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ABSTRACT 

MUSIC OF THE TRIANGLES: HOW STUDENTS COME TO UNDERSTAND 

TRIGONOMETRIC IDENTITIES AND TRANSFORMATIONS 

by 

Neil M. Bornstein 

University of New Hampshire, May, 2017 

 Trigonometry is an essential part of mathematics education (NCTM, 2000; NGA, 2010). 

Trigonometry is prevalent in studies of pure mathematics as well as physical applications. 

Trigonometric identities and transformations are particularly important. However, students and 

even teachers have struggled to articulate and justify trigonometric concepts (Moore, 2013; Tuna,  

2013). Students have also struggled with identities and transformations in non-trigonometric 

contexts (Borba & Confrey, 1996; Tsai & Chang, 2009). This paper will describe a research 

project which articulates the critical stages through which students must pass to understand 

trigonometric identities and transformations. These critical stages were first hypothesized based 

on a review of the literature. Then undergraduate precalculus students were recruited to 

participate in a series of task-based interviews in order to examine the process by which students 

come to understand and justify trigonometric identities and transformations. The critical stages 

were revised based on the results of these interviews. Following the interviews, hypothesized 

lesson plans for the subjects were revised and implemented. The implementation of the lesson 

plans did not collect enough information to draw any conclusions, but the critical stages 

underscore the importance of students being able to move fluidly among representations.  

!xiii



!1

I. Introduction 

 Trigonometry is an essential part of mathematics education (NCTM, 2000; NGA, 2010). 

Pure mathematics frequently uses trigonometric concepts due to the complex relationship 

between trigonometric functions and the number e (Stein & Shakarachi, 2003). In particular, 

Euler’s equation !  leads to de Moivre’s formula and the most beautiful 

equation in mathematics, ! . Trigonometry is integral to the calculus sequence, and is 

also present in many science, technology, engineering, and mathematics (STEM) applications 

such as designing road reflectors (Popelska, 2011), digital image processing (Rosen, Usselman, 

& Llewellyn, 2005), and modeling periodic phenomena such as sound waves or temperature 

variations (Douglas, Christensen, & Orsak, 2008; Kuttruff, 1973; Lando & Lando, 1975).  

 Trigonometric identities and transformations are algebraic and graphical ways of 

representing the same idea: trigonometric functions can be manipulated in specific ways to 

produce predictable results, such as a different trigonometric function, or the negative of the 

original function. For example, ! , ! , and 

! . In each of these cases, a trigonometric function, ! , has been 

transformed by additive and/or multiplicative operations. When these transformations result in 

equations that are generally true, they are called identities. Identities and transformations can be 

used in various fields of science and engineering to predict repetitions or changes in patterned 

behavior (Douglas et al., 2008; Kuttruff, 1973; Lando & Lando, 1975). For example, applying 

transformations to sound waves results in effects that are prevalent in audio industries: altering 

pitch, and amplifying or diminishing sound waves and their echoes (Rigden, 1977). Predicting 

e = cos(x) + (i )sin(x)

eiπ + 1 = 0

cos(−x) = cos(x) sin(
π
2

− x) = cos(x)

tan(x + π) = tan(x) T (x)
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and using echoes is integral to designing rooms and musical instruments with good acoustics. 

These echoes can also be manipulated digitally to create the illusion that the sound was produced 

in a different type of space, such as a narrow hallway. Transformed sinusoids can even be 

combined, potentially resulting in, among other changes, a different timbre – the quality of sound 

that describes the difference between, for instance, a voice and a violin, or between two different 

voices. Synthesizers can use these combinations to recreate the sounds of common musical 

instruments. 

 Unfortunately, many students and even teachers struggle with many aspects of 

trigonometry. Through a combination of questionnaires and interviews Akkoç (2008) and Tuna 

(2013) found that Turkish preservice teachers had poor understandings of radian measure. Few 

could correctly define radians (8% of 93 participants in Tuna’s case), and even those who could 

were still likely to think of radians in terms of degrees and to assume that any trigonometric 

input that did not contain a π symbol was meant to be considered in degrees, even when 

explicitly told otherwise. These results are echoed by Moore (2013) in a study of American 

undergraduate students, and have also been noted in studies with inservice teachers (Topçu, 

Kertil, Yilmaz, & Öndar, 2006). 

 There are only a few studies on trigonometry learning, but they show students in 

trigonometry classrooms having difficulty examining situations and choosing appropriate 

representations. A representation is any thing that stands in for another thing (Pimm, 1995; 

Goldin & Kaput, 1996). For example, the symbol π stands for an irrational number 

approximately equal to " ; the word “addition” is a representation of the concept of combining 

multiple objects into a single object. Frequently used trigonometric representations include the 

3.14
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algebraic representations – for example, !  – the graphical representations in the Cartesian 

plane, the unit circle representation, and the right triangle representation. Studies of high school 

students in England, Turkey, and Australia and undergraduates in the United States have shown 

that students had difficulty using any trigonometric representation except that which was most 

familiar to them; as a result, students have shown an inability to effectively approach many 

mathematical situations (Challenger, 2009; Delice & Roper, 2006; Gür, 2009; Kendal & Stacey, 

1998; Weber, 2008). Challenger found that over the course of the trigonometry unit, students did 

not develop connections between the various representations and trigonometric concepts 

introduced throughout the course. This led students to develop isolated understandings of each 

individual topic rather than a cohesive understanding of the properties and applications of a few 

core ideas. 

 In light of these circumstances, the current study has been developed to investigate how 

students come to understand trigonometric identities –in particular, opposite angle identities, 

identities involving adding multiples of π to the input, and the sine-cosine cofunction identities – 

and transformations of trigonometric functions. A review of the literature has revealed a lack of 

studies of how students come to understand each of these concepts. The design of this study has 

been informed by previous studies on how students learn trigonometry as a unit (Challenger, 

2009; Fi, 2003) or how students learn earlier trigonometric concepts such as angle measure 

(Moore, 2013) and the definition of sine (Demir & Heck, 2013), as well as identities and 

transformations in non-trigonometric contexts (Borba & Confrey, 1996; Hall & Giacin, 2013; 

Tsai & Chang, 2009). The content and organization of the current research study have been 

influenced by the previous studies’ descriptions of the orders in which students learned these 

sin(x)
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concepts, the methods used to help them learn, and the misconceptions that they faced. The study 

extends the previous research on identities and transformations to a trigonometric context using 

the results of prior research on students’ learning of trigonometry. In particular, it examines how 

students view the relationships among the different representations of trigonometric functions. 

Research Questions 

 This study was guided by the following research questions: 

1) Through what critical stages do students pass as they come to understand trigonometric 

identities and transformations? That is, which actions, connections, or other ways of thinking 

are common to those students who go on to be able to justify their solutions of tasks 

involving these concepts? 

2) How do students understand the relationship between the unit circle definitions of 

trigonometric functions and the identities and transformations of those functions? Is it critical 

that students be able to change from the algebraic representation to one with different 

affordances as they come to understand identities and transformations? 

3) To what extent do students progress through the critical stages during a lesson plan 

developed with these stages as a framework? 

 In order to answer these questions, a three-part study was conducted. To answer the first 

research question, a set of critical stages of understanding was hypothesized for each learning 

goal. There are nine learning goals addressed by this study: (1) opposite angle identities, (2) 

identities of the form (𝜃 + nπ) for some integer n, (3) cofunction identities, (4) correlating 

addition in the algebraic representation with shifting in the graphical representation, (5) 

correlating multiplication in the algebraic representation with stretching in the graphical 
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transformations, (6) correlating transformations of the function input with horizontal 

transformations, (7) correlating transformations of the function output with vertical 

transformations, (8) noticing that horizontal transformations are counterintuitive, and (9) noticing 

that order of transformations can matter. The critical stages were generated from a review of the 

literature regarding how students learn trigonometry in general and how they learn identities and 

transformations in non-trigonometric contexts. To test these hypothesized stages, a two-stage 

study was conducted in which undergraduate precalculus students were asked to participate in 

task-based interviews (Goldin, 2000). These interviews occurred before the students had been 

presented with the relevant material in lecture. The tasks for these interviews were designed to 

guide students through the proposed critical stages, and the students’ speech and written work 

were analyzed to determine whether any of the proposed critical stages were superfluous, 

inadequate, or otherwise in need of revision. During stage one of this study, students were not 

able to explore all of the relevant concepts in the allotted time. Because of this, the tasks were 

revised, and a second set of students, different from the first, was recruited to participate the 

following semester in the second stage. Results from both sets of interviews were used to answer 

the first two research questions. 

 While analyzing the interview data, particular attention was paid to students’ uses of 

representations. It was noted how the students conceived of the relationships among the 

definitions and representations of the trigonometric functions. For instance, it was noted whether 

students connected the motion of a radius rotating around a unit circle with the generation of the 

graphs of the trigonometric functions, used changes in one representation to predict the changes 

in another representation, or chose representations that were appropriate for their goals. Previous 



!6

research indicates that students’ facility with different representations can greatly influence their 

success in developing an understanding of trigonometry (Challenger, 2009; Weber, 2005). 

 To answer the third research question, a final, confirmatory study was conducted. For this 

study, lesson plans were developed based on the hypothesized critical stages of understanding for 

each learning goal. The lesson plans were revised after analyzing the interviews and revising the 

critical stages. For example, two students showed a promising strategy for generalizing the 

cofunction identities through the unit circle representation that hadn’t been considered 

previously; the lesson plan was revised to incorporate this strategy rather than one that relied on 

students viewing the identity as a pair of transformations. 

 Collectively, these studies have produced a set of critical stages of understanding for each 

learning goal under investigation and a corresponding lesson plan that utilizes the critical stages 

to guide students towards a good understanding of the learning goal. Gravemeijer and van Eerde 

(2009) refer to the set of critical stages and lesson plan for a topic as a Local Instruction Theory 

(LIT). In this paper, the literature underlying the hypothesized critical stages and lesson plans 

will be presented. Following this, the data collection and analysis processes will be detailed, after 

which results will be presented and discussed. The study will conclude with the revised critical 

stages and lesson plan, as well as study limitations and implications for future research. 
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II. Theoretical Framework 

 In this section, the theoretical framework underlying this study is discussed. This study 

used social constructivism as the theory of learning that influenced all of the decisions made in 

study design. Literature on LITs is presented to elaborate the goals of the study. To describe how 

the hypothesized critical stages and lesson plans were developed, relevant literature is presented 

regarding representation theory, teaching episodes, and students’ understanding of trigonometry, 

identities, and transformations. Finally, the hypothesized critical stages for trigonometric 

identities and transformations will be detailed. 

Social Constructivism 

Social constructivism is the perspective that informs all of the decisions made during the 

design of this study. In this section, the four basic tenets of this perspective – learning is social; 

students learn by connecting pieces of information; learning is uniquely personal for each 

student; and learning is an active process – will be described, as well as the ways in which these 

tenets have informed different aspects of the study.  

 Social. Social constructivists believe that all personal meaning is inherently influenced by 

social experiences, that all learning is necessarily a social process, and that the roles of the 

teacher and student are inextricably linked as they construct meaning for a concept (Cobb et al., 

1992; Ernest, 2006). According to social constructivists, a key element of the learning process is 

negotiation (Bauersfeld, 1995; Cobb et al., 1992; Ernest, 2006; Powell & Kalina, 2009). 

Negotiation can be seen as a continuous process of a teacher and student presenting their 

interpretations of the other's words and actions. The teacher uses the student’s work to interpret 

the student's conception as one that needs to be corrected, built upon, or emphasized, and 
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responds accordingly. The teacher's goal is to guide the student in building a conception of the 

topic that is consistent with the conceptions of the greater mathematical community.  

 Researchers taking a social constructivist perspective do not believe that learning can 

happen purely autonomously (Cobb, Jaworski, & Presmeg, 1996). They say that a student doing 

mathematics alone is still working in a social context. This lone student could build 

mathematical knowledge by interacting with an agent of the mathematical community such as a 

text or a real-world phenomenon that displayed mathematical properties. The student would 

attempt to construct knowledge by interacting with the object or phenomenon and interpreting 

the new information in light of previously held conceptions. Alternatively, without any external 

stimuli, the student could engage in an internal conversation. During this supposedly autonomous 

dialogue, the student would play both the role of teacher and student, reflecting upon the role of 

the new concept in terms of its place in the mathematical community of knowledge and in terms 

of how it is built out of the student’s prior knowledge. This reflection is inseparable from the 

context of the knowledge accepted by the mathematics community. 

 Connective. According to constructivist theorists, understanding is gained as new ideas 

are connected to prior knowledge or as elements of prior knowledge are connected to each other 

in new ways (Confrey, 1990; Eli, Mohr-Schroeder, & Lee, 2013; Hiebert & Lefevre, 1986). 

Constructivist theorists believe that it is the strength, number, and organization of these 

connections that constitute understanding (Hiebert & Lefevre, 1986). Learners can achieve 

greater understanding by increasing the number of connections between their known concepts, 

strengthening existing connections, or by making observations about their connections (AAHE, 

ACPA, & NASPA, 1998; Engelkemeyer & Brown, 2008; Greeno & Hall, 1997; Hiebert & 
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Lefevre, 1986; NGA, 2010). These beliefs are reflected in current standards, which emphasize 

that making connections between mathematical ideas and reflecting on patterns of connections 

are integral to becoming successful mathematical students (NGA, 2010).  

 Skemp (1987) refers to instrumental and relational understanding: instrumental 

understanding is characterized by an ability to complete tasks and use algorithms but an inability 

to explain why the work is true, while students with relational understanding can explain why an 

algorithm is true and useful based on their other mathematical knowledge. Students with 

relational understandings have made connections between the algorithm and their prior 

knowledge, while students with instrumental understandings have typically only connected the 

algorithm to its associated problem type. 

 Sometimes when students construct their knowledge, they do so in a way that is not in 

line with conventional mathematical beliefs (e.g. believing that exponents distribute across 

binomials). This may be labeled as a misconception. Since misconceptions are not in line with 

mathematical beliefs, there must be a concrete reason why the misconception must not be true. 

Misconceptions may be perturbed by forcing the student to confront how the misconception does 

not fit with their more stable prior knowledge (Ely, 2010). For example, a student may believe 

that ! . This is likely a function misconception. The student may treat 

all functions this way, or the student may be thrown off by this notation being slightly different 

than the standard, one-letter function notation (e.g. " ), leading them to treat the situation more 

like distribution than composition. If the student has a good conception of the sine function, then 

this misconception can be perturbed by pointing out that " , but also " , and 

sin(x + y) = sin(x) + sin(y)

f (x)

sin(
π
2

) = 1
π
2

=
π
6

+
π
3
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" , which is not equal to " . Misconceptions such as these that arose 

during the interviews were used to inform a revision of the lesson plan. Material designed to 

perturb the misconceptions was inserted into the lecture. 

 It should be mentioned though that not all mistakes necessarily indicate a misconception. 

Students may commit clerical errors or they could make mistakes that they quickly correct upon 

reflection. For example, a student who claims that "  may have simply 

misremembered a special triangle and may be able to sketch out a triangle and correct 

themselves to " , rather than having a misconception such as confusing sine with 

cosine. This type of mistake would not indicate that the student must significantly modify or 

construct connections among their trigonometric conceptions. 

 Unique. Constructivist theorists believe that all understanding is individual because of 

unique personal interpretations of experiences (Cobb et al., 1992; Ely, 2010; Ernest, 2006; 

Olivier, 1989; von Glasersfeld, 1987). A person's conception of any idea– yellow, renaissance, 

trigonometry– will be influenced by their past experiences with that concept or related concepts. 

These conceptions may be incorrect or even impossible. Furthermore, constructivist theorists 

believe that students who have shared the same experience nevertheless interpret that experience 

differently from one another (Duit, 1995; Olivier, 1989). Since all understanding is individual, 

none can be declared objectively true; any concept could be awaiting perturbation (Ely, 2010). 

Social constructivists treat the concepts that the majority of the mathematical community believe 

to be true as the truth (Ernest, 2006). When a belief commonly held by the community is 

sin(
π
6

) + sin(
π
3

) =
1
2

+
3

2
1

sin(
π
3

) =
1
2

sin(
π
3

) =
3

2



!11

changed or built upon, then the social constructivist community changes its beliefs about what is 

“true”, for example when Cantor explored the nuances of infinity (Barrow, 2006). As students 

make connections among their uniquely understood concepts, they must play an active role in the 

learning process. 

 Active. Since students interpret information in their own individual ways by connecting it 

to their own unique interpretations of prior knowledge, it is necessary for the student to be an 

active participant in the learning process (von Glasersfeld, 1987). According to constructivist 

theorists, learning is an active process, and just experiencing something without reflecting on it 

does not contribute significantly to learning. The learner must take an active role in order to 

develop, strengthen, or organize connections between previously understood concepts (Cobb et 

al., 1992; Confrey, 1990; Ernest, 2006; Greeno & Hall, 1997; von Glasersfeld). Since only the 

learner can know how the learner understands concepts, then only the learner can make 

connections between these understandings. The teacher can provide information for the student 

that enables the student to construct their own connections, but it is up to the student to take the 

initiative to actually connect the new information to the old knowledge and experiences. In 

addition to actively participating, the learner must also reflect on the experience. As the students 

construct a new concept, they must decide how it fits with their previously constructed 

knowledge (Confrey; von Glasersfeld). This reflection, decision, and the subsequent actions all 

require the student to be active. Every level of the learning process– receiving the information, 

processing it, reflecting on it, and presenting the interpretation– require an active learner. 

 Students’ knowledge structures do not spontaneously come together once their 

constitutional materials have been assembled (Ernest, 2006; von Glasersfeld, 1987). For 
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example, students who are aware that a full rotation of a circle is 2π radians and that 

trigonometric functions can be defined by different measures of this rotation must still reflect 

upon those ideas to realize that the trigonometric functions will be periodic. Even if a student 

acknowledges the existence of a connection between concepts without actively participating in 

the learning process, then the connection will be too weak to support deeper thought and future 

understandings. This view conflicts with one that is deeply rooted in tradition, that of a student as 

an empty vessel waiting to have knowledge poured into it by the teacher (Cohen, 2003). 

However, once a teacher has stated a concept, the students can only interpret that concept in 

terms of their prior knowledge, and if that prior knowledge has been formed by weak links 

between the foundational concepts, then the students will be unable to effectively make sense of 

the new concept. 

 Social constructivism has influenced the design of this research study. The critical stages 

were designed with the belief that students must actively connect their understandings of 

concepts such as the unit circle and algebraic representations of trigonometric functions. 

Additionally, the lesson plans were designed to include interactions between students, so that 

each learner would hear multiple perspectives and engage with the material in an explicitly social 

manner. 

Local Instruction Theory 

 A Local Instruction Theory can be used as a tool to help guide students to actively engage 

with a new concept. A LIT is a framework for designing lesson plans for a particular topic, such 

as single digit multiplication or geometric series (Gravemeijer, 1994; Gravemeijer, 1999; 

Gravemeijer & van Eerde, 2009). A LIT consists of critical stages of understanding for the topic, 
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an activity intended to guide students through the critical stages, and a theory as to why the 

activity will do so. In this section, the critical stages of a LIT are discussed in more detail, and 

examples are given of previous studies that developed LITs. 

 Critical stages are individual levels of understanding that the student must achieve to 

develop an understanding of the larger topic. These stages are fundamental to the learning 

process. That is, students who do not pass through all of the stages will not have developed a 

relational understanding of the material and perhaps not even an instrumental understanding. The 

critical stages may also have an optimized ordering. This could be the result of necessity: for 

instance, learners cannot notice that horizontal transformations behave non-intuitively before 

they have noticed how horizontal transformations behave. The ordering could also be intended to 

generalize some aspect of understanding: for example, moving from observations about the 

angles of a right triangle to observations about trigonometric operations on those angles. The 

critical stages are specific to the topic under investigation, but are generally applicable to 

students who are prepared to learn the topic. That is, the stages may be contingent upon some 

prerequisite knowledge, but this knowledge will not be classroom specific. Rather, it will be 

knowledge that is assumed to have been previously required in the curriculum.  

 To develop critical stages, a researcher familiar with the teaching and learning of the 

topic first conjectures a set of critical stages (Gravemeijer, 1994; Gravemeijer, 1999; 

Gravemeijer & van Eerde, 2009). These stages are based on the development and difficulties of 

the learning goals, which the researcher is familiar with through personal experience and a 

review of the literature. The researcher then tests and revises the critical stages by observing 

students developing their understandings of the learning goal. A lesson plan is developed based 
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on the critical stages, and this lesson plan is in turn enacted, analyzed, and revised. This cycle 

can be continued indefinitely, similar to a lesson study (Lewis, Perry, & Murata, 2006). The LIT 

is formed by the “finished” product of one of the cycles: a set of critical stages, a lesson plan 

informed by those stages, and a theoretical justification of the lesson plan. 

 The LITs that I developed for trigonometric identities and transformations can be grouped 

with existing studies of how students learn other trigonometric topics in order to develop a 

trigonometry curriculum. The critical stages of each LIT can be used to determine an ordering of 

topics: if the critical stages of one topic contain knowledge developed while students learn a 

different topic, then the latter must be placed before the former in the curriculum. The collection 

of LITs would also identify each subtopic that must be covered during the course of the 

trigonometry unit. Students may require, for instance, knowledge of how multiple 

representations of the trigonometric functions are related to each other. In addition, the lesson 

plans could serve as examples of how the critical stages may be applied in the classroom. These 

lesson plans could also be modified to reflect differences in teaching philosophy or classroom 

logistics. 

 An example of an LIT can be found in Larsen’s (2013) study of two students in their 

guided reinvention of core advanced algebraic concepts. Larsen found that the critical stages 

relied on students creating and organizing a notation for their thoughts. He designed tasks and 

questions intended to provoke students to think about formalizing their thoughts, including the 

implications that occur from their conceptions of the material to their conceptions of their 

notation (e.g. how identities arising from reflections and rotations of a triangle are represented in 

their written records) and from their notation to the material (e.g. how notation of a group 
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operation can be combined with conceptions of inverse and identity to simplify operations 

without physical manipulation).  

 An unsuccessful attempt to develop an LIT for commutative rings can be found in a study 

by Simpson and Stehlíková (2006). In this study, the teacher offered less guidance to the 

students, who were unable to connect the characteristics of an unfamiliar structure with known 

ring concepts and were therefore unable to progress through the proposed critical stages. The 

students were able to apply various concepts and techniques to the unfamiliar ring, but were not 

able to generalize or combine evidence into many productive deductions. It is possible that the 

students’ knowledge was too disconnected to apply to any but the most familiar situations, 

similar to the previously cited trigonometric studies of understanding. 

Representation Theory 

 In this section I will define representations and explain how I will use this construct in 

my LIT. Representations are the forms that we give to concepts; they are any things that stand in 

for any other things (Goldin & Kaput, 1996; Pimm, 1995; Wu & Puntambekar, 2012). In this 

way, representations can be thought of as symbols (Pimm). The representation is a signifier for 

some other signified concept. Epistemologically, symbol comes from two Greek words, !  

(BAH-loh), meaning “throw,” and "  (SOOM), meaning “together” (Liddell & Scott, 1889). 

Symbols “throw together” two concepts which become inextricably linked. One concept is the 

signifier, which is a written, vocalized, or otherwise expressed characterization of the signified 

concept. The signified concept is the idea that the signifier is intended to represent, including 

facets that are not made readily apparent by the signifier. For example, the word function 

βαλ λω

σ υμ



!16

signifies an extremely deep concept that is applicable to many fields, but this is not at all 

apparent from the word itself, or even its written definition.  

 In this study, representations were a useful tool for examining the connections that 

students made between concepts. These connections were used to create a model of how students 

connect concepts. These connections also served as the basis for the development of activities for 

the lesson plans that were designed to help guide students through critical stages. The 

constructivists argue that learners reason about new concepts in terms of other, known concepts; 

representations act as the media of that reasoning (Goldin & Kaput, 1996, p. 409). Social 

constructivism lends itself to the use of representations because of several similarities between 

how constructivists view learning and how representation theorists view the use of 

representations. For example, under representation theory: understanding is achieved by 

connecting representations; powerful representations are those that are connected to many other 

representations, and teachers must create models of how students think about and relate 

representations. 

 Goldin and Kaput (1996) divide representations into two types: external and internal. 

External representations are any observable phenomena that stand in for a represented idea, such 

as words, pictures, or diagrams. Internal representations are the ways that learners think about 

the underlying concept and its relationship to external representations. An internal representation 

of a concept includes the learner's beliefs, feelings, and attitudes about the concept, and the 

connections between that concept and other knowledge. The internal representations themselves 

are inherently unobservable, so teachers must model their interpretations of the students’ internal 

representations in order to respond in a way that will help lead the students towards deeper 
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understanding. Using this language, the external representation is the signifier aspect of the 

symbol, and the internal representation is the signified. The external representations are used to 

indicate the complete understanding that the students have of the concept: their internal 

representations. 

 Just as there are many facets of any concept, many different representations can be used 

for the same concept. For example, the sine function can be represented algebraically as " , 

graphically on the Cartesian plane, or dynamically as a y-value traversing the unit circle. Any 

individual representation will fail to capture the entirety of its signified concept, but each will 

have certain benefits. For example, the algebraic notation can precisely express ordered pairs of 

the function and concisely express the entire concept, while the graphical representation can 

simultaneously express every ordered pair of the sine function. This paper will use the language 

of Wu and Puntambekar (2012) and refer to the aspects of a concept that are emphasized by a 

particular representation as the affordances of that representation. 

Teaching Episode 

 The critical stages of a LIT must be tested and refined in a real classroom setting 

(Gravemeijer & van Eerde, 2009). In addition, these stages are accompanied by a lesson plan that 

exemplifies the guidance for these critical stages. To test the lesson plan, Gravemeijer and van 

Eerde recommend a teaching experiment (Cobb et al., 2003; Confrey & Lachance, 2000; Lesh & 

Kelly, 2000; Steffe & Thompson, 2000). This study had originally intended to perform a more 

rigorous confirmatory study by following the development of the critical stages with a full-scale 

teaching experiment. However, this study was focused on developing the critical stages rather 

than testing the lesson plan, so a teaching experiment was deemed excessively rigorous. 

sin(x)
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Nevertheless, a teaching episode was conducted and analyzed using a similar framework. In this 

section the relevant aspects of a teaching experiment are discussed. That is, the recommended 

observer who would be present in a teaching experiment will not be detailed, nor will teaching 

macroexperiments, data collection during lecture, or relations among student learning, teacher 

learning, and administrative learning. These are all vital aspects of a teaching experiment that 

may only be touched upon in this chapter. 

 A single teaching experiment research study is termed a teaching microexperiment 

(Gravemeijer & Cobb, 2006; Simon & Tzur, 2004). During a teaching microexperiment, a 

researcher makes hypotheses about student learning, creates a lesson plan intended to test the 

hypotheses, enacts the lesson plan during a teaching episode, and collects and analyzes data from 

teaching the lesson. The analyzed data is used to refine the lesson plan and generate new 

hypotheses, creating a cycle of research. This cycle is a teaching macroexperiment, or a 

Mathematics Teaching Cycle (Simon & Tzur). 

 The first phase of a teaching experiment includes all of the preparation leading up to the 

teaching episode. This begins with developing a hypothesis to be tested. Through literature and 

classroom experience (each possibly in the form of previous studies from a teaching 

macroexperiment), the researcher will develop a hypothesis about student learning that is 

appropriate to be studied in a live classroom setting. For example, studies on students’ classroom 

interactions, or an instructors’ classroom management are best served with data from a teaching 

episode. The researcher then devises a learning goal and lesson plan intended to produce data on 

the hypothesis. This lesson plan will include a theory of learning and how it may be applied to 

the classroom context, activities to help students achieve the lesson goals that are justified by the 
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learning theory, potential misconceptions that students may develop, and contingencies to 

contend with foreseeable difficulties. 

 The implementation of the lesson plan is the second phase of the teaching experiment. 

For reasons that are only sometimes predictable, lesson plans cannot be counted on to proceed as 

intended. For this reason, Steffe and Thompson (2000) recommend that the researcher be well-

experienced in teaching the subject matter. The actions that the instructors take in altering their 

lesson plans are influenced by their preparation for the teaching episode, including their research 

hypotheses. These interactions provide data on the hypotheses, so they are recorded for analysis. 

The entire lesson plans are video recorded in an attempt to log as much of the classroom 

interaction as possible, and other researchers help by validating the primary researcher’s 

observations. 

 The teaching microexperiment concludes with an analysis of the data. The classroom 

interactions, as well as any additional data collected such as interviews, questionnaires, or 

assessments, is analyzed in the context of the research hypotheses. The data analysis provides 

information to revise the activities, allowing them to be discarded, refined, or extended to 

generate new research hypotheses. These hypotheses may be tested in the live classroom setting 

of a teaching experiment to continue the teaching macroexperiment. In the context of a LIT, this 

involves testing how effectively the lesson plan facilitates students’ paths through the critical 

stages and revising the lesson plan accordingly. The procedures for analysis of the teaching 

episode are discussed in detail in the Methods section. 
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Literature Review 

 In this section, the relevant literature regarding students’ understanding of trigonometry, 

identities, and graphical transformations is reviewed. In particular, it will be noted how 

representations were used in these studies. The literature suggests that students’ understanding of 

trigonometry is positively affected by teachers using a multitude of representations while 

consistently and explicitly describing the connections between these representations.  

 Learning trigonometry. There are several studies of how students learn the entire 

trigonometry unit (Challenger, 2009; Fi, 2003; Weber, 2005), as well as how they learn particular 

foundational pieces such as angle measure (Moore, 2013) or the definition of the sine function 

(Demir & Heck, 2013; Peterson, Averbeck, & Baker, 1998; Wood, 2011). However, a review of 

the literature has not revealed any studies of how students come to understand trigonometric 

identities or transformations. In preparation for developing the current study, literature was 

reviewed regarding how students learn trigonometry as a whole, and how students learn 

identities and transformations in non-trigonometric contexts. The trigonometry studies indicate 

that students are developing poor understandings of trigonometry. The studies related to 

identities and transformations showed techniques and activities that appear to be beneficial to 

students learning these topics. While discussing these studies, it will be noted how students’ 

learning may have been affected by the instructors’ and students’ uses of representations. 

 Challenger (2009) used concept maps and interviews to examine British students’ 

progress as they learned trigonometry in an advanced secondary school class. After the students 

had already successfully completed a lower-level trigonometry unit, Challenger found that the 

students entered the advanced course with an operational understanding of trigonometry 
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characterized by identifying traits in the task description and applying algorithms to achieve a 

single, numerical answer. One of the instructors for the advanced course taught with a focus on 

representing the trigonometric functions in a multitude of ways and consistently noting how each 

representation denotes the same idea in different ways. Using Multiple External Representations 

(MERs) in this way, consistently presenting them and explicitly noting their connections, has 

been shown to be beneficial for students in past studies (Eitel, Scheiter, & Schüler, 2013; Lesh, 

Post, & Behr, 1987; Rau, Aleven, & Rummel, 2014; Wu & Puntambekar, 2012). The other 

instructor taught primarily with algebraic representations, only bringing in graphical 

representations briefly and sparingly to prove a particular point.  

 The students in Challenger’s (2009) study who were taught using frequent, explicitly 

connected sets of multiple representations were each assessed to have developed stronger 

understandings of trigonometry than the students who were primarily taught using algebraic 

representations. The assessments included graded classroom assignments as well as interviews 

and concept maps implemented by Challenger. The former set of students demonstrated that they 

could choose representations appropriate to their tasks and could translate between 

representations as needed, which are important mathematical skills. 

 In contrast, Challenger (2009) noted that the students who were taught primarily with 

algebraic representations continued to understand the different trigonometric representations 

separately. These students could perform familiar tasks successfully when they were given a 

proper representation, but they did not demonstrate that they understood how the representations 

were connected to each other well enough to be able to comfortably change between different 

representations depending on the task requirements. They could produce the graphs for each of 
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the trigonometric functions, but they could not identify how changes to one representation would 

affect another or solve problems for which it was necessary to glean information from multiple 

representations. The students in this study also generally did not show an ability to connect their 

knowledge of identities to any other piece of knowledge. With one exception, they were unable 

to express ideas that connected identities to any concept other than the trigonometric functions 

present in the identity, nor could they apply their knowledge of identities to any situation that 

was not similar to problems presented in lecture.  

 These results support previous comparative experiments that indicate that students who 

are provided with MERs outperform those who are only given single representations (Eitel et al., 

2013; Rau et al., 2014). MERs have the benefit that different representations may have different 

affordances. For example, the graph of a sinusoid more prominently illustrates its zeros, while its 

algebraic representation more clearly shows its amplitude and phase shift. In comparative 

experiments, having access to representations with appropriate affordances has been shown to 

aid students' problem solving (Kendal & Stacey, 1998; Schnotz & Bannert, 2003). Also, students 

who were familiar with MERs were able to choose the one that had the most applicable 

affordances for a given situation (Lesh, Post, & Behr, 1987; Weber, 2008; Wu & Puntambekar, 

2012). 

 In Australia, Kendal and Stacey (1998) compared the abilities of secondary school 

students receiving two different styles of trigonometry instruction. One group learned the basics 

of trigonometry through right triangles; the other learned through the unit circle. Clouding the 

issue is the fact that that students learning through the unit circle method were taught using only 

first quadrant angles and a particular algorithm for scaling the unit circle and orienting the 
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triangles within it. These students were not taught to evaluate trigonometric functions using the 

unit circle, but rather were taught how to apply a triangle trigonometry algorithm to a unit circle 

context. Ultimately, these students were applying a similar algorithm to the tasks but with an 

added layer of interpretation.  

 Kendal and Stacey (1998) assessed each program’s ability to instill in students a 

foundational understanding of the trigonometric functions by testing the students’ abilities to find 

unknown lengths of right triangles. However, rather than assessing the students’ understanding of 

trigonometric functions, their study seems to assess students’ abilities to apply the functions to a 

particular problem context. This is more akin to a study by Schnotz and Bannert (2003) in which 

the data indicates that students who are presented with a representation that has affordances 

beneficial to the problem task were more likely to be able to solve the problem than students who 

were not provided with any representation, while students who were given a representation with 

inappropriate affordances were less likely to be able to solve it. In Kendal and Stacey’s study, the 

students who had learned the algorithm with triangle representations were better able to solve 

these problems than students who had learned the circle scaling algorithm.  

 In a comparative experiment conducted during an undergraduate trigonometry unit in the 

United States, Weber (2005) compared students’ understandings of the trigonometric functions 

after having been taught in one of two ways: one class was taught in a traditional definition-

theorem-proof lecture format, while students in the other class were encouraged to view each 

representation both in its given context as well as describing a process. For example, "  

as an algebraic representation provides the output of the sine function for an input "  radians 

greater than " ; it also describes the process of constructing a radius of angle "  radians on 

sin(x + π)

π

x (x + π)
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the unit circle and measuring the y-value of the endpoint of that radius. Students in this class 

were consistently asked to connect each trigonometric representation to a definition of the 

trigonometric functions. The students who were prompted to connect their work back to the 

definitions were assessed by Weber to have a better understanding of trigonometry than their 

counterparts on a test for conceptual understanding of trigonometry. 

 Even preservice mathematics teachers who have passed a course that covered 

trigonometry have been seen to struggle with relating different representations of trigonometric 

functions. Fi (2003) examined preservice teachers’ pedagogical and subject content knowledge 

using concept maps, interviews, card sorting, and a set of trigonometric problems. He found that 

the preservice teachers had learned trigonometry in an instrumental manner and had difficulty 

finding connections among its various aspects. While his study was on students’ understanding 

of a trigonometry unit as a whole, there was a section on identities and transformations that 

showed that the preservice teachers had misconceptions in these areas and had difficulties 

deriving and applying any identities except for the Pythagorean identity. The preservice teachers 

also could not demonstrate an understanding of the various effects of graphical transformations, 

including the counterintuitive properties of horizontal transformations. However, Fi’s study did 

not examine the reasons for these particular difficulties. 

