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Abstract 

Molecular mechanisms of salt and osmotic stress tolerance in Frankia strains isolated 

from Casuarina trees 

by 

Rediet Tamire Oshone 

University of New Hampshire, May 2017 

 

Globally, 20% of total cultivated and 33% of irrigated agricultural lands are 

affected by high salinity. By 2050, more than 50% of the arable land will be salinized. 

The hyper-ionic and hyper-osmotic stresses associated with salt-affected soils threaten 

the ability of cells to maintain optimal turgor pressure and intracellular ionic 

concentration for growth and functioning. The nitrogen-fixing soil actinobacterium 

Frankia shows marked variability in its tolerance to salinity. When in a symbiotic 

association with actinorhizal plants, Frankia enhances the tolerance of the plants to a 

range of abiotic stresses, including salinity. The Casuarina-Frankia association has 

been used to reclaim salt affected soils worldwide. Optimizing the use of the Casuarina-

Frankia association for saline soil reclamation requires identifying salt-tolerant 

symbionts, unlocking the molecular mechanism behind the tolerance, and ultimately 

developing Frankia strains that combine the best symbiotic characteristics with high 

level of salt tolerance.  

In this study, Frankia strains were screened for salt and osmotic stress tolerance 

under nitrogen-proficient and nitrogen-deficient conditions. Salt-tolerant and salt-

sensitive strains were identified and the effect of salt and osmotic stress on the 

physiology of the strains and on their symbiotic performance was assessed. Tolerant 
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strains were sequenced and comparative genomics, transcriptome profiling, proteomics, 

and physiological analysis were employed to identify potential mechanisms and 

candidate genes responsible for the contrasting phenotypes. An expression vector that 

stably replicates in Frankia was developed and used to constitutively express some of 

the candidate genes in the salt-sensitive strain.  

Salt-tolerant Frankia strains (CcI6 and Allo2) that could withstand up to 1000 mM 

NaCl and a salt-sensitive Frankia strain (CcI3) which could withstand only up to 475 mM 

NaCl were identified. Comparative genomic analysis showed that all of the Casuarina 

isolates belonged to the same species (Frankia casuarinae at p=0.05 level). 

Pangenome analysis revealed a high abundance of singletons among all Casuarina 

isolates. The two salt-tolerant strains contained 153 shared unique genes (the majority 

of which code for hypothetical proteins) that were not found in the salt-sensitive strain. 

Transcriptome, proteome, and physiological analysis of the salt-tolerant and sensitive 

strains revealed vast differences in salt stress response with regards to cellular 

functions such as transcriptional regulation, cell envelope remodeling, osmolyte 

biosynthesis, and signal transduction. Among the 153 genes shared only between the 

salt-tolerant strains, seven, including a zinc peptidase, were responsive to salt stress. 

Constitutive expression of the zinc peptidase gene in the salt-sensitive strain (CcI3) led 

to increased salt-tolerance. 

The comprehensive approach we took to analyze the complex trait of salt stress 

tolerance led to important findings that shape our understanding of the salt stress 

response. The tools and the data we generated in this study willaaaAAAaa serve as a 



 
 

 
 

xii 

springboard for future work in the area or in the broader field of Frankia genetics in 

general. 
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Introduction 

Soil salinization 

Soil salinization is a worldwide problem that is intensifying because of the effects 

of climate change. Globally, 20% of total cultivated and 33% of irrigated agricultural 

lands are affected by high salinity [1]. Salinized areas are expanding at an alarmingly 

rate of 10% per annum due to a variety of factors, including, but not limited to, low 

precipitation, high surface evaporation, weathering of native rocks, irrigation with saline 

water, and poor cultural practices [1]. Every day for more than 20 years, an average of 

2,000 hectares of irrigated land in arid and semi-arid areas across 75 countries have 

been degraded by salt [2]. By 2050, more than 50% of the arable land is predicted to be 

salinized [3]. The global loss in crop production due to salt-induced degradation in 

irrigated areas is estimated at US$ 27.3 billion per year [2]. A saline soil is defined a soil 

with electrical conductivity (EC) of the saturation extract (ECe) greater than 4 dS m-1 

(approximately 40 mM NaCl) at 25°C and with an exchangeable sodium of less than 

15%. The yield of most crop plants is reduced at a salinity level of 4 dS m-1 or even 

lower [3, 4].   

Salt stress affects crop growth in the form of osmotic stress followed by ion 

toxicity [5, 6]. The osmotic effect of salt stress, which follows immediately after the 

application of salt, results in stomatal closure, reduced water uptake by the root system, 

limited cell expansion and cell division, decreased photosynthetic activity, nutrient 

imbalance, and reduced ability to detoxify reactive oxygen species [5, 6, 7, 8]. During 

long-term salinity stress, plants also experience a hyperionic stress. The accumulation 

of both Na+ and Cl- inside cells causes severe ion imbalance and physiological 
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disorders [5, 9]. Oxidative damage to various cellular components such as proteins, 

lipids, and DNA from salinity-induced reactive oxygen species (ROS) [singlet oxygen, 

superoxide, hydroxyl radical, and hydrogen peroxide] formation can have detrimental 

effects [10, 11]. High Na+ concentration also inhibits uptake of K+, NO-, PO4
3-  ions, 

which leads to decreased growth or death [9, 12].  

Feeding the burgeoning global population, which is projected to reach almost 10 

billion by 2050, requires slowing down the rate of soil salinization and reclaiming land 

already affected by salinity. Various methods are used to reclaim salt-affected soils. 

One effective method commonly used in the reclamation of salt-affected soils involves 

initiating plant succession using fast-growing, nitrogen-fixing actinorhizal trees such as 

the Casuarina [13]. Actinorhizal trees form a nitrogen-fixing, mutually beneficial 

association (also referred to as the actinorhizal symbiosis) with Frankia, a sporulating 

filamentous actinomycete that can fix nitrogen and supply it to the plant [14]. The 

symbiosis with Frankia contributes towards the ability of actinorhizal plants to thrive in 

and ameliorate harsh environmental conditions. A brief overview the actinorhizal 

symbiosis and its role in stress adaptation by actinorhizal plants is provided in the next 

subsection. 

The actinorhizal symbiosis 

 Actinorhizal plants are defined by their ability to form root nodules when in symbiosis 

with Frankia, and comprise of more than 220 dicotyledonous species classified into 25 

genera and 8 Angiosperm families, including Betulaceae, Casuarinaceae, Coriariaceae, 

Datiscaceae, Elaeagnaceae, Myricaceae, Rhamnaceae and Rosaceae [14, 15]. In the 

nodule, Frankia fixes nitrogen, converts atmospheric N2 to NH3, a form that is 
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transported to the host plant and used to meet most of the nitrogen requirements of the 

plant [16]. The Frankia, in return, benefits from the association in the form of reduced 

carbon [17]. 

Actinorhizal plants, along with legumes (family Fabaceae), which form a nitrogen-fixing 

association with rhizobia (Gram negative) members of the alpha-subgroup of the 

phylum proteobacteria, belong to the ‘nitrogen-fixing Clade’ within the Rosid I lineage 

described previously [18]. Despite sharing some common features and a similar 

outcome with the rhizobium-legume symbiosis, the actinorhizal symbiosis is remarkably 

distinct [15]. Unlike the legumes, where the nodules represent stem-like organs with a 

peripheral vascular system and infected cells in the central tissue, the architecture of 

actinorhizal nodules consists of multiple modified lateral roots with central vascular 

tissue and infected cells in the expanded cortex. Actinorhizal nodule primordia, like 

lateral root primordia, appear in the root pericycle [17] whereas legume nodule 

primordia appear in the root cortex. Another distinct feature of the actinorhizal symbiosis 

is the wide distribution of the plant symbionts in eight botanical families. In the 

rhizobium-legume symbiosis, all the plant symbionts belong to just one family, the 

Fabaceae. Actinorhizal plants inhabit all continents except Antarctica. In contrast to the 

legumes, actinorhizal plants are mainly woody shrubs and trees, the genus Datisca 

being the exception [17]. In terms of nitrogen fixed per hectare of land per year, the 

actinorhizal symbiosis is comparable to the rhizobium-legume symbiosis [14]. 

Actinorhizal plants prevent soil erosion, replenish nutrients, enhance soil fertility and 

crop yield, help to restore a healthy soil microbiome in contaminated areas, and provide 

fuel wood, rendering them invaluable in sustainable agroforestry [19, 20]. Additionally, 
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actinorhizal trees have food and medicinal value [21, 22, 23], play a role in land 

reclamation, serve as wind breaks, and prevent coastal erosion [24, 25, 26].  Plants of 

Casuarinaceae and Betulaceae families are the most widely planted around the world 

for the rehabilitation of degraded lands [27]. 

The microsymbiont in actinorhizal symbiosis, Frankia, is a Gram-positive, aerobic 

and heterotrophic bacterium that can fix nitrogen under both free-living conditions and 

inside symbiotic root nodules [28]. During free living nitrogen fixation and under 

symbiotic conditions with most hosts, Frankia differentiates into vesicle cells, which are 

unique structures protected by multi-layered, hopanoid lipid envelopes [29]. The 

oxygen-liable nitrogenase enzyme catalyzes the conversion atmospheric di-nitrogen 

into ammonia inside the vesicles. This is different from the case in rhizobia, where 

leghemoglobin supplied by the host plant controls oxygen levels [30]. Based on 16S 

rDNA phylogeny, 4 lineages of Frankia are identified. Lineage I strains form nodules on 

members of the Betulaceae, Casuarinaceae and Myricaceae. Lineage II strains 

associate with the Datiscaceae, Coriariaceae, actinorhizal members of the Rosaceae, 

and Ceanothus of the Rhamnaceae. Lineage III Frankia nodulate the Myricaceae, 

Rhamnaceae, Elaeagnaceae, and Gymnostoma of the Casuarinaceae. Lineage IV 

includes non-symbiotic Frankia strains that are unable to re-infect their host plant and/or 

fix nitrogen [31]. A concatenated phylogenetic tree of the core genome based on 

Manhattan distance supports the lineage classification based on the 16S rDNA (Fig 1) 

[32]. Our understanding of Frankia was dramatically improved after the sequencing of 

the first three Frankia genomes in 2007, which revealed new potential with respect to 

metabolic diversity, natural product biosynthesis and stress tolerance [33, 34, 35]. In the 
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decade that elapsed since 2007, more than three dozen Frankia genomes have been 

sequenced and annotated, further providing a rich database for the genetic, genomic, 

transcriptomic, and proteomic study of the bacterium. The current state of the Frankia 

genomes and some of the intriguing insights they provided into the eccentric, symbiotic 

lifestyle of this microorganism are succinctly discussed below.   

Status of Frankia genomes 

Since 2007, more than 35 Frankia isolates from all four lineages have been 

sequenced. Two of the genomes come from uncultured Frankia. Seven of the 

sequenced genomes have been assembled to a single scaffold while the rest are at 

varying degrees of completion ranging from 2 to 2738 scaffolds. The sizes of the 

genomes vary from 5.0 Mb for Frankia sp. strain CeD to 11.2 Mb for Frankia sp. strain. 

BMG5.36. The sequenced Frankia strains include Casuarina isolates from a broad 

range of geographic locations [32, 33, 36 - 41]. Complete genomes provide a level of 

contiguity and error checking not possible with draft genomes [42]. Nevertheless, the 

finishing step involved in closing a genome is very labor-intensive and costly. The 

advent of next generation sequencing and the concomitant increase in computational 

capability allowed for a rapid and cost-effective production of draft genomes, which 

usually provide sufficient information for analysis.  

After the sequencing of the first three Frankia genomes [33], a hypothesis was 

proposed that genome size was related to host specificity and biogeography ranges. 

Subsequent sequencing of additional genomes from all four lineages of Frankia 

rendered support to this hypothesis [32, 43]. The size variations in Frankia genomes 

have been suggested to reflect differences in saprotrophic potential [31]. Genome 
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elasticity as measured by the distribution and numbers of mobile genetic elements, 

including horizontal transferred genes (HTG) and insertion sequences (IS), is not 

correlated with genome size [32]. HTG number is not correlated with IS number and 

genome size. Examination of the relationship between sequenced Frankia genomes 

and their corresponding GC contents revealed three different clusters (Fig 2) [32]. 

Cluster 1 is characterized by the lowest GC content and the smallest genome size. 

Included in this cluster are lineages Ic and II. The second cluster, which includes 

lineages III and IV, is characterized by the largest size genome and a GC content that is 

in-between the other two clusters. The last cluster has the highest GC content and an 

intermediate-size genome and is comprised of members of lineages Ia, III and IV.  

In rhizobia, genes involved in symbiosis are often clustered on large plasmids 

(pSym), or are located within symbiosis islands in the genome, suggesting that they 

may not be essential under most circumstances and they could be acquired through 

horizontal  
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Figure 1. A concatenated phylogenetic tree of the core genome based on Manhattan distance and bootstrap value 
of 1000. The bootstrap values have been represented as percentages. For each lineage, the host plants are given 
within the box. The core genome consisted of 1421 genes. Adapted from (Tisa et al. 2016).  
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gene transfer [44]. In Frankia, however, the symbiotic genes are not clustered, but are 

spread through the Frankia genomes [34].  

In legume/rhizobia symbioses, lipochitooligosaccharide signal molecules known 

as Nod-factors are involved in the recognition between the microsymbiont and the plant 

host. The nod genes encoding the proteins involved in the synthesis of the Nod factors 

are activated when the bacteria perceive flavonoids that are secreted by the host plant 

root [45]. The perception of Nod factors by host plant through LysM-receptor-like 

kinases (LysM-RLKs) induces a signal transduction cascade that is required for 

infection and nodule organogenesis [46]. This molecular dialog takes place in most 

legume–rhizobium interactions. Analysis of the Frankia genomes for common nod 

genes failed to reveal their presence. With the exception of Frankia datiscae Dg1 [47] 

and a recent assemblage of three lineage II strains from California (Dg2) [48], other 

Frankia strains do not contain the canonical nod genes (NodA-acyl transferase, NodB-

chitin deacetylase, NodC-chitin synthase), suggesting that the majority of Frankia 

strains use novel signaling compounds during the infection of actinorhizal plants. DNA 

samples used for the sequencing of Frankia datiscae Dg1 and the Dg2 assemblage 

genomes were extracted from vesicle clusters isolated from the root nodules of Datisica 

glomerate [47, 48].  

The availability of several sequenced Frankia genomes has allowed for the use 

of genome mining, comparative genomics, transcriptomics and proteomics approaches 

to cast light on the stress tolerance, secondary metabolism biosynthesis, symbiosis and 

nitrogen fixation mechanisms of Frankia [26, 33, 49-56]. Our laboratory has been 

undertaking the sequencing of numerous Frankia genomes, some of which were from 
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salt tolerant Casuarina isolates and were sequenced with the goal of understanding the 

genetic basis for the observed difference in salt tolerance between different Casuarina 

isolates. Sequencing of the genomes allowed for comparative genomics, 

transcriptomics, and proteomic analysis of salt tolerance in Casuarina isolates.  
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Figure 2 Analysis of Frankia genomes sizes and GC content. Frankia genomes were clustered 
in three groups. Adapted from (Tisa et al. 2016). 
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Actinorhizal symbiosis and environmental stress 

The symbiotic association with Frankia provides actinorhizal plants with 

multifaceted benefits, including the ability to colonize harsh environmental terrains, such 

as soils characterized by extreme pH, high levels of toxic heavy metals, low water 

availability, poor drainage, and low nutrient content. [17, 57, 58]. The benefit from 

actinorhizal symbiosis in the form of fixed nitrogen translates into increased tolerance to 

environmental stresses by the plant as many stress coping mechanisms heavily rely on 

protein biosynthesis and hence the availability of usable form of nitrogen. Although 

nitrogen (N2) is by far the most abundant gas in the atmosphere (80%), only certain 

prokaryotes can form the nitrogenase enzyme complex to convert atmospheric 

dinitrogen into ammonia, a form that can be used by plants. In addition to the symbiosis 

with Frankia, actinorhizal plants also take part in mycorrhizal associations, giving them 

an additional edge to colonize marginal soils [59]. Consequently, the actinorhizal plant-

Frankia system is widely used for reclaiming lands affected by abiotic stresses [60]. By 

promoting pedogenetic processes that lead to the formation of a more favorable soil for 

the installation of other plant species, actinorhizal plants play a vital ecological role in 

the revegetation of different landscapes to prevent desertification [24]. As expected 

based on their ability to thrive and form effective symbiosis under harsh environmental 

conditions, many Frankia strains are resistant to extreme environmental conditions, 

including elevated level of several heavy metals [61] and soil salinity [62].  

The success of the actinorhizal symbiosis in conferring tolerance to 

environmental stress is nowhere more evident than in the salt tolerance of Casuarina–

Frankia associations.  Casuarina trees are able to grow under very saline conditions 
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and have been extensively used in the reclamation of degraded lands worldwide [27, 

63]. The ability of Casuarina plants to thrive in and alter degraded lands is harnessed in 

Africa where the Casuarinaceae are extensively planted to reclaim salt-affected soils 

and to stabilize coastal and desert dunes [64]. The Casusarina-Frankia association and 

its role in the salt tolerance of the plant and the microsymbiont is covered in depth in the 

following subsection. Some of the information presented comes from published works 

by our group [65, 66]. 

The Casuarina – Frankia association and salt tolerance 

Originating from Australia, South-East Asia, Malaysia, Melanesian, and 

Polynesian regions of the Pacific, New Guinea, the Casuarinaceae are widely 

distributed in tropical areas [27]. This family is comprised of 96 species distributed in 4 

genera. In intercropping cultivation with crops, Casuarina trees improve soil fertility and 

crop yield [67]. In several countries in Africa and Asia, Casuarina trees have been 

widely used to fix sand dunes and serve as wind breaks to protect cultivated crops [67, 

68]. Casuarina trees are also used as poles, source of smokeless fuelwood with a high 

calorific value, raw material for construction [69] and in the production of paper pulp 

wood [7]. 

 Because of their ability to tolerate a range of stresses such as salinity, drought, 

toxic heavy metals, and flooding [70], Casuarina trees are widely used in the 

reclamation of degraded lands [71]. The growth and stress tolerance of Casuarina trees 

improves when the plants are in a symbiotic association with Frankia [65, 70, 72]. 

Casuarina trees are particularly outstanding among actinorhizal plants in terms of their 

salt tolerance [70]. Casuarina trees are able to grow under saline conditions and have 
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been used as a green barrier [63, 73, 74]. Some Casuarina species are found growing 

naturally near brackish waters and swamps or in saline soils [75]. In hydroponic medium 

supplemented with adequate nitrogen, Casuarina glauca, Casuarina obesa, and 

Casuarina equisetifolia var. incana will withstand up to 500 mM NaCl [63]. Although 

generally tolerant to salt stress, Casuarina trees have a high degree of diversity in salt 

tolerance. This is evident in C. equisetifolia clones which show a marked variability in 

salt tolerance [76–54]. Therefore, saline land reclamation efforts using Casuarina trees 

should involve screening processes to identify salt-tolerant clones that can grow in 

degraded lands [27]. Casuarina strains are absent or rare in soil without the host plant, 

which indicates the requirement of inoculation of the host plant before transplantation 

for rehabilitation of saline soil [28].  

Like their plant partners, Frankia strains isolated from Casuarina and 

Allocasuarina are more NaCl tolerant than other Frankia strains isolated from 

actinorhizal plant species not normally growing under sodic conditions [77]. Frankia sp. 

strain CcI6 isolated from the nodules of Casuarina cunninghamiana trees growing in 

Egyptian soil is highly NaCl tolerant, exhibiting a minimum inhibitory concentration (MIC) 

value of 1000 mM [78]. Frankia sp. strain CcO1, also from C. cunninghamiana, tolerates 

up to 500 mM NaCl [13]. Similarly, Frankia sp. strain Ceq1 isolated from C. equisetifolia 

is able to withstand up to 500 mM NaCl [70]. However, a huge variation in terms of salt 

tolerance exists among the different Casuarina isolates starting from a NaCl MIC value 

as low as 100 mM [13]. Casuarina isolates also differ in terms of the concentration of 

NaCl they can tolerate to initiate the symbiosis formation with their plant partner [65].  
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Given the diversity of the microsymbiont and the host in terms of salt tolerance, 

identification and molecular characterization of salt tolerant Casuarina species and 

associated Frankia are imperative for the successful utilization of Casuarina tress in 

saline soil reclamation efforts.  This dissertation work is therefore pivoted around 

unlocking the molecular mechanisms of salt and osmotic stress tolerance in Frankia 

strains isolated from Casuarina trees. The effect of actinorhizal symbiosis on the salt 

tolerance of Casuarina trees is also examined. The goal of the research is discussed in 

detail in a separate subsection. Any attempt to understand the mechanism of salt 

tolerance in Frankia is incomplete without data mining for classical salt tolerance genes 

and pathways. A brief overview of classical salt and osmotic stress coping mechanisms 

employed by microorganisms exposed to a hyperosmotic environment is provided 

below. 

Salt and osmotic stress tolerance of mechanisms of microorganisms 

Microbes use a myriad of well-characterized mechanisms to adapt to fluctuations 

in osmolarity or salt. Classical salt/osmotic stress mechanisms employed by 

microorganisms include: (1) reestablishing osmotic balance by accumulating low 

molecular weight organic compatible solutes [79-81], (2) exclusion of Na+ ion from cells 

via the action of a Na+/ H+ antiporter and Na+ -ATPase [80], (3) altering membrane 

composition through changes in fatty acid saturation or phospholipid composition to 

better cope with the changed turgor pressure [82], (4) reactive oxygen species 

scavenging to prevent the oxidative degradation of  lipids, also known as lipid 

peroxidation [80], and (5) restoration of the native folding of proteins through the actions 

of molecular chaperons [83].  
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Bacterial cells must maintain high turgor pressure to sustain cell volume and to 

allow for cell growth. Turgor pressure is established within cells according to the Morse 

equation, P = RT (Cin −Cout), where Cin is the osmolarity of the cytoplasm, Cout is the 

osmolarity of the extracellular medium, R is the gas constant, and T is the temperature 

[84]. The turgor pressure typically maintained is 3 -10 atmospheres for gram negative 

bacteria and about 20 atmospheres (ten times the pressure in a fully inflated automobile 

tire) for gram positive bacteria [85]. Under hyperosmotic environments, water fluxes out 

of the cell and the hydrostatic pressure exerted against the cell membrane is reduced, 

causing a threat to the cell’s ability to maintain adequate turgor pressure. The 

immediate response of the bacteria upon losing water and turgor pressure is restoring 

rehydration by the rapid uptake of K+, which is counterbalanced by endogenously 

synthesized glutamate [86]. Among the monovalent cations, K+ perturbs cellular 

functions the least, but it nevertheless lacks the compatibility of organic osmolytes. Long 

term osmoadaptation response calls for the replacement of the K+ with so-called organic 

osmolytes (compatible solutes). Compatible solutes encompass a restricted range of 

highly water soluble, osmotically active, low molecular weight amino acids and their 

derivatives, sugars or sugar alcohols, and other alcohols [87, 88]. Commonly employed 

compatible solutes include the sugar trehalose, the amino acids proline, serine and 

glutamate [89], quaternary ammonium compounds such as glycine betaine and proline 

betaine [90], polyamines, and organic solutes [89]. The strikingly limited number of 

compatible solutes used in all forms of life from bacteria to higher organisms is reflective 

of the challenge in finding solutes that are compatible with cellular functions.   The 

osmotic function of a compatible solute depends on the degree of methylation and 
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length of the hydrocarbon chain [91]. Evolutionary selection on a compatible solute 

depends on the osmotic function as well as on other secondary functions such as its 

contribution towards heat and cold tolerance [92]. Accumulation of compatible solutes 

helps to avoid external osmolality-triggered water fluxes along the osmotic gradient 

causing either swelling in hypotonic environments or plasmolysis under hypertonic 

environments. The mechanism of action of compatible solutes involves changing the 

structure of the solvent and/or subtle changes in the dynamic properties of the protein 

as opposed to changing the structure of the protein itself. Osmotic adaptation using 

compatible solutes is characterized by a minimal requirement for genetic change and a 

high degree of flexibility in allowing organisms to adapt to wide ranges of external 

osmolarity [93].  

Salt stress can upset the delicate balance between different cellular processes. 

The uncoupling of different pathways leads to the transfer of high energy electron to 

molecular oxygen (O2), causing formation of reactive oxygen species, ROS [94]. ROS 

cause oxidative damage to proteins, DNA and lipids [95]. Oxidative stress results in the 

oxidative degradation of lipid membranes, also referred to as lipid peroxidation. The cell 

needs to be equipped with a mechanism of getting rid of the over 200 types of 

aldehydes, many of which are highly reactive and toxic, generated from lipid 

peroxidation [96].  Aldehyde dehydrogenases (ALDHs) counteract the effects of 

oxidative stress and the accompanying aldehyde production by metabolizing 

endogenous and exogenous aldehydes and converting them into TCA cycle 

intermediates.  
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Cells growing in high salt medium also face a loss of intracellular water, which 

creates a high ionic strength environment inside the cell.  Proteins risk permanent 

unfolding in the resulting intracellular environment. Misfolding and aggregation of 

protein molecules are major threats to the survival of the cell. To cope with the problem, 

cells rely on a system composed of molecular chaperones and proteases [83, 97].   

The deleterious effects of salt stress are first experienced by the cell membrane, 

which separates the interior of the cell from the outside environment [98]. Various kinds 

of stresses including, but not limited to, heat shock, cold shock, osmotic shock and 

salinity stress cause disruption of membranes, thereby affecting membrane-linked 

physiological processes such as transport, enzyme activities, and signal transduction. 

Maintaining correct fluidity of the bilayer over a wide range of salinity determines the 

extent of cell survival during salt stress [99]. Management of the lipid profile in response 

to salinity involves induction of fatty acid desaturases, which help to synthesize 

unsaturated fatty acids from saturated fatty acids [100]. The inherent salt tolerance of 

the organism dictates such responses and is a key factor accounting for the disparity in 

salt tolerance between organisms [101]. In addition to the common mechanisms 

outlined above, bacteria employ various unique mechanisms to adapt to high salt 

stress.  

Research background and objectives 

The primary goal of the research was to determine the role of actinorhizal 

symbiosis in the salt stress tolerance of Casuarina plants and to unlock the molecular 

mechanisms of salt/osmotic stress tolerance of the microsymbiont. Casuarina isolates 

show marked differences in salt and osmotic stress tolerance. Given the availability of 
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more than three dozen Frankia genomes, several of which represent strains isolated 

from Casuarina trees, it is of great interest to the scientific community to tie the 

observed difference in the salt tolerance of Casuarina isolates to their genetic make-up. 

Understanding of the molecular mechanisms of salt/osmotic stress tolerance in Frankia 

allows for the development of strains that combine the best symbiotic and salt tolerance 

attributes. We have taken a comprehensive approach to address the research question. 

The salt stress tolerance levels for several Frankia strains isolated from Casuarina trees 

were assayed and two salt-stress tolerant strains (Frankia sp. strain CcI6 and Allo2) 

which could withstand up to 1000 mM NaCl and one relatively salt-sensitive strain 

(Frankia casuarinae strain CcI3), which could withstand only 475 mM NaCl were 

identified. Comparative genomics were used to identify strain-specific genes and 

pathways potentially involved in salt and osmotic stress tolerance. Transcriptome and 

proteomic profiling of the salt-tolerant and salt-sensitive strains was carried out to 

identify strain-specific genes that are responsive to salt and osmotic stress. 

Physiological analysis was undertaken to confirm the accumulation of osmolytes 

predicted based on the transcriptome and proteome analysis. An expression vector that 

could stably replicate in Frankia was identified. Cloning of some of the salt-responsive 

genes from the salt-tolerant-strain (Frankia sp. strain CcI6) and expressing it in the salt-

sensitive-strain (Frankia casuarinae strain CcI3), revealed novel genes that confer salt 

stress tolerance.   

The research was part of an international collaborative endeavor to unlock the 

mechanism of salt and osmotic stress tolerance in Casuarina glauca and its micro-

symbiont Frankia using new sequencing technologies, proteomics, mutational analysis, 
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and physiological approaches. Collaborators included: UNH (USA), LCM IRD (Senegal), 

IRD (France), and IFGTB (India). While our work focused on the salt tolerance 

mechanisms of the microsymbiont, the work of our collaborators was focused on 

demystifying the salt tolerance mechanism of Casuarina glauca under symbiotic and 

non-symbiotic conditions and assessing the performance of the symbiosis under salt-

stressed conditions in semi-axenic and field conditions.  

