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ABSTRACT

ON WAVELET-BASED TESTING FOR
SERIAL CORRELATION OF UNKNOWN FORM

USING FAN’S ADAPTIVE NEYMAN METHOD

by

Shan Yao
University of New Hampshire, September 2012

Advisor: Dr. Linyuan Li

Test procedures for serial correlation of unknown form with wavelet methods are in-
vestigated in this dissertation. The new wavelet-based consistent test is motivated using
Fan’s (1996) canonical multivariate normal hypothesis testing model. In our framework,
the test statistic relies on empirical wavelet coefficients of a wavelet-based spectral density
estimator. We advocate the choice of the simple Haar wavelet function, since evidence
demonstrates that the choice of the wavelet function is not critical. Under the null hypoth-
esis of no serial correlation, the asymptotic distribution of a vector of empirical wavelet
coefficients is derived, which is the multivariate normal distribution in the limit. It is also
shown that the wavelet coefficients are asymptotically uncorrelated. The proposed test
statistic presents the serious advantage to be completely data-driven or adaptive, which
avoids the need to select any smoothing parameters. Furthermore, under a suitable class

of local alternatives, the wavelet-based method is consistent against serial correlation of

ix



unknown form. The test statistic is expected to exhibit better power than the current test
statistics when the true spectral density displays significant spatial inhomogeneity, such as
seasonal or cycle periodicities. However, the convergence of the test statistic toward its
respective asymptotic distribution is expected to be relatively slow. Thus, Monte Carlo
methods are investigated to determine the corresponding critical value. In a small simula-
tion study, the new method is compared with several current test statistics, with respect to

their empirical levels and powers.



INTRODUCTION

Testing for serial correlation has been a long-standing problem in statistics and econo-
metrics. Many test statistics for serial correlation have been proposed, including the popular
Box-Pierce-Ljung portmanteau test statistics developed in the seminal works of Box and
Pierce (1970) and Ljung and Box (1978). These portmanteau test statistics have been gen-
eralized using a spectral density approach by Hong (1996), where the testing procedures
relied on a normalized distance between a kernel-based spectral density estimator and the
spectral density under the null hypothesis of no serial correlation. Wavelet methods repre-
sent an alternative approach to kernel-based spectral density estimators. Using a wavelet
expansion of the spectral density, Lee and Hong (2001) proposed a wavelet-based spectral
density estimator and they obtained a consistent test statistic for serial correlation using
quadratic integrated measure. In Duchesne, Li and Vandermeerschen (2010), a similar test
statistic has been investigated, using wavelet thresholding of the wavelet coefficients.

In Hong’s (1996) spectral density approach, a kernel function &(-) needs to be spec-
ified and the user has to also specify a smoothing parameter or a truncation parameter p,,
depending on the nature of the kernel function. Interestingly, it provided an interpretation
for Box-Pierce-Ljung test statistics, which can be considered as a particular case of Hong’s
statistic using the truncated uniform kernel and a truncation parameter. For the kernel-
based test of Hong (1996), the selection of the kernel functions has very little impact on
the performance of the test statistic, except for the truncated uniform kernel where p, is
in fact a lag order. However, theoretical and empirical evidence suggest that the selec-
tion of p, can have a significant impact on the power of the spectral test statistic. From
a theoretical point of view, the test statistic of Hong (1996) is consistent under the as-
sumptions p,/n — 0 and p, — o0, n being the sample size. However, in practice, p,

is fixed and the test statistic with small values of p,,, when p, is denoted as a lag order,



may miss high order dependence, due for example to seasonality. On the other hand, when
Pn corresponds to a smoothing parameter (not a lag order), it may be difficult to specify
in practical applications. Alternatively, a wavelet basis can be used to describe the spec-
tral density. The test statistic of Lee and Hong (2001) was constructed using a quadratic
distance measure between a wavelet-based spectral density estimator and the null spectral
density. In that framework, a finest scale J,, needs to be selected. The finest scale J,, used
in the wavelet-based test statistic also has significant impact on the performance of the test
statistic. As a spatially adaptive estimation method, wavelet method has its major strength
in detecting local characteristics and global alternations such as peaks and spikes. As a
result, the wavelet-based test statistics of Lee and Hong (2001) are expected to reach better
power than the kernel-based test statistics of Hong (1996) if the spectral density displays
significant spatial inhomogeneity. Both Hong’s (1996) test statistic and Lee and Hong’s
(2001) method involve the selection of smoothing parameters p,, and J,,, which are chosen
either by subjective approaches or data-driven methods such as the method given in Walter
(1994). Cross-validation or data-driven methods may be appealing, but they are computa-
tionally intensive. Furthermore, the additional variability due to the data-driven selection
may affect the finite sample performance of the test statistics. These issues may be viewed
as serious disadvantages, see Li (2004, pp. 104 and 168), among others. The Duchesne, Li
and Vandermeerschen (2010) wavelet thresholding test statistic was also motivated using
a quadratic distance measure between a wavelet-based spectral density estimator and the
null spectral density. Using an appropriate thresholding parameter, shrinkage rules were
applied to the empirical wavelet coefficients by vanishing those which are smaller than the
threshold parameter. They found that the thresholding rule was particularly appealing when
most of the energy was concentrated on few dimensions with unknown locations.

In this dissertation, we also consider using wavelet coefficients and a wavelet-based
spectral density approach. The new test statistic for testing for serial correlation of un-

known form is motivated using Fan’s (1996) adaptive Neyman method. Neyman’s funda-



mental testing problem is for a location parameter in a multivariate normal framework. If
the large coefficients of the location parameters are concentrated on the first few dimen-
sions, a test statistic based on the first few components of the random vector is expected to
be powerful. Fan (1996) proposed a simple and powerful procedure to select the number
of dimensions based on power consideration. That approach is comparable to thresholding
methods, since in both approaches the test statistics are based on the significant few dimen-
sions. In our framework, the random components are the wavelet coefficients. Based on
the theoretical and empirical results of Lee and Hong (2001) and Duchesne, Li and Van-
dermeerschen (2010), the choice of the wavelet function is not critical. Thus, we use the
simple Haar wavelet function to compute the wavelet coefficients and the test statistic. The
proposed test statistic is expected to display high power when the true spectral density has
significant spatial inhomogeneity, such as seasonal or cycle periodicities often encountered
in economic and financial time series. A clear advantage of the proposed test statistic is
that it is completely automatic, or adaptive, which avoids the need to select smoothing pa-
rameters or finest scales. We study the asymptotic distributions of the wavelet coefficients
and the asymptotic distribution of the test statistic is also investigated. That problem was
also considered by Duchesne, Li and Vandermeerschen (2010), but the results were stated
without proof. Here, detailed proofs are provided, which are useful in their own right. As
for the test statistics based on thresholding rules, the convergence of the test statistic based
on Fan’s approach toward its asymptotic distribution is expected to be slow. Thus, a Monte
Carlo method is applied in order to find the critical values. Empirical evidence confirms
that the proposed test statistic has reasonable properties under the null hypothesis and it
displays high power under a large number of alternatives.

The organization of the dissertation is as follows. In Chapter 1, we introduce the ba-
sic framework including the introduction of the serial correlation, the wavelet analysis, and
Fan’s adaptive Neyman approach. And then we discuss how they can be used to develop

the new testing procedure for serial correlation in a time series framework. The asymptotic



distributions of the wavelet coefficients under the null hypothesis of no serial correlation is
studied. We also provide the consistency of the proposed test statistic under fixed alterna-
tives. Chapter 2 presents a small simulation study under the null hypothesis and for several
alternative hypotheses. We demonstrate empirically that the proposed wavelet-based adap-
tive test statistic is powerful compared to current spectral-based test statistics. All compu-
tations were done using the R statistical software version 2.15.0 (http://cran.r-project.org/).
Related scripts can be found in the Appendix. Chapter 3 offers some concluding remarks

and Chapter 4 provides the proofs of the main results.


http://cran.r-project.org/

CHAPTER 1

PRELIMINARIES AND THE

TESTING PROBLEM

1.1  Serial Correlation and the Testing Problem

Serial correlation is also known as autocorrelation. It refers to the correlation of a
time series with its own past and future values. Serial correlation has many applications in
various fields. In signal processing, serial correlation can give information about repeating
events like musical beats (for example, to determine tempo) or pulsar frequencies. It can
also be used to estimate the pitch of a musical tone. In statistics, spatial autocorrelation be-
tween sample locations also helps one estimate mean value uncertainties when sampling a
heterogeneous population. In Astrophysics, autocorrelation is used to study and character-
ize the spatial distribution of galaxies in the universe and in multi-wavelength observations
of Low Mass X-ray Binaries.

Let X = {X;, t € Z} be a covariance stationary real-valued time series with normal-

ized spectral density fx(w), w € [—m,n]. Assuming > p-__ |Rx(h)| < oo, where the

—0C
lag-h autocovariance is defined by Rx(h) = Cov(X;, X;_jn|), h € Z, the spectral density
can be written as
1 o0
- —thw -
fxw)= 5= 3 px(b)e™,  we[-ma)

h=-—o00

where px(h) = Rx(h)/Rx(0) denotes the lag-h autocorrelation.

The hypothesis of interest states that the stochastic process X corresponds to a white



noise process, against the alternative hypothesis of serial correlation of arbitrary form.

More precisely, the null and alternative hypotheses in the time domain can be written as:

Hy : px(h)=0, forall h, h # 0,

Hy . px(h)#0, for some h, h # 0.

The hypotheses Hy and H, can be formulated using the spectral density fx(w) of X.
Under the null hypothesis Hy, all px(h) = 0 for h # 0 and px(h) = 1forh = 0. Asa

result,

fx(w) = 517}‘ (Z px(h)e™™ + px(O)e’iO“’) = %

h#0
Hence, the null hypotheis px(h) = 0, forall A # 0 is equivalent to fx(w) = 5=, w €
[—7, m]. However, under the alternative hypothesis of serial correlation of arbitrary form,
the spectral density fx(w) is not identically equal to the constant (27)~!. That alternative
formulation in the frequency domain provides the main motivation to develop a test statis-

tic for serial correlation using a spectral approach. Therefore, the original hypotheses of

interest can be stated in terms of the normalized spectral density function fx (w) as follows:

1

Hy : fx(w)= 7 forany w € [, 7],
1

H : fx(w)# Py for some w € [—m, 7.

It is possible to express the normalized spectral density function fx (w) using a wavelet
basis (Lee and Hong, 2001). We now consider a wavelet representation of the normalized

spectral density function fx (w).



1.2  Wavelet Analysis

Wavelet theory is applied in many disciplines: statistics, mathematics, geophysics,
astronomy, signal processing, medical imaging, and numerical analysis. From a historical
point of view, wavelet analysis is a relatively new method, given the fact that its mathemat-
ical foundation dates back to Fourier analysis in the nineteenth century. Fourier analysis is
a methodology for the frequency domain while wavelet analysis is for both the frequency
domain and time domain. The first mentioning of wavelets was in a thesis by Alfred Haar
in 1910. Haar showed that any continuous function f(z) on [0, 1] can be approximated by a
set of wavelet base using the Haar wavelet, which has the property of being compactly sup-
ported. In the 1930s, prototypes of wavelets first appeared in Lusin’s work. In the 1980s,
Grossman and Morlet, a physicist and an engineer, broadly defined wavelets in the con-
text of quantum physics. In the mid-1980s, Mallat gave wavelets an additional jump-start
through his work in digital signal processing. Inspired by Mallat’s results, Meyer (1985)
constructed the first non-trivial wavelets. Unlike the Haar wavelets, the Meyer wavelets
are continuously differentiable. However they do not have compact support. Several years
later, Daubechies (1988) constructed a set of wavelet orthonormal basis functions which
have become the cornerstone of wavelet applications today.

Wavelet analysis can be viewed as a generalization of Fourier analysis. The two math-
ematical techniques are often compared with each other and the main difference is that
wavelet analysis is localized in both time and frequency whereas Fourier analysis is only
localized in frequency. Wavelets have a gender: father wavelets ¢ and mother wavelets ¢

which satisfy:

/¢(-’L‘) dr =1, /1/1(:1:) dz = 0.

Father wavelets are good at representing the smooth and low-frequency parts of a signal and

mother wavelets are good at representing the detail and high-frequency parts of a signal. A

7



complete orthonormal wavelet basis {@;x(-), {¥;x(-)} of the L%(R) space can be generated

from the father and mother wavelets as follows:

$in(x) = 22¢(Vx — k),

Yik(x) = 272(Pz — k),

where the integer j denotes a resolution level and & denotes a translation parameter.

Now we consider a wavelet expansion of the normalized spectral density function
fx(w),w € [—mm]. Since fx(w) is a 2w-periodic function over R, a wavelet basis
{®;k(-), ¥,x(-)} for the Ly(IT)-space of 27-periodic functions needs to be constructed,
where IT = [—n, 7]. Given an orthonormal wavelet basis {¢;x(-), ¥;x(-)} of L(R), we can
construct the 27-periodic orthonormal wavelet basis {®;x(-), ¥;x(-)} from {¢;x(-), ¥;x(-)}

via the expressions:

24() = 00 3 oz +m),
Uj(w) = (27r)_1/2 i wjk(g—r + m),

where —oo < w < 0o. Both ®;4(-) and W,,(-) are real valued and periodic functions with

period 27. An example is the Haar wavelets ¢ and 1, which are defined as:

( 1, z€[0,1),
P(z) = <

0, otherwise.

\

(1, zec 0,1/2),

P(x) = $ -1, ze[1/2,1).

\ 0, otherwise.

Other compactly supported wavelets and their properties are given in Vidakovic (1999) and



Daubechies (1992), among others. Haar wavelets are going to be used to construct our
proposed test statistic Wy .
For later use, the Fourier transformations and inverse Fourier transformations for sev-

eral functions are defined here:

3) = @0 [~ ot
i) = @ [y
bl = 0 [~ o
Balh) = 0 [ e o
B) = (m) [~ e do

bt = @07 [ gt d,

Balw) = @07 (e,

h=-00
Viw) = (2m)72 > Uy(h)e,
h=—o00

where
0 1/2 orh
i 7 m —i2% i 2 ™
Biu(h) = (27)!/26(2h) = (‘2‘) o "’“”2’¢("§r>’
or\ " orh
| 7 m —32m J 7 ™
Ui(h) = (27r)1/2¢jk(27rh) = (5) —i2mhk/2 1/}(2_])

Because a periodic wavelet basis {®;(-), U;x(:)} is used, the normalized spectral

density function has the following wavelet expansion:

oo 29-1

fx(w) = Boo®oo(w) + ) Y ap¥iu(w),  we [-m],

=0 k=0



where B0 = [, fx(w)®Poo(w)dw and ajx = [ fx(w)¥p(w)dw for all j > 0 and
—00 < k < 0o. Note that the wavelet coefficients o ; are periodic with period 27, that is,
Qjk = ;i for all j, k and integers [. This explains why the summation over k is from
O0to2’ — 1.

Since Y oo doo(w +m) = 1 for all w, we have ®go(w) = (27) Y2 forall w €
[—, 7). Thus we have By = (27)~'/2. Therefore the normalized spectral density function
can be written as:

oo 29-1

fx@) =m0 + 3 Y ap¥ip(w), wel-m].

J=0 k=0

Under the null hypothesis Hy, fx(w) =: fxo(w) = (2r)7}, w € [~m,7]. Thus, we have

O‘Jk—/ Fx () (w =——/ jk(w)dw =0,

forallj >0, k=0,1,...,2/ — 1. Hence, the original hypotheses in our testing problem

can be expressed using the wavelet coefficients ajx, 7, k € Z:

Hy: o, =0, forall j and £,
Hy : oy # 0, for at least one couple (J, k).

Since

Qe = /1r fx(w)¥(w)dw

2 - V2 J
R .
= hW..(h
\/é_ﬂ:h;mp)(( ) Jk( )

10



where U;(-) and ﬁjk(-) are the Fourier transformations of W,,(-) and ¢;(-). A natural

consistent estimator for ay, is given by:

n-1 n—1
Gie= > dx(Wbu(enh) = 3 px(b)[dse(2mh) + Bin(~2mh)],
h=—(n-1) h=1

in which the second equality can be derived by using the property zﬁjk(()) = 0, for all
j=01,...,Jand k = 0,1,...,2" — 1, where J satisfies 2*! = n and Rx(h) =
n Y e (X = X)(Xeow — X), px(h) = Rx(h)/Rx(0), X =n"' Y1 X,. Anda

wavelet-based estimator for the spectral density fx can be expressed as:

J
A)((J)(w):(27r)—1+z an¥ip(w),  we[-m, 7]

For the above wavelet coefficients o, and empirical wavelet coefficients &, we have

the following properties.

Theorem 1. If the time series X = {X,, t € Z} is second-order stationary, the wavelet
coefficients oy corresponding to the Haar wavelet 1) satisfy, for all j = 1,2,..., and

ky ko =0,1,--- 2 —1,
CY00=O and Ajk) = — Qjky, lf k1+k2=2j—1.

Similarly, the empirical wavelet coefficients &, corresponding to the Haar wavelet 1 sat-

isfy, forall j = 1,2,... ., Jand ky, ky = 0,1,--- , 20 — 1,
Goo=0 and &, =—GQr,, if ki +ke=2"—1.

The result was stated in Duchesne, Li and Vandermeerschen (2010) without proof.

This dissertation provides the proof in Chapter IV. From Theorem 1, at most half of the

11



empirical wavelet coefficients &, k =0,1,. ..,
2971 — 1 are needed to construct the test statistic, at each resolution level j,j = 1,2, ..., J.
When one uses wavelets such as Haar, Franklin and second-order spline wavelets, the first
coefficient &gy could also be dropped since Gy = 0. See Lee and Hong (2001) and Duch-
esne, Li and Vandermeerschen (2010) for additional details.

In order to derive the null limit distribution of the empirical wavelet coefficients, we

suppose the following assumption.

Assumption 1. The stochastic process X = {X;, t € Z} is independent and identically
distributed with E(X,) = p, E(X; — p)? = 0? and E(X; — p)* = s < oo. A random

sample { X;}7, of size n € Z* is observed.

Assumption 1 was also assumed in Lee and Hong (2001). It allows for non-Gaussian
processes which are common for economic and financial time series. For the empirical
wavelet coefficients, we have the following asymptotic distributions. The proof is given in

Chapter IV.

Theorem 2. Under Assumption 1, half of the empirical wavelet coefficients 6.3, converge
toward normal distribution asymptotically. Furthermore, they are asymptotically uncorre-

lated. More precisely, under Assumption 1, we have, as n — oo,

(27rn)1/2djk *'-)d./\/’((), 1), forall j=1,2,...,J, k=0,1,...,2j_1—1,

Cov (Gjkys Gjoky) = o(n_l), forall jy # jy or ki # k,

Wherej:1’2)"‘7‘]7 klzoala-'-,2j1_1—1, k2:0,1,...,2j2_1—1.

The next theorem states that any finite-dimensional subset of the empirical wavelet

12



coefficients & converge jointly toward a multivariate normal distribution asymptotically.

More precisely, let

- A ~ ~ A N N ~ A ~ A ~ . T
a = (0410,020,021,030, crr, 033,040,041, Q47,00 Oy Oyttt 7aj2J—1__1) .

