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ABSTR ACT

INTERACTION BETW EEN TH E COASTAL OCEAN  

A N D  THE ESTUA RINE SYSTEMS

by

Shivanesh Arvinda Rao 

University of New Hampshire, December, 2012

Fluctuating winds change the interaction between an estuary and its adjacent 

coastal ocean. This change in the interaction determines how the wind-induced 

changes in the estuary influence the near-shore coastal ocean and vice-versa.

The first chapter examines the water properties in the near-shore coastal region 

close to estuaries after coastal upwelling. In regions where the time-integrated up­

welling and down-welling wind stresses are comparable, there exists a region in the 

direction of a coastal Kevin wave propagation from an estuary, where the arrival of 

the plume in the near-shore region prevents the upwelled front from returning to the 

coast. The weakened vertical stratification in the plume during down-welling winds 

allows vertical mixing, so the weak cross-shore flow in the plume stops the front from 

returning to the coast.

The second chapter examines the transient response of the interaction between 

an estuary and its adjoining coastal ocean, when forced by weather-band fluctuations 

in the wind. Over timescales shorter than the time taken for the estuary to adjust 

to a new steady state, Tafjj, the initial stratification of an estuary and the coastal 

ocean control the influence of fluctuating winds on the salt exchange between the two 

regions. The wind-induced mixing in the estuary has by fax the greatest effect on the 

salt exchange, compared to the coastal upwelling and down-welling. The changes in 

the salt exchange are largely due to changes in the salinity leaving and entering the 

estuary, and not the volume exchange.

xx



The final chapter examines how the steady state of an estuary is altered, when 

forced by weather-band fluctuations in the wind. For timescales longer than Tadj, the 

influence of fluctuating winds on the stratification or the exchange of an estuary is 

not significant, but instead the fluctuating winds alter the salt intrusion length of the 

estuary. However, when T a<ij (when forced by fluctuating winds) is short compared to 

the time of the initial change caused by the vertical mixing, the influence of fluctuating 

winds in a stratified estuary reduces the stratification and the exchange.

xxi



CHAPTER 1

Introduction

The estuary and the near-shore coastal ocean are highly productive areas: the 

runoff from land supplies a high flux of nutrients into the estuary, and the coastal 

upwelling and down-welling modulate the supply of nutrients from the bottom coastal 

ocean to the surface (e.g., Shanks et al. (2000); Shanks and Brink (2005); Shanks et al. 

(2002)). The supply of nutrients into these shallow, well-lit regions allow for primary 

productivity that provides food for many species. Since most of the residential and 

commercial activity in the world is located around these estuarine and coastal regions, 

the associated anthropogenic impact can adversely alter the health of the estuarine 

and near-shore coastal ecosystems (Scully, 2010; Cerco et al., 2004). This can lead to 

a potentially hazardous environment to developing larvae and juvenile species, as well 

as to humans. Understanding these impacts require a qualitative understanding of 

the state of the two regions, during their transient response to forcings and in steady 

state. The two regions are important because the changes in one region can influence 

the adjacent region, through the interaction between them.

The state of the estuary (Hansen and Rattray, 1965) and the state of the near­

shore coastal ocean (Austin and Lentz, 2002) are governed by the interaction between 

an estuary and its adjacent coastal ocean. This interaction happens through the estu­

arine gravitational circulation, which depends on the along-estuary salinity gradient 

and the vertical stratification in an estuary, which are ultimately set by the freshwater 

inflow, oceanic salinity and the vertical mixing in the estuary (Hansen and Rattray, 

1965; MacCready, 1999, 2007; Bowen and Geyer, 2003). In stratified estuaries, the 

circulation is exchange-dominated, where the landward component of the exchange



brings salty coastal water into the estuary and mixes with the freshwater discharge of 

the river, and then the seaward component of the exchange discharges the less salty 

surface estuarine water out of the estuary, onto the coastal shelf (Hansen and Rattray, 

1965). The exchange mechanism can be significantly altered by forcings that include 

(but are not limited to): the daily tidal cycle, spring-neap tidal cycle, and winds. The 

studies presented in this thesis will focus on how fluctuating winds, varying between 

upwelling and down-welling, can alter the state of the estuary and the near-shore 

coastal ocean.

Numerous studies have shown the influence of winds on the estuary and coastal 

ocean. Hansen and Rattray (1965) provides the theoretical framework that has been 

to used to study the wind-induced circulation in an estuary, and more recently Mac- 

Cready (1999) derived analytical solutions that solve the estuarine circulation when 

there is a step change in the river or tidal forcing. Austin and Lentz (2002) pro­

vides the simplified framework that has been used to study the influence of separate 

upwelling and down-welling winds on a stratified coastal ocean. However, in the 

studies of the estuary the coastal ocean is often assumed a homogeneous body that 

is unaltered by the estuarine discharge (e.g., Hansen and Rattray (1965); MacCready 

(1999)), and in studies of coastal ocean the estuary is often a point source (Fong and 

Geyer, 2001, 2002). One of the contributions of our work is to consider a spatially 

resolved stratified estuary and stratified coastal ocean in our experiments (Rao et al., 

2011). This allows us a qualitative understanding of the significance of the changes 

in the coastal ocean on the estuary, and vice versa.

Our studies are largely carried out by numerical experiments and where possible 

field observations. These experiments are modeled after the types of conditions found 

in the estuaries and coastal ocean along the Mid-Atlantic Bight (MAB). Although the 

model is based on the MAB to make use of the readily available coastal observations 

to support and test the model results, the core conditions of the MAB are common



with several other regions, which ensure wider applicability of our work.

These core conditions include a 2-layer type coastal stratification, an estuary with 

the along-estuary salinity decreasing from ocean salinity at the estuary mouth to 

freshwater at the head of the estuary, and wind-forcing with very weak mean along­

shore fluctuating winds. Our analyses examine how these core conditions in the 

hydrography of an estuary and coastal ocean change due to fluctuating winds. Once 

we understand how the core conditions evolve, our results are extended to other con­

ditions of the hydrography and meteorological forcing, such that the length of the 

estuary, coastal pycnocline depth, angle of the estuary, strength of the wind stress, 

etc.

1.1 How Estuarine Plumes Influence the Coastal 

Ocean

The influence of an estuary on the coastal ocean is due to the estuarine discharge 

onto the coastal shelf (e.g., Garvine (1999); Yankovsky and Chapman (1997)). This 

discharge forms a stationary rotating bulge and a buoyant coastal current along the 

coast (Fong and Geyer, 2002). The estuarine discharge onto the coastal shelf turns 

right after exiting the estuary mouth (in the northern hemisphere) forming a coastal 

current that propagates in the direction of a coastal Kelvin wave (Garvine, 2001). 

This behaviour has been observed in field observations (Rennie et al., 1999), numer­

ical experiments (Garvine, 2001), and in the laboratory (Lentz and Helfrich, 2002). 

Garvine (1995) determined a system that separates the plume into different classes 

(i) where the rotational effects are important as the inertial effects and (ii) where 

rotation can be ignored. In our study, the effects of rotation are important.

The behavior of the plume can be further classed as surface-advected plumes 

where the plume does not contact the bottom, or bottom-advected plumes where the

3



plume contacts the bottom and bottom friction is important (Lentz and Helfrich, 

2002; Yankovsky and Chapman, 1997). However, this classification can be altered 

by alongshore winds (Fong and Geyer, 2001). In the absence of external forcing 

such as winds, the coastal plume is surface-advected and in geostrophic balance, 

as it propagates along the coast (Lentz and Helfrich, 2002); this is supported by 

field observations (Rennie et al., 1999). However, external forcings such as tides 

and winds can alter the structure of the coastal plume. Alongshore winds such as 

upwelling winds force an offshore surface Ekman flow that spreads the plume offshore, 

finally detaching the plume from the coast and its estuarine source, thus stopping the 

alongshore movement of the plume (Fong and Geyer, 2001). In contrast, down-welling 

winds force a onshore surface Ekman flow that brings the coastal plume closer to the 

coast causing the cross-shelf density to intensify, causing the plume to propagate 

faster downwave (Fong and Geyer, 2001; Rao et al., 2011). Coastal and estuarine 

winds are usually continuous and often fluctuate between upwelling and down-welling, 

e.g., along the North Carolina coast (Austin and Lentz, 1999), that can cause the 

estuarine plume to move offshore during upwelling and then return when the wind 

direction reverses to down-welling. This study extends the above studies (e.g., Fong 

and Geyer (2001, 2002); Austin and Lentz (1999)) by examining the onshore transport 

of the upwelled coastal plume when forced by fluctuating winds, and the competiting 

alongshore transport of a new estuarine coastal plume.

1.2 How Fluctuating W inds and Coastal Ocean In­

fluence the Estuary

Estuaries are regions where the salt water from the ocean mix with the fresh water 

of a river, thus setting the circulation in the estuary and the exchange between an 

estuary and a coastal ocean. The exchange depends on the along-estuary salinity
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gradient and the vertical stratification in an estuary, which are ultimately set by the 

freshwater inflow, oceanic salinity and the vertical mixing in the estuary (Hansen and 

Rattray, 1965; MacCready, 1999, 2007; Bowen and Geyer, 2003). The oceanic salinity 

at the coast and thus at the estuary mouth is modulated by the coastal upwelling and 

down-welling (Austin and Lentz, 2002). Hansen and Rattray (1965) examines-these 

important parameters that control the estuary circulation for exchange-dominated 

estuaries, and recently MacCready (1999) extended this work to include diffusion- 

dominated estuaries.

Understanding the initial response and adjustment of an estuary is important be­

cause the hydro-graphic structure in the estuary depends on these processes. The 

study by (MacCready, 1999) and others already examine what happens when there 

is increased vertical mixing in an estuary. In their studies, the background vertical 

mixing coefficient is altered in a step-change, which provides us with a robust under­

standing of how mixing (due to any mixing mechanism) would influence the estuary 

and its adjustment.

However, winds influence the estuary and coastal ocean in many significant ways, 

other than simple mixing. This includes (but are not limited to) (i) inducing Ekman 

transport in the estuary and coastal ocean, which could alter the volume exchange 

flow of the estuary, (ii) coastal upwelling and down-welling (Austin and Lentz, 1999), 

which can alter the salinity entering the estuary, (iii) driving depth-averaged flows in 

the estuary due to coastal sea surface setup by coastal Ekman transport (Garvine, 

1985), and (iv) in cases of estuaries at an angle to the coast, the alongshore winds 

can tilt the sea-surface slope in the estuary, driving depth-averaged flow (Garvine, 

1985). These wind-induced processes can significantly alter the estuary beyond the 

useful but simplified mixing approach of previous studies.

In our studies of the influence of fluctuating winds in the exchange between an 

estuary and a coastal ocean, we examine the above wind-induced processes, thus
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providing a much more realistic evaluation of the influence of reversing alongshore 

winds on the estuary-ocean system. This approach used in our study fills a crucial 

gap in the knowledge of how the fluctuating winds, directly and by proxy, influence 

the initial response and the following adjustment to a new steady state.

The influence of fluctuating winds are examined at two timescales: (i) the transient 

time, which is the time taken for an initial change caused by fluctuating winds, this 

timescale helps us understand the unsteady response of the exchange of the estuary 

due to the influence of passing weather systems, and (ii) the steady state time, which 

is the time taken for the estuary to reach the new steady state; this timescale helps us 

understand how the steady state of an estuary changes as climate change alters the 

long-term variability in the weather. One of the contributions of this study is how 

fluctuating winds on a stratified coastal ocean can alter the exchange of the estuary.

1.3 Outline

The goal of this study is to examine influence of fluctuating winds on an estuary 

and a coastal ocean. In particular, the focus of this study is on examining how the 

fluctuating winds alter the salt structure in an estuary and the near-shore coastal 

ocean. In this thesis several theory length and timescales are derived and tested 

against numerical experiments and field observations where possible.

The outline of the thesis is as follow. In chapter 2, the evolution of the salt 

structure in the near-shore coastal ocean (down-wave of an estuary) is examined, 

when fluctuating winds upwell and then down-well the coastal plume towards the 

coast. The key result of this study is that there exists a near-shore region down- 

wave of an estuary where the upwelled coastal plume ( “old” plume) does not reach 

when forced by down-welling winds. Instead this region is always influenced by the 

“new” coastal plume that propagates down-wave of the estuary, once the “old” plume
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detaches from the estuary. In chapter 3, the influence of weather-band fluctuations 

in the winds on the net salt flux of an estuary is examined. In this study, we are 

interested in the transient response of the estuary to fluctuating winds. The timescale 

of this response is less than the time-taken for the estuary to reach its new steady 

state. The key result of this study is that the initial influence of wind-induced mixing 

(due to the fluctuating winds) in the estuary is to reduce the stratification and the 

net salt flux of the estuary. For a range of conditions, the wind-induced mixing in 

the estuary has a larger influence than the change in the coastal salinity drawn into 

the estuary. In chapter 4, the influence of weather-band fluctuations in the winds is 

examined again, but in this chapter the changes to the steady state of the estuary is 

examined. The key result of this study was the fluctuating winds in the estuary have 

little influence in altering the stratification of the estuary, but instead the estuary salt 

intrusion lengthens or shortens to adjust to the fluctuating winds. In both chapters 

3 and 4, the changes in a stratifed coastal ocean (due to fluctuating winds) has little 

influence on the net salt flux of an estuary, and these changes are only important 

when the estuary is already well-mixed or sheltered from estuarine winds. In chapter 

5, the results of the thesis are summarised.
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CHAPTER 2

Upwelling Relaxation and Estuarine 

Plum es

2.1 Abstract

After coastal upwelling, the water properties in the nearshore coastal region close 

to estuaries is determined by the race between the new estuarine plume travelling 

along the coast and the upwelled front (a marker for the old upwelled plume and the 

coastal pycnocline) returning to the coast under downwelling winds. Away from an 

estuary, downwelling winds can return the upwelled front to the coast bringing less 

dense water nearshore. Near the estuary, the estuarine plume can arrive along the 

coast and return less dense water to the nearshore region before the upwelled front 

returns to the coast. Where the plume brings less dense water to the coast first, 

the plume keeps the upwelled front from returning to the coast. In this region, only 

the plume and the anthropogenic input and larvae associated with the plume waters 

influence the nearshore after upwelling. We quantify the extent of the region where 

the plume is responsible for bringing less dense water to the nearshore and keeping the 

upwelled front from returning to the coast after upwelling. We successfully tested our 

predictions against numerical experiments and field observations of the Chesapeake 

plume near Duck, North Carolina. We argue that this alongshore region exists for 

other estuaries where the time-integrated upwelling and downwelling wind stresses 

are comparable.
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2.2 Introduction

Coastal upwelling is a well-understood mechanism (Lentz, 1992; Austin and Lentz, 

2002), but the physics of the upwelled front after the upwelling wind stops has received 

less attention (Send et al., 1987; Alessi et al., 1996; Dale et al., 2008). Upwelling- 

favorable alongshore winds (which blow with the coast on their left in the Northern 

Hemisphere) cause offshore Ekman transport in the surface mixed layer (Fig. 2-1). At 

the coast, this offshore transport can result in a displacement of the coastal pycnocline 

and, potentially, outcropping to the surface. This outcropping, the upwelled front, 

separates cold, salty upwelled water near the coast from warm, less-salty surface water 

offshore. Near estuaries, the surface coastal waters advected offshore also consist of 

the estuarine plume. On a shallow, stratified shelf, the upwelled front usually forms 

after about two inertial periods (Austin and Lentz, 2002); in this study we will focus
-A

on observations where the upwelled front has formed.

After the upwelling winds cease or reverse, the upwelled front moves shoreward 

as an ageostrophic buoyant gravity current for an inertial period (Csanady, 1971). 

When there are no winds, this onshore movement stops after a distance equal to 

the radius of deformation (Csanady, 1971). The onshore movement of the upwelled 

front stops after the Rossby adjustment, i.e., the shoreward ageostrophic pressure 

gradient is balanced by the Coriolis force resulting in an alongshore, geostrophic flow 

(Austin and Lentz, 2002). In the absence of downwelling winds or alongshore pressure 

gradients, the upwelled front can only return to coast if the offshore position of the 

front is closer than the radius of deformation. Using wind-reversal timescales for the 

east and west coast of US, Austin and Lentz (2002) predicts the upwelled front is 

usually much farther offshore, so the front does not return to coast as part of the 

Rossby adjustment process. If and when the upwelling winds reverse to downwelling, 

the shoreward surface Ekman flow forces the upwelled front towards the coast (Dale 

et al., 2008). In the absence of a nearby estuary, the return of the upwelled front



to the coast brings back the less dense surface water, initially moved offshore during 

upwelling, to the coast as the upwelled isopycnals return to their pre-upwelling state.

However, near estuaries, an estuarine plume can arrive along the coast from the 

estuary before the return of the upwelled front (Fig. 2-2). The plume propagates 

along the coast in the direction of a coastal Kelvin wave, the downwave direction, 

from the source estuary (Garvine, 1999; Fong and Geyer, 2001). The speed and 

distribution of the plume can be altered by the alongshore winds (Fong and Geyer,

2001). As we shall discuss below, the arrival of the plume nearshore keeps the front 

from returning to the coast. The plume is pushed against the coast during down­

welling winds, forcing the plume isopycnals nearly upright and weakening the vertical 

stratification, similar to Williams et al. (2010). The weak vertical stratification in 

the plume permits vertical mixing, so the cross-shelf transport in the plume is weak. 

This is similar to the well-mixed nearshore region, ‘inner shelf’, described by Lentz 

et al. (1999), where the alongshore wind stress and pressure gradient are balanced by 

bottom friction. Numerical models have shown that this weak cross-shelf transport 

in the plume keeps the upwelled front and constituents trapped in it from returning 

to the coast (Austin and Lentz, 2002). As a result, where the plume arrives along the 

coast before the upwelled front, the salinity, larval inhabitants, terrestrial nutrient 

runoff, and pollutants in that region would be consistent with that of the estuary 

where the plume originated. Outside this region, where the upwelled front returns to 

the coast, the water properties would be influenced by both the estuarine plume and 

the coastal processes that affect the water during upwelling and downwelling.

There have been observations of alongshore plumes arriving first in the nearshore 

region. Along the east coast of US, Fong et al. (1997); Rennie et al. (1999); Cudaback 

and Largier (2001) show freshwater plumes arriving along the Maine coast and the 

North Carolina coast. Along the west coast, Send et al. (1987) shows a plume of 

warm water from the San Francisco Bay moving along the northern California coast.
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However, there have also been observations of an upwelled front first returning to the 

coast during downwelling. In the east coast, Shanks et al. (2000, 2002); Marmorino 

et al. (2004); Shanks and Brink (2005) show the upwelled front returning to the North 

Carolina coast. In the west coast, Farrell et al. (1991); Miller and Emlet (1997); Dale 

et al. (2008) show the upwelled front returning to the California coast and the Oregon 

coast. What is not clear is where the plume or the upwelled front dominates. In this 

paper, we show that after upwelling there is a region downwave of an estuary where 

the plume is responsible for first bringing less dense water nearshore. This region 

will depend on the race between the alongshore propagating estuarine plume whose 

properties are primarily set by the estuary, and the shoreward returning upwelled 

front whose properties are set by the older upwelled low-salinity plumes and coastal 

processes.

We will focus on the role of the plume as the downwelling winds force the upwelled 

front shoreward. We derived an estimate of the region where the plume keeps the 

upwelled front from returning to the coast. This estimate is useful downwave of 

estuaries such as the Chesapeake Bay and Delaware Bay in the east coast of US or 

the Columbia River and Puget Sound in the west coast of US. The west coast has 

long upwelling periods followed by weak winds and a narrower shelf compared to the 

east coast, and while our focus is on the east coast (North Carolina, Fig. 2-3), we 

generalize our results to other coastal shelves in the discussion. We discuss where our 

estimate is applicable and how it will vary with the size and nature of the estuary 

and coastal regions.

Our work differs from prior studies (e.g., Garvine (1999); Simpson (1997)) because 

we estimate the length of the region close to an estuary where the plume can keep 

the upwelled front from returning to the coast after upwelling; our estimate is not 

the eventual length of a plume. Field observations show that an upwelled front 

arriving at the coast first does not stop the alongshore propagation of the plume
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beyond that point (Rennie et al., 1999; Cudaback and Largier, 2001). The size of 

the plume derived by Garvine (1999) and the region of freshwater influence, ROFI, 

described by Simpson (1997) determines the eventual length of the plume along the 

coast from the source estuary. Furthermore, our work examines the advection of 

less dense, surface water into the nearshore region, which differs from the nearshore 

mixing-restratification studies on the ROFI (Linden and Simpson, 1988; Sharpies 

and Simpson, 1993; Souza and Simpson, 1997; Burchard and Hofmeister, 2008); in 

these studies, the investigators examine when tidal, wind, and waves vertically mix 

the nearshore water column, and the subsequent restratification due to the seaward 

Rossby adjustment of the mixed water column during periods of low mixing. The 

dynamics in the ROFI, as discussed in the above literature, can tell us when the 

plume is vertically mixed during downwelling and our estimate works (i.e., the low 

cross-shelf transport in the mixed plume can prevent the upwelled front from reaching 

the coast), and when our estimate will fail.

The paper is organized as follows. Section 2 discusses the methods and configu­

rations utilized for analysis of the numerical experiments and the observations. We 

examine the base case and tracer experiments and we also show that, as discussed in 

previous literature, the presence of the plume keeps the upwelled front from returning 

to the coast. In section 3, we use observations at Duck, NC, to identify periods after 

upwelling when the plume brings less dense water along the coast and when the front, 

forced by downwelling winds, brings less dense water along the coast. In section 4, 

we derive a predictor to estimate where the plume arrives along the coast before the 

returning upwelled front, and we test it against numerical experiments. In section 5, 

we test our predictions against CoOP field observations. In section 6, we apply our 

predictor to other estuaries, discuss inwhich systems our predictions are applicable, 

and extend our work to other systems.
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2.3 Description of Numerical Model

C onfiguration  o f N u m erica l M ode! 

The numerical model used in this study is the Regional Ocean Modeling Sys­

tem (ROMS). It is a primitive equation finite difference numerical model (Arakawa 

and Lamb, 1977). The vertical momentum balance is hydrostatic and a free sur­

face is included. We define a constant horizontal eddy viscosity A m  of 5.0 m2 s-1 

and a horizontal diffusivity A h of Om2 s~4. The background vertical eddy viscosity is 

u = 1.0 x 10~5 m2 s-1. The Coriolis parameter /  =  10-4 s_1. The vertical eddy viscos­

ity K m is computed by the Mellor-Yamada level 2.5 turbulence closure scheme (Mellor 

and Yamada, 1982) using the non-dimensional stability functions from Galperin et al. 

(1988) and Kantha and Clayson (1994). Some studies, e.g., Garvine (1999); Stacey 

et al. (1999); Fong and Geyer (2001), have shown that in strongly stratifed conditions, 

the MY2.5 scheme underestimates the vertical eddy viscosity, while in weakly strati­

fied conditions the vertical eddy viscosity is overestimated. Nevertheless, the MY2.5 

scheme resolves the mixing accurate to first order, which is what we are interested 

in. The density is computed by a linear equation of state using a saline contraction 

coefficient of 7.6 x 10-4 and is a function of salinity alone. Temperature is kept con­

stant in the model. A passive tracer is included in the estuarine water. This tracer 

configuration helps distinguish the estuarine plume from the returning upwelled front.

M odel G rids The model utilizes a sigma coordinate system to resolve the vertical 

structure. We use 20 sigma levels with closer vertical spacing at the surface and 

bottom to resolve the boundary layers. The horizontal grid is a finite difference 

scheme with grid size ranging from 1 km (near northern boundary) to 4 km (near 

southern boundary). The higher resolution at the northern boundary minimizes the 

formation and downwave propagation of numerical artifacts into the study area. We
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also use a higher horizontal resolution in the shallowest part of the domain to resolve 

the nearshore physics that we are examining. The shallowest region is along the coast 

(10m), and the deepest region is along the offshore boundary (110m). The domain 

in our base case numerical experiment has 174 points in the cross-shore direction and 

179 points in the alongshore direction. The location of the boundaries are southern 

y =  -315km, northern y =  50km, western x =  -110km, and eastern x =  100km. The 

barotropic time step is 9 s, and the baroclinic time step is 180 s. A right-handed 

‘east coast’ coordinate system is used where -\-x direction is offshore (‘seaward’), +y 

direction is northward (‘upwave’), and +z direction is upwards (‘skyward’).