 There are several studies exhibiting positive techniques for teaching particular topics in 

trigonometry. Borba and Confrey (1996) describe a rubber sheet method of teaching function 

transformations, in which the student is asked to visualize graphical representations as being 

made of two transparent, malleable rubber sheets. One sheet contains the axes, while the other 

has the curve of function outputs. Horizontal transformations are considered to act on the sheet 
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of axes, while vertical transformations act on the sheet with the curve. By considering 

transformations of the function input as acting on the inputs in the graphical representation (the 

x-axis), the non-intuitive properties of horizontal shifts and stretches are resolved. For example, 

shifting the axes to the right has the same effect as shifting the curve of outputs to the left.  

 Learning with representations. Two limitations with the rubber sheet method are that it 

is difficult to visually represent the acts of stretching axes and curves without a dynamic 

computer program, and it still does not offer any clues as to why the horizontal transformations 

should be applied in seeming defiance of the order of operations. For the latter, I will offer my 

own contribution in the methods section; for the former, if the technology is available, teachers 

may want to consider allowing students to use dynamic, interactive technologies. Dynamic and 

interactive representations have been shown to provide benefits to students’ learning (Karadag & 

McDougall, 2009; Moreno-Armella, Hegedus, & Kaput, 2008 Özdemir & Ahvaz Reis, 2013; 

Zengin, Furkan, & Kutluca, 2012). Moreno-Armella, Hegedus, and Kaput examined the 

historical evolution of representations, from static, inert (non-interactive) representations such as 

textbooks through dynamic, continuously interactive representations. The authors argue that this 

evolution has generally resulted in better representations, as the new dynamic, interactive 

representations can be manipulated by the learner to show different situations as needed. 

 Dynamic representations can provide additional scaffolding for students as they attempt 

to visualize relationships between representations. For example, a graph of the cosine function 

presented alongside a representation of the unit circle with a radius whose endpoint is labeled 

with its value in terms of cosine makes a clear connection between the unit circle definition of 

cosine and a single point on the graph of cosine. Using these representations, it is up to the 
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student to extrapolate how the rest of the graph results. However, if the unit circle representation 

dynamically shows the radius rotating while the graph of cosine is drawn simultaneously, then 

instead of a single explicit point of connection, there are an infinite number of connections. With 

the additional connections to reference, students could be less likely to develop certain 

misconceptions or begin work on unproductive paths (Salomon, 1993). For example, students 

working with the static representations may need to be reminded that we measure angles 

counterclockwise from the positive x-axis, while the dynamic representation models this 

automatically. In the latter scenario, the student may be led to wonder about the rotation direction 

and how it would be represented, while a student in the former may simply worry about which 

direction is correct.  

 Although the literature review has revealed studies where static representations such as 

triangles, equations, or circles are used to teach trigonometry, these representations seem to do a 

poor job of conveying the functional nature of trigonometric operations (Kendal & Stacey, 1998; 

Weber, 2008). For example, a representation of the wrapping function (where the real number 

line is drawn wrapped around a unit circle and each number corresponds to an arc length and 

subtended angle) implies that this is a function, but learners still don't necessarily see it as such 

after traditional instruction (Tuna, 2013). In contrast, the superiority of dynamic representations 

has been demonstrated numerous times (Özdemir & Ayvaz Reis, 2013; Zengin, Furkan, & 

Kutluca, 2012). 

 Representations are further improved by being made interactive. Interactive 

representations provide different responses based on how they are interacted with. For example, 

a scientific calculator provides the solutions to various computations given as inputs. Inert 
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representations provide a single presentation of the concept for students to interpret. By contrast, 

interactive representations provide a feedback cycle (Goldin & Kaput, 1996; Martinovic & 

Karadag, 2012). The forms of the presentations are limited – the students’ by how they can input 

information into the representation, and the representations’ by how it has been designed to 

provide outputs – but the students may still continue to alter their presentations within the 

representation’s parameters in order to refine their conceptions. For example, in the previously 

discussed representations linking the unit circle definition of the cosine function to its graph, 

consider if students were able to highlight points of the graph and be presented with the 

corresponding angle on the unit circle. Students using such a representation could explore the 

relationships between the representations and possibly discover some trigonometric identities. 

Ainsworth (2006) demonstrated that multiple representations that are linked in this way are 

helpful for students’ learning. The extra scaffolding provided by these types of representations 

and the immediacy of the effects of altering representations aid students in noticing the 

relationships between them.  

 Dynamic, interactive representations have been successfully used to aid students’ learning 

in trigonometry classrooms (Kessler, 2007; Rosen et al., 2005; Sokolowski & Rackley; 2011; 

Wilhelm & Confrey, 2005; Zengin et al., 2011). Studies by Kessler, by Rosen and colleagues, 

and by Wilhelm and Confrey examined the effects of providing students with such 

representations for trigonometric applications to the study of sound waves. It is possible that 

these lessons were effective because the applications allowed students to make additional 

connections among their experiences with the application, the external representations used in 

class, and their own understandings of the underlying concepts. Some researchers also theorized 
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that students were more willing to actively engage with concepts that connect to their 

experiences out of school (Douglas et al., 2008; Kessler; Rosen et al.). 

 Although these studies show dynamic, interactive representations to be generally helpful, 

there is a danger that they can be used to automatically perform tasks that students should be 

reflecting on. While technology is helpful for students when it is used, among other ways, to 

perform tedious tasks at which students are proficient (Ellington, 2003), it should not be used to 

replace reasoning. In a study by Rosen and colleagues (2005), students were asked to use a 

computer program to solve trigonometry problems. These students were able to complete the 

tasks successfully, but when they were later asked to reflect on why their answers were true, they 

were unable to justify their responses other than to say that the computer confirmed that they 

were correct. 

 In contrast, Zengin and colleagues (2011) and Sokolowski and Rackley (2011) provided 

dynamic, interactive representations for students that showed waves on a string without an 

application for greater context. In these studies, as well as one by Wilhelm and Confrey (2005), 

students interacted with computer programs by exploring, hypothesizing, strategizing, testing, 

and generalizing their thoughts about the sinusoidal functions. Through these reflective 

interactions, the class was able to develop several properties of trigonometric functions on their 

own as opposed to accepting those properties as true without examination. In each of these cases, 

the authors describe students performing well on assessments after receiving these lessons and as 

having the ability to justify their work, indicating that these representations were helpful to the 

students’ construction of knowledge for trigonometric topics. 
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 Learning identities and transformations. Tsai and Chang (2009) studied students 

learning algebraic binomial identities through clothes-matching tasks supplemented with 

geometric representations. By finding the number of potential combinations of outfits, students 

were able to find patterns in the results that they had not predicted given just the algebraic 

representations. There was a common misconception with the algebraic representations that 

exponents would distribute across a binomial, and there were other distributive mistakes that 

were often made in these representations. When working with actual articles of clothing prior to 

the algebraic representations of this applied situation, the students were less likely to make these 

mistakes. This proficiency continued as the students were able to apply the properties that they 

had learned to subsequent algebraic manipulations as well as extend their ideas to trinomials. 

 On the topic of transformations, several studies have noted that students have difficulties 

justifying the effects of horizontal transformations (Barton, 2003; Borba & Confrey, 1996; 

Faulkenberry & Faulkenberry, 2010; Hall & Giacin, 2013). However, few have had much to 

contribute beyond asking students to remember that the horizontal transformations behave 

differently than the vertical. Two methods have been offered: an algebraic method from Hall and 

Giacin, and the rubber sheet method from Borba and Confrey. 

 Hall and Giacin (2013) describe an activity in which they guide a class of students 

through an examination of ordered pairs of transformed functions. The students are generally 

capable of grasping the vertical transformations, however there are the noted difficulties with 

horizontal ones. The authors guide the students through a u-substitution so that, for example, the 
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transformed ordered pair "  could be rewritten as " . An analogous vertical 

transformation would be "  rewritten as "  with no substitution necessary. 

 This method has the benefit of providing a representation where the order of horizontal 

representations is intuitive. However, it does have the drawback that it may not itself be intuitive. 

These substitutions are only made for transformations of the input, and students may not make 

the connection that "  represents the horizontal transformations that it is intended to. 

Students who have learned transformations instrumentally may misinterpret this new 

representation and graphically undo their algebraic work to arrive at the mistake that the authors 

hoped to avoid. Students viewing the subject for the first time may graph the function on the " - 

and " -axes and be unable to translate their work to the " - and " -axes, which would leave the 

students with an incorrect graph. 

 Borba and Confrey (1996) use what they refer to as the rubber sheet method to examine 

horizontal transformations. In this method, students are instructed to consider the axes and the 

curve of the function separately. Each can be considered as existing on a clear rubber sheet that 

can be stretched, reflected, and shifted without affecting the other rubber sheet. The vertical 

transformations affect the outputs of the function and therefore the curve of the function on the 

graph. These transformations are considered in the familiar manner in this method. Horizontal 

transformations, on the other hand, affect the axes, which move together since the ! -axis is 

conventionally placed at " . When the axes are transformed, they appear to have the opposite 

transformative effects upon the graph. For example, stretching the axes horizontally by a factor 
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of two (then rescaling to be proportional to the units of ! ) appears to make the graph shrink, and 

shifting the axes to the left has the same effect as shifting the graph to the right.  

 Borba and Confrey’s (1996) method may be more intuitive than Hall and Giacin’s (2013) 

method. The latter requires the introduction of another representation, the ordered pair, while the 

former stays with the graphical representation. It is also an intuitive notion that the 

transformations of a function’s input should affect the axes of the graph, since those represent the 

real number line of inputs. However, while the rubber sheet method does an adequate job 

explaining why the horizontal transformations have the effects that they do, it does not show why 

the order in which these transformations must be applied is counterintuitive. Stretching then 

shifting the axes still results in the wrong graph, despite that being the intuitive way to apply the 

transformations. 

 In this chapter, it has been argued that there are deficiencies in trigonometry education. 

Specifically, students leave trigonometry classes with poorly connected conceptions of 

trigonometric ideas, including trigonometric representations. It has also been argued here that 

social constructivism and representations will be useful tools in developing a LIT to help 

students learn trigonometric concepts well enough to justify them. 

Critical Stages of Understanding for Trigonometric Identities 

 Based on the review of the literature and the researcher’s experience teaching 

trigonometry, the following critical stages have been hypothesized for learning trigonometric 

identities: 

y
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0. Prerequisite Knowledge. Before learning trigonometric identities, students must possess an 

understanding of several concepts, notably algebraic and graphical representations of functions, 

and definitions of identity and the trigonometric functions. 

1. Notice a change in the algebraic representation. Students must recognize that there has been a 

change to the algebraic representation of the “parent” function. In order to understand how the 

function has been affected, the student must first identify that there has been a change to the 

original function. At this stage, students only need to notice that there is a change. 

2. Change to a representation with better affordances. The algebraic representations of 

trigonometric functions do not have good affordances for noticing the effects of these changes. 

Examining the effects in non-algebraic representations is a consistent theme in the literature 

(Barton, 2003; Borba & Confrey, 1996; Confrey, 1994; Fauleknerry & Faulkenberry, 2010). 

3. Notice that the changes to the algebraic representation correspond to changes in the other 

representation(s). Similar to stage one, the first step in classifying how these changes affect the 

trigonometric functions is noticing that there is some kind of correspondence between the 

representations. Tasks from the literature (Axler, 2013; Barton, 2003) ask students to identify a 

pattern that exists among a sequence of pairs of algebraic and graphical representations. This 

assumes that the students notice that there is a correspondence between the representations that 

could give rise to a meaningful pattern. 

4a. Notice that using the opposite input has predictable outcomes. Using graphical 

representations, these transformations are viewed as horizontal reflections. In the case of cosine, 

this has no effect on the resulting graph, but for sine and tangent, the effects are the same as 

having undergone vertical reflection. 



!33

 With the unit circle, a negative input is considered as an angle measured clockwise from 

the positive x-axis rather than counterclockwise. Cosine, given by the " -value of the endpoint of 

the radius, remains unchanged as the radius still oscillates between !  and !  in the same fashion. 

The " -values of the endpoint, however, take on the opposite values. Combining these two results 

with the tangent identity indicates that tangent will also take on opposite values under this 

transformation. These realizations, along with the rest of those in this stage, are learning goals 

for identities, and are thus necessarily critical stages. 

4b. Notice that adding multiples of π to the input results in predictable outcomes. Students can 

use the graphical or circle representations to find how adding multiples of π to the input affect 

the values of the functions. In the graphical representations, these transformations correspond to 

horizontal shifts. Since tangent has period π, these transformations will result in identical graphs. 

Sine and cosine each have period 2π, so even multiples will also result in identical graphs. 

Furthermore, shifting by odd multiples of π will result in a graph that is perfectly out of phase 

with the original, or equivalently, a vertical reflection of the parent function. 

 If students use the unit circle to examine these transformations, they would find that the 

radius has been rotated either back to the starting position (for even multiples of π) or opposite 

the starting position (for odd multiples). For the former transformations, the trigonometric 

functions will produce the same values since the endpoint of the radius is in the same location; 

for the latter, since the beginning and ending radii are symmetric through the origin, their 

endpoints will have opposite " - and " -values, resulting in opposite cosine and sine values, but the 

same tangent values. 

x
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5. Notice that !  and ! . It was hypothesized that in order 

to justify the cofunction identities, students would have to pass through an intermediate stage of 

understanding in which they recognized that the sine and cosine functions produce the same sets 

of outputs but for a set of inputs shifted by " . These proto-cofunction identities are not 

particularly useful on their own, but they were hypothesized to be useful for developing the 

cofunction identities. Students at this stage will have noticed connections between the sine and 

cosine functions and the angle " . Later, these connections will be synthesized into their more 

elegant, conventional forms. 

6. Reflect upon the relationships between cosine, sine, and !  in a right triangle representation. 

In a right triangle, one of the angles is "  radians, meaning that the sum of the other two angles is  

" . So, if one of the angles is x radians, the other will be "  radians. Furthermore, the leg 

that is opposite one angle is adjacent to the other. Therefore, the sine of one angle will be equal 

to the cosine of the other and vice versa. Blackett and Tall (1991) used tabular data to give 

students “early insight into the complementary relationship between the increasing table of sines 

and the decreasing table of cosines” (p. 147). These tables were generated by examining right 

triangles in which the acute angles were multiples of ten degrees. 

7. Generalize cofunction identities using another representation. The literature on trigonometric 

identities that was reviewed has stopped short of exploring students’ conceptions of how this 
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identity can be extended beyond acute angles. It is reasonable to hypothesize that students must 

change to a representation other than right triangles in order to justify that the cofunction  

identities hold for non-acute angles. These stages are presented in Figure 1. 

Figure 1. Identities critical stages
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Critical Stages of Understanding for Trigonometric Transformations 

 Based on a review of the literature and the researcher’s experience teaching trigonometry, 

the following critical stages have been hypothesized for learning transformations of 

trigonometric functions: 

0. Prerequisite Knowledge. Before learning trigonometric transformations, students must possess 

an understanding of several concepts, notably algebraic and graphical representations of 

functions, and definitions the trigonometric functions. 

1. Notice a change in the algebraic representation. Students must recognize that there has been a 

change, or transformation, to the algebraic representation of the “parent” function. In order to 

understand how the function has been affected, the student must first identify that there has been 

a change to the original function. At this stage, students only need to notice that there is a 

change. 

 In previous studies of transformations, this stage has sometimes been implicit, as in 

Barton’s (2003) introductory task: “Sketch the following family of curves… " ; 

" ; " ; " .” It is assumed that the students will notice that the 

representation has been changed. On the other hand, Borba and Confrey's (1996) example of a  

typical introductory task is “If "  is changed to " , how does the graph of the 

transformed function change” (p. 320)? In this case, the changes to the representations are 

explicitly remarked upon, however they are not the main focus of the problem. These examples 

indicate that the change must be noticed before further work can be accomplished. 

2. Change to a representation with better affordances. The algebraic representations of 

trigonometric functions do not have good affordances for noticing the effects of transformations. 

y = x2

y = (x − 1)2 y = (x − 2)2 y = (x − 3)2

y = x2 + 5 y = 2x2 + 5
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Examining the effects in non-algebraic representations is a consistent theme in the literature 

(Barton, 2003; Borba & Confrey, 1996; Confrey, 1994; Fauleknerry & Faulkenberry, 2010). 

3. Notice that changes to the algebraic representation correspond to changes in the other 

representation(s). Similar to stage one, the first step in classifying how these changes affect the 

trigonometric functions is noticing that there is some kind of correspondence between the 

representations. Tasks from the literature (Axler, 2013; Barton, 2003) ask students to identify a 

pattern that exists among a sequence of pairs of algebraic and graphical representations. This 

assumes that the students notice that a correspondence between the representations exists and 

that this correspondence could give rise to a meaningful pattern. 

4a. Classify changes to the algebraic representation as addition or multiplication. 

4b. Classify changes to the algebraic representation as affecting the input or the output of the 

function. Stage four involves the beginning of classification of transformations. Identifying the 

different ways in which the algebraic representation has been changed is a way to begin that 

process. There are other ways to classify algebraic transformations (such as those with positive 

or negative numbers), but I don’t expect it to be critical for students to be that detailed in their 

classifications. 

 These classifications fit what Confrey (1994) refers to as the template approach to 

teaching transformations: classifying the effects of " , " , " , and "  as a function "  is transformed 

to " . These classifications are one goal of tasks such as Barton’s (2003) that asks 

students to sketch families of curves. They also serve as the basis for more sophisticated 

methods. 

4c. Classify changes to the graphical representation as shifting or stretching (or reflecting). 

a b c d f (x)

(a)f (bx + c) + d
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4d. Classify changes to the graphical representation as horizontal or vertical. Just as students 

notice that algebraic transformations can be classified as acting on the input or the output of the 

function, or as occurring through addition or multiplication, the graphical transformations can be 

classified as acting horizontally or vertically, or as shifting, stretching, or reflecting. Students 

may go so far as to classify the graphical transformations as rigid (shift) or proportional (stretch, 

shrink, or reflect) in order to have an equal number of types of algebraic and graphical 

classifications without singling out negative multiplication. However, it is not expected that 

students will need to make this distinction to develop a sufficient understanding. 

 Examining correspondences between algebraic and graphical representations may be 

used as a catalyst for classifications. This is another goal of a series of questions like Barton’s 

(2003) that asks students to examine the correspondences between representations for a variety 

of transformations. These classifications may be interpreted in different ways, but they are 

present in all of the reviewed literature on graphical transformations. They are also present 

explicitly in the Common Core State Standards in the form of comparing “transformations that 

preserve distance and angle to those that do not” (p. 76). 

(4e. Classify changes to the unit circle as affecting the circle or the angle of the radius.) 

(4f. Classify changes to the unit circle as positioning or scaling.) If students choose to approach 

the transformations through the unit circle representation, they may classify transformations of 

sine and cosine as affecting either the circle (or equivalently the radius position or length) or the 

angle of the radius. The size of the circle could be changed to correspond with changes in 

amplitude, and the circle could be translated to account for what will be classified as vertical 
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shifts in the sine or cosine graphs. Horizontal transformations correspond to changes to the 

radius’ starting position and velocity.  

 The review of the literature has not revealed any studies including transformations of the 

unit circle, but if students choose to use this representation, then they should make the same sorts 

of classifications at this juncture as they would in other representations. 

5a. Classify addition as shifting (or translating the circle and rotating the radius). Students must 

examine the relations among the representations of the trigonometric functions. Students may 

notice that addition and subtraction in the algebraic representation correspond to rigid shifts in 

the graph. If students chose to transform the unit circle to understand the effects of the algebraic 

transformations, they could find that addition to the output could be represented by translating 

the graph vertically (for sine) or horizontally (for cosine), while addition to the input could be 

represented by changing the starting angle for the radius as it rotates. 

 The classifications of stage five are present in each of the reviewed studies on 

transformations. The studies differ in their methods of using these classifications, but a 

representative sentiment (that also begins examining stage seven – counterintuitive horizontal 

transformations) is offered by Barton: “I want my students to make the crucial connection that 

the inclusion of the "  factor moves the curve a units in the positive direction” (p. 13). 

While the “crucial connection” may be that this shift is not in the intuitive direction, that assumes 

that the student has made a previous connection that subtracting a does in fact cause a shift.  

5b. Classify multiplication as stretching (or changing the radius of the circle and the speed of the 

radius). Students may also notice that multiplication and division in the algebraic representation 

correspond to a stretch in the graphical representation. Because of the counterintuitive nature of 

(x − a)
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the horizontal transformations, students cannot further distinguish between stretching and 

shrinking without parsing the types of transformations too finely for this stage. If students use the 

unit circle, they may find that they could represent multiplication by either scaling the size of the 

circle or the speed of the radius. 

(5c.) Classify negative multiplication as reflection (and the orientation of the circle or the 

direction of the radius’ rotation). Students may also feel it necessary to classify negative 

multiplication as reflection. It should not be critical that students make this distinction, but 

neither should it be critical that students view reflection as a type of stretch in order to develop a 

satisfactory understanding of transformations and identities. With time, students may come to 

view stretching, shrinking, and reflecting as part of the same continuum of transformations, but 

the important aspect of this stage is connecting multiplication with stretching. 

5d. Classify transformations of the input of the function as horizontal (and affecting the radius in 

the unit circle). As students transform the input of the function, the graph will be affected in the 

direction of the axis of inputs, the horizontal axis. In the unit circle, the inputs of the 

trigonometric functions are represented as the radii, so that is what these transformations affect. 

5e. Classify transformations of the output of the function as vertical (and affecting the circle of 

the unit circle representation). The transformations of a function’s output will graphically affect 

that function along the axis of the outputs, the vertical axis. On the unit circle, the outputs of the 

cosine and sine function are given by the " - and " -values of the endpoints, so these 

transformations must transform the endpoints of the radii (i.e. the circle itself).  

6. Recognize that these graphical transformations affect the entire graph. None of the 

transformations shift, stretch, or reflect only a piece of the graph. This means that 

x y
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transformations have predictable effects on the entire domain or range. This stage is implicit in 

many studies of transformations, such as when Lando and Lando (1977) constructed a sinusoid 

modeling temperature annually and asked students to find the predicted temperatures for future 

dates. These predictions would not be possible to make if the transformations did not affect the 

entire function. Explicit evidence of this stage in student work can be seen in Borba and 

Confrey’s  (1996) case study, when the student, describing the effects of transforming "  to 

" , said to “take the whole graph paper and stretch it out…” (p. 330). 

7. Notice that the horizontal transformations act counterintuitively. Students may approach the 

topic of transformations believing that any positive operation (or any operation greater than one) 

would move the graph upwards, rightwards, (or make it larger), while negative operations (or 

operations between zero and one) would move the graph downwards, leftwards, (or make it 

smaller). However, the horizontal transformations do not act in this way. This is likely what 

Barton (2003) is referring to in the quote mentioned earlier: “I want my students to make the 

crucial connection that the inclusion of the "  factor moves the curve !  units in the positive 

direction” (p. 13). Borba and Confrey (1996), Faulkenberry and Faulkenberry (2010), and Hall 

and Giacin (2013) believed this connection to be crucial enough to devote their studies to 

examining ways to explain this counterintuitive behavior.  

8. Notice the effects that the transformations have on the period and phase of the functions. 

Students should notice that horizontal stretches affect the periods of the functions. Mutiplying by 

a factor of absolute value greater than one results in a shorter period, while factors of absolute 

value less than one lengthen the period. Horizontal shifts, meanwhile, result in a change of phase 

unless they are an integer multiple of the period in length. Since the literature review did not 

y = x

y = 2x
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reveal any studies on transformations of periodic functions, I do not have evidence from prior 

work. However, it can readily be seen that transformations affecting the period and phase of a 

trigonometric function have important effects in engineering applications (Kuttruff, 1973; 

Rigden, 1977; Wilhelm & Confrey, 2005). 

9. Recognize that the order in which transformations are applied sometimes results in different 

graphs or outputs. Students must notice that using the same set of transformations does not 

always result in the same graph or numerical value if the transformations are not applied in the 

same order. Students are familiar with the fact that the order in which operations are applied can 

have an effect on the result, and they must apply this reasoning to functions. Hall and Giacin 

(2013) recommend a combination of algebraic and graphical representations to familiarize 

students with this fact. 

10. Recognize that it matters when a rigid and proportional transformation are combined. Since 

all of the proportional transformations have an axis line at their center, it affects the final output 

if the function is shifted in relation to the axes. Furthermore, two transformations of the same 

type may either be simplified into a single transformation (e.g. stretching vertically by a factor of 

two and reflecting vertically may be reduced to a vertical stretch by a factor of negative two), or 

may affect the function along different axes. In the latter case, the transformations will not affect 

each other, as addressed in the following critical stage.  

11. Recognize that the order only matters between transformations in the same direction. Given a 

mix of horizontal and vertical transformations, the order of horizontal transformations matters, 

and the order of vertical transformations matters. However, the order between horizontal and 

vertical transformations does not matter. This can be justified graphically by noticing that 
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transforming a graph along one axis will not affect its position relative to the other axis. 

Therefore, transformations along the latter axis may be carried out before or after those on the 

former.  

 One of the strengths of Hall and Giacin’s (2013) algebraic horseshoe method – in which 

the transformation process can be modeled with a diagram where transformations of the " - and " -

variables are viewed vertically while the function effect bridges the two horizontally – is that the 

horizontal and vertical transformations are somewhat separated from each other in the algebraic 

notation. This may help students recognize that these transformations may take place in either 

order. 

12. The combination of horizontal transformations behaves counterintuitively. Contrary to the 

order of operations, additive horizontal transformations are applied before multiplicative 

horizontal transformations. Confrey (1994) notes that students have been “totally perplexed by 

the result” (p. 222). The horseshoe method addresses this by unpacking the horizontal 

transformations with a substitution before applying the function. The unpacked version of the 

input shows that the order of horizontal transformations will be counterintuitive for the same 

reasons that other aspects of horizontal transformations were.  

13. Consider horizontal transformations individually in a representation with better affordances. 

The algebraic and graphical representations do not emphasize why the horizontal transformations 

act the way they do. Teachers often simply tell students to remember that these transformations 

act non-intuitively (Borba & Confrey, 1996). By considering horizontal transformations with a 

substitution in the algebraic representation (Hall and Giacin, 2013), as transforming of the radius 

of the unit circle, or as transforming the coordinate axes (and not the curve of the graph) (Borba 

x y
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& Confrey, 1996; Faulkenberry & Faulkenberry, 2010), students will have the opportunity to see 

the process by which intuitive transformations in these representations result in the 

counterintuitive effects in the graphical transformation.  

 In the algebraic representation, the new domain is found by unpacking the horizontal 

transformations, which results in the domain being transformed by the inverses of the additive or 

multiplicative transformations. In the graphical representation, since the transformations are 

affecting the inputs of the function, they should affect the inputs of the graph: the axes. For 

example, a horizontal stretch by a factor of two would double the distance of the unit measure. 

This transformation would affect the axes, and not the curve of the graph. Therefore, if the graph 

were rescaled, the effect would be the same as if the graph had been horizontally shrunk by a 

factor of two. On the unit circle, the starting position and speed of the radius can explain the 

starting position and frequency of the graph. 

14. Consider the order of horizontal transformations in a representation with better affordances. 

To see the order of horizontal transformations behave intuitively, students may use either " -

substitutions in the algebraic representation to consider the domain of the function (Hall & 

Giacin, 2013), or the unit circle representation. Transforming the axes of the graph in the order 

prescribed by the order of operations does not, however, result in the correct graph. 

 In the algebraic representation, the new domain is found by unpacking the horizontal 

transformations, which results in the domain being transformed first by the inverse of the 

additive transformation and second by the inverse of the multiplicative transformation. In the 

unit circle, where the additive horizontal transformations affect the starting position of the radius 

and the multiplicative transformations affect the speed, it is necessary to consider the former 

u
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before the latter; one must place the radius in a starting position before setting it to move at a 

certain speed. These critical stages are presented in Figure 2. 

Conclusion 

 This chapter has described the foundational theories and hypotheses upon which this 

study is established. Social constructivism is the theory of learning that was used to hypothesize 

the critical stages of understanding present in a LIT for trigonometric identities and 

transformations. These sets of critical stages have several similarities. This stands to reason since 

identities can be viewed as particular examples of transformations. Using social constructivism 

as a theory of learning, students learning these topics can be viewed as making connections 

among similar concepts. This will be reflected in the methods by the similarities in the processes 

of investigating each concept. 
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III. Methods 

Research Approach 

 This research study is composed of a two-stage main study and a confirmatory study. The 

main study was intended to check the adequacy of the hypothesized critical stages and reveal any 

changes that needed to be made, as well as examine students’ use of representations. The 

confirmatory study was designed to assess a lesson plan informed by those critical stages. The 

process of coming to understand a concept is complex. This study largely used qualitative 

methods to investigate this process. Students were interviewed as they came to understand a 

topic, and a grounded theory approach was used to analyze the interview data. This method of 

analysis was appropriate since this study intended to develop a new theory from raw data. In the 

confirmatory study, with a revised set of critical stages, a mix of qualitative and quantitative 

methods were used to assess the extents to which students progressed through the critical stages 

as a result of a teaching episode. The goal of this confirmatory study was to demonstrate one 

method by which the LITs could be implemented. 

Setting and Participants 

 This study is targeted towards students learning trigonometry. As such, a population of 

undergraduate students were recruited who had not passed an undergraduate precalculus course. 

Ideally, the study participants would not have even taken a precalculus class at any level. 

However, from a recruitment perspective, this was not possible as it would not have yielded 

enough participants. This was not considered to be a significant issue both because of the length 

of time between the current research study and the participants’ previous trigonometry 

experience – at least three months in all cases – and because the students generally did not 
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Figure 2. Transformations critical stages
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understand the material well enough to test out of their undergraduate precalculus classes. By 

utilizing students who had not gained enough understanding to pass an undergraduate course or 

placement exam with trigonometry, this study was able to examine the processes by which the 

students developed understandings of trigonometric concepts and the difficulties that they 

encountered. It was hoped that a sample of students who displayed a range of levels of 

understanding could be recruited. This had the potential to provide more information than a 

homogeneous population regarding how critical stages should be expanded, introduced, deleted, 

and adapted to lesson plans. However, given the small number of participating students, every 

volunteer was included. Nevertheless, the participants did display a range of capabilities. 

 The participants were recruited from a medium-sized university in the northeast United 

States. Six students were recruited for the first stage, and an additional six were recruited for the 

second. The confirmatory study had sixteen participants. For the first stage, six students were 

recruited to participate in multiple interviews that covered identities and transformations of 

trigonometric functions. Interview protocol for this stage can be found in Appendix A. Morse 

(1994) and Ray (1994) recommend between six and twelve participants for interview-based 

studies provided that codes start repeating by the sixth interview. Repeating codes provide 

evidence that the thoughts and actions viewed among the students are general, not isolated 

incidents. Additionally, another mathematics education graduate student with qualitative research 

experience validated the coding to ensure that the same codes were in fact repeating. There were 

repeating codes, however these interviews were unable to cover all of the desired topics, so a 

second group of participants was recruited the following semester, and the interview tasks were 

revised. Stage two interview protocol can be found in Appendix B. 
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 By having the same students participate in multiple interviews, the researcher was able to 

build a rapport with the students, which was helpful in subsequent interviews, since the interview 

did not need to begin anew each time (Seidman, 2013). This also allowed for a continuous 

construction of models of the students’ understandings, which aided data analysis. The researcher 

was able to enter the second (and possibly third) interviews with more information with which to 

model the students’ understandings. This allowed for a deeper investigation into students’ 

understandings in the subsequent interviews. For example, in subsequent interviews, students 

were asked for clarification of any unclear answers from the first interview. In addition, having 

an idea of how students model their mathematics at the start of the interview made it easier to 

follow the students’ reasoning and allowed for more material to be covered in the followup 

interview(s). This improved model of students’ understanding provided better information with 

which to refine the proposed critical stages. Covering more material offered more data to work 

with, and more information about students’ reasoning allowed more informed judgements to be 

made on what methods of reasoning are common to students at various stages. 

 For the confirmatory study, sixteen participants were recruited from an undergraduate 

precalculus course. These recruits were similar to the interview participants in that they were 

enrolled in an undergraduate precalculus course at the same university at the time of the study. 

These students took pre-tests to assess their level of attainment of the critical stages, which can 

be found in Appendix C. The lesson plan informed by the critical stages was enacted, after which 

the students took a post-test to determine how far they had progressed through the critical stages. 

The post-test was identical to the pre-test found in Appendix C. The participants in this study 

were students of the researcher. Because of this, the researcher was not directly involved in the 
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recruitment process, and was unaware of who had chosen to participate in the confirmatory study 

until after final grades were submitted. The students were recruited by mathematics professors at 

the university who were not involved in teaching the precalculus class. The pre- and post-test 

data was also collected outside of class without direct involvement or knowledge of the 

researcher. Major differences between the studies are summarized in Table 3.1. 

 To recruit students to participate in the clinical interviews, permission was sought from 

the precalculus course coordinators to visit their classes and ask for participants. With their 

approval, each classroom was visited when it is was determined to be least intrusive for the 

instructors. The researcher was introduced and the goals and methods of the study were outlined. 

The potential benefits and risks that the students could encounter should they choose to 

participate were also explained. The instructor left the room while informed consent documents 

were distributed and questions from the students were fielded. Finally, the informed consent 

documents were collected. For the interviews, instructors were not informed of any students’ 

choices regarding participation. 

Table 3.1. Major Differences between the Studies

Study Number of 
participants

Data Collection 
Methods

Identities and 
Transformations 
Combined?

Gender 
Information 
Collected?

Main Study (Stage 
One)

n = 6 Task-based 
Interviews

Yes No

Main Study (Stage 
Two)

n = 6 (5M/1F) Revised Task-
based Interviews

No Yes

Confirmatory 
Study

n = 16 Pre- and Post-
tests, Audio 
recordings of 
group work during 
teaching episode

No No
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Data Collection 

 In this section, the data collection process will be detailed. For the main study, data was 

collected through task-based interviews. These interviews were audio- and video-recorded, and 

the students’ work was kept. For the confirmatory study, one of the two lectures was audio- and 

video-recorded. During the group work that followed the lectures, each group was audio-

recorded, and two video cameras captured the entire class. The work that students produced 

during the group work was also copied and kept. Additionally, the participating students took 

pre- and post-tests which were kept for analysis. 

 Task-based interviews. The main study included a series of task-based interviews 

(Goldin, 1997; Goldin, 2000; Zazkis & Hazzan, 1999) intended to find how students learn 

trigonometric identities and transformations.The interview questions and setting were designed 

to fit Goldin’s model: (1) the questions increase in difficulty and abstractness; (2) they are 

appropriate for undergraduate students studying precalculus concepts; (3) the students were 

allowed to work freely and students were not prompted so long as their conceptions did not 

inhibit future work; (4) students were provided with pencils, colored pencils, paper, protractor, 

compass, ruler, and plastic !  and !  triangles (unlabeled) in order to 

enable them to approach the problems in a variety of ways; and (5) students were asked to 

elaborate and reflect on the reasoning that they presented. The interviews were video- and audio-

recorded, and copies of all student work produced during these interviews was kept for analysis. 

