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ABSTRACT 

DEVELOPMENT OF BIO-OPTICAL ALGORITHMS TO ESTIMATE 

CHLOROPHYLL IN THE GREAT SALT LAKE AND NEW ENGLAND LAKES 

USING IN SITU HYPERSPECTRAL MEASUREMENTS 

by 

Shane Richard Bradt 

University of New Hampshire, September, 2012 

Chlorophyll is widely used to evaluate lake water quality, effectively integrating 

the chemical, physical and biological state of a lake. Assessment of chlorophyll 

conditions in lakes can be greatly enhanced by the use of remote sensing, 

allowing information to be gathered at spatial and temporal scales not possible 

with traditional limnological sampling methods. In order for remote sensing 

methods to provide accurate estimates of chlorophyll concentration, algorithms 

need to be developed with high-quality spectral data paired with water quality 

measurements and optimized for regional lake differences. 

In this study, in situ hyperspectral optical measurements were used to develop 

algorithms to estimate chlorophyll for the Great Salt Lake and New England 

lakes. The spectral data were used to mimic bands utilized by the MODIS, 

MERIS, and SeaWiFS sensors, as well as for a theoretical hyperspectral sensor 

xix 



with 3-nm wide bands, providing the capability to evaluate algorithm performance 

in all of these sensors. In addition to the traditional bands used in these 

algorithms, alternate band combinations were examined for both ocean color 

chlorophyll (OC) and maximum chlorophyll index (MCI) algorithms. A simulated 

709 nm band was created for MODIS using the 754 nm band, providing a 

method for testing MODIS with algorithms relying on the key 705 nm to 715 nm 

wavelength range. 

In New England lakes, the most effective algorithm for hyperspectral bands 

(RMS = 0.206, in log decades) and MERIS (RMS = 0.218) was a version of MCI. 

For MODIS and SeaWiFS, the most effective algorithm used an OC approach 

with 489 nm as the blue band, yielding an RMS of 0.242 and 0.231, respectively. 

In the Great Salt Lake, the most effective algorithms for hyperspectral bands and 

MERIS were based on a single ratio of 709 nm / 675 nm, providing an RMS of 

0.236 and 0.249, respectively. For MODIS and SeaWiFS, the most effective 

algorithm was the OC method using 489 nm as the blue band, which resulted in 

an RMS of 0.246 and 0.255, respectively. 
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CHAPTER I 

INTRODUCTION 

This study represents the first comprehensive chlorophyll algorithm development 

for both the Great Salt Lake and New England lakes. The use of on-lake remote 

sensing methodology, unfettered by clouds and atmospheric interference, is a 

tested, successful approach which proved useful for these study locations. In the 

approach used here, in situ hyperspectral measurements were used to both 

determine the optimal bands for chlorophyll algorithms in these lakes, as well as 

to simulate satellite bands (past, present and future) and test methods that can 

be employed in the field. The algorithms developed in this study for satellites can 

be used immediately as part of an imagery-processing program, while the 

algorithms developed using the hyperspectral bands can be deployed in on-lake 

systems or used to advocate for specific bands in future lake-focused satellite 

sensors. The techniques described in this work offer the potential to increase the 

spatial and temporal resolution of chlorophyll concentration data in the Great Salt 

Lake and New England Lakes, thus providing an opportunity to improve 

management of these important systems. 
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Importance of chlorophyll 

Chlorophyll as a biological indicator 

Lakes fill an important ecological role in our landscape, serving as a critical part 

of global water and climate cycles (Oki and Kanae 2006; Williamson et al. 2009), 

as well as an important source of biodiversity (Strayer and Dudgeon 2010; 

Vadeboncoeur et al. 2011). Lakes also have an important societal role, driving 

economic activity, by providing recreational opportunities and a source of 

drinking and irrigation water. 

Due to the myriad array of important services provided by lakes, much effort has 

been put into creating metrics by which to judge their ecological health. The 

perfect environmental evaluation method would take into account all physical, 

chemical and biological conditions in a lake. However, logistical realities have 

caused researchers and managers to focus on characteristics which are 

relatively easy to sample, while providing maximal insight into lake conditions. 

Lake ecosystem dynamics are driven both by top-down effects (such as fish 

predation) and bottom-up effects (such as the promotion of algal growth by 

nutrient additions). Most trophic status evaluation has been focused on the 

bottom-up effects of nutrients, including direct measurement of nutrient 

concentrations (especially phosphorus) and an assessment of the condition of 
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the first trophic layer (phytoplankton) (Carlson 1977; Wetzel 1983). Although 

much information could be obtained from detailed determination of phytoplankton 

communities for each lake sampling event, most sampling has instead relied on 

chlorophyll concentration to represent the quantity of algal biomass present in a 

lake. This approximation of biomass is relatively easy to collect, and can be 

analyzed in a standard laboratory setting without a high level of specialized 

knowledge. 

Both the Carlson (1977) and Wetzel (1983) trophic indices use the same three 

lake characteristics to classify lakes: phosphorus concentration, chlorophyll 

concentration, and Secchi disk depth. Nutrient-poor lakes are classified as 

oligotrophic, nutrient-rich lakes as eutrophic, and lakes of intermediate nutrient 

levels as mesotrophic. Of the three measurements, chlorophyll is the only one 

directly related to the biological activity of the lake ecosystem, providing a direct 

window into both bottom-up (nutrients) and top-down (grazing) pressures flowing 

through the lake food web. Also, chlorophyll concentration has the advantage of 

being relatable to the non-scientists, an advantage when communicating 

between the limnologist and the public (Carlson 1977). 

In addition to being used in scientific settings, chlorophyll concentration has been 

used widely in monitoring by governmental agencies. Under the Clear Water Act, 

the US Environmental Protection Agency uses chlorophyll as one of the primary 

drivers of lake management across the country, setting targets for lakes in each 

3 



region. These standards are used to monitor the degradation of lake health, and 

state governments are held accountable to the agency based on the results of 

routine monitoring. The use of chlorophyll concentration as a tool to monitor lake 

health is used by governments worldwide, and is also used by a wide range of 

volunteer and non-governmental groups. 

Chlorophyll and real-world impacts 

The extent of eutrophication, or nutrient enrichment, in lakes is a central focus of 

lake researchers, managers and governmental agencies. A eutrophic lake, 

characterized as having an abundance of nutrients, produces a greater standing 

crop of algal biomass than can be integrated efficiently into the higher trophic 

levels of the food web. While eutrophication of lakes can be due to natural 

conditions (i.e., soil chemistry) the majority of lake eutrophication worldwide can 

be attributed to human activities (inadequate sewage treatment, fertilizer runoff). 

Some of the causes of eutrophication are relatively easy to identify for a lake 

(river inflows), but others may be very difficult to identify precisely or to manage 

(lawn fertilizer). Once a lake becomes eutrophic, it can be quite difficult to 

remediate due to the potential of internal loading, in addition to the logistical 

difficulty of reducing human-provided nutrient inputs. 

Many deleterious consequences can result once a lake becomes eutrophic. Due 

to the inability of the food web to process the extent of algal biomass, 
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phytoplankton can precipitate out of the upper layer of the lake (epilimnion), 

eventually reaching the lake's bottom layer (hypolimnion) where their 

decomposition can deplete oxygen. Once the hypolimnion becomes anoxic, the 

lake ecosystem can be substantially altered. Fish can no longer utilize the 

hypolimnion, and turnover events can release trapped hydrogen sulfide gas, 

producing a noxious or potentially harmful effect in areas surrounding the lake. In 

addition, the perceived water quality of a eutrophic lake as "less clean" can 

decrease property and rental values in lakeside properties. 

As lakes become more eutrophic, phytoplankton assemblages become 

increasingly dominated by cyanobacteria (Chorus et al. 2000; Codd et al. 2005). 

Problems associated with these "blue-green algae" have been reported on every 

populated continent (Jones and Chorus 2001; Burgess 2001) and occurrence will 

likely increase in the future due to climate change (Paerl and Paul 2012). 

Cyanobacteria can cause problems for recreational use of lakes due to unsightly 

blooms and complications for drinking water use as a result of the foul taste and 

odors associated with cyanobacteria (Izaguirre et al. 1983; Smith et al. 2002; 

Watson 2004). More importantly, cyanobacteria can produce three types of 

toxin (hepatotoxins, neurotoxins, dermatotoxins) which can directly affect human 

health (Codd 1995; Carmichael 2001). Toxic episodes have been described 

throughout North America (Repavich et al. 1990; Ouellette et al. 2006; Jacoby 
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and Kann 2007), and it is estimated that up to 95% of cyanobacterial blooms are 

toxic (Sivonen et al. 1990; Paerl and Paul 2012). 

Low-level exposure to cyanobacterial toxins (such as microcystins) through 

consumption of lake water causes throat lesions and gastrointestinal illnesses 

(Slatkin et al. 1983; Turner et al. 1990), while long-term exposure to microcystin-

contaminated drinking water can promote tumors and liver cancer (Falconer 

1996; Ueno et al. 1996). High-level exposure to cyanobacterial toxins has 

resulted in human deaths (Ueno et al. 1996; Stewart et al. 2006). More recently, 

cyanobacterial toxins have been linked with neurodegenerative diseases such as 

amyotrophic lateral sclerosis (ALS) (Banack et al. 2010). 

Remote sensing of chlorophyll 

Algorithm approaches 

Remote sensing is a powerful technology that can be used to assess 

environmental conditions in lakes over space and time. Spectral radiometry 

("color") can be measured remotely to estimate the chlorophyll content 

("greenness") of a lake. Algorithms are then used to estimate the chlorophyll 

concentration using the spectral measurements. (For a discussion of discipline-

specific terminology, please see Appendix A) 
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Before remote sensing can be used reliably for estimating chlorophyll in lakes, 

efforts must be made to develop and test algorithms appropriate for the types of 

lakes found in a given region. The use of remote sensing methods without such 

regional validation may produce appealing satellite pictures, but any techniques 

applied without proper validation will not be quantitatively useful as a supplement 

or alternative to in situ monitoring. 

The biggest challenge with using remote sensing to monitor lakes and ponds in 

the chosen study areas (the Great Salt Lake, New England lakes), is that most 

published algorithms for chlorophyll have been developed either for the ocean, or 

for lakes with much higher turbidity and more eutrophic conditions. Rather than 

assuming these algorithms can be effective in these previously untested lakes, I 

set out to determine which chlorophyll estiimation algorithms perform best in 

each study area. 

Sensor selection. A number of past and present satellite sensors have spectral 

bands in the visible and near infrared. However, when choosing a satellite 

sensor for estimating chlorophyll in lakes, several key characteristics must be 

considered. First and foremost, the sensor must possess the spectral bands 

necessary to measure wavelengths affected by the chlorophyll. The centers of 

the bands must not only be well positioned, but the width of the bands must be 

narrow enough to clearly distinguish key spectral patterns related to chlorophyll 

absorption from those caused by other in-water constituents. In addition to well-
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positioned bands, the sensor must possess enough radiometric resolution to 

allow for the detection of changes of in-water optical properties. Because only 

about 10% of the signal received at the satellite is reflected from beneath the 

water surface, the radiometric resolution must be high enough to resolve 

variability in one-tenth of the available range. Together, spectral and radiometric 

resolution can be used to define sensors that are suited for lake measurements 

of chlorophyll. Spatial resolution is another critical aspect. If the pixels of a 

sensor are too big for a given lake, reflectance from the land will overwhelm the 

water signal, providing no clean measurement of the lake itself. The additional 

characteristics of temporal resolution, as well as swath width, serve to inform 

what type of lakes these sensors can be used to monitor, and how often 

measurements can be taken. 

From the suite of currently deployed satellite sensors, MERIS, MODIS and 

SeaWiFS have been widely used for remote sensing of water (Table 1). All three 

sensors have appropriate spectral bands for the detection of chlorophyll in 

surface waters, and sufficient radiometric resolution to ensure the ability to 

measure small variations in those bands. While the relatively large size of the 

pixels on these satellites (~ 1 km) generally precludes the sensors from being 

used on most lakes, the short return times (1-3 days) and large image footprints 

(1,150-2,801 km2) make these sensors useful for regular monitoring programs of 

large lakes. In this study, algorithms were tested for all of these sensors (MERIS, 

MODIS and SeaWiFS) to determine the method which provided the best 
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performance for the measurement of chlorophyll in the Great Salt Lake and New 

England lakes. 

In addition to examining current satellite sensors, the increasing availability of 

hyperspectral sensors (carried on boats, flown on planes, installed on fixed 

platforms, etc.) provides an expanding field of opportunity for the use of remote 

sensing in lake monitoring. While these sensors do not have the same 

capabilities as satellite-borne sensors to collect spectral data of many lakes 

simultaneously, they can still be used to provide details on spatial distribution of 

phytoplankton in an individual lake, or capture continuous estimates of 

chlorophyll concentration at a single site, in a way not possible with traditional 

limnological sampling. Each type of hyperspectral sensor has slightly different 

spectral band arrangement, thus there is no standard set of bands to simulate 

this type of sensor. To provide fine detail when testing algorithms, this study used 

3-nm wide bands strategically chosen between 400 nm and 775 nm to explore 

the potential of hyperspectral sensors for the estimation of chlorophyll in lakes. 

Algorithm development. Those not familiar with this field of research may 

envision the development of a chlorophyll algorithm through the coordination of 

lake sampling trips coincident with satellite overpasses. However, agencies such 

as NASA and the European Space Agency (ESA) rarely use this approach when 

initially developing remote sensing algorithms for oceans or inland waters 

(although it may be used for validation of derived products). Some of the 
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problems encountered when using satellite imagery for algorithm development 

are lags between image capture by the satellite and lake sampling, difficulty 

relating relatively large image pixels to water quality samples, variable cloud 

cover, variable bands for each satellite, and degradation of measurements due to 

atmospheric effects. 

To avoid many of these issues, methods used to develop remote sensing 

algorithms focused on water bodies rely on data measured with a portable 

spectral radiometer carried on ship and used directly at the sampling location. 

Portable radiometers are used to collect highly detailed, hyperspectral 

measurements of lakes that are captured close in time with relevant water quality 

measurements. This in situ approach to measuring the spectral characteristics of 

surface water provides a detailed measurement of the light leaving the surface of 

the lake without having to worry about atmospheric interference. The 

hyperspectral nature of these measurements can be used to simulate any 

number and combination of satellite bands, thus ensuring the dataset can be 

used to develop and test chlorophyll algorithms for any satellite past, present or 

future. 

"On-lake" remote sensing. In addition to providing spectral measurements for 

algorithm development, portable radiometers can be used as a remote 

monitoring system independent of satellites. Once the best algorithm for 

chlorophyll estimation has been determined, boat-mounted radiometers paired 
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with GPS devices can be used to rapidly survey a lake, providing spatial 

coverage similar to satellite imagery, while simultaneously providing immediate 

feedback on the most important areas of the lake for the collection of traditional 

limnological samples. Another approach for on-lake remote sensing would be the 

deployment of radiometers mounted to balloons, remote control aircraft or 

blimps. By elevating the sensor above the lake surface, and by providing for 

horizontal movement either by self-propulsion or towing from a boat, chlorophyll 

could be estimated across the entire surface of the lake. Radiometers pointed at 

the lake surface can be mounted on shore, providing a continuous estimation of 

chlorophyll over time at a given lake location. Radiometers can also be fitted onto 

submersible autonomous vehicles and used to collect measurements throughout 

a lake (Tedesco and Steiner 2011). Finally, radiometers could be mounted on 

buoys or moorings to provide near-continuous spectral data at a specific location 

on the lake. 

Ocean chlorophyll algorithms 

The ocean color remote sensing community has spent three decades developing 

satellite techniques for the accurate estimation of chlorophyll concentration in the 

ocean. The chlorophyll concentrations produced by these algorithms have been 

used to observe temporal and spatial variability in phytoplankton distributions at 

global and regional scales. Satellite-derived chlorophyll concentrations are also 

being used for estimating net primary productivity of the world's oceans, 
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providing invaluable information on the global carbon cycle and climate change 

(Behrenfeld et al. 2006; Polovina et al. 2008; Irwin and Oliver 2009). In addition, 

satellite-based estimates of chlorophyll have been used to track and monitor the 

occurrence of potentially toxic blooms in coastal areas (Hu et al. 2005; Ahn and 

Shanmugam 2006; Anderson 2009). 

Ocean color - blue to green ratio. Launched in 1997 aboard the OrbView-2 

satellite, the SeaWiFS sensor was developed through a private/public 

partnership between NASA and ORBIMAGE. More than a decade had passed 

since the first ocean color sensor, the Coastal Zone Color Scanner (CZCS), had 

ended its mission (1978-1986). Although the CZCS was a highly successful 

proof-of-concept mission, it had shortcomings, among which was inadequate 

spectral resolution. The SeaWiFS had six bands for pigment detection instead of 

three, and two infrared bands for atmospheric correction instead of one. 

SeaWiFS employed 2-band and 4-band algorithms for chlorophyll, named ocean 

chlorophyll 2 (OC2) and ocean chlorophyll 4 (OC4), respectively, (O'Reilly et al. 

1998; 2000), that were developed using an in situ spectral and pigment dataset 

named the SeaWiFS Bio-optical Archive and Storage System (SeaBASS). The 

CZCS chlorophyll algorithm switched between two band ratios, using a higher 

wavelength band (520 nm / 550 nm) at chlorophyll > 1.5 pg L-1, to avoid the 

lower and somewhat noisy blue band (443 nm / 550 nm) at high chlorophyll 

levels. The OC4 algorithm (r2 = 0.86, RMS = 0.250 log decades) also employs 

band switching to estimate chlorophyll, but avoids a discontinuity at the switch by 
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selecting whichever ratio, 430 nm / 555 nm, 490 nm 1555 nm, or 510 nm / 555 

nm, is greatest. 

Similar band-switching algorithms have been developed for MODIS and MERIS 

sensors. Two MODIS sensors were launched by NASA, one aboard the Terra 

satellite in 1999, and one aboard Aqua in 2002. MODIS boasts many more 

bands than SeaWiFS (36 vs. 8). However, only 9 of the MODIS bands have the 

radiometric sensitivity required for ocean remote sensing, while the remaining 

bands are intended for remote sensing of the land and atmosphere. The MODIS 

chlorophyll algorithm (OC3: r2 = 0.86, RMS = 0.255) relies on switching between 

two band ratios, 443 nm / 550 nm and 489 nm / 550 nm, instead of the three 

band ratios employed by OC4. MERIS was launched by the European Space 

Agency in 2002 aboard the ENVISAT satellite with bands specifically tailored for 

use in optically complex waters (i.e. lakes, coastal areas). A band switching 

algorithm for chlorophyll has been developed for MERIS bands (OC4E: r2 = 0.86, 

RMS = 0.251), which utilizes three blue-to-green ratios, 443 nm / 560 nm, 489 

nm 1560 nm, and 510 nm / 560 nm. 

Fluorescence Line Height. The fluorescence line height (FLH) algorithm was first 

developed as a chlorophyll detection technique for airborne remote sensing over 

waters in which blue wavelength bands experienced reduced effectiveness 

(Gower 1980). Later, MODIS and MERIS were designed with bands in the red 

spectral region to capture the chlorophyll fluorescence peak, and the FLH 
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algorithm has been adapted and tested for MODIS (Letelier and Abbott 1996) 

and MERIS (Gower et al. 1999). The FLH algorithm utilizes three wavelengths, 

one centered on the chlorophyll fluorescence peak (677 nm) and two adjacent 

bands (665 nm, 746 nm) acting as anchors against which to measure the height 

of the peak. FLH has been employed to estimate chlorophyll concentration in a 

range of water types (Xing et al. 2007; He et al. 2008; Gons et al. 2008). 

Maximum Chlorophyll Index. The Maximum Chlorophyll Index (MCI) algorithm is 

a baseline algorithm designed using MERIS bands to capture the spectral 

dynamics of the 709 nm band (Gower et al. 2005a), a wavelength not present in 

SeaWiFS or MODIS. A reflectance peak located between 690 nm and 710 nm is 

an important spectral feature of inland water bodies (Gitelson 1992; Rundquist et 

al. 1996), that provides a good frame of reference against which to measure the 

effects of chlorophyll absorption around 670 nm. This algorithm can be used with 

the MERIS sensor, hyperspectral sensors, and any sensor for which a band near 

709 nm is available. MCI has been used successfully to measure floating algae 

(Gower et al. 2006) and phytoplankton dynamics in the ocean (Gower et al. 

2008), as well as monitoring blooms of cyanobacteria in lakes (Binding et al. 

2011; 2012). 

Floating Algal Index. The floating algal index (FAI) has been developed to aid in 

the detection and quantification of floating algal mats which can characterize 

eutrophic and hypereutrophic lakes (Hu 2009). In addition to relying on a visible 
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wavelength (645 nm), the algorithm also utilizes two bands in the near infrared 

region (859 nm, 1240 nm or 1640 nm). The algorithm uses a similar method to 

both FLH and MCI, providing two anchor bands (645 nm, 1240 nm or 1640 nm) 

against which to measure the height of a third band (859 nm). In Lake Taihu, 

China, FAI was successfully applied to MODIS imagery to quantify the timing, 

location and duration of cyanobacteria blooms characterized by floating mats, but 

was determined to be of little use when cyanobacteria were present in the water 

column (Hu et al. 2010). In another study, FAI was used with both Landsat 

Enhanced Thematic Mapper Plus (ETM+) and PROBA/CHRIS to map seasonal 

seaweed in the Arabian Sea (Pauly et al. 2011). While the use of FAI with ETM+ 

provided clear detection of intertidal seaweeds, PROBA/CHRIS ultimately lacked 

the appropriate bands to accurately apply the algorithm. 

