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ABSTRACT

INVESTIGATING PRIMING, INHIBITION, AND INDIVIDUAL DIFFERENCES IN

VISUAL ATTENTION 

by

Jennifer Lechak 

University of New Hampshire, May 2013

While much has been explored within the attentional control literature, questions 

still exist as to how attentional processing is modulated, and how different types of visual 

search paradigms can elucidate the underlying mechanisms involved in successful visual 

search. Throughout this dissertation, I will focus on the multifaceted aspects that come 

with the study of visual attention. After discussing visual attention I explore priming of 

pop out along two different dimensions. Specifically, using a rapid serial visual 

presentation design, I demonstrate that temporal and spatial priming interact along a 

similar mechanism. This result adds to the priming literature by demonstrating 

simultaneous multidimensional priming in our ability to efficiently process our visual 

environment. Next, I explore attentional distraction and psychophysical thresholds to 

examine whether an individual’s sensitivity to a visual feature can predict the individual’s 

magnitude of distraction by that feature. Results reveal that psychophysical thresholds 

are not sensitive enough to reflect a definite relationship between an individual’s baseline



stimulus-driven sensitivity to visual features and the magnitude o f  distraction by those 

features. Finally, I explore the role of inhibition (using a stop signal paradigm) in 

individual differences in abilities to avoid distraction, and examine how working memory 

capacity influences target selection. Results failed to elucidate this relationship and 

further research is needed to uncover whether individual differences in avoiding 

distraction are subserved by either inhibitory processing, or working memory capacity.

In conclusion, this dissertation uses various visual search paradigms to explore the 

interactions of stimulus-driven and goal-driven effects, to illuminate how individual 

differences inform models of attentional distraction, and to investigate how inhibiting a 

distractor modulates attentional processing.



CHAPTER 1

PROCESSING THE VISUAL ENVIRONMENT

If I asked you to describe a specific item in your current visual environment, you 

could easily do so, directing your attentional focus directly to the item in question. This 

would not be a difficult task, merely one that required you to attend to a subset of the 

limitless expanse of possible information available to you at any given moment. Despite 

the request’s seeming simplicity, exactly how you are able to direct your attention around 

your visual environment has been the topic of study for over one hundred years, 

pioneered by William James in 1890, who claimed, “Everyone knows what attention is.

It is the taking possession of the mind, in clear and vivid form, o f  one out of what seem 

several simultaneously possible objects or trains of thought” (pp. 403-404). Many of the 

studies conducted after James’ time within the realm of attention focused on audition, 

requiring participants to attend to one set of incoming auditory stimuli while ignoring 

another, commonly referred to as dichotic listening (Cherry, 1953; Broadbent, 1958).

At the start of the 1970s, many studies of attention shifted into studying attention 

in the visual modality due to the fact that researchers could control the timing of stimuli 

better to study selective attention than in the auditory studies o f  the past (Beck & Ambler, 

1973). In order to conduct visual attention experiments, researchers needed to understand
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the underlying sequence of visual processing. Visual processing has been studied 

extensively to elucidate how information travels from the retina through the cortex to 

provide the overarching sensation of vision. One major question asked is how does our 

visual system integrate the millions of details in our environment into cohesive objects? 

Our minds might be organized into distinct visual processing pathways to provide the 

main functions of the visual system: what are the objects in my visual environment, 

where are they, and how can I use them? By creating a separately organized system for 

each of these functions, more efficient processing would be possible, allowing for faster 

recognition of objects, and faster localization of those objects in our visual environment. 

As humans evolved, we depended on correct visual inputs to alert us to whether the shape 

in the distance was a tiger or a rock, so that we could act accordingly and survive.

Two main visual pathways

As curiosity developed to understand how visual information is processed, 

Livingstone and Hubei began examining the primate visual system and determined there 

were two main cell systems, parvocellular and magnocellular pathways (made up of M & 

P cells) within the lateral geniculate nucleus (1988). The parvocellular pathway has 

displayed activation patterns that make it responsible for form and color processing, and 

it is composed of small cells along the ventral side of occipital cortex projecting through 

the temporal cortex. The primary input for the parvocellular pathway comes from the 

cones on the retina, and parvo- cells have been shown to analyze spatial information at a 

much finer level of detail than magno- cells. The second stream of processing is the
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magnocellular pathway, which is implicated in motion processing and is composed of 

larger cells projecting along the dorsal side of the brain through the parietal cortex. Its 

primary input is from the rods, and like the parvocellular pathway, its output projects to 

early visual areas in occipital cortex (Livingstone & Hubei, 1988). These cellular 

pathways with seemingly dissociated functions, spurred many researchers to examine 

why they existed and what exactly they were used for within visual processing.

In 1982, Mishkin and Underleider argued that vision is used for two critical 

functions: object perception “what” and spatial perception “where.” They based their 

concept on primate visual pathways from Livingstone and Hubei (1988). The ventral 

pathway from primary visual areas to inferior temporal cortex is responsible for object 

perception, designated “what,” and the dorsal pathway from primary visual areas to 

posterior parietal cortex is specialized for spatial perception designated “where.” The 

research conducted in monkeys showed that when the inferior temporal lobes were 

removed, the animals had problems in using object information, while still being able to 

utilize spatial information (Mishkin & Underleider, 1982). Alternatively, monkeys 

whose parietal lobes were removed had difficulty using spatial information, but could 

utilize object information. This evidence created a clear double dissociation, supporting 

the idea that the ventral “what” and the dorsal “where” processing streams were separate 

and relatively independent.

Building on what the magno- and parvo- cellular pathways could be 

accomplishing within visual attention, Goodale and Milner compiled electrophysiological, 

neuropsychological and behavioral evidence and proposed an alternative to the “what- 

where” model, terming the two streams of visual processing “what” and “how” (1992).
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They named their theory the perception-action model and emphasized the division 

between vision primarily used for perception and vision used for action in our 

environment. The “what” pathway was concerned with identifying objects and was 

located as a ventral pathway with projections from early visual areas to temporal cortex. 

The “how” pathway was concerned with visually guided actions with the objects in the 

visual environment, showing dorsal projections from early visual cortex to parietal cortex 

(Goodale & Milner, 1992). Milner and Goodale in 1998, claimed that the dorsal system 

“is designed to guide actions purely in the here and now, and its products are 

consequently useless for later reference.. .it is only through knowledge gained via the 

ventral stream that we can exercise insight, hindsight and foresight about the visual world” 

(pp. 12). Understanding where the current literature on visual processing stands, 

researchers were able to elucidate how visual attention is directed in our environment to 

help us selectively process behaviorally relevant information.

Theories of visual attention

Many theories of visual attention proliferated into the 1970s, and in 1972, Erikson 

and Hoffman developed what is now known as the flanker paradigm in order to 

demonstrate that visual attention might behave like a spotlight, zooming in to obtain 

much detail on a specific object or area of the visual scene, or zooming out to view more 

of the visual field with less detail. In the flanker paradigm, participants are asked to 

identify a target item, usually a letter, as it appears at fixation, pressing one button for one 

target letter and another button if they see a different target letter. Task irrelevant stimuli
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appear peripherally to the target items on some trials, and reaction times (RTs) to find the 

target are influenced by the identity of these flanking stimuli. The greatest effect of the 

flankers occurs when they appear within 1° visual angle of the target, suggesting that 

attention has a specified size of focus.

Posner supported the spotlight model of attention proposed by Erikson and 

Hoffman (1972) by showing that attention is close to independence from eye movements, 

and we can orient our attention to a location before we detect the object in that location 

with an eye movement, by using active endogenous processing (1980), see Figure 1.1.
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Figure 1.1: Sample trials from a Posner cuing task. A brief interval (top panel) shows the 

two potential target locations, followed by an arrow cue, pointing to one of the two boxes 

where the target could appear. Following this cue presentation, another brief blank 

interval is presented followed by the target. On valid cue trials, the target appears in the 

cued location (left column) and on invalid cue trials, the target appears in an uncued 

location (right column) from Posner 1980.
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Concurrently, Treisman and Gelade were working on a theory of visual attention 

in 1980 that addressed answering the binding problem, i.e., how does the visual system 

integrate different features in our visual environment to create objects in space? Their 

theory of feature integration suggests that the purpose of attention in our visual 

environment is to bind features to objects and that attention must be directed from one 

object to the next in a display when more than one object is present (1980). The concept 

of directing attention from one item to the next in a display is known as serial processing, 

and the more items that are present in a display, the longer it takes participants to find the 

target. Conversely, parallel processing of a display occurs when participants are able to 

find the target quickly regardless of the number of distracting items in the display, see 

Figure 1.2.
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Figure 1.2: Example of plausible data during a visual search task. A parallel search 

shows no difference in RTs as the number of items in the set size increases, whereas in 

serial search, as the number of items in the display increases, so does the RT to identify 

the target item.

6



These two types of search modes are important when researchers seek to design 

studies with either serial or parallel processing as the tenet of attentional control.

Treisman & Gelade concluded that objects are recognized by their features through either 

focal attention or (if focal attention is overloaded or diverted) through the current goals 

and expectations of the observer (1980).

Duncan and Humphreys broke away from feature integration theory and proposed 

a theory of visual selection where parallel search processing models match internal 

schemas to input stimuli for current behaviors, entering relevant information into visual 

short-term memory (1989). Researchers have developed various procedures to measure 

the orienting and successful processing of our environment using visual search paradigms, 

usually exemplified using parallel search modes. To make visual search better able to 

explain complex phenomena, researchers split attentional processing into two main 

systems of thought: stimulus-driven and goal-driven processing, which will be discussed 

in the next chapter.
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CHAPTER 2

CAPTURE: GOAL-DRIVEN & STIMULUS-DRIVEN 
ATTENTIONAL PROCESSING

In 1997, while describing how they believed attention was controlled, Egeth & 

Yantis noted two major attentional systems within vision: goal-driven or top-down 

attentional control and stimulus-driven or bottom-up attentional control. These two 

systems came under much scrutiny for determining how separate and independent they 

might be, how they might possibly interact, and which of them might be responsible for 

visual processing at any given moment. Deferring back to William James, his belief was 

that attention had these two modes of processing such that attention was considered 

active when it was controlled in a top-down way by an individual’s goals or expectations, 

and considered to be passive when controlled in a bottom-up way by external stimuli in 

the environment (1890).

To immerse you further into this debate, imagine you are going on a job interview 

in a building you have never been in before. Once you locate the correct building in its 

business complex, your current behavioral goal is to find the room in which your 

interview is taking place so that you won’t be late. While you are searching the building 

for the correct room, the fire alarm goes off demanding you evacuate the building 

immediately. You momentarily forget about searching for your interview room and shift
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your search to move towards the nearest exit. In this example, the fire alarm captured 

your attention, even though you had different behavioral goals in mind; however, as soon 

as the fire department arrives, determines it is safe to go back into the building, and the 

salient irrelevant fire alarm cue is gone, you will resume your attentional focus on 

searching for your interview room.