B oundary  C onditions The surface momentum boundary conditions are,
K m S M

dz

( T sx ,sy \

1 J (2-1)
2=0 P°

where t sx and r sy  are cross-shore and alongshore surface wind stresses. In this study,

t sx =  0 N m~2 while the alongshore wind stress is varied. The bottom momentum

boundary condition is a linear bottom drag,
d (u , v)K,M dz

=  (rub,rvb) (2.2)
=-H

where the bottom drag coefficient is r =  3 x 10-4 m s-1 and (Ub,Vb) are the bottom

velocity in the cross-shore and alongshore directions respectively. The bottom drag is 

chosen within the range observed by Lentz et al. (2001) for the North Carolina coast.

The northern open boundary conditions (OBC) are determined from numerical 

experiments using the same winds as the 3D model but in a 2D alongshore-uniform 

topography model. This 2D model is a cross-shore section at the northern boundary 

of the 3D model and has no alongshore variations. The northern OBC implies that 

the ocean outside the northern boundary can be approximated as an infinite coast 

with no alongshore variations in forcings or topography, as described in Gan and 

Allen (2005) and Pringle and Dever (2009). The southern and eastern edges are open 

boundaries with Sommerfeld radiation conditions. This radiation condition has the
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least reflection at the boundary for the dominant wave mode but the other wave 

modes have higher reflection. To overcome this, the southern boundary also has a six 

grid-point wide sponge layer where the horizontal viscosity gradually increases in the 

southward direction. The sponge layer helps dissipate the energy of reflected waves 

preventing them from propagating along the southern open boundary. The western 

boundary is the coastal wall with free-slip condition. The free-slip imposes no friction 

between horizontal boundaries and the flow, and there is no normal flow into the wall. 

The western boundary also has a wide estuary with a freshwater river input into the 

model domain. Our model estuary has idealized dimensions similar to wide estuaries 

such as Chesapeake Bay and Delaware Bay.

B a th y m e try  The model domain is an idealized representation of the study area 

and has a wide estuary connected to a uniform alongshore bathymetry coastal ocean 

(Fig. 4-2A). The coastal ocean bathymetry (Fig. 2-4B) is given by

H (x ) =  H0 +  a x  0 < x < L = 100 x 103m (2-3)

where =  10m is the coastal wall depth, a  =  0.001 is the bottom slope and x  is the 

cross-shore distance. The estuary mouth is centered at [x, y] =[0, 0] km with a length 

of 100 km and a width of 20 km. The estuary has 10 m deep walls with a 11m deep 

thalweg (Fig. 2-4C). The dimensions of the estuary are idealized and kept constant 

to prevent any variations in estuarine mixing. The details of the estuary are not first 

order important because the physics we are interested in depends on the density and 

thickness of the plume in the coastal ocean. The variations of these parameters are 

described later in this section.

S tra tifica tio n  The coastal ocean is modeled after the summer conditions at Duck, 

NC (Fig. 2-3) as a two layer system separated by a halocline (thickness of 10 m) 

centered at a depth of 15 m (Waldorf et al., 1995; Alessi et al., 1996). These dimensions 

of the halocline simplify the mixing dynamics at the estuary mouth by preventing the
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coastal halocline from entering the estuary during the spin up. The initial density 

field is alongshore uniform and is a function of depth and salinity,

where the salinity is 34gkg 1 at the halocline center, and z is the depth in metres

CoOP field observations (old data) are in units of psu, as defined in Millero et al. 

(2008). For our purposes, practical salinity and absolute salinity are essentially the 

same.

2.3.2 External M odel Forcings

In our numerical experiments, three components are varied to test our prediction of 

the region where the plume arrives nearshore first: the duration of the upwelling wind, 

the downwelling wind stress, and the speed of the plume. The details of the variations 

of these components are described below. Each numerical experiment starts from an 

initial condition where the flow is at rest. The experiments run with no winds until 

steady state, and then a wind forcing is applied to the model domain. The experiment 

was run for two weeks after the onset of the wind forcing. Our analysis will focus on 

the evolution of the nearshore dynamics during and after the wind forcing.

W in d  Forcing The surface forcing consists of uniform alongshore wind stress, r sy. 

The wind stress begins 22 days into the numerical model run to allow the plume and 

exchange fluxes at the estuary mouth to stabilize. The wind forcing begins as an 

upwelling alongshore wind stress of r sy lasting for an upwelling period of t uw \ this 

period includes one inertial period (tr = y )  to ramp up and another inertial period 

to ramp down to zero wind stress (Fig. 4-3B). After the end of the upwelling period, 

the wind reverses and ramps up to a downwelling wind stress of B r sy over an inertial

(2.4)

(Fig. 4-3A). The salinity of the top layer of the coastal ocean is near 32gkg F We 

report the numerical model salinity using absolute salinity in units of gkg” 1, and the
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period. The downwelling wind stress remains at B r sy for the remainder of the model 

run. tuw  controls the offshore position of the front and is varied from 2.5-5 days. 

B  is a factor that controls the magnitude of the downwelling wind stress relative to 

the upwelling wind stress and is varied from 0.25-2. In all numerical experiments, 

r sy=0.1Pa, roughly a 8 m s-1 wind speed measured at height of 10m (Fairall et al., 

1996) and the changes in wind forcing in each numerical experiment is made through 

tuw  and B.

R iver Forcing The freshwater flux enters the model domain at the head of the

estuary and is applied evenly over the depth. This inflow initiates at the start of the

model simulation and is kept constant with time. The exchange flow at the estuary

mouth has stabilized after 22 days. The freshwater inflow is fixed at 2000 m3s“1 in all

our numerical experiments. The initial salinity along the estuary is,
dS

S(x) =  So, + —— x, - 1 0 0 k m < x < 0 k m  (2.5)
ox

where the surface salinity of Coastal ocean, Sco =  32 g k g '1 and the along-estuary 

salinity gradient, | |  =  0.2gkg_1km_1 ( |£  =  0.16kgm~3km-1). This base case 

gradient is the stabilized along-estuary salinity gradient at the end of a 100-day 

simulation with the river flow alone. This helps shorten the spin up time for the 

estuary in the numerical model by starting the model close to the steady state. In 

order to change the plume speed, variations of the along-estuary salinity gradient 

ranging from 0.05-0.25 g k g '1 k m '1 (|£  =  0.04 —0.20 kg m-3 km-1) are used to change 

the density of the buoyant estuarine plume leaving the estuary. In these density 

variations, the estuary salinity has reasonably adjusted such that the plume water at 

the estuary mouth varies between 2-10% over the last week before upwelling.
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2.3.3 The Response of the Base Case Numerical Experiment.

The base case is configured such that there is 2.5 days of upwelling at a wind stress 

of r uw =  0.1 Pa followed by downwelling wind stress of r DW = —0.1 Pa until the end 

of the experiment. The upwelling duration of 2.5 days is chosen from the range of 

observed wind-reversal timescale in our study area (Austin and Lentz, 1999), so there 

is 1 more day of upwelling after the coastal halocline outcrops at the coast. The 

32.5 g kg-1 isohaline, at the top of the coastal halocline, is used as a marker for the 

upwelled front. After the winds reverse to downwelling, the onshore speed of the front 

is the depth-averaged onshore velocity of the surface mixed layer. In the numerical 

model, the mixed layer is determined as the depth where the salinity is 0.1 g kg-1 

higher than the surface salinity. The return of the upwelled front is associated with 

downwelling winds, and we define the return of the upwelled front to the coast when 

the bottom salinity at the coast (near the southern boundary) is fresher than 34gkg_1 

and the surface-bottom salinity difference is less than our tolerance of 0.5 g kg-1. The 

34g kg”1 isohaline is the center of the model halocline returning back to intersect 

with the coastal wall, similar to the pre-upwelling salinity profile. For the base case 

configuration, the upwelled front returns to the coast on day 27 of the experiment or 

2 days after onset of downwelling winds (marked in Fig. 2-6).

While the front is returning to the coast, the estuarine plume is also propagating 

alongshore as shown in the plot of alongshore surface salinity at the coastal wall 

versus experiment model time (Fig. 2-6). The vertical salinity contours indicate 

the upwelled front, and the alongshore distance-time gradient of the sloping salinity 

contours indicate the plume speed, cy■ We use the sloping 31 g kg”1 isohaline to 

determine the plume speed. The plume speed c y ,  includes the downwelling wind- 

induced alongshore flow. The downwelling winds also push the plume against the 

coastal wall, narrowing the plume width and increasing the plume thickness, so the 

plume interacts with the coastal bottom slope.
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Base Case Tracer Experim ent A passive tracer is used in our base case numerical 

experiment to show that the upwelled front remains outside the plume boundary. At 

the onset of wind-reversal, a tracer is injected in the estuary while the rest of the 

model domain had no tracer. The cross-section shown in Fig. 2-7, is 60 km downwave 

of the estuary, in the region where the plume arrives nearshore first. The 32.5 g kg-1 

isohaline marks the position of the upwelled front. During upwelling, 1 day before 

wind-reversal, we observe the upwelled front moving offshore (Fig. 2-7A) and replaced 

by the saltier bottom coastal water. When upwelling winds reverse to downwelling, 

the upwelled front moves shoreward (Fig. 2-7B), but 1 day after wind-reversal, we can 

observe the leading edge of the plume arriving nearshore before the upwelled front 

(Fig. 2-7C). We observed that 3 days after wind-reversal (Fig. 2-7D), the nearshore 

region occupied by the estuarine plume still had high tracer, and the returning front 

remained outside the plume boundary. This is important because the presence of 

the plume nearshore during downwelling is similar to an inner shelf, which keeps the 

returning upwelled front from returning to the coast, so the region where the plume 

arrives nearshore first is not influenced by the returning front.

We determine this region where the plume brings less dense water nearshore first 

and keeps the upwelled front from returning to the coast during downwelling winds. 

This alongshore extent of the plume is determined when the upwelled front returns 

back to the coast near the southern boundary. The surface salinity along the coast 

shows the alongshore extent of the plume when the upwelled front returns to  the coast 

near the southern boundary (Fig. 2-8A). Closer to the estuary, the plume reaches the 

nearshore first (Fig. 2-8B) while farther downwave of the estuary the front returns 

first (Fig. 2-8C). We determined the base case magnitudes of the extent of the region 

where the plume arrive first, the offshore position of the upwelled front, onshore speed 

of the returning front, and the plume speed (listed in Table 2.2).
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2.3.4 Observational D ata

The observations we use to support our work are from the moorings and ship­

board conductivity, temperature, and depth (CTD) data from the CoOP program 

in Duck, North Carolina (NC). The reasons for the selection of this site were the 

large volume of observations, background literature -  those cited within Lentz and 

Largier (2006), and its alongshore bottom topography, which minimizes bathymetry 

induced alongshore variations (Fig. 2-3). The cross-shore array of moored conduc­

tivity and temperature (CT) sensors and current meters measured the hydrography 

from near-surface to near-bottom depths. The mooring measurements spanned from 

late August to early December 1994. The central mooring array consisted of moor­

ings at the 4 m, 8 m, 13 m, 21m, and 26 m isobaths ranging from 0.3 km to 16.5 km 

offshore. The observational data described in our analysis are from moored surface 

and bottom CT meters positioned cross-shore at 1.5 km and 5.5 km (known as the 

D1 and D2 moorings). There are mid depth sensors as well, but the surface and 

bottom moorings are the most useful in determining when the water column is mixed 

or stratified. The details are in Alessi et al. (1996); Lentz and Largier (2006). The 

shipboard CTD casts were made along cross-shore transects reaching as far as 50 km 

offshore. These CTD casts were made during the months of August and October 

in 1994. These transects are arranged in the downwave direction from the Chesa­

peake Bay mouth to north of Cape Hatteras (Fig. 2-3), and a full survey took 24 

hours. In this time, the alongshore plume advection can travel 50 km, so these ob­

servational plots are not a snapshot of the system. The cross-shore sampling period 

for each transect of the array is much shorter (2-4 hours), so cross-shore advection of 

any water masses are small compared to the transect length and can be treated as 

a good snapshot of the cross-sectional hydrography. Details on the shipboard casts 

are given by Waldorf et al. (1995). The CoOP observations are old observations, so 

we report them in psu in line with Millero et al. (2008). This also makes it easy
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to compare with prior studies which used CoOP observations. Several investigators 

(Rennie et al., 1999; Lentz et al., 1999; Shanks et al., 2000; Cudaback and Largier, 

2001; Shanks et al., 2002; Lentz et al., 2003; Shanks and Brink, 2005) have identified 

the Chesapeake plume and the upwelled front in the CoOP observations.

2.4 Observations

Using the CoOP observations near Chesapeake Bay, we go a step further than 

prior studies by examining events when the plume arrives nearshore first, and when 

the returning upwelled front arrives nearshore first. The CoOP observations used 

were taken from 14 August to 14 October (Fig. 2-9).

If upwelling winds persist long enough, an upwelled front forms where the halocline 

is displaced to the surface near the coast and then moves offshore forced by the surface 

Ekman transport. Shoreward of the upwelled front, the difference between the surface 

and bottom salinities is small (Austin and Lentz, 2002). As an upwelled front moving 

offshore passes a mooring location, the water column at that location becomes well 

mixed.

After upwelling winds stop, two possible situations can occur. In the first situation, 

the upwelled front can return to the coast before the plume. When this happens, the 

moorings would show the less dense water in the upwelled front moving shoreward 

past them. Since there is no source of freshwater offshore, wind-induced mixing causes 

the salinity of the surface water moved offshore by upwelling winds to increase along 

with the thickness of the mixed layer (Pollard et al., 1973; Fong and Geyer, 2001). 

The increase in the mixed layer thickness can be large enough that when the upwelled 

front returns past the nearshore mooring, it influences both the surface and bottom 

salinity. Thus, when the upwelled front returns to the coast, we expect both the 

nearshore surface and bottom mooring to show the water freshening at the same
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time.

In the second situation, the plume is the first to arrive nearshore bringing fresher 

water than the upwelled front returning to the coast. The Chesapeake plume usually 

causes the nearshore surface salinity to freshen by 4-6 psu while the bottom salinity 

remains mostly undisturbed (except during strong downwelling winds). In addition 

to the fresher plume water, the blunt wedge shape of the plume (Lentz and Helfrich,

2002) would bring fresh, less dense water at the nearshore mooring before the offshore 

(Fig. 2-2). With these heuristics, we can analyze the CoOP observations to determine 

when, after upwelling, the plume arrives nearshore before the upwelled front returns 

to the coast during downwelling winds.

In the CoOP observations, the upwelling winds often reversed before an upwelled 

front formed. In our analysis of the CoOP observations, we examined events where 

an upwelled front had formed. We divide these events into groups where upwelling 

winds reverse or relax. The upwelling wind-relaxation (UWR) events are defined as 

the upwelling wind stress becoming zero for at least a day. The wind-reversal (WR) 

events are defined as the upwelling winds reversing to downwelling winds. A suffix 

is attached to indicate if the plume (P) or the returning front (F) first reaches the 

nearshore region as determined with the heuristics discussed above, and the number 

indicates the period; WR2F is the second wind-reversal period and the upwelled 

front (F) returns nearshore before the plume. In the period when surface and bottom 

salinity data was being gathered, the CoOP observations contain seven upwelling 

events where an upwelled front was observed: five of which were followed by wind- 

reversals and two were followed by wind-relaxation (Fig. 2-9).

In three of the five wind-reversal events, saltier water than that moved offshore 

during upwelling arrives nearshore, and the difference between surface and bottom 

salinity at the nearshore mooring remained small as the nearshore water column be­

came less salty, suggesting that the upwelled front returns to the coast first. The
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wind-reversal period, WR2F, during 21-24 August is an example of the front return­

ing to the coast before the plume arrives. By middle of 22 August the upwelling winds 

transported the front offshore forming an inner shelf (Fig. 2-iOB). During the down­

welling winds on 23 August, we observe saltier water nearshore (Fig. 2-10C) than that 

moved offshore by upwelling winds (Fig. 2-10B). This is consistent with the upwelled 

front returning to coast before the fresher plume; the plume arrival was observed a 

day later, early on 25 August (Fig. 2-10D).

In two of the five wind-reversal events, the nearshore surface salinity is much 

fresher than it would be if the upwelled front returned to the coast, and the nearshore 

surface salinity was freshening while the bottom salinity was mostly undisturbed 

giving a salinity difference of about 6 psu. The bottom salinity is undisturbed when 

the plume does not narrow and deepen significantly during weak downwelling wind 

stress. These observations are consistent with the arrival of the plume because the 

upwelled front returning back to the coast would be saltier due to wind-induced 

mixing (Pollard et al., 1973). The wind-reversal period, WR1P, during 14-17 August 

is an example of the plume arriving before the front returns to the coast. During 

the middle of 15 August the difference between the surface and bottom salinities is 

very small at the 1.5 km mooring (Fig. 2-11B) indicating the upwelling winds had 

transported the front past the mooring. Following the wind-reversal in the evening 

of 15 August, the nearshore region shows the arrival of much fresher water than that 

upwelled offshore (Fig. 2-10A). This suggests that the plume arrival brought the fresh, 

less dense water nearshore before the upwelled front.

In the case where the upwelling winds cease but do not reverse (Fig. 2-11 A), 

UWR1, during 19-21 August, we observed that the nearshore mooring (Fig. 2-11B) 

and the offshore mooring (Fig. 2-11C) show the arrival of less dense water at the 

coast. This less dense water arrives at the nearshore mooring one day before the 

offshore mooring and is fresher than the water initially moved offshore; the minimum
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nearshore salinity after upwelling was 31 psu (Fig. 2-12A), but after wind-relaxation 

we observe nearshore salinity of 29psu (Fig. 2-12B). Since there is no source of fresh­

water offshore, this indicates that the less dense water at the coast is due to the 

alongshore propagation of freshwater from an upwave source. This is consistent with 

what is expected if the plume arrives at these stations and is also consistent with the 

conclusions of Austin and Lentz (2002) that during relaxation the upwelled front does 

not return to the coast. For the CoOP observations at Duck, the source of freshwater 

is the estuarine plume from Chesapeake Bay (Rennie et al., 1999).

The above examples of the wind-reversal and wind-relaxation events that followed 

the upwelling winds show that either the plume or the returning upwelled front during 

downwelling winds can bring less dense water nearshore along the coast. This suggests 

that at any point downwave of an estuary, the arrival of less dense water at the 

coast depends on the race between the alongshore propagation of the plume and 

the onshore return of the upwelled front during downwelling winds. In some region 

close to the estuary, the plume will win the race and is responsible for the less dense 

water nearshore. The arrival of the plume nearshore can keep the upwelled front from 

returning to the coast (as discussed in Sec. 2.3.3). In the following section, we derive 

a predictor to estimate the alongshore distance where the plume arrives along the 

coast first and keeps the upwelled front from returning to the coast.

2.5 Derivation and Testing of our Predictor

When upwelling winds reverse, the upwelled front moves towards the coast while 

the plume propagates downwave from the estuary (Fig. 2-2). First, we derive the time 

it would take for the front to return to the coast, and then we determine the distance 

the plume travels alongshore in this time. We define this alongshore distance L, as 

the region where the plume arrives nearshore before the upwelled front returns to
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the coast under downwelling winds. Then, we test this length scale L, our predictor, 

using numerical experiments.

The offshore position of the upwelled front W, is determined by the upwelling

Ekman velocity uuw, and the duration of surface cross-shore transport tuw-,

W  =  Uuwtuw — U U W  (Puw — t outcrop ) (2-6)

where Pyw  is the duration of the upwelling winds, and toutcrop is the time needed for

the divergence in cross-shore wind-driven transport to displace the isopycnals to the

surface forming a front (Austin and Lentz, 2002). The outcropping time is determined

using numerical experiments with successively longer durations of upwelling wind.

The duration of upwelling Puw, are plotted against the offshore positions of the

front and extrapolated to find the time when the front is at the coast, x  =  0 km.

This toutcrop is determined to be 1.4 days, consistent with the range determined in

Austin and Lentz (2002). This correction is only valid for our experiment since it

may depend on the upwelling wind stress, stratification, the depth of the pycnocline,

and the bottom slope (Austin and Lentz, 2002). However, this correction should be

of similar magnitude for most upwelling systems with similar cross-shelf bathymetry,

e.g., Northern California shelf (Lentz, 1987). We assume there are no alongshore

variations in the position of the upwelled front due to eddies at the edge of the front

(Barth, 1994). The upwelling surface velocity uyw , is given by
Tuw

uuw  =  —t— 7  (2-7)
Po^mlJ

where r vw  is the alongshore upwelling wind stress, p0 =  1025 kg m~3 is our reference 

density of sea water, and hmi is the mixed layer depth in the coastal ocean. The 

surface mixed layer is assumed to be a flat slab moving offshore and onshore with a 

speed given by the Ekman velocity.

After the front has moved offshore, wind-reversal causes the front to move towards 

the coast under downwelling winds. The time for the front to return to the coast tow,
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under downwelling wind t d w  , is
W  2tt , v

t o w  — ----------- 1- —t  ( 2 -8)
uDw J

where y  is the inertial period for the downwelling surface Ekman transport to fully

develop and uow  is the downwelling Ekman velocity (m s-1) given by
t d w

UDW — —r 7- (2-9)
PoKdJ

The wind-induced mixing can erode stratification causing the surface mixed layer to 

deepen and become saltier (Pollard et al., 1973). The mixed layer depth is determined 

by the maximum surface mixed layer depth scaling from Pollard et al. (1973) (referred 

as PRT depth). If the downwelling wind stress is less than or equal to the preceding 

upwelling wind stress, then the surface mixed layer during the downwelling does 

not deepen. When the PRT depth is less than the initial mixed layer depth in the 

numerical model, the wind stress does not deepen the mixed layer. Pollard et al. 

(1973) notes that with sustained winds the mixed layer will continue to deepen beyond 

the PRT depth, but the rate of this secondary deepening is expected to be smaller.

In a 2 layer system (our configuration), the PRT depth is found by determining 

the new mixed layer depth whose velocity is given by Ekman dynamics and whose 

bulk Richardson number is critical, Ri = 1. The new mixed layer depth is the depth 

where the shear-induced turbulent mixing has stopped (Pollard et al., 1973; Fong and 

Geyer, 2001). The PRT depth predictions by (Pollard et al., 1973; Fong and Geyer, 

2001, in their figure 5) compared well with field observations, to the first order of 

magnitude. Substituting Eqs. 2.11-2.13 into Eq. 2.10 for =  1 gives the new mixed 

layer depth (Eq. 2.14).
nAnnewhnew

^  ^  7 3 *  > (2-io)
P o ( U )

=  (2'n )  

APnew = p z r  -  Pbat, (2.12)
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the old mixed layer depth, pbot is the bottom layer density (we assume the bottom 

layer is deep), and h™™ is the new mixed layer depth.

From Eq. 2.14, we determined that for all the wind stresses used in our numerical 

experiments (0.05-0.25 Pa) the new mixed layer depth is shallower than the old mixed 

layer. This means we expect little deepening of the mixed layer caused by the shear- 

induced turbulent mixing as a result of an increase in wind stress.

Next, we determine the alongshore distance propagated by the plume in the time, 

tow  from Eq. 2.8, for the upwelled front to return to the coast. In the absence of 

ambient alongshore flow, the plume travels downwave at the speed cp, given by

and coastal ocean. Cp depends on the thickness of the plume at the coastal wall hp 

(Lentz and Helfrich, 2002), however when a detailed cross-shore observation of the 

plume is available, then using the average plume thickness yields better predictions of 

the plume speed. We also assume in our theory that the reduced gravity in the plume 

is conserved. For the range of conditions we investigated, the mixing in the plume is 

a second order effect, however where mixing processes like tides, winds, and breaking 

waves are significant, as discussed in the ROFI literature (Linden and Simpson, 1988; 

Sharpies and Simpson, 1993; Souza and Simpson, 1997; Burchard and Hofmeister, 

2008), the plume density will erode, reducing the plume speed, thus decreasing the 

accuracy of our predictions. For simplicity in our theory, the influence of bottom 

friction on Cp is not considered; we examine the impact of this in our numerical 

modeling. Using the range of bottom friction found in Lentz et al. (2001) in our base

new
gAp0ldh°Mpop (2.14)

Cp =  y/g'hp (2.15)

where g =  g is the reduced gravity, Ap is the density difference between plume

(2.15)
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case experiment, we determined the changes in the plume speed is about 15%, so 

bottom friction is not a significant factor in our study.