Semi-analvtical. Semi-analytical (SA) algorithms offer a different approach than 

those based on band ratios. The SA approach entails the parameterization of key 

inherent optical properties (i.e., the spectral shape of colored dissolved organic 

matter (CDOM) and chlorophyll absorption and scattering), which then allows 

reflectance measurements to be deconstructed to reveal the inherent optical 

properties, that are then related to the optically active constituent concentrations 

(i.e., CDOM, chlorophyll, and suspended sediments). While several such 

algorithms have been widely considered for use in ocean remote sensing 

(Maritorena et al. 2002), the effectiveness of this approach is largely controlled 

by the appropriateness of model parameterization. However, when these 
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algorithms function well, they provide information on the inherent optical 

properties of the study waters, not only estimates of chlorophyll concentration. 

Lake chlorophyll algorithms 

Red to near-infrared band ratios. Remote sensing algorithms for the estimation of 

chlorophyll in lakes have largely focused on the following features and 

wavelength ranges: 1) maximum chlorophyll absorption (665 nm to 675 nm), 2) 

scattering peak related to phytoplankton density (690 nm to 710 nm), and 3) 

areas not effected by chlorophyll absorption (720 nm to 754 nm). The blue range 

(400 nm to 500 nm) has been avoided in these algorithms because of the 

influence of CDOM which is frequently much higher than in oceanic water and 

strongly absorbs in the blue region. Initially, the chlorophyll algorithms were 

based on 2-band ratios, which focused on chlorophyll absorption and the 

scattering peak (Han and Rundquist 1997; Schalles et al. 1998; Gitelson et al. 

2000). More recent investigations have further refined the position of band 

placement for 2-band ratios (Dall'Olmo and Gitelson 2005; 2006; Gurlin et al. 

2011; Moses et al. 2012) and have explored the use of 3-band algorithms, 

involving the subtraction of two 2-band ratios (Gitelson et al. 2007; Duan et al. 

2010; Yacobi et al. 2011a). A recent comprehensive review of lake chlorophyll 

band ratio algorithms has demonstrated that different techniques are best suited 

for different lake types, although much more agreement on useful bands and 

techniques has emerged in recent years (Gitelson et al. 2011b). 
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Table 1. Spectral and radiometric characteristics for sensors to simulate for algorithm de
velopment in the current study. 

Radiometric 

Sensor Satellite Agency Launch Bands Resolution Levels 

MERIS ENVISAT ESA (Europe) 2002 15 16-bit 65536 

MODIS Aqua NASA (USA) 2002 36 12-bit 4096 

MODIS Terra NASA (USA) 1999 36 12-bit 4096 

SeaWiFS OrbView-3 NASA (USA) 1997 8 10-bit 1024 
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CHAPTER II 

GENERAL METHODOLOGY 

Limnology 

Lake Water Sampling 

Lake water vyas collected with an integrated sampling device at all sites. An 

integrated method is a more appropriate approach for remote sensing algorithm 

development than a grab sample, as it more closely mimics the integrated effects 

of the water column on upwelling and downwelling light fields. The type of 

integrated sampling device, and depth of the epilimnion sampled, varied with the 

coordinating agency with which each lake was sampled (Table 2). For lakes 

where the sample was taken from the entire epilimnion, a temperature profile 

was conducted prior to the sampling to determine the appropriate sampling 

depth. In these cases, care was taken to select an integration depth that would 

avoid inclusion of the metalimnion, and chlorophyll maximum that can occur from 

the accumulation of phytoplankton in that strata. 

Immediately after collection, lake water was kept on ice and stored in the dark. 

For chlorophyll analysis, the water was filtered in the lab within 2 hours of 
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collection in New England, or within 24 hours in the Great Salt Lake. The filters 

were either frozen or stored in drying containers, depending on the methodology 

of the project. For colored dissolved organic matter (CDOM) analysis, lake water 

was filtered through 0.45 |jm Millipore membrane filters and the filtrate poured 

into 500 ml opaque plastic bottles. These bottles were refrigerated until analyzed 

in the laboratory within one week. 

Chlorophyll profile. For a subgroup of lakes sampled by the University of New 

Hampshire (UNH), a chlorophyll vertical profile was measured during daylight 

using a YSI 6600 V2 multi-parameter probe and a YSI-650 data logger (YSI 

Incorporated, Yellow Springs, OH). The chlorophyll fluorescence was logged 

every 3s as the probe was lowered throughout the entire water column at 

approximately 0.5 m min"1. The chlorophyll fluorescence measured by the probe 

was converted to a chlorophyll concentration using a factor determined through 

field experiments relating average epilimnetic chlorophyll fluorescence 

determined by the probe and the UNH standard overnight chlorophyll a extraction 

method (see below). 

Analysis 

Chlorophyll concentration. Due to the wide range of projects under which this 

work was conducted, chlorophyll analyses were carried out through a variety of 

techniques (Table 3). All chlorophyll analyses for the Great Salt Lake stations 
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were conducted at Utah State University utilizing filter freezing, overnight ethanol 

extraction and the Welschmeyer fluorescence method (Welschmeyer 1994). 

Chlorophyll samples from New England lakes visited in 2002, 2003, 2004, 2005 

and 2008 were analyzed by the Lakes Lay Monitoring Program at UNH using 

filter freezing, a 4-hour cold extraction with ethanol, and a spectrophotometric 

method (Lind 1985). Chlorophyll from New England lakes measured in 2007 and 

2009 was analyzed at the EPA Region I Laboratory utilizing filter freezing, 

overnight ethanol extraction and the Welschmeyer fluorescence method 

(Welschmeyer 1994). 

New England lakes sampled in 2006 were part of a regional lake study, known as 

the New England Lakes and Ponds project (NELP). NELP was coordinated by 

the US EPA Region I Laboratory and included the participation of five state 

laboratories in the region (Connecticut, Massachusetts, Maine, New Hampshire, 

and Vermont) and two universities (UNH and the University of Rhode Island). 

One goal of the NELP project was to compare the chlorophyll filtration/extraction 

methods from all seven of the project partners. As such, water collected from 

each lake was filtered and analyzed by each organization according to the 

chlorophyll methods employed by that organization. 

In order to minimize the error introduced by using data produced by a number of 

analytical chlorophyll methods, chlorophyll values determined with the UNH 

method were used for 2006 samples whenever possible. However, the planned 
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round robin field techniques of the NELP were not carried through perfectly (i.e., 

appropriate filters were not available during every lake trip), and as such, 

numerous lakes did not have chlorophyll values determined with the UNH 

method. In addition, the sample storage technique for UNH samples was not 

always followed, as samples were sometimes exposed to sun more than 

prescribed by the method. For example, the filter preservation technique used by 

UNH relies on desiccation rather than freezing, and requires filter storage in 

complete darkness during the time between filtering and analysis. The greater 

than expected sun exposure of some filters may have possibly led to a degree of 

sample degradation on some filters, particularly those from chlorophyll-rich lakes. 

A sum of squares method comparing the UNH chlorophyll concentrations to five 

of the other methods was used to determine which chlorophyll value to use for 

lakes with either missing UNH filters (and therefore no data) or lakes for which 

the greater than expected sun exposure caused suspicion of chlorophyll 

degradation (for more details, see Chapter IV). 

Colored Dissolved Organic Material. Filtered lake water in opaque bottles was 

kept refrigerated between collection and analysis, and was analyzed for CDOM 

in the laboratory according to American Public Health standards (APHA et al. 

1998). The refrigerated samples were warmed to room temperature, then poured 

into a quartz cuvette with a 5 cm path length. Spectral absorption measurements 

were recorded at 440 nm, 493 nm, 750 nm and 880 nm in a Milton Roy 1001 + 
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spectrophotometer with a 2 nm bandwidth. The measured absorption values 

were converted to absorption coefficients (m~1) using the cuvette path length. 

On-lake spectral measurements 

Single radiometer 

Single-radiometer field data collection. Reflectance measurements were 

collected from a boat using a single Optical Coating Laboratory, Inc. (OCLI) 

MicroPac radiometer in the range 400-725 nm with a spectral resolution of 1.5 

nm. The radiometer was mounted in a black case, and a 50-mm focal length fish-

eye lens was used to concentrate incoming light on the radiometer slit. 

Four separate spectral measurements were made at each sampling station, and 

the data were captured using the mmSoftpacI software from OCLI. First, a 

measurement of the sensor's dark current was taken while the lens was 

completely covered, ensuring no light entered the radiometer. The value of the 

dark measurement at each wavelength was subtracted from each of the other 

three measurements in the post-processing phase before any calculations were 

made. Second, a measurement of downwelling radiance on a Kodak gray card 

(UK), assumed to be a Lambertian reflector at 18%, was taken at a zenith angle 

(0Z) of 135° and an azimuth angle (0V) of 135° relative to the position of the sun 

(Mobley 1999). Third, a measurement of the downwelling radiance (Ls) was 
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made at 0z=45o,0v=135o. Finally, a measurement of the upwelling radiance ~1m 

above the surface of the lake (Lu) was made at 0Z=135O,0V=135O. 

Single-radiometer post-processing. The remote sensing reflectance (Rrs) of a 

lake sampling station can be determined from two spectral quantities, 

downwelling irradiance (Ed) and water-leaving radiance (Lw) as shown below (A 

has been left out for simplicity): 

Unfortunately, Lw is impossible to measure directly since Lu contains skylight 

reflected off the water surface. As such, we can approximate Lwby combining Lu 

and Ls as shown below: 

where Lu is the upwelling radiance measured above the surface of the water, Ls is 

the downwelling sky radiance, and p is a factor representing the percentage of 

skylight present in the Lu measurement. The Rrs equation can thus be rewritten 

as: 

(1) 

L = L — L p 
w u sr (2) 

K - k P  
Ed 

(3) 
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The measurement of downwelling sunlight impinging on the 18% Lambertian 

reflective Kodak gray card is used to approximate the total downwelling 

irradiance (ED): 

KLJ 

0.18 
= -r£r W 

which then provides for the complete calculation of Rre from the on-lake 

measurements as such: 

= kzM 

0.18 

Rn (5) 

Hydrolight modeling to estimate the factor p. Hydrolight 4.2 from Sequoia 

Scientific, Inc. was used to produce modeled spectra for each lake measured 

with the single-radiometer technique. Two modeled spectra were produced for 

each lake, one using the epilimnetic extracted chlorophyll concentration and 

another using the chlorophyll profile measured with the YSI probe. The 

Hydrolight routine designed for case 2 waters (ABCASE2) was run with the 

settings shown in Appendix B. The resultant Hydrolight spectra were then used 

for comparison with Rrs calculated with field data from each lake, allowing for an 

assessment of the best-fit value for the skylight contribution to the Lu signal. 

24 



Dual radiometers 

Dual-radiometer field data collection. Dual-radiometer measurements were made 

using a_methodology modeled on two previous studies (Dall'Olmo and Gitelson 

2005; Doxaran et al. 2005). Reflectance measurements were collected from a 

boat using a pair of inter-calibrated Ocean Optics USB2000 radiometers. Data 

were collected in the range 380-850 nm at an interval of 0.4 nm The downward-

pointing radiometer was submerged and connected to a 2-meter long optical fiber 

with a 25° field-of-view. This radiometer was used to measure below-surface, 

nadir upward radiance, Lu(z, A). The upward-pointing radiometer was outfitted 

with a fiber optic cable and cosine collector mounted on a vertical beam or pole 

affixed to the boat and pointed at the sky. This radiometer was used to measure 

above-surface downwelling irradiance, Eu(0\ A). 

For the in-water radiometer, the optical fiber was held at depth on the sunny side 

of the boat through the use of a 2-m black pole with a 1-m black screw attached 

perpendicularly at the end. To allow accurate data collection from discrete 

depths, the screw was marked with tape at 5-cm increments relative to the 

location of the tip of the optical fiber when mounted on the pole. The effects of 

the fiber and pole on the light field were considered minor due to the small size of 

the fiber optic tip (-0.5 cm) and the non-reflective nature of the pole and screw 

onto which it was mounted. 
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Measurements of Luz at 3-6 depths (ranging from 5 cm to 80 cm) were made in 

triplicate at each lake to capture the attenuation of Luz in the water column. The 

depths at which each lake was measured were varied based on the optical 

characteristics of each water body. The depths measured in turbid, more 

productive lakes were clustered closer to the surface, whereas clearer, more 

oligotrophic lakes had measurements spread deeper into the water column. The 

vast majority of spectra were collected during periods of little or no wave activity, 

allowing for accurate depth placement of the fiber optic tip. When significant 

waves were present, all efforts were made to hold the tip at the correct depth by 

moving the pole against the direction of wave activity. When conditions were 

particularly challenging, extra measurements were taken to reduce the 

uncertainty in positioning of the fiber optic tip. 

The radiometers were controlled during data collection using the CALMIT Data 

Acquisition Program (CDAP) from the Center for Advanced Land Management 

and Information Technologies (CALMIT) at University of Nebraska, Lincoln. Upon 

initiation of a measurement, CDAP made a pre-collection measurement of 3 ms 

in both the downward and upward-facing radiometers to assess the light 

environment. The intensity values of this quick measurement were then used to 

set the integration time of the two radiometers independently to maximize the use 

of the dynamic range of each detector in the light environment at the time of 

measurement. The integration time of the upward-facing radiometer was typically 

an order of magnitude shorter than that of the downward-facing radiometer. 
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However, the change in light field conditions can be assumed to be minor during 

the short time period of a single measurement, and any change in light condition 

would affect the light field equally for both the upwelling and downwelling 

measurements. CDAP was programmed to make six measurements at each 

depth in rapid succession, which were then averaged and stored as the final 

spectral data for that depth. All measurements were made over optically deep 

waters. 

Dual-Radiometer Post-Processing. A schematic representation of the 

calculations described in this section can be found in Figures 1 and 2. The two 

figures represent the left half and right half of a two-page document, with the 

dotted lines showing the schematic flow from one side to the other. The digital 

numbers (DNs) collected by the radiometers can be denoted as follows (A has 

been left out for simplicity): 

DN L — Lu(z)kL (6) 

DN E = Ed (0+ )kE (7) 

where z is depth in meters, k represents a transformation coefficient specific to 

each radiometer, L stands for nadir radiance, and E stands for downward 

irradiance. 

The first 25 detector elements of the USB2000 detectors were covered to prevent 
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light from impinging on the detectors, and as such, could be used to assess the 

dark current of the instrument. During each scan, CDAP used the values 

recorded by these 25 detector elements to determine the average value for the 

dark current of each radiometer, and subtracted this value from the 

measurements. The correction should be considered applied in all of the data 

discussed in the current work. 

The ratio of equations (6) and (7) provides the equation shown below: 

DNl _ L.(z) kL 

DNE Ej(0')kc 
(8> 

which depends upon both the radiance reflectance of the target, and the ratio of 

the transformation coefficients of the two instruments, kL/kE. To assess the 

stability of kJkE over the course of field sampling, we collected measurements of 

a white Spectralon plaque of known irradiance reflectance, Rref, at the initiation 

of data collection at each station, and thereafter, numerous times during data 

collection on a given day. Laboratory experiments demonstrated that the 

variation of kL/kE of an equivalent equipment setup did not exceed 2% over a 

period of four hours, thus confirming the stability of the measurement system 

(DaH'Olmo and Gitelson 2005). The collection of reference panel measurements 

allowed the determination of Mfe as shown here: 
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kL _ DNLref Kef ,g> 

kE DN k 

where DNtjef and DNem are the digital numbers recorded by the downwelling 

and upwelling radiometers, respectively, during the scan of the Spectralon 

plaque. The term ;ris used to transform the irradiance reflectance, Rret, into a 

radiance assuming the Spectralon plaque is a Lambertian reflector. The 

calibration measurement of the Spectralon plaque during each field session was 

important to determine changes in kL/ks on a given day due to variations in the 

assembly of the sampling apparatus and connection of fiber optic cables. 

The preliminary reflectance calculated by CDAP for each depth represented the 

following terms: 

DN. DNlm n 
CDAP ~ ~Rref (10) 
CDAP DNe DN E/ef 

refcMr 

where RrefCDAP is the assumed reflectance of the plaque used by CDAP. CDAP 

incorrectly uses the value of 99 to represent 99% reflectance in the calculations 

RrefCDAP , instead of the appropriate 0.99, thus producing values two orders of 

magnitude higher than the actual values. This discrepancy is corrected in 

equation (16) by dividing the artificially inflated Rrs values by a factor of 100. After 

visual quality control inspection of the RCDAP measurements, the valid spectra for 

each depth were averaged and regressed to determine the coefficient of 

attenuation, K, for each wavelength as shown below: 
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SSjcy ~ ^CDAP, " 1° RCDAP )(^I " ̂ )) (11 ) 
1 = 1 

SS»=X(Z:-Z)2 (12) 
l'=l 

ss K= *> 
SS 

(13) 
>y 

where Z represents the depth in meters, i represents the depth intervals for each 

lake profile. Using RCDAP and K, the intercept of the regression (B) was used to 

calculate RCDAP at 0 cm beneath the surface of the lake: 

R DNL DNR^ RNF T R 

" DNE DNREFX n n2 ' 
(14) 

R. CDAP. 

- e^CDAF-(KZ) 
(15) 

Above water remote sensing reflectance (Rrs) was calculated using terms from 

equations (9) and (15): 

( R ,  
R. 

CDAP. t 

ir^Fi 

K * J 

/100 (16) 
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where t is the radiance transmittance from water to air (~0.98) (Mobley 2004), nw 

is the refractive index for water corrected for salinity and water temperature 

(Quan and Fry 1995), and F, is the spectral immersion factor. Division by 100 is 

necessary due to an RrefCDAP value of 99 used in equation (10). The equation for 

Rre can be shown with all terms revealed as: 

DN, DN,a£ R„, t 

"  D N e D N ^  %  n 2  '  ( 1 7 )  

Algorithms using on-lake spectra 

The performance of a wide range of chlorophyll algorithms was tested using 

reflectance measurements and extracted chlorophyll values (Tables 4, 5). 

Simulated satellite sensor bands were produced by averaging the hyperspectral 

data that corresponded to the range of each sensor band (Figure 3). Bands for 

hyperspectral algorithms were produced at 3-nm resolution by averaging the data 

within 1.5 nm on either side of the center band wavelength. 

Hyperspectral band ratios 

Algorithms developed for measuring chlorophyll in lakes using hyperspectral data 

commonly rely on two or three strategically chosen bands. One of these bands is 

chosen to capture the effects of chlorophyll absorption (between 665 nm and 675 

nm), while the other band or bands are selected to provide contrasting anchor 
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points. In the case of algorithms (A), (B) and (C) (Table 4), the second band was 

positioned in an area of the spectrum (Figure 4), assumed to be free from the 

influence of chlorophyll absorption. In contrast, algorithms (D), (E), (F) and (G) 

(Table 4) pair the chlorophyll absorption band with a band located at the 

reflectance peak that appears between 690 nm and 710 nm with increasing 

chlorophyll concentration (Figure 5). It is believed that this peak is due to 

increased particulate scattering bounded by strong absorption by chlorophyll 

(~670 nm) and water (>720 nm). Algorithms (H), (I), (J) (K) (Table 4) utilize three 

bands to detail the scattering peak around 710 nm in contrast to the flat spectral 

region past 720 nm and maximal chlorophyll absorption region around 675 nm 

(Figure 6). 

Ocean color algorithms 

The operational ocean color algorithms for the SeaWiFS (L), MODIS (M) and 

MERIS (N) sensors (Table 5) all rely on a ratio of a blue band to a green band 

(Figure 7). These algorithms were designed for Case I waters, and operate on 

the assumption that all absorption in the blue region (bands at 443 nm, 489 nm, 

510 nm) is due either to chlorophyll or CDOM which covaries with chlorophyll 

concentration (i.e., from cell lysis) (O'Reilly et al. 1998). The algorithm is 

designed to shift between multiple bands in the blue area of the spectrum, 

ensuring sensitivity through a range of chlorophyll values with increasing 

chlorophyll concentration. These algorithms are thought to perform poorly in 
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lakes due to the high variability of CDOM and suspended sediments, which often 

vary in concentration independently from chlorophyll (Morel and Prieur 1977). 

When examining initial results of OC algorithms optimized for my study lakes, I 

noticed that the OC algorithms were not switching across all of the possible 

bands due to spectral characteristics of both New England lakes and the Great 

Salt Lake. Instead, the OC algorithms were always selecting the highest 

wavelength blue band for every spectrum, turning the switching algorithm into a 

simple band ratio. In order to investigate the influence of the blue band choice on 

the effectiveness of OC algorithms for my study lakes, I analyzed OC algorithm 

band ratios separately as stand alone algorithms, one for each blue band in the 

original switching algorithm. 

Simulated 709 nm band in MODIS 

One of the primary disadvantages of using MODIS for inland water bodies is the 

lack of a band to measure the scattering peak that lies in the 700 nm to 710 nm 

wavelength range. This area of the spectrum, which is captured by MERIS's 709 

nm band, is used in nearly every algorithm for estimating chlorophyll in lakes, 

and without this band, the methods available to MODIS are limited. The 

usefulness of the peak that rises in this wavelength range with increasing 

chlorophyll concentration has been well documented (Gitelson 1992; Gitelson et 

al. 1999; Gower et al. 2005a; Dall'Olmo and Gitelson 2005; 2006; He et al. 2008; 
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Gitelson et al. 2009), but the exact nature of the peak is not fully understood. The 

major driver of the peak is likely increased backscattering as a result of increased 

phytoplankton density at higher chlorophyll concentrations, bounded on one side 

by strong absorption by chlorophyll (675 nm) and on the other by absorption by 

water. However, some portion of the peak is likely due to sun-stimulated 

fluorescence by photosystem I and/or II in phytoplankton (Harbinson and 

Rosenqvist 2003). Based on the assumptions that the primary source of the peak 

around 709 nm is backscatter from phytoplankton, and that nearly all of the 

signal around 750 nm is due to backscatter, I developed a relationship between 

simulated MERIS bands at 754 nm and 709 nm using the (Figure 8). This 

relationship was applied to the MODIS 748 nm band in order to create a 

simulated 709 nm band for use in algorithm development and potential 

employment with this sensor. 