How does visual attentional control guide us toward prioritizing the fire alarm in 

this example? Do we automatically orient to such salient stimuli? Or, is our attention 

shifted toward the salient cue, while still maintaining our initial goals? Researchers have 

long debated whether attentional control is dominated by goal-driven processing, where 

we orient toward a known feature or quality (e.g., searching for the interview room), or if 

attentional control is dominated by stimulus-driven processing, where we orient to the 

most salient, or noticeable item in the display (e.g. the fire alarm). Visual salience can be 

thought of as distinct perceptual qualities that make some stimuli stand out from other 

stimuli in our environment, orienting our attention towards them.

To address the debate outlined above, researchers have developed various 

procedures to measure the processing of our environment using attentional control. 

Frequently employing a paradigm measuring the response latencies for locating a target 

in a visual display with and without a distracting stimulus present, researchers can 

directly measure visual attention (see Figure 2.1). When a distracting stimulus is present 

in a visual search task it takes participants significantly longer to identify the target than 

if the distractor were absent, a phenomenon known as attention capture (Theeuwes, 1992).
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Figure 2.1: Example of the Theeuwes paradigm where participants search for the circle 

and identify whether the bar inside is vertical or horizontal. The top stimuli presentation 

shows the target circle among non-target squares on the left with no distractor present, 

while the top right presentation shows an oddball color singleton distractor item. In the 

bottom stimuli presentation, a graph of plausible data shows that when the distracting 

item is present, there is an increase in participant’s RTs to find the target item.

Attention capture paradigms allow researchers to discover potential interactions 

of both stimulus-driven and goal-driven components of attentional processing. Attention 

capture has been extensively studied due to its abundance and its fundamentality in our 

every day lives. The literature exploring attention capture holds many inconsistencies 

about how attentional processing enables the avoidance of visual distraction. Some 

researchers advocate that stimulus-driven attentional processing determines priority of 

stimuli, such that on every trial in a visual search task, participants’ attention will be 

immediately drawn to the most salient item in the display (e.g., Theeuwes, 1992).
10



Specifically, such researchers found that even when participants knew the features of the 

target on the upcoming trials, they were still unable to avoid becoming distracted by the 

irrelevant distracting stimulus in the display.

Many stimulus feature dimensions, such as color and form, have been employed 

to examine whether conditions exist in which goal-driven control allows participants to 

avoid distraction by salient stimulus features. Yantis & Jonides (1990) showed that 

participants could avoid distraction by a very salient distractor singleton when attention 

was highly focused on specific locations in the visual display. Replicating this finding, 

Theeuwes asked whether salience in a visual display could be avoided when participants 

were given knowledge of the target on the upcoming trials and extensive practice (1991). 

Theeuwes explored this question using two salient features in his visual displays, one 

serving as the target and the other as the distractor, and found even knowing that the 

distracting stimulus feature would never be the target, participants were unable to avoid 

both salient items in the display, and thus were incapable of using goal-driven attentional 

search strategies to avoid distraction (Theeuwes, 1991).

In subsequent studies, Theeuwes has continued to advocate for stimulus-driven 

processing as the dominant mode of attentional control with salient irrelevant items being 

unavoidable in visual search (Theeuwes, 1992, 1994a, 1994b). Using feature singletons 

(a unique feature that causes the item to stand out in a visual display), Theeuwes argued 

that attention will be captured in a stimulus-driven way only, such that the distractor 

singleton “pops-ouf ’ from the surrounding non-target and target features and 

subsequently captures our attention regardless of our current behavioral goals (Theeuwes, 

2004).
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Contrary to the research discussed above, other researchers have found that 

participants are able to exert goal-driven (i.e. top-down) control strategies to avoid 

distraction by a salient irrelevant singleton in the display. When directing participants’ 

attention to specific locations, they appear to avoid becoming distracted as Yantis & 

Jonides (1990) demonstrated, but what about when attention is directed toward known 

features of the target item rather than a spatial location? Bacon and Egeth demonstrated 

that attention can be oriented toward items possessing known features (i.e. color and 

shape) and a salient irrelevant distractor can be avoided (Bacon & Egeth, 1994; see also 

Leber & Egeth, 2006).

In addition, Folk, Remington & Johnston used a paradigm where participants 

were cued on upcoming trials: sometimes the cue was in the same stimulus dimension 

(i.e., color) and sometimes it was in a different dimension, i.e., abrupt onset, (Folk et al., 

1992). These researchers found that when the cue shared the same stimulus dimension 

as the upcoming target, participants took longer to identify the target, suggesting they 

were more distracted by the cue when it matched the known feature of the target, than 

when it employed a different stimulus dimension. They also demonstrated that 

participants are able to avoid distraction by an irrelevant distracting cue if that cue shares 

no common features with the target. For example, if participants were searching for a red 

circle in a display of green squares, a distracting item contingent on the participants’ 

goals would present as a red square, capturing attention and causing longer RTs for the 

participant to correctly locate the target red circle. A distracting item that would not 

cause contingent attention capture in this particular example would be a circle or square 

of a different color than what participants were searching for, such as a blue or yellow

12



item. New hypotheses based on contingent capture effects developed; stating the degree 

to which a salient stimulus involuntarily captures attention depends on the degree to 

which that item matches the participants’ current goals and its similarity with the target 

(Folk et al., 1992).

13



CHAPTER 3

ATTENTIONAL CONTROL & PRIMING: TEMPORAL AND SPATIAL 

DIMENSIONS INTERACT DURING SEARCH

In studying attentional processing using visual search paradigms, variability in the 

data often stems from the differences in performance across individuals, with some 

individuals performing faster, with shorter RTs during distractor present conditions than 

other individuals. Another source of variability in attentional control data stems from 

within individuals’ performances across sessions of trials. While overall RT on a given 

trial should be reflective of the individual’s state of attentional control (with greater RTs 

indicating greater distraction by an irrelevant singleton), incidental aspects of the 

stimulus display also necessarily influence RT (Kumada & Humphreys, 2002). 

Specifically, aspects about the visual display can facilitate or hinder RTs depending on 

the previous visual display in a sequence of trials.

Priming-of-DODQut interacts along simultaneous spatial and temporal dimensions 

Introduction

Processing current information from our visual environment efficiently requires 

reliance on stimuli from previous moments to guide attentional processing and facilitate a

14



behavioral response. Information that repeats, or is familiar to our visual system, will be 

more rapidly processed than novel stimuli. In 1994, Maljkovic & Nakayama examined 

how attention to subsets of a visual scene affects RT to find a target. What subjects 

attended to during one trial, affected how they processed future trials, a phenomenon 

named priming of popout (PoP) that has been replicated in many experiments (i.e. Becker, 

2008; Fecteau, 2007; Lamy, Antebi, Avani & Carmel, 2008).

This PoP effect has been observed beyond simple feature repetitions in our 

environment and has been demonstrated in more complex paradigms with repetitions in 

spatial position of the target across trials producing faster RTs (Maljkovic & Nakayama, 

1996; Kristjansson, Vuilleumier, Malhotra, Husain, & Driver, 2005). Our visual system 

is able to develop a complex representation for our current environment and retrieve it 

during subsequent visual presentations, reflecting the operation o f a low-level short-term 

memory system (Brascamp, Pels, & Kristjansson, 2011). The more information that 

repeats from trial to trial (i.e. color and spatial location), the better the visual system’s 

ability to process and execute the correct behavioral response (Huang, Holcombe, & 

Pashler, 2004). One question that remains unanswered in the literature on PoP is exactly 

how different repeating dimensions (i.e. spatial location or color) in our visual 

environment combine to facilitate responses.

There are two potential explanations as to the effect of repeating multiple 

dimensions across trials. The first possible way two dimensions could combine could be 

an additive type of processing of different dimensions, suggesting two distinct 

mechanisms underlying each form of dimensional priming. The other possible 

explanation for how two dimensions could combine during visual search could be
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interactive, suggesting each dimension uses similar processing along same underlying 

mechanism. Research has explored both of these possibilities and delivered conflicting 

views. Kristjansson examined the two dimensions of color and spatial repetitions and 

concluded that these combine in an additive way during repetitions along these 

dimensions, such that both color and spatial repetitions during trials facilitates a faster RT 

and are subserved by two distinct mechanisms (2006; see also Maljkovic & Nakayama, 

2000). Perhaps the degree of saliency of the items in the current display is given a 

weighted average, accounting for both the current items, and the previous visual display’s 

weighting of target and distractors, where the highest weighted item receives attentional 

priority during a trial (Yashar & Lamy 2010a). Kristjansson argues that each dimension 

has its own mechanism involved in visual priming, suggesting that each dimension varies 

the weighting of the target item differently, specifically that color may have a weighted 

saliency that is different from spatial position during visual search, and the appearance on 

the previous trial matching the current trial would receive the highest saliency weighting, 

directing participants fastest to the target location based on the addition of the distinct 

mechanisms for color and spatial information.

Contrary to this finding, Yashar & Lamy examined temporal and spatial 

repetitions and concluded a similar underlying mechanism exists for priming, suggesting 

an interactive nature of these priming dimensions (2010b). Here, the weighting of items’ 

salience in the display would interact, such that the weighting for temporal position 

information of the target would have similar weighting as the spatial position information. 

Temporal priming was examined using a rapid serial visual presentation (RSVP) stream 

where items are presented in the same spatial location in succession, one after the other
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during a trial. These researchers weaved the two trial types of a spatial display with no 

temporal information, and a temporal display with no spatial information to come to their 

conclusion that they interact along a similar priming mechanism (Yashar & Lamy,

2010b). They suggest that PoP will occur any time there is a need for attentional 

selection in a display, specifically that differences in saliency are prevalent and bias the 

speed at which the participant can identify the target. Due to the methodology of the two 

above experiments, the different dimensions being examined were done first in a 

simultaneous way (for color and space in Kristjansson’s experiment) and then in a 

separately displayed way interleaving the two dimensions in different trial types (Yashar 

& Lamy in 2010b), and the question still remains unanswered as to how different 

dimensions in a visual display combine.

If we combine spatial and temporal information in a simultaneous visual search 

paradigm will we see these two dimensional features combine in an additive or an 

interactive way? In the present study, I hypothesize that when target information repeats 

on a trial-to-trial basis in both spatial location and temporal position, there will be an 

interactive facilitation effect, speeding responses more strongly than repetition of only 

one or neither dimension.

Methods and Materials

Participants. Twenty-nine healthy participants (mean age = 19.5,17 women), with 

normal or corrected-to-normal visual acuity and normal color vision, participated in 

exchange for partial class credit. Informed consent was obtained from each participant
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all of whom were students enrolled at The University of New Hampshire. Participation 

included a brief (<5 min) practice session followed by -45 min o f experimental trials.

The Institutional Review Board of the University of New Hampshire approved all 

procedures.

Stimulus Presentation. Stimuli were generated via a Windows 7 Bootcamp setup 

on an Apple Macbook computer using EPrime software and presented on a 19 inch CRT 

display (ViewSonic G90fb) at a viewing distance of -50 cm. Responses were collected 

using the computer keyboard.

