
University of New Hampshire
University of New Hampshire Scholars' Repository

Doctoral Dissertations Student Scholarship

Fall 2012

Transferring big data across the globe
Adam H. Villa
University of New Hampshire, Durham

Follow this and additional works at: https://scholars.unh.edu/dissertation

This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has
been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more
information, please contact nicole.hentz@unh.edu.

Recommended Citation
Villa, Adam H., "Transferring big data across the globe" (2012). Doctoral Dissertations. 680.
https://scholars.unh.edu/dissertation/680

https://scholars.unh.edu?utm_source=scholars.unh.edu%2Fdissertation%2F680&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/dissertation?utm_source=scholars.unh.edu%2Fdissertation%2F680&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/student?utm_source=scholars.unh.edu%2Fdissertation%2F680&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/dissertation?utm_source=scholars.unh.edu%2Fdissertation%2F680&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/dissertation/680?utm_source=scholars.unh.edu%2Fdissertation%2F680&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:nicole.hentz@unh.edu

TRANSFERRING BIG DATA ACROSS THE GLOBE

BY

ADAM H. VILLA

B.A. Wheaton College, Norton, MA, 2003

DISSERTATION

Submitted to the University of New Hampshire

in Partial Fulfillment of

the Requirements for the Degree of

Doctor of Philosophy

in

Computer Science

September, 2012

UMI Number: 3533710

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

OiSi«Wior» Ftattlisttlfl

UMI 3533710

Published by ProQuest LLC 2012. Copyright in the Dissertation held by the Author.
Microform Edition © ProQuest LLC.

All rights reserved. This work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

This dissertation has been examined and approved.

L~lU- y i In Q.X V

Dissertation director. Dr. Elizabeth Varki
Associate Professor of Computer Science

Dr. Radim Bartos
Associate Professor of Computer Science

J£k.+0.

Dr. Robert Russell
Associate Professor of Computer Science

I < j j Y / f r w i u

Dr. Eleanne Solorzano
Associate Professor of Statistics

- .0
-J.

Dr. Ted M. Sparr /
Professor of Computer Science

[b X /' ' A.U I 2—
Date ::j

This thesis is dedicated to my parents.

I am forever grateful for their endless love, support and guidance.

143

iii

ACKNOWLEDGEMENTS

Foremost, I would like to express my sincere gratitude to my advisor Professor

Elizabeth Varki for her support of my Ph.D study and for her motivation and en

thusiasm. Her guidance and encouragement helped through my graduate studies.

Without her help, this dissertation would not be possible.

Besides my advisor, I would like to thank the rest of my dissertation committee:

Professor Radim Bartos, Professor Eleanne Solorzano, Professor Ted Sparr, and Pro

fessor Robert Russell, for their insightful comments and guidance. I would also like

to thank my professors who have supported and guided me throughout my graduate

studies: Professor James Weiner, Professor Pilar de la Torre, and Professor Philip

Hatcher.

My sincere thanks also go to Petr Brym and Tony Borgado for their immense

assistance with my study of the campus network. I would also like to thank Mike

Hagen and the Interoperability Laboratory at UNH for aiding my research throughout

the years.

Without the support of my family and friends, I would not have reached this point

in my life. Thank you Katie for your endless encouragement and support.

I would also like to acknowledge the following support that I received from the

University of New Hampshire: Dissertation Year Fellowship (2010), College of En

gineering and Physical Science Graduate Teaching Achievement Award (2007), and

Summer Teaching Assistant Fellowships (2006, 2008).

iv

TABLE OF CONTENTS

DEDICATION iii

ACKNOWLEDGEMENTS iv

LIST OF FIGURES viii

ABSTRACT xiii

CHAPTER

I. Introduction 1

1.1 Research road map 2

II. Big Data: Creation and Management 7

2.1 Big Data Management 8
2.2 Grids 12
2.3 Grid Middleware 14
2.4 Data Movement 15
2.5 Replication 17
2.6 Replica Selection 19

III. Parallel Transfer Techniques 22

3.0.1 Basic Technique 22
3.0.2 Predictive Techniques - History Based 23
3.0.3 Predictive Techniques - Network Weather Service and

Probes 24
3.0.4 Dynamic Techniques - Equal Request Sizes 26
3.0.5 Dynamic Techniques - Varying Request Sizes 27
3.0.6 Dynamic Techniques - Preemptive Measures 29
3.0.7 Peer-to-Peer Techniques 32

3.1 Parallel transmission techniques used on the Internet 34

v

3.2 Key Concepts of Parallel Transfer Techniques 36

IV. Preliminary work 40

4.1 Replica Traffic Manager 40
4.2 Simulating multi-user parallel data transfers 41
4.3 Impacting users with parallel transfers 42

V. Live evaluations of parallel transfers 45

5.1 Experiments and Observations 46
5.1.1 Normal Data Retrieval 47
5.1.2 Advanced Data Retrieval 48

5.2 Issues and Challenges 55
5.3 Impacting other users 57

VI. Examining the campus network and its user workloads ... 60

6.1 Campus network configuration 62
6.2 Bandwidth usage 64
6.3 Internet application workloads 67
6.4 Increasing bandwidth 72
6.5 Summary 76

VII. Feasibility of big data transfers on the campus network ... 79

7.1 Campus Network 81
7.2 Traffic on the Campus Network 81
7.3 Impact of Big Data Transmissions 82
7.4 Potential and Limitations 82

VIII. Nice model for big data transfers . 85

8.1 Platform 86
8.1.1 Performance metrics 88

8.2 Nice model 89
8.3 Parallel model 92
8.4 Related work: Data transfers over the Internet 93
8.5 Summary 95

IX. Evaluating the nice model for big data transfers 97

9.1 Transmission time (TT as TimeDiff and InitiateTime varies): . 98
9.2 Response time (RT as TimeDiff and InitiateTime varies): ... 119
9.3 Bandwidth differential between sender and receiver: 119

vi

9.4 Summary 120

X. Analysis of Evaluations 125

10.0.1 Nice 126
10.0.2 Parallel 128
10.0.3 Summary 129

XI. Conclusions and Future Work 131

11.1 Future Work: CargoExchange application 132

BIBLIOGRAPHY 135

vii

LIST OF FIGURES

Figure

2.1 Size of CERN LHC experimental data sets over the past 16 months.
The total disk and tape storage amounts aggregated for all tier-1
locations in the CERN grid 9

2.2 CERN's WLCG Tiered Replica Structure (5) 10

2.3 WLCG Tier-1 and Tier-2 Connections (84) 11

5.1 Variations in user transfer rates when retrieving a 1MB file from a
remote server over the course of several weeks 47

5.2 Normal Data Retrieval: Service times (minutes) for each server when
retrieving the entire 30GB data file independently 48

5.3 Advanced Data Retrieval - Brute Force Technique: Service times
(minutes) for each server when retrieving equal 1GB portions of the
30GB data file 50

5.4 Advanced Data Retrieval - Performance-based Technique: Total ser
vice time (minutes) for the file transfer as the number of servers
concurrently used increases 52

5.5 Transfer rates for the fastest server connection observed, as the num
ber of servers concurrently used increases 53

5.6 Incremental Distributed File Retrieval: Changes in service time (min
utes) as the user's retrieval capacity approaches its maximum utiliza
tion 54

5.7 Comparison of service times (minutes) for all data retrieval techniques
observed 55

viii

5.8 Bandwidth usage on wide area network connections before, during
and after my evaluations. The shaded regions indicate the time pe
riod during my experiments, (a) - This graph shows bandwidth usage
of the Internet2 connection for a two-week period, (b) - This graph
shows total bandwidth usage of all WAN connections for a two-week
period, (c) - This graph shows total bandwidth usage of all WAN
connections for a four-month period 58

6.1 Network layout for the university network and its connection to the
shared data center in a nearby metropolitan area 62

6.2 Changes in maximum bandwidth consumption over 12 months for
all data passing through all of the university's shared Internet con
nections. Each semester user demand and bandwidth consumption
increases 65

6.3 Changes in the minimum, average and maximum bandwidth usage
(all receiving and transmitting traffic) for a typical week during the
Spring 2011 semester 66

6.4 Changes in the minimum, average and maximum bandwidth usage
(all receiving and transmitting traffic) for a typical day during the
Spring 2011 semester 67

6.5 Total amount of data transferred by the campus network each day. . 68

6.6 Most active protocols utilized on an average day. Protocol usage
by types of users are shown: A) all users, B) faculty/staff users, C)
student users during the daytime and D) student users during the
nighttime 69

6.7 Changes in protocol usage for the most actively used protocols on
campus throughout a typical day 71

6.8 Total amount of data transferred by each application class between
October 2010 and May 2011 for all users on campus 72

6.9 This table lists the total amount of data transferred by application
class between October 2010 and May 2011 for all users on campus. 73

6.10 Changes in bandwidth usage for top applications when the students'
bandwidth is increased 74

8.1 Network utilization and bandwidth availability for each hour of a
typical day 87

ix

8.2 Nice model 90

8.3 Parallel model 92

9.1 Simulator configuration map: The left side of the map represents
that sending campus network and its client/server machines. The
right side of the map represents the receiving campus network and its
client/server machines. The staging server in the middle of the map
is utilized when the sender/receiver networks have non-synchronous
low demand periods 98

9.2 Transmitting a 1 TB data set when TimeDiff = 0 (top graph) and
TimeDiff = 12 (bottom graph) 99

9.3 Transmitting a 1 TB data set when TimeDiff = 0 (top graph) and
TimeDiff = 3 (bottom graph) 100

9.4 Transmitting a 1 TB data set when TimeDiff = 6 (top graph) and
TimeDiff = 9 (bottom graph) 101

9.5 Transmitting a 1 TB data set when TimeDiff = 12 (top graph) and
TimeDiff = 15 (bottom graph) 102

9.6 Transmitting a 1 TB data set when TimeDiff = 18 (top graph) and
TimeDiff = 21 (bottom graph) 103

9.7 Transmission time comparison for transmitting a 1 TB data set using
the parallel model when the time zone difference is between 0-8 hours
(top graph) and 9-12 hours (bottom graph) 105

9.8 Transmission time comparison for transmitting a 1 TB data set using
the parallel model when the time zone difference is between 13-16
hours (top graph) and 17-23 hours (bottom graph) 106

9.9 Transmission time comparison for transmitting a 1 TB data set using
the nice model when the time zone difference is between 0-12 hours
(top graph) and 13-23 hours (bottom graph) 107

9.10 Percentage improvement (max 100%) in transmission time when the
nice model is used instead of the parallel model for time zone differ
ences 0-12 (top graph) and 13-23 (bottom graph) 108

x

9.11 Reduction in transmission time when the nice model is used instead
of the parallel model for time zone differences 0-12 (top graph) and
13-23 (bottom graph) 109

9.12 Comparison of transmission times for the 1 TB data set for both nice
and parallel models under all time zone differences when the request
submission time is 12AM (top graph) and 3AM (bottom graph). . . 110

9.13 Comparison of transmission times for the 1 TB data set for both nice
and parallel models under all time zone differences when the request
s u b m i s s i o n t i m e i s 6 A M (t o p g r a p h) a n d 9 A M (b o t t o m g r a p h) I l l

9.14 Comparison of transmission times for the 1 TB data set for both nice
and parallel models under all time zone differences when the request
submission time is 12PM (top graph) and 3PM (bottom graph). . . 112

9.15 Comparison of transmission times for the 1 TB data set for both nice
and parallel models under all time zone differences when the request
submission time is 6PM (top graph) and 9PM (bottom graph). ... 113

9.16 Comparison of response times for the 1 TB data set for both nice and
parallel models when the time zone differences are 0 (top graph) and
3 (bottom graph) 114

9.17 Comparison of response times for the 1 TB data set for both nice and
parallel models when the time zone differences are 6 (top graph) and
9 (bottom graph) 115

9.18 Comparison of response times for the 1 TB data set for both nice and
parallel models when the time zone differences are 12 (top graph) and
15 (bottom graph) 116

9.19 Comparison of response times for the 1 TB data set for both nice and
parallel models when the time zone differences are 18 (top graph) and
21 (bottom graph) 117

9.20 Percentage improvement (max 100%) in response time when the nice
model is used instead of the parallel model for time zone differences
0-12 (top graph) and 13-23 (bottom graph) 118

9.21 Transmitting a 1 TB data set when TimeDiff = 0 (top graph) and
TimeDiff = 3 (bottom graph) where the receiver has 4 times the
available bandwidth than the sender 121

xi

9.22 Transmitting a 1 TB data set when TimeDiff = 6 (top graph) and
TimeDiff = 9 (bottom graph) where the receiver has 4 times the
available bandwidth than the sender 122

9.23 Transmitting a 1 TB data set when TimeDiff = 12 (top graph) and
TimeDiff = 15 (bottom graph) where the receiver has 4 times the
available bandwidth than the sender 123

9.24 Transmitting a 1 TB data set when TimeDiff = 18 (top graph) and
TimeDiff = 21 (bottom graph) where the receiver has 4 times the
available bandwidth than the sender 124

xii

ABSTRACT

TRANSFERRING BIG DATA ACROSS THE GLOBE

by

Adam H. Villa

University of New Hampshire, September, 2012

Transmitting data via the Internet is a routine and common task for users today. The

amount of data being transmitted by the average user has dramatically increased over

the past few years. Transferring a gigabyte of data in an entire day was normal, how

ever users are now transmitting multiple gigabytes in a single hour. With the influx

of big data and massive scientific data sets that are measured in tens of petabytes,

a user has the propensity to transfer even larger amounts of data. When transfer

ring data sets of this magnitude on public or shared networks, the performance of all

workloads in the system will be impacted.

This dissertation addresses the issues and challenges inherent with transferring

big data over shared networks. A survey of current transfer techniques is provided

and these techniques are evaluated in simulated, experimental and live environments.

The main contribution of this dissertation is the development of a new, "nice" model

for big data transfers, which is based on a store-and-forward methodology instead of

an end-to-end approach. This nice model ensures that big data transfers only occur

when there is idle bandwidth that can be repurposed for these large transfers. The

xiii

nice model improves overall performance and significantly reduces the transmission

time for big data transfers. The model allows for efficient transfers regardless of time

zone differences or variations in bandwidth between sender and receiver. Nice is the

first model that addresses the challenges of transferring big data across the globe.

xiv

CHAPTER I

Introduction

Over the past several years there has been a tremendous increase in the amount

of data being transferred between Internet users. Escalating usage of streaming mul

timedia and other Internet based applications has contributed to this surge in data

transmissions. Another facet of the increase is due to the expansion of Big Data,

which refers to data sets that are an order of magnitude larger than the standard

file transmitted via the Internet. Big Data can range in size from hundreds of giga

bytes to petabytes. Big Data creation and examples of massive data sets are given in

Chapter II.

Today everything is being stored digitally. Within the past decade, everything

from banking transactions to medical history has migrated to digital storage. This

change from physical documents to digital files has necessitated the creation of large

data sets and consequently the transfer of large amounts of data. There is no sign that

the amount of data being stored or transmitted by users is steady or even decreasing.

Every year average Internet users are moving more and more data through their

Internet connections. Depending on the bandwidth of these connections and the size

of the data sets being transmitted, the duration of transfers could potentially be

measured in days or even weeks.

There exists a need for an efficient transfer technique that can move large amounts

1

of data quickly and easily without impacting other users or applications. This dis

sertation presents my work in identifying and solving this problem. The following

section details the journey of my research that led me to study this problem and it

highlights the difficulty in seeing this problem from the beginning.

1.1 Research road map

Identifying the problem of moving large amounts of data across the globe was not

evident at the start of my research. Only after years of study and examination did

I recognize that is this an unsolved problem that will become even more apparent

as users transfers larger amounts of data. My dissertation follows the journey that

I took to identify this stated problem and presents my solution to this data move

ment challenge. The following is a road map to my research and the chapters of my

dissertation.

My research journey began by examining storage systems in grids, the newest

and most popular distributed computing environment at the time. I began my study

of grids by examining their usage and the software/hardware systems utilized to

support their functionality. I focused my study on their storage subsystems and

particularly on their use of data replication. Due to the large number of users utilizing

a grid, data sets needed to be duplicated and distributed throughout the system to

ensure efficient access for the users. Chapter II summarizes my findings on grid

computing and my study of the replication strategies commonly utilized in these

environments. This study is still applicable today since there are many grid systems

actively utilized around the world. Many fundamental grid components are also part

of cloud computing.

After surveying how data replicas are utilized in grid computing, I identified an

issue with the user request process. Due to the distributed nature of the environment,

users are able to request data from any available replica in the system regardless of

2

system state. The performance of a user's request is dependent on the replica selected

and can vary greatly depending on how the replicas are utilized. In Section 4.1,

I present my first foray into grid research, the development of the Replica Traffic

Manager service. This service is designed to improve performance of replicated data

requests by managing all workloads in the system. In my experimental evaluation,

I find that this traffic manager provides improved performance and reliability. This

study however, specifically focuses on only one component of a user's request - that

of storage performance. Transferring the data over shared networks is also a major

factor in servicing users' requests. This initial study opened my eyes to the challenges

of moving large amounts of data.

Examining the applications and techniques utilized for transferring data in grid

and cloud systems became the next focus of my research. Chapter III summaries the

specific applications used for data transfers and the various techniques proposed in

recent literature for utilizing these applications to transfer data as quickly as possible.

These data transmission techniques attempt to grab as much bandwidth as possible by

utilizing multiple transfer streams and possibly multiple replica sources concurrently.

Since these parallel downloads are inherently greedy by their nature, I conducted a

study to examine the performance of a grid system when multiple users simultaneously

utilize these techniques. Using a grid simulator, I was able to simulate multiple user

workloads and observe overall system performance. Section 4.2 presents the details

of this study and my findings, which show that uncontrolled multi-user usage of these

parallel transfers can significantly impact the performance of the system. There needs

to be a way to balance the usage of parallel techniques for fast data transmission and

still maintain a stable environment.

In Section 4.3, I describe experiments evaluating parallel transfer techniques in a

real testing environment in order to understand how these transfer techniques effect

the workloads of other users in the system. This study shows that they can indeed

3

significantly impact the performance of other users/applications. My initial attempt

to reduce the impact of parallel of transfers was to place bandwidth restrictions on

these workloads when the system is under high demand. The system forces the

parallel transfers to wait if they are utilizing too much bandwidth. These restrictions

allowed other users' workloads to gain access to the shared network connections,

which improved their performance. Surprisingly, the transfer times for the parallel

downloads were only minimally impacted by the restrictions. While the study shows

that placing these restrictions reduces the impact of big data transfers, this is not a

viable solution, as it only prolongs the amount of time these transfers are present on

the network. Other solutions needed to be investigated.

After examining the current trend in data transmission in simulated and controlled

testing environments, my research continued by examining the performance of paral

lel transfers in a real, shared system. This study also evaluated the performance of

a new parallel transfer technique that I develop, which dynamically utilizes multiple

replica sources based on the bandwidth availability. Chapter V details my experi

ences conducting live experiments using existing parallel techniques and my dynamic

retrieval technique on the UNH campus network. I found that parallel download

techniques result in varied performance and have the potential for utilizing a signifi

cant portion of the shared network bandwidth for the entire campus. I identified that

my dynamic technique provides the fastest transfer times and utilizes the smallest

number of remote sources. This, however, was not the most significant finding of this

work. The degree of impact that these experiments had on the campus network is

the most surprising and important outcome of this study and led me to examine the

network architecture and its performance in great detail.

Chapter VI presents the findings of my traffic study of the UNH campus network

and the trends that exist in shared networks around the world. From this study, I

determined that the campus network is heavily utilized by thousands of users every

4

day. The applications most commonly used are real time applications that are very

sensitive to changes in network bandwidth. Adding large data transmissions to an

already heavy workload resulted in decreased output for these applications and very

angry users. My next task was to determine whether it was feasible for the campus

network to support these big data transfers. I conducted a feasibility study, described

in Chapter VII, to determine if and how these types of requests could be accommo

dated in a shared system without impacting existing workloads. I found that due to

the human work-sleep schedule there are periods of low usage throughout the course

of a normal day. During these periods, there is available, idle bandwidth that could

be repurposed for conducting big data transfers.

Taking advantage of low demand periods is not trivial, especially since both ends

of a transfer need to have the same level of available bandwidth. Due to differences in

distance and in time zones changes, it is possible that there will never be a common

time when both the sender and receiver have bandwidth available to accommodate big

data transfers. Existing transfer applications and transfer technique do not address

this problem and there is a clear need for a solution. Chapter VIII presents my "nice"

model for big data transmissions across the globe. The nice model utilizes a store-

and-forward approach to data transfers instead of the typical end-to-end methodology

used by the existing parallel model.

In order to show that the nice model provides performance improvements over

the existing parallel method, I conducted experiments using a commercial network

simulator that allowed me to emulate the campus network and its workloads. My

evaluations of the nice model are presented in Chapter IX and they show that the

nice model delivers marked improvements in data transmission times and allows for

efficient use of existing network connections during low demand periods regardless of

time zone differences. Chapter X gives a theoretical analysis of my evaluations and

further shows the improvements provided by the nice model.

5

My conclusions and future work are presented in Chapter XI. The next step

for my research is to develop a system level service that utilizes the nice model and

that allows users to automate big data transfers. In this chapter, I outline some

of the components that would be necessary for this service to be developed and

identify existing technologies that could be utilized to ensure efficient and secure

data transfers.

6

CHAPTER II

Big Data: Creation and Management

Big Data is growing at a tremendous rate. Enormous data sets measured in

terabytes and petabytes are being created everyday. With the growth of Internet

based applications, cloud computing, and data mining, the amount of data being

stored in distributed systems around the world is skyrocketing. In addition to cor

porate/commercial data sets, academic data are also being produced in the similarly

large quantities.

Scientific experiments are creating massive amounts of data that need to be acces

sible to users around the world. Research areas creating this deluge of data include

bioinformatics, particle physics, astronomy and environmental science (49). The size

of data sets created by experiments, simulations, sensors and satellites continues to

grow each year.

To give an example of the size of the data sets utilized by some of these exper

iments, a recent study observed a particle physics experiment (DZero) taking place

at the Fermi Lab research center. While observing the DZero experiment between

January 2003 and May 2005, Iamnitchi et al. (13) analyzed the data usage patterns of

users. They found that 561 users processed more than 5 PB of data with 13 million file

accesses to more than 1.3 million distinct data files. An individual file was requested

by at most 45 different users during the entire analyzed time period (2003 to 2005).

7

In the DZero experiment and many like it, scientists are generating datasets with

an extremely large number of data files. Entire datasets are quite popular amongst

users, however the individual data files in these sets are rarely used concurrently since

they are so numerous.

There are many research initiatives that have similar data demands. The most

popular example today is the Large Hadron Collider at CERN. This experiment is

well known and thousands of researchers in the physics and computer science fields

are involved. The four experiments being conducted on the LHC generate petabytes

of data annually (80; 84). One experiment, ALICE, is can generate data at the rate of

1.25 GB/s (54). Figure 2.1 illustrates the growth in the size of data sets being created

and stored by CERN. This graph shows the total amount of storage (both disk and

tape) utilized by all of the top-level servers in the CERN organization. The amount

of data stored in the system has grown at a steady pace over the past 3 years and

is expected to grow faster now that the intensity of their experiments is increasing,

which will result in more data collection per second (27). Geographically dispersed

researchers eagerly await access to the newest datasets as they become available. The

task of providing and maintaining fast and efficient data access to these users is a

major undertaking. Since the CERN experiments are so well known and many studies

have been conducted on their demands and requirements, I will use the CERN LHC

experiments as a motivating example throughout my research.

2.1 Big Data Management

To meet the computing demands of experiments like CERN's LHC, a specialized

distributed computing environment is needed. Grid computing fits the needs of the

LHC experiments and other similar research initiatives. In Section 2.2, I examine

the definition and usage of grid computing (grids). The software architecture used to

coordinate the functionality of grids is then discussed in Sections 2.3-2.5.

8

CERN - LHC: Total data set size for all Tier-1 sites

120000

100000 I

§ 80000 -i

a 60000 1

40000

20000 -

Figure 2.1: Size of CERN LHC experimental data sets over the past 16 months. The
total disk and tape storage amounts aggregated for all tier-1 locations in
the CERN grid.

The Worldwide LHC Computing Grid (WLCG) was created by CERN in 2001 in

order to facilitate the access and dissemination of experiment data. The goal of the

WLCG is to develop, build, and maintain a distributed computing infrastructure for

the storage and analysis of data from LHC experiments (54). The WLCG is composed

of over a hundred physical computing centers with more than 100,000 processors (5).

Since the data sets produced by the LHC are extremely large and highly desired,

the WLCG utilizes replication to help meet the demands of users. Copies of raw,

processed, and simulated data are made at several locations throughout the grid.

The WLCG utilizes a four-tiered model for data dissemination, shown in Figure

2.2. The original raw data is acquired and stored in the Tier-0 center at CERN. This

data is then forwarded in a highly controlled fashion on dedicated network connections

to all Tier-1 sites. There are eleven Tier-1 sites located in Canada, Germany, Spain,

France, Italy, Nordic countries, Netherlands, Taipei, United Kingdom and USA.