Maximum Chlorophyll Index 

The Maximum Chlorophyll Index (MCI) algorithm was designed for the estimation 

of chlorophyll using satellite bands from MERIS. This algorithm uses two bands 

to draw a baseline, from which the height of another band is measured (Table 5; 

Figure 9). The traditional MCI (O) uses the bands at 681 nm and 754 nm to draw 

the baseline, and the band at 709 nm to measure against the baseline. A 

modified version of MCI (P) was also examined, testing the usefulness of the 665 

nm band as one of the baseline endpoints. Although MODIS does not possess 
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the critical band for MCI (709 nm), both the traditional MCI (Q) and modified MCI 

(R) were analyzed for MODIS bands using a simulated 709 nm band (Figure 8). 

A final version of MCI (S) was explored, using strategically placed hyperspectral 

bands (S). 

Satellite 2-band algorithms 

Several of the 2-band algorithms that focused on the peak near 710 nm were 

adapted to the MODIS and MERIS satellite bands. One of the algorithms (T) was 

a simple use of the MERIS bands centered at the same location as the 

hyperspectral bands examined above. An adaptation of the same algorithm was 

developed with MODIS bands (U) with a simulated band at 709 nm. In addition, a 

further modified version of this approach utilized an average of the 665 nm and 

681 nm bands from MERIS (V) as the indicator of the intensity of chlorophyll 

absorption. An equivalent approach was also used with MODIS bands 667 nm 

and 678 nm, along with a simulated 709 nm band (W). Finally, a 3-band 

algorithm based on hyperspectral algorithm (J) was adapted for use with MERIS 

(X) and MODIS (Y) bands. 

Algorithms not used 

Several of the chlorophyll estimation algorithms available in the literature were 

ultimately not used in this study. The FLH algorithm was attempted in the early 



stages of analysis, but was abandoned due to poor results. The FAI was not 

possible to attempt due to the fact that radiometers used here did not collect data 

in all of the necessary spectral wavelengths (all data were below 775 nm). Semi-

analytical algorithms were not attempted for I did not collect data on inherent 

optical properties of my study lakes in order to parameterize the models needed 

for these algorithms. 

Algorithm performance analyses 

Linear versus log-log regressions 

All 2- and 3-band algorithms to estimate chlorophyll were explored using both 

linear and log-log regression analyses. In each case, the measured chlorophyll 

was regressed against a predictor variable (band ratio or ratio difference) derived 

from the corresponding spectral reflectance measurement. Measures of 

performance include the r2, relative absolute error (Rel Error), and root-mean-

square (RMS) error. Since chlorophyll concentrations tend to vary by several 

orders of magnitude, log-log regressions are often used, such that best-fit 

regressions minimize relative error over the full range of chlorophyll 

concentration. In such cases, the RMS is measured in decades of log, and 

although it is not as easily understood as the RMS from a linear regression 

(which has units of pg L"1), it is useful for comparing the relative performance of 
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different algorithms. As a benchmark, the best ocean color algorithms have RMS 

values of about 0.250 log decades (O'Reilly et al. 2000). 

Linear regressions. To examine the effect of very low and very high chlorophyll 

concentrations on the linear analyses, each algorithm was run with four datasets: 

1) all data, 2) only data above a low chlorophyll concentration, 3) only data below 

a high chlorophyll concentration, 4) only data between the low and high 

chlorophyll concentration. The values for the low and high chlorophyll 

concentrations were set for each study location (Great Salt Lake, New England) 

based on their own lake characteristics. 

Log-log regressions. The primary analysis technique used to evaluate algorithms 

in this study was log-log regression. This approach was chosen in order to avoid 

the increased emphasis given to extreme low and high chlorophyll values when 

using linear regression analysis. For New England lakes, log-log analyses were 

conducted with the entire dataset. In the case of the Great Salt Lake, analyses 

were run both with the entire dataset, as well as with a restricted dataset in which 

suspect spectral data were excluded. 

A problem was encountered when testing certain algorithms that involved ratio 

differences. Under some circumstances (low chlorophyll levels) the ratio 

differences were negative, and thus log transformation of the predictor variable 

was impossible. Unfortunately, the reliance on log-log regressions in this study 
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would have completely omitted these "negative" algorithms from consideration, in 

spite of the fact that some of these algorithms had been shown to be either highly 

useful for lakes based on published literature (in the case of 3-band, 2-ratio 

algorithms) or were being applied in a modified way and showed great promise 

(MCI). 

In order to include algorithms which produced negative values in this study, a 

correction factor was added to the predictor variable in such cases before 

regression with extracted chlorophyll values. The factor was chosen in each case 

to ensure all predictor values used by the algorithm were positive, thus providing 

for the use of log-log analyses. This modification from the standard algorithms 

allowed for their evaluation compared with all of the other algorithms, without 

which they would have been completely excluded. Algorithms for which this 

modification was made are indicated by an asterisk in Tables 4 and 5. 
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Table 2. Type of integrated sampling for whole lake water by project. 

Project Coordinating Agency Sites Integrated sampling method 

Great Salt Lake 
Synoptic Studies 

Utah State University 
US Geological Survey 

51 Sample collected 0-1 meter of 
epilimnion with peristaltic pump 

New England Lakes 
and Ponds Project 

US Environmental 
Protection Agency 

40 Sample collected 0-2 meters 
with coring sampling device 

National Lakes 
Assessment 

US Environmental 
Protection Agency 

16 Sample collected 0-2 meters 
with coring sampling device 

NH Lakes Lay 
Monitoring Program 

University of New 
Hampshire 

11 
Sample collected from entire 
epilimnion with tube sampling 
device (3-5 m) 

UNH Center for 
Freshwater Biology 

University of New 
Hampshire 

53 
Sample collected from entire 
epilimnion with tube sampling 
device (3-5 m) 
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Table 3. Details for all chlorophyll analytical methods used in this study. Laboratories are 
indicated as follows: CT - Connecticut Department of Energy and Environmental Protec
tion, EPA - US Environmental Protection Agency Region I Laboratory, MA - Massachu
setts Department of Environmental Protection, ME - Maine Department of Environmental 
Protection, NH - New Hampshire Department of Environmental Services, UM - Univer
sity of Maine, UNH - University of New Hampshire, URI - University of Rhode Island, 
USGS - US Geological Survey Utah Water Science Center, VT - Vermont Department of 
Environmental Conservation. Fluor - fluorometric, Spec - spectrophotometric. All extrac
tions used 90% acetone as a solvent. 

Vol Filter 

Lab (ml) Type Pore (^m) Preservation Analysis 

CT 250 GF/F 0.7 Frozen Fluor 

EPA 250 GF/F 0.7 Frozen Fluor 

MA 15 GF/C 1.2 Frozen Fluor 

ME '100 Membrane 0.45 Frozen w/CaC03 Spec 

NH 100 Membrane 0.45 Frozen Spec 

UM 250 GF/F 0.7 Frozen Fluor 

UNH 100 Membrane 0.45 Dried & Dark Spec 

URI 50 GF/F 0.7 Frozen w/MgC03 Fluor 

USGS 20 GF/C 1.2 Frozen Fluor 

VT 250 GF/F 0.7 Frozen Fluor 
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Table 4. Details for chlorophyll algorithms used in this study based on hyperspectral 
measurements. Band values represent the center of the band used in the algorithm in 
nm. Bands were created by averaging the reflectance values from 1.5 nm on each side 
of the bands shown here. Hyper indicates 3-nm wide bands * indicates a correction fac
tor was added to the predictor variable to ensure non-negative values. 

Sensor Algorithm type Bands 

(A) Hyper 2-band 
Rr.735 
Rre673 

(B) Hyper 2-band 
Rre725 
Rre665 

(C) Hyper 2-band 
R-720 
Rrs670 

(D) Hyper 2-band 
Rre705 
Rre673 

(E) Hyper 2-band 
Rre710 
Rre665 

(F) Hyper 2-band 
Rre710 
Rrs670 

(G) Hyper 2-band 
R-703 
Rre677 

(H)* Hyper 3-band 
Rre740 Rrs740 
Rre671 Rre710 

or Hyper 3-band 
Rrs730 Rre730 
Rre675 Rre695 

(j r Hyper 3-band RrS754 Rrs754 
Rre665 Rre709 

(k r Hyper 3-band RrsZM R.754 
Rra677 RJ03 
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Table 5. Details for chlorophyll algorithms used in this study based on currently deployed 
satellite sensors. Band values represent the center of the band used in the algorithm in 
nm. Bands were created by averaging the reflectance values over the width of the satel
lite band. MCI - Maximum Chlorophyll Index, Hyper - 3 nm-wide bands, * indicates a 
correction factor was added to the predictor variable to ensure non-negative values. 

Sensor Algorithm type Bands 

(L) SeaWiFS OC 
max rRre443. R„489. Rr.5101 

Rre555 

(M) MODIS OC 
max TRr.443, R„4891 

Rre550 

(N) MERIS OC 
max fR«443. R„489. RJ5101 

Rrs560 

(o r MERIS MCI Rre681, Rre709, Rre754 

(P)* MERIS 
MCI 

(modified) 
Rrs665, Rre709, Rre754 

(q r MODIS MCI Rre678, Rrs709(s), Rrs748 

(R)* MODIS 
MCI 

(modified) 
Rre667, Rrs709(s), Rrs748 

(s r Hyper 
MCI 

(modified) 
Rre677, Rrs703, Rre754 

(T) MERIS 2-band 
Rrs709 
Rrs665 

(U) MODIS 2-band Rrs709(s) 
Rrs667 

(V) MERIS 3-band 
Rr.709 

mean 1^665^681] 

(W) MODIS 3-band 
R.709te) 

mean [Rrs667,Rrs678] 

(xr MERIS 3-band 
R~754 R.754 
Rrs665 Rre709 

(Y r  MODIS 3-band Rre748 _R,748 
Rre667 Rre709(s) 
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Figure 1. Left half of schematic flow diagram for data collection and calculations 
for dual-radiometer measurements. Letters can be used to follow dotted lines 
onto the right half of the diagram (Figure 2). Numbers in parenthesis refer to the 
relevant equations in the methods text. 
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Figure 2. Right half of schematic flow diagram for data collection and calculations 
for dual-radiometer measurements. Letters can be used to follow dotted lines 
onto the left half of the diagram (Figure 1). Numbers in parenthesis refer to the 
relevant equations in the methods text. 
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Figure 3. Simulated satellite bands were produced for each reflectance spectrum 
for use in algorithm development. The green bands below simulate the values of 
satellite bands on a high-chlorophyll lake (36.6 ^ig L"1), while the blue bands rep
resent the simulated bands on a low-chlorophyll lake (5.7 \ig L"1). The satellites 
sensors simulated here are (A) MERIS, (B) MODIS and (C) SeaWiFS. 

0.010 

0.008 

-T 0.006 
CO 

0? 0.004 

0.002 

0.000 

0.008 

0006 
w 

£ 0.004 

0.002 

0.000 

0.008 

0.006 

£ 0.004 

0.002 

0.000 
400 500 600 700 

Wavelength (nm) 

45 



Figure 4. Algorithm band locations for several 2-band hyperspectral algorithms 
(Table 4, A-C). The A bands (665 nm, 670 nm, 673 nm) were chosen to measure 
the intensity of chlorophyll absorption. The B bands (735 nm, 725 nm, 720 nm) 
were chose as reference points in areas of the spectrum not directly affected by 
chlorophyll absorption. The light gray spectrum is typical of low chlorophyll lakes 
(5.7 jug L"1). The dark gray spectrum is typical of high chlorophyll lakes (36.6 (xg 
L-1). 
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Figure 5. Algorithm band locations for several 2-band hyperspectral algorithms 
(Table 4, D-G). The A bands (665 nm, 670 nm, 673 nm, 677 nm) were chosen to 
measure the intensity of chlorophyll absorption. The B bands (703 nm, 705 nm, 
710 nm) were chosen to characterize the peak which appears between 690 nm 
and 710 nm with increasing phytoplankton density. The light gray spectrum is 
typical of low chlorophyll lakes (5.7 fig L"1). The dark gray spectrum is typical of 
high chlorophyll lakes (36.6 |ig L"1). 
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Figure 6. Algorithm band locations for 3-band hyperspectral algorithms (Table 4, 
H-K). The A band (665 nm, 671 nm, 675 nm, 677 nm) was chosen to measure 
the intensity of chlorophyll absorption. The B band (695 nm, 703 nm, 709 nm, 
710 nm) was chosen to characterize the peak which appears between 690 nm 
and 710 nm with increasing phytoplankton density. The C band (730 nm, 740 nm, 
754 nm) was selected to represent an area of the spectrum with little to no varia
tion related to bio-optically active components. The light gray spectrum is typical 
of low chlorophyll lakes (5.7 |ig L"1). The dark gray spectrum is typical of high 
chlorophyll lakes (36.6 |ig L"1). 
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Figure 7. Algorithm band locations for operationally deployed ocean chlorophyll 
algorithms (Table 5, L-N). The A band (443 nm), B band (489 nm) and C band 
(510 nm) were chosen to measure the intensity of chlorophyll absorption in the 
blue region. The algorithm uses whichever of these three bands has the highest 
reflectance value. The D band (550 nm, 555 nm or 560 nm depending on sensor) 
is used as an anchor point against which to measure the changes in the other 
bands. The light gray spectrum is typical of low chlorophyll lakes (5.7 (ig L"1). The 
dark gray spectrum is typical of high chlorophyll lakes (36.6 fig L~1). 
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Figure 8. Relationship between MERIS bands at 754 nm and 709 nm. Data set 
includes spectra from this current work (Great Salt Lake, New England lakes), 
as well as, data obtained from Spanish Lakes (personal communication, Ruiz-
Verdu, 2012). This 3rd order relationship was applied to the 748 nm MODIS band 
generated from each spectrum to create a simulated 709 nm band which could 
be used in algorithm development for that sensor. 
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Figure 9. Algorithm band locations for the Maximum Chlorophyll Index (MCI) 
algorithms (Table 5, O-S). The A band (665 nm, 667 nm, 677 nm, 678 nm, 681 
nm), was chosen to measure the intensity of chlorophyll absorption in the red 
region. The B band (703 nm, 709 nm) was chosen as to characterize peak which 
appears between 690 nm and 710 nm with increasing phytoplankton density. The 
C band (748 nm, 754 nm) is used as an anchor point against which to measure 
the changes in the other bands. The light gray spectrum is typical of low chlo
rophyll lakes (5.7 fig L"1). The dark gray spectrum is typical of high chlorophyll 
lakes (36.6 fig L"1). 
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CHAPTER III 

CHLOROPHYLL ALGORITHMS FOR NEW ENGLAND LAKES 

Introduction 

General description 

New England lakes were formed during the retreat of the glaciers approximately 

10,000 years ago, a process that littered the region with thousands of lakes with 

soils consisting largely of glacial till. Three EPA nutrient ecoregions span New 

England - glaciated dairy, glaciated northeast and eastern coastal plain. Based 

on chlorophyll concentration, nearly 75% of the lakes in New England are 

classified as oligo-mesotrophic, compared to 50% on the national scale, and the 

region is second only to the Pacific Northwest in the percentage of oligotrophic 

lakes (USEPA 2010). When considering an evaluation of stressors on lakes, 79% 

(for phosphorus) and 88% (for nitrogen) of New England lakes are ranked as 

good, compared to 58% and 54% of lakes nationally (USEPA 2010). 

Although the lakes in New England are nutrient poor compared to most lakes in 

much of the rest of the United States, the lakes are at high risk for degradation. 

Lakes in the region possess little buffering capacity due to the non-calcareous 
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bedrock or high silicate soils upon which they sit, and as such, lack the ability to 

effectively mediate increases of nutrient concentrations without effecting the lake 

ecosystem. Little to no information is available on suitable remote sensing 

methods for monitoring lakes in this area of the country, and most research on 

the development of lake algorithms in other regions around the world has not 

included lakes with these characteristics in their datasets. 

Methodology 

Sampling 

Measurements of hyperspectral reflectance were made at 125 lake sites from 

2002 to 2009, representing 78 different lakes from seven states (Figure 10). Of 

these sampling sites, 31 lake sites (on 17 lakes) were measured with the single-

radiometer system and 94 sites (on 64 lakes) with the dual-radiometer system. 

The range of geographic and temporal variation ensured good representation of 

the range of lake conditions found throughout New England. 

Chlorophyll a 

At each sampling site, lake water was collected throughout the epilimnion using 

an integrated sampling tube (Table 2). Chlorophyll analysis differed based on the 

project under which the sampling was conducted (Table 3). All of the lake sites 
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sampled from 2002 to 2005 and in 2008, (n=69), were conducted during 

University of New Hampshire (UNH) class field trips or research trips. Chlorophyll 

analyses for these samples were performed at UNH, except for a single lake 

visit, which was analyzed at the University of Maine. Lake sites sampled in 2007 

(n=14) were part of the US EPA National Lakes Assessment Project, and lakes 

sampled in 2009 (n=3) were part of continuing collaboration with the EPA Region 

I Laboratory in Chelmsford, MA. Chlorophyll analyses for these 17 lake sites 

were conducted at the US EPA Region I Laboratory. 

Data collected from lakes in 2006 were part of the US EPA New England Lakes 

Project (NELP) sampling program. This project involved a comparison of 

analytical methods from seven laboratories: Connecticut Department of Energy 

and Environmental Protection (CT), Massachusetts Department of Environmental 

Protection (MA), Maine Department of Environmental Protection (ME), New 

Hampshire Department of Environmental Services (NH), UNH, University of 

Rhode Island (URI), and Vermont Department of Environmental Conservation 

(VT). Following a round-robin protocol, all water samples were to be analyzed by 

each of the seven laboratories, and results compared. 

A total of 39 lakes were sampled by the NELP project during the summer and fall 

of 2006. The majority of the lakes had chlorophyll data for each of the seven 

analytical methods used, but occasionally missing field equipment (filters) or 

mishandling of samples led to missing chlorophyll data for a given method for a 
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particular lake (Table 6). To assess which of the methods produced results most 

similar to the UNH method (upon which much of the other New England 

chlorophyll data were based), the sum of squared differences was calculated for 

each method as compared to the chlorophyll values produced by UNH (Table 7). 

A total of 34 lakes from six different methods (including UNH) were included in 

the comparison. The method from MA was excluded due to insufficient 

chlorophyll data. 

Based on the comparison of the relative sum of squares, the VT method was 

chosen as the alternate chlorophyll method with values most similar to those 

produced with the UNH method. As such, chlorophyll concentrations from the VT 

method were used when no chlorophyll data were available from the UNH 

method for a given lake (n=4) or when the average chlorophyll concentration of 

all seven methods for a lake was greater than 10 pg L"1 (n=8) to reduce potential 

issues related to suspected degradation effects (Figure 11). 

Dual-radiometer data collection/processing 

At 94 lake sites, spectral measurements were made using the dual-radiometer 

technique described in Chapter II. Raw spectral measurements were processed 

and converted to remote sensing reflectance (Rrs, sr"1 ) using equations (6) to 

(17). For two of the spectra, no chlorophyll measurements were available, and 

two other spectra were determined to be of poor quality due to adverse weather 
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conditions during collection (high waves). As a result, a total of 90 spectra were 

used to test the algorithms described in Tables 4 and 5. 

As shown in Table 8, all algorithms were examined in a log-log relationship to 

relate the spectral measurements to the chlorophyll concentration. All of the 2-

band and 3-band ratio algorithms were also examined as linear relationships. 

The best algorithms for each sensor type and chlorophyll range were identified 

based on the RMS, relative error, and r2 values, as well as a visual evaluation of 

the goodness of fit. 

To examine the effects of very low and very high chlorophyll concentrations on 

linear regression analyses, all algorithms were run with four different datasets: all 

chlorophyll data (n=90), chlorophyll > 5 pg L"1 (n=40), chlorophyll < 50 pg L"1 

(n=89), and chlorophyll between 5 and 50 pg L"1 (Appendix C). 

Single-radiometer data collection/processing 

At 31 lake sites, spectral measurements were made using the single-radiometer 

technique described in Chapter II. Raw spectral measurements were processed 

and converted to remote sensing reflectance (Rrs, sr"1 ) using equations (1) to (5). 

Six of the spectra were far outside the norm for water spectra based on intensity, 

spectral characteristics, or both, probably due to poor collection technique (i.e. 

not holding the radiometer at the correct angles, changing light conditions 
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between measurements) and/or adverse optical conditions (i.e., high CDOM). An 

additional seven spectra were determined to be outliers compared to the dual-

radiometer spectra (Figure 12). This was based on the fact that they varied > 1.5 

standard deviations from the predicted value and thus, were excluded from 

further analysis. After removing sub-optimal spectra, a final batch of 18 single-

radiometer spectra remained and were combined with dual-radiometer spectra to 

evaluate selected algorithms (Tables 4, 5) as described in Table 8. Finally, the 

RMS and relative errors produced by the dual-radiometer spectra were 

compared to the combined single- and dual-radiometer collected dataset. 