Then we have the following result:

Theorem 3. Under Assumption 1, for any fixed J such that 1 < J < J, it follows, as

n — oo:

(2mn)' 2 & —4 N (O’ I(:zf—l)x(zf—l)) ’

where 1., corresponds to the n X n identity matrix.

Theorems 2 and 3 are related to a result stated in Duchesne, Li and Vandermeerschen

(2010). A detailed prooof is provided in Chapter IV.

13



1.3  Fan’s Adaptive Neyman Method

Fan (1996) considered the following canonical high dimensional testing problem: Let
X ~ N(8,1,x,) be an n-dimensional normal random vector. Consider the classical loca-

tion testing problem:
Hy:6=0 versus Hy:0+#0.

Given a general alternative H; : 8 = 6 # 0, we can use the Neyman-Pearson
fundamental theorem to find the test statistic 6] X. We reject Hy when 6] X is too large.
However we do not know the value of 8,. So Fan used X to estimate 6, and constructed
the test statistic | X||2 = Y, XZ.

Given the significance level «, we first compute the critical value c based on the test
statistic D ;. X2.

Under H,,

- H d
ZX? ~ xi(n) == N(n,2n),
=1
i.e., the test statistic ) .., X2, under Hy, follows a chi-squre distribution with degrees

of freedom n, which could be approximated by a normal distribution with mean n and

variance 2n for large n. Hence we compute the critical value ¢ as below:

a = P(reject Ho|Hp)
= P(ﬁéxf>c|iéX3zAﬂm2m)
=1 i=1

St X2-n_c—-n
= P = >
( Van Van

1—@(&%).
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Thus the critical value of the test statistic is ¢ = n + v/2nZ;_,. And then we compute the

power of the test under the alternative hypothesis.

Under H;,
> XE—y N(E(ZXE),VM(ZXE)),
i=1 i=1 i=1
ie., the test statistic ) ., X7, under H;, asymptotically follows a normal distribution

with mean E( Sy Xf) and variance Var(Z:’:l Xf) , which can be shown by the
Lindeberg-Feller Theorem. Also one can easily derive that £ ( Yo, Xf) = n+ ||6o])?

and Var ( S X?) = 2n + 4/|6,||%. Thus the power of the test is computed as follows:

power P(reject Hy|H;)

- (sz>c|zxz—>d (n+[160], 20+ 460

_ Zz X2 —n—||6o])? S n+v2nZi_o —n — 6|2
2n+4||90 |2 vV 2n + 4|60

Zyo - oL
1—
znecuz

Q

= I—Q(Zla )
~ 1-@(21_(,)

= 1-(1-0q)

= a,

provided that ||6,||> = o(v/n). As one can see, the power of the test tends to . So Fan
argued that testing on all the n dimensions is not a good idea. Neyman (1937) proposed
testing on the first m-dimensional sub-space, leading to the test statistic > .- X?. Based

on the power consideration, Fan proposed an adaptive Neyman test statistic T3 ;, which is
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to maximize the power of the test. That means:

max {1_¢(Z1_Q_Z_T~.__\/_1_9é>} -  min (I)(Zl__a_z:llegi)

1<m<n 2m 1<m<n v 2m
m 2
N {z 00,-}
1<m<n v2m

m 2
N max{Zi:lxi m}’
1<m<n vV2m

noting that (2m)~/2 (3.7, X? — m) is an unbiased estimator of (2m)~1/2 S"7 2.,
1=1 "1 i=1"0¢

Therefore Fan’s adaptive Neyman test statistic 77 was constructed to be:

* 1 - 2
Tin = 2%, 7o 21X =)

=1

Large values of the above test T}, result in rejection of the null hypothesis Hy : 6 = 0.

Using results of Darlin and Erd6s (1956), T'; ;y can be normalized as:

T = +/2loglog(n) Thy — [2 log log(n) + 0.5 log log log(n) — 0.5log(4r)],
which converges asymptotically to the following distribution under Hy:

Py (T < z) = exp{—exp(—z)}, asn — oo.
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1.4  The Construction of the Test Statistic W4y

In section 1.1, we concluded that for a stochastic process X, the original hypotheses

in our testing problem

Hy : px(h) =0, forall h, h #0,

H, : px(h)#0, for some h, h # 0,
can be expressed using the wavelet coefficients oy, J, k € Z:

Hy : aj, =0, forall j and £,

Hy : i # 0, for at least one couple (j, k).

To construct the new testing procedure, noting that agg = 0 and Ggy = 0, we consider
the quadratic distance measure between the wavelet-based spectral density representation

fx(w) and the null spectral density fxo(w) = (27)1:
Q(fx, fxo) = /—" {fx(w) — fxo(w)}?dx

T 1 oo 21 142
:/ {%—Fzzajk\yjk(w)—é—;} dz

-7 j=0 k=0

The last equality comes from the orthonormality property of the 27-periodic wavelet basis

{(I)J'k(')’ ‘I/Jk()}

Based on a suitable J,, a natural estimator of that quadratic distance relies on the

17



expression:

Jp 2-1

QU™ fxo) = [ (8 ) — frow)Pdw =3 3 &,

- j=1 k=0

From Theorems 2 and 3, it appears reasonable to propose the following test statistic

V.. for our hypothesis testing problem:

Under the null hypothesis Hy, all the theoretical wavelet coefficients vanish, that is o = 0.
Since the empirical wavelet coefficients é;;’s are consistent estimators of the a.’s, the test
statistic V,, is expected to reject the null hypothesis Hy when it is too large. From Theorem

3, for any fixed J (1< J<J ), we obtain the following corollary.

Corollary. Under Assumption 1, for any fixed J suchthat1 < J < J, we have, as n — oo,

J 2i-1-1

oY N &% —a (2 - ).

j=1 k=0

Intuitively, the test statistic V;, can be interpreted as a Cramér-Von Mises test statistic,
which measures the integrated mean squared error between the wavelet estimator f )({J) and
the null spectral density fx,. However, based on discussions presented in Fan (1996), the
test statistic V), is not expected to be powerful, the reason being that it involves too many
individual terms (a total of n/2—1 terms or n/2—1 hypotheses). Thus, stochastic errors are
accumulated, and therefore variations in the test statistic are too large. More precisely, Fan

(1996) considered a canonical high dimensional testing problem. Let X ~ A (6,1,x,) be
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an n-dimensional normal random vector. Consider the classical location testing problem:
Hy:0=0 versus H,:0+#0.

Fan (1996) showed that the test statistic based on the norm of X, that is {|X||?, is expected
to reach very low power for the general alternative 6 = 6, # 0. The seminal work of
Neyman (1937) proposed testing the first m-dimensional sub-space, leading to the test
statistic ) ., X7, which relies however on the choice of m. Based on theoretical power

consideration, Fan (1996) proposed an adaptive Neyman test statistic:
Thiy = max Z (X2 -1).

When large values of the test statistic T3, are observed, the null hypothesis Hj is rejected.
With theoretical power calculation and empirical simulation studies, Fan (1996) showed
that the adaptive Neyman test statistic reaches higher power than the Kolmogorov-Smirnov
and Cramér-Von Mises test statistics. Using results from Darlin and Erdos (1956), it is pos-
sible to establish that the test statistic 1'%, converges asymptotically toward the following

limit distribution:
Py, (Tin < x) — exp{—exp(—z)}, asn — o0,

under the null hypothesis H in the location testing problem.

Although Fan (1996) considered hypothesis testing on an idealized statistical frame-
work, that is an n-dimensional multinormal distribution, the general idea behind that method-
ology can be used in other testing problems as well. From Theorems 2 and 3, it appears

that our problem is asymptotically equivalent to his testing problem, in the sense that from
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Theorem 3, the random vector

A N A N N N N A A N N T
V2mn (alo,azo,agl,a;go,. <y (33, 40, QY41 o+, 047, o o O fay XYy e - s y A joi-1_yy-- )

plays the role of X in a certain asymptotic sense. This kind of asymptotic approximation
or equivalence has been used in nonparametric regression (see Hérdle et al., 1998, p.202
and Donoho and Johnstone, 1998). Hence, it is reasonable to apply Fan’s (1996) idea in
our framework to motivate a new test statistic. For the sake of simpler exposition, let ¢ such
that ¢ = 271 + k, where 1 < j < J, 0 < k < 2771, Thus with that numbering system
1 <7< N,where N = 277142771 1 =2J —1 =n/2—1, using the relation 27! = n.

Denote
T N ~ ~ ~ o ~ T
0= (61,0,,... On) = V2mn (Gr0, G0, @21, - - -, Gy, Gy, - . ,Gygi-1_1) .

Using that notation, we propose a new wavelet-based adaptive Neyman test for serial cor-
relation:

. 2
Win = 1oy ,/ 2(0 - 1)

Following Fan (1996), the test statistic can be normalized as follows:

Wan = v/2loglog(N) Wiy — [2loglog(N) + .51og loglog(N) — .5log(4r)].
Therefore, for the hypotheses:

Hy: oy, =0, forall j and £,

H; : aj # 0, for at least one couple (j, k),

the null hypothesis is rejected if large values of W4y are observed. The approximate limit
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distribution

Py,(Wan < ) = exp{—exp(—z)}, asn — oo,

can be used to determine the rejection region at a given significance level. For instance, at
significance level o, the critical region is Wan > c,, where ¢, = — log(—log(1 — a)).
However, the above approximation is not expected to be satisfying in finite samples and the
rate of convergence of the test statistic W4, toward its asymptotic distribution is expected
to be low.

As an illustration, we generated independent and identically distributed normal ran-
dom variables with sample size n = 256 and performed N = 10,000 simulations. The
distribution of the 10, 000 simulated test statistics under the null hypothesis is presented

using a kernel density estimate. We used the common kernel density estimator defined as
) N
fulz) = N7 Y T K{(Z: - 2)/h},
i=1

where K is the Gaussian kernel function K (z) = (27)~1/2 exp(~x?/2), and h is the band-
width. We used the value A = 1.06 % sy * N~1/% as the bandwidth, where sy is the
standard deviation of Z,, Z», ..., Zn (For more details on the choices of K and bandwidth
h, see Chapter 5 of Fan and Yao, 2003). Taking the testing procedure W4y, we calculated
Zy = Wang, Z2 = Wana, ..., Zioo00 = Wan,10,000 from the 10,000 simulations. The
density estimator is presented in Figure 1 as dashed line. We also provided a simulated
distribution for test statistic W4y with sample size n = 512 and N = 10, 000 presented as
dotted line. The solid line represents the theoretical limit distribution. From the estimated
distributions of our test statistic Wy, one can see that the finite-sample distributions are
not close to the theoretical limit distribution. When the sample size is n = 256, the 95-th
quantile of the 10,000 Wypn's is Wy 05(256) = 3.70. When the sample size is n = 512,
the 95-th quantile of the 10,000 Wan's is Wy 05(512) = 3.58. Note that these critical val-

ues can be used to calculate the empirial powers of our test statistic under the alternative
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hypotheses.

0.5
!

0.2

0.1

0.0

Figure 1: The estimated density for test statistic W 45 under the null hypothesis for n=256
(dashed line) and n=512 (dotted line) based on 10,000 simulations. The solid line repre-
sents the theoretical limit distribution.

Since the random vector § = (0y,6s,,...,0x)" asymptotically converges toward a
multinormal distribution, but that the convergence of the test statistic W,y seems to be
slow, we propose to use Monte Carlo methods to determine the rejection region given the
finite sample size (n) under H,. We elaborate more on the Monte Carlo methods in the

next chapter.
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1.5  Consistency of the Test Statistic Wy

In this section, we study the consistency of the proposed test statistic W4n. Let
k(j, k, 1) be the fourth order cumulant of the joint distribution of { X, X;;, Xevk, Xttt}

where j, k, | € Z. For fixed indices j, k and [, it is defined as follows:
k(j, k) = E(Xe Xerj XesnXest) = B Xorj Xean Xesd),

where {X,,t € Z} represents a Gaussian stochastic process with the same mean and co-
variance function as {X;, t € Z}. For more information on the properties of the cumulants,
see, e.g., Hannan (1970) and Brillinger (1981). To study the behavior of the proposed test
statistic Wy under the alternative hypothesis H;, we impose in Assumption 2 the tempo-
ral dependence of {X;,t € Z}. The temporal dependence of {X;,t € Z} is supposed to

satisfy Assumption 2.

Assumption 2. It is assumed that {X;, t € Z} is a fourth order stationary process with
autocovariance function satisfying > o R?(h) < 0o and such that the cumulants sat-
isfy the following summability assumption: Y 22 3> S77 |k(j,k,1)] < oo, for
all j,k,l € Z.

The following result shows that our test statistic W45 has an asymptotic power which
tends to one at any fixed alternative which belongs to Assumption 2. More precisely, let
fxo = (2n)"! € Hyand fx € H; be aspectral density function for time series { X;,t € Z}
satisfying Assumption 2. A similar assumption has been supposed in Lee and Hong (2001).
The following Theorem states the asymptotic power of the test statistic based on the critical

region Wan > c,, where ¢, = — log(—log(1 — a)).
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Theorem 4. The proposed test statistic W oy has an asymptotic power at alternative fx €

H, at least given by the following formula:

Py, (27r QY™ fxo) > |27t 4+ 23/22J"/2n'1\/210glog(n)} (1+ 0(1))),

forany 1 < J, < J. In addition, let J,, be such that J, — oo with 22/» /n — 0. Then

QU™ fxo) = Q(f, fxo) > 0 in probability.

From Theorem 4, the proposed test statistic has a power function which tends toward
one, that is Py, (Wan > cq) — 1, when the finest scale is supposed to satisfy J;,, — oo

with 22/» /n — 0. The proof of the result is provided in Chapter IV.
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CHAPTER 11

SIMULATION RESULTS

In the previous chapter we introduced the new test statistic W4y for serial correlation
using Fan’s (1996) adaptive Neyman approach. Here, we compare the test statistic Wy
with several current test statistics, which are introduced in Section 2.1. More precisely,
the finite sample performance of several test statistics in terms of their empirical levels and
powers are investigated. In Section 2.2 which is about the level study, we examined the
empirical frequencies of rejection of the null hypothesis when it is in fact true. In Section
2.3 which is about the power study, we compute the empirical frequencies of rejection of
the null hypothesis under several alternatives. The common o = 5% significance level has
been adopted and two sample sizes n = 256 and 512 are considered. All computations

were done using scripts written in R 2.15.0. which can be found in the Appendix.
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2.1 Several Current Test Statistics

2.1.1 Test Statistic Q),,

The classical Ljung-Box test statistic, denoted as (), is included in the experiments.

Consider a time series { X;}; generated by a ARMA(p, ¢) model, written as
#(B)X: = 0(B)e,

where ¢(B) =1- d)lB — ¢2B2 — = ¢po, G(B) =1~ 013 - 92B2 — e quq,

B*X, = Xo—k, €~ N(0,1).

After a model of this form has been fitted to the data, the residuals of the model,
written as {é,}7_,, are examined. If the fit is appropriate, the residuals should be white

noise. So the hypotheses of interest are:

Hy : {é}., are white noise,

H, : {é};, are not white noise.
Now consider their autocorrelations

p(R)= ) &én/> &, h=12-,n—1
t=1

t=h+1

Let p = (p(1),p(2),- -, p(n — 1)) be the vector form of the theoretical autocorrelations,

where

p(h) = Z €t€t—h/z€f, h=12,--- ,n—1
t=1

t=h+1

According to the result of Anderson 1942; Anderson & Walker 1964, the limiting distribu-
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n—h

tion of p is a multivariate normal distribution with mean vector 0 and Var(p(h)) = prEw)

and Cov(p(h), p(k)) = 0, for h # k.

Then the test statistic (J,,, was constructed to be:

n(n + 2) Em:ﬁ
h=1

where m, fixed with respect to n and satisfying 1 < m < n — 1, is called the lag order.
Under the null hypothesis, the test statistic (J,, converges in distribution to a chi-square
distribution with degrees of freedom m —p—gq. However in our experiments, we skipped the
model fitting process and directly generate {6(h)}7_, as white noise. Thus @,, converges
in distribution to a chi-square with degrees of freedom m under the null hypothesis of no
serial correlation. We considered three choices for m: m = 1,2 and 3 in the simulation

studies. Low values of m are often recommended to detect low order dependence.

2.1.2 Test Statistic KX,

We also include the kernel-based test statistic of Hong (1996), denoted as K,,. This
test statistic is based on the quadratic distance Q)( fx, fxo) between the spectral density

estimator

n—1

fx@)=@m)™ > w(h/pa)px(h)cos(hw), w € [-m,],

h=—n+1

and the null spectral density fxo(w) = (27)~!. Then the kernel-based test statistic K, is

constructed to be the standardized version of Q( fx, f X0) @8

K. = VAo K (/o) () = M)

V2Vn(K) ’

where M (k) = Y57, (1=h/n)k*(h/pa), Va(k) = 52l (1—h/n) (1=(h+1) /n)* (h/pa),
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x(-) represents a kernel function and p,, denotes the smoothing parameter. According to
Hong (1996), the choice of the kernel function has little impact on the size and power
properties. For our Monte Carlo experiments, we choose the Daniell kernel defined as
k(z) = sin(nz)/(nz), 2 € (—00,00). However, the choice of p, may have significant
effects on the size and power. As in Hong (1996), we retain the same rates for p,: (i)
pn = [log(n)], (ii) p, = [3n%%] and (iii) p, = [3n"3), where [z] denotes the integer closest
to the real number z. The rates deliver p, = 6,9 and 16 for n = 256; and 6, 10 and 19 for
n = 512. Under the null hypothesis of no serial correlation, the test statistic KX, converges

in distribution to a standard normal distribution.

2.1.3 Test Statistic W,

We also include the wavelet-based test statistic of Lee and Hong (2001), denoted as
W.,. Its construction is based on the distance estimator Z =1 221 L 2k, which is similar to
the construction of our test statistic Wx. The test statistic W, is constructed by properly

standardizing the distance estimator as:

_2mY Y ek - (2 - 1)
" 4(2741 — 1) ’

where 27711 and 4(27+! 1) are approximately the mean and variance of ijl Zf " a3

according to Lee and Hong (2001). J is the finest scale level which has significant impact
on the performance of the test. We select J = 2,3 and 4 for n = 256 and n = 512 in
the simulation study. The test statistic W,, converges in distribution to a standard normal

distribution under the null hypothesis for suitable choices of J.

2.14 Test Statistic T,

Finally the test statistic using wavelet thresholding of Duchesne, Li and Vandermeer-
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schen (2010), denoted as T, is included in the simulation study. Its construction is also
- . .—1— A . - . » »

based on the distance estimator EJLI Zi;o la;‘?k. The idea is to shrink the empirical

wavelet coefficients to O which are large enough such that [v2mnd;;| > 6,, where d,, is a

thresholding parameter. This leads to the test statistic:

o 2 Sy G {[V2nag > 6.} —

n

On

where p, = (27)"V2a;16,(146:%), 02 = (21) V20163 (143652), 6, = {2log((n/2)a.)}'/2,
and a, = c{ log(n/2)} ~? for some positive constants ¢ and d. Two combinations for (c, d)
are included in the simulation study: (c,d) = (1,2) and (c,d) = (1,5/2) following the
choices of Duchesne, Li and Vandermeerschen (2010). The test statistic T, converges in

distribution to a standard normal distribution under the null hypothesis.
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2.2  Level Study

As discussed in Chapter 1, the theoretical limit distribution for the test statistic Wy
is not a satisfactory approximation for finite sample sizes. Given the modern computing
resources, we propose to use Monte Carlo methods to find the critical values and the rejec-
tion regions for a given finite sample size n under Hy. Monte Carlo methods can also be
used to calculate the empirical powers of the test statistics under a given alternative H;.