 Students’ work and reasoning from these interviews was used to inform and revise the 

critical stages for each learning goal. As students worked to justify each learning goal – the 

identities and transformation correlations under investigation – it was noted how successful 

45 − 45 − 90 30 − 60 − 90
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students made connections among concepts and whether these connections were represented in 

the critical stages. It was anticipated that students may show reasoning that implies substages of 

understanding that must be added to the hypothesized critical stages, or they may show a variety 

of solution strategies that necessitate a reorganization of the stages. For example, in stage two of 

the main study, students showed the ability to justify the cofunction identities for acute angles 

without using the unit circle definitions of trigonometric functions. As a result, this learning goal 

may be achieved earlier than the original hypothesized critical stages imply. 

 Regarding the order of the critical stages, some orderings are believed to be necessary; 

others are believed to be likely. For example, it should be necessary for students to understand 

that there are horizontal transformations before noticing that they are counterintuitive in some 

ways. In comparison, it is likely that students will classify shifts and stretches before exploring 

why the horizontal ones behave the way they do. While the latter ordering may not be absolutely 

necessary, it is believed that the progression will generally take that order.  

 The data provided from these interviews was also used to inform the lesson plans used 

during the confirmatory study. In addition to informing the critical stages that have provided the 

framework for the lesson plan, the interview data contains examples of student reasoning and 

misconceptions. This makes it easier to predict and respond to student difficulties during the 

lesson plan. For example, a number of interviewees expressed the belief that horizontally 

shrinking a function is the same as vertically stretching it. As a result, the lecture was modified to 

emphasize the difference between these operations. The students were asked to notice that one of 

the transformations affected the range of the function while the other did not, and functions that 

do not have the same outputs cannot be equal to each other. The ways that students described 
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using the affordances of various representations, how they connected the concepts under 

investigation with related concepts, the struggles that they faced and how they overcome them or 

not were all used to inform the resulting lesson plan.  

 The interview tasks were designed in accordance with previous work in the areas of 

students’ understandings of trigonometry, identities and transformations (Axler, 2013; Barton, 

2003; Blackett, 1990; Borba & Confrey, 1996; Challenger, 2009; Fi, 2003; Hall & Giacin, 2013; 

Sokolowski & Rackley, 2011; Weber, 2005). The current research is intended to build upon the 

results of these studies. Previous research has taken a more global view of trigonometry, or has 

addressed how well students learn rather than how they learn, or have studied these topics in 

non-trigonometric contexts. By using tasks derived from the prior research, my findings will be 

easier to situate within the literature. The interview begins with a question about the definition of 

identity in a mathematical context. This question is intended to ensure that the student and 

interviewer are in agreement about the types of mathematical constructs that are being examined 

through the rest of the interview. Non-trigonometric tasks were adjusted to use trigonometric 

functions. For example, instead of using the function "  to explore a 

horizontal shift, the function "  was employed. Some problems that had originally used 

degrees to measure angles were adjusted to use radians. Also, the function inputs of some 

problems were changed from first quadrant angles in order to utilize the unit circle more often. 

 Following is a selection of interview tasks. This interview was intended to examine 

students’ understandings of both trigonometric identities and transformations. It is noted what 

stages these tasks were intended to investigate. Also included are scripts of prompts for potential 

(x + 5)2 + 3(x + 5) + 5

sin(x + π)
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student responses. It is noted where interview tasks were influenced by tasks from previous 

research studies. The full list of interview tasks can be found in Appendix A. 

0.  
a. Have you ever passed a course with a trigonometry unit? If so, was it a high school or 

undergraduate course? 
b. Have you ever taken a course with a trigonometry unit? If so, was it a high school or 

undergraduate course? 
c. List the last three mathematics courses that you’ve taken. 
d. What does identity mean (Challenger, 2009)?  

• If the student is unable to answer:  
 What does identity mean to you in a non-mathematical context? 

• If the student describes or provides an example of an equality rather than an identity:  
 What is the difference between identity and equality? 

• If the student does not provide a trigonometric identity:  
 What can you tell me about trigonometric identities? 

• If the student can provide an example of identity (such as the Pythagorean or tangent) but not 
describe it further: 

 Why might it be useful to know that those things are equal? 
 This question is intended to examine students’ understandings of the word 
“identity” and to inform the researcher of the students’ potential familiarity with and 
readiness for the material. 

1. Evaluate the following: 
a. " , " , "  

b. " , " , "  

c. " , " , "  

d. " , " , "  

e. " , " , "  

f. " , " , "  

g. " , " , "  

• If the student is uncomfortable or incapable of working with radians: 
 Switch to degrees 

• If the student believes that "  for all functions: 
 Can you show me how you found !  and ! ? 

• If the student does not know how to perform the tasks: 
 How would you define the trigonometric functions? or Are there any other ways  
 you could represent the problem? 
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• If the student evaluates e.g. "  or " : 

 What is ! ? 

 This question is intended to prompt students to notice the differences between the 
parent algebraic representations and the transformed functions. This task also contains 
patterns in the questions and answers that could prompt the students to move to a 
representation with better affordances, interpret the situation in a new representation, 
find the values under consideration in the new representation, and compare those values 
This would mean the student had successfully achieved the first two critical stages. 

2. Describe any relationships you’ve encountered regarding changes in the representations 
used during your work in the previous exercises (adapted from Barton, 2003; Fi, 2003). 
 This question is intended to prompt students to reflect upon, hypothesize, and 
justify generalized relationships for trigonometric identities as is necessary for stage 
four. 

3. Let " ; " ; " . Write out and graph the following functions: 
a. "  
b. "  
c. "  
d. "  
e. "  
f. "  
g. "  
h. "  
i. "  
j. "  
k. "  
l. "  

• If the student is confused about compositions (e.g. order of application): 
Correct any misconceptions, noting previous compositions if applicable. This activity  
won’t be productive with misunderstandings of composition, and it could affect future  
work. 
 This series of tasks is intended to prompt students to notice that the order in which 
they apply transformations sometimes, but not always, affects the graphical 
transformation. Students may note in particular that the order of transformations matters 
when multiple transformations are applied horizontally and/or vertically. By writing out 
the algebraic representation, students may also begin to notice that the order of the 
horizontal transformations is counterintuitive in relation to the graphical representation. 
This addresses stages nine through twelve of the transformations critical stages. 

4. How could you algebraically represent one or more transformations of sine, cosine, or 
tangent that results in the following functions: 

a. [Graph of " ] 

b. [Graph of " ] 
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c. [Graph of " ] 

d. [Graph of " ] (adapted from Borba & Confrey, 1996) 

• If the student has mistakes in their graphs: 
What are some ordered pairs on your graph? and How do these ordered pairs relate to  
the algebraic function? 

• If students do not note that there exist infinite ways of representing each function: 
Could you algebraically represent any of these graphs differently? Could you use the  
same or different parent functions to give different algebraic representations of these  
graphs? 
 This task is intended to provide students with further work to examine the 
counterintuitive nature of combinations of horizontal transformations. It also examines 
students abilities to move from the graphical to algebraic representations rather than 
from the algebraic to graphical representations. Students can demonstrate that they have 
achieved stages four through nine of the transformations critical stages with these tasks. 
 

              
                            
                  
     
                
                         
 
       

5. For the above right triangle, suppose " . 

a. Evaluate "  
b. Which leg is adjacent to θ? 
c. Which leg is opposite ψ? 
d. Find "  
e. Find "  (adapted from Axler, 2013; Blackett, 1990). 

• If the student is confused about adjacent/opposite or leg/hypotenuse: 
 Define the term. 

 This task is intended to spur students to notice that, since all triangles have 
interior angles whose sum is π radians, then the acute angles of a right triangle 
must have a sum of "  radians. This exercise also implies that this identity should 

be true for all acute angles of right triangle trigonometry. This addresses 
Identities stages five and six. 

 Teaching episodes. Separate teaching episodes were conducted for trigonometric 

identities and for transformations. In this section I will describe how the three phases of each 
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teaching microexperiment were enacted. First, the researcher prepared for the teaching episodes. 

The researcher then enacted the prepared lesson plans during the teaching episodes, and finally, 

the episodes were analyzed.  

 Preparation. To prepare for the teaching episode, Steffe and Thompson (2000) advise 

that it is critical to have teaching experience in the subject under investigation. The researcher 

should be familiar with how students think and reason about the subject. Students may have 

viable but unconventional approaches, and the researcher should not assume that the envisioned 

path to success will be the actual path to success for all (or possibly any) students. Furthermore, 

the researcher should be familiar with the types of conceptions that students may possess when 

they begin learning the topic. Students are likely to have learned the prerequisite material in a 

variety of ways, and they will bring these individual conceptions to their future learning. In this 

study, the researcher has been a teaching assistant for an undergraduate precalculus course five 

times, including twice as an instructor for a small section. The researcher has also taught two 

precalculus courses at the high school level. This has provided a firsthand experience of the types 

of reasoning that students may employ in a trigonometry unit.  

 Complementing this experience is the data collected through the main study. While the 

processes of creating lesson plans, evaluating students’ work, and class discussions have been 

invaluable, the interview participants have gone into greater depth about their reasoning than is 

usually elicited from questions during class. This information has necessitated revisions to the 

proposed teaching episodes. For example, two interview participants proposed strategies to 

generalize the cofunction identities that included noticing that the relevant reference angles are 

complementary. This strategy was better suited for the lesson plans than the originally envisioned 
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potential strategies. Approaching the concept through graphical transformations was impractical 

because the students had not been introduced to the graphs of the trigonometric functions during 

the previous lectures. Another potential strategy was to view "  as "  and interpret 

this as a pair of transformations of the radius of a unit circle. Since none of the participants in the 

interviews approached the task through either of these methods, they were discarded in favor of 

the students’ promising strategy. 

 Hypothesized lesson plans. The second phase of the confirmatory study is the 

implementation of the prepared lesson plan through a teaching episode. The activities used in this 

study were originally designed to guide students through the hypothesized critical stages and 

have since been revised to reflect changes made to the critical stages after the main study. Each 

teaching episode covered two fifty-minute class periods. The first period was a lecture for 

approximately 125 students. The second period consisted of group work and a class discussion. 

This was conducted consecutively with three groups of approximately 25 students. The group 

work was made up of tasks intended to present students with situations that they would be able to 

approach with their prior knowledge of the definitions and representations of trigonometric 

functions. In this section, aspects of the intended lesson plans will be detailed, including 

motivations for specific tasks and a description of how the lecture and activities are intended to 

guide students through the critical stages. 

 Enacted lesson plans always vary from intended lesson plans (Usiskin, 1984). The lesson 

plan components described here include contingencies for anticipated student responses. The 

activities were designed to guide students towards thinking about the trigonometric functions in 
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certain ways, but this did not guarantee that the students would in fact think about them in the 

intended manner. Because of this, it was necessary to anticipate potential student responses and 

outline a method by which the teacher-researcher could either use the students’ alternate 

reasoning to guide them towards the required understanding, or perturb a misconception that the 

students may have indicated that they possessed. Even with these contingencies, it was likely that 

some students would provide unanticipated responses. In these situations it was necessary for the 

teacher-researcher to improvise a strategy to aid the students in developing the desired 

understanding. The preparation described earlier – experience teaching precalculus and 

knowledge obtained from the main study – provided the necessary skills to make these types of 

improvisations. 

 The hypothesized lesson plans were designed with the belief that both the lecture and 

group work class periods would be conducted with a small group, entirely consisting of study 

participants. The researcher intended to utilize the small class size to reduce the scope of the 

lecture and increase the scope of the group work. It was hypothesized that having the students 

engage in more independent investigation of the topics would provide more comprehensive data. 

However, as the design of the study developed, it became necessary to present the lecture to a 

much larger group of students that notably included students who would not be participating in 

the second day of group work. As a result, there are notable differences in some details of the 

hypothesized and revised lesson plans. These details will be noted, but the focus will be on 

revisions resulting from changes to the hypothesized critical stages. 

 Details for each of the two lesson plans will be presented in the following subsections. 

Generally though, the hypothesized lesson plans for each teaching episode consisted of an 
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introductory lecture, in which the topic was motivated and students were guided through the 

critical stages. Following the lecture, students were asked to work in groups during a second 

class period. Group work has been chosen for these tasks in order to encourage the students to 

actively participate in the process of connecting their unit circle and trigonometric function 

conceptions in the hope of creating new identities and interpreting the effects of transformations. 

Students collaborating to solve mathematical problems are required to interpret the problem 

situation through their understandings of the material in order to make progress, whereas a 

student listening to a presentation of a solution, for example, may faithfully transcribe the 

material without considering it in any meaningful way. 

 Group work can also be more productive for all students involved than individual work. 

Students working together who understand different aspects of a concept will have opportunities 

to question their collaborators and build upon their deficiencies. Even if students working 

together have similar (mis)conceptions, they can benefit from working together (Doise & 

Mugny, 1979; Doise, Mugny, & Perret-Clermont, 1975). Students with similar conceptions still 

have their own personal experiences leading to personalized interpretations, and this means that 

they will have perspectives to share with each other to build more nuanced conceptions. In the 

confirmatory study, students worked in small groups both to echo the work of Doise and 

colleagues, as well as to provide more data for analysis.  

 During the group work, students interacted with each other, with the instructor, and, while 

studying transformations, with the TrigReps program. In each instance they provided their 

interpretations of the material– in forms such as answers, questions, or commands – to another 

student, to myself, or to the computer program. Once the students presented their interpretations, 
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the listener interpreted that presentation, responded with a presentation of their own 

interpretation, and the cycle continued. During this cycle, each listener provided feedback with 

their interpretation, trying to come to an agreement on the concept with their interacting partner. 

The computer program is slightly different in that it has a comparatively limited number of 

interpretations and presentations that it can make. However, as the groups interacted with the 

computer, they had the opportunity to notice how the computer’s feedback changed as the 

students’ presentations changed. Through these interactions, students could notice how changes 

in various representations of the sine function corresponded to changes in the other 

representations. In this way, the computer and the student can be seen as jointly negotiating a 

construction. In the case of student-student or student-teacher interactions, the negotiation is 

likely to be a series of verbal and/or symbolic presentations of interpretations supplemented with 

gesticulations. 

 After each session of group work, students were asked to volunteer to present their work 

to the class. It was intended to have all of the students leave class having seen the general 

identities and transformations as well as examples of reasoning to support them. By having the 

students work through the material on their own and present their reasoning, they also heard 

multiple perspectives on the same topic. They heard their own groups’ perspectives, as well as 

the presentations, and whatever comments were made on the presentations. These perspectives 

were each slightly different because of the personal experiences each person had. Some of these 

differences arose in the discussion, possibly providing insight into different nuances of the 

concepts. It was also useful to see how the presenting students stated the inferences that their 
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groups made. The discussion was intended to spur reflection and further elaborations upon the 

students’ written conclusions. 

 Data was gathered from each teaching episode in the form of pre- and post-tests, copies 

of student work produced during the episode, audio recordings of small group discussion, and 

video recordings of the whole class during group work. The pre- and post-tests were identical to 

each other for each teaching episode. Each test was made of a subset of questions from the stage 

two interview tasks. A subset was deemed sufficient since the tests were intended to assess how 

well students understood each stage, whereas during the interview, the tasks were intended to 

throughly investigate the processes by which students came to understand each stage. The latter 

required enough variety in tasks to leave students confident enough to generalize, while such 

tasks could be largely redundant for assessment. For example, while students build the 

knowledge to classify transformations, they likely need to see multiple examples in order to 

identify patterns and notice the differences in the representations of each transformation. On the 

other hand, to assess whether students have already made these connections requires only one or 

two such examples. In addition, the confirmatory study used a larger sample size, which helped 

generalize the data. The pre- and post-tests were used to gauge what critical stages each student 

had achieved at the beginning and end of each experiment. That is, the pre- and post-tests were 

designed to measure how well the teaching episodes helped individual students move through the 

critical stages. 

 Identities Lesson Plan. Originally, the majority of this lesson plan was intended to be 

examined by students during group work. Due to logistical changes, the material was presented 

to the students during a lecture, and they reinforced these concepts during group work in the 
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following class period. The activities in this lesson plan were intended to utilize students’ 

knowledge of the unit circle to guide them towards identifying operations that they can perform 

on the radius in order to produce predictable results. The class began with an introductory 

segment intended to focus students on the unit circle definitions of the trigonometric functions 

and to combat the misconception that " . 

 To begin progressing through the trigonometric identities critical stages, it was 

hypothesized that students must first notice that there had been a change to the algebraic 

representation and that this representation did not have good affordances to examine this change. 

In order to guide students towards noticing these things a short introductory segment was 

planned. During this segment, students were presented with the situation that there is a number θ 

between "  and "  that has the property that "  and asked what information could be 

gleaned about " . Ideally, students would progress to the second and third 

hypothesized critical stages by changing to the unit circle representation in order to reason that 

"  represents a rotation of the radius at angle θ by approximately "  degrees. This would 

mean that "  is still in the first quadrant and "  is slightly greater than "  since 

the sine function increases in value as its input increases from "  to " .  

 The primary misconceptions that the introduction aimed to address were that students 

believe that "  or that " . Without this stage 

zero knowledge, the students would be unable to construct meaningful identities. The latter is a 
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misconception that has been noted before in other contexts where students treat functions as 

distributing across other operations without any supporting evidence (Tsai & Chang, 2009). If a 

student responded that " , or indicated that the value should be slightly greater 

than !  because "  is a small number, the misconception was probed by re-presenting the 

task as “" , so what can we tell about " ?” If the student was unperturbed 

and responded with “" ” or “slightly above 1”, the student was then asked to call to mind the 

range of sine. If the student could not recall the range, or if this still did not perturb the student, 

they were asked to call to mind the definitions of sine in order to move the discussion to the unit 

circle. Alternatively, if there were no responses forthcoming from the students, more leading 

questions were asked, such as: “What does it mean that " ?”, “What do "  and 

"  represent?”, or “How else could we represent the situation " ?”. If none of 

these prompted any of the students to respond productively, students would be presented with the 

definition of sine, and the situation would be examined in the unit circle representation.  

 One other difficulty that it was predicted students would face from stage zero is that the 

introductory problem is presented in radians rather than degrees. Since there are no units given, 

the assumed unit is radians, although some students persist in thinking of trigonometric functions 

in terms of degrees, especially when the input does not contain a multiple of π (Akkoç, 2008; 

Tuna, 2013). Should this misconception have arisen, students would have been reminded that the 
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implied unit is in radians. If students were not able to work productively through the tasks in 

radians and switched to degree measure, that would still not have been an impediment to 

developing an understanding of the trigonometric identities. Once these identities were 

understood in degree measure, the remaining time could have been used to reinforce the students’ 

understandings of radians and proportion with the goal of converting the identities and other 

trigonometric concepts from degrees to radians. 

 Following the introductory segment, students were led through a sequence of tasks 

intended to use the unit circle to guide them through the rest of the critical stages for opposite 

angle identities and identities involving adding multiples of π to the input. Students were led 

through the following tasks:  

Draw a unit circle representation of !  and ! . In the same picture, 
draw a radius with endpoint !  for some real value " .  
1) When is !  [ ! , ! ] less than, greater than, and equal to 
!  [ ! , ! ]?  
2) When is !  [ ! , ! ] equal to !  [ " , ! ]?  

3) Sketch the functions !  [ ! , ! ], !  [ ! , ! ], and !  [ ! , 

! ] on the same set of axes.  

4) Can you justify any general formulas for trigonometric (in)equalities based on your 
work? 

 It was decided that students would work with the unit circle representation because it 

offers affordances for viewing the change to the input of the trigonometric functions. While the 

algebraic representation is unenlightening for approximating values of trigonometric functions, 

the unit circle can be used to approximate or exactly measure angles as well as " - and " -values. 

Students may have used their prior knowledge of the unit circle and radians to sketch a unit 

circle with radii at angles "  and " . They could apply their knowledge of trigonometric 
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functions to label the endpoints of the radii "  and " , 

respectively. Students were shown the relationships using a first quadrant angle 𝜃 and asked to 

convince themselves that the same relationships would hold for angles in other quadrants. The 

tasks regarding when each trigonometric function acting on "  produces outputs that are 

greater than, less than, or equal to the respective function acting on θ was intended to help 

students develop dynamic conceptions of the trigonometric functions that change in value as the 

radius rotates about the unit circle.  

 The third task, in which trigonometric and constant functions were graphed, had two 

purposes. One was for students to notice where the ordered pairs of intersection occur so that 

they could affirm or improve their observations from the previous tasks. The other was for 

students to recall that the trigonometric functions extend beyond the interval " . Students 

should have noticed that there are an infinite number of intersections between the trigonometric 

functions and each of the constant functions. This was intended to lead students to recognize that 

the identities hold in general for multiples of π rather than a single instance.  

 A concern for this task was that students could only consider one period of the 

trigonometric functions, which could inhibit their abilities to generate general identities. After the 

identities were established, students were asked guiding questions such as “How many times 

does the trigonometric function intersect the constant functions?”, “What are the domains of 

these functions?”, or “How does your work represent " ?” in an attempt to prompt the 

students to extend their identities. 

 If students felt that they were unable to approach any of the tasks, they were asked to call 

to mind the definitions of the functions in order to find the parts of the circle that are to the right 
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of (or above) the endpoint of the radius, and hence have points that correspond to greater outputs 

for the trigonometric functions. This could be aided by having the student cover the lower (or 

left-most) portion of the circle, leaving only a relevant part of the circle uncovered. If students 

were able to graphically, but not algebraically, identify an angle that corresponds with an identity, 

they were asked to use their notion of symmetry (about an axis or the origin) to notice that the 

radii and endpoints are mirrored. This provided the students with a reference point from which 

they could draw triangles or measure distances to find the new input angles and function values. 

 The lecture ended with students being guided towards an understanding of the cofunction 

identities. Students were guided through introductory work to establish that the two acute angles 

of a right triangle are complementary. A right triangle was drawn on the board with the right 

angle labeled and one of the other angles labeled as " . The students were asked to find the 

missing angle. Students at this stage should be familiar with the fact that the sum of the angles of 

a triangle is π radians or " . They were able to use this fact to find that the other acute angle 

can be found by subtracting the two given angles from π radians or " , resulting in " . Since 

one of the angles in a right triangle is always "  or "  radians, this process can be further 

reduced to subtracting the known acute angle from the remaining "  or "  radians. The process 

was then generalized for an angle 𝜃.  

 During the lecture, a strategy suggested by students’ work during the main study 

interviews was used. It was noted that if two radii are rotated in opposite directions from the 

positive x-axis, the angles formed by the radii sum to zero. Also, the reference triangles formed 
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by the radii are congruent. Extending this idea, if the positively rotating radius starts from !  

instead, then the angles formed by the radii sum to ! . The reference triangles formed by these 

radii are also congruent, but oriented such that the height of one triangle is equal to the width of 

the other. As a result, the cosine of one angle is equal to the sine of the other, and the cofunction 

identity holds for all angles.  

 The preceding lesson plan was intended to guide students through the critical stages of 

understanding for opposite angle identities, identities involving adding a multiple of π to the 

input, and cofunction identities. Primarily through group work, it was hypothesized that these 

activities would help students to justify these identities using the unit circle representation rather 

than memorize them. 

 Transformations Lesson Plan. When the class was ready to investigate transformations of 

trigonometric functions, the following hypothesized lesson plan was intended to be utilized. This 

lesson plan was intended to provide students with the knowledge to justify the behaviors of 

transformations of trigonometric functions. In particular, it was hypothesized that this lesson plan 

would enable students to justify the counterintuitive behavior of horizontal transformations. 

 The transformations lecture began by using sound waves as motivation (Kessler, 2007; 

Kuttruff, 1973). One of the fundamental properties of a sound wave is periodicity, so students 

were asked to recall the periodic identities. Using these identities as examples, the definitions of 

period, frequency, and amplitude were introduced. Students were also introduced to Hertz (Hz), a 

unit of measurement for frequency, measured in number of periods per second. When the units 

for the x-values are defined as seconds, the measurement in Hz is equivalent to the frequency.  

π
2

π
2
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 Students were told through the lecture that sound waves can be represented by sums of 

sine (or cosine) functions, where time is the input and pressure is the output. These changes in 

pressure are perceived as vibrations. Students were familiar with characteristics of sound waves 

such as volume and pitch, and through the activities that followed, they were offered 

opportunities to discover some mathematical properties of sound waves: higher amplitudes and 

frequencies correspond to higher volumes and pitches, respectively; vertical translations do not 

produce sound waves; reflections and horizontal translations produce sound waves 

indistinguishable from sinusoids lacking those transformations. 

 The set of tasks associated with this lecture were assigned for students to complete with 

the aid of a MATLAB computer program designed by the researcher, shown in Figure 3. This 

program is named TrigReps since its primary function is to display trigonometric representations. 

Given an algebraic representation of a sinusoid, TrigReps simultaneously produces (1) a static, 

graphical representation of the function on the Cartesian plane, (2) a dynamic representation of a 

radius rotating around a circle, and (3) an aural representation of a sounded tone which can be 

varied in volume and pitch corresponding to the function considered as a pressure wave. The 

students input values " , " , " , and "  into "  and were shown a dynamic 

representation based on the unit circle definition of ! . This dynamic representation showed 

a circle of radius "  that had been shifted "  units on the vertical axis, and the rotating radius of 

this circle started at c radians and moved counterclockwise at "  revolutions per second, as seen 

in Figure 4. The screenshot in Figure 4 displays the program after inputs have been chosen but 

prior to the unit circle representation being animated and the aural representation being 

a b c d (a)sin(bx + c) + d

sin(x)
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generated. There were also options to have the dynamic representation slowed down and to input 

two sine functions simultaneously. The former feature was available so that representations of 

audible sound waves were still understandable and relative differences could be noted despite the 

high speed of the rotating radius, while the latter was available so that students could see and 

hear the effects of multiple transformations simultaneously. 

 TrigReps was successfully piloted in an undergraduate precalculus class to determine its 

ease of use and clarity of message. During this pilot study, students were asked to Strongly 

Disagree, Disagree, Agree, or Strongly Agree with the statement “The computer program is 

simple to operate”. Three out of twelve students Strongly Agreed, six Agreed, one Disagreed, 

Figure 3. The TrigReps program with input sin(x).
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one wrote that “Once everything is set up it was simple to use,” and one wrote simply “No.” It 

seems reasonable to conservatively count the last as a Strongly Disagree and the penultimate as a 

Disagree. This raises the totals to two of twelve students who Disagreed, while one Strongly 

Disagreed. Some of the disagreement may be attributed to students experiencing technological 

difficulties getting the program to run. One of these students’ explanations for their disagreement 

with the program’s ease of operations included the statement “I thought initial guidance was 

necessary.” Instructions for opening the program were provided to each student, however in the 

confirmatory study the program was up and running before the students sat down to work. For 

students who did agree that the program was easy to operate, a typical response was that “the 

Figure 4. A transformed sinusoid represented in TrigReps
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program is laid out in a very user-friendly setup.” It seems that when the program was 

operational, it was intuitive to use. 

 From examining students’ work during this pilot study, the questions asking students to 

reflect on the changes in the representations seem to have achieved their purpose. All twelve 

participants described how changes in the algebraic representations corresponded with changes 

in the graphical representations. Another eight students also included the aural representation, 

and three students wrote of connections between those three representations and the dynamic 

unit circle representation. Since it has been hypothesized that the unit circle representation will 

be necessary in order to understand combinations of horizontal transformations, this 

representation has been explicitly referenced in the tasks. 

 TrigReps utilized several representations in order to facilitate students’ progressions 

through the critical stages for understanding transformations of trigonometric functions. Students 

should have been familiar with changes to the input of the algebraic representations of 

trigonometric functions after learning about trigonometric identities. Since the computer program 

required that the students changed the algebraic representation, it seemed that they would 

progress through the first hypothesized stage with minimal reflection on their actions. The 

inclusion of the graphical and unit circle representations similarly encouraged students to 

progress through the second hypothesized stage. The corresponding changes that students must 

notice to achieve the third critical stage should also have been fairly apparent using the computer 

program.  

 Students were asked to work on a set of tasks in groups of three or four at computer 

stations. A sample of the tasks is presented below, along with descriptions of how each task was 
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intended to guide students through the hypothesized critical stages. The full set of tasks can be 

found in Appendix D. 

 Human hearing has range approximately 20 Hz - 20000 Hz. Not all of the 
functions that you input will produce sounds within your hearing range. Can you predict 
which of the functions will and will not produce sounds? 
1. Input "  

a. Find and input a function with twice the amplitude. 
b. Find and input a function with amplitude ! . 
c. What do you notice about the four representations: algebraic, graphical, unit circle, and 

aural? 
 This task was intended to prompt students to find which value " , " , " , or "  in the 
expression "  affects the function’s amplitude. Ideally, the students 
would attempt to predict which value would produce those effects and the effects that the 
change in amplitude would have on the unit circle, graphical, and aural representations. 
In particular, multiplication of the parent function’s output stretches the length of the 
radius, vertically stretches the graph, and alters the volume of the aural representation. 
However, at this frequency, the aural representation is outside the range of human 
hearing  (stage four, five(b)). 

3. Find and input a function with: 
a. triple the frequency of " . 
b. frequency 1 Hz 
c. What do you notice about the four representations? 

 This task was intended to guide students to notice that the " -value affects the 
function’s frequency. Again, students would ideally make this prediction then test their 
hypothesis using TrigReps. By finding the function with frequency 1 Hz, it was intended 
that students would be guided towards finding the general formula for frequency 

!  has frequency "  (stages four, five(b, d), six, eight). 

6. 
a. Input "  
b. Input "  
c. Predict what will happen in each representation for the input "  
d. Input "  
e. Did the results match your prediction? If not, why not? 

7. 
a. Input "  
b. Input "  

f (x) = sin(x)

0.2

a b c d
(a)sin(bx + c) + d

f (x) = sin(x)
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−sin(bx)
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2π
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c. Predict what will happen in each representation for the input "  

d. Input "  

e. Did the results match your prediction? If not, why not? 

 It was intended that, after completing task six, students would find that the order of 

transformations can affect the resulting function. Ideally there would have been a discussion 

among members of the group to predict the results of the transformations in each representation. 

If students correctly predicted the results during this task, then it was hypothesized that students 

would make a similar prediction during task seven, which similarly examines the order of 

horizontal transformations. Following the same pattern would lead them to a false prediction for 

horizontal transformations, and it was hypothesized that this would prompt students to more 

thoroughly examine the relationships among the representations. This examination could lead to 

productive observations regarding the relationships between proportional and rigid 

transformations, or transformations of the input and output of the function (stages five through 

eleven) 

 The tasks in this activity were designed to help students progress through the 

hypothesized critical stages of function transformations. They were intended to help the students 

identify patterns in transformations of the sine function that help students to achieve critical 

stages. The activity also prompted students to reflect on the changes of each representation under 

the various transformations in various orders, in the hope that students would not mindlessly 

copy information from the program, as has happened in previous studies (Rosen et al., 2005). 

 These tasks asked students to examine the algebraic, graphical, and dynamic unit circle 

representations of families of sinusoids. This is similar to previously proposed exercises to 

f (x) = sin(2x +
π
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examine graphical transformations (cf. Barton, 2003). However, where previous exercises gave 

students explicit algebraic representations of functions to examine (as in tasks six through nine), 

most of the tasks used in this study asked students to find the algebraic representations for 

functions that have certain graphical characteristics. This had the added benefit that students 

would make predictions about the effects of each type of transformation. If they chose to guess 

without reflecting on their previous work, then the exercise would become similar to (though 

possibly much longer than) previous exercises.  

 Each exercise also concluded by asking students what they noticed about the 

representations. These final tasks were intended to prompt students to reflect on their work and 

note how the changes in algebraic representations corresponded to changes in the graphical and 

unit circle representations. Students in the past have shown the ability to complete tasks 

successfully without reflecting on how their work is related to their prior knowledge (Rosen et al, 

2005). Explicitly asking the students to reflect on the work that they have done can help 

consolidate their knowledge into generalizations of the transformations, as well as to note how 

the transformations can be represented in terms of the definitions of the trigonometric functions 

on the unit circle. The video recordings of group work would show if students had conversations 

about their predictions and reflections. Students’ conversations and their responses to the 

questions about relationships among the representations that they had noticed provided 

information about whether the students were reflecting upon their work. Students could indicate 

that they were reflecting by using multiple representations to justify their predictions. 

Alternatively, students could guess and check with the computer and only note relatively 

unimportant details in their reflections, such as which inputs produced audible tones. It would 
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also be revealing to see what entries students made in the computer program, which could reveal 

how they believe each of the values " , " , " , and "  would affect the graph. 

 Some of the tasks also gave students opportunities to see some of the identities that they 

have previously worked on in other representations. Some transformations of "  result in 

"  or " , and students could predict how these transformations would look based on 

the task presentations and their prior knowledge. Students may not have predicted the cofunction 

identity since it is somewhat disguised, however I hoped that they would examine why those 

transformations result in a graph equivalent to that of the cosine function in their reflections. This 

topic was brought up in the class discussion afterwards as students classified the transformations 

and noted relationships between representations. 

 As students used the computer program to examine horizontal graphical transformations, 

they would have the opportunity to examine how these transformations could be viewed on a 

dynamic circle representation. Horizontal transformations could be seen as affecting the radius of 

the circle – the angle of which is the input of the trigonometric functions. Since the change in the 

angle of the radius varies in proportion with " , students could see that, for example, large values 

of "  are represented by high frequency graphs, rather than graphs significantly stretched out from 

the y-axis. As for translations, changing the starting point of the radius can be viewed as 

changing the starting point ( " ) of the graphical transformation. This is similar in effect to the 

rubber sheet method (Borba & Confrey, 1996) where horizontal transformations are seen to act 

upon the axes rather than the graph. By combining these two transformations, students would 

have the opportunity to note that the effect could be viewed most clearly in terms of first a 

rotation (translation) to establish the starting point, followed by a change in speed (stretch) to set 

a b c d
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the frequency. Finding exactly how much to translate after setting the frequency is less 

straightforward, more laborious, and requires an unconventional algebraic representation: 

" . This combination could help students understand why the counterintuitive aspects of 

the horizontal transformations could be extended to the order of operations. 

 The activity concluded with a class discussion about the students’ reflections on the 

representations. One goal of this discussion was for students to solidify their knowledge about 

the classifications of transformations and the relationships between the different representations. 

Students were welcome to use the computer program during the discussion to help answer any 

questions, such as those related to the horizontal transformations. For instance, it could be used 

to help explain why negative horizontal shifts actually move the graph to the right: if "  is chosen 

to start at " , then "  will start at " , while "  will start at " , since "  is "  

radians clockwise of " . It takes "  seconds for the radius to get to "  radians, which helps explain 

why the graph shifts !  units to the left. The other goal of this discussion was to extend the new 

concepts of transformation to the cosine and tangent functions. Extending these concepts to 

cosine would be fairly straightforward, however extending to tangent could present difficulties 

because of the different domain, range, and period of tangent. It also could be more difficult for 

students to extend the idea of vertically stretching and shrinking a function that has an infinite 

range. The different period could cause difficulties for students who assume that the period of 

tangent can be calculated in the same way as cosine and sine. Ideally, there would have been 

sufficient student participation in the discussion for students to build these ideas on their own, 
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but the researcher led rather than facilitated discussion as necessary by referencing the unit circle 

definitions. 

 The teaching episode lesson plans described in this section were intended to guide 

students through the hypothesized critical stages. The content of the lesson plans has been 

influenced both by the researcher’s experience as a trigonometry instructor and by a review of 

the literature on students’ learning of trigonometry, identities, and transformations. In particular, 

these lesson plans use MERs in an effort to prompt students to connect their various 

understandings of the trigonometric functions. In the following section, the methods of analysis 

will be described for both these teaching episodes and the preceding interviews.  