The role of the Tier-1 sites varies according to the particular experiment, but in

general they have the main responsibility for managing the permanent data storage -

9

Figure 2.2: CERN's WLCG Tiered Replica Structure (5)

raw, simulated, and processed data - and providing computational capacity for pro

cessing and analysis (54). The Tier-1 centers are connected with CERN through ded

icated links (Figure 2.3) to ensure high reliability and high-bandwidth data exchange,

but they axe also connected to many research networks and to the Internet (5). The

underlying components of a Tier-1 site consist of online (disk) storage, archival (tape)

storage, computing (process farms), and structured information (database) storage.

Tier-1 sites are independently managed and have pledged specific levels of service to

CERN. It is therefore left to the site's administrators to guarantee that these services

are reliably provided.

Data from Tier-1 sites are forwarded to over 130 Tier-2 sites located around the

world. The network connections between many Tier-1 and Tier-2 sites are still un

der development. Some of those connections are dedicated and others utilize pub

lic/shared networks. These Tier-2 sites provide widespread access to datasets for

researchers. These sites also provide computational capacity and storage services for

10

• Tier-0»le
0 Tier—I ale
B Tier-2 nte
• Router

lOGbp.
3 Gbpc
2.50bpf
iGbpt
622 Mbp*
155 Mfap«
45 Mbf*
33 Mbp.

B Edinburgh
B Durham

; 8 Birmingham
I Cambridge '

F—S ,'B Warwick
J B Oxford

I Swaex j
\ B Brunei
\ ' BQMUL
\ II B RHUL^^K

\ L C U C L >
W -XhllK/SARA

Glugow B
Manchcfter B

Uverpod B
Sheffield B

Lancaster B
Daresbury B M Swaiuea B
Ps. Briftd B

RUSSIAN T2I

Carleton
Toronto B

TRIUMF
Victoria • *e*°rid

B Warwawa
B Krakow

Chicago B
Wticoniin B

Indiana B
••^PURDUE B : Fre»burg\

BRWTH\
B Mainz \
B GS1

^ BMPI/LMU

Eotvo*
TO France

SZTAKI

IFCA^

USC G

CJEMATB

IF1C B

CNAF
JOB

Arlington I Rorida TO India

Catania B B NT|

Le|ll»oB B H Torino
Milano

UNESP B B B WE1ZMANN
B TEL AVIV

NUSTB

VECOSINP

B WE1ZMANN
B TEL AVIV

B HAIFA TIFR

Figure 2.3: WLCG Tier-1 and Tier-2 Connections (84)

Monte Carlo event simulation and for end-user analysis. Any data generated at Tier-2

sites is forwarded back to Tier-1 centers for archival storage.

Other computing facilities in universities and laboratories are able to retrieve

data from Tier-2 sites for personal processing and analysis. These sites constitute

the Tier-3 centers, which are outside the scope of the controlled LCG project and

are individually maintained and governed. Tier-3 sites allow researchers to retrieve,

host, and analyze specific datasets of interest. Freed from the reprocessing and simu

lation responsibilities of Tier-1 and Tier-2 centers, these Tier-3 sites can devote their

resources to their own desired analyses and are allowed more flexibility with fewer

constraints (46). As there are thousands of researchers eagerly waiting for new data

to analyze, many users will find less competition for time and resources at Tier-3 sites

than at the Tier-2 sites.

It is important to note that users connecting to either Tier-2 or Tier-3 sites will use

public, shared network connections, including the Internet. Grid traffic and normal

World Wide Web traffic will both be present on these shared links. A user will also be

11

sharing the site that they access with multiple other users. These factors can affect

the performance of the data transfer between the selected retrieval site and the user.

Retrieving these large data files also places a burden on shared resources and impacts

other grid and non-grid users.

When it comes to retrieving data in the WLCG, a normal user (depending on

their security credentials) can access data on either Tier-2 and Tier-3 sites. The user

would select a desired site and issue a request for a specific data file. Selecting a site

to utilize can be a complicated task and a user's performance is dependent on the

location chosen. I explore several techniques for selecting a replica site in Section 2.6.

2.2 Grids

Grid computing has emerged as a framework for aggregating geographically dis

tributed, heterogeneous resources that enables secure and unified access to computing,

storage and networking resources (40). Grid applications have vast datasets and/or

complex computations that require secure resource sharing among geographically dis

tributed systems. The term "Grid" was inspired by the electrical grid system, where

a user can plug in an appliance to a universal socket and have instant access to power

without knowing exactly where that power was generated or how it came to reach

the socket (40). The vision for grids was similar. A user could simply access as

much computing power as required through a common interface without concern for

who was providing the resources. Currently, grids have not yet reached that level of

simplicity.

Grids offer coordinated resource sharing and problem solving in dynamic, multi-

institutional virtual organizations (41). A virtual organization (VO) comprises a set of

individuals and/or institutions having access to computers, software, data, and other

resources for collaborative problem-solving or other purposes (65). A grid can also

be defined as a system that coordinates resources that are not subject to centralized

12

control, using standard, open, general-purpose protocols and interfaces in order to

deliver nontrivial qualities of service (37).

Data grids, a specialized extension of grid computing, are responsible for providing

the infrastructure and services to access, transfer, and modify massive datasets stored

in distributed storage resources (125). They allow users to access computational and

storage resources in order to execute data-intensive applications on remote data. Data

grids were originally designed with the following principles (30):

• Mechanism neutrality: the data grid is designed to be as independent as possible

of low-level mechanisms

• Policy neutrality: the data grid is structured so that significant design decisions

are explicitly stated and left for the user to modify or implement

• Compatibility with grid infrastructure: the data grid should utilize components

of existing grid infrastructure such as authentication, resource management,

and information services.

• Uniformity of information infrastructure: similar to the grid, the data grid

should have access to uniform information about resource structure and state,

which allows for runtime adaptation to system conditions.

The objective of a data grid system is to integrate heterogeneous data files stored in a

large number of geographically distributed sites into a single virtual data management

system and to provide diverse services to fit the needs of high-performance distributed

and data-intensive computing (125).

CERN's Worldwide LHC Computing Grid (WLCG) is a combination of computa

tion and data grids. It provides a distributed computing infrastructure for the storage

and analysis of data from LHC experiments. In the following section, I examine the

software architecture that enables grids, like the WLCG, to perform their functions.

13

2.3 Grid Middleware

The sharing of resources in a grid is facilitated and controlled by a set of services

that allow resources to be discovered, accessed, allocated, monitored, and accounted

for, regardless of the their physical location (66). Since these services create a layer

between physical resources and applications, they are often referred to as Grid Mid

dleware. Every grid has different service requirements, therefore the architecture and

grid middleware implementation of every grid can vary.

The middleware of many grids is based on the software architecture called the

Globus Toolkit (38). The toolkit is a set of libraries and programs that address

common problems that occur when building distributed system services and appli

cations (8). It provides a set of infrastructure services that implement interfaces for

managing computational, storage, and other resources. The Globus Toolkit provides

all of these services and it is left to grid administrators to determine whether or not

to include certain services in their grid implementation. These are a few of the well-

known and widely used grids that deploy the Globus Toolkit: TeraGrid (4), Open

Science Grid (11), EGEE (7), Worldwide LHC Computing Grid (WLCG) (5), China

National Grid, UK National Grid Service (12) and NAREGI (9).

The architecture of the Globus Tooklit contains several components, each of which

is responsible for different grid functions. A few of these services are (38):

• Grid Resource Allocation and Management (GRAM) - This service initiates,

monitors, and manages the execution of computations on remote computers. It

allows a user to specify: the quantity and type of resources needed, the data

sets required for their computation, the executable application to be run, the

necessary security credentials, and the job persistence requirements.

• Data access and movement - The reliable file transfer (RFT) service is provided

to ensure that data is successfully transferred from one location to another.

14

• Replica management - This service keeps track of all replicas and their content

using a replica location service (RLS) and a data replication service (DRS).

• Monitoring and Discovery - Multiple services collect and process information

about the configuration and state of all resources to enable monitoring of system

status.

• Security - Services establish the identity of users or services (authentication),

protect communications, and determine who is allowed to perform what ac

tions (authorization), as well as manage user credentials and maintain group

membership information.

Grid middleware systems are custom designed to fit the needs of a particular

grid. The components of the Globus Toolkit provide the tools for creating a basic,

functional grid. Many of the detailed technical decisions and optimizations are left to

grid administrators, such as replication management and replica selection. Finding

the optimal settings and configurations for grid middleware components is still a work

in progress and requires further study.

Many grid implementations utilize Globus components in addition to their own

custom components. The WLCG's middleware, gLite, contains some Globus com

ponents as well as software developed by several research projects in the European

Union, including programs from the EGEE consortium (7). In the next two sections,

I will focus my examination on two general middleware services utilized in most grids:

data movement and replica management.

2.4 Data Movement

There are several grid applications available for moving data from one location

in a grid to another. The most widely-used data movement tool, which is also a

component of the Globus Toolkit, is called GridFTP (18; 17). It is an extension of

15

the File Transfer Protocol (FTP) and was designed specifically for grid environments.

GridFTP offers several features over standard FTP (19):

• Third-party control of data transfer - This allows a user to remotely monitor

and control a data transfer between two other sites.

• Authentication, data integrity, data confidentiality - GridFTP supports and

interfaces with grid middleware security and authentication components.

• Striped data transfer - Data can be interleaved across multiple servers and

GridFTP supports the transfer of data portioned among multiple servers.

• Parallel data transfer - GridFTP supports multiple transfer streams in parallel

between a single source and destination.

• Partial file transfer - GridFTP allows the user to transfer only a portion of a

file rather than the entire file.

• Support for reliable and restartable data transfer.

New features were also recently released for GridFTP, such as the option to utilize

the UDP protocol and pipelining (25). Pipelining allows many transfer requests to be

sent to the server before any transfer completes. This technique hides the latency of

transfer requests by overlapping them with data transfers. The server does not have

to wait for a new request to arrive after it finishes the current request.

It is important to note that GridFTP is not the sole data transport tool used in

grids. There axe other mechanisms available, such as the data movement operation

for the Storage Resource Broker (SRB) (98). The SRB data movement tool allows

a user to access data on normal filesystems, as well as archival resources such as

HPSS (97). Another mechanism to transport data across the grid is OGSA-DAI (10),

which can accommodate different types of data resources, including relational and

16

XML databases (45). Simple FTP and HTTP file transfers are also very common

place.

2.5 Replication

Replication is used in data grids to help improve access to high-demand datasets,

by reducing access latency and bandwidth consumption. Replicas or copies of data

file(s) are created in order to improve access performance and data integrity. In most

grid implementations replicated files are read only, which eliminates problems with

file updates and coherency (30). All replicas located in a grid are managed by a replica

management service, a component of the Globus middleware architecture, which has

several responsibilities (18; 17):

• creates new copies of a complete or partial data set

• registers new replicas in a Replica Catalog

• allows users and applications to query the catalog to find all existing replicas

of a particular file or collections of files.

The replica management services has several components that accomplish these

tasks. The Replica Location Service (RLS) component maintains and provides access

to information about the physical location of replicas. The main task that the RLS

performs is: Given a unique logical identifier (logical file name - LFN) for desired

data, determine the physical locations (physical file name - PFN) of one or more

copies of the data. In order to perform this task, the RLS maintains records of all

logical to physical file name mappings. The physical file names are structured similar

to URLs, where the access protocol, site address, and directory structure are fully

specified. The Giggle FYamework (30) is the basis for the RLS component in Globus.

17

The framework ensures that replica location data is distributed throughout the

grid in order to maintain efficient access. There are two types of data repositories that

the RLS uses to store replica information: local replica catalogs (LRCs) and replica

location indices (RLIs). An LRC stores information about logical filenames, such as

creation data, access lists and other file attributes. It also stores a map of all physical

filenames that are replicas for a logical filename. An RLI maintains information about

the replica catalogs and the logical file names that they contain. It can locate which

LRC contains the replica file list for a given logical filename. The Giggle framework

specifies how LRCs and RLIs are interconnected to construct a scalable and reliable

replica location service. Studies have analyzed the effectiveness of the RLS and the

replica management service and have shown that they perform well for large-scale,

heavily loaded systems (26).

Creating a more sophisticated replica management service is still a work in progress

and many middleware developers have left advanced features, such as replica man

agement, to be implemented by individual grid administrators. An example of an

advanced service is the selection of the "best" replica to service a user's request based

on storage and network performance predictions. Several studies examine this selec

tion problem and develop replication selection algorithms. These are discussed in the

next section.

Many replicas are manually created when needed. Several studies have also de

veloped mechanisms for dynamically creating and deleting replicas in order to fit the

demand of the grid. As the popularity of a data file increases, a dynamic replication

tool would automatically create new replicas to service the increased demand. One

such technique, called Fast Spread, creates a replica of a requested file at every node

that is encountered on the data delivery path from the server to the client (100).

Another technique creates replicas close to the users requesting the file in order to

exploit geographical locality (62). The globus architecture does not specifically uti

18

lize dynamic replication strategies and therefore they would have to be manually

implemented.

When users want to retrieve a data file from a remote grid resource, they contact

the replica management service to receive a listing of available replicas that contain

the specified data. The users then utilize some or all of the available replicas to service

their requests. The users decide which resources to utilize and to what extent. Using

a data movement tool, like those described in Section 2.4, users would then initiate

transfer requests on the resources that they have selected. Users can choose which

data movement tool to utilize and how to configure the data transfer settings in order

to achieve the best performance. Selecting the proper settings for a data transfer is

not a trivial task and often requires detailed knowledge about grid resources.

2.6 Replica Selection

Users are able to retrieve data from any replica server that is available to them.

Making an informed decision about which replica to use can affect a client's perfor

mance. Choosing a lightly loaded server over a heavily loaded server can result in

dramatically different completion times for a client. Finding the most efficient replica

is a difficult and complicated task.

Server selection is a task common in many computing environments and there

are many generalized server selection algorithms. A number of these algorithms are

driven by performance metrics, such as proximity metrics that measure proximity

of servers to a client and server load metrics that measure the load of servers or

network paths (94). There are advantages and disadvantages to these performance

metric based algorithms, such as the issue of the freshness of metric values. An

other generalized selection technique is to just select a server at a random. Mitzen-

macher (81; 82) developed a technique that randomly selects a subset of available

replicas and then selects the best replica based on the performance metric values

19

available. Several studies analyze different methods of replica selection specifically

for grids. Papers (26; 95; 96; 113) present a few of these varying selection techniques.

Vazhkudai et al. (113) create a storage broker that identifies a suitable replica

based on the requesting application's requirements. The broker submits classified

advertisements to all available replicas listing these requirements. It is the broker's

responsibility to map application requirements against the capabilities of the various

storage resources. The authors designed a decentralized storage brokering strategy

where every client that requests data performs the selection process, rather than a

central manager. There is no central point of control and the decision-making is

delegated to every client.

The replica management system for the European Data Grid utilizes a Replication

Optimization Service (ROS) that selects the best replica of a data file for a given

request (26). The service takes into account the location of the computing resources

and network latencies. Network monitoring services provide the ROS with network

latencies between various grid resources, which are then used to predict expected

transfer times. The service selects the replica with the best expected transfer time to

complete the request.

Rahman et al. (95; 96) describe an optimization technique that utilizes the k-

Nearest Neighbor (KNN) rule. The KNN rule selects the best replica for a file by

examining previous file transfer logs. When a new request arrives, all previous data is

analyzed to find a subset of previous file requests that are similar to the new request,

which are the k-nearest neighbors. The technique then uses these previous requests

to estimate transfer times between replicas and the user. The algorithm selects the

best replica based on its predictions.

These studies represent only a portion of the literature on single server selection

techniques. In general, I find that there is no perfect solution to the server selection

process. Users can only approximate the best server to fit their needs at the current

20

moment. Relying on a single server, selected by any algorithm, could possibly af

fect a user's data retrieval performance. There are many situations when a server's

performance can degrade:

• The server could suddenly become unavailable or disconnected, which would

require the user to re-initiate the server selection process.

• The server could quickly become overloaded. The number of concurrent users

could utilize all of the server's available bandwidth. Multiple users could also si

multaneously select the same server based on the available performance metrics,

creating a herd effect (94).

• The server's transfer rate could be lower than the desired rate of the user.

The performance of the server can change at any time, which directly impacts the

user's data retrieval. In the following chapter, I explore recently proposed techniques

for quickly transferring large files between users and storage servers.

21

CHAPTER III

Parallel Transfer Techniques

In this chapter, I examine several data retrieval techniques developed specifically

for retrieving large files in grid computing environments. The sizes of data files

requested in grids are much larger than normal web data requests. It is not uncommon

for a grid data file size to be measured in gigabytes or terabytes. Users want to be

able to download these files as quickly as possible, by any means necessary. Since

utilizing a single server can be limiting, retrieving data from multiple servers in a

parallel (also known as data co-allocation) has been suggested as an alternative. In

my examination, I group these recently proposed parallel transfer techniques based

on how they retrieve data from various replica servers.

3.0.1 Basic Technique

The basic, brute-force, data co-allocation technique (110) issues a request for

equal sized portions of the file from all available replicas. Every replica that contains

the file is utilized and each is responsible for servicing an equal amount of data.

There is no consideration given to the performance of replica servers or network

conditions. Many studies include this technique as a baseline for comparison with

other co-allocation strategies.

The brute-force technique is not an optimal technique. It assumes that all servers

22

are available and will provide adequate service to the user. It also places an equally

heavy burden all servers and there is no consideration for the workload it places on

grid resources. When many users utilize this technique, the performance of the entire

grid is affected.

3.0.2 Predictive Techniques - History Based

In the brute-force technique, the performance of each transfer is not analyzed. De

pending on network and server workload, each transfer will have varying performance.

The following algorithms take into account the performance metrics of each server

interaction when dividing the workload amongst all replicas in order to minimize the

transfer completion time. These papers present a few of these methods.

Vazhkudai presents a history-based data co-allocation technique (110; 111).

He addresses the fact that each transfer between a replica and the client has varying

transfer rates. This technique adjusts the amount of data retrieved from each replica

by predicting the expected transfer rate for each replica. In a previous work (112),

Vazhkudai and Schopf developed a series of univariate and multivariate predictors

that create forecasts based on past transfer history with network and disk load data.

Using this technique, the author demonstrates how historically faster servers are

assigned to deliver larger portions of the file and slower servers are assigned smaller

pieces. In his evaluations, he finds that the history-based technique significantly

outperforms single replica usage technique and provides improved performance over

a simple, brute-force technique.

Zhou et al. also develop a history-based data co-allocation technique. They de

velop Replica Convoy (ReCon) (131), a tool for retrieving data from multiple

replicas simultaneously. ReCon is composed of two services: the Replica Convey

Service (RCS) and the Replica Convoy Client (RCC). The RCS determines an appro

priate replica convey plan for the client using decision algorithms that control how

23

the replicas will be used to retrieve the desired data. One group of these decision

algorithms utilizes GridFTP logs to predict the network throughput for each replica

server. This group includes the latest-based, mean-based and median-based tech

niques. As their names suggest, they utilize the past transfer history data in different

ways. The latest-based technique predicts throughput based on the last completed

transfers. Median and mean-based techniques utilize the median and mean values of

all completed transfers. Using these predictions, the entire data file is divided into

varying sized segments specifically for each replica. For example: if there were three

available replicas, one replica could be assigned 3/6 of the data, another replica would

transfer 2/6 and the last replica could service the remaining 1/6 of the data. Replicas

that are predicted to deliver data faster are assigned a larger portion to service.

3.0.3 Predictive Techniques - Network Weather Service and Probes

Many grid environments deploy a network monitoring tool called the Network

Weather Service (NWS) (124). The NWS is a distributed system that detects the

network status at periodic intervals. The service utilizes a set of performance sensors

to determine the condition of grid components. These sensors gather data on the

latency and bandwidth of end-to-end TCP/IP performance, as well as available CPU

and memory of replica servers. Using mathematical models on the data gathered by

the sensors, the service creates forecasts of system conditions for given time periods.

Feng and Humphrey develop data retrieval techniques that utilize NWS predic

tions to specify the amount of data to be requested from replica servers (36). They

develop two techniques that utilize these network forecasts: NWS Static and NWS

Dynamic.

In the NWS Static algorithm, network throughput predictions are requested for

all connections to the available replica servers from the NWS before the transfer

commences. The file is then divided into segments based on the expected throughputs

24

for each replica. Replica servers with higher throughput predictions are assigned to

deliver larger portions of the data file.

In the NWS Dynamic algorithm, the desired file is divided into a fixed number

of equal sized segments. The algorithm contacts the NWS to receive throughput

forecasts for each replica server and assigns portions of a file segment based on the

throughput predictions. When a replica completes a portion, the NWS is again

contacted and additional portions are assigned based on the forecasts. The NWS

Dynamic algorithm only schedules one segment of the entire file with each NWS

prediction. If conditions change, then the next round of predictions should identify

the changed conditions and re-distribute the workload accordingly.

In the authors' evaluations, they find that both of their NWS algorithms out

perform a basic, brute-force, data co-allocation algorithm. They also find that their

NWS Dynamic algorithm provides improved speedup over the Static algorithm.

Utilizing the NWS for predications provides additional overhead costs, which can

vary depending on how frequently the service is used. The messages used by the ser

vice also produce additional traffic on the network. If the user's grid does not employ

the NWS, then the user would be unable to utilize these techniques. Implementing

and coordinating a NWS service on all servers in a grid is not a trivial task and would

be outside the realm of the basic user's expertise and permissions.

Other mechanisms can be used to determine the status of connections between

users and servers. Zhou et al. present a probe-based data retrieval tech

nique (131), where a fixed sized pinging mechanism is used to probe network con

nections and determine network output. Based on the data returned by the probes,

varying amounts of data are assigned to each replica. The authors find that their

probe-based algorithm outperformed history-based techniques. They attribute this

success with the fact that the probe gives an accurate representation of the current

state of the network, unlike history-based techniques.

25

3.0.4 Dynamic Techniques - Equal Request Sizes

The following co-allocation retrieval techniques dynamically adapt to changing

grid conditions by requesting small, equally sized, portions of a file from multiple

replicas. Each technique uses different decision making algorithms on how to perform

these requests and several of these algorithms are discussed in this section.

Vazhkudai finds that history-based techniques do not address dynamic network

variations that can affect transfer rates between the replica servers and the client (110;

111). Servers that were previously determined to be fast or slow can behave differently

than expected due to varying network traffic and system workloads. In order to

address these issues, he develops a conservative load balancing technique that

dynamically adapts to changing network and system conditions. The amount of

data requested for a given server is decided dynamically instead of being based on

previous history. The desired data file is divided into equal sized, disjoint blocks.

Each available server is initially assigned one block to service in parallel. Once a

server delivers the block, another block is assigned until the entire file is retrieved.

Faster servers will transfer larger portions of the file.

Feng and Humphrey also develop a similar dynamic data co-allocation algorithm

called, NoObserve (36). This algorithm differs from their other retrieval algorithms

discussed in the previous section, since it adjusts to varying network conditions with

out utilizing the NWS. In the NoObserve algorithm, the source file is statistically

divided into equal-sized segments. Initially, each replica is assigned one segment to

service. When a replica finishes its segment, the replica is immediately assigned an

other segment until the entire file is retrieved. In the authors' evaluations, they find

that the NoObserve technique provides a speedup over the baseline, brute-force tech

nique. They also find that choosing the appropriate number of file segments is also

important. The number of segments should not be too large, in order to minimize

the overhead costs associated with transferring multiple small size file segments.

26

3.0.5 Dynamic Techniques - Varying Request Sizes

The techniques described in the previous section divide the desired data file into

equal sized disjoint blocks. Other grid data retrieval techniques try to improve per

formance by varying the size of the blocks based on the performance of the replica

servers. Faster servers are assigned larger blocks.

Vazhkudai develops an aggressive load-balancing technique (110; 111), which

is a modified version his conservative load-balancing technique that was discussed in

the previous section. Instead of requesting a single block from each replica, the

amount of data requested from faster servers is progressively increased. The amount

of data requested from slower servers is decreased or stopped completely. The transfer

rate for each block request is compared to all other transfers. If the rate is higher than

any other transfer, then the request size for that server is doubled to two blocks. If

the rate is lower than other transfers, then the request size for that server is reduced

to a single block. If the rate is significantly lower than all other transfers, then the

replica no longer receives requests.

There are other dynamic data retrieval techniques that vary the amount of data re

quested from each server while still dividing the data file into blocks. The recursively-

adjusting co-allocation technique (127; 128; 129) developed by Yang et al. is a

combination of dynamic and predictive techniques, since it utilizes Network Weather

Service forecasts. This technique works by continually adjusting the amount of data

requested from each replica server to correspond to its real-time bandwidth during

file transfers. Unlike the previous algorithm by Vazhkudai, the goal of this technique

is to make the expected completion times for all servers the same. The recursively-

adjusting algorithm continually monitors each server and adjusts the workloads to

ensure that all servers deliver the last block at the same time. The goal of the algo

rithm is to eliminate the user from having to wait for a single server to deliver the

last portion of the file.

27

The technique begins by dividing the desired data file into several sections. Each

of these sections is then sub-divided into varying sized blocks that are individually

assigned to all replicas. The number and size of the larger sections is variable and

can be adjusted by the user. The size of each section is a percentage of the remaining

file size to be retrieved. Each section size will therefore be progressively smaller than

previous sections. The user can select the smallest section size that is used.