We compute the empirical levels using the asymptotic critical values (denoted as ACV
in the Tables) and the empirical critical values (denoted as ECV in the Tables). We illustrate
the steps for Monte Carlo computation of the empirical levels using the asymptotic critical

values as follows:

1. For a specific test statistic, find the ACV which is the 95-th quantile of the limiting

distribution of the test statistic under the null hypothesis.

2. Generate a random sample {X;};; under the null hypothesis, where n denotes the
sample size and X; ~ N (0, 1).

3. Compute the test statistic under the null hypothesis based on the random sample
{X:}r, generated in step 2.

4. Repeat steps 2 and 3 for N = 10, 000 times to derive 10, 000 test statistics under the

null hypothesis.

5. Compute the level which is the percentage of the 10, 000 test statistics that are larger

than the ACV.

To compute the number of rejections using the empirical critical values, the steps
are largely similar. For example, for the test statistic Wy, the only difference is that we
used the empirical critical values W ¢5(256) = 3.70 and W 05(512) = 3.58 instead of the

asymptotic critical values to compute the levels in step 5.
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Table 1: Level study.

Qm Kn Wa Tn
o =5% Wan
m=1 l m=2 I m=3 [log(n)][ [3n02) | [3n03] | J=2 | J=3 | J=4|(1,2) | (1,3)
n= | ACV | 0.05] 0.048 0.047 0.071 0.069 0.068 0.046 | 0.046 | 0.046 | 0.167 | 0.141 | 0.073
256 | ECV | 0.048 0.052 0.054 0.051 0.053 0.052 0.051 0.052 | 0.054 | 0.046 | 0.047 | 0.043
n=|ACV | 0048 | 0048 | 0050 | 0073 |0072 | 0070 | 0047 | 0050 | 0047 | 0217 | 0.475 | 0.071
512 | ECV | 0.049 0.048 0.050 0.048 0.050 0.049 0.050 | 0.053 | 0.053 | 0.047 | 0.048 | 0.049

Table 1 reports the results of the level study at significance level « = 5%. Based
on the results presented in Table 1, the new test statistic W4y displays reasonable levels
using the empirical critical values. Using the theoretical limit distribution, W4 exhibited
some over-rejection. This finding is not surprising given the discussion in Chapter 1, and
is in agreement with the results reported in Fan (1996), stating that the theoretical limit
distribution for the test statistic W4 is not a good approximation for finite samples, and
that the convergence rate of W4y toward its theoretical limit distribution is relatively slow.
The test statistic 7;, displayed large over-rejection for both T,,(1,2) and T,,(1,5/2) using
the asymptotic critical values, but when using the empirical critical values, the levels are
reasonable for both sample sizes. These conclusions are similar to those reported in Duch-
esne, Li and Vandermeerschen (2010). Note that only two methods are fully automatic:
the wavelet-based test T, using thresholding and the new test statistic W4 using Fan’s
approach. If one decides to use asymptotic critical values and a fully automatic procedure,
it appears preferable to use the new test statistic Wy. The test statistic W, exhibits a
little under-rejection at levels when using the asymptotic critical values, and a little over-
rejection at levels when using the empirical critical values for choices J = 3 and J = 4 for
both sample sizes. The kernel-based test exhibits relatively small over-rejection at levels
when using the asymptotic critical values, but satisfactory levels when using the empirical
critical values. These findings are in line with previous results about the kernel-based test.
The test statistic (),, has reasonable levels when using both the asymptotic critical values

and the empirical critical values for both sample sizes. It appears that the choice of m does

31



not have observable impact on the levels. This is explained by the fact that a white noise
process represents spatially homogeneous features. Consequently, including one, or two,
or three autocorrelation terms should not have observable impact on the performance of the

test statistic.
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2.3  Power Study

Tables 2 and 3 report the results of the power study. As in the level study, empirical
powers have been calculated using both the asymptotic critical values and the empirical
critical values. The use of empirical critical values allows us to be able to compare the
powers of all the test statistics on an equal basis. Seven models are included in the power

analysis with several choices of the model constants (which are specified in the tables):

Model 1: AR(1) : (1 — ¢B)X; = a4,

Model 2: AR(4) : (1 — ¢BH X, = a,

Model 3: ARMA(1,0) x (1,0)12: (1 — ¢1B**)(1 — ¢2B)X; = ay,
Model 4: ARMA(0,1) x (1,0)12 : (1 — ¢B*)X; = (1 + 0B)ay,
Model 5: ARMA(0,0) x (1,0)5 : (1 — ¢B*) X, = ay,

Model 6: ARMA(0,0) x (2,0)12: (1 — ¢ B — $,B*) X, = ay,

Model 7: ARMA(0,0) x (1,1)12: (1 — ¢B*)X; = (1 + §B*)a,,

where B*X; = X;.;, s > 1, and {a;,t € Z} corresponds to a Gaussian white noise. All
the alternatives have been chosen based on the general shape of the theoretical spectral den-
sity function. Under Model 1, an AR(1) alternative is considered, and there is no peaks or
spikes in the spectral density; that alternative shows spatially homogeneous features. For
all the other alternatives, the spectral densities exhibit spatially inhomogeneous features.
These models are motivated by seasonal time series models, which are quite common in
real applications. Model 2 is a pure autoregressive seasonal time series model, which could
be used for modelling quarterly data. Similarly, Models 5 and 6 are pure autoregressive
seasonal time series model, which could be used for modelling montly data. Models 3 and

4 are seasonal ARIMA time series models, which include a pure seasonal factor and an
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additional factor to describe local characteristics. Finally, Model 7 include seasonal au-
toregressive and moving-average factors. The features of the theoretical spectral density

functions of the seven models can be seen clearly from their spectral density plots below:

T
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Figure 2: The spectral density plot of model AR(1) : (1 — 0.2B)X; = a;

Figure 2 shows that the spectral density function of model AR(1) : (1-0.2B)X; = q;

offers no peaks or spikes which represents spatially regular features.
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Figure 3: The spectral density plot of model AR(4) : (1 — 0.3BY) X, = a;

Figure 3 shows that the spectral density function of model AR(4) : (1-0.3B*) X; = a;

offers moderate alternations.
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Figure 4: The spectral density plots of seasonal model group I: plot on the left is the spectral

density plot of ARMA(1,0) x (1,0)12 : (1 = 0.3B'?)(1 - 0.2B)X; = a;; plot on the right

is the spectral density plot of ARMA(0,1) x (1,0)12: (1 — 0.3B**) X, = (1+ 0.2B)a.
Figure 4 shows that the spectral density functions of seasonal model group I offer

large alternations at low frequencies.
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Figure 5: The spectral density plots of seasonal model group II: plot on the left is the
spectral density plot of ARMA(0,0) x (1,0)2 : (1 — 0.4B'%)X; = a;; plot in the middle
is the spectral density plot of ARMA(0,0) x (2,0)12 : (1 — 0.2B" — 0.1B*)X, = a;
plot on the right is the spectral density plot of ARMA(0,0) x (1,1)12 : (1 = 0.2B¥) X, =
(1 + 0.1312)at.

Figure 5 shows that the spectral density functions of seasonal model group II offer
strong alternations overall.

To compute the empirical powers based on the asymptotic (empirical) critical values,

the following steps have been implemented:

1. Generate a random sample { X;}?_, under an alternative hypothesis, n being the sam-

ple size.

35



2. Compute the test statistic based on the random sample { X;}} , generated in step 1.
3. Repeat steps 1 and 2 for N = 4000 times to derive 4000 test statistics.

4. Compute the empirical power which is the percentage of the 4000 test statistics that

are larger than the asymptotic (empirical) critical values.

Except for the test statistic 7,,, the empirical powers calculated using the asymptotic
critical values and the empirical critical values are reasonably close. That conclusion was
excepted, since the empirical levels of T,, were not satisfying using the asymptotic critical
values. Now we concentrate the discussion on the empirical powers using the empirical
critical values.

Under Model 1, the spectral densities of the AR(1) processes offer spatially regular
features and its spectral density offers no peaks or spikes. As expected, the test statistics
Q and K, are powerful in this particular situation; these two test statistics reach high
power when the spectral density is relatively smooth. However, the choice of the smoothing
parameter needs to be selected carefully, since the power decreases with p,, for K,,, and the
power decreases with J in the case of the wavelet-based test W,,. Specifically, for W,,,
the highest power is reached at J = 2 and the lowest power is reached at J = 4. Using
wavelet thresholding was inefficient under that alternative and the test statistics 7;, were
inferior under both choices (c¢,d) = (1,2) and (¢, d) = (1, 2). This empirical finding is in
agreement with the fact that 7;, should exhibit high power in detecting sharp peaks and high
frequency alternations; under the AR(1) alternative, the spectral density was very smooth.
Interestingly, the adaptive test W4y displayed high power. Without any subjective choice
of the smoothing parameter or the finest scale, the empirical powers of W4y were very
similar to those of K, with best p,,, or W,, with best J.

Under Model 2, seasonal AR(4) processes are simulated, and the spectral densities
under these alternatives offer moderate alternations. The test statistic (),,, offers the lowest
power among all the tests, which shows the inability to capture the important characteristic

of the spectral density of AR(4). This is due to a too low value of the lag order m. Larger
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values of m are necessary to obtain larger power for this test statistic but the choice of m
remains subjective. The test statistics W,, and K, achieve the highest empirical powers
under this alternative. For K, the choice p,, = [3n%3] is optimal. For W,,, the finest scale
J = 3 represents the optimal choice. The new test W4y achieves very comparable power
to the other spectral-based test statistics. Compared to the test T, based on thresholding,
the test statistic W4 is much more powerful. Comparing the results presented in Tables 2
and 3, the empirical powers of W,y improves substantially when the sample size increases
from n = 256 to n = 512.

Under Models 3 and 4, stochastic processes ARMA(1,0) x (1,0);2 and
ARMA(0,1) x (1,0);2 were simulated. For these alternatives, the spectral densities offer
large alternations at low frequencies. Under these situations, the new adaptive test statistic
Wn delivers interesting power properties. When the sample size n = 256, the test Wuy
offers better power than the test statistics T,, and K, and it offers comparable power to
the highest powers of @m and W,,. For @, the choice m = 1 is optimal. For W, the
choice J = 4 is optimal. For the test statistic T, the choice (¢,d) = (1,5/2) achieves
better power than the choice (c,d) = (1,2). This is in agreement with theoretical results
of Fan (1996): a smaller choice of a, would improve the normal approximation of the
test statistic, but more noise would pass in the thresholding process. When sample size
increases to n = 512, Wy achieves the best power among all the tests except W, at
choice J = 4. However the two highest powers are very similar.

Under Models 5, 6 and 7, stochastic processes ARMA(0,0) x (1,0);2,
ARMA(0,0)%(2,0);12, and ARMA(0, 0) X (1, 1); were simulated. Under these alternatives
the spectral densities offer strong alternations. When the sample size n = 256, the test
statistics (), and K, offer the lowest empirical powers. The adaptive test statistic W,y
achieves very comparable power to T, at both choices (¢, d) = (1,2) and (¢, d) = (1,5/2).
W 4w also achieves comparable power to W, with best finest scale J = 4, gnd higher power

than W, at choices J = 2 and J = 3. When the sample size n = 512, the test statistic
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W 4n exhibit high power, very comparable to the one of W,, with finest scale J = 4.
Overall, without any choice of the smoothing parameters or finest scales, the pro-
posed test statistic W4 offers very interesting power. Compared to the test statistic T,
of Duchesne, Li and Vandermeerschen (2010), the proposed test statistic W4y seems to
display better power properties than wavelet thresholding 7,: from our simulation experi-
ments, Fan’s adaptive approach delivers high power for a larger class of alternatives. From
their experiments and those presented in this empirical study, wavelet thresholding 7, was
not powerful if the spectral density did not offer bumps or alternations. From the simula-
tion experiments presented in this dissertation, the adaptive test statistic W4y was usually
among the most powerful test statistics, without any need to select a smoothing parameter

or a finest scale.
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Table 2: Power study for sample size n = 256.

R Qm K, W T,
m=1 [m=2 [m=3 |flogm)] [B°d [ B [J=2 [J=3 [J=4 [3.(L,9 |5.(,3

Wan

model 1 | ACV | 0.897 0.829 0.770 0.841 0.807 0.722 0.720 0.602 0.442 0.536 0.468 0.779

(0.2) ECV | 0.900 0.831 0.785 0.821 0.766 0.678 0.739 0.627 0.501 0.295 0.284 0.733

model 1 | ACV | 0.370 0.278 0.232 0.331 0.290 0.235 0.202 0.145 0.108 0.255 0.211 0.264

(0.1) ECV | 0.363 0.282 0.253 0.278 0.241 0.188 0.213 0.160 0.124 0.090 0.092 0.222

model 2 | ACV | 0.076 0.135 0.141 0.677 0.952 0.972 0.073 0.891 0.845 0.846 0.820 0.847

(0.3) ECV | 0.069 0.139 0.140 0.591 0.923 0.952 0.080 0.901 0.865 0.640 0.638 0.786

model 2 | ACV | 0.059 0.094 0.088 0.309 0.602 0.671 0.059 0.490 0.409 0.504 0.459 0.425

(0.2) ECV | 0.054 0.096 0.099 0.236 0.518 0.598 0.063 0.513 0.449 0.287 0.277 0.343

model 3 | ACV | 0.873 0.813 0.779 0.835 0.849 0.839 0.695 0.703 0.871 0.902 0.895 0.908

(0.3,0.2) | ECV | 0.874 0.817 0.774 0.802 0.810 0.795 0.711 0.720 0.889 0.765 0.779 0.872

model 3 | ACV | 0.365 0.296 0.265 0.327 0.336 0.328 0.204 0.232 0.362 0.529 0.499 0.426

(0.2,0.1) | ECV | 0.364 0.297 0.261 0.277 0.283 0.277 0.218 0.249 0.404 0.297 0.327 0.351

6¢

model 4 | ACV | 0.864 0.794 0.757 0.825 0.838 0.820 0.677 0.677 0.867 0.890 0.888 0.897

(0.3,0.2) | ECV | 0.860 0.790 0.747 0.793 0.805 0.790 0.690 0.698 0.886 0.735 0.767 0.857

model 4 | ACV | 0.367 0.288 0.260 0.339 0.343 0.334 0.204 0.236 0.367 0.533 0.500 0.396

(0.2,0.1) | ECV | 0.354 0.287 0.251 0.271 0.273 0.269 0.214 0.252 0.406 0.291 0.311 0.346

model 5 | ACV | 0.091 0.113 0.115 0.162 0.333 0.524 0.116 0.349 0.926 0.962 0.966 0.899

(0.4) ECV { 0.097 0.100 0.117 0.125 0.265 0.450 0.126 0.368 0.943 0.875 0.900 0.859

model 5 | ACV | 0.078 0.074 0.084 0.115 0.200 0.300 0.065 0.185 0.601 0.773 0.762 0.574

(0.3) ECV | 0.080 0.080 0.085 0.086 0.145 0.230 0.070 0.201 0.641 0.571 0.592 0.487

model 6 | ACV | 0.101 0.135 0.158 0.201 0.390 0.601 0.139 0.352 0.882 0.979 0.976 0.923

(0.3,0.2) | ECV ] 0.118 0.134 0.162 0.167 0.340 0.545 0.148 0.375 0.898 0.936 0.943 0.890

model 6 | ACV | 0.067 0.075 0.078 0.108 0.154 0.231 0.067 0.128 0.364 0.613 0.585 0.370

(0.2,0.1) | ECV [ 0.063 0.070 0.072 0.074 0.106 0.165 0.072 0.137 0.402 0.402 0.417 0.299

model 7 | ACV | 0.100 0.109 0.130 0.190 0.446 0.654 0.129 0.442 0.986 0.989 0.993 0.977

(0.3,0.2) | ECV | 0.104 0.124 0.133 0.158 0.347 0.576 0.138 0.459 0.990 0.956 0.970 0.962

model 7 | ACV | 0.066 0.072 0.076 0.109 0.172 0.254 0.073 0.191 0.589 0.732 0.727 0.530

(0.2,0.1) | ECV | 0.067 0.079 0.084 0.085 0.144 0.228 0.086 0.206 0.626 0.505 0.533 0.453




Table 3: Power study for sample size n = 512.

m=1 [m=2 [m=3 |log)] [Bn° [B° [J=2 [J=3 [J=4 |5, L2 |6 (LY

Wan

model 1 | ACV | 0.994 0.987 0.978 0.992 0.985 0.960 0.967 0.927 0.829 0.781 0.711 0.974

(0.2) ECV | 0.997 0.990 0.978 0.987 0.973 0.944 0.970 0.932 0.842 0.461 0.440 0.969

model 1 | ACV | 0.610 0.511 0.453 0.582 0.502 0.403 0.407 0.300 0.204 0.360 0.305 0.476

(0.1) ECV | 0.627 0.504 0.437 0.518 0.437 0.345 0.417 0.316 0.220 0.113 0.116 0.433

model 2 | ACV | 0.077 0.135 0.139 0.986 1.000 1.000 0.082 1.000 0.998 0.984 0.974 0.998

(0.3) ECV | 0.071 0.141 0.144 0.959 1.000 1.000 0.086 1.000 0.998 0.890 0.903 0.996

model 2 | ACV | 0.062 0.102 0.104 0.587 0.932 0.941 0.058 0.862 0.810 0.727 0.687 0.790

(0.2) ECV | 0.060 0.094 0.098 0.494 0.901 0.915 0.064 0.870 0.822 0.419 0.438 0.731

model 3 | ACV | 0.990 0.981 0.973 0.988 0.989 0.999 0.959 0.962 0.999 0.997 0.995 1.000

(0.3,0.2) | ECV | 0.988 0.980 0.974 0.984 0.982 0.998 0.961 0.966 0.999 0.957 0.969 1.000

model 3 | ACV | 0.613 0.513 0.469 0.575 0.566 0.719 0.417 0.450 0.753 0.788 0.761 0.752

(0.2,0.1) | ECV | 0.617 0.514 0471 0.531 0.508 0.651 0.429 0.460 0.770 0.470 0.519 0.694

oy

model 4 | ACV | 0.988 0.981 0.965 0.984 0.984 0.999 0.950 0.954 0.999 0.992 0.991 1.000

(0.3,0.2) | ECV | 0.989 0.980 0.967 0.981 0.982 0.998 0.952 0.959 0.999 0.948 0.968 0.998

model 4 | ACV | 0.602 0.520 0.455 0.559 0.549 0.711 0.412 0.439 0.742 0.768 0.752 0.765

(0.2,0.1) | ECV | 0.610 0510 0.459 0.502 0.485 0.637 0.421 0.456 0.755 0.476 0.503 0.707

model 5 | ACV | 0.096 0.112 0.128 0.170 0.412 0.999 0.118 0.553 1.000 0.999 1.000 1.000

(0.4) ECV | 0.092 0.112 0.131 0.130 0.334 0.996 0.123 0.566 1.000 0.993 0.996 1.000

model 5 | ACV | 0.068 0.084 0.087 0.115 0.223 0.848 0.085 0.337 0.954 0.959 0.958 0.947

(0.3) ECV | 0.074 0.084 0.088 0.090 0.169 0.781 0.088 0.352 0.960 0.816 0.861 0.922

model 6 | ACV | 0.115 0.140 0.154 0.220 0.536 0.993 0.154 0.516 0.998 1.000 1.000 1.000

(0.3,0.2) | ECV | 0.117 0.139 0.161 0.168 0.439 0.982 0.162 0.527 0.999 0.998 0.999 0.999

model 6 | ACV | 0.065 0.083 0.074 0.109 0.174 0.531 0.073 0.189 0.721 0.869 0.858 0.739

(0.2,0.1) | ECV | 0.066 0.072 0.076 0.077 0.132 0.449 0.077 0.200 0.737 0.642 0.674 0.678

model 7 | ACV | 0.101 0.126 0.138 0.193 0.508 1.000 0.122 0.682 1.000 1.000 1.000 1.000

(0.3,0.2) | ECV | 0.110 0.121 0.141 0.152 0.406 1.000 0.129 0.694 1.000 1.000 1.000 1.000

model 7 | ACV | 0.069 0.078 0.080 0.114 0.204 0.825 0.073 0.305 0.936 0.942 0.944 0.930

(0.2,0.1) | ECV | 0.067 0.079 0.084 0.078 0.153 0.749 0.079 0.319 0.943 0.768 0.822 0.898




CHAPTER III

CONCLUSION

In this dissertation, we developed a wavelet-based adaptive test statistic 13/ 4y for serial
correlation of unknown form. The construction of the test was based on the properties of the
empirical wavelet coefficients and asymptotic equivalence between our testing problem and
Fan’s (1996) canonical high dimensional testing problem. We first derived the asymptotic
multivariate normal distribution of any finite-dimensional subset of the empirical wavelet
coefficients under the null hypothesis of no serial correlation, then we showed that they are
also asymptotically uncorrelated.