Downweliing winds can increase the speed of the plume by driving an ambient 

downwave flow, v. Over the shelf, the alongshore wind stress is balanced by the 

bottom friction r  =  3 x 10-4 m s-1, so the alongshore momentum balance during 

downweliing is,
t d w

v = ------ . (2.16)
P a r

This wind-induced depth-averaged alongshore flow v, (Lentz et al., 1999) assists 

the plume speed Cp. In addition to the wind-induced alongshore flow, a large scale 

alongshore pressure gradient can also drive an ambient alongshore flow, vamb (Lentz, 

2008)(in our numerical experiments, we assume vamb = 0 m s-1). The plume speed, 

ct is
t d w

C t  — Ĉ , T V Cp -|- “h V a m b * (^•^■^)
p 0 r

Using the plume speed, we determine the alongshore distance propagated by the

plume in the time it takes for the upwelled front to return to the coast. This length

scale L , is the region where the plume first arrives nearshore and keeps the upwelled

front from returning to the coast, 
r * ( ruwtuw 2k \  (  r DW \
L  =  tower = I  H —r  I (cp +  v) = I ------------- 1— — 1 I cp -I----------1- vamb .

\ u d w  f )  \  r D W  f j \  P o r  )

(2.18)

In our derivations above, we neglect the effects of mixing of the plume, but Garvine 

(1999) found that coastal mixing and the discharge strength of the estuary determine 

the eventual length of the plume. The Garvine (1999) length scale is the upper limit 

of all our predictions. In our experiments, all the predictions are smaller than the 

eventual length of the plume, 425 km, so mixing of the plume in the coast was not a 

significant factor. In the next sections we test our predictor, Eq. 2.18, using numerical 

experiments and field observations.
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2.5.1 Testing Predictions Against Numerical M odel

To test our predictions (Eq. 2.18), the numerical model is used to simulate the 

range of conditions observable in the typical coastal ocean, described in Sec.2.3.2, 

and determine the downwave distance where the plume arrives nearshore before the 

upwelled front. The predictions are tested in three sets of model runs (Table 2.1); in 

each set, only one parameter is varied while the others are fixed, allowing a rigorous 

testing of our predictor and its components such as the offshore position of the front, 

onshore velocity of the front, and the plume speed.

We varied the upwelling wind duration in the range of 2.5-5days, variations in the 

downweliing wind stress are in the range of 0.025-0.20 Pa, and the variations in the 

estuary salinity (hence variations in plume density) relative to ambient coastal salinity 

are in the range of 5-25 g kg-1. Then the variations in our theory are compared with 

the results from the numerical experiments (Figs. 2-13 and 2-14). The predictions of 

the length scale, L are compared to the results from the numerical experiments in 

Fig. 2-13. The prediction of the components of our length scale such as the offshore 

position of front (inner shelf width), onshore velocity of the front, and the plume 

speed are compared to the results from the numerical experiments in Fig. 2-14. In 

the experiment where upwelling winds cease (downweliing wind is zero), the upwelled 

front remained offshore after upwelling inline with the numerical findings of Austin 

and Lentz (2002), and the estuarine plume brought less dense water downwave of the 

estuary, as expected from our predictions.

A ccuracy of th e  P red ic tio n  of our L eng th  Scale Next, we tested if our 

predictor L is reasonable for a range of variations in upwelling duration, downweliing 

wind stress, and plume density typical of coastal oceans. We can see in Fig. 2-13 

that the relationship between our predictions and the results from the numerical 

experiment are, as expected, linear and accurate to the first order. The best fit
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between our predictions of L  and the numerical results is obtained when Eq. 2.18 is 

scaled by a factor of 0.6. To explain the magnitude of this factor, we analyze below 

the components of our predictor.

Accuracy of the Predictions of the Offshore Position  of the Front In this 

experiment, we test the accuracy of our prediction of the offshore position of the 

front, W ,  for variations in the upwelling duration, downweliing wind stress, and the 

plume density. We determined that, as expected, the inner shelf width only changes 

significantly when the upwelling duration is varied (Fig. 2-14A). The offshore position 

of the front is not significantly changed when the downweliing wind stress or the plume 

density is varied. The response of our prediction of the inner shelf width matches well 

with the numerical model results.

Accuracy of the Predictions of the Onshore V elocity of the Front In this 

experiment, we test the accuracy of our prediction of the onshore velocity of the up­

welled front,U d w , for variations in the upwelling duration, downweliing wind stress, 

and the plume density. We determined that, as expected, the onshore velocity only 

changes significantly when the downweliing wind stress is varied (Fig. 2-14B). The on­

shore velocity is not significantly changed when the upwelling duration or the plume 

density is varied. The response of our prediction of the onshore velocity of the up­

welled front is proportional to the numerical results; however, our predictions are 

about twice the numerical results (Fig. 2-14B). This is likely a combination of the 

mixed layer depth increasing beyond the maximum mixed layer depth described by 

Pollard et al. (1973) and part of the onshore Ekman transport occurring below the 

mixed layer depth (Lentz, 1992).

Accuracy of the Predictions of Alongshore P lum e Speed In this experiment, 

we test the accuracy of our prediction of the plume speed, ct, for variations in the
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upwelling duration, downweliing wind stress, and the plume density. We determined 

that, as expected, the plume speed changes significantly when the plume density or 

the downweliing wind stress is varied (Fig. 2-14C). The plume speed is not signif­

icantly changed when the upwelling wind duration is varied; the small variation of 

plume speed with upwelling duration is due to the estuarine plume becoming saltier 

(and slower) over the course of the upwelling and downweliing wind event due to 

wind-induced mixing in the estuary. The response of the plume speed is influenced 

by downweliing winds because the downweliing winds determine the wind-induced 

alongshore flow, v. The response of our prediction of the plume speed is proportional 

to the numerical results; however, our predictions are larger than the numerical results 

(Fig. 2-14C).

When we use a more complete form of the phase speed of an interfacial wave 

in a two layer fluid (Gill, 1982, pp. 122) and the average plume thickness in our 

theory instead of the plume thickness at the coast, our predictions of the plume speed 

improves significantly (Fig. 2-14D). The average plume thickness can be determined 

from the cross-shore geometry of the plume. These changes give a more accurate 

plume speed, however, the average plume thickness is difficult to determine without 

detailed cross-shore field observations, and the Gill (1982) scaling is more complex 

and bulky. For simplicity in our prediction of plume speed, we use Eq. 2.15 and 

plume thickness at the coast. If detailed cross-shore plume observations are available 

then using the average plume depth yields better predictions. Our assumption of no 

mixing in the estuarine plume also overestimates the plume speed and can explain 

some of the second order difference in speed between the numerical model and our 

predictions, shown in Figs. 2-14C,D. Another factor that contributes to this second 

order difference is the increase in plume speed due to the intensification of the cross­

shore density gradient due to downweliing winds (~  10-20% of c t ) -

Our predictor, Eq. 2.18, agrees reasonably with the numerical experiment results
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for the range of variations in each of its components. However, our theory makes 

several simplifying assumptions discussed in Sec.2.5, so some divergences between 

our prediction and the numerical model are expected. Next, we test our predictions 

against observational data from the Chesapeake Bay, and our predictor is applied 

to observational data from other estuaries to determine the region where the plume 

arrives nearshore first.

2.6 Testing our Predictor Against Field Observa­

tions

We predict when the plume brings less dense water nearshore before the returning 

front returns to the coast after upwelling winds. Then, we compare our predic­

tions with what actually happens in the CoOP observations at Duck, which is 85 km 

downwave of the Chesapeake Bay. We selected periods in the observations when the 

nearshore mooring shows that an upwelled front has formed, moved offshore, and 

then the upwelling winds reversed or ceased. We find seven such periods from the 

observations at Duck (Fig. 2-9).

We predict where the plume arrives first along the coast using the time-averaged 

upwelling wind stress ryw, the upwelling wind duration tuw, the time-averaged down- 

welling wind stress Td w , the cross-section averaged plume thickness h, the ambient 

alongshore coastal flow vamb, the downwave plume speed cp, and the wind-induced 

alongshore flow v during each of the seven periods (Table 2.3).

The time-averaged upwelling wind stress, Tuw, is the time-averaged wind stress 

over the duration of the upwelling winds; the time-averaged downweliing wind stress, 

Td w , is determined similarly. The duration of the upwelling winds, tu w , is from the 

start of upwelling winds until the winds reverse. The cross-section averaged plume 

thickness is determined using the plume thickness at the coastal wall and a plume
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width of 10 km, as determined by Rennie et al. (1999) for the CoOP observations. 

The speed of the plume is determined using the reduced gravity and average thickness 

of the plume (Eq. 2.15). The wind-induced alongshore flow, v, is determined by 

Eq. 2.16 using the time-averaged downweliing wind stress and the bottom friction 

r  =  3 x 10_4m s_1, in the range observed for North Carolina (Lentz et al., 2001). 

The ambient coastal flow near Chesapeake Bay is about 0.04m s-1 in the southward 

direction (Valle-Levinson and Lwiza, 1997).

When the plume extent predicted by Eq. 2.18 is more than the 85 km from Chesa­

peake Bay to Duck, we expect the plume to be the first to arrive along the coast at 

Duck, bringing less dense water nearshore, otherwise the returning front reaches to 

the nearshore first. Next, we determined when the observations at Duck show the 

plume or the upwelled front arriving first nearshore for each of the seven periods. 

When the plume arrives first, we expect the nearshore water to be much fresher than 

the upwelled front returning to the coast. When the front returns to the coast first, 

we expect that the nearshore water is much saltier than that moved offshore during 

upwelling. These heuristics are described in detail in Sec. 2.4. To see if our predic­

tion is successful, we compare the mechanism bringing less dense water nearshore in 

our observations with the mechanism predicted by Eq. 2.18. For each of the seven 

wind-reversal periods, shown in Table 2.3, the agreement between the observations 

and the predictions are good.

2.7 Discussion and Conclusions

Where the time-integrated upwelling and downweliing wind stresses are compa­

rable, such as the east coast of US, there exists a region downwave of an estuary 

where the arrival of the plume in the nearshore region prevents the upwelled front 

from returning to the coast. This happens because the vertical stratification in the
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plume weakens during downweliing winds and allows vertical mixing, so the weak 

cross-shore flow in the plume stops the front from returning to the coast. Close to 

the estuary, the plume arrives nearshore before the upwelled front, but far from the 

estuary, the upwelled front returns nearshore before the plume. We predicted the 

size of this region and successfully tested it against numerical experiments and field 

observations.

After upwelling has moved the surface coastal waters offshore, close to the estuary 

the plume always arrives nearshore and replaces the nearshore coastal water. The 

arrival of the plume blocks the upwelled surface coastal water from returning to 

the coast. Conversely, outside of the region the upwelled surface coastal water can 

return to the coast bringing back the pollutants, larvae, and nutrients that were 

moved offshore by upwelling. Thus, where the plume returns to the coast before the 

upwelling front, the salinity, temperature, larval inhabitants and the pollution next to 

the shelf are governed by water discharged from the estuary. Outside of this region, 

the properties of the nearshore waters are governed both by the estuarine discharge 

and the processes that alter the water as it moves along the coast, offshore during 

upwelling and onshore during downweliing.

L im its to  our T h eo ry  In regions where the time-integrated downweliing wind 

stress is significantly less than the time-integrated upwelling wind stress, the upwelled 

front will not return to the coast. Some portions of the west coast of US have 

such regions where long periods of upwelling are separated by wind relaxation and 

weak downweliing winds (Send et al., 1987). In these regions, the plume propagates 

downwave until the next period of upwelling winds detaches the plume from the coast 

and moves it offshore, where it remains. Mixing processes like tides and breaking 

waves can (i) significantly deepen the surface mixed layer beyond the shear-induced 

turbulent mixed layer depth, and (ii) erode the plume density. This can decrease
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the accuracy of our predictions, and furthermore, where these mixing processes are 

dominant, the nearshore water properties will be strongly dependent on the mixing, 

and this is when the ROFI literature can help us understand these nearshore dynamics 

in more detail (Linden and Simpson, 1988; Sharpies and Simpson, 1993; Souza and 

Simpson, 1997; Burchard and Hofmeister, 2008).

R e la tio n  to  P r io r  W ork  and  E x tension  to  O th e r  E stu arie s  Our work pro­

vides new insight on results of prior studies like Shanks et al. (2002). Shanks et al. 

observed a cluster of estuarine organisms that entered the coastal region with the 

Chesapeake plume, but farther downwave they appeared to move from the plume to 

the coastal water. The region where the organisms appear to cross water masses is 

in the region where the plume arrives nearshore first and keeps the upwelled front 

from the coast; as a result, the organisms in the front, some of which are the same 

species of estuarine organisms as in the plume, passively remain offshore outside the 

plume boundary. This gives the appearance of the estuarine organisms in the plume 

actively crossing into the adjacent coastal water mass.

The comparisons to field observations and modeling above have been based on the 

Chesapeake estuary; however, estuaries will govern similar regions in other coastal 

oceans where there are comparable cycles of time-integrated upwelling and down- 

welling winds. The size of this region is estimated using the observed values of 

upwelling wind stress, upwelling duration, the plume speed, downweliing wind stress 

and the ambient alongshore flow. The monthly average of these parameters were used 

to determine the mean alongshore extent of the plume in summer and winter (Ta­

ble 2.4). The plume speed observations are from Yankovsky and Chapman (1997), 

the thickness of plume are from Hickey et al. (1998); Pettigrew et al. (1998); Ba- 

nas et al. (2009), the ambient alongshore flow are observations by (Valle-Levinson 

and Lwiza, 1997; Lentz, 2008, east coast) and (Berdeal et al., 2002, west coast), and
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the rest of the parameters are derived from NDBC stations listed in Table 2.4. We
✓

defined the mean upwelling wind duration, tu w , as the average duration for all up­

welling winds (greater than an inertial period) minus the time for an upwelled front 

to form (estimated as 1.4 days in our numerical experiments). The mean upwelling 

wind stress, t u w  , is the average alongshore wind stress for all upwelling winds greater 

than an inertial period (similarly for downweliing, t dw ) while the plume speed is the 

sum of \fg rh (Eq. 2.15), the alongshore flow v, induced by the downweliing winds, 

and the ambient alongshore flow, vamt,. We also make the approximation that the 

surface mixed layer thickness remains constant during the upwelling and downweliing 

periods.

The predictions of the average alongshore extent of the plume near the east coast 

and west coast estuaries is in the range of 45-180 km (Table 2.4). The alongshore 

extent of the plume tends to be longer during winter compared to the summer. This 

was mainly due to relatively higher mean values of the upwelling wind duration, 

upwelling wind stress, and plume speed during winter. The above parameters axe 

larger during winter, so the upwelled front moves farther offshore during upwelling, 

and the plume moves farther downwave in the time it takes for the front to return to 

the coast; this is seen in large estuaries, e.g., Delaware Bay and in smaller systems, 

e.g., Penobscot River.

C onclusion Close to an estuary, in the direction of a Kelvin wave, the nearshore 

hydrography, chemistry, and biology are controlled by the properties of the water 

leaving the estuary. We find the spatial extent of this region along the coast where 

the time-integrated upwelling and downweliing wind stresses are of comparable mag­

nitude; this delimits the region most directly under the influence of the estuary, and 

where both the estuarine and coastal processes influence the nearshore water proper­

ties.
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Table 2.1: The range of variations used in our numerical experiments.

Duration of Upwelling winds, tuw 2.5-5 days
Downweliing wind stress, tdw 0.025-0.20 Pa
Along-estuary salinity gradient 
over estuary length, 5-25g k g -1

Table 2.2: The base numerical experiment forcings and results as described in 
Sec. 2.3.3.

Upwelling wind stress, Tuw O .IN m -2
Upwelling wind duration, tuw 2.5 days
Offshore position of the upwelled front, W 10.4 km
Downweliing wind stress, tqw -O .IN m -2
Plume speed (no wind forcing), Cp 0.38m s-1
Plume speed (under downweliing winds), or 0.59 m s -1
Onshore speed of front returning to coast, udw 0.05 m s -1
Length scale, L . 104 km
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Table 2.3: The predictions tested against the CoOP observations shows our pre­
dicted mechanism matches the observed mechanism for all seven events at Duck. 
When L > 85 km, then the plume is predicted to arrive at Duck first, otherwise the 
front returns to coast first, rjjw is the time-averaged wind stress over the duration 
of the upwelling winds, tuw  is the duration of the upwelling winds, tqw  is the time- 
averaged downweliing wind stress, and h is the cross-shore averaged plume thickness. 
cp is the speed of the plume under no wind forcing, v is the wind-induced alongshore 
flow, varnfj is the ambient alongshore flow, and L (Eq. 2.18) is the alongshore region 
where the plume arrives first. The last three columns show the mechanism predicted 
by L to arrive nearshore at Duck, 85 km downwave of Chesapeake Bay, the mecha­
nism observed in the CoOP observations, and if predicted and observed mechanisms 
match. PL indicates the plume arrives nearshore first and FR indicates the returning 
upwelled front is first.

Event TUW
(Pa)

tuw
(days)

tdw
(Pa)

h
(m) (m s-1)

V
(m s-1)

Vamb
(m s-1)

L
(km)

Pred Obs Match

WR1 0.03 4.75 0.02 4 0.46 0.06 0.04 291 PL PL Yes
WR2 0.03 2.46 0.04 6 0.43 0.13 0.04 81 FR FR Yes
WR3 0.03 1.42 0.05 6 0.51 0.17 0.04 46 FR FR Yes
WR4 0.01 6.54 0.03 4 0.42 0.08 0.04 140 PL PL Yes
WR5 0.04 1.54 0.05 6 0.25 0.17 0.04 33 FR FR Yes

UWR1 0.04 2.96 0.00 4 0.45 0.00 0.04 oo PL PL Yes
UWR2 0.01 2.17 0.00 4 0.45 0.00 0.04 oo PL PL Yes
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Table 2.4: The mean seasonal region, L , where the plume arrives nearshore first, for 
some common estuary-coastal ocean system. The length of the region is computed 
with the assumption that the mixed layer depth remains constant. The averages 
are for Delaware Bay 2006-2007; Chesapeake Bay 2006-2007; Hudson Bay 2005-2006; 
Columbia River 2008-2009 and Penobscot River 2008-2009. The plume speed Cp 
observations are from Yankovsky and Chapman (1997), the plume thickness are from 
Hickey et al. (1998); Pettigrew et al. (1998); Banas et al. (2009), and the remaining 
parameters are derived from NDBC stations 44009, ducn7, sgrn4, 46029 and 44033. 
Using r  =  3 x 10-4 m s-1 and p  =  1025 kgm -3. t u w  and t d w  are the average 
alongshore wind stress for wind events longer than an inertial period, tuw  is the 
duration of the upwelling winds after the front has formed.

Estuary T u w

(Pa)
t u w

(days)
t d w

(Pa)
Cp

(m s-1)
V

(ms-1)
'Vamb

(m s-1)
L

(km)

Summer

Delaware Bay 
Chesapeake Bay 
Hudson Bay 
Columbia River 
Penobscot River

0.02
0.04

<0.01
0.02
0.01

0.95
1.75
0.55
0.45
0.55

0.03
0.03
0.01
0.02
0.01

0.38
0.54
0.44

0.56-0.69
0.73

0.09
0.10
0.03
0.05
0.02

0.04
0.04
0.04
0.05
0.05

61
181
45

68-82
90

Winter

Delaware Bay 
Chesapeake Bay 
Hudson Bay 
Columbia River 
Penobscot River

0.05
0.03
0.01
0.02
0.05

0.95
0.45
0.95
1.25
1.15

0.03
0.03
0.01
0.04
0.02

0.28-0.38
0.53
0.43

0.50-0.63
0.46

0.09
0.10
0.02
0.14
0:07

0.04
0.04
0.04
0.05
0.05

83-103
69
72

82-97
182

41



Coast

F igure  2-1: Cartoon of the upwelling mechanism transporting the upwelled front 
offshore with a cross-shore sectional view. The black dots indicate the nearshore and 
offshore moorings.
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estuary

Coast

V = C + Y , ,n d

F igure  2-2: During wind-reversal, the onshore flow can transport the upwelled front 
back to the coast. The arrival of less dense water along the coast can be due to the 
front returning to the coast or the arrival of a plume from the upwave estuary. We 
predict the alongshore extent of the plume when the front returns to the coast near 
the southern boundary.
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F igure  2-3: The study area downwave of Chesapeake Bay, along North Carolina. 
The CoOP observations are centered at the Duck pier station and span from Chesa­
peake Estuary mouth to North of Cape Hatteras. The transects are T l, T2, T3, T4, 
T5, T6, and T7 in the downwave direction from estuary, see Lentz and Largier (2006). 
Triangles are CTD casts and circles are moored CT meters at Duck.
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Figure  2-4: The schematics of the numerical model bathymetry. (A) The plan view 
of the model domain with the offshore boundary at 100 km. The upwave alongshore 
distance is 50 km while the downwave alongshore distance varies each numerical ex­
periment with a minimum of 315 km. (B) The coastal ocean has a uniform alongshore 
bathymetry shown in the cross-section view. (C) The estuary has a uniform bath- 
metry with a length of 100 km and a width of 20 km approximating wide estuary 
systems.
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D ow nw eliing

F igure  2-5: (A) The stratification in the coastal ocean shown as a salinity profile. 
The temperature is constant. (B) The alongshore surface wind stress t sx is applied 
to the entire model domain. The ramping of the wind stress occurs over an inertial 
period. The downweliing wind continues until the end of the numerical simulation.
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A longshore Salinity at C oast as Function o f  T im e
Estuary o

-50

M  -100

Front returns 
to coast

2-150

DownweliingUpwelling
-250 2723 24 25 28 3022 26 29
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F igu re  2-6: Alongshore salinity (gkg-1) at the coast as function of time in days. The 
vertical isohalines indicate the upwelled front moving offshore (upwelling) or onshore 
(downweliing). The dark shade along the coast at day 22 is the plume before upwelling 
winds. The sloping isohalines indicate the estuary plume progressing downwave with 
time. The front returns to the coast at day 27 and is seen in the plot as a decrease in 
surface salinity during the downweliing phase (between 150-250km), and the arrow 
shows the downwave position of the plume head at the time the upwelled front returns 
to the coast. The shaded region shows the freshwater plume from the estuary.
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F igure  2-7: The cross-section of salinity (gkg-1) and tracer at 60 km downwave of 
the estuary. The darker shading shows the high tracer arriving with the plume. The 
sections are at times (A) 1 day before wind-reversal (B) onset of wind-reversal (C) 
1 day after wind-reversal (D) 3 days after wind-reversal. The 32.5gkg-1 isohaline 
shows the position of the upwelled front.