Results 

Spectral measurements 

Description of dual-radiometer spectra. The 90 dual-radiometer spectra 

remaining after quality control exhibited a great deal of variability in green/yellow 

(540 nm to 600 nm), red (600nm to 700 nm) and near-infrared (700 nm to 710 

nm) portions of the spectrum (Figures 13, 14). Relatively little variability was 

observed in the blue end of the spectrum, especially at wavelengths less than 

450 nm. Unlike the open ocean, where there is high variability in the blue, in 

CDOM-rich lakes, spectra were noticeably influenced by the strong absorption of 

CDOM in the blue and green wavelengths (Figure 15). 
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Description of single-radiometer spectra. The 18 spectra remaining after quality 

control exhibited a great deal of variability in green/yellow (530nm to 600 nm), 

red (600nm to 700 nm) and near-infrared (700 nm to 735 nm) portions of the 

spectra (Figures 16,17). A higher level of variability than expected was observed 

in the blue end of the spectrum, especially at wavelengths less than 450 nm, 

which was likely due to poor measurement technique, the insufficient removal of 

reflected skylight, and/or insufficient sensor sensitivity in that wavelength range. 

Chlorophyll a 

For the spectra collected with the dual-radiometer system, chlorophyll ranged 

from 0.8 pg L"1 to 126 pg L"1 (Figures 18,19). The mean concentration of all sites 

was 9.9 pg L"1, and the median chlorophyll value was 4.4 pg L"1. A total of 8 lakes 

could be classified as hypereutrophic (9%), 20 as eutrophic (22%), 45 as 

mesotrophic (52%) and 17 as oligotrophic (18%). This distribution is similar to 

lakes across the Northern Appalachian region found in 2009 (EPA 2009), 

although shifted slightly more toward eutrophic lakes due to targeted sampling of 

this lake type. For the spectra collected with the single-radiometer system, 

chlorophyll ranged from 0.7 pg L"1 to 61.9 pg L"1 with a median of 2.9 pg L'\ and 

mean of 7.3 pg L"1. 
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Evaluation of algorithms 

Results on the evaluation of algorithms presented in this chapter are all based on 

the log-log regression analyses. Results for linear regressions are presented in 

Appendix C, as well as the coefficients for the best log-log algorithms. For 

simplicity of notation in the figures and tables, reflectance ratios and other 

predictor variables are denoted by the wavelengths involved (e.g., Rrs(A.A)/Rrs(X,B) 

is denoted XAIXB).  

Dual radiometer - hyperspectral band algorithms. A variety of algorithms using 

hyperspectral data proved effective for estimating chlorophyll concentration, with 

11 exhibiting an RMS < 0.250 (Table 9). The most effective algorithm was a 

modified MCI using 677 nm (wavelength optimized for this dataset), followed by 

two 3-band algorithms, and a 2- band algorithm also using an optimized 

chlorophyll absorption minimum band (677 nm) (Figure 20, Figure 21). Out of 

the three MCI algorithms examined (using 677 nm, 665 nm, or the standard 681 

nm), the standard algorithm had the highest RMS (13% higher than 677 nm 

version). 

Dual radiometer - MERIS algorithms. All algorithms based on MERIS bands 

proved effective for estimating chlorophyll concentration (highest RMS was 

0.252) (Table 9; Figures 20, 22). The most effective algorithm was a modified 

MCI using an alternate band (665 nm), followed by a 3-band algorithm, and the 
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standard MCI (681 nm). The most effective blue band for the OC algorithm was 

489 nm, which offered a 4% improvement over the band chosen by the OC4 

algorithm (510 nm). Out of the two MCI algorithms examined (665 nm and the 

standard 681 nm), the standard algorithm had the higher RMS (5% higher than 

with 665 nm). 

Dual radiometer - MODIS algorithms. The OC algorithms based on MODIS 

bands proved most effective for estimating chlorophyll concentration (highest 

RMS was 0.252), while MCI algorithms relying on the simulated 709 nm band 

were slightly less effective (Table 9; Figures 22, 23). The most effective approach 

was an OC algorithm using the band chosen by OC3 (489 nm). The standard 

MCI (678 nm) proved barely better (2%) than the alternate version (668 nm). All 

approaches using the simulated 709 band in 2- and 3-band algorithms were 

much less effective than other options. 

Dual radiometer - SeaWiFS algorithms. All algorithms based on SeaWiFS bands 

proved effective for estimating chlorophyll concentration (highest RMS was 

0.252) (Table 9; Figures 22, 23). The most effective blue band for the OC 

algorithm was 489 nm, which offered a 3% improvement over the band chosen 

by the standard OC4 algorithm (510 nm). 
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Comparison of single- and dual-radiometer algorithms 

The 18 spectra from the single-radiometer setup were combined with the 90 valid 

spectra from the dual-radiometer method into one dataset. This combined 

grouping of spectra were used to examine a subset of the chlorophyll algorithms 

that were run using the dual-radiometer dataset (Table 8). Not all algorithms 

could be analyzed due to the lack of spectral data above 725 nm in the spectra 

collected with the single radiometer. 

The majority (19) of algorithms produced higher RMS (1% to 35%) values for the 

combined datasets than when using the dual-radiometer spectra alone. However, 

four of the algorithms exhibited a reduced RMS with the combined data set (1% 

to 5%), and three of the algorithms demonstrated no change in RMS between the 

two datasets (Table 10). The algorithms most altered when using the combined 

dataset were the MERIS algorithms relying on the scattering peak band (709 

nm). The algorithms least affected by the addition of the single-radiometer 

spectra were the ocean color algorithms for satellite sensors, for which the RMS 

increased a maximum of 2%, and decreased up to 5%. 
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Discussion 

General observations 

Round robin chlorophyll methods. While the lack of UNH-analyzed chlorophyll 

concentrations for some of the lakes sampled in 2006, and the possible 

mishandling of some UNH filters for other lakes that summer, might have led to 

the exclusion of some lake spectra, the availability of additional chlorophyll data 

from the round robin experiment ultimately allowed all spectra collected to be 

used in algorithm development. The chlorophyll analytical method used by the 

state of Vermont produced results quite comparable to those from UNH, in spite 

of the fact that the two techniques used different filter preservation techniques 

(dried vs. frozen) and different analytical methods (spectrophotometric vs. 

fluorometric). The Vermont data proved to be an adequate replacement for 

missing or potentially compromised UNH chlorophyll concentration data. Overall, 

the substituted data represented a minority of the lakes sampled that year (31%) 

and made up an even smaller proportion of all dual-radiometer spectra in this 

study (13%). 

Single- vs. dual-radiometer spectra. The comparison of spectra collected with the 

different methods (single- vs. dual-radiometer) revealed several insights. First, it 

was more difficult to collect valid spectral data using the single radiometer. This 

difficulty was due to a combination of technical capabilities of the equipment, as 
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well as the different methods in which measurements were taken. In the case of 

the single-radiometer method, data capture was less automated and required a 

series of four measurements to be taken in succession (dark, water, sky, gray) to 

capture all of the necessary data. A fundamental assumption in the single-

radiometer technique is a constant ambient light field across the duration of all 

four measurements. While the four measurements were usually completed within 

1 minute, it is probable that ambient light changes occurred during most of the 

measurement periods. The dual-radiometer system relied on CDAP to collect 

data, which was much more automated, used averaging, and automatically 

adjusted integration times based on ambient light conditions at the beginning of 

the measurement. In addition, the dual-radiometer system measured upwelling 

and downwelling light simultaneously, removing much of the error introduced by 

changing light conditions during the measurement period. Finally, the 

directionality of the sensor was more difficult to maintain accurately with the 

single radiometer (45° and 135°) than with the dual-radiometer equipment (180°). 

In spite of the inherent limitations of the single-radiometer measurement 

technique, 80% of the measurements produced usable spectra (58% of spectra 

met the standards of this study). This number could potentially have been 

increased by the collection of more replicates at each lake, which would have 

provided a greater chance to overcome the limitations of the device and the 

method. When compared to the typical scatter of data around the best algorithms 

developed using dual-radiometer spectra alone, less than 1/3 of the valid single-
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radiometer spectra were determined to be outliers. In general, it is clear that the 

single-radiometer spectra were mostly comparable to data produced with the 

dual-radiometer method, although technical and logistical difficulties resulted in 

less measurement accuracy, and as such, more scatter introduced in the 

regression analysis between spectral bands and chlorophyll concentration. 

As a result of the additional scatter, and the related increase in RMS introduced 

by the inclusion of single-radiometer collected spectra (Table 10), these data 

were not included in the final evaluation of New England lake spectra. The 

increased RMS values introduced by these spectra artificially changed the 

ranking of algorithms, since not all of the algorithms could be evaluated with the 

single-radiometer spectra due to lack of spectral data above 725 nm. While these 

data were ultimately not used in the final analyses presented here, the single-

radiometer collection technique still provided potentially useful, although less 

accurate data, and this method could stand as a relatively inexpensive and less 

technically demanding method for spectral data collection on lakes. 

Algorithms 

Hyperspectral algorithms. Many algorithms for estimating chlorophyll 

concentration in New England Lakes using hyperspectral bands were quite 

effective, making it difficult to definitively choose the best algorithm to use for this 

sensor. Based on RMS values, the top choices were a combination of MCI, 3-
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band, and 2-band algorithms with RMS values from 0.206 to 0.211. Perhaps not 

surprisingly, three of these top choices utilized bands optimized for this spectral 

data set (677 nm for chlorophyll absorption, 703 nm for scattering peak). 

Interestingly, the top three algorithms (and five of the top six) could only be 

included in the log-log analyses after the addition of a constant to prevent the 

predictor variable (spectral difference) from being negative. While this may not be 

a standard practice, it produced some of the most effective options for estimating 

chlorophyll in New England lakes, and as such, should be investigated further. A 

key question that remains to be answered is how results might differ if a different 

constant is added. 

Several of the hyperspectral algorithms used in this study were identified as 

useful for Nebraska lakes, although the algorithms found to be most effective 

differed from the ordering described here (Dall'Olmo and Gitelson 2005). The 

RMS values demonstrated by these algorithms were far below those shown by 

Dall'Olmo, and were not subject to the same difficulty under 10 pg L"1 as 

exhibited in the Nebraska lakes. 

Satellite sensor algorithms. The best satellite-based algorithms were those based 

on the MERIS sensor bands, with RMS values as low as 0.218 for an alternate 

version of the MCI (using 665 nm). Several of the MERIS algorithms found to be 

most useful for New England lakes were also highly effective at estimating 

chlorophyll in Nebraska lakes, Lake Kinneret, and the Azov Sea (Gitelson et al. 
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2011 b; Yacobi et al. 2011 a; Gitelson et al. 2011 a; Yacobi et al. 2011 b), although 

in these studies the 2-band algorithm was found to be more effective than the 3-

band (which was the opposite in the current study). Six of the algorithms for the 

MERIS sensor were better than the best MODIS algorithm, but the OC algorithm 

using 489 nm for MODIS and 489 nm for SeaWiFS exhibited low RMS values 

(0.242 and 0.231, respectively). These algorithms are re-parameterized versions 

of the OC3 and OC4 algorithms which are currently employed to produce the 

chlorophyll a product by the NASA ocean team for these satellite sensors. While 

there is no specific reason to expect that these Case I algorithms would work well 

in a Case II system (O'Reilly et al. 1998), the parameterized version of this 

algorithm is surprisingly effective at estimating chlorophyll in New England Lakes. 
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Table 6. Chlorophyll values for each lake site from different laboratories in the New England 
Lakes and Ponds project. Data labeled with * were excluded from the comparison analysis due 
to lake of UNH data for those points. MA data (labeled A) were excluded from the analysis due to 
excessive data gaps. CT - Connecticut Department of Energy and Environmental Protection, ME 
- Maine Department ofsz Environmental Protection, NH - New Hampshire Department of Envi
ronmental Services, UNH - University of New Hampshire, URI - University of Rhode Island, VT -
Vermont Department of Environmental Conservation. Chlorophyll values in ng L . 

Lake Analytical Chlorophyll Method 
Name State VT CT NH ME URI UNH MA 

Shelbourne Pond VT 126 47.8 176 140 95.1 73.3 161A 

Chauncey Lake MA 36.0 36.3 39.8 37.0 5.1 33.2 36.2A 

Showell Pond NH 69.6 40.7 24.4 34.0 35.4 23.8 46.5A 

Love Joy Pond ME 24.0 9.0 27.9 23.0 15.7 13.4 22.0A 

French Pond NH 30.6 17.0 40.7 30.0 22.7 11.7 37.3A 

Hundred Acre Pond Rl 14.2 17.2 16.9 19.0 14.0 8.8 — 

Amos Lake CT 21.6 23.5 20.6 18.0 16.8 5.8 — 

Watchaug Lake Rl 4.8 7.0 5.2 5.1 2.6 4.4 — 

Upper Statesville Res. Rl 7.5 5.5 9.0 8.1 5.2 5.8 — 

Sennebec Pond ME 6.7 26.5 8.7 6.7 5.7 5.8 7.0A 

Long Pond MA 6.3 6.0 3.3 2.4 4.0 4.4 5.2A 

Gorton Pond Rl 12.2 9.3 11.7 11.0 4.9 4.6 — 

Silver Lake VT 5.4 3.7 5.8 4.9 3.5 5.4 5.5A 

Sunset Lake MA 7.5 8.5 6.7 9.2 8.0 4.0 10.0A 

Five Mile Pond MA 4.6 4.6 4.5 5.8 2.8 3.6 4.9A 

Ewell Pond VT 4.4 1.2 5.4 5.0 1.2 5.6 5.0A 

Winncheck Pond Rl 3.4 3.6 3.5 3.0 2.0 1.7 — 

Hayward Lake CT 4.5 4.4 8.2 5.4 2.7 3.0 — 

Quacumquasit lake MA 3.2 3.2 1.7 3.0 1.5 3.2 3.6A 

Perch Pond NH 7.0 4.2 7.3 3.1 4.3 2.9 5.4A 

Figure Eight Pond ME 4.2 3.4 16.9 3.4 3.7 4.1 3.0A 

Mashapaug Lake CT 2.5 2.6 0.5 3.0 1.3 3.2 — 

Diamond Pond NH 3.5 1.8 4.0 2.7 2.0 3.4 2.7A 

Goose Pond MA 2.7 2.2 1.8 2.4 1.9 2.8 2.2A 

Lake Mattawa MA 1.9 2.2 2.4 2.0 1.4 3.2 1.4A 

Stearus Pond ME 3.5 3.4 4.6 2.7 2.1 2.6 3.1A 

Lowell Lake VT 2.5 1.5 2.7 4.1 1.5 2.5 2.6A 

Quinnebaug Lake CT 2.6 3.6 3.2 3.1 1.9 2.0 — 

Keola Lake ME 3.2 2.7 3.6 2.3 2.0 2.1 2.2A 

Granite Lake NH 1.3 0.6 1.8 1.1 0.3 2.3 1.1A 

Forest Lake VT 1.0 0.3 0.8 1.0 0.8 2.3 1.0A 

Whalom Lake MA 1.4 1.9 0.9 1.3 0.9 2.4 1.1A 

Wallum Lake Rl 2.0 2.0 1.7 2.4 0.8 2.1 1.9A 

Shadow Lake VT 1.8 1.5 1.3 1.6 1.0 1.7 1.6* 
Batterson Park Pond CT 22.9* 22.3* 25.3* 25.0* 18.2* — — 

East Twin Lake CT 0.8* 2.0* 4.6* 4.7* 0.4* — — 

Pleasant Lake ME 4.1* 3.4* 4.1* 3.0* 2.8* — 3.2A 

Partridge Lake NH 3.0* 3.4* 4.1* — 2.0* 2.9* 3.1A 

Lake Attitash MA 23.8* 25.8* 19.6* 21.0* 12.4* 23.6A 
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Table 7. Comparison of chlorophyll values from different laboratories in the New England 
Lakes and Ponds project. The sum of squares were calculated in reference to values 
from the University of New Hampshire chlorophyll concentrations. CT - Connecticut 
Department of Energy and Environmental Protection, ME - Maine Department of Envi
ronmental Protection, NH - New Hampshire Department of Environmental Services, URI 
- University of Rhode Island, VT - Vermont Department of Environmental Conservation. 

Chlorophyll Analytical Chlorophyll Method 

Range CT ME NH URI VT 

Sum of squares 

All data 130.3 127.2 200.4 112.3 142.6 

<11 \ig L "1 53.2 34.1 54.6 51.9 28.4 

Average relative sum of squares 

All data 40.7 32.0 51.9 43.0 31.5 

<11 Hg L1 40.9 28.8 48.4 45.8 23.9 

Median relative sum of squares 

All data 30.9 31.2 35.1 44.6 25.4 

<11 Hg L1 30.5 21.3 33.2 44.7 16.0 
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Table 8. Algorithms run with spectra from New England lakes. Black dots indicate dual radiometer 
spectra, white dots indicate both dual radiometer spectra, as well as, a dataset using spectra 
from both collection techniques. The number of spectra used: black dots - all chlorophyll (n=90), 
chlorophyll > 5 fig L"1 (n=40), chlorophyll < 50 ng L"1 (n=89), chlorophyll between 5 ng L"' and 50 
ng L"1 (n=39), white dots - all chlorophyll (n=108), chlorophyll > 5 ng L"1 (n=47), chlorophyll < 50 
ng L"1 (n=106), chlorophyll between 5 ng L"1 and 50 ng L"1 (n=45). 

Type Algorithm 
log-log 

1st 2nd 3rd 4th 
linear 

Hii >5 <50 5-50 

Hyper 

703/677 
705/675 
710/665 
710/673 

O 
O 
o 
o 

o 
o 
o 
o 

o 
o 
o 
o 

o 
o 
o 
o 

720/670 
725/665 
735/673 

730/(675-695] 
740/(671-710] 
754/(665-709] 
754/(677-703] 

MCI (665) 
MCI (677) 
MCI (681) 

O 
O 
o 
o 

o 
o 
o 
o 

o 
o 
o 
o 

o 
o 
o 
o 

MERIS 

709/665 
709/681 

709/(665:681) 
754/(665-709] 

MCI (665) 
MCI (681) 
OC (443) 
OC (489) 
OC (510) 

O 
o 
o 

o 
o 
o 

o 
o 
o 

o 
o 
o 

o o o o 
• • • • 
o o o o 

MODIS 

709S/667 
709S/678 

709s/(667:678) 
748/[667-709s] 

O 
O 

o 
o 

o 
o 

o 
o 

MCI (667) 
MCI (678) 
OC3 (443) 
OC3 (488) 

O 
o 

o 
o 

o 
o 

o 
o 

o 
o 

o 
• 
o 
o 

o o 
o o 

SeaWiFS 

OC4 (489) 
OC4 (510) 
OC4 (443) 

O 
o 
o 

o 
o 
o 

o 
o 
o 

o 
o 
o 
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Table 9. Log-log regression models (n=90) for predicting chlorophyll concentrations in 
the New England lakes sorted by RMS. The order column indicates the power of the 
polynomial equation which resulted in the best fit. 

Type Algorithm RMS Rel Error r2 Order 
MCI (677) 0.206 42% 0.78 3rd 

754/(677-703] 0.211 38% 0.77 2nd 
730/(675-695] 0.212 42% 0.76 2nd 

703/677 0.219 48% 0.75 2nd 
MCI (665) 0.221 51% 0.74 3rd 

754/(665-709] 0.225 41% 0.73 3rd 
705/675 0.226 45% 0.73 2nd 

yper 710/673 0.229 47% 0.72 2nd 
MCI (681) 0.232 53% 0J2 3rd 

740/(671-710] 0.236 44% 0.71 3rd 
710/665 0.249 53% 0.67 2nd 
720/670 0.315 71% 0.48 2nd 
725/665 0.329 73% 0.43 2nd 
735/673 0.403 86% 0.14 3rd 

MCI (665) 0.218 50% 0.75 4th 
754/(665-709] 0.223 40% 0.74 3rd 

MCI (681) 0.229 51% 0.72 4th 
OC (489) 0.233 42% 0.71 2nd 

MERIS 709/681 0.240 50% 0.70 2nd 
709/(665:681) 0.241 51% 0.69 2nd 

OC (510) 0.242 42% 0.69 2nd 
OC (443) 0.252 47% 0.67 2nd 
709/665 0.252 54% 0.67 2nd 
OC (488) 0.242 42% 0.69 2nd 
OC (443) 0.252 48% 0.67 2nd 
MCI (678) 0.281 67% 0.58 3rd 
MCI (667) 0.286 67% 0.58 3rd 
709S/678 0.367 84% 0.29 2nd 

709s/(667:678) 0.375 85% 0.26 2nd 
748/[667-709s] 0.382 85% 0.23 2nd 

709S/667 0.383 86% 0.23 2nd 
OC (489) 0.231 42% 0.72 2nd 

SeaWiFS OC(510) 0.238 42% 0.70 2nd 
OC (443) 0.253 47% 066 2nd 
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Table 10. Comparison of log-log algorithms for determining chlorophyll concentrations in 
New England lakes analyzed with only dual-radiometer spectra (DRS) and a combined 
data set of single- and dual-radiometer spectra (DRS+RS). A RMS indicates the differ
ence between RMS values between the two datasets. Chlorophyll values are |ig L"1. 

RMS Rel Error 
Type Algorithm ARMS DRS DRS+RS DRS DRS+RS 

703/677 +1% 0.219 0.221 48% 48% 

705/675 0% 0.226 0.226 45% 48% 

Hyper 710/673 +8% 0.229 0.247 47% 55% 

710/665 +9% 0.249 0.272 53% 61% 

720/670 +8% 0.315 0.340 71% 81% 

709/(665:681) +34% 0.241 0.323 51% 77% 

709/665 +35% 0.252 0.339 54% 80% 

MERIS OC (489) 0% 0.233 0.233 42% 50% 

OC (510) -1% 0.242 0.240 42% 51% 

OC (443) +2% 0.252 0.256 47% 57% 

MODIS 
OC (488) 

OC (443) 

-5% 

+2% 

0.242 

0.252 

0.229 

0.258 

42% 

48% 

50% 

57% 
OC (489) 0% 0.231 0.230 42% 50% 

SeaWiFS OC (510) -1% 0.238 0.236 42% 51% 
OC (443) +2% 0.253 0.258 47% 57% 
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Figure 10. Sampling sites for New England Lakes from 2002 to 2009. Measure
ments made at lakes with pink points were used in analysis, while data from 
lakes with orange points were discarded due to poor quality. 

