requires an understanding of 

the different food webs and prey isotope values within those ecoregions and “isotope 

provinces” (Hobson 1999).

Western North Atlantic shelf and slope waters are productive regions where 

spring bloom conditions can lead to increased seasonal abundance of the leatherback’s 

gelatinous zooplankton prey (Larson 1976, Madin et al. 2006, Mann & Lazier 2006, 

Deibel & Paffenhofer 2009). Based on the mixing model, leatherbacks in our study area 

appear to focus on ctenophores and coastal species of scyphomedusae. This type of 

foraging may have several advantages. Prey on the shelf is closer to the surface, allowing 

leatherbacks to make shorter, shallower dives and search for prey more efficiently. If 

leatherbacks are primarily visual predators, abundant prey in shallow, well-lit shelf 

waters may also be easier to locate and capture, and allow greater time to be spent in 

warm surface layers above seasonal thermoclines. Although gelatinous zooplankton are 

generally considered nutrient-poor, coast-occurring scyphozoans such as C. capillata 

have a higher energy density than other “jellies” (Doyle et al. 2007). If leatherbacks feed 

preferentially on the gonads and oral arms of Cyanea and Chrysaora, they can derive 

higher energy content than feeding on salps and ctenophores (Doyle et al. 2007). It may

79



also be easier and more efficient for leatherbacks to catch and manipulate larger medusae 

and ctenophores than smaller gelatinous zooplankton like T. democratica. Thus a coastal 

feeding strategy, focusing on the highest energy prey available, would allow leatherbacks 

to accumulate the energy reserves necessary for migration and reproduction (Casey et al. 

2010).

Juvenile and small sub-adult leatherbacks appear to spend more time in
t

oligotrophic, open ocean habitat where prey is more elusive. Recent work on leatherback 

ocular morphology and offshore diving behavior suggests that leatherback turtles are not 

well equipped for prey searching in dim light (Brudenall et al. 2008) and may forage 

primarily during day-time hours (Casey et al. 2010). Many species of gelatinous 

zooplankton are vertically dispersed or remain at depth in the deep scattering layer (DSL) 

during daylight hours (Graham et al. 2001, Madin et al. 2006), requiring leatherbacks to 

dive deeper and search more extensively in oceanic habitat (Eckert et al. 1989, Eckert 

2002a, Sale et al. 2006, Houghton et al. 2008). Lutcavage (1996) hypothesized that 

leatherbacks in pelagic habitats may associate with oceanic fronts, filaments, and Gulf 

Stream meanders in order to maximize foraging opportunities. The relatively high 613C 

and low 615N values found in smaller leatherbacks suggest a foraging strategy that 

includes Gulf Stream prey (McClellan et al. 2010) for part of the year. Although juvenile 

leatherbacks must consume sufficient prey to support their rapid growth (Jones et al.

2011), they are not yet burdened by the high energetic demands of reproduction (Wallace 

et al. 2006a) and may be able to meet their energetic requirements in the less productive 

oceanic realm.
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Interpretation of isotopic values depends on knowing where and when 

leatherbacks feed throughout their life cycle, and the species of prey targeted. Long-term 

satellite tracking of adults and juveniles of both sexes can reveal migratory patterns and 

distant feeding grounds over an annual cycle. Integration of satellite telemetry and stable 

isotope analysis can identify key foraging habitats and food webs that support 

leatherbacks at different life stages, information critical for protection and recovery of 

this endangered species.
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CONCLUSIONS

Leatherback turtles have been plying the seas for over 100 million years (Zangerl 

1980) but their obscure lifestyle and failure to thrive in captivity have made them 

challenging to study. We are still trying to answer basic questions about their life history; 

this is especially true for males and life stages that occur exclusively at sea (juveniles, 

sub-adults and adult females during the inter-nesting interval). Pressing questions remain 

about leatherback growth rates, age-at-maturity, longevity, distribution and habitat use, 

stock structure, health (condition) and mortality rates (TEWG 2007). The goal of my 

dissertation was to collect empirical data on leatherback movements, dive behavior and 

habitat use in the NW Atlantic and to characterize their environmental associations. I was 

particularly interested in expanding our knowledge of leatherback behavior in the New 

England region where there is a long history of leatherback presence and bycatch in fixed 

gear (pot/trap) fisheries. I also sought to collect information on leatherback migratory 

pathways (including distance, travel rate and migratory orientation cues) between high 

latitude forage grounds and low latitude breeding/overwintering grounds. Lastly, I hoped 

to improve our understanding of leatherback diet off Massachusetts and determine if 

there were differences in diet and habitat selection between sexes and size classes.