Initially, the algorithm assigns blocks from the first section to all available servers

based on their bandwidths. The Network Weather Service is used to obtain the

bandwidth forecast for each server. At this point, it is assumed that all servers will

finish the section at the same time. Due to fluctuations in network conditions and

server load, actual completion times may vary. When the fastest server completes its

block of the current section, the next section of the file is divided into blocks using

the NWS predictions and these blocks are assigned to the servers. The goal is for all

servers to complete their outstanding work (first and second sections) at the same

time. Slower servers will not be assigned additional blocks and faster servers will

receive larger portions to service. This process repeats for all sections until the entire

file has been requested.

Another dynamic data retrieval technique, which varies the amount of data re

quested from each server while still dividing the data file into blocks is the MSDT

algorithm (121) developed by Wang et al. The MSDT algorithm is a combination

of dynamic and predictive techniques, as it utilizes the past transfer histories for pre

dictions. In theory, the MSDT algorithm is very similiar to the recursively-adjusting

co-allocation technique by Yang et. al. The MSDT algorithm just uses a different

set of equations to predict the performance of a replica and to assign the workloads

to each replica. The algorithm uses the overhead and bandwidth of previous segment

transfers to predict the future performance of a replica. To begin, the source data file

is divided into multiple segments of equal size. The MSDT algorithm autonomously

28

assigns a number of segments to each replica whenever the replica is idle. This algo

rithm assumes that the replicas will be solely dedicated to grid traffic and that the

user has full knowledge of the workload present at the servers, which is not always

the case in most grids. The amount of segments that are assigned varies depending

on the transfer history for the particular replica.

3.0.6 Dynamic Techniques - Preemptive Measures

The dynamic techniques in the two previous sections retrieve portions of the data

file from multiple replica servers. The amount of data retrieved may vary depending

on the algorithm, however there is the possibility that a client will end up waiting for

slower servers to deliver portions of the file. The previous techniques do not preempt

transfers or re-distribute the workload to other servers when replicas become unre

sponsive. In this section, I examine several algorithms that utilize these preemptive

measures.

The ReCon data retrieval service(131) designed by Zhou et al. offers a Greedy

retrieval algorithm where the desired data file is divided into equal sized segments.

Each replica is initially assigned one segment. As replicas complete their segments,

they are assigned additional segments to service. A recursive scheduling mechanism

handles any errors that occur. If the user does not receive a response from a server

after a user-specified amount of time, the mechanism automatically reschedules the

failed data request to another replica that is currently transferring data. Detailed

information about re-submission process is not specified in the paper. Zhou et al.

compare the Greedy algorithm with other algorithms developed for the ReCon. They

find that their Greedy retrieval algorithm did not outperform other statistical based

techniques (section 3.2) and their probe-based technique (section 3.3) provided faster

retrieval.

Bhuvan et al. develop a different preemptive data co-allocation mechanism, the

29

Dynamic Co-allocation Scheme with Duplicate Assignments (DCDA) (24).

This technique is used to cope with highly inconsistent network performance of replica

servers. The authors develop this technique to enable efficient parallel download of

replicated data from multiple servers without the use of past history or heuristics. In

their algorithm, the desired data file is divided into disjoint blocks of equal size. Each

server is initially assigned one block to service. When a server completes a request,

it is assigned another outstanding block. The algorithm continues until all blocks

have been assigned. If a server delivers a block and there are no blocks remaining

that have not been initially assigned, the server will be given an outstanding block

request that has not been completed. There will now be several servers working on

the same request. When a server delivers a request, all other servers are notified to

stop serving this request. In order to maintain a clear order of outstanding requests,

the algorithm utilizes a circular queue to keep track of all requests.

In the evaluations of the DCDA technique, Bhuvan et al. assume that the over

head latency in assigning, delivering and killing of duplicate assignments in negligible.

(In reality, this can be a complicated and costly procedure, depending on the infras

tructure of the grid.) They compare their algorithm to the Vazhdukai's conservative

load balancing technique (110) and find that the DCDA algorithm provides increased

performance.

Chang et al. (29) develop an advanced preemptive technique, Multiple Parallel

Downloads with Bandwidth Considerations technique, that considers both

server throughput and client input bandwidth when assigning workloads to the replica

servers. This paper is the first to discuss their technique in terms of multiple users.

They realize that when everyone uses parallel downloads, they will compete for system

resources that causes a degradation of system efficiency and unfairness for the users.

They also determine that a server should not outdo its capacity by serving too many

clients and a client should not download from too many servers with its limited

30

incoming bandwidth. Their scheme is divided into three stages: initial stage, steady

stage and end stage.

In the initial stage, each replica server is assigned a priority value based on the

round-trip-time between the client and server and based on the average wait time for

the server. The block size is then determined using the cost of internal and external

overheads as a factor. The steady stage begins by selecting two servers with the

best priority values to download the desired file. As the file is being transferred, the

download speed of the client is monitored. A client's download speed is limited by

the speed of its network connection. If the client's download speed does not reach

the maximum download bandwidth, an additional server is added to transfer the

remaining file. If the client reaches the maximum download speed, then no more

servers are utilized. The mechanism also monitors the throughput of each server

and categorizes them based on their performance: ordinary servers are assigned one

block at a time, fast servers are assigned two blocks at a time, and superior servers

are assigned three blocks at a time. These categorizations are recreated before each

block assignment. To ensure that all servers finish the last request as close to the same

time as possible, the download efficiency of the last block is important. If the last

block is to be transferred by a slow or disconnected server, it will increase the time

for the entire data transfer. To ensure that this does not occur, a completed server

will automatically be assigned an uncompleted block that was originally assigned to

another server.

The authors discuss a multiple user environment and provide an example of how

their technique would work with six users accessing a small number of files. Their

experiments however, do not show the performance of their algorithm when many

users are simultaneously utilizing their technique.

31

3.0.7 Peer-to-Peer Techniques

Peer-to-peer (P2P) and grid computing environments both address the problem of

organizing large scale computing societies and have the same objective of coordinating

large sets of distributed resources (39). Data retrieval techniques specifically designed

for peer-to-peer environments have been adapted for use on the grid. Two of these

techniques are GridTorrent (133) and the GridTorrent Framework (57). Both of these

grid transfer mechanisms are based on the BitTorrent protocol.

The BitTorrent protocol (33) is a peer-to-peer protocol that enables users to re

trieve data files from multiple sources while simultaneously uploading them to other

clients, instead of obtaining them directly from a central server. BitTorrent is de

signed to work efficiently under flash crowd situations where a large number of users

are concurrently downloading the same file. In this protocol, data files are segmented

into pieces, which can be retrieved individually by clients from multiple sources. Bit

Torrent uses a distributed hash table to dynamically locate peers to participate in a

file transfer. It limits the number of concurrent uploads for a user and gives priority

to the peers with the best upload rates. The protocol also discourages free-riders,

peers that download data without contributing to the system. It uses a tit-for-tat

algorithm to ensure that all peers contribute to file downloading.

The GridTorrent transfer mechanism (133) is a modified BitTorrent implemen

tation that is designed to interface with grid middleware components and protocols.

GridTorrent can be used to receive data from GridFTP servers or other GridTor

rent peers that are simultaneously requesting the same data. The mechanism utilizes

the Replica Location Service (RLS) provided by the grid middleware to locate data

sources. It extends the information stored in RLS records to include GridTorrent file

sources, which allows any user to locate GridTorrent files. The developers also im

plement two new grid software components to facilitate GridTorrent data transfers:

the PeerManager, which handles all communication with other GridTorrent peers and

32

the DiskManager, which handles all disk I/O for storing and receiving files.

The GridTorrent Framework (57) extends the BitTorrent protocol by adding a

collaboration and content manager (CCM). The CCM allows users to publish and

share their files with access control rights and allows users to search for available

files. Both of these features are not present in the BitTorrent protocol. Kaplan et

al. do provide details as to how their GridTorrent Framework interfaces with existing

grid middleware and grid security protocols.

In a recent journal article, Al-Kiswany et al. (16) evaluate the effectiveness of

peer-to-peer data dissemination techniques in large scientific collaborations, such as

CERN's LHC experiment (5) and Fermi Lab's DZero experiment (6). They find

that many of today's grids are over-provisioned and peer-to-peer solutions that adapt

to dynamic and under-provisioned networks do not provide significant benefits and

create unnecessary overhead expenses. In addition, datasets in scientific grid envi

ronments differ significantly from the data files typically transferred by peer-to-peer

techniques, like BitTorrent. The popularity distributions for scientific data are more

uniform than in peer-to-peer systems, which has a significant impact on the effective

ness of P2P techniques (16). It is not uncommon for a popular BitTorrent file to be

requested by thousands of users or more, which exploits the benefits of the BitTorrent

technique (21). In grid environments however, it is possible for a single data set to

have an extremely large number of individual files, which are infrequently accessed

concurrently. While observing Fermi Lab's DZero experiment between January 2003

and May 2005, Iamnitchi et al. (13) analyzed the data usage patterns of grid users.

They found that 561 users processed more than 5 PB of data with 13 million file

accesses to more than 1.3 million distinct data files. An individual file was requested

by at most 45 different users during the entire analyzed time period. In the authors'

evaluation, they also examine the feasibility of applying known peer-to-peer strate

gies, such as BitTorrent, using the real usage patterns that they observed. They find

33

that while the size of the data files being transferred may warrant the use of tech

niques like BitTorrent, the relatively small number of concurrent users of the same

data files does not justify the overhead cost of the peer-to-peer technique.

3.1 Parallel transmission techniques used on the Internet

Data retrieval techniques for the Internet are well established. Even though a

majority of Internet data requests are small, various methods have been developed

to facilitate the transfer of large data files on the Internet. I examine one group

of mechanisms that uses parallel data retrieval from multiple servers. These mech

anisms directly relate to many retrieval techniques developed for grid computing

environments, which are discussed in the previous section.

Rodriguez and Biersack present mechanisms for parallel access to data on the

Internet (101). They develop two different parallel-access schemes: history-based and

dynamic. The goal for all of their schemes is to balance the load amongst all available

servers by allocating a workload to each replica that is proportional to its service rate.

The authors state that parallel access has additional overhead in comparison to a

single access. The additional overhead occurs when multiple connections are opened

and extra traffic is generated to perform block requests. In order to minimize these

overhead costs, these techniques should only be utilized for larger files.

Their history-based technique utilizes a database with information about previous

rates from the different servers to the receiver in order to estimate future transfers.

Using these estimates the algorithm assigns varying portions of the file to each replica

with the goal that all servers will finish transferring the portions at the same time.

The authors evaluate their history-based technique using live webservers on the

Internet distributed across the world. Due to the presence of other Internet traffic, the

authors found that the performance of their technique varied at different times of the

day. They found that network conditions rapidly change and estimating the transfer

34

rate to every server using past histories results in poor estimates. Their results show

that during peak traffic times when transfer rates vary dramatically and historical

information is not a good indicator of future performance, their history-based parallel

access technique has higher download times than clients accessing a single server.

In response to the performance of their history-based technique, the authors de

velop a dynamic technique that adjusts to changing network conditions. Their dy

namic technique divides the desired file into a fixed number of equal sized blocks.

The client requests one block from every replica. When a server completes a request,

another block is assigned. When there are a small number of blocks outstanding, idle

servers are requested to deliver blocks that have already been assigned to another

server, but have yet to be received. There will then be multiple servers working on

the same requests. The authors state that the bandwidth wasted on overlapping these

requests is smaller than the worst-case scenario of waiting for the slowest server to

deliver the last block. To further enhance the performance of their technique, they

utilize TCP-persistent connections between the client and every server to minimize

the overhead of opening multiple TCP connections. They also propose pipelining the

requests to each server in order to decrease interblock idle times. With pipelining, a

new block request is sent to a server before the previous block request is completely

received.

In the evaluations of their dynamic technique, the authors find that there is a

significant speedup in comparison to a single server access. Since the dynamic tech

nique is not relying on historical information and can adapt to changing network

conditions, it has greater performance than requesting data from a single server even

under peak traffic conditions. They also observe that the transfer time of a dynamic

parallel access is very close to the optimum transfer time. Utilizing request pipelining,

the authors demonstrate that their technique would be almost equal to the optimal

transfer time.

35

3.2 Key Concepts of Parallel Transfer Techniques

After examining multiple parallel transfer techniques developed for grid computing

environments, I can extract several key ideas and concepts about efficient grid data

retrieval.

• Dynamic data retrieval techniques outperform static, predictive techniques.

History-based techniques are not sensitive to dynamic and rapid changes in

network conditions and server workloads. These types of techniques must con

stantly monitor recent transfers in order to adapt.

• Techniques that utilize the Network Weather Service can be beneficial under

certain circumstances. A technique that constantly monitors the NWS forecasts

and adapts its retrieval technique to changing conditions would be efficient. A

downside to using the NWS is the overhead created by the probes and messages

required to obtain the network forecasts. If a NWS service is already in place

on the client's grid, then it can provide useful information. If a NWS service

is not implemented on the client's grid however, then the task of implementing

and coordinating the service is not a trivial task and beyond the scope of an

average user.

• Dynamic techniques that divide the desired file into smaller blocks to be re

trieved individually can dynamically react to changing conditions. In order for

these methods to be efficient, they must carefully consider the following items.

- Choosing the appropriate size and number of blocks for a data file is a

complicated task and the efficiency of the entire download is dependent on

the choice made. A large block size could place a significant portion of the

workload at slower servers and small block sizes result in overhead costs

outweighing the transfer times.

36

- Users should be cognizant of their network connection's bandwidth and

not attempt to retrieve data from more servers than their connection can

handle. Using an excessive number of servers will not be beneficial to the

user and will be detrimental to the servers as well.

- Re-issuing previously assigned requests creates duplicate work for the replica

servers, however it can prevent the user from waiting for a single, slow

server to deliver the last portion of the file. There are several important

factors that must be considered when re-issuing requests.

* Implementing a delay before re-issuing a request could prevent un

necessary additional work for servers. Choosing an appropriate delay

value is another crucial decision.

* Some algorithms notify replica servers when a request is completed,

in order to minimize un-necessary work. These notifications produce

additional overhead £tnd add to the traffic on the network and servers.

Developers should carefully examine whether the benefit of these mes

sages out weigh their costs.

The data retrieval method utilized by a user can dramatically affect their per

formance. I have examined several different types of retrieval techniques from single

server to multiple server utilizations. In single server techniques, the user selects a

server based on an approximation of the best server to fit their needs at the current

moment. The user's performance is dependent on the performance of the server se

lected. If the server's performance degrades, the user suffers. To help alleviate this

situation and also to completely exploit a user's bandwidth, multiple server techniques

have been proposed. These techniques utilize multiple replica servers concurrently by

allowing a user to download portions of the data file from several servers simultane

ously.

37

The proposed techniques for data retrieval in grid environments are not adequate.

There still exists a need for further study and development. Almost all of the multiple

server techniques examined here are evaluated from a single user's perspective. Most

of these techniques do not address situations where multiple users in different locations

are simultaneously utilizing their techniques, nor do they discuss the effects that

these additional users would have on overall grid performance. The Multiple Parallel

Downloads with Bandwidth Considerations technique (29) by Chang et al. is the

only paper which identifies that consideration should be given to the fact that server

performance could degrade as the number of users increases. The authors however,

neglect to perform an intensive evaluation of their technique for large, multi-user

situations.

The overall performance effects of multiple server retrieval techniques are sig

nificant. Data co-allocation increases the workload on servers and networks in the

system, especially as the number of users utilizing these strategies increases. Instead

of a single user issuing a request to a single server, the user could be issuing tens or

even hundreds of requests to various servers during the course of file retrieval. This

increased workload has a negative effect on the servers receiving the requests and the

networks transmitting the data. The impact is even more dramatic for other users

in the system that are not using any co-allocation techniques, since co-allocation in

creases the workload at all of the servers, even though the number of users remains

the same.

The studies of these techniques are superficial and only examine experimental

situations under low demand. They neglect to examine their techniques under high-

demand situations that would be present in real world grid environments. In addition,

most of these studies evaluate their techniques in terms of network transfer time and

network throughput. These performance values provide only a limited view of the

impact of their techniques. They neglect to examine response times experienced

38

by users. Response time is an important performance value since it includes wait

times, which are key indicators of queue lengths at resources in the grid. Without

this information, it is difficult to ascertain the conditions of the resources in their

experiments. In addition, they do not provide information about replica workloads

or the number of users in the grid when their experiments were conducted. This

information is important in order to understand and evaluate their results.

In the following chapter, I present my preliminary work related to grid computing

and data retrieval in distributed systems.

39

CHAPTER IV

Preliminary work

In this chapter, I present my preliminary work that led me to the topic of my

dissertation. The following sections summarize my research studies, which exam

ine data replication in grid computing (4.1), multi-user co-allocation (4.2), and the

performance impacts of parallel data retrieval (4.3).

4.1 Replica Traffic Manager

My initial study in the area of grid computing involved managing users' file trans

fer requests to replicas in the system (114). Due to the distributed nature of the grid,

users send their requests directly to replicas. There is no control over a request once

it leaves the user. The focus of this study was controlling workload traffic at data

grid replicas, by managing the flow of requests to each replica. I proposed the cre

ation of a replica traffic manager that controls workload traffic sent to the individual

replicas in the data grid. The traffic manager receives all user requests and manages

the traffic for all replicas by maintaining a certain number of outstanding requests

at each replica. When a particular replica is heavily loaded, all incoming requests

for that replica would be held in a queue at the traffic manager and/or directed to

another replica. Once the traffic decreases at the replicas, the queued requests would

be immediately forwarded. By limiting the traffic to each replica, the traffic man

40

ager has more control over the system than otherwise possible with individual users

submitting requests directly to the replicas.

Complications: In my evaluations, I observed that my replica traffic manager has

a beneficial effect on the performance of the data grid. In my simulations, I found

that the traffic manager provided reliable and consistent response times for users'

requests.

Since grids are distributed environments with replicas dispersed around the world,

many of the sites in the grid are independently owned and managed. Due to the

distributed nature of grids, a replica can be added or removed from the system at

any time. In reality, implementing and managing the replica traffic manager service

would not be trivial and might not even be possible in all grid environments. By

centralizing the replica management service, the traffic manager could also become a

bottleneck.

There are two major components of a data transfer between a replica and the

user: the storage system component and the networking component. This study

does not address the network portion of the data transfer, which is of significant

importance. Regardless of which replicas are used to service the users' requests, the

task of delivering the data to the user is not simple due to the size of the data sets

being transferred.

4.2 Simulating multi-user parallel data transfers

As discussed in the previous chapter, there are several recent studies that sug

gest using parallel transfer (co-allocation) techniques can improve data transfer per

formance in replicated grid systems. These studies demonstrate that co-allocation

techniques can improve network bandwidth and network transfer times by concur

rently utilizing as many data grid replicas as possible. However, these prior studies

evaluate their techniques from a single user's perspective and overlook evaluations

41

of system wide performance when multiple users are using co-allocation techniques.

In this section, I summarize my paper (115) that provided multi-user evaluations

of a co-allocation technique for replicated data in a controlled grid environment. I

found that co-allocation works well under low-load conditions when there are only

a few users using co-allocation. However, co-allocation performs poorly for medium

and high-load conditions since the response time for co-allocating users grows rapidly

as the number of grid users increases. The decreased performance for co-allocating

users can be directly attributed to the increased workload that their greedy retrieval

technique places on the replicas in the grid.

Overall, I found that the global use of co-allocating techniques for replicated data

retrieval when done in a greedy or selfish manner is detrimental to user performance

in a data grid. This study utilized a simulated environment that only contains grid

data transfer workloads. It didn't take into account the workload of other non-grid

users that would normally be present on the shared network connections and the

Internet. In order to better understand the degree of impact that these types of large

file transfers have on other users, I must conduct a study where I examine both large

data transfers and normal Internet-user workloads. The following section details this

study.

4.3 Impacting users with parallel transfers

In this section, I summarize my study that examined the impact of parallel trans

fers on other users' workloads (120). It also evaluated the effects of placing retrieval

restrictions on these parallel transfers. As previously discussed, the current trend of

research on large file transfers is geared towards minimizing a user's service time by

any means possible. The goal is to increase and maximize user throughput without

regard for overall system performance or stability. Retrieve data as fast and hard as

possible.

42

The users retrieving large data files from the grid/cloud are often on public net

works, using a shared connection to the Internet. These public networks could be

located in an academic campus or in a research institution, where there are poten

tially hundreds to thousands of users utilizing shared network resources. When users

retrieve large files over these shared resources, everyone is affected. As the number of

users retrieving data increases, the impact on the performance of the entire system

multiplies. As the load grows, eventually there will be packet loss and failures. Trans

fer performance for all users will degrade as the demand rises. This is especially true

when users utilize retrieval techniques that attempt to utilize as much bandwidth as

possible.

The impact of big data transfers on other users as well as system resources has

not been entirely examined. In order to fully understand these impacts, I evaluated

big data transfers in a controlled testing environment to examine the effects of these

transfers. In my experiments, I found that system and user performance suffer as

the number of users retrieving large files increased. All users were affected by the

increased workload of large file retrievals. The impact on other users that were sharing

the public resources was significant. I found that a typical user could potentially

see a 86% degradation in transfer performance when other users were concurrently

retrieving large files.

Overall, I found that there is significant impact to local system performance when

users retrieve large data files over shared, public networks. All resources in the system

experience increased traffic and heavier workloads. The increased demand affected

the performance of all users in the system. Normal users were unjustly penalized

and observed decreased transfer times and longer service times. Restricting large

file transfers allowed other users' workloads to have improved performance, however

placing restrictions on these large transfers only prolonged their existence in shared

system and is not an ideal solution. In order to truly understand the impact of big

43

data transfers, I needed to examine them on a live system with active user workloads.

Only then could I garner insight into how to effectively support both normal user

workloads and big data transfers. The following chapter details my evaluations of

parallel transfers on a live, shared network.

44

CHAPTER V

Live evaluations of parallel transfers

In this chapter I present my study of parallel transfers on a live, actively used

network (116). I utilize the campus network at the university to test parallel transfer

techniques by retrieving data from servers distributed around the world. I compare

the performance of recently proposed parallel techniques with a new dynamic tech

nique that I developed. My technique is designed to minimize its impact on system

resources while still providing fast download times for the user.

Users retrieving large scientific datasets are generally using public networks on

academic campuses or in research institutions. Even though they possibly have pri

vate storage and computation resources, they must utilize a shared connection to the

Internet. In a university environment, several thousand users might share this connec

tion and a single user will be limited to only a portion of the bandwidth available to

everyone. The conditions of the network can also vary greatly during different times

of the day and different months of the academic year. There is no way to guarantee

the network conditions at any given time. Due to these types of situations, parallel

transmission techniques axe available to users.

These advanced retrieval techniques allow a user to simultaneously use multiple

data sources concurrently. The user is not reliant on one server connection for the

entire transfer. A user could retrieve half of a file from one server and the remaining

45

portion from another server at the same time. The number of servers utilized in

parallel depends on the algorithm for each technique.

5.1 Experiments and Observations

In my experiments I observe the process of a single user retrieving a large data

file over a public network, using a shared Internet connection. I examine several

different techniques that a user could potentially utilize to retrieve the data file. I

evaluate their performance, as well as the difficulties that an average user faces when

implementing and using these techniques.

Average users have limited capacity for data retrieval, which is governed by their

network connection and their Internet service provider. A user may utilize a shared

Internet connection, such as an academic campus network. The Internet connection

for the entire network is fast, however all of the users on the network are sharing this

resource. In my experimental setup, the user's computer is located on an academic

campus network and uses a shared high-speed Internet connection.

Each end user (10,000+) shares the multiple high-speed Internet connections ser

vicing the network. Network workload conditions vary throughout the day, as end

users share the public resources. Figure 5.1 illustrates the variations in the user's

transfer rate when retrieving a 1MB file from a remote server over the course of sev

eral weeks. Since the traffic on local and wide area networks can vary, as well as server

workloads, I repeat my experiments several times over the course of three months. I

present the average values for all data transfers.

I examine the performance of retrieving a 30GB data file over public networks,

using a shared Internet connection. The data file being retrieved is replicated on

thirty different servers located around the world. These servers are public servers not

under my control and are concurrently servicing other users' requests. The user has

the ability to retrieve the file from any of these servers.

46

35

30

25

20

15

10

5

0
Variations over several weeks

Figure 5.1: Variations in user transfer rates when retrieving a 1MB file from a remote
server over the course of several weeks.

5.1.1 Normal Data Retrieval

Normally, the user is faced with the decision of choosing a server from a listing

of available servers to service their request. The user has no knowledge about the

potential performance of any given server. In my experiments, I retrieve the data file

from each server independently in order to observe the differences in service times

that a user would experience. I begin my experiments by retrieving the desired 30GB

data file from each one of the available 30 servers independently. I find that the data

retrieval performance for each server varies greatly. Figure 5.2 illustrates the marked

differences in the service times for each server. The fastest file transfer occurred in

11.7 minutes, while the slowest file transfer took over 19 hours. The median service

time for all servers is 75.5 minutes.

