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ABSTRACT 

TRANSFERRING BIG DATA ACROSS THE GLOBE 

by 

Adam H. Villa 

University of New Hampshire, September, 2012 

Transmitting data via the Internet is a routine and common task for users today. The 

amount of data being transmitted by the average user has dramatically increased over 

the past few years. Transferring a gigabyte of data in an entire day was normal, how­

ever users are now transmitting multiple gigabytes in a single hour. With the influx 

of big data and massive scientific data sets that are measured in tens of petabytes, 

a user has the propensity to transfer even larger amounts of data. When transfer­

ring data sets of this magnitude on public or shared networks, the performance of all 

workloads in the system will be impacted. 

This dissertation addresses the issues and challenges inherent with transferring 

big data over shared networks. A survey of current transfer techniques is provided 

and these techniques are evaluated in simulated, experimental and live environments. 

The main contribution of this dissertation is the development of a new, "nice" model 

for big data transfers, which is based on a store-and-forward methodology instead of 

an end-to-end approach. This nice model ensures that big data transfers only occur 

when there is idle bandwidth that can be repurposed for these large transfers. The 
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nice model improves overall performance and significantly reduces the transmission 

time for big data transfers. The model allows for efficient transfers regardless of time 

zone differences or variations in bandwidth between sender and receiver. Nice is the 

first model that addresses the challenges of transferring big data across the globe. 
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CHAPTER I 

Introduction 

Over the past several years there has been a tremendous increase in the amount 

of data being transferred between Internet users. Escalating usage of streaming mul­

timedia and other Internet based applications has contributed to this surge in data 

transmissions. Another facet of the increase is due to the expansion of Big Data, 

which refers to data sets that are an order of magnitude larger than the standard 

file transmitted via the Internet. Big Data can range in size from hundreds of giga­

bytes to petabytes. Big Data creation and examples of massive data sets are given in 

Chapter II. 

Today everything is being stored digitally. Within the past decade, everything 

from banking transactions to medical history has migrated to digital storage. This 

change from physical documents to digital files has necessitated the creation of large 

data sets and consequently the transfer of large amounts of data. There is no sign that 

the amount of data being stored or transmitted by users is steady or even decreasing. 

Every year average Internet users are moving more and more data through their 

Internet connections. Depending on the bandwidth of these connections and the size 

of the data sets being transmitted, the duration of transfers could potentially be 

measured in days or even weeks. 

There exists a need for an efficient transfer technique that can move large amounts 
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of data quickly and easily without impacting other users or applications. This dis­

sertation presents my work in identifying and solving this problem. The following 

section details the journey of my research that led me to study this problem and it 

highlights the difficulty in seeing this problem from the beginning. 

1.1 Research road map 

Identifying the problem of moving large amounts of data across the globe was not 

evident at the start of my research. Only after years of study and examination did 

I recognize that is this an unsolved problem that will become even more apparent 

as users transfers larger amounts of data. My dissertation follows the journey that 

I took to identify this stated problem and presents my solution to this data move­

ment challenge. The following is a road map to my research and the chapters of my 

dissertation. 

My research journey began by examining storage systems in grids, the newest 

and most popular distributed computing environment at the time. I began my study 

of grids by examining their usage and the software/hardware systems utilized to 

support their functionality. I focused my study on their storage subsystems and 

particularly on their use of data replication. Due to the large number of users utilizing 

a grid, data sets needed to be duplicated and distributed throughout the system to 

ensure efficient access for the users. Chapter II summarizes my findings on grid 

computing and my study of the replication strategies commonly utilized in these 

environments. This study is still applicable today since there are many grid systems 

actively utilized around the world. Many fundamental grid components are also part 

of cloud computing. 

After surveying how data replicas are utilized in grid computing, I identified an 

issue with the user request process. Due to the distributed nature of the environment, 

users are able to request data from any available replica in the system regardless of 
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system state. The performance of a user's request is dependent on the replica selected 

and can vary greatly depending on how the replicas are utilized. In Section 4.1, 

I present my first foray into grid research, the development of the Replica Traffic 

Manager service. This service is designed to improve performance of replicated data 

requests by managing all workloads in the system. In my experimental evaluation, 

I find that this traffic manager provides improved performance and reliability. This 

study however, specifically focuses on only one component of a user's request - that 

of storage performance. Transferring the data over shared networks is also a major 

factor in servicing users' requests. This initial study opened my eyes to the challenges 

of moving large amounts of data. 

Examining the applications and techniques utilized for transferring data in grid 

and cloud systems became the next focus of my research. Chapter III summaries the 

specific applications used for data transfers and the various techniques proposed in 

recent literature for utilizing these applications to transfer data as quickly as possible. 

These data transmission techniques attempt to grab as much bandwidth as possible by 

utilizing multiple transfer streams and possibly multiple replica sources concurrently. 

Since these parallel downloads are inherently greedy by their nature, I conducted a 

study to examine the performance of a grid system when multiple users simultaneously 

utilize these techniques. Using a grid simulator, I was able to simulate multiple user 

workloads and observe overall system performance. Section 4.2 presents the details 

of this study and my findings, which show that uncontrolled multi-user usage of these 

parallel transfers can significantly impact the performance of the system. There needs 

to be a way to balance the usage of parallel techniques for fast data transmission and 

still maintain a stable environment. 

In Section 4.3, I describe experiments evaluating parallel transfer techniques in a 

real testing environment in order to understand how these transfer techniques effect 

the workloads of other users in the system. This study shows that they can indeed 
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significantly impact the performance of other users/applications. My initial attempt 

to reduce the impact of parallel of transfers was to place bandwidth restrictions on 

these workloads when the system is under high demand. The system forces the 

parallel transfers to wait if they are utilizing too much bandwidth. These restrictions 

allowed other users' workloads to gain access to the shared network connections, 

which improved their performance. Surprisingly, the transfer times for the parallel 

downloads were only minimally impacted by the restrictions. While the study shows 

that placing these restrictions reduces the impact of big data transfers, this is not a 

viable solution, as it only prolongs the amount of time these transfers are present on 

the network. Other solutions needed to be investigated. 

After examining the current trend in data transmission in simulated and controlled 

testing environments, my research continued by examining the performance of paral­

lel transfers in a real, shared system. This study also evaluated the performance of 

a new parallel transfer technique that I develop, which dynamically utilizes multiple 

replica sources based on the bandwidth availability. Chapter V details my experi­

ences conducting live experiments using existing parallel techniques and my dynamic 

retrieval technique on the UNH campus network. I found that parallel download 

techniques result in varied performance and have the potential for utilizing a signifi­

cant portion of the shared network bandwidth for the entire campus. I identified that 

my dynamic technique provides the fastest transfer times and utilizes the smallest 

number of remote sources. This, however, was not the most significant finding of this 

work. The degree of impact that these experiments had on the campus network is 

the most surprising and important outcome of this study and led me to examine the 

network architecture and its performance in great detail. 

Chapter VI presents the findings of my traffic study of the UNH campus network 

and the trends that exist in shared networks around the world. From this study, I 

determined that the campus network is heavily utilized by thousands of users every 
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day. The applications most commonly used are real time applications that are very 

sensitive to changes in network bandwidth. Adding large data transmissions to an 

already heavy workload resulted in decreased output for these applications and very 

angry users. My next task was to determine whether it was feasible for the campus 

network to support these big data transfers. I conducted a feasibility study, described 

in Chapter VII, to determine if and how these types of requests could be accommo­

dated in a shared system without impacting existing workloads. I found that due to 

the human work-sleep schedule there are periods of low usage throughout the course 

of a normal day. During these periods, there is available, idle bandwidth that could 

be repurposed for conducting big data transfers. 

Taking advantage of low demand periods is not trivial, especially since both ends 

of a transfer need to have the same level of available bandwidth. Due to differences in 

distance and in time zones changes, it is possible that there will never be a common 

time when both the sender and receiver have bandwidth available to accommodate big 

data transfers. Existing transfer applications and transfer technique do not address 

this problem and there is a clear need for a solution. Chapter VIII presents my "nice" 

model for big data transmissions across the globe. The nice model utilizes a store-

and-forward approach to data transfers instead of the typical end-to-end methodology 

used by the existing parallel model. 

In order to show that the nice model provides performance improvements over 

the existing parallel method, I conducted experiments using a commercial network 

simulator that allowed me to emulate the campus network and its workloads. My 

evaluations of the nice model are presented in Chapter IX and they show that the 

nice model delivers marked improvements in data transmission times and allows for 

efficient use of existing network connections during low demand periods regardless of 

time zone differences. Chapter X gives a theoretical analysis of my evaluations and 

further shows the improvements provided by the nice model. 
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My conclusions and future work are presented in Chapter XI. The next step 

for my research is to develop a system level service that utilizes the nice model and 

that allows users to automate big data transfers. In this chapter, I outline some 

of the components that would be necessary for this service to be developed and 

identify existing technologies that could be utilized to ensure efficient and secure 

data transfers. 
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CHAPTER II 

Big Data: Creation and Management 

Big Data is growing at a tremendous rate. Enormous data sets measured in 

terabytes and petabytes are being created everyday. With the growth of Internet 

based applications, cloud computing, and data mining, the amount of data being 

stored in distributed systems around the world is skyrocketing. In addition to cor­

porate/commercial data sets, academic data are also being produced in the similarly 

large quantities. 

Scientific experiments are creating massive amounts of data that need to be acces­

sible to users around the world. Research areas creating this deluge of data include 

bioinformatics, particle physics, astronomy and environmental science (49). The size 

of data sets created by experiments, simulations, sensors and satellites continues to 

grow each year. 

To give an example of the size of the data sets utilized by some of these exper­

iments, a recent study observed a particle physics experiment (DZero) taking place 

at the Fermi Lab research center. While observing the DZero experiment between 

January 2003 and May 2005, Iamnitchi et al. (13) analyzed the data usage patterns of 

users. They found that 561 users processed more than 5 PB of data with 13 million file 

accesses to more than 1.3 million distinct data files. An individual file was requested 

by at most 45 different users during the entire analyzed time period (2003 to 2005). 
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In the DZero experiment and many like it, scientists are generating datasets with 

an extremely large number of data files. Entire datasets are quite popular amongst 

users, however the individual data files in these sets are rarely used concurrently since 

they are so numerous. 

There are many research initiatives that have similar data demands. The most 

popular example today is the Large Hadron Collider at CERN. This experiment is 

well known and thousands of researchers in the physics and computer science fields 

are involved. The four experiments being conducted on the LHC generate petabytes 

of data annually (80; 84). One experiment, ALICE, is can generate data at the rate of 

1.25 GB/s (54). Figure 2.1 illustrates the growth in the size of data sets being created 

and stored by CERN. This graph shows the total amount of storage (both disk and 

tape) utilized by all of the top-level servers in the CERN organization. The amount 

of data stored in the system has grown at a steady pace over the past 3 years and 

is expected to grow faster now that the intensity of their experiments is increasing, 

which will result in more data collection per second (27). Geographically dispersed 

researchers eagerly await access to the newest datasets as they become available. The 

task of providing and maintaining fast and efficient data access to these users is a 

major undertaking. Since the CERN experiments are so well known and many studies 

have been conducted on their demands and requirements, I will use the CERN LHC 

experiments as a motivating example throughout my research. 

2.1 Big Data Management 

To meet the computing demands of experiments like CERN's LHC, a specialized 

distributed computing environment is needed. Grid computing fits the needs of the 

LHC experiments and other similar research initiatives. In Section 2.2, I examine 

the definition and usage of grid computing (grids). The software architecture used to 

coordinate the functionality of grids is then discussed in Sections 2.3-2.5. 
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CERN - LHC: Total data set size for all Tier-1 sites 
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Figure 2.1: Size of CERN LHC experimental data sets over the past 16 months. The 
total disk and tape storage amounts aggregated for all tier-1 locations in 
the CERN grid. 

The Worldwide LHC Computing Grid (WLCG) was created by CERN in 2001 in 

order to facilitate the access and dissemination of experiment data. The goal of the 

WLCG is to develop, build, and maintain a distributed computing infrastructure for 

the storage and analysis of data from LHC experiments (54). The WLCG is composed 

of over a hundred physical computing centers with more than 100,000 processors (5). 

Since the data sets produced by the LHC are extremely large and highly desired, 

the WLCG utilizes replication to help meet the demands of users. Copies of raw, 

processed, and simulated data are made at several locations throughout the grid. 

The WLCG utilizes a four-tiered model for data dissemination, shown in Figure 

2.2. The original raw data is acquired and stored in the Tier-0 center at CERN. This 

data is then forwarded in a highly controlled fashion on dedicated network connections 

to all Tier-1 sites. There are eleven Tier-1 sites located in Canada, Germany, Spain, 

France, Italy, Nordic countries, Netherlands, Taipei, United Kingdom and USA. 

The role of the Tier-1 sites varies according to the particular experiment, but in 

general they have the main responsibility for managing the permanent data storage -
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Figure 2.2: CERN's WLCG Tiered Replica Structure (5) 

raw, simulated, and processed data - and providing computational capacity for pro­

cessing and analysis (54). The Tier-1 centers are connected with CERN through ded­

icated links (Figure 2.3) to ensure high reliability and high-bandwidth data exchange, 

but they axe also connected to many research networks and to the Internet (5). The 

underlying components of a Tier-1 site consist of online (disk) storage, archival (tape) 

storage, computing (process farms), and structured information (database) storage. 

Tier-1 sites are independently managed and have pledged specific levels of service to 

CERN. It is therefore left to the site's administrators to guarantee that these services 

are reliably provided. 

Data from Tier-1 sites are forwarded to over 130 Tier-2 sites located around the 

world. The network connections between many Tier-1 and Tier-2 sites are still un­

der development. Some of those connections are dedicated and others utilize pub­

lic/shared networks. These Tier-2 sites provide widespread access to datasets for 

researchers. These sites also provide computational capacity and storage services for 
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Figure 2.3: WLCG Tier-1 and Tier-2 Connections (84) 

Monte Carlo event simulation and for end-user analysis. Any data generated at Tier-2 

sites is forwarded back to Tier-1 centers for archival storage. 

Other computing facilities in universities and laboratories are able to retrieve 

data from Tier-2 sites for personal processing and analysis. These sites constitute 

the Tier-3 centers, which are outside the scope of the controlled LCG project and 

are individually maintained and governed. Tier-3 sites allow researchers to retrieve, 

host, and analyze specific datasets of interest. Freed from the reprocessing and simu­

lation responsibilities of Tier-1 and Tier-2 centers, these Tier-3 sites can devote their 

resources to their own desired analyses and are allowed more flexibility with fewer 

constraints (46). As there are thousands of researchers eagerly waiting for new data 

to analyze, many users will find less competition for time and resources at Tier-3 sites 

than at the Tier-2 sites. 