Data Analysis 

 In this section, the analysis procedures will be explained for the three phases of the study: 

the two stages of main study interviews and the confirmatory teaching episodes. The theoretical 

framework detailed the two sets of critical stages that were the basis of the research: one for 

learning trigonometric identities, and one for learning graphical transformations of trigonometric 

functions. In this section, it will be explained how the collected data was analyzed and how the 

analysis could affect the ways in which the hypothesized critical stages and lesson plans were 

revised. 

 Before discussing the analysis methodology, it may be helpful to review the first two 

research questions: 

 Research Question One: Through what critical stages do students pass as they come to  
 understand trigonometric identities and transformations?  
 Which actions, connections, or other ways of thinking are common to those students who  
 go on to be able to justify their solutions of tasks involving these concepts? 
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 Research Question Two: How do students understand the relationship between the unit   
 circle definitions of trigonometric functions and the identities and transformations of  
 those functions?  
 Is it critical that students be able to change from the algebraic representation to one with  
 different affordances as they come to understand identities and transformations? 

 Coding. In order to begin identifying critical stages for a learning goal, it was first 

necessary to develop a system by which to analyze the students’ thoughts and actions as they 

developed their understandings. The interview recordings were transcribed and coded in order to 

identify the methods by which students built major concepts from their prior knowledge 

(Burnard, 1991; Glaser, 1965). Before examining the transcriptions, a preliminary list of codes 

was hypothesized based on firsthand precalculus teaching experience and by cases documented 

in the research literature. It was predicted that certain codes would appear based on the 

hypothesized critical stages and common student errors seen in the literature review. For 

example, it was expected that a need would arise to have codes for students changing 

representations, using the Pythagorean identity, and making mistakes related to radian measure, 

among others. 

 Additionally, the notes taken during the data collection process were reviewed. These 

notes included unexpected mistakes and strategies, follow-up questions to ask, emerging patterns 

of student behavior, and potential modifications to the interview questions, and they influenced 

how additional codes were developed. As an example of how interview questions were modified, 

the first two participants interpreted the function "  as " . This may have been 

because the presence of the !  was causing the students to assume that the value was added to the 

input. Despite how important it is for these students to address this misconception (Akkoç, 2008; 

Moore, 2013), this was not within the scope of the research plan. As a result, the future interview 

cos(x) + π cos(x + π)

π



!80
questions were altered to use " . This distinction, although important, would not 

necessarily affect the students’ abilities to learn trigonometric identities and transformations. 

 Each of the hypothesized codes did appear, and it will be discussed how and when they 

appeared in relation to the hypothesized critical stages in the Results and Discussion chapter. 

Many other codes were added as they were needed, such as one indicating that the student 

believed that the points on the graphs of the function should satisfy the unit circle equation. The 

final list of codes for each learning goal represented the students’ thoughts and actions while 

examining the relevant concepts during the interview. Some subset of these codes should 

represent the final critical stages for each learning goal, since they captured the students’ 

thoughts and actions as they progressed from incomplete understandings to justified 

understandings.  

 In order to determine the thoughts and actions that distinguished the successful students 

from the unsuccessful ones, it was necessary to determine which students displayed a justified 

understanding of each concept and which did not. If the students expressed that they understood 

a given concept coming into the interview, then they were asked to justify their understanding of 

that concept. On the other hand, if the students initially showed that they did not understand a 

concept, then specific prompts were used to encourage the students to make connections that 

were hypothesized to lead to the desired understanding. The students’ reactions to the questions 

and prompts influenced the revision of the critical stages. For instance, when examining the 

cofunction identities, the interview prompts were designed around the hypothesis that students 

would need to consider "  as a pair of transformations – a leftward shift by " , followed by 

a horizontal reflection. In fact, interviewees were more likely to use directed, similar triangles in 

cos(x) + 1

(
π
2

− θ )
π
2



!81
the unit circle. This discovery led to a major change in the hypothesized critical stages for this 

learning goal; the students demonstrated an alternative path to understanding through 

trigonometric definitions rather than transformations. This in turn led to a major change in the 

hypothesized lesson plan for this topic.  

 When students failed to demonstrate an understanding of a concept coming into the 

interview, or came to false conclusions during the interview, an attempt was made to find if there 

was a gap in the students’ knowledge, a misconception of prerequisite knowledge, or if the 

students had only considered the concept through too narrow a lens and missed connections that 

would feature more prominently in a different representation. For instance, when examining the 

counterintuitive nature of horizontal transformations (as seen in Borba & Confrey, 1996), a 

student may have a gap in their knowledge such as having only learned the ratio definitions of 

the trigonometric functions. This would render transformations resulting in non-acute angles 

meaningless, as the student only has a conception for the trigonometric functions acting on acute 

angles in a right triangle. Alternatively, a student could have a misconception, such as believing 

that " . Errors were classified as misconceptions when the student did 

not correct themselves with a justified response upon having their attention called to the mistake. 

A student could also be stymied in developing further understanding by the limitations that the 

algebraic and graphical representations possess in illustrating the non-intuitive aspects of these 

transformations, as discussed in the literature review. 

 Transcriptions of the interviews were analyzed using a constant comparison method 

(Burnard, 1991; Glaser, 1965; Grbich, 2013; Hatch, 2002; Seidman, 2013). At the heart of this 

method is categorizing student utterances. In brief, every student utterance and action was placed 

sin(a + b) = sin(a) + sin(b)
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into a category. At first, these categories were very specific, but similarities were sought in order 

to group categories together. For example, a group Changes to Representations could encapsulate 

the codes “changing the order of the transformations (can) change the graph” and “student 

changes representation”. To ensure the validity of the coding process, another mathematics 

education doctoral candidate was asked to independently generate categories. The two sets were 

compared, and a discussion took place to resolve the few discrepancies that arose. 

 To develop the initial, specific codes, the open coding method was used, in which quotes 

or paraphrases of students’ speech from the interview formed the codes. In some instances, the 

interview notes reflected that a particular action or phrase had been repeated by several students. 

For example, several students converted many of the radian values to degrees. Because of this, 

all of these instances were coded as R→D from the beginning rather than using quotations from 

students. Similarly, other hypothesized codes were used from the beginning. Students’ written 

work produced during the interviews was also coded. It was noted which representations students 

used and whether each piece of work was justified by their speech or by other written pieces. In 

some cases, copies of images that the students drew have been included for clarity. These codes 

informed the revisions of the critical stages: the actions and thoughts that lead students from their 

prerequisite knowledge to the desired understanding. 

 The transcription notes and list of initial codes were used to begin developing a coding 

scheme. Many of the initial codes were similar to each other, and these were grouped together 

into single codes, which can be seen in Tables 3.2 and 3.3. Table 3.2 contains the codes that 

became revised critical stages. Table 3.3 contains the remainder of the codes used in the study. 

Based on the hypothesized critical stages, many of these codes had been predicted to be 
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necessary, such as Ratio Definition or Noticing a Change to the Algebraic Representation. Other 

codes arose that had not been predicted, such as a code indicating that the student had noted the 

function values at x = 0 as an indicator of function behavior. 

Table 3.2. Codes that became Critical Stages and Their Definitions

Code Abbreviation Explanation

Algebraic Manipulation AlgM Performing arithmetic or basic algebra.

Anchor Values ⚓ Creating or checking a hypothesis using a subset of the 
period. Generally positive multiples of 𝜋 or 𝜋/2.

Change Angle C∡ Recognizing that a change to one representation 
corresponds with a change to the angle in a unit circle.

Change Representation 
(to Unit Circle, 
Graph, 
Triangle,  
or Algebraic)

CR(UC) 
CR(Gr) 
CR(⊿) 
CR(Alg)

Changing from one representation to another to continue 
working on the same task.

Determines Signs By Quadrant CAST Finding whether an answer would be positive or negative 
using either a mnemonic device or consideration of 
placement in relation to the axes.

Function Concept f(x) Examining an issue that is applicable to functions 
generally rather than periodic or trigonometric functions 
in particular.

Notice a Change to the Algebraic 
Representation

NCAR Identifying that a transformation in some way has 
changed the algebraic representation.

Notice Correspondences between 
Representations

NCorr Identifying how a change in one representation causes a 
change in another representation.

Ratio Definition RatDef Using SOHCAHTOA or the Right Triangle definitions of 
the trigonometric functions.

Reference Angle ref∡ Using a reference angle to draw a right triangle in the unit 
circle.

Table 3.3. Codes that did not become Critical Stages

Code Abbreviation Explanation

Addition + Examining how addition is understood in a given 
representation.

Convert Radians to Degrees R→ D Converting from one angle measure unit to another.

Correct √ Providing a correct answer to a task or to a step of a task.
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Degrees before Radians D > R Having views aligning with a degree-dominant mentality, 
such as believing that angles expressed without 𝜋 cannot 
be measured in radians.

Horizontal H Examining horizontal transformations in any 
representation.

Incorrect X Providing an incorrect answer to a task or to a step of a 
task.

Input In Examining how function inputs are understood in a given 
representation.

Memorized Mem Justifying a statement by citing a memorized fact.

Multiples of 𝜋 Identities 𝜃 + n𝜋 Examining the effects of adding an integer multiple of 𝜋 
to the input of a trigonometric function.

Multiplication Mult Examining how multiplication is understood in a given 
representation.

Opposite Angle Identity (-𝜃) Examining the effects of using the opposite input for a 
trigonometric function.

Origin Ori Inferring information about the function by examining 
whether it goes through the origin.

Output Out Examining how function outputs are understood in a 
given representation.

Prompt P Needing to be prompted by the researcher in order to 
productively move forward.

Pythagorean Identity PyID Using the Pythagorean Identity in reasoning.

References Previous Work PrevWk Noticing that a task can be solved using previous work.

Right Answer, Wrong Reason RAWR Ending with a correct answer despite incorrect reasoning.

Right Idea, Wrong Answer RIWA Using correct reasoning, but making a typo or other such 
mistake that leads to a wrong answer.

Shift Sh Examining shift transformations in any representation.

Special Triangles S⊿ Using a 30-60-90 or 45-45-90 triangle.

Stretch St Examining stretch transformations in any representation.

Tangent Identity TanID Using the identity tan(x) = sin(x)/cos(x)

Unit Circle Definition UC Def Using the unit circle definitions of the trigonometric 
functions.

Vertical V Examining vertical transformations in any representation. 

Code Abbreviation Explanation
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 The lists of codes for each learning goal were collected and formed into critical stages. 

The critical stages were ultimately separated for each learning goal: opposite angle, " , 

and cofunction identities; addition/shift, multiplication/stretch, input/horizontal, and output/

vertical transformations; ordering of transformations; and horizontal transformations being 

counterintuitive.  

 This chapter has described the research process of the interviews and teaching episodes. 

Task-based interviews were conducted in order to examine the processes by which students came 

to understand trigonometric identities and transformations. The data collected from these 

interviews was used to revise the hypothesized critical stages and lesson plans. The following 

chapter will describe the data that was collected, and discuss how that data influenced the critical 

stages and lesson plans. 

(θ + nπ)
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IV. Results and Discussion 

 In this chapter, the data collected through interviews and teaching episodes will be 

presented and analyzed. The analysis was used to revise the hypothesized critical stages, which 

were in turn used to revise the hypothesized lesson plans. The hypothesized stages were created 

based on a review of the literature, and they have been modified in light of the interview data. It 

will be noted where analysis of the data supported the hypothesized stages, showing that the 

stages successfully modeled students’ learning sequences, as well as where the analysis has 

prompted changes to be made to the critical stages. Modifications include changes to the 

ordering of critical stages, as well as changes to the stages themselves. Some of these changes 

have been as small as noting a common misconception, or as large as accommodating successful 

student strategies that did not satisfy the critical stages as they had been hypothesized. This 

analysis allowed for the identification of any superfluous or omitted stages, as well as stages in 

need of modification or rearrangement. 

 The modifications of the critical stages have in turn necessitated modifications of the 

lesson plans. Changes to the lesson plans will be detailed and justified in this section. The lesson 

plans used during the teaching episodes were originally designed based on the hypothesized 

critical stages before data collection and were described previously in the methods chapter. After 

the main study, the hypothesized stages were revised, and the lesson plans were revised to reflect 

those revisions. The confirmatory study provided a data set to examine how the lesson plan 

helped guide students through the critical stages in a classroom setting. 

 After describing the changes to the lesson plans, data will be presented from the 

confirmatory study. This study was intended to demonstrate the feasibility of designing a lesson 
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plan based on the critical stages. Analysis of this data will focus on how the enacted lesson plan 

did or did not guide students through the critical stages. Copies of students’ group work, 

transcriptions of the students producing that work during the teaching episodes, and pre- and 

post-tests taken by the students the week before and up to 5 days after each teaching episode 

have been analyzed to determine how well the lesson plan was able to guide the students to the 

learning goals. 

Results from the Main Study 

 The definition for critical stage used in this study involves the methods students use to 

justify the various identities and transformations. So, each instance where students used an 

identity or transformation during the interview was located, as well as situations in which the 

students failed to recognize an identity or transformation. For identities, each instance where a 

student worked with opposite angles, an angle that has an integer multiple of 𝜋 added to it, or 

that has been subtracted from "  was identified. For transformations, it was noted where students 

worked with the following concepts: shift/addition; stretch/multiplication; horizontal/input; 

vertical/output; order of transformations; and counterintuitive aspects of horizontal 

transformations. 

 The interviews were separated into segments corresponding to each of these concepts. 

This made it possible to examine how each student built and applied their knowledge of each 

concept. Some of the critical stages involve simply noticing that these phenomena occur, but 

other stages involve investigating these concepts in particular ways. Students investigated 

multiple concepts simultaneously during many portions of the interviews, so there are many 

π
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transcript sections that appear under multiple concepts (e.g. a passage in which a student 

pronounced that "  shifted the graph vertically would be coded as horizontal/input, 

vertical/output, and shift/addition). 

 Each students’ speech and work was examined to find instances of discussions of the 

learning goals. In each instance, it was determined whether the students used the learning goal 

correctly and whether the students were able to justify their answers. If the students were able to 

provide fully justified answers, then it was assumed that they must have taken a viable path to a 

good understanding. Therefore, even though it may not have been the most direct path to 

understanding, some of their work must be critical to developing a justified understanding. That 

is, any student who displayed a good understanding of a topic must have passed through the 

critical stages, and these stages would be represented in their interviews. On the other hand, at 

an individual level, if a student worked diligently, but did not use their work to make conceptual 

connections to establish a good understanding, then none of their work could be definitively said 

to be critical. At an individual level, if a student did not achieve competency, then it could not be 

inferred from the data that student provided what specifically it would take to achieve 

competency. 

 If a student had all correct, justified responses for a particular identity or transformation, 

then that student was coded as having developed a good understanding of that topic. Included in 

this group were students who self-corrected their mistakes. Students who initially could not 

justify correct responses, but expressed during the interview that they had developed a new 

connection and subsequently displayed correct reasoning were also included. For example, 

consider a student who was only familiar with the ratio definition of trigonometric functions, 

f (x + k)
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which caused him to fail to recognize the domains of the functions. Suppose further that during 

the interview, this student was prompted to consider the unit circle definition as an extension of 

the ratio definition, and subsequently could justify correct evaluations of non-acute angles. Then, 

despite perhaps having made repeated mistakes, this student would be coded as having 

understood that trigonometric functions could be applied to non-acute angles. Students not 

falling into any of these categories were coded as having not understood that particular topic. 

 The coding scheme described above was applied to the transcriptions, and in the sections 

that follow, the results will be given. The results have been organized by learning goal. In 

particular, it will be noted what codes were common to students who justified their 

understandings, as these codes will inform the revised critical stages. 

 Opposite angle identities. The work of the students who had successfully justified the 

opposite angle identities " , " , and "  

was examined in order to find the thoughts and actions that are critical to student success. This 

would provide data that could verify the hypothesized critical stages or imply that they should be 

modified. The critical stages must, by definition, have been achieved by all of the successful 

students, so their work was examined to determine common codes. It was determined that the 

second, third, and sixth participants of the first stage – F2, F3, and F6 – had developed good 

understandings of the topic. During the second stage, S1, S2, S4, S5, and S6 – all but the third 

participant – had also developed an understanding of the topic, as can be seen in Table 4.1. For 

each of these students, a list was made of every code that appeared in their examinations of 

opposite angle identities. Then, the intersection of those lists was found. This intersection was 

the set of thoughts and actions that were common to each of the students who developed a good 

sin(−θ ) = − sin(θ ) cos(−θ ) = cos(θ ) tan(−θ ) = − tan(θ )
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understanding of the opposite angle identities (see Table 4.1). It was hypothesized that the 

critical stages for this learning goal would be present in this intersection. 

 While examining opposite angles in any of the tasks, the successful students first noted 

that the opposite input was a change from their defined functions (NCAR, see Table 3.2 for 

codes). They then moved to the unit circle (CR(UC)), used reference angles to determine the 

numerical answer (C∡, ref∡), used quadrants to determine the sign of that answer (CAST), and 

noticed a relationship between their original and transformed functions (NCorr), as can be seen 

in Table 4.2. The general reasoning can be characterized by an explanation from S2: 

“-x is just going in the opposite direction. So. because it’s the x-value, it doesn’t matter 
which direction I rotate. The x-value’s going to be the same either way. Like this one. If I 
rotate "  this way [gesticulates with his elbow as vertex, forearm as terminal ray – first 
as a positive angle, then negative], or "  this way. As long as it’s in the first or the fourth 
quadrant, it’s going to be the same. Because [cosine] is an x-value.” 

 In comparison, F1, F4, F5, and S3 did not show that they understood the opposite angle 

identities. These students commonly attempted to use memorized ordered pairs of the unit circle 

in order to solve the problems. These students either did not attempt to justify their answers, or 

they argued that negative function inputs will always lead to negative function outputs. F4 gave a 

typical argument, stating “that [ " ] is negative because !  is negative.” This is more evidence 

that for students learning opposite angle identities, changing to a representation that allows 

Table 4.1. Participants’ Understanding of Opposite Angle Identities.

Good Understanding Learning Goal Poor Understanding

F2, F3, F6; S1, S2, S4, S5, S6: 
NCAR, CR(UC), C∡, ref∡, 
CAST, NCorr

Opposite Angle Identities F1, F4, F5; S3: Mem

45∘

45∘

cos(θ ) θ
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consideration of "  in terms of " , and using information about "  in order to determine 

the sign of "  are both critical stages. 

 Codes and critical stages. Codes associated with each topic constitute the critical stages 

of learning for that topic. There may be multiple ways to justify a given learning goal, and 

therefore there may be multiple paths to understanding, which could imply different sets of 

critical stages. However, in some cases, there may be enough similarity between the approaches 

that the same set of critical stages may apply to either path. For example, if a student uses graphs 

to justify the opposite angle identity, he could still notice the opposite angle in the algebraic 

representation, change to the graphical representation, find a reference " -value and a transformed 

" -value, and compare their corresponding " -values.  

 In cases where there is not significant overlap between multiple sets of critical stages for 

a topic, each of the justifications could produce viable critical stages for learning that topic. In 

these cases, strategies have been listed separately. For example, some students approached the  

!  identities through reference angles on the unit circle. Other students used an algebraic 

approach to finding these identities. Since both approaches led to justified statements of 

identities, the set of codes from each approach are included as distinct, viable sets of critical 

stages for the same learning goal.  

 For the students who did not display a justified understanding of a learning goal, the 

common and unexpected codes that correspond with their work are listed in the left column of 

Table 4.3. These codes were not necessarily applied to every student who failed to achieve a 

good understanding, but they were prominent. These codes are included for two reasons: (1) 

there is a possibility that they are associated with a viable set of critical stages that is not 

T (−x) T (x) −x

T (−x)

x

x y

(θ + π)
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recognized here but which could be explored in future research, and (2) these codes could 

provide insight into students’ misconceptions. 

 If there were students who displayed poor understanding of a concept, but had the same 

codes assigned to their work as the successful students, then that would indicate that there was a 

missing piece of information separating the students who had successfully justified their 

understanding with the students who had not. One possibility would be that there was some 

thought or action displayed by each of the successful students that had been overlooked during 

coding. Another possibility is that the unsuccessful students had a misconception that prevented 

them from developing a robust understanding. The situation where successful and unsuccessful 

students’ work resulted in the same codes did not arise. In cases where there was some overlap, 

there were always differences, such as a student who could not justify their work for opposite 

angle identities having an erroneous conception of negative angles on the unit circle. 

Table 4.2. Revised Critical Stages for Opposite Angle Identities with Supporting Quotes

Opposite Angle Identities 
Revised Critical Stage(s)

Code(s) Quote

Notice a change in the 
algebraic representation

NCAR “-X is…” (S2)

Move to a representation with 
better affordances

CR(UC) “If I rotate 45º this 
way…” (S2)

Change angles C∡ “…or 45º this way.” (S2)

Use a reference angle; 
Evaluate the function using 
similar triangles and the 
CAST diagram; Recognize 
that these changes to the 
algebraic representation 
correspond to changes in the 
other representation(s)

ref∡; CAST; NCorr “As long as it’s in the first or 
the fourth quadrants, it’s going 
to be positive. Because it’s an 
x-value.” (S2); “The cosine of 
an opposite angle would still 
be the same as the cosine of 
the other angle.” (F3)
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 The stage one interviews provided data that was used to revise the critical stages. 

Changes to the critical stages necessitated some revisions to the interview tasks for the second 

stage of the main study. The tasks were also revised to make the interviews shorter in order to 

cover all of the learning goals. In the subsections that follow, I will examine the responses of 

students from both sets of interviews. Each learning goal is discussed, and the intersection of 

codes for students who successfully justified their answers is noted. This set of codes constitutes 

the critical stages of understanding for that learning goal. For the Opposite Angle Identities, the 

critical stages are to Notice a change to the algebraic representation, Move to a representation 

that has better affordances, Change angles, Use a reference angle, Evaluate the function using 

similar triangles and the CAST diagram, and to Notice a correspondence (see Table 4.2). These 

stages overlap significantly with the critical stages for the rest of the learning goals related to 

identities that have been examined. It will also continue to be noted where students who did not 

achieve each learning goal faced significant or common difficulties. 

 !  identities. Identities of the form "  were successfully expressed and 

justified by F3, F4, and F6 in the first stage of the main study, and by each participant in the 

second stage. Each of these students noticed that 𝜋 had been added to the input of the function 

(NCAR). F6 and S1 simplified the input before evaluating the function (AlgM). These students 

compared these evaluations to the originals and generalized the relationship (NCorr).  

 The other successful students were more explicit in their use of the unit circle (CR(UC)), 

interpreting the addition of 𝜋 as a change to the angle of the radius (C∡). More details can be 

found in Table 4.4. When these students used their new angles to create reference triangles 

(θ +nπ) T (θ + π)
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similar to their original triangles, they were able to evaluate the trigonometric functions. F6 said 

that “the reference angle when you add [𝜋] would be the same.” An example of this reasoning 

can be seen in Figure 5. It was difficult for students to articulate why exactly the reference angles 

would be the same, but F3 said that the rotation would flip the triangle lengths over the x-axis. 

Table 4.3. Participants’ Understanding of the Learning Goals

Good Understanding Learning Goal Poor Understanding

F2, F3, F6; S1, S2, S4, S5, S6: 
NCAR, CR(UC), C∡, ref∡, 
CAST, NCorr

Opposite Angle Identities F1, F4, F5; S3: Mem

F3, F4, F6; S1, S2, S3, S4, S5, 
S6: NCAR. CR(UC), ref∡, 
CAST; or NCAR, ⚓ AlgM

F1, F2, F5: Mem

F2, F3, F4, F5, F6; S1, S2, S3, 
S4, S5, S6 
CR(UC), C∡, ref∡

F1: Mem, RAWR 

S2, S3: NCAR, AlgM, RatDef, 
CR(UC), ref∡, CAST

Cofunction Identities (not 
addressed in stage one)

S1, S4, S5, S6: Idk, Xref∡

F5; S2, S4, S5: ⚓, CR(UC), 
C∡, AlgM, CR(Gr)

Shift/Addition F1, F2, F3, F4, F6; S1, S3, S6: 
Mem

F5; S2, S5: ⚓, AlgM, 
Proportional/Rigid

Stretch/Multiplication F1, F2, F3, F4, F6; S1, S3, S4, 
S6: Mem, V St = H Shrink,  
3 • In => 3 • Out, Nyquist, Origin 
stretch

F5; S3, S4, S5: NCAR, ⚓, 
AlgM

H/In - V/Out F1, F2, F3, F4, F6 
Mem, V St = H Shrink

F5; S2, S3: NCAR, C∡, AlgM, 
⚓,︎ CR(UC), CR(Gr), NCorr

Horizontal 
Transformations are 
Counterintuitive

F1, F2, F3, F4, F6; S1, S4, S5, 
S6: Mem, Counter-Creep

S1, S3, S5, S6: Proportional/
Rigid, before/after applying 
the function

Order (not addressed in 
stage one)

S2, S4: The horizontal 
transformation order doesn’t 
matter.

"  Identities(θ + π)

"  Identities(θ + 2π)
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Similar to the opposite angle identities, each of these students explicitly referenced the quadrant 

of the angle to determine the sign of their answers (CAST). Additionally, when generalizing the 

identity, all of the students, including F6 and S1, used the unit circle to justify their arguments. 

 Two of the students who were not successful, F1 and F5, showed progress towards 

developing these identities, but did not generalize and justify their solutions. F1 approached 

some problems through the unit circle representation and reference angles, and in those instances 

he was able to justify answers consistent with the "  identities. He did not progress far 

enough through the interview to be explicitly prompted to think about these identities generally. 

Without this prompt, he did not make an effort to generalize the results of his work. 

 F5 showed mixed results for this identity. He examined "  graphically, 

evaluating the function at multiples of " . He correctly determined that " . 

However, he never justified an answer for cosine, and he indicated that he believed that tangent 

(θ + π)

sin(θ + π)

π
2

sin(θ + π) = − sin(θ )

Figure 6. F5’s drawing of tangent with period 2π.
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has period " , as seen in Figure 6. This would lead to incorrect answers that followed the pattern 

of sine, and because of this, F5 was coded as not having developed a good understanding. 

 F2 unsuccessfully attempted to recall the "  identities from memory. He provided 

some insight into his learning methods in the following exchange regarding an interview task in 

which he was asked to find "  given that " , and " : 

F2: If that’s an odd number [referring to the coefficient of π], you get " . 
R: How’d you get that? 
F2: An identity. 
R: Can you explain that identity? 
F2: If that was an odd number, it would be negative sine, and if it was an even number, it 
would be positive sine. 
R: Do you know why that is? 
F2: No. It’s one of the hardest identities I’ve had trouble memorizing. I try to memorize  
it instead of understanding it. 

F2 claimed that "  for even values of " , and "  for odd 

values of ! . He never attempted to justify this identity and merely claimed it was true because he 

had memorized it. For the tangent function, he gave the right answer for the wrong reasons. He 

believed that tangent had a period of " , which would give the correct identity 

" , but would incorrectly state that generally " . 

However, no matter what answers he provided, his lack of justification meant that he was coded 

as not having developed a good understanding. 

 All of the interview subjects except for F1 were able to justify the identities 

" . Each of the successful students used a unit circle representation (CR(UC)) 

and noted that "  radians represents a full rotation around the unit circle (ref∡, C∡). The students 

2π

(θ + π)

sin(θ + π) 0 ≤ θ ≤
π
2

sin(θ ) = k

−k

sin(θ + nπ) = sin(θ ) n sin(θ + nπ) = − sin(θ )

n

π
2

tan(θ + π) = tan(θ ) tan(θ +
k π
2

) = tan(θ )

T (θ + 2π) = T (θ )

2π
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noticed that this meant that the angles !  and !  are coterminal. For example, when 

explaining why " , F6 stated “when it’s just a normal circle, and you’re 

finding measurements of angles, you go counterclockwise…. Then when you’re searching for a 

negative measurement, you go clockwise. So then "  and "  fall in the same spot.” These 

stages are reflected in Table 4.5. Several of these students incorrectly stated that these angles 

were the same and had to be prompted to recognize that they were different angles that 

intersected the unit circle in the same place. Despite this angle measure error, each of these 

students understood that adding "  to any input of a trigonometric function would not change the 

output. 

 Despite the fact that the interview was explicitly about identities, the interviewer had 

defined identity, and the students comfortably used the "  identities, none of the students 

claimed that these were identities. For example, when examining " , F3 stated “I knew 

that "  was the same as adding π, because it’s two full rotations plus an extra one.” The students’ 

facility with this identity implied that this learning goal could be approached earlier than the 

other identities. However, students who successfully justified this identity were coded similarly 

to students who successfully justified the "  identities. Speculation regarding the reason for 

this disparity will be presented in the discussion section. 

 F1 performed relevant evaluations correctly when utilizing the unit circle, a reference 

angle, and the unit circle definitions of sine and cosine. However, when not using this strategy, 

he considered the functions to have periods of 𝜋 “because that covers the range.” Because of this 

θ (θ + 2π)

sin(
−π
2

) = sin(
3π
2

)

−π
2

3π
2

2π

(θ + 2π)

sin(x + 5π)

5π

(θ + π)
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discrepancy, he was coded as not having a good understanding of the "  identities. F1’s 

inconsistent conceptions prevented him from fully realizing these identities. The students who 

did not develop good understandings of the !  generally did not reflect well enough upon 

their findings. Had F1, F2, or F5 reflected on their statements, they may have found them to be 

untrue, or they may have made some active, productive work towards convincing themselves of 

their truth. 

(θ + 2π)

(θ + nπ)

Table 4.4. Revised Critical Stages for (𝜃 + π) Identities with Supporting Quotes

(𝜃 + π) Identities Revised 
Critical Stage(s)

Code(s) Quote

Notice a change in the 
algebraic representation; 
Simplify the algebraic 
representation

NCAR; AlgM

Evaluate the function at 
enough inputs to develop a 
pattern.

⚓

Notice a correspondence NCorr “If the values are the same, 
the points should be the 
same.” (S1)

Notice a change in the 
algebraic representation (did 
not simplify)

NCAR “Then if I were to go 
180…” (S2)

Move to a representation with 
better affordances; Change 
angles; Use a reference angle

CR(UC); C∡; ref∡ “It’s on the other side…. It’s 
the same angle.” (S1)

Evaluate the function using 
similar triangles and the 
CAST diagram; Notice a 
correspondence

CAST; NCorr

“" … would be 

" .” (S1)

cos(
π
4

)
5π
4

“So "  would be  

" …. "  is " . So 

that would be " . "  is " . 
So " .” (S1)

cos(
5π
4

)

2
2

) cos(π + π) 2π

1 2π + π 3π
−1

“…it would also be " .” (S2)−b
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 Cofunction identities. Due to time restraints, the interviews in stage one did not cover 

the cofunction identities "  and " , so results are only 

included for the second stage interviewees in this area. All of the stage two participants noticed 

that the identities held when they were presented with a particular concrete example using a right 

triangle (RatDef). All of the participants were also able to generalize these identities for all 

complementary angles using the ratio definitions, recognizing that the leg opposite one of the 

acute angles is also the leg adjacent to the other acute angle (NCAR, CR(Alg), NCorr). However, 

none of the students were able to rigorously justify the general identity. Some students claimed 

without justification that this identity must continue to hold for non-acute angles, such as when 

S1 said “I would assume that it would because it works for the acute ones.” S5 attempted to use 

non-right triangles in a unit circle representation, as shown in Figure 7. She was looking to show 

that ! . After drawing the appropriate radii, she then connected the 

endpoints by what would be a chord in the unit circle. This is not a productive strategy, as the 

cos(
π
2

− θ ) = sin(θ ) sin(
π
2

− θ ) = cos(θ )

cos(100∘) = sin(−10∘)

Table 4.5. Revised Critical Stages for (𝜃 + 2π) Identities with Supporting Quotes

(𝜃 + 2π) Identities Revised 
Critical Stage(s)

Code(s) Quote

Notice a change in the 
algebraic representation

NCAR

Move to a representation with 
better affordances

CR(UC) “When it’s just a normal 
circle…” (F3)

Change angles; Use a 
reference angle

C∡; ref∡

Notice a correspondence NCorr

“I knew that "  was…” (F3)5π

“… "  was the same as adding 
π because that’s two full 
rotations…” (F3)

5π

“So then "  and "  fall in 

the same spot.” (F6)

−π
2

3π
2
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trigonometric functions are only applicable in right triangles. The angles labeled w and x in 

Figure 7 do not correspond with the ordered pairs at the ends of the radii.  

 Two students, S2 and S3, used strategies that were promising but ultimately unsuccessful, 

shown in Figures 8(a) and 8(b). These students used reference angles (ref∡) in the unit circle 

representation (CR(UC)), noticing that their reference angles were complementary (AlgM), and 

thus conformed to the established identity (PrevWk). These two students were unable to justify 

why pairs of angles that sum to !  would always produce complementary 
π
2

Figure 7. 

Figure 8. Promising work from S2 (a) and S3 (b)

(b)

(a)
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reference angles, but their work was more productive than any of the other participants, as 

referenced in Table 4.6.  

 These promising approaches were incorporated into the identities lesson plan. Prior to the 

interviews, it was hypothesized that students would have to consider "  as a pair of 

transformations in order to generalize the cofunction identities for non-acute angles. Since the 

participants had not been introduced to the graphs of the trigonometric functions at the time of 

the study, it was hypothesized that students would have to consider the effects of these 

transformations on the radius of the unit circle – adding "  shifts the radius counterclockwise by 

"  radians and multiplying by "  reverses the rotation of the radius. However, the students’ 

approach appeared more intuitive, as evidenced by the fact that two students took this approach, 

while none took the hypothesized approach through transformations. The lesson plan was revised 

to incorporate this strategy instead of the hypothesized strategy. 

 Another promising idea for the transformations lesson plan came from S1 while 

evaluating "  for various values of x. He said that “…adding "  flips the ones and 

zeros,” referring to the " - and " -values in the ordered pairs where the unit circle intersects the 

axes. This idea was not pursued for two reasons: first, S1 did not refer back to his idea when 

examining the cofunction identities, whereas the only piece of information S2 and S3 failed to 

justify was that angles that sum to π/2 will necessarily correspond with complementary reference 

angles; second, S1’s observation may only be useful when viewing "  as " , 

(
π
2

− θ )

π
2

π
2

(−1)

−cos(x +
π
2

)
π
2

x y

T (
π
2

− x) T (−x +
π
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which emphasizes that "  is being added to the input as part of two separate transformations, 

which none of the students explicitly did. Since the approach taken by S2 and S3 arose 

spontaneously and could be a promising method of showing that the cofunction identities 

generalize, it was adapted for use in the revised lesson plans. 

 Addition/shift transformations. The next learning goal addressed students 

understanding of the relationship between addition in the algebraic representation and shifts in 

the graphical representation. F5, S2, S4, and S5 were able to justify the relationship between 

addition and graphical shifts – that "  will shift the function "  leftwards by "  units, 

and upwards by "  units. In addition, F5 and S5 were successful in evaluating functions at regular 

intervals (AlgM, ⚓︎), plotting ordered pairs (CR(Gr)), and generalizing their results. In fact, while 

examining ! , F5 used the unit circle to perform his evaluations (CR(UC)). He stated, 

“" , so we’re down here. Plus π, so that’s going to take us all the way back here [to " ]

…. So that’s " ” (C∡, ref∡, NCorr).” S2 predicted that addition would cause rigid 

transformations of his ordered pairs, resulting in a shift of the graph. He said that a constant 

added to the function “shifts the whole thing up because you’re not changing what the ratio is 

between input and output.”  