During the transfers, the user's network utilization is monitored. I find that the

user's retrieval capacity was not fully utilized during any of the transfers and was

especially low for the transfers with the longest service times. This indicates that the

bottleneck of the longest transfers lies with either the connection between the server

and the user or with the server itself.

47

1400 -•

1200 j

| 1000 1

s J. 800 1

5 6 7

Figure 5.2: Normal Data Retrieval: Service times (minutes) for each server when
retrieving the entire 30GB data file independently.

When retrieving data files, the replica selected can greatly impact a user's per

formance. The major difficulty for the average user is knowing how to select an

appropriate replica. Choosing a lightly loaded server over a heavily loaded server

can result in dramatically different completion times for a user. Finding the most

efficient replica is a difficult and complicated task. As previously discussed, there are

many studies (26; 82; 94; 95; 96; 113) that explore different mechanisms for efficient

replica selection. All of these mechanisms require the user to implement and configure

selection algorithms, which can beyond the skill set of an average user.

5.1.2 Advanced Data Retrieval

Instead of relying on a single server for the entire data transfer, a user could

potentially use multiple servers at the same to transfer the desired data. Many

recent studies explore advanced techniques for data retrieval known as distributed file

retrieval (or data co-allocation), which allow a single user to simultaneously utilize

multiple resources to service a request. Using data co-allocation, users can utilize

many or all of the available replicas. The users would issue requests for portions of

the data file from these replicas. The requests would then be serviced in parallel.

The longest service time that any user would experience would be determined by the

slowest replica to service any one of the partial data requests.

48

There are several different types of data co-allocation retrieval techniques. They

can be grouped based on how they utilize the available replica severs. I exam

ine the three most common groups of data co-allocation techniques: brute-force,

performance-based, and dynamic. In the following sections, I examine the perfor

mance differences and user difficulties that I observe for these techniques when used

in my experimental setup.

5.1.2.1 Brute-force Technique

The basic, brute-force, data co-allocation technique (110) issues a request for

equal sized portions of the file from all available replicas. Every replica that contains

the file is utilized and each is responsible for servicing an equal amount of data. There

is no consideration given to the performance of replica servers or network conditions.

The workload at all servers is increased equally for each co-allocating user.

I evaluate the brute-force technique (BFT) by dividing my file request into 30

equal-sized portions and requesting one portion from each of the 30 replica servers.

The requests are serviced concurrently and the data is retrieved from each server in

parallel. Since the entire file request is not complete until all of the portions are

retrieved, the performance of the request is dependent on the slowest file transfer.

Similar to my normal data retrieval observations, I find that the performance of each

of the transfers varies greatly. Figure 5.3 illustrates the differences in the service

times for each of the individual file portion retrievals. As with normal data retrieval,

server 7 provides the longest service time. The fastest file retrieval finishes in 2.5

minutes and the slowest file retrieval takes 76.8 minutes. Since the data retrieval is

not complete until all portions are retrieved, the service time for the entire data file

transfer using BFT is 76.8 minutes.

In comparison to my normal data retrieval experiments, the brute-force technique

provides improvement over normal data retrieval for some of the servers. The average

49

Figure 5.3: Advanced Data Retrieval - Brute Force Technique: Service times (min
utes) for each server when retrieving equal 1GB portions of the 30GB
data file.

service time for BFT is almost equal to the median service time for the single server

technique. This indicates that the BFT provides improved performance in comparison

to retrieving the file from a single server for 15 of the available 30 servers. Since the

BFT technique utilizes all servers regardless of their retrieval capacity, the slower

servers will always hinder the performance of the entire data transfer.

There are several difficulties that an average user would face when using the brute-

force technique. Initiating and monitoring multiple transfers can be difficult. In my

experiments, I utilized 30 concurrent transfers, which proved to be complicated to

track. With multiple simultaneous transfers, the task of setting up and monitoring

the individual transfers can be overly complex for the average user.

5.1.2.2 Performance-based Technique

Performance based techniques utilize performance metrics when selecting replicas

to utilize. There are two main groups of performance-based techniques: history-based

and probe-based. Both of these groups attempt to exploit faster servers by assigning

them greater portions of the workload. Depending on the user's choice, the number

of servers utilized in parallel can vary from two to possibly all of the available servers.

In history-based techniques (110; 111), the retrieval algorithms address the

50

fact that each transfer between a replica and the client has varying transfer rates.

These techniques adjust the amount of data retrieved from each replica by predicting

the expected transfer rate for each replica. The algorithms create forecasts of future

performance based on transfer history with network and disk load data. Historically

faster servers are assigned to deliver larger portions of the file and slower servers are

assigned smaller pieces.

In probe-based techniques (36; 131), the retrieval algorithms utilize network

status information to create network throughput predictions. Some of these tech

niques utilize the Network Weather Service (124), which is a networking monitoring

tool that utilizes sensors which gather data on the latency and bandwidth of end-to-

end TCP/IP performance. Using these throughput forecasts for each replica server,

the algorithms assign portions of data request to each available replica. Replicas

predicted to have the best performance are assigned a larger portion of the request

workload.

I evaluate a performance-based technique (PBT) by selecting servers using the

round-trip time from a network ping and performance information from the transfers

that I observed when examining the brute-force technique. I select servers with the

lowest ping times and the shortest historical service times first. I vary the number of

servers that are used concurrently from two to twenty. As the number of servers uti

lized increases, I use slower servers with larger round-trip times and longer historical

service times. I compare the overall service times that I experience for the varying

number of concurrently utilized servers in Figure 5.4. I find that as the number of

servers increases, the overall service time also increases. When more servers are used,

slower servers are required to service portions of the request. The request is not

complete until the slow servers finish their portions and thus affect the overall service

time. When only the two servers with the best metrics were utilized, the overall time

to retrieve the file was the least.

51

140

120

a 100 3 c
1 80
«
E i= 60
01 w

I 40

20

2 Servers 5 Servers 10 Servers 15 Servers 20 Servers

Number of Servers Utilized Concurrently

Figure 5.4: Advanced Data Retrieval - Performance-based Technique: Total service
time (minutes) for the file transfer as the number of servers concurrently
used increases.

I also observe that as more file transfers are added, the user's available retrieval

capacity diminishes. Eventually, there are more file transfers than the user's con

nection can handle and the transfers will compete for the available retrieval capacity.

This can negatively affect faster transfers. Figure 5.5 illustrates the effects of multiple

parallel file retrievals on the transfer rate of the fastest connection observed. As the

number of concurrent data retrievals increase, there is a decrease in the transfer rate

for the fastest file transfer. There is a 77% decrease in the transfer rate when there

are 29 other transfers competing for available retrieval capacity.

While probe-based techniques provide improved performance over brute-force tech

niques, they still attempt to utilize as many servers as necessary without regard for the

user's limited retrieval capacity. In many cases these techniques create more transfers

than the user's bandwidth can accommodate, which results in transfers competing

for bandwidth. This situation diminishes the performance of the overall file transfer.

Users are faced with several difficulties when utilizing performance-based retrieval

techniques. Since these techniques are more complex than the brute-force technique,

their implementation could prove difficult for the average user. Another issue that a

52

25

R' = 0.98064

1 Server 2 Servers 5 Servers 10 Servers 15 Servers 30 Servers

Number of Servers Concurrently Utilized

Figure 5.5: Transfer rates for the fastest server connection observed, as the number
of servers concurrently used increases.

user faces is the problem of stale performance metrics. Network conditions and server

workloads are constantly changing, which means that these metric values can quickly

become inaccurate. Since these data transfers could potentially take multiple hours

to several days, users will need to continuously update their performance metrics for

all server connections.

5.1.2.3 Dynamic Techniques

Dynamic techniques (24; 29; 121; 127) attempt to automatically adapt to

changing system conditions by requesting small, equally sized, portions of a file from

multiple replicas. In many dynamic techniques, each replica is initially assigned one

segment. As replicas complete their assigned segments, they are assigned additional

portions of the data file to service. Each dynamic technique uses different decision

making algorithms on how to schedule these requests, however faster servers will end

up transferring larger portions of the file. Any failed or undelivered requests can be

automatically rescheduled to other replica servers, potentially created duplicate work.

Depending on the specific dynamic technique, the desired data file could be segmented

so that a single server could receive tens to hundreds of requests for portions of one

53

<= 10

100% User's Retrieval Capacity

Figure 5.6: Incremental Distributed File Retrieval: Changes in service time (minutes)
as the user's retrieval capacity approaches its maximum utilization.

file.

My Dynamic Technique: My technique attempts to fully utilize the user's re

trieval capacity by dynamically and incrementally increasing the number of servers

currently utilized until the user's maximum retrieval capacity is reached. This tech

nique attempts to avoid situations where several transfers are fighting for available

bandwidth. It allows requests for large amounts of sequential data from the same

server, which enables the servers' storage systems to effectively utilize their caching

and pre-fetching schemes.

This dynamic technique begins by selecting one server with the smallest round-

trip time using a network ping. After the transfer has started, the user's available

bandwidth is monitored. The technique then incrementally creates additional data

transfers to other servers, as necessary until the user's retrieval capacity is fully uti

lized. Figure 5.6 illustrates the decrease in service time for the incremental technique

as I approach full utilization of the user's retrieval capacity. The service time for

this technique was 9.2 minutes, which was less than the fastest time observed using

normal data retrieval.

In comparison to the other techniques, my dynamic technique produces the small-

54

140

& 80

l e o

120

100

40

20 i

mm mi
Dynamic Normal Normal BfT PBT-2 PBT-5 PBT-10 PBT-15

(Best Server} (Median)

Comparison of Data Retrieval Techniques

BfT PBT-2 PBT-10 PBT-15

Figure 5.7: Comparison of service times (minutes) for all data retrieval techniques

est service time for retrieving the 30GB data file. Figure 5.7 shows the difference in

service times for all of the techniques that I observe. In addition to providing the

smallest service time the user, the dynamic technique attempts to involve the smallest

number of replica servers and attempts to fully utilize the user's retrieval capacity.

The user difficulties associated with dynamic techniques are numerous. Many of

these techniques are quite complicated and their algorithms are complex. Implement

ing them for automated use would require significant time for even an experienced

programmer. The average user would find this task to be insurmountable. In addi

tion, there are many aspects of these algorithms that are left for the user to decide

and control. I detail some of these issues and challenges in the next section.

In summary, I find that advanced file retrieval provides improved performance in

comparison to normal data retrieval. There are several advanced techniques available

for the user to utilize. Choosing an appropriate and viable technique however is a

difficult task. Implement, configuring and utilizing these techniques can be a challenge

for even for the experienced user.

5.2 Issues and Challenges

Retrieving large data files (GB, TB, PB) is a complicated and time-consuming

process. These long duration transfers could take tens of hours to several days and

observed

55

a normal "one click and wait" method will not suffice. During the course of the

transfer, servers may go off-line and network conditions may change that either hinder

or stop the transfer completely. The user needs to know how to maintain the data

transmission until completion.

Advanced retrieval techniques allow users to utilize multiple resources simultane

ously. These advanced techniques provide improved performance for users, however

they are quite complicated to implement and use. They require significant user in

volvement and require multiple user decisions that can dramatically affect the per

formance of the transfer. A user needs know-how in order to make these techniques

function properly and efficiently.

Another configuration option that is frequently left for the user to determine

is segment size. In some advanced techniques, the data file is divided into small

portions called segments. The segment size is often left for the user to decide and the

size chosen can affect the performance of the transfer. Determining the appropriate

segment size is not a simple task. If the size is too small, a server may receive hundreds

to thousands of requests for portions of a single file. This will result in longer disk

service times at a server, as the number of users increases. A server's storage system

can best service requests if it has greater knowledge of a user's workload. It can better

schedule reading from the hard disks, as well as take advantage of pre-fetching and

caching strategies.

A key issue that is not adequately addressed for retrieval techniques is failures.

Since I am transferring extremely large data files over long periods of time, I will

eventually encounter transfer failures. Many advanced techniques identify that fail

ures can occur and provide mechanisms for issuing new requests, however specific

details about the timings of these actions are not addressed and are left for the user

to decide. The request re-issue delay is a common problem with these techniques.

Determining the appropriate amount of time that the application should wait before

56

issuing a replacement request is a non-trivial task.

The most important outcome of this study is not the fact that my

dynamic parallel transfer technique outperformed existing techniques, but

the degree of impact that I had on the campus network and other users

in the system. I address and discuss this impact in the following section.

5.3 Impacting other users

During my live experiments, I was contacted by the department network support

team, as well as the university's telecommunication department. My experiments

impacted the service of the subnet as well as the general Internet connections dur

ing peak usage times. During low usage intervals, other users' workloads were only

minimally impacted due to the limited number of active users on the subnet. Dur

ing high demand periods however, my experiments increased the load of the subnet

link to near full capacity, which resulted in service problems for other users. The

support teams received complaints from users that were experiencing problems with

their network applications.

Working with university support teams and utilizing bandwidth-monitoring de

vices, I was able to obtain bandwidth utilization graphs for all of the shared Internet

(WAN) connections for the campus. Figures 5.8a, 5.8b, and 5.8c show the bandwidth

utilization for the Internet connections before, during and after my experiments. Be

fore I began my evaluations, the university was on a mid-semester break. During

this time, there was very little network load. Only automated and system traffic is

present in the system at this time. Once users returned to campus, I initiated my

experiments, so that my workload would be intermixed with normal everyday traffic.

Since my experimental traffic is mixed with all other users, I am unable to precisely

isolate my traffic in the graphs. Figure 5.8a illustrates the bandwidth utilization for

the Internet2 traffic. Since most student and staff traffic very rarely use the Internet2

57

(A) • Bandwidth Usage - Internet2 WAN Connection

(B) • Bandwidth Usage - All WAN Connections

(C) • Bandwidth Usage • Multi-month View • All WAN Connections

Figure 5.8: Bandwidth usage on wide area network connections before, during and
after my evaluations. The shaded regions indicate the time period during
my experiments, (a) - This graph shows bandwidth usage of the Internet2
connection for a two-week period, (b) - This graph shows total bandwidth
usage of all WAN connections for a two-week period, (c) - This graph
shows total bandwidth usage of all WAN connections for a four-month
period.

58

link, it is easier to discern my experimental workload in the graph. Multiple sources

in my experiments are located at universities on the Internet2 network and therefore

my workload has a dramatic impact on the bandwidth utilization of the Internet2

link. As the graph indicates, the normal usage before and after my experiments is

quite low in comparison. There is a significant increase in traffic on this link during

my experiments.

The impact of my experiments on all WAN connections is slightly harder to see

when it is intermixed with all other users' traffic. Figure 5.8b illustrates the total

bandwidth utilization for all of the campus WAN connections. During my experi

ments, the total utilization reached its highest peaks during the two week time span.

When the time range for this graph is increased to four months, as shown in Fig

ure 5.8c, it is easier to notice the impact of my experiments. The bandwidth utiliza

tion again reached its highest peak during my experiments, as well as maintained a

higher utilization for the entire experimental period. From all three of these graphs,

it is clear that large file transfer workloads can impact the performance of the entire

campus network, especially during high demand periods. It was during high demand

periods when I impacted other users the most.

At the start of this study, my focus was on creating an efficient parallel transfer

technique. At the end of the study, I realized that no matter the speed or efficiency

of your transfer technique, it will only perform as well as the network/system you

are on. Impacting other users with big data transfers is not responsible and could

potentially cause you to have your Internet access restricted or even revoked.

In order to develop a new approach to big data transmissions, I needed to fully

examine the campus network and its workloads. The following chapter details the

findings of my campus network study.

59

CHAPTER VI

Examining the campus network and its user

workloads

In order to understand how big data transmissions affect users on a shared net

work, I need to first analyze the architecture of these networks and their user work

loads. In this chapter, I present my study of the UNH campus network (119). I

first examine and detail the structure and setup of the network. I then analyze the

network traffic to identify patterns in network usage and categorize the workloads of

the campus users.

Campus networks are a microcosm of the Internet. The university campus is the

workplace for researchers, faculty, staff, and students. Unlike commercial networks,

the campus is also a home for the majority of the student body. The campus net

work must therefore support both academic and non-academic workloads in order to

keep all users on campus content. The system must support a wide variety of appli

cation classes, such as: email, web browsing, streaming multimedia, gaming, video

conferencing, voice over IP, cloud/grid workloads and file transfers. Each of these

application classes has its own demands and requirements for bandwidth. In this

chapter, I characterize bandwidth utilization rates, users' access patterns and data

consumption amounts for these application classes on the UNH campus network.

Over the past few years there has been a major shift in Internet applications

60

used on campus networks. Users have progressed from low-bandwidth, best-effort

applications to real-time and bandwidth intensive applications. One such application

is streaming multimedia, which is capable of consuming extraordinary amounts of

bandwidth (28; 22; 42; 53; 132; 51). Each year the bandwidth utilization rates are

increasing for these types of applications. Since these applications can dynamically

adjust their output quality based on bandwidth availability, they have unbounded de

mand for Internet resources. Users continually want better quality and high-definition

viewing, which places extreme strain on system resources, especially on campus net

works. A workload characterization is needed to determine the degree of impact

these types of applications have on the campus network and how users are using

these applications.

I realize that this network data represents only one possible network configuration

used by academic institutions. Obtaining the following detailed data about bandwidth

usage and user workloads required several rounds of authorization and working with

network administrators to access live, mission critical hardware devices. Attempting

to obtain similar in-depth data from other institutions and corporations proved im

possible due to security concerns and confidentiality issues. I realize that some of the

specifics from my analysis might only relate to the UNH network, but the trends that

I observe are definitely present at universities throughout the country (78; 87; 102).

The rest of this chapter is organized as follows: first, I explain the configuration

of the campus network in Section 6.1. I identify bandwidth usage information in

Section 6.2. I then present the workload characterization for the Internet applications

used on campus in Section 6.3. In Section 6.4, I examine system performance when

users are given additional Internet bandwidth. Finally, I summarize my findings in

Section 6.5.

61

Metropolitan
Data Center

(WAN)

^Akama^

Regional
Academic
Network

University
UN

' WAN ' (at J KouUh 10Gb (at J

CS Dept.

Physics Dept Campus

English Dept

Library

Student Union

wms
WiFl Users

Student Dorm

lCb

Figure 6.1: Network layout for the university network and its connection to the shared
data center in a nearby metropolitan axea.

6.1 Campus network configuration

In this section, I describe the general setup and configuration of the UNH campus

network. This network, illustrated in Figure 6.1, is designed to support over 10,000

students with an average of 6000 concurrent connections. Users consist of students,

faculty and staff. These users connect to the network through Ethernet or WiFi

connections and are distributed across multiple subnets around campus that are con

nected to the campus core via 1 Gbps links. The core of the campus network consists

of 10 Gbps connections.

At the edge of the campus network, all traffic destined for external locations passes

through a bandwidth management device. This device monitors the workload for each

IP address and controls the bandwidth usage for each user. After the traffic passes

through the bandwidth manager, it continues through a private 10Gb fiber connec

tion to a nearby metropolitan area, as shown in Figure 6.1. When it reaches the city,

the traffic arrives at a shared data center, which contains access points to major tele

com networks, regional universities and major corporations' services (such as Google,

Akamai, Level3, etc.). The outgoing data are then routed to three different wide area

62

network connections. Two of these connections are to the public Internet and one of

these connections is to Internet2, a non-profit network designed to support research

and educational institutions (3). Traffic destined for the Internet is load balanced

between the two general Internet WAN connections, which have a total bandwidth

capacity of 1.5 Gb/s. The Internet2 connection has a variable bandwidth capacity,

which allows on average 500 Mb/s. This results in a total bandwidth capacity of

2.0 Gb/s for the entire university network.

Incoming data destined for a user on the university's LAN comes into the three

shared Internet connections. This data could be streaming multimedia from a nearby

CDN server or a webserver at a regional university. All of this data crosses the

LAN/WAN border and then passes through the private link to campus. All incoming

data continues through the bandwidth manager before being routed to the correct

subnet and finally to the end user.

Since the university supports over 10,000 users, the campus network has to ensure

that each user has equal and fair access to the shared Internet connections. In order

to accomplish this task, the university employs a bandwidth management device that

is located at the edge or border of the LAN network. Each user device is limited to

8 Mb/s. As demand for bandwidth increases, the per device bandwidth allowance

will be further restricted. The bandwidth manager is imperative in making sure that

everyone has fair and equal access to the shared Internet connections. It however does

not ensure that users will have sufficient bandwidth and capabilities to utilize their

desired applications. Under high load conditions, a user might only receive a small

fraction of available bandwidth. This amount might suffice for web browsing and

email messaging, however streaming media and applications requiring low latency or

quick response times will suffer.

In the following sections, I characterize the Internet workload for the campus

network. I examine the total amount of traffic flowing into and out of the shared

63

Internet connections. I also examine the applications that are transferring the largest

amounts of data over the campus network. In order to gain access to this information,

I utilize network monitoring devices that are placed throughout the network. I gather

live data from the network and perform off-line data analysis of all traffic flows. I

also use the bandwidth manager to gather data regarding users' workloads.

6.2 Bandwidth usage

I begin my characterization of campus Internet workloads by examining the to

tal bandwidth usage of the shared Internet connections for the campus network. I

monitor and examine bandwidth consumption on the campus network for an entire

academic year. Figure 6.2 illustrates the variations in the daily maximum bandwidth

consumption for this 12 month period. I find that there is very high demand during

academic semesters and reduced demand during breaks. Since students are the main

consumers of bandwidth on campus, changes in consumption correlate to their leav

ing and returning to campus. There is however a constant level of usage throughout

the year regardless of the month, as the university hosts multiple government run

projects that continually transfer data. Internal services that connect to satellite and

regional campus networks also conduct data transfers on regular schedules.

Figure 6.2 demonstrates that several times during the Fall 2010 and Spring 2011

se- mesters the maximum bandwidth usage rates reached the bandwidth limits of the

shared Internet connections for the entire campus network. Multiple times throughout

the semester users consumed their entire bandwidth allotments and were forced to

utilize less than their maximum rate of 8 Mbps.

Bandwidth demand changes throughout the year, as illustrated by the peaks and

valleys on the graph. In order to understand of these shifts in demand, I examine the

bandwidth usage from a weekly perspective. Figure 6.3 shows the maximum, average

and minimum bandwidth usage for a typical week during the Spring 2011 semester. I

64

Figure 6.2: Changes in maximum bandwidth consumption over 12 months for all data
passing through all of the university's shared Internet connections. Each
semester user demand and bandwidth consumption increases.

find that network usage is the highest between Sunday evening and Friday afternoon.

This correlates with classes starting and ending for a given a week. Between Friday

night and Sunday afternoon, the network utilization is generally at its lowest. Even

the maximum bandwidth rates during this period are much lower than during the

rest of the week. I attribute this occurrence to the fact that many students and staff

leave campus or reduce their network usage on the weekends.

As I observe that the network utilization changes from day to day, I also find

that it changes from hour to hour. In Figure 6.4, I examine the maximum, average

and minimum bandwidth usage for each hour in a typical weekday during the Spring

2011 semester. I find that peak usage occurs between noon and midnight. There is a

slight dip around dinnertime and then usage increases until 1AM when demand starts

to drop off. The lowest usage point occurs between 4 and 7 AM and then demand

increases as faculty return to campus and students prepare for the start of classes.

Throughout the 24-hour period, there is always some amount of bandwidth utilized

as indicated by the minimum values on the graph. I observe very large differences

between the minimum and maximum values, which indicates that users' workloads

65

5
s
UI
s l/l 3
Z (-O
3 o
z
<
CO

SUN MON TUES WEDS THURS FRI SAT

Figure 6.3: Changes in the minimum, average and maximum bandwidth usage (all
receiving and transmitting traffic) for a typical week during the Spring
2011 semester.

are dynamically adapting to changing bandwidth availability.

Overall, I find that a significant amount of data is transferred between the campus

network and the Internet daily. On an average day during an academic semester,

about 7 TB of data is transferred through the shared Internet connections. 2.5 TB of

outgoing data is sent to the Internet and 5.5 TB of data is transferred into the campus

network. Figure 6.5 demonstrates the total amount of data transferred each day using

the campus network's shared Internet connections. The maximum amount of data

ever transferred in a single day is roughly 10 TB. As in Figure 6.2,1 also observe usage

patterns that correlate to the academic calendar. More data is transferred during the

Fall and Spring semesters than any other time. As previously discussed, there is a

constant workload for the shared Internet connections and they are never completely

idle. The minimum amount of data transferred on any day in the year is 870 GB,

which occurred on Christmas day.

Bandwidth Summary: Overall, I find that largest amount of data transferred

• MIN

66

1400

i -a
! I 875

z
Q

3 700

UJ

1225

1050

175

0

Figure 6.4: Changes in the minimum, average and maximum bandwidth usage (all
receiving and transmitting traffic) for a typical day during the Spring
2011 semester.

between the campus network and the Internet occurs during academic semester in

the Fall and Spring. There is a continual amount of traffic regardless to the time of

year, which is created by special projects and internal services on campus. The peak

usage time for the campus network is between noon and midnight from Sunday to

Friday. I see decreased usage during the early morning hours (4AM to 10AM) and

on the weekends. On a typical day the campus network is transferring roughly 7 TB

of data to and from the Internet.

6.3 Internet application workloads

In the previous section, I characterized the amount of data being transferred to and

from the Internet on the campus network. The next component of my characterization

is to identify the applications that are transferring these large amounts of data.