48



Surface Salinity Salinity
Estuary

-2 0

Salinity

C ross-Shore D istance in km C ross-S hore D istance in km

F igure  2-8: (A) Coastal surface salinity (gkg-1) plot of the numerical model at 
the time the coastal halocline returns back to the coast wall, i.e., the upwelled front 
returns to the coast. The dashed lines are cross-sections upwave and downwave of the 
plume head. (B) Cross-shore slice upwave of the plume head shows the plume arrives 
nearshore before the front returns to the coast. (C) Cross-shore slice downwave of 
the plume head shows the front returning to the coast before the plume arrives.
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F igure  2-9: The time-series plot at the Duck pier station. (A) Low pass filtered 
(Flagg et al., 1976, PL33 filter) alongshore wind stress t sx (Pa). Positive values are 
upwelling and negative values are downweliing. Near-surface and near-bottom salinity 
(gkg-1) time-series for moorings at (B) 1.5km and (C) 5.5km offshore. The dashed 
lines are the near-bottom salinity and the solid lines are the near-surface salinity. 
UWR1 indicates the period of upwelling wind relaxation [UWR] event 1. WR1P 
indicates the period of wind-reversal [WR] event 1 with plume-[P] arriving before 
front-[F]. The light shades show the upwelling relaxation duration and the darker 
shades show the duration of wind-reversal events.
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F igure  2-10: (A-E) The cross-shore plots of salinity (psu), and (E-H) the cross­
shore plots of sigma density (kgm~3) for the same periods at Duck pier station. The 
depth is in decibars, and the dark line is crt=22kgm -3. (A & E) On 16 August, the 
plume arrives before the front returns to coast. (B & F) The restart of the upwelling 
winds moved the plume offshore on 21 August. (C & G) After wind-reversal on 
23 August, the less dense water nearshore is due to return of the upwelled front. (D 
& H) The plume arrives on 25 August after the front returned to the nearshore during 
downweliing winds. The temperature (not shown here) remained uniform during these 
events. The inverted triangles are cross-shore CTD shipboard cast locations and the 
dots are the locations of the 1.5 km and 5.5 km moorings of CT meters.
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F igure  2-12: Similar to Fig. 2-10. (A-B) The cross-shelf plots of salinity (psu) and 
(C-D) sigma density (kgm-3) for the same periods at Duck pier station. The depth is 
in decibars, and the dark line is crf=22 kg m~3. (A & C) On 19 August the upwelling 
winds moved the surface layer offshore. (B & D) After the winds relax the less dense 
water nearshore is due to arrival of plume on 21 August.
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CHAPTER 3

W eather-Band Fluctuations In W ind  

Alters The Estuary-Ocean Exchange.

3.1 Abstract

Winds fluctuating on weather-band time scales can alter the salt exchange between 

an estuary and the adjacent coastal ocean, changing the salinity and the residence 

time of the estuary. These changes are governed both by the impact of the wind on 

the estuary and the adjacent coastal ocean. In stratified estuaries, fluctuating winds 

mainly reduce the salt exchange by reducing the stratification of the estuary through 

mixing. When the estuary is well-mixed, fluctuating winds alter the salt exchange 

primarily by changing the salinity entering the estuary from the coastal ocean. In both 

stratified and well-mixed estuaries, the changes in the salinity entering and leaving 

the estuary have a larger effect on the salt exchange than changes in the volume of 

water exchanged between the estuary and the coastal ocean.

3.2 Introduction

The exchange between the estuary and the adjacent coastal ocean allows changes 

in the coastal ocean to alter the water-properties in the estuary, and the changes in 

the estuary to alter the near-shore coastal ocean. However, studies in the coastal 

ocean often represent the estuary as a freshwater point-source along the coastal wall 

(Fong and Geyer, 2001), and studies in the estuary often represent the coastal ocean
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as a homogeneous water mass (MacCready, 1999); these assumptions are removed 

in our work to examine the influence of fluctuating winds on the exchange between 

the estuary and the coastal ocean. Large scale weather systems (Austin and Lentz, 

1999) can influence both the estuary and the coastal ocean, changing the exchange 

between these two regions. Studies focusing on understanding the exchange between 

the estuary and the coastal ocean must simultaneously solve the dynamics in both 

the regions.

We examine how wind fluctuations influence the salt exchange of the estuary with 

the coastal ocean. These wind fluctuations can occur on a timescale of a few days 

(East coast of US) to a few weeks (West coast of US), and are referred to as weather- 

band fluctuations in the wind. The influence of these weather band fluctuations in 

the wind are examined over a duration of 30 days. The 30 days of fluctuating winds 

is much shorter than the time taken for an estuary to reach its new steady state. In 

large estuaries like the Chesapeake Bay, the steady state is reached in about 90 days 

(Austin, 2002). Examining the salt exchange of the estuary before the estuary has 

reached its new steady state helps us understand the immediate impact of storms on 

the salt exchange. Fluctuating winds can also alter the volume of water exchanged 

between an estuary and coastal ocean. The volume of the water exchanged governs 

the residence time of an estuary, i.e., the time a water parcel resides in the estuary. 

An estuary with a long residence time takes longer to flush out nutrients, pollutants, 

and other anthropogenic matter input via terrestrial runoff. This can cause water 

quality problems (Cerco et al., 2004) and create anoxic zones (Scully, 2010) in the 

estuaries.

Our study examines the net effect of the upwelling and down-welling winds on 

the estuary, ocean, and their exchange, rather than the effect of separate upwelling 

or down-welling winds. The wind fluctuations are examined for estuaries and coastal 

oceans typical of the Mid Atlantic Bight (MAB), and the results are extended to
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other regions such as the West coast of US. This work is an extension of previous 

studies in (i) the coastal ocean where the influence of separate upwelling and down­

welling winds on the near-shore circulation and water properties are studied (Austin 

and Lentz, 2002; Allen et al., 1995; Allen and Newberger, 1996); and (ii) estuaries 

where the influence of along-estuary or cross-estuary winds on the circulation and 

water properties are studied (Geyer, 1997; Chen et al., 2009).

This paper is organized as follows: section 2 describes the setup of the base case 

numerical experiment which was modeled after the Chesapeake Bay and the MAB. 

This includes a description of the different forcings applied to the permutations of the 

base case experiment to model the wind influence for a range of estuarine and coastal 

conditions observed in field data. In section 3, a Reynold’s decomposition is used 

to identify the important parameters influenced by the wind fluctuations. Section 4 

discusses how wind fluctuations influence the salt exchange for a range of estuarine 

and coastal conditions, and in section 5 our work is extended to other regions.

3.3 Description of the Numerical Model

Our base case numerical experiment is modeled after the Chesapeake Bay and 

the MAB coastal ocean (Figure 3-1). The parameters and forcings used in the base 

case experiment are described. The permutations of this base case experiment used 

to model the range of topography, estuarine, and coastal conditions are described as 

well.

The numerical model used in this study is the Regional Ocean Modeling System 

(ROMS). It is a primitive equation finite difference numerical model (Song and Haid- 

vogel, 1994). The vertical momentum balance is hydrostatic and a free surface is 

included. A constant horizontal eddy viscosity, A m of 5.0 m2 s_1 and a horizontal 

diffusivity, A h of 0m 2s-1 are set. The background minimum vertical eddy viscosity
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is v = 1.0 x 10-5 m2s-1. Diurnal tides are included in the model and is a major 

source of vertical mixing in the background. The Coriolis parameter is /  =  10-4 s-1. 

The vertical eddy viscosity K m is computed by the Mellor-Yamada level 2.5 turbu­

lence closure scheme (Mellor and Yamada, 1982) using the non-dimensional stability 

functions from Galperin et al. (1988) and Kantha and Clayson (1994). Some stud­

ies, e.g., Garvine (1999); Stacey et al. (1999); Fong and Geyer (2001), have shown 

that in strongly stratified conditions, the MY2.5 scheme underestimates the vertical 

eddy viscosity, while overestimating in weakly stratified conditions. Nevertheless, the 

MY2.5 scheme resolves the mixing accurate to first order. The density is computed 

by a linear equation of state using a saline contraction coefficient of 7.6 x 10“4 and is 

a function of salinity alone. Temperature is kept constant in the model.

M odel G rids The model utilizes a terrain-following a coordinate system to resolve 

the vertical structure. The horizontal grid is a finite difference scheme with grid size 

ranging from l k m x l k m  (near the western and northern boundaries) to 4 km x 4 km 

(near the eastern and southern boundaries). The higher resolution at the northern 

boundary minimizes the formation and downwave propagation of numerical artifacts 

into the study area. The highest horizontal resolution of l k m x l k m  is used in the 

estuary and the coastal region near the estuary mouth to resolve the salt and volume 

fluxes being examined.

The domain in the base case numerical experiment has 384 points in the cross­

shore direction, 96 points in the alongshore direction, and 20 vertical a levels. The 

location of the boundaries are southern y =  -100 km, northern y =  50 km, western x =  - 

320 km, and eastern x =  100 km. A right-handed ‘east coast’ coordinate system is used 

where +x direction is offshore (‘seaward’), +y direction is northward (‘upwave’), and 

+z  direction is upwards (‘skyward’). In the numerical model, the baroclinic time 

step is 90s and the model output is saved every 120 time steps to temporally resolve
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the tides used in our model. The barotropic time step is 1 /20 of the baroclinie time 

step. The model was run for half and double the grid spacing, and our results did 

not change significantly.

B o u n d ary  C onditions The surface momentum boundary conditions are,
d{u,v)  (Tsx'sy)

K m  ~a (3-i)
d z  z=0 Po

where t sx and r s y  are cross-shore and alongshore surface wind stresses. In this study, 

t sx = 0 Pa while the alongshore wind stress is varied. The bottom momentum bound­

ary condition is a linear bottom drag,
d (u , v )

K m = (ruh,rvb) (3.2)dz
where the bottom drag coefficient is r  =  5 x 10- 4 m s-1 and are the bottom

velocity in the cross-shore and alongshore directions respectively. The bottom drag 

is within the range observed by Lentz et al. (2001) for the North Carolina coast.

The northern open boundary conditions (OBC) are determined from numerical 

experiments using the same winds as the 3D model but in a 2D alongshore-uniform 

topography model. This 2D model is a cross-shore section of the 3D model and has no 

alongshore variations. The northern OBC implies tha t the ocean outside the northern 

boundary can be approximated as an infinite coast with no alongshore variations in 

forcings or topography, as described in Gan and Allen (2005) and Pringle and Dever 

(2§09). The southern and eastern edges are open boundaries with Sommerfeld radia­

tion conditions. This radiation condition has the least reflection at the boundary for 

the dominant wave mode but the other wave modes have higher reflection. To over­

come this, the southern boundary also has a six grid-point wide sponge layer where 

the horizontal viscosity gradually increases in the southward direction. The sponge 

layer helps dissipate the energy of reflected waves preventing them from propagating 

along the southern open boundary. The western boundary is the coastal wall with 

free-slip condition. The free-slip imposes no friction between horizontal boundaries
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and the flow, and there is no normal flow into the wall.

iV~i t  o  f  f  V i  /- \ TV /T •» A  4 -1  r v v * l - t  nu u a i i u i i  u i  uxxo iv j . i c i - i “io ia> i.iiji.c

Bight and has a large estuary connected to a uniform alongshore bathymetry coastal

ocean (Fig. 3-2). The coastal ocean bathymetry is given by

H(x) = H0 + a x  0 < x < 100 x 103m (3.3)

where Ha =  10 m is the coastal wall depth, x  is the cross-shore distance, and a  is the

of wind fluctuations for different coastal slope. In the base case experiment, a  was 

1 x 10~3, typical of the MAB.

Our model estuary has idealized dimensions similar to large estuaries such as 

Chesapeake Bay and Delaware Bay (Fig. 3-2B). The estuary mouth is centered at 

[x, y] =[0,0] km with a length of 300 km and a width of 20 km. The length of the 

estuary is selected to prevent tidal resonance in the estuary. The estuary has 10 m 

deep walls. In the base case experiment, the estuarine thalweg was 30 m and the 

estuary thalweg was varied between ll-45m  to examine the influence of winds for 

different estuary depths. The angle of the estuary was varied between —60° to 60° to 

examine the influence of fluctuating winds for different estuary orientations. In the 

base case experiment, the estuary was perpendicular to the coastal ocean, i.e., 0 = 0°. 

Positive angles mean the head of the estuary is northward of the estuary mouth.

C oastal S tra tifica tio n  The stratification is modeled after the summer conditions 

at Duck, NC as a two layer system separated by a halocline centered at a depth of hflc 

and has a halocline thickness of Az =  11 m (Waldorf et al., 1995; Alessi et al., 1996). 

The hhc was varied between 10-45 m to examine the influence of winds at different 

pycnocline depths; in the base case experiment, the hhc was 15 m. The initial density 

field is uniform alongshore and is a function of depth and salinity,

bottom slope. The a  was varied between (0.5 — 5) x 10 3 to examine the influence

(3.4)
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where the salinity is 33 g kg-1 at the halocline center, z is the depth in metres, A She =  

2gkg-1 (Figure 3-3A). The denominator of the tanh() function sets the Az and is 

kept constant for all model runs. The salinity of the top layer of the coastal ocean is 

near 31gkg_1. The numerical experiment salinity is reported using absolute salinity 

in units of gkg-1 (Millero et al., 2008).

3.3.1 External M odel Forcing

Each numerical experiment starts from an initial condition where the flow is at rest. 

The experiments run with tides and river discharge but no winds, until day 200 when 

steady state is reached. Then the wind forcing is applied to the model for 30 days 

because it is shorter than the adjustment time of our estuary but longer than the 

observed weather-band timescales being examined. Our analysis will focus on the 

estuary exchange during the 30 days of fluctuating winds.

W in d  Forcing The surface forcing consists of alongshore wind-stress, r sy which 

is uniform across the numerical domain and fluctuates between upwelling and down­

welling (Fig. 3-3B). The winds begin with an upwelling wind-stress of r sy lasting for 

a period of tuw days, followed by a down-welling wind-stress of —r sy lasting tow  

days. A wind-stress of r sy =  0.1 Pa is a wind speed of about 8 m s-1 measured at 

height of 10m (Fairall et al., 1996). Both the periods tyW and tow  include one day 

for the wind to ramp to r sy and another day to ramp back to zero wind-stress. Only 

complete wind-reversal cycles, tyw +  tow, that fit in the 30day duration are used.

The wind-stress amplitude and period was varied between 0.05-0.3 Pa and 6- 

30 days respectively; in the base case experiment these were 0.1 Pa and 6 days. The 

time-averaged wind-stress over the 30 days wind is zero for all the experiments pre­

sented in this study, unless otherwise stated. The alongshore winds fluctuating about 

zero mean wind stress amplitude is a common occurrence in the coastal wind forcing.
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Statistical analyses of several coastal regions show that the average of the alongshore 

component of the wind stress amplitude is often close to zero (Table 3.1). Further­

more, the fluctuation, i.e., standard deviation, from the mean wind is often much 

larger (often by an order of magnitude) than the mean wind stress amplitude. This is 

shown by the small ratio between the mean and the standard deviation (Table 3.1).

However, there are regions along the US coasts where the mean wind stress am­

plitude in this component is comparable to the standard deviations. We observe 

that this occurs for our defined West coast region, Buzzards Bay, and sometimes the 

Chesapeake Bay during summer. In these regions where the mean and the standard 

deviation are comparable, the results from our study, which use zero mean alongshore 

wind-stress amplitude has to be modified.

R iver Forcing The freshwater discharge enters the model at the head of the estuary

and is applied evenly over the depth. The freshwater discharge has a salinity of

0 g k g '1. The river discharge range of (0.2 — 20) x 103m3s-1 is used to examine

the influence of winds at different discharge rates; the base case discharge rate was

2 x 103 m3s_1. similar to Austin (2002). This inflow initiates at the start of the model

simulation and is kept constant with time. The initial salinity along the estuary is,
dS

S (x ) = Sco + -— x, -300 km < x < 0 km (3.5)
ox

where the surface salinity of the coastal ocean, Sco = 31 g kg-1 and the along-estuary 

salinity gradient, =  0.1 gkg-1 km-1 ( |^  =  0.08kgitT 3km-1). In order to reduce 

the computer time for each model run, the estuary salinity is initiated closer to the 

steady state. The exchange flow at the estuary mouth has stabilized by 200 days.

T ides The inclusion of tides in the numerical model sets a more realistic back­

ground estuarine mixing. Tidal forcing included in the numerical model is achieved 

by imposing the fluctuations of the sea surface height and current associated with 

a 12-hour tide at the offshore (eastern) boundary of the domain. The fluctuations
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of the sea surface height and current at this offshore boundary is the sum of the 

initial coast-ward moving tidal wave and the tidal wave reflected from the coast, as 

described by Das and Middleton (1997). Their solution was used to determine the 

magnitude of the fluctuations in the sea surface height and currents at the offshore 

boundary. These offshore tidal boundary conditions are then tuned to get the tides 

at the coastal wall to be similar to observed tidal fluctuations along the MAB coast.

3.4 Equations for .Salt Fluxes at Estuary M outh

In order to examine how fluctuating winds alter the salt exchange between an 

estuary and an adjacent coastal ocean, i.e., the net salt flux, we decompose the salt 

exchange into simpler components. A positive net salt flux indicates the estuary is 

losing salt, and a negative net salt flux indicates the estuary is gaining salt. The net 

salt flux is examined over weather-band timescales to find how the estuary initially 

responds to fluctuating winds. Over longer duration of fluctuating winds when the

estuary has reached steady state, the net salt flux is zero; our estuary does not reach

steady state over the 30 days of fluctuating winds.

The net salt flux across the estuary mouth of cross-sectional area, A  is,

Fnet{ t )=  /  u(x ,y , z , t )  ■ s (x ,y , z , t )  ■ dA (3.6)
Jo

The velocity, u, and salinity, s, are the tidal averages for time, t, for each point 

(x , y, z) along the cross-section of the estuary mouth.

The net salt flux is broken down using the following decompositions, similar to 

MacCready (1999),

u(x ,y , z , t )  = u(t) + u ( x , y , z , t )  (3.7)

s (x ,y , z , t )  = s(t) + s ' ( x , y , z , t ) (3.8)

u(t) and s(t) are the velocity and salinity, averaged across the cross-sectional area
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of the estuary mouth. While, u (x , y , z , t ) and s'(x,y,  z , t )  are the deviation of the 

velocity and salinity from the cross-sectional averages of velocity and salinity. Using 

the decompositions from equations 3.7& 3.8 in equation 3.6 gives,

Fnet(t) = u(t) s(t)A{t) +
S V 1 1 ^

Fd

The first term on the right hand side is the cross-sectional average of the net salt flux 

across the estuary (hereafter referred as the depth-averaged salt flux, Fd ), and the 

second term is the deviation of the net salt flux from the depth-averaged salt flux 

(hereafter referred as the exchange salt flux, Fgx) .

The depth-averaged salt flux describes the salt flux caused by the depth-averaged 

volume flow due to (i) the river volume discharge, and (ii) the change in estuarine 

volume due to the sea-level change at the estuary mouth driven by coastal Ekman 

transport (Garvine, 1985), and the average salinity across the estuary mouth. The 

exchange salt flux is described by the difference in the average salinity of the water 

leaving, SOMt, and entering the estuary, Sm. and the volume exchange flux between 

the estuary and the coastal ocean, Qex (Figure 3-4).

Fex — A S  ■ Qexi (3.10)

where A S = S out — S'jn. The S ^ t  and Sin are the salinity deviations from the salinity 

averaged across the estuary. The exchange fluxes and parameters described above are 

averaged over the 30 days duration of fluctuating winds. Positive Fe x indicate the 

estuary loses salt and negative Fex indicate the estuary gains salt.

3.5 Results

The salt exchange between an estuary and a coastal ocean is the sum of the depth- 

averaged and exchange salt fluxes. On timescales short compared to the estuary 

adjustment time, the depth-averaged salt flux changes little (Figure 3-5). The depth- 

averaged salt flux is the product of the river discharge rate and the average salinity

/Jo
u '{x ,y ,z , t ) s ( x ,  y, z, t) dA (3.9)
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at the estuary mouth (Equation 3.9). The river discharge rate was kept constant 

in our model runs while the average salinity adjusts on timescales much longer than 

the 30 days of fluctuating winds. Thus most of the rapid response to the fluctuating 

winds will be caused by the exchange salt flux. This is seen in all model runs (Figure 

3-5). The exchange salt flux is the product of the exchange volume flux, QEx, and 

the salinity difference, AS.  The changes in the salt exchange are primarily due to 

the larger percent changes in AS ,  and less to the smaller fractional changes in QEx 

(Figure 3-7 & 3-8). The percent changes in A S  and Qex shown in these figures are 

relative to no wind model runs for each parameter setting used. The volume exchange 

flux does not change significantly because it is driven by the along-estuary salinity 

gradient (Hansen and Rattray, 1965), which adjusts on a timescale longer than the 

30 days of fluctuating winds. The fluctuating winds can alter A S  by changing the 

estuarine processes that alter the salinity of the water leaving the estuary, or coastal 

processes that alter the salinity entering the estuary.

The influence of fluctuating winds on the salt exchange are examined for different 

conditions that can alter the AS.  These conditions include the river discharge rates, 

coastal pycnocline depth, alongshore wind-stress amplitude and period, estuary orien­

tation, estuary thalweg depth, the coastal bottom slope, and geostrophic alongshore 

flow.

3.5.1 How Fluctuating W inds Alter the Salt Exchange of Es­

tuaries 

Influence of W ind-Stress

When the wind-stress amplitude or period is changed, there can be changes in the 

stratification of an estuary, and changes in the coastal upwelling and down-welling. 

The amplitude and period of the wind-stress is varied from 0.05-0.3 Pa and 6-30 days
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to examine how the wind-stress alters the salt exchange between an estuary and a 

coastal ocean.

For this range of wind-stress amplitude and period, the fluctuating winds in the 

estuary cause a larger change in the salt exchange, compared to the change caused 

by fluctuating winds in the coastal ocean. This was examined by comparing the salt 

exchange of models runs made of uniform winds over both the estuary and coastal 

ocean (blue arrows in Figure 3-2A), and model runs made of winds only over the 

coastal ocean (red arrows in Figure 3-2A). The difference between these model runs 

can be attributed to the effect of winds in the estuary. This comparison of the salt 

exchange is seen in Figure 3-6. The black arrows show the salt exchange, i.e., net 

salt flux, caused by fluctuating winds only in the estuary, and the red line shows the 

salt exchange caused by fluctuating winds only in the coastal ocean. These changes 

in the salt exchange are primarily due to changes in A S ,  as discussed above.

As the wind-stress amplitude and period increases, fluctuating winds in the estuary 

cause more mixing, reducing the estuarine stratification, increasing the surface salinity 

leaving the estuary and thus reducing the magnitude of A S  and the salt exchange 

flux (Figure 3-7A,B). The influence of fluctuating winds in the estuary is dependent 

on the initial estuarine stratification. When the estuary is initially stratified, the 

wind-induced mixing in the estuary reduces the magnitude of A S  and changes the 

salt exchange. This is seen in all our model runs (black arrows in Figure 3-6). When 

the estuary is initially well-mixed (or sheltered from wind by topography), the wind- 

induced mixing has no significant effect on A S  (7 ^% ~  —1%) and the salt exchange 

( r a w  ~  -0.1%) (Table 3.3).

In the above section, the fluctuating winds start in the upwelling phase causing 

the coastal pycnocline to upwell, bringing deep salty water to the estuary mouth, thus 

changing the net salt flux. However, if the winds start in the down-welling phase, then 

the coastal pycnocline is initially pushed away from the estuary and the upwelling
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winds would bring the coastal pycnocline back to its initial condition. The influence 

of the phase shift is that the movement of the coastal pycnocline is altered in the 

numerical experiments, i.e., upwelling would no longer bring the coastal pycnocline 

to the estuary mouth, but would return the coastal pycnocline close to its initial 

condition.

For timescales much shorter than the time taken for the estuary to adjust to the 

winds, and when wind-induced mixing in the estuary is important, the initial response 

of the net salt flux of the estuary depends on (i) the wind-induced mixing in the 

estuary which removes salt from the estuary, and (ii) the influence of the coastal ocean 

which depends on how the fluctuating winds move the coastal pycnocline vertically. 

When the fluctuating winds move the coastal pycnocline to the surface, the coastal 

ocean adds salt to the estuary, as described earlier in this section. However, when 

the fluctuating winds move the coastal pycnocline below its initial depth, the coastal 

ocean removes salt from the estuary (Figure 3-9).

When the influence of the wind-induced mixing in the estuary is in concert with 

the influence of the coastal down-welling in removing salt from the estuary, the change 

in the net salt flux is larger compared to when the influence of these mechanisms on 

the net salt flux are in opposition (blue line in Figure 3-9).

The influence of fluctuating winds in the* coastal ocean has an important but 

secondary effect on the salt exchange. As the wind-stress amplitude and period 

increases, fluctuating winds upwell deep salty water at the coast increasing the salinity 

entering the estuary, and thus increasing the magnitude of A S  (Figure 3-8A,B). 