Materials and Methods 

Frankia Growth Media and Culture Conditions 

Frankia strains used in this study are listed in Table 1. Frankia stock cultures 

were grown and maintained in basal MP [102, 103] growth medium supplemented with 

5.0 mM NH4CI and the appropriate carbon source (Table 1). Basal MP growth medium 

consisted of MOPS-phosphate buffer (50 mM MOPS, 10 mM K2HPO4, pH 6.8) 

supplemented with 1 mM Na2MoO4, 2 mM MgSO4, 20 µM FeCI3 with 100 M 

nitrilotriacetic acid (NTA), and modified trace salts solution [102]. For experimental 

conditions, Frankia cultures were grown in MP or BAP growth media [104] as described 

previously. The composition of BAP growth medium is: 0.01 M KH2PO4, 0.01 M 

K2HPO4, 5 mM propionate, 0.135 mM CaCI2, , 0.045 mM MgSO4*7H2O, 0.1% (v/v) Fe-

EDTA stock (195 mM FeNa2EDTA), 0.1% (v/v) Oligoelements (0.115 mM H3BO3, 0.08 

µM CUSO4*5H2O, 2.3 µM MnCI2*4H2O, 0.19 µM ZnSO4, 0.026 µM Na2MoO4*2H2O), 

0.1% (v/v) Wolff’s vitamins (0.059 mM pyridoxine HCI, 0.036 mM ρ-aminobenzoic acid, 

0.024 mM lipoic acid, 0.04 mM nicotinic acid, 0.013 mM riboflavin, 0.016 mM thiamine 

HCI, 0.01 mM calcium DL-pantothenate, 0.008 mM biotin, 0.004 mM folic acid, and 

0.0737 µM vitamin B12), pH 6.7 supplemented with 2% (v/v) Mes-Tris (0.5 M 2[N-
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Morpholino] ethan sulfonic acid, adjusted to pH 6.8 with Tris). For growth under 

nitrogen-deficient conditions, N2 was the sole nitrogen source.  
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Table 3. Frankia strains used in this study 

Frankia strain Carbon source  Relevant phenotype Source/Reference 

Frankia casuarinae strain CcI3 5 mM propionate Kanamycin resistant (50 µg/ml) [105, 106] 
Frankia sp. strain CcI6 5 mM propionate Kanamycin resistant (50 µg/ml) [107] 
Frankia sp. strain Allo2 5 mM propionate Kanamycin resistant (50 µg/ml) [108] 
Frankia sp. strain CeD 5 mM propionate  [109] 
Frankia sp. strain BR 5 mM propionate  [110] 
Frankia sp. strain BMG5.23 5 mM propionate  [111] 

Frankia sp. strain Thr 5 mM propionate Kanamycin resistant (50 µg/ml) [112] 
Frankia sp. strain CgI82  5 mM propionate  Lab stock 
Frankia alni strain ACN14a 20 mM succinate  [105, 113] 
Frankia sp. strain EAN1pec 20 mM succinate  [114] 
Frankia sp. strain DC12 20 mM glucose  [115, 116] 
Frankia inefficax strain EUI1c 20 mM glucose  [117, 118] 
Frankia casuarinae strain CcI3/pHTK1 5 mM propionate Kanamycin resistant (50 µg/ml) 

Tetracycline resistant (30 µg/ml) 
This study 

Frankia casuarinae strain CcI3/pHTK1-RO-22605 5 mM propionate Kanamycin resistant (50 µg/ml) 
Tetracycline resistant (30 µg/ml) 

This study 

Frankia casuarinae strain CcI3/pHTK1-RO-13590 5 mM propionate Kanamycin resistant (50 µg/ml) 
Tetracycline resistant (30 µg/ml) 

This study 

Frankia casuarinae strain CcI3/pHTK1-RO-17915 5 mM propionate Kanamycin resistant (50 µg/ml) 
Tetracycline resistant (30 µg/ml) 

This study 

Frankia casuarinae strain CcI3/pHTK1-RO-21730 5 mM propionate Kanamycin resistant (50 µg/ml) 
Tetracycline resistant (30 µg/ml) 

This study 

Frankia casuarinae strain CcI3/pHTK1-RO-19875 5 mM propionate Kanamycin resistant (50 µg/ml) 
Tetracycline resistant (30 µg/ml) 

This study 

Frankia casuarinae strain CcI3/pHTK1-RO-20860 5 mM propionate Kanamycin resistant (50 µg/ml) 
Tetracycline resistant (30 µg/ml) 

This study 

Frankia casuarinae strain CcI3/pHTK1-RO-17580 5 mM propionate Kanamycin resistant (50 µg/ml) 
Tetracycline resistant (30 µg/ml) 

This study 
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Table 4. E. coli strains used in this study 

E. coli strain Relevant genotype or description Source or 

reference (s) 

E. coli DH5α  F– Φ80lacZΔM15 Δ(lacZYA-argF) U169 recA1 endA1 hsdR17 (rK–, mK+) phoA 
supE44 λ– thi-1 gyrA96 relA1  

 

Lab stock 

E. coli DH5αλpir  F– Φ80lacZΔM15 Δ(lacZYA-argF) U169 recA1 endA1 hsdR17 (rK–, mK+) phoA 
supE44 λ– thi-1 gyrA96 relA1/pir 

 

Lab stock  

E. coli BW29427 dap auxotroph, tra pir Lab stock 

E. coli S17-1 pro thi hsdR+ Tpr Smr; chromosome::RP4-2 Tc::Mu-Kan::Tn7 Lab stock 

E. coli S17-1λpir pro thi hsdR+ Tpr Smr; chromosome::RP4-2 Tc::Mu-Kan::Tn7/λpir Lab stock 

E. coli HB101 F–Δ(gpt-proA)62leuB6glnV44 ara-14 galK2 lacY1 Δ(mcrC-mrr) rpsL20 (StrR) xyl-5 

mtl-1 recA13 thi-1 

Lab stock 

E. coli Top10 F- mcrA Δ( mrr-hsdRMS-mcrBC) Φ80lacZΔM15 Δ lacX74 recA1 araD139 Δ( 

araleu)7697 galU galK rpsL (StrR) endA1 nupG 

Invitrogen 

(Carlsbad, CA) 

E. coli BW25113 K-12 derivative, araBAD rhaBAD [119] 

E. coli ET12567 dam dcm hsdS cat tet [120] 
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Plant growth media 

For germination and growth before transplanting, plants were grown in 

commercially available 1/4 strength Hoagland's Modified Basal Salt Solution (1/4 HS; 

MP Biomedicals, Solon, Ohio) containing 0.25 mM (NH4)3PO4, 115 µM H3BO3, 1 mM 

Ca(NO3)2, 0.08 µM CuSO4*5H2O, 22.53 µM Na2EDTA, 22.5 µM FeSO4*7H2O, 0.5 mM 

MgSO4, 2.3 µM MnCI2*4H2O, 0.0275 µM MoO3, 1.5 mM KNO3, 0.19 µM ZnSO4*7H2O, 

pH 5.5. After transplanting, plants were grown in BD medium [121]. The composition of 

the BD medium is: 1000 μM CaCl2, 250 μM MgSO4, 500 μM KH2PO4, 10 μM Fe EDTA, 

250 μM K2SO4, 1 μM MnSO4, 0.5 μM ZnSO4, 0.2 μM CuSO4, 0.1 μM CoSO4, and 0.1 

μM Na2MoO4. For nitrogen-sufficient conditions, plants were grown in BD medium 

supplemented with 5 mM KNO3.  

Seed Sterilization and Plant Growth Conditions 

Casuarina cunninghamiana seeds used in this study were obtained from 

Sheffield's Seed Company, Locke, New York, or F. W. Schumacher Company, 

Sandwich, Massachusetts. Before use, seeds were soaked in sterile tap water overnight 

at room temperature (RT). After decanting the water, seeds were surface-sterilized by 

suspending in 15 mL of fresh 30% hydrogen peroxide containing two drops of Tween 20 

and agitating at room temperature for 5 minutes. The sterilized seeds were washed six 

times with 10 ml sterilized deionized H2O (sdH2O) to remove the hydrogen peroxide and 

the detergent. Sterilized seeds were aseptically sown on 100 ml perlite (Scotts 

Company, Marysville, Ohio) wetted to field capacity with 45 ml of ¼ HS medium in 

Magenta GA-7 boxes (Magenta Corp., Chicago, Illinois). Germination took place at 

25°C with a 16 h light period and 8 h dark period.  
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Salt sensitivity assay for Frankia 

The salt tolerance levels of Frankia strains were determined by measuring the 

total cellular protein content and/or total cellular dry weight after growth under salt or 

osmotic stress. For total cellular protein determination, a 24-well growth assay was used 

as described previously [78]. Briefly, cells were grown in propionate basal medium with 

or without 5 mM NH4Cl containing different concentrations of NaCl or sucrose. For 

strains ACN14a, EuI1c, DC12 and EAN1pec, propionate was replaced with the 

appropriate carbon source [Table 1]. The inoculum was adjusted to 40 µg/ml of total 

protein and the plates were incubated at 28°C for 14 days. Growth was measured by 

total cellular protein content as described below. Growth yield was determined by 

subtracting the protein content of the inoculum.   

For total cellular dry weight determination, Frankia strains were inoculated into 25 

ml of basal growth medium containing different concentrations of NaCl or sucrose. The 

inoculum concentration was adjusted to 40 µg/ml protein. The Frankia cells were grown 

for 14 days at 28 °C. Growth was measured by total cellular dry weight as described 

below. Growth yield was determined by subtracting the dry weight of the inoculum. 

To evaluate the levels of tolerance, the following two parameters were used: 

maximum tolerable concentration (MTC) and minimum inhibitory concentration (MIC).  

The MTC is the highest concentration of salt which does not affect the growth, while 

MIC is the lowest concentration of salt that inhibits growth. 

Protein content and dry weight determination 

Total cellular protein content was measured by the bicinchoninic acid (BCA) 

method [122] per the manufacturer’s specifications (Pierce, Rockford, IL, USA) and 
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bovine serum albumin was used as a standard. Cells solubilized in 1 N NaOH were 

boiled at 95°C for 10 minutes and centrifuged at 13,000g for 5 min. The supernatant 

containing solubilized proteins was used for quantification. Triplicate measurements 

were made for each sample. Total cellular dry weight was determined using tared 

polycarbonate membranes [123].  

Vesicle induction and nitrogenase activity 

To determine vesicle production and nitrogenase activity, Frankia cells were 

harvested after 14 days of growth in medium supplemented with 5 mM NH4Cl and 

washed three times with buffer containing 20 mM morpholinepropanesulphonic acid 

(MOPS) and 10 mM KH2PO4 at pH 6.8. The washed cells were inoculated into growth 

medium lacking an external nitrogen source and containing different concentrations of 

NaCl or sucrose. The cultures were incubated at 30°C for 4 days. The vesicle numbers 

were determined as described previously [124]. The activity of the nitrogenase enzyme 

was determined by the acetylene reduction assay as described previously [124]. 

Effect of salt treatment on the nodulation of Casuarina cunninghamiana 

Two weeks after germination, five Casuarina cunninghamiana seedlings were 

transplanted into Magenta boxes containing 50 ml of BD medium supplemented with 

KNO3 (5 mM) as a nitrogen source at pH 6.7 [121] and were incubated for one month in 

a growth chamber at 25°C with a 16 h light period. After a month of growth, different 

levels of salt stress were applied to the plants. Final concentrations of NaCl tested were 

0, 50, 100, 150, and 200 mM. For concentrations above 50 mM, the stress was applied 

gradually through the weekly increment of 50 mM concentration of NaCl. One week 

after the desired NaCl concentrations were reached for all treatments, the plants were 
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inoculated with either Frankia sp. strain CcI6 or Frankia casuarinae strain CcI3. Control 

plants were not inoculated with Frankia. Prior to inoculation with Frankia, the plants 

were incubated in BD medium without supplemental nitrogen for two weeks. To prepare 

Frankia for inoculation, two week old Frankia culture grown in MP medium 

supplemented with 5 mM NH4CI and 5 mM propionate was harvested and washed twice 

with 20 mL of BD medium to remove all traces of nitrogen. The washed cells were 

resuspended in 50 ml of BD medium and incubated at 28°C for one week. The Frankia 

culture was harvested and adjusted to 60 µg/ml protein in fresh BD medium containing 

the appropriate NaCl concentration. Spent plant growth medium was decanted from 

each Magenta box and replaced with 50 ml of the Frankia suspension. The inoculated 

plants were incubated at 25°C with 16 h light period and plant growth medium was 

replaced weekly to avoid nutrient depletion and pH drift. For two months after 

inoculation, frequency of nodulation and number of nodules per plant were followed. 

Each treatment condition consisted of 15 plants. The experiment was laid out in a 3 X 5 

factorial randomized complete block design (RCBD). Statistical analysis was completed 

using ANOVA on JMP software (JMP, Cary, North Carolina). 

The effect of symbiosis with Frankia on the salt tolerance of Casuarina 
cunninghamiana 
 

Two weeks after germination, Casuarina cunninghamiana seedlings were transplanted 

into Magenta boxes containing 50 ml of BD medium supplemented with KNO3 (5 mM) 

as a nitrogen source at pH 6.7 [121] and were incubated for one month in a growth 

chamber at 25°C with a 16 h light period. Subsequently, the plants were inoculated with 

Frankia casuarinae strain CcI3 or Frankia sp. strain CcI6 as described above. Control 
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plants were not inoculated with Frankia.  After one month of growth, different levels of 

salt stress were applied to the plants. Final concentrations of NaCl tested were 0, 50, 

100, 150, and 200 mM. Each treatment condition consisted of 15 plants.  For 

concentrations above 50 mM, the stress was applied gradually through the weekly 

increment of 50 mM concentration of NaCl. After the desired NaCl concentration was 

achieved, the plants were allowed to grow for additional two months with a weekly 

replacement of the depleted nutrient medium. Growth measurements were taken on 

plant height and root and shoot dry weight. For root and shoot dry weight determination, 

plants were harvested, the respective parts were cut and washed in deionized water, 

surface-wiped with blotting paper and dried at 80°C for 48 hours before measurement.  

Genome sequencing of Frankia strains 

High-quality Frankia gDNA for Illumina sequencing was extracted using the 

cetyltrimethylammonium bromide (CTAB) method [125]. Briefly, 6 ml of seven day old 

Frankia culture was harvested by centrifugation at 16,000 x g for 10 min and 

resuspended in 567 µl of TE buffer [10 mM Tris-HCl, pH 8.0, 1 mM 

Ethylenediaminetetraacetic acid (EDTA)]. The resuspended cells were heated at 80°C 

for 20 min. To degrade the peptidoglycan layer, 11 µl of 50 mg/ml of lysozyme was 

added to the cells and incubated at 37 for 60 min. Thirty microliters of 10% sodium 

dodecyl sulfate (SDS) and 5 µl of 20 mg/ml proteinase K were added to the cells, mixed 

gently, and incubated at 65°C for 20 min. One hundred microliters of 5 M NaCl and 80 

µl of CTAB/NaCl (10% CTAB, 700 mM NaCl) solution were added to the mixture, mixed 

by inversion, and incubated at 65°C for 10 min. An equal volume of chloroform:isoamyl 

alcohol (24:1) was added to the mixture and centrifuged at 16,000 x g for 10 min. 
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Isopropanol (800 µl) was added to the aqueous phase to precipitate the gDNA at -20°C 

overnight. The gDNA was collected by centrifugation at 16,000 x g for 20 min at 4°C. 

The pelleted gDNA was washed with 1 ml 70% ethanol. After drying, the pelleted gDNA 

was dissolved in 50 µl of nuclease free water (or TE buffer). The DNA was quantified 

using the Nanodrop 2000c spectrophotometer (Thermo Scientific, Wilmington, 

Delaware) and the Qubit dsDNA BR Assay (Invitorgen, Carlsbad, California). The 

integrity of the gDNA was verified by electrophoresis on a 1% agarose gel and checking 

for a band of about 40 kb. The gDNA sample was sent to the Hubbard Genome Center 

at the University of New Hampshire to generate standard Illumina shotgun library. 

Sequencing was undertaken using the Illumina HiSeq 2000 platform. All raw Illumina 

sequence data was processed through CLC Genomics Workbench to trim on quality 

and adapters. Adapter trimming was carried out by searching for adapter sequences on 

the forward and the reverse strands. The ends of reads were also trimmed on quality 

using the prediction reliability calculated by the base-caller on a limit of 0.05. Reads 

were further trimmed based on the presence of 2 or more ambiguous characters. 

Assembly of the genomes was undertaken via an integrated approach utilizing CLC 

Genomics Workbench and ALLPATHS-LG [126]. Briefly, the assembly process 

encompassed the following steps. Illumina reads that passed the quality control and the 

trimming steps were de novo assembled using CLC Genomics Workbench (the different 

versions of CLC used with the different genomes are provided in Table 3). A sequence 

read simulation tool called wgsim was used to generate 3 million, 150 bp simulated 

paired-end reads (with 1-3 kb distance between the outer end of the pairs) using contigs 

created by CLC Genomics Workbench as inputs. Trimmed Illumina reads along with the 
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simulated paired reads generated by CLC Genomics Workbench were assembled using 

ALLPATHS-LG [the versions used are given in table 3]. The following parameters were 

used for de novo assembly by CLC Genomics Workbench: for the de Bruijn Graph, 

word size and bubble size were calculated automatically. The minimum effective contig 

length was set at 200 bp (when 100 bp short reads are assembled) or at 300 bp (when 

150 bp short reads where assembled). Paired distance for the paired end sequence 

data was calculated by the assembly program and scaffolding was performed. For 

mapping the reads back to the assembled contigs, the following default parameters 

were used: mismatch cost (2), Insertion cost (3), Deletion cost (3), Length fraction (0.5), 

and similarity fraction (0.8). For generating simulated reads using contigs assembled by 

CLC Genomics Workbench as inputs, the following wgsim code was used: wgsim -e 0 -

d  -N  -1 150 -2 150 -r 0 -R 0 -X 0. In the code, d represented the distance between the 

outer ends of the paired reads, N represented the number of simulated read pairs to be 

generated, -1 represents the length of the first read, -2 represents the length of the 

second read, -e represents the base error rate, -R represents the fraction of indels, -X 

represents the probability that an indel is extended. The assembled genomes were 

annotated via the Integrated Microbial Genomes (IMG) platform developed by the Joint 

Genome Institute, Walnut Creek, CA [127]. Annotations were manually checked to 

ensure conformity to NCBI standards and the draft genomes were submitted to the 

NCBI database. 
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Table 3. Different versions of CLC and ALLPATHS-LG assembly programs used for the 
different Casuarina isolates sequenced by Tisa lab, UNH, USA.  

Frankia strain Version of CLC 
Genomics 

Workbench used 
for assembly 

Version of 
ALLPATHS-

LG 

Illumina 
libraries 

generated 

References 

Frankia sp. strain 
CcI6 

6.5.1 r41043 Nextera [38] 

Frankia sp. strain 
CeD 

8.0.1 r41043 Nextera [39] 

Frankia sp. strain 
Allo2 

8.0.1 r41043 Nextera [41] 

Frankia sp. strain 
BMG5.23 

6.5.1 r41043 Nextera [36] 

Frankia sp. strain Br 8.5.0 r41043 Nextera [40] 
Frankia sp. strain Thr 6.5.1 r41043 Nextera [37] 

 

Accession numbers 

For bioinformatics analysis, genome sequences and their annotations including 

amino acid and nucleotide FASTA files were obtained from the NCBI database 

(http://www.ncbi.nlm.nih.gov) under GenBank accession numbers 

[NZ_AYTZ00000000.1, NZ_LRTJ00000000.1, NZ_JENI00000000.1, 

NZ_JPGU00000000.1, NZ_JDWE00000000.1, NZ_JPHT00000000.1, NC_007777.1, 

NC_008278.1, NC_008578.1]. 

Pan genome analysis 

The web platform OrthoVenn [128] was used to identify orthologous gene 

clusters. OrthoVenn uses a modified version of the heuristic approach named 

OrthoMCL [129] to identify ortholog groups. An E-value cut off of 1e-5 was used for all-

to-all protein similarity comparisons. An inflation value of 1.5 was used for the 

generation of orthologous clusters using the Markov Cluster Algorithm [130]. To 

determine single copy orthologs among the most tolerant, moderately tolerant and most 

http://www.ncbi.nlm.nih.gov/
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sensitive strains, a modified Lerat method was used [131]. As a stringent criterion for 

homology, only gene pairs representing a bit score value equal to or higher than 30% of 

the maximal possible bit score value were considered homologous genes. 

VennDiagram in R was used to construct the four-way Venn diagram between salt 

tolerant (2 strains), moderately salt tolerant (1 strain), and the relatively salt sensitive 

strain.  

Average nucleotide identity, average amino acid identity and average genomic 

distance 

The average nucleotide identity (ANI) and average amino acid identity (AAI) 

between strains was estimated by using reciprocal best hits (two-way ANI or two-way 

AAI), as previously described [132]. Genome to genome distance was calculated using 

the web platform called GGDC 2.1 according to the standard operating procedure 

previously described [133]. GGDC 2.1 BLAST+ was chosen as the alignment method 

for finding intergenomic matches.  

Phylogenetic Analysis 

A concatenated maximum parsimony phylogenetic tree was generated from 394 

conserved single copy pan-orthologous genes determined by a modified Lerat method 

[131]. The rationale for including only single-copy genes representing species 

divergences was to minimize potential errors caused by gene duplication. The tree was 

calculated by determining the ratio of the bit score to the maximal bit score (i.e., protein 

match against itself). As a stringent criterion for homology, two genes are considered 

homologous only if the bit score value for the pair is at least 30% of the maximal bit 
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score. The 30% cutoff maximized the number of families containing genes, and is 

optimal for the interspecific identification of homologous sequences [134].   

RNA-Seq sample preparation and data analysis 

 To analyze gene expression of the salt-tolerant strain under salt stressed 

conditions, RNA-Seq analysis was performed on Frankia casuarinae strain CcI3 (a salt-

sensitive strain), Frankia sp. strain CeD (a moderately salt-tolerant strain), and Frankia 

sp. strain CcI6 (a salt-tolerant strain). Cultures were grown for 7 days at 28°C in a 5 mM 

propionate, 5 mM NH4Cl basal growth medium [117] alone or supplemented with 200 

mM NaCl or sucrose. The bacteria were harvested and the pellets were frozen at -80°C. 

Total RNA was extracted using a modified RNeasy Midi kit (Qiagen Sciences, Valencia, 

CA). Frozen bacterial pellets were resuspended in 0.5 ml TE buffer, pH 8, 

supplemented with 5 mg/ml lysozyme and incubated at room temperature for 10 

minutes. RLT buffer (2 ml) supplemented with 1µl/ml β-Mercaptoethanol (β-ME) was 

added to each sample and the pellets were homogenized using glass tissue grinders.  

Subsequently, the RNeasy midi kit procedure was followed as per the manufacturer’s 

recommendation with one major modification: after addition of ethanol to the lysate, the 

RNeasy mini kit procedure, instead of the RNeasy midi kit procedure, was used. RNA 

samples were treated with DNase I (New England Biolabs, Ipswich, Massachusetts) per 

the manufacturer’s instructions. RNA was quantified using Qubit RNA assay (Invitrogen) 

and Nanodrop 2000c spectrophotometer (Thermo Scientific, Wilmington, Delaware) 

according to manufacturers’ specifications. The quality of each RNA sample was 

determined using the Agilent 2100 Bioanalyzer (Agilent, Santa Clara, CA) according to 

the Prokaryote Total RNA Nano protocol. RNA quality was represented by RNA integrity 
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number (RIN value), which ranged from 1 to 10, with 10 representing the most intact 

RNA. Samples with RIN value greater than or equal to 8 were used for downstream 

analysis. Ribosomal RNA was removed from 2-4 ng of total RNA by the use of the 

MicrobeExpress kit (Ambion, Foster City, CA) according to the manufacturer’s 

specifications. The MEGAclear kit (Life Technologies, Carlsbad, CA) was used to 

remove tRNA according to manufacturer's specifications.  cDNA libraries were prepared 

using the TruSeq RNA Sample Prep Kit (Illumina, San Diego, CA) as described by the 

manufacturer. The cDNA library was verified for appropriate fragment size 

(approximately 250 bp) on an Agilent 2100 Bioanalyzer (Agilent, Santa Clara,CA) 

according to the DNA 1000 protocol described by the manufacturer. The Qubit dsDNA 

BR Assay (Invitorgen, Carlsbad, California) was used to determine the cDNA 

concentration of each library according to manufacturer’s recommendations. Libraries 

were normalized to 10 nM with 10 mM Tris-HCl, pH 8.5, supplemented with 0.1% 

Tween 20. Illumina sequencing was carried out at Hubbard Genome Center at the 

University of New Hampshire on an Illumina HiSeq 2500 platform. Reads were 

separated on adapter assignment and pre-processed through CASAVA 1.8.3. The 

resulting FASTQ files of sequence reads were processed using CLC Genomics 

Workbench 9.0 (CLC bio, Cambridge, MD). Adapters were trimmed from reads by 

searching on the forward and reverse strands. The ends of reads were quality trimmed 

based on quality scores from a base-caller algorithm using a limit value of 0.05. The 

high quality trimmed reads were mapped to Frankia sp. strain CeD, Frankia casuarinae 

strain CcI3 or Frankia sp. strain CcI6 gene regions. Reads mapping to rRNA operons 

were excluded from downstream analysis. Mapping parameters were as follows: The 
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maximum number of mismatches allowed was 2. The minimum length fraction was set 

so that at least 50% of the read length aligns to the reference sequence. The minimum 

fraction of identity between the read and the reference sequence was set at 80%. A 

read that matched to more than 10 distinct places in the reference was not mapped. If 

the read matched to multiple distinct places, but below 10 different locations, it was 

randomly assigned to one of the distinct places. After mapping, the gene expression 

level for each gene was expressed in terms of the unique number of reads mapping to 

that gene. All RNAseq experiments were normalized by the total number of reads in 

each library. A gene was expressed if it had at least one unique sequence read aligned 

with it. To determine differential gene expression, statistical analysis on proportions was 

carried out. Two-sided p-value for multiple biological replicates was computed using 

Baggerley's test [135].  

Proteome analysis of salt-stressed Frankia  

Cultures were grown for 7 days at 28°C in 5 mM propionate, 5 mM NH4Cl basal 

growth medium [102] alone or supplemented with 200 mM NaCl or sucrose. Frankia 

mycelium from 50 mL culture was harvested by centrifugation at 3,400 x g for 20 min 

and resuspended in 2 mL of lysis buffer [10 mM Tris–HCl (pH 7.4), 1 mg/mL MgCl2, 50 

µg/mL DNase, 50 µg/mL RNAse, and 50 µg/mL lysozyme]. A French pressure cell was 

used to lyse the cells at 137,895 kPa. Lysed samples were centrifuged at 16,200 x g 

and the supernatant fluid containing soluble proteins was collected. Protein samples 

were quantified using the Bradford assay [136]. One milligram of soluble protein was 

precipitated with 10% (v/v) trichloroacetic acid in acetone solution containing 20 mM 

dithiothreitol (DTT) overnight at -20°C. The samples were centrifuged at 16,200 x g for 
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30 min at 4°C to pellet the proteins. Traces of TCA were removed from the pellet by 

washing with 20 mM DTT in acetone. The protein pellet was dissolved in 300 µL of 

rehydration buffer [7 M urea, 2 M thiourea, 5% (m/v) DTT, 2% (v/v) Triton X-100, 2% 

(v/v) immobiline pH gradient (IPG) buffer, 0.02% bromophenol blue]. The solubilized 

proteins were used to rehydrate an 11 cm Immobiline™ DryStrip pH gradient strip (pH 

4–7) (GE Healthcare Biosciences, Pittsburgh, Pennsylvania). The protein sample 

suspended in rehydration buffer was evenly distributed along the lanes of a strip holder 

and the Immobiline strips were rehydrated with the gel side facing down. DryStrip cover 

fluid (GE Healthcare Biosciences) was used to cover the strips to prevent evaporation 

and crystallization of the urea. Rehydration proceeded for 12 h. The rehydrated strips 

were moved to an Isoletric focusing (IEF) tray and were positioned with the gel side 

facing down. Wet ProteomIQ™ IPG Wicks (Proteome Systems, Woburn, 

Massachusetts) were placed at the anode and the cathode to collect excess salt and 

other contaminants.  The strips and the wicks were covered with 50 mL of DryStrip 

cover fluid. The IEF tray was placed in an IsoelectrIQ 2 unit (Proteome Systems, 

Woburn, Massachusetts) and isoelectric focusing was performed under the following 

settings: 100 – 10,000 V gradient for 8 hours and 10,000 V constant for 8 hours. Strips 

were stored gel side up at -80°C until the second-dimension protein separation step. 

Strips were washed in 1 x sodium dodecyl sulfate (SDS) running buffer [0.2 M glycine, 

25 mM Tris-base, 0.1% (m/v) SDS] and reduction of the proteins was undertaken by 

incubating the strips in SDS equilibration buffer [50 mM Tris–HCl (pH 8.8), 6 M urea, 

30% (v/v) glycerol, 2% (m/v) SDS, trace bromophenol blue] supplemented with 65 mM 

DTT for 20 min.  Alkylation reaction was performed by washing the strips in deionized 
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water followed by incubation in the same SDS equilibration buffer, supplemented with 

135 mM iodoacetamide (IAA), instead of DTT, for 20 min. The strips were rinsed in 1x 

SDS running buffer and loaded on a 12% SDS-Polyacrylamide gel with the plastic 

backing against one of the glass plates. Strips were sealed in place with 1% (m/v) 

agarose in TAE buffer (40 mM Tris-Acetate, 1 mM EDTA, pH 8) supplemented with 

trace amounts of bromophenol blue for tracking purposes. Proteins were separated by 

electrophoresis at 100 V for 30 min followed by 200 V for 5 h. Protein spots were 

visualized by incubating the gels in Coomassie Blue stain [0.1% Coomassie Brilliant 

Blue R-250, 10% (v/v) glacial acetic acid, 50% (v/v) methanol] followed by destaining 

with a destain solution [10% (v/v) ethanol, 5% (v/v) glacial acetic acid]. Differentially 

expressed spots were excised from the gel and placed in a 0.5 mL Eppendorf tube. Gel 

pieces were washed three times by adding fresh 50 µL of 25 mM NH4HCO3/50% 

acetonitrile (ACN) each time and vortexing for 15 min. The gel pieces were incubated in 

25 µL DTT solution (10 mM DTT in 25 mM NH4HCO3) at 56°C for 1 h. The supernatant 

was discarded and 100 µL of IAA solution (55 mM IAA in 25 mM NH4HCO3) was added 

to the samples. The samples were incubated at room temperature in the dark for 45 

minutes. The supernatant was discarded and samples were washed by adding 100 µl of 

25 mM NH4HCO3 and vortexing for 10 minutes. The supernatant was discarded and gel 

pieces were dehydrated by adding 100 µl of 25 mM NH4HCO3/50% ACN solution and 

vortexing for 10 minutes. The dehydration step was repeated twice. Gel pieces were 

completely dried under a speed vacuum for 20 min. Five microliters of trypsin solution 

(40 ng/µL in 25 mM NH4HCO3) was added to the gel pieces. An additional 30 µl of 25 

mM NH4HCO3 was added to cover the gel pieces. The trypsin digestion took place at 
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37°C for 4 h. The supernatant from the digestion was transferred to a new tube with 5 µl 

of extraction buffer [50% (v/v) ACN/3%(v/v) acetic acid]. Gel pieces were extracted 

twice by adding 35 µl of extraction solution and vortexing for 20 min. Extracts were 

combined and dried in a vacuum centrifuge. Extracted peptides were resuspended in 7 

µl of 0.1% formic acid. Samples were analyzed using liquid chromatography – mass 

spectrometry (LC–MS) and LC–MS/MS analysis. Aliquot of the digestion mixture (1 µL) 

was used for LC separation using the Ultimate 3000 RSLCnano UHPLC system with an 

autosampler (Dionex Corporation, Sunnyvale, California). The eluent was ionized by a 

nanoelectrospray ionization source of an LTQ Orbitrap XL mass spectrometer (Thermo 

Scientific, Waltham, Massachusetts). LC–MS data were acquired in an information-

dependent acquisition mode, cycling between a MS scan (m/z 310–2000) acquired in 

the Orbitrap, followed by low-energy collision-induced dissociation (CID) analysis in the 

linear ion trap. The centroid peak lists of the CID spectra were generated by PAVA [137] 

and searched against a database that consisted of the National Center for 

Biotechnology Information (NCBI) protein database, to which a randomized version had 

been concatenated, using Batch-Tag, a program in the University of California-San 

Francisco Protein Prospector version 5.10.15. A precursor mass tolerance of 15 ppm 

and a fragment mass tolerance of 0.5 Da were used for the protein database search. 