Working with network management devices on campus, I was able to obtain usage

67

Total Amount of Data Transferred through shared Internet connections each day for 1 Year

4-Mty-10 4-Jun-10 4-JuUO 4-Aug-lO 4-Stp-lO 4-Oct-lO 4-NwlO 44*c-10 4-J»n-U 4-f«fr>U 4*M»r>U «-Apr-U 4-Msy-U

Figure 6.5: Total amount of data transferred by the campus network each day.

profiles for users on campus. I monitored user traffic for a period of 35 days during

the Spring 2011 semester. I examined the traffic workload to identify the top applica

tions consuming Internet bandwidth during this time period. Figure 6.6A illustrates

the applications that consume the most amount of bandwidth on a typical day for

all users. I found that the applications utilizing the largest amount of Internet band

width are streaming multimedia applications, such as Netflix, HTTP Streaming and

YouTube. On a typical day, these three application classes consume more than triple

the bandwidth of general web browsing. This is the case on many campus networks,

as well as the entire Internet (78; 87; 102). Netflix currently consumes the most

amount of bandwidth for the entire Internet (130; 107). I also found that Skype and

file transfers register in the top ten application classes. Popular applications such as

Facebook and iTunes rank in the top 15 user applications.

I continued my workload characterization by examining application usage by user

type. I began by comparing the usage patterns for students and faculty staff. In

Figure 6.6B, I identified the top bandwidth consuming applications for faculty and

staff users. I found that their workload is dominated by web browsing and file trans

fers. The applications with the next highest levels of bandwidth consumption are

68

|
| 1 1 -

1 1 0 '
m

i »

1 6

f '
0

(A) Overall - Alt Users

A (A) NtlFiix
u (B) HTTP Streaming

•UC n _ (C) HTTP Browsing
QBflfU (Dj YouTube

t (E) Skype
(F) HTTP FU« Transfer

G (G) HTTP Download Manager
(Hj HTTP
(!) Flash Media
0) SSH

H (K) SSL
1 Facebook
. (m> smb
a ITuwa

K . ..

i16t
E 1.4.
ZJ
s
» 1.2. •

a

I10"
5.0,8. •
fi

1 0.6. •

| M . .

|o.2..
$
* o.o. 5

(8} Faculty/Staff Users

(A) HTTP Browsing
M (B) HTTP File Transfer

(C) HTTP Streaming
• (D) YouTube
•J (E) PPPStream
• jfl (F) SSL
!• (G) iPiaycr

(H) ITunes
• • C (') HTTP

•Efl o) P2P

• •• p (K) Flash Media
fL) SSH
(M) Bittunvrit
(N) HTTP Download Manager

• S^H £ f (0) BITS
H i i (i1) N«nu

nl! N"r

t 3 ' 5 '

| 3.0-

•?

| 2.0'

i„

I1 0 '

io.5-

<
0.0

(C) Student Users (Daytime)

A B (A) NetFllx
Hg| (Bj HTTP Streaming
• C (C) YouTube
Bfl CD) Skype

D (E) HTTP Download Manager
(F) HTTP Browsing

^He (G) Flash Media
(H) HTTP File Traiufer
(i) HTTP

C ()) ITunej
(K) I Player

Steam
| Face book

8TUP

K

ft

i7"
1 " •
'm S- .

1 4-
6

l 2« •

{ ' • •

« oil

(0) Student User* (Nighttime)

A B W Skyp.
Sgl (8) NrtPlix
M (C) HTTP Download Manager
• (D) HTTP Streaming

C p (E) YouTube
(F) HTTP Browsing
(G) HTTP File Transfer
(H) Flash Media f HTTV
0) PPStream

B^Bj^^H (K) mines
G Facebook

u (M) lPlayer
(N) Steam

m n

Figure 6.6: Most active protocols utilized on an average day. Protocol usage by types
of users are shown: A) all users, B) faculty/staff users, C) student users
during the daytime and D) student users during the nighttime.

streaming video and YouTube. Netflix is very low on the list of applications for the

staff users. The bandwidth used by web browsing for the faculty is double that of

any streaming application for their user group, very unlike the student users.

Figures 6.6C and 6.6D illustrate the top applications for the student users on

campus. I separated the applications by daytime and nighttime usage. During the

day, the applications utilized by the students are mainly streaming multimedia (Net-

Flix, YouTube, HTTP Streaming). At nighttime, the same streaming applications

are still high in the list of applications consuming the most Internet bandwidth, how

ever the bandwidth usage for these applications increases in the evening time. The

major difference between daytime and nighttime periods is that Skype utilization in

creased dramatically. Skype is the top application for bandwidth consumption during

nighttime hours.

69

My user workload characterization also examined the changes in application usage

based on the time of day. I have already compared student usage during the day to

nighttime. I continued my characterization by looking at all users for specific hourly

periods over the course of 24 hours. Figure 6.7 illustrates the changes in bandwidth

utilization of the top application classes over the course of a typical day. The top

bandwidth consuming application, Netflix, is used to the greatest extent between 6PM

and midnight. Netflix utilization is double during this time period in comparison to

other parts of the day. Skype also has a significant increase in utilization during

the evening time. Skype bandwidth consumption increased by 300% at night. Web

browsing, YouTube viewing and HTTP streaming applications have the highest usage

levels between noon and midnight. All applications see decreased usage between 6AM

and noon. Skype and Netflix have the most noticeable decreases when compared

to their peak periods. Web browsing is the only application to have usage levels

during the 6AM to noon period that are comparable to normal daytime rates. The

SSH application class has a fairly consistent level of usage regardless of the time of

day. Many internal services (data backups and replicated data sets) utilize SSH for

automatic file transfers throughout the day. The average daytime (6AM-6PM) rate

is almost equal to the average nighttime rate (6PM-6AM) for the SSH application

class.

In addition to characterizing the bandwidth usage rates for the application classes

that make up the Internet workload on campus, I also identified the total amount of

data being utilized by each application class. In Figure 6.8,1 display the applications

that received and transmitted the greatest amount of data between October 2010 and

May 2011. Since this time period includes Winter break, the data essentially display

usage information for six months. I identified the top five applications for both sending

and receiving. I found that users utilizing the Netflix application were able to receive

over 25,000 GB of data during the six month period. Both HTTP streaming and

70

30

3 o
25

20

lA
N

O
W

IO
T

(M

b
/s

)

15

10

UI
g 5

S < 0

El 06:00-11:59

• 12:00-17:59

• 18:00-00:00

• 00:00-05:59

HTTP BROWSE YOUTUBE ! HTTP STREAM SKYPE

Figure 6.7: Changes in protocol usage for the most actively used protocols on campus
throughout a typical day.

YouTube received over 44,000 GB combined. Web browsing and HTTP file transfers

each consumed roughly 15,000 GB of data individually.

I also examined the applications sending the most amount of data from campus

to the Internet. The amount of data leaving the campus network for the Internet is

considerably lower than the amount of data being received. Skype sent the largest

amount of data during the six month time period, almost 10,000 GB. Both the send

ing and receiving amounts for Skype were almost identical. The next two applications

that sent the largest quantities of data out of the UNH network were secure commu

nications (IPSEC-ESP and SSH). Each of these application classes transferred over

7000 GB of data out of the campus network. File transfers and web browsing also

sent about 6000 GB. Web browsing had a bandwidth usage ratio of 2:1. The amount

of data being received by web browsing users was double that of the data being sent

by the same users. A full table of the data amounts by application is displayed in

Figure 6.9.

Application Summary: Overall, I found that the real-time, bandwidth-intensive

applications dominate the Internet workload on campus. Users are utilizing inter

active applications that are sensitive to changes in latency and network congestion.

71

Total amount of Data Received by Application Class

NetFlix

HTTP_Sfreaming

YouTube

HTTP_Brow$lng

HTTP File_Tranjfer

5000 10000 15000
GIGABYTES

20000 25000 30000

Total amount of Data Sent by Application Class

Skype

IPSEC-ESP

SSH

HTTP_Flle_Transfer

HTTP_Brow$lng

2000 4000 6000
GIGABYTES

8000 10000 12000

Figure 6.8: Total amount of data transferred by each application class between Oc
tober 2010 and May 2011 for all users on campus.

Netflix consumes the maximum bandwidth and receives the largest amount of data in

comparison to all other applications on campus. Skype transmits the largest amount

of data to the Internet. Web browsing and SSH communications have fairly stable

usage patterns in comparison to other applications.

6.4 Increasing bandwidth

In the previous two sections, I characterized bandwidth consumption and user

workloads. I continued my characterization by examining changes in user workloads

when bandwidth is increased for users on campus. It is common to think that giving

users additional bandwidth will solve any performance problems on campus networks,

however I found that any extra bandwidth is quickly consumed. I discovered this

situation in multiple instances.

During the nighttime hours, students are given a portion of the faculty's band-

72

Protocol
Total Bandwidth % Total In Bandwidth Out Bandwidth

Protocol
(GB) Bandwidth (GB) (GB)

NetFlix 26221.97 5.7 25640.919 581.052

HTTP_Streaming 24088.721 5.2 23172.675 916.045

YouTube 22511.961 4.9 21757.611 754.35

HTTP_Browsing 21971.461 4.8 16035.051 5936.41

HTTP File Transfer 21036.135 4.6 14472.353 6563.782

HTTP DownloadManager 13678.501 3 13108.437 570.064

Skype 19041.435 4.1 9052.676 9988.759

Flash Media 8758.3 1.9 8524.36 233.94

HTTP 9052.033 2 7681.611 1370.422

SSH 12884.821 2.8 5753.53 7131.291

iPlayer 4914.076 1.1 4642.528 271.548

iTunes 4890.349 1.1 4579.231 311.118

Facebook 4502.95 1 3866.792 636.158

SSL 7287.619 1.6 3552.22 3735.399

FTP-DATA 4662.748 1 3434.913 1227.834

PPStream 7643.39 1.7 2947.715 4695.676

Steam 2604.319 0.6 2541.917 62.402

RTMP 2640.165 0.6 2375.654 264.51

Other P2P 4473.183 1 2303.007 2170.176

YouTube-HD 1793.975 0.4 1754.968 39.007

BITS 1679.611 0.4 1640.144 39.466

MegaUpload 1439.513 0.3 1298.464 141.05

HTTPS 1170.22 0.3 990.882 179.338

BitTorrent Enc 2299.763 0.5 990.672 1309.091

Microsoft Live 1758.971 0.4 979.049 779.923

STUN 1801.377 0.4 865.712 935.665

IPSEC-ESP 8019.213 1.7 836.415 7182.799

HTTP Audio 968.473 0.2 834.739 133.734

BitTorrent 977.689 0.2 496.192 481.497

SMB 3814.965 0.8 170.655 3644.309

All Others 211854.784 45.7 176674.118 35180.667

TOTAL 460442.691 100 362975.21 97467.482

Figure 6.9: This table lists the total amount of data transferred by application class
between October 2010 and May 2011 for all users on campus.

73

HTTP DOWNLOAD

ITUNES

FACEBOOK

FLASH MEDIA

HTTP TRANSFER

SKYPE

HTTP STREAM

YOUTUBE

HTTP BROWSE

NETFUX

SSH

• NORMAL BANDWIDTH

• INCREASED BANDWIDTH

10 20 30 40 50 60
Average Bandwidth Usage (Mb/s)

70 80 90

Figure 6.10: Changes in bandwidth usage for top applications when the students'
bandwidth is increased.

width since there is decreased demand from the faculty/staff users during this time.

When comparing the scale of bandwidth usage between Figure 6.6C and Figure 6.6D,

I observed a significant increase in average bandwidth usage for each of the applica

tion classes. NetFlix uses an average of 3.5 Mbps during the daytime hours and 7.5

Mbps during the nighttime hours for a typical day. I found a similar increase for all

other applications.

Figure 6.10 illustrates another example of increased bandwidth being quickly con

sumed by users. In this graph, I compare the average bandwidth usage of the most

popular applications when the students' bandwidth is temporarily increased. As the

graph shows, there is a significant increase in the bandwidth utilization for all appli

cations when more bandwidth is given to students. Streaming multimedia increases

by more than 200% for all users. Skype usage triples and Netflix quadruples in usage.

I also found that each semester overall user demand and bandwidth consumption

increases. In Figure 6.2, I observed a significant difference is bandwidth utilization

from the Spring 2010 semester to the Fall 2010 semester. The median receive rate

increased by 41% and the median transmit rate increased by 132%. During the sum

mer, network configurations were modified and users were given increased bandwidth

74

allotments. It is clear that this increased bandwidth was quickly consumed and uti

lized by the users at the start of the next semester. Several times during the Fall 2010

semester, campus data rates reached the maximum bandwidth available for all WAN

connections. Comparing the Fall 2010 usage to the current Spring 2011 semester

usage to date, I found that the median usage rates have already increased by 8% for

receive and 9% for transmit. Even with user allotments remaining constant, there

is increased demand for resources from users. In the past few years, there has been

an explosion of devices registered on the network. This is especially true for WiFi

connected devices. It is not uncommon for users to have multiple computers and

devices concurrently connected and transferring data such laptops, mobile phones,

iPods and iPads. During class, a professor and students could all be using computers

to view online videos or demonstrations while concurrently utilizing mobile devices

for messaging and personal multimedia.

In February 2011, Dartmouth College temporarily increased available bandwidth

in order to improve their users' Internet experience(78). The college was experiencing

increased demand for network resources, which resulted in poor performance for users

throughout campus. The network administrators doubled the bandwidth for the

college from 200 Mb/s to 400 MB/s for a two week trial period. The newly available

bandwidth was quickly consumed by users and there were still performance problems.

One class attempted to watch a 15 minute streaming video from a remote server and

the entire video took over 45 minutes to watch, even with the increased bandwidth

connection. Higher capacity connections are expected to be added over the course of

the next two years, however demand is also expected to increase just as quickly.

Another example of increasing bandwidth to deal with high demand issues can be

found at Ohio University (102). On their academic network, users were experiencing

high levels of congestion, so much so that administrators actually fully restricted

portions of their network during finals week. They identified that students utilize

75

over 70% of the campus bandwidth and Netflix was the "largest single consumer of

Internet capacity". The top three bandwidth consuming categories on their networks

are: streaming media (60%), web browsing (25%) and file sharing (7%). In order

to deal with high demand, the university implemented per user bandwidth limits

and increased the total bandwidth capacity for the entire network by 10%. Even

with these measures in place, administrators have noted that demand continues to

exceed available capacity and they are repeatedly utilizing the maximum available

bandwidth. University officials agree that there needs to be work done to "address

the challenge of rising demand for Internet capacity" (87).

Increasing bandwidth summary: When bandwidth rates are increased for

users, I found that any newly available bandwidth is quickly and easily consumed.

Applications like Netflix dynamically adapt to changing bandwidth conditions. When

more bandwidth is made available, the applications attempt to transfer larger amounts

of data for higher quality output. Netflix will shift from standard to high-definition

viewing if the appropriate amount of bandwidth is available. A standard defini

tion movie requires about 1 GB of data for an hour of video (2.3 Mbps), where

as an HD movie requires almost 2.5 GB of data in an hour (5.7 Mbps) (48; 52).

Other applications will also increase their transfer rates when given additional band

width (93; 106; 34; 104; 67; 103; 14).

6.5 Summary

The UNH campus network supports over 10,000 users and allows each user's device

to utilize up to 8 Mbps. During peak periods, the bandwidth limit per device decreases

automatically based on demand. The entire campus network currently shares multiple

connections to both the Internet and Internet2. Given this configuration, I examined

the bandwidth and application usage for all users. The following points represent the

76

main findings of my workload characterization.

• Internet demand varies throughout the academic year, however each semester

more and more bandwidth is consumed by users as demand grows.

• User demand and bandwidth usage is greatest between Sunday evening and

Friday afternoon. On average, bandwidth usage reaches a high-load condition

between noon and midnight each day.

• On a typical academic day, the campus network transfers 7 TB of data. The

network has frequently transferred up to 10 TB during peak periods. The

minimum amount of data transferred on a given day is 0.8 TB.

• The applications consuming the most bandwidth on an average day are stream

ing multimedia (Netflix, YouTube), web browsing and Skype.

• The top applications for student users are Netflix, streaming web videos and

Skype. Faculty and staff users' workloads are dominated by web browsing and

file transfers.

• During the daytime hours (6AM-6PM), Internet traffic is mostly web browsing,

file transfers, SSH and streaming multimedia. At nighttime, Skype, Netflix,

YouTube and other streaming multimedia take over as the applications de

manding the most bandwidth.

• During a six month period, the top applications transferred tens of thousands of

gigabytes of data. Netflix (25,000 GB), HTTP streaming (23,000 GB), YouTube

(21,000 GB) and web browsing (16,000 GB) had the largest amounts of received

data. Skype sends the most amount of data on a given day (10,000 GB) and

receives roughly the same amount of data.

77

• When bandwidth is increased, users quickly utilize any new capacity made

available to them and the data transfer rates for the top bandwidth consuming

applications greatly increase.

At the time of this study, users were restricted to a combined bandwidth limit of

1.2 Gbps. Each year additional bandwidth is acquired by the university and the

users' limits are increased. If the students' usage patterns remain the same and their

bandwidth partition is increased to 2 Gbps, the campus network is estimated to

transfer over 12 TB of data daily. Given that applications like Netflix dynamically

adjust to available bandwidth and attempt to utilize as much as possible to achieve

high definition viewing, I expect that the daily data consumption amount will be even

higher.

Given the results of this study, I must next ascertain whether or not the campus

network can accommodate big data transfers. With a better understanding of the

campus network and its workload, I need to determine if it is feasible for the system

to support big data transfers for all users on campus. The following chapter presents

my feasibility study.

78

CHAPTER VII

Feasibility of big data transfers on the campus

network

In the previous chapter I identified the architecture and workloads of the campus

network. I found that the network is heavily utilized by thousands of users and its

workload is dominated by congestion sensitive applications. Given the results of the

campus network study, I must determine whether or not it is feasible for the network

to support multiple users transferring big data. This chapter details the finds from

my study (117).

Currently, only a small percentage of academic users, mainly researchers in disci

plines like physics and biochemistry, need access to large data sets stored elsewhere.

Since electronic transmission of large data sets is difficult, these researchers often

transfer their data via hard disks transported by snail mail (1). In rare cases, fast

links can be manually and temporarily set up between two locations for transfers

of large data sets by working with network administrators. As large scientific and

commercial data sets become available in a growing number of disciplines, a greater

number of academic users will require access to these data files. Since these data

sets are often multiple petabytes in size, researchers will often require subsets of the

data with file sizes in the range of hundreds of gigabytes to several terabytes. Users

routinely require and prefer local access to these files for processing and other tasks.

79

Even the output of remote computations in both grid and cloud environments can

be in the same magnitude of file size. The movement of large private files between

the cloud/grid and its clients is a commonplace occurrence. Therefore, in addition

to specific research groups, individual users on campuses will require access to large

files. Current trends in computing and the increasing sizes of files predicate the need

for efficient techniques to transfer large files to and from campuses.

Big data transfers impose a much higher bandwidth burden than any other ap

plication. Users want to be able to retrieve/transmit large files quickly with a click

of a mouse, without having to worry about errors and retransmissions. In order to

move files quickly, the campus user must have fast links. For example, to transmit

a 1 terabyte file over a 1 Gb link would take at least 2.3 hours, and over a 5 Mb

link would take at least 19.4 days. However, increasing the bandwidth for large file

transfer users would limit the available bandwidth for other users. Satisfying the per

formance requirements of large file transfers is important, but it should not inhibit

the performance of other applications.

There is considerable research interest in techniques for large file transmission (18;

17; 49; 69; 86). The majority of existing research focuses on new network hardware

and new network protocols for large file transfers (56; 61; 68; 77; 99). Purchasing new

hardware for a particular application may not be cost effective. Before investing in

new hardware for large file transfers, it is prudent to investigate whether the existing

campus computer and network infrastructure can be parlayed to support large file

transfers. An efficient solution must not only ensure that the performance require

ments of users transmitting large files are satisfied but also that the addition of large

file transfers does not impede other users and applications. The problem of adding

a high-load application such as large file transfers to a shared network environment

is not just a network issue. It is a systems issue and requires an understanding of

the milieu in which these transfers occur. The users transmitting large files share the

80

campus network with myriad users running a variety of applications with different

performance requirements. In order to satisfy the performance requirements of all

network users/applications, it is necessary to understand the issues and challenges of

incorporating large file transfers into the existing campus design.

7.1 Campus Network

In order to accommodate large file transfers, system resources need to be able to

handle the increased burden created by these workloads. After examining the infras

tructure and configuration of our campus network, which has a similar structure to

other campus networks, we find that it is capable of supporting large file movements

without significant modifications to the infrastructure. The core of the campus net

work and the link to the WAN connections is 10 Gb, which would theoretically allow

the transfer of a terabyte file in under 15 minutes. The links to the end user on

campus could support a maximum of 1 Gb/s, which provides a theoretical time of 2.3

hours. If all of the connections in the data path are able to support these rates, then

the storage systems will be the limiting factor of the transfer rate. The bandwidth

controller that manages the interface between the LAN and WAN has a bird's eye

view of all traffic passing through the border. Since it has complete knowledge of the

workload present in the system, it could be utilized to schedule big data transfers and

to allow these tasks increased bandwidth in order to complete quickly.

7.2 Traffic on the Campus Network

I find that users' bandwidth demands are unbounded and users will utilize any

bandwidth that is provided to them, especially during peak periods. The composition

of user traffic is dominated by real-time applications, such as streaming multimedia,

web browsing and VoIP, which are highly sensitive to changes in network latency and

81

congestion. I also find that there are varying levels of demand during different times

of the day and on different days of the week. High demand is present during the

week when students are actively connected to network, specifically between noon and

midnight. When the campus network is under high load, big data transfers should

not be placed in the system, as they will negatively impact other applications and

will take longer than necessary. Between midnight and noon and on the weekends,

the number of connected users is significantly lower and so is bandwidth demand. It

is during these low usage periods that big data transfers should take place.

7.3 Impact of Big Data Transmissions

Prom my experiments in the previous chapter, I find that it is possible to retrieve

large data files over the campus network. I identify that these workloads impact sys

tem performance and cause congestion during peak periods. There is no benefit to

any user by running these transfers during high load times. Campus users will expe

rience delays and jitter in their time critical applications and the large file transfers

will see decreased transfer rates and longer durations. If the transfers are restricted

to only operate during low utilization periods however, then the performance impact

on user workloads will be minimal and the large file transfers will find faster transfer

rates and shorter service times.

7.4 Potential and Limitations

During my system level feasibility study, I identify two key challenges that must

be addressed before big data transmission can become commonplace on the campus

network.

1. As Internet applications evolve and new services become available, the demand

for bandwidth is expected to outpace the available bandwidth on several cam

82

puses (78; 87). In order to ensure fairness for all users, the bandwidth allotted

to individual users is limited. Big data transfers have the highest bandwidth re

quirements in comparison to other Internet applications utilized by users. With

these restricted bandwidth allotments, big data transmissions would take sev

eral weeks to complete. On the other hand, allowing unrestricted bandwidth

to large file transfers would greatly reduce the bandwidth available for other

applications.

2. The majority of campus users are running real-time applications. Any loss of

bandwidth or congestion can result in jitter and slowdowns for these applica

tions. To a user staring at the "screen," even a small delay can appear endless

and frustrating. These services can therefore not be impacted by big data

transmissions.

I conclude that big data transmissions should not be allowed free rein on campuses,

but should be restricted to operate only during low demand periods. My feasibility

study also identifies the advantages provided by the campus infrastructure with regard

to incorporating big data transfers:

• The bandwidth controller placed at the border between the campus LAN and

WAN manages all traffic moving in and out of campus. The controller has a

complete view of the campus traffic conditions. Moreover, the controller man

ages the bandwidth given to each user at all times. Therefore, the bandwidth

controller has the knowledge and the authority to control the bandwidth given

to big data transmissions.

• My study show that while campus users place heavy load on the network, the

load is not consistent during all times of the day. There are periods during

each day when there is very low usage of the network. During these times, the

network can be specifically employed for terabyte transfers.

83

• File transmissions are not time critical applications. Users do not want to deal

with errors, timeouts and retransmissions, they just want to upload/download

files with minimum problems.

I identify that it is feasible to support big data transmissions on the campus

network by utilizing idle bandwidth available during low demand periods. Taking

advantage of this free bandwidth for big data transmissions needs to be examined

further. The following chapter presents our model for big data transmissions, which

utilizes off-peak periods to transfer data.

84

CHAPTER VIII

Nice model for big data transfers

In this chapter, I present our "nice" algorithm for handling big data transmis

sions (109; 118). As discussed in the previous chapter, it is feasible to support these

types of laxge file transfers on the campus network. In order to accommodate this

additional workload, these transfers must occur during low demand periods and be

allowed access to full bandwidth availability.

A new, nice algorithm for Big Data transfers, which is based on a store-and-

forward model instead of an end-to-end approach, is presented. This nice algorithm

ensures that Big Data transfers only occur during low demand periods when there is

idle bandwidth that can be repurposed for these large transfers. Under this algorithm,

Big Data are transmitted when the Internet traffic at the senders LAN is low. If the

Internet traffic at the receivers LAN is high at this time, then the data are stored at

a staging server and later transmitted to the receiver. Similar to the nice command

in Linux, a transfer tool based on the nice algorithm, gives itself low priority and is

nice to other applications using the Internet.