It is important to note that users connecting to either Tier-2 or Tier-3 sites will use 

public, shared network connections, including the Internet. Grid traffic and normal 

World Wide Web traffic will both be present on these shared links. A user will also be 
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sharing the site that they access with multiple other users. These factors can affect 

the performance of the data transfer between the selected retrieval site and the user. 

Retrieving these large data files also places a burden on shared resources and impacts 

other grid and non-grid users. 

When it comes to retrieving data in the WLCG, a normal user (depending on 

their security credentials) can access data on either Tier-2 and Tier-3 sites. The user 

would select a desired site and issue a request for a specific data file. Selecting a site 

to utilize can be a complicated task and a user's performance is dependent on the 

location chosen. I explore several techniques for selecting a replica site in Section 2.6. 

2.2 Grids 

Grid computing has emerged as a framework for aggregating geographically dis­

tributed, heterogeneous resources that enables secure and unified access to computing, 

storage and networking resources (40). Grid applications have vast datasets and/or 

complex computations that require secure resource sharing among geographically dis­

tributed systems. The term "Grid" was inspired by the electrical grid system, where 

a user can plug in an appliance to a universal socket and have instant access to power 

without knowing exactly where that power was generated or how it came to reach 

the socket (40). The vision for grids was similar. A user could simply access as 

much computing power as required through a common interface without concern for 

who was providing the resources. Currently, grids have not yet reached that level of 

simplicity. 

Grids offer coordinated resource sharing and problem solving in dynamic, multi-

institutional virtual organizations (41). A virtual organization (VO) comprises a set of 

individuals and/or institutions having access to computers, software, data, and other 

resources for collaborative problem-solving or other purposes (65). A grid can also 

be defined as a system that coordinates resources that are not subject to centralized 
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control, using standard, open, general-purpose protocols and interfaces in order to 

deliver nontrivial qualities of service (37). 

Data grids, a specialized extension of grid computing, are responsible for providing 

the infrastructure and services to access, transfer, and modify massive datasets stored 

in distributed storage resources (125). They allow users to access computational and 

storage resources in order to execute data-intensive applications on remote data. Data 

grids were originally designed with the following principles (30): 

• Mechanism neutrality: the data grid is designed to be as independent as possible 

of low-level mechanisms 

• Policy neutrality: the data grid is structured so that significant design decisions 

are explicitly stated and left for the user to modify or implement 

• Compatibility with grid infrastructure: the data grid should utilize components 

of existing grid infrastructure such as authentication, resource management, 

and information services. 

• Uniformity of information infrastructure: similar to the grid, the data grid 

should have access to uniform information about resource structure and state, 

which allows for runtime adaptation to system conditions. 

The objective of a data grid system is to integrate heterogeneous data files stored in a 

large number of geographically distributed sites into a single virtual data management 

system and to provide diverse services to fit the needs of high-performance distributed 

and data-intensive computing (125). 

CERN's Worldwide LHC Computing Grid (WLCG) is a combination of computa­

tion and data grids. It provides a distributed computing infrastructure for the storage 

and analysis of data from LHC experiments. In the following section, I examine the 

software architecture that enables grids, like the WLCG, to perform their functions. 
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2.3 Grid Middleware 

The sharing of resources in a grid is facilitated and controlled by a set of services 

that allow resources to be discovered, accessed, allocated, monitored, and accounted 

for, regardless of the their physical location (66). Since these services create a layer 

between physical resources and applications, they are often referred to as Grid Mid­

dleware. Every grid has different service requirements, therefore the architecture and 

grid middleware implementation of every grid can vary. 

The middleware of many grids is based on the software architecture called the 

Globus Toolkit (38). The toolkit is a set of libraries and programs that address 

common problems that occur when building distributed system services and appli­

cations (8). It provides a set of infrastructure services that implement interfaces for 

managing computational, storage, and other resources. The Globus Toolkit provides 

all of these services and it is left to grid administrators to determine whether or not 

to include certain services in their grid implementation. These are a few of the well-

known and widely used grids that deploy the Globus Toolkit: TeraGrid (4), Open 

Science Grid (11), EGEE (7), Worldwide LHC Computing Grid (WLCG) (5), China 

National Grid, UK National Grid Service (12) and NAREGI (9). 

The architecture of the Globus Tooklit contains several components, each of which 

is responsible for different grid functions. A few of these services are (38): 

• Grid Resource Allocation and Management (GRAM) - This service initiates, 

monitors, and manages the execution of computations on remote computers. It 

allows a user to specify: the quantity and type of resources needed, the data 

sets required for their computation, the executable application to be run, the 

necessary security credentials, and the job persistence requirements. 

• Data access and movement - The reliable file transfer (RFT) service is provided 

to ensure that data is successfully transferred from one location to another. 
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• Replica management - This service keeps track of all replicas and their content 

using a replica location service (RLS) and a data replication service (DRS). 

• Monitoring and Discovery - Multiple services collect and process information 

about the configuration and state of all resources to enable monitoring of system 

status. 

• Security - Services establish the identity of users or services (authentication), 

protect communications, and determine who is allowed to perform what ac­

tions (authorization), as well as manage user credentials and maintain group 

membership information. 

Grid middleware systems are custom designed to fit the needs of a particular 

grid. The components of the Globus Toolkit provide the tools for creating a basic, 

functional grid. Many of the detailed technical decisions and optimizations are left to 

grid administrators, such as replication management and replica selection. Finding 

the optimal settings and configurations for grid middleware components is still a work 

in progress and requires further study. 

Many grid implementations utilize Globus components in addition to their own 

custom components. The WLCG's middleware, gLite, contains some Globus com­

ponents as well as software developed by several research projects in the European 

Union, including programs from the EGEE consortium (7). In the next two sections, 

I will focus my examination on two general middleware services utilized in most grids: 

data movement and replica management. 

2.4 Data Movement 

There are several grid applications available for moving data from one location 

in a grid to another. The most widely-used data movement tool, which is also a 

component of the Globus Toolkit, is called GridFTP (18; 17). It is an extension of 
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the File Transfer Protocol (FTP) and was designed specifically for grid environments. 

GridFTP offers several features over standard FTP (19): 

• Third-party control of data transfer - This allows a user to remotely monitor 

and control a data transfer between two other sites. 

• Authentication, data integrity, data confidentiality - GridFTP supports and 

interfaces with grid middleware security and authentication components. 

• Striped data transfer - Data can be interleaved across multiple servers and 

GridFTP supports the transfer of data portioned among multiple servers. 

• Parallel data transfer - GridFTP supports multiple transfer streams in parallel 

between a single source and destination. 

• Partial file transfer - GridFTP allows the user to transfer only a portion of a 

file rather than the entire file. 

• Support for reliable and restartable data transfer. 

New features were also recently released for GridFTP, such as the option to utilize 

the UDP protocol and pipelining (25). Pipelining allows many transfer requests to be 

sent to the server before any transfer completes. This technique hides the latency of 

transfer requests by overlapping them with data transfers. The server does not have 

to wait for a new request to arrive after it finishes the current request. 

It is important to note that GridFTP is not the sole data transport tool used in 

grids. There axe other mechanisms available, such as the data movement operation 

for the Storage Resource Broker (SRB) (98). The SRB data movement tool allows 

a user to access data on normal filesystems, as well as archival resources such as 

HPSS (97). Another mechanism to transport data across the grid is OGSA-DAI (10), 

which can accommodate different types of data resources, including relational and 
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XML databases (45). Simple FTP and HTTP file transfers are also very common­

place. 

2.5 Replication 

Replication is used in data grids to help improve access to high-demand datasets, 

by reducing access latency and bandwidth consumption. Replicas or copies of data 

file(s) are created in order to improve access performance and data integrity. In most 

grid implementations replicated files are read only, which eliminates problems with 

file updates and coherency (30). All replicas located in a grid are managed by a replica 

management service, a component of the Globus middleware architecture, which has 

several responsibilities (18; 17): 

• creates new copies of a complete or partial data set 

• registers new replicas in a Replica Catalog 

• allows users and applications to query the catalog to find all existing replicas 

of a particular file or collections of files. 

The replica management services has several components that accomplish these 

tasks. The Replica Location Service (RLS) component maintains and provides access 

to information about the physical location of replicas. The main task that the RLS 

performs is: Given a unique logical identifier (logical file name - LFN) for desired 

data, determine the physical locations (physical file name - PFN) of one or more 

copies of the data. In order to perform this task, the RLS maintains records of all 

logical to physical file name mappings. The physical file names are structured similar 

to URLs, where the access protocol, site address, and directory structure are fully 

specified. The Giggle FYamework (30) is the basis for the RLS component in Globus. 
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The framework ensures that replica location data is distributed throughout the 

grid in order to maintain efficient access. There are two types of data repositories that 

the RLS uses to store replica information: local replica catalogs (LRCs) and replica 

location indices (RLIs). An LRC stores information about logical filenames, such as 

creation data, access lists and other file attributes. It also stores a map of all physical 

filenames that are replicas for a logical filename. An RLI maintains information about 

the replica catalogs and the logical file names that they contain. It can locate which 

LRC contains the replica file list for a given logical filename. The Giggle framework 

specifies how LRCs and RLIs are interconnected to construct a scalable and reliable 

replica location service. Studies have analyzed the effectiveness of the RLS and the 

replica management service and have shown that they perform well for large-scale, 

heavily loaded systems (26). 

Creating a more sophisticated replica management service is still a work in progress 

and many middleware developers have left advanced features, such as replica man­

agement, to be implemented by individual grid administrators. An example of an 

advanced service is the selection of the "best" replica to service a user's request based 

on storage and network performance predictions. Several studies examine this selec­

tion problem and develop replication selection algorithms. These are discussed in the 

next section. 

Many replicas are manually created when needed. Several studies have also de­

veloped mechanisms for dynamically creating and deleting replicas in order to fit the 

demand of the grid. As the popularity of a data file increases, a dynamic replication 

tool would automatically create new replicas to service the increased demand. One 

such technique, called Fast Spread, creates a replica of a requested file at every node 

that is encountered on the data delivery path from the server to the client (100). 

Another technique creates replicas close to the users requesting the file in order to 

exploit geographical locality (62). The globus architecture does not specifically uti­

18 



lize dynamic replication strategies and therefore they would have to be manually 

implemented. 

When users want to retrieve a data file from a remote grid resource, they contact 

the replica management service to receive a listing of available replicas that contain 

the specified data. The users then utilize some or all of the available replicas to service 

their requests. The users decide which resources to utilize and to what extent. Using 

a data movement tool, like those described in Section 2.4, users would then initiate 

transfer requests on the resources that they have selected. Users can choose which 

data movement tool to utilize and how to configure the data transfer settings in order 

to achieve the best performance. Selecting the proper settings for a data transfer is 

not a trivial task and often requires detailed knowledge about grid resources. 

2.6 Replica Selection 

Users are able to retrieve data from any replica server that is available to them. 

Making an informed decision about which replica to use can affect a client's perfor­

mance. Choosing a lightly loaded server over a heavily loaded server can result in 

dramatically different completion times for a client. Finding the most efficient replica 

is a difficult and complicated task. 

Server selection is a task common in many computing environments and there 

are many generalized server selection algorithms. A number of these algorithms are 

driven by performance metrics, such as proximity metrics that measure proximity 

of servers to a client and server load metrics that measure the load of servers or 

network paths (94). There are advantages and disadvantages to these performance 

metric based algorithms, such as the issue of the freshness of metric values. An­

other generalized selection technique is to just select a server at a random. Mitzen-

macher (81; 82) developed a technique that randomly selects a subset of available 

replicas and then selects the best replica based on the performance metric values 
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available. Several studies analyze different methods of replica selection specifically 

for grids. Papers (26; 95; 96; 113) present a few of these varying selection techniques. 

Vazhkudai et al. (113) create a storage broker that identifies a suitable replica 

based on the requesting application's requirements. The broker submits classified 

advertisements to all available replicas listing these requirements. It is the broker's 

responsibility to map application requirements against the capabilities of the various 

storage resources. The authors designed a decentralized storage brokering strategy 

where every client that requests data performs the selection process, rather than a 

central manager. There is no central point of control and the decision-making is 

delegated to every client. 

The replica management system for the European Data Grid utilizes a Replication 

Optimization Service (ROS) that selects the best replica of a data file for a given 

request (26). The service takes into account the location of the computing resources 

and network latencies. Network monitoring services provide the ROS with network 

latencies between various grid resources, which are then used to predict expected 

transfer times. The service selects the replica with the best expected transfer time to 

complete the request. 

Rahman et al. (95; 96) describe an optimization technique that utilizes the k-

Nearest Neighbor (KNN) rule. The KNN rule selects the best replica for a file by 

examining previous file transfer logs. When a new request arrives, all previous data is 

analyzed to find a subset of previous file requests that are similar to the new request, 

which are the k-nearest neighbors. The technique then uses these previous requests 

to estimate transfer times between replicas and the user. The algorithm selects the 

best replica based on its predictions. 

These studies represent only a portion of the literature on single server selection 

techniques. In general, I find that there is no perfect solution to the server selection 

process. Users can only approximate the best server to fit their needs at the current 
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moment. Relying on a single server, selected by any algorithm, could possibly af­

fect a user's data retrieval performance. There are many situations when a server's 

performance can degrade: 

• The server could suddenly become unavailable or disconnected, which would 

require the user to re-initiate the server selection process. 

• The server could quickly become overloaded. The number of concurrent users 

could utilize all of the server's available bandwidth. Multiple users could also si­

multaneously select the same server based on the available performance metrics, 

creating a herd effect (94). 

• The server's transfer rate could be lower than the desired rate of the user. 

The performance of the server can change at any time, which directly impacts the 

user's data retrieval. In the following chapter, I explore recently proposed techniques 

for quickly transferring large files between users and storage servers. 
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CHAPTER III 

Parallel Transfer Techniques 

In this chapter, I examine several data retrieval techniques developed specifically 

for retrieving large files in grid computing environments. The sizes of data files 

requested in grids are much larger than normal web data requests. It is not uncommon 

for a grid data file size to be measured in gigabytes or terabytes. Users want to be 

able to download these files as quickly as possible, by any means necessary. Since 

utilizing a single server can be limiting, retrieving data from multiple servers in a 

parallel (also known as data co-allocation) has been suggested as an alternative. In 

my examination, I group these recently proposed parallel transfer techniques based 

on how they retrieve data from various replica servers. 