• Spectral data (bad) 

• Spectral data 
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Figure 11. Comparison of chlorophyll concentrations determined by the Ver
mont Department of Environmental Conservation (VT) and the University of New 
Hampshire (UNH). The gray dotted line at 10 jig L"1 indicates the chlorophyll con
centration above which the two methods are less comparable, providing potential 
evidence of chlorophyll degradation (green points) on some UNH filters at higher 
chlorophyll concentrations. 
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Figure 12. Comparison of single-radiometer and dual-radiometer spectra using 
three chlorophyll algorithms. Dual-radiometer points are blue, single-radiometer 
points are magenta. Red line represents best-fit algorithm developed with dual-
radiometer points. Green boxes highlight single-radiometer points which fall 
outside the typical scatter of the dual-radiometer data. 

703nm 1677nm measured chlorophyll 

710nm 1665nm measured chlorophyll 
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Figure 13. Hyperspectral reflectance spectra taken in New England lakes with 
the dual-radiometer system from 2005 to 2009. The spectra shown below (n=90) 

were used in algorithm development. 
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Figure 14. Average value and standard deviation for hyperspectral reflectance 
spectra taken of New England Lakes with the dual-radiometer system from 2005 
to 2009 (n=90). 
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Figure 15. Examples of spectra collected from CDOM-rich New England lakes. 
Rrs intensity is lower than in most of the other lakes sampled. As is characteristic 
of spectra from such lakes, much of the signal in the blue and green areas each 
spectrum has been absorbed, causing the spectra to appear tilted toward higher 
wavelengths. 
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Figure 16. Hyperspectral reflectance spectra taken in New England lakes with 
the single-radiometer system from 2002 to 2004. The spectra shown below 
(n=18) were used in algorithm development. 
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Figure 17. Average value and standard deviation for hyperspectral reflectance 
spectra taken of New England Lakes with the single-radiometer system from 
2002 to 2004 (n=18). 
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Figure 18. Sampling sites for New England Lakes from 2002 to 2009. Chlorophyll 
concentrations for each lake site visit shown in ng L"1. 
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Figure 19. Histogram of extracted chlorophyll concentrations (ng L"1) for lake 
sites on New England Lakes (n=90). One lake site with a high concentration (126 
ng L"1) not shown on graph. Dashed blue line represents median chlorophyll 
concentration (4.4 jig L"1), dotted blue line represents mean chlorophyll concen
tration (9.9 |ig L"1). 
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Figure 20. RMS values for chlorophyll estimation algorithms for New England 
lakes using (A) hyperspectral bands and (B) MERIS bands. MCI - maximum 
chlorophyll index, OC - ocean color. 
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Figure 21. Best log-log regression models using hyperspectral bands for predict
ing chlorophyll concentrations in the New England lakes (n=90). Graphs on left 
demonstrate the relationship between the band ratio and chlorophyll concentra
tion. Graphs on the right indicate the measured vs. predicted relationship for 
chlorophyll concentration based on the algorithm immediately to its left. 

measured cntoropnyll 

0.8 1.2 

754/[677-703l 

2nd order j 
rms =0.211! 

rel = 38% I 
r2=0.77j 

10s r 

*10'; 

10°: / 

10" 10' 
measured chlorophyll 

10' 

10" 

measured chlorophyll 

2nd order 
rms = 0.212! 

rel = 42%! 
r2 =0.761 

10 

83 



Figure 22. Best log-log regression models using satellite sensor bands for pre
dicting chlorophyll in New England lakes (n=90). Graphs on left demonstrate the 
relationship between the band ratio and chlorophyll concentration. Graphs on the 
right indicate the measured vs. predicted relationship for chlorophyll concentra
tion based on the algorithm immediately to its left. Satellite sensors band used 
are (A) MERIS, (B) MODIS and (C) SeaWiFS. 
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Figure 23. RMS values for chlorophyll estimation algorithms for New England 
lakes using (A) MODIS bands and (B) SeaWiFS bands. MCI - maximum chloro
phyll index, OC - ocean color. 
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CHAPTER IV 

CHLOROPHYLL ALGORITHMS FOR THE GREAT SALT LAKE 

Introduction 

The Great Salt Lake is a large, terminal water body located near Salt Lake City in 

Utah, USA. Causeways separate the lake into four main sections, Bear River 

Bay, Gilbert Bay, Gunnison Bay, and Farmington Bay (Figure 24). The railroad 

causeway built in 1959 that separated Gunnison Bay from Gilbert Bay created 

two ecologically distinct lakes (Stephens 1990). As a result, salinity 

concentrations are consistently higher in Gunnison Bay (160-290 ppt) than 

Gilbert Bay (-60-150 ppt). Gilbert, Farmington and Bear River Bays are fed 

largely from freshwater inputs arriving from outside the lake (Bear River to the 

North, Jordan River to the South), while Gunnison Bay gets most of its inflow 

from a brine layer moving through culverts in the railroad causeway from Gilbert 

Bay. While generally driven by freshwater input, both the Bear River (up to 200 

ppt) and Farmington Bay (up to 90 ppt) can have high salinity levels. In addition 

to surface water inputs, the Great Salt Lake is fed by a small amount of rainfall 

each year (~15 inches, 38 cm). Rain and snowfall patterns in the region have a 

large influence on the physical properties of the Great Salt Lake. Salinity can 
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vary greatly in a given bay from year to year, as can the area covered by the lake 

(Stephens 1990). The lake area has been as low as 2500 km2, but has been as 

high as 6500 km2, and is driven by inter-annual variations in precipitation and 

water withdrawals (Stephens 1990). 

Major nutrient loading enters the Great Salt Lake from the Jordan River through 

Farmington Bay, both from watershed drainage and discharge from sewage 

treatment plants. The vast majority of Utah's population lives within the lake 

watershed, and the majority of the treated sewage from these people enters 

Farmington Bay. Due to the terminal nature of the Great Salt Lake, there are few 

means for the nutrients to exit the lake once they have entered. Farmington Bay 

is consistently ranked one of the most polluted surface waters in the state of 

Utah, but due to its status as a saline water body, it has only recently gained 

attention from regulating agencies. As such, little to no attention has been paid to 

remediation and mitigation planning of this highly eutrophic water body. Water 

outflow from Farmington Bay enters Gilbert Bay through a small breach in the 

causeway, transporting the nutrients and phytoplankton into the rest of the 

system. 

As is typical in hypersaline lakes, the food web of the Great Salt Lake is fairly 

simple (Wurtsbaugh 1992; Williams 1998). The brine shrimp, Artemia, plays a 

central role in the lake ecosystem, acting as the dominant grazer of 

phytoplankton in Gilbert Bay (White et al. 1992; Wurtsbaugh 1992). During the 
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spring, a pulse of nutrient input from snowmelt leads to phytoplankton blooms, 

which are followed shortly by dramatic population booms of brine shrimp and 

their predators. Such food web dynamics can cause chlorophyll concentrations to 

spike and crash in Gilbert Bay over the course of a few weeks. 

In addition to the importance of brine shrimp to the internal food web of the Great 

Salt Lake, Artemia are also food sources for migratory birds and waterfowl 

(Cooper et al. 1984), up to 5 million of which visit the lake each year. The harvest 

of brine shrimp cysts, used in aquaculture and biomedical industry, began on the 

Great Salt Lake in the 1950's (Stephens 1990), and continues on the lake to this 

day. The harvesting brings millions of dollars a year into the local economy, 

providing a direct economic reason for good lake management. 

In spite of its importance in the region, relatively limited information is available 

on the water quality of the Great Salt Lake. Sampling on the lake is time 

consuming due to its large size, and difficult due its sizable wind fetch (often 

leading to high waves), extreme salinity and severe winter weather. Routine 

water quality sampling occurs on a monthly basis, although not all year round, 

and on only a few lake sites. Little is understood about the true temporal and 

spatial variation in lake water quality and phytoplankton populations on the Great 

Salt Lake, let alone how these conditions might vary with increases in nutrient 

loading from Farmington Bay or changes in brine shrimp populations. Remote 

sensing algorithms to accurately estimate chlorophyll in the Great Salt Lake will 
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allow a much greater understanding of the lake ecosystem dynamics, something 

which will prove invaluable in protecting and managing this important ecological 

and economic resource. 

Methodology 

Sampling 

A total of 51 measurements of hyperspectral reflectance were collected during 

three synoptic surveys in 2005 and 2006. Between May 31 and June 3, 2005, 

spectral measurements were collected at 17 of the 42 survey sampling sites 

(Figure 25). From May 17 to 20, 2006, spectral measurements were collected at 

26 of the 29 survey sampling sites (Figure 26). Between November 30 and 

December 2, 2006, spectral measurements were collected at 8 of the 19 survey 

sampling sites (Figure 27). These three trips took place during different lake 

conditions, at two different times of the year and in two different years, ensuring 

that spectral data were not overly biased by potentially rare conditions present 

during a single collection trip. 

Chlorophyll a 

At each sampling site, lake water was collected from the top 1 meter of the water 

column using a peristaltic pump (Table 2). A total of 20 ml of lake water was 
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filtered through a GF/C filter, and filters were subsequently kept frozen until 

fluorometric analysis to determine chlorophyll concentration (Table 3). 

Dual-radiometer data collection/processing 

All spectral measurements were made using the dual-radiometer technique 

described in Chapter II. Raw spectral measurements were processed and 

converted to remote sensing reflectance (Rrs, sr"1) using equations (6) to (17). 

After processing, three spectral measurements were determined to be invalid 

during quality control inspection due either to intensity or spectral deviations 

outside of the expected characteristics of water spectra. The sub-optimal state of 

these spectra was likely due to difficult conditions during data collection (in two 

cases high winds, in the third, proximity to shore and shallow water). As a result, 

a total of 48 spectra (Figures 28, 29) were used to test the algorithms listed in 

Tables 4 and 5. As shown in Table 11, all algorithms were examined in a log-log 

relationship to relate the spectral measurements to the chlorophyll concentration. 

In addition, several 2-band and 3-band ratio algorithms were also examined as 

linear relationships. For graphing and additional statistical analysis, the best 

algorithms for each sensor type and chlorophyll range were identified based on 

the RMS, relative error, and r2 values, as well as a visual evaluation of the 

goodness of fit. 

90 



To examine the effects of very low and very high chlorophyll concentrations on 

linear regression analysis, all algorithms were run with four different datasets: all 

chlorophyll data (n=48), chlorophyll > 1.5 |jg L"1 (n=22), chlorophyll < 80 pg L"1 

(n=45), and chlorophyll between 1.5 and 80 pg L"1 (n=18) (Appendix D). 

Examination of the linear relationships revealed a great deal of scatter at 

chlorophyll concentrations less than 1.5 pg L"1. Upon further examination, it 

became clear that the scatter was due to spectral measurements collected in 

Gilbert Bay during a two-day period (May 19 and 20, 2006) under difficult 

weather conditions. The synergistic effect of substantial waves present on the 

lake during these sampling cruises, making it difficult to accurately hold the 

upwelling radiometer cable at the prescribed depth, and low chlorophyll 

concentrations, leading to longer integration times and less dramatic variation in 

spectra between depths, apparently resulted in the collection of inaccurate 

spectral data. 

To evaluate the effects of these potentially inaccurate spectral measurements on 

algorithm development, regression analyses were conducted with two datasets: 

all data (n=48) and restricted data (n=31) in which data collected on May 19 and 

20, 2006 were excluded. 
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Results 

Spectral measurements 
r 

Description of dual-radiometer spectra. The 48 spectra in the full dataset 

exhibited a great deal of variability in green/yellow (530 nm to 600 nm), red (600 

nm to 700 nm) and near-infrared (700 nm to 735 nm) portions of the spectrum 

(Figures 28, 29). Relatively less variability was observed in the blue end of the 

spectrum, especially at wavelengths less than 450 nm. Relative minima were 

observed in numerous spectra around (510 nm and 543 nm), especially in those 

taken in Gilbert Bay (the open water section of the lake). These features are 

likely due to carotenoid absorption by the dominant phytoplankton in this area of 

the lake, Dunaliella salina. 

Spectral data collected under adverse conditions. The effect of the data collected 

on May 19-20, 2006, on the linear regression is shown in Figure 30. The spectral 

ratios derived using these spectra were « 1, indicating absence of both the 

scattering peak near 710 nm and the strong chlorophyll absorption around 675 

nm. Such spectral characteristics would be associated with chlorophyll levels in 

the open ocean, well below even the lowest levels measured in the Great Salt 

Lake. The general effect of removing these spectra was the reduction of RMS 

values an average of 14% to 26%, depending on the sensor that was being 

simulated (Figure 31). 
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Chlorophyll a 

At sites where spectra were measured, the chlorophyll concentration ranged from 

0.1 pg L"1 to 303 pg L'1, indicating a skewed distribution with a predominance of 

low chlorophyll concentrations (Figure 32). The mean concentration of all sites 

was 29.0 pg L"1, and the median chlorophyll value was 1.5 pg L"1. Twelve lakes 

sites could be classified as hypereutrophic (25%), 7 as eutrophic (15%), 3 as 

mesotrophic (6%), and 26 as oligotrophic (54%). For the restricted dataset (when 

sites visited on May 19 and 20, 2006, were eliminated), the number of 

oligotrophic sites dropped to 9, moving the mean concentration to 45.5 pg L"1, 

and the median to 24.2 pg L"1. The trophic composition of sites also changed 

markedly, shifting the composition to 39% hypereutrophic, 22% eutrophic, 10% 

mesotrophic, and 29% oligotrophic. 

Evaluation of algorithms 

Results on the evaluation of algorithms presented in this chapter are all based on 

the log-log regression analyses. Results for linear regressions are presented in 

Appendix D, as well as the coefficients for the best log-log algorithms. For 

simplicity of notation in the figures and tables, reflectance ratios and other 

predictor variables are denoted by the wavelengths involved (e.g., Rrs(A.A)/Rrs(ta) 

is denoted A,AA,B). 

93 



Hyperspectral band algorithms 

Several 2-band hyperspectral algorithms proved effective for estimating 

chlorophyll concentration (RMS < 0.250 when using the restricted dataset) 

(Tables 12, 13; Figures 33, 34). The most effective algorithm was a 2-band 

algorithm using 673 nm and 710 nm. Out of the three MCI algorithms examined 

(using 677 nm, 665 nm, or the standard 681 nm), the optimized band algorithm 

(677 nm) had the highest RMS, but the model using 665 nm was better than the 

standard approach (681 nm) by < 0.5%. 

MERIS algorithms 

When using the restricted dataset, only one algorithm based on MERIS bands 

had an RMS < 0.250 (Tables 12, 13; Figures 33, 35). However, a total of 6 

additional algorithms had RMS values between 0.250 and 0.270. The most 

effective algorithms utilized a single 2- or 3-band ratio, closely followed by two 

MCI and an OC algorithm. The most effective blue band for the OC algorithm 

was 489 nm, which offered a 40% improvement in RMS over the band chosen by 

the OC4 algorithm (510 nm). Out of the two MCI algorithms examined (665 nm 

and the standard 681 nm), the standard algorithm had a higher RMS (1% higher 

than with 665 nm). 
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MODIS algorithms 

Only one algorithm based on MODIS had an RMS < 0.250 when using the 

restricted dataset (Tables 12, 13; Figures 35, 36). The most effective approach 

was an OC algorithm using the blue band chosen by OC3 (488 nm). Out of the 

two MCI algorithms examined (667 nm and the standard 678 nm), the standard 

algorithm had a lower RMS (5% lower than with 667 nm). All approaches using 

the simulated 709 band in 2- and 3-band algorithms were much less effective 

than other options. 

SeaWiFS algorithms 

All algorithms based on SeaWiFS bands proved effective for estimating 

chlorophyll concentration (highest RMS was 0.255 using the restricted dataset) 

(Tables 12, 13; Figures 35, 36). The most effective blue band for the OC 

algorithm was 489 nm, which offered a 18% improvement over the band chosen 

by the standard OC4 algorithm (510 nm). 
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Discussion 

General observations 

Spectral data collected under adverse conditions. The exclusion of spectral 

measurements from May 19 and 20, 2006, in algorithm development was a 

critical decision. These potentially suspect data, collected under difficult 

conditions, likely had an undue influence on algorithm performance (Figure 30) 

far outweighing their actual importance. The RMS of the algorithms produced 

with the restricted dataset were markedly lower than those produced using all 

data (Figure 31), which is likely a better indication of the potential usefulness of 

these algorithms in real-world situations over the range of conditions experienced 

in the Great Salt Lake over the course of the year. Additional work may be 

necessary to address the fit of the models when chlorophyll values are extremely 

low due to phytoplankton grazing by Artemia. 

Algorithms 

Hyperspectral algorithms. In the case of the Great Salt Lake, five hyperspectral 

algorithms stood out from others based on RMS values. The four most effective 

algorithms were 2-band ratios, with RMS values ranging from 0.236 to 0.250. 

MCI was found to be reasonably effective in the Great Salt Lake using both a 
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standard and alternate band, and the version using the alternate band was 

virtually equal to the standard algorithm. 

Satellite sensor algorithms. The best satellite-based algorithms across all 

platforms exhibited similar effectiveness based on RMS. While band ratios 

focusing on chlorophyll absorption around 675 nm and the scattering peak 

around 709 nm worked best in the case of MERIS (RMS 0.249 to 0.259), 

versions of the OC algorithm using the blue band at 489 nm for SeaWiFS and 

MODIS were found to be equally effective (0.246, 0.255) and had low relative 

error (30%). Several of the MERIS algorithms found to be most useful for Great 

Salt Lake were found to be highly effective at estimating chlorophyll in Nebraska 

lakes, Lake Kinneret, and the Azov Sea (Gitelson et al. 2011b; Yacobi et al. 

2011a; Gitelson et al. 2011a; Yacobi et al. 2011b). In contrast to New England 

lakes, and in agreement with the studies published in 2011, the 2-band algorithm 

(709 nm / 665 nm) was found to be more effective than the 3-band approach 

(754 nm /[665 nm-709 nm]). As in the case with New England lakes, OC 

algorithms were effective although there is no specific reason to expect that 

these Case I algorithms would work well in a Case II system (O'Reilly et al. 

1998). In spite of this, the re-parameterized versions of these algorithms are 

surprisingly good at estimating chlorophyll in this lake across a wide range of 

chlorophyll concentrations. 
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Table 11. Algorithms run with Great Salt Lake spectra. Black dots indicates the algorithm 
approaches included in analysis. The number of spectra used for each type of regres
sion analysis: all chlorophyll (n=48), restricted dataset (n=30), chlorophyll > 1.5 ^g L"1 

(n=22), chlorophyll < 80 fig L"1 (n=45), chlorophyll between 1.5 |ig L and 80 ^ig L"1 

(n=18), 
log-log 

1st 2nd 3rd 4th linear 

Type Algorithm all res all res all res all res all >1.5 <80 1.5-80 

703/677 •••••••• ••• • 

705/675 ••• ••••• ••• • 

710/665 •••••••• ••• • 

710/673 •••••••• ••• • 

720/670 •••••••• ••• • 

725/665 •••••••• ••• • 

7 3 5 / 6 7 3  • • • • • • • •  • • •  •  
Hyper 

7 3 0 / [ 6 7 5 - 6 9 5 ]  • • • • • • • •  • • •  •  

740/[671-710] •••••••• ••• • 

754/[665-709] •••••••• ••• • 

754/[677-703] •••••••• ••• • 

MCI (665) •••••••• 

MCI (677) •••••••• 

MCI (681) •••••••• 

709/665 •••••••• ••• • 

709/681 •••••••• ••• • 

709/(665:681) •••••••• ••• • 

754/[665-709] •••••••• ••• • 

MERIS MCI (665) • • • • • • • • 

MCI (681) •••••••• 

OC (443) •••••••• 

OC (489) •••••••• 

OC (510) •••••••• 

709S/667 • • • • • • • • • • • • 

7 0 9 s / ( 6 6 7 : 6 7 8 )  • • • • • • • •  • • •  •  

748/[667-709s] •••••••• ••• • 

MODIS MCI (667) •••••••• 

MCI (678) •••••••• 

OC (443) •••••••• 

OC (488) •••••••• 

OC (489) •••••••• 

SeaWiFS 00(510) •••••••• 

OC (443) •••••••• 
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Table 12. Log-log regression models using all spectra (n=48) for predicting chlorophyll 
concentrations in the Great Salt Lake sorted by RMS. The order column indicates the 
power of the polynomial equation which resulted in the best fit. 

