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ABSTRACT

A MULTI-TEMPORAL IMAGE ANALYSIS OF HABITAT MODIFICATION IN THE

COASTAL WATERSHED, NH

By

Meghan Graham MacLean 

University of New Hampshire, December, 2012

Habitat modification has become a progressively important concern as human 

populations increase and urbanization continues to replace natural environments with 

anthropogenic landscapes. Habitat modification concerns both the loss and 

fragmentation of environments, and these actions can have profound effects on ecosystem 

function, including increasing the potential of invasion by exotic species in vulnerable 

landscapes. The Coastal Watershed of New Hampshire (NH) has seen a 52% growth in 

population over the last 30 years which has led to marked urbanization and land use 

change. However, little has been done to study current land cover types, levels of 

fragmentation, and how fragmentation might be affecting the spread of woody invasive 

species. This research investigated new ways of using remote sensing techniques, such 

as object-based image analysis (OBIA) and multi-temporal image analysis, to create 

accurate land cover maps and corresponding fragmentation metrics. These products were



then used to determine if habitats of interest in the Coastal Watershed were potentially 

more susceptible to invasion by woody invasive species.

To map the Coastal Watershed, new sampling protocols were designed and 

implemented for labeling forest types on Landsat 5 Thematic Mapper (TM) imagery. In 

classification, an OBIA approach, coupled with the multi-temporal analysis, performed 

better than creating maps using a single Landsat 5TM image. A new fragmentation 

program, PolyFrag was also created to compute fragmentation metrics from the vector 

land cover maps generated by the OBIA approach. Finally, The Nature Conservancy 

(TNC) woody invasive species data were used along with the PolyFrag fragmentation 

maps to create a predicted probability map of the presence of woody invasive species. 

When compared to other programs, PolyFrag performed equally well to the more 

prevalent FRAGSTATS program in creating a predictive model from fragmentation 

metrics. However, the advantage of PolyFrag over FRAGSTATS is that it creates a 

fragmentation map in addition to the patch, class, and landscape metrics. Interestingly, 

both predictive models indicated that woody invasive species were less likely to be found 

in deciduous forests than in either coniferous or mixed forests. The maps and methods 

designed in this research are useful for fragmentation and invasive species management.



CHAPTERI

INTRODUCTION

As the human population of New England has grown considerably in the last 25 years, 

southeastern New Hampshire (NH) has become increasingly susceptible to issues 

associated with urban development and sprawl (TNC, 2010). According to The Nature 

Conservancy (TNC), the Coastal Watershed in southeastern New Hampshire contains 

some of the most valuable habitat in the state; however, it is also one of the regions with 

the highest population growth rates. Many of the habitats that are particularly critical to 

the region are at high risk of suffering irreversible losses and woody invasive species 

have become a threat to many of the natural plant communities (PREP, 2010). The 

Coastal Watershed of NH encompasses approximately 10% of the total area of the state, 

as well as one of the National Estuarine Research Reserves (NERR), Great Bay. The 

unique features of the watershed have also made it a popular place to live, leading to a 

52% growth in population from 1980 to 2010 (USCB, 2012). Therefore, mapping the 

changing land cover within the watershed from the mid 1980’s to present is of critical 

importance, as it can indicate how different habitats are shifting due to human expansion 

pressures (Vitousek, 1994; Xiuwan, 2002). Through the synergistic blend of remote 

sensing technologies and geospatial analyses, the observation of habitat change within the
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watershed may be conducted more effectively and efficiently than in previous analyses of 

land use change (Xiuwan, 2002).

Urbanization in the Coastal Watershed has increased the amount of impervious 

surface in the area and modified many of the crucial habitats, especially forests. Forest 

modification includes both the loss and the fragmentation of these critical habitats. While 

the effects of habitat loss and fragmentation can be different, it can be difficult to study 

these processes separately in natural systems (Wiens, 2008). The modification of 

important habitats, through loss and fragmentation, can have negative effects on 

ecosystem function, which can in turn affect the vegetation structure, wildlife, water 

quality, and other ecosystem metrics of the watershed (Moran, 1984; With 2002; Fahrig, 

2003; Turner, 2005; Johnson et al., 2006; Fischer and Lindenmayer, 2007; Brown and 

Boutin, 2009). However, the extent to which fragmentation alone impacts biodiversity is 

still somewhat unknown (Fahrig, 2003). Therefore, it is becoming increasingly important 

to study the specific impacts of fragmentation on different species using the most 

appropriate tools for the habitat of interest.

Previous studies have indicated that forest fragmentation can increase the potential 

for invasive species to establish in modified areas, especially along forest edges (e.g. 

Moran, 1984; Brothers and Spingam, 1992; With, 2002; Johnson et al., 2006; Brown and 

Boutin, 2009). Therefore, accurate measures of land cover change and fragmentation are 

of critical importance for conserving and protecting habitats at risk of invasion. Many 

country-wide efforts to quantify land cover change currently exist (Homer et al., 2007; C- 

CAP, n.d.), but there are few quantitative measures of landscape fragmentation available 

for the Coastal Watershed of NH. The lack of information about the Coastal Watershed
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may hinder future efforts at conservation, since due to limited time and budgets, the most 

effective conservation efforts are generally focused and well defined in scope. However, 

in order to study landscape fragmentation in this area more closely, new land cover maps 

were needed as well as the appropriate fragmentation analysis software to compute 

fragmentation metrics.

Due to the need for timely and accurate creation of land cover maps, remote sensing 

has become essential to the process of detecting landscape modification (Foody, 2002; 

Congalton and Green 2009). Images captured using remote sensing are one of the 

preferred ways to create maps because the imagery can easily be used to create 

consistent, and spatially continuous, land cover maps (Foody, 2002). Currently, the most 

complete set of consistent remotely sensed imagery of the Coastal Watershed for the last 

25 years is Landsat 5 Thematic Mapper (TM) satellite image data. Fortuitously, the 

United States Geological Survey (USGS) has recently changed its policy regarding 

Landsat satellite imagery. Instead of selling each scene individually, all images are now 

free for anyone to download. Therefore, not only is Landsat an ideal source for 

quantifying landscape fragmentation in this region, but the free availability of the 

imagery makes the methods laid out by this research valuable to anyone wishing to study 

land cover change and landscape fragmentation.

In this study, quantifying current levels of forest fragmentation was of particular 

concern for analyzing the progression and effects of fragmentation in the Coastal 

Watershed. However, to study forest fragmentation, a current land cover map identifying 

major forest types (i.e. coniferous; mixed; and deciduous forest) was necessary. Prior to 

this research, such a current map did not exist and therefore had to be created. However,
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forest classes in the Coastal Watershed are difficult to label, even on the ground, since 

these habitat types are often quite variable and complex (Justice et al., 2002). Labeling 

these habitats on remotely sensed imagery, especially moderate resolution imagery such 

as Landsat 5TM (30 m pixels), is even more difficult since several tree species can be 

found within a single Landsat pixel. Therefore, creating accurate land cover maps of 

forested areas in the Coastal Watershed using Landsat 5TM can be quite challenging. 

Consequently, new mapping techniques were explored to try to improve the accuracy of 

mapping forest types in the Coastal Watershed.

Traditionally, most land cover maps created from Landsat imagery were classified 

using a pixel-based approach, where each pixel is classified individually. However, 

recent advances in image processing have introduced an object-based image analysis 

(OBIA) technique that mimics the way humans interpret images (Warner et a l, 1998; 

Blaschke and Strobl, 2001). The OBIA technique groups pixels with similar spectral 

characteristics into segments or polygons which can then be classified as a whole, instead 

of pixel by pixel. Each of the segments has its own characteristics, such as: size; shape; 

and texture; that can be used to help classify the pixels within the segments. The added 

information gained from using an OBIA technique may allow for the use of more specific 

land cover types when classifying Landsat imagery as compared to the traditional pixel- 

based approach (Lu and Weng, 2007). Since, as noted earlier, classifying types of 

forested polygons in the Coastal Watershed using Landsat 5TM images can be 

problematic, the new OBIA approach was chosen for this investigation. An OBIA 

approach coupled with multi-temporal image analysis techniques (e.g. Conese and 

Maselli, 1991; Wolter et al., 1995; Justice et a l, 2002; Lu and Weng, 2007; Duveiller et
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a l, 2008) was also assessed to determine whether these methods could be used to 

improve the accuracy of distinguishing coniferous, deciduous, and mixed forest 

segments, thereby making the analysis of fragmentation in the Coastal Watershed more 

meaningful.

Finally, when identifying fragmentation in a landscape, it is important to compute the 

fragmentation metrics that are- most meaningful for the study. There are currently many 

software programs that compute different combinations of metrics (e.g. Riitters et al., 

2002; Parent et al., 2007; Vogt at al., 2007; MacLean and Congalton, 2012c; McGarigal 

et a l, 2012). However, the most commonly used program is FRAGSTATS, a freely 

available program that computes many landscape fragmentation metrics on raster datasets 

(McGarigal et al., 2012). FRAGSTATS was not deemed the most appropriate program 

to compute fragmentation metrics for this study for two important reasons. First, 

FRAGSTATS does not easily create a spatial output of the fragmentation metrics, so 

spatial analyses using these metrics are challenging. Also, because the land cover maps 

for this study were vector shapefiles, they were not compatible with FRAGSTATS unless 

they were converted to raster files prior to use (McGarigal et al., 2012), which can impact 

the accuracy of land cover maps (Congalton, 1997). Although there are a few programs 

that will compute landscape fragmentation metrics using vector datasets, these programs 

are not nearly as well reviewed and do not compute the number of metrics that 

FRAGSTATS does. Therefore, a new fragmentation program was designed to compute 

similar metrics to FRAGSTATS, create a spatial output of fragmentation, and be 

compatible with vector shapefiles.



In summary, the focus of my dissertation was to create land cover maps of the Coastal 

Watershed, assess forest fragmentation, and estimate the probability of invasion by exotic 

species at different locations throughout the watershed. Throughout the process, many 

related issues involving the mapping of fragmentation and invasion were addressed. The 

specific objectives were to:

1. Determine the appropriate number of samples required to label reference 

samples to be used as both training and accuracy data in an OBIA approach.

2. Investigate whether using a multi-temporal analysis improves the accuracy 

and efficiency of using an OBIA approach to create land cover maps from 

Landsat 5TM imagery.

3. Create a new fragmentation program (PolyFrag) that can be used within 

ArcGIS (esri®) to investigate the extent of fragmentation of forested land 

cover at different scales and specificity using vector land cover maps.

4. Compare the new PolyFrag program to the more traditional FRAGSTATS, 

Landscape Fragmentation Tool, Shape Metrics tool, and Patch Analyst 

programs regarding ease of use and effectiveness in creating fragmentation 

metrics and predicting whether the current locations of woody invasive 

species are correlated with areas of forest fragmentation.

The research was accomplished using both new data collected in the field, and 

already existing data analyzed in the lab. Field data were collected in the Coastal 

Watershed and used to classify segmented Landsat 5TM images. New land cover maps 

were created for every three years from 1986 to 2010, meaning there were nine mapping 

years. Two maps were created for each mapping year, one using more traditional
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classification methods and another using multi-date classification. The accuracies of the 

two methods for classification were compared over the nine mapping years. The 2010 

map with the higher accuracy was used to analyze forest fragmentation within the Coastal 

Watershed using the new fragmentation program, PolyFrag. The resultant fragmentation 

map was then compared to observed locations of woody invasive species to assess 

whether the metrics computed by PolyFrag could be used to predict the presence of these 

invasive species. The results from PolyFrag were compared to the results created using 

several other fragmentation programs to determine the usefulness of PolyFrag.

The results of this work are valuable to the Coastal Watershed community, as well as 

to the studiers of landscape ecology, in several ways. First, a better program for mapping 

forest fragmentation, PolyFrag, was produced. Second, a map of the probability of 

invasive species presence in the Coastal Watershed was created. Third, and perhaps most 

importantly, the documented methods used in this study can be used for remotely 

monitoring the effects of forest modification on this landscape, and others, for years to 

come. These new methods and maps can be used to help inform the decisions of New 

Hampshire’s law and policy makers as human development continues to influence the 

area. In the future, the methods developed in this study should be tested and applied in 

other areas of the world to help address the growing concern of loss and degradation of 

critical habitats.
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CHAPTER II

BACKGROUND AND LITERATURE REVIEW

Many studies have used satellite imagery to monitor land cover change or study 

landscape fragmentation (e.g. Conese and Maselli, 1991; Wolter et al., 1995; Du et al., 

2002; Paolini et al., 2006; Schroeder et al., 2006; Duveiller et al., 2008). To understand 

the previous work that is the basis of this study, four major bodies of knowledge must be 

reviewed. They are: (1) object-based image analysis (OBIA) techniques, including the 

sampling methods used for the classification and accuracy assessment of maps created 

using an OBIA technique; (2) multi-temporal Landsat image analysis; (3) forest 

fragmentation/modification metrics; and (4) mapping and predicting invasive species 

locations.

Obiect-based Image Analysis

Most current land cover maps are created using computer-based land cover classification 

techniques with remotely sensed images (McGarigal and Cushman, 2002; Xiuwan, 2002; 

Jensen, 2005; Turner, 2005). In computer-based land cover classifications, there are 

generally two ways to analyze an image for classification: the traditional pixel-based 

approach; and the newer object-based image analysis (OBIA) approach (Blaschke and 

Strobl, 2001; Jensen, 2005; Congalton and Green, 2009). Pixel-based approaches
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classify the pixels of an image individually without accounting for the context of the 

pixels. In contrast, the OBIA approach groups contiguous pixels with similar properties 

into segments or polygons. The resulting segments represent areas of similar spectral 

response that can be classified as a whole, rather than pixel by pixel (Baatz et al., 2001; 

Desclee et al., 2006). In a well performed segmentation, the pixels within a single 

segment should all have the same land cover type. Using an OBIA approach increases 

the number of attributes that can be used to identify the pixels within each segment, 

including segment shape and texture (Baatz et al., 2001; Desclee et al., 2006; Lu and 

Weng, 2007).

This innovative process mimics how a human interprets an image, and is considered 

an improvement over the traditional pixel-based approaches (Warner et al., 1998; 

Blaschke and Strobl, 2001; Desclee et al., 2006; Congalton and Green, 2009). The 

resulting groups of pixels, or segments, reduce the ‘salt and pepper’ effect often found on 

land cover maps created using pixel-based classification approaches. Therefore, the 

OBIA approach creates maps that are more visually pleasing as well as potentially more 

accurate. The segments are also more easily translated to management units than 

individually classified pixels, so maps with segments are more useful to land 

management groups.

Although there are many advantages to using the OBIA approach over the pixel- 

based approach, there are some caveats when dealing with segments rather than 

individual pixels. For instance, the added processing time required for grouping pixels 

based on similarities can be cumbersome for extremely large datasets. Also, the methods 

used to create the segments can also highly influence the success of the subsequent

9



classification of the segments, making OBIA approaches more complex than pixel-based 

approaches (Blaschke, T, 2010). In OBIA classification approaches, the image is broken 

into segments of similar unlabeled pixels so that there is less spectral variation within 

each segment than between the segments, based on chosen input parameters such as 

maximum variability or minimum segment size (Baatz et al., 2001; Desclee et al., 2006). 

However, land cover types are naturally heterogeneous. Therefore, the segmentation of 

the image may or may not always place conterminous pixels of the same land cover type 

into the same segment. Additionally, it is likely that the pixels within each of the 

segments will have slightly different spectral properties (Blaschke and Strobl, 2001). The 

heterogeneity of the pixels within each of the segments can make the process of 

classifying the segments more complex than classifying individual pixels. However, in 

many instances, the added information regarding segment properties that can be used in 

OBIA classification processes outweigh the increased complexities of using an OBIA 

approach.

Sampling Techniques for Classification and Accuracy Assessment

When generating a land cover map from remotely sensed data, reference units are needed 

for both training and validation (Congalton et al., 1983; Congalton, 1991; Gopal and 

Woodcock, 1994; Foody, 2002; Congalton and Green, 2009). Training data are used to 

guide the classification of the image and validation data are used to assess the accuracy of 

the map. The reference units are usually either collected through photo-interpretation or 

ground visits (Congalton and Green, 2009). When performing a classification, the 

training and validation data are assumed correct, so that any discrepancies between the
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land cover map and the validation data are assumed to be errors in the map, rather than in 

the validation data (Congalton, 1991; Gopal and Woodcock, 1994; Stehman, 1995; 

Foody, 2002; Congalton and Green, 2009). Therefore, the accuracy of the reference data 

is of the utmost importance when creating a land cover map.

Generally, attaining acceptable thematic accuracies of ground collected reference data 

is straightforward when using a pixel-based approach, especially when the image being 

classified is of medium to high spatial resolution (Stehman and Czaplewski, 1998). In 

these images, the reference data units are generally defined as squares of at least 3x3 

pixels in size within an area of a single land cover type. Since the reference units cover a 

relatively small area and should contain only one land cover type, the variability of the 

land contained within the reference unit should be small. Therefore, since the variability 

of the land in the reference unit is small, the reference unit can often be easily classified 

using a single sample observation within the unit. However, as the pixels get larger or 

more variability is captured within a single pixel, it may be more difficult to accurately 

label a reference unit using a single observation (Stehman and Czaplewski, 1998). In 

forest classifications this is especially important since, in the case of eastern US forests 

for example, stands can be highly variable and depending on the level of detail desired in 

the classification, finding pixels of ‘pure’ forest classes may be difficult for a low 

resolution image.

In an OBIA approach, the pixels are grouped so that within-segment variances are 

less than between-segment variances, with the thresholds for both minimum size and 

maximum variability of the segments defined by the analyst creating the map (Blaschke 

and Strobl, 2001). Therefore, the segments are generally not all the same size and are
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dependent on the properties of the image (Desclee et a i, 2006; Congalton and Green, 

2009; Blaschke, 2010). In order to validate maps created using an OBIA approach, the 

reference units should be identical to the segments (i.e. polygons) used in classification, 

rather than pixels, so that the units are directly comparable to the map segments 

(Congalton and Green, 2009; Radoux et al., 2011). However, with an effective OBIA 

approach, the average segment usually contains considerably more pixels than a 3x3 

pixel square, and the polygons range in size from the minimum mapping unit (mmu) 

specified to much larger (Desclee et a l, 2006; Dragut and Blaschke, 2006; Blaschke, 

2010; Radoux et ai, 2011). Since most of the reference units are larger than the 9 pixel 

squares recommended in the pixel-based approach, there is a wider variety of pixels 

within each reference unit, making it more difficult to label the polygons (Stehman and 

Czaplewski, 1998; Congalton and Green, 2009). Currently, there is not a recommended 

sampling method for determining the map class of polygon reference units in remote 

sensing (Stehman and Czaplewski, 1998; Jensen, 2005). However, since the larger 

reference units are generally more variable, a single sample within the reference unit may 

not be sufficient to label that unit in many land cover types (Stehman and Czaplewski, 

1998). As part of the work of this dissertation, as discussed in Chapter III, the 

appropriate sampling strategy for collecting OBIA approach reference data given the 

specific study area and objectives of this research was determined.

Once a method for sampling is chosen, reference data are collected, and a land cover 

map is created, it is then necessary to test the accuracy of the map. When using polygons 

as validation units, the statistics used to determine the accuracy of the map are different 

than those used in a pixel-based approach, where the size of each reference unit is the
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same (Radoux et a l, 2011). In the traditional pixel-based approach, overall accuracy is 

estimated using:

yt* c= (1) 
n '  7

where ft is estimated overall accuracy, C, is equal to 1 or 0 if  the validation data unit i is

correctly classified on the map or not, and n is the number of validation data units 

collected. Currently, many researchers use the same equation to calculate accuracy when 

polygons are used as part of an OBIA approach (Radoux et al., 2011). However, this 

equation does not account for the variability in polygon sizes in the accuracy assessment. 

The actual accuracy of the map should be computed using:

n  =  | f S  (2)
z.£= I'-’ i

where N  is the total number of segments in the image, and St is the area of a single unit i. 

However, the accuracies for all of the polygons within a map are usually not known, so 

two alternative estimates of overall accuracy have been proposed. The first equation just 

replaces N  with n:

(3)
L i = i  •>£

which effectively weights the pixel-based accuracy assessment by the size of the 

validation polygons (Radoux et a l, 2011). However, Radoux et al. (2011) propose 

another estimate of overall accuracy which incorporates the size of the remainder of the 

polygons not used as validation polygons. Radoux et al. (2011) note that in most 

mapping exercises the size, St, of all of the polygons in the study area are known, but the 

accuracy, C„ is not. They propose that the information gained from knowing the 5, of the
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remainder of the unsampled polygons can reduce the variance of the estimate of overall 

accuracy. Their estimate of accuracy is:

» = ^(Zf=1C15,+pZ&„+1S1) (4)

where ST is the total area of the map and p is the estimate of the probability of an object 

being classified correctly. As long as C, is independent of Sh p can be estimated using:

p ="Er=iQ (5)

Radoux et al (2011) found that when using this estimate o f accuracy, fewer polygons 

were needed as validation data to achieve the same accuracy and variance estimates as 

compared to the units needed in a pixel-based approach.

Since the accuracy of maps created using an OBIA approach must be calculated while 

taking into account the area of the reference units, an error matrix that incorporates area 

into each cell is appropriate for reporting thematic accuracy in conjunction with the 

traditional error matrix (Congalton et a l, 1983). The new polygon OBIA error matrix 

would be set up similarly to the traditional error matrix, but instead of each reference unit 

having the same weight, the individual cells would reflect the total area of the reference 

units that fell into that cell. These new methods are discussed in Chapter IV.

As with the pixel-based approach, the new method of accuracy assessment for maps 

created using OBIA still assumes that the reference polygons are 100% correct (Radoux 

et a l, 2011). However, the accuracy of the reference units can be affected by the 

positional and thematic accuracy of the sampling method used to decide the label of the 

reference polygons. As discussed above, the variability within a polygon, or segment, 

often makes it difficult to label a polygon with a single observation. Therefore, the 

number of necessary observations for each reference polygon should be determined so
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that the reference polygon labels can be as close to 100% accurate as possible. With the 

reference labels as accurate as possible, the accuracy assessment of the map created using 

the OBIA approach should reflect the accuracy of the map, rather than the accuracy of the 

reference data.

Multi-temporal Image Analysis

There have been many studies that have used multi-temporal image analysis to either 

perform a change detection, or improve the accuracy of a land cover classification for a 

single date (e.g. Conese and Maselli, 1991; Lunetta et al., 1993; Wolter et a l, 1995; Du 

et a l, 2002; Lu et a l, 2002; Paolini et a l, 2006; Schroeder et al, 2006; Duveiller et al, 

2008). One of the earliest programs designed specifically to look at land cover change 

over time was the Landsat Pathfinder program that used Landsat images from 1973, 

1986, and 1992 (±1 year) to identify areas of land cover change throughout the 

conterminous United States (Lunetta etal., 1993).

More recent studies have applied the knowledge gained from land cover change 

detection studies to classification processes by using multiple images to create a single 

land cover map. In these studies, the information contained in Landsat images taken at 

different times throughout the growing season was used to improve the accuracy of the 

creation of a single land cover map (e.g. Conese and Maselli, 1991; Wolter et a l, 1995; 

Justice et a l, 2002; Lu and Weng, 2007; Duveiller et a l, 2008). Phenological changes in 

vegetation types observed throughout the growing season can be useful in distinguishing 

land cover types that would otherwise be very difficult to determine using a single date of 

imagery (Lu and Weng, 2007). For instance, Justice et a l  (2002) found that they were

t
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better able to separate different forest cover types when completing the 2001 NH Land 

Cover Dataset by using Landsat imagery from different dates throughout the growing 

season. However, many of the images used in that study were also from different years, 

presenting further complication. In general, this new application of multi-temporal image 

analysis pushes the boundaries of land cover classification techniques toward greater 

accuracy, and allows for the separation of certain land cover types during classification 

that otherwise would remain indistinct.