3.0.1 Basic Technique 

The basic, brute-force, data co-allocation technique (110) issues a request for 

equal sized portions of the file from all available replicas. Every replica that contains 

the file is utilized and each is responsible for servicing an equal amount of data. 

There is no consideration given to the performance of replica servers or network 

conditions. Many studies include this technique as a baseline for comparison with 

other co-allocation strategies. 

The brute-force technique is not an optimal technique. It assumes that all servers 
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are available and will provide adequate service to the user. It also places an equally 

heavy burden all servers and there is no consideration for the workload it places on 

grid resources. When many users utilize this technique, the performance of the entire 

grid is affected. 

3.0.2 Predictive Techniques - History Based 

In the brute-force technique, the performance of each transfer is not analyzed. De­

pending on network and server workload, each transfer will have varying performance. 

The following algorithms take into account the performance metrics of each server 

interaction when dividing the workload amongst all replicas in order to minimize the 

transfer completion time. These papers present a few of these methods. 

Vazhkudai presents a history-based data co-allocation technique (110; 111). 

He addresses the fact that each transfer between a replica and the client has varying 

transfer rates. This technique adjusts the amount of data retrieved from each replica 

by predicting the expected transfer rate for each replica. In a previous work (112), 

Vazhkudai and Schopf developed a series of univariate and multivariate predictors 

that create forecasts based on past transfer history with network and disk load data. 

Using this technique, the author demonstrates how historically faster servers are 

assigned to deliver larger portions of the file and slower servers are assigned smaller 

pieces. In his evaluations, he finds that the history-based technique significantly 

outperforms single replica usage technique and provides improved performance over 

a simple, brute-force technique. 

Zhou et al. also develop a history-based data co-allocation technique. They de­

velop Replica Convoy (ReCon) (131), a tool for retrieving data from multiple 

replicas simultaneously. ReCon is composed of two services: the Replica Convey 

Service (RCS) and the Replica Convoy Client (RCC). The RCS determines an appro­

priate replica convey plan for the client using decision algorithms that control how 
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the replicas will be used to retrieve the desired data. One group of these decision 

algorithms utilizes GridFTP logs to predict the network throughput for each replica 

server. This group includes the latest-based, mean-based and median-based tech­

niques. As their names suggest, they utilize the past transfer history data in different 

ways. The latest-based technique predicts throughput based on the last completed 

transfers. Median and mean-based techniques utilize the median and mean values of 

all completed transfers. Using these predictions, the entire data file is divided into 

varying sized segments specifically for each replica. For example: if there were three 

available replicas, one replica could be assigned 3/6 of the data, another replica would 

transfer 2/6 and the last replica could service the remaining 1/6 of the data. Replicas 

that are predicted to deliver data faster are assigned a larger portion to service. 

3.0.3 Predictive Techniques - Network Weather Service and Probes 

Many grid environments deploy a network monitoring tool called the Network 

Weather Service (NWS) (124). The NWS is a distributed system that detects the 

network status at periodic intervals. The service utilizes a set of performance sensors 

to determine the condition of grid components. These sensors gather data on the 

latency and bandwidth of end-to-end TCP/IP performance, as well as available CPU 

and memory of replica servers. Using mathematical models on the data gathered by 

the sensors, the service creates forecasts of system conditions for given time periods. 

Feng and Humphrey develop data retrieval techniques that utilize NWS predic­

tions to specify the amount of data to be requested from replica servers (36). They 

develop two techniques that utilize these network forecasts: NWS Static and NWS 

Dynamic. 

In the NWS Static algorithm, network throughput predictions are requested for 

all connections to the available replica servers from the NWS before the transfer 

commences. The file is then divided into segments based on the expected throughputs 
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for each replica. Replica servers with higher throughput predictions are assigned to 

deliver larger portions of the data file. 

In the NWS Dynamic algorithm, the desired file is divided into a fixed number 

of equal sized segments. The algorithm contacts the NWS to receive throughput 

forecasts for each replica server and assigns portions of a file segment based on the 

throughput predictions. When a replica completes a portion, the NWS is again 

contacted and additional portions are assigned based on the forecasts. The NWS 

Dynamic algorithm only schedules one segment of the entire file with each NWS 

prediction. If conditions change, then the next round of predictions should identify 

the changed conditions and re-distribute the workload accordingly. 

In the authors' evaluations, they find that both of their NWS algorithms out­

perform a basic, brute-force, data co-allocation algorithm. They also find that their 

NWS Dynamic algorithm provides improved speedup over the Static algorithm. 

Utilizing the NWS for predications provides additional overhead costs, which can 

vary depending on how frequently the service is used. The messages used by the ser­

vice also produce additional traffic on the network. If the user's grid does not employ 

the NWS, then the user would be unable to utilize these techniques. Implementing 

and coordinating a NWS service on all servers in a grid is not a trivial task and would 

be outside the realm of the basic user's expertise and permissions. 

Other mechanisms can be used to determine the status of connections between 

users and servers. Zhou et al. present a probe-based data retrieval tech­

nique (131), where a fixed sized pinging mechanism is used to probe network con­

nections and determine network output. Based on the data returned by the probes, 

varying amounts of data are assigned to each replica. The authors find that their 

probe-based algorithm outperformed history-based techniques. They attribute this 

success with the fact that the probe gives an accurate representation of the current 

state of the network, unlike history-based techniques. 
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3.0.4 Dynamic Techniques - Equal Request Sizes 

The following co-allocation retrieval techniques dynamically adapt to changing 

grid conditions by requesting small, equally sized, portions of a file from multiple 

replicas. Each technique uses different decision making algorithms on how to perform 

these requests and several of these algorithms are discussed in this section. 

Vazhkudai finds that history-based techniques do not address dynamic network 

variations that can affect transfer rates between the replica servers and the client (110; 

111). Servers that were previously determined to be fast or slow can behave differently 

than expected due to varying network traffic and system workloads. In order to 

address these issues, he develops a conservative load balancing technique that 

dynamically adapts to changing network and system conditions. The amount of 

data requested for a given server is decided dynamically instead of being based on 

previous history. The desired data file is divided into equal sized, disjoint blocks. 

Each available server is initially assigned one block to service in parallel. Once a 

server delivers the block, another block is assigned until the entire file is retrieved. 

Faster servers will transfer larger portions of the file. 

Feng and Humphrey also develop a similar dynamic data co-allocation algorithm 

called, NoObserve (36). This algorithm differs from their other retrieval algorithms 

discussed in the previous section, since it adjusts to varying network conditions with­

out utilizing the NWS. In the NoObserve algorithm, the source file is statistically 

divided into equal-sized segments. Initially, each replica is assigned one segment to 

service. When a replica finishes its segment, the replica is immediately assigned an­

other segment until the entire file is retrieved. In the authors' evaluations, they find 

that the NoObserve technique provides a speedup over the baseline, brute-force tech­

nique. They also find that choosing the appropriate number of file segments is also 

important. The number of segments should not be too large, in order to minimize 

the overhead costs associated with transferring multiple small size file segments. 
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3.0.5 Dynamic Techniques - Varying Request Sizes 

The techniques described in the previous section divide the desired data file into 

equal sized disjoint blocks. Other grid data retrieval techniques try to improve per­

formance by varying the size of the blocks based on the performance of the replica 

servers. Faster servers are assigned larger blocks. 

Vazhkudai develops an aggressive load-balancing technique (110; 111), which 

is a modified version his conservative load-balancing technique that was discussed in 

the previous section. Instead of requesting a single block from each replica, the 

amount of data requested from faster servers is progressively increased. The amount 

of data requested from slower servers is decreased or stopped completely. The transfer 

rate for each block request is compared to all other transfers. If the rate is higher than 

any other transfer, then the request size for that server is doubled to two blocks. If 

the rate is lower than other transfers, then the request size for that server is reduced 

to a single block. If the rate is significantly lower than all other transfers, then the 

replica no longer receives requests. 

There are other dynamic data retrieval techniques that vary the amount of data re­

quested from each server while still dividing the data file into blocks. The recursively-

adjusting co-allocation technique (127; 128; 129) developed by Yang et al. is a 

combination of dynamic and predictive techniques, since it utilizes Network Weather 

Service forecasts. This technique works by continually adjusting the amount of data 

requested from each replica server to correspond to its real-time bandwidth during 

file transfers. Unlike the previous algorithm by Vazhkudai, the goal of this technique 

is to make the expected completion times for all servers the same. The recursively-

adjusting algorithm continually monitors each server and adjusts the workloads to 

ensure that all servers deliver the last block at the same time. The goal of the algo­

rithm is to eliminate the user from having to wait for a single server to deliver the 

last portion of the file. 
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The technique begins by dividing the desired data file into several sections. Each 

of these sections is then sub-divided into varying sized blocks that are individually 

assigned to all replicas. The number and size of the larger sections is variable and 

can be adjusted by the user. The size of each section is a percentage of the remaining 

file size to be retrieved. Each section size will therefore be progressively smaller than 

previous sections. The user can select the smallest section size that is used. 

Initially, the algorithm assigns blocks from the first section to all available servers 

based on their bandwidths. The Network Weather Service is used to obtain the 

bandwidth forecast for each server. At this point, it is assumed that all servers will 

finish the section at the same time. Due to fluctuations in network conditions and 

server load, actual completion times may vary. When the fastest server completes its 

block of the current section, the next section of the file is divided into blocks using 

the NWS predictions and these blocks are assigned to the servers. The goal is for all 

servers to complete their outstanding work (first and second sections) at the same 

time. Slower servers will not be assigned additional blocks and faster servers will 

receive larger portions to service. This process repeats for all sections until the entire 

file has been requested. 

Another dynamic data retrieval technique, which varies the amount of data re­

quested from each server while still dividing the data file into blocks is the MSDT 

algorithm (121) developed by Wang et al. The MSDT algorithm is a combination 

of dynamic and predictive techniques, as it utilizes the past transfer histories for pre­

dictions. In theory, the MSDT algorithm is very similiar to the recursively-adjusting 

co-allocation technique by Yang et. al. The MSDT algorithm just uses a different 

set of equations to predict the performance of a replica and to assign the workloads 

to each replica. The algorithm uses the overhead and bandwidth of previous segment 

transfers to predict the future performance of a replica. To begin, the source data file 

is divided into multiple segments of equal size. The MSDT algorithm autonomously 
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assigns a number of segments to each replica whenever the replica is idle. This algo­

rithm assumes that the replicas will be solely dedicated to grid traffic and that the 

user has full knowledge of the workload present at the servers, which is not always 

the case in most grids. The amount of segments that are assigned varies depending 

on the transfer history for the particular replica. 

3.0.6 Dynamic Techniques - Preemptive Measures 

The dynamic techniques in the two previous sections retrieve portions of the data 

file from multiple replica servers. The amount of data retrieved may vary depending 

on the algorithm, however there is the possibility that a client will end up waiting for 

slower servers to deliver portions of the file. The previous techniques do not preempt 

transfers or re-distribute the workload to other servers when replicas become unre­

sponsive. In this section, I examine several algorithms that utilize these preemptive 

measures. 

The ReCon data retrieval service(131) designed by Zhou et al. offers a Greedy 

retrieval algorithm where the desired data file is divided into equal sized segments. 

Each replica is initially assigned one segment. As replicas complete their segments, 

they are assigned additional segments to service. A recursive scheduling mechanism 

handles any errors that occur. If the user does not receive a response from a server 

after a user-specified amount of time, the mechanism automatically reschedules the 

failed data request to another replica that is currently transferring data. Detailed 

information about re-submission process is not specified in the paper. Zhou et al. 

compare the Greedy algorithm with other algorithms developed for the ReCon. They 

find that their Greedy retrieval algorithm did not outperform other statistical based 

techniques (section 3.2) and their probe-based technique (section 3.3) provided faster 

retrieval. 

Bhuvan et al. develop a different preemptive data co-allocation mechanism, the 
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Dynamic Co-allocation Scheme with Duplicate Assignments (DCDA) (24). 

This technique is used to cope with highly inconsistent network performance of replica 

servers. The authors develop this technique to enable efficient parallel download of 

replicated data from multiple servers without the use of past history or heuristics. In 

their algorithm, the desired data file is divided into disjoint blocks of equal size. Each 

server is initially assigned one block to service. When a server completes a request, 

it is assigned another outstanding block. The algorithm continues until all blocks 

have been assigned. If a server delivers a block and there are no blocks remaining 

that have not been initially assigned, the server will be given an outstanding block 

request that has not been completed. There will now be several servers working on 

the same request. When a server delivers a request, all other servers are notified to 

stop serving this request. In order to maintain a clear order of outstanding requests, 

the algorithm utilizes a circular queue to keep track of all requests. 

In the evaluations of the DCDA technique, Bhuvan et al. assume that the over­

head latency in assigning, delivering and killing of duplicate assignments in negligible. 

(In reality, this can be a complicated and costly procedure, depending on the infras­

tructure of the grid.) They compare their algorithm to the Vazhdukai's conservative 

load balancing technique (110) and find that the DCDA algorithm provides increased 

performance. 

Chang et al. (29) develop an advanced preemptive technique, Multiple Parallel 

Downloads with Bandwidth Considerations technique, that considers both 

server throughput and client input bandwidth when assigning workloads to the replica 

servers. This paper is the first to discuss their technique in terms of multiple users. 

They realize that when everyone uses parallel downloads, they will compete for system 

resources that causes a degradation of system efficiency and unfairness for the users. 

They also determine that a server should not outdo its capacity by serving too many 

clients and a client should not download from too many servers with its limited 
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incoming bandwidth. Their scheme is divided into three stages: initial stage, steady 

stage and end stage. 

In the initial stage, each replica server is assigned a priority value based on the 

round-trip-time between the client and server and based on the average wait time for 

the server. The block size is then determined using the cost of internal and external 

overheads as a factor. The steady stage begins by selecting two servers with the 

best priority values to download the desired file. As the file is being transferred, the 

download speed of the client is monitored. A client's download speed is limited by 

the speed of its network connection. If the client's download speed does not reach 

the maximum download bandwidth, an additional server is added to transfer the 

remaining file. If the client reaches the maximum download speed, then no more 

servers are utilized. The mechanism also monitors the throughput of each server 

and categorizes them based on their performance: ordinary servers are assigned one 

block at a time, fast servers are assigned two blocks at a time, and superior servers 

are assigned three blocks at a time. These categorizations are recreated before each 

block assignment. To ensure that all servers finish the last request as close to the same 

time as possible, the download efficiency of the last block is important. If the last 

block is to be transferred by a slow or disconnected server, it will increase the time 

for the entire data transfer. To ensure that this does not occur, a completed server 

will automatically be assigned an uncompleted block that was originally assigned to 

another server. 