Type Algorithm RMS Rel Error r* Order 

703/677 0.298 97% 0.91 4th 

710/673 0.299 87% 0.91 4th 

705/675 0.300 95% 0.91 4th 

730/(675-695] 0.302 105% 0.91 3rd 

710/665 0.305 84% 0.91 4th 

MCI (681) 0.327 100% 0.89 3rd 

MCI (677) 0.327 101% 0.89 3rd 
yPer 754/[677-703] 0.327 106% 0.89 4th 

MCI (665) 0.342 98% 0.88 3rd 

720/670 0.357 65% 0.87 4th 

740/[671-710] 0.363 114% 0.87 2nd 

754/[665-709] 0.370 120% 0.86 2nd 

725/665 0.429 71% 0.81 2nd 

735/673 0.592 95% 0.64 2nd 

709/(665:681) 0.305 86% 0.91 4th 

709/665 0.307 88% 0.90 3rd 

709/681 0.309 87% 0.90 3rd 

MCI (681) 0.310 95% 0.90 3rd 

MERIS MCI (665) 0.329 96% 0.89 3rd 

OC (489) 0.340 89% 0.88 3rd 

OC (443) 0.360 93% 0.87 3rd 

754/(665-709] 0.365 120% 0.86 2nd 

OC (510) 0.448 106% 0.80 3rd 

OC (488) 0.308 81% 0.91 3rd 

OC (443) 0.347 90% 0.88 3rd 

MCI (678) 0.422 109% 0.82 3rd 

MODIS MCI (667) 0.451 116% 0.80 3rd 

709S/678 0.491 102% 0.76 3rd 

748/[667-709s] 0.541 109% 0.71 2nd 

709S/667 0.565 114% 0.68 2nd 

OC (489) 0.322 84% 0.90 3rd 

SeaWiFS OC (443) 0.352 91% 0.88 3rd 

OC (510) 0.389 97% 085 3rd 
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Table 13. Log-log regression models using a dataset without spectra collected in the open 
water of Gilbert Bay on May 19-20, 2006 (n=31) for predicting chlorophyll concentrations 
in the Great Salt Lake sorted by RMS. The order column indicates the power of the poly
nomial equation which resulted in the best fit. 

Type Algorithm RMS Rel Error Order 

710/673 0.236 70% 0.93 4th 

705/675 0.249 80% 0.92 4th 

703/677 0.250 83% 0.92 4th 

710/665 0.250 62% 0.92 4th 

MCI (665) 0.268 92% 0.91 3rd 

MCI (681) 0.269 86% 0.91 3rd 

730/(675-695] 0.291 92% 0.89 3rd 
Hyper 

MCI (677) 0.304 80% 0.88 3rd 

754/(677-703] 0.310 101% 0.88 4th 

720/670 0.314 66% 0.87 4th 

740/(671-710] 0.329 89% 0.86 2nd 

754/(665-709] 0.336 95% 0.86 2nd 

725/665 0.386 82% 0.81 2nd 
735/673 0.487 112% 0.70 2nd 

709/(665:681) 0.249 66% 0.92 4th 

709/665 0.255 61% 0.92 3rd 

709/681 0.259 60% 0.91 3rd 

MCI (665) 0.267 92% 0.91 3rd 

MERIS OC (489) 0.269 29% 0.90 3rd 

MCI (681) 0.270 83% 0.91 3rd 

OC (443) 0.321 35% 0.86 3rd 

754/(665-709] 0.334 94% 0.86 2nd 

OC (510) 0.378 45% 0.81 3rd 

OC (488) 0.246 30% 0.92 3rd 

OC (443) 0.296 36% 0.88 3rd 

MCI (678) 0.337 78% 0.87 3rd 

MODIS MCI (667) 0.353 80% 0.85 3rd 

709S/678 0.363 73% 0.85 3rd 

748/[667-709s] 0.403 75% 0.81 2nd 

709S/667 0.420 86% 0.79 2nd 

OC (489) 0.255 30% 0.91 3rd 

SeaWiFS 00(510) 0.302 31% 0.88 3rd 

OC (443) 0.306 35% 0.88 3rd 
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Figure 24. National Agriculture Imagery Program real color image of the Great 
Salt Lake captured in summer 2006 by aircraft and displayed at a resolution of 
30 m. Red lines indicate causeways which restrict water movement between 
adjacent areas of the lake. Labeled features: A - Salt Lake City, B - Jordan River, 
C - Bear River, 1 - Farmington Bay, 2 - Gilbert Bay, 3 - Gunnison Bay, 4 - Bear 
River Bay. 
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Figure 25. Sampling sites on the Great Salt Lake in Farmington and Gilbert Bays 
from May 31 to June 3, 2005. Chlorophyll concentrations shown in fig L"1. 
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Figure 26. Sampling sites on the Great Salt Lake in Farmington and Gilbert Bays 
from May 17 to May 20, 2006. Chlorophyll concentrations shown in |ig L*1. 
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Figure 27. Sampling sites on the Great Salt Lake in Farmington and Gilbert Bays 
from November 30 to December 2, 2006. Chlorophyll concentrations shown in |ig 
L-1. 
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Figure 28. Hyperspectral reflectance spectra taken with the dual-radiometer sys
tem on the Great Salt Lake in 2005 and 2006. The spectra shown below (n=48) 
were used in algorithm development. 
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Figure 29. Average value and standard deviation for hyperspectral reflectance 
spectra taken on the Great Salt Lake with the dual-radiometer system in 2005 
and 2006 (n=48). 
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Figure 30. Demonstration of the effect of excluding from algorithm development 
the open water Gilbert Bay spectra collected in May 2006. Magenta line repre
sents the algorithm with all spectra (red and blue points, n=48), cyan line repre
sents the algorithm excluding Gilbert Bay spectra from May 19-20, 2006 (blue 
points, n=31). A - full data range shown, B - data range cropped to 20 pg LA 
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Figure 31. Plot of RMS reduction produced when using restricted dataset (n=31) 
compared to the same algorithms using all data (n=48) for chlorophyll concentra
tion estimation algorithms for Great Salt Lake for each sensor type. 
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Figure 32. Histogram of extracted chlorophyll concentrations (jig L"1) for lake 
sites on the Great Salt Lake. Three sites with high concentrations (233, 254, 303 
|ig L'1) not shown on graph. For all spectra (n=48), dashed red line represents 
median chlorophyll concentration (1.5 |xg L"1), dotted red line represents mean 
chlorophyll concentration (29.0 |xg L"1). For dataset excluding Gilbert Bay May 
2006 sites (n=31), dashed blue line represents median chlorophyll concentration 
(24.2 |ig L"1), dotted blue line represents mean chlorophyll concentration (45.5 
jig L~1). Hatched bar illustrates the low-chlorophyll value spectra lost in the re
stricted dataset. 
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Figure 33. RMS values for chlorophyll estimation algorithms for The Great Salt 
Lake using (A) hyperspectral bands and (B) MERIS bands. Blue bars represent 
algorithms developed with the restricted dataset (n=31), gray bars represent 
algorithms developed with all data (n=48). MCI - maximum chlorophyll index, OC 
- ocean color. 
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Figure 34. Best log-log regression models using hyperspectral bands for pre
dicting chlorophyll concentrations in the Great Salt Lake based on the restricted 
dataset (n=31). Graphs on left demonstrate the relationship between the band 
ratio and chlorophyll concentration. Graphs on the right indicate the measured 
vs. predicted relationship for chlorophyll concentration based on the algorithm 
immediately to its left. 
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Figure 35. Best log-log regression models using satellite sensor bands for pre
dicting chlorophyll concentrations in the Great Salt Lake based on the restricted 
dataset (n=31). Graphs on left demonstrate the relationship between the band 
ratio and chlorophyll concentration. Graphs on the right indicate the measured 
vs. predicted relationship for chlorophyll concentration based on the algorithm 
immediately to its left. Satellite sensors bands used are (A) MERIS, (B) MODIS 
and (C) SeaWiFS. 
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Figure 36. RMS values for chlorophyll estimation algorithms for The Great Salt 
Lake using (A) MODIS bands and (B) SeaWiFS bands. Blue bars represent 
algorithms developed with the restricted dataset (n=31), gray bars represent 
algorithms developed with all data (n=48). MCI - maximum chlorophyll index, OC 
- ocean color. 
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

Ocean color algorithm band selection 

This work explored the usefulness of the ocean color algorithms for MODIS, 

MERIS, and SeaWiFS to estimate chlorophyll in the New England lakes and the 

Great Salt Lake. Early in algorithm evaluation, it became clear that the standard 

band-switching ocean color algorithms (OC3, OC4) were not switching between 

the blue bands as chlorophyll concentrations increased (as happens in the 

ocean). For every spectrum in New England Lakes and the Great Salt Lake, the 

highest wavelength blue band included in the algorithm was always selected. 

This pattern can be understood by observing the general patterns of the spectra 

(Figures 13, 14, 28, 29), which are characterized by low, fairly constant Rrs 

values at 440 nm, moderately higher Rrs values near 489 nm, and higher still Rrs 

values near 510 nm. As such, the spectral characteristics of the study lakes 

turned the band switching algorithms into simple, predictable band ratios (as 

would be true for the vast majority of lakes in the world). In this study, OC3 when 

applied to MODIS always chose 489 nm for the blue band, and OC4 applied to 

MERIS and SeaWiFS always chose 510 nm. 
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Early analytical results revealed another interesting trend - the optimized 

switching algorithm for MODIS modeled on OC3 (blue band selected: 489 nm) 

produced lower RMS values than either MERIS or SeaWiFS optimized 

algorithms modeled on OC4 (blue band selected: 510 nm). While having three 

bands to choose from would seem to be an advantage for the OC4 approach, the 

additional band turned out to be a disadvantage. In reality, the advantage of the 

OC3 approach was not related directly to the number of bands employed by the 

algorithm, but instead that the highest wavelength blue band selected for use 

(489 nm) by OC3 happened to be a better choice than the band selected by OC4 

(510 nm). 

In order to determine which of the blue bands provided best results for OC 

algorithms for each sensor, OC algorithms were evaluated for each of the 

individual blue bands used in the algorithms. Instead of allowing the "switching" 

to occur, and therefore, always choosing the highest wavelength blue band, I 

evaluated all possible blue to green band combinations used in OC3 for MODIS 

(443 nm / 550 nm, 489 nm / 550 nm), OC4E for MERIS (443 nm / 560 nm, 489 

nm / 560 nm, 510 nm / 560 nm), and OC4 for SeaWiFS (443 nm / 555 nm, 489 

nm / 555 nm, 510 nm / 555 nm). It is important to note that the OC algorithms 

developed in this study do not represent the actual OC3 and OC4 algorithms 

(and thus, do not use the standard coefficients), but instead are algorithms that 

rely on the same band combinations with coefficients optimized for both study 

areas. 
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For all three satellite sensors in both study areas (Tables 9,13), the OC 

algorithm using the 489 nm band resulted in the lowest RMS value. In the case of 

OC4-styled algorithms for New England Lakes, the use of the 489 nm band 

provided a 3.8% (MERIS) and 2.9% (SeaWiFS) reduction in RMS compared to 

the band selected by the switching algorithm (510 nm). In the case of the Great 

Salt Lake, RMS reduction was much greater, 16.2% (MERIS) and 15.6% 

(SeaWiFS) when using 489 nm instead of 510 nm. Considering the effectiveness 

displayed by the algorithms using the 489 nm band for all sensors and in both 

study areas, I suggest the use of a single 489 nm / green band ratio instead of 

the standard OC4 algorithms. The fact that the OC algorithms worked so well in 

this study was quite surprising, and may have been due to having on algorithm 

developed for a single lake (the Great Salt Lake) and another algorithm 

developed for a region with low variability in total suspended sediments (New 

England). However, even if these patterns do not hold up in other lake systems, 

the OC algorithms detailed here can still be very useful to estimate chlorophyll in 

the regions included in this study. 

Simulated 709 nm band for MODIS 

The usefulness of MODIS for lake remote sensing has been limited due to the 

lack of a band to capture the scattering peak that rises between 700 nm and 710 

nm with increasing phytoplankton densities. This peak is a key feature of many 

inland-water chlorophyll algorithms (Gitelson 1992; Gitelson et al. 1999; 

116 



Dall'Olmo and Gitelson 2005; 2006; Gitelson et al. 2009), but is rarely used for 

remote sensing in the open ocean. While it may not be surprising that MODIS, a 

sensor designed for ocean remote sensing, is missing a band in this wavelength 

range, it is clear that MODIS could have much greater potential for use in near-

shore and inland water systems if it possessed a band at 709 nm. 

While it is not possible to alter the position of bands on the currently deployed 

MODIS sensors, I considered the possibility that a 709 nm band could be 

simulated based on spectral data from a MODIS band in another wavelength 

range. In order to select an appropriate MODIS band to use for simulation of Rre 

at 709 nm, the exact nature of the peak must be considered. The majority of the 

signal in this wavelength range is likely due to increased backscatter from higher 

densities of phyoplankton particles as chlorophyll concentrations increase, 

although there may be some contribution from chlorophyll fluorescence from 

photosystem I and/or photosystem II (Letelier and Abbott 1996; Harbinson and 

Rosenqvist 2003; Gilerson et al. 2007). The amount of contribution from 

chlorophyll fluorescence to Rrs can be difficult to quantify, and is likely 

overwhelmed by scattering in this wavelength range under high chlorophyll 

conditions. As such, the band best suited to simulate a band at 709 nm would be 

the MODIS band least influenced by in-water constituents (i.e., CDOM, 

chlorophyll), but most influenced by backscattering in the visible/NIR wavelength 

range. Out of the available bands, the MERIS band centered at 754 nm best 
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complied with these criteria and proved to be the source of data to create the 

simulated 709 nm band. 

To develop the method with which the simulated 709 nm bands for MODIS would 

be created, a relationship between the Rrs at 754 nm and 709 nm (Figure 8) was 

established using a dataset containing all valid spectra from this study (New 

England lakes and the Great Salt Lake) together with 179 spectral from lakes 

throughout Spain (personal communication, Ruiz-Verdu, 2012). The relationship 

was applied to the MODIS 748 nm band to create a simulated 709 nm band for 

use in MODIS algorithm development. The simulated MODIS 709 nm band was 

used in combination with other MODIS bands to evaluate two 2-band algorithms, 

two 3-band algorithms, and two versions of MCI in both study areas. 

In New England, the MCI algorithms exhibited the lowest RMS values (678 nm -

0.281, 667 nm - 0.286) of the algorithms using the simulated 709 nm band, while 

all the 2-band and 3-band algorithms had RMS values higher than 0.365 (Table 

9; Figure 23). However, the best New England MODIS MCI algorithm (using 678 

nm) had an RMS value 14% higher than the best algorithms for that study area 

(OC using 488 nm), and were 22% higher than the RMS values of the best MCI 

algorithm using MERIS bands (using 665 nm). 

In the Great Salt Lake, the MCI algorithms exhibited the lowest RMS values (678 

nm - 0.337, 667 nm - 0.354) of the algorithms using the simulated 709 nm band, 
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while all the 2-band and 3-band algorithms had RMS values higher than 0.360 

(Table 13; Figure 36). Again, however, the best Great Salt Lake MODIS MCI 

algorithm (using 678 nm) had an RMS value 27% higher than the best algorithms 

for that study area (OC using 488 nm), and were 21% higher than the RMS 

values of the best MCI algorithm using MERIS bands (using 665 nm). 

Maximum Chlorophyll Index 

This work explored the use of the standard MCI algorithm to estimate chlorophyll 

in the study areas, and also investigated the use of alternate bands to serve as 

the chlorophyll absorption anchor point. Originally developed for the MERIS 

sensor, the traditional MCI approach relies on the band at 681 nm (band "A" in 

Figure 9) for the red wavelength with which it forms a baseline connection to the 

near infrared band at 754 nm (band "C" in Figure 9) (Gower et al. 2005a; b). MCI 

is normally used solely as an index to describe the relative variability in 

chlorophyll; this study represents one of the first attempts to relate MCI to 

chlorophyll concentration in lakes. In an attempt to avoid interference from sun-

stimulated fluorescence at 681 nm, alternate choices for band "A" were 

examined. In the case of the satellite algorithms, alternate bands were fixed 

(MERIS - 665 nm, MODIS - 667 nm). For the hyperspectral algorithms, 677 nm 

was chosen based on the wavelength in that region of the spectrum that showed 

the highest variability in this study (Figures 14, 29). 
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In New England, the hyperspectral MCI using 677 nm provided the lowest RMS 

(0.218) of all algorithms evaluated (Table 9; Figures 20, 23). Both the optimized 

MCI using 677 nm, and the additional alternative MCI using 665 nm (RMS = 

0.221) had lower RMS values compared to the standard MCI using 681 nm 

(0.232). The MERIS MCI using 665 nm had the lowest RMS (0.218) of all MERIS 

algorithms, offering a moderate improvement over the RMS of the standard MCI 

(0.229). When using the simulated 709 nm band for MODIS, the standard MCI 

approach using 678 nm provided an RMS (0.281) nearly identical to the MCI 

using 667 nm (0.281). In the case of MODIS, the MCI algorithms had lower RMS 

values than all of the other algorithms using the simulated 709 nm bands. 

In the Great Salt Lake, the hyperspectral MCI algorithms using the alternate band 

at 665 nm (RMS=0.268) and standard band at 681 nm (RMS=0.269) proved 

useful, but fell short of the four best algorithms (Table 13; Figures 33, 36). The 

RMS of the MERIS MCI options using 665 nm (0.267) and 681 nm (0.270) were 

among the lowest, but these algorithms also fell slightly short of the best MERIS 

algorithms for this lake. When using the simulated 709 nm band for MODIS, the 

RMS of the standard MCI using 678 nm (0.337) was better than the alternate 

MCI approach using 667 nm (0.353). In the case of MODIS, and as in the case of 

New England lakes, the MCI algorithms had lower RMS values than all of the 

other algorithms using the simulated 709 nm band. 
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This study confirms the usefulness of the MCI algorithm for estimating chlorophyll 

concentration in both study areas. In the New England lakes, the MCI algorithms 

had the lowest RMS values in both the hyperspectral algorithms and the MERIS 

algorithms, but were not as effective as by the OC algorithms in the case of 

MODIS. In the Great Salt Lake, the MCI algorithms were among the top 

algorithms (although not the best) for both hyperspectral and MERIS bands, but 

were again less accurate than the OC algorithms for MODIS. Especially 

considering the recent cessation of the Envisat mission (MERIS), the application 

of MCI to MODIS data could be invaluable for remote sensing of lakes, coastal 

and ocean system for the next decade. 

Improved estimation of chlorophyll in study regions 

This study represents the first comprehensive effort to develop remote sensing 

algorithms for the estimation of chlorophyll in the Great Salt Lake and New 

England lakes. The collection of hyperspectral data has provided a wonderful 

opportunity to explore algorithms for a wide variety of sensor types, and these 

data could be used with any future sensor to predict the optimal way in which to 

use the data it would capture. Without such research, the use of remote sensing 

to estimate lake water quality in the study areas would not be as quantitatively 

useful, since algorithms developed for other lakes and in different regions of the 

world may not be applicable. For example, in the case of the Great Salt Lake, the 

standard OC3 algorithm for MODIS has a tendency to over-estimate chlorophyll 
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concentrations below 2 pg L"\ and at times underestimate chlorophyll between 

10 and 100 pg L"1 (Figure 37). As a result, an image of estimated chlorophyll 

using the standard OC3 method could provide misleading concentrations (Figure 

38) potentially leading to misinterpretation of trophic state in that area of the lake. 

When validated lake-specific algorithms are used, however, the amount of data 

on chlorophyll concentration for a given lake would increase dramatically, 

revealing patterns nearly impossible to capture with traditional sampling 

approaches (Figure 39) (Bradt et al. 2008). With the wealth of information now 

available on the suitability of a variety of chlorophyll estimation algorithms for the 

study locations, researchers and managers can move forward to embrace the 

use of remote sensing to help monitor and manage lakes in their regions. 

The hyperspectral algorithms developed in this study could be used in a variety 

of methods with radiometric equipment, including: 

1. On a boat to provide real-time in-the-field estimates of chlorophyll 

concentration; 

2. Paired with GPS on a boat to provide a platform for detailed spatial 

mapping of chlorophyll; 

3. Deployed on a buoy system to continually estimate chlorophyll 

concentration at a given lake site; 

4. Deployed on a tower pointed at a lake to continually estimate 

chlorophyll concentration at a given lake site; 
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5. Deployed on an airplane to provide estimates of chlorophyll across a 

given lake and/or in many lakes over a short period of time. 

The satellite sensor algorithms developed in this study could be used in a variety 

of methods with radiometric equipment, including: 

1. Applied to data from currently deployed satellite sensors to provide 

near-real time estimates of chlorophyll concentration across the 

surface of a lake and/or on one or many lakes (depending on lake 

size); 

2. Applied to archived satellite data to analyze past patterns of chlorophyll 

concentration and distribution, linking environmental factors of interest 

(nutrient loading, rainfall, water cycle patterns, internal lake circulation) 

to phytoplankton community dynamics, and to document trends over 

time that might have occurred. 
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Figure 37. A comparison of the standard MODIS OC3 algorithm with a MO
DIS OC algorithm optimized for the Great Salt Lake using the restricted dataset 
(n=31). A. Comparison of MODIS OC3 algorithm (dotted pink line) with optimized 
MODIS OC algorithm for the Great Salt Lake (dotted black line). B. Plot of mea
sured vs. predicted chlorophyll concentrations for MODIS OC3 algorithm. D. Plot 
of measured vs. predicted chlorophyll concentrations for Great Salt Lake opti
mized MODIS OC algorithm. 
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Figure 38. A comparison of chlorophyll maps derived from a MODIS Aqua im
age of the Great Salt Lake from September 28, 2006 using (A) standard MODIS 
OC3 algorithm and (B) MODIS OC algorithm optimized for the Great Salt Lake. 
The differences in the two algorithms shown in Figure 37 are visible below (a few 
examples are indicated with pink arrows). Chlorophyll concentration shown in jjg 
L-1. 

chlorophyll 
pgL-1 
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Figure 39. Satellite-derived chlorophyll concentration estimates over time for five 
locations in the Great Salt Lake in 2006. Chlorophyll estimates were derived from 
analysis of Aqua MODIS satellite imagery using an OC algorithm optimized for 
the Great Salt Lake developed with image-based spectral analysis (Bradt et al., 
2008). Orange line represents average satellite-derived chlorophyll estimate for 
the five pixels most closely aligned with the five stations every day when clear 
satellite imagery available. The blue diamonds represents average extracted 
chlorophyll concentration from all five lake stations during USGS on-lake sam
pling cruises. 