A serious advantage of our proposed test is that it avoids the need to select any smooth-
ing parameters. Thus the test is completely data-diven or adaptive. Our simulation studies
reveal that the proposed methodology offers very competitive empirical power compared
to other test statistics when the true spectral densities have significant spatial inhomogene-
ity, such as peaks, bumps and alternations (due, for example, to seasonality). Therefore
it is hoped that the proposed test statistic W4y will represent a useful complement to the

current test statistics for serial correlation.
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CHAPTER IV

PROOF OF THEOREMS

3.1 Proof of Theorem 1

Here we only provide a proof for the empirical wavelet coefficients. The proof for the
theoretical wavelet coefficients is largely similar. Since we use the Haar wavelet ¢, it is

easy to show that the Fourier transformation 15 of 9 satisfies 1&(0) =0:

. 1 0 . 1 o0
0) = — —lg =—/ dz = 0.
90 == [ @)= —— [~ vw)ds
The last equality comes from the orthonomality of 1. For w # 0, we have

A

Blw) = % / : b(z) e dz
. -
= -\—/-—12_7;(/0 e‘zwxd:c—~/_ e*“””dx)

2

st

__ ¢ (e—-iw/2 ey e—iw/2)

V2w

_ \/52_ [(e’iw/z _ 1) _ omiw/2 (6—iw/2 _ 1)]
Tw

1 ; 2
- 1— —iw/2
Zra L)

_ ! —iw/4 ( w/4 -iw/4)]2

=— e eVt —e
VT w [

- e ()]
Tonw e 2t sin 1
U o—iw/2 sin®(w/4)

T Vor w/4

42



From the definition of &, using px (k) = px(—h) and t;,(2rh) = e~2mh*/¥ 9~i/2(27h /29,

and through straightforward but tedious algebra, we have

n—1
dje=Y_ px(h)d(2mh)
h=—n+1
n—1 , ; aensei SN (—M’; 2j)
— A . ,—i2Tkh/2 5—j/2 L N
= X Z+1 px(h) e 277 ._____.\/_2; et 2 27rl;/21'
=—n
i n—1 :n2 [ 2nh
. B  ionnyoier sin® (25%)
— 2—-3/2 . 9J+2 5 (h i2rkh/28 —i2wh/29+1 27+
o Z pX( ) € € owh
h=—n+1
. n—1 . rh
_ oij2+2 D px(h) o—i2rh(k+1/2)/27 — (52‘:’%7)
2w h=—n+1 2mh
. n—1 22 27h
. 1 . y S (""f)
2)/2-{»2 . % 5 (h) - Im 6—127rh(k+1/2)/21 . 2+
5 2 2 Px(h) I ) 3w
93/2+3 21 2h(k +1/2 sin? (22
= ﬁx(M{-—sin( mhik + 1/ ))] ()
Vor = 21 2rh
97/2+3 n—1

_ . _r2mh(k+1/2)\ sin® (%)
C Vor h=1px(h)-sm( ) o

From the above equation, it is easy to see that &g = 0.

We also have &k, = —&;, aslong as k; + &k, = 27 — 1, which can be proved as below:
. 94/243 30 . ((2mh(ks +1/2)\ sin® (2mh/2?
b o) sin (221 1/2)) o 22
Vor P 2nh
chan Zp (h)-s (2“"(2” ~1-k+ 1/2>> sin® (2 /27*)
-_ X .
V2r — 27h
/3 ni (1) s 2mh (27 — kl +1/2))\ sin®(27h/27+2)
= Ve 2 x oh
0j/2+3 N7l \ sin?(2wh/271?)
— A 0 ] — J . .
T 2 px(h) - sin (27rh 2rth(ky +1/2)/2 ) 5
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Hence

21/2+3 n-1

pr(h

ajk2 =

= —ajkl.

Thus we proved Theorem 1.

— sin(2rh(k, + 1/2)/2%)) -

44

sin®(2rh/27+2)

2nh



3.2  Proof of Theorem 2

To illustrate the proof of Theorem 2, we introduce a lemma first.

Lemma. Let 1/; be the Fourier transformation of Haar wavelet 1, then for all 1 < j; <

J,1<5<Jand0 <k <271, 0 < ky < 2271 we have

Z lekl 27rh)¢']2k2( 27Th’) (2 ) Oj1 2 Ok g

h=-00

Z 'J)jlk1<27rh)/l/;jzk2 (2mh) =0,

h=—o0c
where 0;r =1 if j=k and 6;, =0 if j #k.

Proof of LLemma:
First we have
vid 0

Z l)e“”l) w

=—00 l=—00

1 " T 7 iw
B (2)? / Z Z Wik (R) W sry (1) € *+) g
h 1

1 T
%/ \I’jlkl(w)\phkz(w)dw

I
NN
S~
™
(=}
-
E
E
ol
N’
l

2 Z V27 ;1 (21R) - V27 o, (—27R)

h=—c0
= Z 1/33'1k1(27fh)1/3j2k2(—27rh).
h=—00
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So

n

Z ¢j1k1(2ﬂh)¢j2k2(—2ﬂh) = (27!’)_1 / Uik, (w) Wik, (w) dw.

h=-00 -

From the orthogonality of wavelet basis ¥, we obtain the first equality. For the second

equality, we first consider the particular case j; = jo = j and k; = ko = k. Similarly to

the proof of the first equality, we have

el
= 3 ) (h)

h=-—00

2i Z \/%’([)Jk 27Th) @r—¢Jk(2ﬂh)
= 3 dunl2nhyi(2nh),

h=-00

So we have the relations:

s

S Gn(2rh)die(2rh) = (2m)! / 01 ()~ ).

h=—00 -7

Recall the identity U i (w) = (2m)~ 23" i (w/(27) + m), which can be derived
from the periodization technique. Since we advocate using the Haar wavelet ¢(-) in this
dissertation, which is compactly supported over [0, 1], it is not hard to see that, when
0 < k < 271, we have ¥ (w/(27) + m) = O for all j > 1 and any m # 0. We also note,

when w € (—m, 7), U;(w) = (27) "V ?1;(w/(2m)). Because of this property, the right

46



hand side of the above equation equals to

1/2

B Yie(u) Y ik(—u+n)du,

n=—oo

(2m)2 / " srw/@0) Y d(—w/@m) + n)dw = (27)"

n=-—00 -1

= (27()_1/0 Vin(u) Z Yik(—u + n)du,

n=—oo

which can be derived by simply replacing w/(27) by u. Using the compact support prop-
erty for ¢(-) on [0, 1] again and 0 < k < 277!, one could show that, when u € [0,1],
Yik(u) Yoo Yik(—u + n) = 0. Thus, we proved the special case. For the general case,

note that

™

S ik, @)y (27h) = (2m)1 / Wb ()W, (—0)

h=—00 -7

Again, when 0 < k; < 29171, we have

Uk (w) = 2m) 72 D" o, (w/(2m) +m) = (2m) 2y, (w/(2m)),

m=—00

when w € [—n, 7). Using the compact support property of ¢ on [0, 1} and 0 < k, < 29271,
we can show that the above integrand in the right hand side is zero for all j;, j» > 1, when

w € [—m, 7]. Thus we proved the Lemma.

Proof of Theorem 2:

In what follows we use C to denote any generic positive finite constant. To simplify the
presentation of the proof, without loss of generality, we assume that E(X;) = ux = 0.
Since Rx(0) — 6% = O,(n~Y/?), we may assume that the variance 0% of the random
variable X, is known (note that the limit distribution of &, is the same as that with 1x and

0% replaced with their estimators; In practice, one simply replaces 0% with its estimator
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A

Rx(0) and px with X,,.) Thus, in the following proof, we only need to consider

px(h) = 03" Bx(h) =n"ox® Y XX, .

t=|h|+1

First notice that

Pi(0) = € 275 4(0)

|
e

— _:_l_ * —-iw0

=2 m/_wd}(m)e dz
4 1 [

= (.

Replacing px (k) in &;x, and exchanging the order of summations, we have the relations:

n—1
Qjk = Z px (h)bjk(2mh)
h=—(n-1)
n—1
= > (v Z X Xopy ) $in(27R)
h=—(n-1) t=|h|+1
-1 n n-1 n
=nloxr Y Y X Xem¥u(@rh) +n7to Y D X Xe nths(2mh)
h=—(n— 1)t——-h+1 h=1 t=h+1
n t-1
=n UX2 Z Z XtXt+h 1/13k(27fh) +n 0'X2 ZZXtXt h’lﬁjk(zﬂ'h)
t=2 h=—t+1 2 h=1
n t-1 n t—1
=n"loy ZZXtXt h%k —27h) + n'o3? Z X X, hw,k(27rh)

n t—1

=170 SN XX [dn(2nh) + Pyn(~27h)].

t=2 h=1

We write n'/2 &y, as the following sum:

n
ni/? Qi = n~1/2 0;{2 E XUy,

where U; = ;_:11 Xin I:'(Z}jk(27rh) + '(/;jk("‘Zﬂ'h)].
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Based on Assumption 1 that {X,}2__ is independent and identically distributed with
E(X;) = 0, we have E(n'/2 4;3,) = 0, since

E(n1/2ak ”"I’L -1/2 —2ZE XtUt

=n"12532 Z E(X.)E(U,)

t=2

We then evaluate the second moment of n'/2 &, as follows:
. RPSr 2
BE(n'?ay)’ = E(n™? 0> Xilh)

= E(n oyt zn: En:XtUthUs)

t=2 s=2

—nloygt i i E(X,U,X,U,)

t=2 s=2

=n"lox" Y E(X?U})

t=2

— oS B(X2)B(U?)

t=2

ot Y RE(WY)

t=2

=n"! o} Z E(U}).

From the preceding derivation, we need an expression for the second moment of the random

variable U, as:
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o~
!

>
i

t—-1

+ 0% 3 [Bamh)se(~2mh) + dye(~2mh) e (~2mh)
h=1

-1

— % 3 [dn(2mh)bie(2mh) + dye(2mh) i ~2mh)]
=1

o~

>
|

-1
+ 0% MU ?g,ilmabv&u.wAwa}v + &%Gavv&%@awv_

h=—t+1
t—1 ) . t—1 ) )
=0k > pu@rh)u(-2rh) +0% > buw(@rh)d(2rh).
h=—(t-1) h=—(t-1)

Replace the above expression of MAS& in the expression of E(n'/2 &;)?, we have

E(n'?au)t=n" QXMMN (U7)

—n qwauTx M Die(@nRh) s (—2mh)

t=2 h=—(t—1)
t—1 ) .
+ox Y. @iwﬁi@iwﬂ:i
:MAT:
= LMU M e (2mR) Y (—2h) +:LMU MU Din(2mh) P (27h).
t=2 h=—(t-1) t=2 h=—(t-1)
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For the first term n=! Y7 Eh__(t ) wjk(27rh)v,[3jk(—27rh) in the above summation, we

seperate the second summation and then exchange the order of summations, we have

n t—1
Y d(@mh)(—2mh)

t=2 h=—(t-1)

w3 S dulznhid(-2eh) +

t=2 h——(t 1)

t—

—

A

j#(2mh)dse(—2h)|

>
]

1
n t-1

'IZ Z D (2mh)in(—2mh) +n” 122 bk (2R ) (—2mh)

t=2 h=—(t—1) t=2 h=1

-1 n-1 =n
=nt > Z Vi 2rh)bie(=2mh) + 17ty Y (2mh)pi(—2mh)
h=—n+1t=—h+1 h=1 t=h+1
-1 n . . n—1 n . .
oY dp(2nh)u(~2mh) + 7! bk (2R (—2mh)
h=—n+1t=|h|+1 h=1 t=|h|+1

2—: Z lzjk(Q’/Th)l/;jk(—Qwh)

h=—n+1 t=|hj{+1

n—-1
Y (o= |kl = 14 )dbse(2mh)iu(—2mh)

h=-n+41
n—1
= Z ( {h{)lﬁ]k@ﬂ'h)'djjk( 27l’h)
h=—n+1

Similarly the second term in the summation of E(n'/2 &;;)? can be written as:

n t—-1 ) . n-1 h X .
nt YD da(@rh)da(2rh) = Y (1—’;')¢jk(2vrh)wjk(zwh>.
t=2 h=—(t—1) h=-n+1

Hence E(n'/? 4;;)? can be expressed as a sum of two terms:

-1
< ||

hly - -
E(n'/? )% = h_; 1)(1 = ) hiu(2mh)dn(~2mh)

n—1

+ ( )wjk(27rh)¢]k(27rh)

=—(n-1)

=: I1n + Iop.
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From the Lemma and applying dominated convergence theorem to I;,,, we have I, —
(2m)~! as n — 00. As to the second term I,,,, using Lemma and applying dominated con-

vergence theorem again, we have I, — 0 as n — oco. Thus we prove that E(n'/2

« k) —
(2m)~
In order to show the asymptotic normality result, we apply Brown’s (1971) martingale

limit theorem. We want to show

(2mn)"2 a5 —ra N(0, 1),
where (2mn)}/2 6, = /% 03% Yor_, X,U,. In the present context, the following two

conditions must be verified:

12
= ;E[X-?w (1 > E(Z )f/;‘)] 50, forall >0,

M
and =TS :E[X2U2 _ ] — 1,
na‘}( s t tI‘Ft 1 P

where —, denotes convergence in probability, F; represents the o-field consisting of { X, s <
t} and {U;, F;_1} is an adapted martingale difference sequence.

For the first condition, let I3, be the left hand side of it. Then we have

(XfoXfo 27r>

250l
e’noy

I3nS——— E
Uxtz

_ 4 4774
= WZE(Xt Uy)
t=2

=Cn™?) EU})
t=2
t—-1

=Cn™2 Z E(Z Xi—n [%k(%h) + %k( 27Th)D

=Cn?Y }: E(XL,) [t/;jk(27rh) + 1/;jk(—27rh)] +Cn?

t=2 h=1
S S S B(XZ B B2k + D2k [Bu2el) + de(—2m)]|
t=2 Rl
= I31n + I32n-

52



In the followmg, we show that I3, — 0 and [3;,, — 0 as n — oo.
From [¢)(w)| < C(1+|w|)~! for Haar wavelet v, and ;5 (2mh) = e~2™*/29=3/2)(2rh /),

we have
"‘&jk(?frh)t - 'e—ithk/W2—]’/2,&(27‘.]1/2]')|

< C27 P |g(2mh/P)|

-1

< C9-il (1 + izwh/zﬂ)
9J

2 + 2rth

=C PP +2rh)~

=C27?

Also, we note that

[D6(27h) + Pu(~27h)]" < 2ahje(2mh)|!
< C2%(20 4 2mh) ™.

Therefore, it is possible to bound I3;,, as follows:

n t—1

Lin=Cn 2y Y B(XE, [zbjk(%h) + s~ 27rh)]
t=2 h=1
n t—1
< Cn” ;; 2+ 27rh

. 1
= _2 2] .
Cn ;2 hzz:l (27 + 2rh)

Notice .
1 27 t—1
- 1 1

%+ 27rh)4 hzl I HZM (% F 2nh)t

h=1

o1 ..
=27 4 _97¥
T3

=C27Y.
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So

t—1

n ) 1
)} 2
I31n < On §:2J§m

t=2

< Cn™? Z 92 9=3

t=2
< Cn™? z": 279
t=2
<Cn*n277
=Cn~1277,
Thus, we proved I3, — 0 asn — oo.

As to the term I35, the arguments are largely similar to those for /3;,,. To find a bound, we

use the inequalities:

i = O 32 30 7 B(XZ ) E(XE) [dye(2nh) + Pyu(~2mh)]

t=2 he#l

. [Q;jk(zwz) ¥ @k(-zwz)] :

Notice

1
> Ty (2 + 27rh Z < (27 + 27rh Z (27 +2mh)?

< Y 1+/001dx
= 92j Y T2
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So

n t—-1 2
Ispn < Cn72 Z [2’ Z ]
~ = 1 (2 +27rh

<cn?y [P o)

t=2
<Cn?n
=Cn7l,
Thus, we have I35, — 0. Therefore the proof for the first condition in Brown’s (1971)
theorem is completed.
Next, we show the second condition in Brown’s (1971) theorem. From E[X?U2|F, 1] =

o%U?, we need to show the following condition:

which is equivalent to the second condition. By using Markov’s inequality, it is sufficient

for us to prove the mean squared convergence condition:

[naXZUZ } — 0, as n — oo.

The left hand side, denoted with I, can be written as

[HUXZU2_1]
=E[(-E£§—;2n:Uf) —2%iU3+1]
=n‘f;;ZEU4 ZZEW E(U?) —2—i:EU2

t=2 t=2 s#t

=: Igin + Iyon — 2143, + 1.

Similar to the previous proof, we have I3, — 1. We also havely,, — 1:
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lign = n“’; S Y EUHEW?)

X =2 s#t
n2ax ZEW(;EU"’ EU?)
2T
=z ;EU3<nax ZEU2 - ———EU?‘)
—1-(1-0)

= ].