The authors discuss a multiple user environment and provide an example of how 

their technique would work with six users accessing a small number of files. Their 

experiments however, do not show the performance of their algorithm when many 

users are simultaneously utilizing their technique. 
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3.0.7 Peer-to-Peer Techniques 

Peer-to-peer (P2P) and grid computing environments both address the problem of 

organizing large scale computing societies and have the same objective of coordinating 

large sets of distributed resources (39). Data retrieval techniques specifically designed 

for peer-to-peer environments have been adapted for use on the grid. Two of these 

techniques are GridTorrent (133) and the GridTorrent Framework (57). Both of these 

grid transfer mechanisms are based on the BitTorrent protocol. 

The BitTorrent protocol (33) is a peer-to-peer protocol that enables users to re­

trieve data files from multiple sources while simultaneously uploading them to other 

clients, instead of obtaining them directly from a central server. BitTorrent is de­

signed to work efficiently under flash crowd situations where a large number of users 

are concurrently downloading the same file. In this protocol, data files are segmented 

into pieces, which can be retrieved individually by clients from multiple sources. Bit­

Torrent uses a distributed hash table to dynamically locate peers to participate in a 

file transfer. It limits the number of concurrent uploads for a user and gives priority 

to the peers with the best upload rates. The protocol also discourages free-riders, 

peers that download data without contributing to the system. It uses a tit-for-tat 

algorithm to ensure that all peers contribute to file downloading. 

The GridTorrent transfer mechanism (133) is a modified BitTorrent implemen­

tation that is designed to interface with grid middleware components and protocols. 

GridTorrent can be used to receive data from GridFTP servers or other GridTor­

rent peers that are simultaneously requesting the same data. The mechanism utilizes 

the Replica Location Service (RLS) provided by the grid middleware to locate data 

sources. It extends the information stored in RLS records to include GridTorrent file 

sources, which allows any user to locate GridTorrent files. The developers also im­

plement two new grid software components to facilitate GridTorrent data transfers: 

the PeerManager, which handles all communication with other GridTorrent peers and 
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the DiskManager, which handles all disk I/O for storing and receiving files. 

The GridTorrent Framework (57) extends the BitTorrent protocol by adding a 

collaboration and content manager (CCM). The CCM allows users to publish and 

share their files with access control rights and allows users to search for available 

files. Both of these features are not present in the BitTorrent protocol. Kaplan et 

al. do provide details as to how their GridTorrent Framework interfaces with existing 

grid middleware and grid security protocols. 

In a recent journal article, Al-Kiswany et al. (16) evaluate the effectiveness of 

peer-to-peer data dissemination techniques in large scientific collaborations, such as 

CERN's LHC experiment (5) and Fermi Lab's DZero experiment (6). They find 

that many of today's grids are over-provisioned and peer-to-peer solutions that adapt 

to dynamic and under-provisioned networks do not provide significant benefits and 

create unnecessary overhead expenses. In addition, datasets in scientific grid envi­

ronments differ significantly from the data files typically transferred by peer-to-peer 

techniques, like BitTorrent. The popularity distributions for scientific data are more 

uniform than in peer-to-peer systems, which has a significant impact on the effective­

ness of P2P techniques (16). It is not uncommon for a popular BitTorrent file to be 

requested by thousands of users or more, which exploits the benefits of the BitTorrent 

technique (21). In grid environments however, it is possible for a single data set to 

have an extremely large number of individual files, which are infrequently accessed 

concurrently. While observing Fermi Lab's DZero experiment between January 2003 

and May 2005, Iamnitchi et al. (13) analyzed the data usage patterns of grid users. 

They found that 561 users processed more than 5 PB of data with 13 million file 

accesses to more than 1.3 million distinct data files. An individual file was requested 

by at most 45 different users during the entire analyzed time period. In the authors' 

evaluation, they also examine the feasibility of applying known peer-to-peer strate­

gies, such as BitTorrent, using the real usage patterns that they observed. They find 
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that while the size of the data files being transferred may warrant the use of tech­

niques like BitTorrent, the relatively small number of concurrent users of the same 

data files does not justify the overhead cost of the peer-to-peer technique. 

3.1 Parallel transmission techniques used on the Internet 

Data retrieval techniques for the Internet are well established. Even though a 

majority of Internet data requests are small, various methods have been developed 

to facilitate the transfer of large data files on the Internet. I examine one group 

of mechanisms that uses parallel data retrieval from multiple servers. These mech­

anisms directly relate to many retrieval techniques developed for grid computing 

environments, which are discussed in the previous section. 

Rodriguez and Biersack present mechanisms for parallel access to data on the 

Internet (101). They develop two different parallel-access schemes: history-based and 

dynamic. The goal for all of their schemes is to balance the load amongst all available 

servers by allocating a workload to each replica that is proportional to its service rate. 

The authors state that parallel access has additional overhead in comparison to a 

single access. The additional overhead occurs when multiple connections are opened 

and extra traffic is generated to perform block requests. In order to minimize these 

overhead costs, these techniques should only be utilized for larger files. 

Their history-based technique utilizes a database with information about previous 

rates from the different servers to the receiver in order to estimate future transfers. 

Using these estimates the algorithm assigns varying portions of the file to each replica 

with the goal that all servers will finish transferring the portions at the same time. 

The authors evaluate their history-based technique using live webservers on the 

Internet distributed across the world. Due to the presence of other Internet traffic, the 

authors found that the performance of their technique varied at different times of the 

day. They found that network conditions rapidly change and estimating the transfer 
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rate to every server using past histories results in poor estimates. Their results show 

that during peak traffic times when transfer rates vary dramatically and historical 

information is not a good indicator of future performance, their history-based parallel 

access technique has higher download times than clients accessing a single server. 

In response to the performance of their history-based technique, the authors de­

velop a dynamic technique that adjusts to changing network conditions. Their dy­

namic technique divides the desired file into a fixed number of equal sized blocks. 

The client requests one block from every replica. When a server completes a request, 

another block is assigned. When there are a small number of blocks outstanding, idle 

servers are requested to deliver blocks that have already been assigned to another 

server, but have yet to be received. There will then be multiple servers working on 

the same requests. The authors state that the bandwidth wasted on overlapping these 

requests is smaller than the worst-case scenario of waiting for the slowest server to 

deliver the last block. To further enhance the performance of their technique, they 

utilize TCP-persistent connections between the client and every server to minimize 

the overhead of opening multiple TCP connections. They also propose pipelining the 

requests to each server in order to decrease interblock idle times. With pipelining, a 

new block request is sent to a server before the previous block request is completely 

received. 

In the evaluations of their dynamic technique, the authors find that there is a 

significant speedup in comparison to a single server access. Since the dynamic tech­

nique is not relying on historical information and can adapt to changing network 

conditions, it has greater performance than requesting data from a single server even 

under peak traffic conditions. They also observe that the transfer time of a dynamic 

parallel access is very close to the optimum transfer time. Utilizing request pipelining, 

the authors demonstrate that their technique would be almost equal to the optimal 

transfer time. 
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3.2 Key Concepts of Parallel Transfer Techniques 

After examining multiple parallel transfer techniques developed for grid computing 

environments, I can extract several key ideas and concepts about efficient grid data 

retrieval. 

• Dynamic data retrieval techniques outperform static, predictive techniques. 

History-based techniques are not sensitive to dynamic and rapid changes in 

network conditions and server workloads. These types of techniques must con­

stantly monitor recent transfers in order to adapt. 

• Techniques that utilize the Network Weather Service can be beneficial under 

certain circumstances. A technique that constantly monitors the NWS forecasts 

and adapts its retrieval technique to changing conditions would be efficient. A 

downside to using the NWS is the overhead created by the probes and messages 

required to obtain the network forecasts. If a NWS service is already in place 

on the client's grid, then it can provide useful information. If a NWS service 

is not implemented on the client's grid however, then the task of implementing 

and coordinating the service is not a trivial task and beyond the scope of an 

average user. 

• Dynamic techniques that divide the desired file into smaller blocks to be re­

trieved individually can dynamically react to changing conditions. In order for 

these methods to be efficient, they must carefully consider the following items. 

- Choosing the appropriate size and number of blocks for a data file is a 

complicated task and the efficiency of the entire download is dependent on 

the choice made. A large block size could place a significant portion of the 

workload at slower servers and small block sizes result in overhead costs 

outweighing the transfer times. 
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- Users should be cognizant of their network connection's bandwidth and 

not attempt to retrieve data from more servers than their connection can 

handle. Using an excessive number of servers will not be beneficial to the 

user and will be detrimental to the servers as well. 

- Re-issuing previously assigned requests creates duplicate work for the replica 

servers, however it can prevent the user from waiting for a single, slow 

server to deliver the last portion of the file. There are several important 

factors that must be considered when re-issuing requests. 

* Implementing a delay before re-issuing a request could prevent un­

necessary additional work for servers. Choosing an appropriate delay 

value is another crucial decision. 

* Some algorithms notify replica servers when a request is completed, 

in order to minimize un-necessary work. These notifications produce 

additional overhead £tnd add to the traffic on the network and servers. 

Developers should carefully examine whether the benefit of these mes­

sages out weigh their costs. 

The data retrieval method utilized by a user can dramatically affect their per­

formance. I have examined several different types of retrieval techniques from single 

server to multiple server utilizations. In single server techniques, the user selects a 

server based on an approximation of the best server to fit their needs at the current 

moment. The user's performance is dependent on the performance of the server se­

lected. If the server's performance degrades, the user suffers. To help alleviate this 

situation and also to completely exploit a user's bandwidth, multiple server techniques 

have been proposed. These techniques utilize multiple replica servers concurrently by 

allowing a user to download portions of the data file from several servers simultane­

ously. 

37 



The proposed techniques for data retrieval in grid environments are not adequate. 

There still exists a need for further study and development. Almost all of the multiple 

server techniques examined here are evaluated from a single user's perspective. Most 

of these techniques do not address situations where multiple users in different locations 

are simultaneously utilizing their techniques, nor do they discuss the effects that 

these additional users would have on overall grid performance. The Multiple Parallel 

Downloads with Bandwidth Considerations technique (29) by Chang et al. is the 

only paper which identifies that consideration should be given to the fact that server 

performance could degrade as the number of users increases. The authors however, 

neglect to perform an intensive evaluation of their technique for large, multi-user 

situations. 

The overall performance effects of multiple server retrieval techniques are sig­

nificant. Data co-allocation increases the workload on servers and networks in the 

system, especially as the number of users utilizing these strategies increases. Instead 

of a single user issuing a request to a single server, the user could be issuing tens or 

even hundreds of requests to various servers during the course of file retrieval. This 

increased workload has a negative effect on the servers receiving the requests and the 

networks transmitting the data. The impact is even more dramatic for other users 

in the system that are not using any co-allocation techniques, since co-allocation in­

creases the workload at all of the servers, even though the number of users remains 

the same. 

The studies of these techniques are superficial and only examine experimental 

situations under low demand. They neglect to examine their techniques under high-

demand situations that would be present in real world grid environments. In addition, 

most of these studies evaluate their techniques in terms of network transfer time and 

network throughput. These performance values provide only a limited view of the 

impact of their techniques. They neglect to examine response times experienced 
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by users. Response time is an important performance value since it includes wait 

times, which are key indicators of queue lengths at resources in the grid. Without 

this information, it is difficult to ascertain the conditions of the resources in their 

experiments. In addition, they do not provide information about replica workloads 

or the number of users in the grid when their experiments were conducted. This 

information is important in order to understand and evaluate their results. 

In the following chapter, I present my preliminary work related to grid computing 

and data retrieval in distributed systems. 
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CHAPTER IV 

Preliminary work 

In this chapter, I present my preliminary work that led me to the topic of my 

dissertation. The following sections summarize my research studies, which exam­

ine data replication in grid computing (4.1), multi-user co-allocation (4.2), and the 

performance impacts of parallel data retrieval (4.3). 

4.1 Replica Traffic Manager 

My initial study in the area of grid computing involved managing users' file trans­

fer requests to replicas in the system (114). Due to the distributed nature of the grid, 

users send their requests directly to replicas. There is no control over a request once 

it leaves the user. The focus of this study was controlling workload traffic at data 

grid replicas, by managing the flow of requests to each replica. I proposed the cre­

ation of a replica traffic manager that controls workload traffic sent to the individual 

replicas in the data grid. The traffic manager receives all user requests and manages 

the traffic for all replicas by maintaining a certain number of outstanding requests 

at each replica. When a particular replica is heavily loaded, all incoming requests 

for that replica would be held in a queue at the traffic manager and/or directed to 

another replica. Once the traffic decreases at the replicas, the queued requests would 

be immediately forwarded. By limiting the traffic to each replica, the traffic man­
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ager has more control over the system than otherwise possible with individual users 

submitting requests directly to the replicas. 

Complications: In my evaluations, I observed that my replica traffic manager has 

a beneficial effect on the performance of the data grid. In my simulations, I found 

that the traffic manager provided reliable and consistent response times for users' 

requests. 

Since grids are distributed environments with replicas dispersed around the world, 

many of the sites in the grid are independently owned and managed. Due to the 

distributed nature of grids, a replica can be added or removed from the system at 

any time. In reality, implementing and managing the replica traffic manager service 

would not be trivial and might not even be possible in all grid environments. By 

centralizing the replica management service, the traffic manager could also become a 

bottleneck. 

There are two major components of a data transfer between a replica and the 

user: the storage system component and the networking component. This study 

does not address the network portion of the data transfer, which is of significant 

importance. Regardless of which replicas are used to service the users' requests, the 

task of delivering the data to the user is not simple due to the size of the data sets 

being transferred. 

4.2 Simulating multi-user parallel data transfers 

As discussed in the previous chapter, there are several recent studies that sug­

gest using parallel transfer (co-allocation) techniques can improve data transfer per­

formance in replicated grid systems. These studies demonstrate that co-allocation 

techniques can improve network bandwidth and network transfer times by concur­

rently utilizing as many data grid replicas as possible. However, these prior studies 

evaluate their techniques from a single user's perspective and overlook evaluations 
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of system wide performance when multiple users are using co-allocation techniques. 

In this section, I summarize my paper (115) that provided multi-user evaluations 

of a co-allocation technique for replicated data in a controlled grid environment. I 

found that co-allocation works well under low-load conditions when there are only 

a few users using co-allocation. However, co-allocation performs poorly for medium 

and high-load conditions since the response time for co-allocating users grows rapidly 

as the number of grid users increases. The decreased performance for co-allocating 

users can be directly attributed to the increased workload that their greedy retrieval 

technique places on the replicas in the grid. 