Design and Procedure. Participants completed 20 practice trials, followed by 720 

experimental trials divided into twelve blocks of 60 trials each. Each trial began with a 

fixation display consisting of a cross (0.2° by 0.2°) in the center of a black background, 

and participants were instructed to maintain fixation during the experiment. This display 

was presented for 500 ms and was followed by 4 RSVP streams presented in 4 comers of 

an imaginary square with an eccentricity of 2.5°, (see Figure 3.1). Each RSVP stream 

consisted of 12 successively presented color digits (font size = 30) randomly selected 

with replacement from 1 to 9, with the restriction that no two consecutive digits were the 

same. One singleton color digit, the target, appeared in one of the 4 streams on 70% of 

trials, while the other 11 or 12 digits (depending on the stream, the distractors) were the 

same non-target color. On each trial, the target and distractor colors were randomly 

selected from four possible colors, red, blue, green and yellow. More than two possible 

colors were used so the color of the distractors on a trial could not predict the upcoming
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colors in the next trial (see Yashar & Lamy, 2010b). Target absent trials were included to 

counter anticipation effects of successive digits having a greater chance of being the 

target as the stream progressed to the 12th digit.

Trial ends

Target appears 5-9th position

RSVP s tream  begins 
130 m s 1SI

Fixation Display 
500 ms

Figure 3.1: Representation of trial stimuli where the oddball color is the target in the 

RSVP stream. Actual backgrounds were black with colored numbers.

The target’s spatial and temporal position was randomly selected, with the target 

equally likely to appear in any of the four spatial positions, but temporally restricted to 

the fifth through ninth positions in the RSVP sequence. The presentation duration of 

each digit and the inter-stimulus interval (ISI) were 130 ms per item. Participants were
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instructed to report whether the target was an odd or an even number by pressing a 

designated key (“2” with the right hand for an even number or “x” with the left hand for 

an odd number) as accurately and quickly as possible. On trials where no target appeared, 

participants were instructed to press nothing. On each trial, a blank screen followed the 

RSVP stream for 5 s or until response. Incorrect responses were signaled by an auditory 

tone, indicating to the participant they responded incorrectly. After the participants’ 

response a blank screen was presented for 500 ms before the next trial began.

Results & Discussion:

Several participants {n = 4) were excluded from the analysis due to their mean RT 

(1 subject) or error rate (3 subjects) exceeding the group mean’s by more than 2.5 

standard deviations. In addition, trials with incorrect responses (3.5% of all trials) or 

outlying RTs (less than 2% of all trials) were removed from all RT analyses.

Reaction Time Measures. A 2x2 analysis of variance (ANOVA) was run for 

spatial and temporal position. The two levels of spatial position reflect when the spatial 

position of the target repeats across consecutive trials, and when the spatial position of 

the target appears in a different location than the previous trial’s target. The two levels of 

temporal position reflect when the temporal position of the target repeated across two 

trials, and when the temporal position of the target is in a different temporal position in 

the RSVP stream than the previous trial’s target.
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Reaction time data were examined for a main effect of spatial priming and results 

show participants were significantly faster to respond when the spatial position of the 

target repeated across consecutive trials than when it appeared in a different location, F 

(1, 22) = 36.11 , p  < 0.05, see Figure 3.2.
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Figure 3.2: Results of Spatial x Temporal PoP. Participants are faster to find the target 

when both spatial and temporal position repeat, than when either dimension alone repeats.

This result suggests that when the target repeats in spatial position across trials as 

opposed to appearing in a new spatial position, participants are faster to process the 

visual environment and find the target. Reaction time data were examined for a main 

effect of temporal priming and results show participants were significantly faster to 

respond to the target when it repeated temporal position compared to when the target 

appeared in a different temporal position in the RSVP stream, F  (1,22) = 63.28, p  < 0.05. 

This suggests that when the target repeats its position in time, the faster participants 

respond, as opposed to when the target appears in a different temporal position. This
21



could potentially be because the implicit memory representation from the previous trial 

matches most with identical temporal positioning.

Finally, we tested for an interaction of spatial x temporal position, which revealed 

a significant interaction of spatial x temporal position, F (1, 22) = 34.96,/? < 0.05. This 

result suggests that individuals are faster to respond when the target repeats both spatial 

and temporal position across consecutive trials than when the target appears in a different 

position. In addition, planned comparisons reveal participants were significantly faster 

when temporal position information repeated and spatial position was the same (M = 

695.91) than when spatial position was different (M = 716.17), t  (22) = 632, p  < 0.05. 

Also, when temporal position was different and spatial position was the same (M = 

729.65) there was no significant difference than when spatial position was different (M = 

731.61), t (22) = 0.39,/? > 0.05. This demonstrates that the significant spatial priming 

effect is contingent upon the temporal position information during the display, further 

illustrating the interactive effect of these two dimensional variables during visual priming. 

These results suggest the visual system uses all potentially repeating information to 

facilitate responding in our complex visual environment.

Accuracy Measures. A 2x2 ANOVA was run on the accuracy data for spatial 

position and temporal position for the levels described above. Error rates reflect evidence 

of spatial position PoP where the task was significantly harder when the target appeared 

in a new spatial position than when it repeated positions, F (1, 22) = 4.514,/? < 0.05.

There were no significant effects of temporal position on accuracy or spatial x temporal 

position on the accuracy data, all Fs < 1.
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General Discussion

When something is familiar to us, we process the information rapidly, matching it 

to a memory of previous experience. The current study demonstrates as more 

information from our visual environment repeats across trials, the faster we are at 

efficiently processing our surroundings. Simultaneous multidimensional priming 

demonstrated here with the interaction of spatial and temporal priming suggests PoP 

occurs every time attentional selection needs to be employed during visual search. It also 

reveals that PoP might operate along a similar mechanism regardless of the dimension of 

repeating information, providing support for Yashar & Lamy’s proposition that spatial 

and temporal PoP operate according to the same underlying process (2010b).

A possible explanation for the interactive nature of PoP demonstrated here, could 

be that during both temporal and spatial pop-out search, the degree of saliency of each 

target and distractor in the visual scene is allocated some weighted average (positive or 

negative) of a value assigned to its current and previous trial feature in accordance with 

the goals of the participant, with PoP affecting feature prioritization for the allocation of 

attention (Yashar & Lamy, 2010a). In the current experiment, with both spatial and 

temporal information available to participants, the weighted average for the target feature 

is more salient than the weighted average would be for spatial or temporal information 

alone, speeding the engagement of attention to the target when both spatial and temporal 

information repeat. Yashar & Lamy (2010b) urged researchers to examine whether task 

demands could modulate the relative weights of PoP. Here, we demonstrate clear 

evidence that when the visual scene is more complex, including information about spatial
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and temporal position simultaneously, the demands modulate the magnitude of the PoP 

effect. Specifically, when both the temporal position and the spatial position of the target 

repeat, our visual system is able to retrieve the implicit memory representation from the 

previous trial, guiding our attention toward behaviorally relevant stimuli to speed any 

response we might be required to make.

Previous research suggests these speeded response times are occurring in two 

distinct ways, namely an early perceptual stage and a later response related stage of 

processing (Lamy, Yashar & Ruderman, 2010). Krummenacher, Grubert & Muller 

suggested these two sources of PoP (pre-attentional and post-selectional) are composed 

of separable memory mechanisms (2010). Understanding how these potential memory 

mechanisms interact, researchers sought to investigate their respective roles within PoP 

and demonstrate that the pre-attentive source guides attentional engagement to the target 

feature, while the post-selective response based component is a result of retrieving an 

episodic memory representation of the previous trial (Lamy, Zivony, & Yashar, 2011). 

This memory speeds the response decision after the target has been selected and aids 

efficient processing of the visual scene in order to execute a motor response. The results 

of temporal priming in this study replicate and extend previous RSVP tasks where 

participants are faster to respond to the target when consecutive trials contain a target 

similar in temporal position than when the targets on consecutive trials are more distant 

in time (Yashar & Lamy, 2010b).

In sum, the current study was the first to demonstrate simultaneous 

multidimensional interactive priming by spatial and temporal position information.

Future research will investigate how all available information in our visual environment,
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including other features such as color, in our visual environment combines to guide and 

enhance future visual processing.
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CHAPTER 4

ATTENTIONAL CONTROL & FEATURES: CAN MAGNITUDE OF 

DISTRACTION BE PREDICTED BY VISUAL SENSITIVITY?

Understanding how individual differences play a large role in the variability seen 

in attention capture paradigms is important as we seek to elucidate how attentional 

control is implemented. Lechak & Leber in 2012 explored how the features of the visual 

environment might modulate attentional processing, such that greater sensitivity to a 

specific stimulus feature might predict one’s ability to avoid distraction by that feature. 

We examined the effects of visual motion sensitivity and distraction to motion on an 

individual subjects level. Visual motion sensitivity was measured using a hemifield 

localizer task in the fMRI scanner to localize motion sensitive area MT (V5) in each 

hemisphere per participant. Sensitivity was measured as the neural fMRI signal in MT 

(V5) during the presentation of passively viewed motion during the hemifield localizer. 

Distraction to motion was measured behaviorally using a visual search task where 

participants attempted to ignore a salient irrelevant moving distractor. We proposed that 

an individual’s inherent sensitivity to visual motion could be used to predict how 

susceptible those individuals are to distraction by motion. Results showed that 

individuals with greater evoked fMRI activity in motion sensitive area MT (V5) during 

the passive viewing of moving stimuli exhibited greater behavioral distraction in a
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separate task when a motion distractor was to be ignored. Therefore, an individual’s 

baseline sensitivity to a passively viewed stimulus feature (e.g., motion) predicted how 

distracting that stimulus feature was when the individual is instructed to ignore it, 

suggesting that greater sensitivity to visual motion makes one less able to resist 

processing it.

Exneriment 2: Linking Motion Sensitivity to Capture by Motion

Lechak & Leber illuminated that individual differences play a role along the 

stimulus-driven component of visual attention, by showing that individuals differ in their 

ability to process a salient feature in their environment (2012). Building upon this work, 

we believe that perhaps passive viewing is not the best measure o f motion sensitivity, as 

we previously had argued, because it could be conceived that some individuals may have 

attended the moving stimuli more than others during the passive viewing task.

Individuals were instructed to maintain fixation on a dot at center while dots moved 

radially toward and away from fixation. Were it the case that some individuals attended 

the motion more than others, these individuals would have shown larger evoked fMRI 

activity in MT (V5) as a reflection of attentional processing of motion, rather than a 

measure of inherent sensitivity.

If we advocate that individuals’ sensitivity to motion predicts capture by motion, 

we must develop a precise measure o f sensitivity. Lechak, Wells & Leber employed a 

more accurate measure of motion sensitivity by assessing individuals’ psychophysical 

motion thresholds (VSS abstract, 2011). Previous research has suggested that

27



psychophysical motion thresholds could be a more precise measure of an individual’s 

sensitivity to motion (Newsome & Pare, 1988). With this new sensitivity to motion 

approach and the original attention capture paradigm with the to-be-ignored motion 

distractor we investigated whether greater sensitivity to visual motion makes one less 

able to resist processing it.