Chi = - 0.002 lx2 +0.5314*-0.5984 

where, x = MODIS OC3 Chi 
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APPENDIX A 

REMOTE SENSING BASICS 

Remote sensing as a concept 

Remote sensing devices are used throughout the world to measure an incredibly 

diverse set of environmental features, including wave heights, bathymetry, 

topography, water quality, land cover and surface temperature. Remote sensors 

accomplish these varied tasks by recording the intensity of light, or other types of 

electromagnetic radiation, which are emitted or reflected from the objects which 

the sensor is designed to measure (lakes, oceans, forests, etc.). While the entire 

spectrum of electromagnetic radiation covers energies ranging from gamma rays 

to radio waves, most water-focused remote sensors rely on the visible and near 

infrared wavelengths (400 nm to 775 nm). These wavelengths represent the 

portion of the spectrum that interacts in a measurable and predictable manner 

with optically active constituents of oceans and lakes, including sediments, 

colored dissolved organic matter (CDOM) and phytoplankton. By monitoring the 

variations in intensity and spatial patterns at these wavelengths, remote sensors 
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provide a mechanism for quantifying in-water constituents of interest, and 

tracking change in water bodies both spatially and temporally. 

All remote sensors measure radiation reflected off of or emitted from an object of 

interest. Remote sensors fall into two broad categories based on the way in 

which they interact with the features they are measuring. The majority of 

sensors, known as passive sensors, rely on the sun to provide the 

electromagnetic radiation which illuminates the object of interest. For sensors 

focused on visible and near-infrared wavelengths, the signal measured from the 

object is portion of incoming solar radiation reflected from that object. For other 

types of sensors (thermal), the measurement is based on the amount of radiation 

reemitted from the object at those wavelengths . While thermal sensors are often 

best used during the nighttime, sensors measuring visible and near-infrared 

wavelengths can only make measurements during daylight hours. On the other 

hand, active sensors produce their own radiation with which objects can be 

measured. These sensors can be used with equal effectiveness regardless of 

the time of day, and due to the types of wavelengths on which they rely (SONAR, 

LIDAR, RADAR), are less hampered by environmental conditions. Active sensors 

have the advantage of measuring wavelengths of electromagnetic energy not 

typically provided in high quantities in sunlight, providing for advanced 

measurements not possible with passive sensors. 
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When deciding which sensor to use for a particular application, key 

characteristics should be considered, including spatial resolution, foot print, 

temporal resolution, spectral resolution and radiometric resolution. 

Spatial resolution 

Description. The spatial resolution of a sensor describes the size of a pixel in the 

imagery produced by that sensor. The size of an image pixel produced by a 

sensor is the result of a range of design factors, including the type of lens, the 

number of sensor elements on the sensor electronics, the elevation above the 

ground from which the sensor captures images, the angle of view of the sensor, 

etc. The size of pixels on publicly accessible satellite remote sensors range from 

as large as a 1.1 km to less than 1 meter. 

Importance. Pixel size is a very important factor in determining the size and types 

of features visible in an image. Images with large pixels can reveal large-scale 

patterns in the ocean or a large lake, but will not have enough fine detail to 

document smaller features. In the case of small lakes or lakes with a convoluted 

shoreline, large pixels can leave out many of the most interesting sections of the 

water body. On the other hand, while images with small pixels allow for the 

observation of small water body features, these images are often data dense and 

cover a relatively narrow area on the ground with each sensor overpass (swath 

width). Images with smaller pixels could result in a data density requiring 
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intensive data manipulation, or might not cover the entire water body when 

working with a larger lake system. 

Temporal resolution 

Description. Temporal resolution describes how often a remote sensor has the 

chance to capture an image of the same place on the Earth, a length of time 

often referred to as revisit time. Some satellite sensors record data from an 

swath centered directly below the sensor, or at nadir. In the case of nadir-looking 

sensors, the swath width determines the repeat time. The wider the swath width, 

the less time it takes for the swath width to "repaint" the same spot on the earth. 

Some satellites have the ability to tilt or point the sensor, providing the ability to 

capture images of the same spot on the Earth more often than would be possible 

with a fixed sensor. The off-center views produced when the satellites are tilted 

to capture imagery from locations not directly beneath the satellite are known as 

off-nadir. While the ability to capture off-nadir imagery can be seen as an 

advantage, measurements at non-nadir view angles can cause the sensor to 

miss measurements of some portions of the nadir swath. As such, off-nadir 

sensors can lead to data gaps compared to strict nadir-viewing sensors. 

Aircraft-borne sensors are in a completely different category when it comes to 

temporal resolution. Unlike satellites, airplanes are not constantly in flight and 

can not provide global coverage. The temporal resolution of an individual aircraft 
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sensor is difficult to predict, since a wide variety of factors need to be considered 

(distance from aircraft origin of the study site, local weather conditions, 

competing aircraft usage, etc.). In general, aircraft-borne sensors have good 

temporal resolution in the short term, and poor temporal resolution in the long 

term. 

Importance. The frequency with which the images of an area can be obtained, 

and the number of images of a water body that can captured over time, has an 

enormous impact on the potential applications of a particular sensor. Satellite 

sensors with revisit times from one to several days can be used for tracking 

environmental changes (i.e., water quality) on a weekly basis, allowing detailed 

observation of ecosystem dynamics over time. Sensors with revisit times closer 

to two weeks provide information on system dynamics over a broader times 

scale, such as monthly or seasonally. Aircraft-borne sensors are difficult to use 

for long term studies, due to the difficulty in obtaining repeated images of the 

same area over time. However, one benefit of aircraft sensors lies in the ability 

to vary the time of day at which images are captured, while satellite-borne 

sensors are normally tuned to collect data at a precisely chosen, but fixed time 

each day. 
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Spectral resolution 

Description. Spectral resolution describes the width, number and position of the 

"bands" a remote sensor uses to measure incoming radiation. Unlike laboratory 

spectrophotometers that capture spectral information at increments of -1 nm, 

most remote sensors measure radiation at broader, discrete areas of the 

spectrum based on the spectral characteristics of the features which the sensor 

is designed to measure. Some multispectral sensors (e.g. Landsat ETM) have 

fewer than 10 bands or segments of the spectrum over which data are collected, 

while others measure radiation at over 30 wavelength ranges. Hyperspectral 

sensors provide a vastly increased number of spectral measurements (often 

200+ bands), and provide continuous spectral data approximating laboratory 

equipment. 

Importance. The number, position and width of bands present in a sensor have 

an enormous influence on the applications for which a sensor can be used. 

While a few sensors have the ability to adjust bands on the fly, the vast majority 

of remote sensors have unmovable bands which are chosen based on the 

application for which the sensor was designed. For the measurement of land 

features (as in the case of Landsat ETM), wide bands in the visible and near-

infrared range provide sufficient information for many applications. For the 

observation of in-water features (as in the case of MODIS), sensors with narrow 

bands strategically placed in the visible portion of the spectrum are best suited. 
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While hyperspectral sensors are rare in satellites, their continuous spectral 

measurements allow for ultimate application versatility. Due to the detailed 

spectral data they provide, and resultant ability to match the bands of any other 

sensor, hyperspectral sensors are often deployed on boats or in aircraft during 

algorithm development using in situ data. 

Radiometric resolution 

Description. Radiometric resolution refers to sensitivity with which a sensor can 

measure changes in the intensity of radiation. This type of resolution is 

measured in "bits", which refers to the range of numbers by which radiation 

intensity is measured by the sensor. For example, an 8-bit sensor has a 

minimum value of 0 and a maximum value of 255 (28 = 256). Without 

considering the gain setting on the sensor, a 8-bit sensor would measure the 

darkest pixel in the world as 0, and the brightest as 255, leaving 256 possible 

levels of intensity for each individual measurement. A 12-bit sensor would have 

a maximum value of 4,095 (212 = 4,096), allowing for over 16 times as many 

levels of intensity as an 8 bit sensor. In reality, gain settings on sensors can be 

adjusted to provide the maximum measurement sensitivity of a given spectral 

feature in a particular environment. A few sensors, such as SeaWiFS, have 

multiple gain settings for select bands to ensure the signal in that channel is 

captured appropriately, regardless of the light conditions they encounter. 

However, most sensors have a single gain setting used for each band at one 
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time, and while that setting can be adjusted over time, it can not be applied 

differently to individual pixels in one image. 

Importance. The higher radiometric resolution a sensor possesses, the finer 

detail with which it can measure changes in radiation intensity. Higher 

radiometric resolution is most important when measuring features characterized 

by low reflectance, such as areas in shadow on the land and water bodies such 

as lakes and oceans. In the case of surface water, typically less than 10% of 

incoming light from the sun at a given band would be reflected toward the sensor. 

When sensors designed for remote sensing of water are capturing data over the 

ocean, the gain setting can be adjusted to more accurately measure the lower 

signal coming from the water. However, in the case of lakes, many sensors are 

making measurements over land using the gain setting for appropriate for the 

higher light intensities typical of terrestrial remote sensing. If data were captured 

over land using the gain setting tailored for ocean remote sensing, much of the 

data would be completely saturated, and thus largely useless. On the other hand, 

the gain setting for land does not take into account the low reflectance 

characteristics of lakes, resulting in only a portion of the potential dynamic range 

of the sensor to be used for signal coming from lakes (except in a few special 

cases, i.e., SeaWiFS). As a result, the sensor would have a much lower dynamic 

range with which to measure variations in signal from water bodies. 
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A good analogy for different levels of radiometric resolution in remote sensors is 

the task of making measurements of the height of a tomato plant with three 

different meter sticks (assuming the gain of the meter sticks can not be adjusted). 

Meter stick number 1 would be marked with decimeters only, stick number 2 

would marked only with centimeters, and the final meter stick would have 

millimeter markings. The ability to accurately measure small changes in size 

would be much greater with the stick number 3, because the increased 

"radiometric resolution" would allow for the measurement of smaller increments 

of variation than either stick 1 or stick 2. In the case of these meter sticks, a 

crude estimate would have to be made between the decimeter and centimeter 

markings, resulting in a lack of sensitivity to small increments of growth, and a 

likely under or overestimation of plant size. 
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APPENDIX B 

HYDROLIGHT SETTINGS 

Hydrolight 4.2 was used to produce modeled spectra for each lake measured 

with the single-radiometer technique. Two modeled spectra were produced for 

each lake, one using the epilimnetic extracted chlorophyll concentration and 

another using the chlorophyll profile measured with the YSI probe. The 

ABCASE2 routine was run with the settings shown below: 

Pure water absorption: Pope and Fry's (1997) "pure water" absorption values 

Chlorophyll concentration: run 1 - extracted chlorophyll as a constant 

run 2 - YSI chlorophyll profile with data binned 0.5 m 

Chlorophyll phase function: avgpart.dpf 

CDOM concentration: measured CDOM concentration 

Mineral concentration: a constant of 0 

Chlorophyll fluorescence: enabled 

Wavelengths: every 5 nm from 395 nm to 755 nm 

Wind speed: 5 meters per second 

Sky model: semi-empirical sky model (based on RADTRAN) 

Solar zenith angle: 30 degrees 

Cloud cover: 0% 

Sky radiance: RADTRAN 
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Angular pattern: hcnrad 

Bottom boundary condition: infinitely deep 

Output depths: every 0.1 m from surface to 1 m, every 0.5 m from 1 m to 10 m 
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APPENDIX C 

CHLOROPHYLL ALGORITHMS FOR NEW ENGLAND LAKES 

Hyperspectral linear 

For algorithms using all chlorophyll values, the four best techniques were a 

combination of a 2-band ratios and 3-band ratios (Table 14; Figures 40, 41). 

Among all four methods, three chlorophyll absorption bands (673 nm, 675 nm, 

677 nm) and four scattering peak bands (695 nm, 703 nm, 705 nm, 710 nm) 

were used. The average values of the four best algorithms using all chlorophyll 

values were characterized by high r2 (0.92) and low RMS (4.5 |jg L"1), and a 

relative error of 63% (Table 15). When chlorophyll concentrations above 5 |jg L"1 

were used, the best four algorithms showed an RMS increase of 24% (5.6 |jg 

L"1), with virtually identical r2 values (0.93), and half the relative error (30%) 

compared to the algorithms using all chlorophyll concentrations. 

Nearly the same set of algorithms were best suited when chlorophyll 

concentrations above 50 |jg L"1 were excluded from the analysis (Table 16; 

Figures 40, 41). With this chlorophyll range the RMS dropped 2% (4.4 |jg L"1) 

when compared to algorithms including all chlorophyll data, while r2 dropped 14% 

139 



(0.79) and relative error decreased by 6% (59%) (Table 15). When only 

chlorophyll values between 5 |jg L"1 and 50 pg L"1 were used, the best algorithms 

changed little (Table 16; Figures 40, 41). These regressions exhibited an RMS 

increase of 20% (5.4 pg L"1), a drop in r2 values (0.77), and a 54% decrease in 

relative error (29%) when compared to regressions using all chlorophyll 

concentrations (Table 15). 

MERIS linear 

For algorithms based on MERIS bands using all chlorophyll values, the two best 

techniques used a single ratio between chlorophyll absorption (either 665 nm or 

an average of 665 nm and 881 nm) and the scattering peak (709 nm) (Table 14; 

Figures 40, 42). The average values of the two best algorithms using all 

chlorophyll values were characterized by an r2 of 0.89, an RMS of 5.2 pg L"1, and 

a relative error of 71% (Table 15). When chlorophyll concentrations above 5 pg 

L"1 were used, the same two algorithms were still the best, showing a RMS 

increase of 17% (6.1 pg L"1), slightly higher r2 values (0.91), and a 54% lower 

relative error (33%) compared to the algorithms using all chlorophyll 

concentrations. 

The same two algorithms were best suited for when chlorophyll concentrations 

above 50 pg L"1 were excluded from the analysis (Table 16; Figures 40, 42). With 

this chlorophyll range the RMS dropped 8% (4.8 pg L"1) when compared to 
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algorithms including all chlorophyll data, while r-squared dropped to 0.75 and 

relative error decreased 8% (65%) (Table 15). Algorithms using chlorophyll 

values between 5 pg L"1 and 50 pg L"1 (Table 16; Figures 40,42) exhibited an 

RMS increase of 8% (5.6 pg L"1), a drop in r-squared values (0.75), and a 58% 

decrease in relative error (30%) when compared to regressions using all 

chlorophyll concentrations (Table 15). 

MODIS linear 

For all algorithms based on MODIS bands using all chlorophyll values, the two 

best techniques used a single ratio between chlorophyll absorption (either 667 

nm or an average of 667 nm and 678 nm) and the simulated scattering peak at 

709 nm based on 754 nm band (Table 14; Figures 40, 42). The average values 

of the two best algorithms using all chlorophyll values were characterized by an 

r2 of 0.67, an RMS of 8.9 pg L"\ and a relative error of 204% (Table 15). When 

chlorophyll concentrations above 5 pg L"1 were used the RMS decreased 15% 

(7.6 pg L"1), the r2 value increased (0.86), at the relative error dropped 76% 

(49%). 

When chlorophyll concentrations above 50 pg L"1 were excluded from the 

analysis the RMS dropped 11% (7.9 pg L"1) compared to algorithms including all 

chlorophyll data, while r2 dropped 52% (0.32) and relative error decreased 22% 

(160%) (Tables 15, 16; Figures 40, 42). When only chlorophyll values between 5 
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pg L'1 and 50 |jg L"1 were used, the RMS decreased of 17% (7.4 pg L"1), the r2 

value was reduced by 15% (0.57), and relative error decreased by 75% (51%) 

when compared to regressions using all chlorophyll concentrations (Table 15). 

Single- and dual-radiometer comparison 

When the combined single- and dual-radiometer spectral dataset was evaluated 

using linear algorithms, all algorithms at all chlorophyll ranges demonstrated 

higher RMS compared to the same algorithms run using only the dual-radiometer 

spectra, ranging from 2% to 75% (Table 17). The relative error of each algorithm 

also increased between algorithms run with the combined data, and those using 

the dual-radiometer spectra alone. The algorithms least affected by the addition 

of the single-radiometer spectra were the hyperspectral algorithms using the 

scattering peak (703 nm, 705 nm, 710 nm). The greatest differences were seen 

in the MERIS algorithms. 

Coefficients for log-log analyses 

The coefficients for the best log-log algorithms for New England lakes (Table 9) 

are listed in Table 16. 
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APPENDIX D 

CHLOROPHYLL ALGORITHMS FOR THE GREAT SALT LAKE 

Hyperspectral linear 

For algorithms using all chlorophyll values, the best four techniques were 2-band 

ratios (Table 18; Figures 43, 44). Each of these ratios had one of the bands 

positioned to detect chlorophyll absorption (665 nm, 673 nm, 675 nm, 677 nm) 

and the other tuned to monitor the scattering peak (703 nm, 705 nm, 710 nm). 

The average values of the four best algorithms using all chlorophyll values had a 

high r2 (0.92), an RMS of 18.0 |jg L"1, and a high relative error (613%) (Table 19). 

When only chlorophyll concentrations above 1.5 pg L"1 were used, the best four 

algorithms showed an RMS increase of 39% (24.9 pg L"1), virtually identical r2 

values (0.91), and a 90% decrease in relative error (59%) compared to the 

algorithms using all chlorophyll concentrations. 

The same four algorithms were best suited when chlorophyll concentrations 

above 80 pg L'1 were excluded from the analysis (Table 20; Figures 43, 44). 

When using this chlorophyll range, the RMS dropped 65% (6.2 pg L"1) compared 

to algorithms including all chlorophyll data, while r2 changed slightly (0.90) and 
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relative error decreased 45% (333%) (Table 19). When only chlorophyll values 

between 1.5 pg L"1 and 80 pg L"1 were used, the best algorithms included both 2-

band and 3-band methods (Table 20; Figures 43, 44). These regressions 

exhibited an RMS decrease of 56% (7.9pg L"1), a slight drop in r2 values (0.89), 

and a 92% decrease in relative error (50%) compared to regressions using all 

chlorophyll concentrations (Table 19). 

MERIS linear 

Linear analysis of algorithms using MERIS resulted in RMS and relative errors 

nearly identical to those derived with hyperspectral bands. In three out of the four 

chlorophyll ranges, the best algorithm used an average of the bands centered at 

667 nm and 681 nm to assess the chlorophyll absorption maximum, and the 

scattering peak at 709 nm (Table 18; Figures 43,45). The average values of the 

two best algorithms were characterized by high r2 (0.92), an RMS of 17.9 pg L"1, 

and a high relative error (532%) (Table. 19). When only chlorophyll 

concentrations above 1.5 pg L"1 were used, the same two algorithms still 

performed the best, showing an RMS increase of 41% (25.2 pg L"1), a virtually 

identical r2 values (0.91), and a dramatically reduced relative error (50%) 

compared to the algorithms using all chlorophyll concentrations. 

The same two algorithms were best suited when chlorophyll concentrations 

above 80 pg L"1 were excluded from the analysis (Table 20, Figures 43,45). With 
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this chlorophyll range the RMS dropped 65% (6.2 |jg L"1) when compared to 

algorithms including all chlorophyll data, while r2 changed slightly (0.90) and 

relative error decreased 32% (364%) (Table 19). When only chlorophyll values 

between 1.5 pg L'1 and 80 pg L"1 were used, the best algorithms included both 2-

band and 3-band approaches (Table 20; Figures 43, 45). These regressions 

exhibited an RMS decrease of 56% (7.8 pg L"1), a small drop in r2 values (0.85), 

and a 91% decrease in relative error (50%) when compared to regressions using 

all chlorophyll concentrations (Table 19). 

MODIS linear 

For algorithms based on MODIS bands using all chlorophyll values, the two best 

techniques used a single ratio between chlorophyll absorption (either 667 nm or 

an average of 667 nm and 678 nm) and the scattering peak (709 nm) (Table 18; 

Figures 43, 45). The average values of those two algorithms were characterized 

by an r2 of 0.87, an RMS of 23.1 pg L"1, and a high relative error (1253%) (Table 

19). When chlorophyll concentrations above 1.5 pg L"1 were used the RMS 

increased 36% (31.4 pg L"1), the r2 value was virtually unchanged (0.86), and the 

RMS dropped 93% (88%) compared to the algorithms using all chlorophyll 

concentrations. 

When chlorophyll concentrations above 80 pg L"1 were excluded from the 

analysis the RMS dropped 45% (12.8 pg L"1) compared to algorithms including all 
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chlorophyll data, while r2 dropped 34% (0.57) and relative error decreased 2% 

(1228%) (Tables 19, 20; Figures 43, 45). When only chlorophyll values between 

1.5 pg L"1 and 80 pg L"1 were used the RMS decreased of 35% (15.1 pg L'1), the 

r2 value was reduced by 49% (0.44), and relative error decreased by 91% 

(118%) when compared to regressions using all chlorophyll concentrations 

(Table 19). 

Coefficients for log-log analyses 

The coefficients for the best log-log algorithms for the Great Salt Lake (Table 13) 

are listed in Table 22. 
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Table 14. Linear regression models for predicting chlorophyll concentrations in the New 
England lakes using dual-radiometer spectra sorted by RMS. The number of spectra 
used for each type of regression analysis: all chlorophyll (n=90), chlorophyll > 5 ng L"1 

(n=40). 