Several issues arose in the early application of multi-temporal image analysis to 

Landsat imagery. The two primary issues with multi-temporal image analysis are 

registration errors and radiometric errors (Lunetta et a l, 1991; Lunetta et al., 1993; 

Jensen, 2005; Congalton and Green, 2009). Registration errors are introduced when 

images are not correctly georeferenced to the ground or to each other, meaning the image, 

or parts of it, have not been given the correct x, y locations (Lunetta et al., 1991; Lunetta 

et a l, 1993; Jensen, 2005; Congalton and Green, 2009). Radiometric error occurs when 

images used in the multi-temporal analysis have different radiometric properties, usually 

due to either sensor differences or changes in the environment between image acquisition 

dates (Hall et al., 1991; Moran et al., 1992; Lunetta et al., 1993; Dwyer et a l, 1996; 

Lunetta et a l, 1998; Song et a l, 2001; Jensen, 2005; Paolini et a l, 2006).

Currently, the Landsat data of the US that are now freely available to the public from 

USGS have been processed with the Standard Terrain Correction process (USGS, n.d.). 

The images have gone through terrain and geometric correction so that the images are all 

in the same format and displayed using the WGS84 UTM map projection and coordinate 

system. In addition, all geometric correction has been completed using cubic
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convolution. Therefore, all of the Landsat images disseminated by USGS should be 

registered correctly, and images of the same area should overlay properly, as well as be 

visually appealing. Unfortunately, the accuracy of the standard correction done by USGS 

will depend on the accuracy of the ground control points and the Digital Elevation Model 

(DEM) used in the terrain correction, and some of the precision of the raw data is lost 

during convolution (USGS, n.d.). If the same ground control points and DEM were used 

for all images in the time series, the images should, at a minimum, be comparable to each 

other. However, a check for geometric error should always be completed prior to a 

multi-date analysis regardless of whether the same ground control points and DEM were 

used for all images in the time series. With the standard correction, only the radiometric 

properties associated with either sensor degradation/error and terrain have been corrected 

for these images, leaving many other sources of radiometric error in the Landsat images.

Radiometric error is usually defined as occurring when the radiance recorded by the 

sensor is not an accurate representation of the radiance leaving the surface of the object 

of interest (Hall et al., 1991; Jensen, 2005; Paolini et a l, 2006; Schroeder et al., 2006). 

As opposed to reflectance, which is the light that bounces off of an object in any 

direction, radiance is the “radiant intensity per unit of projected source area in a specified 

direction” (Jensen, 2005 p. 193). In other words, radiance can be described as the 

amount of light leaving an object in a certain direction as observed at a specific location 

away from the object (such as by an orbiting optical sensor). Therefore, satellite sensors 

record the amount of light radiating in the direction of the sensor per unit surface area 

observed by the sensor. The digital numbers (DN) logged by the sensor represent 

radiance values recorded as the light enters the optical sensor.
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Radiometric errors can be caused by factors both internal and external to the satellite 

that change how the satellite records radiance values. Most internal errors, caused by 

factors such as: random bad pixels; line-start/stop problems; or striping; are typically 

corrected by USGS prior to dissemination. The most prevalent external issue for satellite 

remote sensing is the effect of the Earth’s atmosphere on the transmission of light from 

the surface of the Earth to the satellite sensor (Hall et a l, 1991; Lunetta et al., 1991; 

Dwyer et al., 1996; Jensen, 2005; Paolini et al., 2006). When light is radiated off of the 

surface of the Earth and passes through the atmosphere to the sensor, the properties of the 

atmosphere can scatter and/or absorb the light so that the light reaching the sensor is 

different than the light that was radiated off the surface in that direction (Song et al., 

2001; Lu et al., 2002; Jensen, 2005; Paolini et a l, 2006). The issues caused by the 

changing atmosphere are generally addressed using atmospheric correction.

Atmospheric Correction

When completing a multi-temporal image analysis, atmospheric correction can typically 

be accomplished using either absolute or relative methods. Generally the first step of any 

atmospheric correction uses information about the sensor to convert the DN values to at- 

satellite radiance, and then relates these converted radiance values to either scaled surface 

reflectance values or other radiance values (Markham and Barker, 1986; Schroeder et al., 

2006). Absolute atmospheric corrections relate the at-satellite radiance values to scaled 

surface reflectance values for the same locations (Song et al., 2001; Lu et a l, 2002; 

Paolini et al., 2006; Schroeder et al., 2006). Relative atmospheric corrections relate the
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radiance values of one image to the values of another image of the same location (Song et 

al, 2001; Lu et al., 2002; Paolini et a l, 2006; Schroeder et a l, 2006).

Currently, the most common form of relative image-to-image atmospheric correction 

technique is regression analysis (Lu et al., 2002; Jensen, 2005; Paolini et al., 2006). In 

regression analysis, pseudo-invariant features (PIFs), or areas that are assumed to be 

constant between two images, are chosen for the two images that are being relatively 

corrected. The DN or radiance values of the PIFs are compared on a bispectral plot and a 

regression line is defined to relate the values of the pixels from one image to the values of 

the pixels from the other image (Jensen, 2005). One image is chosen as the base image 

and the second image is atmospherically corrected to match the conditions of the base 

image using the modeled relationship. While relative atmospheric corrections are easier 

to accomplish than absolute corrections, the resulting radiance values of the corrected 

images do not have any relation to the surface reflectance values of the same locations.

Unfortunately, absolute correction techniques can be very time consuming, are more 

processing intensive than relative correction techniques, and may require in situ 

atmospheric data to accurately relate at-satellite radiance values to surface reflectance 

(Moran et al., 1992; Lu et al., 2002). However, in a multi-temporal image analysis, using 

absolute atmospheric correction can be very advantageous since it allows any corrected 

images to be compared to each other, as well as surface reflectance values for different 

land cover types (Jensen, 2005). There are two general types of absolute atmospheric 

correction techniques used for Landsat imagery: image-based and physically-based 

models (Lu et a l, 2002). Image-based models use only information that can be attained 

from the image to perform atmospheric correction, while physically-based models rely on
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in situ data about the atmosphere to correct for atmospheric effects. There are several 

different models that fall within each of these categories.

The most common physically-based models used to correct Landsat images are the 

Second Simulation of the Satellite Signal in the Solar Spectrum (6S) model and the 

Moderate Resolution Atmospheric Radiance and Transmittance model (MODTRAN) (Lu 

et a i, 2002; Jensen, 2005; Kotchenova et a l, 2006). These physically-based models use 

known properties of gasses within the atmosphere, as well as data about the atmosphere 

collected at the same time as the imagery, to model the absorption and scattering of light 

under the given conditions (Vermote et al., 1997; Kotchenova et al., 2006). While this 

form of atmospheric correction generally yields the best results, in situ data for historical 

images or remote locations can be difficult to obtain, in which case image-based 

atmospheric correction techniques may be necessary.

The most common forms of image-based models are the Dark-Object Subtraction 

(DOS) model, and modifications of the DOS, such as the Cosine of the Solar Zenith 

Angle (COST or DOS2) method (Song et al., 2001; Schroeder et al., 2006). The DOS 

method assumes that the darkest objects on the image should actually be black and 

therefore have near zero percent reflectance values (Moran et al., 1992; Chavez, Jr., 

1996; Jensen, 2005). Therefore, any radiance values recorded with values greater than 

1% for the dark objects are attributed to atmospheric scattering and are removed from the 

image (Chavez, Jr., 1996; Song et al., 2001; Jensen, 2005). The COST method uses the 

same technique as the DOS method, but includes an approximation of atmospheric 

transmittance loss when converting at-satellite radiance to surface reflectance (Song et 

a l, 2001; Schroeder et a l, 2006). These methods generally produce consistent results,
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do not need any in situ data, and can be applicable for imagery with or without 

atmospheric data.

One method that has become quite prevalent in multi-temporal image analyses 

combines absolute and relative correction techniques (Schroeder et al., 2006). The so- 

called “absolute-normalization” method corrects one base image using an absolute 

correction method so that the values on the base image represent surface reflectance 

values, and then a relative correction method is used to correct the remainder of the time- 

series images to the conditions of the base image (Schroeder et a l, 2006). The method 

has shown great promise in studies using multi-temporal image analysis (Schroeder et al., 

2006) because it reduces both the processing time and the need for ancillary data for each 

of the images in the time series, while still producing images with values comparable to 

surface reflectance values.

Forest Fragmentation/Modification Metrics

When discussing changing landscape or forest conditions, the terms forest fragmentation 

or modification are traditionally used interchangeably (Haila, 2002; McGarigal and 

Cushman, 2002; Fahrig, 2003; Fischer and Lindenmayer, 2007; Wiens, 2008). In many 

cases, these terms are used to mean either the combined effects of both forest loss and the 

breaking apart of forests, or just the breaking apart of forests independent of forest loss 

(McGarigal and Cushman, 2002; Fahrig, 2003). Forest fragmentation/modification is 

often studied to determine the effects of these landscape changes on the biodiversity of 

the remaining forest fragments (Blake and Karr, 1987; Andren, 1994; McGarigal and 

Cushman, 2002; Fahrig, 2003; Prugh et al., 2008; McGarigal et al., 2012). These
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differing definitions of forest fragmentation/modification have appeared throughout the 

years because there are a number of dominant theories regarding the relationship between 

landscape modification and biodiversity, and each of these theories have different 

underlying assumptions about the state of fragments within a landscape (Andren, 1994; 

Haila, 2002). Since the terms ‘forest fragmentation’ and ‘forest modification’ may be 

used slightly contrarily in different studies, this research will use the following 

definitions: forest loss will refer to the reduction of forest; forest fragmentation will refer 

to the breaking apart or the change in configuration of the forest, independent of forest 

loss; and forest modification will refer to the combined effects of forest loss and 

fragmentation.

Fahrig (2003) analyzed several studies on habitat modification and attempted to 

separate out the effects of habitat loss and fragmentation. In this study, it was incredibly 

difficult to separate the effects, but when it was possible, there was a distinct negative 

effect of habitat loss on species biodiversity within forests, but fragmentation was as 

likely to have a positive effect as a negative one. In general, the species found in smaller 

patches were usually a selection of the species found in the larger patches (Blake and 

Karr, 1987; Flather and Sauer, 1996; Rosenblatt et al., 1999; Boulinier et al., 2001; 

Damschen et al., 2008; Brown and Boutin, 2009). The sensitivity of species to habitat 

loss can often be correlated with their dispersal ability, although most studies found that 

animal species with high dispersal capabilities were the most sensitive to habitat loss than 

others (Blake and Karr, 1987; Flather and Sauer, 1996; Gibbs, 1998; Boulinier et al.,

2001). In vegetation studies, some species showed more sensitivity to habitat loss 

(Brown and Boutin, 2009) and species with high dispersal capability were generally
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found in all forest patches while species with lower dispersal capabilities were only found 

in the patches connected to the source of seeds (Damschen et a l, 2008). Therefore, the 

effect of habitat loss on species richness and composition can be very dependent on a 

species dispersal ability, so it is hard to generalize how much of a reduction in species 

richness there will be for patches in response to habitat loss.

The positive or negative effect of habitat fragmentation on biodiversity is different 

than what would have been predicted by the theory of island biogeography, but it is not 

completely unexpected. The metapopulation concept predicted that if habitat amount 

remained the same, a few smaller patches close together may provide habitat for more 

species than one large patch if the amount of total habitat remained the same and the 

species were able to disperse between all patches (Levins, 1969, 1970; Pulliam, 1988). 

Again, the dispersal capabilities of the species becomes a very important factor in 

determining if habitat fragmentation will have a positive or negative effect on species 

richness and composition of patches. Factors such as the type of land cover fragmenting 

the landscape and the scale at which the landscape is fragmented can have significant 

effects on dispersal capabilities of species, so even determining the dispersal capabilities 

of a species within a landscape may not be straight forward (Moran, 1984; With, 2002; 

Damschen et al., 2008). Since so much depends on individual species dispersal 

capabilities, it is very difficult to generalize how habitat modification will affect species 

richness and composition within specific fragments. Most landscape ecology literature 

shows that habitat modification will in general have a negative effect on biodiversity 

since habitat loss has such a negative effect on biodiversity and habitat fragmentation
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often does not have as significant effect on biodiversity, in either the positive or negative 

direction (Fahrig, 2003).

The reaction of woody invasive species to habitat modification may be even more 

complicated, since often it is reliant on how native species are affected (Moran, 1984; 

With, 2002; Brown and Boutin, 2009). If we assume that native species are negatively 

affected by forest modification, it may mean that some resources become available at the 

edge of the patches where woody invasive species may be able to establish, provided they 

are able to get there (Brothers and Spingam, 1992; With, 2002). Again, this process is 

very dependent on the dispersal ability of the invasive species, competition between 

species, as well as the intervening habitat type (With, 2002; Johnson et al., 2006; Prugh 

et al., 2008). Corridors have often been proposed as a mechanism to connect patches to 

allow between patch movement of species with low dispersal capabilities (Levey et al., 

2005; Proches et al., 2005). However, because woody invasive species are usually fairly 

efficient at moving along forest edges, these corridors may increase invasive species 

spread (Proches et al., 2005). Since the direct effects of forest fragmentation are 

relatively unknown, especially on invasive species, it has become increasingly important 

to study the interaction between forest fragmentation and invasive species, particularly 

woody invasive species, spread.

Several software programs have been designed to analyze the amount of forest 

fragmentation occurring in the landscape using spatial data such as satellite image 

derived land cover maps (Riitters et al., 2002; Parent et al., 2007; MacLean and 

Congalton, 2010; McGarigal et a l, 2012;). Some of the more popular programs are: (1) 

FRAGSTATS; (2) Patch Analyst (PA); (3) the Landscape Fragmentation Tool (LFT);
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and (4) Shape Metrics. FRAGSTATS, developed at the University of Massachusetts, 

Amherst, is a strictly statistical program used to assess the fragmentation of a landscape 

(McGarigal et al., 2012). The program provides excellent quantitative measures but does 

not produce visual results. The Landscape Fragmentation tool (LFT) from the Center for 

Land Use Education and Research (CLEAR) at the University of Connecticut, is a newer 

program, built upon older work done by Riitters et al. (2002), that produces a visual 

output of forest fragmentation and is written in Python so it can be run in ArcGIS with a 

graphical user interface (GUI) (CLEAR, 2009). However, LFT does not compute any 

fragmentation metrics. Both FRAGSTATS and LFT can only use raster land cover maps 

for processing. Patch Analyst (PA) and Shape Metrics both are able to use vector 

datasets in processing, but they are far more limited in their ability to compute 

fragmentation metrics than FRAGSTATS, and therefore are rarely found in the literature.

FRAGSTATS produces measures of fragmentation at three different landscape 

scales: (1) patch; (2) class; and (3) landscape. Several measures of fragmentation are 

produced for each scale, including, but not limited to the list in Table 1. When 

quantifying the amount of fragmentation of different forest types, the measures at the 

class level usually produce the most useful information. For instance, the total amount of 

class area is available for each individual forest type. FRAGSTATS will also compute 

the amount of edge and core habitat within each forest type. Edge habitat is defined as 

the area along the border between the two different land cover types. Generally, a group 

of land cover classes is chosen as the land cover types of interest, or fragmented 

landscape (e.g. forest) and the other group of land cover classes are defined as the
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fragmenting landscape (e.g. development) (McGarigal et al., 2012). Some areas can be 

considered neither, or background land cover types, such as open water.

Table 1. A limited selection of the metrics produced by FRAGSTATS (McGarigal et al., 

2012).

Scale Metric
Patch Patch Area 

Patch Perimeter 
Core Area
Number of Core Areas 
Proximity Index (Isolation)

Class Total (Class) Area 
Percentage of Landscape 
Number of Patches 
Total Edge 
Total Core Area
Core Area Percentage of Landscape

Landscape Total Area 
Number of Patches 
Patch Density 
Total Edge 
Total Core Area

In FRAGSTATS, edge areas are only delineated along the boundary of the 

fragmented land cover types when they are bordered by a fragmenting land cover type. 

The distance that the edge extends into the land cover type of interest is defined by the 

user to delineate areas that are thought to be suffering from effects from the bordering 

fragmenting land cover type. In the latest version of FRAGSTATS (v. 4.0, released in 

March 2012) different edge widths can be defined for different fragmented/fragmenting 

land cover type interactions. This ability to model different effects between land cover 

types is very important in landscape ecology because, for instance, the effect of a 

roadway on a forested area may have more far reaching effects than an agricultural field,
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depending on what traits of forest fragmentation are being assessed. The areas within the 

patch that are not included in the edge habitat are often referred to as “core” areas and are 

thought to suffer from fewer effects from the surrounding land cover types (McGarigal et 

a l, 2012). The two largest drawbacks to using the FRAGSTATS program are its 

inability to calculate metrics for vector datasets and its limited spatial output. Vector 

files must be converted to raster before being used in FRAGSTATS, which is often not 

recommended, depending on the methods used to create the vector dataset (Congalton, 

1997). Vector to raster conversion is generally not a suitable option when trying to 

compute fragmentation metrics because the choice of pixel size can have profound effects 

on the look at accuracy of the resulting raster land cover map (Congalton, 1997). 

However, if  the land cover map is in raster format, the latest version of FRAGSTATS 

will output a raster file with pixels labeled with the patch number it was placed in for 

analysis. With some manipulating of the data, the output fragmentation metrics can be 

tied to these patches for use in further spatial analysis, but the tying of the fragmentation 

metrics to the spatial data is not intuitive and remains problematic.

LFT is a complementary program to FRAGSTATS, in that it produces a raster map of 

fragmentation, but no landscape metrics. LFT uses a raster land cover map recoded to 

three categories: forest; non-forest; and other; where forest is the land cover type being 

fragmented, non-forest is fragmenting the forest, and other is background. The program 

then takes the input data, along with a user defined edge width (which is limited to a 

single value), and produces a map of forest fragmentation (Figure 1). The seven 

categories of the output map are: non-forest, patch, edge, perforated, small core (<250 

acres), medium core (250-200 acres), and large core (>500 acres). Patch, edge, and core
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areas are the same as those produced with FRAGSTATS, but LFT adds the category of 

‘perforated’, defined as an edge area around a small section of non-forest completely 

encased by core area, and patch, which is an area of forest not large enough to have any 

core habitat (CLEAR, 2009). Although the visual output produced by LFT is quite useful 

and can be utilized in further spatial analyses, it is limited in how it defines forest, non­

forest, and other, since it will only accept these three land cover categories (MacLean and 

Congalton, 2010). Without doing further analysis, there is no way of determining how 

different forest land cover types are being affected by forest fragmentation, whereas in 

FRAGSTATS, each land cover type of interest can be assessed separately with different 

edge widths.
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Figure 1. An example of an output from LFT using the 2001 National Land Cover 

Database (NLCD) Land Cover map as input. Open water was considered background in 

this analysis (shown in white).

Shape Metrics and Patch Analyst (PA) use similar measures of fragmentation as those 

used in FRAGSTATS to produce a map of forest fragmentation for a given area, but 

these two programs differ from those described above in that they compute these metrics 

using vector shapefiles (CLEAR, 2009; Rempel et al., 2012). PA is most similar to 

FRAGSTATS, in that it computes a small subsection of the metrics produced by 

FRAGSTATS, but the program will also create a vector shapefile with an associated 

attribute table detailing the patch metrics for the landscape. Another function of PA will



also create a shapefile of core areas, but is only able to use a single edge width in its 

creation of core areas. Unlike FRAGSTATS, PA runs within the ArcGIS (esri®) 

framework, and therefore can be easier to use for those who are familiar with ArcGIS. 

Similarly, Shape Metrics also runs within ArcGIS. However, this tool only computes 

landscape metrics that have historically been difficult to compute for polygons (CLEAR, 

2009), such as shape cohesion or spin, which makes these metrics also less common and 

therefore less comparable to metrics in the current literature. Unfortunately, because the 

metrics computed by Shape Metrics are more difficult computationally than many of the 

other widely used landscape metrics, the program also takes considerably longer to run 

than the other three presented here.

Since the most common landscape fragmentation programs that are able to work with 

vector data, Shape Metrics and PA are so limited, a new program was written in the 

course of this research. The new program, PolyFrag, is introduced and tested in Chapters 

V and VI, respectively. The advent of this program will help researchers that would like 

to use an OBIA approach to classification create landscape fragmentation metrics that are 

similar to those produced by FRAGSTATS do so with the flexibility of defining different 

edge widths, and without having to first convert their data to raster format. Fortunately, 

the conversion from raster to vector is generally risk free, so raster land cover maps, 

converted into vector format, can also be used in PolyFrag. The program has the added 

benefit of running within the ArcGIS (esri®) platform (ArcGIS 10 or higher) as a new 

tool, so it has a very user-friendly interface for those that are familiar with ArcGIS. In 

addition, the tool also intuitively creates spatial maps of landscape fragmentation, so 

spatial analyses with these metrics are quite easy.
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Invasive Species Mapping

In general, woody invasive species are best suited for disturbed landscapes that allow for 

the establishment of the species when there is high resource availability, such as light 

and/or soil nutrients (e.g. Moran, 1984; With 2002; Fahrig, 2003; Turner, 2005; Johnson 

et al., 2006; Fischer and Lindenmayer, 2007; Brown and Boutin, 2009). Currently in 

New Hampshire, most woody invasive species are limited to forest patch edges and old 

fields (e.g. agriculture or other cleared areas like clear cuts) that have been allowed to 

regenerate and are transitioning into forested land cover types (Johnson et a l, 2006). 

These areas provide hospitable habitat for invasive species where there is greater 

availability of the resources they require and the landscape is not constantly being 

disturbed (Moran, 1984; Brothers and Spingam, 1992; Johnson et al., 2006). Therefore, 

native vegetation loss, land use change, and fragmentation may increase the potential for 

invasion of a landscape by increasing the number of disturbed sites and total available 

edge area of the remaining forest patches.

A landscape that is constantly kept clear of vegetation may not allow the woody 

invasive species to establish, thereby limiting its movements and possibly allowing for 

some containment of the species. However, if the disturbed landscape is open to 

vegetation, the invasive species may flourish within the disturbed landscape, out growing 

and perhaps outcompeting native species (With, 2002; Johnson et al., 2006; Brown and 

Boutin, 2009). The dispersal capabilities of the invasive species will in part determine 

whether the species can spread beyond the fragments of the landscape (With, 2002). In 

some cases, if the woody invasive species is a poor disperser, the species may be limited 

to certain areas. However, if the forest is modified to create long stretches of edge
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habitat, the woody invasive species may have no problem dispersing along edges. 

Therefore, the configuration of forest patches and the amount of edge habitat present are 

important to either promoting or limiting invasive spread (With, 2002). In 1984, Moran 

found that there were more introduced species in forest edge habitat that abutted 

residential land cover types than those that bordered either agriculture or road, indicating 

that the dispersal of introduced species can be enhanced by human activity. Therefore, 

the type of edge can also play a role in determining the potential of invasion of certain 

forest fragments.

Prediction Mapping with Presence-only Data

Unfortunately, mapping invasive potential in a landscape can be quite difficult. When 

creating a map of potential invasion, a predictive model must be created. Generally, the 

predictive model uses known information about the landscape, such as current land cover 

maps, maps of fragmentation, and known locations o f invasive species to determine what 

characteristics are significant in predicting invasive species presence (Zaniewski et al., 

2002; Anderson et a l, 2003; Brotons et al., 2004; Elith et al., 2006; VanDerWal et al., 

2009; Barbet-Massin et al., 2012). The accuracy of these models is highly influenced by 

the accuracy of the land cover map used in modeling, as well as what fragmentation 

program is used to determine fragmentation metrics. However, even more important to 

the accuracy of the model is the invasive species data used to indicate known locations of 

presence and absence of invasive species.