 S4 used an approach similar to that espoused by Hall and Giacin (2013) and discussed in 

the literature review, in which the student takes a given ordered pair, then works backwards to 

find what original x-value would be transformed to the x-value in the given ordered pair, as seen 

in Table 4.7. S4 made up his own example to demonstrate his reasoning: “If " , and 

π
2

T (x + c) + d T (x) c

d

sin(
−π
2

+ π)

sin(
−π
2

) (0, 1)

1

f (x) = 4
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" , and the function is just this [ " ], then this stays at "  [CR(Gr)]. But with "  

[NCAR], if "  were to still be " , it wouldn’t be true. It would be " . So you have to divide by "  to 

get "  [AlgM, NCorr].” He also explained that additive transformations differ from multiplication 

in that “adding is only like a scale. It adds one to everything. Versus multiplying… stretches the 

slope….” Because of this, he was classified as having a good understanding of the addition/shift 

transformations learning goal. 

 Each of the students who could not justify the relationship between addition in the 

algebraic representation and shifting in the graphical representation relied upon memorization. 

f (2x) = 4 f (x) 4 f (2x)

x 4 8 2

2

Table 4.6. Revised Critical Stages for Cofunction Identities with Supporting Quotes

Cofunction Identity Revised 
Critical Stage(s)

Code(s) Quote

Notice a change in the 
algebraic representation; 
Algebraic manipulation

NCAR, AlgM

Ratio Definition RatDef

Change representations to the 
unit circle; Change angles; 
Use a reference angle; 
Evaluate the function using 
similar triangles and the 
CAST diagram

CR(UC); C∡; ref∡; CAST “…when you have a big angle 
like this… you follow it 
around the unit circle, and you 
make a reference angle based 
off what quadrant it’s in.

Notice a correspondence NCorr

“Evaluate w? You would do 
" , which is 
" .” (S1); “So, " , 
and " .” (S2)

(180 − 75 − 90)∘

15∘ x = 90 − w
w = 90 − x

"  – so adjacent over 

hypotenuse would be ! …. 

!  – opposite over 

hypotenuse would be "  

again.” (S6)

Cos(q)
j
h

Sin(w)
j
h

“It looks like I should be able 
to lift this triangle up and 
make it that same triangle…. 
" .” (S2)cos(x) = sin(y)
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These students were confident that addition does result in graphical shifts, but were unable to 

justify that claim. They could not articulate the relationships between their work and their claims 

that addition causes shifts. The interviews also revealed that these students were unable to 

explain why multiplication and addition would result in different transformations. For example, 

when examining the difference between additive and multiplicative transformations, the 

following exchange took place between the interviewer and F3: 

F3: Because you’re multiplying the function itself in this case by a different number, 
whereas normally you’d have the function and its input, but now you have three times 
the function, so it’s not exactly the same as the original function. 
R: In [ " ], you’re adding something to it, and it seems like it’s not the same as 
the original function. 
F3: I know. I honestly can’t wrap my head around it. That’s all I got. 

Since these students made no effort to justify their claims, there was little insight into potential 

student errors. However, this example does reiterate that memorization provides a poor 

foundation for developing justified conceptions. F3 relied on memorization to such an extent that 

he was unable to articulate how addition produces different effects than multiplication. 

 Multiplication/stretch transformations. The multiplication/stretch transformation 

learning goal addresses the relationship between multiplication in the algebraic representation 

and stretching in the graphical representation. In order to justify that transformations of the form 

"  will be stretched vertically by a factor of a and horizontally by a factor of " , S2 and S5 

noticed [NCAR] that these are proportional effects – in contrast to the rigid effects of addition 

and shifting – while F5 inferred these relationships from his algebraic work [AlgM, ⚓︎]. As shown 

in Table 4.8, S2 described the effects of multiplicative transformations as changes to the slope of 

the function [CR(Gr)]. Describing the differences between additive and multiplicative 

cos(x) + 1

(a)T (bx)
1
b
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transformations, he said “when you’re multiplying, you’ll end up changing the slope. For 

" , you’re multiplying your slope by, say, two, so it gets twice as steep. With adding, 

you’re taking the already given slope and moving it up one, so it’s a parallel function one unit 

y = m x + b

Table 4.7. Revised Critical Stages for Addition/Shift Transformations with Supporting Quotes

Addition/Shift 
Transformation Revised 

Critical Stage(s)

Code(s) Quote

Notice a change in the 
algebraic representation

NCAR

Change to a representation 
with better affordances

CR(UC) “…so we’re down 
here…” (F5)

Change angle; Use a reference 
angle

C∡, ref∡, 

Evaluate using congruent 
triangles and the CAST 
diagram

CAST

Change to the graphical 
representation; Notice a 
correspondence

CR(Gr); NCorr “[Plots transformed ordered 
pairs]… So it’ll shift it up all 
like that. They’re all the 
translated values of the base 
points, cosine of 
whatever.” (S2)

Notice a change in the 
algebraic representation

NCAR

Change to a representation 
with better affordances

CR(Gr)

Algebraic Manipulation; 
Notice a correspondence

AlgM; NCorr

“But with " …”f (2x)

“So that’s " .” (F5)1

“" , so we’re down 

here. Plus π…” (F5)

Sin(
−π
2

)

 “…this stays at " .”4

“Plus π, so that’s going to take 

us all the way back here [to 

" ].” (F5)(0, 1)

“… if x were to still be " , it 
wouldn’t be true. It would be 
" . So you have to divide by "  
to get " .”

4

8 2
2
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higher” [NCorr]. In contrast, F5 compared transformed ordered pairs to the originals after 

multiplication, graphed each, and noted that multiplication correlates with a graphical stretch, 

similarly to how he justified that addition correlates with a graphical shift. Successful students 

referred either to a set of calculations showing that multiplication produces a proportional effect, 

or argued conceptually that multiplication is a proportional operation. 

 A number of additional mistakes occurred as students investigated stretches. For one, 

while S4 did notice that multiplication and stretching are both proportional, he failed to 

recognize that the graph is always stretched from an axis. He, along with S1 and S3, tracked the 

point given for " , and stretched from the transformed point. When the interviewer pointed 

this out to S1, they had the following exchange: 

R: So, we stretch away from the axis.  
S1: You don’t stretch away from, in this case, [ " ] " ? 

That is, when examining " , S1 noted that the function originally passed through 

" , then was shifted to pass through " . He then stretched from the line " . This 

mistake has the same effect as stretching before shifting, and provides students with an incorrect 

conception of the effects of transformation order. 

 Another mistake that arose during my interviews is related to the Nyquist frequency 

(Black, 1953, p. 7). The Nyquist frequency is the sinusoid with the largest frequency that passes 

through a given set of ordered pairs. Some interviewees graphed complex sinusoids in order to 

satisfy the given ordered pairs despite explicitly working with algebraic representations of the 

transformations that did not match their graphs. For example, S1 and S6 evaluated the function 

"  for four inputs that all resulted in positive outputs. Because of this, they graphed 

x = 0

y = 1

2(sin(x) + 1)

(0, 0) (0, 1) y = 1

cos(2x)
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"  entirely above the " -axis and with an inconsistent stretch, as seen in Figure 9. While the 

latter error may be solved or avoided by having 

students plot ordered pairs more frequently, the former 

error influenced how the students plotted those ordered 

pairs. Potential causes and solutions to this 

misconception will be elaborated upon in the discussion 

section. 

 Horizontal/input and vertical/output 

transformations. The hypothesized critical stages 

considered horizontal/shift transformations and vertical/output transformations as two separate 

cos(2x) x

Figure 9. S1’s graph of cos(2x)

Table 4.8. Revised Critical Stages for Mult./Stretch Transformations with Supporting Quotes

Multiplication/Stretch 
Transformation Revised 

Critical Stage(s)

Code(s) Quote

Notice a change in the 
algebraic representation

NCAR "Here I’m taking the output 
and multiplying it by 
whatever’s in front of the 
cosine.” (S2)

Evaluate the function at 
regular intervals

AlgM, ⚓︎

Change to the graphical 
representation

CR(Gr)

Notice a correspondence NCorr "For " , you’re 
multiplying your slope by, 
say, " , so it gets twice as 
steep.” (S2)

y = m x + b

2

“"  times " . That 

equals "  times " , which 

would give us " .” (F5)

−3
2

tan(
π
6

)
−3
2

−1

3
3

2 3

“So " .” (F5)(
π
6

,
3

2 3
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learning goals. It was theorized that these goals would be approached similarly, but that students 

would not achieve both simultaneously. However, the students who achieved these goals did not 

appear to consider them separately.  

 F5, S3, S4, and S5 justified that transformations of a function input affect the graph 

horizontally, and they were the same students who justified that transformations of a function 

output affect the graph vertically. In the algebraic representation, these students noticed whether 

the transformations occurred before or after applying the function (NCAR) and whether the 

graphical transformation was horizontal or vertical (CR(GR)). That is, transformations that occur 

before the function is applied result in horizontal transformations because they affect the 

function’s input, whereas transformations that occur after the function is applied affect the output 

of the function, which is represented vertically on the graph. For example, S3 explained that 

"  is shifted vertically by two by saying “Because once you find the cosine…. The 

cosine input is done [AlgM]. You find a separate number for cosine, then you add two to it for the 

" -value. It doesn’t do anything to the cosine. It doesn’t change that. It just adds two to what was 

there before.” These students were also able to notice how the difference between horizontal/

input and vertical/output transformations was reflected in other representations, as seen in Table 

4.9. In terms of solution strategies, S3, S4, and S5 moved straight to ordered pairs in the 

graphical representation, while F5 used the unit circle to aid his calculations. F5 noted that 

horizontal transformations affected the input angle while the vertical transformations affected the 

value produced by the function. Since this observation did not lead or contribute to a 

justification, it was not coded as a critical stage. 

cos(x − π) + 2

y
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 The students who did not display a good understanding of horizontal/input and vertical/

output transformations were largely able to answer questions correctly, but not justify their 

answers. These students had memorized what effects each algebraic transformation would cause. 

For example, when F6 was asked to explain the relationship between the algebraic and graphical 

representations of the function ! , he and the researcher had the following exchange: 

F6: So we need to move up two points. That’s the plus two…. 
R: Do you know why that’s true? 
F6: No, it’s just how I remember it. 

Additionally, F6, S2, and S4 were convinced that horizontal stretches were identical to vertical 

shrinks and vice versa. While examining the graph of " , F6 explained his reasoning to the 

researcher: 

F6: …That’s a vertical shrink. You’re multiplying the " -value by " , so if x is one, you’re 

getting " . So there’s going to be more distance between each " -value. The only thing I 

can picture is each " -value getting bigger, so each point having more distance between 
each. And the " -values are staying the same. So it’s going to look like it’s being pulled 
apart.  
R: You said vertical, and your gesticulations were horizontal. 
F6: Yeah, they kind of look the same, right? Because in a horizontal shrink, there’s going 
to be less distance between each value. And it’s going to look like a vertical stretch. 

Table 4.9. Revised Critical Stages for H/Input and V/Output Transformations with Supporting 

H/Input and V/Output 
Transformation Revised 

Critical Stage(s)

Code(s) Quote

Notice a change in the 
algebraic representation; 
Evaluate the function at 
regular intervals

NCAR, AlgM, ⚓ “"  is "  because 
"  is " ….” (S4)
cos(0) + 1 2

cos(0) 1

−cos(x) + 2

tan(
3
2

x)

x
3
2

3
2

x

x
y
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 In comparison, F5 noticed that transformations in one direction did not affect the function in the 

other direction by noticing that horizontal transformations do not affect the range, and vertical 

transformations do not affect the " -intercepts. It was noted that F5’s observation could be a 

useful prompt to help students notice that non-trivial horizontal transformations cannot be 

recreated with vertical transformations or vice versa. The error occurred often enough that the 

lesson plan was modified to incorporate F5’s observation. 

 Horizontal transformations are counterintuitive. The participants were generally 

aware that there are counterintuitive aspects of horizontal transformations, but there were 

difficulties justifying the specifics. F5, S2, S3, and S4 successfully justified their answers by 

using a technique in which they worked backwards from their desired input to the original input. 

For example, S2 said that “in order to get outputs to stay the same you need to reduce the inputs 

by that amount.” While explaining how he came to his conclusions, F5 said, “I was thinking of 

each of these as formulas, and taking different values of x and seeing where they would be on 

this graph. Drawing it was important to me.” To underscore F5’s use of drawing, he used the unit 

circle to aid in some of his function evaluations before moving to the graph, as shown in Table 

4.10.  

x

Table 4.10. Revised Critical Stages for H. Transformations being Counterintuitive with Supporting Quotes

Horizontal Transformations are 
Counterintuitive Revised 

Critical Stage(s)

Code(s) Quote

Notice a change in the algebraic 
representation

NCAR “…you’re adding π to each of 
your inputs.” (S2)
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 The students who could not justify the counterintuitive nature of horizontal 

transformations uniformly attempted to repeat memorized information about what precisely is 

counterintuitive, but could not explain why some graphical transformations are intuitive and 

some are not. Most of these students could not consistently recall which aspects of graphical 

transformations are counterintuitive. This led to claims such as “multiplication in horizontal 

means division,” which led to algebraic claims such as ! . For the prompt “Graph a 

Evaluate the function at regular 
intervals

AlgM, ⚓

Change to the graphical 
representation

CR(Gr) “So it gives you this 
point.” (S2)

Change to a representation with 
better affordances; Change 
angle; Use a reference angle

CR(UC); C∡; ref∡

Notice a correspondence NCorr “You’re changing the domain 
of the function. So your 
outputs are all staying the 
same, but you’re adding 1 to 
your inputs. So in order to get 
your outputs to stay the same, 
you need to reduce the inputs 
by that amount.” (S2)

Horizontal Transformations are 
Counterintuitive Revised 

Critical Stage(s)

Code(s) Quote

[Examining " ] “…it’d 
still be down there. So these 
values are going to keep 
mirroring each other.” (F5)

cos(−x)

“So if !  was " , you’d add "  – 

"  – which is also " . Then 

if I took the "

…” (F5)

θ 0 π

sin(π) 0

sin(
π
4

+ π)

f (2π) = f (
π
2

)
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cosine function horizontally stretched by a factor of two,” S5 asked, “Do you mean a factor of 

two where you multiply everything by two? Or by a factor of two do you mean " ?” Similarly, S4 

asked, “So, it would condense then?” These students seemed to want to believe that everything 

about horizontal transformations is counterintuitive, even explicitly worded instructions. 

 Additionally, even the students who justified why horizontal transformations behaved 

counterintuitively individually struggled to explain why the order of horizontal transformations 

was counterintuitive. With prompting, all of the students noticed that their algebraic 

representations of pairs of horizontal transformations did not match their graphical 

representations, but none of them had explanations for why that was so. Some expressed 

displeasure that their burgeoning understanding was shown to be inadequate. It is likely 

beneficial to provide students with an explanation for the counterintuitive graphical behavior in 

addition to the fact that it is counterintuitive so as not to alienate the students from their work. 

 Order of transformations. The original task, discussed in the methods chapter, that was 

intended to help students notice that the order of transformations can have an effect on the 

resulting function did not serve its purpose. During the first stage, the interview questions 

regarding the order of transformations were presented using function composition. None of the 

stage one interviewees noticed that composition order corresponds with the order of 

transformations. The only observations any students made were that some orderings gave the 

same forms as others, and they believed this to be a typo. For example, when asking students to 

graph "  first vertically stretched ( " ) then horizontally shifted ( " ) and vice 

versa, the students were asked to graph "  followed by " , then "  and 

1
2

F(x) = sin(x) g(x) h(x)

g(F(x)) g(F(h(x))) F(h(x))
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" . Unfortunately, the students focused on the presentation of the problem – the 

repetition of "  – rather than either the meaning of the algebraic or graphical 

representations. 

 For the second stage, the compositions were replaced with written commands, such as 

Stretch "  vertically by a factor of two, then shift upwards by one. S1, S3, S5, and S6 

correctly applied these pairs of transformations by noticing that the order only mattered when 

horizontal transformations were combined or when vertical transformations were combined, but 

not for combinations of horizontal and vertical transformations, as seen in Table 4.11. These 

students noticed that the order of transformations could be indicated algebraically by inserting a 

set of parentheses around the first transformation. For example, the previously given example of 

a written command was written algebraically as ( " , while the reverse order was 

" . Figure 10 shows S3’s algebraic representations using parentheses to emphasize 

the order of transformations. Furthermore, the successful students noticed that the parentheses 

only affected the transformations if both of the transformations occurred before the function was 

applied, or if both occurred after. When a horizontal transformation was combined with a vertical 

transformation, these students noticed that the parentheses that they inserted did not affect the 

function. S3 noted that “these two equations [ !  and " ] are the same, and, shockingly enough, 

their graphs are the same. And these two expressions [ "  and " ] are different, as are their graphs, 

which makes sense since they’re graphs of the expressions.” 

 A number of students had trouble noticing the different results of different orderings 

because they improperly stretched the functions. As mentioned earlier, some students tracked the 

changes to the ordered pair at " , then stretched from the result. For example, after shifting 

g(F(h(x)))

g(F(h(x)))

cos(x)

2cos(x)) + 1

2(cos(x) + 1)

c d

a b

x = 0
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the cosine function π units to the right, S1 stretched from the line " , as seen in Figure 11. 

These students were prompted to evaluate function values based on their algebraic 

representations and compare these values to their graphs. In one case, a student was prompted 

that, based on their previous work, the graphs of "  and "  are identical. Since this 

was the case, based on his understanding of order, he would get different graphs if he stretched 

" , " , " , etc.; however, based on his understanding of "  

identities, all of those graphs should be identical. This helped to convince the student that his 

method was incorrect, which was an improvement, but he did not infer that he should stretch 

from the y-axis. Therefore, another prompt must be found to fully combat this misconception. 

 The misconception that stretching should occur from a line other than an axis has resulted 

in a change to the hypothesized critical stages. In the hypothesized critical stages for 

transformations, there was a stage for recognizing that the transformations affected the entire 

graph. The critical stages have been revised to include this concept in the understanding of the 

x = π

sin(x) sin(x + 2π)

sin(x) sin(x + 2π) sin(x + 4π) (θ + 2π)

Figure 11. S1 shifted cosine by π then stretches from x = π by two.
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individual stretch and shift transformations. The students who stretched their graphs from lines 

other than the axes were coded as not having achieved the learning goal of understanding 

stretches.  

 Parentheses appear to have been helpful for students to notice that order can matter. 

Students can even use their algebraic representations with parentheses to find that horizontal 

order is counterintuitive. However, if students are of the belief that shifting the graph also shifts 

the axis from which to stretch, then the parentheses will not serve their desired purpose. Having 

provided all of the results from the main study, this data will be analyzed and discussed in the 

following section.  

Discussion of Research Question One 

 In this section the results of the main study will be interpreted. These studies were 

intended to provide information to revise the hypothesized critical stages – answering research 

Table 4.11. Revised Critical Stages for Order of Transformations with Supporting Quotes

Order of Transformations 
Can Matter Revised Critical 

Stage(s)

Code(s) Quote

Notice a change in the 
algebraic representation; 
Notice that horizontal and 
vertical transformations are 
separated by the function 
operation

NCAR; f(x) “Because of the parentheses. 
They don’t interact. One acts 
directly on the y-value…. 
Anything inside the 
parentheses is directly 
affecting the x-value.” (S3)

Notice that order between 
multiplication and addition 
matters

AlgM "Because whatever the " -
coordinate is on [6e], you’re 
multiplying the original " -
coordinate by " . Whereas in 
[6f], you’re multiplying (the 
original " -coordinate ! ) 
times 2” (S5)

x

x
2

x +π
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question one – and inform how students’ use of representations affected their abilities to justify 

their mathematical claims – answering research question two. Observations will be made about 

why certain codes or combinations of codes appeared in various stages. The hypothesized critical 

stages will be compared to the revised critical stages generated from the codes that appeared 

during the interviews. Finally, the implications that the revised critical stages have for the lesson 

plans will be discussed. 

 Considerations related to the order of stages. In this section, implications from the 

interviews related to the order of stages will be discussed. The codes collected during the 

interviews implied that the critical stages for justifying (𝜃 + 2π) identities and cofunction 

identities for acute angles can be achieved far earlier than had been hypothesized. Additionally, it 

was hypothesized that the critical stages for the cofunction identity would necessarily have to 

appear late in the sequence of critical stages. However, the students were able to make 

observations about the cofunction identity and even justify it for acute angles well before it was 

hypothesized that they would have the ability to. This section will present the evidence 

supporting the conclusion to move the associated critical stages earlier in the process. 

 All of the interview participants noticed that "  much earlier than the 

hypothesized stages imply that they should have been able to. Even though F1 noticed this 

identity, he went on to make statements about the functions’ periods that were inconsistent with 

an understanding of this identity. The other participants were able to both notice that 

"  and justify that statement. Some of the students utilized and justified this 

identity before they had demonstrated that they had achieved any critical stages for other 

identities. For example, as mentioned in the "  identities results section, F3 stated “I knew 

T (x) = T (x + 2π)

T (x) = T (x + 2π)

(θ + nπ)
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that "  was the same as adding π, because it’s 2 full rotations plus an extra one.” They all seemed 

very comfortable with this identity based only on the unit circle definitions of the functions. 

However, most of the students also seemed to overgeneralize and conclude that each of the 

trigonometric functions has period 2𝜋. This led to some confusion when the students graphed the 

tangent function and when they performed any horizontal transformations on the tangent 

function.  

 While the students justified the "  identities much earlier than other identities, they 

still progressed through the same set of critical stages. It is speculated that students may have 

been able to justify the "  identity sooner than the "  or opposite angle identities 

because they were investigating the relationships between trigonometric functions acting on the 

coterminal angles 𝜃 and " . Since the reference angles were identical, the comparisons 

were trivial. However, these students still proceeded through the same critical stages: noticing a 

difference in the algebraic representation, changing representations to one with better 

affordances, changing to a new reference angle, and noticing the correspondences between the 

values "  and " . Since these comparisons were trivial, the workload related to the 

change angle, reference angle, and CAST diagram codes was lessened. So, although the same 

codes are present, the trivial nature of their application has resulted in the critical stages for 

understanding the T(𝜃 + 2π) identities being achieved earlier than the corresponding stages for 

understanding T(𝜃 + π) or opposite angle identities. 

 Students were also able to approach the cofunction identities for acute angles much 

earlier than was implied by the hypothesized critical stages. The critical stages implied that 

5π

(θ + 2π)

(θ + 2π) (θ + π)

(θ + 2π)

T (θ ) T (θ + 2π)
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students needed an understanding of how to justify opposite angle and "  identities before 

they could understand the cofunction identities. However as was seen in the results section of 

this chapter, students were able to justify the cofunction identities for acute angles using only the 

ratio definitions of trigonometric functions and some algebraic manipulation. Since students did 

not need the unit circle definitions of the trigonometric functions to achieve this level of 

understanding, this critical stage – justifying the cofunction identities for acute angles – may be 

placed before many of the others. However, the difficulty that students faced attempting to 

generalize this identity to non-acute inputs and the promising strategies shown involving 

reference angles on the unit circle imply that this learning goal – justifying the cofunction 

identities for all real inputs – cannot be completed until much later. An argument implying that 

all pairs of angles that sum to "  should necessarily result in such reference angles may be too 

intricate for many students to understand while concepts such as unit circle angle measure and 

trigonometric functions are still new to them.  

 It is not clear how the critical stages should reflect the discrepancy between students’ 

abilities to justify the cofunction identities for acute and non-acute angles. Based on the codes 

that appeared, students should be able to justify the cofunction identities for acute angles earlier 

than most other identities, since it only relies on the ratio definitions of the trigonometric 

functions. The facility with which students derived this identity corroborates this belief. But the 

codes did not identify a piece of knowledge that distinguished the students who made progress 

generalizing the identity from those who merely claimed that it should generalize. The latter 

students generally did not attempt to view the function in non-algebraic contexts; perhaps a 

(θ + nπ)

π
2
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larger sample size of successful students would have provided more codes and more separation 

between groups. A persistence code may have also separated the groups of students, since many 

who did not seriously attempt to justify the identity were satisfied with memorizing identities and  

the effects of transformations. 

 One example from this study that demonstrates the limitations of the implemented coding 

scheme was that there were no codes that differentiated S2 and S3 – the students who gave the 

most justified accounts of the cofunction identities – from other students who used the unit 

circle. S2 and S3 seemed to persist more and had more facility changing between 

representations, but these subjective observations have no supporting evidence. Perhaps future 

research on student affect or with a more refined coding scheme could differentiate between 

these students. S1 and S6 did not attempt to examine the relationships outside of acute angles, 

despite a prompt to examine a given example. S4 displayed an incomplete understanding of the 

relationship between the ratio and unit circle definitions of the trigonometric functions. He said 

“at least with triangles, I have a spot to measure from, versus the unit circle, where all I know is 

it goes from center to end.” This indicates that S4 did not understand the relationship between 

reference angles on the unit circle and the ratio definition of right triangles. Similarly, when 

examining an angle of "  on the unit circle, S5 drew a reference angle and lamented, “But then 

it’s not "  anymore.” This indicates that she did not understand the relationship between the 

trigonometric functions evaluated at "  and a reference angle in the second quadrant. Together, 

these examples provide some evidence that having the ability to fluidly change between unit 

circle and right triangle representations is a critical stage in justifying the cofunction identities. 

However, the current research has not been conceived with a framework for measuring the 

100∘

100∘

100∘
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fluidity with which students move between representations. Rather, the second research question 

addresses the ways in which students use individual representations and how they make 

connections between representations, but not the ease with which they do so. This conclusion 

would agree with previous findings (Challenger, 2009; Weber, 2005) that mathematics students 

in general and trigonometry students in particular benefit from being able to easily change 

between multiple representations of the same concept. 

 Critical stage modifications. This section will describe events that occurred during the 

interviews which prompted the hypothesized stages themselves to be modified significantly. As 

has been mentioned in the methods chapter, one major modification is that the learning goals 

(and associated critical stages for) horizontal/input and vertical/output transformations have 

been combined. Another change is that credit has been given to an alternate algebraic approach 

towards recognizing that horizontal transformations are counterintuitive as described by Hall and 

Giacin (2013). Additional changes included elaborating the process by which students notice a 

correspondence between the unit circle and algebraic representations to include the codes for 

changing angles, using a reference angle, and using the CAST diagram. Also, a second method to 

generalize the cofunction identities has been integrated. Additionally, several student mistakes 

were prominent enough that it was determined that they should be mentioned with particular 

critical stages. The paragraphs that follow provide more details about these changes. 

 Originally, the learning goals for Horizontal/Input and Vertical/Output were hypothesized 

to be separate, similar to how Addition/Shift and Multiplication/Stretch are separated. However, 

the former pair seemed to be clearly dichotomous to the students, while the latter did not seem 

straightforward. That is, the students seemed to treat “not vertical” as synonymous with 
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“horizontal,” whereas it was not necessarily the case that “not shift” was the same as “stretch” or 

that “not addition” was “multiplication.” This was evidenced by the fact that the group of 

students who could justify the Horizontal/Input learning goal was identical to the group of 

students who could justify the Vertical/Output learning goal. In comparison, S4 could justify the 

Addition/Shift learning goal, but not the Multiplication/Stretch one. This could be because the 

former pair are intuitively opposites, while multiplication is not considered to be the opposite of 

addition. Also, the students did not view all multiplication as stretching, but categorized it as 

stretches, shrinks, and flips. As a result of these differences between the learning goals, there 

were differences between the group of students who were coded as understanding Addition/Shift 

transformations and the group who were coded as understanding Multiplication/Stretch. In 

comparison, the group of students coded as having understood Horizontal/Input was identical to 

the group coded as having understood Vertical/Output. Therefore, joining these two learning 

goals was appropriate and supported by the data. 

 Some students approached the idea of counterintuitive transformations by using a method 

similar to that espoused by Hall and Giacin (2013). These students worked backwards to find 

what x-value would need to be transformed to produce a given y-value. The interviewees did not 

attempt to justify a general algorithm for any transformations as Hall and Giacin had 

demonstrated to a class, but some of the students were quite comfortable while examining the 

counterintuitive transformations in this way. The hypothesized critical stages, in contrast, were 

developed with the belief that this method is less beneficial than Borba and Confrey’s (1996) 

rubber sheet method. The students who used Hall and Giacin’s method applied it to individual x-

values and generalized their results, rather than applying the method to a general point (x, y). 
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Further research is required to determine if this method is too difficult to generalize, if more time 

is required, or if this method is more beneficial for exploration while another method is more 

beneficial for generalization. In any case, this method has been accounted for and credit given to 

Hall and Giacin for recognizing its potential. 

 A third modification is associated with accepting less rigorous justification strategies. 

When investigating trigonometric identities, students tended to achieve the Notice a 

Correspondence critical stage through the unit circle representation. In particular, successful 

students interpreted the transformation as a change to the reference angle, and used the CAST 

diagram to determine the sign. This has led to a viable set of critical stages; there are other 

potential methods which could result in viable critical stages, notably using the graphical 

representation. However, the graph is in turn justified by the unit circle definitions. In the case of 

these particular students, they had not used the graphs to that point during their course, which 

may explain why they did not use the graphs to justify any identities. Additionally, students 

could generalize from a set of examples. Although this method could not be used to rigorously 

justify any of the learning goals, it is an acceptable justification for students at the precalculus 

level, as seen in these students’ precalculus textbook (Axler, 2013). Since generalizing from a set 

of examples is acceptable in these students’ precalculus course, it was accepted for this study, 

and a set of critical stages was created to accommodate this method. 

 For the interview question examining the order of transformations, the intention had been 

to examine the counterintuitive effects of horizontal transformations separately. However, 

numerous students began the exercises by writing out the task in algebraic notation rather than as  

in the written notation of the instructions. That is, students interpreted the written instructions to 
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“Vertically stretch the function by a factor of 2” as the algebraic expression " . The students’ 

initiative was capitalized upon by asking them to note the impact of their parentheses, and 

whether the resulting expressions could be simplified to become identical. S3 noted, “these two 

equations are the same, and, shockingly enough, their graphs are the same. And these two 

expressions are different, as are their graphs, which makes sense since they’re graphs of the 

expressions.” This seemed to reinforce the idea that order of transformations can have an effect 

upon the result. Students saw that, after simplification, there were clear differences between the 

algebraic representations, which should result in differences between the graphical 

representations. While this algebraic method is promising, as it certainly perturbed some 

students, the interviews did not reveal any way to connect these observations to the graphical 

representations, which led to confusion for the students. As a result, there is no fundamental 

change made to the critical stages, but it is noted that if students find that their algebraic 

representations agree with their graphs but not their understanding of the effects of parentheses, 

those students should be directed to activities that bridge this gap in understanding before the 

student is negatively affected by their confusion. This was not a concern during the confirmatory 

studies because the algebraic, graphical, and dynamic unit circle representations were presented 

simultaneously, and the MATLAB program TrigReps did not allow students to insert their own 

parentheses. 

 Continuing examining the effect of parentheses on the algebraic expression, S1, S3, S4, 

and S6 noted how one transformation occurred before the function was applied, while the other 

occurred afterwards. This temporal dichotomy may be significant to the students in a way that 

the hypothesized critical stage of positional dichotomy – noticing whether the transformation is 

2 f (x)
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inside or outside the parentheses – is not. The students were not questioned regarding their word 

choice, but it could be examined in a future study. 

 The mistakes and methods noted above resulted in changes to the critical stages’ order 

and content. Critical stages were modified and combined to produce the revised critical stages. In 

the following subsection, some student errors will be noted that did not result in fundamental 

changes to the critical stages but deserve some attention. These errors did not reveal levels of 

understanding through which students must progress, but they did reveal potential troubles that 

students could face while attempting to achieve those levels of understanding. 

 Notable student errors. Students made some errors that were notable but did not result in 

fundamental changes to the critical stages. In some cases, the errors were variations on stage zero 

errors – misunderstanding definitions. In other cases, the errors were prominent enough that they 

warranted inclusion in descriptions of the associated stages. These errors do not warrant their 

own stages because they aren’t explicit levels of understanding that need to be achieved prior to 

fully understanding the learning goal, and it would be impossible to have a critical stage listing 

all of the mistakes that students shouldn’t make. This section contains student mistakes which 

may hold some insight into ways in which students think and reason about trigonometric 

concepts. While none of these errors were important or prevalent enough to warrant explicit 

inclusion as a critical stage, it will be noted how these errors are connected to the revised critical 

stages. 

 The error that students made related to the Nyquist frequency – in which the students 

traced an incorrect sinusoid between a set of ordered pairs – may have been significantly 

influenced by the format of the task that was assigned to them. Since students were graphing the 
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ordered pairs at " , " , " , and " , the frequency change was not emphasized in 

the task or their work. A number of students expressed doubt about the graphs they drew from 

connecting the points in the simplest looking sinusoid. They gave two reasons for their doubt:  

(1) they were expecting a frequency change based on the algebraic representation of the 

transformation, and (2) all of the ordered pairs had non-negative y-values. For example, S1 and 

the researcher had the following exchange: 

S1: I was thinking cos(𝜋 • 2). I was thinking how to get- This is the only one that does a 
full rotation in 𝜋. And the way they did that was to multiply the inside by 2. But that 
doesn’t give you any- It doesn’t drop below the x-axis…. 
R: So what is the 2x doing? 
S1: It’s condensing it [H gesticulation]. 

S1 and S4 set aside their doubt and graphed the function as non-negative over the interval 

! . The design of this particular graphing task – task 3(g) of the revised transformations 

protocol – was not a significant limitation for this study, since there remained enough overlap of 

concepts across tasks that the students’ understandings of stretches could still be observed in 

several instances. However, the answers provided by students in this study imply that tasks of 

this type can be successful if they are designed with these potential errors in mind. Function 

transformations could be used which result in both positive and negative outputs, and inputs can 

be chosen so that the Nyquist frequency is the desired frequency. This would potentially guide 

students away from this error. 

 Another common error that hadn’t been hypothesized while developing the interview 

protocol was that students expected ordered pairs on the graphs of the function to also be on the 

unit circle. For example, when asked to plot " , a number of students began at " , 

x = 0 x =
π
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x = π x = 2π
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since the input π on the unit circle corresponds to the point " . This error was possibly 

related to the fact that there was generally some confusion about the relationships among the x-

value on the unit circle, the x-value on the graph, and cosine being defined as an x-value. The 

general ordered pair "  confused some students since cosine is the x-value on the unit 

circle, but the y-value in that ordered pair. Some of these students were aided by being shown 

ordered pairs on the graph of "  as "  and how the unit circle definitions for 

trigonometric functions correspond to the graphs. One student claimed that they had never been 

shown this connection before; the course he was taking at the time of the interview hadn’t 

addressed it, and it is unknown whether or not it was addressed in his high school curriculum. 

These mistakes are related to stage zero knowledge – definitions of functions, ordered pairs, and 

the trigonometric functions – which implies that this error would be more properly placed with 

critical stages related to learning the unit circle definition of cosine and the connection between 

the graph and unit circle. These critical stages are not addressed in this study as they are assumed 

to be known by students examining trigonometric identities and transformations. 

 Since students were having difficulty with the repetition of the symbol x, it is reasonable 

to wonder if a different symbol should have been used. If the research tasks had used, for 

example, 𝜃 instead of x as the input variable, there would remain potential difficulties. Students 

may have only understood trigonometric functions as applicable to multiples of "  and " , or they 

may have only understood trigonometry as applicable in right triangles (Tuna, 2013). The former 

understanding defines the trigonometric functions as discrete rather than continuous, and the 

latter understanding ignores all negative inputs. Students may benefit from a repeated 

(−1, 0)

(x , cos(x))

y = x2 (x , x2)

π
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demonstration of the graph of the relation " , the graphs of the trigonometric functions, 

and their relationship. A dynamic representation may help students make this connection and see 

sine and cosine as continuous functions, as discussed in Zengin, Furkan, and Kutluca (2012). 