Overall, I found that the global use of co-allocating techniques for replicated data 

retrieval when done in a greedy or selfish manner is detrimental to user performance 

in a data grid. This study utilized a simulated environment that only contains grid 

data transfer workloads. It didn't take into account the workload of other non-grid 

users that would normally be present on the shared network connections and the 

Internet. In order to better understand the degree of impact that these types of large 

file transfers have on other users, I must conduct a study where I examine both large 

data transfers and normal Internet-user workloads. The following section details this 

study. 

4.3 Impacting users with parallel transfers 

In this section, I summarize my study that examined the impact of parallel trans­

fers on other users' workloads (120). It also evaluated the effects of placing retrieval 

restrictions on these parallel transfers. As previously discussed, the current trend of 

research on large file transfers is geared towards minimizing a user's service time by 

any means possible. The goal is to increase and maximize user throughput without 

regard for overall system performance or stability. Retrieve data as fast and hard as 

possible. 
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The users retrieving large data files from the grid/cloud are often on public net­

works, using a shared connection to the Internet. These public networks could be 

located in an academic campus or in a research institution, where there are poten­

tially hundreds to thousands of users utilizing shared network resources. When users 

retrieve large files over these shared resources, everyone is affected. As the number of 

users retrieving data increases, the impact on the performance of the entire system 

multiplies. As the load grows, eventually there will be packet loss and failures. Trans­

fer performance for all users will degrade as the demand rises. This is especially true 

when users utilize retrieval techniques that attempt to utilize as much bandwidth as 

possible. 

The impact of big data transfers on other users as well as system resources has 

not been entirely examined. In order to fully understand these impacts, I evaluated 

big data transfers in a controlled testing environment to examine the effects of these 

transfers. In my experiments, I found that system and user performance suffer as 

the number of users retrieving large files increased. All users were affected by the 

increased workload of large file retrievals. The impact on other users that were sharing 

the public resources was significant. I found that a typical user could potentially 

see a 86% degradation in transfer performance when other users were concurrently 

retrieving large files. 

Overall, I found that there is significant impact to local system performance when 

users retrieve large data files over shared, public networks. All resources in the system 

experience increased traffic and heavier workloads. The increased demand affected 

the performance of all users in the system. Normal users were unjustly penalized 

and observed decreased transfer times and longer service times. Restricting large 

file transfers allowed other users' workloads to have improved performance, however 

placing restrictions on these large transfers only prolonged their existence in shared 

system and is not an ideal solution. In order to truly understand the impact of big 

43 



data transfers, I needed to examine them on a live system with active user workloads. 

Only then could I garner insight into how to effectively support both normal user 

workloads and big data transfers. The following chapter details my evaluations of 

parallel transfers on a live, shared network. 
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CHAPTER V 

Live evaluations of parallel transfers 

In this chapter I present my study of parallel transfers on a live, actively used 

network (116). I utilize the campus network at the university to test parallel transfer 

techniques by retrieving data from servers distributed around the world. I compare 

the performance of recently proposed parallel techniques with a new dynamic tech­

nique that I developed. My technique is designed to minimize its impact on system 

resources while still providing fast download times for the user. 

Users retrieving large scientific datasets are generally using public networks on 

academic campuses or in research institutions. Even though they possibly have pri­

vate storage and computation resources, they must utilize a shared connection to the 

Internet. In a university environment, several thousand users might share this connec­

tion and a single user will be limited to only a portion of the bandwidth available to 

everyone. The conditions of the network can also vary greatly during different times 

of the day and different months of the academic year. There is no way to guarantee 

the network conditions at any given time. Due to these types of situations, parallel 

transmission techniques axe available to users. 

These advanced retrieval techniques allow a user to simultaneously use multiple 

data sources concurrently. The user is not reliant on one server connection for the 

entire transfer. A user could retrieve half of a file from one server and the remaining 
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portion from another server at the same time. The number of servers utilized in 

parallel depends on the algorithm for each technique. 

5.1 Experiments and Observations 

In my experiments I observe the process of a single user retrieving a large data 

file over a public network, using a shared Internet connection. I examine several 

different techniques that a user could potentially utilize to retrieve the data file. I 

evaluate their performance, as well as the difficulties that an average user faces when 

implementing and using these techniques. 

Average users have limited capacity for data retrieval, which is governed by their 

network connection and their Internet service provider. A user may utilize a shared 

Internet connection, such as an academic campus network. The Internet connection 

for the entire network is fast, however all of the users on the network are sharing this 

resource. In my experimental setup, the user's computer is located on an academic 

campus network and uses a shared high-speed Internet connection. 

Each end user (10,000+) shares the multiple high-speed Internet connections ser­

vicing the network. Network workload conditions vary throughout the day, as end 

users share the public resources. Figure 5.1 illustrates the variations in the user's 

transfer rate when retrieving a 1MB file from a remote server over the course of sev­

eral weeks. Since the traffic on local and wide area networks can vary, as well as server 

workloads, I repeat my experiments several times over the course of three months. I 

present the average values for all data transfers. 

I examine the performance of retrieving a 30GB data file over public networks, 

using a shared Internet connection. The data file being retrieved is replicated on 

thirty different servers located around the world. These servers are public servers not 

under my control and are concurrently servicing other users' requests. The user has 

the ability to retrieve the file from any of these servers. 
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Figure 5.1: Variations in user transfer rates when retrieving a 1MB file from a remote 
server over the course of several weeks. 

5.1.1 Normal Data Retrieval 

Normally, the user is faced with the decision of choosing a server from a listing 

of available servers to service their request. The user has no knowledge about the 

potential performance of any given server. In my experiments, I retrieve the data file 

from each server independently in order to observe the differences in service times 

that a user would experience. I begin my experiments by retrieving the desired 30GB 

data file from each one of the available 30 servers independently. I find that the data 

retrieval performance for each server varies greatly. Figure 5.2 illustrates the marked 

differences in the service times for each server. The fastest file transfer occurred in 

11.7 minutes, while the slowest file transfer took over 19 hours. The median service 

time for all servers is 75.5 minutes. 

During the transfers, the user's network utilization is monitored. I find that the 

user's retrieval capacity was not fully utilized during any of the transfers and was 

especially low for the transfers with the longest service times. This indicates that the 

bottleneck of the longest transfers lies with either the connection between the server 

and the user or with the server itself. 
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Figure 5.2: Normal Data Retrieval: Service times (minutes) for each server when 
retrieving the entire 30GB data file independently. 

When retrieving data files, the replica selected can greatly impact a user's per­

formance. The major difficulty for the average user is knowing how to select an 

appropriate replica. Choosing a lightly loaded server over a heavily loaded server 

can result in dramatically different completion times for a user. Finding the most 

efficient replica is a difficult and complicated task. As previously discussed, there are 

many studies (26; 82; 94; 95; 96; 113) that explore different mechanisms for efficient 

replica selection. All of these mechanisms require the user to implement and configure 

selection algorithms, which can beyond the skill set of an average user. 

5.1.2 Advanced Data Retrieval 

Instead of relying on a single server for the entire data transfer, a user could 

potentially use multiple servers at the same to transfer the desired data. Many 

recent studies explore advanced techniques for data retrieval known as distributed file 

retrieval (or data co-allocation), which allow a single user to simultaneously utilize 

multiple resources to service a request. Using data co-allocation, users can utilize 

many or all of the available replicas. The users would issue requests for portions of 

the data file from these replicas. The requests would then be serviced in parallel. 

The longest service time that any user would experience would be determined by the 

slowest replica to service any one of the partial data requests. 
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There are several different types of data co-allocation retrieval techniques. They 

can be grouped based on how they utilize the available replica severs. I exam­

ine the three most common groups of data co-allocation techniques: brute-force, 

performance-based, and dynamic. In the following sections, I examine the perfor­

mance differences and user difficulties that I observe for these techniques when used 

in my experimental setup. 

5.1.2.1 Brute-force Technique 

The basic, brute-force, data co-allocation technique (110) issues a request for 

equal sized portions of the file from all available replicas. Every replica that contains 

the file is utilized and each is responsible for servicing an equal amount of data. There 

is no consideration given to the performance of replica servers or network conditions. 

The workload at all servers is increased equally for each co-allocating user. 

I evaluate the brute-force technique (BFT) by dividing my file request into 30 

equal-sized portions and requesting one portion from each of the 30 replica servers. 

The requests are serviced concurrently and the data is retrieved from each server in 

parallel. Since the entire file request is not complete until all of the portions are 

retrieved, the performance of the request is dependent on the slowest file transfer. 

Similar to my normal data retrieval observations, I find that the performance of each 

of the transfers varies greatly. Figure 5.3 illustrates the differences in the service 

times for each of the individual file portion retrievals. As with normal data retrieval, 

server 7 provides the longest service time. The fastest file retrieval finishes in 2.5 

minutes and the slowest file retrieval takes 76.8 minutes. Since the data retrieval is 

not complete until all portions are retrieved, the service time for the entire data file 

transfer using BFT is 76.8 minutes. 

In comparison to my normal data retrieval experiments, the brute-force technique 

provides improvement over normal data retrieval for some of the servers. The average 
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Figure 5.3: Advanced Data Retrieval - Brute Force Technique: Service times (min­
utes) for each server when retrieving equal 1GB portions of the 30GB 
data file. 

service time for BFT is almost equal to the median service time for the single server 

technique. This indicates that the BFT provides improved performance in comparison 

to retrieving the file from a single server for 15 of the available 30 servers. Since the 

BFT technique utilizes all servers regardless of their retrieval capacity, the slower 

servers will always hinder the performance of the entire data transfer. 

There are several difficulties that an average user would face when using the brute-

force technique. Initiating and monitoring multiple transfers can be difficult. In my 

experiments, I utilized 30 concurrent transfers, which proved to be complicated to 

track. With multiple simultaneous transfers, the task of setting up and monitoring 

the individual transfers can be overly complex for the average user. 

5.1.2.2 Performance-based Technique 

Performance based techniques utilize performance metrics when selecting replicas 

to utilize. There are two main groups of performance-based techniques: history-based 

and probe-based. Both of these groups attempt to exploit faster servers by assigning 

them greater portions of the workload. Depending on the user's choice, the number 

of servers utilized in parallel can vary from two to possibly all of the available servers. 

In history-based techniques (110; 111), the retrieval algorithms address the 
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fact that each transfer between a replica and the client has varying transfer rates. 

These techniques adjust the amount of data retrieved from each replica by predicting 

the expected transfer rate for each replica. The algorithms create forecasts of future 

performance based on transfer history with network and disk load data. Historically 

faster servers are assigned to deliver larger portions of the file and slower servers are 

assigned smaller pieces. 

In probe-based techniques (36; 131), the retrieval algorithms utilize network 

status information to create network throughput predictions. Some of these tech­

niques utilize the Network Weather Service (124), which is a networking monitoring 

tool that utilizes sensors which gather data on the latency and bandwidth of end-to-

end TCP/IP performance. Using these throughput forecasts for each replica server, 

the algorithms assign portions of data request to each available replica. Replicas 

predicted to have the best performance are assigned a larger portion of the request 

workload. 

I evaluate a performance-based technique (PBT) by selecting servers using the 

round-trip time from a network ping and performance information from the transfers 

that I observed when examining the brute-force technique. I select servers with the 

lowest ping times and the shortest historical service times first. I vary the number of 

servers that are used concurrently from two to twenty. As the number of servers uti­

lized increases, I use slower servers with larger round-trip times and longer historical 

service times. I compare the overall service times that I experience for the varying 

number of concurrently utilized servers in Figure 5.4. I find that as the number of 

servers increases, the overall service time also increases. When more servers are used, 

slower servers are required to service portions of the request. The request is not 

complete until the slow servers finish their portions and thus affect the overall service 

time. When only the two servers with the best metrics were utilized, the overall time 

to retrieve the file was the least. 
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Figure 5.4: Advanced Data Retrieval - Performance-based Technique: Total service 
time (minutes) for the file transfer as the number of servers concurrently 
used increases. 

I also observe that as more file transfers are added, the user's available retrieval 

capacity diminishes. Eventually, there are more file transfers than the user's con­

nection can handle and the transfers will compete for the available retrieval capacity. 

This can negatively affect faster transfers. Figure 5.5 illustrates the effects of multiple 

parallel file retrievals on the transfer rate of the fastest connection observed. As the 

number of concurrent data retrievals increase, there is a decrease in the transfer rate 

for the fastest file transfer. There is a 77% decrease in the transfer rate when there 

are 29 other transfers competing for available retrieval capacity. 

While probe-based techniques provide improved performance over brute-force tech­

niques, they still attempt to utilize as many servers as necessary without regard for the 

user's limited retrieval capacity. In many cases these techniques create more transfers 

than the user's bandwidth can accommodate, which results in transfers competing 

for bandwidth. This situation diminishes the performance of the overall file transfer. 

Users are faced with several difficulties when utilizing performance-based retrieval 

techniques. Since these techniques are more complex than the brute-force technique, 

their implementation could prove difficult for the average user. Another issue that a 
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Figure 5.5: Transfer rates for the fastest server connection observed, as the number 
of servers concurrently used increases. 

user faces is the problem of stale performance metrics. Network conditions and server 

workloads are constantly changing, which means that these metric values can quickly 

become inaccurate. Since these data transfers could potentially take multiple hours 

to several days, users will need to continuously update their performance metrics for 

all server connections. 

5.1.2.3 Dynamic Techniques 

Dynamic techniques (24; 29; 121; 127) attempt to automatically adapt to 

changing system conditions by requesting small, equally sized, portions of a file from 

multiple replicas. In many dynamic techniques, each replica is initially assigned one 

segment. As replicas complete their assigned segments, they are assigned additional 

portions of the data file to service. Each dynamic technique uses different decision 

making algorithms on how to schedule these requests, however faster servers will end 

up transferring larger portions of the file. Any failed or undelivered requests can be 

automatically rescheduled to other replica servers, potentially created duplicate work. 

Depending on the specific dynamic technique, the desired data file could be segmented 

so that a single server could receive tens to hundreds of requests for portions of one 
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Figure 5.6: Incremental Distributed File Retrieval: Changes in service time (minutes) 
as the user's retrieval capacity approaches its maximum utilization. 

file. 

My Dynamic Technique: My technique attempts to fully utilize the user's re­

trieval capacity by dynamically and incrementally increasing the number of servers 

currently utilized until the user's maximum retrieval capacity is reached. This tech­

nique attempts to avoid situations where several transfers are fighting for available 

bandwidth. It allows requests for large amounts of sequential data from the same 

server, which enables the servers' storage systems to effectively utilize their caching 

and pre-fetching schemes. 