When mapping something rare, such as invasive species, it is quite uncommon to find 

data that records both presence and absence (Zaniewski et al., 2002; Elith et al., 2006).
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Most datasets include only information on presence, and many of the methods used to 

record presence may not have followed any form of statistically valid sampling protocol. 

So, unless a great deal of time and money is expended to gather new data with a 

statistically sound sampling method that records both presence and absence, modeling 

potential invasion is done using less than ideal presence-only data. There are generally 

two ways of using presence-only data to create predictive models: (1) through the use of 

iterative models that can use presence-only data; or (2) by creating pseudo-absence data 

by assuming most locations of presence were recorded. Both methods have advantages 

and disadvantages in individual scenarios.

Since presence-only data has become so prevalent, especially in the case of historical 

data, several models have been designed to create predictive maps with presence-only 

datasets. Some of these models include: Bioclimatic Envelope Model (BIOCLIM); 

DOMAIN; and Ecological Niche Factor Analysis (ENFA) (Elith et al., 2006; Brotons et 

a l, 2004). BIOCLIM uses climatic data and presence-only data to create a species 

profile for a specific study (Busby, 1991). The species are profiled across a number of 

environmental variables (n), creating an ‘environmental envelope’ in n-dimensional space 

of all possible min and max values for each environmental variable. The ‘environmental 

envelope’ can be used to model species’ presence, and a predictive map can be created by 

comparing the environmental variables at an unknown location to the ‘environmental 

envelope’ that was produced using the known presence locations. If the variables at the 

unknown location fall within the ‘environmental envelope’ created in BIOCLIM, the 

location can be predicted as a location of possible presence. DOMAIN works similarly 

to BIOCLIM, but DOMAIN uses the Euclidean distance (in n-dimensional space) rather
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than an envelope to predict whether a location should be predicted as presence or absence 

(Carpenter et al., 1993). Both BIOCLIM and DOMAIN can be implemented in DIVA- 

GIS (Hijmans et al., 2001). Another model, ENFA, also compares unknown areas on a 

map to known presence location in n-dimensional space, but instead of using envelopes 

or distances, ENFA compares the distributions o f the known presence location (i.e. 

species distribution) along each environmental factor with the distribution of all of the 

cells in the image (i.e. global distribution). Factors that best predict presence are chosen 

when the marginality (the difference between the global mean and the species mean) is 

the largest (Hirzel et a l, 2002).

If the assumption can be made that nearly all presence data were recorded in the study 

area, pseudo-absence data can be created from within the study area. Most studies have 

found that using pseudo-absence data and more typical logistic regression techniques are 

actually more accurate than the presence-only methods (Zaniewski et al., 2002; Brotons 

et a l, 2004; Elith et al., 2006; Barbet-Massin et al., 2012). When creating pseudo­

absence data, locations are chosen from within the sampled area to represent areas 

‘absent’ of the invasive species. As long as most areas of presence were recorded during 

sampling, these pseudo-absence locations should effectively represent areas absent of the 

species (Zaniewski et al., 2002; Barbet-Massin et al., 2012). These locations can either 

be chosen by random methods, or by using some form of weighting to attempt to match 

any bias in the presence data. If the presence data were sampled using a known bias (e.g. 

only along roadways), the pseudo-absence data should be sampled in the same way 

(VanDerWal et al., 2009; Barbet-Massin et al., 2012). However, if the presence data 

were sampled randomly, or if the bias is unknown, the pseudo-absence locations should
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be chosen at random (Barbet-Massin et a l, 2012). When sampling at random, some 

studies recommend setting a minimum distance between pseudo-absence locations and 

presence locations to minimize false positives and spatial autocorrelation (Barbet-Massin 

et a l, 2012). In either sampling method, as long as there is a sufficient number of 

pseudo-absence locations (i.e. equal to or larger than the number of presence locations, 

preferably over 1000 samples), any false-negatives should be inconsequential as 

compared to the number of actual absence locations (Barbet-Massin et al., 2012).

With presence-only data, it is important to choose a modeling technique wisely. Each 

prediction mapping endeavor will require a different strategy depending on what data are 

available. The method used for modeling should be dependent on whether the 

assumption that the presence data represents all known locations of presence within the 

study area can be met. If that assumption cannot be met, the presence-only modeling 

techniques should be used. However, if it is assumed that nearly all locations of presence 

were recorded, pseudo-absence data should be created, since the regression modeling 

techniques produce more accurate models (Zaniewski et al., 2002; Brotons et al., 2004; 

Elith et a l, 2006; Barbet-Massin et al., 2012).
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CHAPTER III

REQUIREMENTS FOR LABELING FOREST POLYGONS IN AN OBJECT- 

BASED IMAGE ANALYSIS CLASSIFICATION

Abstract

The ability to spatially quantify changes in the landscape and create land cover maps is 

one of the most powerful uses of remote sensing. Recent advances in Object-Based 

Image Analysis (OBIA) have also improved classification techniques for developing land 

cover maps. However, when using an OBIA technique, collecting ground data to label 

reference units may not be straight forward, since these segments generally contain a 

variable number of pixels as well as a variety of pixel values, which may reflect variation 

in land cover composition. Accurate classification of reference units can be particularly 

difficult in forested land cover types, since these classes can be quite variable on the 

ground. This study evaluates how many prism sample locations are needed to attain an 

acceptable level of accuracy within forested reference units in Southeastern New 

Hampshire. Typical forest inventory guidelines suggest at least ten prism samples per 

stand, depending on the stand area and stand type. However, because OBIA segments 

group pixels based on the variance of the pixels, fewer prism samples may be necessary 

in a segment to properly estimate the stand composition. A bootstrapping statistical 

technique was used to find the necessary number of prism samples to limit the variance
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associated with estimating the species composition of a segment. Allowing for the lowest 

acceptable variance, a maximum of only six prism samples was necessary to label 

forested reference units. All polygons needed at least two prism samples for 

classification.

Introduction

Currently, land cover and land use change are some of the most important factors for 

quantifying global ecological change and predicting future change to our environments 

(Vitousek, 1994; Xiuwan, 2002). Land cover change is indicative of changes in 

ecosystem goods and services, such as water quality, nutrient cycling, and overall 

biodiversity (e.g. Binkley and Brown, 1993; Vitousek, 1994; Xiuwan, 2002; Foody, 

2002). Due to the need for timely and accurate creation of land cover maps, remote 

sensing has become inherent to the process of detecting land cover change. Traditionally, 

most land cover maps were created by classifying images using a pixel-based approach, 

where each pixel is classified individually. However, recent advances in image 

processing have introduced an Object-Based Image Analysis (OBIA) approach that 

mimics the way humans interpret images (Warner et al, 1998; Blaschke and Strobl, 

2001).

When using the OBIA approach, pixels with similar spectral characteristics are 

grouped into segments and the segments are then classified as a whole, instead of pixel 

by pixel. The size of the segments is generally determined by the variability of the 

spectral characteristics of the pixels in the segment: the more variable the pixels on an 

image, the smaller the segment; the less variable, the larger the segment. Once created,
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the segments have their own characteristics, such as size, shape, texture, and a variety of 

zonal statistics, that can be used to help classify those segments. Other advantages of 

using an OBIA approach may include a less ‘noisy’ land cover map and groupings of 

pixels that are more representative of management units (Robertson and King, 2011). 

Therefore, maps created using OBIA can be more understandable and useful for land 

managers and owners than the maps created using a pixel-based approach. The added 

information gained and usefulness of the maps created using an OBIA approach have 

made it a preferred method for land cover classification (Warner et al., 1998; Blaschke 

and Strobl, 2001; Desclee etal., 2006; Congalton and Green, 2009).

When classifying an image to use as a land cover map, reference sample units are 

needed to use as both training and validation data. Training data are used to guide the 

classification of the image and validation data are used to assess the accuracy of the 

resultant map. Reference sample units are usually either collected through photo­

interpretation or ground reconnaissance (Congalton and Green, 2009). The accuracy and 

interpretability of the classification is fully dependent on the accuracy of both the training 

data and the validation data. The accuracy of the training data will influence the success 

of the classification, and the validation data are assumed to be 100% correct in an 

accuracy assessment, so that any discrepancies between the land cover map and the 

validation data are assumed to be errors on the map (Congalton, 1991; Gopal and 

Woodcock, 1994; Stehman, 1995; Foody, 2002; Congalton and Green, 2009). Therefore, 

the sampling approach used to collect the reference data can highly influence the success 

of the land cover classification. In very broad classes or relatively homogeneous 

landscapes, photo-interpretation of reference data may be sufficient for accurate
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collection of reference data. However, in highly variable landscapes, ground visits may 

be necessary to ensure the accuracy of the reference data.

In the more traditional pixel-based classification approach, a small group of pixels (a 

three-by-three cluster or larger) within a homogeneous land cover type is the 

recommended size for a reference sample unit (Congalton and Green, 2009). When the 

imagery is of medium to high spatial resolution and pixels are relatively small, the area 

covered by the reference unit is also quite small and generally covers only a small 

amount of variability in the landscape (Figure 2a). Therefore, a single observation taken 

on the ground within that reference sample unit may be sufficient for accurately labeling 

that group of pixels. However, if the pixels of the image are large, or the area covered by 

the reference unit is larger and/or more variable, a single ground sample observation will 

often not be adequate for labeling the reference unit (Congalton and Biging, 1992). 

When using an OBIA approach, the reference units should be segments (i.e. polygons), 

rather than a small square of pixels, so that the units are directly comparable to the map 

segments (Congalton and Green, 2009; Radoux et al., 2011). With an effective OBIA 

approach, the average segment usually contains substantially more pixels than a three-by- 

three pixel square, and the polygons range in size from the minimum mapping unit 

(mmu) to the maximum allotted spectral variability, which, in homogeneous segments 

can produce very large segments (Desclee et al., 2006; Dragut and Blaschke, 2006; 

Blaschke, 2010; Radoux et al., 2011). Therefore, each reference unit in an OBIA 

approach encompasses more variation in the landscape than in a pixel-based approach, 

even with relatively high spatial resolution imagery. With greater variability in the 

reference units, more than a single sample observation may be necessary to accurately
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label each unit (Figure 2b). Potentially high landscape variability within reference units 

combined with insufficient sampling would lead to inaccurate reference data, which 

would in turn make it increasingly more difficult to design and implement a classification 

scheme. A poorly designed classification scheme and inaccurate reference data would 

cause the accuracy of the resulting land cover map to be quite low (Foody, 2002). Thus, 

when larger, more variable reference units are used, it is imperative to determine how 

many sample observations are needed to accurately label a reference unit.
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Figure 2(a) (above). A three-by-three reference unit (dashed black box), as 

recommended for pixel-based classification, does not encompass a large amount of 

landscape variability and a single observation within the reference unit is sufficient for 

labeling the unit. The example raster dataset was generated to be a clear representation of 

landscape variability on a medium resolution image, such as Landsat 5 TM, which has 30 

m pixels. 2(b) (below). In an OBIA classification, segments are used as reference units 

(shown by the black dashed polygon) and a single observation in the segment does not 

accurately assess the majority of the reference unit.
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In many landscapes, forested habitats provide substantial values and are the subject of 

intensive mapping efforts, especially for natural resource, human-environment, or 

wildlife studies (e.g. Congalton et al, 1993; Wolter et al., 1995; Warner et al, 1998; 

Foody, 2002; Justice et al, 2002; Riitters et al, 2002; Xiuwan, 2002; With, 2002; 

Johnson et al, 2006; Duveiller et al, 2008). However, forest stands can be quite variable 

in comparison to other land cover types (Justice et al, 2002). Therefore, more ground 

visits are usually necessary to accurately label reference data for forested land cover 

types (Squires and Wistendahl, 1975; Held and Wistendahl, 1978). In particular, 

differentiating between coniferous, deciduous, and mixed forest land cover types can be 

particularly challenging in the northeastern United States, since forest composition 

changes continuously (Justice et al, 2002).

In most projects, sampling efforts are limited by time and money. Accordingly, ways 

of reducing the quantity and/or increasing the efficiency of sampling, while still attaining 

accurate results, are always desirable. One recommended method for quickly sampling 

forests for composition is through prism sampling (i.e. horizontal point sampling or 

Bitterlich sampling). Prism sampling is a quick and efficient method of quantifying tree 

basal area using a variable radius plot, wherein the probability of sampling a tree is 

proportional to its size (Bitterlich, 1947; Squires and Wistendahl, 1975; Held and 

Wistendahl, 1978; Mitchell et al, 1995; Husch et al, 2003). Basal area is defined as the 

cross sectional area of a tree, inside the bark, at breast height (1.3 meters above the 

ground), and the total basal area per tree species can be determined for each prism plot 

(Bitterlich, 1947). Prism sampling does not require any plot set-up and only trees that are 

large enough, or close enough, to be counted when using a prism with a given Basal Area
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Factor (BAF) are included in the sample for any one particular location. Different BAFs 

are chosen based on a general understanding of the density and size of the trees in the 

forest stand that is going to be sampled (Mitchell et al., 1995; Husch et al., 2003). 

However, the number of prism samples necessary to accurately label a polygon created 

from an OBIA approach has not been assessed in the literature.

Previous prism sampling studies, focused primarily on traditional timber inventory 

objectives, have suggested that ten or more prism samples are necessary to quantify stand 

structure and composition, and the number is dependent on the size and type of stand 

(Held and Wistendahl, 1978; Mitchell et al., 1995; Husch et al., 2003). Current 

guidelines for mixed hardwood forests, modified from the standard forest inventory text 

by Husch et al. (2003), are as follows (Table 2):

Table 2. Current guidelines for sampling in mixed hardwood forests in North America, 

modified from Husch et al. (2003). Original values from Husch et al. (2003) were given 

in acres, as shown in parentheses.

Area of Stand (ha) Number of Prism Samples Required
<4.05 (<10 ac) 10
4.05-16.19 (11-40 ac) 2.47 per ha (1 per ac)
16.19-32.37 (41-80 ac) 20 + 1.235*(area in ha) (20 + 0.5*(area in ac))
32.37-80.94 (81-200 ac) 40 + 0.6175*(area in ha) (40 + 0.25*(area in ac))
>80.94 (>200 ac) Use equation (1)

If the area is greater than 80.94 ha, the following equation is used:

where n = the number of required prism samples 

t = Student’s t-value
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CV = coefficient of variation (in %) of the target variable in the stand 

E = allowable error of the estimate of the target variable (in %), which can be 

calculated using:

E = ^  * 100 (2)

where x  = estimated mean of the target variable 

SEx = standard error of the mean

In most remote sensing studies, few if any quantitative measurements are taken to label 

reference units (Congalton and Biging, 1992). However, quantitative measurements for 

determining forest composition, such as through prism sampling, are important since it 

ensures that labeling is objective and accurate for each reference unit, especially in areas 

where forest composition is quite variable (Congalton and Biging, 1992). But, for most 

remote sensing studies, which involve the collection of hundreds of different forested 

reference units (Foody, 2002; Congalton and Green, 2009), the collection of ten prism 

samples per reference unit may not be feasible, depending on the available resources for 

completing ground surveys. Moreover, the guidance exemplified by Husch et al. (2003) 

focuses on accuracy for a single continuous variable (such as timber volume per unit 

area), not accuracy of cover type classification. However, since reference sample units 

are generally assumed to be 100% correct in remote sensing studies, labeling these 

polygons correctly and efficiently is incredibly important. In previous studies, a 

maximum allowable error (E) of between 4% to 10% (for a 95% confidence level) has 

been deemed acceptable for labeling reference sample units generated using remote 

sensing techniques (Anderson et al., 1976; Fitzpatrick-Lins, 1981), but ultimately
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allowable error should be determined by the needs of each individual study based on 

available resources and the purpose of the classification.

Therefore, this research aims to determine whether the ten prism sample minimum is 

necessary in forested polygons created through the segmentation of a Landsat 5 TM 

image. Since the segmentation of the image limits the amount of pixel variability within 

a polygon, we hypothesize that the segmentation also limits the amount of variability of 

tree composition within the polygon. Limiting the variability of the trees within the 

polygon would effectively delineate stands with more uniform composition and less 

variability than implied by traditional inventory guidelines (Husch et al., 2003).

Methods 

Study Site

The study was performed in the Coastal Watershed of New Hampshire (Figure 3). The 

Coastal Watershed is approximately 61% forested and is dominated by hemlock- 

hardwood-pine forest stands. These stands are generally mixed and contain a variety of 

species including: Pinus strobus (white pine); Tsuga canadensis (Eastern hemlock); 

Fagus grandifolia (American beech); Quercus spp. (oak species); as well as some Acer 

spp. (maple species) and Betula spp. (birch species). Classification can be difficult in 

these forests because they are generally quite variable in composition over short distances 

(Justice et al., 2002). For this study, we focused on the ability to separate and classify 

coniferous, deciduous, and mixed forest types, using class definitions derived from a 

previous study of the area (Justice et al., 2002). Coniferous forest was defined as a 

forested polygon with more than 65% coniferous basal area per unit area; deciduous



forest was less than 25% coniferous basal area per unit area; and mixed forest was 

between 25% and 65% coniferous basal area per unit area.

Figure 3. The Coastal Watershed of New Hampshire. The image is the base image for 

the study: a Landsat 5 TM image from 30 August 2010.

Object-Based Image Se2mentation

A cloudless Landsat 5 TM image from 30 August 2010 was selected for use in this study. 

The Landsat image was from path 12 and row 30, and all bands, except for the thermal 

band (band 6), were used in the analysis, all with 30 m pixels. The image was clipped to 

the extent of the Coastal Watershed in New Hampshire and all six remaining bands were 

corrected for atmospheric effects using the cosine of the solar zenith angle (COST) 

method (Chavez, 1996). A normalized difference vegetation index (NDVI; Rouse et al., 

1974) band and the first three tasseled cap bands (brightness, greenness, and wetness; 

Kauth and Thomas, 1976) were also calculated and added to the six-banded Landsat
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image (all except the thermal band). A vector layer delineating forest and non-forest 

areas of the watershed was created using the 2001 NH Land Cover Dataset (Justice et al.,

2002). The separation of the forested areas from the non-forested areas allowed the 

segmentation to be completed using only the reflectance values of the forested areas, 

rather than the entire image. Since the inclusion of the non-forested areas increases the 

variance of reflectance values to be grouped, the segmentation could not delineate 

different forest stands as efficiently using the entire image (Dragut and Blaschke, 2006). 

The benefits of first delineating forest from non-forest using the NH Land Cover Dataset 

far outweighed the possibility of including small areas of non-forest, or missing small 

areas of forest for this project, especially since all of the study sites were chosen from 

segments within the forest delineation.

Once all forested areas were delineated, the segmentation of the forested areas of the 

image was completed using ERDAS Imagine Image Segmentation software (ERDAS, 

Inc.) with a minimum segment size of nine pixels, a minimum value difference of 0.02, 

and a variance factor of 2.50 (Figure 4). The minimum value difference determines how 

different the spectral values of each segment must be to be considered a separate 

polygon; a low number creates more segments, while a larger number creates fewer 

segments. The variance factor determines how important variation in pixel values within 

a segment is for expanding a segment; a small value restricts the amount of variation 

allowed in a single segment, while a larger number allows for more. These numbers are 

unique to each image.
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Figure 4. Example of forested segments (in black) produced using ERDAS Imagine. 

The image is a Landsat 5 TM image of Durham, NH.

Sampling

In order to determine how many prism samples were necessary to accurately label 

different forested polygons in the Coastal Watershed, several locations within the 

watershed were extensively sampled and analyzed. The properties involved in the study 

were either owned by the University of New Hampshire (UNH) and managed by the 

UNH Office of Woodlands and Natural Areas, or located in Pawtuckaway State Park. All 

of the locations were sampled using the UNH Office of Woodlands and Natural Areas

9  9protocol using a prism with a BAF 4.59 m /ha (20 ft /acre), which is the recommended 

BAF for operational inventory in this region (Wiant et al., 1984; Ducey, 2001). The 

protocol dictates that prism samples are to be systematically located throughout the 

stands so that there is one sample per hectare. Therefore, polygons delineated through 

the segmentation process were chosen so that a minimum of ten prism samples could be 

placed in each polygon (i.e. 10 ha or larger in size). Ten polygons of each forest type 

(resulting in 30 total polygons) were chosen and sampled for this study. The locations of
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the prism samples were determined by walking North-South transects systematically 

spaced approximately 100 m apart through each of the polygons, and placing a sample 

every 100 m along each transect. Following standard techniques, each tree determined to 

be “in” using the prism was identified by species and tallied at each location (Husch et 

al, 2003).

Bootstrap Calculations

Each of the 30 polygons analyzed in this study contain a different number of total 

collected prism samples ranging from ten to 46. Each prism sample also contains a 

different number of total trees. All polygons were treated as independent units, with tree 

totals for each polygon produced by summing tree counts for each species at all prism 

samples within that unit. In this study, since classification was based on percent 

coniferous basal area, the total number of coniferous trees at each prism location was 

summed to produce the total coniferous basal area at each location. The same was done 

for the deciduous trees. Combining the species into two groups allowed for the relatively 

easy calculation of the estimate of percent coniferous by basal area. The totals could then 

be summed for a “stand” or polygon, as in a traditional forest stand inventory.

For each polygon, a bootstrap estimate (Efron and Tibshirani, 1993) of the percent 

coniferous trees within the polygon was generated in the R statistical software package, 

along with the standard deviation (SD) of that estimate. Using a bootstrap estimator, 

instead of calculating the SD of percent coniferous within a polygon using the variability 

of percent coniferous in each of the prism samples, ensures that no assumptions are made 

about the distribution of the population of coniferous trees in each prism sample, but that
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instead the assumption is that the prism samples are independent. A bootstrap estimate 

was completed to estimate total percent coniferous for each polygon so that the SD of the 

bootstrap estimate for each possible sample size (n) was actually representative of the 

standard error (SE) of the mean of all estimates of total percent coniferous. The bootstrap 

process computes an estimate of total percent coniferous for each bootstrap run and then 

averages those estimates to come up with a mean estimate of total percent coniferous. 

The standard error of the mean represents the range of all means possible given all 

possible combinations of n prism samples. For instance, if six prism samples are chosen 

randomly (with replacement) from the 20 possible prism samples in a particular polygon, 

the estimate of total percent coniferous will depend on which six prism samples are 

chosen. Therefore, the bootstrap estimate was necessary to produce all possible estimates 

of the total percent coniferous given n samples and illustrate how variable that estimate is 

within a given polygon. If the SD of the percent coniferous in the polygon was computed 

on a sample by sample basis (basically how variable percent coniferous is from one prism 

sample to another) using a single selection of n prism samples, the SD of percent 

coniferous would be highly dependent on which samples were chosen and not a true 

reflection of how variable the estimate of total percent coniferous is when selecting only 

a few prism samples.

The bootstrap estimate of the percent coniferous basal area within a polygon was 

calculated by first summing the tree counts (x) for each specified group of trees 

(coniferous or deciduous) (b) over the number of selected prism samples (n) for any 

individual bootstrap run (m). The prism samples were randomly selected with 

replacement from the total number of prism samples (N) within the polygon. These
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values were then divided by the total tree count for that run (m), resulting in the estimate 

of how much total basal area each group represents (in %). The estimate was calculated 

using:

8™  =  A t -  * w o  (3)

where D™ = the estimate of the percent basal area of each group

n = the number of prism samples used to create the estimate 

xib = the tree count of one group (b) at one prism sample location (i) 

m = the bootstrap run number 

Note that the estimate in equation (3) is not the simple mean of the percent coniferous on 

a sample-by-sample basis. The estimation process was repeated 400 times (M=400). 