The overall goal is to develop an application that can transmit big data via the

Internet for all users on campus. In order to develop the application, we first abstract

the essential features of the hardware/software platform over which big transmissions

execute.

85

8.1 Platform

Hardware: The tool transmits files between two campuses, so the hardware of

significance is the transmission media, with the assumption that the sender/receiver

computers are fast enough to handle the upload/download. Prom a modeling per

spective, the hardware platform can be divided into 3 network zones: the LANs at

the two campuses and the Internet connecting these LANs. The data transmission

rate of a network depends on the maximum amount of data that can be transmitted

per second. This rate is determined by the smallest bandwidth link in the route. The

rest of the network hardware, such as routers and switches, can be abstracted out of

the model. Therefore, each network zone can be represented by a single link, namely,

the smallest link in the zone.

The smallest Internet link is usually greater than the smallest campus link. More

over, there could be several alternate Internet paths from the sender's campus LAN to

the receiver's campus LAN. Since the Internet has more bandwidth than the campus

links, the transmission rate is determined by the campus links. Consequently, the

Internet zone can be abstracted out of the hardware model, without impacting the

performance of the transfer. The hardware platform reduces to 2 links, the small

est sender link and the smallest receiver link. Define two variables, SendBW and

RecBW, to represent the smallest sender link bandwidth and the smallest receiver

link bandwidth, respectively.

Workload: Big data transmissions have to share the network with other time critical

applications. Prom a modeling perspective, the impact of this other workload on the

network can be incorporated by reducing the amount of bandwidth available to big

transmissions. Therefore, even if SendBW is the smallest physical bandwidth, the

bandwidth available to big transmissions may be smaller. Prom analyzing the campus

network traffic, there are periods during the day when the network is heavily used,

86

Time Utilization (%) SendBW/RecvBW

12PM-12AM 95% 15 Mbps

12AM-1AM 50% 500 Mbps

1AM-2AM 25% 750 Mbps

2AM-10AM < 10% lGbps

10AM-11AM 25% 750 Mbps

11AM-12PM 50% 500 Mbps

Figure 8.1: Network utilization and bandwidth availability for each hour of a typical
day.

while there are other periods when the network is largely idle. Therefore, the amount

of bandwidth available for big transmissions varies depending on the time of the day.

Figure 6.3 shows that the traffic pattern is largely stable from day-to-day and

varies hourly. For simplicity, the model assumes that the weekend traffic pattern is

similar to the weekday traffic pattern. In order to incorporate the impact of work

load traffic, the notations SendBW and RecBW have to be modified to represent the

maximum available bandwidth (Mb) during each hour of the day:

Arrays SendBW[i], RecBW[i] where i represents the hour of the day 0 < i < 23 where

hour 0 is 12 AM, hour 1 is 1 AM,..., hour 23 is 11 PM; SendBW[i], RecBW[i] represent

the smallest available bandwidth (in Mb) at the sender's/receiver's campus during

hour i.

Figure 8.1 shows bandwidth availability SendBW[i], RecBW[i] used in our model

ing. At 4pm, the maximum bandwidth is 15 Mb/s so SendBW[16] = 15. During non

peak hour, say at 2am, the available bandwidth is 1 Gb/s, so SendBW[2] = 1024.

The sender and receiver campuses may be on different time zones. The variable

TimeDiff represents the number of hours by which the receiver campus is ahead or

behind the sender's campus.

TimeDiff = j where j € {..., —3, —2, —1,0,1,2,....}

For example, if the sender is situated in California and the receiver is situated in

87

Japan, then TimeDiff= 15.

Tool: The user of a file transmission tool either wants to transmit a file or receive a

file. The tool inputs of relevance are the file's size and the time that the user initiates

the transmission. Let the file size be represented in MB.

FileSize =x MB where x e {1,2,....}

Let InitiateTime represent the hour at which the user initiates the transmission.

InitiateTime = j where j € {0,1,2,,22,23}: the hour (time) at which the user

initiates the transfer.

8.1.1 Performance metrics

The following performance metrics are of interest:

1. Transmission Time

sendTT, recTTe {1,2,...}: number of hours that sender and receiver's LANs,

respectively, are busy transmitting the file.

TTe {1,2,...}: maximum number of hours that the network is utilized during

the transmission of the file's data.

Suppose a file is transmitted from sender to an intermediate server in 2 hours;

the file is then transmitted to the receiver in 1 hour. In this case, sendTT= 2,

recTT= 1, TT= 2, the maximum of the two transmission times.

2. Wait Time

sendWTG {0,1,2,...}: number of idle (no transmission) hours between Initiate-

Time and completion of transmission from the sender's LAN.

recWT€ {0,1,2,...}: number of idle (no transmission) hours at the receiver

between InitiateTime and completion of transmission (arrival of file) at the re

ceiver's computer.

88

3. Response Time

RTe {1,2,...}: number of hours between InitiateTime and the completion of the

transmission.

Note that the time unit is an hour - transmissions start on the hour and end on

the hour; if a transmission completes in less than an hour, the transmission time is

rounded up to an hour.

8.2 Nice model

In order to avail of maximum installed bandwidth without impacting other users,

the key is to open multiple transmission streams during low traffic. If the sender

and receiver are in the same time zone then a direct transmission from sender to

receiver is feasible. If the sender and receiver are in different time zones, then the

low traffic periods at the two end points do not coincide. In this instance, the file is

transmitted from the sender to one or more staging server (s), placed in the Internet

zone. Depending on the Internet configuration between the sender and receiver, the

file may be transmitted to a single staging server via multiple streams or the file

may be divided and parts of the file are transmitted concurrently to multiple staging

servers. When the receiver's LAN traffic is low, the file can be transmitted from the

staging server(s) to the receiver. A file transmission tool such as GridFTP could be

used for the transmission from the sender to the staging server(s) and from the staging

server(s) to the receiver. Figure 8.2 represents the nice model. A transmission tool

based on the nice model is parallel, store-and-forward.

It is assumed that the sender and receiver LAN traffic pattern is similar. This is

a reasonable assumption since the traffic pattern is modeled after human behavior.

Using Figure 8.1 as the basis, the high traffic period starts at 9:00AM and ends at

midnight 12:00AM. HighTrafficHours= { 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,

89

LAN , Internet , LAN
i 2
t '
i !

Sender I /\/\/\ i Receiver

•

IStaging Server!

W —iw- 0
Transmit=SendBW[st] ; |Transmit=ReceiveBW[rt]

Wait until Low Load

st=Low Load Time at Sender
rt=Low Load Time at Receiver

Figure 8.2: Nice model

22, 23 }

Note that while the traffic pattern is similar, the installed bandwidth at the sender

and receiver campuses may be different. For example, during low traffic hours 0-9, the

bandwidth at the sender's LAN may be 5Gb/s while the bandwidth at the receiver's

LAN is lGb/s.

The user initiates the transmission; if it is high traffic at the sender's LAN, then

the transmission does not begin until low traffic. At low traffic, the file transmission

starts from the sender to the staging server at rate SendBW. If it is currently high

traffic at the receiver, the transmitted portions of the file remain at the staging server.

When low traffic period starts at the receiver's campus, then transmission proceeds

to the receiver.

In order to focus on the essential aspects of nice's design, we do not explicitly code

parallelism, but we capture the impact of parallelism by using the maximum available

bandwidth. If the sender and receiver are in the same time zone, the staging server

can be used to absorb the bandwidth differential between sender and receiver. For

example, if the sender has a bandwidth of 5 Gb/s and the receiver has a bandwidth

of 1 Gb/s, the sender can transmit at the higher rate using the staging server as a

buffer.

The nice algorithm computes performance metrics for a transmission tool based

90

on the nice model. To keep code simple, we have set SendBW[i] = RecBW[i] = 0

when i 6 HighTrafficHours. This initialization does not impact performance metrics

since a transmission tool based on the nice model does not transmit during high

traffic hours. However, if the remaining portion of a file is small enough (equivalent

to standard files), the code can be modified to allow transmission of this remaining

portion of the file during the high traffic time. The variables SendRemain, StageFile,

RecFile represent the file sizes at the sender, staging server, and receiver. The variables

SendTransmit and RecTransmit represent the amount of data transmitted at the sender

and receiver during the current hour. In line 4, the function TimeZone computes

the time at the receiver given the time at the sender and the difference in time zones

between sender and receiver.

8.3 Parallel model

Current large file transmission tools such as GridFTP and BitTorrent are designed

on the parallel model. Both protocols allow the downloading of parts of the file from

different locations - one receiver, several senders. We are interested in how these

protocols transmit big data between two locations - one receiver, one sender. Since

bandwidth is critical to transfer time, multiple concurrent TCP streams are opened

between the two locations, and parts of the file are transmitted concurrently. Opening

multiple streams potentially distributes Internet load if a different network route is

used for each stream. However, the multiple streams converge at both end point

LANs, thereby straining the capacity of congested campus LANs.

Figure 8.3 depicts the parallel model for file transmissions. The transmission

model is end-to-end with streams of transmission from sender to receiver. Thus, the

rate of transmission is determined by the minimum bandwidth along the path. The

parallel algorithm computes performance metrics for the parallel transmission tool.

The transmission begins at InitiateTime so sendWT and recWT are 0.

91

Algorithm 1: NICE ALGORITHM

Initialize sendTT, recTT, StageFile, RecFile, RT, recWT to 0;
FileNotTransferred= TRUE;
SendRemain= FileSize;

i = InitiateTime;

j = TimeZone(lnitiateTime, TimeDifF);

while FileNotTransferred do
SendTransmit= SendBW[i] * 60 * 60;

if SendRemain> 0 && SendTransmit> 0 then
sendTT -|—|-;

if SendTransmit> SendRemain then
[_ SendTransmit= SendRemain;

SendRemain= SendRemain- SendTransmit;
|_ StageFile= StageFile+ SendTransmit;

RecTransmit= RecBW[j] * 60 * 60;

if StageFile> 0 && RecTransmit> 0 then
recTT++;

if RecTransmit> StageFile then
L RecTransmit= StageFile;

StageFile= StageFile- RecTransmit;
|_ RecFile= RecFile+ RecTransmit;

if (SendRemain> 0 && SendTransmit== 0) || (RecTransmit== 0) then
L recWT++;

RT++;

if RecFile>= FileSize then
|_ FileNotTransferred= FALSE;

i = (i+1) MOD 24;

_ j = 0+1) MOD 24;

TT= MAXIMUM (sendTT, recTT);

print RT, TT;

8.4 Related work: Data transfers over the Internet

Data transfers between users on shared networks, like campus networks, will utilize

a data path similar to the following. The transfer initiates on a node on the campus

network, which is generally a well-managed and heavily utilized system depending on

the size of the university. It can be considered its own autonomous system (AS), which

is a network that is administrated independently (90). The campus network connects

to the Internet via one or more ISPs that provide dedicated bandwidth availability.

92

LAN Internet LAN

Sender Receiver

SendBW[t] ;/\/\/\ ; ReceiveBW[t+d]

IAAA I
Start = Initiate

d=Time Difference

TransmitBW=minimum{SendBW[tJ, ReceiverBW[t+DJ}

Figure 8.3: Parallel model

Algorithm 2: PARALLEL ALGORITHM
RemainingFile = FileSize;

CompleteTime = 0;
i = InitiateTime;

while RemainingFile > 0 do
j = TimeZone(i, TimeDiff);

CurrentBW = MIN(SendBW[i], RecBWjj]);

TransmittedFile = CurrentBW * 60 * 60;
RemainingFile= RemainingFile- TransmittedFile;

CompleteTime = CompleteTime+ 1;

_ i = (i + 1) MOD 24;
RT = CompleteTime;

TT = CompleteTime;

Many large universities have several Internet connections and can be considered to be

multi-homed, in that it has the access to the Internet via different service providers

and different physical links (35; 122). After leaving the campus network, data pass

through the server providers' AS and reach a peering point where their networks

connect with other service providers and telecommunication companies' ASes. The

data transfer operates as transit traffic on backbone connections towards the destina

tion. This middle portion of the data path can be referred to as the transit networks.

These high-speed, high-capacity links are engineered and managed for high efficiency

and availability. Eventually the data will reach the service provider for the receiver's

campus network. The data are then forwarded through recipient's network to the

final destination. The transit network portion of the data path is the most abstract

93

from the end user. The specifics of the routing, such as next-best-hop heuristics (92),

and bandwidth availability are hidden from users. Network providers also use traffic

engineering to determine efficient routing and to satisfy economical objectives (126).

It is therefore difficult to identify the ability of these networks to move large amounts

of data without access to proprietary network information.

The ability to transfer large amounts of delay tolerant data through transit net

works on the Internet is examined in (31; 63; 64; 75). These studies have unfettered

access to large ISP/transit networks' configurations and actual workloads. They find

that there is ample bandwidth available in the major transit networks of the Inter

net to move large amounts of data without incurring additional cost or overhead for

telecommunication companies. They find that the Internet is not the bottleneck in

large data transfers between end users, since there is enough capacity to move massive

data sets during off-peak hours. Internet transit networks exhibit a diurnal pattern

where load peaks between noon and midnight and then shows a dramatic decrease

until the following afternoon (60; 105). The studies also find that under varying pric

ing schemes used by service providers (32; 43; 47; 89; 108) they were able to transfer

data at no cost or at a minimal expense, especially in comparison to physically ship

ping data at regular intervals. For some users with very limited bandwidth, utilizing

postal mail or courier services still remain the best option (123).

In order to gain access to larger amounts of bandwidth for large data transfers, a

consumer could purchase dedicated network connections. Backbone optical networks

can be provisioned for a customer's private connection, however the process can take

several weeks and be very costly (74). For most users dedicated communication lines

are not a viable option, so users must make the best of their existing connections.

There are several technologies that allow users to customize their data paths to max

imize throughput. Overlay networks are one such technology, where users have the

ability to specify their own route through the Internet and utilize faster/less con

94

gested links (15; 20; 83; 99). Using smart algorithms specific or dynamic pathways

through multi-hop networks can be devised (55). A user connected to a multi-homed

network has the ability to select from a set of network pathways and utilize them to

varying degrees in order to gain access to larger bandwidth links (43).

An emerging network technology, OpenFlow, is a perfect fit for transferring large

amounts of data through local networks and transit ISPs. OpenFlow is based on

software-defined networking where the individual network components are programmable

entities that a high-level management application can control in order to optimize

traffic flows to take the shortest path and to optimize the network to maximize link

utilization (70). Typical wide area networks may only have a 30 % utilization on aver

age, since administrators must save bandwidth for bursting periods. Using OpenFlow

it is possible to repurpose this idle bandwidth for bulk data transfers and thereby

increasing the overall utilization of network connections. Since the OpenFlow man

agement software controls all aspects of the network, it is able to successfully operate

at 90-95 % utilization, which is something that large companies like Google is al

ready doing today (50). The OpenFlow technology removes the burden of routing

calculations from the individual routers in the network and eliminates duplicated

work by having a centralized "route compiler in the sky", RCITS (90). Using this

methodology, OpenFlow enables adminstrators to program the network for different

optimizations on a per-flow basis, which means that latency-sensitive traffic can take

the fastest path and bulk flows can take the cheapest (70). As the technology is

further developed, it may become the ideal candidate for moving large amounts of

data through transit ISPs.

8.5 Summary

Current big data transmission tools are based on the parallel model where the

goal is to access a major share of available bandwidth. The parallel model is short

95

sighted in that the design does not look beyond the tool's requirements to the impact

on other users of the Internet. We have developed a nice model that utilizes avail

able bandwidth without impacting other Internet applications. The nice model goes

beyond the parallel model in that it incorporates both the requirements of big data

transfers and the architecture and public accessibility of the Internet.

In the next chapter, I experimentally evaluate the nice and parallel models. I show

that the nice model is superior to the parallel model for big data transfers across the

globe.

96

CHAPTER IX

Evaluating the nice model for big data transfers

In this chapter, I evaluate the performances of the nice and parallel models using

the OPNET network simulator and a simulator that I developed. The OPNET sim

ulator is a well-known, commercial simulator capable of simulating a wide variety of

network components and workloads (73; 88). Figure 9.1 represents the setup for our

experiments. Due to the constraints of the simulator, which only allows file transfers

up to 50000000 bytes, the bandwidth of the shared Internet link is set to a maximum

of 1.5 Mb/s. The results of the simulations are scaled appropriately so that the trans

mission rate is 1 Gb/s and the file size is 1 TB. As presented in the previous chapter,

the time unit used in my evaluations is an hour - transmissions start on the hour and

end on the hour; if a transmission completes in less than an hour, the transmission

time is rounded up to an hour.

Three client/server machine pairs are setup to emulate the workload of the most

popular traffic classes found on the campus network: streaming video, web browsing

and VoIP. In the simulations, the workloads of the three popular traffic classes are

varied to represent the background utilization of the shared Internet connection at

various times of the day. The fourth server is used to simulate big data transfers.

Another server handles staging for big transmissions. The following sections present

the main results of my experimental evaluation.

97

Big Data
Server

Streaming
Video
Server

VoIP

HTTP
Server

Big Data
Staging

Big Data
Client

Streaming
Video
Client

VoIP

HTTP
Client

Figure 9.1: Simulator configuration map: The left side of the map represents that
sending campus network and its client/server machines. The right side
of the map represents the receiving campus network and its client/server
machines. The staging server in the middle of the map is utilized when
the sender/receiver networks have non-synchronous low demand periods.

9.1 Transmission time (TT as TimeDiff and InitiateTime varies):

Figure 9.2 plots the transmission time (TT) and response time (RT), as the re

quest submission time (InitiateTime) varies during a 24 hour period starting at 8AM.

In the top graph, the sender and receiver are in the same time zone (TimeDiff = 0).

In the bottom graph, there is a 12 hour time zone difference (TimeDiff = 12). The

transmission time (TT) of the nice model is invariant of the request submission time

(InitiateTime) and the time zone difference (TimeDiff). For the parallel model, the

response and transmission times (TT) are sensitive to both InitiateTime and TimeD

iff. The response time (RT) of the nice model varies with the request submission

time (InitiateTime) due to the necessary waiting times for the low demand period to

commence.

Figures 9.3, 9.4, 9.5, 9.6 plot the transmission time (TT) in hours, as the request

submission time (InitiateTime) varies. Each graph displays a different time zone vari

ance (TimeDiff). The graphs shows that the transmission times for parallel and nice

are closest in performance when the start time (InitiateTime) is in a low traffic period

98

Time Difference = 0
18

s?16
g 14

2 12

I10
S 8

H 6

4

2
0

• * PARALLEL (TT=RT)

""NICE (RT)

' —NICE (TT)

\
v

8 10 12 14 16 18 20 22 0 2 4 6
Request Submission Time

Time Difference = 12
250 250

£200
• * PARALLEL (TT=RT)

—NICE (RT)
0
g, 150 —NICE (TT)

m

§ 100
H

50

0
v _ _

0
8 10 12 14 16 18 20 22 0 2 4 6

Request Submission Time

Figure 9.2: Transmitting a 1 TB data set when TimeDiff = 0 (top graph) and
TimeDiff = 12 (bottom graph).

99

Time Zone Difference = 0
18

16

12 14
a
5
7 12
E
% 10
O
M
c 8

c
P

PARALLEL

'NICE

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Request Submission Time

20

18

S2 16
3
£
01
E

c
o

14

12

3 10
E IA
S 8

4

2

Time Zone Difference = 3

PARALLEL

NICE

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Request Submission Time

Figure 9.3: Transmitting a 1 TB data set when TimeDiff = 0 (top graph) and
TimeDiff = 3 (bottom graph).

100

Time Zone Difference = 6
25

•PARALLEL

'NICE
20

15

10

5

0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Request Submission Time

Time Zone Difference = 9
50

PARALLEL 45

—NICE
40

35

30

25

20

15

10

5

0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Request Submission Time

Figure 9.4: Transmitting a 1 TB data set when TimeDiff = 6 (top graph) and
TimeDiff = 9 (bottom graph).

101

Time Zone Difference = 12

250

-£200

3

c
o

*5
VI
E
c
ra

—PARALLEL

—NICE

i 150

100

50

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Request Submission Time

Time Zone Difference = 15

50

'PARALLEL
45

•NICE
40

35

30

25

20

15

10

5

0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Request Submission Time

Figure 9.5: Transmitting a 1 TB data set when TimeDiff = 12 (top graph) and
TimeDiff = 15 (bottom graph).

102

25

? 20
3
O
X
Of
E
P
C
o

'55

15

E

h

Time Zone Difference = 18

PARALLEL

NICE

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Request Submission Time

Time Zone Difference = 21

20

18

16

I »

I u

I 10

4

2

•""•"PARALLEL

—NICE

X

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Request Submission Time

Figure 9.6: Transmitting a 1 TB data set when TimeDiff = 18 (top graph) and
TimeDiff = 21 (bottom graph).

103

and the time zone difference (TimeDiff) is small. Nice significantly outperforms par

allel when the time zone difference is 12 hours, which indicates that the sender and

receiver have completely opposite low and high demand periods.

A comparison of the transmission times between the parallel and nice models

for varying time zone differences is shown in the next group of graphs. Figures 9.7

and 9.8 illustrate the variations in transmission times for the parallel model under

all time zone differences. Figure 9.9 shows the variations in transmission times for

the nice model under all time zone differences. The parallel model experiences vast

fluctuations in transmission time for all time zone differences, whereas the nice model's

transmission times only varies by one or two hours. The nice model significantly

reduces the transmission time for transferring the 1 GB data set when the sender and

receiver have the greatest variations in low demand periods.

The percentage improvement in transmission time when the nice model is used

instead of the parallel model is shown in Figure 9.10. As the time zone difference

(TimeDiff) increases, the performance of the parallel model degrades, while the perfor

mance of nice remains unchanged. There is a near 100% improvement in transmission

time (TT) of nice when the time zone difference is 12 (TimeDiff = 12). Figure 9.11

reconfirms the percentage improvement by graphing the reduction in transmission

times afforded by the nice model in comparison to the parallel. Again, the nice model

provides the greatest reduction in transfer time (over 240 hours) when the time zone

difference is 12.

The improvement offered by the nice model can also be illustrated in figures 9.12,

9.13, 9.14, and 9.15. These graphs plot transmission time (TT) as time zone difference

(TimeDiff) changes for various request submission times. When TimeDiff = 12, the

sender and receiver are in orthogonal time zones (i.e., there is no overlap of low traffic

times at the sender and receiver), and the parallel model always transmits over small

bandwidth.

104

Parallel Transfer (Time Zone Differences 0-8)

30

? 2 5

w
E
P

20

o
.a 15
E
S
£ *- 10

^NICE
-^-PARALLEL (0)

•••PARALLEL (1)

-•••PARALLEL (2)

-*-PARALLEL (3)

-©-PARALLEL (4)

-"-PARALLEL (5)

—PARALLEL (6)

"-PARALLEL (7)

-^-PARALLEL (8)

0 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23

Request Submission Time

Parallel Transfer (Time Zone Differences 9-12)

250

_200
C
3
O
£

«
Jj 150
i-
c
o

100

50

Hi III «t«l I. IIW

m-m-m

-•-NICE

-«>PARALLEL (9)

•PARALLEL (10)

-^-PARALLEL (11)

-^-PARALLEL (12)

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3

Request Submission Time

Figure 9.7: Transmission time comparison for transmitting a 1 TB data set using the
parallel model when the time zone difference is between 0-8 hours (top
graph) and 9-12 hours (bottom graph).

105

Parallel Transfer (Time Zone Differences 13-16)

100

90

_ 80
£

| 70

0
| 60

1 50 Vi
1 40
c
2
>- 30

20

10

1 1 1 1 1 1 1 1 8

-•-NICE

-ti-PARALLEL (13)

•PARALLEL (14)

-^-PARALLEL (15)

-^•PARALLEL (16)

» > < < > » » > < • < • » » » ' »

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3

Request Submission Time

Parallel Transfer (Time Zone Differences 17-23)

25 25
-•-NICE

— 20
"©"PARALLEL (17)

£ 3
1

PARALLEL (18)

V

1 15
g

1
—PARALLEL (19)

o
M v)

I —PARALLEL (20)

w 10 « I
C
<9 N?: •. 1 -•-PARALLEL (21)

•SSv'"" I
sXvjl,, I \ -B-PARALLEL (22)

5

"••PARALLEL (23)

0

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3

Request Submission Time

Figure 9.8: Transmission time comparison for transmitting a 1 TB data set using the
parallel model when the time zone difference is between 13-16 hours (top

graph) and 17-23 hours (bottom graph).