By combining satellite telemetry and remotely sensed environmental data, I found 

that leatherback movements and environmental associations varied by oceanographic 

region, with slow, sinuous, area-restricted search (ARS) behavior and shorter, shallower 

dives occurring in shelf habitat characterized by relatively cool temperatures (median 

SST: 18.4 °C), high productivity (median chi a: 0.80 mg m'3), shallow depths (median
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bathymetry: 57 m) and strong sea surface temperature fronts (median SST gradient: 0.23 

°C km'1) at temperate latitudes. I observed less ARS behavior in subtropical and tropical 

latitudes, but three individuals used areas of enhanced productivity near the convergence 

of the North Equatorial Current and North Equatorial Counter-Current, and North Brazil 

Current rings. Leatherbacks were highly aggregated in temperate shelf and slope waters 

during summer, early fall, and late spring, with the highest density of turtle locations on 

the southern New England shelf. Turtles were more widely dispersed in subtropical and 

tropical oceanic and neritic habitat during late fall, winter and early spring. Using 

generalized linear mixed-effects models, I found that differences in leatherback search 

behavior (represented by path sinuosity) were best explained by ecoregion and regional 

differences in bathymetry and SST. Within the NW Atlantic Shelves region, leatherback 

path sinuosity increased with increasing SST, but this relationship reversed within the 

Gulf Stream region. Leatherbacks increased path sinuosity with decreasing water depth in 

temperate and tropical shelf habitats. This relationship is consistent with increasing 

epipelagic gelatinous zooplankton biomass with decreasing water depth, and bathymetry 

may be a key feature in identifying leatherback foraging habitat in neritic regions.

I used satellite telemetry data to determine the migratory pathways of 

leatherbacks in the NW Atlantic, and found that all leatherbacks that initiated a 

southward migration showed similar orientation when moving through the subtropical 

gyre. Leatherbacks transited rapidly through this region and paths were highly directed, 

suggesting that this region was used primarily for migration (versus foraging or other 

activities). I determined that there were negligible differences between the turtles’ 

observed and current-corrected paths and there was no significant difference between
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adult and sub-adult orientation. I found that turtles were significantly oriented to 

magnetic field inclination angle, sunrise angle and sunset angle, suggesting leatherbacks 

may be able to rely on a magnetic and (or) solar compass during this portion of their 

migration. Turtles moved approximately orthogonally to isoclinics and isodyanmics in 

the subtropical gyre, raising interesting questions about leatherback sensitivity to very 

small gradients in those magnetic field parameters. All tested cues provided latitudinal 

guidance, and a sensory mechanism for determining longitude remains obscure.

Using multi-tissue stable isotope analyses, I found that leatherback turtles of 

different size and gender had dissimilar diets. Stable isotope values of S13C and 615N in 

the skin of smaller leatherbacks in our study reflected a food web depleted in 15N and 

enriched in 13C, characteristic of offshore food webs associated with Sargassum and 

Trichodesmium. Warm, Sargassum-rich waters of the Gulf Stream and central North 

Atlantic provide important developmental habitat for juvenile loggerhead sea turtles and 

may serve a similar function in juvenile and sub-adult stages of other sea turtle species 

such as leatherbacks. I found similar differences between male and female turtles, with 

isotopic signatures of some female tissues more consistent with an offshore food web 

enriched in 13C. The apparent differences in foraging habitat selectivity between these 

groups were supported by my observations of their divergent migratory strategies. 

Satellite telemetry showed that most sub-adult and female leatherbacks in their inter­

nesting years spent the winter offshore in the pelagic realm, whereas adult males and 

nesting females overwintered in coastal waters near nesting beaches. Mixing model 

results suggested that leatherbacks foraging off Massachusetts primarily consume the 

scyphozoan jellyfishes, Cyanea capillata and Chrysaora quinquecirrha, and ctenophores,
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while a smaller proportion of their diet comes from holoplanktonic salps and sea 

butterflies (Cymbuliidae). My diet results are consistent with historical observations of 

leatherback turtles feeding on scyphozoan prey in this region.

Although I achieved my primary dissertation objectives, I had hoped to analyze 

leatherback habitat use and environmental associations in the New England shelf region 

on a finer scale. The main limitations for achieving a fine-scale spatial analysis were tag 

technology, spatial resolution of remotely sensed environmental data and turtle behavior. 

My project was one of the first to deploy GPS-linked satellite tags developed by Wildlife 

Computers and these first generation tags transmitted fewer GPS locations than expected. 

This limited my ability to reconstruct fine-scale leatherback movements with minimal 

observation error. Remotely sensed environmental data was unavailable at spatial scales 

needed for a fine-scale analysis (e.g., 1 km), and leatherbacks were concentrated in 

coastal areas where satellite remote sensing of chi a is subject to large errors due to the 

presence of colored dissolved organic matter (CDOM) and suspended sediment. 

Fortunately, GPS tags have become more reliable over the past five years and I hope to 

eventually tackle a fine-scale analysis of leatherbacks movements and environmental 

associations in the New England region through collaboration with Northeast Fisheries 

Science Center, using 1-km Pan converted chi a data (Pan et al. 2008).

One of the weaknesses of my results is the assumption that area restricted search 

behavior represents foraging, and path straightness is good proxy for search behavior. We 

lack contemporaneous data on prey (gelatinous zooplankton) and the physical and 

biological forces driving regional prey dynamics. In the absence of such data, our 

understanding of leatherback turtle movements and dive behavior is incomplete. New
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technologies, such as stomach temperature telemetry, will help define the relationship 

between leatherback spatial movements and feeding events (e.g., Casey et al. 2010, 

Casey et al. in prep). Small-scale tracking studies using high-resolution time-depth 

recorders and concurrent oceanographic and prey sampling would give a more complete 

picture of leatherback behavior relative to prey fields and help characterize gelatinous 

zooplankton assemblages and the physical and biological processes that lead to 

gelatinous zooplankton aggregations.
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