The average of percent basal area for the 400 estimates was calculated on a per species 

basis, using:

= (4)

where D™ = the estimate of the average percent basal area of each group calculated 

using equation (3)

M=  the number of times the estimates are calculated in equation (3) (M=400)

The SD of the estimates of percent basal area was calculated for each group using:

SDb = J s r j I S - i f  S r  -  8 bf  (5)

For a given sample size n, SDb represents the SE of the mean of the bootstrap estimates 

of percent coniferous if the inventory were conducted with that sample size. These steps 

were repeated for n in 2:N, so that the estimates of Db and SDb for each group were 

calculated for all possible numbers of prism samples. The SDb was then used to
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determine the variability in the prediction of the percent basal area for each group using n 

prism samples.

Minimum Sample Requirement for Classification

The classification system for this study utilizes the percent coniferous in each polygon to 

label the polygon as deciduous, coniferous, or mixed. Therefore, the certainty with 

which a classification can be made is based on the variability of percent basal area of 

coniferous trees within the polygon. The accuracy of an estimate of the true percent basal 

area of coniferous tree species depends on the SD of the percent basal area of coniferous 

tree species, and also on the sampling intensity (number o f samples). There is some 

natural variability in percent coniferous basal area and basic considerations from 

sampling theory predict a declining marginal return in accuracy for each additional 

sample (Thompson, 2002). Our objective was to determine at what point that declining 

return meant that additional sampling effort would not be lead to substantial increases in 

accuracy.

Three thresholds were used to determine when additional prism samples did not result 

in a substantially better estimation of percent coniferous. These thresholds were used to 

find the minimum number of prism samples needed before the effort required for 

additional samples was greater than the reduction in the SE of the estimated percent 

coniferous. Since sampling for different projects can entail different costs, the three 

thresholds presented in this work represent three different sampling costs. To calculate 

the relationship between the reduction of SE and the number of additional prism samples, 

the SE of the percent coniferous was plotted against the number prism samples (n) used
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to calculate that SE, and a power curve was fit to the relationship (Figure 5). The three 

thresholds for sampling were designed so that when the change in SE over the change in

dSE dSE
n is: 1) less than 1% per sample (—  <  1%); 2) less than 2% per sample (—  < 2%);

d S Eand 3) less than 4% per sample (—  < 4%). The first threshold resulted in the most

conservative estimate of minimum samples needed or for when the cost of sampling is 

low. The third threshold resulted in the least conservative estimate, which may be useful 

when the marginal cost of additional samples is high. The most conservative estimate 

should result in a higher accuracy of reference data labeling since the precision with 

which percent coniferous is estimated is relatively high, while the least conservative 

should have lower accuracy.
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Figure 5. One example of standard error (SE) of percent coniferous basal area versus the 

number of prism samples used to make the estimate of percent coniferous basal area in 

one particular polygon. The fitted power curve is shown as the grey line.

When labeling reference data units, not only is the SE of percent coniferous important 

in labeling the unit correctly, but how close the estimate of the mean is to the boundary 

value between land cover types can also determine whether or not a polygon is labeled 

correctly. For instance, using this study’s classification scheme the difference in labeling 

a polygon estimated at 80% ± 6% coniferous when n= 3 and labeling the same polygon 

estimated at 80% ± 2% coniferous when n—4 is inconsequential, and the more cost 

effective choice would be to use only three samples. However, if the polygon was 

estimated at 70% ± 6% when rv= 3 and 70% ± 2% at n=4, the difference could have an 

impact on the labeling of the polygon depending on the three samples actually chosen in

y = 16.294X-05 
R 2 = 0.9874

t -------------------------1-------------------------1-------------------------i-------------------------1-------------------------1-------------------------1------------------------- r
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the n=3 scenario. Assuming that all percent coniferous values were equally probable, the 

maximum possible error in classification, due purely to the missed opportunity of an 

additional prism sample, was computed as follows for each of the three thresholds:

E m , x = ^ * 2 ( S )  (6)

where B = the number of boundaries between classes (e.g. 2 for this study)

dSEUsing equation (6), Emax for —  < 1% was 4%, meaning a maximum of 4% more of the 

polygons could be mislabeled solely by not adding an additional sample. Similarly, Emax 

for ^  < 2 %  was 8% and ismax for ^  < 4% was 16%. These values only represent the
an an

error associated with not taking another prism sample and do not reflect any other error 

associated with the sampling process. However, the maximum errors in classification for 

both the 1% and 2% thresholds fall within the generally accepted allowable errors 

(between 4% and 10%), while the 4% threshold represents a more extreme case, where 

each additional sample is very costly and accuracy must be sacrificed due to resource 

limitations.

Results

The minimum number of prism samples necessary to meet each of the thresholds was 

calculated for each of the 30 sampled polygons and the results were compared in order to 

determine the appropriate guideline for sampling polygons created using an OBIA

dSEapproach (Table 3). In the most conservative case (—  <  1%) the largest number of

prism samples needed to meet the threshold was eight, while the minimum was three 

samples. For the less conservative thresholds, the number of samples needed was much
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lower, with two being the lowest number of samples needed. For all cases there was a 

significant positive linear relationship between SE of the estimate of total percent 

coniferous when n=N and the number of prism samples needed to meet the thresholds 

(p<0.05). The overall average minimum number of prism samples needed in the sampled 

polygons for the three thresholds were six, four, and three, from most conservative to 

least conservative. When averaged by forest type, the differences in number of prism 

samples needed are negligible. However, as seen in Figure 6, as the stand composition 

becomes less mixed, the number of prism samples necessary decreases. This observation 

follows the same general trend as the SE of the final percent coniferous in each stand 

(Figure 7). Both the number of prism samples and the SE of the final percent coniferous 

attain a maximum when the stand is between 25% and 65% coniferous (i.e., is a mixed 

stand). In the non-mixed stands the number of prism samples needed and the SE of final 

percent coniferous decreases as the final percent coniferous decreases form 25% and 

increases from 65%, especially past 75%.

Table 3. The minimum number of prism samples necessary to meet the conditions each 

of the three thresholds. The table summarizes the results from the 30 sampled polygons.

Number of Number of Number of
Prism Prism Prism

Samples
when

Samples
when

Samples
when

dSE/dn<l% dSE/d/i<2% dSE/dn<4%

Minimum 3 2 2
w m m m

Mixed Average 6 4 3
H H B R H H

Overall Average 6 4 3
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Figure 6. The minimum number of prism samples when the change in standard error 

(SE) for one additional prism sample is <1% (the most conservative case) for each 

polygon plotted against the final percent coniferous (when «=N). The trend is shown by 

the grey line, and the cutoffs for deciduous, mixed, and coniferous classification are 

delineated by the vertical dashed lines.
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Figure 7. The standard error (SE) of the final percent coniferous (when «=N) for each 

polygon plotted against the final percent coniferous. The trend is shown by the grey line, 

and the cutoffs for deciduous, mixed, and coniferous classification are delineated by the 

vertical dashed lines.

A backward stepwise least squares multiple linear regression analysis was performed 

in order to determine whether any of the readily available zonal statistics from the 

original Landsat 5 TM image could be used as predictors of SE of percent coniferous. 

The hope was to identify characteristics of the polygons on the imagery that could help 

predict whether a polygon would be more or less difficult to classify on the ground using 

prism samples, since SE of percent coniferous is a positive predictor of number of prism

58



samples necessary. To keep the analysis simple and repeatable using most image 

software programs, the statistics used as predictor variables were: area of the polygon; 

perimeter of the polygon; perimeter/area; the mean pixel value for each band; and the 

standard deviation of the pixel values for each band (a measure of texture). In the 

stepwise regression, the model with the lowest corrected Akaike Information Criterion 

(AICc; Akaike, 1974; Burnham and Anderson, 2004) was chosen as the best predictive 

model. Since a stepwise regression was used, /7-values are generally not interpretable for 

the variables in the chosen model because the best model is chosen relative to all other 

possible models and no significance test is completed (Burnham and Anderson, 2002). 

Therefore, the SE of the estimates is instead reported as well as the difference in AICc 

values to the next best model. Three variables provided the best model for predicting SE 

of percent coniferous: the mean of the first middle infrared (MIR) band (band 5); the SD 

of the blue band; and the SD of the NDVI derivative band (Table 4).

Table 4. Variables used in the best predictive model of SE of percent coniferous 

(minimum AAICc = 2.269).

Predictor Variable Coefficient SE
Intercept 9.016 2.720
Mean of Band 5 (MIR) -0.114 0.047
SD of Band 1 (Blue) 3.244 0.746
SD of NDVI -0.926 0.314
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Conclusions

When classifying an image using an OBIA approach, it is imperative that segments be 

used as reference units. An advantage in using an OBIA approach in classification is that 

fewer overall reference units are needed to complete an accuracy assessment of a land 

cover map created using OBIA, as compared to when pixel reference units are used to 

assess a pixel-based map (Radoux et al, 2011). However, labeling forested reference 

units by composition can be difficult without sampling, and sampling is usually costly. 

In this study, we found that for reference units created through the segmentation of a 

Landsat 5 TM image, a medium resolution image with 30 m pixels, only six prism 

samples were needed to label reference units as coniferous, deciduous, or mixed forest 

and achieve relatively high labeling accuracy {Emax-4%). Therefore, the relatively small 

number of necessary prism samples needed for proper labeling of reference units may 

make OBIA a potentially cost-effective tool for classification, since it may reduce the 

sampling effort needed to create reference units.

A stepwise linear regression was performed to create the best model for predicting the 

SE of the total percent coniferous. Three variables provided an improved prediction of 

SE of the total percent coniferous: mean of the MIR band; SD of the blue band; and SD 

of the NDVI derivative band; indicating that these bands may help to predict how 

difficult it will be to estimate the percent coniferous of a stand. In this case, the mean of 

the MIR band and the SD of NDVI had negative coefficients for predicting the SE of 

total percent coniferous, and the SD of the blue band had a positive coefficient. The most 

useful variable of the three may be the SD of the blue band, since positive coefficient 

indicates that as the SD of the blue band increases, so does the SE of the total percent
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coniferous, implying that more samples may be necessary in polygons with large SD of 

pixel values the blue band. Therefore, the blue band could be used in the future to predict 

the variability of the percent coniferous within a segmented image. However, all three 

predictor variables can be used to determine whether more or less sampling should take 

place in certain polygons. Unfortunately, this relationship is likely region and imagery 

specific, since elevation and other factors like atmosphere can also influence image 

characteristics, especially the blue band.

The addition of area of the polygons in the model to predict SE of the total percent 

coniferous did not result in improved model fit (AAICc = 2.269), and in a further 

analysis, it was also found that there was no significant correlation between area and the 

number of necessary prism samples at each of the three thresholds (p<0.05). Therefore, 

area likely did not influence the number of necessary prism samples in a polygon. The 

number of necessary prism samples per polygon is also much lower than the current 

guidelines for prism sampling for conventional forest inventory purposes. The previous 

guidelines suggested that the number of prism samples necessary for accurate sampling 

within a forest stand is completely dependent on stand size; however, this study did not 

find this dependence, indicating that segmentation may have reduced the dependence of 

number of samples on stand size. The lack of size dependence is likely a result of the 

parameters used to define polygons during segmentation. The relatively small variance 

factor limited the amount of variability contained within a segment. Therefore, larger 

polygons are created when there is little variability in the pixels, while smaller polygons 

are created when contiguous pixels are more variable. The variability in pixels often 

relates to observable variation in species on the ground, meaning the low variance factor
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limited the species heterogeneity within each polygon. Therefore, it is likely that the 

number of prism samples required in each polygon is more a function of the variance 

factor defined during segmentation rather than the size of the polygon. If the variance 

factor is raised, the amount of allowable variability in the pixels would also increase. 

Accordingly, the number of prism samples needed to label those segments should also 

increase. However, the average size of the polygons should also increase, decreasing the 

number of polygons that have to be sampled for accuracy assessment (Radoux et al„ 

2011), creating a tradeoff between number of prism samples needed inside a reference 

unit, and number of reference units that must be visited.

Given the natural variability of forests in the Northeast, the minimum of six prism 

samples within a segment may provide a useful guideline for many forest sampling 

protocols using similar classification techniques. However, in situations where each 

additional prism sample would be very expensive to acquire (e.g. very large segments in 

rough terrain), as few as three prism samples may be used to attain relatively accurate 

reference unit labels. In no case were any less than two prism samples acceptable for 

labeling. Since the prism samples should be sampling across the variability of the 

segments in an unbiased fashion, it is important to limit the influence of subjective 

factors or other sources of potential bias in the distribution of samples. Appropriate 

sampling techniques, such as simple random sampling or stratified random sampling, 

should be employed to ensure proper labeling of the reference units (Congalton, 1988; 

Stehman and Czaplewski, 1998; Thompson, 2002).

These findings are specific to our classification scheme and segmentation parameters, 

but the nature of the segmentation process should allow these methods to be applied in
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many different scenarios. The procedures completed in this study should be tested in 

other forest biomes and with different segmentation parameters to determine if greater or 

fewer prism samples are required for accurate reference unit labeling and if the number of 

prism samples required can be correlated with known landscape or imagery 

characteristics. As long as a single group can be used to differentiate between forest 

types (e.g. coniferous trees for this study), and the target variable is a percent of total (not 

a total area, for example), these methods should be applicable. Since all calculations 

were done using the total percent coniferous as estimated by using more than one prism 

samples, the prism BAF choice and empty samples should not impact the calculation, 

unless there are many empty samples. The only issue would be when all empty samples 

were chosen in the bootstrap estimate and the estimated percent of total was undefined, 

since the total tree count was zero. Hopefully, these empty samples are rare enough that 

past three or more samples in the bootstrap estimate, the unique situation of having all 

empty samples should no longer be an issue. However, when making a recommendation 

for sampling, six prism samples randomly located throughout a polygon should capture 

the majority of what is present and still be appropriate for sampling for forest 

composition, even if the polygon includes empty samples. Also, the choice of BAF for 

the prism used in sampling should be influenced by the stand structure, so the prism 

should compensate somewhat for very sparse or dense forest structures.

The methods presented here provide a guideline for the minimum number of prism 

samples needed in a mixed hardwood in the northeastern United States with a 

classification scheme dependent on percent coniferous to distinguish between deciduous, 

coniferous, and mixed forest types. However, future explorations into how labeling
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strategies may change the minimum number of prism samples would be quite interesting. 

For instance, a labeling strategy that only has two forest types (i.e. one boundary), the E- 

max for the standard error thresholds would be lower, therefore possibly allowing a higher 

threshold to be used (e.g. 2% instead of 1%), leading to a lower minimum number of 

prism samples. Also, a hierarchical classification system may also have different 

sampling needs. In a hierarchical classification, an initial classification may be based on 

overall percent coniferous, but a more specific label may be dependent on the percent of a 

specific species. In these instances, another threshold value may be used to determine the 

appropriate number of samples needed for the more specific label. Finally, if techniques 

such as fuzzy sets (Gopal and Woodcock, 1994) are used in classification, the techniques 

explored in this study are exceptionally useful, since the SE of the estimated total percent 

coniferous (as found using all of the collected samples) can be used to assign a 

confidence value to the classification of a particular polygon. Since the application of 

fuzzy classification and accuracy assessment may increase potential overall accuracy (by 

allowing some polygons that would otherwise be considered ‘wrongly classified’ to be 

‘partially correct’), these methods may also allow for a higher threshold value to be used 

when determining minimum number of necessary prism samples.
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CHAPTER IV

APPLICABILITY OF MULTI-DATE LAND COVER MAPPING USING 

LANDSAT 5TM IMAGERY IN THE NORTHEASTERN US

Abstract

In many situations, multi-date image classification improves classification accuracies. 

However, with improved accuracies comes increased image processing time and effort. 

This work investigates the circumstances under which multi-date image classification is 

significantly better than single-date classification using Landsat 5TM imagery for 

southeastern New Hampshire. Multiple Landsat images were processed for every three 

years from 1986 to 2010 and classified using an object-based image analysis approach 

(OB I A) and a classification and regression tree (CART) technique. Two maps were 

created for each of the mapping years, one using a single image, and another using 

multiple images from that year. The multi-date classification process generally 

performed better than the single-date process. However, the significance of the 

improvement was primarily dependent on the accuracy of the single-date map. 

Therefore, if the accuracy of the single-date classification is acceptable, it may not be 

necessary to perform the multi-date classification.
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Introduction

Land cover mapping is essential for effective resource management, and the use of 

satellite remote sensing has become a very important part of the land cover mapping 

process since it is a relatively inexpensive and efficient way to map land cover types. 

Many studies have looked into improving the accuracy of these maps through the 

exploration of different techniques for classifying satellite images (e.g. Conese and 

Maselli, 1991; Congalton et ah, 1993; Lunetta et al., 1993; Gopal and Woodcock, 1994; 

Schriever and Congalton, 1995; Wolter et ah, 1995; Foody, 1996; Foody, 2002; Xiuwan, 

2002; Dragut and Blaschke, 2006; Lu and Weng, 2007; Duveiller et ah, 2008; Radoux et 

al., 2011). One such strategy involves the use of multiple images from the same year in 

an attempt to capture phenological changes in vegetation, allowing the mapper to better 

separate vegetation classes (Liu et al., 2002). Many studies have found that this multi­

date classification process resulted in higher accuracies than a single-date classification 

when trying to separate forest types (e.g. Conese and Maselli, 1991; Schriever and 

Congalton, 1995; Wolter et al., 1995; Liu et al., 2002; Tottrup, 2004), wetlands (e.g. 

Lunetta and Balogh, 1999), and agricultural land cover types (e.g. Oetter et ah, 2000; 

Guerschman et ah, 2003). However, other studies have found the multi-date process less 

successful (e.g. Henry, 2008).

In multi-date classification, several images of a specific location of interest from the 

same year are used in the creation of a single land cover map. The potential benefit is 

that the added spectral information from the additional dates will result in better 

classification of land cover types. Multi-date classification is also used to mitigate some 

of the atmospheric issues, such as clouds, encountered when using satellite images. In a
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multi-date classification process, individual images can be used independently to separate 

classes one at a time or classify areas otherwise obscured by transitional objects like 

clouds (e.g. Justice et al., 2002), or all images can be used simultaneously in an attempt 

to separate all classes using a single classification algorithm (e.g. Guershman et al.,

2003). Typically, in order to reduce processing time and potential complications 

regarding sensor differences, images from the same source are used in multi-date image 

processing (Pohl and Van Genderen, 1998). In addition, with the now free availability of 

Landsat 5TM imagery, it is less expensive and more straightforward to use the multi-date 

classification process than it was in the past. However, it remains unclear under what 

conditions the multi-date process might be the most useful, and whether the potential 

benefit of this approach is worth the additional image processing time and effort that is 

required.

In this study, the multi-date classification process was tested against a single-date 

classification process using an object-based image analysis (OBIA) approach and a 

classification and regression tree (CART) technique to label each of the land cover types. 

The maps were created for nine mapping years, each with a different set of available 

images. An OBIA approach was used for this particular study to maximize the potential 

parameters used in classification for a particular group of pixels (Dragut and Blaschke, 

2006; Congalton and Green, 2009). The CART technique was chosen because it is a 

non-parametric classification algorithm that has the ability to deal with a large number of 

correlated variables (Breiman, 1984). All bands of multiple images of the same year 

were considered variables in the multi-date classification process, and these bands were 

generally all correlated. The CART technique was able to select from the available
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bands, or variables, those that were most important for separating land cover types. All 

maps, created using either the multi-date process or the single-date process, used the 

combined OBIA and CART classification approach so that the overall accuracies of the 

two processes were directly comparable. This study investigated the circumstances under 

which multi-date classification was most appropriate, and whether the added image 

processing time and effort for the multi-date classification scheme significantly improved 

map accuracy (p<0.05).

Methods 

Study Area

The Coastal Watershed of New Hampshire (NH), a Hydrologic Unit Code 8-digit level 

(i.e. HUC-8) watershed, is located in the southeastern portion of the state, bordering 

Maine to the northeast (Figure 8). The watershed encompasses the only coastline of NH, 

as well as the Great Bay Estuary, and contains a diverse set of land cover types. For this 

study, eight general land cover classes were used when mapping the study area (Table 5). 

Development occurs in both high density city areas and very low density residential 

communities. There is active agriculture in the form of small family farms and a variety 

of natural forest community types. In general, the growing season of this region begins 

in April and continues through September, with a peak near infra-red (NIR) reflectance 

occurring toward the end of August and the beginning of September, and senescence 

occurring in October (Figure 9). However, there will be some variation year to year due 

to climatic differences (Chen and Pan, 2002).
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Figure 8. The Coastal Watershed study area in New Hampshire. Image is a Landsat 

5TM image from 14 August 2010.
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Table 5. Classification system used to map the Coastal Watershed, NH. Modified from

Justice et al. (2002).

Class Description
Active Agriculture Areas dominated of row crops, hay/pasture, or orchards
Cleared/Other Open Areas dominated by disturbed land, sand dunes, or other cleared

Developed Areas dominated by residential/commercial/industrial 
development or transportation

Coniferous Forest Forest stands comprising greater than 65% coniferous basal area 
per acre

Deciduous Forest Forest stands comprising less than 25% coniferous basal area per 
acre

Mixed Forest Forest stands comprising more than 25% and less than 65% 
coniferous basal area per acre

Open Water Lakes, ponds, some rivers, or any other open water as defined by 
the U.S. Fish and Wildlife Service National Wetlands Inventory

Wetlands Areas dominated by wetlands characteristics as defined by the 
U.S. Fish and Wildlife Service National Wetlands Inventory
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Figure 9. The trend of mean NDVI values computed using Landsat STM data in the 

Coastal Watershed for the 1991 growing season. All images have been relatively 

atmospherically corrected to the July date, so all NDVI values are relative and 

comparable. Whiskers denote standard deviation of mean NDVI values for the watershed 

and the dashed line is a fitted polynomial trend line.

Elevation within the watershed is relatively flat; however, the proximity to the coast 

can cause cloud cover issues for satellite imagery. The National Oceanic and 

Atmospheric Administration’s (NOAA) National Climatic Data Center (NCDC) 

estimates that southern NH on average has 90 clear days per year (NCDC, 2008), 

indicating that around 75% of the time satellite imagery will contain some cloud cover. 

Given this, a single-date classification may not be possible for each of the nine years in 

this study depending on the specific atmospheric issues of that year.
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Image Selection and Processing

Single date and multi-date maps were created for every third year from 1986 to 2010 

using Landsat 5TM data from path 12 row 30. All images with 10% or less cloud cover 

for the Coastal Watershed (regardless of the cloud cover for the rest of the scene) were 

downloaded from USGS (all processed at Level IT). Therefore, each mapping year has a 

different number of Landsat images from that year, each with a different distribution of 

images (Figure 10). Previous work by Guerschman et al. (2003) has suggested a 

minimum of two images from the same growing season are necessary to properly identify 

land cover types. All of the mapping years in this study had at least four images, but no 

more than seven were found for any particular year. From the available images for each 

year, the image with the lowest cloud cover acquired during the growing season was 

chosen for the single-date mapping approach. Three years had less than ideal dates for 

single-date imagery: 1992, 1998, and 2004. Both 1998 and 2004 had only reasonably 

cloud-free images from early April, near the start of the growing season. The 1992 year 

had only one acceptable image, and it was from the end of September, which is closer to 

senescence in this region.
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Figure 10. Distribution of Landsat 5TM images for each map year with map year along 

the y-axis and date in that year along the x-axis. Single-date images are represented by 

the stars.