However, once the upwelling is sufficient to outcrop the coastal pycnocline to the 

surface, further upwelling does not produce saltier water at the estuary mouth, so 

the salt exchange does not change much. This is seen in model runs where longer 

wind periods result in smaller fractional changes in the salt exchange (red line in 

Figure 3-6B). In a coastal ocean with continuous vertical stratification, upwelling
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caused by fluctuating winds keep increasing the salinity entering the estuary because 

there is always saltier deep water upwelling, so the magnitude of A S  and the salt 

exchange would increase uniformly with more upwelling. When the coastal ocean is 

homogeneous, the upwelling caused by fluctuating winds do not change the salinity 

entering the estuary, so the A S  and salt exchange do not change.

When only the winds in the coastal ocean are important, i.e., the estuary is well- 

mixed, the influence of the coastal ocean on the initial net salt flux depends on how 

the fluctuating winds move the coastal pycnocline vertically. When the fluctuating 

winds move the coastal pycnocline to the surface, the coastal ocean adds salt to the 

estuary, as discussed earlier in this section. However, when the fluctuating winds 

move the coastal pycnocline below its initial depth, the coastal ocean removes salt 

from the estuary. This can be seen in our experiments (red line in Figure 3-9).

In our experiments, when the starting phase of the fluctuating winds is upwelling 

winds, the coastal pycnocline moves to the surface and the coastal ocean adds salt to 

the estuary. When the starting phase of the fluctuating winds is down-welling winds 

(i.e., we use a phase shift in the winds), the coastal pycnocline moves away from the 

surface and the coastal ocean removes salt from the estuary. This is because the 

salinity at the estuary mouth decreases as the deep salty water is moved away from 

the coast by wind-induced Ekman transport. This decreases the salinity difference 

AS,  between the water entering and leaving the estuary reducing the exchange salt 

flux, so the estuary loses salt (red line in Figure 3-9).

Influence of Estuary Orientation

When the orientation of an estuary is oblique to the direction of a fluctuating 

wind, there can be changes in the depth-aver aged flow due to the along-estuary wind 

component. The orientation of the estuary is varied from —60° to 60° to examine 

how the orientation of the estuary alters the salt exchange between the estuary and
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the ocean due to fluctuating winds.

The orientation of an estuary has an important but secondary effect on the depth- 

averaged salt flux in an estuary. The fluctuating winds in the estuary have the largest 

influence on the depth-averaged salt flux when the orientation of the estuary is such 

that a component of coastal upwelling winds blow along the estuary toward the head 

of the estuary (Figure 3-10). The depth-averaged salt flux changes by 17% from the no 

wind case of the same orientation (Table 3.3). For this orientation, the depth-averaged 

velocity forced by the along-estuary winds opposes the depth-averaged velocity forced 

by the sea-level setup due to the coastal Ekman transport at the estuary mouth. For 

these estuary orientations, i.e., positive angles, the along-estuary winds and coastal 

winds both set up the sea-level at the estuary mouth, enhancing the depth-averaged 

velocity so the change in the depth-averaged salt flux is large. This change in the 

depth-averaged salt flux is still only about 33% of the change in the exchange salt flux 

(Table 3.3). For other estuary orientations, i.e., negative angles, the along-estuary 

winds set up sea-level but the coastal winds set down the sea-level at the estuary 

mouth, reducing the depth-averaged velocity so the change in the depth-averaged 

salt flux is small. This change in the depth-averaged salt flux is about 12% of the 

change in the exchange salt flux for the parameters used in the base case model run 

(Table 3.3).

For fluctuating winds only in the coastal ocean, the angle of the estuary does not 

significantly alter the salt exchange. This is seen by the small change in the salt 

exchange for the large range of estuary orientations (red line in Figure 3-6C). The 

above results are consistent with the solutions of Garvine (1985).

Influence of Coastal Pycnocline D epth

When the coastal pycnocline depth is increased, it takes a larger upwelling wind- 

stress amplitude or duration to upwell deep salty water at the estuary mouth and
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alter the salt exchange of the estuary. The pycnocline depth of the coastal ocean is 

varied between 10-45 m to examine how the change in the depth of the pycnocline 

alters the salt exchange between the estuary and the coastal ocean due to fluctuating 

winds.

When the coastal pycnocline depth is increased, the fluctuating winds in the 

coastal ocean have an important but secondary influence on the salt exchange. Fluc­

tuating winds in a coastal ocean with a deeper pycnocline decreases the salt exchange 

flux into the estuary, so the estuary loses salt (red line in Figure 3-6D). This is be­

cause as the depth of the coastal pycnocline is increased, it takes longer to upwell 

the same deep salty water from below the coastal pycnocline to the estuary mouth 

(Csanady, 1977). As a result, for a given upwelling wind-stress, if the coastal pycno­

cline is deeper, the salinity entering the estuary is less salty, reducing the magnitude 

of A S  (Figure 3-8D).

When the depth of the coastal pycnocline is changed, it alters the relationship 

between the upwelling period of fluctuating winds and the salt exchange, discussed 

in sec. 3.5.1.

Influence of the Estuary Thalweg

In the absence of winds, as the depth of an estuary thalweg is increased, more 

salty water can enter the estuary, increasing the initial stratification in the estuary 

(Hansen and Rattray, 1965). We examine how these changes, due to the increase in 

the estuary thalweg depth, alter the salt exchange due to fluctuating winds in the 

estuary and coastal ocean. The estuary thalweg depth is varied from 11-45 m for this 

study. This range of thalweg depth are typical of large estuaries such as Chesapeake 

Bay and similar to the range used in estuarine studies, e.g, (MacCready, 1999).

As the thalweg depth increases, the fluctuating winds in an estuary have a de­

creasing influence on the salt exchange due to a decrease in the wind-induced mixing
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in the estuary (black arrows in Figure 3-6E). This decrease in the wind-induced mix­

ing is due to the initial stratification in the estuary becoming stronger as the thalweg 

deepens. As a result, for a given wind-stress amplitude, there is less wind-induced 

mixing in the estuary and thus the change in the A S  becomes smaller as the thalweg 

depth increases (Figure 3-7E).

The fluctuating winds in a coastal ocean do not alter the influence on the salt 

exchange for the range of estuary thalweg depths studied (red line in Figure 3-6E). 

This is because the thalweg depths set in our study are close to or deeper than the 

coastal pycnocline, so for a given upwelling wind-stress the deep salty water from 

below the pycnocline was always able to enter the estuary mouth. If the coastal 

pycnocline were much deeper than the estuary thalweg, then fluctuating winds in the 

coastal ocean would have little influence on the salt exchange because the deep salty 

water would not reach the estuary mouth, except for extended upwelling winds.

Influence of River Discharges

. In the absence of winds, when the river discharge increases, two things can happen: 

(i) the volume exchange, Qex, becomes larger (Hansen and Rattray, 1965), so small 

changes in A S  can cause large changes in the magnitude of the salt exchange. The 

changes in Qex discussed here are due to the river discharge and not due to the 

adjustment of the estuary to the winds; (ii) there is fresher water on the surface 

estuary, so the initial estuarine stratification is stronger (Hansen and Rattray, 1965) 

and the discharged coastal plume is fresher (Garvine, 1999). We examine how these 

changes due to river discharge alter the salt exchange due to fluctuating winds in an 

estuary and a coastal ocean. The freshwater input at the head of the estuary is varied 

from (0.02 — 2) x 104 m3s_1 and is spun up for 200 days before fluctuating winds are 

applied.

When the river discharge increases, the fluctuating winds in an estuary have an
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increasing influence on the salt exchange (black arrows in Figure 3-6F). As the river 

discharge increases, the initial estuarine stratification is stronger, so the wind-induced 

mixing in the estuary decreases, reducing the change in the magnitude of A S  (Figure 

3-7F). However, the increase in the volume exchange (associated with the increase 

in the river discharge) is much larger than the decrease in the change in AS,  so the 

magnitude of the salt exchange increases (black arrows in Figure 3-6F).

When the river discharge increases, the fluctuating winds in a coastal ocean have 

an increasing influence on the salt exchange (red line in Figure 3-6F). The fluctuating 

winds in a coastal ocean bring deep salty coastal water into the estuary during up­

welling, and a portion of the fresh surface coastal plume water into the estuary during 

down-welling. As the river discharge increases, the salinity of the plume drawn into 

the estuary during coastal down-welling decreases, causing a decrease in A S  tha t is 

large enough to counter the increase in A S  during coastal upwelling. As a result, over 

the duration of the fluctuating winds the change in the magnitude of A S  (relative 

to the no wind model run at each river discharge rate) becomes small (Figure 3-8F). 

However, the increase in the volume exchange is much larger than the decrease in 

the change in AS ,  so the magnitude of the salt exchange increases (red line in Figure 

3-6F).

Increasing the river discharge decreases the effect of the period of fluctuating winds 

on the salt exchange, discussed in sec. 3.5.1.

Influence of Coastal Slopes

When the slope of a coastal ocean is increased, the deep salty coastal water is 

closer to the estuary mouth. Thus, for a given upwelling wind-stress, the deep salty 

water upwell faster at the estuary mouth and alter the salt exchange of the estuary 

(Csanady, 1977). The slope of the coastal ocean, a, is varied between (0.5—5) x 10~3 to 

examine how the change in the coastal slope alters the salt exchange due to fluctuating
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winds in an estuary and a coastal ocean.

The fluctuating winds in a coastal ocean cause an increase in the salt exchange, as 

the coastal bottom slope increases (Figure 3-6G). When the coastal bottom slope in­

creases, the deep salty water upwell to the estuary mouth faster, for a given upwelling 

wind-stress, increasing the salinity of the water drawn into the estuary and causing 

the A S  to increase in magnitude (Figure 3-8G). In our model runs, the steeper coastal 

slope (a =  5 x 10-3) upwells the center of the coastal pycnocline to the bottom of 

estuary mouth a day earlier than the gentle coastal slope (a = 1 x 10-3), for the same 

upwelling wind.

The influence of fluctuating winds in the estuary do not change significantly as 

the coastal slope increases (black arrows in Figure 3-6G). This is because the coastal 

slope does not alter the stratification in an estuary (Hansen and Rattray, 1965), so 

for a given wind-stress amplitude, the wind-induced mixing in the estuary and the 

change in A S  are similar for our range of coastal slopes (Figure 3-7G).

Influence of Coastal Alongshore Flows

In the absence of winds, when the alongshore flow is opposite of the direction 

of a coastal trapped Kelvin wave, two things can happen: (i) a portion of the fresh 

coastal plume water re-circulates in a bulge outside the estuary mouth (Hickey et al., 

1998; Fong and Geyer, 2002), so fresh plume water is drawn back into the estuary, 

making the estuary fresher and reducing the initial estuarine stratification (Hansen 

and Rattray, 1965); and (ii) the alongshore flow induces a cross-shore slope in the 

coastal pycnocline that moves the deep salty coastal water closer to the coast (Figure 

3-11), similar to Lentz (2008). The cross-shore slope in coastal pycnocline can change 

how fast the deep water upwell and alter the salinity at the estuary mouth.

The alongshore flow in the coastal ocean is varied between -0.1 to 0 .1m s-1 to 

examine how an alongshore flow alters the salt exchange driven by fluctuating winds
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in an estuary and a coastal ocean. These model runs are spun up with geostrophic 

alongshore flow for 200 days then the fluctuating winds are applied for 30 days. The 

negative alongshore velocities are in the direction of a coastal trapped Kelvin wave.

As the alongshore flow becomes more positive, the fluctuating winds in an estu­

ary have less influence on the salt exchange (black arrows in Figure 3-6H). As the 

alongshore flow becomes more positive, the fresh coastal plume is drawn back into the 

estuary making the estuary well-mixed (Hansen and Rattray, 1965). As a result, the 

wind-induced mixing has little effect in the estuary and the change in A S  becomes 

small (Figure 3-7H).

As the alongshore flow becomes more positive, the fluctuating winds in the coastal 

ocean have more influence on the salt exchange (red line in Figure 3-6H). As the 

alongshore flow becomes more positive (Figure 3-1 IB), the deep salty water is closer 

to the estuary mouth. Thus, for a given upwelling wind-stress, the deep salty water 

upwell faster, causing a large increase in A S  (Figure 3-8H). For the positive alongshore 

flow, the initial stratification of the estuary is weak while the change in salinity drawn 

into the estuary during upwelling is large, so the fractional change in A S  is larger 

than other alongshore flows (Figure 3-8H).

Influence of Estuary W idth

When the width of an estuary is increased, there is reduced vertical stratification 

in the estuary because the isopycnals in the estuary relax across the estuary width 

due to the Rossby adjustment. This alters the influence of mixing by fluctuating 

winds in the estuary and alters the salt exchange. The estuary width is increased 

from 6-80km to examine how the change in the estuary width alters the salt exchange 

between the estuary and the coastal ocean due to fluctuating winds.

When the width of the estuary is increased, the influence on the salt exchange due 

to the wind-induced mixing in the estuary becomes smaller such that the influence of
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the coastal -upwelling and down-welling has a greater influence on the salt exchange 

(Figure 3-13). This is because as the estuary width increases, the salinity structure 

across the estuary mouth changes from a vertically stratified estuary to a vertically 

mixed estuary (but whose cross-estuary salt gradient is significant, see cartoon in 

Figure 3-12).

As a result, for wide estuaries wind-induced mixing has a small influence on chang­

ing the salinity of the water leaving the estuary, so the influence of wind-induced 

mixing on the salt exchange becomes smaller while the coastal ocean has a greater 

influence, as the estuary width increases (Figure 3-13).

3.6 Discussion

Over shorter than seasonal timescales, the initial stratification of an estuary and 

an adjacent coastal ocean control the influence that fluctuating winds have on the salt 

exchange of the estuary. When both regions are well-mixed, the fluctuating winds 

have no significant influence on the salt exchange. When both regions are stratified, 

the fluctuating winds have a significant influence on the salt exchange by (i) increasing 

the surface salinity leaving the estuary due to wind-induced mixing, and (ii) changing 

the salinity of the water drawn into the estuary mouth during coastal upwelling and 

down-welling. When both the coastal ocean and the estuary are stratified and when 

the winds are strong in both the regions, then the mixing in the estuary has by far 

the greatest effect on the salt exchange, on shorter than the seasonal timescales. The 

changes in the salt exchange are largely due to changes in the salinity leaving and 

entering the estuary, and not the volume exchange; this remains true for a range of 

estuarine and coastal conditions. However, when the angle of the estuary is such that 

an along-estuary component of the coastal upwelling winds blows toward the head of 

the estuary (Figure 3-10), the change in the depth-averaged flow in the estuary due to

81



along-estuary winds also contributes significantly to the change in the salt exchange.

The exchange dynamics discussed above suggest the influence of fluctuating winds 

depend on the condition of the estuary as the seasons change. For estuaries oblique to 

the coast, such as the Chesapeake and Delaware Bay, during winter the estuaries are 

well-mixed due to winter cooling, so the change in the salt exchange caused by fluctu­

ating winds is primarily due to the depth-averaged flow driven by the along-estuary 

winds and the coastal upwelling and down-welling. While during spring/summer the 

estuaries are stratified (Officer et al., 1984), the change in the salt exchange caused 

by fluctuating winds is primarily due to wind-induced mixing in the estuary and the 

depth-averaged flow driven by along-estuary winds.

Over shorter than seasonal timescales, the fluctuating winds alter the salt exchange 

of the estuary thus changing the average salinity in the estuary, but over longer 

timescales when the estuary has reached steady state, the salt exchange must be 

zero. Studies on the longer than seasonal influence of fluctuating winds must focus 

on how the dynamics in the estuary change to return the salt exchange to zero and 

the estuary to steady state.

E xtension  to  O th er R egions The results discussed above were derived for wind- 

stress conditions typical of the East coast of US. In the East coast, the fluctuating 

winds are such that time-integrated upwelling and down-welling wind-stress have sim­

ilar magnitudes, so the time-averaged wind-stress amplitude is weak or zero (Austin 

and Lentz, 1999). However, there are regions where the time-integrated upwelling 

and down-welling wind-stress are not of similar magnitudes, so the time-averaged 

wind-stress amplitude is strong (Pickett and Schwing, 2006, their Fig.3). Two such 

regions examined are: (i) where the upwelling wind is followed by weak or cessation 

of wind, such as the West coast of US, and (ii) where the upwelling winds persist 

during the seasonal timescale.

o
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For both weak and strong time-averaged wind-stress regions, the wind-induced 

mixing in the estuary remains more important than changes in the water drawn into 

the estuary (Figure 3-61). The initial stratification and amplitude of the wind-stress 

which control the wind-induced mixing are identical for these model runs, thus the 

mixing in the estuary is similar, so the change in A S  are similar (Figure 3-7 I). The 

change in the salt exchange due to mixing in the estuary ranges from (2.21 — 2.80) x 104 

gkg-1 m3s_1 as the time-averaged wind-stress increases towards upwelling (Table 3.3).

As the time-averaged wind-stress is increased towards upwelling favorable, two 

things happen: (i) the change in the salt exchange due to coastal upwelling becomes 

larger in magnitude (red line in Figure 3-61). This is because as the time-averaged 

wind-stress increases the near-shore coastal ocean remains largely in an upwelled state, 

so the deep salty water from below the pycnocline is always present at the estuary 

mouth. This causes the salinity entering the estuary to increase thus increasing 

the magnitude of A S  (Figure 3-81); (ii) the change in the salt exchange due to the 

depth-aver aged salt flux out of the estuary also becomes larger. This is due to the 

near-shore coastal ocean largely being in an upwelled state, which sets down the 

coastal sea-surface at the estuary mouth driving a depth-averaged volume flow out of 

the estuary (Garvine, 1985). As the time-averaged wind-stress is increased towards 

upwelling favorable, the change in the salt exchange due to the coastal upwelling 

(—2.48 x 104 gkg-1 m3s_1) and depth-averaged flow (1.95 x 104 gkg-1 m3s_1) become 

roughly as large as the change in the salt exchange due to mixing in the estuary 

(Table 3.2&3.3). This indicates that in regions with strong time-averaged upwelling 

wind-stress, the depth-averaged flow out of the estuary and the change in salinity of 

the water drawn into the estuary become as significant as the wind-induced mixing 

in the estuary.

There are regions where a stratified estuary is sheltered from winds by the sur­

rounding topography such as the Merrimack River. During fluctuating winds, in
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these regions the change in the salinity of the water drawn into the estuary from the 

coastal ocean and the change in the depth-averaged flow control the salt exchange of 

the estuary.

3.7 Conclusions

This study demonstrates that over shorter than seasonal timescales, the initial 

stratification in an estuary strongly controls the influence tha t fluctuating winds have 

on the salt exchange between an estuary and a coastal ocean. Fluctuating winds in 

the estuary have little influence on the salt exchange for well-mixed estuaries, while for 

stratified estuaries the influence is significant on the salt exchange. The change in the 

salt exchange is caused largely by the fluctuating winds changing the salinity difference 

between the water entering and leaving the estuary, but does not significantly alter 

the volume exchange. In the case of estuaries oblique to the coast, an along-estuary 

depth-averaged flow is introduced that contributes to the salt exchange. In regions 

where the time-averaged upwelling wind-stress is large and upwelling favorable, the 

wind-induced mixing in the estuary, the coastal upwelling, and the depth-averaged 

flow cause comparable changes in the salt exchange.

The fluctuating winds in the estuary decrease the average salinity in the estuary 

indicating that the freshwater reside longer in the estuary. Thus, the fluvial pollu­

tants carried into the estuary by the freshwater runoff from land also reside longer 

in the estuary, before being discharged and diluted in the coastal ocean. When there 

are weather-band fluctuations in the wind lasting less than seasonal timescales, the 

exchange dynamics discussed above show that pollutants accumulate in the estuary.
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Table 3.1: The mean and standard deviation of the alongshore wind stress amplitude 
for several regions around the US coast. The data is averaged for the summer and 
winter seasons using 5 years of NDBC buoy historical observations from either 2000- 
2004 or 2005-2009. The orientation of the local coastline is used to determine the 
alongshore component of the fluctuating winds. The wind stress is estimated using 
t  =  pCd,u2 ; where p r-w' 1.3 kgm 3 , Cd r-~j 10 3, u is wind speed.

Region Season Year W ind Stress 
Mean, r  (Pa)

W ind Stress 
Deviation, r  (Pa) r  : r

2000 0.00 0.06 0.0
2001 0.00 0.06 0.0

Winter 2002 0.00 0.06 0.0
2003 0.00 0.06 0.0

Chesapeake Bay 2004 0.00 0.07 0.0
2000 0.00 0.04 -0.1
2001 0.00 0.04 -0.1

(CHLV2) Summer 2002 0.00 0.04 -0.1
2003 -0.02 0.03 -0.7
2004 0.00 0.03 -0.1
2000 0.00 0.04 0.0
2001 0.00 0.03 -0.1

Winter 2002 0.00 0.05 0.0
2003 0.00 0.06 0.0

Gulf of Maine 2004 0.00 0.04 0.0
2000 0.00 0.04 -0.1
2001 -0.01 0.03 -0.2

(IOSN3) Summer 2002 0.00 0.04 0.0
2003 -0.01 0.03 -0.2
2004 0.00 0.03 -0.2
2006 0.00 0.01 -0.2
2007 0.00 0.01 0.0

Winter 2008 0.00 0.01 -0.1
2009 0.00 0.01 -0.3

West Coast 2010 0.00 0.01 -0.5
2006 0.00 0.04 0.5
2007 0.00 0.03 0.4

(ANVC1) Summer 2008 0.00 0.04 0.8
2009 0.00 0.03 0.8
2010 0.00 0.03 0.4
2000 -0.02 0.06 -0.3
2001 -0.02 0.04 -0.4

Winter 2002 -0.03 0.05 -0.5
2003 -0.02 0.07 -0.2

Buzzards Bay 2004 -0.02 0.05 -0.3
2000 0.00 0.04 -0.1
2007 -0.01 0.02 -0.4

(BUZM3) Summer 2008 -0.01 0.03 -0.2
2009 -0.01 0.03 -0.3
2010 0.00 0.03 -0.1

85



Table 3.2: The net salt flux and depth-averaged and exchange salt fluxes averaged 
over the 30 days duration of (1st row) only coastal fluctuating winds. Also shown 
are the change in the average salinity of the estuary 5sest, the residence time Tr , 
and the salinity difference between the estuary outflow and oceanic inflow A S  for 
different parameters of the estuary and the coastal ocean. The values is braces show 
the influence of only coastal winds.