To obtain motion thresholds, observers completed a two-interval forced choice 

task in which coherent motion was to be discriminated from random dot motion. Dots in 

the coherent interval were varied in coherence from 4% to 50%, and an accuracy 

threshold of 75% was estimated for each observer (see Figure 4.1).

0% Coherent!

50% CoherentTime

Figure 4.1: Participants were shown two separate intervals of moving dots, one of which 

had a larger percent of dots moving in the same direction. Participants were instructed to 

indicate which interval contained the coherent dot motion.

To obtain a measure of behavioral distraction, participants performed a visual 

search task where the distracting irrelevant item was a moving distractor singleton.

Initial stimulus presentation involved a placeholder display presented for 100 ms, which
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consisted of an outline circle superimposed with an outline square at each of 10 locations 

(see Figure 4.2).

Placeholder Onset 
100m

Motion Distractor 
-^ O n se t 50ms

Target Revealed 
\  150ms

Motion Complete

Figure 4.2: Participants searched for the square and reported whether it had a gap in the 

top or bottom. Half of the trials contained an irrelevant motion singleton distractor that 

could never be the target, which began oscillating during the placeholder presentation 50 

ms before the search stimuli appeared.

On distractor-present trials (50%) a random, non-target placeholder began 

oscillating at 39° /s for 200 ms, first moving 1.95° toward fixation, then away from 

fixation until it was 1.95° more eccentric than its starting position, and finally back to the 

starting position. 50 ms after the motion began, the search objects were revealed (nine 

non-target circles and one target square), and the search objects remained for 200 ms, at 

which point all stimuli except for fixation were removed. Each of these search objects 

contained a small gap in the top or bottom. Participants were instructed to report the
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location of the target gap using the index and middle finger of their right hand (for top 

and bottom gaps, respectively). The 10 objects were green and were arranged 

symmetrically about the vertical and horizontal axes, with half o f  the items appearing to 

the left of fixation and half appearing to the right of fixation. Circles and squares were 

centered 5.85° from fixation and were drawn with a stroke of 0.20°. Squares were 2.34° 

per side and the circle’s diameter was 2.69°. Gaps were 0.49° in length.

RT on distractor-present trials was compared to RT on distractor-absent trials to 

yield a measure of behavioral distraction to motion. Results showed a positive 

correlation between coherence thresholds and distraction, r = 0.52, p = 0.023, (see Figure 

4.3). That is, observers who were less sensitive to visual motion were less able to ignore 

salient distracting motion.
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Figure 4.3: A positive correlation between behavioral distraction and motion thresholds, 

namely that the more distracted an individual is by an irrelevant motion distractor the less 

sensitive you are to detecting coherent motion.
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These results are inconsistent with the proposal that greater sensitivity to motion 

makes one less able to resist it. Instead, an individual’s ability to enhance processing of 

task-relevant stimuli and suppress processing of irrelevant stimuli could be subserved by 

a common mechanism. This unexpected positive correlation could be because a greater 

sensitivity to motion means greater resistance to distraction by motion, such that if you 

notice motion in your visual environment more swiftly than others you are better able to 

ignore it. It is also possible that the results might be affected by participant’s individual 

abilities or motivational factors.

Due to the existence of this second plausible explanation, we decided to regress 

out two different measures of ability/motivation in our subject data, including the overall 

accuracy and the overall reaction time during the visual search task. After attempting to 

remove the contribution of these variables on performance, which are thought to reflect 

motivation to perform well during a task (Engelmann, Damaraju, Padmala & Pessoa, 

2009) we re-plotted our correlation between the residual motion thresholds and the 

residual distraction and now find no significant relationships between these two variables 

(see Figure 4.4).
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Figure 4.4: Residuals of motion thresholds and distraction plotted after regressing out 

overall RT and accuracy scores during the visual search task. The different coloring of 

the points on the graph indicates two different rooms that participants completed the 

study in.

With the post-regression results suggesting no relationship between individual’s 

inherent sensitivity to visual motion and an individual’s distraction by motion, we 

decided to reassess our experimental procedures and found several areas in need of more 

precise control.

Experiment 3: Increasing Experimental Control

In our previous experiment, participants were run in two separate testing rooms 

with dissimilar experimental setups, with most of our data stemming from the end of 

semester tide of last minute research participants. Deciding to rerun the study with 

different methodological concerns, such as using one testing room set up for all subjects, 

and avoiding end of the semester subjects (by running all of our subjects before the last 3 

weeks of the semester), we sought to uncover the link between sensitivity to motion and 

capture by motion. We used the same experimental materials for both assessing 

psychophysical motion thresholds and behavioral capture to motion.

Results showed a negative correlation between coherence thresholds and 

distraction of marginal significance, r = -0.35, p = 0.056, (see Figure 4.5). That is,
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observers who were less sensitive to visual motion were better able to ignore salient 

distracting motion.
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Figure 4.5: Capture by motion and motion threshold revealing a negative correlation, 

suggesting that individuals who are more sensitive to coherent motion in a visual display 

are more susceptible to becoming distracted by irrelevant motion.

These results were consistent with our initial prediction that an individual’s 

inherent sensitivity to visual motion could be used to predict how susceptible those 

individuals are to distraction by motion, and subsequently the more sensitive an 

individual is to coherent motion, the less able they are to resist distraction. In light of our 

contradictory findings from one semester to another, we again regressed out 

ability/motivational factors of overall RT and accuracy during the behavioral capture task 

and we find the residuals trending further towards significance, (see Figure 4.6).
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Figure 4.6: Residuals of distraction by motion and motion thresholds plotted after 

regressing out overall RT and accuracy on the attention capture task.

Combining the results from both of these experiments, we have contradictory 

findings that beg for reconciling. From these results we conclude that it is possible that 

more sensitivity to motion in our visual environment predicts greater susceptibility to 

distraction and there are influences of motivational factors, which might obscure results.

Experiment 4: Attempting to Dissociate Motion Capture from other Forms of 

Capture

The current study seeks to nail down the answer to the question of whether or not 

an individual’s ability to perceive coherent motion predicts how susceptible to distraction 

that individual will be to irrelevant motion in their visual environment. Previous research 

has attempted to obtain a direct motivational measure of the task at hand, such as the
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Intrinsic Motivation Inventory (IMI), designed to assess participant’s investment in an 

experiment (Ryan, Koestner & Deci, 1991). If motivation is playing a large role in 

affecting the results of the study, regressing out an overall rating of intrinsic motivation 

during the task should reveal a clearer picture of the relationship between sensitivity to a 

feature and distraction by that feature.

In addition, I added another feature of sensitivity to aid the discussion of how 

different features in our visual environment are processed, as the question arises of 

whether being good at one task predicts good performance on another task. We can 

imagine, that perhaps some people are better across the board at following instructions, 

and that individuals who have less distraction to one visual feature in their environment, 

could also have less distraction to other features simply because they are better overall at 

multiple types of tasks. By adding a new component of orientation capture and 

orientation thresholds, I wanted to determine whether motion sensitivity is exclusively 

influencing one’s ability to avoid distraction by motion (and not distraction to other 

visual features). In addition, I attempted to dissociate motion and orientation sensitivity, 

such that it could be possible that some individuals are more sensitive to a specific 

feature in their visual environment, e.g. motion more than orientation, rather than more 

sensitive to all visual features. This dissociation would also suggest that individuals have 

different sensitivities to different features in their visual environments, contributing to the 

literature on the stimulus-driven component of attentional control and processing, while 

stressing the importance of examining individual differences within large data sets.
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Methods and Materials

Subjects. Participants were recruited from the University of New Hampshire’s 

Psychology Subject Participation Pool, also known as SON A. Participants had normal or 

corrected-to-normal visual acuity and normal color vision, were right handed, and 

participated in exchange for course credit. The Institutional Review Board of the 

University of New Hampshire approved procedures.

Stimuli. Stimuli were generated via an Apple MacBook computer using 

MATLAB software (Mathworks, Natick, MA) with Psychophysics Toolbox extensions 

(Brainard, 1997; Pelli, 1997) and presented on a 19in. CRT display (ViewSonic G90fb) at 

a viewing distance of approximately 50cm.

Design & procedure

Visual Search Task: Motion Capture. Participants completed 6, 8-minute blocks 

of 96 trials per block of the visual search task. A fixation dot was present for the duration 

of the run, and participants were instructed to maintain gaze on it. Initial stimulus 

presentation involved a placeholder display for 100ms, consisting of an outline square 

and an outline circle superimposed at each of 10 locations (see Figure 4.2). On distractor 

present trials (50%) a random, non-target placeholder oscillated at 39°/second for 200ms 

toward and away from fixation then back to its starting position. 50ms after the motion
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begins, the search objects were revealed (ten circles with a lighter green target circle), 

and the search objects remained on display for 200ms, and then disappeared to leave only 

the fixation dot.

All of the search objects had a gap in their outline either at the top or the bottom, 

and participants were instructed to report where the gap in the light green circle appears, 

pressing their index finger for a gap on the top and their middle finger on a different key 

for a gap on the bottom. The items were green and arranged symmetrically about the 

horizontal and vertical axes, with half of the items appearing to the left of fixation and 

half appearing to the right of fixation. Circles were centered 5.85° from fixation and 

were drawn with a stroke of 0.20°. The circle’s diameter was 2.69°. All gaps were 0.49° 

in length.

Motion Threshold. To obtain motion thresholds, observers completed a two- 

interval forced choice task in which coherent motion was discriminated from random dot 

motion. Trials started with a 500ms display with only the fixation dot present, which 

remained present during the entire duration of the experiment. Participants performed six 

practice trials followed by 6 blocks of 72 trials per block, for approximately 30mins.

After each trial, participants were asked, “Which interval contained some dots moving in 

the same direction?” and they indicated the first or second interval with the press of a 

button (either “1” or “2” key, respectively). Dots in the coherent interval were varied in 

coherence from 4% to 50%, and an accuracy threshold of 75% was estimated for each 

observer, (see Figure 4.1).
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Visual Search Task: Orientation Capture. Participants completed 6 blocks of 96 

trials per block for a total of 8 mins per block. A fixation dot was present for the duration 

of the run, and participants were instructed to maintain gaze on it. Initial stimulus 

presentation involved a placeholder display for 100ms, consisting of a horizontal and 

vertical bar superimposed at each of 10 locations, (see Figure 4.7).

Placeholder Onsel 
100ms

Distractor Reveali 
50m s

Figure 4.7: Representation of a trial where participants searched for the oddball color 

target and reported whether it is horizontal or vertical. Half of the trials contained an 

irrelevant orientation singleton distractor that could never be the target, which appeared 

during the placeholder presentation 50 ms before the search stimuli was presented.

On distractor present trials (50%) a random, non-target placeholder revealed a

tilted bar while the other non-target & non-distractor items were either vertical or

horizontal. The target was a horizontal or vertical bar on every trial and was a light green.

Participants were asked to search for the light green target and report whether it was

horizontal (the “>” key) or vertical (the “<” key) in orientation. 50 ms before the search
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objects were revealed, the distracting bar was revealed to maximize the capture effect.

The search objects were revealed for 200ms, and then they disappeared to leave only the 

fixation dot.