Once all of the images were selected for each mapping year, the images were checked 

for any registration errors and clipped to the extent of the watershed. Clouds and their 

shadows were masked out of each image using on-screen digitizing. Each of the single­

date images were then absolutely atmospherically corrected using the COST method 

(Chavez, 1996). The single-date images were then stretched to unsigned 8-bit and the 

remaining images for each mapping year were histogram matched to the corrected single­

date image using Erdas Imagine software (Intergraph®). These methods ensured that the 

images in each mapping year were directly comparable within each year, and that 

differences due to haze or other atmospheric factors were minimized during processing.



Four different derivative bands were computed for each of the images: the 

Normalized Difference Vegitation Index (NDVI); and the first three tassled cap bands 

(brightness, greenness, and wetness). These bands were then rescaled and layer stacked 

with the original imagery. For the multi-date process, all images from the same mapping 

year were also stacked together and treated like a single image for the remainder o f the 

classification process. These stacked images are referred to here as a multi-image stack.

Image Segmentation

eCognition software (Trimble®) was used to segment the images prior to classification. 

In the single-date approach, only the single image for each mapping year and its 

derivative bands were segmented, while during the multi-date process the multi-image 

stack was segmented as a whole, treating the multi-image stack (all images available for 

that year and each image’s derivative bands) as a single image. Each image or image 

stack was segmented using the same parameters within eCognition (Table 6). These 

parameters were determined through a series of trial and error attempts in conjunction 

with photo-interpretation to determine if different land cover types were sufficiently 

delineated, erring on the side of slightly smaller segments. The National Wetlands 

Inventory (NWI) was also used as an informative thematic layer to help delineate 

wetlands and open water, since the extent of many of these features are dependent on 

time of year and tidal phase (Cowardin et al., 1979; Diaz et al, 2004), which change 

throughout the imagery.
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Table 6. Parameters used during segmentation.

Parameter Value
Layer Weights All 1
Scale 7
Shape 0.2
Compactness 0.5
Thematic Layer National Wetlands Inventory (NWI)

Reference Data Collection

The segmented 2010 single-date image was used as the source image for collecting 

reference data since reference data collection began in 2010. Segments were chosen from 

the 2010 image to be used as reference data samples and each of the labels was 

determined for those segments through a combination of fieldwork and photo­

interpretation. Fieldwork was performed starting in the fall of 2010 and continued 

through the fall of 2011. An image differencing technique was used to determine where 

areas of major change occurred from 1986 to 2010, and those areas were taken out of 

consideration as reference data locations. Therefore, it was assumed that the majority of 

the reference data collected should be applicable for all years from 1986 to 2010. In 

addition, all reference data were also visually checked after collection to ensure that they 

were accurate representations of the land cover for each year.

Since the forest categories were generally the most difficult to differentiate on 

imagery, a minimum of 30 segments (sample units) per forest class were visited on the 

ground. These sample units were chosen using stratified random sampling and were 

limited to public access properties. The segments were then labeled using six randomly 

located prism or Bitterlich samples within that segment (as recommended in MacLean et
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a l, 2012). Prism sampling is a quick and efficient method for estimating forest 

composition and is a well-tested strategy in forestry (Husch et a l, 2003). This method 

samples trees proportional to their size and is used to assess the composition of a forest 

stand. For this particular sampling strategy, a prism with a Basal Area Factor (BAF) of 

20 ft /acre was used during sampling, which is appropriate for forests in the Coastal 

Watershed (Wiant et a l, 1984; Ducey, 2001). Forest segments were then labeled based 

on their composition and the classification scheme outlined in Table 5.

The remainder of the reference data samples were collected through photo­

interpretation so that each class, including those not sampled through fieldwork, had a 

minimum of 100 reference data samples. Reference segments were selected using 

stratified random sampling from throughout the study area, and NH Department of 

Transportation digital aerial imagery with 0.30 meter resolution was used in the photo­

interpretation process. The imagery was acquired in April of 2010 with four spectral 

bands, three natural color bands (blue, green, and red) and one near-infrared. The labeled 

reference data samples were then randomly put into two groups: half were placed in the 

group used as training data; and the second half were placed in another group used later 

as accuracy assessment data.

Classification

A classification and regression tree (CART) technique was used to classify all of the 

images used in this analysis. The properties of the training data samples, including the 

traditional average Digital Number (DN) values from each of the image layers, were used 

to create the decision tree. Since an OBIA approach was used, each of the segments also
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had a size, shape, variation in DN values, etc., that do not exist in the pixel-based 

approach. These segment specific properties were also used in the creation of the 

decision tree. Three different, unique decision trees were created for each image, or 

image stack, for each year, keeping the reference data consistent within the same year 

(Figure 11). The entire classification process was performed within eCognition 

(Trimble®). First, each image (either the single-date or the multi-date) was classified into 

two broad classes: forest and non-forest, using a single decision tree. Then, the forest 

segments were reclassified into more specific forest classes using one decision tree, and 

the non-forest segments were classified into more specific other categories using another 

decision tree (Figure 11). The only exceptions were the open water and wetlands 

categories, which were classified based upon the NWI. This hierarchical classification 

system resulted in much better differentiation between forest and non-forest categories, as 

well as less confusion between classes overall, since the decision trees were created to 

separate fewer categories. However, using three decision trees per classification resulted 

in six decision trees per year, totaling 54 different decision trees to create the nine single­

date maps and nine multi-date maps.
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Figure 11. The hierarchical classification system used to classify each of the images. 

Three different decision trees were used to create each of the maps, labeled here as: 

CART 1, CART 2, and CART 3.

Accuracy Assessment

Each of the resulting single-date and multi-date maps were then assessed for their 

accuracy using both a traditional error matrix (Congalton et al., 1983) as well as an area- 

based error matrix approach (MacLean and Congalton, 2012a). The area-based error 

matrix uses the same principles as the traditional error matrix, except instead of tallying 

each reference data sample in the correct box, the area of the segment used as a reference 

data sample is entered into the correct cell in the error matrix (Table 7). The accuracies 

of the single-date map were compared to the multi-date map for the same year, the 

difference in the accuracies, and a Kappa analysis was performed using the traditional
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error matrices to determine if the two maps from the same year were significantly 

different at the 95% confidence limit (Congalton et al., 1983).

Table 7. A comparison of the traditional error matrix (a) and the area-based error matrix 

(b), where %  is the number of reference data samples that fall in that particular cell, N  is 

the total number of samples, and Skk is the total area of all of the reference data samples 

that fall in that particular cell and S is the total area sampled (modified from MacLean 

and Congalton, 2012a).

(a) Traditional Error Matrix 

Reference Data

i o t- Row User's
Total Accuracy

1 nn nn nik n,+ «//« ;+
2 n2j n22 n2k n2+ n22/n2+

...
k nk, nk2 nkk «*+ nkk/nk+

Column
Total «+/ n+2 «+* N Overall

Accuracy:
Producer's
Accuracy «///«+/ nn /n+2 rtki/n+ic

N

(b) Area-Based Error Matrix
Reference Data

1
Row User'sz k Total Accuracy

1 S,i s,2 Slk s l+ sn/s , ,

2 S21 S22 S2k s2+ S22/S2+
...

k Sk! Sk2 Skk Sk+ Sid/Sk+
Column
Total s+! S+2 s+k s Overall

Accuracy:
Producer's
Accuracy

Si,/S+! S22/S+2 Su/S+k H i  Su 
S
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Finally, a stepwise regression was performed to determine if factors could be used to 

predict when the multi-date process performs better than the single-date process. The 

dependent variable was the difference in the traditional overall accuracies for the two 

maps created in a single map year. The explanatory variables included: the single-date 

accuracy; the total number of images; the percent of the total images used in the multi­

date map taken in fall; the date of the image used for the single-date map; the percent of 

total images with some cloud cover; the percent of total images that were taken in the 

growing season; the number of images capturing senescence; and the range of dates, 

average date, and standard deviation of the dates for all of the images in the multi-date 

image stack. Since there are a low number of samples and therefore a low number of 

degrees of freedom, not all explanatory variables could be tested in the same model, so a 

forward elimination stepwise regression was performed. The model with the lowest 

corrected Akaike Information Criterion (AICc) was chosen as the best predictive model 

(Akaike, 1974; Burnham and Anderson, 2004).

Results and Discussion 

Single-Date and Multi-Date Maps

Two maps were created for each map year, one using the single-date process and one 

using the multi-date process (Figure 12). Without any post-processing, the accuracies of 

the maps using the traditional error approach achieved overall accuracies in the 70 

percent range (Table 8), while the accuracies computed using the area-based approach 

consistently achieved higher accuracies (Table 9). In all maps, the most confused classes 

were the cleared/other open and the mixed forest classes. Cleared/other open was
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primarily confused with the active agriculture class, which for this area is quite 

understandable. Most agriculture in this area is hay/pasture, and the cleared/other open 

category encompassed areas such as golf courses and other grassy areas that are 

spectrally quite similar to pasture lands. The mixed forest class was confused with both 

the deciduous and coniferous forest categories. Given the variability of the forests in 

southern NH and the 30 meter pixels of the Landsat 5TM images, it is also no surprise 

that mixed forest was commonly confused for other types of forest.

(a) Single-Date (b) Multi-Date

Figure 12(a). The single-date map created for 2010. 12(6). The multi-date map created 

for 2010.
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Table 8. The 2010 multi-date traditional error matrix. All map classes were assessed using the collected accuracy assessment data, 

even those map classes that were labeled using the NWI. Therefore the reported user’s and producer’s accuracies for Open water and 

Wetlands are more a reflection of the accuracy of the NWI. However, these classes are still important for assessing the overall 

accuracies of the land cover maps.

Reference Data
Active

agriculture
Cleared/ 

other open Coniferous Deciduous Developed Mixed
forest

Open
water Wetlands Row

Total
User's

Accuracy
Active
agriculture 51 20 0 0 14 0 0 0 85 60%
Cleared/ 
other open 19 19 0 0 13 0 0 0 51 37%

Coniferous 0 0 49 4 0 16 0 0 69 71%

Deciduous 0 0 2 63 0 12 0 0 77 82%

Developed 10 10 0 0 70 0 0 0 90 78%
Mixed
forest 0 1 14 28 0 28 0 0 71 39%
Open
water 0 0 0 0 0 0 50 0 50 100%

Wetlands 0, 0 0 0 0 0 0 50 50 100%
Column
Total 80 50 65 95 97 56 50 50 543 Overall

Accuracy:
Producer's
Accuracy 64% 38% 75% 66% 72% 50% 100% 100% 69.98%

00K)
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Table 9. The 2010 multi-date area-based error matrix with cell values in hectares.

Reference Data (ha)

Active
agriculture

Cleared/ 
other open Coniferous Deciduous Developed Mixed

forest
Open
water Wetlands Row

Total
User's

Accuracy
Active
agriculture 471.33 189.74 0.00 0.00 113.66 0.00 0.00 0.00 774.73 61%
Cleared/ 
other open 161.04 165.05 0.00 0.00 114.77 0.00 0.00 0.00 440.86 37%

Coniferous 0.00 0.00 737.08 36.70 0.00 211.97 0.00 0.00 985.75 75%

Deciduous 0.00 0.00 14.46 1080.93 0.00 141.01 0.00 0.00 1236.40 87%

Developed 82.08 68.95 0.00 0.00 582.35 0.00 0.00 0.00 733.38 79%
Mixed
forest 0.00 0.00 148.35 244.67 0.00 272.69 0.00 0.00 665.71 41%
Open
water 0.00 0.00 0.00 0.00 0.00 0.00 696.01 0.00 696.01 100%

Wetlands 0.00 0.00 0.00 0.00 0.00 0.00 0.00 525.19 525.19 100%
Column
Total 714.45 423.74 899.89 1362.29 810.79 625.67 696.01 525.19 6058.3 Overall

Accuracy:
Producer's
Accuracy 66% 39% 82% 79% 72% 44% 100% 100% 74.79%

oo



Comparison of the Multi-Date and Single-Date Accuracies

In general, the multi-date mapping process performed better than the single-date process 

(Figure 13). However, when comparing the traditional error matrices using a Kappa 

analysis, the two processes were only significantly different in four of the nine years 

(Table 10). Only in 1992, 1995, 2001, and 2007 did the multi-date process prove to be 

significantly better than the single-date process. In all cases, the area-based error matrix 

approach did result in higher overall accuracies than the traditional error matrix approach 

(Figure 14).

7 4

g .  7 2 ---------

u  <*.

2  7 0

2  68

>  66

1 9 8 6  1 9 8 9  1 9 9 2  1 9 9 5  1 9 9 8  2 0 0 1  2 0 0 4  2 0 0 7  2 0 1 0

- S i n g l e - D a t e  

- M u l t i - D a t e

Year

Figure 13. The single-date and multi-date overall accuracies computed using the 

traditional error matrix for each year.
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Table 10. The traditional and area-based overall accuracies of the two maps created for 

each mapping year and the differences in the accuracies. The Z-statistic was computed 

using the traditional error matrices, where Zc = 1.96 at the 95% confidence interval and

the single-date and multi-date error matrices are significantly different when Z>ZC. Any 

Z-statistics with an asterisk indicates a significant difference between single-date and 

multi-date classifications.

Year

Tradiltional Error Matrix Area-1Based Error Matrix
Z-

statistic
Single-
Date

Accuracy

Multi-
Date

Accuracy
Difference

Single-
Date

Accuracy

Multi-
Date

Accuracy
Difference

1986 68.81 % 70.85 % 2.04 % 70.68 % 73.07 % 2.39 % 0.75
1989 64.63 % 68.93 % 4.30 % 67.41 % 72.79 % 5.38 % 1.52
1992 62.66 % 70.40 % 7.74 % 63.98 % 74.27 % 10.29 % 2.68*
1995 65.31 % 71.35% 6.04% 65.31 % 74.22 % 8.91 % 2.11*
1998 70.48 % 73.94 % 3.46 % 73.71 % 75.85 % 2.14% 1.29
2001 64.89 % 71.45% 6.56 % 68.78 % 76.12 % 7.34 % 2.27*
2004 67.59 % 72.43 % 4.84 % 72.41 % 75.02 % 2.61 % 1.78
2007 63.84 % 73.33 % 9.49 % 66.05 % 76.04 % 9.99 % 3.36*
2010 69.13 % 69.98 % 0.85 % 70.64 % 74.79 % 4.15 % 0.37
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Figure 14. The multi-date overall accuracies computed using the traditional error matrix 

approach and the area-based error matrix approach.

In a qualitative assessment of the difference between the single-date process and the 

multi-date process, it was found that the lower the accuracy of the single-date map, the 

more likely that the difference between the accuracies of the two maps of a single year 

was measurable. The accuracies of the single-date maps fluctuated more than the 

accuracies of the multi-date maps, which were fairly consistent across years. Upon 

inspection of the three years with less than optimal single-date imagery (1992, 1998, and 

2004), the addition of other images significantly increased the classification accuracy 

only in 1992. The 1992 single-date image was taken at the end of September, whereas 

the 1998 and 2004 images were from the beginning of April, and the 1992 single-date 

map contained a lot of confusion in the forest classes which were remedied in the multi­

date map. Other studies have shown a similar result. For example, in a study by 

Schriever and Congalton (1995), September images had the lowest accuracy of three



classified dates of imagery for single-date classification of forest types in this study area, 

but the addition of images from other dates significantly improved the classification. 

However, in the current study, the single-date April images seemed to easily distinguish 

between forest types, but had a harder time distinguishing between active agriculture and 

cleared/other open. Since most crops have not started by early April, agriculture fields 

and any other open areas may be very similar spectrally. Therefore, accuracies were 

improved when including imagery from later in the growing season.

In a more quantitative assessment of the differences in accuracies, an exploration of 

the data found that 1998 was a statistical outlier when trying to predict the difference 

between the single-date and multi-date accuracies, and so was excluded from the 

regression analysis. The forward elimination stepwise regression analysis was performed 

using a standard least squares estimator, and four explanatory variables provided the best 

model for predicting the difference between single-date and multi-date accuracies 

(minimum AAICc = 169.6714) (Table 11). The two most precise explanatory variables 

in the model were the accuracy of the single-date map (SE=0.193) and the average date 

of all imagery used in the multi-date maps (SE=0.021). There was a negative relationship 

between single-date accuracy and difference in multi-date and single-date accuracies, as 

presumed in the qualitative assessment. The average date of all of the images had a 

positive relationship with the difference in accuracies, indicating that the further into the 

year the average date was for all of the images in the multi-date map, the more likely the 

map was to be better than the single date map. However, the coefficient for this variable 

is quite small and there is likely a limit to how far into the year this relationship holds (a
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limit that this study did not reach). Therefore, this variable is likely to be less useful 

when predicting the difference in single-date and multi-date accuracies.

Table 11. Explanatory variables used in estimating the difference between the single­

date and multi-date accuracies. The standard error (SE) of the estimate is reported as a 

measure of the precision of the estimator. Since tests of significance are not completed 

when choosing a model based on AICc values, p-values are not reported (Burnham and 

Anderson, 2002).

Explanatory Variable Coefficient SE
Intercept 65.829 14.426
Single-date accuracy -0.992 0.193
% of images in the fall 4.501 2.970
Senescence captured 1.384 0.466
Average date 0.037 0.021

The percent of images in the fall and the existence of a senescent image both had a 

positive correlation with the difference in accuracies, indicating that fall images are quite 

important for differentiating land cover classes and contribute to the success of the multi­

date process. This result mimics the findings of previous work that have also cited the 

importance of fall imagery to land cover classification (Schriever and Congalton, 1995; 

Wolter et a l, 1995), and may explain why the lowest difference in accuracy was found in 

2010 (the only year without a fall image). Again, since the degrees of freedom are 

limited in this study, the explanatory power of this model is fairly low. However, the 

regression analysis was primarily used as a data exploration technique and the results 

mimic the predictions made in a qualitative assessment of the data. This finding gives 

slightly more weight to the supposition that the difference in overall accuracies between
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the single-date and multi-date classifications is primarily a reflection of how well the 

single-date process performed.

Conclusions

Overall, the multi-date classification process did perform better than the single-date 

process. However, only in some years did the additional image processing time and 

effort result in significantly better classification accuracies. The most helpful factor in 

determining the value of the extra processing time required for the multi-date 

classification process is the accuracy of the single-date classification. If the single-date 

classification was relatively good, it was unlikely that the additional images improved the 

accuracy significantly. However, if an optimal image for classification is not available, 

either due to cloud cover or temporal issues, the multi-date process does have the 

potential to produce a superior map. The potential for improved accuracy increases if fall 

images are used in the multi-date classification. However, as observed in the 1992 

imagery, images from other times of year may help distinguish between other land cover 

types, particularly forest types.

While the overall accuracies for the multi-date maps are acceptable, we believe that 

the accuracies could be improved with the addition of ancillary data, as well as some 

post-processing. For example, distinguishing between forest types can be aided through 

the use of elevation data. Additionally, active agriculture may be differentiated from 

other land cover types through the use of NDVI time series analysis, from the beginning 

of the growing season to the end of the growing season (Moody and Johnson, 2001).
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However, in this study, our aim was to directly compare the single-date and multi-date 

processes, so additional confounding data sources were avoided.

This study confirmed that the multi-date image classification process is a useful 

endeavor when a single image does not exist that meets the needs of the classification. 

Future work should determine whether similar results are found when classes are more 

specific than these used here. The classes used for this study were fairly broad, but even 

with these broad classes the multi-date classification outperformed single-date 

classification. The use of more specific classes may make it more likely that spectral 

information from different times of year increases classification accuracies. In these 

cases, the increase in accuracy from using the multi-date process may be more 

pronounced than in this study.
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CHAPTER V

POLYFRAG: A VECTOR-BASED PROGRAM FOR COMPUTING 

LANDSCAPE METRICS

Abstract

The study of landscape fragmentation is important in investigating how biodiversity is 

changing. Several current software programs calculate metrics associated with landscape 

fragmentation. The most prevalent of these programs are compatible only with raster- 

format land cover maps. However, as classification techniques evolve, vector-format 

land cover maps are becoming more popular and valuable. PolyFrag is designed to 

compute landscape fragmentation metrics for vector-based land cover maps, is both 

flexible and comprehensive, and outputs metrics that are similar to those of the most 

widely used raster-based fragmentation programs, like FRAGSTATS. The program 

allows for several fragmented and fragmenter land cover classes, as well as different edge 

widths between interacting classes. In addition, the program is written in Python and is 

implemented as a tool in esri®’s ArcGIS 10.

91



Introduction

Habitat loss and fragmentation due to increasing populations and the development 

pressures that come with growth in population, is currently a major concern of landscape 

ecologists all over the world (Andren, 1994; MacLean et a l, 2010). Many publications 

have looked at the effects of habitat loss, fragmentation, and change from anthropogenic 

forces on the landscape (e.g. Haila, 2002; With, 2002; Fahrig, 2003; Turner, 2005; 

Fischer and Lindenmayer, 2007; Wiens, 2008). In these studies, landscape modification, 

or the combined effects of loss and fragmentation, has been tied to losses in biodiversity, 

changes in carbon storage, reduction in water quality, and many other environmental 

issues (Andren, 1994; Riitters et al., 2002; Fischer and Lindenmayer, 2007; Vogt et a l, 

2007). Therefore, identifying and quantifying landscape modification has become a 

priority for predicting how the landscape will change in the future and what species might 

be at risk due to these changes.

Both habitat loss and fragmentation are important factors within the study of habitat 

modification (With, 2002). Several studies have investigated the correlations between 

habitat loss and fragmentation with species richness or measures of biodiversity (e.g. 

Blake and Karr, 1987; Flather and Sauer, 1996; Gibbs, 1998; Rosenblatt et al., 1999; 

Boulinier et a l, 2001; Damshen et a l, 2008; Brown and Boutin, 2009). Andren (1994) 

conducted a meta-analysis of species richness in vegetation communities and concluded 

that above a certain threshold of habitat loss, the configuration (or fragmentation) of the 

landscape played an insignificant role in predicting species richness values and species 

richness was only correlated with habitat loss. However, below that habitat loss 

threshold, species richness values declined more rapidly than could be explained by
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habitat loss alone. Andren (1994) attributed the more rapid loss of species to effects from 

habitat fragmentation, or rather, the layout of the remaining habitat fragments. Another 

study, by Prugh et al. (2008), found that the response of species richness in forests to 

either habitat loss or fragmentation actually depended on the types of land cover 

surrounding the forest patches. The study found that the effect of the surrounding 

landscape on species richness within the forest patch was greatest for human modified 

areas. Forest patches that were created through natural processes showed very little 

change in species richness due to either area or isolation effects. The authors do note that 

patch size and isolation may be two ways of demonstrating total habitat availability for 

species, since isolation usually increases with habitat loss, so the authors conclude that 

habitat modification influences species richness values within forest patches, and the 

surrounding landscape can also have a profound effect (Prugh et al, 2008).

Landscape processes, such as habitat modification, are primarily evaluated using land 

cover maps (e.g. Gustafson, 1998; McGarigal and Cushman, 2002; Fahrig, 2003; Turner, 

2005; McGarigal et a l, 2012). Historically, when landscape change has been evaluated, 

studies have investigated only the amount of habitat loss and have not addressed how the 

amounts of habitat are spatially distributed, while others have studied only the spatial 

distribution of habitats (Wiens, 1989). However, both the spatial distribution and amount 

of a particular habitat type, as well as the interaction of these two factors, can have a 

pronounced impact on biodiversity (Fahrig, 2003). Habitat modification can influence 

population dynamics, species movement, and overall health of an ecosystem (Moran, 

1984; With 2002; Fahrig, 2003; Turner, 2005; Johnson et al., 2006; Fischer and 

Lindenmayer, 2007; Brown and Boutin, 2009). Therefore, it is important to quantify not
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only the amount of a certain habitat type that is available, but also the spatial relationship 

between pieces of that specific habitat (Riitters et a l, 2002). Generally, the breaking 

apart of habitats and their spatial relationships are quantified using fragmentation metrics. 