 As has been mentioned, some students were coded as not having understood the 

relationship between multiplication and stretch transformations because they did not differentiate 

vertical stretches from horizontal shifts or vice versa. It could be helpful to ask students to track 

the range and x-intercepts of their functions as they learn about transformations. This could 

prompt the students to notice that the range remains unchanged under horizontal transformations, 

and the x-intercepts remain unchanged under vertical transformations. During the interview, 

there was no prompt about either the range or the x-intercepts. Instead, when left to reason on 

their own, the students frequently referred to the “slope” of the function. This was inadequate 

since, for example, "  and "  appear, without axes for context, to curve similarly. As a 

result, some students inferred that these functions must be the same. Without reference points 

such as x-intercepts or maximum and minimum values, these students had difficulty 

differentiating between these two types of transformations and were unable to achieve the 

Horizontal/Input and Vertical/Output learning goals. 

 A significant issue preventing students from achieving the learning goals related to 

counterintuitive transformations arose during the interviews, which will be referred to here as 

counter-creep. This name is derived from “Christmas-creep,” the phenomenon by which 

Christmas decorations come out earlier every year. In this case, the students know that there are 

counterintuitive aspects of horizontal transformations, but they may be too eager to apply that 

knowledge. When students were asked to simplify " , a number of students were 

x2 + y2 = 1

3sin(x) cos(3x)
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confident that multiplication inside these parentheses is in actuality division. So, instead of 

" , students would say that " . This likely 

occurs because students memorize that there is something counterintuitive about horizontal 

transformations, but they don’t remember what particular things are counterintuitive. As a result, 

they are liable to believe that any aspect might be a counterintuitive one. If that is the case, then 

this mistake will likely continue to occur until students can be shown why some aspects of 

horizontal transformations are counterintuitive and others are not. At the heart of this issue is the 

fact that students are attempting to memorize facts instead of learning how to justify their 

mathematical thinking. Students may need to be convinced that memorization is an inadequate 

strategy before they actively attempt to progress through the critical stages related to horizontal 

transformations being counterintuitive. 

 Students’ errors are largely the result of attempting to supply answers before thinking 

through their work. These errors were occasionally exacerbated by students refusing to seek 

justification for their work. In the next section, it will be described how the lesson plans have 

been modified in order to guide students towards methods of justification and away from their 

flawed or unjustified arguments. 

 Implications for lesson plans. This section will examine how the changes to the critical 

stages have affected the corresponding lesson plans. Some changes have had more of an effect 

on the resulting lesson plans than others. The major changes are: (1) there are explicit warnings 

and scripted responses to newly recognized notable student errors; (2) the critical stages for 

horizontal and vertical transformations have been combined; (3) an algebraic approach to 
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determining that horizontal transformations are counterintuitive has been validated; (4) the notice 

a correspondence critical stage has been refined to include changing angles, using a reference 

angle, and using the CAST diagram to determine the quantity and sign of the answer; and (5) the 

students’ strategy for generalizing the cofunction identities has been employed.  

 Implications of student errors. When the lesson plans were being hypothesized, several 

common errors were not predicted. Some of these errors were trivial to account for, others 

involved substantial revision of the hypothesized lesson plans. For example, the error that 

students committed when they graphed a complex sinusoid through a set of ordered pairs with 

non-negative y-values was easily avoided by not providing the students with any tasks in which 

they had to extrapolate graph shapes from sets of ordered pairs. 

 The errors that ordered pairs on the graphs of trigonometric functions must satisfy the 

unit circle equation and that vertical stretches are equivalent to horizontal shrinks (and vice 

versa) were addressed briefly with counterexamples. Each was addressed during the lecture on 

trigonometric transformations. When the graphs were introduced, students were asked to check 

whether or not ordered pairs such as "  or "  had x- and y-values that satisfied the unit 

circle equation. After some students responded in the negative, the researcher noted that the unit 

circle has an ordered pair "  and that " , so "  must be greater than " , and 

hence would not satisfy the unit circle equation. He then reminded the students of the relation 

among the unit circle and the definitions and graphs of the trigonometric functions.  

 During the segment reminding students of the relationship between the ordered pairs and 

the unit circle, students were also reminded of the multiple roles that the variable x would play 

(
π
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during class. For instance, the ordered pairs "  would appear on the graph of the cosine 

function. Students were instructed that the first x refers to the horizontal distance on the 

Cartesian plane, which is the input value x, while "  is the y-value of this ordered pair 

produced by cosine acting on the value x. Students had become confused because they associated 

sine with y-values and cosine with x-values in relation to their unit circle definitions. None of the 

students responded during lecture that they continued to be troubled by this distinction. However, 

as will be mentioned in study limitations, that does not necessarily mean the students were not 

actively troubled. 

 The lecture also contained a counterexample to the claim that horizontal stretches are 

equivalent to vertical shrinks and vice versa. The students were asked to compare the graphs of 

the functions "  and " . In particular, "  has ordered pairs outside of the range of 

" , and "  has a different period and x-intercepts than " . It was noted that, 

despite the similarities between the shapes of the graphs, and how similar their slopes looked 

when sketched, these graphs were in fact different. This meant that the functions themselves 

were different.  

 Finally, students were cautioned against attempting to memorize the effects of algebraic 

transformations. In addition to noting that memorization does not generally foster deep 

understandings, the students were reminded that it can be very difficult to memorize how exactly 

horizontal transformations differ from vertical ones and that believing that everything related to 

horizontal transformations is counterintuitive would often lead students astray during their work. 

 Implications of critical stage modifications. This section will detail how changes to the 

critical stages resulted in changes to the lesson plans. The critical stage modifications discussed 

(x , cos(x))

cos(x)
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here are that (1) horizontal/input and vertical/output stages were combined; (2) generalizing from 

a set of algebraic examples was recognized as a strategy; (3) the process by which students 

notice a correspondence between the unit circle and algebraic representations was refined; and 

(4) students’ approach to generalizing the cofunction identity was incorporated. 

 The activities students participated in during the transformations teaching episode only 

gave options to multiply and add, which could imply that these operations are dichotomous. 

Additionally, the fact that the unit circle representation was also stretched and shifted may have 

prompted students to conclude that stretching and shifting were also dichotomous operations. To 

prevent a related potential misconception, the researcher framed shrinks as on a continuum of 

stretches in the hope that that students would not conclude that one of the operations referred to 

graphical shrinks. The researcher also emphasized that students could view stretches, shrinks, 

and reflections as a continuum of proportional transformations, where the effects were greater 

farther out from the appropriate axis. In contrast, shifts affected every ordered pair an equal 

amount. It was hoped that if students came to see these concepts as dichotomous in this context, 

then they would be more likely to classify them productively as types of transformations. 

 While the algebraic approach of generalizing from a sample of ordered pairs is sufficient 

for a precalculus class, it was hoped that the TrigReps program would help students justify that 

horizontal transformations act counterintuitively by helping the students make connections 

among the representations, in particular between the graphical, unit circle, and algebraic 

representations. For example, the effects of changing the speed and starting position of the radius 

can be seen to horizontally affect the graph, and are the result of transformations of the function’s 

input. It was hypothesized that students would be able to use the changes to the algebraic 
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representation to explain the changes to the unit circle representation, and could use these 

changes to justify the changes to the graphical representation. For example, multiplying the input 

by two doubles the speed that the function progresses through its inputs. This corresponds to the 

radius progressing through angles twice as fast and the endpoint progressing through its x- and y-

values twice as fast, which corresponds to the graph horizontally shrinking by a factor of two (or 

stretching by a factor of one half). Furthermore, any shift of the starting position of the radius 

must necessarily occur before the change to its speed can be observed, which could help students 

to explain why the order of horizontal transformations is counterintuitive. Unfortunately, time 

limitations resulted in none of the students progressing through the tasks to the point where they 

were asked to investigate the counterintuitive effects of horizontal transformations. 

 For the hypothesized critical stages, it was assumed that students would notice a 

correspondence in some way between the algebraic representation and whatever representation 

that they had changed to. During the interviews, the unit circle was the most popular choice of 

alternate representations, and it was noted how students used this representation in particular to 

notice correspondences. Because of this, during the lecture on identities, the researcher 

emphasized the justification for the congruence of the reference triangles and for the signs given 

by the CAST diagram. Prior to the interviews, other methods had been considered to emphasize 

these justifications. Alternate methods for showing that unit circle triangles are congruent 

included using the fact that the diameters created sets of symmetric semi-circles or using the 

facts that vertical angles are congruent and all of the radii of a circle have equal length in order to 

craft an argument that reference angles "  apart must create congruent reference triangles. 

These arguments were simplified to claim that, on the unit circle, triangles with equal reference 

180∘
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angles are congruent, but students should check the orientations of the triangles. The orientation 

of the triangles is especially important in developing the cofunction identities since the height of 

one triangle will correspond to the width of another. 

 The hypothesized critical stages contained only one potential method for students to 

generalize the cofunction identities. It was hypothesized that it would be necessary for students 

to move to the unit circle representation and consider "  as a set of transformations on a 

radius. It was further hypothesized that students would have less difficulty if they viewed 

"  as " . This more explicitly shows the multiplication of 𝜃 by "  and the sum of 

this value with " ; "  may be interpreted simply as one operation – the difference between 

two values. However, the two promising strategies seen during the interviews were very different 

from the hypothesized strategy. During the interviews, S2 and S3 noticed that angles that 

summed to "  consistently used complementary reference angles. They were unable to justify that 

this would necessarily be so, but their strategies provided evidence that this concept could be 

approached without transformations. During the second part of the lecture on identities, students 

were asked to notice that the angles created by two radii rotating in opposite directions from the 

positive x-axis will necessarily sum to zero, and if the positive rotating radius instead starts at  

" , then the angles will sum to " . Additionally, since one radius begins on the x-axis and one 

begins on the y-axis, the endpoints of the radii will have reversed x- and y-values. Since the 

endpoints have reversed x- and y-values, then the cosine of one angle is the sine of the other. 
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Thus, when the cosine and sine are respectively taken for two angles that sum to " , they will 

always produce equal values. 

 The interviews also prompted an additional logistical change. When students were 

investigating the task that explored the order of transformations during the interviews, many 

students attempted to perform both transformations at once. These students made significant 

mistakes that affected their abilities to achieve this critical stage. It was more difficult to 

convince some students than others to take multiple steps, but performing the transformations as 

two distinct operations was an important part of students’ success. Without performing the 

actions separately, some students simply assumed that their results would be unsurprising and did 

not want to perform the work. The lesson plan was revised to separate combinations of 

transformations.  

 Also while attempting the task regarding order of transformations during the interview, 

the students spontaneously provided their interpretations of the algebraic representations of the 

pairs of transformations (see Figure 10). The algebraic representations helped students recognize 

that the order in which horizontal transformations are applied is also counterintuitive. Students 

were confident that they had placed the parentheses correctly reflecting the order of 

transformations. They were also confident that their graphs were correct, either because they 

were confident in their graphing skills, or because they were confident in the researcher’s 

authority when he assured them that their graphs were correct. However, when the students were 

asked to use their algebraic representations to evaluate a few values in order to check that their 

algebraic representations aligned with their graphical representations, the students found that 

π
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they did not. However, the algebraic representations did match up with the graph of the opposite 

ordering. Unfortunately, since this interview task showed students that there is something 

unexpected happening without helping them find why that is so, a number of students expressed 

displeasure. Many assumed that they must have made a mistake. Without any justification for 

why their representations did not align the way that they expected, students made comments such 

as “You blew my mind,” which is what S1 told the researcher when S1 considered applying 

addition before multiplication. Because of the students’ discomfort, the lesson plans were 

examined to determine whether this would cause an issue during the confirmatory study. It was 

not anticipated to cause difficulty during the transformations teaching episode because of the 

MERs provided to the students to investigate the effects of transformations. Students may be 

surprised that their graphical representations don’t match their predictions, but they could use the 

dynamic unit circle representation to connect their understandings of the definitions of the 

trigonometric functions and of graphical representations of transformations.  

 Conclusion. This section presented data and analysis for the first research question:  

Through what critical stages do students pass as they come to understand trigonometric 
identities and transformations? That is, which actions, connections, or other ways of 
thinking are common to those students who go on to be able to justify their solutions of 
tasks involving these concepts? 

The thoughts and actions common to students who successfully justified trigonometric identities 

and transformations through task-based interviews were noted and compared to the hypothesized 

critical stages. Modifications were made to the critical stages, including combining some stages 

and elaborating on others. There was significant overlap between the critical stages for each of 

the learning goals. This is to be expected because the learning goals are all related to two 
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subjects (identities and transformations). Furthermore, the identities can be viewed as a subset of 

particular transformations. Notably, each set of critical stages tended to include a need to change 

representations to one with better affordances. The only critical stages that did not include 

changing representations occurred when students were able to generalize from a set of algebraic 

examples such as " . With enough data points, students could reasonably conclude that 

" . If, however, generalizing from a set of examples is not considered to be a 

justified understanding, then every set of critical stages requires a change in representations. 

Revised critical stages are presented in Figures 12 and 13 for a rigorous justification of the 

learning goals. Since students only justified why horizontal transformations are counterintuitive 

by pattern recognition, the rigorous justification is still hypothesized. This is signified by the 

dotted lines around these stages in Figure 12. This reinforces Weber’s (2005) and Challenger’s 

(2009) claims that successful trigonometry students must necessarily possess the ability to easily 

change between multiple representations.  

 Many students displayed incorrect understandings of stage zero concepts, such as angle 

measure, trigonometric function definitions, and function properties. These affected the students’ 

abilities to progress through critical stages. For example, when a student found the angle "  

on the unit circle instead of " , his ability to notice correspondences between the associated 

trigonometric values was obviously affected. A better understanding of the stage zero concepts 

would allow students more opportunities to develop a conceptual understanding, rather than 

memorize facts. Interviewees repeatedly stated, especially when discussing transformations, that 

they had memorized the effects and had not attempted to justify the statements. 

Discussion of Research Question Two 

sin(x + π)

sin(x + π) = − sin(x)
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 Students’ use of representations will be discussed in this section. The hypothesized 

critical stages included several instances in which students must change representations in order 

to develop their understandings. For example, neither the algebraic nor right triangle 

representations offer appropriate affordances for generalizing the cofunction identities to non-

acute angles. This led to a hypothesis that students would have to change to the graphical or unit 

circle representations in order to justify the generalized identity. It will be noted here whether it 

was possible for students to justify their answers using only the algebraic representations, and if 

not, what other representations they used to justify their work.  

 Identities. As mentioned in the previous section, some students were able to justify some 

identities simply through algebraic manipulation and pattern recognition. However, even these 

students were implicitly or briefly using the unit circle. When explaining the reasoning behind 

their evaluations, these students cited the unit circle definitions of the trigonometric functions. 

These students performed algebraic manipulation before and/or after using the unit circle to 

evaluate the trigonometric functions. Had the students known about the graphs of the 

trigonometric functions at this point in their course, then they could have potentially used 

transformations of the graphs to justify some identities. However, since the students had not 

worked with the graphs in class yet, it is not surprising that none of them used the graphs to 

make general arguments about identities. 

 Opposite angle identities. Despite not using the graphical representations, there were 

students who successfully justified several identities. The participants in this study who were 

able to justify the opposite angle identities did so using the unit circle representation. These 

students noticed that the endpoint of the radius at the opposite angle was reflected across the x-
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axis. They could then apply their knowledge of the unit circle definitions to determine that this 

reflection would not produce a different output for the cosine function, but would give the 

opposite value for the sine function (see Table 4.2). 

Figure 12. Revised critical stages for identities 
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Figure 13. Revised critical stages for transformations
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 Notably, none of the students used the unit circle definition for the tangent function. They 

preferred to use the identity "  and their knowledge of sine and cosine. So, in the 

case of the opposite angle identities, the successful students concluded that  

" . Had the students noticed that the slopes of the 

radii grow in equal and opposite proportions as 𝜃 and !  grow, they may have found the 

opposite angle identity for tangent marginally faster. However, the unit circle definition for 

tangent may have had more significance for the identity " . In this case, the 

radii are "  apart, and thus form a line segment. Since the slope is constant along this line, the 

tangent values will be equal for any outputs that differ by odd multiples of π.  

 Students were able to use reflection across the x-axis of the unit circle to reason about the 

effects of taking the opposite of an input angle. The graphical representation may have been 

another viable path had it been more prominent feature of their class. Students also may have 

generalized the identities after checking them for several values of 𝜃, but none of them attempted 

this strategy. 

 (𝜃 + nπ) identities. The algebraic representation was more prominent in justifying these 

identities than the opposite angle identities. Some students were able to justify identities of the 

form "  by evaluating the transformed functions algebraically and noticing how the 

results relate to " . At the precalculus level, this pattern recognition is typically considered a 

justification for the general rule, as can be found in precalculus textbooks (see Axler, 2013). 

Other students used the unit circle to draw a general angle 𝜃, and the angle " . As mentioned 
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in the results section, the students had difficulty articulating how they knew that the reference 

angle at 𝜃 would produce a triangle congruent to the one created by the reference angle " . 

For example, given that ! , S1 stated that ! , after which he and the 

researcher had the following exchange: 

R: Why is it ! ? Why isn’t it ! ? 

S1: We’re putting it in terms of ! . If the adjacent side was ! …. 

R: Why does it have to be the same x-value over there and over here? 
S1: The hypotenuse is always going to be 1, so wherever you go out to would be the same. 

It is a positive sign that, in this case, these students’ intuition was reliable. Their intuition could 

perhaps be capitalized upon by prompting students to notice that the reference angles created by 

this line are vertical angles, and are thus congruent. Despite the difficulty of justifying that the 

reference triangles are congruent, the successful students continued with their work by applying 

the unit circle definitions of the trigonometric functions to determine the sign (positive or 

negative) of their answers. 

 Despite using the unit circle representations to justify the "  identities for sine and 

cosine, the students moved back to the algebraic representations to find the corresponding 

identity for tangent. Had they considered that tangent can be defined as the slope of the radius, 

they may have come to the same conclusion more quickly and without the potential difficulties 

that students face reducing terms and using identities and fractions. Through the unit circle 

representation, students may notice that the radii for angles 𝜃 and "  form a straight line, 

and precalculus students should be familiar with the fact that lines have constant slopes. 

Students’ approaches to justifying the opposite angle and "  identities typically used the 
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unit circle and algebraic approaches. In the following section, the cofunction identities will be 

discussed, in which students needed to use the right triangle representations. Students then had 

difficulty changing from the right triangle representation to one that offered more affordances for 

justifying the identity for non-acute angles. 

 Cofunction identities. The stage one interview participants were not asked about the 

cofunction identities, but each of the stage two participants successfully justified the cofunction 

identities for acute angles using a right triangle representation. This representation, together with 

the ratio definitions of trigonometric functions and geometric knowledge about angles in a 

triangle, aided students in justifying the cofunction identities for acute angles.  

 Even so, only two students made significant progress generalizing these identities. These 

two students, S2 and S3, did so through unit circle representations rather than staying with right 

triangle representations. The unit circle helped these students examine the reference angles 

formed by pairs of angles that sum to π/2. They observed that these reference angles were 

complementary, and the reference triangles were arranged in such a way as to extend the 

identities to non-acute angles.  

 The unit circle appeared integral to S2 and S3’s success in justifying identities. In fact, all 

of the successful students used the unit circle either explicitly or implicitly. Had the students 

been familiar with the graphs of the trigonometric functions through their class, it is possible that 

they could have used graphical transformations to justify their identities, but I did not see any 

evidence of this. None of the participants made any attempt to do so. Regardless, the hypothesis 

that students would need to change to a representation with better affordances than the algebraic 

one has been borne out by the collected data in relation to cofunction identities. That is, the unit 
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circle and graphical representations can both be used to view an infinite number of data points 

for pairs of 𝜃 and " , whereas the algebraic representation only provides students with 

three values of 𝜃 – " , " , and "  – for which they can justify their responses.  

 Transformations. The learning goals for transformations largely involve relationships 

between algebraic and graphical representations – addition corresponds with shifts, 

transformations of the function’s outputs correspond with vertical graphical transformations, the 

horizontal graphical transformations are counterintuitive based on students’ understandings of 

algebraic properties, and so forth. So it is natural that both of these representations were 

frequently used as students sought to justify their answers. In comparison, the unit circle was 

only used to spontaneously explain transformations when F5 said that "  would cause the 

radius to rotate twice around the circle for every one time that "  would. The fact that 

students chose algebraic and graphical representations over the unit circle and triangle 

representations – where students learned the definitions of the trigonometric functions – may be 

related to the students’ reliance on memorization. While examining identities, students could use 

the unit circle definitions to reason through the effects of the changes. However, with 

transformations, the successful students largely performed algebraic evaluations before plotting 

points on the graph. It is hypothesized that it may be more difficult for students to generalize and 

recall how sets of ordered pairs were transformed on the Cartesian plane than how radii are 

transformed on the unit circle. A lesson plan reflecting this hypothesis was intended to be tested 

in the confirmatory study, but time restrictions did not allow for it. 

(
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 To further investigate how students made sense of representing transformations, the 

students were asked during the interviews to describe how to portray trigonometric 

transformations using a circle and radius. While this was intuitive for some participants, such as 

F5, others struggled with the concept. For example, S3’s description of how to show "  

using a circle and radius was to find "  the standard way, then to multiply the result by two. 

This reflects the students’ algebraic process in generalizing the properties of transformations. The 

dynamic representation that students were provided during the confirmatory study was intended 

to help the students build stronger connections between the unit circle definitions and the effects 

of transformations by showing them ways to transform the unit circle itself to provide 

transformed outputs. 

 One goal of having students build stronger connections between the unit circle definitions 

and graphical transformations is to make it easier for students to justify the effects of 

transformations without performing several sets of evaluations. Students who develop a pattern 

through repeated algebraic work are not creating as rigorous a justification, may take longer to 

identify the pattern, may identify an incorrect pattern by evaluating at inputs that are spaced 

unevenly or too widely, and must endure the tedium of repeated algebraic work in order to justify 

each identity. Additionally, by using the unit circle, students may be able to justify why 

horizontal transformations are counterintuitive without memorization. By considering horizontal 

stretches and shifts as changes to the speed and starting position of the radius, the resulting 

graphs are intuitive: multiplying by large numbers increases the speed and hence the frequency; 

adding changes the starting value, which is akin to shifting the axes to the right or the graph to 

the left. 

2sin(x)

sin(x)
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 Finally, students successfully examined the order of transformations by using algebraic 

representations. The students inserted parentheses around the operation that they wished to be 

performed first, which resulted in different algebraic representations for combinations of 

transformations that signified different functions and identical algebraic representations for 

combinations of transformations that resulted in the same graph. For example, horizontally 

shifting left by one then vertically stretching by two produces an algebraic representation –  

"  – that is identical to the one produced by performing the transformations in the 

opposite order – (2f(x + 1)). Or, as was earlier noted, S3 remarked, “these two equations are the 

same, and, shockingly enough, their graphs are the same. And these two expressions are 

different, as are their graphs, which makes sense since they’re graphs of the expressions.” While 

the task asked students to graph their functions, many students were making informed 

hypotheses about the effects of the order of transformations before they began graphing. 

However, the students who used the algebraic representation alone were uniformly unable to 

justify why the order of the horizontal transformations was counterintuitive. Relying only on the 

algebraic representation for this aspect could negatively affect students in the short-term as they 

struggle to understand why algebraic properties with which they are familiar seemingly do not 

hold. 

 Conclusion. This section presented data and analysis for the second research question: 

How do students understand the relationship between the unit circle definitions of 
trigonometric functions and the identities and transformations of those functions? Is it 
critical that students be able to change from the algebraic representation to one with  
different affordances as they come to understand identities and transformations? 

2( f (x + 1))
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The groups of students who successfully justified each of the trigonometric identities shared the 

ability to change between the algebraic and unit circle representations. When students failed to 

change between the algebraic and unit circle representations, they were generally unable to 

justify the identities. Changing to the unit circle representation helped them formulate productive 

hypotheses and justify their generalizations. In contrast, the groups of students who justified each 

learning goal for transformations typically made generalizations based off of a small set of 

ordered pairs. Generalizing from a small set of information is not as rigorous as justifications 

using the unit circle or graphical representations, and students struggled to justify several 

transformation concepts, notably when and why certain transformations are counterintuitive. 

 Out of the nine learning goals addressed in this study – (1) opposite angle identities, (2) 

"  identities, (3) cofunction identities, (4) addition/shift transformations, (5) 

multiplication/stretch transformations, (6) input/horizontal transformations, (7) output/vertical 

transformations, (8) order of transformations, and (9) horizontal transformations being 

counterintuitive – there were four in which at least half the students could correctly justify their 

understandings. These were the learning goals for which students relied on the unit circle 

definition, or their understanding of order of operations – as when students generalized the 

results of transformations based on a small set of ordered pairs or correctly applied parentheses 

to their algebraic representations, imposing a new order for the given operations. Students 

struggled to bring their unit circle knowledge to bear on the other learning goals, and they 

struggled to justify those learning goals. This suggests that students who can interpret various 

trigonometric situations through their conceptions of the unit circle may have more success than 

(θ + nπ)
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students who cannot identify and change to a useful representation such as the unit circle or 

graphical representations, which agrees with previous literature (Challenger, 2009; Weber, 2005).   

 The results from this study suggest that students must connect their understandings of the 

algebraic and unit circle representations of transformations in order to justify trigonometric 

identities and graphical transformations. There were successful students who did not use the unit 

circle representation. However, when prompted, these students said that they based their 

reasoning in the algebraic representation on an implicit unit circle. In this way, these students 

could still be said to rely on the unit circle representation. Additionally, the method of 

justification through a set of examples is not mathematically rigorous, and those methods may 

not be accepted in other classrooms. 

Results from the Confirmatory Study (Identities) 

 The confirmatory study was performed to demonstrate the utility of the critical stages as a 

framework for designing a lesson plan. None of the students who participated in the 

confirmatory study had participated in any previous portion of the study.  

 There were logistical difficulties collecting data from the confirmatory study. To be 

consistent with the other sections of precalculus being taught by other TAs, students worked in 

groups of three or four during recitation periods. For the purposes of this study, these groups had 

been temporarily arranged by the researcher’s advisors in order to have participating students 

working together. During the recitations, because of absences, some groups had to be combined. 

The researcher had no way of knowing whether the combined groups would be composed of 

participants, non-participants, or a mix. Additionally, there were technological shortcomings with 

the recording devices. Finally, despite repeated reminders, few participants completed the pre- 
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and post-tests. Three students completed pre- and post-tests for both identities and 

transformations An additional two took only one test: the pre-test for identities. As a result of the 

low turnout, there were only three students, C2, C3, and C4, who produced pre- and post-tests 

and written group work, as seen in Table 4.12. There were another five students, C11, C12, C13, 

C14, and C16 who produced usable audio and written group work. Additionally, C11 and C12 

took the pre-test for identities. There were five students, C1, C5, C6, C7, and C8 who produced 

only written group work. There was a single student, C15, who provided pre- and post-tests, 

audio recordings, and written work. Finally, students C9 and C10 were asked to work with non-

participating students because of absences. As a result, their data was unable to be separated 

from the non-participating students’ and was deemed unusable. This section will present the 

results based on data that were able to be collected. The results are presented by group in an 

attempt to be transparent about what conclusions could be drawn from the available data. 

 Group 1. The students C2, C3, C4, and C6 were grouped together for classwork during 

recitations. Although the audio recording device failed, students in this group did complete the 

activities and submit their work. Additionally, C2, C3, and C4 completed both sets of pre- and 

post-tests. The pre- and post-tests for C2, C3, and C4 will be presented individually, and their 

classwork will be presented collectively, since it is impossible to distinguish which members of 

the group provided which aspects of the submitted work. 

 Of the 12 tasks on the identical pre- and post-tests for identities, C2 improved from 6/12 

correct to 7/12 correct. The improvement was due to a corrected special right triangle on the 

post-test. While C2’s work on the final task of the pre-test used the tangent identity – 
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"  – and contained no other productive work, the work on the post-test shows an 

attempt to use the cofunction and "  identities in order to relate "  and "  to 

the given value of " , as seen in Figure 14. However, none of the identities cited are 

correct, nor is there evidence that he has changed representations in an effort to better understand 

the effects of these transformations. As a result, it is unclear from the pre- and post-tests that C2 

made any progress through the critical stages for identities.  

 C3 scored 0/12 on the identities pre-test, only writing that he’s sorry and can’t do any of 

the tasks. On the post-test, his score improved to 4/12 with productive work on a fifth problem, 

but the other seven tasks were still blank. The correct responses show an understanding of some 

"  identities, but none of the other identities. This indicates that C3 may have progressed 

through the critical stages of some "  identities, but there was no other evidence that he 

had attempted to justify other identities. Similarly, C4 improved from 3/12 to 6/12 by correctly 

evaluating expressions of the form "  for various values of x in addition to the previous 

correct work using the opposite angle identity. Since C4’s justification relied solely on the 

tan(x) =
sin(x)
cos(x)

(θ + π) cos(105∘) tan(165∘)

sin(−15∘)

(θ + nπ)

(θ + nπ)

cos(x + π)

Figure 14. C2’s attempts to use identities.
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algebraic representation, it is impossible to say whether he had progressed through any additional 

critical stages. 

 The collected class work from Group 1 reveals that they worked productively during the 

recitation period. However, it is impossible to determine which group member contributed which 

idea, or to understand how the students came to their conclusions without the audio recordings to 

accompany their written work. Nonetheless, the results of their group work are presented here. 

This group provided a well-constructed argument showing how they would evaluate "  

given the problem “Suppose that you have a table that gives you values for " , " , …, 

up to " . Explain how you would find " .” They also made productive work towards 

evaluating "  before running out of time, as seen in Figure 15.  

 With the data collected, it cannot be determined what effect, if any, the lesson plans had 

on these students. The justifications on the post-tests were not thorough enough to ensure that 

they had progressed through critical stages. One student used some "  identities but did 

cos(71∘)

sin(1∘) sin(2∘)

sin(45∘) cos(71∘)

tan(260∘)

(θ + nπ)

Table 4.12. Data collected during the confirmatory study

Student Pre-Test (I) Post-Test (I) Pre-Test (II) Post-Test (II) Audio 
Recordings

Classwork

C1 X

C2, C3, C4 X X X X X

C5, C6, C7, 
C8

X

C9, C10

C11, C12 X X X

C13, C14 X X

C15 X X X X X X

C16 X X
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not justify the identities themselves on the post-test. The classwork indicates that at least one 

student in the group knows how to apply the cofunction identity to acute angles. However, it is 

not clear which student knows this or whether that student can justify it.  

 Group 2. Since group 2 provided audio data, it was easier to find who contributed which 

ideas to the group work. C11, C12, and C13 worked together and produced audio and written 

class work. Additionally, C11 and C12 took the pre-test for identities, scoring 4/12 and 6/12, 

respectively. As will be demonstrated in what follows, the transcriptions of their audio recordings 

show that, after having attended lecture, they were able to work together productively using 

trigonometric identities. C13 stated that he did not attend lecture, and he did not offer much of 

substance to the group’s conversation, but without any other information, it cannot be determined 

how he was affected by the teaching episode. 

 Working through the exercises, C11 and C12 continually attempted to find identities that 

connected their given information to their desired information. They checked whether the given 

Figure 15. Group 1’s identities classwork.
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information fit productively into any identities given during the lecture, and if they were unable 

to find any, they moved to the unit circle representation and created reference triangles. C11 used 

the cofunction identity to relate the desired information, " , with the given information 

" , saying “!  is ! . So " . C12 cited the identity “ "  

is " ” to find "  given " . When faced with a situation in which they could 

not find an applicable identity, these students referred to reference triangles on the unit circle. 

For example, they noticed that " , " , and "  create congruent reference triangles and 

therefore produced predictable x- and y-coordinates. Their written work for these inferences can 

be seen in Figure 16, and the following exchanges occurred in relation to tasks 3A and 3B, 

respectively: 

C11: We’re looking for the y-coordinate of that. 
C12: Wouldn’t it be the same thing, but negative? 
C11: It would be negative square root that value because it’s down the same angle. If 
we’re focusing on x- and y-coordinates, yeah. We’re just taking this and flipping it over  
here. 

C12: It’s cosine. 
C11: But it’s the opposite angles, so it’s the same thing, because we’re just getting the x-
coordinate off of that. 
C12: Negative, because it’s in the second quadrant. 

Comparing the audio recordings and work submitted by Group 2 with the pre-tests of C11 and 

C12 indicate that the identities lecture had a positive effect on these students. It appears that the 

students worked more correctly and productively after attending the identities lecture. However, 

without any data from the post-tests, it is impossible to say whether or not they would have 

improved individually from the pre-test without their classmates to help with the work.  

cos(71∘)

sin(19∘) 180 − 90 − 71 19 sin(19∘) = cos(71∘) sin(−θ )

−sin(θ ) sin(−42∘) sin(42∘)

π
12

−5π
12

−13π
12
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 Group 3. C1, C5, C7, and C8 worked together as a group, but their audio equipment 

failed, and none of them took the pre- or post-tests. Their submitted work for the identities 

activity consists of a single, well-justified solution stating that " . Without any 

other information, it is impossible to draw conclusions from this data set. 

 Group 4. C14, C15, and C16 produced audio and written classwork, and C15 took the 

pre- and post-tests. C15 improved from 3/12 to 10/12. Changes from the pre- to post-test for C15 

include eliminating the mistake that " , fixing trigonometric function 

definitions, and correcting the Pythagorean identity from "  to  

" . 

 Of the five tasks that these students were able to attempt during class, they correctly 

justified their answers for four. They used situated, congruent reference triangles on the unit 

circle to argue the cofunction and opposite angle identity tasks. For example, when attempting to 

find a relationship between "  and " , C14 noted that “if you draw a triangle, these 

two are complementary,” to which C15 responded, “It’s the same triangle. It’s just how it’s set up 

cos(71∘) = sin(19∘)

T (x + y) = T (x) + T (y)

cos(x) + sin(x) = 1

cos2(x) + sin2(x) = 1

cos(71∘) sin(19∘)

Figure 16. Classwork from C11, C12, and C13.
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on the coordinate plane.” They continued to use situated triangles to demonstrate the opposite 

angle identity for sine, drawing a congruent triangle in the fourth quadrant, as seen in Figure 

17(a). 

 They combined this method with the Pythagorean Identity in order to solve the other two 

tasks. Given that " , these students drew a right triangle that agreed with the 

given information and had a hypotenuse of length two. They then found the length of the 

unknown leg. Having found the lengths of all sides of their triangle, they found how to situate 

the triangle in the coordinate plane in order to answer the questions, as seen in Figure 17(b). 

 Without pre- and post-tests from C14 or C16, it cannot be determined how well the 

lesson plan helped guide them through the critical stages. C15 appears to have made progress. 

The changes between pre- and post-tests cannot be directly attributed to being able to justify 

trigonometric identities. However, they do show an increased understanding of stage zero 

concepts that could have affected him as he attempted to progress through the stages. 

Additionally, his comment regarding the reference triangles for !  and !  being the same 

triangle reflects a well-developed understanding of the use of reference triangles in the unit circle 

representation. Although the results are not definitive since the tasks on the pre- and post-tests 

were able to be solved without explicitly using identities, these results are promising. 

 The results from the identities section of the confirmatory study show that some students 

benefited from attending lecture by learning applicable identities and strategies. In particular, 

creating reference triangles on the unit circle was a productive strategy for two groups who could 

not find how to apply identities directly through the algebraic representation.  

cos(
π
12

) =
2 + 3

2

71∘ 19∘
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Results from the Confirmatory Study (Transformations) 

 This portion of the confirmatory study was intended to demonstrate that the critical stages 

for understanding function transformations could be used as a framework to design a lesson plan 

for teaching transformations of trigonometric functions. Although some audio devices failed and 

many students did not take either the pre- or post-test, the data has been reviewed in an endeavor 

to draw some conclusions and offer potential leads for future research. 