Orientation Threshold. To obtain orientation thresholds, observers completed a 

two-interval forced choice task in which one interval contained homogeneously oriented 

bars and the other contained heterogeneously oriented bars. Participants were asked to 

report in which interval the heterogeneous display was presented. In the homogeneous 

interval, all bars were tilted either 45° clockwise or counterclockwise from vertical. In 

the heterogeneous interval, half of the bars were presented at the standard 45° rotation 

from vertical (either all clockwise or all counterclockwise, and never the same orientation 

as in the homogeneous interval); the remaining half of the bars in this condition deviated 

from the standard orientation (half clockwise and half counterclockwise). The deviation 

of all non-standard bars, which determined task difficulty, was selected on each trial from 

among 10 values, ranging from 0.5° to 6°, (see Figure 4.8).



Figure 4.8: Participants were shown two separate intervals of tilted parallel bars, one of 

which had a display of tilted bars that were not perfectly parallel. Participants were 

instructed to indicate which interval contained bars that were not parallel to one another 

(above answer would be “1”).

Participants completed 10 practice trials, followed by 6 blocks of 72 trials. A 

fixation dot was present for the duration of the run, and participants were instructed to 

maintain gaze on it. After each trial, participants were asked, “Which interval contained 

bars that were not perfectly parallel?” and they indicated the first or second interval with 

the press of a button (either “1” or “2” key, respectively). Finally, an accuracy threshold 

of 75% was established for each participant.

Intrinsic Motivation Inventory. All participants filled out a modified version of 

the Intrinsic Motivation Inventory (IMI) at the completion of the above four behavioral 

sections (see Appendix B). Responses were given on a likert scale and were individually 

coded (using the original criteria outlined by Ryan, Mims & Koestner, 1983) to obtain an 

overall motivation measure on the experiment. In addition, the data were divided into 

three subcategories of effort, usefulness and interest. These measures were then 

correlated with performance on the four tasks to assess the degree to which motivation 

affects performance, to reveal a clearer picture of how the variables are related.
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Results & Discussion:

In this experiment, I sought to determine whether an individual’s baseline 

sensitivity to a passively viewed stimulus feature could predict how distracting that 

stimulus feature was when the individual was instructed to ignore it. I predicted I could 

replicate results from Experiment 3 to find that the more sensitive an individual is to 

coherent motion, the less able they are to resist distraction by motion.

Behavioral Distraction. Behavioral data on the motion capture task was analyzed for an 

effect of distractor presence on RT, and results revealed an average of 21.8 ms of capture, 

and distractor absence RT (M = 607.1 ms) compared to presence (M = 628.9) was 

significant, t(29) = 11.24, p  < 0.05. When examining the orientation capture data, results 

revealed an average of 15.2 ms, and distractor absence RT ( M = 442.1 ms) compared to 

presence (M = 457.3 ms) was significant, t{29) = 7.64, p  < 0.05. These results support 

that it took participants longer to respond to the target when an irrelevant distractor was 

present compared to when it was absent during visual search.

Feature Sensitivity. For both motion thresholding and orientation thresholding an 

accuracy threshold of 75% was estimated for each observer using pfit and psignafit 

programs created using MATLAB software (Mathworks, Natick, MA). Psignafit 

performs a constrained maximum likelihood estimate on the data to specified threshold 

cuts (75%). Pfit then fits a psychometric function to the data and performs 1999 

bootstrapping simulations in order to estimate the variability o f the fitted parameters and
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estimated thresholds. Finally, a sensitivity analysis is run to gauge how sensitive the 

variability estimates would be to inaccuracy of the initial fit, see Figure 4.9.
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Figure 4.9: Example of a psychometric function fitting performance accuracy to motion 

sensitivity for the motion thresholding task.

Participants had an average of 0.132 motion coherence threshold (SD = 0.045), 

and an average of 2.797 degrees deviation threshold (SD = 0.544). These results suggest 

that psignafit and pfit were adequately able to calculate sensitivity thresholds for both the 

motion threshold and the orientation threshold tasks.

Correlating Sensitivity and Capture. Results from thirty subjects revealed no significant 

correlations between any of the variables identified in the Methods section of this chapter. 

Behavioral capture by motion was not significantly correlated with sensitivity to motion,



r (28) = 0.09, p > 0.05. In addition, I predicted I could find link between orientation 

capture and orientation threshold, such that people who are better able to detect a 

deviation in the angle of a tilted bar will be more distracted by tilted bars during a capture 

task. Orientation capture and sensitivity to orientation were not significantly correlated, r 

(28) = -0.19, p  > 0.05. I had also hoped to determine a double dissociation between these 

two features (motion and orientation) by finding that motion threshold and motion 

capture correlate (as in Experiment 3) and that orientation threshold and orientation 

capture correlate, but that motion threshold and orientation capture do not significantly 

correlate, nor do orientation threshold and motion capture. I found no significant results 

for these features predicting either capture or sensitivity to another feature: motion 

capture and sensitivity to orientation, r (28) = 0.29, p  > 0.05; orientation capture and 

sensitivity to motion, r (28) = 0.12,/? > 0.05.

Examining the relationship between both forms of sensitivity to features in our 

visual environment, motion thresholds and orientation thresholds did not significantly 

correlate, r (28) = 0.14,/? > 0.05.
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Figure 4.10: No correlation between two measures of sensitivity.
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This suggests that individuals have different sensitivities to different features in 

their visual environments; contributing to the literature on the stimulus-driven component 

of attentional control and processing, see Figure 4.10. Examining whether capture by one 

feature predicted the magnitude of capture by the other feature, I correlated motion 

capture and orientation capture and found no significant result, r  (28) = 0.02, p  > 0.05.

Internal Motivation Inventory Scores. Using the likert scale from 1-7, participants rated 

13 items containing statements about the tasks they had just completed, with 1 = not at all 

true, to 7 = very true. The items were coded such that the higher the value of the reported 

number, the more effort invested, or interest in the task reported, or usefulness of the task 

to the participant. Overall IMI responses (M = 4.54, SD = 1.02) indicated that subjects 

were above average (3.5) in their effort, interest and imagined usefulness of the task. 

Breaking down the variables further into effort (M = 5.78, SD = 0.78), interest (M = 3.35, 

SD = 1.35) and usefulness (M = 4.05, SD = 1.51), it is possible to examine whether these 

variables are related to each other under the overarching motivation measure. A 

repeated-measures analysis of variance (ANOVA) was run on these three measures, F 

(2,58) = 73.13,/? < 0.05, indicating that these three variables were significantly different 

from one another. Specifically, a participant’s report of putting in more effort on the task 

is not related to how useful they thought the task was, or the amount they were interested 

in the task. This suggests that even if individuals believe the task is not very interesting 

(the mean was below average of 3.5) they still invest a large amount of effort.

I initially predicted that motivation and ability variables could be obscuring the 

relationship between baseline sensitivity to a feature and capture by that feature. I sought
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to determine how much of a role motivation could be playing in the results. Looking at 

motivational measures in the data, specifically overall accuracy and overall RT, I 

examined the partial correlations when controlling for overall accuracy and overall RT 

and found no significant correlation between motion capture and motion sensitivity, r 

(28) = 0.10 , p >  0.05, or between orientation capture and orientation sensitivity, r (28) = - 

0.21, p  > 0.05. The IMI data were also examined in another analysis of partial 

correlations, controlling for the three measures from the IMI of interest, usefulness and 

effort, and again no significant correlations were found between motion capture and 

motion threshold, r (28) = 0.14,/? > 0.05, or orientation capture and orientation threshold, 

r (28) = -0.24,/? >0.05.

Due to the lack of significant findings from this experiment, I imagined it was 

possible that not enough subjects were run to achieve significant relationships between 

the variables. To further explore this possibility, power analyses were run to discover 

how many subjects’ data would need to be collected for the current correlation value (r) 

to be significant. Using the r-value (0.09) for the correlation between motion capture and 

motion sensitivity, which had already been found to significantly correlate in past 

semesters, the number of subjects that would be needed based on this current data is 520 

subjects. This large amount of participants needed, based on the experiment’s results, 

suggest no definite relationship between sensitivity to a feature and capture by that 

feature, and I acknowledge the following limitations, with suggested future directions.

First of all, a null result from Experiment 4 does not confirm that there is no 

relationship between an individual’s baseline sensitivity to a feature in our visual 

environment and the degree of capture by that visual feature. Neither can I confirm that
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there is a relationship based on not only the current semester of data, but also the 

combination of three semesters of data. In Experiment 2, we found a negative correlation, 

which suggested that the more sensitive an individual was to motion in their environment 

the less distracted they would be by moving stimuli. In Experiment 3, the opposite 

pattern was found where the more sensitive an individual was to a feature in their visual 

environment, the more distracted they were by that feature during a visual search task. 

These differing semesters of data were thought to diverge due to motivational or overall 

ability variables during the task, and Experiment 4 examined not only overall accuracy 

and RT, but also an internal motivation survey, that revealed no significant relationships 

in the data.

Limitations of the current study are apparent in the threshold tasks for both 

motion threshold and orientation threshold. A more precise measure of sensitivity to 

visual features could have yielded a clearer result with more variability between subjects’ 

abilities to detect the feature of interest. The methods currently used were not sensitive 

enough to detect the relationship that was so clearly suggested from the fMRI data from 

2012 (Lechak & Leber). Specifically, I predicted that the more sensitive an individual 

was to a visual feature the more distracted they would be by that feature. Unfortunately it 

is possible that using a two alternative forced choice for the detection of coherent motion 

is not akin to having participants passively view motion, as they had in the neuroimaging 

study.

Future directions with this research avenue to identify whether or not an 

individual’s baseline sensitivity to a visual feature in the environment can predict how 

distracted that individual will be by that feature, should seek out a more direct measure of
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motion sensitivity. Perhaps changing the task from the two alternative forced choice for 

coherent motion, to a task where the subject presses a button when there is perceived or 

detected motion in the display would yield clearer results. For example, have the subject 

fixate on a dot at the center of the screen, and if there were ten items in the display when 

the trial begins, one of them could begin to oscillate toward and away from fixation at 

varying SOAs from the trial starting. I would predict that the time it takes subjects to 

identify the motion in the display will vary across subjects and that it could be related to 

the magnitude of attention capture by motion during a separate visual search task. 

Previous research has shown that motion detection mechanisms have not been fully 

illuminated and are more complex than they seem, adding another layer of difficulty to 

finding an accurate and precise way to behaviorally measure sensitivities to motion in our 

visual environment (Krekelberg, 2008).

It is possible that behavioral measures are not sensitive enough and that neural 

measures of visual feature sensitivities are needed to uncover more information about 

whether there is a link between an individual’s baseline sensitivity to a feature in the 

visual environment and distraction by that feature. Understanding how individual 

differences can play a large role in the variability seen in different attention capture 

paradigms is important as we seek to elucidate how attentional control is implemented.
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CHAPTER 5

ATTENTIONAL & INHIBITORY CONTROL: CAN WORKING 

MEMORY & ABILITY TO DISENGAGE PREDICT CAPTURE?