These measures of fragmentation of a landscape can provide important information about 

the suitability of a landscape for a particular species or ecological community. For 

example, size, isolation, edge effects from surrounding land cover types, and total core 

area are all landscape metrics that can be used to describe a particular habitat.

Several programs have been written to compute landscape fragmentation metrics 

using land cover maps (e.g. Riitters et a l, 2002; Parent et al., 2007; Vogt at al., 2007; 

McGarigal et a l, 2012). Some of these programs include: FRAGSTATS (McGarigal et 

a l, 2012); Landscape Fragmentation Tool (LFT) from the Center for Land Use Education 

and Research (CLEAR) (CLEAR, 2009); Patch Analyst (Rempel et a l, 2012); the 

PATCH Model (Schumaker, 1998); IAN (DeZonia and Mladenoff, 2004); and Conefor 

(Saura and Tome, 2009). These currently or previously available programs have a wide 

range of capabilities. Some programs, such as FRAGSTATS, is a standalone product that 

primarily focuses on statistically representing the landscape using metrics like the 

effective mesh size of the landscape. Others, like LFT, are run within esri®’s ArcGIS, the 

most prevalent GIS software, but LFT can only be used to create a visual output of 

fragmentation of a landscape without computing any additional fragmentation metrics. 

The majority of these programs require that the input land cover maps be in raster format 

before an analysis can be completed. Patch Analyst is the only program of the list that 

will accept vector-based land cover maps, but it does not have the flexibility of many of
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the other programs regarding input land cover types or edge widths, so it has limited 

applicability.

Traditionally, land cover maps created from digital imagery use a pixel-based method 

of classification. In pixel-based classification, each individual pixel is given a land cover 

label and the resulting land cover map remains in a raster format (or made up of equal 

area grid cells). However, in newer object-based image analysis (OBIA) as well as older 

photo-interpretation techniques, pixels are first grouped into objects and then the objects 

are classified as a single unit (i.e. polygon). The land cover maps created using an OBIA 

approach or through photo-interpretation are in a vector format (made up of points, lines, 

and polygons). These vector-based maps must be converted into a raster format prior to 

being analyzed by the current fragmentation programs. However, the conversion from 

vector to raster may alter some of the characteristics of the map (Congalton, 1997) 

making this conversion imprudent for data where the shape of the land cover units is 

significant or some units are significantly smaller than the average unit area. Therefore, a 

new fragmentation program is necessary to deal with these vector-based land cover maps, 

that also provides the flexibility and effectiveness of the more widely used raster-based 

fragmentation programs.

In order to meet the needs of a growing community of vector format land cover map 

users, I have created PolyFrag, a fragmentation program that is designed to use vector- 

based land cover maps. PolyFrag computes landscape fragmentation metrics for vector- 

based land cover maps. The program’s script is written in Python and is compatible with 

esri®’s ArcGIS 10. PolyFrag outputs a fragmentation shapefile showing areas of edge, 

patch, and core habitat, a statistics file that contains the landscape metrics of each of the
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input polygons, as well as a text file displaying all of the class and landscape metrics. 

The program is run as a tool in ArcMAP 10 (esri®) and can easily be implemented by 

users with no Python experience.

Software Specifics

PolyFrag is a unique program that computes fragmentation metrics using land cover maps 

in a vector format. In order to remain as user-friendly as possible, the program is 

packaged so that it can be added as a toolbox to ArcMAP 10 (esri®) with a well- 

documented input window (Figure 15). The program has the ability to compute class 

metrics for any number of different land cover classes, as well as accept different edge 

widths (here referred to as buffer widths) for different interacting classes. The land cover 

classes are placed in one of three categories: fragmented; fragmenter; and matrix. The 

fragmented classes are the classes being fragmented (e.g. forest), fragmenter classes are 

the classes affecting the fragmented classes (e.g. developed), and the matrix classes are 

the land cover types that are background or neither fragmented or fragmenter classes (e.g. 

water). Each interaction between a polygon of a fragmented class and a polygon of a 

fragmenter class can have a unique buffer width that represents the distance into the 

fragmented polygon the fragmenter polygon has an effect. Buffer widths are specific to 

each study, so the user of PolyFrag has complete control over these values.
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PolyFrag

PolyFrag has been created to compute fragmentation metrics for vector-based land cover maps. The tool outputs 
a shapefile representing areas of edge and core habitat, a second shapefile contains many of the patch-level 
fragmentation metrics, and a final text file contains class- and landscape-level metrics. Many of these metrics are 
modeled alter the metrics present in FRAGSTATS (McGarigal. K.. S A. Cushman, and E. Ene, 2012).

Figure 15. ArcMAP 10 tool window for PolyFrag. Each input or output has its own help screen.
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The program requires that the input land cover map be a .shp file and that the two 

output land cover maps also be in a .shp format. The two output maps are the Output 

Fragmented Land Cover shapefile and the Output Patch Metrics shapefile. The program 

also outputs a Class and Landscape Metrics text file. The Output Patch Metrics shapefile 

is the output map that contains patch-level metrics for each of the input patches. Each of 

these metrics can be seen in Table 12 under ‘Patch Metrics’. The remainder of the 

metrics, both class and landscape, are output into the Class and Landscape Metrics text 

file. Many of these metrics are fashioned after those presented in FRAGSTATS 

(McGarigal et al., 2012). PolyFrag computes many of the same metrics as FRAGSTATS 

because even though FRAGSTATS is restricted to raster datasets, it is still the foremost 

fragmentation program currently available. However, since PolyFrag uses vector datasets 

instead of raster, some of the metrics have changed somewhat from the original 

FRAGSTATS metrics to accommodate the change in data format.

Table 12. List of landscape metrics available in PolyFrag. The asterisks denote any 

metric that is optional. All metrics are modeled after those present in FRAGSTATS 

(McGarigal et al., 2012)

Fragmentation
Metric

Name Equation Description

Patch Metrics
AREA Patch Area The area o f  each polygon
PERIM Patch Perimeter The perimeter o f  each polygon

PARA
Perimeter to Area 
Ratio

PERIM
AREA

The perimeter to area ratio for 
each polygon

SHAPE* Shape Index
PERIM

A measure o f  shape complexity 
o f  a polygon27TJ a REA/tt

FRAC*
Fractal Dimension 
Index

2 ,n(PERIM/4) 

In AREA

Another measure o f  shape 
complexity
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CIRCLE*
Related
Circumscribing
Circle

AREA 

1 ^ P .L E N G T H /^ 2

P LENGTH = diameter of 
the smallest circumscribing 
circle

The area o f  a polygon divided 
by the smallest circumscribing 
circle around that polygon

CAI* Core Area Index

CORE AREA
----------------- * 1 0 0

AREA
CORE ART-A = area labeled 
core within that polygon

The percent o f  the total area o f  
a particular polygon that is 
actually considered core habitat

NEAR* Euclidean nearest 
neighbor distance

X
x = centroid to centroid 
distance to the nearest similar 
polygon

The distance to the nearest 
neighboring patch with the 
same label

PROX* Proximity Index
3T"' AREAj
Z. Xj2
i=l

The sum o f  all o f  the areas o f  
polygon with the same label 
divided by the distance to each 
polygon, limited to only those 
polygons that fall within a 
maximum search distance

Class and Landscaiie Metrics
CA Class Area Total area o f  each class

TA Total Area Total area o f  the landscape (all 
polygons)

PLAND Percentage o f  
Landscape

CA
r— * 100
TA

The percentage o f  the total 
landscape each class represents

NP Number o f  
patches

The number o f  patches in each 
class

PD Patch Density
NP
Z7T- * 100
TA

The number o f  patches in each 
class per 100 area units 
(hectares or acres)

LSI Landscape Shape 
Index

P

2nJA/ n
P = sum o f all o f  the 
perimeters for the polygons 
A = sum o f all o f  the areas 
for the polygons

The total perimeter o f  all 
polygons in a single class (in 
length units) divided by the 
minimum perimeter possible 
for the area covered by that 
class, as computed by the 
perimeter o f  a circle with the 
same area as the total area o f  
the class

LPI Largest Patch 
Index

LPA 
——— * 100 
TA

LPA = the area o f  the largest 
patch for the class(es) in 
question

The percentage o f  the total 
landscape area occupied by the 
largest patch

TE Total Edge
The sum o f  the areas o f  all o f  
the polygons classified as 
‘edge’

ED Edge Density
TE
zrr * 100
TA

The percentage o f  the total 
landscape area occupied by the 
edge polygons

TCA Total Core Area
The sum o f  the areas o f  all o f  
the polygons classified as 
‘core’
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CPLAND Core Percentage 
o f Landscape

TCA
^ r * i o oTA

The percentage o f  the total 
landscape area occupied by the 
core polygons

PR Patch Richness
The total number o f  classes in 
the landscape including any 
background classes

PRD Patch Richness 
Density

PR 
—  * 100 
TA

The number o f classes per 100 
area units

MESH* Effective Mesh 
Size

£ f=1AREA?
TA

A measure o f  the size o f  the 
patches (in area units) i f  all 
patches were evenly distributed 
throughout the landscape 
(including any background)

COHESION* Patch Cohesion 
Index ---------- --------------* 1 0 0

1 _  / v t a

A measure o f  the 
connectedness o f  the class(es) 
in question

CONNECT* Connectance
Index

£ PROX NUM
— 7------^ ----- * 1 0 0

n( n -  i y

PROX NUM = the number 
o f  polygons with the same 
label that fall within the max 
search distance

The percent o f  the total number 
o f patches that are patches o f  
the same class(es) in question 
within a maximum search 
distance

SHDI* Shannon’s 
Diversity Index

n

— Prj * In Pr4
i = l

CA,
Pr =  — - 

1 TA

One measure o f  diversity used 
in Landscape Ecology

SIDI*
Simpson’s 
Diversity Index

n

1 -  Pr,2
i = i

Another measure o f  diversity 
used in Community Ecology 
that is less sensitive to rare 
patches than SHDI

MSIDI*
Modified 
Simpson’s Index - I n ^ P r , 2

i - i

MSIDI transforms the SIDI 
value into a value comparable 
to SHDI

SHEI* Shannon’s 
Evenness Index

-Z " = iP ri * ln  Pr; 
In PR

One measure o f  evenness used 
in Landscape Ecology

SIEI* Simpson’s 
Evenness Index

l - S L i P r - i 2

1 -  VpR

Another measure o f  evenness 
used in Community Ecology

MSIEI*
Modified 
Simpson’s 
Evenness Index

- ln Z J L t P n 2 
In PR

MSIEI transforms the SIEI 
value into a value comparable 
to SHEI

The Output Fragmented Land Cover shapefile is the map that contains polygons 

classified as core, edge, etc., as well as some patch-level metrics for the core habitats. 

The input polygons in Fragmented Classes are classified as either ‘core’, ‘edge’, or

100



‘patch’ polygons. Edge polygons are classified based on the defined buffer widths, and 

any fragmented polygon area that falls within the designated buffer width is given an 

‘edge’ classification. The remaining fragmented polygon area is classified as either 

‘core’ or ‘patch’ based on its size and a user defined minimum core area (anything 

smaller than the given minimum core area size is a ‘patch’). Polygons in the Fragmenter 

Classes are classified as ‘fragmenting’ and all other polygons, or background polygons, 

are classified as ‘matrix’ (Figure 16).

Oj 75 [i5<>______ ! 300 Meters
■ 1 ■ 1 tl I 1 _1 LI I

Legend
Agricultural L and, fragm enting  

B arren  Land, fragm enting 

j 1 D eveloped L and, fragm enting

j j F o rest, core

F o rest, ed g e  

F o rest, patch

 j Scrub  Land, m atrix

m  W ater, matrix 

W etlands, co re  

W etlands, e d g e  

W etlands, p a tch15 Kilometers

Figure 16. Example of the Output Fragmented Land Cover shapefile from PolyFrag. 

The map was created using a vector version of NOAA’s Coastal Change Analysis

101



Program (C-CAP) land cover map for the Coastal Watershed of New Hampshire. The 

forest and wetlands classes are being fragmented by different anthropogenic classes.

Each of the output shapefiles have attribute tables describing each of the polygons 

(Figure 17). The attribute tables of each of the shapefiles contain the original 

classification of each of the polygons as well as more specific patch metrics about each of 

the polygons. The Output Fragmented Land Cover shapefile differs from the Output 

Patch Metrics shapefile in that it also has a fragmentation class for each of the polygons 

and many of the metrics are only computed for the core polygons (Figure 17a). The Core 

Area Index (CAI) metric is also only computed in the Output Patch Metrics shapefile 

(Figure Mb). For a manual check of the computations made my PolyFrag, please see 

Appendix C.
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(a)

J i l ' S ' S i S  •. x
&&&&&&f l i p m m sai?

no Shape * 8road_Ctas FRAG AREA PERIMETER PARA SHAPES FRAC P_LEHGTH CIRCLE HEARJHST PROX PROX HUM
5134 Polygon Forest patch 100 40 0.4 0 0 0 0 0 0 0
S134 Polygon Forest patch 3150 270 0.08S7 0 0 0 0 0 0 0
5134 Polygon Forest patch 225 60 0.2667 0 0 0 0 0 0 0
5134 Polygon Forest core 14900 1816000 0.0122 41.968 1.5316 32234.751 0.8174 1591.7514 0 0
5134 Polygon Forest core 54330 678465.128 0.0125 25.9659 1.5078 21606.215 0.8518 1562.8874 0 0
1211 Polygon Forest edge 2957.1 357.S982 0.1209 0 0 0 0 0 0 0
1211 Polygon Forest edge 6650.2 705.5043 0.1061 0 0 0 0 0 0 0
1211 Polygon Forest edge 2183.4 271.1435 0.1242 0 0 0 0 0 0 0

M < 0 > M [ § ] ■  (0 out of 178503 Selected) 

’lout fraai

(b)

ou

3 * 1b -  % 3 l  ’ *.■ x
X

FID Shape* Broad Cias AREA PERIMETER PARA SHAPES FRAC P.LENGTH CIRCLE NEARJM5T PROX PROXJIUM CA!

h 
u

>

; - 3889 Polygon Forest 2700 240 0.0889 1.3029 1.0364 84.853 0.5225 147.6482 3.1946 52 0
3889 Polygon Forest 20700 720 0.0348 1.4117 1.0451 228.473 0.4951 124.9181 2.4965 42 94.7
3889 Polygon Forest 7200 540 0.075 1.7952 1.1046 161.555 0.6488 122.1487 2.3674 45 0
3889 Polygon Forest 7200 420 0.0583 1.3963 1.048 134.164 0.4907 105.2675 0.7188 62 0
3889 Polygon Forest 2700 240 0.0889 1.3029 1.0364 84.853 0.522S 72.111 2.133? 52 0
3889 Polygon Forest 1800 180 0.1 1.1968 1.0157 67.082 0.4907 124.673 0.8471 36 0
3889 Polygon Forest 1800 180 0.1 1.1968 1.0157 67.082 0.4907 550.3181 0.0417 9 0
3889 Polygon Forest 2700 240 0.0889 1.3029 1.0364 94.868 0.618 106.1323 1.8122 37 0

j *4 4 l  ► m p | M  (0 o u t o f 128475 Selected) 

! out_stat j

Figure 17. Example attribute table outputs for (a) the Output Fragmented Land Cover

shapefile and (b) the Output Patch Metrics shapefile.

Software Uses

PolyFrag is useful for a variety of studies. The flexibility in defining fragmenter and 

fragmented classes, as well as the ability to define the edge width caused by the 

interactions of these classes, means that this program can be used in a plethora of 

environments and at many different scales. The program can be used at the landscape 

level, as demonstrated in Figure 16 using the Coastal Watershed of New Hampshire 

(NH), which is a Hydrologic Unit Code 8-digit level (HUC-8) watershed. In this 

example, buffer widths for the agricultural land into the forest land were smaller than

103



those for the developed land and the forest land. This example may be used to predict 

potential habitat for Autumn-olive (Elaeagnus umbellata), an invasive shrub in NH that 

prefers habitat with high sunlight and low disturbance, such as along forest edges 

(Johnson et a l, 2006). However, PolyFrag is just as applicable when looking for suitable 

nest sites for bumble bees (Hymenoptera: Apidae) on a farm in the southwestern United 

Kingdom (Figure 18). The program could be used by landowners concerned with 

managing for bumble bee habitat, to predict the most valuable habitat to keep. Mapping 

the interaction between land cover types is important for bumble bee management, since 

these bees tend to prefer sites along edges between forests and uncultivated fields, but 

still favor any forest edge over open fields or forests (Svensson et al., 2000; Kells and 

Goulson, 2003).
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Figure 18. Example of the Output Fragmented Land Cover shapefile from PolyFrag. 

The map was created using a vector land cover map created using photointerpretation of 

digital aerial imagery from a farm in southwestern England, with the farmhouse in the 

northeastern comer of the property. Yellow, or edge, represents the preferred bumble bee 

nesting habitat on the property, with the largest edge width into the ‘Other open’ land 

cover class.
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One of the strengths of the PolyFrag program is that inputs are relatively simple to 

modify to fit the particular needs of a study. Another strength of PolyFrag is that it is 

implemented as a tool in ArcGIS (esri®). As such, PolyFrag is meant to be a very user 

friendly tool for researchers looking to compute basic landscape metrics for a particular 

land cover map. However, it is also just a starting point. Future research in landscape 

fragmentation and fragmentation metrics will hopefully lead to powerful additions to 

PolyFrag.

Conclusions and Future Directions

With the introduction of PolyFrag, fragmentation metrics can now be computed using 

land cover maps in vector format. The comprehensiveness and ease of use of the 

program will ensure that users will not have to convert land cover maps to raster datasets, 

thereby avoiding the possibility of losing some precision in their data. PolyFrag is also 

quite flexible, and may be easily modified to meet future needs. For instance, recent 

studies show that some of the more traditional isolation metrics, such as NEAR or PROX 

may not be the most appropriate measures of isolation for a landscape (Kupfer, 2012). 

Therefore, more research must be done to verify newer metrics of isolation, and then 

incorporated into PolyFrag. The goal is that users of the program will write additional 

metrics that can be incorporated into the PolyFrag code. Collaboration within the 

Landscape Ecology community will ensure that the new and most useful metrics are 

integrated into PolyFrag in a timely manner.
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CHAPTER VI

A REVIEW OF USING FRAGMENTATION PROGRAMS TO IDENTIFY 

POSSIBLE INVASIVE SPECIES LOCATIONS 

Abstract

When predicting locations of woody invasive species, mapping habitat fragmentation can 

be an important part of the prediction process. There are many different fragmentation 

mapping programs, each computing a unique set of fragmentation metrics to be used in 

creating a model for attaining probabilities of invasive species presence. In this study, we 

compare the results from four prevalent, freely available, fragmentation programs: 

FRAGSTATS; the Landscape Fragmentation Tool; Shape Metrics; and Patch Analyst, 

and one new program: PolyFrag. FRAGSTATS and PolyFrag created prediction maps 

with the highest accuracies and were relatively easy to use. FRAGSTATS is 

recommended for use with raster datasets, while PolyFrag is recommended for vector 

datasets. Both of the programs compute similar fragmentation metrics and each model 

found similar metrics were significant in predicting invasive species presence. Both 

programs predicted that woody invasive species were less likely to be found in deciduous 

forests than in either mixed or coniferous forests.
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Introduction

Woody invasive species have become an important concern in a number of scientific 

fields due to the impact of these invasive species on natural communities (Henderson et 

a l, 2006). One of the factors enhancing the spread of invasive species is the growth and 

mobility of the human population. Population growth and urbanization has impacted our 

natural systems in a number of ways, including land use change and increased habitat 

fragmentation. In turn, habitat fragmentation and disturbance has been linked to 

increased vulnerabilities of habitats to invasion by exotics (Moran, 1984; With 2002; 

Fahrig, 2003; Turner, 2005; Johnson et a l, 2006; Fischer and Lindenmayer, 2007; Brown 

and Boutin, 2009).

When studying landscape fragmentation, land cover maps and fragmentation programs 

are essential. Land cover maps are necessary to show the current and changing state of 

the landscape, while fragmentation programs compute fragmentation metrics to describe 

the state of a landscape based upon those land cover maps (Gustafson, 1998; McGarigal 

and Cushman, 2002; Riitters et al., 2002; Turner, 2005; Parent et al., 2007; Vogt at al., 

2007; CLEAR, 2009; MacLean and Congalton, 2012c; McGarigal et a l, 2012; Rempel et 

al., 2012). There are numerous fragmentation programs that require different types of 

land cover maps and produce many different fragmentation metrics (e.g. Riitters et al., 

2002; Parent et al., 2007; Vogt at al., 2007; MacLean and Congalton, 2012c; McGarigal 

et al., 2012). Each of these fragmentation programs may be useful in different settings. 

In this study we sought to determine which fragmentation program, of five tested, 

performed best when trying to predict the presence of woody invasive species.
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The study area for this analysis was the Coastal Watershed in Southeastern New 

Hampshire. The watershed’s natural landscape contains forested areas as well as many 

small wetlands. However, the population of this area increased 52% in the 30 year time 

period between 1980 and 2010, and has subsequently seen an expansion of urban areas 

within that time. The area has also seen a substantial increase in the spread of woody 

invasive species, due in part to the changing land use types (Johnson et al., 2006). Many 

studies have shown a positive correlation between woody invasive species and disturbed 

landscapes, such as old agricultural fields (e.g. With, 2002; Johnson et al., 2006; Brown 

and Boutin, 2009), or forest edges (e.g. Moran, 1994; Brothers and Spingam, 1992), both 

of which are commonly a consequence of urbanization and land use change. However, 

little has been done in this study area to identify which particular landscape 

characteristics, or fragmentation types, may increase the likelihood of invasion by these 

exotics, as found using land cover and fragmentation mapping. Knowing the 

fragmentation types that increase invasion potential would be extremely helpful for 

conservation agencies or landowners attempting to protect their natural landscapes from 

invasive species. Therefore, mapping landscape fragmentation has strong potential in 

this area. However, determining which fragmentation types are useful in predicting 

invasion potential can be quite difficult for a number of reasons.

First, while land cover maps are a necessary part of fragmentation mapping, they are 

a source of error, since no land cover map is ever 100% accurate (Foody, 2002; 

Congalton and Green, 2009). Also, most land cover maps are in one of two formats: 

vector or raster. Some fragmentation programs will only accept raster datasets, while 

others will only work with vector datasets. While it is possible to convert between the

109



two formats, it is generally not recommended (Congalton, 1997). Therefore, the land 

cover map chosen for a study can restrict the fragmentation programs available for use. 

Second, the collection of invasive species data can be very difficult to work with, 

especially since sampling is often done on a presence-only basis without a statistically 

sound sampling protocol (Peterson, 2003). Unless a massive and costly sampling effort 

is undertaken, less than ideal data are often the only data available for predicting invasion 

presence.

Finally, the fragmentation programs themselves can be quite influential in 

determining the success of mapping invasion potential. Each program computes a unique 

set of metrics that can help to predict invasion potential. If a program is chosen that does 

not compute the metric that best predicts potential, some power is lost when modeling 

potential presence. Since each fragmentation program has unique advantages and 

disadvantages, and can radically influence the accuracy of a map of potential invasion, it 

is important that the best program be chosen. As part of the current work, we compared 

the outputs of five fragmentation programs to determine which of these programs 

performed best when identifying potential areas of woody invasive species presence 

within the Coastal Watershed.