 The group work consisted primarily of working on tasks using TrigReps. While its 

capabilities were not fully utilized, the data collected do indicate some positive results. Students 

Figure 17. Classwork from Group 4 using identities through the algebraic representation 
(a) and the unit circle representation (b).

(a)

(b)
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were able to work with the various representations to confirm or correct their predictions about 

the effects of transformations. 

 Group 1. Recall that Group 1 consisted of C2, C3, C4, and C6. Of these students, all but 

C6 took the pre- and post-tests related to transformations. C2 improved his score from 2/10 on 

the pre-test to 5/10 on the post-test. These assessments revealed that after the lecture he was able 

to correctly answer problems related to algebraically interpreting graphical representations of 

vertical transformations, and he was able to determine the period of the tangent function given a 

graphical representation.  

 On the pre-test, C3 drew an incorrect cosine graph, then left the rest of the test blank. On 

the post-test, the cosine graph was the correct shape, but there were no labels on the x-axis. After 

this, about half the exam was completed, but none of it was correct. C3 scored 0/10 on both tests, 

but there was more effort given on the post-test. 

 C4 showed noticeable improvement between pre- and post-tests for transformations, 

increasing his score from 0/10 to 5/10. On the post-test, C4 showed the ability to graph the 

cosine function and determine the periods of various trigonometric functions when given either 

algebraic or graphical representations. Two significant errors that appeared in C4’s responses on 

the pre-test were that (1) the period could be determined graphically by finding the length over 

which a function mapped to its entire domain, and that (2) if a function had a period of π, then it 

must be the tangent function. This led to the conclusion that the graph of a horizontally 

transformed sinusoid represented a tangent function, as seen in Figure 18. 

 These students’ group work consisted of correct answers to the first two sets of tasks with 

imprecisely worded reasoning, such as “adding and subtracting at the end of the graph would 
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cause the graph to move up and down. When 

the adding and subtracting is in between the 

parentheses, then the graph will be moved left 

and right.” A generous interpretation would 

be that these students understand the material 

but not all of the vocabulary; a conservative 

interpretation would be that the students have 

algorithmic but not conceptual 

understandings. Without the audio recordings, 

not much more can be said. More data than 

that would be required to make any significant inferences. 

 The pre- and post-assessments imply that the teaching episodes had a significant effect on 

the students of Group 1. C2 showed that he had made correct classifications of graphical 

transformations. Without more work on the post-test or audio recordings from the recitation, it 

cannot be determined if C2 is applying algorithmic knowledge, or if he has justified his 

understandings of the classifications that he made. C4 improved his stage zero knowledge to a 

level where he could productively approach some of the material. In this sense, the lesson plan 

was helpful, but did not achieve its goals of guiding these students through all of the critical 

stages. 

 Group 2. Recall that Group 2 provided audio recordings and group work from the 

recitation period. None of the students in this group took pre- or post-assessments for 

transformations. C13 stated that he had not attended the identities lecture. While he did not make 

Figure 18. C4’s Transformations pre-test.
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a similar admission for the transformations lesson, after analyzing the audio recordings it was 

determined that he still did not contribute anything productive to the group work.  

 C11, C12, and C13 were able to use TrigReps to successfully complete each of the tasks 

that they attempted from the classwork. The audio recordings reveal that these students were 

confused about some transformations, but were able to use the program to help them understand, 

as evidenced by the following exchanges in which students were attempting to find functions that 

had double the amplitude of " , and triple the frequency of " , respectively: 

C11: Twice the amplitude would be " . 
C12: That or " . 
C11: I’d say that has twice the amplitude, right? 
C12: "  doubles the frequency. "  would double the amplitude. 

C11: Triple frequency, that’s " . 

C12: Three or ! ? 

C11: You may be correct, sir…. No, definitely three. 

In these instances, the students were able to use the computer program to perform the tedious, 

repetitive action of plotting points in order to check their hypotheses about the effects of 

transformations. Using a computer also avoided the potential difficulty related to the Nyquist 

frequency – fitting a lower frequency sinusoid through the plotted points. 

 Although C11 and C12 briefly discussed the changes that they noticed in each 

representation during the exercises, it cannot be determined whether they were making 

meaningful connections between the effects of the transformations on the different 

representations. When examining horizontal shifts, they remarked: 

C12: Clearly the equations are changing and the graphs are moving. 

sin(x) sin(x)

2sin(x)
sin(2x)

sin(2x) 2sin(x)

sin(3x)
1
3
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C11: Algebraically we’re changing it in- and outside of the parentheses. Graphically we 
see it shifting. On the unit circle, we see 𝜃 changing. 
C12: And we still haven’t heard anything [referring to the aural representation]. 
C11: True story. 

C11 and C12 correctly note how the algebraic and graphical representations are affected, but it 

cannot be determined whether they note that the starting position of the radius – what C11 refers 

to as “𝜃 changing” – is directly related to the graphical ordered pair at " . While it remains to 

be seen if students are actively making connections among their concepts of the various 

representations, the students’ answers indicate that TrigReps can adequately demonstrate 

trigonometric functions in different representations. 

 Since none of the members of Group 2 completed pre- or post-tests, and their audio 

recordings do not reveal whether the students were actively attempting to create connections 

among concepts or whether they were passively observing the effects of various transformations, 

few determinations can be made about how the students have progressed through the critical 

stages. From the exchange regarding doubling the amplitude, it appears that C11 and C12 had 

classified multiplication as stretching, but were not confident in their classifications of horizontal 

and vertical transformations. Since the students did not give any indication that they were 

relating the changes in each representation to one other as opposed to simply listing them, it 

cannot be determined whether these students could justify their reasoning. 

 Group 3. There were not many inferences to make using the data provided by  Group 3. 

C1, C5, and C7 submitted written work, but did not take pre- or post-tests, and their audio 

recorder failed. This group submitted correct work after the recitation on transformations, and for 

these activities there is some evidence of their thought processes. For instance, they noted that in 

x = 0
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the graphical representation “the y-coordinates are higher when the amplitude is higher, but x-

values are unaffected,” and “adding a constant to the sin[e] equation shifts the graph, but it does 

not affect its shape,” as seen in Figure 19. The work that this group performed to arrive at their 

correct answers and these conclusions is not present in their written work. Without additional 

data, it is impossible to draw conclusions about how these students were affected by the lesson 

plan. Without audio recordings, pre-tests, or post-tests, this group has not contributed meaningful 

data to determine the efficacy of the lesson plan. 

 Group 4. Recall that Group 4 provided audio recordings and C15 took the pre- and post-

tests. C15 increased his score on the transformations tests from 4/10 to 6/10. The questions that 

he improved upon were related to finding the algebraic representation of a vertically transformed 

sinusoid given a graphical representation, and identifying the period of the tangent function.  

 During the recitation period examining transformations of trigonometric functions, Group 

4 completed the first four sets of tasks with all correct answers. Furthermore, the audio recording 

reveals that these students made correct predictions regarding function transformations. While 

finding a function with twice the amplitude of ! , the following remarks were made: 

C14: For twice the amplitude, do we just do two sine [meaning " ]? 

f (x) = sin(x)

2sin(x)

Figure 19. Written work from Group 3.
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C16: That made the amplitude greater. The peaks are taller.  

While looking for a function that shifted !  down by π, C15 said to “put !  in the d 

slot,” meaning the fourth input for !  in the computer program.  

 Even so, this group failed to predict some counterintuitive aspects of horizontal 

transformations. When they were attempting to find a way to shift the function "  to the left 

by "  units, the following exchange occurred: 

C15: To the left by " . Did that go to the right? 

C16: So it’d be " . 

They also noticed some connections among representations. In the first example below, a 

connection was made between the unit circle representation and the graphical representation 

during a horizontal shift, as seen in Figure 20. In the second, C15 correctly predicted the 

relationship between the algebraic, aural, and potentially graphical representations. It is unclear 

whether the first use of the word frequency was in relation to the graph or aural representations, 

but the remainder of that quote can be inferred to be referring to the aural representation. 

C15: To the right by seven. The radius went to a different spot. 

C15: This will be a lower frequency. Oh, that was so low! It’s a little hum, like a little  
submarine. 

 When they were unable to predict the behavior of the different representations, this group 

was able to use TrigReps to explore the effects of the various representations. C16 asked the 

group, “What’s the difference between inside and outside the parentheses?” Their submitted 

work demonstrated that they had discovered the difference at least among shift transformations: 

f (x) = sin(x) (−π)

_sin(_x + _) + _

sin(x)

π
2

π
2

sin(x +
π
2

)
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“Changing values within the sine parentheses shifts the graph left or right. Changing values 

outside the parentheses moves the graph and unit circle up or down.” 

 Group 4’s written work also indicated that they noticed the corresponding changes among 

representations. They wrote that “increasing the frequency increases the pitch, the number of 

cycles per second on the graph, [and] the speed of the radius on the unit circle.” It is not clear 

that these students have developed conceptual understandings of the trigonometric concepts, but 

the collective work does indicate that they were seeking to understand the relationships at more 

than an algorithmic level. The MATLAB program TrigReps provided avenues for students to 

explore these relationships. Had the students had more time with the program, they would have 

Figure 20. Group 4’s work with TrigReps
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had the ability to examine the order of transformations using the program. In particular, the 

program is hypothesized to be helpful for students seeking to explain why the order of horizontal 

transformations is applied counterintuitively. This is especially useful because the main study 

demonstrated that students had difficulty justifying why the order is counterintuitive, and some 

students’ remarks indicate that they may have found this to be disconcerting. 

Discussion of Research Question Three (Identities) 

 The confirmatory study was intended to examine the effectiveness of lesson plans 

designed to help guide students through the critical stages of understanding. In this section, the 

results of the confirmatory evidence will be interpreted with respect to trigonometric identities. 

Particular emphasis will be placed on identifying evidence that students have progressed through 

critical stages. Students for whom there was no meaningful data have been omitted. 

 C2. On the pre-test, C2 displayed the ability to correctly evaluate trigonometric 

functions. The only correct application of trigonometric identities was the use of the fact that 

" , as seen in Figure 21. He attempted to use other identities, but each of his 

uses of other identities was flawed in some way. On the post-test, C2 attempted to use several 

identities, as was shown in Figure 14, but there were mistakes in each case. He wrote that 

" , that " , and that " . The 

latter two mistakes are difficult to interpret, but it is clear that he was not applying conventional, 

correct identities. There is no evidence that he had done more than notice a change to the 

algebraic representations. Figure 14 shows that he noticed a change to algebraic representation 

" , however it is not clear that he has done any productive reasoning to justify what the 

effects of this change might be. Beyond noticing the change to the algebraic representation, it is 

sin(x + 2π) = sin(x)

sin(−15∘) = sin(15∘) tan(165∘ − π = tan(−15∘) cos(−15∘) = sin(15∘)

cos(−15∘)
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not able to be determined whether this student has used any other representations or attempted to 

develop a pattern in the algebraic representation that would lead to a justified identity. 

 C3. As mentioned previously, C3 scored 0/12 on the pre-test for identities, and improved 

to a 4/12 on the post-test. There is evidence that he achieved some critical stages of 

understanding necessary for several learning goals, and there is evidence that he understands the 

"  identities. Since the pre-test was left blank, it is reasonable to conclude that he 

had not made meaningful progression through the critical stages at that time. The pre-test does 

not provide any evidence that he had achieved the critical stage of considering changes to the 

algebraic representation in other representations, and it is unclear whether he noticed that the 

algebraic representations had been changed. On the post-test, there is evidence of knowledge of 

trigonometric identities, as seen in Figure 22. In part b, it is possible that there was a clerical 

error – dropping the negative sign from "  – and the problem was completed correctly. 

However, a conservative interpretation would suggest that C3 does not understand that 

" . In part c, although there is no answer given, the student suggests that he 

T (x + 2π) = T (x)

sin(45∘)

sin(θ + π) = − sin(θ )

Figure 21. C2’s use of the sin(x + 2𝜋) identity.
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understands that " . This is corroborated by stating elsewhere on the post-test 

that "  and " . However, he did not demonstrate 

that he understands that "  as well.  

 C11. C11 took the pre-test, but not the post-test for identities. His pre-test indicates that 

he progressed through the critical stages for the "  identities, as seen in Figure 21. In part d, 

it appears that he has noticed that "  is a change to the algebraic representation of 

" , and in part e, it appears that he noticed that the algebraic representation of "  has 

been altered by a "  transformation. He noticed a change to the algebraic representation and 

moved to the unit circle representation in order to relate the desired value to known values. He 

did not state the use of quadrants to determine the signs of his answers, so it cannot be 

determined whether he used this strategy, but his work is consistent with having used it, as seen 

in Figure 23. Based on his success, it is reasonable to hypothesize that he made a vocabulary 

error when he used the word “cotangent” instead of “coterminal.”  

tan(x + 2π) = tan(x)

cos(405∘) = cos(45∘) sin(45∘ + 900∘) = sin(225∘)

tan(x + π) = tan(x)

(θ + π)

cos(405∘)

cos(45∘) sin(45∘)

900∘

Figure 22. C3’s post-test use of identities.
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 During the group work, 

C11 cited the cofunction 

identity and correctly applied it 

to the relevant task. He also 

collaborated with his classmates 

to use the unit circle and 

congruent reference triangles to 

apply opposite angle and 

"  identities. This work 

suggests that he has a conceptual understanding of these identities and that he could potentially 

derive the identities that he hasn’t demonstrated. 

 C12. C12’s pre-test contains one sign mistake, where he has labeled a Quadrant 3 angle 

with positive x- and y-values, leading him to state that " . His other work indicates 

that this is an error unlikely to remain upon reflection. Figure 24 shows that C12 could use the 

unit circle to justify "  identities, even though there is an arithmetic error. These are the 

only instances in the pre-test in which he used identities. 

 While C11 contributed the most to Group 2’s conversation, C12 demonstrated significant 

trigonometric knowledge and helped his group to work productively. He cited the opposite angle 

identity "  and was aware of the signs of the trigonometric functions based on 

the quadrant of the angle. C12 did not use any opposite angle identity during the pre-test. It is 

possible that he knew this identity during the pre-test but did not apply it. A post-test may have 

(θ + π)

sin(225∘) =
2

2

(θ + 2π)

sin(−θ ) = − sin(θ )

Figure 23. C11’s use of the (𝜃 + 2π) identities in his pre-test.
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given insight into this, since opposite angle identities can simplify some of the work and thus 

have the potential to be used if known.  

 Since C11 led the conversation during the recitation period and C12 did not complete a 

post-test, it is difficult to determine what effect the lesson plan had on him. His work and speech 

show that he was comfortable moving between representations and noticing correspondences 

between reference triangles. This suggests that he finished the lesson plan having at least 

achieved the critical stages through applying the CAST diagram. However, it cannot be 

definitively determined if the lesson plan impacted achievement of any learning goals. 

 C15. C15 showed significant improvement between pre- and post-test scores. Figure 25 

shows that, during the pre-test, he noticed a change in the algebraic representation of the sine 

function and changed to the unit circle representation to utilize its better affordances. He also 

changed angles, but was not able to notice correct, productive correspondences among those 

angles. During the post-test, in addition to correcting the Pythagorean identity, C15 corrected 

Figure 24. C12’s identities pre-test.
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which legs of the reference triangles have length k. Although he cites no identities, it appears that 

he has achieved all of the requisite critical stages. 

 Overall, the results from the identities section of the confirmatory study show that 

students benefited from having the ability to utilize different representations. However, the 

plethora of strategies through which students can approach trigonometric problems had a 

detrimental impact on the usefulness of the pre- and post-tests: many students gave correct, 

justified answers that did not require the use of identities. An additional difficulty was that the 

scarcity of audio recordings during the recitation periods made it difficult to draw conclusions. 

Even so, Figures 16, 17(b), and 25 show arguments similar to that made by the researcher during 

the lecture regarding congruent triangles on the unit circle. However, without more data, it 

cannot be determined what effect the lesson plan in particular had on these students. Potential 

improvements to the lessons and assessments will be discussed in the future research section. 

Discussion of Research Question Three (Transformations) 

 In this section, the results of the confirmatory study will be interpreted with regards to 

students progressing through the critical stages of understanding for function transformations. 

These students used the previously described TrigReps program to examine the effects of 

transformations on graphical, unit circle, and aural representations. Students for whom there was 

no meaningful data have been omitted. 

 C2. C2 applied transformations inconsistently during both the pre- and post-tests. For 

example, he sketched an accurate graph of "  on the post-test, which he was unable to 

do during the pre-test. However, given a graph of " , he stated that the algebraic 

3cos(x) − 4

sin(
1
2

x −
π
6

)
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representation would be " . If the audio recording device assigned to this group had 

worked correctly, it could have provided some insight as to whether this was simply a misplaced 

parentheses or whether he does not understand the relationships between the algebraic and 

graphical representations of horizontal and vertical transformations. When discussing similar 

situations with the group, it could be seen if C2 advocated that addition to the function output 

would result in horizontal transformations. If not, it would lend credence to the idea that he 

merely misplaced a parentheses. C2’s reasoning on the post-test would also be helpful in 

sin(
1
2

x) +
π
4

Figure 25. C15’s pre-test (a) and post-test (b).

(a)

(b)
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determining how he conceived of horizontal transformations. However, the post-test contained 

no reasoning or justification for C2’s observations regarding transformations. In conclusion, all 

that can be determined is that C2 had marginally improved his ability to perform tasks related to 

transformations of trigonometric functions. 

 C3. As with identities, C3’s pre-test was almost entirely blank, and his post-test was 

barely an improvement. While the answers are not correct, C3’s post-test does have appropriately 

transformed functions. For example, C3 identified a horizontally stretched and shifted graph as 

" , which is a horizontal transformation. However, there is no justification or reasoning for 

any of the answers, so, without the audio recording, it cannot be determined whether these 

connections were memorized, meaningfully understood, or guessed. 

 C4. C4 showed an improved understanding of transformations on the post-test. Even for 

incomplete answers, the work on the post-test is more productive than the pre-test, as seen in 

Figure 26. However, it cannot be determined how C4 arrived at the graph from his pre-test. Of 

note is that the x-values in Figure 26(a) descend in magnitude the farther away they are from the 

origin. It could be that he believes that multiplying by "  flips the graph vertically in some way 

while adding "  shifts it to the right by " . Although, because of the labels on the x-axis, it cannot 

be determined how C4 arrived at his solution. His answer on the post-test implies that he 

correlates adding !  to the input as a shift to the left by that amount. However, because the x-axis 

is unlabeled, it cannot be determined if he understands how the multiplication or order of 

transformations affect the graph. He did provide a number of correct answers, but without any 

explicit reasoning from the audio recordings or the pre- or post-tests, it cannot be determined 

cos(2x)

2π

π
6

π
6

π
6
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whether he had an algorithmic or conceptual understanding of any concepts, or whether he 

understood any of the concepts under investigation at all. 

 C11 and C12. Without pre- or post-tests, it cannot be determined how the lesson plan 

affected how these students progressed through the critical stages. The audio recordings show 

that they were uncertain about how transformations affect the various representations but that 

they were able to use TrigReps to arrive at the correct answer, such as in the previously cited 

exchange: 

C11: Triple frequency, that’s " . sin(3x)

Figure 26. C4’s pre-test (a) and post-test (b) for transformations.
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C12: Three or ! ? 

C11: You may be correct, sir…. No, definitely three. 

TrigReps allowed these students to quickly check their hypotheses about the effects of each 

transformation. However, since they did not take pre- or post-tests, it cannot be determined 

whether they came into the teaching episode at that level of understanding, or whether they 

understood these observations following the teaching episode. 

 C15. There are slight differences between C15’s pre- and post-tests for transformations. 

On the pre-test, C15 identified the graphs of two sinusoids as “cosine graph shifted up by two 

because the zeros are on " . Something like " ,” and “sine graph. Shifted to the 

right, so something like " .” On the post-test, he correctly identified the former as  

" . The other post-test response, though incorrect, shows a greater understanding 

than was displayed on the pre-test. That graph is identified as " . This indicates 

that C15 had identified the change in frequency for this graph and the fact that this corresponds 

with multiplication of the input. However, he did not indicate that he understands that 

multiplication of the input by numbers larger than one results in horizontal shrinks rather than 

stretches, nor did he indicate that he understands that the horizontal shift will be applied before 

the horizontal stretch. 

 There is evidence from the audio recordings and collected work that C15 finished the 

lesson with some understandings of these concepts. The group worked productively on  the 

assigned tasks, and C15 contributed significantly to the group’s discussion. One of the 

transformation tasks explicitly referenced that a transformation would affect the volume of the 

1
3

y = 2 y = cos(x) + 2

y = sin(x − #)

y = − cos(x) + 2

y = sin(2x +
3π
4

)
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sound produced. While attempting to produce a louder sound, C15 said “What if we do 

amplitude as well? I heard that a lot clearer…. I guess that’s why they call it an amp [referring to 

an amplifier, as for a musical instrument].” This indicates that he was making connections 

between the algebraic and aural representations of vertical stretches, and also that TrigReps 

helped him make connections between the mathematical material and his personal experiences. 

For a horizontal stretch, he noted “we decided to do 3x, and we can see three humps” for x-

values between zero and 2𝜋. However, on the post-test, he associated a horizontal stretch by a 

factor of two with multiplication by two, indicating that he did not fully understand the 

counterintuitive aspects of these stretches. 

 In summary, C15’s pre-test provides evidence that he had achieved the learning goals 

related to classifying horizontal and vertical transformations, as well as shifts. The audio 

recordings and post-test indicate that he had made connections among the representations well 

enough to justify the classification of stretches, but not well enough to correctly identify 

counterintuitive aspects of horizontal transformations. 

 There was evidence that the lesson plan helped guide students through some of the 

critical stages of understanding function transformations. However, the lack of students who took 

both the pre- and post-tests severely limits the strength of this evidence. Audio recordings reveal 

some classifications that students have made. Without pre- and post-tests however, it cannot be 

determined whether the lesson plan helped guide students towards those classifications. 

Furthermore, the students were unable to complete all of the tasks assigned to them, which 

means that the audio recordings and class work do not provide information on whether the 

students understood the effects of the order of transformations. 
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 Conclusion. There is some evidence that the lesson plans helped guide students through 

the critical stages for understanding trigonometric identities and transformations. Based on pre- 

and post-test results for C2, C3, C4, and C15, there is evidence of modest improvements by these 

students. They improved their average scores on the identities tests by 3.75 points out of 12, and 

on the transformations tests by 2.5 points out of 10. There is evidence that, between pre- and 

post-tests, C2 achieved the learning goals related to classifying horizontal and vertical 

transformations, as well as shifts and stretches; C3 achieved learning goals related to the 

"  identities; and C15 achieved the learning goal of classifying stretches and the critical 

stages necessary to achieve the identities learning goals. The strategies employed by C15 do not 

demonstrate a knowledge of identities, however there are also no misuses of identities. It is not 

clear whether C15 was able to infer the trigonometric identities from his work since he never 

stated them explicitly. 

 None of the students were able to finish the assigned tasks during the recitation periods. It 

is possible that, with different tasks, the students would have had sufficient time to demonstrate 

their knowledge of each concept. However, it may be the case that there were too many learning 

goals to be assessed in a total of 100 minutes. Regardless, the lesson plan must be modified to 

allow students the opportunities to examine more subject matter in the time allotted.  

 The tasks for the transformations activity should also be modified in order to prompt 

students to reflect more upon correspondences among representations. Rosen and colleagues 

(2008) did not ask students to reflect upon these correspondences and were concerned that 

students were not appreciating how changes to one representation would affect other 

representations. The tasks for this confirmatory study explicitly asked students to notice 

(θ + nπ)
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correspondences among the representations, however, it is not clear that students reflected upon 

how the representations are related to each other. That is, while students may have noticed that 

multiplication of the input related to the frequency in the graphical representation and the speed 

of rotation for the radius of the unit circle representation, they did not show that they understood 

how the speed of rotation affects the frequency with which the endpoint of the radius passes 

through each value of the function range. This task should be revised to ask students how the 

changes in representations affect each other instead of asking what the correspondences are. 

 Because of the technological difficulties and the poor participation rate, the confirmatory 

study is inconclusive. Some of the students’ work indicates that, after the lecture, they were able 

to use the congruent triangles in the unit circle representation to work productively towards 

solving tasks, but the lack of pre- and post-test data makes it impossible to quantify the 

effectiveness of the lesson plan. Similarly, the audio recordings and written work indicate that 

TrigReps is a useful tool to examine the effects of transformations, but it is not clear how 

effective the program and tasks were at helping guide students through the critical stages of 

understanding for transformations. 
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V. Conclusion, Study Limitations, and Implications for Future Research 

 The main study was intended to examine the critical stages of understanding through 

which students need to pass as they come to understand trigonometric identities and 

transformations. The confirmatory study was intended to demonstrate that these critical stages 

could be used as a framework to design a lesson plan. The studies began with hypothesized 

critical stages and lesson plans based on these stages that were influenced by a review of the 

literature and the researcher’s personal experience as a precalculus instructor. Through 

approximately forty hours of task-based interviews with precalculus students, data was collected 

to inform and revise these critical stages. The revisions to the critical stages necessitated 

revisions to the lesson plans, which were then enacted. Data was collected before, during, and 

after these teaching episodes. However, not enough data was collected to draw conclusions about 

the effectiveness of these particular lesson plans. The sample sizes of students who took the pre- 

and post-tests, who submitted group work, or who submitted audio recordings of their group 

work were too small to draw any conclusions about how effective this lesson plan was in guiding 

the class through critical stages. In this chapter, general observations will be made regarding: (1) 
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the revised critical stages of understanding, (2) students’ misconceptions, (3), students’ use of 

representations, and (4) similarities and differences to previous studies on students’ 

understanding of trigonometry, identities, and transformations. The chapter will conclude with 

study limitations and implications for future research. 

Critical Stages 

 The most significant contributions that this study has made to the field of mathematics 

education are the sets of critical stages of understanding for each learning goal. The critical 

stages provide a framework for creating lesson plans by explicitly listing the thoughts and 

actions common to successful students. They separate each learning goal into smaller, more 

easily managed concepts. These stages can be used to examine how a lesson plan may help guide 

a student towards a justified understanding of the concepts, to identify an obstacle to a student’s 

understanding, or to sequence topics in a curriculum. The critical stages also contain significant 

errors and misconceptions that students may face as they examine each topic. It is important for 

instructors to be cognizant of common errors as they design and implement lesson plans.  

 Additionally, this study supports and extends previous literature that has noted the 

importance of understanding different trigonometric representations. Weber (2005) and 

Challenger (2009) have noted that students must have the ability to fluidly change between 

representations in order to develop well-justified understandings of trigonometric concepts. The 

revised critical stages note in particular what representations students must have familiarity with 

and how they must be utilized. While students who confined themselves to the algebraic 

representation were able to notice patterns and convince themselves of the content, only the 

students who used multiple representations developed rigorous justifications. 
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 The structure of the critical stages was revised during the study to make it easier to 

understand the specific topics under investigation. Most significantly, rather than considering 

every desired piece of knowledge as a critical stage, each of the identities – opposite angle, 

" , and cofunction – and each transformation classification – addition/shift, multiplication/

stretch, input/horizontal, output/vertical, order of transformations, and the counterintuitive 

aspects of horizontal transformations – were considered to be learning goals, and the critical 

stages of understanding were defined as the thoughts and actions found to be necessary to 

achieve those learning goals. That is, instead of viewing it is an additional identities critical stage 

for students to notice that using the opposite angle has predictable effects, only the thoughts and 

actions that led students to notice this fact were considered to be the critical stages. Noticing that 

using opposite angles has predictable effects was termed a learning goal instead of a critical 

stage. Originally, all of the critical stages and learning goals were combined in one list in an 

attempt to emphasize how the concepts of identities and transformations are related to each other 

and how the learning processes for each of these concepts would be similar. This list has been 

separated into the two lists of hypothesized critical stages in chapter two. It is believed that 

separating the learning goals makes each one clearer and that the repetition of critical stages will 

emphasize how closely related the learning goals are. The following paragraphs will note 

specific modifications to the critical stages, and the justifications for these modifications. 

 In the hypothesized critical stages, it was proposed that, after moving from the algebraic 

representation to a representation with better affordances such as the unit circle or graphical, 

students would recognize that changes to the algebraic representation correspond to changes in 

the other representation(s). After the main study, this was revised to more explicitly describe how 

(θ + nπ)
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students would use other representations to notice these correspondences. Students who used the 

unit circle representation used reference angles to draw triangles congruent to ones for which 

they had been given information. The students then used the CAST diagram to determine the 

signs of the trigonometric functions applied to these triangles. Students who used algebraic or 

graphical representations evaluated the functions at regular intervals in order to establish a 

pattern relating the original trigonometric function to the one under examination. For example, 

after several evaluations, these students noticed that sin(x + π) produced the opposite outputs of 

" .  

 The hypothesized critical stage that students must notice that transformations affect the 

entire graph was revised to be an aspect of understanding the individual transformations. For 

example, during the stage two interviews, several students stretched their graphs from lines other 

than the axes. Rather than saying that these students had not achieved a distinct critical stage of 

understanding, it was determined that these students had not fully understood the relationship 

between multiplication in the algebraic representation and stretching in the graphical 

representation. They had not understood that, since the multiplication was applied to all real 

numbers x, it affected the entire graph.  

 Similarly, the critical stage necessitating that students notice the effects of 

transformations on period and phase were revised to be an aspect of understanding how 

multiplication and addition in the algebraic representation are related to stretching and shifting 

transformations in the graphical representation. Making observations about the period and phase 

were considered to be applications of these understandings rather than necessary stages of 

understanding. 

sin(x)
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 The resulting lists of critical stages for each learning goal shared a great deal of overlap. 

For example, in each case, students had to notice a change to the given algebraic representation 

and ultimately notice a correspondence between the original algebraic representation and the 

changed, or transformed, algebraic representation. This demonstrates the similarity between the 

processes for learning each of the identities and how the identities are related to transformations. 

Understanding each of the identities involves noticing correspondences between a trigonometric 

function and a specific transformed trigonometric function. The processes of finding 

correspondences are generally similar, and these correspondences are particular instances of 

transformations of trigonometric functions, so there are numerous similarities between the 

processes of coming to understand trigonometric identities and transformations. 

 Several critical stages have also been modified to make reference to notable student 

misconceptions. For example, it was not predicted that students would stretch their graphs from 

lines other than the x- and y-axes. However, this misconception was prominent enough that it 

should be explicitly noted, since it seems likely to be helpful in designing a lesson plan. Since 

the purpose of the critical stages is to provide a framework for creating a lesson plan, it would be 

helpful to note common errors and misconceptions that may occur as students attempt to achieve 

each critical stage. Other notable misconceptions included believing that ordered pairs on the 

graphs of trigonometric functions would satisfy the unit circle equation; believing that a single 

sinusoid – the Nyquist frequency – corresponded with a given set of ordered pairs; and believing 

that everything related to horizontal transformations was counterintuitive, including the words 

“stretch” and “shrink.”  
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 The critical stages for trigonometric identities and transformations described in this study 

share similarities with previous studies on students’ understanding of trigonometry. It was 

hypothesized that students would need to change representations in order to understand the 

effects of transformations. Weber (2005) and Challenger (2009) each emphasized that the 

students who could move fluidly between trigonometric representations tended to be successful 

in their trigonometry classes. Previous studies had found that using inappropriate representations 

can inhibit a student from coming to understand the topic under investigation (Schnotz & 

Bannert, 2003), which agrees with data collected during this study. This study found that the 

algebraic representation was not generally helpful for students. When students used 

representations that were aligned with the goals of their investigations – such as using the unit 

circle to justify symmetries of reference triangles – they tended to be successful. On the other 

hand, using inappropriate representations – such as using right triangles to investigate non-acute 

angles – did not lead to justified responses from the students. This is reflected by the prevalence 

of critical stages advocating for a particular representation. 

 Although it was not a focus of this study, the data collected during this study supports 

previous research that found that students have difficulty with radian measure (Akkoç, 2008; 

Moore, 2013; Tuna, 2013). For example, some students were confused about how many radians 

are in a circle. Some students believed that any term containing a multiple of π necessarily 

denoted an angle. Because of these difficulties, students were encouraged during interviews to 

use whichever units they were comfortable with. Since students’ conception of angle measure 

was beyond the scope of this study, it was not noted what effects this had upon students’ 

justifications of identities or transformations. 



!182

 Previous studies on students’ understanding of identity have found that students had 

difficulty understanding and applying identities using only the algebraic representation (Fi, 2003; 

Tsai & Chang, 2009). It was hypothesized during this study that students would need to 

supplement their algebraic representations with other representations that have better 

affordances. While some students were able to achieve several of the learning goals using only 

the algebraic representations, the majority of students who successfully justified identities or 

transformations utilized the affordances of the unit circle or graphical representations to justify 

their understandings. 

 In conclusion, the hypothesized critical stages were largely supported by the collected 

data. The critical stages for learning each of the trigonometric identities and transformations are 

similar, which reflects the similarities between the concepts. A major revision to the critical 

stages is that the methods by which students notice a correspondence between the algebraic and 

unit circle representations has been elaborated upon. The revised critical stages also reinforce the 

idea that students must have the ability to move between representations as they learn 

trigonometry. Finally, some critical stages have been revised to include significant 

misconceptions or errors encountered during the interviews. 

Study Limitations 

 Although this study has collected data supporting critical stages of understanding for 

trigonometric identities and transformations, there are some factors that limit the generalizability 

of these stages. This study was limited by its sample size. More interview participants could have 

led to more refined critical stages. Additional student perspectives could have offered more 

details regarding how students came to understand each concept, or alternative paths to 
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understanding. Some critical stages could be found to be superfluous if additional students 

achieved learning goals without passing through all of the revised critical stages. During this 

study, students used the unit circle representation more often than any other to justify their 

understandings of trigonometric identities. Additional information regarding how students use 

algebraic, graphical, or other representations to justify trigonometric identities would be helpful 

for supporting the conclusions drawn during this study. 

 As well as being small, the population in these studies were not diverse. Stage two of the 

main study only had productive data collected from one female student. A second female student 

participated, but she struggled with the stage zero material to the point that her interview data did 

not contribute to the development of the critical stages of understanding. Demographic 

information was not collected for stage one of the main study or the confirmatory study. Without 

a diverse data set, it is more difficult to make an argument that the results of this study should 

generalize to other classrooms. 

 During the interviews and group activities, students may have been reluctant to share all 

of their thoughts despite repeated prompts. Students may have refrained from giving answers that 

they believed were obvious. For example, during the interview, students who were coded as not 

having understood the differences between graphical shifts and stretches may have recognized 

that multiplication of real numbers behaves proportionally while addition does not, but they may 

not have said so. The students may have believed that this distinction between the operations was 

not remarkable enough to mention, or they may have believed that it was not closely related to 

trigonometry and was thus not relevant to the study. The students who were coded as 

unsuccessful at differentiating between the effects of addition and multiplication may have 
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understood this concept but not mentioned it because they were afraid of being embarrassed for 

stating something obvious. 

 The presence of audio- and video-recorders may have suppressed students’ actions during 

nearly every phase of this research. Students may have preferred to be recorded giving no answer 

rather than an incorrect or obvious one. The lecture on trigonometric identities was not recorded, 

and some students responded to questions that were addressed to the class at large. The lecture 

on transformations was recorded, but the camera was focused on the researcher without any 

students in frame. Additionally, the students were informed multiple times that none of the video 

recordings used during lecture or recitation of the confirmatory study would be transcribed, used 

in the study, or otherwise shown to anyone; the recording was made strictly for the researcher to 

observe himself as he delivered the lecture. None of the students answered or asked any 

questions during the video-recorded lecture. 