Protein hits were reported with the following parameters: a Protein Prospector protein 

score of ≥22, peptide score ≥15, and E value for protein ≤0.01 [138]. This set of protein 

identification parameters threshold did not return any substantial false-positive protein 

hits from the randomized half of the concatenated database. Test samples were 

compared with corresponding control samples using the Search Compare program. 
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Unique and overexpressed proteins found in the test samples were noted and subjected 

to genetic studies previously mentioned. 

 

Quantitative reverse transcription PCR (qRT-PCR) 

The same RNA samples used for RNA sequencing were also used for qRT-PCR 

validation of the RNA-Seq results. The RNA (400 ng) was transcribed into cDNA using 

the GoScript™ Reverse Transcriptase (Promega, Madison, Wisconsin) according to the 

manufacturer’s instructions. The cDNA was quantified by a Nanodrop 2000c 

spectrophotometer, diluted to 10 ng/µL working stocks in RNase-free H2O, and stored 

at –20°C. Amplification and detection of gene expression were performed using Agilent 

MP3000 qPCR system (Agilent Technologies, Santa Clara, California). The primers 

used for these experiments are listed in Table 4. Each primer sequence was blasted 

against the respective Frankia genome to ensure specificity to the target gene. 

Standard curves were generated using the genomic DNA and each primer set to test 

primer efficiency before use. Primer sets with efficiency values 85%- 115% were used 

for the experiments. The rpsO (CCI6_RS04555) gene was used as the normalizer for all 

qRT-PCR experiments. The qRT-PCRs were done using 50 ng template cDNA, primer 

mix (0.3 µM), and SYBR Green PCR Master Mix (Applied Biosystems, Carlsbad, 

California) in a 25 µL total reaction volume. The following thermal cycler parameters 

were used: (i) 95 °C for 15 min; (ii) 40 cycles of 95 °C for 15 s and 60 °C for 30 s; and 

(iii) 1 thermal disassociation cycle of 95 °C for 60 s, 55 °C for 30 s, and incremental 

increases in temperature to 95 °C for 30 s. Reactions were performed in triplicate. The 

∆∆Ct method [139] was used to calculate relative expression (fold changes). 
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Table 4. Primer sets used in this study. 

Locus tag Forward primer  Reverse primer  

Primers used for qPCR validation of RNAseq data  
CCI6_RS21730 TGC ACT TCT ATC GGC AAC C GAA GTA CTG CGA CAG GAA GAA G 
CCI6_RS17915 TAG AGT TCC GTC CAG GTC TT GGA CCG CAC AAC AGT CTT TA 
CCI6_RS19875 ACA CTC AAC GCA CGA ATC A GTG TTG ATG CGG GTT ATC ATT TC 
CCI6_RS17580 AAG AAC TGG CGA ATC CTC AC CGG ATT GCT GTT CGT TGA TTT 
CCI6_RS01600 CGA CAT CAA GAT CGA CCA CTA C TTG GAC TTT CCG CCG TTT 
CCI6_RS18570 CCG GCA CTT CAC CTT CAT CCG GAA GTG CGC GAT AA 
CCI6_RS06495 CGT CGC AAC CTC TAC ATC TAC  CGG GAT GAA CTG GAT GAC AA 
CCI6_RS02325 CAA CGG GCA GGT GAT CTA TT GAA TCC GTC AAC ACG CTC T 
CCI6_RS12340 GCA GAA CCA GCT CTT CCC AAC GGC TGGAAC CAG AAC 
CCI6_RS08505 GGG TGA AGG GTG ATC CTT ATG GTT GAT CAT GGA TGG CAG GTA 
CCI6_RS19950 ATA CGC TTC TGC TCG TGA AC CCG GCA CGA TCT GTG TAA ATA 

Primers used for  amplifying pR, pL, rrnbT1 containing region from pASV2 

PR_PL_rrnbT1 ACGTGAGCTCCCAGGCATCAAATAAAACG ATCAGGTACCACTAGTATTAGGGCCCTGAAAAGTTCTTCTCCTTTACTC 

For cloning into pHTK1-RO 

CCI6_RS22605 ATATGGGCCCCAGACGAGTCGGCGGCGACCA TCATACTAGTAAGGCCTCGGCCCTCGCGAGA 

CCI6_RS17915 ACATACTAGTAACGAGGCTCGGCATGGACA ATAT ACTAGTAATCAGCTCGCCGTCGGTGA 
CCI6_RS21730 ACTAGTGATCGTCACCTGCGCTCAGCT ACTTGGTACCTCGACATTACCGCCAGCCTCA   
CCI6_RS13590 ACTAGGGCCCTATAAATGCGACGCCACCAA ATCTACTAGT TTGTGGCCACGACCCGCATA 
CCI6_RS19875 ATATGGGCCCACCCGCATCCGCCGGCTGAT ATATACTAGTTTATGGTGACGTCTTCGTTA 
CCI6_RS20860 ATATGGGCCCGCGGCGACCGGTTTGCTCGT    TATTACTAGTGCGACCACTCGTCGCCGGTAA 
CCI6_RS17580 ATATGGGCCCCCCGGTCGGCTTCACGTCGCT TTAAACTAGTGGTTCTTCGCCTGGTACAAC 
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Amino Acid analysis 

Approximately 40 mg of fresh Frankia mycelia were suspended in 800 µl of 5% (v/v) ice-

cold perchloric acid (PCA) and stored at -20°C until needed. Before analysis, the frozen 

samples were lysed by thawing and freezing three times. The samples were pelleted by 

centrifugation at 13500 x g for 10 min and the supernatant extract was used for 

dansylation of both amino acids and polyamines according to the procedure described 

previously [140] with a few modifications. Briefly, 100 µl of saturated sodium carbonate 

solution and 100 µl of dansyl chloride (20 mg/ml in acetone) were added to microfuge 

tubes containing 20 µl aliquots of a mix of two internal standards (0.1 mM 

heplanediamine for polyamines and 1 mM α-methyl-DL-phenylalanine for amino acids in 

5% PCA) and 100 µl aliquots of sample extracts or 100 µl of a mix of 23 amino acids 

and three common polyamines standards in 5% perchloric acid. The tubes were 

vortexed and incubated in a water bath at 60ºC for 1 h. Subsequently, 50 µl of L-

asparagine (100 mg/ml in water) was added as a termination agent. Incubation 

proceeded at 60ºC for additional 30 mins. Acetone was evaporated from the tubes by 

centrifuging in a speed vacuum for 5 min. Toluene (400 µl) was added to each tube, 

vortexed for 1 min and centrifuged at 13500 x g for 1 min. The toluene phase (200 µl) 

containing only polyamines was transferred to a new microfuge tube and the toluene 

was completely evaporated under vacuum for 15 min. The dry dansyl polyamines were 

dissolved in 730 µl of methanol. To each tube, 135 µl of the toluene-extracted aqueous 

fraction was added along with 135 µl of 2.9 N acetic acid to bring the total volume to 1 

ml. Excess carbonate was removed by adding acetic acid and letting the resulting CO2 

escape for 10 min. The entire sample was filtered through a 0.45 µm nylon filter into 
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auto-sampler vials. The blank HPLC runs were conducted using dansylated 5% PCA. 

The separation of polyamines was carried out using a Perkin-Elmer series 200 pump 

and autosampler fitted with 20 µl loop (10 µl injection volume); a Perkin-Elmer 

Pecosphere: 3 x 3 CR C18, 33 mm x 4.6 mm i.d. cartridge column (3 pm particle size) 

and a fluorescence detector (LS-1, Perkin-Elmer). The excitation and emission 

wavelengths were set at 340 and 510nm, respectively. A TotalChrom HPLC software 

package (Perkin-Elmer) was used to interpret the data. HPLC conditions for the 

simultaneous separation and quantitation amino acids and polyamines were as 

previously described [140].  

Cloning and expression of salt tolerance genes in strain CcI3 

A DNA fragment containing the ribosomal RNA rrnB T1 transcriptional terminator and 

the λ-bacteriophage pR and pL promoters was amplified from pASV2 [141] using 

primers so that the amplified fragment contained SacI and KpnI/SpeI/ApaI cut sites 

(Table 4). The resulting fragment was digested with SacI + KpnI and ligated to pHTK1 

[142] digested with the same restriction endonucleases, generating pHTK1RO. 

Tolerant-strain-specific genes that showed differential expression under salt stress were 

amplified using PCR and cloned into the pHTK1RO plasmid downstream of the 

constitutive λ-bacteriophage pR and pL promoters positioned in tandem. The positon of 

the rrnB T1 transcriptional terminator upstream of the pR and pL promoters prevented 

read-through transcription into the cloned gene. The primers used in the amplification of 

the salt-responsive genes are given in Table 4. The construct containing the desired 

fragment was used to transform E. coli BW29427, a diaminopimelic acid (DAP) 

auxotroph. The construct was introduced into Frankia casuarinae strain CcI3 through 
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filter mating with E. coli BW29427. Briefly, Frankia casuarinae strain CcI3 culture (50 

mL) in the logarithmic phase (7 days old) was harvested and washed once with MP 

medium. The Frankia cells were resuspended in 1 mL of MP medium supplemented 

with 5 mM NH4Cl + 5 mM sodium propionate and mixed with 600 μL of 0.6 OD E. coli 

BW29427. The Frankia – E. coli mixture was filtered through 0.22 μM of nitrocellulose 

filter under the application of vacuum pressure. The nitrocellulose filter was transferred 

to LB agar plate supplemented with 300 µM DAP and incubated at 28ºC for 24 hrs. The 

filter (with the conjugants on it) was suspended in 3 mL MPN medium supplemented 

with 5 mM sodium propionate and vortexed until the pellet separated from the filter. The 

Frankia–E. coli cake was homogenized in a glass homogenizer. The homogeneous 

Frankia–E. coli mixture (2 ml) was mixed with 2 ml of 0.8% agar containing 20 µg/ml 

tetracycline and 50 µg/ml kanamycin and overlaid on 2% MPN agar plates containing 20 

μg/ml tetracycline and 50 µg/ml kanamycin. Different dilutions of the Frankia–E. coli 

mixture (10-1 - 10-6) were plated.  As a control, empty pHTK1RO vector was conjugated 

following similar procedures. Recipient Frankia casuarinae strain CcI3 was also plated 

as a control. After a month, single colonies of Frankia were used to start a liquid culture. 

Transformants were confirmed through PCR and restriction digestion analysis of the 

extracted plasmid. The transformed strain CcI3 and the two controls (recipient Frankia, 

transformed with empty vector) were tested for salt tolerance as described above. qRT-

PCR was used to confirm expression of the cloned genes. 
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Table 5. Plasmids used in this study 

Plasmid Characteristics Source or reference  

pGEM-5Zf (+) Bla, lacZ Promega, Madison, WI 

pHTK1 tetA  

pCR®2.1-TOPO Bla, neo Invitrogen (Carlsbad, CA) 

pIJ790 λ-RED (gam, bet, exo), cat, araC, rep101ts [143] 

pUZ8002 tra, neo, RP4, helping plasmid for conjugation [144] 

pRK2013 neo, tra,  [145] 

pHTK1-RO tetA, mob This study 

pHTK1-RO-22605 tetA, mob, CCI6_RS22605  This study 

pHTK1-RO-17915 tetA, mob, CCI6_RS17915 This study 

pHTK1-RO-21730 tetA, mob, CCI6_RS21730 This study 

pHTK1-RO-13590 tetA, mob, CCI6_RS13590 This study 

pHTK1-RO-19875 tetA, mob, CCI6_RS19875 This study 

pHTK1-RO-20860 tetA, mob, CCI6_RS20860 This study 

pHTK1-RO-17580 tetA, mob, CCI6_RS17580 This study 
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Results 

Comparative Genomic analysis of salt tolerance in Casuarina isolates  

Before employing comparative genomics to determine the molecular 

mechanisms of salt and osmotic stress tolerance in Casuarina isolates, several Frankia 

strains were screened for salt and osmotic stress tolerance under nitrogen-proficient 

and nitrogen-deficient conditions. The effect of salt and osmotic stress on the 

physiology of the strains and on their symbiotic performance was assessed. 

Comparative genomic analysis of the salt-tolerant and salt-sensitive strains revealed 

key genetic differences that account for the observed disparity in phenotype.  

Casuarina isolates manifest diverse salt tolerance levels 

The salt tolerance levels for Frankia strains isolated from Casuarina hosts were 

measured and compared to the levels found for Frankia strains isolated from non-

Casuarina hosts.  Strain CcI6 and Allo2 were highly salt-tolerant and exhibited a NaCl 

MIC value of up to 1000 mM (Figure 3A).  Strain CcI3 was the least salt-tolerant having 

a MIC value around 475 mM. In general, Casuarina isolates had a higher level of salt 

tolerance compared to other Frankia isolates, but this higher level of tolerance was not 

extended to osmotic stress (Figure 3A). Here, the other Frankia isolates exhibited 

higher levels of tolerance to osmotic stress compared to the Casuarina isolates.  

Salt tolerance is highly dependent on the external supply of nitrogen 

 Under nitrogen-deficient conditions, the level of salt tolerance by Frankia strains 

(including the most salt-tolerant isolates) dramatically decreased (Figure 3B). For 
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strains CcI6 and Allo2, the NaCl MIC value went from 1000 mM under nitrogen-

sufficient  
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Figure 3.  Salt sensitivity assay. (A) The minimum inhibitory concentration (MIC) and maximum tolerance concentration (MTC) values for 

the different Frankia strains exposed to salt (NaCl) and osmotic stress (imposed by sucrose treatment) under nitrogen-sufficient (NH4Cl) 

conditions.  For Casuarina isolates (left of the bar graph), the MIC and MTC values are expressed as the average values calculated from 

the dry weight and the BCA protein assays. For the non-Casuarina isolates (DC12, ACN14a, and EuI1c), only the dry weight 

measurements were used to determine the MIC and the MTC values as natural pigments produced by these strains interfered with the 

BCA protein assay. (B) The MIC and MTC values for salt-tolerant and salt-sensitive Casuarina isolates under nitrogen-deficient (N2) 

conditions.  
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Figure 4. The effect of salt stress on the vesicle formation and nitrogenase activity by salt-tolerant and 

salt-sensitive Casuarina isolates. Cultures were grown under nitrogen-deficient conditions with various 

degrees of salt or osmotic stress. (A) vesicle production. (B) nitrogenase activity expressed on a per-

vesicle basis. 
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conditions to 250 mM under nitrogen-deficient conditions. The observed differences in 

salt tolerance levels between the salt-tolerant and salt-sensitive strains also 

substantially decreased under nitrogen deficient conditions (Fig 3B). Vesicle formation 

and nitrogenase activities were also affected by salt stress. Nitrogenase activity was 

more severely affected (Fig 4). When the strains were grown in a medium containing 

greater than 200 mM NaCl, nitrogenase activity was drastically reduced and barely 

detectable (Fig 4).   

In vitro level of salt tolerance was not correlated with symbiotic performance 

under salt stress 

Salt stress affected nodulation of Casuarina cunninghamiana by strains CcI3 and CcI6 

(Table 6). The number of nodulating plants as well as the number of nodules per plant 

were affected by salt stress. At 200 mM NaCl concentration, the salt-sensitive strain 

(CcI3) was unable to induce nodule formation on Casuarina cunninghamiana. Strain 

CcI6, however, induced the formation of few nodules at 200 mM NaCl. At the control 

condition (0 mM NaCl), strain CcI3 and strain CcI6 induced comparable numbers of 

nodules, however, at NaCl concentrations above 50 mM, strain CcI6 performed better at 

inducing nodules. Under control conditions (no salt stress), both strains induced 

nodulation on all of the experimental plants within 30 days after inoculation. However, 

after the application of 100 mM NaCl, the percentages of nodulating plants were 

reduced to 53% and 60% for plants inoculated with strains CcI3 and CcI6, respectively.  

Examination of the effect of salt stress on the growth of Casuarina cunninghamiana 

revealed that pre-inoculation with Frankia increases plant height, root and shoot dry 

weight at all levels of NaCl tested (Table 7). Nevertheless, at all levels of salt stress 
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tested, the strain of Frankia used for inoculation did not make a difference on the growth 

parameters measured. Control as well as pre-inoculated plants did not survive at NaCl 

concentrations above 200 mM.  
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Table 6. The effect of salinity on the nodulation of Casuarina cunninghamiana. Fifteen plants per treatment were 
used to generate the mean values presented. Two parameters were measured: nodule number per plant and 
nodulation frequency. Statistical analysis was done separately for each time period after inoculation (2 – 8 weeks). 
For each salt concentration, different uppercase letters (B–C) indicate significant differences between strains (CcI3 
Vs CcI6). For each strain used for inoculation, different small case letters (a–e) indicate significant differences 
between NaCl treatments (0 mM Vs 50 mM Vs 100 mM Vs 150 mM Vs 200 mM) according to the least significant 
difference (LSD) test at p < 0.05.  

 

Frankia 

strains 

Treatment 

NaCl (mM) 

Nodule number per plant Nodulation frequency (%) 

2 weeks 4 weeks 6 weeks 8 weeks 2 weeks 4 weeks 6 weeks 8 weeks 

CcI3 

0 3.2Ba 9.6Ba 15Ba 

 

18Ba 26.7 100.0 100.0 100.0 

50 2.6Ba 7.1Bb 10.6Bb 12Bb 26.7 60.0 70.0 70.0 

100  0.07Bc 2.1Bc 2.6Bc 3.2Bc 6.7 46.7 46.7 53.3 

150 0 0 0.07Bde 0.13Bde 0 0 6.7 6.7 

200 0 0 0 0 0 0 0 0 

CcI6 

0 2.8Ba 8.8Ba 14.0Ba 16.0Ba 26.7 100.0 100.0 100.0 

50 2.3Bb 8.4Ca 9.8Bb 14.0Ba 40.0 80.0 80.0 80.0 

100  0.13Bc 2.8Cc 3.5Cc 4.0Cc 6.7 40.0 53.3 60.3 

150 0 0.13Bde 0.4Cd 0.8Cd 0 6.7 13.0 13.0 

200 0 0 0.07Be 0.13Be 0 0 6.7 6.7 
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Table 7. The effect of salinity on the growth of pre-inoculated Casuarina cunninghamiana. 
Fifteen plants per treatment were used to generate the mean values presented in the table. 
Three parameters were measured: mean plant height, root dry weight, and shoot dry weight.  
Statistical analysis was done for each one of the three parameters separately. For each salt 
concentration, different uppercase letters (A–C) indicate significant difference between strains 
(Control Vs CcI3 Vs CcI6). For each strain used for inoculation, different lowercase letters (a–e) 

indicate significant differences between NaCl treatments (0 mM Vs 50 mM Vs 100 mM Vs 
150 mM Vs 200 mM) according to the least significant difference (LSD) test at P < 0.05. 

 

Frankia 
strains 

Treatment 
NaCl (mM) 

Mean Plant 
height (cm) at 
harvest 

Root dry weight 
(grams) 

Shoot dry weight 
(grams)  

CcI3 0 43.3Ba 0.30Ba 0.66Ba 

50 34.2Bb 0.28Ba 0.60Bb 

100  27.3Bc 0.24Bd 0.50Bc 

150 26.1Bc 0.22Bde 0.40Bd 

200 22.5Be 0.21Be 0.34Be 

Cci6 0 40.5Ba 0.32Ba 0.62Ba 

50 36.8Bb 0.27Bb 0.58Bb 

100 28.6Bc 0.22Bc 0.52Bc 

150 26.2Bc 0.23Bc 0.44Bd 

200 21.8Be 0.19Be 0.36Be 

Control  0 18.2Aa 0.16Aa 0.36Aa 

50 18.3Aa 0.13Ab 0.32Ab 

100  17.2Aad 0.13Ab 0.30Ab 

150 16.2Ade 0.11Abe 0.25Ae 

200 15.0Ae 0.09Ae 0.23Ae 
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Genomic characteristics of Frankia strains isolated from Casuarina trees 

After screening for salt stress tolerance, several salt-tolerant Frankia strains were 

sequenced and annotated with the goal of identifying genetic differences with other 

Frankia strains, including strain CcI3, a salt-sensitive strain for which a complete 

genome is available.  Table 8 presents the genomic features of strain CcI3 and six 

Casuarina isolates sequenced in this study. The size and G + C content of the genomes 

ranged from approximately 5 to 5.6 MB and 69.3 to 70.1%, respectively. Strain CcI3 had 

the highest number of coding sequences (CDSs), 4327, while strain CeD had the lowest 

number of CDSs (3807).  

We were interested in getting an overall picture of phylogeny of the Casuarina 

isolates and examined multiple genes that are found in common to these genomes. 

Orthologs found among the Frankia genomes and Acidothermus cellulotycus (the 

outgroup) were determined by a modified Lerat method [131]. Figure 5A shows a 

maximum-parsimony concatenated tree generated from 394 conserved orthologs 

(panorthologs). As expected, the eight Casuarina strains grouped together and were 

distinct from the closely related Cluster-1a strain ACN14a, which was isolated from 

Alnus trees. Strains CcI6 and Allo2 showed close similarity and grouped together, while 

strains CeD and BMG5.23 showed the least similarity with other strains (Fig 5A).  

Average nucleotide identity, average amino acid identity, and genome to genome 

distance 

The average nucleotide identity between any pair of Frankia strains isolated from 

Casuarina trees was greater than 99%. In contrast, the average nucleotide identity 

between any Casuarina isolate and the closely-related strain ACN14a was less than 
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85% (Figure 5B). The average amino acid identity between all pair of Casuarina isolates 

was greater than 98%, while the average amino acid identity between any Casuarina 

isolate and the closely-related Alnus strain was less than 77% (Fig 5B). The genome to 

genome distance (multiplied by 1000) between the Casuarina isolates fell in the narrow 

range of 1.9 (CcI6 - Allo2) to 8.1 (Allo2 - BMG5.23). The genome-to –genome distance 

between any one of the Casuarina isolates and the closely-related strain ACN14a was 

in the range between 171.9 and 173.8 (Figure 5B). Based on DNA-DNA hybridization 

(DDH) prediction by GGD 2.1, at p=0.05 level, any two Casuarina isolates have at least 

70% DDH value, the cutoff point for species delineation. On the other hand, in a 

pairwise comparison with strain ACN14a, none of the Casuarina isolates had DDH 

value greater than or equal to 70% at p = 0.05 level. 

 

Table 8. Genomic features of Frankia strains isolated from Casuarina trees 

 Frankia sp. strains isolated from Casuarina trees 

CcI6 Allo2 CeD Thr Br CcI3 BMG5.23 

Chromosome 
size(Mb) 

5.58 5.35 5.00 5.31 5.23 5.43 5.27 

GC % 69.3 70.0 70.0 70.0 70.0 70.1 69.9 

N50 (bp) 103, 000 96,900 73,600 71,600 60,200 543,3628 64,900 

CDS 4,280 4,224 3,857 4,209 4,220 4,327 4,114 

rRNA 9 8 6 5 4 6 9 

tRNAs 45 45 45 45 45 45 48 

#Scaffolds 136 110 120 169 180 1 166 

#Contigs 155 133 154 184 180 1 191 

Reference [38] [41] [39] [37] [40] [33] [36] 
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Figure 5. Genomic taxonomy of Frankia strains isolated from Casuarina spps. (A) Concatenated phylogenetic affiliation of 394 
maximum-parsimony trees for amino acid sequences of orthologs among all of the genomes including Casuarina isolates, F. 
alni strain ACN14a isolated from Alnus and Acidothermus celloluyticus, which was used as an outgroup. The numbers on the 
branches represent the percent confidence of speciation of a given branch. (B) AAI, ANI, and genome to genome distance 
(multiplied by 1000) values for the different Casuarina isolates and F. alni strain ACN14a isolated from Alnus which is 
included for comparison. Genome to genome distance was determined by GGDC as a function of sum of all identities found 
in HSPs divided by overall HSP length. GGDC2 BLAST+ was used as the alignment method for finding intergenomic 
matches. 
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Pan-genome analysis reveals a high abundance of singletons among all of the 

strains 

Pan-genome analysis was performed by orthologous clustering using OrthoVenn. 

OrthoVenn utilizes OrthoMCL to perform an all-against-all BLASTP alignment and 

identify putative orthology and in paralog relationships with the Inparanoid algorithm. 

The OrthoVenn analysis of the six Casuarina isolates (strain CcI3 and five strains 

sequenced in this study) revealed 3,278 pan-orthologous gene clusters, of which 3,246 

were single copy pan orthologous gene clusters (Figure 6A). Pair-wise comparison of 

the genomes showed that strains CcI6 and Allo2 shared the highest number of unique 

clusters (132), not found in the other strains.  No genome had more than 2 clusters 

unique to itself, but all had many singletons (Figure 6B) suggesting that there was 

insufficient time for gene duplication events to occur after the appearance of singletons. 

Among the six Casuarina isolates, strain BMG5.23 had the highest number of 

singletons (160). About 30% of the singletons in any one strain were hypothetical 

proteins. Singletons generally occurred dispersed within the genome, suggesting they 

are acquired independently. However, in strain BMG5.23, singletons seem to be 

clustered in the same region. The singletons in strain BMG5.23 had varying GC 

contents and the fact that at least some of them co-occur in the same region suggests 

that there might be hot spots for insertion.   
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Figure 6. Pangenome overview of six Frankia strains isolated from Casuarina trees. (A) Six-way Venn diagram showing 

shared and specific gene clusters among the Casuarina isolates as determined by OrthoVenn. An E-value cutoff of 1 e-5 was 

used for protein similarity search and inflation value of 1.5 was used for the generation of orthologous clusters using the 

Markov Cluster Algorithm. (B) Number of singletons identified in each Casuarina isolate. 
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The two salt-tolerant strains contain many hypothetical proteins absent in the 

other strains 

Comparison of the single copy orthologous gene clusters between the salt-

sensitive isolate (CcI3), the moderately salt-tolerant strain (CeD), and the two highly 

salt-tolerant strains (CcI6 and Allo2) was performed using the Lerat program. All four 

strains shared 2919 single copy core genes (Figure 7A). The two highly salt-tolerant 

strains contained 153 single copy orthologous genes that were not shared with the 

moderately-tolerant and salt-sensitive strains. Both highly salt-tolerant strains and the 

moderately-tolerant strain shared 88 single copy genes that were not present in the salt-

sensitive strain. Fig 7B shows the distribution of genes found in the two highly salt-

tolerant strains into cluster of orthologous groups of proteins (COG) functional 

categories. Among the 153 unique genes found in the two highly salt-tolerant strains, 

114 of the genes were annotated as hypothetical proteins. However, re-annotation 

using the RPSBLAST program on COG database (prokaryotic proteins) revealed only 

99 hypothetical proteins. The three COG categories that were highly represented 

among the unique genes found only in the two highly salt-tolerant strains were: (COG 

R) general function prediction only; (COG L) DNA replication, recombination, and repair; 

and (COG M) cell wall/membrane envelope biogenesis. Tolerant-strain-specific genes 

assigned to cell wall/membrane biogenesis (COG M) category included genes encoding 

glycosyl transferases, proteins involved in cellulose synthesis, D-alanine:D-alanine 

ligase (Ddl), and a predicted nucleoside-diphosphate-sugar epimerase. Glycosyl 

transferases allow for a more flexible response to environmental stress. In tobacco, 

ectopic expression of a glycosyl transferase (UGT85A5) leads to enhanced salt 
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tolerance [146]. Ddl is involved in the D-alanine branch of peptidoglycan biosynthesis. 

Mutation in a d-alanine–d-alanine ligase of Azospirillum brasilense Cd result in an 

overproduction of exopolysaccharides and a decreased tolerance to saline stress [147].  