From arguments used to establish the term /3, we have I4;,, — 0, as n — oo. Therefore,

Iijn +0+1-2-14+1=0, asn — oo.

i.e., the second condition is verified. These arguments establish the asymptotic normal
limit distribution.
In order to complete the proof of Theorem 2, we need to show that the random vari-

ables n'/? & ;% are asymptotically uncorrelated. From the definition of covariance, we have

Cov(n'’? &4y, n'/2 Gjyiy) = E(n'/? &1y - 0 Gtjgy) — E (022 Gjyy) - E (2 Gijyp,)

/2 0}—(2 ZXtUt,_hkl) . (n—l/z a}—(z ZXSUSJW)]
t=2

s=2
—-0-0
— n—lo')—(‘1 Z Z E[XthUt,jllq Us,jzkg}
t=2 s=2
_ ’n"la';(2 Z E[Ut,j1k1 Ut,jzkz] y
t=2
where .
Utajlkl = Z Xt-—h ['Iz;_jlkl (27Th) + ¢j1k1 (""27Thx)] )
h=1
t—-1 . R
Ut jak, = Z Xt [%zkz(%rl) + wjzkz(—27rl)].
=1
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Since

E [Ut ik Ut Jzkz = [ <¢j1k1 (2mh) + 12)]'1’61(_27‘.}"))]

nﬁ—'“ ! Mw

Xi1 (¢32k2(27fl) + Piphg(— zﬂl))]

t—1

E{Xf—h] (’lz}jlkl (27rh) + '(&J'lkl (—Qﬂ’h)) ’ (lﬁjzkz (271'h) + 1&jzlcz(_Qﬂ.h))
1

ok (J’jlkl (2mh) + "[’jlkl (—27rh)) (¢j2k2(27rh) o+ zﬁj2k2(-27rh)).

1

>
i
-

>
|l

Hence we have the relations:

1/2 A 1/2 » 1 =2
COV( Qjiky, N ajzkz) n oy E :E Ut11k1 Ui]zkz]
t=2

= % [I&jlkl (2mh) + &jlkl(—%h)] [1/;]'2k2(27rh) + 1/}j2k2(-27rh)}

= % wjlk; (27 )ik (277R) + U, ky (2TRY o1y (—270R)

+ Dty (~27R) B (2) Dby (~27h )by (—27h)|
1 n t-1 . A ) )
= E Z [¢j1k1 (Zﬂ'h)wjzkz (27Th) + wjlkl (27Th)¢j2k2 (—-27rh)]

n 1

z [w]lkl 27Th)¢]2k2( 27I'h) + %lkl (27Fh)1/)]2k2(27rh)]
t=2 h=—t+1
1 ¢ A . . .
= ;; Z [wjlkl (zwh)wjzkz (271'h) + wjlh (27rh)wj2k2(—277h)]
= ( |h| )/l/).hkl (27Th)"/)yzk2( 27Th)

+ Z (1 |ZI)¢M1(2M)%2:¢2 (271'h)

The second to the last equality can be derived by exchanging the order of summations.
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From the Lemma and applying the dominated convergence theorem to /s, and /e, we con-

clude that Ir, — 0 and Is, — 0 as n — oo. Therefore, n*2éyy, j = 1,2,--+,J, k =
0,1,---,2i~1 — 1 are asymptotically uncorrelated. This concludes the proof of Theorem
2.
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3.3 Proof of Theorem 3

We can take advantage of the proof of Theorem 2 and apply the Cramer-Wold device
to transform the problem from a multi-dimensional problem to a one-dimensional problem.

That is, we need to show that for any arbitrary vector
A = (Moy A2oy Ao, Asos <+ 5 Az 5 Ajgs Mgy s Agpioay) | € R
( 10y /20, N21Hy N30, 3 \33y y A Jor N1 3 J2J—1_1) € ’

we have n1/2AT& —4 N(0, (21) || Al]?), where || A2 = Z -1 ij,l‘l A2 Then, by
the Cramer-Wold device, we prove the Theorem.

In order to do that, we first write

J 2i-1.1

12\ G = E Z Ajk - nl/? G

=1 k=0
29'—1-1 n t-1

O'X2 Z i XtXt h [d}]k 27Th) + T/J]k( 27I'h)]

j=1 k=0 t=2 h=1
t—1 J 29—l

="V 22)@2)@ B0 2 ik [Di(2rh) + P —2mh)|
=2

=1 k=0
2 -2
/ Ox ZXtWt;
t=2

where W, = Xt A Z] ) 22] y 1)\3k wjk(%rh) + QZij(—27rh)].

M&,

From assumption of independence on the process {X;}, we have E(n'/?X'&) = 0,

which can be seen as follows:

E@n'?Xa) = E(n™ o> X,W))

=n"203? > " E(X,)E(W,)
t=2
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The second moment of n'/2)\'& is computed as:

E(n'*Na&)? = E(n"V2 g3 2 XtWt)2

t=2

B oyt S Y XX W)

t=2 s=2

=n"lox" Y E(XHEW))

t= 2

-1 —2ZE W2

Similar to the proof of Theorem 2, we have the following expressions:

t—1 J 2i-1
BWE) = E(X Xen 3o Y Ae[se(nh) + dyu(-2mh)] )
h=1 j=1 k=0
t-1 J o211
=D EXE [ 0 Awld(anh) + bl 27rh)]]
h=1 j=1 k=0
t—-1 J 29-11
= o% Z[Z Ajk %k 2mh) + ik~ QWh)]}
h=1 j=1 k=0
t—-1
= Ug( Z Z Z Z >‘j1k1 )\j2k2 Z [d;jlkl (Z’R'h) + d‘;jlkl(_zﬂ-h’)]
A ko J2 ke h=1

’ [$j2k2(27rh) + &j2k2(—2’ﬂ'h)]

- UX Z Z z Z )‘Jlkl )‘Jzkz Z w]lkl (271'}1,)’!/;]'2;92(27'(}),) + 1/;j1k1 (27"’7‘)1&]'2’62(—2’”}1')

N ko J2 k2

+ d}jlkl (_27Th)¢j2k2 (27rh) + %’m (—27rh)"/;j2k2(_27rh)]

= UX Z Z Z Z Ajik Ajgkg Z w]lkl (Qﬂph')’(&jzkz (27rh) + 11}j1k1 (QWh)z/}jzkz(—QWh)]

h ki J2 k2

+ 0’3{ Z Z Z Z )‘J'lkl )‘jzkz Z [Qﬁjlkl (_Qﬂ'h)lﬁjzkz(Qﬂnh)

Nnh ko g2 k2 h=1

+ 1&11’61 (—271’}?,)’(/;]'2192 (‘277}")] .
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So

W2 = CTX Z Z Z Z >‘Jlk1 Jaka Z lekl (27"’7’)1/;1'2’62 (27rh) + Q&jlkl (27rh)"/3j2k2(—27rh)]

Jji k1 J2 k2
-1

+ 03( Z Z Z Z )‘jlkl )‘jzkz Z [QLjIkI (QWh)lzljzkz(”27rh) + ,‘Z;jlkl (ZWh)lﬁjzkz(Qﬂ'h):

J1 ki J2 k2 h~—t+1
= 0% Z Z Z Z Ajiky Ajzkz [ Z ¢J1k1 (2mh) ¢Jzkz(27rh)
7 kl Jj2 k2 ~(t-1)
+ Z Visks (2h)jpn, (—2m h)]-
h=—(t—1)

Thus, by exchanging the order of summations, we have
Em'*XN&)® =n"'ox? Y " E(W})
n t—1 R .
1y (Z DN Nikdik, [ > ik, (2mh) ok, (27h)
t=2 §1 k1 j2 ko h=—(t-1)

t—1
+ > bi(2rh)e(~27h)|)

h=—(t~1)
n—1
=3 Z Y Z Ajrks Aok { >, (1 - '—Z—')«/}jlkl (2mh )k, (27h)
ik J'z ko h=—(n—1)

+ Z ( lhl)%kl(zm)w}m( 27rh)}

h=—(n-1)

= (2m) 7 1AL,

where the last limit follows from the Lemma and the dominated convergence theorem.
In order to show the asymptotic normal limit distribution, we apply the martingale

limit theorem of Brown (1971) again. We want to show that

2\ G N( ”;792),
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ie.,

VIR x& —a N (0, 1),

which is also equivalent to

\/%g;f I3 X W —a N (0, 1),

t=2

So in the present context, the following two conditions must be verified:

2m

en'2a% ||l
nok 1Al &

Z E [szz (;XtWt| > e

)]—-)O, forall ¢ >0,

and
27
no ||A|[? 4

ZE[X2W2|J-} ] =1

For the first condition, let T3, be the left hand side of it . Similar to the proof of Theorem

2, we have

X2W2X2W227r
Ton < ‘*nwZ (i)

—Cn Y BOW)

t=2
n t-1 J 92i-1_1
=Cn 2y S B[S D Aaldw(2nh) + bl 27rh)]]
t=2 h=1 j=1 k=0
J o2i-1
+Cn‘2ZZZE X2 )E(XL) [Z > Nie[Wi(2mh) + (- 27rh)]]2
t=2 h#l i=1 k=0

J 2
X [Z i [s(2rl) + ijk(‘%l)”

In the following, we try to show that 75, — 0 and T35, — 0 as n — oo. From the
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Cauchy-Schwarz inequality, we have

J 2i-1y
[Z Z i [k (2mh) + Pje(— 2”")”
1 k=0
da J 2511 J o2i-1.q ) 2\ 12
(T wf) (Z , [¥p(2m) + b =2h) )]
i=1 k=0 J=1
J 211

"”’\“4(2 S [n(@rh) + i~ 27rh)|)

j=1 k=0

Also note that |1);(27h)| < C 2i/2(27 4 2wh)~. Thus we have the following inequalities:

n t-1 J 21
Tain = Cn~2 ZE t—h [Z Z /\]k ¢]k 27Th) + %k( 271’h)]}
t=2 h= j=1 k=0

1
n t-1 J 29-1-1

<ot S A (Z
t=2 h=1 j=1 k=0
n t—1
_ Cn A Z(

ZJ: 2i9i~1 )2
pr ey (27 + 2mh)?
t— J

2
(27 + 27rh)2>

=1

=
.,

n

92j 2
<IN L S (X g )

t=2 h=1 “j=1

By the Cauchy-Schwarz inequality,

| V]

(Z 21+2-7rh )2§i1 i( 23+2.7rh )2

S,

Hence

Ts1n < Cn72A| Z Z (27 + 27rh

_ n—1 h J 24j
<On NI (1= 1) X ey



where the last inequality can be derived by exchanging the order of summations.

However,
n-1 J J n—1 1
-1 4 — -1 47 47
Cn | JZZ(2]+2h =Cn ”"”JZZ’ZW
j=1  h=1

27 -1

J
< Cn"llP‘HWZ 2v [Z; @ + 27rh Z (2 + 27rh)4]
po

< Cn_lll'\l|4‘7224] Z 94j /J 24:1:
j=

< Cn“lll)\||4jz 9493

j=1

< CnH|Al[4g2.

Thus, since J is fixed, n — oo, and using the dominated convergence theorem, we have

T31, = 0asn — oo.



As to the term T3y, the arguments are very similar to those for I5;,,. We have

29-1-1

n J 2
Tan = Cn Y DS BXEDEXE)[YS Y Anlise(enh) + yn(—2nh)]

t=2 hetl k=0
J ooi-tg
XY Anlbstent) + du(—2m)]]]
ij=1 k=0
n o [t-1 2i-1-1 9\ 2
< Cn? ( Xt2 . [Z Z ik zp],c (27h) +1/J,k( 27rh)]] )
t=2 \h=1 J=1 k=
n o ft-1_ J 297121 J o2i-1 2
< Cn? ( Z Z Jk|2z Z I%k 2mh) +¢Jk 27rh)|)
=2 \h=1 j=1 k=0 j=1 k=0
n o pt=1 J 29-1-1 2
< Cn 2| —————-—-—-]
2| |A) EZZ . Ty
\ . n _t-1 J j 9
<Cn~*||A
n Al tZ; h:”}; 2 + 2mh)? ]
n J t—1 9
:C’n‘ZH)\H42 222JZ 21+27rh ]
t=2 j=1 =1
n J 27 t— 9
:Cn“2|l)\||4tz; ;22](h=1 21+27rh —2: 2]+27rh )]
i J 0 ¥ 1 dz
<o [ (S gm+ [ o))
t=2 j=1 h=1 v
n _J
<on A [So 2w ]
t=2 j=1
< ClIA|[fn 122

Thus, since J is fixed, n — oo, we conclude that I35, — 0. Therefore we complete the
proof for the first condition.

Next, we show the second condition in Brown’s (1971) theorem. Similar to the proof
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of Theorem 2, it is sufficient for us to show

2
[nazHAH?ZWZ ] — 0, as n— ooc.

The left hand side of it, denoted with T}, can be written as

fan 1= [nax|tA||2ZW ]
- [(mznxni’zwz) - 21|Anzzw2“]
= T 3 O g 3 3 BB

t=2 gt
EW?2) +1
no.?HAIPZ W)+

= Thin + Taon — 2043, + 1.

Similar to the previous proof, we have Ty, — 1, Ty3, — 1. From arguments used to
establish the term T3,, we have Ty, — 0, as n — oo. Therefore, we prove Ty, — 0,
i.e., the second condition is established. Thus we complete the proof for the normal limit

distribution, as well as the proof of Theorem 3.
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3.4 Proof of Theorem 4

To simplify the presentation of the proof, like the proof of Theorem 2, we assume that
E(X;) = px = 0and the variance og( of the random variable X is known. Thus, in the fol-
lowing proof, we only need to consider px (h) = 032 Rx(h) = n~! 0%’ S ihj+1 Xt Xt |hl-

First note that

loglog(N) = loglog (-g - )
= log logg— (1 + 0(1))
= log log(n) — loglog(2) + o(1)

= loglog(n) (1 + 0(1)).

Then observe that

Py, (Wan > ca) = P, (/2loglog(N) Wiy — {2loglog(N) + .5 log log log(N)
— 5log(4m)} > cq4)
= Py, (v/21oglog(N) W3y > {2loglog(N) + .5loglog log(N)
— .blog(4m)} + ¢c4)
= Pu,(Wjy > v/2loglog(N) (1 +o(1)))

- PH1 (WAN 210g log( ) (1 + 0(1)))a

where W}y = (2m,,)"Y2 Y7 (82 — 1) and m,, = argmax (2m)~/2 3" (62 — 1).

1<m<N
Thus, forany 1 < J, < J, we have

Jn 29-1-1

Wiy > (2% —2)71/2 Z Z (27nds,

=1 k=0
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From & aJk = ?kz as in Theorem1, we have

Jn 29711 Jn 20711
n 2 n
@ =272 N (mnad - 1) = e Y Y (27nad - 1)
j=1 k=0 2V2+ -2 j=1 k=0
1 Jn 291
- LY (2endd - 1),
242+l — 9 pucfiur
which is derived by multiplying 2 by both the numerator and the denominator in the first
step. Thus
1 Jn 291
Wiy > ————— 2mndd; — 1).
AN—2 /————2Jn+l“2].§=';kzzo( 3k )

Therefore the power of our test has, noticing n = 2N 4 2,

Py, (Wan > ca) = P (Wjiy 2 v/2loglog(n) (1 +0(1)))

> py (i o ( Crndse = 1) S atoe 1+0(1
> Py, (S 2 v/2loglog(m) (1+ 0(1))
Jn 291
= Py, () D (2mna3, — 1) > 2v/25+1 — 2/2loglog(n) (1 + o(1)))
j=1 k=0
Jn 291
= Py, (Z Z 27m&§k > 2/t 2 4 24/272+1 — 21 /2]oglog(n)

j=1 k=0

)

Jn
:PH1< Z 2 > (24 - g)n !

+ 27120+ — 2)1/2, /21oglog(n) (1 + o(1)) )

N
h—-‘

Hence

Py, (Wan > ca) > Py, (27r QUf, fo) = [27F1n! +2%227/2n~1 /2 log log(n)]
- (1+0(1))).

If we consider J, such that J, — oo, 22/ /n — 0, the Theorem is proved if one can show
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that Q( A)Jg‘, fo) = Q(f, fo) > 0 in probability. Its proof is very similar to that of Theorem
2 in Lee and Hong (2001). We write

Jn 291 oo 29-1
Q( f,fO)‘“ZZajk Zza?k

j=1 k=0 j=1 k=0
Jn 291 oo 29-1

=Y Y @h-ad) - D D ek
j=1 k= j=JIn+1 k=0
Jp 291 0o 2-1

= Z Z b — ) + 2 (G — k) ] — Z Z o
j=1 k=0 j=Jn+1 k=0
Jn 291 Jn 291 oo 291

=YY G-+ 230 ) (G — o — Y D ok
j=1 k=0 j=1 k=0 j=Jn+1 k=0

= an + Q2n + QBn-

Notice we have
Eg oo 291
f f?(w)dw=/ (e + 303 antu(w) du
- - j=0 k=0
2 oo 291 oo 29-1
= / { Z Z a]k\Il]k (Z Z a]k\Il]k ) } dw
- ]*0 k=0 Jj=0 k=0
9 oo 2-1
%ngw/w
j=0 k=0

o oo 2i-122-1

+ Z z 2 Z O‘Jlklahkz/ gy (W) Ui, (w) dw

41=0jo=0 k1=0 ko=0

oo 29-1

AR BPIL S

j=1 k=0
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We also have

/f2“’)dw /ﬁr( Zp h)e"”“") dw
L5 S 0 [0

h=—00l=-00
1 o0
=i Z px(h)px(—h) - 2m

h=—00

So we have

Thus @3, — 0, from J,, — oo.

From the Cauchy-Schwarz inequality, we have
Jn -1
Q% <4Qu Y ) o

j=1 k=0

Thus, in order to prove the Theorem, it suffices to show ()1, — 0 in probability.

Observe that
n—1
&jk — Ok = Z px(h)'gb]k 27I'h Z px(h z[)]k(27rh)
h=—n+1 h=—00
h=n-1
= Y [px(h) — px(B)]dm(2mh) = > px(R)ds(2h).
h=—(n-1) |h|>n
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we have

Jn 291

=3 (G5 — o)’

j=1 k=0

25393

j=1 k=0

=: 2Q1n1 + 2Q1n2.

Jn 2j—1[ h=n-1

h=—(n-1) J=1 k=0 “h{>n

Applying the Cauchy-Schwarz inequality to ()1,2, we have

Jn 29-1r i 2
Qin2 = Z Px(h)wjk(%h)]
j=1 k=0 “fh>n
Jn 2-1p R
< > k) Y e
7=1 k=0 “h|>n h|>n
Since
[k (27h)[2 < C2 (27 + 2mh) 2
we have - ol
i 2 ¢ el
> st <2 [C o
[h|>n
J
<2 92_ dx
n X2
o
=
Thus '
Jn 29-1 '
Qina £ C Z Pg((h)z Z 2/n
Ih|>n j—l k=0
=C Z p%(h 222’/71
lh|2n 3=1
=C Y A(r)2/n.

th|2n
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Using the facts that ), ok (h) — 0, and 2%/ /n — 0, We have

Qin2 — 0.

As to (11, applying the Cauchy-Schwarz inequality, we have

Jn 2-1p h=n-1 X 2
Qi1 = Z Z [f)x(h) - pX(h)]wjk(Z'lTh)}

5=1 k=0 ‘h=—(n—1)
Jn 2P-1p , A

< S [px(h) = px ] 3 n(2r|
j=1 k=0 Yynj<n |h|<n

So '
Jn 21

EQin1 < suppeneVar{px(M)} D D > libsu(2nh)?