Coast Winds Fnet 
(g k g -1  m 3s - 1 )

Fd
(gk g-1  m 3s - 1 )

FBx 
(g k g -1  m 3s - 1 )

Ss
(g k g - 1 )

A S
(g k g - 1 )

Wind Stress 
3 Pa 
3.05 Pa
3.1 Pa
3.2 Pa
3.3 Pa

-4.70E +03 (0.E +0) 
-4.47E +02 (4.26E+3) 
-3.39E +03 (1.32E+3) 
■1.50E+04 -(1.03E+4) 
-1.89E+04 -(1.42E+4)

4.52E+04 (0.E +0) 
4.48E+04 -(4.12E +2) 
4.37E+04 -(1.56E +3) 
4.76E+04 (2.4E +3) 

4.47E +04 -(5.02E +2)

-4.99E +04 (1.81E-1) 
-4.52E +04 (4.67E+3) 
-4 .70E +04 (2.87E+3) 
-6.26E +04 -(1.27E+4) 
-6.36E +04 -(1.36E+4)

0.1878 (0.00) 
0.082 -(0.11) 

0.1766 -(0.01) 
0.5842 (0.40) 
0.6021 (0.41)

-0.55 (0.00) 
-0.62 -(0.07) 
-0.63 -(0.08) 
-0.68 -(0.13) 
-0.64 -(0.09)

Wind Period 
3 day 
5 day 
7.5 day 
15 day

-3.39E +03 (1.32E+3) 
■1.85E+04 -(1.38E+4) 
•2.71E+04 -(2.24E+4) 
-3.03E+04 -(2.56E+4)

4.37E+04 -(1.56E +3) 
4.50E+04 -(2.13E +2) 
4.54E+04 (2.1E +2) 

4.63E+04 (1.11E +3)

-4.70E +04 (2.87E+3) 
-6.35E +04 -(1.36E+4) 
-7 .25E +04 -(2.26E+4) 
-7.66E +04 -(2.67E+4)

0.1766 -(0.01) 
0.7525 (0.56) 
1.0845 (0.90) 
1.2426 (1.05)

-0.63 -(0.08) 
-0.74 -(0.19) 
-0.80 -(0.24) 
-0.83 -(0.28)

Mixed Est. -1.57E +03 (1.27E+3) 3.78E+04 -(4.53E +2) -39414.7795 (1.72E+3) 0.1093 (0.08) -0.7138 -(0.10)
Est. Angle 
-6 0 °
3°
+60°

■8.88E+03 -(6.71E+3) 
-3 .39E +03 (1.32E+3) 
■1.67E+03 -(8.17E+3)

4.42E+04 -(8.96E +3) 
4.37E+04 -(1.56E +3) 
6.07E+04 -(3.02E +3)

-5.31E +04 (2.24E+3) 
-4.70E +04 (2.87E+3) 
-6.24E +04 -(5.14E+3)

0.1374 (0.08) 
0.1766 -(0.01) 
0.1913 (0.10)

-0.44 (0.13) 
-0.63 -(0.08) 
-1.02 (0.24)

Pycnocline Depth 
10 m 
15 m 
30 m 
45 m

3.34E+03 (7.85E+3) 
-3 .39E +03 (1.32E+3) 
3.38E+03 (2.31E+3) 
1.27E+04 (8.95E+3)

4.57E+04 (5.02E +3) 
4.37E+04 -(1.56E +3) 
4.36E+04 -(1.98E +3) 
4.62E+04 (1.42E +2)

-4.24E +04 (2.83E+3) 
-4.70E +04 (2.87E+3) 
-4.02E +04 (4.29E+3) 
-3.35E +04 (8.81E+3)

-0.0801 -(0.01) 
0.1766 -(0.01) 
-0.0323 -(0.13) 
-0.2593 -(0.32)

-0.58 -(0.07) 
-0.63 -(0.08) 
-0.55 (0.01) 
-0.49 (0.09)

Thalweg Depth 
11 m 
30 m 
45 m

-3.85E +03 (8.74E+2) 
-3.39E +03 (1.32E+3) 
■9.93E+03 -(6.28E+3)

3.83E+04 (7.6E +3) 
4.37E+04 -(1.56E +3) 
4.47E+04 -(8.47E +3)

-4.21E +04 -(6.72E+3) 
-4.70E +04 (2.87E+3) 
-5.47E +04 (2.2E +3)

0.5195 (0.28) 
0.1766 -(0.01) 
0.0619 -(0.02)

-0.61 (0.16) 
-0.63 -(0.08) 
-0.64 (0.04)

River Discharge 
200 m 3/ s  
2000 m 3/ s  
20000 m 3/ s

■1.07E+04 -(3.03E+3) 
-3.39E +03 (1.32E+3) 
3.25E+04 (2.25E+4)

■3.36E+02 -(1.46E +3) 
4.37E+04 -(1.56E +3) 
3.76E+05 -(5.13E +4)

-1.04E +04 -(1.57E +3) 
-4.70E +04 (2.87E+3) 
-3.43E +05 (7.37E+4)

0.387 (0.16) 
0.1766 -(0.01) 
-1.2062 -(1.06)

-0.19 -(0.08) 
-0.63 -(0.08) 
-3.54 (0.24)

Coastal Slope
3.0005
3.001
3.005
3.01

-8.20E +03 (8.35E+2) 
-3.39E +03 (1.32E+3) 
9.80E+03 -(2.5E +3) 

•8.82E+03 -(5.09E+2)

2.94E+04 -(1.65E +4) 
4.37E+04 -(1.56E +3) 
6.48E+04 (5.09E +3) 
3.03E+04 (3.78E +3)

-3.76E +04 (1.74E+4) 
-4.70E +04 (2.87E+3) 

•55034.3345 -(7.59E+3) 
-3.92E +04 -(4.29E+3)

-0.2383 -(0.35) 
0.1766 -(0.01) 
0.4063 (0.12) 
0.0626 (0.07)

-0.46 (0.04) 
-0.63 -(0.08) 

-0.9284 -(0.06) 
-0.83 -(0.18)

Along Shore Flow 
-0.1 m /s  
3 m /s  
+0.1 m /s

-5.05E +03 (5.47E+2) 
-3.39E +03 (1.32E+3) 
8.85E+03 -(1.62E+4)

5.27E+04 -(3.56E +3) 
4.37E+04 -(1.56E +3) 
5.68E+04 -(7.78E +3)

-5.78E +04 (4.1E +3) 
-4.70E +04 (2.87E+3) 
-4.80E +04 -(8.41E+3)

0.4413 -(0.04) 
0.1766 -(0.01) 
-0.1981 (0.64)

-0.71 -(0.05) 
-0.63 -(0.08) 

-0.263 -(0.18)
East Coast 
West Coast 
Steady Upwelling

-3.39E +03 (1.32E+3) 
-2.17E +04 -(1.7E +4) 
-1.89E+04 -(1.42E+4)

4.37E+04 -(1.56E +3) 
4.82E+04 (3.04E +3) 
5.58E+04 (1.06E +4)

-4.70E +04 (2.87E +3) 
-7.00E +04 -(2.01E+4) 
-7.47E +04 -(2.48E +4)

0.18 -(0.01) 
1.02 (0.84) 
1.14 (0.95)

-0.63 -(0.08) 
-0.87 -(0.32) 
-0.93 -(0.38)
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Table 3.3: Similar to Table 3.2, but showing the winds applied both and estuary 
and coastal ocean for different parameters of the estuary and the coastal ocean. The 
values in braces show the influence of only estuarine winds.

Estuary & 
Coastal Winds

Fnet 
(g k g -1  m 3s - 1 )

Fd
(gk g-1  m 3s - 1 )

Fex 
(g k g -1  fc3s - 1 )

5s
(g k g - 1 )

A S
(g k g - 1 )

Wind Stress 
D Pa 
0.05Pa
3.1 Pa
3.2 Pa 
0.3 Pa

-4.70E +03 (0.E +0) 
1.85E+04 (1.9E +4) 

2.24E+04 (2.58E+4) 
2.34E+04 (3.84E+4) 
2.47E+04 (4.36E+4)

4.52E+04 (0.E +0) 
4.83E+04 (3.54E +3) 
4.73E+04 (3.68E +3) 
5.37E+04 (6.05E +3) 
5.16E+04 (6.92E +3)

-4.99E +04 (0.E +0) 
-2.98E +04 (1.54E+4) 
-2.49E +04 (2.21E+4) 
-3.02E +04 (3.24E +4) 
-2 .69E +04 (3.67E +4)

0.1878 (0.00) 
-0.592 -(0.67) 
-0.7783 -(0.95) 
-0.8176 -(1.40) 
-0.9353 -(1.54)

-0.55 (0.00) 
-0.47 (0.15) 
-0.41 (0.23) 
-0.35 (0.34) 
-0.28 (0.36)

Wind Period 
3 day 
5 day 
7.5day 
15 day

2.24E+04 (2.58E+4) 
1.68E+04 (3.53E+4) 
1.22E+04 (3.93E+4) 

9.79E+03 (4.E +4)

4.73E+04 (3.68E +3) 
5.17E+04 (6.66E +3) 
5.39E+04 (8.45E +3) 
5.46E+04 (8.26E +3)

-2.49E +04 (2.21E+4) 
-3 .49E +04 (2.87E +4) 
-4 .17E +04 (3.08E +4) 
-4 .48E +04 (3.18E +4)

-0.7783 -(0.95) 
■0.5205 -(1.27) 
■0.2837 -(1.37) 
■0.1749 -(1.42)

-0.41 (0.23) 
-0.45 (0.30) 
-0.49 (0.30) 
-0.53 (0.30)

Mixed Est. -4.08E+02 (1.17E+3) 3.89E+04 (1.1E +3) -39351.7692 (6.3E +1) 0.043 -(0.07) -0.7021 (0.01)
Est.Angle 
-6 0 °
0°
+60°

2.09E +04 (2.98E+4) 
2.24E +04 (2.58E+4) 
5.25E+04 (5.41E+4)

4.04E+04 -(3.77E +3) 
4.73E+04 (3.68E+3) 
7.12E+04 (1.05E+4)

-1.95E +04 (3.36E+4) 
-2.49E +04 (2.21E +4) 
-1 .88E +04 (4.36E +4)

-1.0879 -(1.23) 
-0.7783 -(0.95) 
-1.4116 -(1.60)

-0.18 (0.27) 
-0.41 (0.23) 
-0.31 (0.71)

Pycnocline Depth 
10 m 
15 m 
30 m 
45 m

2.91E+04 (2.58E+4) 
2.24E+04 (2.58E+4) 
2.66E+04 (2.33E+4) 
3.45E+04 (2.19E+4)

5.01E+04 (4.4E +3) 
4.73E+04 (3.68E+3) 
4.84E+04 (4.77E+3) 
5.08E+04 (4.65E+3)

-2.10E +04 (2.14E+4) 
-2 .49E +04 (2.21E+4) 
-2 .17E +04 (1.85E+4) 
-1 .63E +04 (1.72E+4)

-0.9948 -(0.91) 
-0.7783 -(0.95) 
-0.8848 -(0.85) 
■1.0706 -(0.81)

-0.36 (0.22) 
-0.41 (0.23) 
-0.34 (0.20) 
-0.28 (0.21)

Thalweg Depth 
11 m 
15 m 
45 m

3.63E+04 (4.02E+4) 
2.24E +04 (2.58E+4) 
4.94E+03 (1.49E+4)

5.27E+04 (1.45E +4) 
4.73E+04 (3.68E +3) 
4.59E+04 (1.18E+3)

-1.64E +04 (2.57E+4) 
-2 .49E +04 (2.21E +4) 
-4 .10E +04 (1.37E +4)

•1.1216 -(1.64) 
-0.7783 -(0.95) 
0.4201 -(0.48)

-0.28 (0.33) 
-0.41 (0.23) 
-0.57 (0.07)

River Discharge 
200 m 3/ s  
2000 m 3/ s  
20000 m 3/ s

■4.94E+03 (5.77E+3) 
2.24E+04 (2.58E+4) 
1.03E+05 (7.07E+4)

1.44E+03 (1.78E+3) 
4.73E+04 (3.68E +3) 
3.96E+05 (2.05E +4)

-6.38E +03 (3.99E+3) 
-2.49E +04 (2.21E +4) 
-2 .93E +05 (5.01E +4)

0.1652 -(0.22) 
■0.7783 -(0.95) 
■3.6735 -(2.47)

-0.12 (0.07) 
-0.41 (0.23) 
-3.21 (0.33)

Coastal Slope 
3.0005 
0.001 
0.005 
0.01

1.50E+04 (2.32E+4) 
2.24E+04 (2.58E+4) 
4.03E+04 (3.05E+4) 
2.36E+04 (3.24E+4)

3.56E+04 (6.16E+3) 
4.73E+04 (3.68E+3) 
7.28E+04 (7.94E+3) 
4.00E+04 (9.67E+3)

-2.06E +04 (1.7E +4) 
-2 .49E +04 (2.21E +4) 
•32490.1671 (2.25E+4) 
-1 .64E +04 (2.27E +4)

-0.9971 -(0.76) 
-0.7783 -(0.95) 
-0.5521 -(0.96) 
-1.0491 -(1.11)

-0.29 (0.17) 
-0.41 (0.23) 

-0.684 (0.24) 
-0.51 (0.32)

Alongshore Flow 
-0.1 m /s  
0 m /s  
0.1 m /s

3.13E+04 (3.63E+4) 
2.24E+04 (2.58E+4) 
1.84E+04 (9.56E+3)

6.03E+04 (7.58E+3) 
4.73E+04 (3.68E+3) 
5.53E+04 -(1.54E +3)

-2.90E +04 (2.88E+4) 
-2 .49E +04 (2.21E+4) 
-3.69E +04 (1.11E+4)

-0.8851 -(1.33) 
-0.7783 -(0.95) 
-0.4863 -(0.29)

-0.42 (0.29) 
-0.41 (0.23) 

-0.252 (0.01)
East Coast 
West Coast 
Steady Upwelling

2.24E +04 (2.58E+4) 
1.35E+04 (3.53E+4) 
1.80E+04 (3.69E+4)

4.73E+04 (3.68E+3) 
5.66E+04 (8.34E+3) 
6.47E+04 (8.86E+3)

-2.49E +04 (2.21E +4) 
-4 .31E +04 (2.69E +4) 
-4.67E +04 (2.8E +4)

-0.78 -(0.95) 
-0.18 -(1.21) 
-0.23 -(1.37)

-0.41 (0.23) 
-0.59 (0.29) 
-0.62 (0.31)
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F ig u re  3-1: Our numerical experiments are modeled after the large estuaries and 
coastal ocean of the Mid-Atlantic Bight, including Chesapeake Bay and Delaware 
Bay.
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F igure  3-2: The numerical domain used in our experiments (A) the plan view of 
the numerical domain; colors indicate the depth and the lattice structure shows the 
depth grid points. The blue arrows show spatially uniform fluctuating winds in the 
estuary and the coastal ocean, and the red arrows show spatially uniform fluctuating 
wind only in the coastal ocean. (B) The cross-sectional view into the estuary mouth, 
and (C) the cross-shore view of the coastal ocean; black is water and white is estuary 
bottom.
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F igure 3-3: (A) The salinity profile for the coastal ocean in the base case numerical 
experiment. The profile represents summer conditions in the MAB. (B) The winds 
used in the base case numerical experiment. The winds ramp to maximum amplitude 
over a duration of a day. The winds are applied for a duration of 30 days, and has a 
time-averaged wind-stress amplitude of zero.
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Figure 3-4: A cartoon of the along-estuary section. The salt exchange, i.e., net salt 
flux of the estuary is decomposed into two components; the depth-averaged salt flux, 
Fd and the exchange salt flux, Fex-



5

c/5T3
C

E? 7Ctf3■+-»C/D<D

V
3"O

£ 3
boM
60

ooo " 2
u
60cctS

JSU

X

0

0 1 2 3 4 5
Change in FD due to estuary winds

(xl0,000gkg 'm 3s X)

Figure 3-5: The change in the exchange salt flux, Fe x , plotted against the change 
in the depth-averaged salt flux, Fd , for fluctuating winds only in the estuary. The 
change in Fex  due to fluctuating winds in the estuary are nearly always much larger 
than the change in Fd . The dashed line is the 1:1 proportionality line.
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F igure  3-6: The red line shows the influence of the coastal winds only, the blue lines 
shows the influence of both estuarine and coastal winds, and the black arrows show 
the influence of only estuarine winds. Positive y-axis means estuary is losing salt and 
negative means estuary is gaining salt. The salt exchange, i.e., net salt flux (averaged 
over 30 days of wind) plotted as a function of estuarine and coastal conditions: (A) 
wind-stress amplitude, (B) wind-stress period, (C) estuary angle; positive angle are 
above west direction and negative angles are below west direction, (D) coastal py­
cnocline depth, (E) estuary thalweg depth, (F) river discharge, (G) coastal bottom 
slope, (H) alongshore flow, and (I) wind-stress amplitude representative of different 
regions. When there are no winds, the time-averaged net salt flux is close to zero.
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F igu re  3-7: The percentage change in the volume exchange flux, Q ex (pink bars) 
and A S  (blue bars) for different estuarine and coastal conditions, for only estuarine 
winds are applied to the model run. Negative percentage indicates the A S  is larger 
than the A S  for the no wind model run of each parameter permutation. The percent 
change in A S  is much larger than the change in Q ex-, s o the wind influence on the 
salt exchange is mostly due to changes in A S.
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F igure  3-9: The time-averaged net salt flux over 30 days of fluctuating winds as 
a function of the starting phase of the winds. The red line show winds only in the 
coastal ocean and the blue line show winds applied both on the ocean and the estuary, 
and the black arrows are the influence of winds only in the estuary.
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’ F igure 3-10: A cartoon of how winds influence an estuary that is oblique to the 
coast and the coastal winds. The red arrows show the coastal wind directions and 
the depth-averaged flow caused by (A) coastal upwelling winds, and (B) down-welling 
winds, and the blue arrows show the depth-averaged flow forced by the along-estuary 
component of the coastal winds. For this orientation in the Northern hemisphere, 
the depth-averaged flows driven by the coastal and along-estuary winds counter each 
other (Garvine, 1985).

97



For Northern Hemisphere
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F igu re  3-11: A cartoon of how alongshore flow, v, changes the slope of the coastal 
pycnocline and sea-surface in the absence of winds, moving the deep salty coastal 
water (A) away from the estuary mouth, and (B) towards the estuary mouth. The 
dashed lines show pycnocline and sea-surface in absence of alongshore flow.
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F igure  3-12: Cartoon of the across-estuary salt structure (A) narrow, and (B) wide 
estuaries. In the absence of winds, the wider estuary allows for Rossby adjustment, 
thus slumping the isopycnals across the estuary mouth and reducing the vertical 
stratification.
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F igu re  3-13: Time-averaged net salt flux as a function of the estuary width. Red 
line shows winds only in the coastal ocean and blue line shows the winds both in the 
estuary and coastal ocean.
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CHAPTER 4

How W eather-Band Fluctuations in the  

W ind Alter the Steady State of an 

Estuary.

4.1 Abstract

As an estuary adjusts to fluctuating winds, the estuary reaches a new steady state. 

For timescales longer than the adjustment time of an estuary, fluctuating winds have 

little influence on the stratification or the exchange of an estuary, but instead alter 

the salt intrusion length of the estuary.

In stratified estuaries, fluctuating winds increase the vertical mixing, which ini­

tially reduces the salt exchange (Rao, 2012), but the net salt flux into the estuary 

must return to zero over long timescales, as the average salinity in the estuary reaches 

a new steady state. A stratified estuary influenced by winds adjusts and returns to 

steady state by reducing the salt intrusion length. When the estuary is well-mixed or 

sheltered, fluctuating winds alter the coastal salinity drawn into the estuary mouth, 

so the estuary adjusts by increasing the salt intrusion length.

However, when the time taken for an estuary to reach the new steady state is 

short compared to the time of the initial change caused by the vertical mixing, the 

influence of fluctuating winds in a stratified estuary reduces the stratification and the 

exchange.

A simplified predictor for the adjustment time is used to determine when the 

estuary adjusts to fluctuating winds by altering the salt intrusion length, and when

104



the estuary adjusts by altering its stratification and exchange. The adjustment time is 

reasonably predicted by a function of the salt intrusion length and the depth-averaged 

velocity caused by the river discharge, for a range of estuarine and coastal conditions.

4.2 Introduction

Estuaries are regions where the salt water from the ocean mix with the fresh water 

of a river, thus setting the circulation in the estuary and the exchange between an 

estuary and a coastal ocean. The exchange depends on the along-estuary salinity 

gradient and the vertical stratification in an estuary, which are ultimately set by the 

freshwater inflow, oceanic salinity and the vertical mixing in the estuary (Hansen and 

Rattray, 1965; MacCready, 1999, 2007; Bowen and Geyer, 2003). In stratified estuar­

ies, the circulation is exchange-dominated, where the salt water enters the estuary at 

depth, mixes vertically into the surface layers and is discharged out of the estuary.

The mixing in an estuary is largely influenced by the wind-stress, tides, and surface 

cooling. In several studies of estuaries, mixing due to tides have been shown to 

be dominant (Bowen and Geyer, 2003; MacCready and Geyer, 2010; Stacey et al., 

1999). However, over seasonal, annual, or climate change timescales the tidal mixing 

is largely unaltered, while the wind fluctuations can be altered over these timescales. 

Thus the variation in the wind-driven mixing can be an important source of estuarine 

variability.

The fluctuations in winds can have periods of a few days (Austin and Lentz, 

1999, East coast of US) to a few weeks (Dever and Lentz, 1994, West coast of US, 

their Fig. 9), and are referred to as weather-band fluctuations in the wind. When 

weather-band fluctuations in the wind force an exchange-dominated estuary and its 

adjacent coastal ocean, two things initially happen that alter the net salt flux out of 

an estuary: there is increased vertical mixing in the estuary that reduces the vertical
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estuarine stratification, and there is a change in the salinity of the source coastal 

water drawn into the estuary (Rao, 2012; MacCready, 1999). On timescales shorter 

than the adjustment time of an estuary to fluctuating winds, the net salt flux out of 

an estuary is significantly changed, causing the estuary to lose or gain salt (Rao, 2012; 

MacCready, 1999). On timescales longer than the adjustment time of an estuary, the 

net salt flux must return to zero, so the parameters governing the salt exchange have 

to adjust until the steady state balance is restored.

We examine how an exchange-dominated estuary adjusts over timescales longer 

than the time taken for an estuary to reach a new steady state. In large estuaries like 

the Chesapeake Bay, the steady state is reached in about 90 days (Austin, 2002). In 

small estuaries, the steady state is reached in 1-10 days (Kranenburg, 1986). When 

the adjustment time is short, the initial changes in the estuary are followed by the 

adjustment of estuarine properties, thus the steady state dynamics are important. 

When the adjustment time is long, the estuary is still adjusting so the initial changes 

due to mixing are the relevant dynamics, until the seasonal weather changes become 

more important. This adjustment is examined for conditions typical of the Mid 

Atlantic Bight (MAB), and other regions such as the West coast of US and estuaries 

oriented oblique to the coast. This work is an extension of previous studies of increased 

mixing in the estuary due to tides (MacCready, 1999, 2007; Bowen and Geyer, 2003; 

Hetland and Geyer, 2004).

The wind influence on the estuary can alter the exchange and residence time in 

the estuary, which can alter the estuarine salinity and the concentration of nutrients, 

pollutants and other fluvial and oceanic inputs to the estuary. The changes in these 

concentrations are of great importance to the health of the estuarine ecosystems. 

These changes can cause long term water quality problems (Cerco et al., 2004) and 

anoxic zones in the estuaries (Scully, 2010).

This paper is organized as follows: section 2 describes the setup of the base case
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numerical experiment which was modeled after the Chesapeake Bay and the MAB. 

This includes a description of the different forcings applied to the permutations of the 

base case experiment to model the wind influence for a range of observed estuarine 

and coastal conditions. In section 3, the steady state balance is derived to help to 

identify the important parameters influenced by the wind fluctuations. Section 4 

discusses how wind fluctuations influence the salt exchange for a range of estuarine 

and coastal conditions, and in section 5 the implications of our results are discussed 

and extended to other regions.

4.3 Description of the Numerical Model

Our base case numerical experiment is modeled after the Chesapeake Bay and the 

MAB coastal ocean (Fig. 4-1). The parameters and forcings used in the base case 

experiment are described. The permutations of this base case experiment used to 

model the range of topography, estuarine, and coastal conditions are described as 

well.

The numerical model used in this study is the Regional Ocean Modeling System 

(ROMS). It is a primitive equation finite difference numerical model (Song and Haid- 

vogel, 1994). The vertical momentum balance is hydrostatic and a free surface is 

included. A constant horizontal eddy viscosity, A h  of 5.0 m2s-1 and a horizontal 

diffusivity, K h  of 0m 2s_1 are set. The background minimum vertical eddy viscosity 

is K y  =  1.0 x 10“5 m2 s_1. Diurnal tides are included in the model and is a major 

source of vertical mixing in the background. The Coriolis parameter is /  =  10~4 s-1. 

The vertical eddy viscosity K y  is computed by the Mellor-Yamada level 2.5 turbu­

lence closure scheme (Mellor and Yamada, 1982) using the non-dimensional stability 

functions from Galperin et al. (1988) and Kantha and Clayson (1994). Some stud­

ies, e.g., Garvine (1999); Stacey et al. (1999); Fong and Geyer (2001), have shown
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that in strongly stratified conditions, the MY2.5 scheme underestimates the vertical 

eddy viscosity, while overestimating in weakly stratified conditions. Nevertheless, the 

MY2.5 scheme resolves the mixing accurate to first order. The density is computed 

by a linear equation of state using a saline contraction coefficient k is 7.6 x 10-4 and 

is a function of salinity alone. Temperature is kept constant in the model.