Watson & Humphreys in 1997 proposed previous search items can be inhibited 

during search to facilitate the current search for the target. They defined the process as 

an intentional resource-limited mechanism that seeks to link the to-be-ignored distractor 

features so that attention may be directed elsewhere. This link o f  distracting information 

was described as visual marking, an idea that has carried through decades and is still 

discussed as the process by which our attentional system can avoid further processing of 

distracting or marked information (Horowitz & Wolfe, 2003). Understanding how 

distractor features are processed and consequently how they affect current target 

processing is important because much of our visual environment at any given moment 

does not match our behavioral goals for the scene. For example, we might be reading a 

book, attending only the information in our immediate sensory environment, while 

everything else around us, in other sensory modalities, could be considered distracting 

information. Individuals differ in their abilities to ignore distracting information, and 

researchers have started to propose possibilities as to how some individuals are less 

susceptible to distraction than others.
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Experiment 5: Linking working memory, inhibition. & capture

When searching for a target in a diverse visual environment, how do individuals 

differ in their abilities to ignore distracting information? In terms of goal-driven 

information processing, both attention and working memory systems increase 

accessibility of relevant information (Awh, Vogel & Oh, 2006). Researchers have 

uncovered that variability exists in individuals’ abilities to avoid distracting information 

(Kane, Bleckley, Conway & Engle, 2001; Kanai, Dong, Bahrami, & Rees, 2011; 

Kawahara & Kihara, 2011). In 2011, Chun advocated that working memory capacity was 

the interface for selective attention of relevant items in the visual environment and 

avoidance of distracting items. In addition, neuroimaging studies of brain waves using 

electroencephalography (EEG) revealed that subjects with higher working memory 

capacity only represent relevant items in memory, suggesting the efficiency of subjects to 

represent their visual environment is more important than the actual capacity of the 

system (Vogel, McCollough, & Machizawa, 2005).

Upon further investigation of this suggestion, McNab and Klingberg (2007) used 

functional magnetic resonance imaging (fMRI) to examine brain activity during a 

working memory task and found the basal ganglia and right prefrontal cortex were 

activated as subjects attempted to ignore distracting information by selectively processing 

relevant information compared to processing the entire display. In 2008, McNab and 

colleagues went a step further to suggest that working memory capacity and the ability to 

ignore distracting information was linked to inhibitory processing, and that working
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memory capacity and inhibition have common neural components that might reside in the 

basal ganglia and right prefrontal cortex (McNab, Leroux, Strand, Thorell, Bergman & 

Klingberg 2008).

Examining inhibitory processing for its role in individual’s abilities to ignore 

distracting information can be done in several ways, due to the several types of inhibition 

that have been identified, namely motor inhibition (where the subject needs to inhibit a 

specific response) and cognitive inhibition (where the subject must cognitively shift their 

attentional focus and inhibit a distracting item). In 1984, Logan and Cowan suggested 

that during either motor or cognitive inhibition subjects are required to do something 

actively, rather than passively to achieve their inhibitory goals. More recent research has 

suggested that in order for a subject to inhibit a motor response, they must first 

cognitively disengage from the target of the response, or the item (Blakely. Wright, 

Dehili, Boot, & Brockmole, 2012). This suggests there is a link between cognitive 

inhibitory processes and motor inhibitory processes.

Motor inhibition has frequently been studied using a stop-signal response 

paradigm, where subjects are required to inhibit a preplanned motor response to the 

appearance of a stop-signal (usually a tone). In a stop-signal task, participants are 

instructed to respond in separate ways to two different stimuli, for example press “X” 

when you see a circle, and press “Y” when you see a square. On some trials, a stop- 

signal will appear at varying staircased intervals following the presentation of the stimuli 

to indicate for the participant to inhibit their motor response of pressing a button. Stop- 

signal reaction times (SSRTs) are a covert measure of the time it takes subjects to inhibit 

their response to the stimuli after the presentation of the stop signal. In 2003, Aron and
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colleagues examined patients with damage to their right frontal cortex and found that the 

greater the region of damage in cortex, the longer it took subjects to inhibit their 

preplanned motor responses, evidenced by longer SSRTs (Aron, Fletcher, Bullmore, 

Sahakian, & Robbins, 2003). Additionally, Aron examined a specific region in right 

frontal cortex, the inferior frontal cortex (R IFC) and found that activity in the R IFC 

responded to both a cognitive inhibition task of controlling interference while switching 

items, and motor inhibition during the stop-signal paradigm (Aron, Robbins & Poldrack, 

2004). This finding suggests that both cognitive and motor inhibitory processes could be 

carried out by the same underlying substrate in cortex, namely the R IFC.

Upon further investigations of this region, R IFC, Clark and colleagues examined 

to the relationship between SSRTs and spatial working memory capacity (Clark, 

Blackwell, Aron, Turner, Dowson, Robbins & Sahakian 2007). They found that when 

successful inhibition of a motor response occurs, both R IFC and a region called the 

subthalamic nucleus (STN) are activated, and subjects with higher spatial working 

memory were better able to inhibit their motor response, exhibiting faster SSRTs. They 

suggest that the stop-signal is executed via a fronto-subthalamic circuitry, specifically 

that STN activation inputs to a basal ganglia-thalamocortical pathway leading to neural 

inhibition of the primary motor response. This fronto-subthalamic circuitry has 

characteristics for an inhibitory circuit with downstream primary motor areas, supporting 

previous researchers’ proposal of a direct route for motor inhibition: R IFC excites STN 

which then excites globus pallidus to suppress basal ganglia thalamocortical output to 

suppress the motor response (Aron & Poldrack, 2006; Aron, 2010).
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Neurochemical research has advocated that motor inhibition is supported by an 

ascending monoamine system, such that increased levels of norepinephrine (stimulated 

by administration of a norepinephrine reuptake inhibitor known as atomoxetine) 

improved response inhibition during a stop-signal task (Chamberlain, Muller, Blackwell, 

Clark, Robbins, & Sahakian, 2006; Bari, Eagle, Mar, Robinson, & Robbins, 2009). 

Finally, a newer neuroimaging technique known as diffusion-weighted imaging (DWI) 

was used to illuminate white matter tracts in cortex that directly connect R IFC, pre- 

sensory motor cortex, and STN (Coxon, van Impe, Wenderoth, & Swinnen, 2012). These 

researchers also had subjects perform the stop-signal task and found that the integrity of 

the white matter connections between these three regions in cortex predicted performance 

on the stop-signal task, with faster SSRTs predicted by larger white matter connections.

Shifting back to the initial question of this experiment, perhaps what modulates 

the variability between individuals in their ability to avoid distraction is an inhibitory 

process, potentially measurable using SSRTs, and not a function of working memory 

capacity as was previously suggested. This role for inhibitory processes in avoiding 

distracting information was hinted at when Fukuda & Vogel used an attention capture 

paradigm and measured the time it takes participants to recover after they have been 

distracted (2011). By first intentionally distracting participants, they could then measure 

the amount of time it takes individuals to recover from distraction, namely how long until 

the participant correctly identifies and responds to the target. Fukuda & Vogel in 2009 

varied the temporal gap between the distractor appearance and the target appearance to 

force participants to initially engage the distracting item. Once the distracting item had 

been engaged, or attended, they could measure the time it took participants to disengage
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from the distracting item and engage the target item to make a correct response. The time 

it takes participants to disengage their attention from a distracting item varies by 

individual, and in 2011, Fukuda & Vogel found that these individual differences in ability 

to recover from attentional capture was linked to the individual’s working memory 

capacity. Specifically, individuals with high working memory capacity were able to 

disengage from distracting items more rapidly than those with low capacity, suggesting 

greater abilities of high-capacity individuals to execute goal-driven control. This 

research proposes that working memory capacity modulates the speed at which you 

recover from distraction, and there are two possibilities for why this could be the case.

First, it could be possible that higher working memory capacity drives the ability 

to disengage from distracting stimuli by the overall enhancement in processing the visual 

environment. Individuals with higher capacity could have more available attentional 

resources and success on one task would predicts success on other attentional tasks due to 

general overall abilities. Second, it also could be possible that the inhibitory processes 

that are involved in disengagement fuel an individual’s ability to avoid distracting 

information, and working memory capacity takes a lesser role in this relationship.

In the current experiment, I sought to illuminate how inhibition, working memory 

capacity, and disengagement are related to an individual’s ability to ignore distracting 

information. Maybe the R IFC plays a common inhibitory role across cognitive 

disengagement and motor inhibition stop-signal tasks? A correlation between an 

individual’s SSRT and their time to disengage from distraction would suggest that the 

tasks are potentially linked to the same underlying substrate in cortex. Also, can SSRT 

predict working memory capacity, such that the ability to inhibit a response predicts the
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ability to hold items in working memory, and subsequently the ability to inhibit or 

disengage from distracting information in the visual environment? This experiment uses 

three tasks: working memory capacity, a stop-signal paradigm, and the Fukuda & Vogel 

time to disengage paradigm to examine the variability in individuals’ abilities to avoid 

distracting information.

Materials and Methods

Subjects. Participants were recruited from the University of New Hampshire’s 

Psychology Subject Participation Pool, also known as SONA. Participants had normal or 

corrected-to-normal visual acuity and normal color vision, were right handed, and 

participated in exchange for course credit. The Institutional Review Board of the 

University of New Hampshire approved procedures.

Stimuli. Stimuli were generated with an Apple G4 desktop or Apple Mac Mini 

computer using Matlab (Mathworks, Natick, MA) with PsychToolbox extensions 

(Brainard, 1997; Pelli, 1997) and presented on a 19in. CRT display (ViewSonic G90fb) at 

a viewing distance of 50 cm. The 4’x8’ windowless rooms are controlled for sound and a 

spotlight in the back left comer of the room gave minimal illumination.
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Design & Procedure

Stop It Task. All participants performed the STOP-IT task, which is a stop-signal 

paradigm used for the investigation of response inhibition. (Verbruggen, Logan &

Stevens, 2008; Verbruggen & Logan, 2008). Participants fixated at a dot at center, and 

prepared to identify either a circle or a square, to press with the index finger of their right 

hand the “?” for a circle and with the index finger of their left hand the “Z” for a square. 

On one third of trials, an auditory tone was presented at varying onsets before the shape 

was presented and alerted participants to inhibit or stop their response, and not press the 

response button. This auditory tone alerted participants that they are to try and withhold 

their response to the current symbol on the screen. The tone occurred occasionally, was 

unpredictable, and occurred at various latencies after the appearance of the letter. The 

auditory tone was timed to adjust with each participant’s speed of response, to obtain a 

near 50% accuracy of inhibiting the response. A measure of stop signal reaction time 

(SSRT) for each participant was recorded. The SSRT is an estimation of the time an 

individual needs to stop their usual behavior (i.e. pressing a key every time they see the 

symbol) in response to the stop signal, and is calculated by subtracting the mean stop 

signal duration (SSD) from the untrimmed mean reaction time to the primary task (Logan, 

Schachar, & Tannock, 1997). This measure of SSRT was subsequently correlated with 

the other tasks in this experiment, attempting to link inhibitory measures to recovery from 

capture, and working memory.
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Time to Disengage Paradigm. This task was a replication of Fukuda & Vogel’s 

2011 Experiment 1 task of measuring recovery time from attentional capture in each 

participant. There were two sections of this task. The first calibrated the target duration 

in milliseconds for each participant using a staircase procedure. Since I was examining 

individual differences in how long individuals are distracted by irrelevant information, I 

needed to know how long it takes the individual to find the target when there is no 

distracting information present. Participants viewed a display o f 4 empty boxes for 

200ms, after which 4 “C” shapes appeared in different colors (red, green, blue, & purple) 

in different orientations (left, right, up or down). Participants were asked to identify the 

location of the gap or opening of the “C” shape based on target color (either red or green) 

as quickly and accurately as possible. When participants responded incorrectly, the target 

duration increased by 30ms for the following trial and when they answered correctly the 

target duration decreased by 10ms for the following trial. Participants performed 3 

blocks of 60 trials each, after which the target duration was specified when participants 

were 75% correct on trials.