Some fragmentation programs are available for purchase, while others are free to use, 

but may require other purchased software such as ArcGIS (esri®). The current study is 

limited to the programs that are either free to use, or only require ArcGIS and are 

otherwise free, since these programs are the most widely used and easily accessed 

programs for computing fragmentation metrics (e.g. Riitters et al., 2002; Parent et al., 

2007; Vogt at al., 2007; McGarigal et al., 2012). The specific programs addressed here
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are: FRAGSTATS; the CLEAR Landscape Fragmentation Tool (LFT); the CLEAR 

Shape Metrics tool; Patch Analyst; and PolyFrag. As discussed below, each of these 

programs has different requirements (such as data format type accepted), flexibilities 

(such as edge width properties), and outputs.

FRAGSTATS

FRAGSTATS is one of the more widely known and used fragmentation programs 

(MacLean and Congalton, 2012c). The program was first introduced in 1995 as version 2 

by McGarigal and Marks (1995). Due to the wide variety of fragmentation metrics that 

can be computed using FRAGSTATS, and because it is free to use and independent of 

other programs, versions 2 and 3 have been widely used over the past decade and a half 

by landscape ecologists. These FRAGSTATS metrics include estimates of core area 

within habitat patches, proximity or isolation of patches, and many others. The program 

relies on the equal area grid cells of raster datasets to compute these estimates, so only 

land cover maps in a raster format are compatible with FRAGSTATS. Users are able to 

decide which metrics to run on their landscape, as well as define an edge width that is 

appropriate for their study. Edge widths are generally defined as how far into a given 

habitat effects of other habitats may be detected, and these widths can change depending 

on what is being studied.

In March of 2012 FRAGSTATS 4.0 was introduced with many new capabilities 

(McGarigal et a l, 2012). The new program computes essentially the same metrics as the 

earlier version, but with a more user-friendly graphical user interface (GUI) and with 

some added flexibility. The new program allows users to define unique edge widths for
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different interacting land cover types. This added functionality is incredibly important 

for landscape ecologists, since it is unlikely that all landscapes have the same effects on 

the habitat of interest. However, version 4.0 still relies on raster datasets to compute 

fragmentation metrics, so vector datasets continue to be incompatible with FRAGSTATS. 

Another limitation of FRAGSTATS involves the fact that the output of the fragmentation 

metrics is strictly in a tabular format. Therefore, additional data manipulation is 

necessary to associate patch metrics with a visuospatial representation of the patches.

CLEAR Landscape Fragmentation Tool

The University of Connecticut’s Center for Land Use Education and Research (CLEAR) 

has created a few tools for visualizing and creating fragmentation metrics. The two 

programs studied here are the Landscape Fragmentation Tool (LFT) and the Shape 

Metrics tool. Both programs are written in Python and are used as tools within esri®’s 

ArcToolbox in ArcGIS 9.2 or higher (CLEAR, 2009). Since the programs are used as 

tools in ArcGIS, ArcGIS is necessary for these programs, but an advantage is that they 

are fairly straightforward and easy to use for anyone familiar with ArcGIS tools. LFT 

has two versions, vl.O and v2.0, and each version maps landscape fragmentation. LFT 

v2.0 is more widely used than vl.O and is the version that was chosen for use in this 

analysis (CLEAR, 2009). LFT v2.0 is a program used to reclassify complex raster 

datasets into fragmentation maps using four different categories: patch; edge; perforated; 

and core. While the output is a raster fragmentation map with simple categories, the map 

does not retain the initial categories or compute any landscape metrics. LFT also lacks 

the ability to deal with differently sized edge widths. Unlike FRAGSTATS that can deal
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with many different landscape interaction types, LFT assumes all edges between land 

cover types are identical.

CLEAR Shape Metrics Tool

Shape Metrics computes many landscape metrics for polygons, such as proximity 

index, spin index, dispersion, cohesion, etc., that have historically been difficult to 

compute for polygons (CLEAR, 2009). This tool computes these metrics by creating 

many evenly distributed sample points within each polygon and along the perimeter of 

the polygon, and then uses the distribution of these points to compute the metrics. 

However, this tool does not compute any landscape metrics and only computes patch 

metrics for individual polygons of interest (not all polygons). Since each polygon in the 

analysis must be turned into a series of points, Shape Metrics can take a great deal of 

processing time if many polygons are chosen for analysis. Fortunately, this tool only 

computes metrics that are useful in specific instances and therefore can be limited to the 

polygons where these shape metrics are necessary.

Patch Analyst

Like LFT and Shape Metrics tools, Patch Analyst (PA) is a program that is run as an 

extension to the ArcGIS (esri®) platform. Therefore, PA is user friendly and easy to 

employ for those familiar with ArcGIS, but ArcGIS is necessary to run PA. PA is 

modeled after the original FRAGSTATS program, but unlike FRAGSTATS has the 

ability to compute fragmentation metrics on vector shapefiles (Rempel et ah, 2012). 

Many of the fragmentation metrics generated in PA are the same as those generated in
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FRAGSTATS, but in addition to these metrics, a map of the patches is output into a 

vector layer and attribute table. The layer can then be viewed in ArcGIS. The creation of 

an output spatial map of polygons with fragmentation metrics attributes makes for much 

easier spatial analysis of the data. In addition, PA has additional capabilities that 

FRAGSTATS does not, including creating hexagon regions and attribute modeling, 

which are useful for species specific investigations such as range and habitat mapping.

However, PA has very little flexibility when defining habitats of interest or edge 

widths. Even in PA 5.1 (the newest version of PA for use in ArcGIS 10, updated in April 

of 2012), all patches are analyzed in the same way, and only a single edge width can be 

defined. Also, core area and patch metrics must be computed separately. The limited 

flexibility of the program makes it less than ideal for complex landscapes or more 

elaborate studies. For example, if there are many different land cover types with different 

interactions, PA is limited in its ability to model these intricacies.

PolvFrag

PolyFrag was introduced in 2012 by MacLean and Congalton (2012c). The program is 

written in Python and is used as a new tool in esri®’s ArcToolbox for ArcGIS 10 or 

higher. Like both PA and the CLEAR tools, PolyFrag is very user friendly for those 

familiar with ArcGIS, but the ArcGIS software is necessary to use PolyFrag. Similar to 

PA, PolyFrag is designed to compute common fragmentation metrics on vector 

shapefiles. Also like PA, PolyFrag outputs shapefiles with attribute tables addressing the 

patch metrics, as well as a text file containing class and landscape metrics. However, the 

design of the PolyFrag tool is more cohesive than that used in PA, with both patch
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metrics and core areas created in a single process. PolyFrag is also more comparable to 

FRAGSTATS than PA, computing most of the metrics available to compute for raster 

data in FRAGSTATS (McGarigal et a l, 2012). Like FRAGSTATS, PolyFrag also has 

the ability to define different edge widths, so different landscape interactions can be 

addressed.

Since PolyFrag attempts to compute many of the same metrics that are computed in 

FRAGSTATS, only with vector data, some modifications were made to the metrics so 

that polygons rather than rasters could be used. Therefore, some of the metrics are not 

directly comparable, although they are quite similar. Other metrics from FRAGSTATS 

are highly dependent on rasters and so are not computed in PolyFrag. Despite these 

modifications and omissions, PolyFrag is the most similar fragmentation program to the 

widely recognized FRAGSTATS, and the most comprehensive program for computing 

fragmentation metrics using vector data. The added flexibility of defining different edge 

widths and different fragmenting and fragmented classes makes PolyFrag much more 

user friendly than many of the other fragmentation programs.

Each of the five programs described above was used to compute fragmentation 

metrics for the Coastal Watershed. These metrics, along with woody invasive species 

locations, were analyzed to determine which metrics were most useful in predicting 

woody invasive species presence. Our aim was to quantitatively determine which of 

these fragmentation programs produced the best results for predicting invasive species 

location, as well as qualitatively assess which of these programs had the highest ease of 

use, especially for those researchers least familiar with creating fragmentation maps.
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Methods 

Land Cover Map and Invasive Species Data

A 2010 land cover map of the Coastal Watershed was used as the base land cover map 

for each of the five processes used to assess the current state of fragmentation of the 

watershed. The Coastal Watershed is a Hydrologic Unit Code 8-digit level (HUC-8) 

watershed and is just over 200,000 hectares in size. The map was chosen since it is the 

most up to date map of the Coastal Watershed and had the necessary land cover types for 

assessment. The land cover map was created using the same protocol as the multi-date 

maps created in MacLean and Congalton (2012b), and was created using five Landsat 

5TM images from throughout the year 2010. These Landsat images were stacked 

(without the thermal band), along with NDVI and three Tasseled Cap derivative bands 

per image, and treated as a single multi-banded image throughout the classification 

process. An Object-Based Image Analysis (OBIA) approach was used to group pixels 

into polygons, and those polygons were then classified using a Classification and 

Regression Tree (CART) approach, all within eCognition (Trimble®). The classification 

process resulted in a vector-based land cover map with eight different land cover classes 

ready for analysis (Figure 19).
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Figure 19. The 2010 vector land cover map used to study the Coastal Watershed of New 

Hampshire.
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The classes from the 2010 land cover map were treated as fragmented, fragmenting, 

or background land cover types in the fragmentation mapping process (Table 13). The 

fragmented, fragmenting, and background land cover types remained the same 

throughout each of the analyses. The fragmented land cover types are the land cover 

types that are being affected by the fragmenting land cover types. Edge widths are 

defined as the area being impacted by the fragmenting land cover types, and these areas 

of edge are found solely within the fragmented land cover types along the boundary 

between the fragmented patch and the fragmenting patch.

Few studies have conclusively determined a maximum edge width for invasive 

species (Moran, 1984; Brothers and Spingam, 1992). For instance, in their study, 

Brothers and Spingam (1992) found that most plant invasive species were not found at 

any substantial population size more than eight meters within established forest plots, and 

Moran (1984) found that 30 meters into an established forest, effects of anthropogenic 

forces were far less prevalent, with boundaries with residential areas having the highest 

association with invasive species. For this study, the natural landscapes of concern for 

invasive species are the forests and wetlands of the Coastal Watershed. Therefore, after 

reviewing studies attempting to determine how far within forested landscapes woody 

invasive species are usually found, the edge widths were defined very conservatively.
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Table 13. Each land cover class was placed in one of three categories: Fragmented 

classes; Fragmenting classes; and Background classes; depending on how each class was 

interacting with the landscape.

Fragmented Fragmenting Background
Deciduous Forest Active Agriculture Open Water
Coniferous Forest Developed

Mixed Forest Cleared/Other Open
Wetlands

The woody invasive species analyzed in this study were identified and located by The 

Nature Conservancy (TNC) in an effort to inventory their lands surrounding Great Bay in 

the Coastal Watershed (Glode, 2012). Each of the TNC properties on the northeastern 

side of Great Bay was surveyed and all locations of woody invasive species were 

recorded in detail, resulting in nearly 1000 data points representing invasive species 

presence (Figure 20). Twelve different woody invasive species were identified within the 

TNC properties (Table 14). However, since the data were recorded as presence-only, in 

order to create predictive models, pseudo-absence points were also created (Zaniewski et 

al., 2002; Anderson et al., 2003; Brotons et al., 2004; Elith et al., 2006; VanDerWal et 

al., 2009; Barbet-Massin et al., 2012). Since logistic regression was used to create the 

predictive models, the pseudo-absence points could be randomly located throughout TNC 

lands without weighting, given the assumption that TNC recorded every location of 

invasive species presence (VanDerWal et al., 2009; Barbet-Massin et al., 2012). One- 

thousand pseudo-absence data points were created with at least 15 meters between all of 

the pseudo-absence points, as well as between the pseudo-absence points and the 

presence points. Fifteen meters was chosen as the largest reasonable distance between 

points given the limited area of the TNC properties. Half of the invasive species data



points (both presence and pseudo-absence) were used as training data points for the 

creation of the predictive models, while the other half were set aside to be used as 

validation data for the accuracy assessment of the predicted fragmentation maps.

2010 Land Cover Map - TNC Lands | 
Class
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C leared/other open  
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D eciduous 
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•  Invasive Species Locations
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Figure 20. The 2010 land cover map clipped to the extent of the sampled TNC 

properties with known invasive species locations shown in red. The underlying imagery 

was acquired by the National Agriculture Imagery Program (NAIP) in 2006.
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Table 14. The list of invasive species found within the TNC properties.

Scientific Name Common Name (type)
Acer platanoides 
Berberis thunbergii 
Berberis vulgaris 
Celastrus orbiculatus 
Elaeagnus umbellata 
Euonymus alatus 
Lonicera spp 
Rhamnus cathartica 
Frangula alnus 
Robinia pseudoacacia 
Rosa multiflora 
Rosa rugosa

Norway Maple (tree)
Japanese Barberry (shrub) 
European Barberry (shrub) 
Oriental Bittersweet (woody vine) 
Autumn-olive (shrub)
Winged Euonymus (shrub) 
Honeysuckle (shrub/vine) 
Common Buckthorn (shrub) 
Glossy Buckthorn (shrub)
Black Locust (tree)
Multiflora Rose (shrub)
Japanese Rose (shrub)

Fragmentation Map and Predictive Map Creation

The 2010 land cover map was used in each of the five tested fragmentation programs. In 

order to facilitate the direct comparison of results, each of the five programs was run with 

as similar parameters as possible, given the unique constraints of each program. All five 

programs were used to create a fragmentation map that in turn was used to determine 

which fragmentation metrics were best for predicting the presence of woody invasive 

species. The significant metrics from each program were determined using logistic 

regression, and the models were used to create maps of predicted probability of woody 

invasive species presence. The results of each of the fragmentation programs were 

judged both qualitatively and quantitatively. The usability, flexibility, and output 

generation were compared qualitatively, while the accuracies of the prediction maps 

generated by each of the models were compared quantitatively.

FRAGSTATS

Since the base land cover map is a vector dataset and FRAGSTATS will accept only 

raster datasets for analysis, the base map had to be converted to raster before it could be

121



used in FRAGSTATS. To do this conversion in ArcGIS, the polygons of the original 

land cover map were divided into 30 m x 30 m raster cells (the same size as the original 

Landsat 5TM pixels) using the majority rule to classify the resulting cells. This raster 

map was then used in FRAGSTATS to compute all patch, class, and landscape metrics 

available within the program. The analysis also took advantage of the ability to define 

different edge widths between land cover types (Table 15). The resulting FRAGSTATS 

output included three tables, one for each level of metrics: patch; class; and landscape; 

and a raster file numbering the groups of pixels from the original land cover map into the 

patches used when computing the metrics. However, a map of the areas considered 

‘edge’ or ‘core’ is not output in FRAGSTATS, so only the patch metrics of the entire 

patch could be used in this analysis. Several steps, including processing the output tables 

so that they could be joined with the output raster, were necessary so that the patch 

metrics from FRAGSTATS could be given a spatial location.

Table 15. Edge width used between fragmented and fragmenting classes. All edges are 

into the fragmented class patch and do not affect the fragmenting class patch.

Fragmented Class Fragmenting Class Edge Width (meters)
Deciduous Forest Active Agriculture 15
Deciduous Forest Developed 20
Deciduous Forest Cleared/Other Open 5

Mixed Forest Active Agriculture 15
Mixed Forest Developed 20
Mixed Forest Cleared/Other Open 5

Coniferous Forest Active Agriculture 15
Coniferous Forest Developed 20
Coniferous Forest Cleared/Other Open 5

Wetlands Active Agriculture 20
Wetlands Developed 35
Wetlands Cleared/Other Open 5
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Once the patch metrics table was joined with the output patch map from 

FRAGSTATS, the locations of either presence or pseudo-absence of woody invasive 

species were overlain onto the FRAGSTATS map. The patch metrics raster was then 

intersected with the known locations of woody invasive species, resulting in a vector file 

containing the points of presence or absence of woody invasive species as well as the 

values of the fragmentation metrics of those locations as computed in FRAGSTATS. A 

model was created in JMP (Version 7, SAS Institute Inc.) using logistic regression to 

determine the significant metrics for predicting invasive species presence. For 

FRAGSTATS, only a few of the many metrics were found to be significant in predicting 

invasive species presence (Table 16). A model was created using these significant 

metrics (Equation 1) which was then used to compute a predicted probability, using 

Equation 2, for each location within TNC study area, resulting in a predictive map for 

invasive species presence. The accuracy of the predicted fragmentation map was then 

assessed using the presence and pseudo-absence validation data.
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Table 16. The significant predictors of the presence of woody invasive species as 

determined by FRAGSTATS. Where: CLASS is the land cover type, which is a 

categorical metric; CIRCLE is the related circumscribing circle; CONTIG is contiguity 

index; and ENN is functional nearest neighbor distance. For further discussion of these 

metrics, please see McGarigal and Cushman (2012).

Metric Estimate p-value
Intercept 4.334 <0.0001
CLASS [Active Agriculture] 0.623 0.0003
CLASS[Cleared/Other Open] -0.758 <0.0001
CLASS[Deciduous Forest] -0.460 0.0103
CIRCLE 1.907 0.0165
CONTIG -6.579 <0.0001
ENN -0.002 0.0016

a = 4.334 + 0.623 * CLASS[Active Agriculture] — 0.758 * CLASS[Cleared/

Other Open] -  0.460 * CLASS[Deciduous Forest] * 1.907 * CIRCLE -  6.579 * 

CONTIG -  0.002 * ENN (1)

P = 1/ ( l  +  e - a) (2)

CLEAR Landscape Fragmentation Tool

The process for creating the predictive map using LFT is similar to that used for 

FRAGSTATS, and the same raster land cover map was used in both analyses. LFT, 

however, does not have the ability to define different edge widths, and the one edge 

width that is chosen must be larger than a single pixel. To meet these criteria, and to 

equal the largest edge width defined for FRAGSTATS, an edge width of 35 meters was 

chosen for this application, though pixels are only defined as “edge” if their centroids fall 

within the edge width distance. Since LFT only outputs four different fragmentation
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cover types and does not retain any of the original land cover types or compute any 

further statistics on its own, only the fragmentation cover types could be used to create a 

predictive model. In order to keep LFT analysis similar to those used for the other 

fragmentation maps, a logistic regression was again performed, assigning predictive 

values to each of the fragmentation types (Table 17), and a predictive map was created 

from that model.

Table 17. The significant predictors of the presence of woody invasive species as 

determined by LFT, where TYPE is the fragmentation cover type.

Metric Estimate p -value
Intercept -0.138 0.3049
TYPE[fragmenting] 0.449 0.0025
TYPE[edge] 0.138 0.4916
TYPE[core] -0.085 0.8142

CLEAR Shape Metrics Tool

A similar analysis was completed using Shape Metrics, but since Shape Metrics can 

accept vector-format datasets, the original vector land cover file was used. The specific 

metrics computed by Shape Metrics were computed for all of the fragmented land cover 

types, and the resulting Shape Metrics were joined with the original polygons of the TNC 

properties, resulting in a set of polygons representing fragmented land cover types and 

non-fragmented land cover types. A set o f new metrics were found to be significant in 

predicting invasive species presence (Table 18). A separate predictive map was also 

created using this model.
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Table 18. The significant predictors of the presence of woody invasive species as 

determined by Shape Metrics.

Metric Estimate p-value
Intercept -0.138 0.0425
Perimeter -0.0006 0.0020
Proximity 0.014 0.0009

Patch Analyst

The analysis using PA was quite similar to those using FRAGSTATS and LFT. 

However, because, like Shape Metrics, PA works with vector datasets, the conversion to 

raster was not necessary prior to creating the fragmentation map. Also, because PA runs 

landscape statistics separately from creating core areas, one map of patch metrics was 

created, as well as another map for core areas of fragmented land cover types (listed in 

Table 13). Like LFT, PA will only allow for a single edge width to be defined, so an 

edge width of 35 meters was defined to match that of LFT fragmentation map. The core 

map was then intersected with the fragmentation metrics map in order to create a 

complete map of fragmentation as well as an attribute file with all of the fragmentation 

metrics for the landscape. This combined map was intersected with the presence/pseudo­

absence data.

Also as part of the PA analysis, another model was created using logistic regression, 

and a different set of metrics were found to be significant in predicting invasive presence 

(Table 19). A new predictive model was created, as well as a new predictive map. This 

new predictive map was created by giving each polygon in the fragmentation map a 

predicted probability of the presence of woody invasive species as computed by the 

model.
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Table 19. The significant predictors of the presence of woody invasive species as 

determined by PA. Where: SI is the shape index; PAR is the perimeter-area ratio, and FD 

is fractal dimension. For further discussion of these metrics, please see Rempel et al. 

(2012).

Metric Estimate p-value
Intercept 55.577 0.0099
CLASS[Active Agriculture] 1.036 0.0019
CLASS[Coniferous Forest] 1.104 0.0006
CLASS[Mixed Forest] 0.790 0.0017
CLASS[Open Water] -4.662 <0.0001
FRAG [core] -0.803 0.0013
Area 9.37e-6 0.0016
Perimeter -0.001 0.0019
SI 5.005 0.0025
PAR 115.232 0.0004
FD -50.411 0.0071

PolyFrag

The steps for creating the predictive map using PolyFrag were most similar to those 

of FRAGSTATS. However, PolyFrag computes fragmentation metrics using vector 

datasets, so no conversion to raster was necessary. Similar to FRAGSTATS, PolyFrag 

can accept many different edge widths defined between different land cover types. 

Therefore, the same edge widths were used as in FRAGSTATS (Table 15). PolyFrag 

computes patch metrics on patches as a whole in one vector shapefile, as well as patch 

metrics on core areas in another shapefile. For the purposes of creating a model to 

predict invasive species location, both of these shapefiles were combined prior to 

intersecting the map with invasive species data. Once the invasive species data were 

intersected with the combined fragmentation map, another model was created using 

logistic regression and another set of metrics unique to PolyFrag were found to be
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significant in predicting invasive presence (Table 20). A new predictive model was 

created, as well as a new predictive map for PolyFrag. The predictive map was created in 

the same way as with PA, but using the PolyFrag predictive model.

Table 20. The significant predictors of the presence of woody invasive species as 

determined by PolyFrag. Where: PARA is the perimeter-area ratio; PROX is the 

proximity index; and PROX NUM is the number of nearest neighbors within a search 

radius. For further discussion of these metrics, please see MacLean and Congalton 

(2012c).

Metric Estimate p-value
Intercept -1.142 0.0002
CLASS[Active Agriculture] 0.884 0.0006
CLASS[Coniferous Forest] 1.018 0.0009
CLASS[Mixed Forest] 1.009 0.0006
CLASS [Open Water] -3.786 <0.0001
FRAG[core] -1.214 0.0004
PARA 41.532 <0.0001
PROX -1.561 <0.0001
PROX NUM 0.323 0.0002

Results and Discussion

All five of the probability maps that were created in this analysis show slightly different 

results (Figure 21 through Figure 25). In a qualitative assessment of the maps, it is 

quickly apparent that LFT and Shape Metrics tool produced unique and startling results. 

Looking at the probability models, it is not surprising that these results did not match 

those from the other programs. LFT model could only predict invasive presence 

probability using fragmentation land cover types (i.e. core, edge, or fragmenting land 

cover types). Therefore, only three probability levels are observed, with the highest
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potential for invasion in the fragmenting land cover types (Figure 22). Shape Metrics 

only produced metrics for the fragmented land cover types, so no information from the 

fragmenting land cover types was used for probability modeling. Therefore, the 

probability of invasive presence is purely based on the perimeter of the polygon and the 

proximity of all interior points of a polygon to the centroid of that polygon (a measure of 

compactness). Since proximity was not computed for non-fragmented polygons, their 

probability was purely based on the perimeter of the polygon, which is why most of the 

polygons fall in the same 0.25-0.5 probability range (Figure 23).