Another COG functional category that was represented among the genes found 

only in the tolerant strains was coenzyme metabolism. Two genes encoding 

hypothetical proteins (CCI6_RS06345, CCI6_RS15790) with ubiquinone synthesis-

related methyl transferase domains and a hypothetical protein with a geranylgeranyl 

pyrophosphate synthase domain (CCI6_RS02885) were among the tolerant strain-

specific genes assigned into the coenzyme metabolism functional category. 

Geranylgeranyl pyrophosphate (GGPS) synthase catalyzes formation of geranylgeranyl 

pyrophosphate (GGP), which is a key step in biosynthetic pathway of carotenoids and 

many other terpenes [148]. 

Among the 153 unique genes found only in the two highly salt-tolerant strains, 

genes encoding D-alanine:D-alanine ligase (Ddl) [CCI6_RS21780], anti-sigma 

regulatory factor (CCI6_RS20000), carbamoyl transferase NodU family 

(CCI6_RS17910), and D-glycero-beta-D-manno-heptose 1-phosphate 

adenylyltransferase (CCI6_RS17935), and a transcriptional regulator (CCI6_RS02080) 

had homology hits (identity > 65%) in the highly salt-tolerant actinomycete Nocardiopsis 

halotolerans.  
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Figure 7. Pangenome analysis of single-copy genes (A) Shared and specific single-copy orthologous CDSs among the highly salt-tolerant 

(Allo2 and CcI6), the moderately salt-tolerant (CeD), and the salt sensitive (CcI3) strains. (B) Distribution of the 153 single-copy genes 

specific to the two highly salt-tolerant strains into functional COG categories: C, energy production and conversion; D, cell division and 

chromosome partitioning; E, amino acid transport and metabolism; F, nucleotide transport and metabolism; G, carbohydrate transport and 

metabolism; H, coenzyme metabolism; I, lipid transport and metabolism; J, translation, ribosomal structure and biogenesis; K, transcription; 

L, DNA replication, recombination and repair; M, cell wall/membrane biogenesis; O, posttranslational modification, protein turnover, 

chaperones; P, inorganic ion transport and metabolism; Q, secondary metabolite biosynthesis, transport and catabolism; R, general 

function prediction only; S, function unknown; T, signal transduction mechanisms; U, intracellular trafficking and secretion; and V, defense 

mechanisms. Proteins that could be classified to more than one category are represented by two letters.  
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Tolerant and sensitive strains contain the same set of classical salt-tolerance 

genes  

Many of the known salt tolerance mechanisms are also osmotic stress response 

mechanisms or verse versa. The Casuarina genomes were data mined for the presence 

of these known osmotic/salt tolerance mechanisms. 

All of the Casuarina genomes had a kdpFABCDE operon encoding the 

membrane-associated P-type ATPase, Kdp-ATPase (kdpFABC), involved in K+ uptake 

and a two-component regulatory system (kdpDE), which regulates the expression of 

kdpFABC [149]. The Kdp system plays a role in ion homeostasis and adaptation to 

osmotic stress. Both tolerant and sensitive strains also contained the Trk system, which 

is the predominant uptake system in medium containing more than 1 mM K+. All of the 

Casuarina genomes lacked mechanisms for de novo synthesis or uptake of glycine 

betaine. However, all of the Casuarina isolates possessed the ability for the 

biosynthesis of the important osmo-protectant proline.  Three pathways for the 

synthesis of trehalose, an effective osmolyte, were also present in all the Casuarina 

genomes. The first pathway (the TreY-TreZ pathway) synthesizes trehalose from 

glycogen-like alpha (1-->4)-linked glucose polymers. The second pathway (the TreS 

pathway) synthesizes trehalose from maltose, while the third pathway, the OtsA-OtsB 

pathway, utilizes glucose-6-phosphate and UDP-glucose to synthesize trehalose 

through a two-step enzymatic process involving trehalose-6-phosphate synthase (OtsA) 

and trehalose-6-phosphate phosphatase (OtsB). All Casuarina isolates contained the 

asnO–ngg cluster putatively involved in the synthesis of N-acetylglutaminylglutamine 
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amide (NAGGN), a dipeptide identified as an osmolyte in a few bacteria. The first step 

of the reaction involves the N-acetylation of a glutamine residue and the subsequent 

dipeptide bond formation between this residue and a second L-glutamine residue in a 

reaction catalyzed by Ngg.  In the second step of the reaction catalyzed by AsnO, an 

amide group is transferred from a free L-glutamine molecule to the second L-glutamine 

residue of NAGG to produce NAGGN.  Just like most other genomes containing the 

asnO–ngg cluster, the genomes of all Casuarina isolates encode a dipeptidase 

immediately downstream of the ngg gene. A possible role for such peptidase could be 

balancing of the NAGGN pool during adaptation to osmotic fluctuations.  The identities 

between AsnO from Casuarina isolates and AsnO found within other bacterial species 

was high (greater that 60%) whereas the putative Ngg protein from Casuarina isolates 

had low identity (< 15 %) with Ngg proteins identified in other species. In contrast to the 

asnO-ngg organization found within other genomes, the asnO and the ngg genes in the 

Casuarina isolates were not contiguous, but had the dipeptidase gene between them.  

Transcriptome analysis of salt stress tolerance in Casuarina isolates  

After identifying genetic differences between salt-tolerant and salt-sensitive 

Frankia strains through comparative genomics, we became interested in identifying 

differences in the salt stress response at the transcription level. Focus was placed on 

the expression pattern of tolerant-strain-specific genes. To do this analysis, the 

transcriptome profiles of strain CcI6 (one of the two highly salt-tolerant strains) and 

strain CcI3 (the salt-sensitive strain) under control conditions (no salt stress) were 

compared to the respective profiles under salt and osmotic stress conditions. Strains 

CcI6 and CcI3 were exposed to either no stress, salt stress or osmotic stress for seven 
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days and the transcriptome profile was analyzed using RNA-Seq. Two biological and 

independent experiments were performed for each condition. After sequencing of the 

libraries, 17 million, 9.5 million, and 19.8 million reads were obtained under the control, 

salt stress, and osmotic stress conditions, respectively for strain CcI6. For strain CcI3, 

165 million, 160 million, and 170 million reads were obtained under the control, salt 

stress, and osmotic stress conditions CLC Genomics Workbench 9.0.1 was used to 

map the reads to the respective genomes (the annotated Frankia sp. strain CcI6 

genome or the completed Frankia casuarinae strain CcI3 genome). For strain CcI6, an 

average of 2.14 million, 0.85 million, and 2.5 million reads could be unambiguously 

mapped in pairs for the reference condition, for the salt stress condition, and for the 

osmotic stress condition, respectively. For strain CcI3, an average of 66 million, 60 

million, and 70 million reads could be unambiguously mapped in pairs for the reference 

condition, for the salt stress condition, and for the osmotic stress condition, respectively. 

Salt stress-induced changes in the transcriptome differ between tolerant and the 

sensitive strains  

Transcriptome analysis of strain CcI3 revealed that a total of 214 and 226 genes 

were up-regulated and 303 and 165 genes were downregulated under salt and osmotic 

stress, respectively. For strain CcI3, 163 and 37 genes were up-regulated and 111 and 

78 genes were downregulated under salt and osmotic stress, respectively (Fig 8). The 

complete list of differentially expressed genes for strains CcI3 and CcI6 are provided in 

Tables A1-A8. In strain CcI3, a total of 179 genes were only upregulated under salt 

stress, while 191 genes were only upregulated under osmotic stress. In strain CcI3, 155 

genes were only upregulated under salt stress, while 29 genes were only upregulated 
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under osmotic stress.  For the salt-tolerant strain (CcI6), 35 upregulated and 65 

downregulated genes were found in common with both salt stress and osmotic stress 

conditions (Fig 8). The corresponding numbers for the salt sensitive strain (CcI3) were 8 

and 27, respectively. In strain CcI6, among the genes upregulated under both salt and 

osmotic stress were hypothetical proteins, proteins involved in cell wall/membrane 

biogenesis functions and the following transport proteins:  an ABC-type Fe3+ 

hydroxamate transport system, periplasmic component (CCI6_RS09145), and ABC-

type Fe3+ siderophore transport system, permease component (CCI6_RS09155).  This 

result suggests that increased iron uptake is part of the general response to salt and 

osmotic stresses. Increased iron uptake under salt stress was previously reported for 

Bacillus subtilis [150].  In strain CcI3, genes upregulated under both salt and osmotic 

stress conditions included: Francci3_4204 (AMP-dependent synthetase and ligase), 

Francci3_4205 (2-amino-3,7-dideoxy-D-threo-hept-6-ulosonate synthase), 

Francci3_4206 (3-dehydroquinate synthase), Francci3_2603 (cobyric acid synthase), 

Francci3_4365 (transglycosylase-like), Francci3_4194 (methyltransferase type 12), 

Francci3_2676 (helicase-like), and Francci3_4196 (hypothetical protein).  
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Figure 8. Global gene expression responses following salt and osmotic stress. Venn diagram showing the extent of overlap between 
genes differentially expressed under salt and osmotic stress in the salt-tolerant strain Frankia sp. CcI6 (A) and in the salt-sensitive 
strain Frankia casuarinae strain CcI3 (B). The arrows indicate the number of upregulated and downregulated genes under salt and 

osmotic stress. The intersection indicates the number of differentially expressed genes under both conditions.    
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The functional category analysis of differentially expressed genes in strain CcI6 

revealed that of the total 214 genes upregulated under salt stress, 18, 8, and 80 

represented COG R (general function prediction only), COG S (function unknown), and 

genes that are not in COGs, respectively (Table 9). On the other hand, for strain CcI3, 

out of the 163 genes upregulated under salt stress, 16, 3, and 36 represented COG R 

(general function prediction only), COG S (function unknown), and genes that are not in 

COGs, respectively. For both strain CcI3 and CcI6, some of the other COG categories 

that were highly-represented among the genes upregulated under salt stress included 

COG M (cell wall and membrane biogenesis), COG E (amino acid transport and 

metabolism), COG H (coenzyme transport and metabolism), and COG I (lipid transport 

and metabolism). Strain CcI6 had slightly more COG M genes upregulated under salt 

stress while strain CcI3 had slightly more COG I genes upregulated under salt stress. 

For strain CcI6, the COG categories highly represented among the genes upregulated 

under osmotic stress include COG R (general function prediction only), COG S (function 

unknown), COG M (wall and membrane biogenesis), COG E (amino acid transport and 

metabolism), COG H (coenzyme transport and metabolism), COG I (lipid transport and 

metabolism), COG C (energy production and conversion), and COG P (inorganic ion 

transport and metabolism).  
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Table 9. Functional categories of genes differentially expressed under salt and osmotic stress conditions in strains CcI3 and CcI6 

COG category 

Differentially expressed genes p < 0.05 

NaCl Sucrose 

Upregulated Downregulated Upregulated Downregulated 

CcI6 CcI3 CcI6 CcI3 CcI6 CcI3 CcI6 CcI3 

Amino acid transport and metabolism 12 14 13 2 12 1 10 3 

Carbohydrate transport and metabolism 6 10 10 4 6 2 6 3 

Cell Wall/membrane biogenesis 13 7 15 3 11 1 6 - 

Energy production and conversion 8 8 16 1 15  9 6 

Inorganic ion transport and metabolism 5 8 4 4 10 1 4 6 

Lipid transport and metabolism 7 10 13 3 7 3 10 2 

Posttranslational modification, protein turn over, 
chaperons 

8 2 5 7 4 1 4 5 

Replication, recombination, and repair 7 5 14 15 5 7 7 6 

Signal transduction mechanism 3 4 14 4 5 - 4 3 

Transcription 6 5 20 6 2 - 8 12 

Coenzyme metabolism 9 9 9 - 7 2 7 - 

Translation 5 2 11 3 6 - 6 - 

General function prediction only 18 16 19 8 26 4 9 8 

Function unknown  8 3 19 6 9 - 8 1 

Not in COGs 80 36 101 40 88 10 56 21 
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Comparison of the salt and osmotic stress responsive genes in CcI3 and CcI6 

revealed that 16 and 6 genes showed a similar pattern of upregulation across the two 

strains under salt and osmotic stress conditions, respectively (Fig 9). Similarly, 20 and 

12 genes showed a similar pattern of downregulation across the two strains under salt 

and osmotic stress conditions, respectively. Some of the COG categories represented 

among genes that showed the same pattern of differential expression across strains 

were COG K (transcription), COG M (cell wall and membrane biogenesis), COG E 

(amino acid transport and metabolism, COG I (lipid transport and metabolism), and 

COG C (energy production and conversion).  

Because the RNA-seq data were used for downstream analyses, we validated 

the data set by performing quantitative reverse transcription PCR (qRT-PCR). The 

primer sets used for the qRT-PCR validation of the RNA-seq data are given in table 4. A 

high degree of correlation (R = 0.95) was observed between the normalized values of 

the fold change from the qPCR data and the normalized fold change values from the 

RNA-Seq data. 
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Figure 9.  The overlap in response to salt/osmotic stress between strains CcI3 and CcI6. (A) Genes with similar or deferring patterns 
of expression in strains CcI3 and CcI6 under salt stress. (B) Genes with similar or deferring patterns of expression in strains CcI3 and 
CcI6 under osmotic stress. 
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Many hypothetical proteins that are unique to the tolerant strain were upregulated 

under salt stress 

Under osmotic stress, an acetyl transferase with general function prediction only 

and seven hypothetical proteins that are unique to the two salt-tolerant strains were 

upregulated. Under salt stress, a zinc peptidase, ADP-heptose:LPS 

heptosyltransferase, a major facilitator superfamily (MFS) transporter, and five 

hypothetical proteins unique to the tolerant strains were upregulated (Table 10). One 

hypothetical protein (CCI6_RS13590) was upregulated under both salt and osmotic 

stress conditions.   

Versatile responses of transcription factors 

Not surprisingly, COG K (transcription) genes were highly represented in the 

transcriptome of both the salt-tolerant and sensitive strains under salt stress. In strain 

CcI6, six genes (CCI6_RS12535, CCI6_RS20460, CCI6_RS18600, CCI6_RS15305, 

CCI6_RS01570, CCI6_RS12900, CCI6_RS02550) encoding transcriptional regulators 

from the GntR, TetR, LysR, and the Crp/Fnr families and six genes (CCI6_RS00475, 

CCI6_RS02550, CCI6_RS10900, CCI6_RS11405, CCI6_RS17055, CCI6_RS21525) 

encoding transcriptional regulators from Crp/Fnr and LuxR families were upregulated 

under salt and osmotic challenge, respectively. In strain CcI6, one transcriptional 

regulator belonging to the Crp/Fnr family (CCI6_RS02550) was upregulated under both 

salt and osmotic stress conditions. In strain CcI3, two WhiB transcription factors 

(Francci3_3790, Francci3_1482), an XRE family transcriptional regulator 

(Francci3_0523), a putative transcriptional regulator (Francci3_1195) and three other 

genes (Francci3_0210, Francci3_1767, and Francci3_1469) encoding transcriptional 
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factors from MarR, LacI, and MerR families were upregulated under salt stress. 

Transcriptional factors belonging to GntR, TetR, LysR, and the Crp/Fnr families have 

been implicated previously in several stress responses including heat and osmotic 

shock [151].  In strain CcI6, a sigma factor with sigF domain (CCI6_RS19210) and an 

extracytoplasmic stress sigma factor (CCI6_RS15595) were upregulated and 

downregulated, respectively under salt stress. The corresponding homologues of the 

two genes in strain CcI3 (100% identity) showed the same pattern of expression under 

salt stress.  

Table 10. Genes unique to the tolerant strain with increased expression under salt stress 

Salt Stress Osmotic Stress 

Locus Tag Protein product  COG 
category 

Locus Tag Protein product  COG 
category 

CCI6_RS13590 Hypothetical Protein - CCI6_RS13590 Hypothetical Protein  - 

CCI6_RS22605 Predicted Zn 
peptidase 

E CCI6_RS17905 Acetyltransferase 
(isoleucine patch 
superfamily) 

R 

CCI6_RS17915 ADP-heptose:LPS 
heptosyltransferase 

M CCI6_RS13555 Hypothetical Protein  - 

CCI6_RS19875 Hypothetical Protein - CCI6_RS15755 Hypothetical Protein  - 

CCI6_RS20860 Hypothetical Protein - CCI6_RS21770 Hypothetical Protein  - 

CCI6_RS17580 Hypothetical Protein - CCI6_RS13535 Hypothetical Protein  - 

CCI6_RS21730 MFS transporter - CCI6_RS02120 Hypothetical Protein  - 

 

Salt stress upregulated several genes involved in peptidoglycan modification 

In the salt-tolerant strain, two genes encoding polysaccharide deacetylases 

(CCI6_RS03540, CCI6_RS11155) were upregulated under salt stress, but were 

unchanged under osmotic stress. In Bacillus anthracis, a polysaccharide deacetylase 

plays a role in the adaptation of the bacteria to a high salt environment [152]. Under salt 



   
  

 
 

71 

stress only, four glycosyl transferases (CCI6_RS10910, CCI6_RS07965, 

CCI6_RS21895, CCI6_RS01640) associated with cell wall/membrane biogenesis 

showed more than four-fold increase in the salt-tolerant strain (CcI6). Similarly, under 

osmotic stress, four glycosyl transferases associated with cell wall/membrane 

biogenesis (CCI6_RS02325, CCI6_RS10910, CCI6_RS11195, CCI6_RS11220) were 

upregulated. CCI6_RS11220 showed a 9.5-fold increase under osmotic stress.  One of 

the above glycosyl transferase genes (CCI6_RS10910) showed a statistically significant 

up-regulation under both salt and osmotic stress. In the salt-sensitive strain (CcI3), two 

genes (Francci3_4365, Francci3_4366) encoding transglycosylase proteins were 

upregulated under salt stress. One of the two genes (Francci3_4365) was also 

upregulated under osmotic stress.  

In strain CcI6, three nucleoside diphosphate sugar epimerase genes 

(CCI6_RS19225, CCI6_RS08005, CCI6_RS04525) were upregulated under salt stress, 

while two nucleoside diphosphate sugar epimerases (CCI6_RS00960, CCI6_RS08005) 

were upregulated under osmotic stress.  In contrast, in strain CcI3, no epimerase 

associated with cell wall and membrane biogenesis was differentially expressed. Taken 

together the results suggest that under salt stress conditions, cell-wall-related 

alterations are more prominent in the salt-tolerant strain (CcI6) as opposed to in the 

salt-sensitive strain (CcI3).  

Modulation of membrane composition 

In the salt-tolerant strain, two genes encoding acyl-acyl carrier protein (ACP) 

desaturases (CCI6_RS10965, CCI6_RS10965), were upregulated under salt stress, but 

not under osmotic stress. In addition to desaturases, two other genes [acyl-CoA 
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dehydrogenase (CCI6_RS05135) and ABC-type branched-chain amino acid transport 

systems, periplasmic component (CCI6_RS10620)] that help determine membrane 

fluidity were upregulated under salt stress. Furthermore, salt stress caused the 

upregulation of the ubiE (CCI6_RS17660) gene encoding a multispecies ubiquinone 

biosynthesis protein. Ubiquinone accumulation has been shown to increase salt 

tolerance in E. coli through mechanical stabilization of the membrane [153]. In the salt-

sensitive strain, four genes coding enoyl-CoA hydratase/isomerases (Francci3_2457, 

Francci3_2456, Francci3_2455, Francci3_1675) were upregulated under salt stress. 

Taken together, these results suggest that Frankia membrane fluidity was altered by 

salt stress.  

Osmolytes are strain and condition-specific 

In the salt-tolerant strain (CcI6), trehalose synthase gene (CCI6_RS13215) was 

upregulated under salt stress, while glutamate synthase (CCI6_RS10225) and 

threonine synthase (CCI6_RS08750) genes were upregulated under osmotic stress. 

Trehalose synthase (TreS, EC 5.4.99.16) catalyzes the intramolecular rearrangement of 

the α-1,4-linkage of maltose to the α-1,1-linkage of trehalose [154]. Glutamate synthase 

catalyzes the production of L-glutamate from L-glutamine and 2-oxoglutarate. Threonine 

synthase catalyzes the reversible reaction between O-phospho-L-homoserine and H2O 

to produce L-threonine and phosphate. In the salt-sensitive strain, all the genes involved 

in the synthesis of ornithine from glutamate (Francci3_3172, Francci3_3173, 

Francci3_3174, Francci3_3175) were upregulated under salt stress. The proA gene 

involved in the biosynthesis of proline, a widely used osmolyte, was also upregulated 

under salt stress. Additionally, the transcriptome data showed that the TreY-TreZ 
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pathway for the synthesis of trehalose from glycogen-like alpha (1-->4)-linked glucose 

polymers was upregulated, although the change didn’t reach the p = 0.05 cutoff for 

statistical significance. However, qRT-PCR analysis on the three genes involved in the 

pathway (treZ, treX and treY) revealed a statistically significant upregulation under salt 

and osmotic stress conditions. The regulation of intracellular osmolality by the transport 

or biosynthesis of compatible solutes is believed to be the principal osmoprotection 

response in bacteria.  

Phosphatidylinositol-3-phosphate mediated signaling may be important during 

salt stress 

In the salt-tolerant strain, a gene encoding an ATP-binding protein 

(CCI6_RS18715) and a phosphatidylinositol-3-phosphate phosphatase 

(CCI6_RS01730) gene were upregulated under salt stress, but not under osmotic 

stress. In mycobacteria, brief phosphatidylinositol 3-phosphate (PI3P) synthesis takes 

place upon exposure to salt stress [155].  PI3P phosphatase plays a role in the 

recycling of PI3P. De novo PI3P synthesis is rare among bacteria and occurs only in the 

actinomycetes which possess a novel phosphatidylinositol (PI) biosynthesis pathway.  

The genes for this pathway are present in the sequenced Frankia genomes. In the salt-

sensitive strain, several genes involved in signal transduction, including a cyclic 

nucleotide-binding domain-containing protein (Francci3_4230), a two-component 

transcriptional regulator (Francci3_4261), a diguanylate cyclase/phosphodiesterase with 

PAS/PAC sensor (Francci3_1004), and a histidine kinase (Francci3_0470) were 

upregulated under salt stress.  
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Proteomics analysis reveals additional functions that might be involved in salt 

stress tolerance 

  The proteome profile of the salt-tolerant (CcI6) and salt sensitive (CcI3) strains 

exposed to salt or osmotic stress was examined by the use of 2D SDS-PAGE (Figure 

10).  For both strains, prominent changes in protein abundance were readily noticeable 

under the three different conditions (no stress, salt stress and osmotic stress) and 

occurred in multiple replicates.  

Differential protein spots were screened and those that showed the most 

prominent differences between the stress conditions and control gels were targeted for 

further analysis. For the salt-tolerant strain, 16 differentially expressed spots for all three 

conditions were analyzed and 19 proteins were identified. For the salt-sensitive strain, 

14 differentially expressed spots for all three conditions were analyzed and 8 proteins 

were identified. For strain CcI6, eleven and three spots were upregulated and 

downregulated, respectively, under salt stress, while five and three spots were 

upregulated and downregulated, respectively, under osmotic stress. Out of the 19 salt-

responsive strain CcI6 proteins, 18 were assigned into COG functional categories, 

including energy production and conversion (COG C, 4 proteins), transcription (COG K, 

3 proteins), amino acid transport and metabolism (COG E, 2 proteins), post translational 

modification, protein turn over, chaperon functions (COG O, 2 proteins), carbohydrate 

transport and metabolism (COG G, 2 proteins) [Table 11].  
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Fig 10. Two-dimensional polyacrylamide gel electrophoresis (PAGE) analysis of salt stress response.  (A) 2D-gel profile of Frankia 

sp. strain CcI6 under control (no stress), 200 mM NaCl, and 200 mM sucrose stress conditions. (B) 2D-gel profile of Frankia 

casurainae strain CcI3 under control (no stress), 200 mM NaCl, and 200 mM sucrose stress conditions. Red arrows indicate that 

proteins are upregulated relative to the control, while yellow arrows indicate down regulated proteins relative to the control. The 

corresponding number spots were in-gel digested with trypsin and analyzed by liquid chromatography-mass spectrometry (LC-MS) 

and LC-MS/MS for protein identification.  
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Among the proteins upregulated in the salt-tolerant strain was a cysteine synthase 

(CysK) which was identified from a downregulated spot under salt stress (spot no. 10) 

but had 2.5 times more peptide counts in the NaCl-treated samples. The most abundant 

protein from the same spot (spot no. 10) was an electron transfer flavoprotein alpha 

subunit apoprotein (CCI6_RS13315), which, as expected, had a lower peptide count in 

the NaCl-treated samples. Several pyridoxal phosphate-binding proteins, including 

cysteine synthase, are differentially expressed under salt stress in wheat chloroplasts 

and help in the synthesis of cysteine as a protective measure against toxic ions [156]. 

Transcriptomics analysis of the salt-tolerant strain (CcI6) revealed that CysK and CysM 

were upregulated under salt stress. CysK and CysM are pyridoxal phosphate-

dependent enzymes. Our proteomics result showed that pyridoxal phosphate synthase 

yaaD subunit (WP_011435808.1) was upregulated under salt stress in strain CcI6. 

Another protein from the COG E category that was upregulated under salt stress in 

strain CcI6 was the glutamine synthetase (WP_011437527.1). Amino acids including 

proline and glutamine, serve as protective osmolytes under salt stress [81].  The 

transcriptome analysis of CcI6 showed that glutamine synthetase was upregulated 1.4-

fold times, but the change was not statistically significant. A GroEL chaperon 

(WP_011438752.1) and an ATP-dependent Clp protease proteolytic subunit ClpP 

(WP_011435649.1) were among the COG O proteins upregulated under salt stress in 

strain CcI6. In B. subtilis, the synthesis of ClpP protein increases during heat shock, salt 

and oxidative stress, glucose and oxygen deprivation [157]. Our transcriptome data also 

showed that the GroEL chaperon (CCI6_RS08745) and ClpP (CCI6_RS22940) are 

upregulated in salt-stressed CcI6. Another ClpP protein (ClpP_2) [CCI6_RS22535] was 
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upregulated under osmotic stress in strain CcI6 based on the RNAseq data, but this 

protein was not identified in our proteomics data. GroEL is one of the heat shock 

proteins and shows upregulation under salt stress in Lactococcus lactis, suggesting 

there is overlap between salt and heat stress responses [158]. In strain CcI6, among 

differentially expressed proteins identified in the COG K functional category, a DNA-

directed RNA polymerase sigma subunit (WP_023840564.1) was upregulated under 

salt stress. The transcriptome analysis did not reveal upregulation of the sigma factor, 

suggesting posttranscriptional regulation of the transcript. An extracytoplasmic function 

(ECF) family RNA polymerase, sigma subunit (WP_035729933.1) was downregulated 

under salt stress in strain CcI6. Our transcriptome analysis also showed downregulation 

of the ECF family sigma factor. The ECF sigma factors are small divergent group of 

regulatory proteins that control the transcription of genes associated with response to 

extracytoplasmic stress conditions and some aspect of the cell surface or transport 

[159]. Two proteins, glyceraldehyde-3-phosphate dehydrogenase and fructose-

bisphosphate aldolase, belonging to the carbohydrate transport and metabolism 

functional category (COG G), were upregulated under salt stress in strain CcI6. 

Overexpression of glyceraldehyde-3-phosphate dehydrogenase in rice plants improved 

salt tolerance [160]. Similarly, the overexpression of fructose-bisphosphate aldolase in 

Brassica napus led to increased salt stress tolerance [161]. Another salt-tolerant strain, 

Allo2, showed similar changes in the proteome prolife under salt and osmotic stress 

conditions (Table A9, Fig A1). 

For strain CcI3, seven and three proteins were identified from upregulated spots 

under salt and osmotic stress conditions, respectively. All of the proteins upregulated 
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under osmotic stress were also upregulated under salt stress. CcI3 proteins upregulated 

under salt stress include glyceraldehyde-3-phosphate dehydrogenase (COG G), 

fructose-bisphosphate aldolase (GOC G), ribosome-recycling factor (COG J), aldolase 

(COG G), XRE family transcriptional regulator (COG K), 6,7-dimethyl-8-ribityllumazine 

synthase (COG H), FMN reductase (COG R), and acetyl-CoA acetyltransferase (COG 

I). Two of the proteins upregulated under salt stress in CcI3, glyceraldehyde-3-

phosphate dehydrogenase and fructose-bisphosphate aldolase, show a similar pattern 

of upregulation in all three strains (CcI3, CcI6, and Allo2).  
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Table 11. Proteins differentially expressed under stress conditions in strains CcI6 and CcI3. The identified proteins were classified by 

COG functional categories. More than one protein per spot has been identified for some spots. Upregulated proteins are shown by 

the upward pointing arrow (↑) whereas downregulated proteins are shown by the downward pointing arrow (↓). No change (N/C) 

indicates that a spot was not picked for that particular condition because it showed similar intensity as the control.   