 The confirmatory study was originally envisioned as two lectures and two recitations for 

each topic, conducted with 20-30 students, all of whom would be participating in the study. This 

would have allowed more flexibility in the methods for guiding students through the critical 

stages. Logistics necessitated a final version of the confirmatory study that constrained data 

collection by reducing the length by half and having the lectures be delivered to a group of 

students that contained both participants and non-participants that was almost twice as large as 

originally anticipated. This meant that audio recordings and work produced during recitation 

could only be collected during a single fifty-minute period for each topic. 

Implications for Future Research 
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 Future research could include re-implementing the confirmatory study. The confirmatory 

study was not able to collect enough data to draw conclusions. A teaching experiment using 

either this study’s revised lesson plan or a different lesson plan created using the critical stages as 

a framework could be conducted, and it could be noted how the lesson plan facilitates or inhibits 

students’ abilities to advance through the critical stages. Alternatively, the study protocol could 

be revised to include task-based interviews instead of written assessments for the pre- and post-

tests. This would allow the researcher to assess whether the students could justify their 

understandings of the identities and transformations instead of relying on the students to provide 

justified reasoning of their own volition on a written assessment. 

 A trigonometry curriculum could be developed using results from this study combined 

with results from similar studies on other areas of trigonometry. Previous studies have examined 

how students come to understand the sine function (Demir & Heck, 2013; Peterson et al., 1998; 

Wood, 2011) and angle measure (Moore, 2013). Research still must be done on how students 

come to understand inverse trigonometric functions. After this, research could be done 

connecting the results from these studies in a coherent way to form a trigonometry curriculum 

through lessons proving the laws of sines and cosines. Similar to how there is overlap between 

the critical stages of understanding for identities and transformations, there is likely to be overlap 

among critical stages for other topics. The collection of critical stages could be investigated to 

find optimal orderings among all viable orderings. For example, this study has found that the 

cofunction identities can be justified for acute angles earlier than many of the other identities can 

be justified. By examining the critical stages of understanding for other topics, a reason could be 

found for having students justify this identity early in their studies, and a curriculum could be 
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designed to reflect that. However, if no reason is found to separate justifications of the 

cofunction identities for acute and non-acute angles, then it would make sense to keep those 

critical stages near each other in the curriculum. 

 TrigReps could be further refined and researched. It is designed to simultaneously 

provide four representations of transformations of the sine function: (1) the algebraic 

representation, (2) a graphical representation on the Cartesian plane, (3) a dynamic unit circle 

representation, and (4) an aural representation of the sinusoid as a pressure wave. A previous 

study using the program asked students to discuss its ease of use; future research could focus on 

how effective it is in helping students progress through critical stages. In particular, it was 

believed that the dynamic unit circle representation would be helpful for students justifying why 

the order of horizontal transformations has counterintuitive characteristics. It was hypothesized 

that students would notice that the change to the radius’s starting position must occur before the 

effects of changing its speed could be seen. However, the students in the confirmatory study did 

not progress far enough through the classwork to provide evidence that they could notice the 

effects of multiple horizontal transformations on the unit circle representation. A study could be 

conducted to test the effectiveness of a dynamic unit circle representation at helping students 

progress through the critical stages related to combinations of horizontal transformations 

behaving counterintuitively. 

 TrigReps could also be helpful in the effort to motivate students. During the teaching 

episode for transformations, C15 reacted to an aural representation by exclaiming “Oh, that was 

so low! It’s a little hum, like a little submarine.” The enthusiasm with which this was said is 

promising in regards to the ability of the MATLAB program to help motivate students. The pure 
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tones that are provided by this program may inspire students to question whether sinusoids can 

be used to represent more commonly experienced sounds, and how to transform the sine function 

to do so. Additionally, students may wish to explore the methods by which sinusoids can be 

transformed to produce effects such as wah-wah or auto-tune. While TrigReps cannot presently 

be used to examine those concepts, it could potentially be modified to examine distortion or 

echoing effects. Even without these modifications, the program could be used to motivate 

explorations into these concepts, and it can be used to explain that noise-cancelling effects work 

by producing a sound wave that is identical to the “noise” in frequency, amplitude, and timbre, 

but is perfectly out of phase. 

 Replicating this study with other populations would lend credence to the theory that the 

critical stages developed in this study are general for all students learning trigonometry. A 

replication could also collect more demographic information with which to inform 

generalizations about the critical stages for different groups or further refine alternate paths to 

understanding. 
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Appendix A 

Main Study Stage One Protocol 

0.  
a. Have you ever passed a course with a trigonometry unit? If so, was it a high school or 

undergraduate course? 
b. Have you ever taken a course with a trigonometry unit? If so, was it a high school or 

undergraduate course? 
c. List the last three mathematics courses that you’ve taken. 
d. What does identity mean (Challenger, 2009)?  

Intended to: assess prior knowledge of identities in preparation for learning trigonometric  
identities (stage zero) 

If the student is unable to answer:  
 What does identity mean to you in a non-mathematical context? 
If the student describes or provides an example of an equality rather than an identity:  
 What is the difference between identity and equality? 
If the student does not provide a trigonometric identity:  
 What can you tell me about trigonometric identities? 
If the student can provide an example of identity (such as the Pythagorean or tangent) but not 
describe it further: 
 Why might it be useful to know that those things are equal? 
 Question zero is intended to examine students’ understandings of the word “identity” and 
to inform the researcher of the students’ potential familiarity with the material.  

1. Sketch graphs of the following functions: 
a. sin(x) 
b. cos(x) 
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c. tan(x) (adapted from Barton, 2003) 
 Intended to: identify misconceptions that students may have about the graphs of the  
 trigonometric functions and establish the “parent” graphs which will be compared to the  
 transformations (stage zero). 
If the student has the wrong period, amplitude, phase, or otherwise incorrectly graphs a function: 
 How is your graph related to the definitions of the functions? 
If the students’ mistakes persist: 
 How is your graph related to right triangles or the unit circle? 
  
2. Evaluate the following: 
a. cos(-π/4), cos(0), cos(π/4) 
b. sin(-π/2), sin(0), sin(π/2) 
c. cos(-π/4) + π, cos(0) + π, cos(π/4) + π 
d. sin(-π/2 + π), sin(0 + π), sin(π/2 + π) 
e. tan(-π/3), tan(0), tan(π/3) 
f. -(3/2)tan(-π/3), -(3/2)tan(0), -(3/2)tan(π/3) 
g. tan(-(3/2)(-π/3)), tan(-(3/2)(0)), tan(-(3/2)(π/3)) 
 Intended to: prompt students to notice the differences in the algebraic representations of  
 transformed trigonometric functions, notably through addition and multiplication on the  
 inputs and outputs. Also intended to imply patterns that could prompt the student to move  
 a representation with better affordances, interpret the situation in the new representation,  
 find the values under consideration in the new representation, and compare those values  
 (stages one and two). 
 If the student is uncomfortable or incapable of working with radians: 
  Switch to degrees 
 If the student believes that f(-x) = -f(x) for all functions: 
  Can you show me how you found cos(x) and cos(-x)? 
 If the student does not know how to perform the tasks: 
  How would you define the trigonometric functions? or Are there any other ways  
  you could represent the problem? 
 If the student evaluates e.g. sin(π/2) + π or sin(π/2)+ sin(π): 
  What is π/2 + π? 

3. Plot the points: 
a. (-π/4, cos(-π/4) + π), (0, cos(0) + π), (π/4, cos(π/4) + π) 
b. (-π/2, sin(-π/2 + π)), (0, sin(0 + π)), (π/2, sin(π/2 + π)) 
c. (-π/3, -(3/2)tan(-π/3)), (0, -(3/2)tan(0)), (π/3, -(3/2)tan(π/3)) 
d. (-π/3, tan(-(3/2)(-π/3))), (0, tan(-(3/2)(0))), (π/3, tan(-(3/2)(π/3))) 
e. Do you notice any relationships between the sets of ordered pairs that you have drawn and 

the graphs of the functions sin(x), cos(x), and tan(x)? (adapted from Barton, 2003) 
 Intended to: prompt students to notice how their pairs of inputs and outputs are changed 
graphically with each algebraic transformation (stages three and four). 
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4. Predict how the graphs of the following functions will differ from those in question two: 
a. sin(x + π) 
b. cos(x) + 1 
c. (3/2)tan(x) 
d. tan((3/2)x) 
e. cos((1/2)x) 
f. sin(-x) 
g. -sin(x) 
h. cos(2πx) (adapted from Borba & Confrey, 1996). 
 Intended to: prompt students to move from a pointwise consideration of transformations  
 to a global one (Even, 1998), and to reflect upon snd extend the results of task two  
 (stages four through seven). 

5. Graph the functions from question five. Do you notice any relationships or properties? Why 
do you think that is (adapted from Barton, 2003; Hall & Giacin, 2013)? 
 Intended to: prompt students to notice how the transformations affect the graphical  
 representations of the functions (stage three) as well as begin to classify the effects of the  
 transformations (stages four through seven). 
 If the student has mistakes in their graph(s), such as from assuming that horizontal  
 transformations will behave similarly to vertical ones: 
  What are some ordered pairs on your graph? and How do these ordered pairs  
  relate to the algebraic representation (e.g. tan((3/2)x))? 

6. Find all x such that 2cos(x) = 1 (adapted from Challenger, 2009). 
 Intended to: assess students’ conceptions of the transformations as globally affecting the  
 function. That is, the entire graph of cosine is stretched vertically in the above example  
 (stage six). 
 If the student gives a single answer: 
  Could you sketch graphs of y = 2cos(x) and y = 1? 

7. How could you algebraically represent one or more transformations of sine, cosine or tangent 
that results in the following functions: 
a. [Graph of 3sin(x)] 
b. [Graph of -cos(x) + 2] 
c. [Graph of tan(-2x)] 
d. [Graph of cos(x)] (adapted from Borba & Confrey, 1996; Hall & Giacin, 2013) 
 Intended to: examine how students think about the classification of transformations and  
 how to use them to achieve specific results. It will also be interesting to see how students  
 approach the fact that three of the graphs can be given as transformations of either the  
 cosine or sine functions. In particular, d appears to be a parent function, cosine. (stages  
 five through nine). 
 If the student has mistakes in their graphs: 
  What are some ordered pairs on your graph? and How do these ordered pairs  
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  relate to the algebraic function? 
 If students do not note that there exist infinite ways of representing each function: 
  Could you algebraically represent any of these graphs differently? Could you use  
  the same or different parent functions to give different algebraic representations of  
  these graphs? 

8. A function is defined as periodic if there exists a number p such that f(x + p) = f(x) for every x 
in the domain of f. The number p is said to be the period. Find the period of the following 
functions: 
a. sin(x) 
b. tan(x) 
c. [Graph of (1/2)sin(6x)] 
d. 2cos((1/10)x) 
e. asin(bx + c) + d (adapted from Sokolowski & Rackley, 2011). 
 Intended to: examine students’ understandings of transformations on periodic functions   
 (stage eight). 
 If the student gives too large a period, such as 2π for tangent: 
  Can you draw a line with slope 1/2 through the unit circle (or at y = 1/2 and x =  
  1/2 for sine and cosine, respectively)? What angles 𝜃 make tan(𝜃) = 1/2? 

9. Suppose 0 < θ < π/2 and sin(θ) = k. Evaluate (in terms of k): 
a. sin(θ + 5π) 
b. cos(-θ) 
c. tan(θ - π) (adapted from Axler, 2013). 
 Intended to: prompt the student to use the identities that they have identified in the  
 previous exercise. If the students have not shown an understanding of generalized  
 relationships, then this example could prompt them by showing them a problem between  
 the previous two exercises in terms of abstractness (stage nine). 

10. Describe any relationships you’ve encountered regarding changes in the representations used 
during your work in the previous exercises (adapted from Barton, 2003; Fi, 2003). 
 Intended to: prompt the student to reflect, hypothesize, and justify generalized  
 relationships for trigonometric identities of the form f(x + kπ) and f(-x) for integer values  
 of k (stages four, five, eight, nine). 
 If they state incorrect relationships: 
  Only ask the standard followup questions. If the mistakes persist through  
  questions five and six, the students will be questioned more thoroughly. 

11. Let F(x) = sin(x); g(x) = 2x; h(x) = x + π. Write out and graph the following functions: 
a. F(h(x)) 
b. F(h(g(x)) 
c. F(g(x)) 
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d. F(g(h(x)) 
e. g(F(x)) 
f. g(F(h(x))) 
g. F(h(x)) 
h. g(F(h(x))) 
i. h(F(x)) 
j. g(h(F(x))) 
k. g(F(x)) 
l. h(g(F(x))) 
 Intended to: prompt students to notice that the order in which they apply the  
 transformations sometimes, but not always, affects the graphical transformation (stage  
 ten). Students may note in particular that the order of transformations matters when  
 multiple transformations are applied horizontally and/or vertically (stages eleven and  
 twelve). By writing out the algebraic representation, students may also begin to notice  
 that the order of the horizontal transformations is non-intuitive in relation to the graphical  
 representation (stage thirteen). 
 If the student is confused about compositions (e.g. order of application): 
  Correct any misconceptions, noting previous compositions if applicable. This  
  activity won’t be productive with misunderstandings of composition, and it could  
  affect future work. 

12. Describe how could you represent the following functions using a circle and radius: 
a. sin(x) 
b. 2sin(x) 
c. sin(2x) 
d. sin(x - π/4) 
 Intended to: prompt students to think about transforming the representation of the input  
 of the function. Students have viewed graphical transformations as acting upon the output  
 representation (the curve) rather than the input representation (the axes) (Borba &  
 Confrey, 1996; Hall & Giacin, 2013). These transformations acting upon a circle and  
 radius can potentially be more clearly seen as acting separately upon the input (the speed  
 and starting rotational position of the radius) or the output (the size and vertical  
 placement of the circle and radius) (stage fourteen). 
 If the student does not know how to use the unit circle for part b: 
  Could you alter the unit circle in some way to make it more helpful? 
 If the student adjusts the unit circle horizontally instead of adjusting the input for c, d: 
  Could you draw an angle at π/4 radians? What is the resulting sine value? 
   If the result is sin(π/4): 
    How is sin(2x) different than sin(x)? 
   If the result is sin(2(π/4)): 
    How does your circle represent this? 
 If the student can make no progress on c, d: 
  What does the x represent in cos(x) in the circle representation? 
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13. How could you algebraically represent one or more transformations of sine, cosine, or 
tangent that results in the following functions: 
a. [Graph of 3cos(x) - 4] 
b. [Graph of (1/4)sin(x) + 6] 
c. [Graph of tan(2x + π/4)] 
d. [Graph of cos((π/4)x - (π/3))] (adapted from Borba & Confrey, 1996) 
 Intended to: provide students with further work to examine the non-intuitive nature of 
combining horizontal transformations (stages fourteen and fifteen). 
 If the student has mistakes in their graphs: 
  What are some ordered pairs on your graph? and How do these ordered pairs  
  relate to the algebraic function? 
 If students do not note that there exist infinite ways of representing each function: 
  Could you algebraically represent any of these graphs differently? Could you use  
  the same or different parent functions to give different algebraic representations of  
  these graphs? 

       θ 
              a                   c 

              ψ 
      b 

14. For the above right triangle, suppose θ = π/8. 
a. Evaluate ψ 
b. Which leg is adjacent to θ? 
c. Which leg is opposite ψ? 
d. Find cos(θ) 
e. Find sin(ψ) (adapted from Axler, 2013; Blackett, 1990). 
 Intended to: spur students to notice that, since all triangles have interior angles whose  
 sum is π radians, then the acute angles of a right triangle must have a sum of π/2 radians  
 (stages seven and eight). This exercise also implies that this identity should be true for the  
 acute angles of right triangle trigonometry (stage sixteen). 
 If the student is confused about adjacent/opposite or leg/hypotenuse: 
  Define the term. 

15. Will this always be true for complementary angles? 
 Intended to: generalize the results of the previous exercise. In order to do so, the student  
 will have to move to a different representation since right triangles can only represent  
 acute angles. The student may choose the unit circle or the graphs of these functions in  
 order to generalize beyond acute angles (stage seventeen). 
 If the student does not know how to explore generalization: 
  How else could you represent cos(θ) and sin(π/2 - θ)? 
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16. Which of the following are equivalent? Put a circle around them and join them with a line. 
 sin(x)  cos(x)  tan(x)  sin(x - π) -sin(x)  cos(x - π)  
     sin(π/2 - x)     tan(x + π)       sin(x + π)           sin(x) + 1       1 + sin(x)       sin(x)/cos(x) 
(Challenger, 2009). 
 Intended to: assess how the students have come to understand the trigonometric identities  
 encountered thus far, including whether they are reflecting on their generalizations. For  
 example, students should note that adding multiples of π to the tangent function has a  
 different effect than adding to cosine or sine. Students may be hesitant to connect tan(x +  
 π) to tan(x) unless they have considered the effects of the angle change on the tangent  
 function in particular (stages nine and seventeen). 
17. Draw a concept map for trigonometry, including trigonometric identity and transformation 
concepts. Write and circle “Trigonometry” in the center of the page. Write and circle other 
concepts that are related to trigonometry. Draw uni- or bi-directional arrows between related 
concepts, and write on those arrows a word or short phrase describing the connection. Write in as 
many concepts and arrows as are necessary to show how you believe all of these trigonometric 
concepts are related to each other. An example of a concept map for multiplication has been 
provided (adapted from Challenger, 2009; Fi, 2003). 
 Intended to: examine how students think about trigonometric identities and  
 transformations in relation to their prior knowledge, notably the unit circle definitions of  
 the trigonometric functions. 
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Appendix B 

Main Study Stage Two Protocol 

Identities 

0. 
a. Have you ever taken a course with a trigonometry unit? How long ago did you take it? Was 

that in high school or college? What grade did you get? 
b. List the last three mathematics courses that you’ve taken. 
c. What’s your major?  
 If the student is undecided or undeclared: 
  Have you been thinking of any major? What fields of study or employment  
  interest you? 

1. What does mathematical identity mean (Challenger, 2009)?  
 Intended to: assess prior knowledge of identities in preparation for learning trigonometric 
 identities (stage zero) 
 If the student is unable to answer: 
  Would you consider 2 = 2, (2/4 = 1/2, 5x = 7, tan(x) = sin(x)/cos(x), x + a - a = x)  
  to be an identity? Why or why not? 
 If the student does not provide a trigonometric identity: 
  What can you tell me about trigonometric identities? 
 If the student can provide an example of identity (such as the Pythagorean or tangent) but  
 not describe it further: 
  Why might it be useful to know that values on the left side of that equation are  
  equal to the values on the right side of the equation? 
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2. How would you define the functions y = sin(x), y = cos(x), and y = tan(x)? 
 Intended to: establish prerequisite knowledge of trigonometric functions (stage zero). 
 If they don’t use the unit circle: 
  prompt for alternate definitions. 

3. Evaluate the following: 
a. cos(0), cos(π/4), cos(π), cos(2π), 
b. sin(0), sin(π/4), sin(π), sin(2π) 
c. cos(-0), cos(-π/4), cos(-π), cos(-2π), 
d. cos(0 + π), cos(π/4 + π), cos(π + π), cos(2π + π) 
 Intended to: prompt students to notice the differences in the algebraic representations of  
 transformed trigonometric functions, specifically transformations adding multiples of π  
 to the input or taking the opposite input. Also intended to imply patterns that could  
 prompt the student to move a representation with better affordances, interpret the  
 situation in the new representation, find the values under consideration in the new  
 representation, and compare those values (stages one through three). 
 If the student is uncomfortable or has difficulty working with radians: 
  Switch to degrees 
 If the student believes that f(-x) = -f(x) for all functions: 
  Can you show me how you found cos(π/4) and cos(-π/4)? 
 If the student does not know how to perform the tasks: 
  How would you define the trigonometric functions? or Are there any other ways  
  you could represent the problem? 
 If the student evaluates e.g. cos(0) + π or cos(0) + cos(π): 
  What is 0 + π? 

4. Suppose cos(x) = a; sin(x) = b. Evaluate (in terms of a and/or b): 
a. cos(-x) 
b. cos(x + π) 
c. cos(x + 2π) 
d. sin(-x) 
e. sin(x + π) 
f. sin(x + 2π) 
g. tan(x) 
h. tan(-x) 
i. tan(x + π) 
j. tan(x + 2π) 
Intended to: prompt the student to use the identities that they have started to develop in the  
 previous exercise. If they have not yet changed to an alternate representation, this  
 exercise should prompt them to do so.  (stages two through four). 
If students believe that the starting value or quadrant matters for x, ask them to check one of the 
relationships for multiple values or quadrants. 



!203

5. What do you notice about tasks a, b, and c in relation to the given information that cos(x) = a? 
What do you notice about d, e, and f in relation to the given information that sin(x) = b? What do 
you notice about g, h, i, and j? 
 Intended to: prompt the student to reflect, hypothesize, and justify generalized  
 relationships for trigonometric identities of the form f(x + kπ) and f(-x) for integer values  
 of k (stage four). 

 
       x 
              a                   c 
            w 
      b 

6. For the above right triangle, suppose x = π/8. 
a. Evaluate w 
b. Which leg is adjacent to x? 
c. Which leg is opposite w? 
d. Find cos(x) 
e. Find sin(w) (adapted from Axler, 2013; Blackett, 1990). 
f. How are those values related? 
 Intended to: spur students to notice that, since all triangles have interior angles whose  
 sum is π radians, then the acute angles of a right triangle must have a sum of π/2 radians  
 (stages seven and eight). This exercise also implies that this identity should be true for the  
 acute angles of right triangle trigonometry (stage five). 
 If the student is confused about adjacent/opposite or leg/hypotenuse: 
  Define the term. 

7. Will the relationship that you found in the last problem be true in general for two angles whose 
sum is 𝜋/2? That is, would the relationship hold for cos(591°) and sin(-501°), as well as all other 
such pairs? 
 Intended to: generalize the results of the previous exercise. In order to do so, the student  
 will have to move to a different representation since right triangles can only represent  
 acute angles. The student may choose the unit circle or the graphs of these functions in  
 order to generalize beyond acute angles (stage six). 
 If the student does not know how to explore generalization: 
  How else could you represent cos(x) and sin(π/2 - x)? 

Transformations: 
1. Sketch a graph of the function cos(x) (adapted from Barton, 2003). 
 Intended to: identify misconceptions that students may have about the graph of the cosine  
 function and establish the “parent” graph which will be compared to the transformations  
 (stage zero). 
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 If the student has the wrong period, amplitude, phase, or otherwise incorrectly graphs a  
 function: 
  How is your graph related to the definitions of the functions? 
 If the students’ mistakes persist: 
  How is your graph related to right triangles or the unit circle? 

2. Evaluate the following: [present previous work for a, b, e] 
a. cos(0), cos(π/4), cos(π), cos(2π), 
b. cos(-0), cos(-π/4), cos(-π), cos(-2π) 
c. -cos(0), -cos(π/4), -cos(π), -cos(2π) 
d. cos(0) + 1, cos(π/4) + 1, cos(π) + 1, cos(2π) + 1 
e. cos(0 + π), cos(π/4 + π), cos(π + π), cos(2π + π) 
f. 2cos(0), 2cos(π/4), 2cos(π), 2cos(2π) 
g. cos(2·0), cos(2·(π/4)), cos(2·π), cos(2·2π) 
 Intended to: prompt students to notice the differences in the algebraic representations of  
 transformed trigonometric functions, notably through addition and multiplication on the  
 inputs and outputs. Also intended to imply patterns that could prompt the student to move  
 a representation with better affordances, interpret the situation in the new representation,  
 find the values under consideration in the new representation, and compare those values  
 (stages one through three). 
 If the student is uncomfortable or incapable of working with radians: 
  Switch to degrees 
 If the student believes that f(-x) = -f(x) for all functions: 
  Can you show me how you found cos(x) and cos(-x)? 
 If the student does not know how to perform the tasks: 
  Recall how you defined cosine in the previous interview [present work] 
 If the student evaluates e.g. cos(π/2 + 1) as cos(π/2) + 1 or cos(π/2)+ cos(1): 
  What is π/2 + 1? 

3. Plot points on a Cartesian graph with 0, π/4, π, 2π as x-values and the answers from the 
previous exercise as y-values. (E.g. 3a would be plotting the points (0, cos(0)) = (0, 1), then  
(π/4, cos(π/4)), (π, cos(π)), and (2π, cos(2π)).) These points are not necessarily on the unit circle. 
 Intended to: prompt students to notice how their pairs of inputs and outputs are changed  
 graphically with each algebraic transformation (stages three through eight). 
 If the student believes that these ordered pairs should all be on the unit circle: 
  cos(2π) = 1. So the last ordered pair is (2π, 1). Is that on the unit circle? 
 If the student has mistakes in their graphs, such as incorrectly labeled points: 
  What are some ordered pairs on your graph? and How do these ordered pairs  
  relate to the algebraic function? 

4. Can you describe any relationships between the values in 2a and the values calculated in the 
other parts of question 2? How do these values relate to the points that you plotted in problem 3? 
 Intended to: prompt the student to reflect, hypothesize, and justify generalized  
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 relationships for trigonometric transformations (stages four through seven). 

5. How could you algebraically represent one or more transformations of the cosine function that 
results in the following functions: 
a. [Graph of cos(x - π/2)] 
b. [Graph of -cos(x) + 2] 
c. [Graph of cos(-2x)] 
d. [Graph of cos(x)] 
 Intended to: examine how students think about the classification of transformations and  
 how to use them to achieve specific results. It will also be interesting to see how students  
 approach the fact that d appears to be a parent function, cosine. (stages  
 five through seven). 
 If students do not note that there exist infinite ways of representing each function: 
  Could you algebraically represent any of these graphs differently? Could you use  
  the same or different parent functions to give different algebraic representations of  
  these graphs? 

6. Graph a cosine function: 
a. Vertically stretched by a factor of 2, then vertically shifted by 1. 
b. Vertically shifted by 1, then vertically stretched by a factor of 2.  
c. Horizontally stretched by a factor of 2, then vertically shifted by 1. 
d. Vertically shifted by 1, then horizontally stretched by a factor of 2. 
e. Horizontally stretched by a factor of 2, then horizontally shifted by π. 
f. Horizontally shifted by π, then horizontally stretched by a factor of 2. 
 Intended to: prompt students to notice that the order in which they apply the  
 transformations sometimes, but not always, affects the graphical transformation (stage  
 ten). Students may note in particular that the order of transformations matters when  
 multiple transformations are applied horizontally and/or vertically (stage eleven).  
 Students may also begin to notice that the order of the horizontal transformations is non- 
 intuitive in relation to the algebraic representations (stage eleven). 
 If the student treats, for example, vertical stretches as horizontal shrinks: 
  Refer back to the plotted points. Note the zeros, range. 

7. What did you notice about the graphs that resulted from problem 6?  

8. How could you algebraically represent one or more transformations of sine, cosine, or tangent 
that results in the following functions: 
a. [Graph of 3cos(x) - 4] 
b. [Graph of (1/4)cos(x) + 6] 
c. [Graph of cos(2x + π/4)] 
d. [Graph of cos((π/4)x - (π/3))] (adapted from Borba & Confrey, 1996) 
 Intended to: provide students with further work to examine the non-intuitive nature of 
combining horizontal transformations (stage twelve). 
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 If students do not note that there exist infinite ways of representing each function: 
  Could you algebraically represent any of these graphs differently? Could you use  
  the same or different parent functions to give different algebraic representations of  
  these graphs? 

9. Describe how could you represent the following functions using a circle and radius: 
a. cos(x) 
b. 2cos(x) 
c. cos(2x) 
d. cos(x - π/4) 
 Intended to: prompt students to think about transforming the representation of the input  
 of the function. Students have viewed graphical transformations as acting upon the output  
 representation (the curve) rather than the input representation (the axes) (Borba &  
 Confrey, 1996; Hall & Giacin, 2013). These transformations acting upon a circle and  
 radius can potentially be more clearly seen as acting separately upon the input (the speed  
 and starting rotational position of the radius) or the output (the size and vertical  
 placement of the circle and radius) (stages nine, thirteen). 
 If the student does not know how to use the unit circle for part b: 
  Could you alter the unit circle in some way to make it more helpful? 
 If the student adjusts the unit circle horizontally instead of adjusting the input for c, d: 
  Could you draw an angle at π/4 radians? What is the resulting sine value? 
   If the result is cos(π/4): 
    How is cos(2x) different than cos(x)? 
   If the result is cos(2(π/4)): 
    How does your circle represent this? 
 If the student can make no progress on c, d: 
  What does the x represent in cos(x) in the circle representation? 

10. A function is defined as periodic if there exists a number p such that f(x + p) = f(x) for every 
x in the domain of f. The number p is said to be the period. Find the period of the following 
functions: 
a. sin(x) 
b. tan(x) 
c. [Graph of (1/2)sin(6x)] 
d. 2cos((1/10)x) 
e. asin(bx + c) + d (adapted from Sokolowski & Rackley, 2011). 
 Intended to: examine students’ understandings of transformations on periodic functions   
 (stage eight). 
 If the student gives too large a period, such as 2π for tangent: 
  Can you draw a line with slope 1/2 through the unit circle (or at y = 1/2 and x =  
  1/2 for sine and cosine, respectively)? What angles 𝜃 make tan(𝜃) = 1/2? 
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Appendix C 

Pre-Post Tests 

Identities: 

NAME: ____________________________ 

This test will have NO effect on your grade. 
It is perfectly fine to skip or abandon questions that you’re stuck on. 
No Calculators 
Explain your reasoning 

1. How would you define the function y = cos(x) 

2. Evaluate the following: 
a. cos(0)  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b. sin(5π/4)  
 
 
 
 
 

c. tan(-π/3)  
 
 
 
 
 

d. cos(9𝜋/4)  
 
 
 
 

e. sin(𝜋/4 + 5𝜋)  
 
 
 
 
 

3. Suppose sin(-15°) = k 
 Evaluate cos(105°) + tan(165°)  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4. cos(0 + π), cos(π/4 + π), cos(π + π), cos(2π + π) 

Transformations: 

NAME: ____________________________ 

This test will have NO effect on your grade. 
It is perfectly fine to skip or abandon questions that you’re stuck on. 
No Calculators 
Explain your reasoning 

1. Sketch a graph of the function cos(x). 
 

2. How could you algebraically represent one or more transformations of the sine, cosine, or 
tangent function that results in the following functions: 
a. See graph  

 

b. See graph  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3. Sketch the graphs of the following functions 
a. sin(2𝜋x + 𝜋/6 )  

 
 
 
 
 
 
 
 
 
 
 
 
(Sketch the graph of the function) 

b. 3cos(x) - 4 

 
 

 
 
 

4. A function is defined as periodic if there exists a number p such that f(x + p) = f(x) for every x 
in the domain of f. The number p is said to be the period. Find the period of the following 
functions: 
a. sin(x)  

 
 

b. tan(x)  
 
 

c. See graph  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d. 2cos((1/10)x)  
 
 

e. asin(bx + c) + d 
 

Appendix D 

Group Work Tasks 

Identities 
Draw a unit circle representation of cos(x) = m and sin(x) = n. 
Choose a real number t. 
Draw a radius with endpoint (cos(x + t), sin(x + t)).  

1.  
a. When is cos(x + t) greater than cos(x)? 
b. When is cos(x + t) less than cos(x)? 
c. When is cos(x + t) equal to cos(x)? 
d. When is cos(x + t) equal to -cos(x)? 

2.  
a. When is sin(x + t) greater than sin(x)? 
b. When is sin(x + t) less than sin(x)? 
c. When is sin(x + t) equal to sin(x)? 
d. When is sin(x + t) equal to -sin(x)? 

3.  
a. When is tan(x + t) greater than tan(x)? 
b. When is tan(x + t) less than tan(x)? 
c. When is tan(x + t) equal to tan(x)? 
d. When is tan(x + t) equal to -tan(x)? 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4.  

a. On one set of axes, sketch the graphs of y = cos(x); y = m; and y = -m. 
b. On a second set of axes, sketch the graphs of y = sin(x); y = n; and y = -n. 
c. On a third set of axes, sketch the graphs of y = tan(x); y = m/n; and y = -m/n. 

5.  
Can you justify any general formulas for the trigonometric (in)equalities based on your 
work? 

6.  
Find all angles x such that cos(x) = m 

7.  
Suppose 𝜃 + 𝜓 = 90°. We have justified that cos(𝜃) = sin(𝜓) for acute angles, and we have 
seen one way to extend this property to all real numbers 𝜃 and 𝜓. Can you find another way 
to justify this property? 

Transformations 

 Human hearing has range approximately 20 Hz - 20000 Hz. Not all of the functions that 
you input will produce sounds within your hearing range. Can you predict which of the functions 
will and will not produce sounds? 
1. Input f(x) = sin(x) 
a. Find and input a function with twice the amplitude. 
b. Find and input a function with amplitude 0.2. 
c. What do you notice about the four representations: algebraic, graphical, unit circle, and 

aural? 

2. Find and input a function that shifts the graph: 
a. down by 2π. 
b. up by 3/2 
c. to the left by π/2 
d. to the right by 7 
e. What do you notice about the four representations? 

3. Find and input a function with: 
a. triple the frequency of f(x) = sin(x). 
b. frequency 1 Hz 
c. What do you notice about the four representations? 

 For tasks 4 and 5, check the box that allows for a second set of inputs. Also, please check 
the box on the dynamic representation to slow it down. These tasks use numbers that are too 
large for the representation to effectively display. 
4.
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a. Find and input a function with frequency 440 Hz. 
b. Find and input a second function with twice the frequency. 
c. Find and input a second function with 3/2 the frequency. 
d. Find and input a second function with 17/19 the frequency. 
e. What do you notice about the four representations? 

5.
a. Find and input a function with frequency 220 Hz. 
b. Find and input a second function with a different frequency and 1/3 the amplitude. 
c. Find and input a second function with a different frequency and twice the amplitude. 
d. What do you notice about the four representations? 

6.
a. Input f(x) = 2sin(x) 
b. Input f(x) = sin(x) +1 
c. Predict what will happen in each representation for the input f(x) = 2sin(x) + 1 
d. Input f(x) = 2sin(x) + 1 
e. Did the results match your prediction? If not, why not? 

7.
a. Input f(x) = sin(2x) 
b. Input f(x) = sin(x + π/4) 
c. Predict what will happen in each representation for the input f(x) = sin(2x + π/4) 
d. Input f(x) = sin(2x + π/4) 
e. Did the results match your prediction? If not, why not? 

8. 
a. Input f(x) = sin(2x) 
b. Input f(x) = sin(x) + 1 
c. Predict what will happen in each representation for the input f(x) = sin(2x) + 1 
d. Input f(x) = sin(2x) + 1 
e. Did the results match your prediction? If not, why not? 

9. 
a. Input f(x) = 2sin(x) 
b. Input f(x) = sin(x + π/4) 
c. Predict what will happen in each representation for the input f(x) = 2sin(x + π/4) 
d. Input f(x) = 2sin(x + π/4) 
e. Did the results match your prediction? If not, why not? 

10. 
a. Find and input a function with frequency 220 Hz. 
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b. Find and input a second function that is completely out of phase with your function from part 
a. 

c. Predict what will happen in each representation as one of these functions changes in 
amplitude. 

d. Input three different amplitudes for one of these functions one at a time. Record your inputs 
and note the effects that they have on the four representations.


	University of New Hampshire
	University of New Hampshire Scholars' Repository
	Spring 2017

	Music of the triangles: How students come to understand trigonometric identities and transformations
	Neil Moshe Bornstein
	Recommended Citation


	Bornstein Dissertation