While the predictive models for both PA and PolyFrag were the most similar, the 

predictive maps produced are visually quite different (Figure 24 and Figure 25). Both 

models predicted a positive relationship between presence and Active Agriculture, 

Coniferous Forest, and Mixed Forest, as well as a negative relationship between presence 

and Open Water and Core Areas. However, the magnitude of these relationships differed 

among the two models. Another difference involved how edge widths were defined. It is 

clearly seen in the PA fragmentation map that the larger edge width, as well as area and 

perimeter, were quite important in determining predicted probabilities (Figure 24). The 

PolyFrag map (Figure 25) is more similar to the FRAGSTATS fragmentation map 

visually, but at first glance it appears that the FRAGSTATS model predicted a few more 

areas with high probability (0.75-1) of invasive presence (Figure 21). However, upon 

further inspection, these locations are actually areas of Open Water, which is a 

background fragmentation land cover type. In FRAGSTATS, no metrics are computed 

for background classes, so these high probability areas are actually false positives due to 

the absence of fragmentation metrics computed for these areas.
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Figure 21. The predicted probability map created by FRAGSTATS for the TNC 

properties.
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Figure 22. The predicted probability map created by LFT for the TNC properties.
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Figure 23. The predicted probability map created by Shape Metrics for the TNC 

properties.
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Figure 24. The predicted probability map created by PA for the TNC properties.
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Figure 25. The predicted probability map created by PolyFrag for the TNC properties. 

Quantitative Assessment of the Fragmentation Programs

An accuracy assessment was completed for each of the five fragmentation maps using 

traditional accuracy assessment techniques (Congalton et al., 1983). With these predicted 

probability fragmentation maps, a probability of 0.5 was used as the threshold over which 

presence was assumed. Therefore, any location on the map with a predicted probability 

of 0.5 or higher was assumed to have a prediction of presence, and any location with a
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predicted probability lower than 0.5 was assumed to be predicting absence. The known 

locations of presence and pseudo-absence of woody invasive species, which were 

previously set aside as validation data were then compared to the presence/absence maps 

and an error matrix was completed for each of the fragmentation maps. A Kappa analysis 

was also performed to determine if the maps were significantly different from one 

another (see Congalton et al., 1983). Not surprisingly, FRAGSTATS and PolyFrag 

attained the highest accuracies, with FRAGSTATS significantly better than all of the 

other programs (p<0.05; Table 21). More remarkably, PA had the lowest accuracy, 

though not significantly.

Table 21. The accuracies of the predictive maps in descending order. The superscript 

numbers represent whether the predicted maps are significantly different using a Kappa 

analysis. If the fragmentation programs share a number, they are not significantly 

different (p<0.05).

Fragmentation Program Accuracy
FRAGSTATS1 66.16%
PolyFrag2 61.47%
LFT2’3 56.37 %
Shape Metrics tool3 54.84 %
PA3 52.60 %

Of the five programs, LFT actually had the fewest errors of omission for invasive 

presence (36%), FRAGSTATS had the second lowest (38%), and PolyFrag had the third 

lowest (60%). Though by tweaking the threshold of presence to a more conservative 

0.45, errors of omission for PolyFrag, LFT, and FRAGSTATS improved (to 25%, 27%, 

and 32%, respectively). Since errors of omission are far graver than errors of

135



commission for predicting invasive species presence (Peterson, 2003), using a threshold 

of 0.45 is a useful tactic for identifying any and all areas susceptible to current or future 

invasion. When using a threshold of 0.45 the predictive maps created using 

FRAGSTATS and PolyFrag were not significantly different, but both models were 

significantly better than LFT (p<0.05).

Qualitative Assessment of the Fragmentation Programs

The fragmentation programs used in this analysis generally fell into two categories: those 

that use raster datasets, and those that use vector datasets. Of the programs that compute 

metrics on raster datasets, FRAGSTATS performed significantly better than LFT (the 

only other raster format program). FRAGSTATS also had the ability to define many 

different edge widths, and produced many more fragmentation metrics than LFT. 

However, the new FRAGSTATS GUI did require more time to explore and learn than did 

the ArcGIS toolbox created for LFT. FRAGSTATS also required more processing time 

than did LFT, but neither program took more than an hour to compute metrics for the 

entire Coastal Watershed.

Of the fragmentation programs that compute metrics on vector datasets, PolyFrag 

performed significantly better than the two other fragmentation programs (Shape Metrics 

and PA). PolyFrag also computed metrics that were more similar to those produced by 

FRAGSTATS, so, given FRAGSTATS’ performance, it is not surprising that PolyFrag 

created a more accurate model than those produced by the other two vector programs. 

All three of these vector programs ran within ArcGIS (esri®), but Shape Metrics and 

PolyFrag each ran as toolboxes, whereas PA was added as a dropdown menu in the main
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window. Shape Metrics and PolyFrag both appeared more intuitive to use within 

ArcGIS, and both also computed all metrics with one run, whereas PA needed two runs 

to compute core areas and shape metrics. As far as processing time, PolyFrag took 

slightly more time than PA, taking a total of a few hours for the entire Coastal Watershed. 

However, Shape Metrics took over 10 days to complete on the same workstation and 

produced significantly worse resultant mapping accuracies.

Overall, FRAGSTATS and PolyFrag were the most accurate and most user friendly 

of the five tested fragmentation programs. To compare these two programs further, the 

two predictive models created using FRAGSTATS and PolyFrag were extrapolated for 

the entire Coastal Watershed (Figure 26). While the accuracies of these extrapolated 

prediction maps are likely low, the maps provide a visual for the comparison of the two 

models. Both models found that Active Agriculture and forest types were significant in 

predicting woody invasive species presence. Both models also found that some form of 

shape metric (CIRCLE, CONTIG, or PARA) and proximity to nearest neighbor measure 

(ENN, PROX, or PROX NUM) were also significant in predicting presence. However, 

the extrapolated prediction maps are not visually similar. Nearly 54% of the area on the 

FRAGSTATS map falls into the 0.25-0.5 probability range, with only 4% of the area in 

the very high probability range (0.75-1.0). Conversely, the predicted probabilities on the 

PolyFrag map are much more variable, with more area in the very high and very low 

probability categories. Some of these differences may be accounted for by the addition 

of the core metric in the PolyFrag model, as well as the different weights of shape metrics 

and proximity measures.
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Figure 26(a). The predicted probability of the presence of woody invasive species throughout the Coastal Watershed as predicted 

using FRAGSTATS. The predicted probabilities of the background classes (Open Water in this case) were all changed to zero post­

classification. 26(6). The predicted probability of the presence of woody invasive species throughout the Coastal Watershed as 

predicted using PolyFrag.



Conclusions and Future Work

FRAGSTATS and PolyFrag produced the two most useable and accurate models for 

predicting woody invasive species presence. The advantages of using PolyFrag over 

FRAGSTATS include: increased ease of use; inclusion of fragmentation metrics, such as 

core or edge, in assessment; spatial map of fragmentation; and the ability to process 

vector datasets. The advantages of using FRAGSTATS over PolyFrag include: decreased 

processing time; a few additional fragmentation metrics associated with raster datasets; 

and the ability to process raster datasets. Given that converting from raster to vector and 

especially vector to raster can introduce mapping error, avoiding conversion is optimal. 

Therefore, it is recommended that either FRAGSTATS or PolyFrag be used with the 

appropriate data type. In the case of a choice of raster or vector format land cover map, 

and the land cover maps are equally accurate, FRAGSTATS and raster format data are 

recommended, since the FRAGSTATS fragmentation map was slightly more accurate 

than the PolyFrag fragmentation map (when using a 0.5 probability threshold).

Both the PolyFrag and FRAGSTATS probability models found that Active 

Agriculture was a significant predictor of woody invasive species presence and the 

PolyFrag model also found a negative relationship between the core areas of all forest 

types with presence of woody invasive species, which concurs with many previous 

studies’ findings of woody invasive species in this area (e.g. Johnson et a i, 2006). In 

addition, both the FRAGSTATS and PolyFrag models indicated that elongated polygons, 

or polygons with large perimeter to area ratios, as well as relatively isolated polygons, 

were more likely to have woody invasive species present. Interestingly, both models also
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found that Deciduous Forest was less likely to have woody invasive species than either 

Coniferous Forest or Mixed Forest land cover types.

The prediction that woody invasive species may be found less often in deciduous 

forests and more often in either mixed or coniferous forests is in alignment with some 

anecdotal evidence of what is found on the ground within these TNC properties as well as 

some theories on how past land use can influence woody invasive species presence. In 

this area, the positive relationship with the Coniferous Forest land cover type and woody 

invasive species presence and the negative relationship of presence and the Deciduous 

Forest land cover type may actually be a surrogate for the relationship between invasive 

species presence and past land use. In the Coastal Watershed, pure deciduous forests are 

usually the oldest continually forested areas remaining in the watershed (Foster, 1992), 

possibly surviving the intense deforestation of the early 1800s as a result of acting as the 

woodlots for the adjacent farmland.

Coniferous forests in this watershed are generally comprised of either Eastern 

hemlock (Tsuga canadensis) or white pine (Pinus strobus), which have very different 

relationships with invasive species and past land use. While finding woody invasive 

species under hemlock is rare, especially because it can also be associated with older 

forests. However, woody invasive species are often found in white pine stands. White 

pine is also generally considered an indicator of historically cleared sites, since often the 

natural reforestation of abandoned pastures and fields in the late 1800s included the 

establishment of white pine in these open areas (Foster, 1992). Not surprisingly, white 

pine is the dominant coniferous species on TNC properties used to create the predictive 

models, in which there was a positive correlation between woody invasive species
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presence and the Coniferous Forest type. The relationship between woody invasive 

species presence and white pine may have been even more pronounced if the individual 

coniferous species had been differentiated prior to creating the predictive model, but due 

to the lack of an appropriate land cover map, determining the strength of the association 

between white pine and woody invasive species was not possible.

However, these results should be tested on a larger study area with more conclusive 

invasive species data. The results of this study are limited by the available invasive 

species data as well as the availability of land cover maps. While this study is a realistic 

representation of what is generally available for invasive species studies, a more 

comprehensive dataset may allow for greater exploration of the nuances of using vector 

versus raster format data for the purposes of fragmentation mapping.
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CHAPTER VII

OVERALL CONCLUSIONS

The goal of this research was to create land cover maps of the Coastal Watershed, assess 

forest fragmentation, and estimate the probability of invasion by exotic species at 

different locations throughout the watershed. Additionally, many of the related issues 

involved in the mapping of fragmentation and invasion were examined. Initial land cover 

mapping of the watershed included using an object-based image analysis (OBIA) 

approach to classification that first groups pixels into segments with additional qualities 

that can aid in classification (e.g. size, shape, texture, etc.). However, when using an 

OBIA approach, reference data sample units must be chosen from the created segments, 

rather than using a three-by-three (or larger) cluster of pixels. When using segments (i.e. 

polygons) as reference data sample units, labeling the reference data can be more 

difficult, especially in forested land cover types where composition can be continually 

changing. Prior to this research, no literature existed recommending a sampling scheme 

for labeling polygon reference units within forested land cover types. I found that for the 

forests in the Coastal Watershed, six prism samples randomly located throughout a 

polygon should allow for the labeling of a reference data unit with minimal error. This 

recommendation, as well as the methods to determine the minimum number of necessary
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prism samples, is novel and is a marked contribution to the combined fields of forestry 

and remote sensing.

As difficult as it is to classify forested land cover on the ground, it is just as, if not 

more, difficult to correctly classify forested land cover types on imagery. This is 

especially true when using medium spatial resolution imagery, such as Landsat 5TM 

imagery with 30 meter pixels, to create the land cover map. However, since Landsat is 

one of the most readily available (and free) sources of imagery, with quite valuable 

temporal resolution, it is important to maximize the usability of this data source. This 

research tested whether the temporal resolution of Landsat could be exploited to improve 

the accuracies of land cover maps created for a single year at a time, specifically targeted 

at differentiating between deciduous, coniferous, and mixed forest types. The multi­

temporal image classification used available images from throughout the year of study to 

create a single land cover map for that year. An OBIA approach along with a 

classification and regression tree (CART) technique was used to create the land cover 

maps. The multiple images from throughout the year were employed to utilize the 

phenological changes in vegetation species to more accurately separate forest cover 

types. In general, the multi-date image analysis approach did perform better than the 

more traditional single-date approach. However, this difference was only significant 

(p<0.05) for the years where a highly accurate single-date map could not be created due 

to image availability or cloud cover issues.

One of the objectives of this research was to map fragmentation within the Coastal 

Watershed of New Hampshire. However, a quick review of existing programs that 

compute fragmentation metrics revealed that a suitable program was not available for use
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with vector data. Therefore, a new program, PolyFrag, was written to fill this gap. 

Currently, the most prevalent fragmentation program used in the literature is 

FRAGSTATS (McGarigal et al., 2012). FRAGSTATS was updated in March of 2012 to 

include new features such as variable edge widths between different land cover types. 

An important advantage of FRAGSTATS is that it is a free program that is independent 

of any other programs (e.g., ArcGIS), so that the cost of use is extremely low. However, 

a disadvantage of the program is that it is only compatible with raster datasets. PolyFrag 

computes many of the same metrics as FRAGSTATS using vector data and runs within 

the ArcGIS (esri®) framework as an additional toolbox. While running within ArcGIS 

necessitates access to ArcGIS, it also makes the tool extremely user friendly to those who 

are familiar with ArcGIS tools. PolyFrag also includes the capability to define different 

edge widths, as in the latest version of FRAGSTATS. However, the biggest advantage of 

using PolyFrag over FRAGSTATS is that it outputs a spatial representation of 

fragmentation, rather than just a tabular representation of fragmentation metrics.

The applicability of PolyFrag for creating metrics useful in predicting woody invasive 

species presence was tested against four other freely available landscape fragmentation 

programs. PolyFrag’s performance was equal to FRAGSTATS’ and significantly better 

than the remaining programs (p<0.05, when presence is defined as having a probability of 

0.45 or higher) in creating a predictive map of possible invasive species presence when 

tested within the limited study area. Predictive maps were created using both 

FRAGSTATS and PolyFrag for the entire Coastal Watershed, but because the invasive 

species data were limited to a much smaller range, these predictive maps are unlikely to
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have high accuracies. However, these maps can be used to help inform future sampling 

efforts that will result in better predictive models for the entire Coastal Watershed.

Overall, these maps, and especially the new program, PolyFrag, will be useful to 

researchers and land managers alike and will be made freely available to the NH Chapter 

of The Nature Conservancy (TNC), which provided the woody invasive species data, as 

well as other interested parties. PolyFrag will be made available to the appropriate 

communities and the software will be periodically updated, and useful additions 

requested and/or designed by users of the software will be incorporated.

The research conducted for this dissertation contributes to both the landscape ecology 

and remote sensing communities in a four distinct ways. First, a new sampling protocol 

is suggested for sampling reference units when using an OBIA approach to classification. 

Second, the usefulness of using a multi-date image classification approach is assessed. 

Third, a new fragmentation program has been created that easily allows for the analysis 

of vector data. Finally, this new program was used to create a probability of invasive 

species presence map for the Coastal Watershed that can serve as a starting point for 

future invasive species sampling.
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APPENDIX A

NEW HAMPSHIRE LAND COVER CLASSIFICATION SCHEME (Justice et a/., 2002)

Level 1 Level 2 Level 3
1 Developed land

10 Residential/commercial 
/industrial development

100 Residential/commercial 
/industrial development

14 Transportation 140 Transportation
2 Active agricultural land

21 Cropland and pasture
211 Row crops
212 Hay/pasture

22 Orchards, fruit, and 
ornamental horticulture

221 Orchards

4 Forest Areas dominated by trees, the majority of which are greater than 10’ tall
41 Deciduous forest Forest stands comprising less t lan 25% coniferous basal area per acre

412 Beech/oak Deciduous stands comprising at least 30% beech 
and oak basal area per acre

419 Other hardwoods All deciduous stands not meeting the beech/oak 
definition

42 Coniferous forest Forest stands comprising greater than 65% coniferous basal area per acre



421 White/red pine Conifer stands in which white/red pine constitutes a 
plurality of the coniferous basal area

422 Spruce/fir Conifer stands in which spruce/fir constitutes a 
plurality of the coniferous basal area

423 Hemlock Conifer stands in which hemlock constitutes a 
plurality of the coniferous basal area

424 Pitch pine Coniferous stands in which pitch pine constitutes a 
plurality of the coniferous basal area

43 Mixed forest 430 Mixed forest Forest stands comprising more than 25% and less 
than 65% coniferous basal area per acre

5 Water 50 Open water 500 Open water Lakes, ponds, some rivers, or any other open water
6 Wetlands Areas dominated by wetland c 

Inventory. Basically hydric s< 
near the surface for extended

characteristics defined by the U.S. Fish and Wildlife Service National Wetlands 
fils, hydrophytic vegetation and the hydrologic conditions that result in water at or 
periods of the growing season.

61 Forested wetlands 610 Forested wetlands Non-tidal wetlands characterized by woody 
vegetation 6m tall or higher

62 Non-forested wetlands 620 Non-forested wetlands All other non-tidal wetlands, including those 
dominated by shrubs, emergent, mosses, or lichens

63 Tidal wetlands 630 Tidal wetlands
7 Cleared/other open

71 Disturbed 710 Disturbed Gravel pits, quarries, or other areas where the earth 
and vegetation have been altered or exposed

73 Sand dunes 730 Sand dunes Areas along the seacoast that are dominated by sand
79 Other cleared 790 Other cleared Clear cut forest, old agriculture fields that are 

reverting to forest, etc.



APPENDIX B

BOOTSTRAP CODE USED IN CHAPTER III -  WRITTEN IN R

library(boot)

# Import Data
points <- read.delim(file.choose(),header=T)
points$Plot <- NULL
points

# Bootstrap

boot.se <- function(x,estimator,num.rep=400)
{
x <- as.matrix(x) 
n <- nrow(x) 
y <- ncol(x) 
for(c in 2:n)
{
estimator.boot <- matrix(nrow=num.rep,ncol=y) 
average.boot <- matrix(nrow=num.rep,ncol=y) 
for(b in l:num.rep)

{
inds.boot <- sample(1:n,c,replace=T) 
x.boot <- x [inds.boot,]
#print(x.boot) 
for(a in l:y)

{
estimator.boot[b,a] <- estimator(x.boot[,a])

}
#print (estimator.boot)
sum.a <- rowSums(estimator.boot, n a .rm = T, dims = 
average.boot <- estimator.boot/sum.a*100



}

#print(average.boot)
final.boot <- matrix(nrow=3,ncol=y)
for(a in l:y)

{

final.boot[1,a ] <- mean(average.boot[,a])
final.boot[2, a] <- sqrt(var(average.boot[,a] ))
final.boot[3,a] <- final.boot[2,a]/final.boot[1,a]*100

}

write . table (final .boot, "C : /.... txt" , append=T)
}

return(final.boot)
}

boot.se(points,sum)
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APPENDIX C

EXAMPLE MANUAL CHECK OF THE COMPUTATIONS COMPLETED

WITHIN POLYFRAG

Table 22. All computations were done by hand using the C-CAP land cover map. These 

example patch metrics were computed either on the first patch in the attribute table, or on 

the first patch with less than 100% CAI, but were also checked on several other patches 

distributed throughout the dataset. Class metrics were computed using the Beech/Oak

category. All results matched those completed by PolyFrag and all units are metric.

Fragmentation
Metric

Equation Computations Result

PARA
PERIM 132.857

0.2472
AREA 537.4926

SHAPE
PERIM 132.857

1.16166
2nJAREA/ n 2 ^ 5 3 7 .4 9 2 6 /^

FRAC
2in(PERIM /4 ) 

In AREA

21n (1 3 2 .8 5 7 /4 )  

In 537 .4926
1.11437

CIRCLE

AREA 

1 n (P_LENGTH/2) 2

P LENGTH = diameter o f  
the smallest circumscribing 
circle

537.4926  

1 n (5 7 .8 0 6 /2) 2 0.7952

CAI

CORE AREA
• I r  1 no 10036 .3287 + 1 no

68.6AREA
CORE AREA = area labeled 
core within that polygon

14619.3273  
♦computed for the first polygon 
with less than 100% CAI
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PROX
y  AREAj
l a  Xj2
i=l

8867 .0959  4540.3788
104 .44742 ' 370 .61042

5685 .294
+  915 .1 8 7 6 2 

8121.8485
+  9 7 3 .6 1 9 8 2

0.861216

PLAND
CA
rrr * 100
TA

591.829
------------* 100
15299.2

3.87

PD
NP 
—  * 100 
TA

678
------------*1 0 0
15299.2

4.43

LSI

P

P = sum o f all o f  the 
perimeters for the polygons 
A = sum o f all o f  the areas 
for the polygons

295105.9488

2 * J 1S299-2/ „ 34.22

LPI

LPA 
— * 100 
TA

LPA = the area o f  the largest 
patch for the class(es) in 
question

38.0103
* 100

15299.2 0.25

ED
TE
—r * 100
TA

3.742
— — ^ 7 *  100
15299.2

0.02

CPLAND
TCA
-TT"— * 100
TA

431.1
------------*100
15299.2

2.818

PRD
PR
—  * 100 
TA

19
------------*100
15299.2

0.12

MESH EF=1a r e a ?
TA

29338200
15299.2

1917.63

COHESION
1 - S P / s ( pVa )

---------- ,------------ * 1 0 0

1 _  A /ta

1 _  2 9 5 1 0 5 .9 4 9 /
1 /3 8 8 3 7 9 3 6

1 “  V 152992000  
* 100

99.25

CONNECT

2 PROX NUM
= -7 -------------- * 1 0 0

n (n “  1)j

PROX NUM = the number 
o f polygons with the same 
label that fall within the max 
search distance

10846  
6 7 8(678  — 1) *  100 4.73

SHDI

n
— Prj * In Prj

i=l
CAi 

Pr =  — - 
1 TA

See Table 23
2.2827

SIDI
................. .....i=j_...

See Table 23 0.8531
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MSIDI
n

-In  ^  Prj2
i=l

- I n  0.1469 1.9180

SHEI -  £f= i Prj * In P^ 2.2827
0.7753

In PR In 19

SIEI
i  -  ZF=i P n2 0.8531

0.9005
1 “  V pr 1 “  V l9

MSIEI -I n  Xf=i Pfj2 1.9180
0.6514

In PR In 19

Table 23. Extra computations needed to produce diversity indices.

Polygon Pr - Calculation Pr - Result Pr*ln(Pr) Ft1
1 591.829/15299.2 0.0387 -0.1258 0.0015
2 188.1085/15299.2 0.0123 -0.0541 0.0002
3 748.7930/15299.2 0.0489 -0.1477 0.0024
4 1170.4299/15299.2 0.0765 -0.1966 0.0059
5 87.0275/15299.2 0.0057 -0.0294 0.0000
6 4712.0230/15299.2 0.3080 -0.3627 0.0949
7 518.7635/15299.2 0.0339 -0.1147 0.0011
8 704.1808/15299.2 0.0460 -0.1417 0.0021
9 94.8578/15299.2 0.0062 -0.0315 0.0000
10 2323.8501/15299.2 0.1519 -0.2863 0.0231
11 884.8214/15299.2 0.0578 -0.1648 0.0033
12 0.6497/15299.2 0.0000 -0.0004 0.0000
13 732.1624/15299.2 0.0479 -0.1455 0.0023
14 41.0602/15299.2 0.0027 -0.0159 0.0000
15 4.2233/15299.2 0.0003 -0.0023 0.0000
16 0.6497/15299.2 0.0000 -0.0004 0.0000
17 435.9089/15299.2 0.0285 -0.1014 0.0008
18 1201.8425/15299.2 0.0786 -0.1998 0.0062
19 858.1174/15299.2 0.0561 -0.1616 0.0031

Sum -2.2827 0.1469
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