 

 SPOT # Acc. No Locus Tag Protein Name MW (Da) PI NaCl  Sucrose  

 [C] Energy production and Conversion 

CcI6 10 563313506 CCI6_RS13315 electron transfer flavoprotein alpha 
subunit apoprotein 

32842.70 5.01 ↓ ↓ 

15 563312797 CCI6_RS16290 NAD-dependent aldehyde 
dehydrogenase 

54456.60 5.40 N/C ↓ 

1 563313455 CCI6_RS13080 ATP synthase F1 subcomplex beta 
subunit 

56735.20 4.56 ↓ N/C 

malate dehydrogenase (NAD) 34399.10 4.96 ↑ N/C 

[E] Amino acid transport and metabolism 

CcI6 2 563312117 CCI6_RS19490 L-glutamine synthetase 53786.20 4.97 ↑ N/C 

10 563315075 CCI6_RS05150 cysteine synthase (CysK) 32443.60 4.95 ↑ ↓ 

 [G] Carbohydrate transport and metabolism 

CcI6 5 563312326 CCI6_RS18410 glyceraldehyde-3-phosphate 
dehydrogenase (NAD+) 

35515.80 5.76 ↑ N/C 

7 563314408 CCI6_RS08915 fructose-bisphosphate aldolase 36894.20 5.35 ↑ ↑ 

CcI3 4 WP_011436076
.1 

FRANCCI3_RS08225 glyceraldehyde-3-phosphate 
dehydrogenase (NAD+) 

35515.80 5.76 ↑ N/C 

5 WP_011438718
.1 

FRANCCI3_RS22085 fructose-bisphosphate aldolase 36894.20 5.35 ↑ N/C 

11 WP_011437192
.1 

FRANCCI3_RS14110 aldolase 38526.7 5.3 N/C ↑ 

 [H] Coenzyme metabolism      

CcI6 3 563314085 CCI6_RS10325 methionine adenosyltransferase 42893.60 5.05 ↑ N/C 

9 563313788 CCI6_RS11580 pyridoxal phosphate synthase yaaD 
subunit 

32577.80 5.34 ↑ ↑ 
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CcI3 9 WP_011437570
.1 

FRANCCI3_RS16030 6,7-dimethyl-8-ribityllumazine 
synthase 

16137.8 5.5 ↑ N/C 

 [I] Lipid transport and metabolism 

CcI3 3 WP_011438063  acetyl-CoA acetyltransferase 39714.5 5.3 ↑ N/C 

 [J] Translation 

CcI3 8 WP_011437955
.1 

FRANCCI3_RS18065 ribosome-recycling factor 20830.7 5.4 ↑ ↑ 

 [K] Transcription 

CcI6 3 563314632 CCI6_RS07960 DNA-directed RNA polymerase, 
sigma subunit (sigma70/sigma32) 

44399.30 5.10 ↑ N/C 

12 563312999 CCI6_RS15595 RNA polymerase, sigma 24 factor 29218.90 5.49 ↓ N/C 

13 563314238 CCI6_RS09105 Transcriptional regulator Crp/Fnr 51393.10 4.97 ↓ N/C 

CcI3 14 WP_011437589
.1 

FRANCCI3_RS16125 XRE family transcriptional regulator 17993.4 5.7 ↑ N/C 

 [M] Cell wall/membrane/envelop biogenesis    

CcI6 6 563313716 CCI6_RS12035 UDP-glucose pyrophosphorylase 34856.10 5.04 ↑ ↑ 

11 563315562 CCI6_RS03270 Nucleoside-diphosphate-sugar 
pyrophosphorylase family protein 

31492.90 4.92 ↑ N/C 

 [O] Post-translational modification, protein turnover, chaperone functions 

CcI6 2 563314374 CCI6_RS08745 chaperonin GroEL 56735.20 4.72 ↑ N/C 

14 563311297 CCI6_RS22940 ATP-dependent Clp protease 
proteolytic subunit ClpP 

23039.30 4.79 ↑ ↑ 

 [R] General Functional Prediction only 

CcI6 16 563312796 CCI6_RS16285 Zn-dependent alcohol 
dehydrogenase 

35062.50 5.65 N/C ↓ 

CcI3 7 WP_011434678
.1 

FRANCCI3_RS01050 FMN reductase 21222.1 5.3 ↑ ↑ 

 Not assigned to COG categories 

CcI6 4 563313603 CCI6_RS12255 Nitroreductase 37351.40 4.90 ↑ ↑ 
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Amino acid analysis confirms predictions of the transcriptome analysis 

The transcriptome analysis of strains CcI3 and CcI6 revealed the upregulation of 

several genes involved in amino acid biosynthesis under salt and osmotic stress 

conditions, suggesting that amino acids accumulate as osmoprotectants to increase 

intracellular solute concentration and prevent plasmolysis. To confirm the predictions of 

the transcriptome results, Casuarina isolates, including the two salt-tolerant strains 

(Allo2 and CcI6), the salt-sensitive strain (CcI3), and the moderately salt-tolerant strain 

(CeD), were exposed to salt and osmotic stress for seven days and the amino acid 

profiles were compared to that of the control condition (no stress). The results revealed 

the strain-specific accumulation of certain amino acids under salt and osmotic stress 

(Fig 11). Ornithine, GABA, proline, methionine, and glutamine accumulated in strain 

CcI3 under salt and osmotic stress conditions. Serine was accumulated only under 

osmotic stress conditions. Transcriptome analysis of strain CcI3 had shown the 

upregulation under stress of several genes involved in amino acid (proline, ornithine, 

and serine) biosynthesis. Cysteine accumulated in the two salt-tolerant strains (CcI6 

and Allo2) under salt and osmotic stress conditions. The result was in agreement with 

the transcriptome (strain CcI6) and proteomic (strain CcI6 and Allo2) analysis of the two 

strains under salt and osmotic stress conditions. Interestingly, proline, the amino acid 

commonly accumulated under salt stress in a broad spectrum of organisms ranging 

from bacteria to plants, did not show substantial accumulation in the salt-tolerant 

strains. Selected amino acids are accumulated by bacteria to counteract the effects of 

salt and osmotic stress [162]
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Figure 11. Changes in the amino acid profiles of Casuarina isolates exposed to salt and osmotic stress for seven days. Within a single strain, 

different superscript letters indicate statistically significant differences between treatments (a-c). 
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Constitutive expression of a zinc peptidase from strain CcI6 led to improved salt 

stress tolerance in strain CcI3  

Through comparative genomic analysis, we identified 153 genes that were present only 

in the salt-tolerant strains. It was predicted that the observed difference in salt stress 

tolerance between tolerant and sensitive strains lies in those 153 genes. The 

expression pattern of the tolerant-strain-specific and other genes under salt and osmotic 

stress conditions was analyzed through RNA-Seq. Among the 153 tolerant-strain-

specific genes, nine and seven were upregulated under salt and osmotic stress 

conditions, respectively, and became candidates for cloning and expression in the salt-

sensitive strain. In order to clone the genes and express them in the salt-sensitive 

strain, a plasmid (pHTK1) that stably replicates in Frankia was identified. pHTK1 had a 

broad host range pBBR1 origin of replication, mob gene, a gene encoding the REP 

protein needed for replication, a tetA gene for selection, and a GFP gene.  The pHTK1 

was introduced into Frankia via conjugation with a DAP-  E. coli Bw29427 strain 

expressing the tra genes. After propagating the conjugants for several months in a 

basal growth medium containing 30 µg/ml of tetracycline, the stable maintenance of 

pHTK1 inside Frankia was confirmed through PCR, restriction analysis, and fluorescent 

microscopy (Fig 12). The pHTK1 plasmid was modified and the resulting pHTK1RO 

plasmid, which was constructed so that it contained the phage pR and pL promoters 

immediately upstream of the cloning site, was used for the constitutive expression of the 

candidate tolerant-strain-specific genes in strain CcI3.  
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Figure 12. The pHTK1 plasmid is stably maintained in Frankia. (A) PCR amplification of regions of the pHTK1 plasmid as well as 
restriction analysis of plasmid isolated from conjugants propagated for several months in a basal growth medium 
supplemented with 30 µg/ml of tetracycline confirmed stable maintenance of the plasmid. (B) Fluorescent microscopy showed 
that the GFP gene on pHTK1 is expressed in Frankia.  
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Salt sensitivity assay on the conjugants showed that, out of the seven candidate genes 

separately expressed in strain CcI3, a gene encoding zinc peptidase (CCI6_RS22605) 

caused a reproducible, statistically significant (p < 0.05), increase in the MIC, but not 

MTC, value for NaCl (Fig 13). The NaCl MIC value for the CcI3 conjugants expressing 

the zinc peptidase gene was 650 mM as opposed to 475 mM for the recipient strain 

CcI3. The increased salt stress tolerance of conjugants did not extend to osmotic stress 

tolerance. Transformation with the empty pHTK1RO vector did not change the salt 

tolerance of CcI3. The MIC value observed for the conjugants expressing the zinc 

peptidase gene was less than the NaCl MIC values observed for strains CcI6 and Allo2 

(1000 mM). Two other genes, MFS transporter (CCI6_RS21730) and a hypothetical 

protein (CCI6_RS13590) also increased the MIC values of NaCl for strain CcI3 but the 

results were variable and were not statistically significant at p < 0.05 (Fig 13).  
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Figure 13. MIC and MTC values of NaCl for strain CcI3 conjugants expressing candidate salt tolerance genes from 
stain CcI6.  
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Discussion  

Salt tolerance mechanisms depend on the supply of external nitrogen 

The salt tolerance level of strains Allo2 and CcI6 (1000 mM) was comparable to the 3 -

15% NaCl tolerance reported for moderately halophilic gram positive bacteria [163]. The 

salt tolerance level of strain CcI3 (475 mM) was about half of the tolerance level of the 

two salt-tolerant strains, but was only slightly less than the reported 3% (528 mM) salt 

tolerance level for Rhizobium meliloti, a salt-tolerant rhizobium species [164]. Non-

Casuarina isolates in general, and strain EuI1C in particular, outperformed the 

Casuarina isolates under osmotic stress imposed by sucrose.  The results suggest that 

Casuarina isolates have developed a mechanism to specifically cope with the toxic 

effects of Na+ and Cl- ions. The more drastic effect of sucrose compared to NaCl 

treatment is also observed in the comprehensive salt tolerance analysis of C. 

crescentus [162]. One hypothesis is that, given the low carbon source concentration in 

the natural environment, the bacterium could have been selected for limited or no 

capability to tolerate high concentration of carbohydrates, as the reduction/absence of 

the molecular response system obviates the energy demand related to the maintenance 

of the genetic information and expression of these systems [162]. The difference in salt 

tolerance between salt-tolerant and salt-sensitive Casuarina isolates dissipated under 

nitrogen-deficient (N2) conditions, suggesting salt stress response is reliant on the 

supply of nitrogen sources. The result is expected as many of the osmotic adjustments 

that take place -from protective osmolyte synthesis to cell envelope remodeling- heavly 

rely on nitrogen containing compounds. Under nitrogen-deficient conditions, survival of 

Frankia is dependent on the activities of the nitrogenase enzyme, which reduces 
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atmospheric dinitrogen into ammonia. For all Casuarina isolates, nitrogenase activity 

per milligram of protein and vesicle number per milligram of protein decreased with 

increasing levels of salinity, causing a compound effect on nitrogen fixation. The fact 

that nitrogenase activity was affected more severely than overall growth with increasing 

concentrations of NaCl suggests that under nitrogen-deficient conditions, nitrogenase 

activity is the limiting factor determining salt tolerance. The salt sensitivity of the 

nitrogen fixation process and the dependence of salt tolerance mechanisms on the 

availability of nitrogen also explains why there was no correlation between in vitro salt 

stress tolerance and symbiotic performance under salt stress conditions.  

Comparative genomics suggests a shared salt tolerance mechanism 

Based on a cutoff value of 95% used for species delineation [132], the ANI 

values (>99%) and the AAI values (>98%) observed between any two pairs of 

Casuarina isolates indicate that all Casuarina isolates belong to the same species, 

Frankia casuarinae, and are distinct from the closely related cluster Ia isolate Frankia 

alni strain ACN14a. The concatenated phylogenetic affiliation of 394 maximum-

parsimony trees based on amino acid sequences also reveals that Casuarina isolates 

group together and are distinct from the closely related cluster Ia isolate strain ACN14a.  

In silco DNA-DNA hybridization confirmed that all Casuarina isolates belong to the 

same species at p = 0.05 level, however, no two strains were in the same subspecies at 

p = 0.05 level. The two highly salt-tolerant strains (Allo2 and CcI6) had the lowest 

genome-to-genome distance, the highest ANI and AAI, suggesting the salt tolerance 

mechanism of the two strains is shared. The result was further confirmed by the 

proteomic analysis of the two strains under salt stress which revealed a similar pattern 
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of differentially expressed proteins. A shared salt-tolerance mechanism with a common 

origin for the two strains is further supported by pangenome analysis of the Casuarina 

isolates which revealed hundreds of single copy genes that are exclusively shared 

between the two salt-tolerant strains. Transcriptome analysis revealed some of these 

tolerant strain-specific genes are responsive to salt and osmotic stress.  

Differences between RNA-Seq and Proteome results 

After identifying genetic differences between the salt-tolerant and the salt-

sensitive strains, we proceeded with transcriptomics and proteomics to determine if the 

genetic difference includes genes that are responsive to salt and osmotic stress. 

Because of factors such as half-lives and post transcription machinery, the correlation 

between mRNA and protein expressions can be low.  Therefore, joint analysis of 

transcriptomic and proteomic data provides useful insight that is otherwise impossible to 

obtain from individual analysis of mRNA or protein expressions [165]. Qualitative 

comparison of our proteomics data with the transcriptome data revealed that only 30% 

of differentially expressed proteins showed the same pattern of expression at the 

transcriptome level. The remaining proteins were identified only through proteomic 

analysis.  Our results suggest that both transcriptional and posttranscriptional controls 

are involved in the regulation of genes under hyperosmotic stress in strains CcI6 and 

CcI3.  

Unraveling the enigma: the underlying cause for phenotypic difference 

After sequencing salt-tolerant Casuarina isolates and identifying their close 

similarity with the salt-sensitive strain, it was proposed that the observed difference in 

phenotype boils down to a handful of genes, likely with stress signaling or transcriptional 
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regulation roles. The hypothesis was further supported by the transcriptome and 

proteome analysis of strains CcI6 and CcI3 which showed vast differences in 

transcriptome profile changes under salt stress. The the same osmoadaptation genes 

behaved differently from one strain to the other under salt and osmotic stress 

conditions. The comprehensive approach we took to address the research problem 

helped us to untangle the complex salt stress response and identify at least one of the 

predicted handful of genes that make the difference between the salt-tolerant and the 

salt sensitive strains.  

All Casuarina isolates had the same set of classical genes involved in salt and 

osmotic stress tolerance, suggesting the observed difference in tolerance was due to 

previously unknown or less characterized mechanisms. All Casuarina isolates lacked 

the BCCT family transporters, which are present in the closely related strain ACN14a, 

and the ability to synthesize or acquire glycine betaine (or the precursor choline) from 

the environment. Strains CcI6 and Allo2 manifest high salt tolerance in a minimal growth 

medium confirming the idea that the ability to acquire glycine betaine from the 

environment is a not a key factor in the salt tolerance of Casuarina isolates.      

The majority of the hundreds of tolerant-strain-specific genes code for 

hypothetical proteins, suggesting the novelty of the mechanism responsible for the 

tolerance. The remaining include genes involved in replication, recombination and 

repair, and cell wall/membrane biogenesis. This would indicate that the ability to 

maintain the integrity of the genetic material, the replication process, and the cell 

envelope are all important for salt tolerance.  The presence of unique genes in the 

tolerant strains that are involved in cell wall and membrane biogenesis suggests that 
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preexisting differences in membrane/cell wall composition and structure might be 

contributing factors to the observed difference in salt tolerance levels between salt-

sensitive and salt-tolerant strains.   

  Some of the salt-tolerant strain-specific genes had homology with the highly salt-

tolerant actinomycete Nocardiopsis halotolerans. Enzymes coded by halotolerant 

bacteria are compatible with high levels of osmolytes accumulated under salt stress 

condition. Osmoprotectants could inhibit or promote enzyme activity depending on the 

enzyme [166].  The presence of these genes in the salt-tolerant Casuarina isolates 

suggests that osmolyte-friendly enzymes are one of the several advantages the tolerant 

strains have over the salt-sensitive strain.  

Among the tolerant-strain-specific genes, only a small fraction was responsive to 

salt and osmotic stress. Among those responsive to salt/osmotic stress, the majority 

were hypothetical proteins, suggesting that novel mechanisms are responsible for the 

observed difference in salt-tolerance between strain CcI3 and the two salt-tolerant 

strains (CcI6 and Allo2). None of the gene products unique to the tolerant strains were 

identified from our proteomics analysis probably because they were present in amounts 

below the detection threshold for Coomassie brilliant blue R-250 staining, approximately 

100 ng.  A gene encoding zinc peptidase was among the salt-tolerant strain-specific 

genes that were responsive to salt stress. Transcriptome analysis of salt-tolerant and 

salt-sensitive varieties of rice had a zinc peptidase gene as one of the 50 top responsive 

genes [167]. Constitutive expression of the zinc peptidase gene in the salt-sensitive 

strain led to increased salt stress tolerance. To our knowledge, this is the first time that 

a zinc peptidase gene was shown to confer salt stress tolerance. The zinc peptidase 
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had a DNA binding domain, suggesting it might play a role in response regulation. Salt 

stress and the accompanying oxidative stress leads to structural changes that 

compromise the function of proteins. Misfolded and aggregated proteins are degraded 

by proteases. Proteases are increasingly being associated with salt tolerance and 

sensitivity to abiotic stress [168].  

It all starts at transcription 

The salt-tolerant and sensitive strains showed marked differences in their global 

response to salt and osmotic stress. Examination of the transcriptome of the two strains 

revealed that most of the salt-responsive genes behaved in a strain-specific manner, 

suggesting that part of the difference in phenotype was due to differences in 

transcriptional regulation under stress. Sensing of the salt-stress stimulus and coupling 

the signal with a change in transcription is an important part of the salt stress response.  

The transcriptome analysis of the tolerant and sensitive strains showed the strain-

specific expression of several transcriptional factors. The use of alternative sigma 

factors and transcription regulators creates flexibility in adaptation to environmental 

stress [169]. Some of the salt and/or osmotic-stress-responsive transcriptional 

regulators identified in strains CcI6 (the GntR, TetR, LysR, Crp/Fnr, and LuxR families) 

and CcI3 (WhiB, MarR, LacI, MerR, and XRE families) were previously implicated in 

multidrug resistance, biosynthesis of antibiotics, osmotic stress response, and 

pathogenicity of Gram-negative and Gram-positive bacteria. The proteomics analysis 

did not reveal any transcriptional factors probably because they are low abundance 

proteins that fell below the detection range. The only sigma factor (CcI6_RS19210) 

upregulated in strain CcI6 under salt stress had a SigF domain and showed a similar 
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pattern of upregulation in strain CcI3. We were not able to detect this sigma factor from 

the proteomics analysis. The sigF regulon in Mycobacterium smegmatis mediates 

stationary phase adaptation and general stress response [170]. It was suggested that 

M. smegmatis SigF regulates the biosynthesis of the osmoprotectant trehalose, as well 

as an uptake system for osmoregulatory compounds. Our transcriptome analysis 

showed that trehalose synthase gene is upregulated under salt stress in strain CcI6. 

The expression of the genes for regulatory proteins SigH3, PhoP, WhiB1, and WhiB4 

was suggested as being under direct control of SigF. The WhiB genes showed 

upregulation in strain CcI3.  In both strains CcI3 and CcI6, an extracytoplasmic stress 

sigma factor (CCI6_RS15595) was downregulated under salt stress. The result is in 

contrast with the previously reported auto-upregulation of ECF sigma factors in 

response to extracytoplasmic stress conditions, including salt stress [171]. ECF sigma 

factors recognize promoter elements with an 'AAC' motif in the -35 regions and are 

usually co-transcribed with a transmembrane anti-sigma factor with an extracytoplasmic 

sensory domain and an intracellular inhibitory domain. In strains CcI6 and CcI3, the 

down-regulated ECF sigma factor lies upstream of a mycothiol system anti-sigma-R 

factor, suggesting that the ECF sigma factor is a homologue of sigmaR. In 

Streptomyces coelicolor A3(2), sigmaR is regulated by the cognate anti-sigma-R factor 

(RsrA), which loses affinity for sigmaR following oxidative stress that introduces 

intramolecular disulfide bond formation in RsrA [172]. ECF sigma factors can be 

regulated at the transcriptional, translational, and posttranslational levels [171].  The 

transcriptional control of ECF factors can involve a hierarchical regulatory cascade of 

sigma factors. The most important regulation of ECF sigma factors involves the 
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reversible binding of the sigma factor to an anti-sigma factor, holding it in an inactive 

complex as long as the cognate environmental stimulus is absent. Changes in 

environmental conditions sensed by the anti-sigma factor lead to release of the sigma 

factor, which will subsequently bind to the RNA polymerase core enzyme and initiate 

transcription [173]. Proteomics, but not transcriptomic, analysis of strain CcI6 showed 

that a σ32 factor involved in the cytoplasmic heat shock response is up regulated under 

salt stress. This agrees with the result from the transcriptome analysis where the small 

heat-shock protein Hsp20 was upregulated under salt stress. Overall, while the same 

set of sigma factors were differentially expressed in both the salt-tolerant and the salt-

sensitive strains under salt stress, there was a huge variation between the two strains in 

terms of the number and types of differentially expressed transcriptional factors under 

salt and osmotic stress conditions. Unlocking the mechanism of salt tolerance in 

Casuarina isolates ultimately requires identifying the factor(s) causing the differential 

expression of different sets of transcriptional regulators in the two strains. Nevertheless, 

knowledge of the strain-specific-response of transcriptional regulators helps to answer 

lower level questions, such as why certain osmolytes (for example ornithine in strain 

CcI3) were accumulated in a strain-specific manner even though both strains (CcI6 and 

CcI3) possess the same sets of genes for the biosynthesis of ornithine.  

Potential mechanisms of tolerance 

The transcriptome analysis of CcI6 and CcI3 showed a clear overlap between 

salt and osmotic stress responses, but most of the responses were condition-specific. 

This result partly explains why there is a huge disparity between the salt and osmotic 

stress tolerance levels among the Casuarina isolates.  For both strains, and for CcI6 in 
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particular, a significant number of the genes differentially expressed under salt, osmotic 

stress, or under both conditions code for hypothetical proteins.  In addition to 

hypothetical proteins, many genes involved in cell wall/membrane biogenesis, 

compatible solute biosynthesis, and signal transduction were differentially expressed 

under salt and/or osmotic stress conditions.  

Modification of the cell wall 

The composition of the cell envelope plays an important role in osmoadaptation 

[174]. Cell envelope-related changes triggered by salt stress include alterations in the 

structure and composition of the peptidoglycan layer [175], changes in membrane 

and/or periplasmic protein composition, lipid composition, periplasmic glucan levels, and 

capsular polysaccharide biosynthesis [176].  The peptidoglycan layer is a key structural 

component that imparts structural strength to most bacterial cells and counteracts the 

effects of osmotic pressure of the cytoplasm. Based on results from expression studies, 

adaptation to salt stress involves modification of the cell wall to create a diffusion barrier 

and reduce the influx of inorganic ions into the periplasm [177].  The peptidoglycan is 

comprised of a linear chain of alternating residues of β-(1,4) linked N-acetylglucosamine 

and N-acetylmuramic acid cross-linked by peptide side chains. Glycosyl transferases 

catalyze the polymerization of the peptidoglycan by the addition of disaccharide 

pentapeptide subunits onto the growing glycan chain.  Subsequent cross-linking of the 

peptide side chains takes place through the activity of transpeptidases [175]. Salt-stress 

induced alterations of the peptidoglycan layer involve several enzymes including 

glycosyl transferases, polysaccharide deacetylases and sugar epimerases. Our 

transcriptome data showed that more glycosyl transferase coding genes (COG M) were 
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upregulated under salt and osmotic stress conditions in strain CcI6 as opposed to in 

strain CcI3. In addition to glycosyl transferases, polysaccharide deacetylases involved 

in cell wall/membrane biogenesis was also upregulated in strain CcI6 in response to salt 

stress. The polysaccharide deacetylases, which include chitin deacetylases, acetylxylan 

esterases, xylanases, rhizobial NodB chitooligosaccharide deacetylases, and PG 

deacetylases, catalyze the hydrolysis of either the N-linked acetyl group from GlcNAc 

residues (chitin deacetylase, NodB, and peptidoglycan GlcNAc deacetylase) or O-linked 

acetyl groups from O-acetylxylose residues (acetylxylan esterase, and xylanase) [150]. 

In Bacillus anthracis, one of the polysaccharide deacetylases, BA0330, which is a 

lipoprotein, plays a structural role in stabilizing the membrane and is important for the 

adaptation of the bacterium to grow in the presence of a high concentration of salt. The 

polysaccharide deacetylases upregulated in strain CcI6 under salt stress, however, are 

not lipoproteins and do not have a transmembrane domain as predicted by LipoP 1.0. 

The polysaccharide deacetylases upregulated in strain CcI6 contained the catalytic 

NodB homology domain of the carbohydrate esterase family and had a conserved 

domain with the bacterial peptidoglycan N-glucose amine deacetylase. Another gene 

product involved in peptidoglycan layer modification is the sugar epimerase. Several 

nucleoside diphosphate sugar epimerases were among the genes upregulated under 

salt and osmotic stress in the salt-tolerant strain. Simple sugars such as glucose, 

galactose, xylose, arabinose, rhamnose, glucuronic acid, galacuronic acid, mannose, 

and fructose need to be activated to serve as building blocks for cell components. 

Nucleotide sugars, which are activated forms of simple sugars, serve as biosynthetic 

substrates in the synthesis of polysaccharides [178]. Different nucleotide sugars can be 
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modified at their glycosyl moieties by nucleotide sugar interconversion enzymes to 

generate different sugars [179].  Different nucleoside-diphosphate (NDP) sugars are 

used by glycosyl transferases to assemble cell wall polysaccharides with varying 

compositions [180]. Overall, more genes involved in the modification of the 

peptidoglycan layer were upregulated in the salt-tolerant strain compared to in the salt-

sensitive strain, suggesting the ability to significantly alter the peptidoglycan layer under 

salt stress is important for tolerance.  

Changes in membrane fluidity 

Regulating the fluidity of the membrane in response to osmotic stress is an 

important aspect of cell envelope remodeling during salt stress [181]. Regulation of 

membrane fluidity mainly involves changes in the fatty acid composition of the 

membrane by varying the length of acyl chains, number of double bonds or branching of 

acyl chains by methyl groups [182]. Acyl-acyl carrier protein (ACP) desaturases, ABC-

type branched-chain amino acid transport systems, Acyl CoA dehydrogenases, and 

ubquinone directly or indirectly play a role in modulating the fluidity of the membrane. 

ACP desaturases catalyze the conversion of saturated fatty acids into unsaturated fatty 

acids by the introduction of at least one double bond. The Unsaturated fatty acids 

(UFAs) determine the fluidity and function of biological membranes.  Branched chain 

amino acid transport systems indirectly determine the composition of the cell 

membrane. Branched chain amino acids (leucine, isoleucine and valine) undergo 

oxidative deamination and decarboxylation reaction and subsequently serve as 

precursors in anteiso-branched chain fatty acid synthesis [183].  Acyl CoA 

dehydrogenase, which catalyze the desaturation of various CoA-conjugated fatty acids, 
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have been implicated in salt stress tolerance [184, 185] possibly by altering the fluidity 

of the cell membrane. Biological processes such as selective uptake, transport and 

signaling performed by membrane spanning intrinsic proteins are affected by the degree 

of   unsaturation and composition of the membrane.  Membrane fluidity and composition 

determines the conformation and geometry of proteins as well as the electrostatic 

interactions between the protein surface charged domains and the lipid head groups 

[186].  Adaptation to salt stress involves the active role of membrane bound transporters 

(such as Na+/H+ antiporter systems), the activity of which is enhanced with increased 

membrane unsaturation [187]. UFAs homeostasis in many organisms is achieved by 

feedback regulation of fatty acid desaturase gene transcription through signaling 

pathways that are governed by sensors embedded in cellular membranes [188]. In 

addition to membrane desaturation, the accumulation of ubiquinone in the membrane 

could affect membrane structure and hence salt tolerance [152]. Ubiquinone 

accumulation has been shown to increase salt tolerance in E. coli [152]. The role of 

ubiquinone in osmotic tolerance results from mechanical stabilization of the cytoplasmic 

membrane. Presence of ubiquinone in the membrane helps to prevent a drastic volume 

decrease upon osmotic shock. Deletion in one of the genes involved in ubiquinone 

biosynthesis, ubiG, had more severe impact than deletion of any one of the genes 

involved in the synthesis of the osmoprotectant trehalose in E. coli [152]. Ubiquinone 

accumulation led to enhanced salt tolerance during fermentative anaerobic growth, 

where respiration is inactive, ruling out the possible explanation that the osmotic effect 

of ubiquinone stems from its known role as a membrane-localized electron carrier in the 

respiratory chain [152]. The fact that more genes associated with maintaining the fluidity 
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of the cell membrane were upregulated in the salt-tolerant strain as opposed to in the 

salt-sensitive strain under salt stress suggests that the ability to maintain the fluidity of 

the membrane is vital for salt stress tolerance.  

Compatible solutes 

The transcriptome, proteome, and physiological analysis showed a strain-specific 

accumulation of osmolytes (mainly amino acids) under salt and osmotic stress 

conditions. Trehalose synthesis was upregulated in both the tolerant and the sensitive 

strains although the pathway involved was different for the two; the TreY-TreZ pathway 

for strain CcI3 and the TreS pathway for strain CcI6. Both the salt-tolerant and the salt-

sensitive stains had the same set of canonical osmolyte biosynthesis genes, suggesting 

that an acquired ability to synthesize a specific osmolyte was not the underlying cause 

for the difference in salt tolerance. Observed differences between CcI6 and CcI3 in the 

expression and accumulation of osmolytes are likely ascribed to differences in 

transcriptional and post transcriptional regulations.  