Type Algorithm RMS Rel Error r2 

all chl 

730/[675-695] 4.5 63% 0.92 
754/[677-703] 4.5 74% 0.92 

710/673 4.6 63% 0.91 
705/675 4.6 61% 0.91 
703/677 4.8 59% 0.91 

Hyper 710/665 5.5 77% 0.88 
720/670 5.8 115% 0.86 
725/665 6.5 132% 0.83 

740/[671-710] 6.8 152% 0.81 
754/[665-709] 7.3 161% 0.78 

735/673 9.7 221% 0.61 

709/(665:681) 4.9 66% 0.90 
MERIS 709/665 5.5 75% 0.88 

754/[665-709] 6.5 133% 0.83 
709s/(667:678) 8.5 198% 0.71 

MODIS 709s/667 9.3 211% 0.64 
748/[667-709s] 9.4 222% 0.64 

chl > 5 

754/[677-703] 5.4 32% 0.93 
710/673 5.6 30% 0.93 

730/(675-695] 5.7 33% 0.92 
705/675 5.7 28% 0.92 
703/677 6.0 30% 0.91 

Hyper 720/670 6.2 38% 0.91 
710/665 6.5 36% 0.90 

740/[671-710] 6.7 47% 0.89 
725/665 6.9 44% 0.89 

754/(665-709] 7.0 47% 0.88 
735/673 8.0 58% 0.85 

709/(665:681) 5.8 31% 0.92 
MERIS 709/665 6.5 35% 0.90 

754/(665-709] 6.5 41% 0.90 
709s/(667:678) 7.3 46% 0.88 

MODIS 748/[667-709s] 7.9 51% 0.85 
709s/667 8.3 52% 0.84 
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Table 15. Comparison of the best linear fit algorithms for New England lakes for each 
sensor type and chlorophyll range. Data in the Value column represent averages of best 
algorithms for each category. Number of algorithms averaged varied by sensor type 
based on obvious break points in regression statistical values. Number of algorithms 
averaged: Hyperspectral - 4, MERIS - 2, MODIS - 2. Data in the A chl column represent 
the difference between algorithms run with all chlorophyll values, and the algorithms run 
with restricted chlorophyll values. Chlorophyll values in ^g L'1. 

RMS Rel Error r2 

Type A all chl Value A all chl Value A all chl Value 
Hyperspectral 

all chl — 4.5 — 63% — 0.92 
chl >5 +24% 5.6 -52% 30% +1% 0.93 
chl < 50 -2% 4.4 -6% 59% -14% 0.79 
5 < chl < 50 +20% 5.4 -54% 29% -16% 0.77 

MERIS 
all chl — 5.2 — 71% — 0.89 
chl > 5 +17% 6.1 -54% 33% +2% 0.91 
chl < 50 -8% 4.8 -8% 65% -16% 0.75 
5 < chl < 50 +8% 5.6 -58% 30% -16% 0.75 

MODIS 
all chl — 8.9 — 204% — 0.67 
chl > 5 -15% 7.6 -76% 49% +28% 0.86 
chl < 50 -11% 7.9 -22% 160% -52% 0.32 
5 < chl < 50 -17% 7.4 -75% 51% -15% 0.57 
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Table 16. Coefficients for log-log regressions (Table 9) for relating spectral measure
ments to chlorophyll concentration in New England lakes (n=90). Factors added to cor
rect otherwise negative values for the predictor variable -A - 0.005, * - 0.025, ** - 0.5. 

Type Algorithm intercept 

Hyper 

MERIS 

MCI (677)A 399.8 594.2 295.3 
754/[677-703]** 1.930 2.004 -4.646 
730/(675-695]* 1.971 1.570 -0.705 

48.90 

703/677 0.895 3.409 -2.302 
MCI (665)A 632.2 937.9 463.6 76.18 

754/(665-709]** 2.106 1.410 -10.12 -12.18 
705/675 
710/673 

MCI (681 )A 

0.926 
1.094 
467.1 

3.377 
2.500 
696.7 

-2.359 
-1.048 
346.7 57.37 

740/(671-710]** 1.852 2.560 -1.110 
710/665 1.128 2.892 -1.451 
720/670 1.236 2.417 -0.429 

-2.100 

725/665 
735/673 

1.448 
0.403 

2.457 
0.864 

0.170 
0.000 0.145 

MCI (665)A -4623 -9223 -6878 -2273 -281.1 
754/(665-709]** 2.158 0.963 -13.50 -16.41 

MCI (681 )A -3275 -6594 -4960 -1653 -206.1 
OC (489) 0.089 -1.441 3.923 
709/681 1.080 2.928 -1.912 

709/(665:681) 1.095 3.104 -2.105 
OC (510) 
OC (443) 
709/665 

0.056 
-0.002 

1.087 

-3.031 
-0.944 
3.184 

4.416 
1.521 
-1.934 

MODIS 

OC (488) 
OC (443) 
MCI (678)A 

0.053 

-0.060 
218.7 

-1.885 

-1.315 
331.4 

3.604 

1.294 
168.7 28.64 

MCI (667)A 246.8 373.1 189.3 
709S/678 0.762 1.549 1.716 

709s/(667:678) 0.751 1.510 2.102 

32.02 

748/[667-709s]** 1.565 3.428 2.476 
709S/667 0.736 1.441 2.553 

SeaWiFS 
OC (489) 
OC (510) 
OC (443) 

0.069 
0.046 
-0.012 

-1.694 
-3.476 
-0.991 

3.987 
4.161 
1.685 
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Table 17. Linear regression models for predicting chlorophyll concentrations in New Eng
land lakes using dual-radiometer spectra sorted by RMS. The number of spectra used 
for each type of regression analysis: chlorophyll < 50 ^ig L"1 (n=89), chlorophyll between 
5 |ig L"1 and 50 ^ig L"1 (n=39). 

Type Algorithm RMS Rel Error r2 

chl < 50 

703/677 4.3 52% 0.80 
705/675 4.4 59% 0.79 
710/673 4.4 58% 0.79 

730/[675-695] 4.5 68% 0.78 
754/(677-703] 4.6 74% 0.77 

Hyper 710/665 5.0 69% 0.72 
720/670 5.8 116% 0.63 

740/(671-710] 5.9 116% 0.62 
754/(665-709] 6.0 119% 0.60 

725/665 6.4 128% 0.55 

735/673 9.0 175% 0.12 

709/(665:681) 4.6 62% 0.77 
MERIS 709/665 5.0 68% 0.72 

754/(665-709] 5.6 101% 0.65 

709s/(667:678) 7.7 160% 0.35 

MODIS 709s/667 8.1 160% 0.28 

748/[667-709s] 8.3 164% 0.26 
5 < chl < 50 

703/677 5.3 28% 0.77 
705/675 5.3 27% 0.77 
710/673 5.4 29% 0.77 

754/(677-703] 5.4 32% 0.76 
730/(675-695] 5.6 31% 0.75 

Hyper 710/665 5.9 33% 0.72 
720/670 6.2 39% 0.69 

740/(671-710] 6.5 47% 0.66 
754/(665-709] 6.5 47% 0.66 

725/665 6.9 45% 0.62 
735/673 8.1 59% 0.48 

709/(665:681) 5.3 28% 0.77 
MERIS 709/665 5.9 32% 0.72 

754/(665-709] 6.3 42% 0.68 
709s/(667:678) 7.0 48% 0.61 

MODIS 748/[667-709s] 7.7 53% 0.53 
709S/667 7.7 53% 0.53 
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Table 18. Comparison of linear algorithms for determining chlorophyll concentrations in 
New England lakes analyzed with only dual-radiometer spectra (DRS) and a combined 
data set of single- and dual-radiometer spectra (DRS+RS). A RMS indicates the differ
ence between RMS values between the two datasets. Chlorophyll values in ng L"1. 

RMS Rel Error 
Type Algorithm ARMS DRS DRS+RS DRS DRS+RS 

all chl 

710/673 +20% 4.6 5.5 63% 77% 
705/675 +8% 4.6 5.0 61% 66% 

Hyper 703/677 +5% 4.8 5.0 59% 64% 
710/665 +18% 5.5 6.5 77% 89% 
720/670 +29% 5.8 7.5 115% 130% 

MERIS 
709/(665:681) +78% 4.9 8.6 66% 122% 

709/665 +75% 5.5 9.6 75% 132% 
chl > 5 

710/673 +24% 5.6 6.9 30% 39% 
705/675 +11% 5.7 6.4 28% 32% 

Hyper 703/677 +7% 6.0 6.4 30% 33% 
720/670 +40% 6.2 8.7 38% 56% 
710/665 +23% 6.5 8.0 36% 49% 

MERIS 
709/(665:681) +75% 5.8 10.1 31% 48% 

709/665 +75% 6.5 11.4 35% 56% 
chl < 100 

703/677 +2% 4.3 4.4 52% 56% 
705/675 +3% 4.4 4.5 59% 62% 

Hyper 710/673 +13% 4.4 5.0 58% 68% 
710/665 +12% 5.0 5.7 69% 79% 
720/670 +18% 5.8 6.9 116% 123% 

MERIS 
709/(665:681) +47% 4.6 6.7 62% 101% 

MERIS 
709/665 +45% 5.0 7.3 68% 108% 

5 < chl < 100 

703/677 +4% 5.3 5.5 28% 31% 
705/675 +6% 5.3 5.6 27% 31% 

Hyper 710/673 +14% 5.4 6.1 29% 38% 
710/665 +16% 5.9 6.9 33% 44% 
720/670 +25% 6.2 7.8 39% 55% 

MERIS 
709/(665:681) +35% 5.3 7.2 28% 42% 

709/665 +39% 5.9 8.2 32% 49% 
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Table 19. Linear regression models for predicting chlorophyll concentrations in the Great 
Salt Lake sorted by RMS. The number of spectra used for each type of regression 
analysis: all chlorophyll (n=48), chlorophyll > 1.5 (ig L"1 (n=22). 

Type Algorithm RMS Rel Error r2 

all chl 
705/675 17.6 696% 0.92 
703/677 17.8 851% 0.92 
710/673 18.0 480% 0.92 
710/665 18.4 423% 0.92 

730/[675-695] 19.6 343% 0.91 
Hyper 754/(677-703] 19.6 744% 0.91 

720/670 19.7 317% 0.90 
740/(671-710] 20.2 921% 0.90 
754/(665-709] 20.8 1119% 0.89 

725/665 20.9 477% 0.89 
735/673 21.6 821% 0.88 

709/(665:681) 17.6 584% 0.92 
MERIS 709/665 18.1 479% 0.92 

754/(665-709] 20.7 1109% 0.89 
709s/(667:678) 22.9 1239% 0.87 

MODIS 709S/667 23.3 1267% 0.87 
748/[667-709s] 23.6 1279% 0.87 

chl > 1.5 
703/677 23.8 84% 0.92 
705/675 24.2 67% 0.91 
710/673 25.4 44% 0.90 
710/665 26.2 43% 0.90 

754/(677-703] 27.5 39% 0.89 
Hyper 740/(671-710] 28.0 39% 0.88 

730/(675-695] 28.2 36% 0.88 
720/670 28.3 43% 0.88 

754/(665-709] 28.6 44% 0.88 
725/665 29.8 60% 0.87 
735/673 30.3 66% 0.86 

709/(665:681) 24.7 55% 0.91 
MERIS 709/665 25.7 45% 0.90 

754/(665-709] 28.4 44% 0.88 
709s/(667:678) 31.1 83% 0.86 

MODIS 709S/667 31.6 93% 0.85 
748/[667-709s] 31.8 112% 0.85 
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Table 20. Comparison of the best linear fit algorithms for the Great Salt Lake for each 
sensor type and chlorophyll range. Data in the Value column represent averages of best 
algorithms for each category. Number of algorithms averaged varied by sensor type 
based on obvious break points in regression statistical values. Number of algorithms 
averaged: Hyperspectral - 4, MERIS - 2, MODIS - 2. Data in the A chl column represent 
the difference between algorithms run with all chlorophyll values, and the algorithms run 
with restricted chlorophyll values. Chlorophyll values in |xg L"1. 

RMS Rel Error F 
Type A all chl Value A all chl Value A all chl Value 

Hyperspectral 
all chl — 18.0 — 613% — 0.92 
chl >1.5 +39% 24.9 -90% 59% -1% 0.91 
chl < 80 -65% 6.2 -46% 333% -2% 0.90 
1.5 < chl <80 -56% 7.9 -92% 50% -3% 0.89 

MERIS 
all chl — 17.9 — 532% — 0.92 
chl> 1.5 +41% 25.2 -91% 50% -1% 0.91 
chl < 80 -65% 6.2 -32% 364% -2% 0.90 
1.5 < chl < 80 -56% 7.8 -91% 50% -8% 0.85 

MODIS 
all chl — 23.1 — 1253% — 0.87 
chl > 1.5 +36% 31.4 -93% 88% -1% 0.86 
chl < 80 -45% 12.8 -2% 1228% -34% 0.57 
1.5 < chl <80 -35% 15.1 -91% 118% -49% 0.44 
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Table 21. Linear regression models for predicting chlorophyll concentrations in the Great 
Salt Lake sorted by RMS. The number of spectra used for each type of regression 
analysis: chlorophyll < 80 ng L"1 (n=45), chlorophyll between 1.5 |xg L"1 and 80 |ig L"1 

(n=18). 

Type Algorithm RMS Rel Error r2 

chl < 80 

710/673 6.0 313% 0.90 
705/675 6.1 332% 0.90 
703/677 6.2 323% 0.90 
710/665 6.3 364% 0.90 

730/(675-695] 6.4 360% 0.89 
Hyper 754/(677-703] 6.8 597% 0.88 

720/670 7.0 312% 0.87 
740/(671-710] 7.4 749% 0.86 
754/(665-709] 8.1 888% 0.83 

725/665 8.5 450% 0.81 
735/673 10.4 827% 0.71 

709/(665:681) 6.2 350% 0.90 
MERIS 709/665 6.2 378% 0.90 

754/(665-709] 8.0 879% 0.83 
709s/(667:678) 12.7 1216% 0.57 

MODIS 709S/667 12.8 1240% 0.56 
748/[667-709s] 13.0 1243% 0.55 

1.5 < chl < 80 

740/(671-710] 7.6 51% 0.85 
754/(665-709] 7.6 62% 0.86 

710/673 8.1 44% 0.84 
705/675 8.2 43% 0.83 
710/665 8.2 52% 0.83 

Hyper 754/(677-703] 8.3 43% 0.83 
703/677 8.6 42% 0.82 

730/(675-695] 8.9 32% 0.80 
720/670 10.0 40% 0.75 
725/665 12.0 56% 0.64 
735/673 13.4 85% 0.56 

754/(665-709] 7.6 62% 0.86 
MERIS 709/665 8.0 54% 0.84 

709/(665:681) 8.2 50% 0.83 
709s/(667:678) 15.0 113% 0.44 

MODIS 748/[667-709s] 15.1 123% 0.43 
709S/667 15.2 116% 0.43 
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Table 22. Coefficients for log-log regressions (Table 13) relating spectral measurements 
to chlorophyll concentration in the Great Salt Lake using the restricted dataset (n=31). 
Factors added to correct otherwise negative values for the predictor variable -A - 0.005, 
* - 0.025, ** - 0.5. 

SeaWiFS 

Type Algorithm intercept X x2 x3 x4 

710/673 1.362 3.492 -9.916 24.80 -21.45 
705/675 1.092 5.475 -15.89 32.37 -24.70 
703/677 0.991 6.311 -19.64 40.96 -31.72 
710/665 1.493 3.582 -9.037 21.64 -20.52 

MCI (665)A 143.6 216.3 110.6 18.94 — 

MCI (681)A 182.2 276.2 141.4 24.23 — 

Hyper 
730/(675-695]* 2.141 0.693 0.873 6.826 — 

Hyper 
MCI (677)A 179.7 274.8 142.4 24.79 — 

754/(677-703]** -107.8 -3.041 1.690 2.098 2.182 
720/670 1.801 2.654 -4.301 2.578 0.341 

740/(671-710]** 2.587 1.534 -10.13 — — 

754/(665-709]** 2.733 0.379 -14.25 — — 

725/665 2.095 2.279 -3.635 — — 

735/673 2.217 1.585 -2.066 — — 

709/(665:681) 1.388 4.120 -11.69 28.47 -26.28 
709/665 1.450 4.760 -10.55 9.083 — 

709/681 1.293 5.197 -11.98 11.41 — 

MCI (665)A 158.7 238.4 121.3 20.68 — 

MERIS OC (489) -3.273 -34.76 -83.15 -66.97 — 

MCI (681 )A 212.5 321.1 163.5 27.85 — 

OC (443) -5.734 -36.18 -60.47 -34.84 — 

754/(665-709]** 2.739 0.272 -14.67 — — 

OC (510) -6.300 -86.62 -311.7 -367.2 — 

OC (488) -1.778 -23.57 -56.19 -47.24 — 

OC (443) -4.362 -31.29 -55.56 -34.16 — 

MCI (678)A -116.8 -173.1 -81.78 -12.45 — 

MODIS MCI (667)A -116.4 -170.7 -79.75 -12.00 — 

709S/678 1.234 4.441 -0.639 -6.318 — 

748/(667-709s]** 1.565 3.428 2.476 — — 

709S/667 1.332 3.414 -2.341 — — 

OC (489) 
OC (510) 
OC (443) 
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-5.013 
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Figure 40. RMS values for linear chlorophyll estimation algorithms for New Eng
land lakes. The top graph displays hyperspectral algorithms, and the bottom 
graph displays MERIS and MODIS algorithms. Light gray bars indicate all chloro
phyll, light blue bars indicate chlorophyll > 5 ng L1, cyan bars indicate chlorophyll 
< 50 jig L1, dark blue bars indicate 5 |ig L*1 and 50 |ig L"1 (n=39). 
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Figure 41. Best linear regression models using hyperspectral bands for predict
ing chlorophyll concentrations in New England lakes. The green lines represent 
relationships excluding chlorophyll values of less than 5 (xg L~1, while the regres
sions with red lines include all chlorophyll values. The three graphs on the left 
side include chlorophyll values greater than 50 jig L1, while the graphs on the 
right exclude chlorophyll values greater than 50 fig L"1. The number of spectra 
used for each type of regression analysis: all chlorophyll (n=90), chlorophyll > 5 
|ig L'1 (n=40), chlorophyll < 50 ng L"1 (n=89), chlorophyll between 5 |xg L"1 and 50 
fig L"1 (n=39). 
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Figure 42. Best linear regression models using satellite sensor bands for predict
ing chlorophyll concentrations in the New England lakes. The green lines rep
resent relationships excluding chlorophyll values of less than 5 (xg L1, while the 
regressions with red lines include all chlorophyll values. The three graphs on the 
left side include chlorophyll values greater than 50 jig L"1, while the graphs on the 
right exclude chlorophyll values greater than 50 jxg L"1. The number of spectra 
used for each type of regression analysis: all chlorophyll (n=90), chlorophyll > 5 
jig L*1 (n=40), chlorophyll < 50 fig L"1 (n=89), chlorophyll between 5 jig L1 and 50 
(ig L1 (n=39). Satellite sensors bands used are (A) MERIS and (B) MODIS. 

(red) 

all chl 

rms =4.9 

rel = 6696 

r2=0.90 

709/(665:681) 

rms =8.5 

rel = 198% 
r* =0.71 

- - . 
"[red] 
«chl<50 
^ rms « 4.6 

rel = 62% 
xi2 =0.77 

5 »r 
3 
© 20- o 

[green]" i»' 
chl >5 ° rU 

rms =5.8 
•O' VP 

rel = 31% . 
r2 =0.92 o * .i O <*> 

[green]; 
chl > 5 

rms = 7.3 
rel =46% j 

0.88 

[red] 

"chl <50 

„;rms = 7.7 
•rel = 160% 
*2=0.35 

[green] • 
5 < chl < 50 

rms = 5.3 

rel = 28% • 

709/(665:681) 

(green) j 
5 < chl < 50, 

rms = 7.0' 
rel = 48% 1 

r2 =0.611 
*2 >* 71 

709s/(667:678) 709s/(667:678) 

158 



Figure 43. RMS values for linear chlorophyll estimation algorithms for the Great 
Salt Lake. The top graph displays hyperspectral algorithms, and the bottom 
graph displays MERIS and MODIS algorithms. Light gray bars indicate all chloro
phyll, light blue bars indicate chlorophyll > 1.5 fig L1, cyan bars indicate chloro
phyll < 80 fig L"1, dark blue bars indicate 1.5 fig L*1 and 80 fig L_1 (n=39). 
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Figure 44. Best linear regression models using hyperspectral bands for predict
ing chlorophyll concentrations in the Great Salt Lake. The green lines represent 
relationships excluding chlorophyll values of less than 1.5 fig L"\ while the re
gressions with red lines include all chlorophyll values. The three graphs on the 
left side include chlorophyll values greater than 80 fig L"\ while the graphs on the 
right exclude chlorophyll values greater than 80 p.g L"1. The number of spectra 
used for each type of regression analysis: all chlorophyll (n=48), chlorophyll > 1.5 
jig L"1 (n=22), chlorophyll < 80 ng L"1 (n=45), chlorophyll between 1.5 ng L"1 and 
80 jig L"1 (n=18). 
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Figure 45. Best linear regression models using satellite sensor bands for predict
ing chlorophyll concentrations in the Great Salt Lake. The green lines represent 
relationships excluding chlorophyll values of less than 1.5 jxg L"1, while the re
gressions with red lines include all chlorophyll values. The three graphs on the 
left side include chlorophyll values greater than 80 ng L"1, while the graphs on the 
right exclude chlorophyll values greater than 80 fig L"1. The number of spectra 
used for each type of regression analysis: all chlorophyll (n=48), chlorophyll >1.5 
jxg L"1 (n=22), chlorophyll < 80 ng L"1 (n=45), chlorophyll between 1.5 ^g L"1 and 
80 |ig L"1 (n=18). Satellite sensors bands used are (A) MERIS and (B) MODIS. 
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