After the calibration blocks were over, the second section of this task began (see 

Figure 5.1). Participants performed the same task as before, identifying the gap in the “C” 

shape in their target color, however, in the main trials there is a 2/3 chance that a flanking 

colored box appeared near one of the target locations before the target was revealed. 

Flanker stimulus-onset-asynchrony (SOA) was varied at either 50ms before the target, 

150ms, 350ms, 500ms, or 700ms. Flankers were either relevant (the same color as the 

target color) or irrelevant (a different color from the target). Participants performed 6 

blocks of 160 trials per block and capture costs in accuracy were assessed.

56



Upon completion of these trials, an accuracy measure of capture costs of each trial 

type (no flanker, irrelevant flanker, and relevant flanker) was obtained at each of the 

flanker SO As for two different conditions: stimulus driven attentional capture (irrelevant 

flanker minus no flanker trials) and contingent capture (relevant flanker minus no flanker 

trials). In addition, a measure of the time (ms) it takes subjects to recover from 

attentional distraction was obtained. Fukuda & Vogel used a linear derivation to model 

the capture cost for both stimulus driven and contingent capture when the cost reduced to 

5%, suggesting that there was little affect of the flanker on the accuracy of participants 

response to the target (2011).
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Figure 5.1: Taken from Fukuda & Vogel, 2011. On one third o f  the trials, a relevant or 

irrelevant flanker, in either the target color (relevant) or a different color (irrelevant), was 

presented at varied stimulus onset asynchrony (SOA) across trials before the search array 

was presented. The duration of the search array was titrated for each subject. Participants 

reported the orientation of the “C” shape presented in the target color.
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Fukuda & Vogel found that individuals with higher working memory capacity 

were faster to disengage from the distracting item and respond to the target (2011). We 

used individuals’ time to disengage by correlating it with not only working memory, 

hoping to replicate their above finding, but also with inhibition measures of SSRT.

Working Memory. Participants viewed two intervals of displays of either 4 or 8 

colored squares in each trial. Squares were randomly arranged on the screen around 

fixation and could be 8 different colors (green, red, blue, yellow, cyan, magenta, black or 

white). After the first array was presented for 100 ms a delay o f  1 second occurred, and 

then the second array was presented for 100 ms and participants had 3 s to make a 

response as to whether the squares stayed the same color across the interval or whether 

one of the squares changed color (see Figure 5.2). Participants indicated their response 

with a button press, and performed a 16 trial practice block, followed by five test blocks 

of 60 trials each.



Figure 5.2: Stimuli for the working memory task. Participants viewed a first array of 

colored squares followed by a delay interval and then made a judgment on the second 

interval of squares as to whether they stayed the same color or if one of the squares 

changed color.

A measure of working memory capacity was obtained by calculating Cowan’s K 

(Cowan, 2000). Cowan postulated that participants can hold K out of N items in a 

display of N items, and based on signal detection theory a formula for calculating K. K 

would equal the hit rate plus the correct rejection rate minus one, multiplied by set size N. 

This formula takes into account the probability that sometimes participants are guessing 

on their responses, and provides a sensitive measure of working memory capacity. I 

examined the relationship between individuals working memory capacity, their SSRT 

from the stop-signal task, and the time during which they recover from distraction during 

the disengagement task in the hope of creating a better understanding of how these 

different aspects of attentional cognitive control interact.

Results & Discussion:

In this experiment, I sought to find answers as to how some individuals are better 

able than others at ignoring distracting information. I predicted I could replicate results 

from Fukuda and Vogel’s 2011 Experiment 1 linking higher working memory capacity to 

faster ability of individuals to disengage from distracting information. In addition, I
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sought to link inhibitory processes to both the ability to disengage, and working memory 

capacity.

A total of fifty-four subjects were run in the procedure as described above. Five 

subjects were excluded from the following analyses for having working memory 

capacities (M= 0.95) that were more than 2.5 SDs away from the remaining group mean 

(M= 3.34). In addition, one subject was excluded for having an accuracy average of 

28% on the time to disengage task, which was 2.5SDs lower than the remaining group 

mean of (69%). Finally, sixteen subjects were cut for having inhibited significantly more 

or less than 50% of the time during the STOP-IT task, the subtraction method used in the 

ANALYZE-IT program to calculate SSRT cannot use subjects who inhibit more or less 

than 50% (Verbruggen, et al., 2008). The remaining thirty-two subjects are included in 

all of the following analyses.

Working Memory Capacity Task. The mean working memory capacity estimate 

was 3.34 (SD = 0.59). The range of estimates was from 1.92 to 4.3, which is comparable 

to findings of previous experiments using this paradigm (Vogel, et al., 2005; Fukuda & 

Vogel, 2011).

Visual Search Task: Staircase Procedure: The baseline search array durations (M 

= 50.19, SD = 14.17) ranged from 28 ms to 80 ms. There was a significant correlation 

between this estimate and the working memory capacity estimate (r -  -0.49, p  < 0.05). 

This result suggests that individuals with higher working memory capacity were able to 

correctly identify the target at the 75% accuracy threshold faster than individuals with
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lower working memory capacity. Fukuda and Vogel had not found a significant 

relationship between these variables in 2011.

Visual Search Task: Flanker Capture: Starting with the no flanker condition 

overall accuracy was 72.9% (SD = 0.137); the relevant flanker-same color as the target 

color-condition had a mean accuracy of 64.3% (SD = 0.144); and the irrelevant flanker- 

different color than the target-condition had a mean accuracy of 68.6% (SD = 0.143). A 

repeated measures analysis of variance (ANOVA) was carried out to examine the effect 

of the relevant and irrelevant flankers on accuracy. First, there was a main effect of 

flanker type (none, relevant and irrelevant), F(2,62) = 40.47, p  <  0.05, with the no flanker 

condition having significantly higher accuracy than both relevant and irrelevant flanker 

conditions, with mean differences from the no flanker condition of 0.085, and 0.043, 

respectively. In addition, irrelevant flanker accuracy was significantly higher than 

relevant flanker accuracy with a mean difference of 0.042. Second, there was a 

significant interaction of flanker type and SOA, F(4,124) = 8.304, p <  0.05. Irrelevant 

flankers induced no significant capture costs across SOA, however, relevant flankers 

induced significant capture costs at both the 50 ms (p<  0.05) and the 150 ms (p < 0.05) 

see Figure 5.3.
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Figure 5.3: Percent correct as a function of trial type and SOA. Chance performance is 

25%. Error bars represent the standard errors of the mean.

These results add to the conclusions of Fukuda & Vogel, because in their 

experiment, the time course of attentional disengagement (SOA) ended at 350 ms, 

therefore they concluded that contingent attentional capture might endure for longer than 

350 ms (2011). In the current experiment, I extended the time course to 700 ms to get a 

better measure of the recovery time from attentional capture. Here, results demonstrate 

that by 350 ms, the capture cost is no longer significant for contingent capture, suggesting 

350 ms might be cut off for the lasting effects of contingent capture, which is consistent 

with Fukuda and Vogel’s suggestion (2011). These results are inconsistent in that there 

are no significant capture costs for stimulus driven capture, whereas Fukuda and Vogel 

found a significant difference at 50 ms, suggesting stimulus driven capture was shorter 

lived than contingent capture (2011). With my current data set, I cannot comment on
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whether or not stimulus driven capture is shorter lived, as I found no significance of 

stimulus driven capture at any SOA.

Individual Differences in Attentional Capture: A median split was performed on 

the working memory capacity estimates to divide individuals into high capacity (M = 

3.82, SD = 0.26) and low capacity (M = 2.89, SD = 0.40). Figure 5.4 shows the capture 

costs for each group as a function of SOA.

Figure 5.4: Capture cost as a function of the flanker to target SOA, in addition to low and 

high working memory capacity, as well as stimulus and contingent capture.

Unlike Fukuda and Vogel, who found significant differences at the different 

SOAs between working memory capacity groups for contingent capture, I found no 

significant differences across SOAs for either stimulus driven or contingent capture by 

working memory capacity (2011).
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Recovery Time: To estimate recovery time from attentional capture for each 

subject, I used the same method as Fukuda & Vogel, using a linear derivation to model 

the flanker to target SOA at which the capture cost decreased to 5% for both stimulus 

driven and contingent capture. This analysis revealed that recovery time from stimulus 

driven capture (M = 314.34) was not significantly different than recovery time from 

contingent capture (M = 321.06), p > 0.05.

Examining recovery time as a function of working memory capacity, I was able to 

replicate Fukuda & Vogel’s finding that working memory capacity does not predict 

individuals’ abilities to recover from stimulus driven capture (r =  -0.21. p > 0.05); 

however, I found no correlation between contingent recovery times and working memory 

capacity (r = 0.025, p > 0.05). My inability to replicate this piece of the previous 

literature, that higher working memory capacity predicts faster recovery from contingent 

capture, was disappointing, and could be due to slight differences in overall time to 

disengage paradigm, such as a longer time course for the flanker to target SOAs, and 

changing the color of the irrelevant flanker to be of a true counterbalancing design; rather 

than the possibility of 3 different colors, I only had 1.

Stop-signal Reaction Time Task: The mean SSRT for this task was 244.51 (SD = 

44.9) with a range from 148.4 ms to 322 ms. Examining the relationship between the 

ability to inhibit a motor response with working memory capacity estimates I find a 

significant positive relationship, r = 0.36, p  < 0.05, suggesting that the higher an
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individual’s working memory capacity the higher the SSRT (or poorer ability to inhibit a 

motor response, see Figure 5.5).
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Figure 5.5: Correlation between stop signal reaction time (SSRT) and working memory 

capacity.

This result was puzzling, as I had predicted that individuals who were better at 

inhibiting a motor response would have higher working memory capacity. I can only 

speculate as to why the opposite correlation was found. Perhaps individuals with higher 

working memory capacity are better able to hold onto the correct response during the 

stop-signal task, specifically they see the target (circle or square) and are unable to inhibit 

their response to this target quickly, resulting in higher SSRTs.