This dynamic technique begins by selecting one server with the smallest round-

trip time using a network ping. After the transfer has started, the user's available 

bandwidth is monitored. The technique then incrementally creates additional data 

transfers to other servers, as necessary until the user's retrieval capacity is fully uti­

lized. Figure 5.6 illustrates the decrease in service time for the incremental technique 

as I approach full utilization of the user's retrieval capacity. The service time for 

this technique was 9.2 minutes, which was less than the fastest time observed using 

normal data retrieval. 

In comparison to the other techniques, my dynamic technique produces the small-
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Figure 5.7: Comparison of service times (minutes) for all data retrieval techniques 

est service time for retrieving the 30GB data file. Figure 5.7 shows the difference in 

service times for all of the techniques that I observe. In addition to providing the 

smallest service time the user, the dynamic technique attempts to involve the smallest 

number of replica servers and attempts to fully utilize the user's retrieval capacity. 

The user difficulties associated with dynamic techniques are numerous. Many of 

these techniques are quite complicated and their algorithms are complex. Implement­

ing them for automated use would require significant time for even an experienced 

programmer. The average user would find this task to be insurmountable. In addi­

tion, there are many aspects of these algorithms that are left for the user to decide 

and control. I detail some of these issues and challenges in the next section. 

In summary, I find that advanced file retrieval provides improved performance in 

comparison to normal data retrieval. There are several advanced techniques available 

for the user to utilize. Choosing an appropriate and viable technique however is a 

difficult task. Implement, configuring and utilizing these techniques can be a challenge 

for even for the experienced user. 

5.2 Issues and Challenges 

Retrieving large data files (GB, TB, PB) is a complicated and time-consuming 

process. These long duration transfers could take tens of hours to several days and 

observed 
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a normal "one click and wait" method will not suffice. During the course of the 

transfer, servers may go off-line and network conditions may change that either hinder 

or stop the transfer completely. The user needs to know how to maintain the data 

transmission until completion. 

Advanced retrieval techniques allow users to utilize multiple resources simultane­

ously. These advanced techniques provide improved performance for users, however 

they are quite complicated to implement and use. They require significant user in­

volvement and require multiple user decisions that can dramatically affect the per­

formance of the transfer. A user needs know-how in order to make these techniques 

function properly and efficiently. 

Another configuration option that is frequently left for the user to determine 

is segment size. In some advanced techniques, the data file is divided into small 

portions called segments. The segment size is often left for the user to decide and the 

size chosen can affect the performance of the transfer. Determining the appropriate 

segment size is not a simple task. If the size is too small, a server may receive hundreds 

to thousands of requests for portions of a single file. This will result in longer disk 

service times at a server, as the number of users increases. A server's storage system 

can best service requests if it has greater knowledge of a user's workload. It can better 

schedule reading from the hard disks, as well as take advantage of pre-fetching and 

caching strategies. 

A key issue that is not adequately addressed for retrieval techniques is failures. 

Since I am transferring extremely large data files over long periods of time, I will 

eventually encounter transfer failures. Many advanced techniques identify that fail­

ures can occur and provide mechanisms for issuing new requests, however specific 

details about the timings of these actions are not addressed and are left for the user 

to decide. The request re-issue delay is a common problem with these techniques. 

Determining the appropriate amount of time that the application should wait before 
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issuing a replacement request is a non-trivial task. 

The most important outcome of this study is not the fact that my 

dynamic parallel transfer technique outperformed existing techniques, but 

the degree of impact that I had on the campus network and other users 

in the system. I address and discuss this impact in the following section. 

5.3 Impacting other users 

During my live experiments, I was contacted by the department network support 

team, as well as the university's telecommunication department. My experiments 

impacted the service of the subnet as well as the general Internet connections dur­

ing peak usage times. During low usage intervals, other users' workloads were only 

minimally impacted due to the limited number of active users on the subnet. Dur­

ing high demand periods however, my experiments increased the load of the subnet 

link to near full capacity, which resulted in service problems for other users. The 

support teams received complaints from users that were experiencing problems with 

their network applications. 

Working with university support teams and utilizing bandwidth-monitoring de­

vices, I was able to obtain bandwidth utilization graphs for all of the shared Internet 

(WAN) connections for the campus. Figures 5.8a, 5.8b, and 5.8c show the bandwidth 

utilization for the Internet connections before, during and after my experiments. Be­

fore I began my evaluations, the university was on a mid-semester break. During 

this time, there was very little network load. Only automated and system traffic is 

present in the system at this time. Once users returned to campus, I initiated my 

experiments, so that my workload would be intermixed with normal everyday traffic. 

Since my experimental traffic is mixed with all other users, I am unable to precisely 

isolate my traffic in the graphs. Figure 5.8a illustrates the bandwidth utilization for 

the Internet2 traffic. Since most student and staff traffic very rarely use the Internet2 
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(A) • Bandwidth Usage - Internet2 WAN Connection 

(B) • Bandwidth Usage - All WAN Connections 

(C) • Bandwidth Usage • Multi-month View • All WAN Connections 

Figure 5.8: Bandwidth usage on wide area network connections before, during and 
after my evaluations. The shaded regions indicate the time period during 
my experiments, (a) - This graph shows bandwidth usage of the Internet2 
connection for a two-week period, (b) - This graph shows total bandwidth 
usage of all WAN connections for a two-week period, (c) - This graph 
shows total bandwidth usage of all WAN connections for a four-month 
period. 
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link, it is easier to discern my experimental workload in the graph. Multiple sources 

in my experiments are located at universities on the Internet2 network and therefore 

my workload has a dramatic impact on the bandwidth utilization of the Internet2 

link. As the graph indicates, the normal usage before and after my experiments is 

quite low in comparison. There is a significant increase in traffic on this link during 

my experiments. 

The impact of my experiments on all WAN connections is slightly harder to see 

when it is intermixed with all other users' traffic. Figure 5.8b illustrates the total 

bandwidth utilization for all of the campus WAN connections. During my experi­

ments, the total utilization reached its highest peaks during the two week time span. 

When the time range for this graph is increased to four months, as shown in Fig­

ure 5.8c, it is easier to notice the impact of my experiments. The bandwidth utiliza­

tion again reached its highest peak during my experiments, as well as maintained a 

higher utilization for the entire experimental period. From all three of these graphs, 

it is clear that large file transfer workloads can impact the performance of the entire 

campus network, especially during high demand periods. It was during high demand 

periods when I impacted other users the most. 

At the start of this study, my focus was on creating an efficient parallel transfer 

technique. At the end of the study, I realized that no matter the speed or efficiency 

of your transfer technique, it will only perform as well as the network/system you 

are on. Impacting other users with big data transfers is not responsible and could 

potentially cause you to have your Internet access restricted or even revoked. 

In order to develop a new approach to big data transmissions, I needed to fully 

examine the campus network and its workloads. The following chapter details the 

findings of my campus network study. 
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CHAPTER VI 

Examining the campus network and its user 

workloads 

In order to understand how big data transmissions affect users on a shared net­

work, I need to first analyze the architecture of these networks and their user work­

loads. In this chapter, I present my study of the UNH campus network (119). I 

first examine and detail the structure and setup of the network. I then analyze the 

network traffic to identify patterns in network usage and categorize the workloads of 

the campus users. 

Campus networks are a microcosm of the Internet. The university campus is the 

workplace for researchers, faculty, staff, and students. Unlike commercial networks, 

the campus is also a home for the majority of the student body. The campus net­

work must therefore support both academic and non-academic workloads in order to 

keep all users on campus content. The system must support a wide variety of appli­

cation classes, such as: email, web browsing, streaming multimedia, gaming, video 

conferencing, voice over IP, cloud/grid workloads and file transfers. Each of these 

application classes has its own demands and requirements for bandwidth. In this 

chapter, I characterize bandwidth utilization rates, users' access patterns and data 

consumption amounts for these application classes on the UNH campus network. 

Over the past few years there has been a major shift in Internet applications 
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used on campus networks. Users have progressed from low-bandwidth, best-effort 

applications to real-time and bandwidth intensive applications. One such application 

is streaming multimedia, which is capable of consuming extraordinary amounts of 

bandwidth (28; 22; 42; 53; 132; 51). Each year the bandwidth utilization rates are 

increasing for these types of applications. Since these applications can dynamically 

adjust their output quality based on bandwidth availability, they have unbounded de­

mand for Internet resources. Users continually want better quality and high-definition 

viewing, which places extreme strain on system resources, especially on campus net­

works. A workload characterization is needed to determine the degree of impact 

these types of applications have on the campus network and how users are using 

these applications. 

I realize that this network data represents only one possible network configuration 

used by academic institutions. Obtaining the following detailed data about bandwidth 

usage and user workloads required several rounds of authorization and working with 

network administrators to access live, mission critical hardware devices. Attempting 

to obtain similar in-depth data from other institutions and corporations proved im­

possible due to security concerns and confidentiality issues. I realize that some of the 

specifics from my analysis might only relate to the UNH network, but the trends that 

I observe are definitely present at universities throughout the country (78; 87; 102). 

The rest of this chapter is organized as follows: first, I explain the configuration 

of the campus network in Section 6.1. I identify bandwidth usage information in 

Section 6.2. I then present the workload characterization for the Internet applications 

used on campus in Section 6.3. In Section 6.4, I examine system performance when 

users are given additional Internet bandwidth. Finally, I summarize my findings in 

Section 6.5. 

61 



Metropolitan 
Data Center 

(WAN) 

^Akama^ 

Regional 
Academic 
Network 

University 
UN 

' WAN ' (at J KouUh 10Gb (at J 

CS Dept. 

Physics Dept Campus 

English Dept 

Library 

Student Union 

wms 
WiFl Users 

Student Dorm 

lCb 

Figure 6.1: Network layout for the university network and its connection to the shared 
data center in a nearby metropolitan axea. 

6.1 Campus network configuration 

In this section, I describe the general setup and configuration of the UNH campus 

network. This network, illustrated in Figure 6.1, is designed to support over 10,000 

students with an average of 6000 concurrent connections. Users consist of students, 

faculty and staff. These users connect to the network through Ethernet or WiFi 

connections and are distributed across multiple subnets around campus that are con­

nected to the campus core via 1 Gbps links. The core of the campus network consists 

of 10 Gbps connections. 

At the edge of the campus network, all traffic destined for external locations passes 

through a bandwidth management device. This device monitors the workload for each 

IP address and controls the bandwidth usage for each user. After the traffic passes 

through the bandwidth manager, it continues through a private 10Gb fiber connec­

tion to a nearby metropolitan area, as shown in Figure 6.1. When it reaches the city, 

the traffic arrives at a shared data center, which contains access points to major tele­

com networks, regional universities and major corporations' services (such as Google, 

Akamai, Level3, etc.). The outgoing data are then routed to three different wide area 
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network connections. Two of these connections are to the public Internet and one of 

these connections is to Internet2, a non-profit network designed to support research 

and educational institutions (3). Traffic destined for the Internet is load balanced 

between the two general Internet WAN connections, which have a total bandwidth 

capacity of 1.5 Gb/s. The Internet2 connection has a variable bandwidth capacity, 

which allows on average 500 Mb/s. This results in a total bandwidth capacity of 

2.0 Gb/s for the entire university network. 

Incoming data destined for a user on the university's LAN comes into the three 

shared Internet connections. This data could be streaming multimedia from a nearby 

CDN server or a webserver at a regional university. All of this data crosses the 

LAN/WAN border and then passes through the private link to campus. All incoming 

data continues through the bandwidth manager before being routed to the correct 

subnet and finally to the end user. 

Since the university supports over 10,000 users, the campus network has to ensure 

that each user has equal and fair access to the shared Internet connections. In order 

to accomplish this task, the university employs a bandwidth management device that 

is located at the edge or border of the LAN network. Each user device is limited to 

8 Mb/s. As demand for bandwidth increases, the per device bandwidth allowance 

will be further restricted. The bandwidth manager is imperative in making sure that 

everyone has fair and equal access to the shared Internet connections. It however does 

not ensure that users will have sufficient bandwidth and capabilities to utilize their 

desired applications. Under high load conditions, a user might only receive a small 

fraction of available bandwidth. This amount might suffice for web browsing and 

email messaging, however streaming media and applications requiring low latency or 

quick response times will suffer. 

In the following sections, I characterize the Internet workload for the campus 

network. I examine the total amount of traffic flowing into and out of the shared 
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Internet connections. I also examine the applications that are transferring the largest 

amounts of data over the campus network. In order to gain access to this information, 

I utilize network monitoring devices that are placed throughout the network. I gather 

live data from the network and perform off-line data analysis of all traffic flows. I 

also use the bandwidth manager to gather data regarding users' workloads. 

6.2 Bandwidth usage 

I begin my characterization of campus Internet workloads by examining the to­

tal bandwidth usage of the shared Internet connections for the campus network. I 

monitor and examine bandwidth consumption on the campus network for an entire 

academic year. Figure 6.2 illustrates the variations in the daily maximum bandwidth 

consumption for this 12 month period. I find that there is very high demand during 

academic semesters and reduced demand during breaks. Since students are the main 

consumers of bandwidth on campus, changes in consumption correlate to their leav­

ing and returning to campus. There is however a constant level of usage throughout 

the year regardless of the month, as the university hosts multiple government run 

projects that continually transfer data. Internal services that connect to satellite and 

regional campus networks also conduct data transfers on regular schedules. 

Figure 6.2 demonstrates that several times during the Fall 2010 and Spring 2011 

se- mesters the maximum bandwidth usage rates reached the bandwidth limits of the 

shared Internet connections for the entire campus network. Multiple times throughout 

the semester users consumed their entire bandwidth allotments and were forced to 

utilize less than their maximum rate of 8 Mbps. 

Bandwidth demand changes throughout the year, as illustrated by the peaks and 

valleys on the graph. In order to understand of these shifts in demand, I examine the 

bandwidth usage from a weekly perspective. Figure 6.3 shows the maximum, average 

and minimum bandwidth usage for a typical week during the Spring 2011 semester. I 
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Figure 6.2: Changes in maximum bandwidth consumption over 12 months for all data 
passing through all of the university's shared Internet connections. Each 
semester user demand and bandwidth consumption increases. 

find that network usage is the highest between Sunday evening and Friday afternoon. 

This correlates with classes starting and ending for a given a week. Between Friday 

night and Sunday afternoon, the network utilization is generally at its lowest. Even 

the maximum bandwidth rates during this period are much lower than during the 

rest of the week. I attribute this occurrence to the fact that many students and staff 

leave campus or reduce their network usage on the weekends. 