M odel G rids The model utilizes a terrain-following a coordinate system to resolve 

the vertical structure. The horizontal grid is a finite difference scheme with grid size 

ranging from l k m x l k m  (near the western and northern boundaries) to 4 km x 4 km 

(near the eastern and southern boundaries). The higher resolution at the northern 

boundary minimizes the formation and downwave propagation of numerical artifacts 

into the study area. The highest horizontal resolution of l k m x l k m  is used in the 

estuary and the coastal region near the estuary mouth to resolve the salt and volume 

fluxes being examined.

The domain in the base case numerical experiment has 384 points in the cross­

shore direction, 96 points in the alongshore direction, and 20 vertical a  levels. The 

location of the boundaries are southern y =  -100 km, northern y =  50 km, western x =  - 

320 km, and eastern x =  100 km. A right-handed ‘east coast’ coordinate system is used 

where +x direction is offshore (‘seaward’), +y direction is northward (‘upwave’), and 

+z direction is upwards (‘skyward’). In the numerical model, the baroclinic time 

step is 90s and the model output is saved every 120 time steps to temporally resolve 

the tides used in our model. The barotropic time step is 1/20 of the baroclinic time 

step. The model was run for half and double the grid spacing, and our results did 

not change significantly.

B o u n d ary  C onditions The surface momentum boundary conditions are,
d (u ,v )  (TSX'Sy)



where t sx and r sy are cross-shore and alongshore surface wind stresses. In this study. 

t sx = 0 Pa while the alongshore wind stress is varied. The bottom momentum bound­

ary condition is a linear bottom drag,
d  (u , v)

K v = (R ub,R vb) (4.2)
z = —Hdz

where the bottom drag coefficient is R  =  5 x 10_4m s_1 and (u^. v\,) are the bottom 

velocity in the cross-shore and alongshore directions respectively. The bottom drag 

is within the range observed by Lentz et al. (2001) for the North Carolina coast.

The northern open boundary conditions (OBC) are determined from numerical 

experiments using the same winds as the 3D model but in a 2D alongshore-uniform 

topography model. This 2D model is a cross-shore section of the 3D model and has no 

alongshore variations. The northern OBC implies that the ocean outside the northern 

boundary can be approximated as an infinite coast with no alongshore variations in 

forcings or topography, as described in Gan and Allen (2005) and Pringle and Dever 

(2009). The southern and eastern edges are open boundaries with Sommerfeld radia­

tion conditions. This radiation condition has the least reflection at the boundary for 

the dominant wave mode but the other wave modes have higher reflection. To over­

come this, the southern boundary also has a six grid-point wide sponge layer where 

the horizontal viscosity gradually increases in the southward direction. The sponge 

layer helps dissipate the energy of reflected waves preventing them from propagating 

along the southern open boundary. The western boundary is the coastal wall with 

free-slip condition. The free-slip imposes no friction between horizontal boundaries 

and the flow, and there is no normal flow into the wall.

B a th y m etry  The model domain is an idealized representation of the Mid-Atlantic 

Bight and has a large estuary connected to a uniform alongshore bathymetry coastal 

ocean (Fig. 4-2). The coastal ocean bathymetry is given by

H{x) =  H0 + a x  0 <  x < 100 x 103m (4.3)
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where H0 =  10 m is the coastal wall depth, x  is the cross-shore distance, and a  is the 

bottom slope. In the base case experiment, a  was 1 x 10-3 , typical of the MAB.

Our model estuary has idealized dimensions similar to large estuaries such as 

Chesapeake Bay and Delaware Bay (Fig. 4-2B). The estuary mouth is centered at 

[x,y] =[0,0] km with a length of 300 km and a width of 20 km. The length of the 

estuary is varied from 50-300 km. The lengths of the estuary are selected to prevent 

tidal resonance in the estuary. The estuary has 10 m deep walls. In the base case ex­

periment, the estuarine thalweg was 30 m and the estuary thalweg was varied between 

ll-45m  to examine the influence of winds for different thalweg depths. The angle of 

the estuary was varied between —60° to 60° to examine the influence of fluctuating 

winds for different estuary orientations. In the base case experiment, the estuary was 

perpendicular to the coastal ocean, i.e., 9 = 0°. Positive angles mean the head of the 

estuary is northward of the estuary mouth.

C oasta l S tra tifica tio n  The stratification is modeled after the summer conditions 

at Duck, NC as a two layer system separated by a halocline centered at a depth of hhc 

and has a halocline thickness of Az = 11m (Waldorf et al., 1995; Alessi et al., 1996). 

The was varied between 15-45 m to examine the influence of winds at different 

pycnocline depths; in the base case experiment, the hhc was 15 m. The initial density 

field is uniform alongshore and is a function of depth and salinity,

— ^ gkg-1 (4.4)

where the salinity is 33gkg_1 at the halocline center, z is the depth in metres, AShc = 

2gkg-1 (Fig. 4-3A). The denominator of the tanh() function sets the A z  and is kept 

constant for all model runs. The salinity of the top layer of the coastal ocean is near 

31gkg_1. The numerical experiment salinity is reported using absolute salinity in 

units of gkg-1 (Millero et al., 2008).

s(z) = 33 — A t a n h
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4.3.1 External M odel Forcing

Each numerical experiment starts from an initial condition where the flow is at rest. 

The experiments run with tides and river discharge but no winds, until day 200 to 

reach steady state. Then the wind forcing is applied to the model for another 210 days 

by when the estuary has reached its new steady state. Our analysis will focus on how 

the estuarine dynamics adjust during the 210 days of fluctuating winds.

W in d  Forcing The surface forcing consists of alongshore wind-stress, r sy which 

is uniform across the numerical domain and fluctuates between upwelling and down- 

welling (Fig. 4-3B). The winds begin with an upwelling wind-stress of r sy lasting for 

a period of tyw  days, followed by a down-welling wind-stress of —r sy lasting tow  

days. A wind-stress of r sy =  0.1 Pa is a wind speed of about 8 m s-1 measured at 

height of 10m (Fairall et al., 1996). Both the periods tjyw and tow  include one day 

for the wind to ramp to r sy and another day to ramp back to zero wind-stress. Only 

complete wind-reversal cycles, tyw  +  tp w , that fit in the 210 day duration are used. 

The wind-stress amplitude and period was varied between 0.05-0.2 Pa and 6-30 days 

respectively; in the base case experiment these were 0.1 Pa and 6 days. The time- 

averaged wind-stress over the 210 days is zero for all the experiments presented in 

this study, unless otherwise stated.

R iver Forcing The freshwater discharge enters the model at the head of the estuary 

and is applied evenly over the depth. The freshwater discharge has a salinity of 

Ogkg-1. The river discharge range of (0.2 — 20) x 103m3s_1 is used to examine 

the influence of winds at different discharge rates; the base case discharge rate was 

2 x 103 m3s_1, similar to Austin (2002). This inflow initiates at the start of the model 

simulation and is kept constant with time. In order to reduce the computer time for 

each model run, the estuary salinity is initiated closer to the steady state. The initial
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salinity along the estuary is,
ds

s(x) = sco + — x, -300 km < x <  0 km (4.5)
ox

where the surface salinity of the coastal ocean, sco =  31 gkg-1 and the along-estuary 

salinity gradient, ^  =  O . l g k g ^ k m -1 (|£  =  0.08kgm~3 km-1). The exchange flow 

at the estuary mouth has stabilized by 200 days.

T ides The inclusion of tides in the numerical model sets a more realistic back­

ground estuarine mixing. Tidal forcing included in the numerical model is achieved 

by imposing the fluctuations of the sea surface height and current associated with 

a 12-hour tide at the offshore (eastern) boundary of the domain. The fluctuations 

of the sea surface height and current at this offshore boundary is the sum of the 

initial coast-ward moving tidal wave and the tidal wave reflected from the coast, as 

described by Das and Middleton (1997). Their solution was used to determine the 

magnitude of the fluctuations in the sea surface height and currents at the offshore 

boundary. These offshore tidal boundary conditions are then tuned to get the tides 

at the coastal wall to be similar to observed tidal fluctuations along the MAB coast.

4.4 Steady State Balance

The fluctuating winds alter the steady state of the estuary by increasing the 

vertical mixing in the estuary and changing the salinity of the water drawn into the 

estuary. In the derivation below, we show how these changes alter the steady state.

The along-estuary momentum equation for an exchange-dominated estuary is writ­

ten as
du d . . d . . 1 dp d (  d u \
m = - t e { u u ) ~ T z l w u ) - 7 ^  +  s ; \ v T z )  ( 4 6 )

where u is the along-estuary velocity, w is the vertical velocity, p is the pressure, and 

A y  is the vertical eddy viscosity. Similarly, the conservation of salt can be described
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as

(4.7)

where s is the salinity, and K y  is the vertical eddy diffusivity. In both equations (4.6) 

and (4.7), we have assumed that the estuary is exchanged-dominated, i.e., the hori­

zontal eddy viscosity and diffusivity are very small, and there are no lateral variations 

in the salinity or velocity. In wide estuaries such as the Chesapeake Bay, there are 

significant lateral variations (Guo and Valle-Levinson, 2008) but this simplification 

provides a simplified system that allows us a qualitative understanding of the most 

important dynamics. In addition, we assumed that the vertical eddy diffusivity and 

viscosity are the same.

The estuary is assumed to have two layers of equal thickness, h = H/2, where H  

is the total depth (Fig. 4-4). The equations (4.6) and (4.7) are rewritten as depth- 

averaged equations for each layer: the surface layer, du^/dt and d s\/d t. and the 

bottom layer, du 2 /d t  and ds-ijdt. The u \ . U2 , s i . S2  are the vertically-averaged velocity 

and salinity for each layer.

Using the above algebraic simplification, similar to MacCready (1999), the along- 

estuary momentum'and salt conservation equations for each depth-averaged layer is 

reduced to the cross-sectional averaged velocity and salinity across the estuary mouth 

(u, s, denoted by bars), and the deviation of the velocity from the cross-sectional , 

average (u', s ', denoted by primes). The parameter uf is the volume exchange velocity, 

while s' is the vertical estuarine stratification.

The parameter us (hereafter referred as the depth-averaged salt flux) describes 

the salt removed from the estuary by the river volume discharge, and u's' (hereafter 

referred as the exchange salt flux;) describes the salt added into the estuary by the

u

s

{u1+ u 2) , _ (tii -  u2)
2 U  ~  2 

(si +  S2) , _  («i — S 2 )
2  3 ~  2

(4.9)

(4.8)
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estuarine volume exchange and the salinity difference of the water entering and leaving 

the estuary. This derivation gives the following simplified forms,
n l r h  jA.-sr /? \  /?W 11 , .  . ,-v _ \ '-y ^ uo / ii/ll/ i t  \ . i t  „._  =  (|Kl| - 2 u ) — +  — — +  — ( - ^ p  +  ^ j , ,  + - S  (4.10)

ds _ ds d , ,
d t  ~  ~ U ~dx ~  ~dx S  ( 4  U )

ds' _ds' du' ,d s  2K v ,
( 4 - 1 2 )

In steady state, the s, s', and u' do not change with time or distance along 

the estuary. The depth-averaged velocity is much smaller than the deviation of the 

velocity from the depth-averaged velocity, k  is the conversion factor from salinity to 

density, total depth is twice the layer thickness, H  =  2h, and the bottom friction, 

R  = 8 A y /H 2, which is roughly equivalent to a no-slip bottom boundary (MacCready, 

1999). These assumptions simplify equations (4.10), (4.11), and (4.12) to

0 =  —us — u's' (4.14)

,ds  8K v , , . , , 1

0 = - u a i - l P s  ( 4 ' 1 5 )

These equations describe the steady state of the estuary, and our goal is to examine 

how fluctuating winds alter this. Equation (4.13) describes the exchange velocity, 

v! , depends on the along-estuary salt gradient and vertical mixing, K y. Equation

(4.14) describes the net salt flux is zero, i.e., the depth-averaged salt flux out of the 

estuary, us, is balanced by the exchange salt flux into the estuary, u's1. Equation

(4.15) describes the balance between the generation of vertical stratification by the 

vertical shear in the velocity acting on the along-estuary salt gradient and the loss of 

vertical stratification due to vertical mixing.

The depth-averaged salt flux is simple to determine since u = (river discharge 

rate)/(area of estuary mouth) and s is the depth-averaged salinity at the estuary

mouth. The exchange salt flux is determined by rewriting (4.13) with u1 as the
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subject, then substituting u' into (4.15). This gives the steady state relation between 

the exchange salt flux, the vertical eddy diffusivity, and the along-estuary salinity 

gradient.

In the following sections, the above relations are used to examine how the fluctu­

ating winds alter the steady state of the estuary.

When fluctuating winds force an exchange-dominated estuary and its adjacent 

coastal ocean, the vertical mixing by fluctuating winds cause a decrease in the vertical 

stratification 5 ', and the exchange salt flux, u's' (Rao, 2012; MacCready, 1999). On 

timescales longer than the adjustment time of an estuary, the estuarine net salt flux 

must return to zero, so the parameters from equation 4.14 (s, u', s') must change until 

the steady state salt flux balance is restored. This section examines how the net salt 

flux returns to zero for different estuarine and coastal conditions, starting with the 

base case. The fluctuating winds in the base case have an amplitude of 0.1 Pa and 

period of 6 days, described in section 4.3.

4.5.1 Base Case with W inds both in the Estuary and Coastal

On timescales shorter than the time taken for an estuary to reach its new steady 

state, the initial vertical mixing in an estuary by fluctuating winds increase the vertical 

eddy viscosity A y  and diffusivity Ky, while the along-estuary salt gradient d s /d x has

- g 2k2H s ( d s  
8(48f K l  V&c

(4.16)

In steady state, us = —u's’, so (4.16) can be re-written as
8(48 f K l
g2k2H 8 (4.17)

4.5 Results

Ocean
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not had time to change. This reduces the magnitude of the exchange velocity u' and 

then the stratification s' reduces. Rao (2012) shows that the fractional change in s' is 

greater than the fractional change in v!. The combined reduction in u' and s' results 

in a decrease in the magnitude of the exchange salt flux u's ' , and leads to the average 

estuarine salinity, s, becoming fresher (Rao, 2012; MacCready, 1999) (Fig. 4-5).

For timescales longer than the adjustment time of an estuary, the estuary must 

adjust to this initial decrease in u's'. Since the fractional change in us is small because 

the river discharge remains constant and the change in s is small, the u's' must increase 

to its initial magnitude until the net salt flux is zero. This adjustment to steady state 

is caused by the along-estuary salt gradient increasing in magnitude to adjust to the 

increased K y  (Eq. 4.17). This increase in the along-estuary salt gradient is a result 

of the freshening in the estuary and the nearly constant depth-averaged salinity s 

at the estuary mouth, so the along-estuary salinity difference becomes larger, thus 

ds jd x  increases.

The increase in d s/d x  increases the magnitude of the exchange velocity u' and 

the stratification s' almost to its initial magnitude (Eq. 4.13 & 4.15). The combined 

increase in u' and s' cause the exchange salt flux u's' to increase in magnitude until 

the net salt flux is zero (Eq. 4.14) and the estuary reaches the new steady state. The 

evolution of the along-estuary salt gradient with time for the base case is shown using 

solid lines in figure (4-6A). The along-estuary salt gradient d s/dx  is determined using 

the depth-averaged salinity along the thalweg of the entire estuary and using the least 

squares fit. The change in depth-averaged salinity along the estuary is largely uniform 

so determining the d s/d x  over the entire estuary length or only over the salt intrusion 

length yield similar results. The above adjustment dynamics for wind-induced mixing 

are consistent with those of vertical tidal mixing by MacCready (1999., 2007).

In the above section, the fluctuating winds start in the upwelling phase causing 

the coastal pycnocline to upwell, bringing deep salty water to the estuary mouth,

116



thus changing the net salt flux. However, if the winds start in the down-welling 

phase, then the coastal pycnocline is initially pushed away from the estuary and the 

upwelling winds would bring the coastal pycnocline back to its initial condition. The 

consequence of the phase shift is that upwelling no longer brings deep salty water to 

the estuary, but brings the coastal pycnocline close to its initial condition.

For timescales longer than the time taken for the estuary to adjust, whether the 

fluctuating winds cause the coastal pycnocline to upwell to the surface or down-well 

below its initial depth does not m atter when the wind-induced mixing in the estuary 

is significant. This is shown in Fig 4-7A, which shows the experiments with and 

without the phase shift have very similar change in the along-estuary salt gradient 

to reach the new steady state. There is no significant difference in.the adjustment 

between the experiments because the wind-induced mixing in the estuary, which 

causes the largest change in the net salt flux, remains similar. The starting phase of 

the fluctuating wind only matters when the wind-induced mixing in the estuary is 

not significant, e.g., well-mixed estuaries. This is discussed in the next section.

4.5.2 Base Case with W inds only in the Coastal Ocean

In estuaries that are sheltered from winds, wind-induced mixing in the estuary 

is not significant and only the changes in the coastal salinity drawn into the estuary 

during coastal upwelling and down-welling alter the net salt flux of the estuary. Dur­

ing upwelling, the salinity drawn into the estuary increases as the coastal pycnocline 

upwells deep salty water at the estuary mouth.

The upwelling initially increases the s' at the estuary mouth, while u! and d s /d x  have 

not had the time to change. This increases the exchange salt flux u's', causing the 

average estuarine salinity to become saltier (Fig. 4-5). For timescales longer than the 

adjustment time of an estuary, the estuary must adjust to this initial increase in u's'. 

Since the fractional change in us is small (for the same reasons discussed in previous
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section), the u's' must decrease to its initial magnitude until the net salt flux is zero. 

This adjustment to the new steady state is caused by the along-estuary salt gradient, 

d s/d x  , decreasing in magnitude. This change in the d s /d x  is a result of the increase 

in the depth-averaged salinity in the estuary and the nearly constant depth-averaged 

salinity s at the estuary mouth, so the along-estuary salt difference decreases, thus 

the d s/d x  decreases.

The decrease in d s /d x , reduces the magnitude of the exchange velocity v! (Eq. 4.13), 

and reduces the stratification s' almost to its initial magnitude (Eq. 4.15). The com­

bined decrease in u' and s' causes the exchange salt flux u's' to decrease in magnitude 

until the net salt flux is zero (Eq. 4.14) and the estuary reaches the new steady state. 

The evolution of the along-estuary salt gradient with time for the base case with only 

winds in the coastal ocean are shown using dashed lines in figure (4-6A).

When the wind-induced mixing in the estuary is not significant, the influence of 

the coastal ocean when forced by fluctuating winds depends on how the fluctuating 

winds vertically displace the coastal pycnocline. In our experiments, the starting 

phase of the fluctuating winds in the coastal ocean is important because it controls 

the position of the coastal pycnocline, which governs if the coastal ocean adds or 

removes salt from the estuary, as the estuary adjusts to the fluctuating winds (Fig. 

4-7B).

When the starting phase is upwelling winds, the coastal ocean adds salt into the 

estuary, as discussed earlier in this section. However, when the starting phase of 

the fluctuating winds is down-welling winds, the coastal ocean removes salt from the 

estuary. This is because the salinity at the estuary mouth decreases as the deep salty 

water is moved away from the estuary by the down-welling winds. This causes the 

estuary to lose salt and the average salinity of the estuary decreases. This decrease 

in the average estuarine salinity should lead to an increase in the along-estuary salt 

gradient as the estuary adjusts, but the decrease in the salinity at the estuary mouth
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due to down-welling winds is much larger. This larger decrease in salinity at the 

estuary mouth leads to a decrease in the along-estuary salt gradient, similar to the 

other experiments with winds only in the coastal ocean (Fig. 4-7B).

In the field, fluctuating winds are always present and there are no phase shifts in 

wind observations (phase shift in winds is a numerical analysis tool). Our results show 

that how the coastal pycnocline moves vertically when forced by these fluctuating 

winds determine the influence of the ocean on the estuary, i.e., if the estuary loses or 

gains salt.

4.5.3 W ell-Mixed Estuaries

The results in the previous section (sec. 4.5.1) suggest that the stratification in 

the estuary has an important role in determining the influence of fluctuating winds 

on the exchange. In this section, the effect of fluctuating winds is examined for 

estuaries that are already well-mixed. A well-mixed estuary is obtained by increasing 

the background vertical eddy diffusivity to 0.001 m2s-1.

In our experiments, the influence of fluctuating winds in well-mixed estuaries is 

similar to stratified estuaries, but the magnitude of fractional change in the d s /d x  is 

much smaller (Fig. 4-6C). The initial change in the salt exchange is small because the 

wind-induced mixing does not significantly change the vertical salinity structure of 

an already well-mixed estuary.

Since the role of wind-induced mixing is diminished in well-mixed estuaries, the 

influence of upwelling of salty coastal water at the estuary mouth (due to winds in the 

coastal ocean) is now significant. For timescales longer than the adjustment time of 

the estuary, the fluctuating winds on a coastal ocean adjacent to a well-mixed estuary 

(Fig. 4-6C) has similar effects on the along-estuary salt gradient and exchange, similar 

to a stratified estuary discussed in sec. 4.5.2).

In the absence of winds, the wide estuaries have reduced vertical stratification, so
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the influence of wind-induced mixing is smaller than the influence of coastal upwelling 

on the salt exchange. As a result, the net salt flux is the coastal upwelling adding salt 

into the estuary, similar to only coastal winds experiments (section 4.5.2). However, 

a wide estuary adjusts to the fluctuating winds by increasing its along-estuary salt 

gradient (Figure 4-8), in contrast to the experiments with only coastal winds (dashed 

lines in Fig. 4-6A) and for narrower well-mixed estuaries (dashed lines in Fig. 4-6C). 

The addition of salt into the estuary increases the average salinity of the estuary, but 

in wide estuaries (which have larger volume) the increase in the average salinity is 

smaller than the increase of salinity at the estuary mouth due to upwelling. This 

results in the along-estuary salt gradient in wide estuaries to increase to adjust to 

fluctuating winds.

4.5.4 Other Estuarine and Coastal Conditions

Permutations from the base case are used to examine if fluctuating winds influ­

ence the steady state of different coastal and estuarine conditions by adjusting the 

along-estuary salt gradient, and bringing the estuary to the new steady state. The 

permutations of the model that are used are largely determined from equation (4.17). 

These permutations include (Table 4.1): (i) wind-stress amplitude and period, which 

alter the vertical mixing, K y, (ii) the river discharge, which alters the depth-averaged 

velocity, u, (iii) the estuary thalweg depth, which alters the average depth of the estu­

ary, H, (iv) the coastal pycnocline depth, which alters the depth-averaged salinity at 

the estuary mouth, s, and (vi) the length of the estuary, which alters the along-estuary 

salt gradient.

For the above model permutations, the fluctuating winds are applied simultane­

ously to both the estuary and the coastal ocean. When the wind-induced mixing 

in the estuary is significant (in any permutation), then we expect the along-estuary 

salt gradient to adjust by increasing in magnitude, similar to base case with winds
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on both the estuary and coastal ocean (sec. 4.5.1). When the change in the coastal 

salinity drawn into the estuary is significant, then we expect the along-estuary salt 

gradient to adjust by decreasing, similar to base case with only winds on the coast 

(sec. 4.5.2).

When fluctuating winds are applied to the above permutations, nearly all the 

experiments have similar response; the along-estuary salt gradient d s /d x  increases in 

magnitude causing the exchange salt flux u's' to increase, thus bringing the estuary 

to the new steady state. The evolution of the along-estuary gradient with time for 

the permutations of each parameter are shown in figure (4-6).

The exceptions to the above described dynamics are estuaries with fast adjustment 

times (the adjustment time is discussed in the next section), such as estuaries with 

high river discharge {R =  20 x 103m3s-1, Fig. 4-6D) or short estuary lengths (L = 

50 km, Fig. 4-6F). On the onset of fluctuating winds, the vertical mixing in the estuary 

causes the exchange salt flux, u's ' , to initially reduce in magnitude. In estuaries 

with rapid adjustment times, the along-estuary salt gradient has already decreased 

in magnitude and adjusted by the end of the initial decrease in u's' (Eq. 4.16). The 

quick adjustment of the along-estuary salt gradient is due to the rapid decrease in the 

depth-averaged salinity at the estuary mouth. The rapid adjustment in the along- 

estuary salt gradient are seen in figure (4-6 D&F).