J=1 k=0 |hl<n

Like Q1n2, We can show Z]ﬁl v > ihi<n |thx(27R)[2 < C 22/ as below:

Firse we have

Jo -1 Jo 2-1
2.2 2 ()l Z Z @ + 2nh) +27rh)2
Jj=1 k=0 |h|<n = jhi<

Since

Z 1 < 1
(27 + 2nh)2 = £~ B2

|h|<n |h|<n
< S 1
= h2
h=-00
< 00,
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Thus

L 21 Jn 29-1
22 2 WalerhP <3, 0¥
3=1 k=0 |h|<n J=1 k=0

JIn
=y ¥
i=1
Jn
=Cy ¥
j=1

< C4'n
— C22Jn-

From Lee and Hong (2001, p.417), we have

SUPgnenVar{px(h)} = O(n™").

Thus we have

Eanl - O(22J"/n) — 0,

which can be derived from our assumption on J,.
Thus, from Markov’s inequality, we conclude that ()1,,; — 0 in probability. Therefore the

proof of Theorem 4 is completed.
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All calculations in simulation studies are realized using scripts written in R 2.15.0.

HHHHARRAH RR R HBHH AR B H AR B R R

HH#H##

compute the empirical critical value of Qm  #####

HHRBRHARARBHHHBRRH AR A HHRAHBRAH B H AR RS S

N <— 10000 # number of simulation

n <— 256 # sample size

Q <— rep(0,N) # initiate N=10000 Qm’s under HO

m<— 1 # window length parameter for Qm

# ranges from 1 to 3
for (i in 1:N)
{ X <— rnorm(n) # generate data under HO
r <— rep(0,m) # initiate sample autocorrelations
for (k in 1:m) # compute sample autocorrelations
{ for (t in (k+1):n)
{ r[k] <— r[k] + x[t]*xx[t—k]
}
r{k] <— r[k]/sum(x"2)

}

rm(k)

rm(t)

for (k in 1:m) # compute Qm

{ Qli] <— Q[i]+ (r[k]"2)/(n-k)

}

rm(k)

Qli] <= nx(n+2)*Q[1i]

}

t <— quantile (Q, probs=0.95) # compute ECV of Qm
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#AH#H A H AR HHHH R R AR H R R R S
#### computing the empirical critical value of Kn  ####
HHBHHHERHHRHHHHBR AR BB R RHHHHR AR R R B R B R B B RH B AR R RS

N <- 10000 # number of simulation

n <— 256 # sample size

pnl <— 6 # parameter pnl for n=256

pn2 <— 9 # parameter pn2 for n=256

pn3 <— 16 # parameter pn3 for n=256

#pnl <— 6 # parameter pnl for n=512

#pn2 <— 10 # parameter pn2 for n=512

#pn3 <— 19 # parameter pn3 for n=512

Ml <— rep(O,N) # initiate N=10000 Kn’s using pnl under HO

M2 <— rep(0O,N) # initiate N=10000 Kn’s using pn2 under HO

M3 <— rep(O,N) # initiate N=10000 Kn’s using pn3 under HO

for (i in 1:N)

{ X <— rnorm(n) # generate data under HO
average <— mean(x) # compute sample mean

gamma <— rep(0,n—1)
# initiate sample autocovariances
for (j in 1:(n-1))
# compute sample autocovariances
{ for (t in (abs(j)+1):n)
{ gammal[j] <— gammal[j] + (x[t]—average)
*(x[t—abs(j)]—average)
}
}

gamma <— gamma/n

gamma( <— mean((x—average ) 2)

r <— gamma/gamma0

# compute sample autocorrelations
rm(j)

rm(t)

kappa <— function(z)

# define Daniell kernel function
{ sin(pi*xz)/(pixz)

}

C<-0

# compute the second term in the numerator of Kn
for (j in 1:(n-1))

{ C<— C+ (1—j/n)x(kappa(j/pnl))"2
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}
rm(j)

D<-0

# compute the denominator of Kn

for (j in 1:(n-2))

{ D<—D+ (1-j/n)*x(1=(j+1)/n)
*(kappa(j/pnl))~4

}

m(j)

temp <— 0

for(j in 1:(n-1))

{ temp <— temp + (kappa(j/pnl)xr[j])"2
}

temp <— tempxn

rm(j)

Mi[i] <— (temp — C)/sqrt(2xD)

# compute Kn using pnl

C< 0

for (j in 1:(n-1))

{ C<—C+ (1—j/n)*(kappa(j/pn2))"2
}

m(j)

D<-0

for (j in 1:(n-2))

{ D<— D+ (I—-j/n)*x(1—=(j+1)/n)
*(kappa(j/pn2))~4

}

rm(j)

temp <— 0

for(j in 1:(n—-1))

{ temp <— temp + (kappa(j/pn2)*r[j])"2
}

temp <— tempx*n

rm(j)

M2[i] <— (temp — C)/sqrt(2xD)

C<-0

for (j in 1:(n-1))

{ C<—C+ (1—j/n)*x(kappa(j/pn3))"2
}
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rm(j)

D<-0

for (j in 1:(n-2))

{ D<— D+ (I—-j/n)*x(1—=(j+1)/n)
x(kappa(j/pn3))~4

} .

rm(j)

temp <— 0 '

for(j in 1:(n-1))

{ temp <— temp + (kappa(j/pn3)*xr[j])"2

}

temp <— tempx*n

rm(j)

M3[i] <— (temp — C)/sqrt(2«D)
}

tl <— quantile (Ml, probs=0.95)
# compute ECV of Kn using pnl

t2 <— quantile (M2, probs=0.95)
# compute ECV of Kn using pn2

t3 <— quantile (M3, probs=0.95)
# compute ECV of Kn using pn3
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HARHH AR H AR HARFH B H R R HE R AR R B R

HH##

computing the empirical critical value of Wn  ####

HHHHERHHHERRHHHBRHBERRHH R AR AR BRI R R R

library (gdata)
N <— 10000 # number of simulation
n <— 256 # sample size

J <— log2(n)—1 # number of resolution levels

Jn2 <—
Jn3 <
Jnd <

wn2 <—
Wwn3 <—
Wnd <~

for (i

{

# for wavelet coefficients

2 # parameter of Wn

3 # parameter of Wn

4 # parameter of Wn

rep(0O,N) # initiate N=10000 Wn’s using Jn2 under HO
rep(O,N) # initiate N=10000 Wn’s using Jn3 under HO
rep(0O,N) # initiate N=10000 Wn’s using Jn4 under HO
in 1:N)

X <— rnorm(n) # generate data under HO
average <— mean(x) # compute sample mean

var <— mean((x—average )" 2)
# compute sample autocovariance at h=0

rho <— rep(0,n—1)
# compute sample autocorrelations
for (h in 1:(n-1))
{ for (t in (h+1):n)
{ rho[h] <— rho[h] + (x[t]—average)
*(x[t—h]—average)
}

rho[h] <— rho[h]/n
rho[h] <— rho[h]/var

}
rm(h)

alpha <— matrix(rep(0,J*2"J),nrow=J,ncol=2"J)
# initiate wavelet coefficients
# and record them in matrix “alpha”
for (j in 1:J)

{ for (k in 1:(27j))
{ for (h in 1:(n-1))
{ alpha[j,k] <— alphal[j,k] +
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rho[h]*sin(2xpixh/(2"j)*(1/2+k))

x(sin(2xpixh/(27(j+2))))"2/(2* pixh)

}

alpha[j,k] <— alpha[j,k]*x27(j/243)
/sqrt(2x*pi)

}
}
m(j)
rm(k)
rm(h)
temp <— 0

# initiate temp and use it to compute the summation
# of alpha[j,k] 2 from level 1 to level Jn
for (j in 1:Jn2)

{ for (k in 1:(27j))
{ temp <— temp + alpha[j,k]xalpha[j, k]
}

}

Wn2[i] <— (2xpixnxtemp—2"(Jn2+1)+1)/sqrt (2°(In2+3)—-4)
# compute test statistic Wn using Jn2
# and write it into vector Wn2

temp <— 0

for (j in 1:Jn3)

{ for (k in 1:(27j))
{ temp <— temp + alpha[j,k]xalpha[j, k]
}

}

Wn3[i] <— (2xpixnxtemp—2"(Jn3+1)+1)/sqrt(2°(In3+3)—4)

temp <— 0

for (j in 1:Jn4)

{ for (k in 1:(27j))
{ temp <— temp + alpha[j,k]xalpha[j,k]
}

}

Wnd[i] <— (2xpi*xnxtemp—2"(Jnd+1)+1)/sqrt(2°(Ind+3)—-4)
}

t2 <— quantile (Wn2, probs=0.95)
# compute ECV of Wn2
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t3 <~ quantile (Wn3, probs=0.95)
# compute ECV of Wn3

t4 <— quantile (Wn4, probs=0.95)
# compute ECV of Wn4
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HHRERHHHHHRHFHHH RS H RS R R R
#H#H## computing the empirical critical value of Tn  ####
HA#BRHEHHAHHAHHHH R HHH SRR H R R R B E 4

library (gdata)
N <- 10000 # number of simulation
n <— 256 # sample size

J <— log2(n)—1 # number of resolution levels
# for wavelet coefficients

c <— 1 # parameter for Tn
dl <— 2 # parameter for Tn
d2 <- 2.5 # parameter for Tn

Tl <— rep(0,N)

# initiate N=10000 Tn’s using c=1, dl=2 under HO
T2 <— rep(0,N)

# initiate N=10000 Tn’s using c=1, d2=2.5 under HO

for (i in 1:N)

{ X <— rnorm(n) # generate data under HO
average <— mean(x) # compute sample mean
var <— mean((x—average)~2)

# compute sample autocovariance at h=0

rho <— rep(0,n-1)
# compute sample autocorrelations
for (h in 1:(n-=1))
{ for (t in (h+1):n)
{ rho[h] <— rho[h] + (x[t]—average)
x(x[t—h]—average)
}

rho[h] <— rho[h}]/n
rho[h] <— rho[h]/var
}

rm(h)

alpha <— matrix(rep(0,J*27J),nrow=J,ncol=2"]J)
# initiate wavelet coefficients
# and record them in matrix “alpha”
for (j in 1:J)
{ for (k in (2°(j—1)):(2%j—1))
{ for (h in 1:(n-1))
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{ alpha[j,k] <— alpha[j.k] +
tho[h]xsin(2xpixh/(27j)*(1/2+k))
x(sin (2% pi*h/(27(j+2))))"2/(2% pixh)

}
alpha(j,k] <— alphalj,k]}*2"(j/2+3)
/sqrt(2x*pi)
}

}
m(j)
rm(k)
rm(h)

alpha_half <— unmatrix (alpha, byrow=TRUE)
# convert matrix “temp” into

# a vector named “alpha_half”

alpha_half <— alpha_half[alpha_half != 0]
# remove zeros from ”alpha_half”

anl <— cx*(log(n/2))"((—1)xdl)

deltal <— sqrt(2«log(anl%n/2))

mul <— (2+xpi)"(—1/2)xanl”(—1)xdeltal
x(1+deltal "(—=2))

varl <— (2xpi)"(—1/2)xanl"(—1)xdeltal "3
x(1+3xdeltal "(—2))

temp <— alpha_halfx(abs(sqrt(2xpi*n)*alpha_half)
> deltal)

Ti[i] <— (2xpi*xn*xsum(temp”2) — mul)/sqrt(varl)

# compute test statistic Tl using c=1, dl=2

rm(temp)

an2 <— cx*(log(n/2))"((—1)xd2)

delta2 <— sqrt(2+xlog(an2xn/2))

mu2 <— (2xpi)"(—1/2)xan2"°(—1)xdelta2
x(1+delta2 "(—2))

var2 <— (2xpi)"(—1/2)*an2°(—1)xdelta2”3
x(1+3xdelta2 "(—2))

temp <— alpha_halfx(abs(sqrt(2xpi*n)*xalpha_half)
> delta2)

T2[i] <— (2xpix*nxsum(temp”2) — mu2)/sqrt(var2)

# compute test statistic T2 using c=1, d2=2.5

rm(temp)
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tl <— quantile (T1, probs=0.95)
# compute ECV of Tn using c=1, dl=2

t2 <— quantile (T2, probs=0.95)
# compute ECV of Tn using c=1, d2=2.5
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HHHHHHHH AR HH AR AR AR HH R R R
### computing the empirical critical value of Wan  ###
###HHHHHH R R R AR R R R R R R H

library (gdata)
N <— 10000 # number of simulation
n <- 256 # sample size

J <— log2(n)—1 # number of resolution levels
# for wavelet coefficients

T <— rep(0,N) # initiate N=10000 Wan’s under HO

for (i in 1:N)

{ X <— rnorm(n) # generate data under HO
average <— mean(x) # compute sample mean
var <— mean((x—average)”2)

# compute sample autocovariance at h=0

rho <~ rep(0,n-—1)
# compute sample autocorrelations
for (h in 1:(n-1))
{ for (t in (h+1):n)
{ rho[h] <— rho[h] + (x[t]—average)
*(x[t—h]—average)
}

rho[h] <— rho[h]/n
rho[h] <— rho[h]/var

}
rm(h)

alpha <— matrix(rep(0,J*2"J),nrow=J,ncol=2"J)
# initiate wavelet coefficients
# and record them in matrix “alpha”
for (j in 1:J)

{ for (k in (27°(j—-1)):(27j-1))
{ for (h in 1:(n-1))
{ alpha[j,k] <— alphal[j,k] +

rho [h]*sin (2% pi*h/(2"j)*(1/2+k))
x(sin (2% pi*h/(2°(j+2))))"2/(2* pi*h)

}
alpha[j,k] <— alpha{j,k]*27(j/2+3)
/sqrt(2%pi)
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}

rm(j)
rm(k)
rm(h)

alpha_half <— unmatrix (alpha, byrow=TRUE)
alpha_half <— as.vector(alpha_half)

# convert matrix “alpha” into

# a vector named “alpha_half”

alpha_half <— alpha_half[alpha_half != 0]
# remove zeros from “alpha_half”

V <— rep(0,n/2-1)

# scan through all the values

# by recording them into V

# to find the maximum

# and let it be the test statistic
for (j in 1:(n/2-2))

{ temp <— alpha_half
for (k in (j+1):(n/2-1))
{ temp[k] <— 0
}

VIj] <= ((2xpi*n)*sum(temp"2)—j)/sqrt(2xj)
}
Vin/2-1] <— ((2xpi*n)*sum(alpha_half"2)
—(n/2 -1))/sqrt(2x(n/2-1))
rm(j)
rm(k)

m<— (1:(n/2-1))[V==max(V)]

# find the location of where max is derived

T[1] <— sqrt(2xlog(log(n/2—1)))*xV[m]
—(2xlog(log(n/2-1))+0.5xlog(log(log(n/2 —1)))
—0.5xlog(4xpi))

# compute test statistic Wan

# and write it into vector T

}

t <— quantile (T, probs=0.95)
# compute ECV of Wan
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HARHHRARHHRHH B HH BB HHHHHH S HH SRR R B R H SRR R R H RS H
HAHHBHHRAHHHHHH computing level of Qm  ######H#H#####H###
HHHHHAHHH RS H AR R AR FHHH B H RS AR R H SRR

N <- 10000 ### number of simulation
n <— 256 ### sample size
Q <— rep(0,N) ### initiate N=10000 Qm’s under HO
m <— 1 ### window length of Qm
c <— 3.84 ### ACV of Qm when m=1
#c <— 3.83 ### ECV of Qm when m=1 for n=256
#c <— 3.85 ### ECV of Qm when m=1 for n=512
#c <— 5.99 ### ACV of Qm when m=2
#c <— 5.94 ### ECV of Qm when m=2 for n=256
#c <— 6.01 ### ECV of Qm when m=2 for n=512
#c <— 7.81 ### ACV of Qm when m=3
#c <— 7.83 ### ECV of OQm when m=3 for n=256
#c <— 7.76 ### ECV of Qm when m=3 for n=512
for (i in 1:N)
{ X <— rnorm(n) # generate data under HO
r <— rep(0,m) # initiate sample autocorrelations
for (k in 1:m) # compute sample autocorrelations
{ for (t in (k+1):n)
{ r[k] <— r[k] + x[t]*xx[t—k]
}
r[k] <— r[k]}/sum(x"2)
}
rm(k)
rm(t)
for (k in 1:m)
{ Qli] <= Q[i]+ (r[k]"2)/(n—k)
}
rm(k)
Q[i] <= n*x(n+2)xQ[i] # compute Qm
}

level <— mean((Q > ¢)) # compute level of Qm
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HAHBHBHHHHHRRRHHHH B R RS AR B R RH RHRR R R
HHARAHHARAHHHRH computing level of Kn  ###############
HAHHRRHHHHHH BB BB R R R R #

N <= 10000 number of simulation

n <— 256 sample size

pnl <— 6 parameter pnl for n=256
pn2 <— 9 parameter pn2 for n=256
pn3 <— 16 parameter pn3 for n=256
#pnl <— 6 parameter pnl for n=512
#pn2 <- 10 parameter pn2 for n=512
#pn3 <— 19 parameter pn3 for n=512

Ml <— rep(0,N)
M2 <— rep(0,N)
M3 <— rep(0,N)

initiate N=10000 Kn’s using pnl under HO
initiate N=10000 Kn’s using pn2 under HO
initiate N=10000 Kn’s using pn3 under HO

I o I o 3 I H I H A

c <— 1.645 ACV of Kn

cl <— 1.94 ECV of Kn using pnl and n=256

c2 <— 1.92 ECV of Kn using pn2 and n=256

c3 <— 1.90 ECV of Kn using pn3 and n=256

#cl <— 2.00 ECV of Kn using pnl and n=512

#c2 <— 1.98 ECV of Kn using pn2 and n=512

#c3 <~ 1.94 ECV of Kn using pn3 and n=512

for (i in 1:N)

{ X <— rnorm(n) # generate data under HO
average <— mean(x) # compute sample mean

gamma <— rep(0,n-1)
# initiate sample autocovariances
for (j in 1:(n-1))
# compute sample autocovariances
{ for (t in (abs(j)+1):n)
{ gammalj] <— gammafj] + (x[t]—average)
x(x[t—abs(j)]—average)
}
}

gamma <— gamma/n

gamma0 <— mean((x—average)"2)

r <— gamma/gamma0

# compute sample autocorrelations
m(j)

rm(t)

kappa <— function(z)
# define Daniell kernel function
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{ sin(pixz)/(pixz)
}

C<0

# compute the second term in the numerator of Kn
for (j in 1:(n-1))

{ C<— C + (1—j/n)x(kappa(j/pnl))~2

}

rm(j)

D<-0

# compute the denominator of Kn

for (j in 1:(n-2))

{ D<-D+ (I1-j/n)*x(1—-(j+1)/n)
*(kappa(j/pnl))~4

}

rm(j)

temp <— 0

for(j in 1:(n-1))

{ temp <— temp + (kappa(j/pnl)*r[j])"2
}

temp <— tempx*n

m ()

MI[i] <— (temp — C)/sqrt(2xD)