As I observe that the network utilization changes from day to day, I also find 

that it changes from hour to hour. In Figure 6.4, I examine the maximum, average 

and minimum bandwidth usage for each hour in a typical weekday during the Spring 

2011 semester. I find that peak usage occurs between noon and midnight. There is a 

slight dip around dinnertime and then usage increases until 1AM when demand starts 

to drop off. The lowest usage point occurs between 4 and 7 AM and then demand 

increases as faculty return to campus and students prepare for the start of classes. 

Throughout the 24-hour period, there is always some amount of bandwidth utilized 

as indicated by the minimum values on the graph. I observe very large differences 

between the minimum and maximum values, which indicates that users' workloads 
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Figure 6.3: Changes in the minimum, average and maximum bandwidth usage (all 
receiving and transmitting traffic) for a typical week during the Spring 
2011 semester. 

are dynamically adapting to changing bandwidth availability. 

Overall, I find that a significant amount of data is transferred between the campus 

network and the Internet daily. On an average day during an academic semester, 

about 7 TB of data is transferred through the shared Internet connections. 2.5 TB of 

outgoing data is sent to the Internet and 5.5 TB of data is transferred into the campus 

network. Figure 6.5 demonstrates the total amount of data transferred each day using 

the campus network's shared Internet connections. The maximum amount of data 

ever transferred in a single day is roughly 10 TB. As in Figure 6.2,1 also observe usage 

patterns that correlate to the academic calendar. More data is transferred during the 

Fall and Spring semesters than any other time. As previously discussed, there is a 

constant workload for the shared Internet connections and they are never completely 

idle. The minimum amount of data transferred on any day in the year is 870 GB, 

which occurred on Christmas day. 

Bandwidth Summary: Overall, I find that largest amount of data transferred 

• MIN 
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Figure 6.4: Changes in the minimum, average and maximum bandwidth usage (all 
receiving and transmitting traffic) for a typical day during the Spring 
2011 semester. 

between the campus network and the Internet occurs during academic semester in 

the Fall and Spring. There is a continual amount of traffic regardless to the time of 

year, which is created by special projects and internal services on campus. The peak 

usage time for the campus network is between noon and midnight from Sunday to 

Friday. I see decreased usage during the early morning hours (4AM to 10AM) and 

on the weekends. On a typical day the campus network is transferring roughly 7 TB 

of data to and from the Internet. 

6.3 Internet application workloads 

In the previous section, I characterized the amount of data being transferred to and 

from the Internet on the campus network. The next component of my characterization 

is to identify the applications that are transferring these large amounts of data. 

Working with network management devices on campus, I was able to obtain usage 
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Total Amount of Data Transferred through shared Internet connections each day for 1 Year 
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Figure 6.5: Total amount of data transferred by the campus network each day. 

profiles for users on campus. I monitored user traffic for a period of 35 days during 

the Spring 2011 semester. I examined the traffic workload to identify the top applica­

tions consuming Internet bandwidth during this time period. Figure 6.6A illustrates 

the applications that consume the most amount of bandwidth on a typical day for 

all users. I found that the applications utilizing the largest amount of Internet band­

width are streaming multimedia applications, such as Netflix, HTTP Streaming and 

YouTube. On a typical day, these three application classes consume more than triple 

the bandwidth of general web browsing. This is the case on many campus networks, 

as well as the entire Internet (78; 87; 102). Netflix currently consumes the most 

amount of bandwidth for the entire Internet (130; 107). I also found that Skype and 

file transfers register in the top ten application classes. Popular applications such as 

Facebook and iTunes rank in the top 15 user applications. 

I continued my workload characterization by examining application usage by user 

type. I began by comparing the usage patterns for students and faculty staff. In 

Figure 6.6B, I identified the top bandwidth consuming applications for faculty and 

staff users. I found that their workload is dominated by web browsing and file trans­

fers. The applications with the next highest levels of bandwidth consumption are 
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Figure 6.6: Most active protocols utilized on an average day. Protocol usage by types 
of users are shown: A) all users, B) faculty/staff users, C) student users 
during the daytime and D) student users during the nighttime. 

streaming video and YouTube. Netflix is very low on the list of applications for the 

staff users. The bandwidth used by web browsing for the faculty is double that of 

any streaming application for their user group, very unlike the student users. 

Figures 6.6C and 6.6D illustrate the top applications for the student users on 

campus. I separated the applications by daytime and nighttime usage. During the 

day, the applications utilized by the students are mainly streaming multimedia (Net-

Flix, YouTube, HTTP Streaming). At nighttime, the same streaming applications 

are still high in the list of applications consuming the most Internet bandwidth, how­

ever the bandwidth usage for these applications increases in the evening time. The 

major difference between daytime and nighttime periods is that Skype utilization in­

creased dramatically. Skype is the top application for bandwidth consumption during 

nighttime hours. 
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My user workload characterization also examined the changes in application usage 

based on the time of day. I have already compared student usage during the day to 

nighttime. I continued my characterization by looking at all users for specific hourly 

periods over the course of 24 hours. Figure 6.7 illustrates the changes in bandwidth 

utilization of the top application classes over the course of a typical day. The top 

bandwidth consuming application, Netflix, is used to the greatest extent between 6PM 

and midnight. Netflix utilization is double during this time period in comparison to 

other parts of the day. Skype also has a significant increase in utilization during 

the evening time. Skype bandwidth consumption increased by 300% at night. Web 

browsing, YouTube viewing and HTTP streaming applications have the highest usage 

levels between noon and midnight. All applications see decreased usage between 6AM 

and noon. Skype and Netflix have the most noticeable decreases when compared 

to their peak periods. Web browsing is the only application to have usage levels 

during the 6AM to noon period that are comparable to normal daytime rates. The 

SSH application class has a fairly consistent level of usage regardless of the time of 

day. Many internal services (data backups and replicated data sets) utilize SSH for 

automatic file transfers throughout the day. The average daytime (6AM-6PM) rate 

is almost equal to the average nighttime rate (6PM-6AM) for the SSH application 

class. 

In addition to characterizing the bandwidth usage rates for the application classes 

that make up the Internet workload on campus, I also identified the total amount of 

data being utilized by each application class. In Figure 6.8,1 display the applications 

that received and transmitted the greatest amount of data between October 2010 and 

May 2011. Since this time period includes Winter break, the data essentially display 

usage information for six months. I identified the top five applications for both sending 

and receiving. I found that users utilizing the Netflix application were able to receive 

over 25,000 GB of data during the six month period. Both HTTP streaming and 
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Figure 6.7: Changes in protocol usage for the most actively used protocols on campus 
throughout a typical day. 

YouTube received over 44,000 GB combined. Web browsing and HTTP file transfers 

each consumed roughly 15,000 GB of data individually. 

I also examined the applications sending the most amount of data from campus 

to the Internet. The amount of data leaving the campus network for the Internet is 

considerably lower than the amount of data being received. Skype sent the largest 

amount of data during the six month time period, almost 10,000 GB. Both the send­

ing and receiving amounts for Skype were almost identical. The next two applications 

that sent the largest quantities of data out of the UNH network were secure commu­

nications (IPSEC-ESP and SSH). Each of these application classes transferred over 

7000 GB of data out of the campus network. File transfers and web browsing also 

sent about 6000 GB. Web browsing had a bandwidth usage ratio of 2:1. The amount 

of data being received by web browsing users was double that of the data being sent 

by the same users. A full table of the data amounts by application is displayed in 

Figure 6.9. 

Application Summary: Overall, I found that the real-time, bandwidth-intensive 

applications dominate the Internet workload on campus. Users are utilizing inter­

active applications that are sensitive to changes in latency and network congestion. 
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Figure 6.8: Total amount of data transferred by each application class between Oc­
tober 2010 and May 2011 for all users on campus. 

Netflix consumes the maximum bandwidth and receives the largest amount of data in 

comparison to all other applications on campus. Skype transmits the largest amount 

of data to the Internet. Web browsing and SSH communications have fairly stable 

usage patterns in comparison to other applications. 

6.4 Increasing bandwidth 

In the previous two sections, I characterized bandwidth consumption and user 

workloads. I continued my characterization by examining changes in user workloads 

when bandwidth is increased for users on campus. It is common to think that giving 

users additional bandwidth will solve any performance problems on campus networks, 

however I found that any extra bandwidth is quickly consumed. I discovered this 

situation in multiple instances. 

During the nighttime hours, students are given a portion of the faculty's band-
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Protocol 
Total Bandwidth % Total In Bandwidth Out Bandwidth 

Protocol 
(GB) Bandwidth (GB) (GB) 

NetFlix 26221.97 5.7 25640.919 581.052 

HTTP_Streaming 24088.721 5.2 23172.675 916.045 

YouTube 22511.961 4.9 21757.611 754.35 

HTTP_Browsing 21971.461 4.8 16035.051 5936.41 

HTTP File Transfer 21036.135 4.6 14472.353 6563.782 

HTTP DownloadManager 13678.501 3 13108.437 570.064 

Skype 19041.435 4.1 9052.676 9988.759 

Flash Media 8758.3 1.9 8524.36 233.94 

HTTP 9052.033 2 7681.611 1370.422 

SSH 12884.821 2.8 5753.53 7131.291 

iPlayer 4914.076 1.1 4642.528 271.548 

iTunes 4890.349 1.1 4579.231 311.118 

Facebook 4502.95 1 3866.792 636.158 

SSL 7287.619 1.6 3552.22 3735.399 

FTP-DATA 4662.748 1 3434.913 1227.834 

PPStream 7643.39 1.7 2947.715 4695.676 

Steam 2604.319 0.6 2541.917 62.402 

RTMP 2640.165 0.6 2375.654 264.51 

Other P2P 4473.183 1 2303.007 2170.176 

YouTube-HD 1793.975 0.4 1754.968 39.007 

BITS 1679.611 0.4 1640.144 39.466 

MegaUpload 1439.513 0.3 1298.464 141.05 

HTTPS 1170.22 0.3 990.882 179.338 

BitTorrent Enc 2299.763 0.5 990.672 1309.091 

Microsoft Live 1758.971 0.4 979.049 779.923 

STUN 1801.377 0.4 865.712 935.665 

IPSEC-ESP 8019.213 1.7 836.415 7182.799 

HTTP Audio 968.473 0.2 834.739 133.734 

BitTorrent 977.689 0.2 496.192 481.497 

SMB 3814.965 0.8 170.655 3644.309 

All Others 211854.784 45.7 176674.118 35180.667 

TOTAL 460442.691 100 362975.21 97467.482 

Figure 6.9: This table lists the total amount of data transferred by application class 
between October 2010 and May 2011 for all users on campus. 
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Figure 6.10: Changes in bandwidth usage for top applications when the students' 
bandwidth is increased. 

width since there is decreased demand from the faculty/staff users during this time. 

When comparing the scale of bandwidth usage between Figure 6.6C and Figure 6.6D, 

I observed a significant increase in average bandwidth usage for each of the applica­

tion classes. NetFlix uses an average of 3.5 Mbps during the daytime hours and 7.5 

Mbps during the nighttime hours for a typical day. I found a similar increase for all 

other applications. 

Figure 6.10 illustrates another example of increased bandwidth being quickly con­

sumed by users. In this graph, I compare the average bandwidth usage of the most 

popular applications when the students' bandwidth is temporarily increased. As the 

graph shows, there is a significant increase in the bandwidth utilization for all appli­

cations when more bandwidth is given to students. Streaming multimedia increases 

by more than 200% for all users. Skype usage triples and Netflix quadruples in usage. 

I also found that each semester overall user demand and bandwidth consumption 

increases. In Figure 6.2, I observed a significant difference is bandwidth utilization 

from the Spring 2010 semester to the Fall 2010 semester. The median receive rate 

increased by 41% and the median transmit rate increased by 132%. During the sum­

mer, network configurations were modified and users were given increased bandwidth 
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allotments. It is clear that this increased bandwidth was quickly consumed and uti­

lized by the users at the start of the next semester. Several times during the Fall 2010 

semester, campus data rates reached the maximum bandwidth available for all WAN 

connections. Comparing the Fall 2010 usage to the current Spring 2011 semester 

usage to date, I found that the median usage rates have already increased by 8% for 

receive and 9% for transmit. Even with user allotments remaining constant, there 

is increased demand for resources from users. In the past few years, there has been 

an explosion of devices registered on the network. This is especially true for WiFi 

connected devices. It is not uncommon for users to have multiple computers and 

devices concurrently connected and transferring data such laptops, mobile phones, 

iPods and iPads. During class, a professor and students could all be using computers 

to view online videos or demonstrations while concurrently utilizing mobile devices 

for messaging and personal multimedia. 

In February 2011, Dartmouth College temporarily increased available bandwidth 

in order to improve their users' Internet experience(78). The college was experiencing 

increased demand for network resources, which resulted in poor performance for users 

throughout campus. The network administrators doubled the bandwidth for the 

college from 200 Mb/s to 400 MB/s for a two week trial period. The newly available 

bandwidth was quickly consumed by users and there were still performance problems. 

One class attempted to watch a 15 minute streaming video from a remote server and 

the entire video took over 45 minutes to watch, even with the increased bandwidth 

connection. Higher capacity connections are expected to be added over the course of 

the next two years, however demand is also expected to increase just as quickly. 

Another example of increasing bandwidth to deal with high demand issues can be 

found at Ohio University (102). On their academic network, users were experiencing 

high levels of congestion, so much so that administrators actually fully restricted 

portions of their network during finals week. They identified that students utilize 

75 



over 70% of the campus bandwidth and Netflix was the "largest single consumer of 

Internet capacity". The top three bandwidth consuming categories on their networks 

are: streaming media (60%), web browsing (25%) and file sharing (7%). In order 

to deal with high demand, the university implemented per user bandwidth limits 

and increased the total bandwidth capacity for the entire network by 10%. Even 

with these measures in place, administrators have noted that demand continues to 

exceed available capacity and they are repeatedly utilizing the maximum available 

bandwidth. University officials agree that there needs to be work done to "address 

the challenge of rising demand for Internet capacity" (87). 

Increasing bandwidth summary: When bandwidth rates are increased for 

users, I found that any newly available bandwidth is quickly and easily consumed. 

Applications like Netflix dynamically adapt to changing bandwidth conditions. When 

more bandwidth is made available, the applications attempt to transfer larger amounts 

of data for higher quality output. Netflix will shift from standard to high-definition 

viewing if the appropriate amount of bandwidth is available. A standard defini­

tion movie requires about 1 GB of data for an hour of video (2.3 Mbps), where 

as an HD movie requires almost 2.5 GB of data in an hour (5.7 Mbps) (48; 52). 

Other applications will also increase their transfer rates when given additional band­

width (93; 106; 34; 104; 67; 103; 14). 