4.6 Discussion

On timescales shorter than the time taken for an estuary to reach its new steady 

state, wind-induced mixing reduces the estuarine stratification (Rao, 2012). However, 

on timescales longer than the adjustment time of an estuary, wind-induced mixing 

caused by fluctuating winds has little influence on the magnitude of the estuarine 

stratification. Instead the estuary adjusts to fluctuating winds by changing its salin­
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ity intrusion length into the estuary. The freshwater and salt water regions of an 

estuary is demarcated by the salt intrusion length; thus the wind-induced variabil­

ity in the salt intrusion length is critical to managers of irrigation systems of large 

farming communities, aqueducts supplying municipal drinking water reservoirs, and 

freshwater fisheries. The adjustment to fluctuating winds is described below.

When fluctuating winds cause the stratification of the estuary to initially decrease, 

the exchange salt flux decreases, and the estuary loses salt and becomes fresher. The 

freshening in the estuary means the salt intrusion length is retreating towards the 

ocean as the estuary adjusts. This increases the d s /d x  which leads to the stratifica­

tion and exchange increasing back to its initial magnitude. This adjustment applies 

to regions where fluctuating winds are observed over stratified estuaries, such as 

Chesapeake Bay during summer (Officer et al., 1984).

When fluctuating winds cause the exchange salt flux to initially increase, the 

estuary gains salt and becomes saltier. The increased average salinity in the estuary 

means the salt intrusion length is advancing further into the estuary as the estuary 

adjusts. This decreases the d s/d x  which leads to the stratification and exchange to 

decrease to its initial magnitude. This adjustment is applicable to regions where 

the estuary is sheltered from winds such as the Merrimack River estuary and when 

fluctuating winds over the adjacent coastal ocean is sufficiently strong enough to 

upwell the coastal pycnocline.

However, when an estuary adjusts very rapidly, the estuary is already in steady 

state by the end of the initial change in the exchange. Thus, fluctuating winds 

alter the stratification and the exchange. In the following section, a simple predictor 

of the adjustment time is used to determine which steady state estuarine dynamics 

discussed above are relevant for a range of estuarine and coastal conditions influenced 

by fluctuating winds.
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4.6.1 Adjustm ent Time

When the along-estuary salt gradient has adjusted to the fluctuating winds, the 

estuary has reached its new steady state. In large estuaries, the time taken for the 

estuary to reach the new state is essentially the time taken for the along-estuary salt 

gradient to adjust to the increased vertical mixing. In smaller estuaries, the time 

taken for the estuary to reach the new steady state depends on the time taken for 

the initial decrease in the salt exchange to happen.

A simple adjustment predictor is used to examine when the salt intrusion length 

has adjusted and the estuary has reached its new steady state. Bowen and Geyer 

(2003) noted that the steady state salt intrusion length.depends on the river discharge 

rate, thus the depth-averaged velocity, u is the appropriate velocity scale to determine 

the adjustment time. The time to adjust to vertical mixing for exchange-dominated 

estuaries is

(4.18)

where Lsait is the salt intrusion length into the estuary and u is velocity due to the river 

discharge rate, similar to MacCready (2007); Bowen and Geyer (2003). The use of u 

is also supported in Kranenburg (1986); MacCready (1999). The numerical constant 

6 is obtained when the equation governing the length of the estuarine salt intrusion 

are reduced to a 1st order linear ODE, in the limits of an exchange-dominated estuary 

as discussed in (MacCready, 2007, pp.2139-2140).

The salt intrusion length is determined from the numerical experiments as the 

distance that the 30 g kg-1 isohaline is located from the estuary mouth, and u = (river 

discharge)/(sectional area of estuary). The 30gkg_1 isohaline is used to indicate the 

oceanic salinity. This prediction of the adjustment time is compared to the numerical 

model adjustment time, which is the time taken for the initial average salinity of 

the estuary to change by (1 — e_1)(s/ — s,), where s* and s /  are the initial and final
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cross-sectional averaged salinities across the estuary mouth.

This simple adjustment timescale for an exchange-dominated estuary is tested 

for fluctuating winds in the same estuarine and coastal conditions discussed in sec­

tion 4.5.4. The adjustment times for these variations in the estuarine and coastal 

conditions are plotted in figure (4-9). Even with the simplification used, the pre­

dicted and numerical model adjustment times are mostly within a factor of 1/2 -  

2 from the 1:1 proportionality line for the range of conditions modeled. However, 

there are some coastal and estuarine conditions where the adjustment time predicted 

are significantly different than those determined from the numerical model (Fig. 4-9). 

These outliers are discussed next.

In figure 4-9, the adjustment times from the numerical experiments are mostly 

larger than those predicted by our theory (Eq. 4.18). The larger adjustment times 

derived from the numerical experiments are likely due to the numerical experiments 

being configured as an exchange-dominated estuary, where the horizontal diffusion 

has little or no contribution to the exchange. While this is a reasonable assumption 

for large stratified estuaries like Chesapeake Bay, when the parameters governing the 

salt exchange, such as mixing, estuary depth, or estuary orientation are modified, the 

horizontal eddy diffusivity can play a larger role in transporting salt in the estuary.

When fluctuating winds in an estuary increase the steady state salt intrusion 

length (as discussed early in sec. 4.6), the inclusion of horizontal diffusivity can cause 

the salt intrusion to reach the new steady state length faster. When the state steady 

adjusts faster, the adjustment times derived from the numerical model is shorter, 

providing a better fit with theory predictions.

4.6.2 Extension to other Estuaries

The results discussed above were derived for wind-stress conditions typical of the 

East coast of US. In the East coast, the fluctuating winds are such that time-integrated
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upwelling and down-welling wind-stress have similar magnitudes, so the time-averaged 

wind-stress amplitude is weak or zero (Austin and Lentz, 1999). However, there are 

regions where the time-integrated upwelling and down-welling wind-stress are not of 

similar magnitudes, so the time-averaged wind-stress amplitude is strong (Pickett and 

Schwing, 2006, their Fig.3). Two such regions examined are: (i) where the upwelling 

wind is followed by weak or cessation of wind, such as the West coast of US, and (ii) 

where the upwelling winds persist longer than the adjustment time of an estuary.

As the time-averaged wind-stress is increased towards upwelling, the numerical 

model shows the change in the along-estuary salt gradient is similar for all the three 

different types of wind forcings (Fig. 4-6H). This is because the change in the along- 

estuary salt g radient's proportional to the change in the vertical eddy diffusivity 

(Eq. 4.17). To first order, K y  is proportional to the wind-stress amplitude, which 

remains the same for the three different wind forcing types.

There are other regions where an estuary orientation is oblique to the coast such 

as the Chesapeake Bay, Delaware Bay, and Long Island Sound. For the same freshwa­

ter fluxes, Garvine (2001) shows that the coastal plume (and thus the estuarine salt 

structure) varies with the orientation of the estuary. In the absence of winds, estuaries 

with negative orientation angle (Fig. 4-2) in steady state have a weak along-estuary 

salt gradient and are well-mixed. Thus for estuaries with negative orientations, wind- 

induced mixing in the estuary is not significant, and the coastal upwelling is significant 

in altering the salt exchange. The exchange salt flux, u's', initially increases in mag­

nitude when coastal upwelling brings deep salty water to the estuary mouth, but as 

the average estuarine salinity in the estuary becomes saltier, the along-estuary salt 

gradient decreases until the exchange salt flux is balanced by the depth-averaged salt 

flux (Fig. 4-61), similar to the adjustment described for the base case with winds only 

in the coastal ocean (sec. 4.5.2).

In the absence of winds, estuaries with positive orientation angle (Fig. 4-2) in
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steady state have a strong along-estuary salt gradient and a strong stratification. 

Thus, wind-induced mixing in the estuary is significant in altering the salt exchange. 

The wind-induced mixing initially reduces the magnitude of the exchange salt flux, 

u's ' , but as the average estuarine salinity in the estuary becomes fresher, the along- 

estuary salt gradient increases until the exchange salt flux is balanced by the depth- 

averaged salt flux (Fig. 4-61), similar to the adjustment described for the base case 

with winds both in the estuary and the coastal ocean (sec. 4.5.1).

R esidence T im es As the estuary adjusts to the fluctuating winds by changing its 

salt intrusion length, the average salinity of the estuary also changes (Fig. 4-5) to the 

extent we can ignore changes in the mean salinity at the estuary mouth. The change 

in the average salinity of the estuary indicates that the residence time of the estuary 

is also changing. When the s is getting fresher, it indicates that freshwater is residing 

longer in the estuary.

When the residence time of an estuary increases, the fluvial pollutants carried 

into the estuary by the freshwater runoff from land also reside longer in the estuary, 

before being discharged and diluted in the coastal ocean. Thus, when weather-band 

fluctuations in the wind last longer than the adjustment timescales of an estuary, 

the fluctuating winds cause nutrients and pollutants to accumulate in the estuary, 

degrading the water quality.

4.7 Conclusions

On timescales longer than the adjustment time of an estuary, fluctuating winds 

influence the estuary by altering the salt intrusion length, while the stratification and 

exchange remain largely unchanged. Fluctuating winds in the estuary initially reduce 

the stratification and exchange, but the estuarine salinity becomes fresher, the along- 

estuary salt gradient increases. This brings the stratification and exchange back to
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their initial magnitudes but reduced the salt intrusion length.

However, when the adjustment time is short enough that is comparable to the 

timescale of the initial change in the stratification and exchange, the fluctuating 

winds influence the new steady state stratification and the exchange of the estuary.

A adjustment timescale predictor was used to show when the fluctuating winds 

alter the steady state dynamics in an estuary by (i) altering the stratification, or (ii) 

altering the salt intrusion length.
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Table 4.1: The range of parameters varied in the permutations of the numerical 
experiment.

Parameter Range Base Case
Wind-stress amplitude 0.05, 0.1, 0.2, 0.3 Pa 0.1 Pa
Wind-stress period 6, 10, 30 days 6 days
River discharge (0.2,1.5,2,20) x 103 m3s“ 1 2 x 103 m3s_1
Estuary thalweg depth 11, 30, 45 m 30 m
Coastal pycnocline depth 15, 30, 45 m 15m
Estuary length 50, 150, 300 km 300 km
Well-mixed Estuary K v = 1 x 10~3m2s_1 K v = l  x 10~5 m2s_1
Estuary angle -60°, 0°, +60° 0°
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Figure 4-1: Our numerical experiments are modeled after the large estuaries and 
coastal ocean of the Mid-Atlantic Bight, including the Chesapeake Bay and Delaware 
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129



I

<DUO&mGiC0
r H<

t i n t t t t t t n t t

-10

mssssssmsaagasiissieiesssiiissBB^ss
3illSS3S& 888l9IS$S
S i8 B lii i i i3 8 9 C S 8 iil
il6l9Siiiii38SI8£l!
lilSlliiiilgBBBSiii
i f i iS S ilS i l lB B S ili i
l lB S g il l l i l lB IS S I i l
U U LiU .u.H U iliil

-2 0 0  -1 5 0  -1 0 0  -5 0
Cross-shore Dist. [km]

I T 1 0 0

80

80

40

20

1 00

- 1 0  - 5  0 5 10
Cross-Estuary Dist. [km]

-100

-120

- 6 0

1 0 0
Cross-Shore Dist. [km]

Figure 4-2: The numerical domain used in our experiments (A) the plan view of 
the numerical domain; colors indicate the depth and the lattice structure shows the 
depth grid points. The blue arrows show spatially uniform fluctuating winds in the 
estuary and the coastal ocean, and the red arrows show spatially uniform fluctuating 
wind only in the coastal ocean. (B) The cross-sectional view into the estuary mouth, 
and (C) the cross-shore view of the coastal ocean; black is water and white is estuary 
bottom.
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F igure  4-3: (A) The salinity profile for the coastal ocean in the base case numerical 
experiment. The profile represents summer conditions in the MAB. (B) The winds 
used in the base case numerical experiment. The winds ramp to maximum amplitude 
over a duration of a day. The winds are applied for a duration of 210 days, and has 
a time-averaged wind-stress amplitude of zero.
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Figure 4-5: The tidally-averaged salt for the range of wind-stress amplitude in Table 
(4.1). The dotted lines are for winds only in coastal ocean and solid lines are winds 
on estuary and coastal ocean. The colored lines show the wind-stress for 0.05 Pa 
(red), 0.1 Pa (blue), 0.2Pa (green). The influence of winds in the estuary shows a 
much larger change in average salinity than coastal winds alone. The fluctuations in 
the average salt are due the coastal winds fluctuating between upwelling and down- 
welling.
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Figure  4-6: The along-estuary salt gradients (x  10-5gkg-1m-1), when forced by 
fluctuating winds, as function of time. Solid line are winds applied both on estuary 
and coastal ocean, dashed lines are the winds applied only to the coastal ocean. (A) 
wind-stress amplitude (0.05Pa-red, O.IPa-blue, 0.2Pa-green), (B) wind-stress period 
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discharge (200m3s_1-red, 2 x l0 3m3s-1-blue, 20 x 103m3s_1-green), (E) estuary thal­
weg depth (llm-red, 30m-blue, 45m-green), (F) estuary length (50km-red, 150km- 
blue, 300km-green), (G) coastal pycnocline depth (llm -red, 15m-blue, 45m-green),
(H) time-integrated wind-stress amplitude (east-red, west-blue, steady-green), and
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CHAPTER 5

Conclusions

This thesis addresses how fluctuating winds alter the salt structure in the near­

shore coastal ocean, the estuary, and to the net salt flux between these regions. In 

particular, these studies show how important the changes in one region are to setting 

the state of the adajcent region.

In chapter 2, idealized numerical experiments and field observations are used to 

examine the physics of an upwelled plume front after the coastal plume has upwelled 

and the upwelling winds stop or reverse. After the upwelling winds cease or reverse, 

the upwelled front moves shoreward as an ageostrophic buoyant gravity current for an 

inertial period (Csanady, 1971). The onshore movement of the upwelled front stops 

after the shoreward ageostrophic pressure gradient is balanced by the Coriolis force 

(Austin and Lentz, 2002). But, when the upwelling winds reverse to down-welling, the 

shoreward surface Ekman flow can force the upwelled front until the coast (Dale et al., 

2008). In the absence of a nearby estuary, the return of the upwelled front to the coast 

brings back the less dense surface water, initially moved offshore during upwelling, to 

the coast as the upwelled isopycnals return to their pre-upwelling state. However, near 

estuaries, an estuarine plume can arrive along the coast, in the direction of a coastal 

Kelvin wave, from the source estuary (Garvine, 1999; Fong and Geyer, 2001) before 

the return of the upwelled front. This study shows when the time-integrated upwelling 

and downwelling wind stresses are comparable, there exists a region downwave of an 

estuary where the arrival of the plume in the nearshore region prevents the upwelled 

front from returning to the coast. This happens because the vertical stratification 

in the plume weakens during downwelling winds and allows vertical mixing, so the
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weak cross-shore flow in the plume stops the front from returning to the coast. The 

spatial extent of this region along the coast is predicted and successfully tested against 

numerical experiments and field observations from the CoOP experiment at Duck, 

NC. The near-shore region predicted delimits the region most directly under the 

influence of the estuary, and where both the estuarine and coastal processes influence 

the nearshore water properties.

In chapter 3 and 4, the influence of fluctuating winds on the net salt flux of an 

estuary is examined. Winds can alter the net salt flux, salt structure, and circulation 

of an exchange-dominated estuary (Hansen and Rattray, 1965), which depends on the 

along-estuary salinity gradient and the vertical stratification in an estuary, which are 

ultimately set by the freshwater inflow, oceanic salinity and the vertical mixing in the 

estuary (Hansen and Rattray, 1965; MacCready, 1999, 2007; Bowen and Geyer, 2003). 

Observations of wind forcing along the coast show fluctuations in the wind, and our 

study examines how these fluctuating winds influence the estuary. This improves 

our understanding of wind influence beyond the separate upwelling and down-welling 

winds (Austin and Lentz, 2002; Hansen and Rattray, 1965). Our analyses focus on 

two timescales of fluctuating winds. The first timescale is much shorter than the time 

taken for the estuary to adjust; this is useful in understanding how the fluctuating 

winds initially alter the net salt flux of an estuary, i.e., does the estuary gain or lose 

salt due to fluctuating winds? The second timescale is similar to the time taken for 

the estuary to adjust; this helps is understand how the estuary adjusts, to the initial 

change in the net salt flux due to fluctuating winds, and returns to steady state.

The influence on the net salt flux is examined by first simplifying it into depth- 

averaged salt flux and exchange salt flux. For timescales shorter than the adjustment 

time, the fluctuating winds influence the estuary by altering the exchange salt flux 

(a product of the salinity difference entering and leaving the estuary, and the volume 

exchange flux); the depth-averaged salt flux does not change because the average
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salinity in the estuary adjusts on a much longer timescale. The change in the exchange 

salt flux is caused by the changes in the salinity leaving the estuary (due to wind- 

induced estuarine mixing) and changes in the salinity entering the estuary (due to 

coastal upwelling and down-welling), and not by changes in the volume exchange flux 

(which adjusts on a much longer timescale). The difference in the salinity leaving and 

entering the estuary is the stratification of the estuary.

When the estuary is stratified, wind-induced mixing in the estuary has a larger 

influence on the net salt flux than the vertical displacement of the coastal pycnocline 

due to fluctuating winds. When the estuary is well mixed, the vertical displacement 

of the coastal pycnocline due to fluctuating winds has a larger influence on the net 

salt flux than wind-induced mixing. When the fluctuating winds in the coastal ocean 

move the coastal pycnocline above its initial depth, the ocean adds salt to the estuary, 

but when the coastal pycnocline is moved below its initial depth, the ocean removes 

salt from the estuary.

After the initial response of the fluctuating winds on the net salt flux, the estuary 

starts to adjust towards its new steady state. Over the time taken for the estuary 

to adjust to the fluctuating winds, the net salt flux must return to zero. Over the 

adjustment time, the estuary adjusts by altering its salt intrusion length. The changes 

in the salt intrusion length are determined by whether the initial response of the 

estuary is to gain or lose salt. If the estuary loses salt, the interior of the estuary 

becomes fresher, thus the salt intrusion is pushed towards the ocean. This occurs 

when the estuary is stratified and wind-induced mixing is significant. If the estuary 

gains salt, the interior of the estuary becomes saltier, thus the salt intrusion is pushed 

farther into the estuary. This occurs when the estuary is well mixed and only coastal 

upwelling and down-welling influence the net salt flux.

The consequence of changing the salt intrusion length is that the along-estuary 

salt gradient is altered. The changes in the along-estuary salt gradient as the estuary
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adjusts cause the exchange salt flux and the stratification (initially altered by fluctu­

ating winds) to return to its initial magnitude. This is interesting because we expect 

wind mixing to destroy the stratification, but over timescales comparable to the ad­

justment time of the estuary, the fluctuating winds work to restore the stratification.

5.0.1 Future Direction of This Study

The next step in our study would be to test our findings with field observations. 

When fluctuating winds influence the estuary-ocean system for timescale much shorter 

than the adjustment time of the estuary, the important parameters are the stratifi­

cation of the estuary and the volume exchange flux. We expect the stratification to 

change and the volume exchange to remain constant. For timescales longer than the 

adjustment time of the estuary, the estuary restores the stratification and alters the 

salt intrusion length. Thus, the important parameters to measure in the field would 

be the stratification in the estuary, the volume exchange flux, and the salt intrusion 

length.

The stratification of the estuary should be estimated by; (i) CT profiles casts 

across the estuary mouth, and (ii) CT profile casts along the estuary channel. This 

should be done on a weekly basis, because the time required for the initial change 

in the exchange salt flux due to fluctuating winds is determined by the vertical salt 

diffusion timescale (which is 2-4 days for an estuary with mean depth of 10m). The 

observations along these transects would provide a good estimate of the stratification 

in the estuary, which can help determine if the wind-induced mixing in the estuary 

is important. Furthermore, the cross-estuary transect would provide an estimate 

of how the wind-driven coastal ocean alters the salinity entering the estuary. The 

observations along the estuary can be used to determine the salt intrusion length. 

The weekly transects across-estuary and along-estuary can be used to estimate the 

mean salinity of the estuary. This time-series of the mean salinity can be used to
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estimate the volume exchange (Austin, 2002).

These above observations can be used to estimate the changes in the exchange salt 

flux when forced by fluctuating winds. Ft»r timescale shorter than the adjustment, 

we can estimate the time-series of the exchange salt flux, the stratification and the 

volume exchange flux. As the estuary adjusts, these observations would allow us to 

observe the stratification being restored as the salt intrusion length is altered. This 

approach to observing changes in estuary due to fluctuating winds is valid as long as 

the volume exchange flux is not altered by any other forcings. The changes in the 

river discharge can significantly alter the volume exchange flux, so the experiment 

would be best conducted when river discharge fluctuations are small. The long-term 

mean stream flow, e.g., stream flow into Chesapeake Bay from USGS observations, 

suggests that the changes in the river discharge are smallest between months of August 

to December.

Im provem ents to  M odeling  The numerics used in our numerical experiment do 

a good job of resolving the physics related to the influence of wind variability on the 

estuary and the coastal ocean, such as ensuring that the southern boundary conditions 

do not alter the interior of the model domain. However, the results from our idealized 

study are less robust to bottom topography, especially in the estuaries. This can be 

improved by addressing the complex bathymetry that is associated with real estuaries, 

in particular the along-estuary variation in the bathymetry. This includes decreasing 

the depth of the estuary as we approach the head of the estuary, and considering that 

in some estuaries the deep channels do not run continuously until the head of the 

estuary, but are instead several disjointed deep channels.

145



Bibliography

Austin, J., 2002: Estimating the mean ocean-bay exchange rate of the
Chesapeake Bay. Journal of Geophysical Research-Oceans, 107 ( C l l ) ,  doi: 
10.1029/2001JC001246.

Austin, J. and S. Lentz, 2002: The Inner Shelf Response to Wind-Driven Upwelling 
and Downwelling. Journal of Physical Oceanography, 32 (7), 2171-2193.

Bowen, M. and W. Geyer, 2003: Salt transport and the time-dependent salt balance of 
a partially stratified estuary. Journal of Geophysical Research-Oceans, 108 (C5), 
doi: 10.1029/2001JC001231.

Csanady, G., 1971: On the Equilibrium Shape of the Thermocline in a Shore Zone. 
Journal of Physical Oceanography, 1 (4), 263-270.

Dale, A. C., J. A. Barth, M. D. Levine, and J. A. Austin, 2008: Observations of Mixed 
Layer Restratification by Onshore Surface Transport Following Wind Reversal in 
a Coastal Upwelling Region. Journal of Geophysical Research-Oceans, 113 (C l) ,  
doi: 10.1029/2007JC004128.

Fong, D. and W. Geyer, 2001: Response of a River Plume During an Upwelling 
Favorable Wind Event. Journal of Geophysical Research-Oceans, 106 (C l) ,  1067- 
1084.

Garvine, R., 1999: Penetration of Buoyant Coastal Discharge onto the Continental 
Shelf: A Numerical Model Experiment. Journal of Physical Oceanography, 29 (8, 
P a r t  2), 1892-1909.

Hansen, D. and M. Rattray, 1965: Gravitational circulation in straits and estuaries. 
Journal of Marine Research, 23, 104-122.

MacCready, P., 1999: Estuarine adjustment to changes in river flow and tidal 
mixing. Journal of Physical Oceanography, 29 (4), 708-726, doi: 10.1175/1520- 
0485(1999)029 0708:EATCIR 2.0.CO;2.

MacCready, P., 2007: Estuarine adjustment. Journal of Physical Oceanography, 
37 (8), 2133-2145, doi: 10.1175/JP03082.1.

Rao, S., 2012: Wind Influence on the Interactions between Estuaries and the Coastal 
Ocean. Ph.D dissertation, University of New Hampshire, C h ap te r 2, [In p rep , 
for subm ission].

146


	University of New Hampshire
	University of New Hampshire Scholars' Repository
	Winter 2012

	Interaction between the coastal ocean and the estuarine systems
	Shivanesh Arvinda Rao
	Recommended Citation


	00001.tif