The sugar trehalose and amino acids are among the commonly used compatible 

solutes [89].  Osmolytes can either be synthesized by the cell or transported into the cell 

from the medium. Through mechanisms that involve strong exclusion of the protective 

osmolyte from the protein surface, protective osmolytes push the equilibrium of protein 

folding towards the native form [189]. Under hyperosmotic conditions, water fluxes out 

of the cell, causing a loss in turgor pressure and an increase in the cellular 

concentration of all cellular constituents, including inorganic salts [190]. The resulting 

changes in cellular volume and turgor pressure exert strong mechanical forces on the 

cytoplasmic membrane and associated proteins and, if high enough, could lead to 
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growth arrest and even death of the bacterium [191]. Many inorganic salts are required 

for cellular functions, however, at concentrations above typically found in cells, they 

could interfere with the functions of proteins. To restore the cellular volume, cells take in 

a large quantity of inorganic salts followed by the osmotic uptake of water. The 

inorganic salts are subsequently replaced by compatible solutes, which are highly 

soluble neutral molecules [192] with little interference in protein structure and function. 

Due to their unique properties, compatible solutes can be accumulated to intracellular 

concentrations greater than 1 M without causing significant disruption in vital cellular 

processes [193]. Apart from serving as osmotic balancers, compatible solutes also play 

a key role in stabilizing enzyme function by providing protection against salinity, high 

temperature, freeze-thaw treatment and even drying [194]. The role of osmolytes 

transcends maintaining cell turgor by increasing intracellular osmolality. Molecular 

dynamics studies have demonstrated an interaction between the osmolyte trehalose 

and the membrane lipid head groups, although the observed resistance of membranes 

to strong osmotic stress could not fully be ascribed to the interaction [195]. In bacteria 

and eukaryotes, osmolytes have a neutral charge or are modified to have a neutral 

charge, whereas in archae the same osmolytes tend to be modified to have negative 

charge. The increased expression of the trehalose synthase gene only under chronic 

salt stress and the increased in expression of the threonine and glutamate synthase 

genes only under osmotics stress (induced by sucrose) suggests that the preferred 

protective osmolyte depends on the external solute causing the stress.   
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Signal transduction 

Signal transduction is an important component of the salt stress response and 

coupled with transcriptional regulation we believe it lies at core of the observed 

difference in salt tolerance. The transcriptome analysis revealed that different sets of 

signal transduction genes were upregulated in the salt-tolerant and in the salt sensitive 

strains, however none of those genes were among the genes unique to the salt-tolerant 

strains. Nevertheless, the zinc peptidase gene that we determined to confer salt 

tolerance to CcI3 had a DNA binding domain and probably plays a role as a response 

regulator.  

In strain CcI6 the upregulation of the gene coding for PI3P phosphatase, under 

salt stress indicates PI3P-mediated signaling is important during salt stress 

phosphoinositides serve a fundamental role in regulating membrane dynamics and 

intracellular signaling. Actinomycetes are the only group of bacteria which possess a 

novel PI biosynthesis pathway [196]. In actinomycetes, PI is a major component of the 

plasma membrane and acts as a membrane anchor for abundant glycolipids, such as PI 

mannosides (PIMs) and lipoarabinomannan [196]. In Mycobacterium smegmatis, PI3P 

production is induced in response to salt stress, indicating that eukaryote-like lipid-

mediated signaling may occur in some bacteria [196]. By regulating the recycling of 

PI3P, PI3P phosphatase could play a role in PI3P mediated signaling. 

Limitations of the methods used in the study 
 

After identifying salt-tolerant (Allo2 and CcI6) and salt-sensitive (CcI3) strains, we used 

comparative genomics, transcriptomics, and proteomics to identify candidate genes 

responsible for the observed difference in phenotype. While the RNA-Seq analysis we 
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used to identify salt stress-responsive genes in the salt-tolerant and in the salt-sensitive 

strains helped us to identify hundreds of salt and/or osmotic stress-responsive genes, 

the possibility of bias during library construction meant that some salt-responsive genes 

were overlooked during the process. After obtaining reads from our RNA-Seq 

experiments, our mapping was restricted to protein coding sequences. By doing that, 

we likely missed some salt-responsive, Nonprotein-coding genes, particularly those 

encoding regulatory RNAs. After identifying tolerant strain-specific, salt-responsive 

genes, we developed an expression vector that could stably replicate in Frankia and 

expressed the candidate genes in the salt-sensitive strain (CcI3). Through this method, 

we determined that a gene encoding zinc peptidase (CcI6_RS22605) confers salt-

tolerance to CcI3. While we confirmed that the gene ((CcI6_RS22605) was expressed 

in CcI3, we nevertheless did not examine the expression at the protein level. Tagging of 

the protein product (zinc peptidase) and studying the expression at the protein level, 

and analysis of the interaction of the enzyme with other proteins will help to further 

elucidate the mechanisms involved in the salt stress response. Site-specific 

mutagenesis of the gene encoding zinc peptidase in CcI6 or Allo2 will provide direct 

evidence in support of the role of the gene in the salt tolerance of the two strains.  

Conclusion 

In summary, the comprehensive approach we took to address the complex 

research question provided answers to some of the questions we originally had, but 

raised many more unanswered questions.  Salt-tolerant and salt-sensitive strains 

showed very little overlap in their salt stress responses, even though they overall had a 

high degree of genetic similarity. While genes directly involved in cell envelop 
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remodeling or osmolyte biosynthesis are unquestionably important for salt stress 

tolerance, in the case of the Casuarina isolates, how the osmoadaptation genes are 

regulated seems to be more important. Through the comprehensive approach we took, 

we were able to explain at least some of the factors for the observed difference in salt 

tolerance between the Casuarina isolates. The genetic tools and the data we generated 

in this study will serve as a springboard for future work in the area or in the broader field 

of Frankia genetics. 
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Differential gene expression in Casuarina isolates exposed to salt and osmotic 
stress 

The list of differentially expressed genes in Frankia casuarinae and Frankia sp. strain 

CcI6 exposed to salt and osmotic stress is given in Tables A1-A8.  

 

Table A1. List of genes upregulated under salt stress in strain CcI3 based on RNA-sq 

 
 
 
Feature ID Description 

aceE #N/A 
argC #N/A 
argD #N/A 
argJ #N/A 
carB #N/A 
Francci3_0040 hypothetical protein 
Francci3_0081 citrate synthase 2 
Francci3_0082 phosphoserine aminotransferase 

Francci3_0178 MscS mechanosensitive ion channel 
Francci3_0209 NADPH-dependent FMN reductase 
Francci3_0210 MarR family transcriptional regulator 
Francci3_0285 NLP/P60 
Francci3_0466 tetratricopeptide TPR_2 
Francci3_0469 phosphate uptake regulator, PhoU 
Francci3_0470 histidine kinase 
Francci3_0487 uroporphyrinogen-III synthase / uroporphyrinogen-III 

C-methyltransferase 
Francci3_0523 XRE family transcriptional regulator 
Francci3_0525 ferredoxin--nitrite reductase 
Francci3_0777 hypothetical protein 
Francci3_0816 MMPL 
Francci3_0821 amine oxidase 
Francci3_0822 polyprenyl synthetase 
Francci3_0823 squalene cyclase 
Francci3_0933 hypothetical protein 
Francci3_1003 hypothetical protein 
Francci3_1004 diguanylate cyclase/phosphodiesterase with PAS/PAC 

sensor(s) 
Francci3_1060 hypothetical protein 
Francci3_1063 carnitine O-acetyltransferase 
Francci3_1064 hypothetical protein 
Francci3_1065 hypothetical protein 
Francci3_1082 hypothetical protein 
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Francci3_1153 HNH endonuclease 
Francci3_1195 putative transcriptional regulator 
Francci3_1216 radical SAM family protein 
Francci3_1218 ribonuclease 
Francci3_1241 beta-lactamase-like 
Francci3_1312 aconitase 
Francci3_1313 inositol-1(or 4)-monophosphatase 
Francci3_1332 hypothetical protein 
Francci3_1341 sulfate adenylyltransferase subunit 2 
Francci3_1342 sulfate adenylyltransferase subunit 1 
Francci3_1350 glycogen debranching protein GlgX 
Francci3_1356 hypothetical protein 
Francci3_1408 hypothetical protein 
Francci3_1414 cell cycle protein 
Francci3_1418 cell division protein FtsZ 
Francci3_1440 hypothetical protein 
Francci3_1461 NLP/P60 
Francci3_1469 MerR family transcriptional regulator 
Francci3_1472 daunorubicin resistance ABC transporter ATP-binding 

subunit 
Francci3_1482 transcription factor WhiB 
Francci3_1505 metallophosphoesterase 
Francci3_1675 enoyl-CoA hydratase 
Francci3_1678 pyruvate kinase 
Francci3_1679 hypothetical protein 
Francci3_1736 type II secretion system protein E 
Francci3_1748 GTP cyclohydrolase 
Francci3_1749 NUDIX hydrolase 
Francci3_1750 3-polyprenyl-4-hydroxybenzoate decarboxylase and 

related decarboxylases-like 
Francci3_1751 phosphoribosyltransferase 
Francci3_1752 GMP reductase 
Francci3_1753 radical SAM family protein 
Francci3_1754 PfkB 
Francci3_1755 putative 6-pyruvoyl tetrahydropterin synthase 
Francci3_1765 sulfatase 
Francci3_1766 hypothetical protein 
Francci3_1767 LacI family transcription regulator 
Francci3_1768 major facilitator transporter 
Francci3_1769 cytochrome P450 
Francci3_1804 ribonucleotide reductase large subunit 
Francci3_1805 hypothetical protein 
Francci3_1854 GCN5-related N-acetyltransferase 
Francci3_1864 transposase IS66 
Francci3_1945 (NiFe) hydrogenase maturation protein HypF 
Francci3_1998 O-succinylhomoserine sulfhydrylase 
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Francci3_2208 YceI 
Francci3_2312 hypothetical protein 
Francci3_2403 amidase 
Francci3_2408 SNF2-related 
Francci3_2453 prephenate dehydrogenase 
Francci3_2454 4-hydroxyphenylpyruvate dioxygenase 
Francci3_2455 enoyl-CoA hydratase 
Francci3_2456 enoyl-CoA hydratase/isomerase 
Francci3_2457 enoyl-CoA hydratase/isomerase 
Francci3_2458 chalcone and stilbene synthases-like 
Francci3_2462 ABC transporter related 
Francci3_2464 chorismate mutase 
Francci3_2465 tryptophan halogenase 
Francci3_2603 cobyric acid synthase 
Francci3_2605 DSH-like 
Francci3_2676 helicase-like 
Francci3_2804 citrate lyase 
Francci3_2816 hypothetical protein 
Francci3_2872 delta-1-piperideine-6-carboxylate dehydrogenase 
Francci3_3006 methylmalonyl-CoA mutase 
Francci3_3022 imidazole glycerol phosphate synthase subunit hisF 
Francci3_3023 1-(5-phosphoribosyl)-5-[(5- 

phosphoribosylamino)methylideneamino] imidazole-4-
carboxamide isomerase 

Francci3_3031 O-methyltransferase family protein 
Francci3_3055 hypothetical protein 
Francci3_3073 oxidoreductase-like 
Francci3_3089 putative esterase/lipase 
Francci3_3134 dihydrolipoamide dehydrogenase 
Francci3_3139 hypothetical protein 
Francci3_3173 acetylglutamate kinase 
Francci3_3184 ATPases involved in chromosome partitioning-like 
Francci3_3191 primosome assembly protein PriA 
Francci3_3194 DNA-directed RNA polymerase subunit omega 
Francci3_3229 Male sterility-like 
Francci3_3242 hypothetical protein 
Francci3_3245 carbonate dehydratase 
Francci3_3356 epoxide hydrolase-like 
Francci3_3359 EmrB/QacA family drug resistance transporter 
Francci3_3405 twin-arginine translocation pathway signal 
Francci3_3409 hypothetical protein 
Francci3_3410 serine/threonine protein kinase 
Francci3_3411 forkhead-associated 
Francci3_3414 hypothetical protein 
Francci3_3467 succinate dehydrogenase/fumarate reductase iron-

sulfur subunit 
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Francci3_3481 S-malonyltransferase 
Francci3_3493 hypothetical protein 
Francci3_3507 ribonucleoside diphosphate reductase, B12-dependent 
Francci3_3523 metal dependent phosphohydrolase 
Francci3_3543 beta-lactamase-like 
Francci3_3544 dihydrodipicolinate synthase 
Francci3_3663 acetyl-coenzyme A synthetase 
Francci3_3667 hypothetical protein 
Francci3_3671 hypothetical protein 
Francci3_3684 hypothetical protein 
Francci3_3754 anti-sigma factor 
Francci3_3755 RNA polymerase sigma factor 
Francci3_3773 histidinol-phosphate phosphatase 
Francci3_3790 transcription factor WhiB 
Francci3_3791 hypothetical protein 
Francci3_3836 leucyl aminopeptidase 
Francci3_3920 Ppx/GppA phosphatase 
Francci3_3926 transcription-repair coupling factor 
Francci3_3942 serine O-acetyltransferase 
Francci3_3943 putative acyl carrier protein 
Francci3_3944 FkbH domain-containing protein 
Francci3_4035 hypothetical protein 
Francci3_4194 methyltransferase type 12 
Francci3_4195 hypothetical protein 
Francci3_4196 hypothetical protein 
Francci3_4197 hypothetical protein 
Francci3_4198 hypothetical protein 
Francci3_4199 hypothetical protein 
Francci3_4200 hypothetical protein 
Francci3_4201 ABC transporter related 
Francci3_4204 AMP-dependent synthetase and ligase 
Francci3_4205 2-amino-3,7-dideoxy-D-threo-hept-6-ulosonate 

synthase 
Francci3_4206 3-dehydroquinate synthase 
Francci3_4207 salicylate 1-monooxygenase 
Francci3_4230 cyclic nucleotide-binding domain-containing protein 
Francci3_4261 two component transcriptional regulator 
Francci3_4263 phosphate ABC transporter permease 
Francci3_4264 phosphate ABC transporter permease 
Francci3_4265 periplasmic phosphate binding protein 
Francci3_4365 transglycosylase-like 
Francci3_4366 transglycosylase-like 
Francci3_4377 L-aspartate oxidase 
Francci3_4402 hypothetical protein 
gatA #N/A 
mhpA #N/A 
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pgk #N/A 
proA #N/A 
sdhA_2 #N/A 
tpiA #N/A 
 

Table A2. List of genes downregulated in strain CcI3 under salt stress based on RNA-
seq 

Feature ID description 

Francci3_0068 sigma-24 
Francci3_0107 hypothetical protein 
Francci3_0117 IS630 family transposase 
Francci3_0118 IS630 family transposase 
Francci3_0126 hypothetical protein 
Francci3_0145 SARP family transcriptional regulator 
Francci3_0150 putative 3-carboxy-cis,cis-muconate cycloisomerase 
Francci3_0153 hypothetical protein 
Francci3_0223 DegT/DnrJ/EryC1/StrS aminotransferase 
Francci3_0224 NAD-dependent epimerase/dehydratase 
Francci3_0238 hypothetical protein 
Francci3_0247 hypothetical protein 
Francci3_0251 putative sulfonate binding protein precursor 
Francci3_0351 short-chain dehydrogenase/reductase SDR 
Francci3_0352 luciferase-like 
Francci3_0423 NLP/P60 
Francci3_0447 thioredoxin-related 
Francci3_0514 hypothetical protein 
Francci3_0575 pseudouridine synthase 
Francci3_0668 hypothetical protein 
Francci3_0705 hypothetical protein 
Francci3_0804 hypothetical protein 
Francci3_0805 glyoxalase/bleomycin resistance protein/dioxygenase 
Francci3_0808 hypothetical protein 
Francci3_0873 hypothetical protein 
Francci3_0875 antibiotic biosynthesis monooxygenase 
Francci3_0890 hypothetical protein 
Francci3_0908 XRE family transcriptional regulator 
Francci3_0909 hypothetical protein 
Francci3_0944 short-chain dehydrogenase/reductase SDR 
Francci3_0969 hypothetical protein 
Francci3_0996 hypothetical protein 
Francci3_1017 hypothetical protein 
Francci3_1045 hypothetical protein 
Francci3_1046 putative DNA-binding protein 
Francci3_1047 endopeptidase La 
Francci3_1068 hypothetical protein 
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Francci3_1187 hypothetical protein 
Francci3_1235 transposase, IS4 
Francci3_1247 hypothetical protein 
Francci3_1320 nucleic acid binding, OB-fold, tRNA/helicase-type 
Francci3_1321 hypothetical protein 
Francci3_1376 (p)ppGpp synthetase I 
Francci3_1507 hypothetical protein 
Francci3_1572 parallel beta-helix repeat-containing protein 
Francci3_1593 AMP-dependent synthetase and ligase 
Francci3_1616 hypothetical protein 
Francci3_1628 integral membrane protein TerC 
Francci3_1676 ABC transporter related 
Francci3_1924 hypothetical protein 
Francci3_1936 hypothetical protein 
Francci3_1989 putative PAS/PAC sensor protein 
Francci3_2055 haloacid dehalogenase-like hydrolase 
Francci3_2109 hypothetical protein 
Francci3_2112 pyridoxamine 5&#x27;-phosphate oxidase-related, 

FMN-binding 
Francci3_2163 short-chain dehydrogenase/reductase SDR 
Francci3_2183 transposase, IS4 
Francci3_2289 major facilitator transporter 
Francci3_2326 major intrinsic protein 
Francci3_2327 glyoxalase/bleomycin resistance protein/dioxygenase 
Francci3_2359 hypothetical protein 
Francci3_2368 zinc/iron permease 
Francci3_2373 recombinase 
Francci3_2436 protein-L-isoaspartate(D-aspartate) O-

methyltransferase 
Francci3_2468 carbon starvation protein CstA 
Francci3_2470 hypothetical protein 
Francci3_2522 transposase IS66 
Francci3_2716 hypothetical protein 
Francci3_2717 ArsR family transcriptional regulator 
Francci3_2718 putative integral membrane protein 
Francci3_2743 hypothetical protein 
Francci3_2746 ribonuclease BN 
Francci3_2762 putative methyltransferase 
Francci3_2807 aminotransferase, class I and II 
Francci3_2808 hypothetical protein 
Francci3_2809 hypothetical protein 
Francci3_2857 protein of unknown function, ATP binding 
Francci3_2883 hypothetical protein 
Francci3_2960 Pirin-like 
Francci3_3062 hypothetical protein 
Francci3_3063 CoA-binding 
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Francci3_3164 hypothetical protein 
Francci3_3247 hypothetical protein 
Francci3_3262 hypothetical protein 
Francci3_3263 integrase 
Francci3_3291 AbrB family transcriptional regulator 
Francci3_3292 PilT protein-like 
Francci3_3299 hypothetical protein 
Francci3_3314 hypothetical protein 
Francci3_3322 putative ATP-binding protein 
Francci3_3766 hypothetical protein 
Francci3_3767 anti-sigma factor 
Francci3_3768 RNA polymerase sigma factor RpoE 
Francci3_3895 peptide methionine sulfoxide reductase 
Francci3_3917 hypothetical protein 
Francci3_3986 ABC transporter related 
Francci3_3989 recombinase 
Francci3_4004 major facilitator transporter 
Francci3_4073 hypothetical protein 
Francci3_4112 IS630 family transposase 
Francci3_4113 IS630 family transposase 
Francci3_4154 EmrB/QacA family drug resistance transporter 
Francci3_4182 hypothetical protein 
Francci3_4190 hypothetical protein 
Francci3_4226 hypothetical protein 
Francci3_4227 transposase, IS4 
Francci3_4464 cytochrome P450 
Francci3_4467 protein-L-isoaspartate(D-aspartate) O-

methyltransferase 
Francci3_4536 thioredoxin reductase 
Francci3_4537 thioredoxin 

 

 

 

 

 

 

 

 



  
 

 
 

112 

 

 

Table A3. List of genes upregulated under osmotic stress in strain CcI3 based on RNA-
seq 

Feature ID Description 

Francci3_0027 hypothetical protein 
Francci3_0505 transposase IS66 
Francci3_0881 transposase IS66 
Francci3_1947 hydrogenase expression/formation protein HypD 
Francci3_2051 transposase IS66 
Francci3_2073 transposase IS66 
Francci3_2078 transposase IS66 
Francci3_2289 major facilitator transporter 
Francci3_2450 amino acid adenylation 
Francci3_2459 amino acid adenylation 
Francci3_2514 zinc-binding alcohol dehydrogenase 
Francci3_2515 hypothetical protein 
Francci3_2516 amidohydrolase 2 
Francci3_2517 monooxygenase component MmoB/DmpM 
Francci3_2518 methane/phenol/toluene hydroxylase 
Francci3_2519 oxidoreductase FAD-binding region 
Francci3_2520 methane monooxygenase 
Francci3_2603 cobyric acid synthase 
Francci3_2674 N-6 DNA methylase 
Francci3_2675 hypothetical protein 
Francci3_2676 helicase-like 
Francci3_2736 hypothetical protein 
Francci3_2897 small multidrug resistance protein 
Francci3_4000 transposase IS66 
Francci3_4026 AMP-dependent synthetase and ligase 
Francci3_4144 short-chain dehydrogenase-like 
Francci3_4145 transposase IS66 
Francci3_4159 hypothetical protein 
Francci3_4160 hypothetical protein 
Francci3_4161 hypothetical protein 
Francci3_4194 methyltransferase type 12 
Francci3_4196 hypothetical protein 
Francci3_4204 AMP-dependent synthetase and ligase 
Francci3_4205 2-amino-3,7-dideoxy-D-threo-hept-6-ulosonate 

synthase 
Francci3_4206 3-dehydroquinate synthase 
Francci3_4365 transglycosylase-like 
groEL_3 #N/A 
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Table A4.  List of genes downregulated under osmotic stress in strain CcI3 based on 
RNA-seq 

Feature ID  

Francci3_0035 putative integral membrane protein 
Francci3_0118 IS630 family transposase 
Francci3_0127 XRE family transcriptional regulator 
Francci3_0222 alpha/beta hydrolase fold 
Francci3_0226 hypothetical protein 
Francci3_0227 hypothetical protein 
Francci3_0352 luciferase-like 
Francci3_0398 putative DNA-binding protein 
Francci3_0447 thioredoxin-related 
Francci3_0557 heat shock protein HtpX 
Francci3_0827 radical SAM family protein 
Francci3_0943 FAD linked oxidase-like 
Francci3_0949 hypothetical protein 
Francci3_0987 ArsR family transcriptional regulator 
Francci3_0991 acyl transferase region 
Francci3_0995 sodium/hydrogen exchanger 
Francci3_0996 hypothetical protein 
Francci3_0997 alpha/beta hydrolase fold 
Francci3_0998 hypothetical protein 
Francci3_0999 crotonyl-CoA reductase 
Francci3_1000 3-hydroxyacyl-CoA dehydrogenase 
Francci3_1066 hemerythrin HHE cation binding region 
Francci3_1177 putative secreted protein 
Francci3_1247 hypothetical protein 
Francci3_1320 nucleic acid binding, OB-fold, tRNA/helicase-type 
Francci3_1359 sporulation and cell division protein SsgA 
Francci3_1507 hypothetical protein 
Francci3_1531 hypothetical protein 
Francci3_1532 periplasmic binding protein/LacI transcriptional 

regulator 
Francci3_1533 phosphoenolpyruvate phosphomutase 
Francci3_1544 alcohol dehydrogenase GroES-like protein 
Francci3_1545 hypothetical protein 
Francci3_1592 extracellular solute-binding protein 
Francci3_1627 putative transmembrane alanine and leucine rich 

protein 
Francci3_1628 integral membrane protein TerC 
Francci3_1659 putative transcriptional regulator 
Francci3_1660 FeS assembly protein SufB 
Francci3_1661 FeS assembly protein SufD 
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Francci3_1662 Rieske (2Fe-2S) protein 
Francci3_1914 BFD-like (2Fe-2S)-binding region 
Francci3_1924 hypothetical protein 
Francci3_1989 putative PAS/PAC sensor protein 
Francci3_2027 pyruvate:ferredoxin (flavodoxin) oxidoreductase 
Francci3_2082 TetR family transcriptional regulator 
Francci3_2183 transposase, IS4 
Francci3_2257 hypothetical protein 
Francci3_2326 major intrinsic protein 
Francci3_2327 glyoxalase/bleomycin resistance 

protein/dioxygenase 
Francci3_2368 zinc/iron permease 
Francci3_2717 ArsR family transcriptional regulator 
Francci3_2746 ribonuclease BN 
Francci3_2807 aminotransferase, class I and II 
Francci3_2808 hypothetical protein 
Francci3_2809 hypothetical protein 
Francci3_2862 hypothetical protein 
Francci3_2873 L-lysine aminotransferase 
Francci3_2888 haloacid dehalogenase-like hydrolase 
Francci3_2943 hypothetical protein 
Francci3_2990 hypothetical protein 
Francci3_3125 TetR family transcriptional regulator 
Francci3_3126 hypothetical protein 
Francci3_3164 hypothetical protein 
Francci3_3252 hypothetical protein 
Francci3_3253 two component LuxR family transcriptional 

regulator 
Francci3_3254 putative transcriptional regulator 
Francci3_3261 hypothetical protein 
Francci3_3262 hypothetical protein 
Francci3_3403 iron permease FTR1 
Francci3_3511 small GTP-binding protein domain-containing 

protein 
Francci3_3768 RNA polymerase sigma factor RpoE 
Francci3_4003 BadM/Rrf2 family transcriptional regulator 
Francci3_4051 putative serine/threonine kinase anti-sigma factor 
Francci3_4073 hypothetical protein 
Francci3_4113 IS630 family transposase 
Francci3_4181 hypothetical protein 
Francci3_4182 hypothetical protein 
Francci3_4227 transposase, IS4 
Francci3_4536 thioredoxin reductase 
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Table A5. List of genes upregulated under salt stress in strain CcI6 based on RNA-seq 