Another prediction I had had with SSRT was that it was a comparable measure of 

cognitive inhibition akin to the processes involved in disengaging from distracting 

information. Examining the relationship between SSRT and recovery time for stimulus 

driven capture, I found no significant correlation, and SSRT and contingent capture also
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had no significant relationship. Next, I examined the relationship between SSRT and 

capture cost at each SOA. SSRT is significantly correlated to contingent capture at 150 

ms, r = 0.44, p  < 0.05, see Figure 5.6a.
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Figure 5.6: a) Correlation between SSRT and contingent capture cost at 150 ms SOA. b) 

Correlation between SSRT and stimulus driven capture cost at 150 ms SOA. c) 

Correlation between SSRT and stimulus driven capture cost at 500 ms SOA.

This result suggests that individuals who are better able to inhibit a motor 

response on a given trial are less distracted during an attention capture trial after 150 ms, 

evident with lower SSRTs and lower capture costs for contingent capture at this specific
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SOA. Perhaps, individuals who are better able to inhibit a motor response are better at 

executing goal driven control at 150 ms after a flanker that is the same color as the target 

has been presented. Contingent capture at other SOAs and SSRT were not significant. 

Examining SSRT and stimulus driven capture at each SOA, both 150 ms (r = -0.38, p  < 

0.05) and at 500 ms (r = -0.50,p  < 0.05) were significant, see Figure 5.6b and 5.6c.

These results suggest that for stimulus driven capture, that is, when a different 

colored flanker than the target appears at 150 ms or 500 ms before the target, individuals 

are more distracted when they have a better ability to inhibit a motor response than 

individuals who are worse at inhibitory control. Observing that the correlation flips 

between stimulus driven (positive) and contingent capture (negative) to SSRT, is 

supportive of different processes involved in each of these types of attentional distraction. 

Fukuda & Vogel supported that stimulus driven and contingent capture may not reflect 

the operation of a single mechanism (2011). Contingent capture relies upon the goals of 

the observer, where the color of the distracting flanker and the upcoming target match, 

and in order to avoid capture more goal driven control is needed. In stimulus driven 

capture, there are more bottom-up attentional control mechanisms at work, and the 

relationship between ability to inhibit a response and ability to avoid capture shifts.

This study sought to uncover how some individuals avoid attentional distraction 

better than others by proposing that inhibitory processing played an underlying role in 

how quickly one recovers from distraction. Unfortunately, I found no significant 

relationships between the time to disengage recovery time paradigm and either working 

memory capacity or SSRT. Failing to replicate Fukuda & Vogel’s work, and not 

supporting my predictions, leads me to the following limitations of this experiment. It is
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possible that measuring the time course of attentional recovery from distraction is not 

best done using the paradigm outlined here. The time to disengage task examines 

attentional capture as a function of accuracy, and the differences in accuracy across 

conditions. Measuring SSRT is done using reaction times, and perhaps it would be better 

to examine attentional capture using reaction times as well, by employing a different 

paradigm to examine the attentional recovery time course. Future experiments to 

examine whether or not a relationship exists between inhibition and recovery time from 

attention capture could alter the paradigms used.

In 2006, Li, Huang, Constable, and Sinha used fMRI techniques to examine the 

differences in cortex during a stop-signal reaction task to examine regions in cortex that 

were active in successful and failed attempts to inhibit responses. They found multiple 

regions that were involved in successful stopping, including the right inferior frontal 

cortex (discussed more in-depth in the Introduction), therefore, perhaps a neuroimaging 

experiment to examine SSRT responses in addition to disengagement times from 

attentional capture would be a better way to examine what brain regions are involved in 

successful inhibitory processing, both cognitive inhibition (the visual search task 

measuring recovery times from capture) and motor inhibition using the stop-signal 

reaction time task.

Blakely and colleagues in 2012 suggested that before successful inhibition of a 

motor response can occur, the individual must first cognitively disengage from the 

distracting information. Perhaps using neuroimaging techniques to observe brain activity 

during these two tasks could better link these forms of inhibition, as the current 

behavioral experiment failed to do. Integrating and synthesizing the literature on
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attentional control by seeking to understand the individual differences that exist in the 

ability to avoid distracting information in a visual environment is an important area for 

researchers to continue to pursue.
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CHAPTER 6; SUMMARY AND CONCLUSIONS

Every moment, our visual environment is filled with endless possible items to 

attend to. Individuals differ in their abilities to prioritize this environment to focus on 

relevant items that match their current behavioral goals. For example, if I am searching a 

large crowd for a friend whom I know is wearing blue; I want to prioritize blue items 

while avoiding other colors, even similar colors such as green or teal. Being able to 

avoid distraction by other salient irrelevant colors is an important task in this particular 

example, and my ability to do so depends strongly on attentional processing during my 

search. Attentional processing has two major components. One is top-down or goal- 

driven processing, where the goals and expectations that an observer brings into the 

search dominate where attention is focused. The second is bottom-up or stimulus-driven 

processing where the stimuli in the environment guide attentional focus at any given 

moment. Attentional control consists of the interaction between these two types of 

processes, guiding how well an individual can perform a search.

While much has been explored within the attentional control literature, questions 

still exist as to how attentional processing is modulated, and how different types of visual 

search tasks can elucidate the underlying mechanisms involved in successful visual 

search. The purpose of this dissertation was to explore different aspects of attentional 

control using various search paradigms. I discussed the theory behind visual attention 

delving back into the research done by William James in 1890. During the exploration of
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how visual attention works and is directed around our visual environment, researchers 

sought to understand how individual features of items were bound together to create one 

cohesive object. In 1980, Treisman and Gelade proposed feature integration theory, 

where visual attention serves to bind individual features o f items into a whole object.

They argued that one object at a time needs to be completed before the observer can 

move to another object. This idea of directing attention from one object to the next in a 

display is known as serial processing, and the more items that are present in a display, the 

longer it takes participants to find the target. Conversely, parallel processing of a display 

occurs when participants are able to find the target quickly regardless of the number of 

distracting items in the display, due to the target seemingly “popping-ouf ’ from the 

surrounding items.

Over the past 30 years, different paradigms were proposed to invade every aspect 

of attentional processing, with the goal of creating an integrated view of visual attention. 

During any of these paradigms, researchers noted that performance on a given trial was 

not isolated from previous trials. While overall RT on a given trial should be reflective 

of the individual’s state of attentional control (with greater RTs indicating greater 

distraction by an irrelevant singleton), incidental aspects of the stimulus display also 

necessarily influence RT (Kumada & Humphreys, 2002). Specifically, aspects about the 

visual display can facilitate or hinder RTs depending on the previous visual display in a 

sequence of trials. In 1994, Maljkovic and Nakayama proposed visual priming, where 

the performance on the current trial is dependent on where the items appeared on the 

previous trial. Specifically, if the target appeared in the same spatial position two trials in 

a row, or if the target was the same color two trials in a row, participants would be faster

71



to make their response to the target. In 2010, Yashar and Lamy used the RSVP paradigm 

to examine visual priming in the temporal domain, by varying the temporal position of 

the target from trial to trial. They also attempted to examine how temporal priming 

relates to spatial priming, and by interleaving spatial and temporal trials during an 

experiment, concluded that these two visual dimensions interact with one another, 

possibly using the same underlying mechanistic processing (2010b).

In Experiment 1 of this dissertation I expanded upon their suggestion of 

interactive dimensions of priming by combining spatial and temporal information into a 

single paradigm. Specifically, using 4 spatial locations of the RSVP design, I 

demonstrate that temporal and spatial priming interact along a similar mechanism, such 

that when both dimensions repeat, an individual is faster to find the target than when no 

target information repeats or when either spatial or temporal information alone repeat.

This suggests that individuals use all available information in a visual scene to guide 

attentional processing on future trials. Demonstrating simultaneous multidimensional 

priming in our ability to efficiently process our visual environment is important as 

researchers continue to question how visual attentional control is implemented.

My next Experiments 2-4 employed a visual search paradigm initially design by 

Theeuwes in 1991, where individuals search for a target item in a spatial display of 

multiple items, while avoiding an irrelevant distractor. Based on neuroimaging results 

from Lechak and Leber (2012), where the magnitude of distraction to an irrelevant 

moving item was predicted by the amount of evoked fMRI activity in motion sensitive 

area MT in cortex, I sought to link visual sensitivity and attention capture. Specifically, I 

predicted that an individual’s sensitivity to a visual feature could predict the magnitude of
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distraction by that feature. Unfortunately, results revealed no definite relationship 

between visual sensitivity and attention capture, and it is possible that psychophysical 

thresholds are not quite sensitive enough to reflect a concrete relationship between an 

individual’s baseline stimulus-driven sensitivity to visual features and the magnitude of 

distraction by those features.

Finally, in Experiment 5 I sought to answer the question of how some individuals 

are better at avoiding irrelevant stimuli in the visual environment than others. I wanted to 

synthesize various aspects of attentional control by attempting to link working memory 

capacity, attention capture and inhibitory processing. Clark and colleagues in 2007 

demonstrated a link between spatial working memory and inhibitory processing in 

ADHD individuals, such that higher spatial working memory predicted better ability to 

inhibit a pre-planned motor response (measured using SSRT). In addition, Fukuda and 

Vogel (2011) linked working memory capacity to the ability to recover from attentional 

capture, or the ability to cognitively disengage, which suggested a role for inhibitory 

processing. I sought to explore whether this cognitive inhibition (disengagement) could 

be linked to the ability to inhibit a motor response (SSRT). Results failed to elucidate 

this relationship, and further research is needed to uncover whether individual differences 

in avoiding distraction are subserved by inhibitory processing, or working memory 

capacity.

The research presented in this dissertation provides further evidence for the 

complexities of visual attentional control and how it is implemented in our visual 

environment. In conclusion, this dissertation used various visual search paradigms to 

explore the interactions of stimulus-driven and goal-driven attentional processing, to
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illuminate how individual differences inform models of attentional distraction, and to 

investigate how inhibiting an irrelevant distractor modulates attentional processing.
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APPENDIX B: INTERNAL MOTIVATION INVENTORY

Subject Number:______________________________________
For each of the following statem ents, p lease indicate how  true it is for you , using the following scale: 

1 2 3 4  5 6 7

(not at all true) (som ew hat true) (very  true)

1 2 3 4 5 6 7
1. It w as im portant to me to do w ell at this task.

1 2 3 4 5 6 7
2. I believe doing this activity could be beneficial to me.

1 2 3 4 5 6 7
3. I tried very hard on this activity.

1 2 3 4 5 6 7
4. I think this is a useful activity.

1 2 3 4 5 6 7
5. I put a lo t of effort into this.

1 2 3 4 5 6 7
6. I would be willing to do this again

1 2 3 4 5 6 7
7. I enjoyed doing this activity very much

1 2 3 4 5 6 7
8. 1 thought this w as a boring activity.

1 2 3 4 5 6 7
9. I didn’t try very hard to do w ell at th is activity.

1 2 3 4 5 6 7
10. This activity did not hold m y attention at all.

1 2 3 4 5 6 7
11. I would describe th is activity as very interesting.

1 2 3 4 5 6 7
12. I think this is an important activity.

1 2 3 4 5 6 7
13 . 1  didn't put much energy into this.
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