106

Nice Model (Time Zone Differences 0-12}

12
3
O
£

£
P
c
o

c
§ 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 2122 23

Request Submission Time

"*2r-NICE (0)

•NICE (1)

*NICE (2)

-*-NICE (3)

-•-NICE (4)

-"•"NICE (5)

—NICE (6)

—NICE (7)

-•-NICE (8)

••"NICE (9)

-O-NICE (10)

-*rNICE(ll)

—-NICE (12)

Nice Transfer (Time Zone Differences 13-23)
4.5

4

3.5

I 3
o
*

g! 2.5

P
o 2

E 1.5
c re
^ 1

0.5

0
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3

Request Submission Time

-«-NICE(13)

•NICE (14)

-••"NICE (15)

-W-NICE (16)

-•-NICE (17)

""•""NICE (18)

—NICE (19)

—NICE (20)

-®-NICE (21)

-^NICE (22)

-ti-NICE (23)

Figure 9.9: Transmission time comparison for transmitting a 1 TB data set using
the nice model when the time zone difference is between 0-12 hours (top
graph) and 13-23 hours (bottom graph).

107

Transmission Time (Percentage Improvement)
100%

-»-TZ=0

*W"TZ=1

"W"TZ=2

-*-TZ=3
70%

-*-TZ=4

-@"TZ=5

"*~TZ=6

"*"TZ=9

-u-TZ=10

"«*TZ=11

TZ=12

0 1 2 3 4 5 6 7 8 9 101112 13 1415 16 17 18 19 20 21 22 23

Request Submission Time

Transmission Time (Percentage Improvement)

< « » • « » • < » » » ! » » • • • • • • » > » ' • »

c
V
E
2
8
a
E

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Request Submission Time

Figure 9.10: Percentage improvement (max 100%) in transmission time when the nice
model is used instead of the parallel model for time zone differences 0-12
(top graph) and 13-23 (bottom graph).

108

Reduction in Transmission Time
250 250

-*-TZ=0
250

-*-TZ=0

-#»TZ=1

200 "^rTZ=2

*TZ=3
V) im
3 «*TZ=4

x 150 -©»TZ=5

-t-TZ=6

100
—TZ=7

100
—TZ=7

fc ;| | —"TZ=8

-«-TZ=9

50 g D r *»TZ=10

-*»TZ=11

^WTZ=12
0

0 1 2 3 4 5 6 7 8 9 10 1112 13 14151617 18 19 20 21 22 23

Request Submission Time

Reduction in Transmission Time

£
3
O
X

"*"TZ=13

"•*TZ=14

"u~TZ=15

*TZ=16

-*-TZ=17

"®*TZ=18

**TZ=19

TZ=20

TZ=21

-OTZ=22

" T Z = 2 3

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3

Request Submission Time

Figure 9.11: Reduction in transmission time when the nice model is used instead of
the parallel model for time zone differences 0-12 (top graph) and 13-23
(bottom graph).

109

Request Submission at 12AM

250

'PARALLEL

'NICE

E 150

100

50

ttBBI 0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Time Zone Difference

Request Submission at 3AM

250 250
.

_200
£
3
O
£

11 —PARALLEL

I 150
P
c / 1

T
ra

n
m

is
si

i
»->

o

o

 J \
50

-̂r V
0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Time Zone Difference

Figure 9.12: Comparison of transmission times for the 1 TB data set for both nice
and parallel models under all time zone differences when the request
submission time is 12AM (top graph) and 3AM (bottom graph).

110

Request Submission at 6AM

250

•PARALLEL 200
'NICE

150

100

50

0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Time Zone Difference

Request Submission at 9AM

250

PARALLEL 200
•NICE

E 150

| 100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Time Zone Difference

Figure 9.13: Comparison of transmission times for the 1 TB data set for both nice
and parallel models under all time zone differences when the request
submission time is 6AM (top graph) and 9AM (bottom graph).

Ill

Request Submission at 12PM

250

'PARALLEL 200
—NICE

150

100

50

0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Time Zone Difference

Request Submission at 3PM

250

•PARALLEL 200
—NICE

150

100

50

0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Time Zone Difference

Figure 9.14: Comparison of transmission times for the 1 TB data set for both nice
and parallel models under all time zone differences when the request
submission time is 12PM (top graph) and 3PM (bottom graph).

112

Request Submission at 6PM

250

'PARALLEL 200
—NICE

150

100

50

0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Time Zone Difference

Request Submission at 9PM

250

PARALLEL 200
'NICE

£ 150

Time Zone Difference

Figure 9.15: Comparison of transmission times for the 1 TB data set for both nice
and parallel models under all time zone differences when the request
submission time is 6PM (top graph) and 9PM (bottom graph).

113

Time Zone Difference = 0

18

'PARALLEL
16

'NICE

14

12

10

8

6

4

2

0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Request Submission Time

Time Zone Difference = 3

20

•PARALLEL 18
—NICE

16

14

12

10

8

6

4

2

0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Request Submission Time

Figure 9.16: Comparison of response times for the 1 TB data set for both nice and
parallel models when the time zone differences are 0 (top graph) and 3
(bottom graph).

114

Time Zone Difference = 6

25

•PARALLEL

'NICE
20

15

10

5

0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Request Submission Time

Time Zone Difference = 9
50

•PARALLEL 45

'NICE
40

35

30

25

20

15

10

5

0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Request Submission Time

Figure 9.17: Comparison of response times for the 1 TB data set for both nice and
parallel models when the time zone differences are 6 (top graph) and 9
(bottom graph).

115

Time Zone Difference = 12

250 250

200
§ X

—PARALLEL

—NICE

P 150
8!
i a M O
* 100

50

0
—/

0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Request Submission Time

Time Zone Difference = 15

50

-—PARALLEL 45
•NICE

40

35

30

25

20

15

10

5

0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Request Submission Time

Figure 9.18: Comparison of response times for the 1 TB data set for both nice and
parallel models when the time zone differences are 12 (top graph) and
15 (bottom graph).

116

Time Zone Difference = 18

25

PARALLEL

'NICE
20

15

10

5

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Request Submission Time

Time Zone Difference = 21

20

'PARALLEL 18
—NICE

16

14

12

10

8

6

4

2

0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Request Submission Time

Figure 9.19: Comparison of response times for the 1 TB data set for both nice and
parallel models when the time zone differences are 18 (top graph) and
21 (bottom graph).

117

Response Time Improvement

100%
"•"TZ=0

•TZ=1

-&-TZ=2

•*•11=3
„ 70%

«*«TZ=4

-@-TZ=5

-+-TZ=6

-»-TZ=9

*B-TZ=10

*^*TZ=11

TZ=12

8 9 101112 13 1415 161718 19 20 2122 23

Request Submission Time

Response Time Improvement

100%

90%

80%

« 70%
c
01

I 60%

| 50%

* 40%

30%

20%

10%

0%
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Request Submission Time

-e-TZ=13

*»TZ=14

«*HfTZ=15

*TZ=16

-*•17=17

•®»TZ=18

—TZ=19

—TZ=20

TZ=21

-«-TZ=22

«t,»TZ=23

Figure 9.20: Percentage improvement (max 100%) in response time when the nice
model is used instead of the parallel model for time zone differences 0-12
(top graph) and 13-23 (bottom graph).

118

9.2 Response time (RT as TimeDiff and InitiateTime varies):

Figures 9.16, 9.17, 9.18, and 9.19 plot the response times (RT) for both the nice

and parallel models when transferring the 1 GB data set with varying time zone

differences. Note that for the parallel model, the response time is the same as the

transmission time (RT = TT). Both models perform better when TimeDiff = 0. As

the time difference increases, the wait time in the nice model increases and in the

parallel model, the time zones don't synchronize resulting in low bandwidth trans

mission. The percentage improvement in response time is shown in figure 9.20. The

greatest improvement when using the nice model over the parallel model occurs at

time difference 12.

9.3 Bandwidth differential between sender and receiver:

In the previous sections, both the sender and receiver had equal bandwidth ca

pacities. The maximum available bandwidth for both was 1 Gbps. In this section,

I set the receiver to have 4 times the available bandwidth of the sender. Both the

sender and receiver still follow the bandwidth availability percentages provided in Fig

ure 8.1. In the evaluation of this setup, I focus on the receiver's transmission time.

Since the nice model uses a store-and-forward approach instead of parallel models'

end-to-end technique, the receiver has the ability to receive the data faster than the

sender transmits the data to the staging server.

Figures 9.21, 9.22, 9.23, and 9.24 plot the transmission time at the receiver's LAN

(recTT) when the receiver has 4 times as much bandwidth as sender. For the parallel

model, the faster transmission rate at receiver has no impact on performance. For the

nice model, when there is no time difference (TimeDiff = 0), the faster transmission

rate of receiver has no impact. Comparing the top graphs in Figure 9.3 and Figure 9.21

shows the same transmission times for the nice model.

119

When there is a time difference (TimeDiff > 0) however, the receiver's transmis

sion time (recTT) is faster under the nice model. This improvement is shown when

TimeDiff = 9 in Figure 9.4 and Figure 9.22 are compared. A comparison of Figures 9.5

and 9.23 also shows the decreased receiver's transmission times when TimeDiff = 15.

9.4 Summary

These evaluations show that the performance of the parallel model is dependent

on the time difference (TimeDiff) and the request submission time (InitiateTime),

while the performance of the nice model is not. The nice model performs better than

parallel. In the next chapter, I explain these experiments using theoretical evaluation.

On a side note, I also collect data regarding the negative impact of big transmis

sions on other applications during high traffic periods. I observe significant increases

in end-to-end packet delays: the streaming video client experiences a 52% increase in

packet delays on average and the VoIP client has an even higher increase of 67%.

120

4X Receiver Bandwidth (Time Zone Difference = 0)

18

'PARALLEL
16

'NICE (Recv)
14

12

10

8

6

4

2

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Request Submission Time

4X Receiver Bandwidth (Time Zone Difference = 3)

20

•PARALLEL 18
•NICE (Recv)

16

14

12

10

8

6

4

2

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Request Submission Time

Figure 9.21: Transmitting a 1 TB data set when TimeDiff = 0 (top graph) and
TimeDiff = 3 (bottom graph) where the receiver has 4 times the available
bandwidth than the sender.

121

4X Receiver Bandwidth (Time Zone Difference = 6}
25

'PARALLEL

•NICE (Recv)
20

15

10

5

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Request Submission Time

4X Receiver Bandwidth (Time Zone Difference = 9)

30

PARALLEL

'NICE (Recv) 25

20

15

10

5

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Request Submission Time

Figure 9.22: Transmitting a 1 TB data set when TimeDifF = 6 (top graph) and
TimeDiff = 9 (bottom graph) where the receiver has 4 times the available
bandwidth than the sender.

122

250

4X Receiver Bandwidth (Time Zone Difference = 12)

250

-200

§
£_

w
1150
c o

—PARALLEL

—NICE (Recv)

|ioo
n> L. t-

50

0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Request Submission Time

18 19 20 21 22 23

4X Receiver Bandwidth (Time Zone Difference = 15)

30

25 —PARALLEL

—NICE (Recv)

20

15

10

5

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Request Submission Time

Figure 9.23: Transmitting a 1 TB data set when TimeDiff = 12 (top graph) and
TimeDiff = 15 (bottom graph) where the receiver has 4 times the avail
able bandwidth than the sender.

123

4X Receiver Bandwidth (Time Zone Difference = 18)

25

PARALLEL
20 'NICE (Recv)

15

10

5

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Request Submission Time

4X Receiver Bandwidth (Time Zone Difference = 21)

20

18
•PARALLEL

16 'NICE (Recv)

14

12

10

8

6

4

2

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Request Submission Time

Figure 9.24: Transmitting a 1 TB data set when TimeDiff = 18 (top graph) and
TimeDiff = 21 (bottom graph) where the receiver has 4 times the avail
able bandwidth than the sender.

124

CHAPTER X

Analysis of Evaluations

The experiments in the previous chapter clearly show that the nice model far

outperforms the parallel model. Prom experimental analysis alone, it is hard to

quantify the impact of the request submission time (InitiateTime), the time zone

difference (TimeDiff), and the bandwidth differential on performance. The goal of

this theoretical analysis is to better understand the experiment results.

Before starting the theoretical analysis, we define a few more variables. All the

variables are either defined here or in Chapter VIII. The parameters SendBW[i],

RecBW[i] capture the impact of traffic intensity on the transmission tool. The anal

ysis can be simplified, without changing the essential performance characteristics, by

assuming that SendBW and RecBW do not vary by the hour. Instead, the band

width available for big data transmissions is a fixed low value during the high traffic

period and a fixed high value during the low traffic period. Let SendLowBW and

Send High BW represent the low and high transmission rate per hour, respectively, at

the sender's LAN; let RecLowBW and RecHighBW represent the low and high trans

mission rate per hour, respectively, at the receiver's LAN. Note that the transmission

rate is given in units of per hour, not per second; If low transmission rate is 10 Mb/s,

then SendLowBW = 10 * 60 * 60 = 36000Mb/h. The only reason for using hour as the

unit is to improve the readability of the analysis by not having to constantly multiply

125

by 60 * 60.

At any hour, the sender and receiver LANs are in one of the following four

states: 1) SendLowBW, RecLowBW; 2) SendLowBW, RecHighBW; 3) SendHighBW,

RecLowBW; and 4) SendHighBW, RecHighBW. Since end-to-end transmission rate is

dependent on the smallest bandwidth, the bandwidth rate at any hour would be one

of:

Low = M/iV{SendLowBW, RecLowBW};

SendLow = M/N{SendLowBW, RecHighBW};

RecLow = M/iV{SendHighBW, RecLowBW};

High = M/iV{SendHighBW, RecHighBW};

Let #HighBWHrs and #LowBWHrs represent the number of hours in a day when

traffic is off-peak and peak, respectively. Recall that, on our campus LAN, the off-

peak traffic period is from hours 0 to 9, while the peak traffic period is from hours

10 to 23. Therefore, #HighBWHrs = 10 and #LowBWHrs = 14.

10.0.1 Nice

Maximum FileSize transmitted in 24 hours:

Let 24hrFileSize represent the maximum FileSize that can be transmitted during 24

hours.

24hrFileSize = High x #HighBWHrs

Result 1. For nice, the maximum data that can be transmitted during 24 hours is

determined only by High; 24hrFileSize is independent o/TimeDiff and InitiateTime.

Response time RT:

The RT is computed in terms of receiver wait time and receiver transmission time.

RT = recWT + recTT

126

recWT is the time from InitiateTime until the start of transmission to the receiver. The

receiver's transmission starts at the first high bandwidth hour that is greater than

or equal to the sender's first transmission hour. Since the staging server transmits

only when the receiver starts off-peak period, recWT is a function of InitiateTime and

TimeDiff.

Result 2. sendWT is dependent on InitiateTime. recWT is dependent on both Initi

ateTime and TimeDiff. Consequently, RT is dependent on both parameters.

Transmission times sendTT, recTT, TT:

TT = MAX(sendTT, recTT) =]

The sender's transmission time depends only on the bandwidth at the sender due to

the buffering available at the staging servers.

se"dTT = rdlgiwi

Calculating recTT is tricky; depending on TimeDiff, the transmission from sender to

receiver may be completely concurrent, partially concurrent, or serial. The computa

tion of recTT also depends on whether the sender or the receiver is faster.

If SendHighBW > RecHighBW, then

recTT = I" FileSize 1 1 1 I RecHighBW I'

If SendHighBW < RecHighBW and TimeDiff = 0, then

recTT = f FileSize 1
,C(-' 1 I SendHighBW I-

If SendHighBW < RecHighBW and {TimeDiff| > 0, then the value of recTT depends

on how much of the file, StageFile, has been transmitted to the staging server before

the receiver's transmission time starts. While the receiver catches up with the sender,

the file is transmitted at the receiver's faster rate and then afterward, any remaining

portion is transmitted at the sender's slower rate.

TT — r (StageFile+) , FileSize-(StageFile+) -i
l-ec I I — | RecHighBW "I" SendHighBW I'

127

The + in StageFile+ represents the additional transmission from the sender while the

receiver is trying to catch up. As TimeDiff increases, recTT becomes more dependent

on RecHighBW (and less dependent on High =MIN(SendHighBW, RecHighBW)).

Result 3. sendTT only depends on SendHighBW.

As TimeDiff increases, recTT becomes less dependent on High and more dependent on

RecHighBW.

Result 3 explains the bandwidth differential graphs in Figures 9.21,9.22,9.23, and 9.24.

The presence of the staging servers ensures that the bandwidth differential between

sender and receiver is hidden.

Result 4. The TT of the nice model only depends on High; TT is insensitive to

TimeDiff and InitiateTime.

10.0.2 Parallel

Maximum FileSize transmitted in 24 hours:

The total data transmitted depends on TimeDiff between sender and receiver.

1) TimeDiff= 0:

24hrFileSize = (High x #HighBWHrs) + (Low x #LowBWHrs)

2) |TimeDiff| = d where 0 < d < #HighBWHrs:

24hrFileSize = (RecLow x d) + (High x (#HighBWHrs - d)) + (SendLow x d))

+(Low x (#LowBWHrs — d))

3)|TimeDiff| = d where #HighBWHrs < d < #LowBWHrs

24hrFileSize = (RecLow x #HighBWHrs) + (Low x (d - #HighBWHrs))

+(SendLow x #HighBWHrs)) + (Low x (#LowBWHrs — d))

From 3), it follows that when transmitting between LANs in India and the US,

or between LANs in Japan and the US, the entire parallel transmission is

128

carried out in low bandwidth. Equations 1 to 3 (above) explain the performance

of parallel in our experiments. Note that 23 > d > #LowBWHrs is not evaluated

since it reduces to one of the above cases.

Result 5. Parallel: When TimeDiff=0, 24hrFileSize is maximum. As TimeDiff in

creases, 24hrFileSize decreases. At TimeDiff > #HighBWHrs, the data are entirely

transmitted at low bandwidth, so 24hrFileSize is smallest.

When TimeDiff = 0, parallel transmits more data than nice. However, depending

on the difference in bandwidth during high traffic and low traffic times, the percentage

improvement is insignificant. For example, for a 10Mb low bandwidth and a 1 Gb

high bandwidth, parallel transmits only 1.6% more data than nice during the high

traffic hours.

For the parallel model: RT = TT = sendTT = recTT.

Result 6. The transmission times of the parallel model are sensitive to parameters

InitiateTime, TimeDiff, bandwidth availability, and transmission rate differential be

tween sender and receiver.

10.0.3 Summary

Theorem 1. For a given FileSize, the TT of the nice model is faster than that of the

parallel model.

Parallel is best in comparison to nice when TimeDiff is close to 0 and the sender and

receiver have similar transmission rates.

Parallel is worst in comparison to nice when there is no overlap of low traffic times

between sender and receiver.

Thus, the nice model is better suited to big transmissions over large distances that

span time zones and varying network capabilities. In essence, big data transmission

via public Internet is a "first mile, last mile" problem. The sender has to wait for

129

ample bandwidth at its LAN before transmitting; if the receiver LAN is not in synch

with the sender, then the big file has to wait at one or more intermediate server(s)

until ample bandwidth is available at the receiver - parallel, store-and-forward. Again,

the name, nice, is a play on words linking our transmission model to the nice program

in Unix. The nice transmission model waits for off-peak hours when bandwidth is

available, so it is nice to other Internet users.

130

CHAPTER XI

Conclusions and Future Work

My research journey from grid computing to the issues and challenges of big

data transfers was not straightforward. It was through my many discoveries along

the way that led me to this point. From the outset it was not clear that this was

even a problem that needed to be examined. While attempting to transfer big data

sets, I experienced the difficulties associated with transferring large amounts of data

through shared networks firsthand. It was clear that this a problem that needs to be

investigated.

Big data transfers via the Internet are not a commonplace task for most users

today. Currently, there are no tools to facilitate these kinds of transmissions. The

task of transferring massive amounts of data across the country or even the globe is a

challenging and daunting undertaking for any user. As the popularity of distributed

storage propagates and the amount of scientific data continues to surge, the demand

for big data transfers will grow at a tremendous rate. The existing tools for moving

large amounts of data are based on the parallel model, which is designed to grab

as much bandwidth as possible by opening concurrent data streams. This greedy

approach may be good for a single user's transfer, however it is not scalable for

multiple users on a shared network. The entire system suffers when users attempt to

grab bandwidth.

131

My solution to this problem is the nice model for big data transfers. Under this

model, these transfers are relegated to low demand periods when there is ample, idle

bandwidth available. This bandwidth can then be repurposed for big data trans

missions without impacting other users in the system. Since the nice model uses a

store-and-forward approach by utilizing staging servers, the model is able to accom

modate differences in time zones and variations in bandwidth. Prom my evaluations

and theoretical analysis, I have shown that the nice model significantly outperforms

the existing greedy, parallel model. It is clear that nice is better than greedy when it

comes to big data transmissions.

11.1 Future Work: CargoExchange application

In order for multiple users to successfully utilize the nice model for big data

transmissions in a shared system, like the campus network, there should be a system-

level service that supports these users' workloads. After speaking with researchers

in various departments around campus, I received an overwhelming response from

these users that they only want guaranteed delivery and ease of use when it comes

to this type of transfer. Users do not want to be burdened with error recovery, re

transmissions, security and bandwidth issues. Administrators want to ensure that

big data transfers do not impact other applications/users on the network. A system-

level service, called CargoExchange, could provide users with this simplicity and

administrators with quality of service guarantees.

The CargoExchange service would handle big data transmission for all users on

the shared network. The service is called CargoExchange since it bears similarities

to companies like UPS and FedEx that are specifically designed to transport large

amounts of goods or cargo. The CargoExchange service would be tasked solely with

transporting users' big data. This service at the sender, receiver and staging sites

would be able to communicate and facilitate all facets of the transfers. In order for

132

this service to function properly, there are several aspects that would need to be

addressed.

Client Interface: The client interface would be web based. The client would

enter the specifications for the data transfer. Clients have no control over how the data

are transmitted, but they can log in and check on the status of their transfers. There

may be other features such as payment options and delivery options (fast, regular,

etc.). Once a transmission is completed, a client will receive an email notification.

File System: The servers utilized by the CargoExchange service are required to

store big data sets and retrieve all or parts of files at any time. Since standard file

systems are primarily designed for smaller files, the CargoExchange servers should

have file systems specifically designed for storage and retrieval of big data (2).

Tracking System: The CargoExchange servers must keep track of the users'

files while they are being transmitted and once they arrive at their location. The

algorithms for keeping track of file movement will need to be explored and potentially

developed.

Security: The files transmitted via the CargoExchange service would be private.

Before transmission, files must be encrypted. Recent advances in encryption (23; 44;

72) can be utilized to ensure that scalable, fast, and reliable security is available to

users.

Compression: The service could utilize compression techniques in order to re

duce file sizes. These techniques must be able to compress large data files at a fairly

fast rate. Recent work (59; 71; 79; 85) in this area has resulted in improved per

formance, however new compression techniques may need to be developed for big

data.

Routing Algorithms: This is a critical aspect of the CargoExchange service.

The routing algorithms refer to routing at a high level, not at the network level. Using

the analogy of the roadway system for example, in order to travel from Durham, NH to

133

Montreal, Canada, one could choose to go via Maine or Vermont. The CargoExchange

would determine the selection of Maine or Vermont (or both in the case of parallel

transmission). The CargoExchange decides when and how to route users' data, which

may include multiple paths.

Traffic Monitoring: The CargoExchange service must have knowledge of the

traffic present on network links in order to properly schedule data transmissions. The

servers will work directly with traffic monitoring and bandwidth management devices,

which have an accurate view of the traffic on their networks. CargoExchange servers

will use and share this information with other servers in order to facilitate big data

transmissions and to utilize available bandwidth.

Network Protocols: New network protocols may be required for big data trans

missions (58; 76; 91). Advances in network hardware technologies could also be uti

lized by the CargoExchange service. Since the nitty-gritty of the transfers is removed

from the users, the service could implement and utilize any new software/hardware

advances that might improve transfer performance or reliability.

134

BIBLIOGRAPHY

135

BIBLIOGRAPHY

[1] Amazon web services (aws). http://aws.amazon.com/importexport/.

[2] Hadoop distributed file system (hdfs). http://hadoop.apache.org/.

[3] Internet2. http://www.internet2.org.

[4] The teragrid project, http://www.teragrid.org.

[5] Worldwide lhc computing grid (wlcg). http://lcg.web.cern.ch/LCG/.

[6] Dzero experiment, http://www-dO.fnal.gov, 2009.

[7] Enabling grids for escience (egee), http://www.eu-egee.org/, 2009.

[8] The globus alliance, http://www.globus.org/, 2009.

[9] Naregi: National research grid initiative, http://www.naregi.org, 2009.

[10] Ogsa-dai, http://www.ogsadai.org.uk, 2009.

[11] Open science grid (osg), http://www.opensciencegrid.org, 2009.

[12] Uk national grid service, http://www.ngs.ac.uk, 2009.

[13] AAMNITCHI, A., DORAIMANI, S., AND GARZOGLIO, G. Filecules in high-
energy physics: Characteristics and impact on resource management. High
Performance Distributed Computing (2006), 69-80.

[14] ADHIKARI, V. K., AND ET. AL. Youtube traffic dynamics and its interplay
with a tier-1 isp: an isp perspective. In Internet Measurement (IMC) (2010).

[15] AGGARWAL, V., FELDMANN, A., AND SCHEIDELER, C. Can isps and p2p
users cooperate for improved performance? SIGCOMM Comput. Commun.
Rev. 37, 3 (July 2007), 29-40.

[16] AL-KISWANY, S., RIPEANU, M., IAMNITCHI, A., AND VAZHKUDAI, S. Be
yond music sharing: An evaluation of peer-to-peer data dissemination tech
niques in large scientific collaborations. Journal of Grid Computing (March
2009).