Gene ID Description 

CCI6_RS00160  inosine 5-monophosphate dehydrogenase 
CCI6_RS00205  ribosomal-protein-alanine N-acetyltransferase RimI 
CCI6_RS00330  preprotein translocase subunit SecY 
CCI6_RS00475  DNA-directed RNA polymerase subunit beta 
CCI6_RS00495  50S ribosomal protein L11 
CCI6_RS00935  
CCI6_RS00940  thioredoxin family protein 
CCI6_RS01525  acetyl-/propionyl-CoA carboxylase subunit alpha 
CCI6_RS01555  hypothetical protein 
CCI6_RS01570  transcriptional regulator 
CCI6_RS01640  glycosyl transferase family 1 
CCI6_RS01730  phosphatidylinositol-3-phosphate phosphatase 
CCI6_RS01875  hypothetical protein 
CCI6_RS01925  histidine kinase 
CCI6_RS01945  hypothetical protein 
CCI6_RS01965  peptidase S15 
CCI6_RS02035  SsrA-binding protein 
CCI6_RS02115  hypothetical protein 
CCI6_RS02250  chromosome partitioning protein 
CCI6_RS02325 glycosyl transferase 
CCI6_RS02330  
CCI6_RS02375  hypothetical protein 
CCI6_RS02420  hypothetical protein 
CCI6_RS02550  Crp/Fnr family transcriptional regulator 
CCI6_RS02565  coenzyme F420-reducing hydrogenase subunit 

alpha 
CCI6_RS02600  nitrogenase molybdenum-iron protein alpha chain 
CCI6_RS02810  glycosyl hydrolase family 15 
CCI6_RS02820  endoribonuclease L-PSP 
CCI6_RS02950  hypothetical protein 
CCI6_RS02955  hypothetical protein 
CCI6_RS03270  glucose-1-phosphate cytidylyltransferase 
CCI6_RS03475  adenylate kinase 
CCI6_RS03540  polysaccharide deacetylase 
CCI6_RS03865  taurine dioxygenase 
CCI6_RS03870  nitrate ABC transporter substrate-binding protein 
CCI6_RS03980  hypothetical protein 
CCI6_RS04030  hypothetical protein 
CCI6_RS04150  type I restriction-modification system 

methyltransferase subunit 
CCI6_RS04505  histidine--tRNA ligase 
CCI6_RS04525  nucleoside-diphosphate sugar epimerase 
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CCI6_RS04715  signal peptidase I 
CCI6_RS05110  hypothetical protein 
CCI6_RS05135 acyl-CoA dehydrogenase 
CCI6_RS05150  cysteine synthase A 
CCI6_RS05375  2-phosphoglycerate kinase 
CCI6_RS05400 hypothetical protein 
CCI6_RS05575  site-specific DNA-methyltransferase 
CCI6_RS05860  hypothetical protein 
CCI6_RS05975  ATPase 
CCI6_RS06240  FMN reductase 
CCI6_RS06605  nucleotidyltransferase 
CCI6_RS06650 methyltransferase, FxLD system 
CCI6_RS06730  
CCI6_RS06895  glucans biosynthesis protein C 
CCI6_RS06950  hypothetical protein 
CCI6_RS07140  metallophosphoesterase 
CCI6_RS07280  ABC transporter 
CCI6_RS07410  Zn-dependent hydrolase 
CCI6_RS07440  cytotoxic translational repressor of toxin-antitoxin 

stability system 
CCI6_RS07540  membrane protein 
CCI6_RS07600  rod shape-determining protein MreC 
CCI6_RS07660  hypothetical protein 
CCI6_RS07915  isoprenyl transferase 
CCI6_RS07965  glycosyl transferase family 1 
CCI6_RS07970  hypothetical protein 
CCI6_RS08005  epimerase 
CCI6_RS08015  hypothetical protein 
CCI6_RS08090  type I-E CRISPR-associated protein Cse1/CasA 
CCI6_RS08215  hypothetical protein 
CCI6_RS08355  hypothetical protein 
CCI6_RS08395  
CCI6_RS08450  amidophosphoribosyltransferase 
CCI6_RS08505  hypothetical protein 
CCI6_RS08595  haloacid dehalogenase 
CCI6_RS08725  hypothetical protein 
CcI6_RS08745  molecular chaperone GroEL 
CCI6_RS08915  class II fructose-bisphosphate aldolase 
CCI6_RS09145  ABC transporter substrate-binding protein 
CCI6_RS09155  ABC transporter permease 
CCI6_RS09180  23S rRNA (guanosine(2251)-2\'-O)-

methyltransferase RlmB 
CCI6_RS09240  DNA integrity scanning protein DisA 
CCI6_RS09525  haloacid dehalogenase 
CCI6_RS09910  hypothetical protein 
CCI6_RS10260  methylmalonyl-CoA mutase 
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CCI6_RS10340  ferredoxin 
CCI6_RS10380  ABC transporter 
CCI6_RS10580  hypothetical protein, partial 
CCI6_RS10620  branched-chain amino acid ABC transporter 

substrate-binding protein 
CCI6_RS10625  multidrug ABC transporter ATP-binding protein 
CCI6_RS10640  hypothetical protein 
CCI6_RS10740  hypothetical protein 
CCI6_RS10750  luciferase-like protein 
CCI6_RS10760 hypothetical protein 
CCI6_RS10910  glycosyl transferase 
CCI6_RS10925  pyruvate carboxylase  
CCI6_RS10965  acyl-ACP desaturase 
CCI6_RS11030  hypothetical protein 
CCI6_RS11155  polysaccharide deacetylase 
CCI6_RS11270  glucose-1-phosphate cytidylyltransferase 
CCI6_RS11495  hypothetical protein 
CCI6_RS11580  pyridoxal biosynthesis lyase PdxS 
CCI6_RS11600  Holliday junction DNA helicase RuvA 
CCI6_RS11670  Mg-chelatase subunit ChlD 
CCI6_RS11890  hypothetical protein 
CCI6_RS11955  tRNA-specific adenosine deaminase 
CCI6_RS12030  molybdopterin molybdenumtransferase MoeA 
CCI6_RS12035  UDP-glucose pyrophosphorylase 
CCI6_RS12055  hypothetical protein 
CCI6_RS12100  diaminopimelate decarboxylase 
CCI6_RS12135  RND superfamily drug exporter 
CCI6_RS12160  glycine dehydrogenase 
CCI6_RS12175  hypothetical protein 
CCI6_RS12185  hypothetical protein 
CCI6_RS12225  
CCI6_RS12310  pyridine nucleotide-disulfide oxidoreductase 
CCI6_RS12470  hypothetical protein 
CCI6_RS12500  hypothetical protein 
CCI6_RS12535  transcriptional regulator 
CCI6_RS12800  proteasome accessory factor PafA2 
CCI6_RS12900  putative transcriptional regulator 
CCI6_RS13215  trehalose synthase 
CCI6_RS13230  hypothetical protein 
CCI6_RS13590  hypothetical protein 
CCI6_RS13650  oxidoreductase 
CCI6_RS13655  hypothetical protein 
CCI6_RS13965  hypothetical protein 
CCI6_RS13985  amino acid/amide ABC transporter substrate-binding 

protein, HAAT family 
CCI6_RS14005  hypothetical protein 
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CCI6_RS14305 non-ribosomal peptide synthetase 
CCI6_RS14525  6-phosphofructokinase 
CCI6_RS14550  
CCI6_RS14740 phosphodiesterase/alkaline phosphatase D 
CCI6_RS14820  hypothetical protein 
CCI6_RS14850  hypothetical protein 
CCI6_RS14960  hypothetical protein 
CCI6_RS15145  phosphoserine phosphatase 
CCI6_RS15305  TetR family transcriptional regulator 
CCI6_RS15330  hypothetical protein 
CCI6_RS15530  hypothetical protein 
CCI6_RS15620 IS110 family transposase 
CCI6_RS15625  hypothetical protein 
CCI6_RS15785  hypothetical protein 
CCI6_RS15820 radical SAM protein 
CCI6_RS15880  hypothetical protein 
CCI6_RS15990  hypothetical protein 
CCI6_RS16015  hypothetical protein 
CCI6_RS16210  quercetin 2,3-dioxygenase 
CCI6_RS16255  prephenate dehydratase 
CCI6_RS16295  hypothetical protein 
CCI6_RS16550  riboflavin synthase subunit alpha 
CCI6_RS16730  peroxidase 
CCI6_RS16810  sporulation protein SsgA 
CCI6_RS17225  glucose-6-phosphate dehydrogenase 
CCI6_RS17310  membrane protein 
CCI6_RS17520  hypothetical protein 
CCI6_RS17580  hypothetical protein 
CCI6_RS17660  ubiquinone biosynthesis protein UbiE 
CCI6_RS17915  ADP-heptose--LPS heptosyltransferase 
CCI6_RS18130  DUF1298 domain-containing protein 
CCI6_RS18210  
CCI6_RS18295  DNA-binding protein 
CCI6_RS18410  type I glyceraldehyde-3-phosphate dehydrogenase 
CCI6_RS18525  hypothetical protein 
CCI6_RS18550  heat-shock protein Hsp20 
CCI6_RS18600  LysR family transcriptional regulator 
CCI6_RS18715  ATP-binding protein 
CCI6_RS18745 hypothetical protein 
CCI6_RS18765  ADP-ribose pyrophosphatase 
CCI6_RS18975  hypothetical protein 
CCI6_RS18980  Sec-independent protein translocase TatB 
CCI6_RS19085  pyoverdine biosynthesis protein 
CCI6_RS19210  RNA polymerase sigma factor 
CCI6_RS19225  dTDP-4-dehydrorhamnose 3,5-epimerase 
CCI6_RS19280  aminotransferase 



  
 

 
 

119 

CCI6_RS19305  FAD-dependent oxidoreductase 
CCI6_RS19510  lipoyl synthase 
CCI6_RS19585  phage terminase large subunit 
CCI6_RS19875 hypothetical protein 
CCI6_RS19940  hypothetical protein 
CCI6_RS19950  aspartate aminotransferase family protein 
CCI6_RS19985  
CCI6_RS20030  methyltransferase, FxLD system 
CCI6_RS20095  hypothetical protein 
CCI6_RS20100 DDE transposase 
CCI6_RS20335 disulfide bond formation protein DsbA 
CCI6_RS20385  hypothetical protein 
CCI6_RS20460 transcriptional regulator, GntR family, partial 
CCI6_RS20525  hydantoinase 
CCI6_RS20740  hypothetical protein 
CCI6_RS20860  hypothetical protein 
CCI6_RS20960  hypothetical protein 
CCI6_RS21235  aldo/keto reductase 
CCI6_RS21440  pterin-4-alpha-carbinolamine dehydratase 
CCI6_RS21635 type I restriction-modification system 

methyltransferase subunit 
CCI6_RS21670  acyltransferase 
CCI6_RS21730  MFS transporter 
CCI6_RS21895  glycosyl transferase family 1 
CCI6_RS22005  
CCI6_RS22150  hypothetical protein 
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Table A6. List of genes downregulated under salt stress in strain CcI6 according to 
RNA-seq analysis 

Gene ID Description 

CCI6_RS00055  hypothetical protein 
CCI6_RS00100  hypothetical protein 
CCI6_RS00240  NAD(P)H-hydrate dehydratase 
CCI6_RS00250  PadR family transcriptional regulator 
CCI6_RS00290  50S ribosomal protein L17 
CCI6_RS00335  50S ribosomal protein L15 
CCI6_RS00485  50S ribosomal protein L10 
CCI6_RS00560  orotate phosphoribosyltransferase 
CCI6_RS00590  2-oxoacid ferredoxin oxidoreductase subunit beta 
CCI6_RS00605  NADH-quinone oxidoreductase subunit N 
CCI6_RS00635  NADH-quinone oxidoreductase subunit H 
CCI6_RS00705  serine/threonine protein kinase 
CCI6_RS00810  cytochrome C biogenesis protein CcdA 
CCI6_RS00865  hypothetical protein 
CCI6_RS00965  hypothetical protein 
CCI6_RS00985  hypothetical protein 
CCI6_RS01050  transcriptional regulator 
CCI6_RS01130  hypothetical protein 
CCI6_RS01145  anti-sigma factor antagonist 
CCI6_RS01185  shikimate dehydrogenase 
CCI6_RS01195  putative phosphatase 
CCI6_RS01235  hypothetical protein 
CCI6_RS01245  glycoside hydrolase 
CCI6_RS01435  succinate dehydrogenase, cytochrome b556 subunit 
CCI6_RS01480  phosphoglucomutase 
CCI6_RS01485  purine-nucleoside phosphorylase 
CCI6_RS01595  transcriptional regulator 
CCI6_RS01615  NAD(P)-dependent oxidoreductase 
CCI6_RS01620 transcriptional regulator, TetR family 
CCI6_RS01705  glycosyl transferase family 1 
CCI6_RS01710  glycosyl transferase family 1 
CCI6_RS01830  ATPase AAA 
CCI6_RS01885  hypothetical protein 
CCI6_RS02010  uroporphyrinogen-III C-methyltransferase 
CCI6_RS02075  
CCI6_RS02265  N-acetylmuramoyl-L-alanine amidase 
CCI6_RS02305  MFS transporter 
CCI6_RS02345  30S ribosomal protein S6 
CCI6_RS02495  guanylate kinase 
CCI6_RS02515  hypothetical protein 
CCI6_RS02545  hypothetical protein 
CCI6_RS02650  heme biosynthesis protein HemY 
CCI6_RS02665  2-oxoglutarate ferredoxin oxidoreductase subunit alpha 



  
 

 
 

121 

CCI6_RS02735  adenosine deaminase 
CCI6_RS02850  cell division protein FtsI 
CCI6_RS02930 helix-turn-helix transcriptional regulator 
CCI6_RS02965  hypothetical protein 
CCI6_RS03100  ribose-phosphate pyrophosphokinase 
CCI6_RS03115  fatty acid desaturase 
CCI6_RS03200  hypothetical protein 
CCI6_RS03205  putative enzyme involved in methoxymalonyl-ACP 

biosynthesis 
CCI6_RS03580  NUDIX hydrolase 
CCI6_RS03635  
CCI6_RS03660  TIGR03085 family protein 
CCI6_RS03670  serine/threonine phosphatase 
CCI6_RS03695  glycoside hydrolase 
CCI6_RS03740  hypothetical protein 
CCI6_RS03745  hypothetical protein 
CCI6_RS03900  hypothetical protein 
CCI6_RS04105  hypothetical protein 
CCI6_RS04110  hypothetical protein 
CCI6_RS04250  amidase 
CCI6_RS04260  hypothetical protein 
CCI6_RS04270  glycosyl transferase family 1 
CCI6_RS04340 hypothetical protein 
CCI6_RS04445  DNA starvation/stationary phase protection protein 
CCI6_RS04490  acetate kinase 
CCI6_RS04530  hypothetical protein 
CCI6_RS04540  4-hydroxy-tetrahydrodipicolinate reductase 
CCI6_RS04615  
CCI6_RS04645  1-deoxy-D-xylulose-5-phosphate reductoisomerase 
CCI6_RS04740  30S ribosomal protein S16 
CCI6_RS04895  hypothetical protein 
CCI6_RS04935  branched chain amino acid aminotransferase 
CCI6_RS05020  hypothetical protein 
CCI6_RS05060  alpha/beta hydrolase 
CCI6_RS05340  PMT family glycosyltransferase 4-amino-4-deoxy-L-

arabinose transferase 
CCI6_RS05440  two-component sensor histidine kinase 
CCI6_RS05705  resolvase 
CCI6_RS05745  malate dehydrogenase 
CCI6_RS05865  LysR family transcriptional regulator 
CCI6_RS05925  protein-tyrosine-phosphatase 
CCI6_RS05940  polyketide synthase regulator 
CCI6_RS06050  acetyltransferase 
CCI6_RS06090  LexA repressor 
CCI6_RS06100  AraC family transcriptional regulator 
CCI6_RS06105  glyoxalase 
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CCI6_RS06130  tRNA (N6-isopentenyl adenosine(37)-C2)-
methylthiotransferase MiaB 

CCI6_RS06235  LLM class F420-dependent oxidoreductase 
CCI6_RS06340  hypothetical protein 
CCI6_RS06365 hypothetical protein, partial 
CCI6_RS06645  hypothetical protein 
CCI6_RS06750  
CCI6_RS06875  hypothetical protein 
CCI6_RS06930  exodeoxyribonuclease III 
CCI6_RS06980  dihydroorotate oxidase 
CCI6_RS07125  stress response protein, TerZ- and CABP1 
CCI6_RS07275  hypothetical protein 
CCI6_RS07480  hypothetical protein 
CCI6_RS07625  radical SAM protein 
CCI6_RS07690  VWA domain-containing protein 
CCI6_RS07745  plasmid partitioning protein 
CCI6_RS07795  
CCI6_RS07835  competence protein ComEC 
CCI6_RS07910  DNA repair protein RecO 
CCI6_RS07955 DNA primase 
CCI6_RS07990  
CCI6_RS08035  hypothetical protein 
CCI6_RS08055  glycosyltransferase WbuB 
CCI6_RS08065 oxidoreductase 
CCI6_RS08185  hypothetical protein 
CCI6_RS08195  twin-arginine translocation pathway signal protein 
CCI6_RS08210  anti-sigma factor antagonist 
CCI6_RS08220  hypothetical protein 
CCI6_RS08340  hypothetical protein 
CCI6_RS08380 TIR domain-containing protein 
CCI6_RS08430  hypothetical protein 
CCI6_RS08435  DUF2530 domain-containing protein 
CCI6_RS08475  DNA-binding protein 
CCI6_RS08545  
CCI6_RS08605  cold-shock protein 
CCI6_RS08655 phosphoribosylformylglycinamidine synthase II 
CCI6_RS08660  phosphoribosylformylglycinamidine synthase I 
CCI6_RS08770  hypothetical protein 
CCI6_RS08775  hypothetical protein 
CCI6_RS08805  serine/threonine protein phosphatase 
CCI6_RS08825  Fe-S oxidoreductase 
CCI6_RS08835  type III pantothenate kinase 
CCI6_RS08850  Aspartate 1-decarboxylase 2 
CCI6_RS08980  nuclease 
CCI6_RS09030  hypothetical protein 
CCI6_RS09045  hypothetical protein 
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CCI6_RS09085  ATP-binding protein 
CCI6_RS09105  Crp/Fnr family transcriptional regulator 
CCI6_RS09140 MFS transporter 
CCI6_RS09170  formylmethionine deformylase 
CCI6_RS09195  hypothetical protein 
CCI6_RS09220  2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase 
CCI6_RS09230  hypothetical protein 
CCI6_RS09410  secretion system protein 
CCI6_RS09440  anti-sigma factor 
CCI6_RS09570  hypothetical protein 
CCI6_RS09655  acetyltransferase 
CCI6_RS09720  CoA ester lyase 
CCI6_RS09740  
CCI6_RS09770  hypothetical protein 
CCI6_RS09885  McrBC 5-methylcytosine restriction system component-like 

protein 
CCI6_RS09940  actinorhodin polyketide beta-ketoacyl synthase 
CCI6_RS09945  3-oxoacyl-ACP synthase 
CCI6_RS10085  MarR family transcriptional regulator 
CCI6_RS10115  membrane protein 
CCI6_RS10255  hypothetical protein 
CCI6_RS10290  membrane protein 
CCI6_RS10315  hypothetical protein 
CCI6_RS10430  allophanate hydrolase 
CCI6_RS10440  hypothetical protein 
CCI6_RS10445  transcriptional regulator 
CCI6_RS10520  hypothetical protein 
CCI6_RS10600  hypothetical protein 
CCI6_RS10645  cystathionine beta-synthase 
CCI6_RS10690  hypothetical protein 
CCI6_RS10840 ferredoxin subunit of nitrite reductase and ring-

hydroxylating dioxygenase 
CCI6_RS10865  VWA domain-containing protein 
CCI6_RS10950  transcriptional regulator 
CCI6_RS11025  GGDEF domain-containing protein 
CCI6_RS11255  sugar nucleotide processing enzyme 
CCI6_RS11355  acetyltransferase 
CCI6_RS11385  type 12 methyltransferase 
CCI6_RS11435  sulfate adenylyltransferase subunit 2 
CCI6_RS11445  hypothetical protein 
CCI6_RS11850 cell division protein FtsZ, partial 
CCI6_RS11975  transcriptional regulator 
CCI6_RS12255  nitroreductase 
CCI6_RS12280  FAD/FMN-dependent dehydrogenase 
CCI6_RS12300  acyl-CoA dehydrogenase 
CCI6_RS12330  hypothetical protein 
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CCI6_RS12350  alpha/beta hydrolase 
CCI6_RS12380  
CCI6_RS12425  electron transporter SenC 
CCI6_RS12480  hypothetical protein 
CCI6_RS12665  precorrin-6A synthase (deacetylating) 
CCI6_RS12710 hypothetical protein 
CCI6_RS12775  RecB family exonuclease 
CCI6_RS12805  prokaryotic ubiquitin-like protein Pup 
CCI6_RS12835  
CCI6_RS12905  WYL domain-containing protein 
CCI6_RS13080  ATP synthase subunit beta 
CCI6_RS13100  cob(I)yrinic acid a,c-diamide adenosyltransferase 
CCI6_RS13155  hypothetical protein 
CCI6_RS13175  hypothetical protein 
CCI6_RS13185  
CCI6_RS13190  two-component sensor histidine kinase 
CCI6_RS13265  hypothetical protein 
CCI6_RS13385 hypothetical protein 
CCI6_RS13400 IS66 family transposase 
CCI6_RS13495 hypothetical protein 
CCI6_RS13670  dipeptidyl aminopeptidase/acylaminoacyl peptidase 
CCI6_RS13680  carboxylate--amine ligase 
CCI6_RS13730  hypothetical protein 
CCI6_RS13755  hypothetical protein 
CCI6_RS13795  ABC transporter permease 
CCI6_RS13820  transcriptional regulator, TetR family 
CCI6_RS13835  squalene synthase HpnD 
CCI6_RS13840  amine oxidase 
CCI6_RS13950  hypothetical protein 
CCI6_RS13980  hypothetical protein 
CCI6_RS14040  
CCI6_RS14485  hypothetical protein 
CCI6_RS14785  hypothetical protein 
CCI6_RS14935 aminopeptidase N 
CCI6_RS14970 transposase 
CCI6_RS14995  acyl-CoA dehydrogenase 
CCI6_RS15310  hypothetical protein 
CCI6_RS15355  RecB family exonuclease 
CCI6_RS15365  hypothetical protein 
CCI6_RS15375  chromosome partitioning protein 
CCI6_RS15410  Non-homologous end joining protein Ku 
CCI6_RS15420  adenylyltransferase/sulfurtransferase MoeZ 
CCI6_RS15595  RNA polymerase sigma24 factor 
CCI6_RS15595  RNA polymerase sigma24 factor 
CCI6_RS15685  
CCI6_RS15760  hypothetical protein 
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CCI6_RS15770  ATP-binding protein 
CCI6_RS15795  hypothetical protein 
CCI6_RS15970  heat-shock protein Hsp20 
CCI6_RS16005  hypothetical protein 
CCI6_RS16060  epoxide hydrolase 
CCI6_RS16090  hypothetical protein 
CCI6_RS16160  methyltransferase 
CCI6_RS16270  NAD(P) transhydrogenase subunit beta 
CCI6_RS16305  potassium transporter TrkA 
CCI6_RS16350  2-nitropropane dioxygenase 
CCI6_RS16450  3-dehydroquinate synthase 
CCI6_RS16480  dihydroorotase 
CCI6_RS16590  RNA methyltransferase 
CCI6_RS16635  arginine repressor 
CCI6_RS16645  argininosuccinate lyase 
CCI6_RS16740  ATPase 
CCI6_RS16750  threonine--tRNA ligase 
CCI6_RS16800  aldo/keto reductase 
CCI6_RS16935  hypothetical protein 
CCI6_RS17060 hypothetical protein 
CCI6_RS17095  hypothetical protein 
CCI6_RS17125  glucose-1-phosphate adenylyltransferase 
CCI6_RS17185  ABC transporter 
CCI6_RS17230  glucose-6-phosphate dehydrogenase 
CCI6_RS17270  isopentenyl-diphosphate Delta-isomerase 
CCI6_RS17275  biotin synthase BioB 
CCI6_RS17425  hypothetical protein 
CCI6_RS17650  hypothetical protein 
CCI6_RS17735  glucokinase 
CCI6_RS17890  transcriptional regulator 
CCI6_RS18005  polysaccharide deacetylase familiy protein 
CCI6_RS18040  hypothetical protein 
CCI6_RS18240  uroporphyrinogen decarboxylase 
CCI6_RS18275  hypothetical protein 
CCI6_RS18370 UDP-N-acetyl-D-glucosamine dehydrogenase 
CCI6_RS18450  glycosyl transferase 
CCI6_RS18480 peptidase M4 family protein 
CCI6_RS18515  hypothetical protein 
CCI6_RS18590  AMP-dependent synthetase 
CCI6_RS18705  hypothetical protein 
CCI6_RS19000  aldehyde dehydrogenase 
CCI6_RS19065  alpha/beta hydrolase 
CCI6_RS19185  signal transduction histidine kinase 
CCI6_RS19220  acetyltransferase 
CCI6_RS19470 NAD+ synthase 
CCI6_RS19495  RDD family protein 
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CCI6_RS19550  transcriptional regulator 
CCI6_RS19630  hypothetical protein 
CCI6_RS19640  hypothetical protein 
CCI6_RS19735  site-specific recombinase DNA invertase Pin 
CCI6_RS19780  FAD-binding monooxygenase 
CCI6_RS19825  hypothetical protein 
CCI6_RS20080  methylenetetrahydrofolate reductase 
CCI6_RS20140  urate oxidase 
CCI6_RS20175  hypothetical protein 
CCI6_RS20245  hypothetical protein 
CCI6_RS20270  NUDIX hydrolase 
CCI6_RS20455  glutamate--tRNA ligase 
CCI6_RS20610  hypothetical protein 
CCI6_RS20650 hypothetical protein, partial 
CCI6_RS20795  hypothetical protein 
CCI6_RS20965  
CCI6_RS21000  phage shock protein A 
CCI6_RS21005  hypothetical protein 
CCI6_RS21045  hydantoinase/oxoprolinase 
CCI6_RS21240  hypothetical protein 
CCI6_RS21545  type VI secretion protein 
CCI6_RS21675  hypothetical protein 
CCI6_RS21815  glutamate racemase 
CCI6_RS21940  hypothetical protein 
CCI6_RS22000 transposase 
CCI6_RS22200  hemolysin 
CCI6_RS22385  hypothetical protein 
CCI6_RS22490  NADPH:quinone reductase 
CCI6_RS22545  hypothetical protein 
CCI6_RS22565  hypothetical protein 
CCI6_RS22615  site-specific recombinase XerD 
CCI6_RS22875  DDE transposase family protein 
CCI6_RS22915  hypothetical protein 
CCI6_RS23195  
thrS threonine--tRNA ligase 
valS valine--tRNA ligase 
Gene ID Description 
CCI6_RS00055  hypothetical protein 
CCI6_RS00100  hypothetical protein 
CCI6_RS00240  NAD(P)H-hydrate dehydratase 
CCI6_RS00250  PadR family transcriptional regulator 
CCI6_RS00290  50S ribosomal protein L17 
CCI6_RS00335  50S ribosomal protein L15 
CCI6_RS00485  50S ribosomal protein L10 
CCI6_RS00560  orotate phosphoribosyltransferase 
CCI6_RS00590  2-oxoacid ferredoxin oxidoreductase subunit beta 
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CCI6_RS00605  NADH-quinone oxidoreductase subunit N 
CCI6_RS00635  NADH-quinone oxidoreductase subunit H 
CCI6_RS00705  serine/threonine protein kinase 
CCI6_RS00810  cytochrome C biogenesis protein CcdA 
CCI6_RS00865  hypothetical protein 
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Table A7. List of genes upregulated under osmotic stress in strain CcI6 based on RNA-
seq 

Gene ID Description 

CCI6_RS00005  hypothetical protein 
CCI6_RS00035  phosphoesterase 
CCI6_RS00090  succinyl-CoA ligase subunit beta 
CCI6_RS00140  twin-arginine translocation pathway signal protein 
CCI6_RS00205  ribosomal-protein-alanine N-acetyltransferase RimI 
CCI6_RS00300  30S ribosomal protein S4 
CCI6_RS00325  adenylate kinase 
CCI6_RS00410  30S ribosomal protein S19 
CCI6_RS00475  DNA-directed RNA polymerase subunit beta 
CCI6_RS00505  preprotein translocase subunit SecE 
CCI6_RS00525  hypothetical protein 
CCI6_RS00595  hypothetical protein 
CCI6_RS00610 NADH-quinone oxidoreductase subunit M 
CCI6_RS00630  NADH-quinone oxidoreductase subunit I 
CCI6_RS00635  NADH-quinone oxidoreductase subunit H 
CCI6_RS00705  serine/threonine protein kinase 
CCI6_RS00850  methyltransferase 
CCI6_RS00900  methionine--tRNA ligase 
CCI6_RS00910  heavy metal transport/detoxification protein 
CCI6_RS00960  nucleoside-diphosphate sugar epimerase 
CCI6_RS01075  hypothetical protein 
CCI6_RS01160  hypothetical protein 
CCI6_RS01215  hypothetical protein 
CCI6_RS01245  glycoside hydrolase 
CCI6_RS01285  Kef-type K+ transport system, predicted NAD-

binding component 
CCI6_RS01385  
CCI6_RS01515  NAD(P)H-quinone dehydrogenase 
CCI6_RS01775  mannose-6-phosphate isomerase 
CCI6_RS01810  RDD family protein 
CCI6_RS01930  pilus assembly protein CpaF 
CCI6_RS01980  hypothetical protein 
CCI6_RS02120  hypothetical protein 
CCI6_RS02275  thioredoxin-disulfide reductase 
CCI6_RS02325 glycosyl transferase 
CCI6_RS02360  50S ribosomal protein L9 
CCI6_RS02550  Crp/Fnr family transcriptional regulator 
CCI6_RS02640  NifZ protein 
CCI6_RS02670  2-oxoacid ferredoxin oxidoreductase subunit beta 
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CCI6_RS02750  hypothetical protein 
CCI6_RS02845  serine/threonine protein kinase 
CCI6_RS02955  hypothetical protein 
CCI6_RS02985  molybdate ABC transporter permease 
CCI6_RS03245  hypothetical protein 
CCI6_RS03285  hypothetical protein 
CCI6_RS03485  NUDIX hydrolase 
CCI6_RS03675  hypothetical protein 
CCI6_RS03910  molecular chaperone HtpG 
CCI6_RS04080  transcriptional regulator 
CCI6_RS04090  hypothetical protein 
CCI6_RS04120  ABC transporter 
CCI6_RS04165  (2Fe-2S)-binding protein 
CCI6_RS04460  CDP-alcohol phosphatidyltransferase 
CCI6_RS04570  exopolyphosphatase-like enzyme 
CCI6_RS04620  sulfate ABC transporter ATP-binding protein 
CCI6_RS04795  hypothetical protein 
CCI6_RS04975  acetolactate synthase small subunit 
CCI6_RS05060  alpha/beta hydrolase 
CCI6_RS05355  hypothetical protein 
CCI6_RS05425  hypothetical protein, partial 
CCI6_RS05570  hypothetical protein 
CCI6_RS05635  hypothetical protein 
CCI6_RS05830  hypothetical protein 
CCI6_RS05860  hypothetical protein 
CCI6_RS05870  succinate dehydrogenase 
CCI6_RS05965  propionyl-CoA carboxylase subunit beta 
CCI6_RS05975  ATPase 
CCI6_RS06010  hypothetical protein 
CCI6_RS06085  peptidoglycan-binding protein LysM 
CCI6_RS06140  ABC transporter substrate-binding protein 
CCI6_RS06405  hypothetical protein 
CCI6_RS06485  K+-transporting ATPase subunit F 
CCI6_RS06615  hypothetical protein 
CCI6_RS06760  
CCI6_RS06915 hypothetical protein 
CCI6_RS07025  acetyl-CoA carboxylase carboxyltransferase 

subunit alpha/beta 
CCI6_RS07105  hypothetical protein 
CCI6_RS07130  protein disulfide-isomerase 
CCI6_RS07155  nucleic acid-binding protein 
CCI6_RS07420  serine/threonine protein kinase 
CCI6_RS07470  hypothetical protein 
CCI6_RS07600  rod shape-determining protein MreC 
CCI6_RS07615  rod shape-determining protein RodA 
CCI6_RS07635  hypothetical protein 
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CCI6_RS07650  GTPase Obg 
CCI6_RS07745  plasmid partitioning protein 
CCI6_RS07770  
CCI6_RS08005  epimerase 
CCI6_RS08090  type I-E CRISPR-associated protein Cse1/CasA 
CCI6_RS08255  hypothetical protein 
CCI6_RS08260  hypothetical protein 
CCI6_RS08320  hypothetical protein 
CCI6_RS08335  large mechanosensitive ion channel protein MscL 
CCI6_RS08375  pyridoxine/pyridoxamine 5\'-phosphate oxidase 
CCI6_RS08430  hypothetical protein 
CCI6_RS08750  threonine synthase 
CCI6_RS08995  hypothetical protein 
CCI6_RS09110 hypothetical protein 
CCI6_RS09145  ABC transporter substrate-binding protein 
CCI6_RS09155  ABC transporter permease 
CCI6_RS09260 phosphate ABC transporter, permease protein PstA 
CCI6_RS09280  hypothetical protein 
CCI6_RS09330  ATPase 
CCI6_RS09565  hypothetical protein 
CCI6_RS09625 pyruvate/2-oxoglutarate dehydrogenase complex, 

dehydrogenase component subunit alpha 
CCI6_RS09860  ABC transporter substrate-binding protein 
CCI6_RS09995  enoyl-CoA hydratase 
CCI6_RS10090  hydrolase or acyltransferase of alpha/beta 