# compute Kn using pnl

C<-0

for (j in 1:(n-1))

{ C<— C + (1-j/n)x(kappa(j/pn2))"2
}

rm( )

D<-0

for (j in 1:(n-=2))

{ D<-D+ (I1—j/n)x(1—-(j+1)/n)
*(kappa(j/pn2))~4

}

m(j)

temp <— 0

for(j in 1:(n-1))

{ temp <— temp + (kappa(j/pn2)*xr[j])°2
}

temp <— tempx*n
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rm(j)
M2[i] <— (temp — C)/sqrt(2+D)

C<-0
for (j in 1:(n-1))
{ C<—C + (I—-j/n)«(kappa(j/pn3))"2
} .
rm(])
D<-0
for (j in 1:(n-2))
{ D<—D+ (I1-j/n)x(1 =(j+1)/n)
x(kappa(j/pn3))"4
} .
rm(j)
temp <— 0
for(j in 1:(n-1))
{ temp <— temp + (kappa(j/pn3)xr[j])"2
}
temp <— tempxn
m(j)
M3[i] <— (temp — C)/sqrt(2+D)
}
levell _ACV <— mean((Ml > ¢))
# level of Kn using ACV and pnl
level2_ACV <— mean((M2 > c¢))
# level of Kn using ACV and pn2
level3_ACV <— mean((M3 > c¢))
# level of Kn using ACV and pn3
levell _ ECV <— mean((Ml > cl))
# level of Kn using ECV and pnl
level2_ ECV <— mean((M2 > c2))
# level of Kn using ECV and pn2
level3_ECV <— mean((M3 > c3))
# level of Kn using ECV and pn3
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computing level of Wn  ##########H#H#H###

HHARFHARHHRHH B R R B R B R R R

library (gdata)
N <-— 10000
n <— 256

J <— log2(n)-1

Jn2 <— 2
Jn3 <— 3
Ind <— 4

Wn2 <— rep(0,N)
Wn3 <— rep(0,N)
Wnd <— rep(0,N)

t_acv <— 1.645
t2_ecv <— 1.56
t3_ecv <— 1.55
t4_ecv <— 1.48
#t2_ecv <— 1.59
#t3_ecv <— 1.58
#t4_ecv <— 1.57

for (i in 1:N)

# number of simulation
# sample size

# number of resolution levels
# for wavelet coefficients

parameter of Wn
parameter of Wn
parameter of Wn

F#* 3+

k-3

initiate N=10000 Wn’s using Jn2 under HO
initiate N=10000 Wn’s using Jn3 under HO
initiate N=10000 Wn’s using Jn4 under HO

* W I

ACV of Wn

ECV of Wn using Jn2 for n=256
ECV of Wn using Jn3 for n=256
of Wn using Jn4 for n=256
ECV of Wn using Jn2 for n=512
ECV of Wn using Jn3 for n=512
ECV of Wn using Jn4 for n=512

3 I I H

{ X <— rnorm(n) # generate data under HO
average <— mean(Xx) # compute sample mean
var <— mean((x—average)"2)

# compute sample autocovariance at h=0

rho <— rep(0,n—1)
# compute sample autocorrelations
for (h in 1:(n-1))

{

rm(h)

for (t in (h+1):n)

{ rtho[h] <— rho[h] + (x[t]—average)
*(x[t—h]—average)

}

rho{h] <~ rho[h]/n
rho{h] <— rho[h]/var
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alpha <— matrix (rep(0,J*2"J),nrow=J,ncol=2"J)
# initiate wavelet coefficients
# and record them in matrix “alpha”
for (j in 1:7)

{ for (k in 1:(2%j))
{ for (h in 1:(n-1))
{ alpha[j,k] <— alpha[j.,k] +

rho[h]*sin (2% pixh/(27j)*(1/2+k))
*(sin (2% pixh/(27(j+2))))"2/(2% pixh)

}
alpha[j,k] <— alpha[j,k]*x2°(j/2+43)
/sqrt(2*pi)
}

}
m( )
rm(k)
rm(h)
temp <— 0

# initiate temp and use it to compute the summation
# of alpha[j,k]"2 from level 1 to level Jn
for (j in 1:Jn2)

{ for (k in 1:(2%j))
{ temp <— temp + alphal[j,k]xalpha[j,k]
}

}

Wn2{i] <— (2xpi*nxtemp—2"(Jn2+1)+1)/sqrt(2"(Jn2+3)—-4)
# compute test statistic Wn using Jn2
# and write it into vector Wn2

temp <— 0

for (j in 1:Jn3)

{ for (k in 1:(27j))
{ temp <— temp + alpha[j,k]*xalpha[j, k]
}

}

Wn3[i] <— (2xpixnxtemp—2"(Jn3+1)+1)/sqrt(2°(In3+3)—4)

temp <— 0

for (j in 1:Jn4)

{ for (k in 1:(27j))
{ temp <— temp + alpha[j,k]xalphal[j,h k]
}

}
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Wnd[i] <— (2«pixnxtemp—2"(Jnd4+1)+1)/sqrt(2°(In4+3)—4)

}

level2_acv
# level of

level3_acv
# level of

leveld _acv
# level of

level2_ecv
# level of

level3_ecv
# level of

leveld_ecv
# level of

mean ((Wn2 > t_acv))
using ACV and Jn2

mean ((Wn3 > t_acv))
using ACV and Jn3

mean ((Wnd > t_acv))
using ACV and Jn4

mean ((Wn2 > t2_ecv))
using ECV and Jn2

mean ((Wn3 > t3_ecv))
using ECV and Jn3

mean ((Wnd > t4_ecv))
using ECV and Jn4
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library (gdata)
N <- 10000 # number of simulation
n <— 256 # sample size

J <~ log2(n)—1 # number of resolution levels
# for wavelet coefficients

c <— 1 # parameter for Tn
dl <- 2 # parameter for Tn
d2 <- 2.5 # parameter for Tn

Tl <— rep(0,N)

# initiate N=10000 Tn’s using c=1, dI=2 under HO
T2 <— rep(0,N)

# initiate N=10000 Tn’s using c=1, d2=2.5 under HO

t <— 1.645 # ACV of Tn

tl <— 3.07 # ECV of Tn using c=1, d1=2 and n=256

t2 <— 2.67 # ECV of Tn using c=1, d1=2.5 and n=256

#tl <— 3.55 # ECV of Tn using c=1, d1=2 and n=512

#12 <— 2.97 # BCV of Tn using c=1, d1=2.5 and n=512

for (1 in 1:N)

{ X <— rnorm(n) # generate data under HO
average <— mean(x) # compute sample mean

var <— mean((x—average ) 2)
# compute sample autocovariance at h=0

rho <— rep(0,n-1)
# compute sample autocorrelations
for (h in 1:(n-1))
{ for (t in (h+1):n)
{ rho[h] <— rho[h] + (x[t]—average)
x(x[t—h]—average)
}

rho[h] <— rho[h]/n
rho[h] <— rho[h]/var

rm(h)
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alpha <— matrix(rep(0,J*2°J),nrow=J,ncol=2"J)
# initiate wavelet coefficients
# and record them in matrix “alpha”
for (j in 1:J)

{ for (k in (27°(j =-1)):(27j-1))
{ for (h in 1:(n-=1))
{ alpha[j,k] <— alpha[j.,k] +

rho[h]*sin (2« pixh/(2"7j)*(1/2+k))
*(sin(2xpixh/(2°(j+2))))"2/(2* pixh)

}
alpha[j,k] <— alpha[j,k]*x2"(j/2+43)
/sqrt(2x*pi)
}

}
rm(j)
rm(k)
rm(h)

alpha_half <— unmatrix (alpha, byrow=TRUE)
# convert matrix “temp” into

# a vector named “alpha_half”

alpha_half <— alpha_half[alpha_half != 0]
# remove zeros from “alpha_half”

anl <— cx(log(n/2))"((—-1)xdl)

deltal <— sqrt(2«log(anl*n/2))

mul <— (2xpi)"(—1/2)xanl”(—1)xdeltal
x(1+deltal "(—2))

varl <— (2xpi)"(—1/2)xanl”(—1)xdeltal "3
x(1+3xdeltal "(—2))

temp <— alpha_halfx(abs(sqrt(2+*pi*n)xalpha_half)
> deltal)

Ti[i] <— (2«xpi*nxsum(temp”2) — mul)/sqrt(varl)

# compute test statistic Tl using c=1, di=2

rm(temp)

an2 <— cx(log(n/2))"((—-1)xd2)

delta2 <— sqrt(2xlog(an2xn/2))

mu2 <— (2xpi)"(—1/2)xan2”(—1)xdelta2
x(1+delta2"(=2))

var2 <— (2xpi)"(—1/2)xan2"(—1)xdelta2 "3
x(1+3xdelta2 " (-2))

temp <— alpha_halfx(abs(sqrt(2xpi*n)xalpha_half)
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T2[i] <~ (2xpi*nxsum(temp”2) — mu2)/sqrt(var2)

# compute test statistic T2 using c=1, d2=2.5

> delta2)

rm(temp)

}

levell _ACV <—
# level of Tn

level2_ACV <-—
# level of Tn

levell . ECV <
# level of Tn

level2 ECV <~
# level of Tn

mean ((T1 > t))
using ACV and c

mean((T2 > t))
using ACV and c

mean ((T1 > t1))
using ECV and c

mean ((T2 > t2))
using ECV and c

=1, di=2

=1, d1=2.5

=1, dl=2

=1, d1=2.5
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library (gdata)

N <— 10000
n <— 256

number of simulation
sample size

3+ 3+

J <— log2(n)-1

3+

number of resolution levels
# for wavelet coefficients

T <— rep(0,N) # initiate N=10000 Wan’s under HO

t_. ACV <— 2.97 # ACV of Wan
t.ECV <- 3.70 # ECV of Wan for n=256
#t_ECV <— 3.58 # ECV of Wan for n=512

for (i in 1:N)
{ X <— rnorm(n) # generate data under HO

average <— mean(x) # compute sample mean
var <— mean((x—average ) 2)
# compute sample autocovariance at h=0

rho <— rep(0,n-1)
# compute sample autocorrelations
for (h in 1:(n-1))
{ for (t in (h+1):n)
{ rho[h] <— rho[h] + (x[t]—average)
x(x[t—h]—average)
}

rho[h] <— rho[h]/n
rho[h] <— rho[h]/var
}

rm(h)

alpha <— matrix(rep(0,J*2"J) ,nrow=J,ncol=2"J)
# initiate wavelet coefficients
# and record them in matrix “alpha”
for (j in 1:J)

{ for (k in (27°(j —1)):(27j-1))
{ for (h in 1:(n-1))
{ alpha[j,k] <— alphal[j,k] +

100



rho[h]*sin(2xpixh/(2°j)*(1/2+k))
*(sin(2xpixh/(2°(j+2))))"2/(2* pixh)

}
alpha[j,k] <— alphal[j,k]*2"(j/2+3)
/sqrt(2*pi)
}

}
rm(j)
rm(k)
rm(h)

alpha_half <— unmatrix (alpha, byrow=TRUE)
alpha_half <— as.vector(alpha_half)

# convert matrix “alpha” into

# a vector named “alpha_half”

alpha_half <— alpha_half[alpha_half != 0]
# remove zeros from ”alpha_half”

V <~ rep(0,n/2-1)

# scan through all the values

# by recording them into V

# to find the maximum

# and let it be the test statistic
for (j in 1:(n/2-2))

{ temp <— alpha_half
for (k in (j+1):(n/2-1))
{ temp[k] <— 0
}

VIj] <= ((2xpixn)*sum(temp"2)—j)/sqrt(2xj)
}
V[n/2-1] <— ((2xpi*n)*xsum(alpha_half"2)
—(n/2 —-1))/sqrt(2x(n/2-1))
rm(j)
rm(k)

m<— (1:(n/2—-1))[V==max (V)]
# find the location of where max is derived

T[1] <— sqrt(2xlog(log(n/2—1)))*V[m]
—(2xlog(log(n/2 -1))+0.5xlog(log(log(n/2 —1)))
—0.5xlog (4% pi))

# compute test statistic Wan

# and write it into vector T
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level ACV <— mean((T > t_ACV))
# level of Wan using ACV

level_ ECV <— mean((T > t.ECV))
# level of Wan using ECV
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#H#HHBHHBRH R computing power of Qm  ######H#H#H##HH###H
HIHHF R R R R R R R

N <- 4000 ### number of simulation

n <— 256 ### sample size

Q <~ rep(0,N) ### initiate N=2000 Qm’s under HIl

m<— 1 ### window length of Qm

c <— 3.84 ### ACV of Qm when m=1

#c <— 3.83 ### ECV of Qm when m=1 for n=256

#c <— 3.85 ### ECV of Qm when m=1 for n=512

#c <— 5.99 ### ACV of Qm when m=2

#c <— 5.94 ### ECV of Qm when m=2 for n=256

#ic <— 6.01 ### ECV of Qm when m=2 for n=512

#c <— 7.81 ### ACV of Qm when m=3

#c <— 7.83 ### ECV of Qm when m=3 for n=256

#c <— 7.76 ### ECV of Qm when m=3 for n=512

for (i in 1:N)

{ X <— arima.sim(list(order=c(1,0,0), ar=0.2), n)
# AR(1)

#x <— arima.sim(list (order=c(1,0,0), ar=0.1), n)
# AR(1)

#x <— arima.sim(list (order=c(4,0,0),
ar=c(rep(0,3),0.3)), n)
# AR(4)

#x <— arima.sim(list (order=c(4,0,0),
ar=c(rep(0,3),0.2)), n)
# AR(4)

#x <— arima.sim(list (order=c(13,0,0),
ar=c(0.2,rep(0,10),0.3,-0.06)), n)
# ARMA(1,0)x(1,0)12

#x <— arima.sim(list (order=c(13,0,0),
ar=c(0.1,rep(0,10),0.2,-0.02)), n)
# ARMA(1,0)x(1,0)12

#x <— arima.sim(list (order=c(12,0,1),
ar=c(rep(0,11),0.3), ma=0.2), n)
# ARMA(0,1)*(1,0)12
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#x <— arima.sim(list(order=c(12,0,1),
ar=c(rep(0,11),0.2), ma=0.1), n)
# ARMA(0,1)*(1,0)12

#x <— arima.sim(list (order=c(12,0,0),
ar=c(rep(0,11),0.4)), n)
# AR(12)

#X <— arima.sim(list(order=c(12,0,0),
ar=c(rep(0,11),0.3)), n)
# AR(12)

#x <— arima.sim(list (order=c(24,0,0),
ar=c(rep(0,11),0.3,rep(0,11),0.2)), n)
# ARMA(0,0)%(2,0)12

#x <— arima.sim(list (order=c(24,0,0),
ar=c(rep(0,11),0.2,rep(0,11),0.1)), n)
# ARMA(0,0)*(2,0)12

#x <— arima.sim(list (order=c(12,0,12),
ar=c(rep(0,11),0.3), ma=c(rep(0,11),0.2)), n)
# ARMA(0,0)x(1,1)12

#x <— arima.sim(list(order=c(12,0,12),
ar=c(rep(0,11),0.2), ma=c(rep(0,11),0.1)), n)
# ARMA(0,0)x(1,1)12

r <— rep(0,m)
# compute sample autocorrelations
for (k in 1:m)

{ for (t in (k+1):n)
{ r[k] <— r[k] + x[t]*x[t=k]
}
rfk] < r[k]/sum(x"2)

}

rm(k)

rm(t)

for (k in 1:m)
{ Qli] <= Q[il]+ (r[k]"2)/(n—k)

}
rm(k)

Q[i] <= n*x(n+2)*Q[1i]
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# compute Qm
}

power <— mean((Q > c))
# compute power of Qm
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HHHHRBHHH R HHBRHHHHH R R R R AR RS RS #
#HHHHHHHAR A computing power of Kn  ###############
HHHHRBHHH B H BB R R

N <- 4000 # number of simulation
n <— 256 # sample size
pnl <— 6 # parameter pnl for n=256
pn2 <~ 9 # parameter pn2 for n=256
pn3 <— 16 # parameter pn3 for n=256
#pnl <— 6 # parameter pnl for n=512
#pn2 <— 10 # parameter pn2 for n=512
#pn3 <— 19 # parameter pn3 for n=512
Ml <— rep(O,N) # initiate N=2000 Kn’s using pnl under HI
M2 <— rep(O,N) # initiate N=2000 Kn’s using pn2 under HI
M3 <— rep(O,N) # initiate N=2000 Kn’s using pn3 under HIl
c <— 1.645 # ACV of Kn
cl <—- 1.94 # ECV of Kn using pnl and n=256
c2 <- 1.92 # ECV of Kn using pn2 and n=256
c3 < 1.90 # ECV of Kn using pn3 and n=256
#cl <— 2.00 # ECV of Kn using pnl and n=512
#c2 <— 1.98 # ECV of Kn using pn2 and n=512
#c3 <— 1.94 # ECV of Kn using pn3 and n=512
for (i in 1:N)
{ X <— arima.sim(list (order=c(1,0,0), ar=0.2), n)
# AR(1)

#x <— arhna.shn(list(orderéc(l,0,0), ar=0.1), n)
# AR(1)

#x <— arima.sim(list (order=c(4,0,0),
ar=c(rep(0,3),0.3)), n)
# AR(4)

#x <— arima.sim(list (order=c(4,0,0),
ar=c(rep(0,3),0.2)), n)
# AR(4)

#x <— arima.sim(list (order=c(13,0,0),
ar=c(0.2,rep(0,10),0.3,-0.06)), n)
# ARMA(1,0)*x(1,0)12

#Xx <— arima.sim(list (order=c(13,0,0),
ar=c(0.1,rep(0,10),0.2,-0.02)), n)
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# ARMA(1,0)x(1,0)12

#x <— arima.sim(list(order=c(12,0,1),
ar=c(rep(0,11),0.3), ma=0.2), n)
# ARMA(0,1)*(1,0)12

#x <— arima.sim(list(order=c(12,0,1),
ar=c(rep(0,11),0.2), ma=0.1), n)
# ARMA(0,1)x(1,0)12

#Xx <— arima.sim(list(order=c(12,0,0),
ar=c(rep(0,11),0.4)), n)
# AR(12)

#x <— arima.sim(list(order#c(12,0,0),
ar=c(rep(0,11),0.3)), n)
# AR(12)

#X <— arima.sim(list(order=c(24,0,0),
ar=c(rep(0,11),0.3,rep(0,11),0.2)), n)
# ARMA(0,0)*(2,0)12

#Xx <— arima.sim(list (order=c(24,0,0),
ar=c(rep(0,11),0.2,rep(0,11),0.1)), n)
# ARMA(0,0)%(2,0)12

#x <— arima.sim(list (order=c(12,0,12),
ar=c(rep(0,11),0.3), ma=c(rep(0,11),0.2)), n)
# ARMA(0,0)x(1,1)12

#x <— arima.sim(list (order=c(12,0,12),
ar=c(rep(0,11),0.2), ma=c(rep(0,11),0.1)), n)
# ARMA(0,0)*(1,1)12

average <— mean(x) # compute sample mean
gamma <— rep(0,n—1)
# initiate sample autocovariances
for (j in 1:(n-1))
# compute sample autocovariances
{ for (t in (abs(j)+1):n)
{ gammal[j] <— gammalj] +
(x[t]—average )*(x[t—abs(j)]—average)
}
}

gamma <— gamma/n
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gamma(0 <— mean ((x—average)”"2)

r <— gamma/gamma0

# compute sample autocorrelations
rm(j)

rm(t)

kappa <— function(z)