136

http://aws.amazon.com/importexport/
http://hadoop.apache.org/
http://www.internet2.org
http://www.teragrid.org
http://lcg.web.cern.ch/LCG/
http://www-dO.fnal.gov
http://www.eu-egee.org/
http://www.globus.org/
http://www.naregi.org
http://www.ogsadai.org.uk
http://www.opensciencegrid.org
http://www.ngs.ac.uk

ALLCOCK, W., BESTEE, J., BEESNAHAN, J., CHEEVENAK, A. L., FOS-
TEE, I., KESSELMAN, C., MEDEE, S., NEFEDOVA, V., QUESNEL, D., AND
TUECKE, S. Data management and transfer in high performance computational
grid environments. Parallel Computing Journal 28, 5 (May 2002), 749-771.

ALLCOCK, W., BESTEE, J. , BEESNAHAN, J. , CHEEVENAK, A. L., Fos-
TEE, I., KESSELMAN, C., MEDEE, S., NEFEDOVA, V., AND STEVEN, D. Q.
Secure, efficient data transport and replica management for high-performance
data-intensive computing. In IEEE Mass Storage Conference (2001).

ALLCOCK, W., BEESNAHAN, J., KETTIMUTHU, R., LINK, M., DU-
MITEESCU, C., RAICU, I., AND FOSTEE, I. The globus striped gridftp frame
work and server. In Supercomputing (2005).

ANDEESEN, D., BALAKEISHNAN, H., KAASHOEK, F., AND MOEEIS, R. Re
silient overlay networks. SIGOPS Oper. Syst. Rev. 35 (October 2001), 131-145.

BELLISSIMO, A., LEVINE, B. N., AND SHENOY, P. Exploring the use of
bittorrent as the basis for a large trace repository. Tech. rep., University of
Massachusetts at Amherst, 2004.

BEN MOSHE, B., DVIE, A., AND SOLOMON, A. Analysis and optimization
of live streaming for over the top video. In IEE CCNC (2011).

BETHENCOUET, J., SAHAI, A., AND WATEES, B. Ciphertext-policy attribute-
based encryption. SP '07, IEEE, pp. 321-334.

BHUVANESWAEAN, R. S., AND ET AL. Redundant parallel data transfer
schemes for the grid environment. In ACSW Frontiers (2006).

BEESNAHAN, J., LINK, M., KHANNA, G., IMANI, Z., KETTIMUTHU, R.,
AND FOSTEE, I. Globus gridftp: What's new in 2007. In GridNets (October
2007).

CAMEEON, D., AND ET. AL. Replica management in the european datagrid
project. Journal of Grid Computing 2, 4 (2004), 341-351.

CERN. Lhc physics data taking gets underway at new record collision energy
of 8tev. http://press.web.cern.ch (2012).

CHA, M., AND ET. AL. I tube, you tube, everybody tubes: analyzing the
world's largest user generated content video system. In Internet Measurement
Conference (2007).

CHANG, R.-S., GUO, M.-H., AND LIN, H.-C. A multiple parallel download
scheme with server throughput and client bandwidth considerations for data
grids. Future Generation Computer Systems 24, 8 (2008), 798-805.

137

[30] CHERVENAK, A., FOSTER, I., KESSELMAN, C., SALISBURY, C., AND
TUECKE, S. The data grid: Towards an architecture for the distributed man
agement and analysis of large scientific datasets. Journal of Network and Com
puter Applications 23 (2001), 187-200.

[31] CHHABRA, P., ERRAMILLI, V., LAOUTARIS, N., SUNDARAM, R., AND RO
DRIGUEZ, P. Algorithms for constrained bulk-transfer of delay-tolerant data. In
Communications (ICC), 2010 IEEE International Conference on (may 2010),
pp. 1 -5.

[32] CHHABRA, P., LAOUTARIS, N., RODRIGUEZ, P., AND SUNDARAM, R. Home
is where the (fast) internet is: flat-rate compatible incentives for reducing peak
load. In Proceedings of the 2010 ACM SIGCOMM workshop on Home networks
(New York, NY, USA, 2010), HomeNets '10, ACM, pp. 13-18.

[33] COHEN, B. Bittorrent, http://www.bittorrent.com.

[34] DE CICCO, L., MASCOLO, S., AND PALMISANO, V. Skype video responsive
ness to bandwidth variations. In NOSSDAV (2008).

[35] DHAMDHERE, A., AND DOVROLIS, C. Isp and egress path selection for multi-
homed networks. In INFOCOM 2006. 25th IEEE International Conference on
Computer Communications. Proceedings (april 2006), pp. 1 -12.

[36] FENG, J., AND HUMPHREY, M. Eliminating replica selection - using multiple
replicas to accelerate data transfer on grids. In ICPADS (2004), p. 359.

[37] FOSTER, I. What is the grid? a three point checklist. GRIDToday (July 2002).

[38] FOSTER, I. Globus toolkit version 4: Software for service-oriented systems.
In IFIP International Conference on Network and Parallel Computing (2006),
pp. 2-13.

[39] FOSTER, I., AND IAMNITCHI, A. On death, taxes, and the convergence of
peer-to-peer and grid computing. Peer-to-Peer Systems II (2003), 118-128.

[40] FOSTER, I., AND KESSELMAN, C. The Grid 2: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2003.

[41] FOSTER, I., KESSELMAN, C., AND TUECKE, S. The anatomy of the Grid:
Enabling scalable virtual organizations. The International Journal of High Per
formance Computing Applications 15, 3 (Fall 2001), 200-222.

[42] GILL, P., ARLITT, M., LI, Z., AND MAHANTI, A. Youtube traffic character
ization: a view from the edge. In Internet Measurement Conference (IMC'07)
(2007).

138

http://www.bittorrent.com

[43] GOLDENBERG, D. K., QIUY, L., XIE, H., YANG, Y. R., AND ZHANG,
Y. Optimizing cost and performance for multihoming. In Proceedings of the
2004 conference on Applications, technologies, architectures, and protocols for
computer communications (New York, NY, USA, 2004), SIGCOMM '04, ACM,
pp. 79-92.

GOYAL, V., PANDEY, O., SAHAI, A., AND WATERS, B. Attribute-based
encryption for fine-grained access control of encrypted data. CCS '06, ACM.

GRANT, A., ANTONIOLETTI, M., HUME, A. C., KRAUSE, A., DOBRZ-
ELECKI, B., JACKSON, M. J., PARSONS, M., ATKINSON, M. P., AND
THEOCHAROPOULOS, E. Ogsa-dai: Middleware for data integration: Selected
applications. eScience, 2008. eScience '08. IEEE Fourth International Confer
ence on (Dec. 2008), 343-343.

GRIM, K. Tier-3 computing centers expand options for physicists. International
Science Grid This Week (iSGTW) (January 2009).

GYARMATI, L., SIRIVIANOS, M., AND LAOUTARIS, N. Sharing the cost of
backbone networks: Simplicity vs. precision. In Computer Communications
Workshops (INFOCOM WKSHPS), 2012 IEEE Conference on (march 2012),
pp. 171 -176.

HAKKEN, N. Netflix and akamai reports show sustained broadband speeds
falter in u.s.

HEY, A. J. G., AND TREFETHEN, A. E. The data deluge: An e-science
perspective, 2003.

HOELZLE, U. Keynote speech at the open networking summit.
http://www. youtube. com/watch ?v= VLHJUfgxE04 (2012).

HUANG, N.-F., CHANG, H.-Y., LIN, Y.-W., AND HSU, K.-S. A novel
bandwidth management scheme for video streaming service on public-shared
network. In IEEE ICC (2008).

HUNT, N. Netflix lowers data usage by 2/3 for members in Canada.
Tech. Rep. http://blog.netflix.com/2011/03/netflix-lowers-data-usage-by-23-
for.html, 2011.

HUR, N., AND ET. AL. 3dtv broadcasting and distribution systems. IEEE
Transactions on Broadcasting (2011).

J. KNOBLOCH, L. R. Lhc computing grid - technical design report. Tech. Rep.
LCG-TDR-001, CERN, June 2005.

JAIN, S., FALL, K., AND PATRA, R. Routing in a delay tolerant network.
SIGCOMM Comput. Commun. Rev. 34, 4 (Aug. 2004), 145-158.

139

http://www

[56] JONES, E. P., LI, L., SCHMIDTKE, J. K., AND WARD, P. A. Practical
routing in delay-tolerant networks. IEEE Transactions on Mobile Computing 6
(2007), 943-959.

[57] KAPLAN, A., Fox, G. C., AND VON LASZEWSKI, G. Gridtorrent framework:
A high-performance data transfer and data sharing framework for scientific
computing. In Grid Computing Environments (GCE) workshop (2007).

[58] KATABI, D., HANDLEY, M., AND ROHRS, C. Congestion control for high
bandwidth-delay product networks. SIGCOMM Comput. Commun. Rev. 32
(August 2002), 89-102.

[59] KOTHIYAL, R., TARASOV, V., SEHGAL, P., AND ZADOK, E. Energy and
performance evaluation of lossless file data compression on server systems. In
SYSTOR 2009, ACM.

[60] LAKHINA, A., PAPAGIANNAKI, K., CROVELLA, M., DIOT, C., KOLACZYK,
E. D., AND TAFT, N. Structural analysis of network traffic flows. In Pro
ceedings of the joint international conference on Measurement and modeling of
computer systems (New York, NY, USA, 2004), SIGMETRICS '04/Performance
'04, ACM, pp. 61-72.

[61] LAM, C., LIU, H., KOLEY, B., ZHAO, X., KAMALOV, V., AND GILL, V.
Fiber optic communication technologies: What's needed for datacenter network
operations. Communications Magazine, IEEE 48, 7 (2010), 32 -39.

[62] LAMEHAMEDI, H., SZYMANSKI, B., SHENTU, Z., AND DEELMAN, E. Data
replication strategies in grid environments. In Proc. Of the Fifth Inter
national Conferenceon Algorithms and Architectures for Parallel Processing
(ICA3PP'02) (2002).

[63] LAOUTARIS, N., SIRIVIANOS, M., YANG, X., AND RODRIGUEZ, P. Inter-
datacenter bulk transfers with netstitcher. In Proceedings of the ACM SIG
COMM 2011 conference (New York, NY, USA, 2011), SIGCOMM '11, ACM,
pp. 74-85.

[64] LAOUTARIS, N., SMARAGDAKIS, G., RODRIGUEZ, P., AND SUNDARAM, R.
Delay tolerant bulk data transfers on the internet. In Proceedings of the eleventh
international joint conference on Measurement and modeling of computer sys
tems (New York, NY, USA, 2009), SIGMETRICS '09, ACM, pp. 229-238.

[65] LAURE, E., FISHER, S. M., FROHNER, A., GRANDI, C., KUNSZT, P. Z.,
KRENEK, A., MULMO, O., PACINI, F., PRELZ, F., WHITE, J., BARROSO,
M., BUNCIC, P., HEMMER, F., DI MEGLIO, A., AND EDLUND, A. Program
ming the grid with glite. Computational Methods in Science and Technology 12,
1 (2006), 33-45.

140

[66] LAURE, E., HEMMER, F., PRELZ, F., BECO, S., FISHER, S., LIVNY, M.,
GUY, L., BARROSO, M., BUNCIC, P., KUNSZT, P. Z., DI MEGLIO, A.,
AIMAR, A., EDLUND, A., GROEP, D., PACINI, F., SGARAVATTO, M., AND
MULMO, O. Middleware for the next generation grid infrastructure. Computing
in High Energy Physics and Nuclear Physics (October 2004), 826.

[67] LEVIN, D., AND ET. AL. Bittorrent is an auction: analyzing and improving
bittorrent's incentives. SIGCOMM Comput. Commun. Rev. (2008).

[68] LL, J., QIAO, C., XU, J., AND XU, D. Maximizing throughput for optical
burst switching networks. IEEE/ACM Trans. Netw. 15 (October 2007), 1163-
1176.

[69] LI, M., AND BAKER, M. The Grid - Core Technologies. John Wiley and Sons,
Inc., 2005.

[70] LIMONCELLL, T. A. Openflow: A radical new idea in networking. Queue 10,
6 (June 2012), 40:40-40:46.

[71] LIN, M.-B., LEE, J.-F., AND JAN, G. E. A lossless data compression and
decompression algorithm and its hardware architecture. IEEE Trans. Very
Large Scale Integr. Syst. 14 (2006), 925-936.

[72] LIU, J. K., Au, M. H., AND SUSILO, W. Self-generated-certificate public key
cryptography and certificateless signature/encryption scheme in the standard
model: extended abstract. ASIACCS '07, ACM.

[73] LUCIO, G. F., PAREDES-FARRERA, M., JAMMEH, E., FLEURY, M., AND
REED, M. J. Opnet modeler and ns-2. In ICOSMO (2003), pp. 700-707.

[74] MAHIMKAR, A., CHIU, A., DOVERSPIKE, R., FEUER, M. D., MAGILL,
P., JVLAVROGIORGIS, E., PASTOR, J., WOODWARD, S. L., AND YATES, J.
Bandwidth on demand for inter-data center communication. In Proceedings of
the 10th ACM Workshop on Hot Topics in Networks (New York, NY, USA,
2011), HotNets-X, ACM, pp. 24:1-24:6.

[75] MARCON, M., SANTOS, N., GUMMADI, K. P., LAOUTARIS, N., RODRIGUEZ,
P., AND VAHDAT, A. Netex: efficient and cost-effective internet bulk content
delivery. In Proceedings of the 6th ACM/IEEE Symposium on Architectures for
Networking and Communications Systems (New York, NY, USA, 2010), ANCS
'10, ACM, pp. 30:1-30:2.

[76] MASCOLO, S., AND VACIRCA, F. Congestion control and sizing router buffers
in the internet. In CDC-ECC '05.

[77] MCGARRY, M., REISSLEIN, M., AND MAIER, M. Ethernet passive optical
network architectures and dynamic bandwidth allocation algorithms. Commu
nications Surveys Tutorials, IEEE 10,3 (2008), 46 -60.

141

MCNIERNEY, M. College increases web speed for trial period. The Dartmouth
(2011).

MILWARD, M., NUNEZ, J. L., AND MULVANEY, D. Design and implemen
tation of a lossless parallel high-speed data compression system. IEEE Trans.
Parallel Distrib. Syst. 15 (June 2004), 481-490.

MINOLI, D. A Networking Approach to Grid Computing. John Wiley and Sons,
Inc., 2005.

MITZENMACHER, M. HOW useful is old information? Parallel and Distributed
Systems, IEEE Transactions on 11, 1 (Jan 2000), 6-20.

MITZENMACHER, M. The power of two choices in randomized load balancing.
Parallel and Distributed Systems, IEEE Transactions on 12, 10 (Oct 2001),
1094-1104.

NAKAO, A., PETERSON, L., AND BAVIER, A. A routing underlay for overlay
networks. SIGCOMM '03 (2003).

NICHOLSON, C., AND ET. AL. Dynamic data replication in leg 2008. Concur
rency and Computation: Practice and Experience 20, 11 (2008), 1259-1271.

NUNEZ, J. L., AND JONES, S. Gbit/s lossless data compression hardware.
IEEE Trans. Very Large Scale Integr. Syst. 11 (June 2003), 499-510.

NYGREN, E., SITARAMAN, R. K., AND SUN, J. The akamai network: a
platform for high-performance internet applications. SIGOPS Oper. Syst. Rev.
44 (August 2010), 2-19.

O'MALLEY, S. Flood watch: Ohio's internet connection overflows.
http://www. ohio.edu/oit/news/ohio-internet-connection-overflows. cfm (March
2011).

OPNET. http://www.opnet.com.

OTTO, J., STANOJEVIC, R., AND LAOUTARIS, N. Temporal rate limiting:
Cloud elasticity at a flat fee. In Computer Communications Workshops (INFO-
COM WKSHPS), 2012 IEEE Conference on (march 2012), pp. 151 -156.

PETERSON, L., AND DAVIE, B. Computer Networks: A Systems Approach.
Morgan Kaufmann Publishers Inc., 2012.

PLANK, J., BASSI, A., MOORE, T., SWANY, M., AND WOLSKI, R. Managing
data storage in the network. Internet Computing, IEEE 5, 5 (2001), 50 -58.

PUJOL, J., TOLEDO, A., AND RODRIGUEZ, P. Fair routing in delay tolerant
networks. In INFOCOM 2009, IEEE (april 2009), pp. 837 -845.

142

http://www
http://www.opnet.com

[93] QI, J., ZHANG, H., JI, Z., AND YUN, L. Analyzing bittorrent traffic across
large network. In Cyberworlds (2008), pp. 759 -764.

[94] RABINOVICH, M., AND SPATSCHECK, O. Web Caching and Replication.
Addison-Wesley, 2002.

[95] RAHMAN, R. M., ALHAJJ, R., AND BARKER, K. Replica selection strategies
in data grid. Journal of Parallel and Distributed Computing (2008).

[96] RAHMAN, R. M., BARKER, K., AND ALHAJJ, R. Replica selection in grid
environment: a data-mining approach. In SAC '05 (New York, NY, USA),
pp. 695-700.

[97] RAJASEKAR, A., WAN, M., AND MOORE, R. Mysrb and srb - components of
a data grid. High Performance Distributed Computing, 2002. HPDC-11 2002.
Proceedings. 11th IEEE International Symposium on (2002), 301-310.

[98] RAJASEKAR, A., WAN, M., MOORE, R., SCHROEDER, W., KREMENEK,
G., JAGATHEESAN, A., COWART, C., ZHU, B., CHEN, S.-Y., AND
OLSCHANOWSKY, R. Storage resource broker-managing distributed data in
a grid. In Computer Society of India Journal, Special Issue on SAN (October
2003), vol. 33, pp. 42-54.

[99] RAMAKRISHNAN, L., GUOK, C., JACKSON, K., KISSEL, EM SWANY, D. M.,
AND AGARWAL, D. On-demand overlay networks for large scientific data trans
fers. In CCGrid (2010).

100] RANGANATHAN, K., AND FOSTER, I. T. Identifying dynamic replication
strategies for a high-performance data grid. In GRID (2001), pp. 75-86.

101] RODRIGUEZ, P., AND BIERSACK, E. W. Dynamic parallel access to replicated
content in the internet. IEEE/ACM Trans. Netw. 10, 4 (2002), 455-465.

102] ROETTGERS, J. Ohio unversity blocks netflix, backpedals.
http://gigaom. com/video/ohio-university-blocks-netflix (March 2011).

103] Rossi, D., MELLIA, M., AND MEO, M. Evidences behind skype outage. In
IEEE ICC (Piscataway, NJ, USA, 2009).

104] Rossi, D., MELLIA, M., AND MEO, M. Understanding skype signaling.
Comput. Netw. 53 (February 2009), 130-140.

105] ROUGHAN, M., GREENBERG, A., KALMANEK, C., RUMSEWICZ, M., YATES,
J., AND ZHANG, Y. Experience in measuring backbone traffic variability:
models, metrics, measurements and meaning. In Proceedings of the 2nd ACM
SIGCOMM Workshop on Internet measurment (New York, NY, USA, 2002),
IMW '02, ACM, pp. 91-92.

143

http://gigaom

106] SEN, S., AND WANG, J. Analyzing peer-to-peer traffic across large networks.
Networking, IEEE/ACM Transactions on 12, 2 (april 2004), 219 - 232.

107] SlNGEL, R. Most content online is now paid for, thanks to netflix. Wired (May
2011).

108] STANOJEVIC, R., LAOUTARIS, N., AND RODRIGUEZ, P. On economic heavy
hitters: shapley value analysis of 95th-percentile pricing. In Proceedings of the
10th annual conference on Internet measurement (New York, NY, USA, 2010),
IMC '10, ACM, pp. 75-80.

109] VARKI, E., AND VILLA, A. H. Impact of round world on etransfer of big data.
In Submitted to 10th USENIX Symposium on Operating Systems Design and
Implementation (OSDI) (October 2012).

110] VAZHKUDAI, S. Enabling the co-allocation of grid data transfers. In GRID
(2003), p. 44.

111] VAZHKUDAI, S. Distributed downloads of bulk, replicated grid data. In Journal
of Grid Computing (March 2004), vol. 2, pp. 31-42.

112] VAZHKUDAI, S., AND SCHOPF, J. M. Predicting sporadic grid data trans
fers. In HPDC '02: Proceedings of the 11th IEEE International Symposium on
High Performance Distributed Computing (Washington, DC, USA, 2002), IEEE
Computer Society, p. 188.

113] VAZHKUDAI, S., TUECKE, S., AND FOSTER, I. Replica selection in the globus
data grid. In CCGRID (May 2001).

114] VILLA, A. H., AND VARKI, E. Replica traffic manager for data grids. In
20th International Conference on Parallel and Distributed Computing Systems
(September 2007).

115] VILLA, A. H., AND VARKI, E. Co-allocation in data grids: A global, multi-user
perspective. Advances in Grid and Pervasive Computing (2008), 152-165.

116] VILLA, A. H., AND VARKI, E. It takes know-how to retrieve large files over
public networks. In 1st International Conference on Advanced Computing and
Communications (ACC) (2010).

117] VILLA, A. H., AND VARKI, E. The feasibility of moving terabyte files between
campus and cloud. In 23rd IASTED International Conference on Parallel and
Distributed Computing and Systems (PDCS) (December 2011).

118] VILLA, A. H., AND VARKI, E. Automating large file transfers. In 13th Inter
national Conference on Internet Computing (ICOMP'12) (July 2012).

119] VILLA, A. H., AND VARKI, E. Characterization of a campus internet workload.
In 27th International Conference on Computers and their Applications (CATA)
(March 2012).

144

[120] VILLA, A. H., AND VARKI, E. Tortoise vs. hare: a case for slow and steady
retrieval of large files. In 2nd International Conference on Advanced Computing
and Communications (ACC 2012) (June 2012).

[121] WANG, C.-M., HSU, C.-C., CHEN, H.-M., AND WU, J.-J. Efficient multi-
source data transfer in data grids. In CCGRID (2006), pp. 421-424.

[122] WANG, H., XIE, H., QIU, L., SILBERSCHATZ, A., AND YANG, Y. Optimal
isp subscription for internet multihoming: algorithm design and implication
analysis. In INFOCOM 2005. 24th Annual Joint Conference of the IEEE Com
puter and Communications Societies. Proceedings IEEE (march 2005), vol. 4,
pp. 2360 - 2371 vol. 4.

[123] WANG, R. Y., SOBTI, S., GARG, N., ZISKIND, E., LAI, J., AND KRISHNA-
MURTHY, A. Turning the postal system into a generic digital communication
mechanism. SIGCOMM Comput. Commun. Rev. 34, 4 (Aug. 2004), 159-166.

[124] WOLSKI, R., SPRING, N. T., AND HAYES, J. The network weather service: a
distributed resource performance forecasting service for metacomputing. Future
Gener. Comput. Syst. 15, 5-6 (1999), 757-768.

[125] XLAO QIN, H. J. Data Grids: Supporting Data-Intensive Applications in Wide-
Area Networks. 2006, pp. 481-494.

[126] XIE, H., YANG, Y. R., KRISHNAMURTHY, A., Liu, Y. G., AND SILBER
SCHATZ, A. P4p: provider portal for applications. In Proceedings of the ACM
SIGCOMM 2008 conference on Data communication (New York, NY, USA,
2008), SIGCOMM '08, ACM, pp. 351-362.

[127] YANG, C.-T., CHI, Y.-C., AND FU, C.-P. Redundant parallel file transfer
with anticipative adjustment mechanism in data grids. In Journal of Informa
tion Technology and Applications (March 2007), vol. Vol. 1, pp. 305-313.

[128] YANG, C.-T., YANG, I.-H., CHEN, C.-H., AND WANG, S.-Y. Implementa
tion of a dynamic adjustment mechanism with efficient replica selection in data
grid environments. In SAC '06: Proceedings of the 2006 ACM symposium on
Applied computing (2006), pp. 797-804.

[129] YANG, C.-T., YANG, I.-H., LI, K.-C., AND WANG, S.-Y. Improvements on
dynamic adjustment mechanism in co-allocation data grid environments. The
Journal of Supercomputing 40, 3 (2007), 269-280.

[130] YARROW, J. Netflix is eating up more of north america's bandwidth than any
other company. Business Insider (May 2011).

[131] ZHOU, X., KIM, E., KIM, J. W., AND YEOM, H. Y. Recon: A fast and
reliable replica retrieval service for the data grid. In CCGRID (2006), pp. 446-
453.

145

[132] ZINK, M., SUH, K., Gu, Y., AND KUROSE, J. Characteristics of youtube
network traffic at a campus network - measurements, models, and implications.
Comput. Netw. 53 (March 2009), 501-514.

[133] ZISSIMOS, A., DOKA, K., CHAZAPIS, A., AND KOZIRIS, N. Gridtorrent:
Optimizing data transfers in the grid with collaborative sharing. In Proceedings
of the Panhellenic Conference on Informatics (PCI) (2007).

146

	University of New Hampshire
	University of New Hampshire Scholars' Repository
	Fall 2012

	Transferring big data across the globe
	Adam H. Villa
	Recommended Citation

	tmp.1521741622.pdf.cif6i