superfamily 
CCI6_RS10225  glutamate synthase 
CCI6_RS10340  ferredoxin 
CCI6_RS10700 hypothetical protein 
CCI6_RS10740  hypothetical protein 
CCI6_RS10755  short-chain dehydrogenase 
CCI6_RS10805 branched chain amino acid ABC transporter 

substrate-binding protein 
CCI6_RS10900  DNA-binding response regulator 
CCI6_RS10910  glycosyl transferase 
CCI6_RS10965  acyl-ACP desaturase 
CCI6_RS10990  hypothetical protein 
CCI6_RS11040  hypothetical protein 
CCI6_RS11060  phosphopantetheine-binding protein 
CCI6_RS11125  hypothetical protein 
CCI6_RS11160  glycosyl transferase 
CCI6_RS11195  glycosyl transferase 
CCI6_RS11220  glycosyl transferase 
CCI6_RS11335  3-hydroxybutyryl-CoA dehydrogenase 
CCI6_RS11400  membrane protein 
CCI6_RS11405  helix-turn-helix transcriptional regulator 
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CCI6_RS11580  pyridoxal biosynthesis lyase PdxS 
CCI6_RS11990 site-specific recombinase DNA invertase Pin 
CCI6_RS12035  UDP-glucose pyrophosphorylase 
CCI6_RS12060  hypothetical protein 
CCI6_RS12160  glycine dehydrogenase 
CCI6_RS12165  hypothetical protein 
CCI6_RS12225  
CCI6_RS12255  nitroreductase 
CCI6_RS12535  transcriptional regulator 
CCI6_RS12560  transcriptional regulator 
CCI6_RS12630  cytochrome P450 
CCI6_RS12745  carboxylate--amine ligase 
CCI6_RS12845 ATPase 
CCI6_RS12940  ABC transporter ATP-binding protein 
CCI6_RS13050  ATP synthase subunit A 
CCI6_RS13555 hypothetical protein 
CCI6_RS13590  hypothetical protein 
CCI6_RS13650  oxidoreductase 
CCI6_RS13885  urease accessory protein UreD 
CCI6_RS14275  dimethylmenaquinone methyltransferase 
CCI6_RS14320  hypothetical protein 
CCI6_RS14425  menaquinol-cytochrome c reductase cytochrome b 

subunit 
CCI6_RS14435  glyoxalase 
CCI6_RS14670  hypothetical protein 
CCI6_RS14905  hypothetical protein 
CCI6_RS14930  hypothetical protein 
CCI6_RS15030  ABC transporter permease 
CCI6_RS15755 hypothetical protein 
CCI6_RS16040  hypothetical protein 
CCI6_RS16145  hypothetical protein 
CCI6_RS16380  membrane protein 
CCI6_RS16425  aminodeoxychorismate lyase 
CCI6_RS16455  elongation factor P 
CCI6_RS16505  hypothetical protein 
CCI6_RS16675  hypothetical protein 
CCI6_RS16810  sporulation protein SsgA 
CCI6_RS16960  ABC transporter 
CCI6_RS16970  hypothetical protein 
CCI6_RS17055  LuxR family transcriptional regulator 
CCI6_RS17465  hemerythrin 
CCI6_RS17545  death-on-curing protein 
CCI6_RS17635  MFS transporter 
CCI6_RS17670  B12-binding domain-containing radical SAM 

protein 
CCI6_RS17795  ribonucleotide reductase 
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CCI6_RS17890  transcriptional regulator 
CCI6_RS17905  acetyltransferase (isoleucine patch superfamily) 
CCI6_RS18285  1-deoxy-D-xylulose-5-phosphate synthase 
CCI6_RS18295  DNA-binding protein 
CCI6_RS18305  portal protein 
CCI6_RS18315  nucleotide-binding protein 
CCI6_RS18425  RNase adaptor protein RapZ 
CCI6_RS18445  Zn-dependent hydrolase 
CCI6_RS18480 peptidase M4 family protein 
CCI6_RS18555  hypothetical protein 
CCI6_RS18645  Ni,Fe-hydrogenase maturation factor 
CCI6_RS18720  hypothetical protein 
CCI6_RS18740 hypothetical protein 
CCI6_RS18745 hypothetical protein 
CCI6_RS18760 arylsulfatase regulator (Fe-S oxidoreductase) 
CCI6_RS18855 hypothetical protein 
CCI6_RS18980  Sec-independent protein translocase TatB 
CCI6_RS19025  ABC transporter substrate-binding protein 
CCI6_RS19090  pyoverdine biosynthesis 
CCI6_RS19135  hypothetical protein 
CCI6_RS19330  radical SAM family protein 
CCI6_RS19505  hypothetical protein 
CCI6_RS19680  site-specific integrase 
CCI6_RS19880  hypothetical protein 
CCI6_RS19925  salicylate 1-monooxygenase 
CCI6_RS19940  hypothetical protein 
CCI6_RS19950  aspartate aminotransferase family protein 
CCI6_RS20190  dCMP deaminase 
CCI6_RS20335 disulfide bond formation protein DsbA 
CCI6_RS20420  
CCI6_RS20595  hypothetical protein 
CCI6_RS20735 GNAT family N-acetyltransferase 
CCI6_RS20750  
CCI6_RS21155  hypothetical protein 
CCI6_RS21235  aldo/keto reductase 
CCI6_RS21305  hypothetical protein 
CCI6_RS21525 LuxR family transcriptional regulator, partial 
CCI6_RS21685  hypothetical protein 
CCI6_RS21770  DnaK antisense family putative NAD-specific 

glutamate dehydrogenase 
CCI6_RS21870  hypothetical protein 
CCI6_RS21895  glycosyl transferase family 1 
CCI6_RS22005  
CCI6_RS22030  MFS transporter 
CCI6_RS22130 multidrug ABC transporter ATPase/permease 
CCI6_RS22620  endonuclease 



  
 

 
 

133 

CCI6_RS22660  hypothetical protein 
CCI6_RS22705  hypothetical protein 
CCI6_RS22765  hypothetical protein 
CCI6_RS22820 hypothetical protein 
CCI6_RS22850  
CCI6_RS22910  hypothetical protein 
clpP_2 ATP-dependent Clp protease proteolytic subunit 
guaA GMP synthetase 
prfB peptide chain release factor 2 
pyrH UMP kinase 
sufC ABC transporter ATP-binding protein 
Gene ID Description 
CCI6_RS00005  hypothetical protein 
CCI6_RS00035  phosphoesterase 
CCI6_RS00090  succinyl-CoA ligase subunit beta 
CCI6_RS00140  twin-arginine translocation pathway signal protein 
CCI6_RS00205  ribosomal-protein-alanine N-acetyltransferase RimI 
CCI6_RS00300  30S ribosomal protein S4 
CCI6_RS00325  adenylate kinase 
CCI6_RS00410  30S ribosomal protein S19 
CCI6_RS00475  DNA-directed RNA polymerase subunit beta 
CCI6_RS00505  preprotein translocase subunit SecE 
CCI6_RS00525  hypothetical protein 
CCI6_RS00595  hypothetical protein 
CCI6_RS00610 NADH-quinone oxidoreductase subunit M 
CCI6_RS00630  NADH-quinone oxidoreductase subunit I 
CCI6_RS00635  NADH-quinone oxidoreductase subunit H 
CCI6_RS00705  serine/threonine protein kinase 
CCI6_RS00850  methyltransferase 
CCI6_RS00900  methionine--tRNA ligase 
CCI6_RS00910  heavy metal transport/detoxification protein 
CCI6_RS00960  nucleoside-diphosphate sugar epimerase 
CCI6_RS01075  hypothetical protein 
CCI6_RS01160  hypothetical protein 
CCI6_RS01215  hypothetical protein 
CCI6_RS01245  glycoside hydrolase 
CCI6_RS01285  Kef-type K+ transport system, predicted NAD-

binding component 
CCI6_RS01385  
CCI6_RS01515  NAD(P)H-quinone dehydrogenase 
CCI6_RS01775  mannose-6-phosphate isomerase 
CCI6_RS01810  RDD family protein 
CCI6_RS01930  pilus assembly protein CpaF 
CCI6_RS01980  hypothetical protein 
CCI6_RS02120  hypothetical protein 
CCI6_RS02275  thioredoxin-disulfide reductase 



  
 

 
 

134 

CCI6_RS02325 glycosyl transferase 
CCI6_RS02360  50S ribosomal protein L9 
CCI6_RS02550  Crp/Fnr family transcriptional regulator 
CCI6_RS02640  NifZ protein 
CCI6_RS02670  2-oxoacid ferredoxin oxidoreductase subunit beta 
CCI6_RS02750  hypothetical protein 
CCI6_RS02845  serine/threonine protein kinase 
CCI6_RS02955  hypothetical protein 
CCI6_RS02985  molybdate ABC transporter permease 
CCI6_RS03245  hypothetical protein 
CCI6_RS03285  hypothetical protein 
CCI6_RS03485  NUDIX hydrolase 
CCI6_RS03675  hypothetical protein 
CCI6_RS03910  molecular chaperone HtpG 
CCI6_RS04080  transcriptional regulator 
CCI6_RS04090  hypothetical protein 
CCI6_RS04120  ABC transporter 
CCI6_RS04165  (2Fe-2S)-binding protein 
CCI6_RS04460  CDP-alcohol phosphatidyltransferase 
CCI6_RS04570  exopolyphosphatase-like enzyme 
CCI6_RS04620  sulfate ABC transporter ATP-binding protein 
CCI6_RS04795  hypothetical protein 
CCI6_RS04975  acetolactate synthase small subunit 
CCI6_RS05060  alpha/beta hydrolase 
CCI6_RS05355  hypothetical protein 
CCI6_RS05425  hypothetical protein, partial 
CCI6_RS05570  hypothetical protein 
CCI6_RS05635  hypothetical protein 
CCI6_RS05830  hypothetical protein 
CCI6_RS05860  hypothetical protein 
CCI6_RS05870  succinate dehydrogenase 
CCI6_RS05965  propionyl-CoA carboxylase subunit beta 
CCI6_RS05975  ATPase 
CCI6_RS06010  hypothetical protein 
CCI6_RS06085  peptidoglycan-binding protein LysM 
CCI6_RS06140  ABC transporter substrate-binding protein 
CCI6_RS06405  hypothetical protein 
CCI6_RS06485  K+-transporting ATPase subunit F 
CCI6_RS06615  hypothetical protein 
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Table A8. List of genes downregulated under osmotic stress in strain CcI6 based on 
RNA-seq 

Gene ID Description  

CCI6_RS00485  50S ribosomal protein L10 
CCI6_RS00560  orotate phosphoribosyltransferase 
CCI6_RS00730  hypothetical protein 
CCI6_RS00830  glutamate-1-semialdehyde 2,1-aminomutase 
CCI6_RS01360  
CCI6_RS01615  NAD(P)-dependent oxidoreductase 
CCI6_RS01705  glycosyl transferase family 1 
CCI6_RS01740  coenzyme F420-0:L-glutamate ligase 
CCI6_RS01760  7,8-didemethyl-8-hydroxy-5-deazariboflavin synthase 
CCI6_RS01850  amidophosphoribosyltransferase 
CCI6_RS01885  hypothetical protein 
CCI6_RS01910  
CCI6_RS02160  hypothetical protein 
CCI6_RS02185  hypothetical protein 
CCI6_RS02380  dihydroxy-acid dehydratase 
CCI6_RS02655  thiamine biosynthesis protein ThiF 
CCI6_RS02660  cysteine desulfurase 
CCI6_RS02715  hypothetical protein 
CCI6_RS02905  hypothetical protein 
CCI6_RS02920  hypothetical protein 
CCI6_RS03040  hypothetical protein 
CCI6_RS03090  16S rRNA (adenine(1518)-N(6)/adenine(1519)-N(6))-

dimethyltransferase 
CCI6_RS03120  glycerophosphoryl diester phosphodiesterase 
CCI6_RS03205  putative enzyme involved in methoxymalonyl-ACP 

biosynthesis 
CCI6_RS03355  hypothetical protein 
CCI6_RS03385  PadR family transcriptional regulator 
CCI6_RS03580  NUDIX hydrolase 
CCI6_RS03660  TIGR03085 family protein 
CCI6_RS03745  hypothetical protein 
CCI6_RS03820  aspartate-semialdehyde dehydrogenase 
CCI6_RS03855  hypothetical protein 
CCI6_RS03900  hypothetical protein 
CCI6_RS03980  hypothetical protein 
CCI6_RS04110  hypothetical protein 
CCI6_RS04470  hypothetical protein 
CCI6_RS04530  hypothetical protein 

CCI6_RS04540  4-hydroxy-tetrahydrodipicolinate reductase 
CCI6_RS05010  amino acid-binding protein 
CCI6_RS05075  ABC-type antimicrobial peptide transport system, 
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permease component 
CCI6_RS05115  histidine kinase 
CCI6_RS05170  ABC transporter substrate-binding protein 
CCI6_RS05215  FAD/FMN-dependent dehydrogenase 
CCI6_RS05330  xanthine dehydrogenase 
CCI6_RS05510  hypothetical protein 
CCI6_RS05705  resolvase 
CCI6_RS05800 galactose-1-phosphate uridylyltransferase 
CCI6_RS05895  amino acid dehydrogenase 
CCI6_RS06130  tRNA (N6-isopentenyl adenosine(37)-C2)-

methylthiotransferase MiaB 
CCI6_RS06175 DEAD/DEAH box helicase 
CCI6_RS06340  hypothetical protein 
CCI6_RS06365 hypothetical protein, partial 
CCI6_RS06780  serine phosphatase 
CCI6_RS07020  acetyl/propionyl-CoA carboxylase subuit alpha 
CCI6_RS07275  hypothetical protein 
CCI6_RS07400  hypothetical protein 
CCI6_RS07560  
CCI6_RS07655  glutamate 5-kinase 
CCI6_RS07830  DNA-binding protein 
CCI6_RS07845  hypothetical protein 
CCI6_RS07950  deoxyguanosinetriphosphate triphosphohydrolase 
CCI6_RS07970  hypothetical protein 
CCI6_RS07990  
CCI6_RS08195  twin-arginine translocation pathway signal protein 
CCI6_RS08435  DUF2530 domain-containing protein 
CCI6_RS08650  hypothetical protein 
CCI6_RS08805  serine/threonine protein phosphatase 
CCI6_RS08870  adenylosuccinate lyase 
CCI6_RS08890  hypothetical protein 
CCI6_RS09115  nitroreductase 
CCI6_RS09140 MFS transporter 
CCI6_RS09220  2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase 
CCI6_RS09275  hypothetical protein 
CCI6_RS09410  secretion system protein 
CCI6_RS09420  hypothetical protein 
CCI6_RS09740  
CCI6_RS09770  hypothetical protein 
CCI6_RS10480  hypothetical protein 
CCI6_RS10520  hypothetical protein 
CCI6_RS10785  ABC transporter ATP-binding protein 
CCI6_RS10840 ferredoxin subunit of nitrite reductase and ring-

hydroxylating dioxygenase 
CCI6_RS10885  hypothetical protein 
CCI6_RS10905 two-component sensor histidine kinase 
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CCI6_RS10950  transcriptional regulator 
CCI6_RS11355  acetyltransferase 
CCI6_RS11385  type 12 methyltransferase 
CCI6_RS11465  malto-oligosyltrehalose trehalohydrolase 
CCI6_RS11685  phytoene dehydrogenase 
CCI6_RS11710  phosphatidylglycerophosphate synthase 
CCI6_RS11735  phosphoglycerate dehydrogenase-like oxidoreductase 
CCI6_RS11975  transcriptional regulator 
CCI6_RS12050  hypothetical protein 
CCI6_RS12070 hypothetical protein 
CCI6_RS12190  hypothetical protein 
CCI6_RS12255  nitroreductase 
CCI6_RS12330  hypothetical protein 
CCI6_RS12710 hypothetical protein 
CCI6_RS12775  RecB family exonuclease 
CCI6_RS12835  
CCI6_RS12905  WYL domain-containing protein 
CCI6_RS13065  ATP synthase subunit delta 
CCI6_RS13175  hypothetical protein 
CCI6_RS13190  two-component sensor histidine kinase 
CCI6_RS13465  WD40 repeat-containing protein 
CCI6_RS13680  carboxylate--amine ligase 
CCI6_RS13840  amine oxidase 
CCI6_RS13930  allantoinase 
CCI6_RS13950  hypothetical protein 
CCI6_RS13980  hypothetical protein 
CCI6_RS14465  long-chain-fatty-acid--CoA ligase 
CCI6_RS14485  hypothetical protein 
CCI6_RS14515  hypothetical protein 
CCI6_RS14580  oxidoreductase 
CCI6_RS14620  MBL fold hydrolase 
CCI6_RS14675  hypothetical protein 
CCI6_RS15035  carbohydrate ABC transporter ATP-binding protein, 

CUT1 family 
CCI6_RS15070  hypothetical protein 
CCI6_RS15195  hypothetical protein 
CCI6_RS15340  magnesium transporter 
CCI6_RS15555  gamma-aminobutyraldehyde dehydrogenase 
CCI6_RS15940  MaoC family dehydratase 
CCI6_RS15950  transporter 
CCI6_RS16305  potassium transporter TrkA 
CCI6_RS16345 beta-hydroxydecanoyl-ACP dehydratase 
CCI6_RS16355  acetyl-CoA carboxylase carboxyltransferase subunits 

alpha/beta 
CCI6_RS16530  replication restart DNA helicase PriA 
CCI6_RS16590  RNA methyltransferase 
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CCI6_RS16635  arginine repressor 
CCI6_RS16750  threonine--tRNA ligase 
CCI6_RS16755 hypothetical protein 
CCI6_RS17120  glycosyl transferase family 1 
CCI6_RS17215  protoheme IX farnesyltransferase 
CCI6_RS17230  glucose-6-phosphate dehydrogenase 
CCI6_RS17270  isopentenyl-diphosphate Delta-isomerase 
CCI6_RS17300 hypothetical protein, partial 
CCI6_RS17385 hypothetical protein 
CCI6_RS17430  NHL repeat-containing protein 
CCI6_RS17735  glucokinase 
CCI6_RS18005  polysaccharide deacetylase familiy protein 
CCI6_RS18150  pyruvate dehydrogenase (acetyl-transferring) E1 

component subunit alpha 
CCI6_RS18270  3-hydroxyacyl-CoA dehydrogenase 
CCI6_RS18290  23S rRNA methyltransferase 
CCI6_RS18665  
CCI6_RS18695  cold-shock protein 
CCI6_RS18945  leucyl aminopeptidase 
CCI6_RS19065  alpha/beta hydrolase 
CCI6_RS19410  DNA repair protein RecN 
CCI6_RS19470 NAD+ synthase 
CCI6_RS19480  glutamine-synthetase adenylyltransferase 
CCI6_RS19495  RDD family protein 
CCI6_RS19630  hypothetical protein 
CCI6_RS19640  hypothetical protein 
CCI6_RS19815  ABC transporter ATP-binding protein 
CCI6_RS20020  NAD-dependent epimerase 
CCI6_RS20475  monooxygenase 
CCI6_RS20610  hypothetical protein 
CCI6_RS20795  hypothetical protein 
CCI6_RS21005  hypothetical protein 
CCI6_RS21240  hypothetical protein 
CCI6_RS21530  
CCI6_RS21730  MFS transporter 
CCI6_RS22000 transposase 
CCI6_RS22490  NADPH:quinone reductase 
CCI6_RS22545  hypothetical protein 
cobN cobaltochelatase subunit CobN 
truB tRNA pseudouridine(55) synthase TruB 
Gene ID Description  
CCI6_RS00485  50S ribosomal protein L10 
CCI6_RS00560  orotate phosphoribosyltransferase 
CCI6_RS00730  hypothetical protein 
CCI6_RS00830  glutamate-1-semialdehyde 2,1-aminomutase 
CCI6_RS01360  
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CCI6_RS01615  NAD(P)-dependent oxidoreductase 
CCI6_RS01705  glycosyl transferase family 1 
CCI6_RS01740  coenzyme F420-0:L-glutamate ligase 
CCI6_RS01760  7,8-didemethyl-8-hydroxy-5-deazariboflavin synthase 
CCI6_RS01850  amidophosphoribosyltransferase 
CCI6_RS01885  hypothetical protein 
CCI6_RS01910  
CCI6_RS02160  hypothetical protein 
CCI6_RS02185  hypothetical protein 
CCI6_RS02380  dihydroxy-acid dehydratase 
CCI6_RS02655  thiamine biosynthesis protein ThiF 
CCI6_RS02660  cysteine desulfurase 
CCI6_RS02715  hypothetical protein 
CCI6_RS02905  hypothetical protein 
CCI6_RS02920  hypothetical protein 
CCI6_RS03040  hypothetical protein 
CCI6_RS03090  16S rRNA (adenine(1518)-N(6)/adenine(1519)-N(6))-

dimethyltransferase 
CCI6_RS03120  glycerophosphoryl diester phosphodiesterase 
CCI6_RS03205  putative enzyme involved in methoxymalonyl-ACP 

biosynthesis 
CCI6_RS03355  hypothetical protein 
CCI6_RS03385  PadR family transcriptional regulator 
CCI6_RS03580  NUDIX hydrolase 
CCI6_RS03660  TIGR03085 family protein 
CCI6_RS03745  hypothetical protein 
CCI6_RS03820  aspartate-semialdehyde dehydrogenase 
CCI6_RS03855  hypothetical protein 
CCI6_RS03900  hypothetical protein 
CCI6_RS03980  hypothetical protein 
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Fig A1. Two-dimensional polyacrylamide gel electrophoresis (PAGE) analysis of Frankia sp. 

strain Allo2 under control (no stress) conditions (A), 200 mM NaCl (B), and 200 mM sucrose 

(C). Red arrows indicate that proteins are upregulated relative to the control, while yellow 

arrows indicate down regulated proteins relative to the control. The corresponding number spots 

were in-gel digested with trypsin and analyzed by liquid chromatography-mass spectrometry 

(LC-MS) and LC-MS/MS for protein identification 
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Table A9. Frankia sp. strain Allo2 proteins differentially expressed under stress conditions. The identified proteins were 
classified by COG functional categories. Upregulated proteins are shown by the upward pointing arrow (↑) whereas 
downregulated proteins are shown by the downward pointing arrow (↓). No change (N/C) indicates that a spot was not picked 
for that particular condition because it showed similar intensity as the control.   

SPOT # Acc. No Locus Tag Protein Name MW (Da) PI NaCl  Sucrose  

[C] Energy production and Conversion 

1 WP_035732921.1 ALLO2_RS15565 aconitate hydratase 98737.30 4.80 ↓ N/C 

4 WP_035729778.1 ALLO2_RS03755  malate dehydrogenase 41530.50 4.80 ↑ N/C 

14 WP_011437820.1 ALLO2_RS10070 malate dehydrogenase (NAD) 34399.10 4.96 ↑ ↑ 

13 WP_035734595.1 ALLO2_RS22325 electron transfer flavoprotein alpha subunit apoprotein 32842.70 5.01 ↓ ↓ 

[E] Amino acid transport and metabolism 

13 WP_035732776.1 ALLO2_RS14775 cysteine synthase (CysK) 32443.60 4.95 ↑ ↑ 

[G] Carbohydrate transport and metabolism 

3 WP_035729979.1 ALLO2_RS04610  enolase 44751.80 4.60 ↑ N/C 

5 WP_023841695.1 ALLO2_RS05865 glyceraldehyde-3-phosphate dehydrogenase  35515.80 5.70 ↑ ↑ 

6 WP_035729149.1 ALLO2_RS01575  fructose-bisphosphate aldolase  36894.20 5.35 ↑ ↑ 

[H] Coenzyme metabolism 

12 WP_035732888.1 ALLO2_RS15275 pyridoxal phosphate synthase yaaD subunit 32577.80 5.34 ↑ N/C 

[k] Transcription      

10 WP_011435063.1 ALLO2_RS03340 DNA-directed RNA polymerase subunit alpha  37859.00 4.60 ↓ ↓ 

[I] Lipid transport and metabolism 

11 WP_035732830.1 ALLO2_RS14885 short chain enoyl-CoA hydratase 26841.10 4.98 ↑ N/C 

[M] Cell wall/membrane/envelop biogenesis 

15 WP_023840985.1 UDP-glucose pyrophosphorylase 34856.10 5.04 ↑ N/C 

[O] Post-translational modification, protein turnover, chaperone functions 

2 WP_011435086.1 ALLO2_RS03455 molecular chaperone GroEL 57446.70 4.90 ↓ N/C 

7 WP_011435509.1 ALLO2_RS18350 glutathione peroxidase  19567.10 4.70 ↑ N/C 

8 WP_011438798.1 ALLO2_RS01170 peptidyl-prolyl cis-trans isomerase 19104.60 6.10 ↑ N/C 

16 WP_035730024.1 ALLO2_RS05025 ATP-dependent Clp protease proteolytic subunit ClpP 23039.30 4.79 ↑ ↑ 

Not assigned to COG categories 

9 WP_035733723.1 ALLO2_RS18330  carnitine O-acetyltransferase  67431.10 5.20 ↑ N/C 
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Developing a genetic system for Frankia 

Introduction 

The genetics of Frankia is at a nascent stage and routes for introducing defined 

changes into the Frankia chromosome are missing. Developing efficient tools for the 

manipulation of the Frankia genome will allow for the analysis of genes involved in 

secondary metabolite biosynthesis, symbiosis, and other fascinating aspects of the life 

of Frankia. For this project, developing site-specific gene disruption methods will help us 

to confirm the roles of some of the candidate genes identified from our transcriptomic, 

proteomic, and comparative genomic analysis. With this goal, we attempted to develop 

several site-specific gene disruption mechanisms to introduce defined changes to the 

Frankia genome. Here, we describe our attempt to develop a  Red–mediated gene 

disruption (based on the recombination of the bacteriophage lambda) system for 

Frankia.  Use of the  Red–mediated system will help to bypass two major hurdles: (1) 

degradation by the recBCD exonuclease when using linear DNA for recombination in 

bacteria, and (2) the need for a long stretch of DNA for homologous recombination to 

occur when the  Red system is not employed.  

Method 

Because of the challenges associated with making  Red –proficient Frankia, a two-step 

strategy was designed for Frankia as previously described [197].  As a proof of concept, 

a gene coding for the UPRTase enzyme (Francci3_3203) was targeted. Knockout of the 

gene allows Frankia casuarinae strain CcI3 to grow in medium containing 5- fluorouracil 

(5-FU). The first step involved Red-mediated recombination in a  Red –proficient E. 

coli containing the genomic region of interest on a plasmid. The gene of interest was 
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targeted by a selectable marker that has been generated by PCR with primers 

containing 39 nt homology arms [143]. The second step involved the genetic exchange 

in the Frankia itself and was achieved though homologous recombination. Briefly, the 

origin of transfer (oriT) was amplified from pTNR-oriT [198] using primers so that the 

amplified fragment contained ApaI and HindIII sites. The amplified product was digested 

with ApaI + NcoI and ligated into pGEM-5Zf(+) (Promega) digested with the same 

enzymes. A 4.7 kb region containing the UPRTase coding gene (Francci3_3203) and 2 

kb flanking regions on either side was amplified from the genomic DNA of CcI3 with 

primers so that the amplified product contained NcoI and NdeI sites. The construct was 

electroporated into a  Red –proficient E. coli BW25113 containing the pIJ790 vector. 

Positive transformants were selected on LB agar plates containing ampicillin (50 g/ml) 

and chloramphenicol (20 g/ml). The tetracycline resistance gene (tetA) from the 

pHTK1 plasmid was amplified with primers so that the amplified product contained 60 

bp arms homologous to the regions flanking the coding sequence of the target gene 

(Francci3_3203). The linear PCR product was electroporated into the  Red –proficient 

E. coli BW25113 containing the construct. The  Red recombinase system was 

activated by 1 M L-arabinose. The AmpR and TetR mutagenized constructs were 

introduced into E. coli ET12567 containing the pUZ8002 plasmid by electroporation and 

then transferred to Frankia through filter mating.  TetR and 5-FU resistant (50 g/ml) 

Frankia conjugants were screened for ampicillin sensitivity, indicating a double-

crossover homologous recombination. 
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 Table A10. Primers used in the  Red recombination system 

 

Results and future directions 

A double-crossover homologous recombination frequency of 1.4 x 10-6 was obtained 
(Table A11). Mutants need to be further confirmed through sequencing and PCR.  
 
Table A11. Frequency of double-crossover homologous recombination in Frankia casuarinae strain CcI3.  

 5-FUR, TetR, Amps TetR, 5-FUR 5-FUR TetR 

Efficiency 1.4 x 10-6  4.0 x 10-7 10-6  8.0 x 10-7 10-5  3.0 x 10-6 2.8 x 10-6  2 x 10-6 

Remark double crossover 
homologous 
recombinants 

   

 

  

Forward Reverse 

Primers used to amplify oriT from pHTK1  

5’ ATA TTC GGG CCC TCG CGG ACG TGC TCA TAG TC 3’ 5’ ATT CAT CTC CAT GGC TCG CCT GTC CCC TCA GTT CA 

3’ 

Primers used to amplify Francci3_3203 along with flanking region 

5’ ATA TTA ACC ATG GGC GGC CCA CTC CGT CTC CTT GT 

3’ 

5’ ATC ATT ATC ATA TGT CGT CGG CTT CCA GCA CGT 

CAA 3' 

Primers used to amplify tetA gene with 39 BP homologous arms 

5’ TAA GGA CCG TCC CGT GAG GCG GGG AAG GAG GGA 

TGC CGC ATT GCG CGC TTG GCG TAA TCA 3’ 

5’ CGA ACC CGG CTT GTG CTC CCC ACA CGG CAC TTC 

CCC CGA CGG CAG CGC GAC AAC AAT T 3’ 
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