# define Daniell kernel function
{ sin(pi*xz)/(pix*z)

}

C<-0

# compute the second term in the numerator of Kn
for (j in 1:(n-1))

{ C<—C+ (1—j/n)*(kappa(j/pnl))"2

} .

rm(j)

D<-0

# compute the denominator of Kn

for (j in 1:(n-2))

{ D<— D+ (1—j/n)x(1—(j+1)/n)
*(kappa(j/pnl))~4

}

m(j)

temp <— 0

for(j in 1:(n-1))

{ temp <— temp + (kappa(j/pnl)*r[j])"2
}

temp <— tempx*n

rm(j)

Mi[i] <— (temp — C)/sqrt(2xD)

# compute Kn using pnl

C<-0

for (j in 1l:(n—-1))

{ C<~C+ (1—j/n)x(kappa(j/pn2))"2
}

rm(j)

D<-0

for (j in 1:(n-2))

{ D<—D+ (I-j/n)*(1 —=(j+1)/n)

x(kappa(j/pn2))°4
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}

rm(j)

temp <— 0

for(j in 1:(n-1))

{ temp <— temp + (kappa(j/pn2)*r[j])"2
}

temp <— tempx*n
mm ()
M2{i] <— (temp — C)/sqrt(2xD)

C<-0

for (j in 1:(n-1))

{
}

rm(j)

D<-0
for (j

{
}

rm( j )

C<—C+ (1-j/n)x(kappa(j/pn3))"2

in 1:(n-=2))
D<—D+ (I-j/n)*x(1—(j+1)/n)
x(kappa(j/pn3))°4

temp <— 0
for(j

{
}

in 1:(n-1))
temp <— temp + (kappa(j/pn3)xr{j])"2

temp <— tempx*n
rm(j)
M3[i] <— (temp — C)/sqrt(2xD)

}

powerl _ACV
# power of

power2 ACV
# power of

power3_ACV
# power of

powerl _ECV
# power of

mean((M1 > ¢))
using ACV and pnl

mean((M2 > c))
using ACV and pn2

mean((M3 > ¢))
using ACV and pn3

mean((Ml > cl1))
using ECV and pnl
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power2 ECV <— mean((M2 > ¢2))
# power of Kn using ECV and pn2

power3_ECV <— mean((M3 > ¢3))
# power of Kn using ECV and pn3
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computing power

of Wn  ##############4#

HHARRHHHHERFHH R BB R R R

library (gdata)

N <- 4000 # number of simulation
n <- 256 # sample size
J <— log2(n)—1 # number of resolution levels
# for wavelet coefficients

Jn2 <— 2 # parameter of Wn
Jn3 <- 3 # parameter of Wn
Jn4 <— 4 # parameter of Wn
Wn2 <— rep(0O,N) # initiate N=2000 Wn’s using Jn2 under Hl
Wn3 <— rep(0O,N) # initiate N=2000 Wn’s using Jn3 under HI
Wn4 <— rep(0,N) # initiate N=2000 Wn’s using Jn4 under HI
t_acv <— 1.645 # ACV of Wn
t2_ecv <— 1.56 # ECV of Wn using Jn2 for n=256
t3_ecv <— 1.55 # ECV of Wn using Jn3 for n=256
t4_ecv <— 1.48 # ECV of Wn using Jn4 for n=256
#t2_ecv <— 1.59 # ECV of Wn using Jn2 for n=512
#t3_ecv <— 1.58 # ECV of Wn using Jn3 for n=512
#t4_ecv <— 1.57 # ECV of Wn using Jn4 for n=512
for (i in 1:N)
{ X <— arima.sim(list (order=c(1,0,0), ar=0.2), n)

# AR(1)

#x <— arima.sim(list (order=c(1,0,0), ar=0.1), n)

# AR(1)

#x <— arima.sim(list (order=c(4,0,0),
ar=c(rep(0,3),0.3)), n)

# AR(4)

#x <— arima.sim(list (order=c(4,0,0),
ar=c(rep(0,3),0.2)), n)

# AR(4)

#x <— arima.sim(list (order=c(13,0,0),
ar=c(0.2,rep(0,10),0.3,-0.06)), n)
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# ARMA(1,0)*(1,0)12

#x <— arima.sim(list (order=c(13,0,0),
ar=c(0.1,rep(0,10),0.2,-0.02)), n)
# ARMA(1,0)x(1,0)12

#x <— arima.sim(list(order=c(12,0,1),
ar=c(rep(0,11),0.3), ma=0.2), n)
# ARMA(0,1)x(1,0)12

#x <— arima.sim(list(order=c(12,0,1),
ar=c(rep(0,11),0.2), ma=0.1), n)
# ARMA(O0,1)*(1,0)12

#x <— arima.sim(list (order=c(12,0,0),
ar=c(rep(0,11),0.4)), n)
# AR(12)

#x <— arima.sim(list(order=c(12,0,0),
ar=c(rep(0,11),0.3)), n)
# AR(12)

#x <— arima.sim(list(order=c(24,0,0),
ar=c(rep(0,11),0.3,rep(0,11),0.2)), n)
# ARMA(0,0)%(2,0)12

#x <— arima.sim(list (order=c(24,0,0),
ar=c(rep(0,11),0.2,rep(0,11),0.1)), n)
# ARMA(0,0)*(2,0)12

#x <— arima.sim(list(order=c(12,0,12),
ar=c(rep(0,11),0.3), ma=c(rep(0,11),0.2)), n)
# ARMA(0,0)x(1,1)12

#x <— arima.sim(list(order=c(12,0,12),
ar=c(rep(0,11),0.2), ma=c(rep(0,11),0.1)), n)
# ARMA(0,0)*x(1,1)12

average <— mean(Xx) # compute sample mean
var <— mean((x—average)"2)
# compute sample autocovariance at h=0

rho <— rep(0,n—-1)
# compute sample autocorrelations

for (h in 1:(n—-1))
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{ for (t in (h+1):n)
{ rho[h] <— rho[h] + (x[t]—average)
x(x[t—h]—average)
}

rho[h] <— rho[h]/n
rho[h] <— rho[h]/var

}
rm(h)

alpha <— matrix(rep(0,J%2"J),nrow=J,ncol=2"J)
# initiate wavelet coefficients
# and record them in matrix “alpha”
for (j in 1:7J)

{ for (k in 1:(27j))
{ for (h in 1:(n-1))
{ alpha[j,k] <— alpha[j,k] +

rtho[h]xsin(2xpixh/(27j)*(1/2+k))

*(sin (2xpixh/(2°(j+2))))"2/(2* pixh)

}

alpha[j,k] <— alphal[j,k]*2"(j/2+3)
/sqrt(2%pi)

}
}
m(j)
rm(k)
rm(h)
temp <— 0

# initiate temp and use it to compute the summation
# of alpha[j,k]"2 from level 1 to level JIn
for (j in 1:Jn2)

{ for (k in 1:(27j))
{ temp <— temp + alphal[j,k]xalphal[j, k]
}

}

Wn2{i] <— (2xpixnxtemp—2"(Jn2+1)+1)/sqrt(2°(In2+3)—4)
# compute test statistic Wn using Jn2
# and write it into vector Wn2

temp <— 0

for (j in 1:Jn3)

{ for (k in 1:(27j))
{ temp <— temp + alphal[j,k]xalphal[j,h k]
}

}
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Wn3[i] <— (2xpixnxtemp—2"(Jn3+1)+1)/sqrt(2°(Jn3+3)—4)

temp <— 0
for (j in 1:Jn4)

{

}

Wnd[i] <— (2xpi*nxtemp—2"(Jnd+1)+1)/sqrt (2°(Jnd+3)—4)

}

power2_acv
# power of

power3_acv
# power of

power4_acv
# power of

power2._ecv
# power of

power3_ecv
# power of

poweré4_ecv
# power of

for (k in 1:(27j))

{ temp <— temp + alpha[j,k]xalpha[j,hk]

}

mean ((Wn2 > t_acv))
using ACV and Jn2

mean((Wn3 > t_acv))
using ACV and Jn3

mean((Wnd4 > t_acv))
using ACV and Jn4

mean ((Wn2 > t2_ecv))
using ECV and Jn2

mean ((Wn3 > t3_ecv))
using ECV and Jn3

mean ((Wnd > t4_ecv))
using ECV and Jn4
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library (gdata)

N <— 4000 #
n <— 256 #
J <~ log2(n)—1 #

#
c <— 1 #
dl < 2 #
d2 <— 2.5 #

Tl <— rep(0,N)
# initiate N=2000
T2 <— rep(0,N)
# initiate N=2000

number of simulation
sample size

number of resolution levels
for wavelet coefficients

parameter for Tn
parameter for Tn
parameter for Tn

¢
Tn’s using c=1, di=2 under HI

Tn’s using c=1, d2=2.5 under HI

t <— 1.645 # ACV of Tn
tl <— 3.07 # ECV of Tn using c=1, d1=2 and n=256
t2 <— 2.67 # ECV of Tn using c=1, d1=2.5 and n=256
#tl <— 3.55 # ECV of Tn using c=1, d1=2 and n=512
#12 <— 2.97 # ECV of Tn using c=1, d1=2.5 and n=512
for (i in 1:N)
{ X <— arima.sim(list (order=c(1,0,0), ar=0.2), n)
# AR(1)
#x <— arima.sim(list(order=c(1,0,0), ar=0.1), n)

# AR(1)

#x <— arima.sim(list(order=c(4,0,0),
ar=c(rep(0,3),0.3)), n)

# AR(4)

#x <— arima.sim(list (order=c(4,0,0),
ar=c(rep(0,3),0.2)), n)

# AR(4)

#x <— arima.sim(list (order=c(13,0,0),
ar=c(0.2,rep(0,10),0.3,-0.06)), n)
# ARMA(1,0)x(1,0)12
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#Xx <— arima.sim(list(order=c(13,0,0),
ar=c(0.1,rep(0,10),0.2,-0.02)), n)
# ARMA(1,0)x(1,0)12

#x <— arima.sim(list (order=c(12,0,1),
ar=c(rep(0,11),0.3), ma=0.2), n)
# ARMA(0,1)x(1,0)12

#Xx <— arima.sim(list (order=c(12,0,1),
ar=c(rep(0,11),0.2), ma=0.1), n)
# ARMA(0,1)x(1,0)12

#x <— arima.sim(list (order=c(12,0,0),
ar=c(rep(0,11),0.4)), n)
# AR(12)

#x <— arima.sim(list (order=c(12,0,0),
ar=c(rep(0,11),0.3)), n)
# AR(12)

#x <— arima.sim(list (order=c(24,0,0),
ar=c(rep(0,11),0.3,rep(0,11),0.2)), n)
# ARMA(0,0)x(2,0)12

#x <— arima.sim(list (order=c(24,0,0),
ar=c(rep(0,11),0.2,rep(0,11),0.1)), n)
# ARMA(0,0)x(2,0)12

#x <— arima.sim(list(order=c(12,0,12),
ar=c(rep(0,11),0.3), ma=c(rep(0,11),0.2)), n)
# ARMA(0,0)*(1,1)12

#Xx <— arima.sim(list (order=c(12,0,12),
ar=c(rep(0,11),0.2), ma=c(rep(0,11),0.1)), n)
# ARMA(0,0)*(1,1)12

average <— mean(Xx) # compute sample mean
var <— mean((x—average) 2)
# compute sample autocovariance at h=0

rho <— rep(0,n—-1)

# compute sample autocorrelations
for (h in 1:(n-1))

{ for (t in (h+1):n)
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{ rho[h] <- rho[h] + (x[t]—average)
x(x[t—h]—average)
}

rho[h] <~ rho[h]}/n
rho[h] <— rho[h]/var

}
rm(h)

alpha <— matrix (rep(0,J%2"J),nrow=J,ncol=2"J)
# initiate wavelet coefficients
# and record them in matrix “alpha”
for (j in 1:J)

{ for (k in (27°(j —1)):(27j 1))
{ for (h in 1:(n-1))
{ alpha[j,k] <— alphal[j,k] +

rho[h]xsin(2xpixh/(27j)*(1/2+k))

*(sin(2xpixh/(27°(j+2))))"2/(2x pixh)

}

alpha(j.,k] <— alphalj,k]*2"(j/2+3)
/sqrt(2*p1)

}

rm(j)
rm(k)
rm(h)

alpha_half <— unmatrix (alpha, byrow=TRUE)
# convert matrix “temp” into

# a vector named “alpha_half”

alpha_half <— alpha_half[alpha_half != 0]
# remove zeros from “alpha_half”

anl <— cx(log(n/2))"((=1)xdl)

deltal <— sqrt(2xlog(anl*n/2))

mul <— (2xpi)"(—-1/2)xanl"(—1)xdeltal
x(1+deltal "(—2))

varl <— (2xpi)"(—1/2)xanl”"(—1)xdeltal "3
x(1+3xdeltal "(—-2))

temp <— alpha_halfx(abs(sqrt(2xpixn)xalpha_half)
> deltal)

TI[i] <— (2xpi*nxsum(temp”2) — mul)/sqrt(varl)

# compute test statistic T1 using c=1, di=2

rm(temp)
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an2 <— cx*(log(n/2))"((—-1)xd2)

delta2 <— sqrt(2xlog(an2xn/2))

mu2 <— (2xpi)"(—1/2)xan2”(—1)*xdelta2
x(1+delta2 "(-2))

var2 <— (2xpi)"(—1/2)xan2"(—1)xdelta2"3
x(1+3xdelta2 "(-2))

temp <— alpha_halfx*(abs(sqrt(2xpi*n)*xalpha_half)
> delta2)

T2{1] <— (2« pi*nxsum(temp”2) — mu2)/sqrt(var2)

# compute test statistic T2 using c=1, d2=2.5

rm(temp)

}

powerl ACV <— mean((T1 > t))
# power of Tn using ACV and c=1, di=2

power2 ACV <— mean((T2 > t))
# power of Tn using ACV and c=1, d1=2.5

powerl _ECV <— mean((T1 > tl1))
# power of Tn using ECV and c=1, di=2

power2_ECV <— mean((T2 > t2))
# power of Tn using ECV and c=1, d1=2.5
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library (
N <- 400
n <— 256

J <— log

T <— rep

gdata)
0 # number of simulation
# sample size

2(n)—1 # number of resolution levels
# for wavelet coefficients

(0,N) # initiate N=2000 Wan’s under HI1

t_ACV <— 2.97 # ACV of Wan
t_ ECV <— 3.70 # ECV of Wan for n=256
#t_ECV «<— 3.58 # ECV of Wan for n=512

for (i in 1:N)

{

X <— arima.sim{(list (order=c(1,0,0), ar=0.2), n)
# AR(1)

#x <— arima.sim(list (order=c(1,0,0), ar=0.1), n)
# AR(1)

#x <— arima.sim(list (order=c(4,0,0),
ar=c(rep(0,3),0.3)), n)
# AR(4)

#x <— arima.sim(list(order=c(4,0,0),
ar=c(rep (0,3),0.2)), n)
# AR(4)

#x <— arima.sim(list (order=c(13,0,0),
ar=c(0.2,rep(0,10),0.3,-0.06)), n)
# ARMA(1,0)x(1,0)12

#x <— arima.sim(list(order=c(13,0,0),
ar=c(0.1,rep(0,10),0.2,-0.02)), n)
# ARMA(1,0)x(1,0)12

#x <— arima.sim(list(order=c(12,0,1),

ar=c(rep(0,11),0.3), ma=0.2), n)
# ARMA(0,1)x(1,0)12
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#x <— arima.sim(list(order=c(12,0,1),
ar=c(rep(0,11),0.2), ma=0.1), n)
# ARMA(O,1)x(1,0)12

#x <— arima.sim(list (order=c(12,0,0),
ar=c(rep(0,11),0.4)), n)
# AR(12)

#x <— arima.sim(list (order=c(12,0,0),
ar=c(rep(0,11),0.3)), n)
# AR(12)

#x <— arima.sim(list (order=c(24,0,0),
ar=c(rep(0,11),0.3,rep(0,11),0.2)), n)
# ARMA(0,0)*(2,0)12

#Xx <— arima.sim(list (order=c(24,0,0),
ar=c(rep(0,11),0.2,rep(0,11),0.1)), n)
# ARMA(0,0)%(2,0)12

#x <— arima.sim(list (order=c(12,0,12),
ar=c(rep(0,11),0.3), ma=c(rep(0,11),0.2)), n)
# ARMA(0,0)x(1,1)12

#x <— arima.sim(list(order=c(12,0,12),
ar=c(rep(0,11),0.2), ma=c(rep(0,11),0.1)), n)
# ARMA(0,0)*(1,1)12

average <— mean(x) # compute sample mean
var <— mean((x—average) 2)
# compute sample autocovariance at h=0

rho <— rep(0,n-1)
# compute sample autocorrelations
for (h in 1:(n-1))
{ for (t in (h+1):n)
{ rho[h] <— rho[h] + (x[t]—average)
x(x[t—h]—average)
}

rho[h] <— rho[h]/n
rho[h] <— rho[h]/var

}
rm(h)
alpha <— matrix(rep(0,J%2°J),nrow=J,ncol=2"])
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# initiate wavelet coefficients
# and record them in matrix “alpha”
for (j in 1:])

{ for (k in (27°(j—1)):(27j—1))
{ for (h in 1:(n-1))
{ alpha[j,k] <— alpha[j,k] +

rtho[h]*sin(2xpixh/(2"j)*(1/2+k))
x(sin(2xpixh/(27(j+2))))"2/(2* pixh)

}
alpha[j,k] <— alpha[j,k]}*x27(j/2+3)
/sqrt(2x*pi)
}

}
rm(j)
rm (k)
rm(h)

alpha_half <— unmatrix (alpha, byrow=TRUE)
alpha_half <— as.vector(alpha_half)

# convert matrix “alpha” into

# a vector named “alpha_half”

alpha_half <— alpha_half[alpha_half != 0]
# remove zeros from “alpha_half”

V <~ rep(0,n/2-1)
# scan through all the values
# by recording them into V
# to find the maximum
# and let it be the test statistic
for (j in 1:(n/2-2))
{ temp <— alpha_half
for (k in (j+1):(n/2-1))
{ temp[k] <— O
}
VI[j] <= ((2xpi*n)*sum(temp 2)—j)/sqrt(2x*j)
}
V[n/2—-1] <— ((2xpixn)*sum(alpha_half"2)
—(n/2 —-1))/sqrt(2x(n/2-1))
rm(j)
rm(k)

m<— (1:(n/2—-1))[V==max (V)]

# find the location of where max is derived

T[i] <— sqrt(2+log(log(n/2—-1)))*V[m]
—(2xlog(log(n/2-1))+0.5xlog(log(log(n/2-1)))
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—0.5xlog (4xpi))
# compute test statistic Wan
# and write it into vector T

}

power ACV <— mean((T > t_ACV))
# power of Wan using ACV

power . ECV <— mean((T > t_.ECV))
# power of Wan using ECV
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