6.5 Summary 

The UNH campus network supports over 10,000 users and allows each user's device 

to utilize up to 8 Mbps. During peak periods, the bandwidth limit per device decreases 

automatically based on demand. The entire campus network currently shares multiple 

connections to both the Internet and Internet2. Given this configuration, I examined 

the bandwidth and application usage for all users. The following points represent the 
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main findings of my workload characterization. 

• Internet demand varies throughout the academic year, however each semester 

more and more bandwidth is consumed by users as demand grows. 

• User demand and bandwidth usage is greatest between Sunday evening and 

Friday afternoon. On average, bandwidth usage reaches a high-load condition 

between noon and midnight each day. 

• On a typical academic day, the campus network transfers 7 TB of data. The 

network has frequently transferred up to 10 TB during peak periods. The 

minimum amount of data transferred on a given day is 0.8 TB. 

• The applications consuming the most bandwidth on an average day are stream­

ing multimedia (Netflix, YouTube), web browsing and Skype. 

• The top applications for student users are Netflix, streaming web videos and 

Skype. Faculty and staff users' workloads are dominated by web browsing and 

file transfers. 

• During the daytime hours (6AM-6PM), Internet traffic is mostly web browsing, 

file transfers, SSH and streaming multimedia. At nighttime, Skype, Netflix, 

YouTube and other streaming multimedia take over as the applications de­

manding the most bandwidth. 

• During a six month period, the top applications transferred tens of thousands of 

gigabytes of data. Netflix (25,000 GB), HTTP streaming (23,000 GB), YouTube 

(21,000 GB) and web browsing (16,000 GB) had the largest amounts of received 

data. Skype sends the most amount of data on a given day (10,000 GB) and 

receives roughly the same amount of data. 
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• When bandwidth is increased, users quickly utilize any new capacity made 

available to them and the data transfer rates for the top bandwidth consuming 

applications greatly increase. 

At the time of this study, users were restricted to a combined bandwidth limit of 

1.2 Gbps. Each year additional bandwidth is acquired by the university and the 

users' limits are increased. If the students' usage patterns remain the same and their 

bandwidth partition is increased to 2 Gbps, the campus network is estimated to 

transfer over 12 TB of data daily. Given that applications like Netflix dynamically 

adjust to available bandwidth and attempt to utilize as much as possible to achieve 

high definition viewing, I expect that the daily data consumption amount will be even 

higher. 

Given the results of this study, I must next ascertain whether or not the campus 

network can accommodate big data transfers. With a better understanding of the 

campus network and its workload, I need to determine if it is feasible for the system 

to support big data transfers for all users on campus. The following chapter presents 

my feasibility study. 

78 



CHAPTER VII 

Feasibility of big data transfers on the campus 

network 

In the previous chapter I identified the architecture and workloads of the campus 

network. I found that the network is heavily utilized by thousands of users and its 

workload is dominated by congestion sensitive applications. Given the results of the 

campus network study, I must determine whether or not it is feasible for the network 

to support multiple users transferring big data. This chapter details the finds from 

my study (117). 

Currently, only a small percentage of academic users, mainly researchers in disci­

plines like physics and biochemistry, need access to large data sets stored elsewhere. 

Since electronic transmission of large data sets is difficult, these researchers often 

transfer their data via hard disks transported by snail mail (1). In rare cases, fast 

links can be manually and temporarily set up between two locations for transfers 

of large data sets by working with network administrators. As large scientific and 

commercial data sets become available in a growing number of disciplines, a greater 

number of academic users will require access to these data files. Since these data 

sets are often multiple petabytes in size, researchers will often require subsets of the 

data with file sizes in the range of hundreds of gigabytes to several terabytes. Users 

routinely require and prefer local access to these files for processing and other tasks. 
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Even the output of remote computations in both grid and cloud environments can 

be in the same magnitude of file size. The movement of large private files between 

the cloud/grid and its clients is a commonplace occurrence. Therefore, in addition 

to specific research groups, individual users on campuses will require access to large 

files. Current trends in computing and the increasing sizes of files predicate the need 

for efficient techniques to transfer large files to and from campuses. 

Big data transfers impose a much higher bandwidth burden than any other ap­

plication. Users want to be able to retrieve/transmit large files quickly with a click 

of a mouse, without having to worry about errors and retransmissions. In order to 

move files quickly, the campus user must have fast links. For example, to transmit 

a 1 terabyte file over a 1 Gb link would take at least 2.3 hours, and over a 5 Mb 

link would take at least 19.4 days. However, increasing the bandwidth for large file 

transfer users would limit the available bandwidth for other users. Satisfying the per­

formance requirements of large file transfers is important, but it should not inhibit 

the performance of other applications. 

There is considerable research interest in techniques for large file transmission (18; 

17; 49; 69; 86). The majority of existing research focuses on new network hardware 

and new network protocols for large file transfers (56; 61; 68; 77; 99). Purchasing new 

hardware for a particular application may not be cost effective. Before investing in 

new hardware for large file transfers, it is prudent to investigate whether the existing 

campus computer and network infrastructure can be parlayed to support large file 

transfers. An efficient solution must not only ensure that the performance require­

ments of users transmitting large files are satisfied but also that the addition of large 

file transfers does not impede other users and applications. The problem of adding 

a high-load application such as large file transfers to a shared network environment 

is not just a network issue. It is a systems issue and requires an understanding of 

the milieu in which these transfers occur. The users transmitting large files share the 
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campus network with myriad users running a variety of applications with different 

performance requirements. In order to satisfy the performance requirements of all 

network users/applications, it is necessary to understand the issues and challenges of 

incorporating large file transfers into the existing campus design. 

7.1 Campus Network 

In order to accommodate large file transfers, system resources need to be able to 

handle the increased burden created by these workloads. After examining the infras­

tructure and configuration of our campus network, which has a similar structure to 

other campus networks, we find that it is capable of supporting large file movements 

without significant modifications to the infrastructure. The core of the campus net­

work and the link to the WAN connections is 10 Gb, which would theoretically allow 

the transfer of a terabyte file in under 15 minutes. The links to the end user on 

campus could support a maximum of 1 Gb/s, which provides a theoretical time of 2.3 

hours. If all of the connections in the data path are able to support these rates, then 

the storage systems will be the limiting factor of the transfer rate. The bandwidth 

controller that manages the interface between the LAN and WAN has a bird's eye 

view of all traffic passing through the border. Since it has complete knowledge of the 

workload present in the system, it could be utilized to schedule big data transfers and 

to allow these tasks increased bandwidth in order to complete quickly. 

7.2 Traffic on the Campus Network 

I find that users' bandwidth demands are unbounded and users will utilize any 

bandwidth that is provided to them, especially during peak periods. The composition 

of user traffic is dominated by real-time applications, such as streaming multimedia, 

web browsing and VoIP, which are highly sensitive to changes in network latency and 
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congestion. I also find that there are varying levels of demand during different times 

of the day and on different days of the week. High demand is present during the 

week when students are actively connected to network, specifically between noon and 

midnight. When the campus network is under high load, big data transfers should 

not be placed in the system, as they will negatively impact other applications and 

will take longer than necessary. Between midnight and noon and on the weekends, 

the number of connected users is significantly lower and so is bandwidth demand. It 

is during these low usage periods that big data transfers should take place. 

7.3 Impact of Big Data Transmissions 

Prom my experiments in the previous chapter, I find that it is possible to retrieve 

large data files over the campus network. I identify that these workloads impact sys­

tem performance and cause congestion during peak periods. There is no benefit to 

any user by running these transfers during high load times. Campus users will expe­

rience delays and jitter in their time critical applications and the large file transfers 

will see decreased transfer rates and longer durations. If the transfers are restricted 

to only operate during low utilization periods however, then the performance impact 

on user workloads will be minimal and the large file transfers will find faster transfer 

rates and shorter service times. 

7.4 Potential and Limitations 

During my system level feasibility study, I identify two key challenges that must 

be addressed before big data transmission can become commonplace on the campus 

network. 

1. As Internet applications evolve and new services become available, the demand 

for bandwidth is expected to outpace the available bandwidth on several cam­
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puses (78; 87). In order to ensure fairness for all users, the bandwidth allotted 

to individual users is limited. Big data transfers have the highest bandwidth re­

quirements in comparison to other Internet applications utilized by users. With 

these restricted bandwidth allotments, big data transmissions would take sev­

eral weeks to complete. On the other hand, allowing unrestricted bandwidth 

to large file transfers would greatly reduce the bandwidth available for other 

applications. 

2. The majority of campus users are running real-time applications. Any loss of 

bandwidth or congestion can result in jitter and slowdowns for these applica­

tions. To a user staring at the "screen," even a small delay can appear endless 

and frustrating. These services can therefore not be impacted by big data 

transmissions. 

I conclude that big data transmissions should not be allowed free rein on campuses, 

but should be restricted to operate only during low demand periods. My feasibility 

study also identifies the advantages provided by the campus infrastructure with regard 

to incorporating big data transfers: 

• The bandwidth controller placed at the border between the campus LAN and 

WAN manages all traffic moving in and out of campus. The controller has a 

complete view of the campus traffic conditions. Moreover, the controller man­

ages the bandwidth given to each user at all times. Therefore, the bandwidth 

controller has the knowledge and the authority to control the bandwidth given 

to big data transmissions. 

• My study show that while campus users place heavy load on the network, the 

load is not consistent during all times of the day. There are periods during 

each day when there is very low usage of the network. During these times, the 

network can be specifically employed for terabyte transfers. 
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• File transmissions are not time critical applications. Users do not want to deal 

with errors, timeouts and retransmissions, they just want to upload/download 

files with minimum problems. 

I identify that it is feasible to support big data transmissions on the campus 

network by utilizing idle bandwidth available during low demand periods. Taking 

advantage of this free bandwidth for big data transmissions needs to be examined 

further. The following chapter presents our model for big data transmissions, which 

utilizes off-peak periods to transfer data. 

84 



CHAPTER VIII 

Nice model for big data transfers 

In this chapter, I present our "nice" algorithm for handling big data transmis­

sions (109; 118). As discussed in the previous chapter, it is feasible to support these 

types of laxge file transfers on the campus network. In order to accommodate this 

additional workload, these transfers must occur during low demand periods and be 

allowed access to full bandwidth availability. 

A new, nice algorithm for Big Data transfers, which is based on a store-and-

forward model instead of an end-to-end approach, is presented. This nice algorithm 

ensures that Big Data transfers only occur during low demand periods when there is 

idle bandwidth that can be repurposed for these large transfers. Under this algorithm, 

Big Data are transmitted when the Internet traffic at the senders LAN is low. If the 

Internet traffic at the receivers LAN is high at this time, then the data are stored at 

a staging server and later transmitted to the receiver. Similar to the nice command 

in Linux, a transfer tool based on the nice algorithm, gives itself low priority and is 

nice to other applications using the Internet. 

The overall goal is to develop an application that can transmit big data via the 

Internet for all users on campus. In order to develop the application, we first abstract 

the essential features of the hardware/software platform over which big transmissions 

execute. 
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8.1 Platform 

Hardware: The tool transmits files between two campuses, so the hardware of 

significance is the transmission media, with the assumption that the sender/receiver 

computers are fast enough to handle the upload/download. Prom a modeling per­

spective, the hardware platform can be divided into 3 network zones: the LANs at 

the two campuses and the Internet connecting these LANs. The data transmission 

rate of a network depends on the maximum amount of data that can be transmitted 

per second. This rate is determined by the smallest bandwidth link in the route. The 

rest of the network hardware, such as routers and switches, can be abstracted out of 

the model. Therefore, each network zone can be represented by a single link, namely, 

the smallest link in the zone. 

The smallest Internet link is usually greater than the smallest campus link. More­

over, there could be several alternate Internet paths from the sender's campus LAN to 

the receiver's campus LAN. Since the Internet has more bandwidth than the campus 

links, the transmission rate is determined by the campus links. Consequently, the 

Internet zone can be abstracted out of the hardware model, without impacting the 

performance of the transfer. The hardware platform reduces to 2 links, the small­

est sender link and the smallest receiver link. Define two variables, SendBW and 

RecBW, to represent the smallest sender link bandwidth and the smallest receiver 

link bandwidth, respectively. 

Workload: Big data transmissions have to share the network with other time critical 

applications. Prom a modeling perspective, the impact of this other workload on the 

network can be incorporated by reducing the amount of bandwidth available to big 

transmissions. Therefore, even if SendBW is the smallest physical bandwidth, the 

bandwidth available to big transmissions may be smaller. Prom analyzing the campus 

network traffic, there are periods during the day when the network is heavily used, 
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Time Utilization (%) SendBW/RecvBW 

12PM-12AM 95% 15 Mbps 

12AM-1AM 50% 500 Mbps 

1AM-2AM 25% 750 Mbps 

2AM-10AM < 10% lGbps 

10AM-11AM 25% 750 Mbps 

11AM-12PM 50% 500 Mbps 

Figure 8.1: Network utilization and bandwidth availability for each hour of a typical 
day. 

while there are other periods when the network is largely idle. Therefore, the amount 

of bandwidth available for big transmissions varies depending on the time of the day. 

Figure 6.3 shows that the traffic pattern is largely stable from day-to-day and 

varies hourly. For simplicity, the model assumes that the weekend traffic pattern is 

similar to the weekday traffic pattern. In order to incorporate the impact of work­

load traffic, the notations SendBW and RecBW have to be modified to represent the 

maximum available bandwidth (Mb) during each hour of the day: 

Arrays SendBW[i], RecBW[i] where i represents the hour of the day 0 < i < 23 where 

hour 0 is 12 AM, hour 1 is 1 AM,..., hour 23 is 11 PM; SendBW[i], RecBW[i] represent 

the smallest available bandwidth (in Mb) at the sender's/receiver's campus during 

hour i. 

Figure 8.1 shows bandwidth availability SendBW[i], RecBW[i] used in our model­

ing. At 4pm, the maximum bandwidth is 15 Mb/s so SendBW[16] = 15. During non 

peak hour, say at 2am, the available bandwidth is 1 Gb/s, so SendBW[2] = 1024. 

The sender and receiver campuses may be on different time zones. The variable 

TimeDiff represents the number of hours by which the receiver campus is ahead or 

behind the sender's campus. 

TimeDiff = j where j € {..., —3, —2, —1,0,1,2,....} 

For example, if the sender is situated in California and the receiver is situated in 
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Japan, then TimeDiff= 15. 

Tool: The user of a file transmission tool either wants to transmit a file or receive a 

file. The tool inputs of relevance are the file's size and the time that the user initiates 

the transmission. Let the file size be represented in MB. 

FileSize =x MB where x e {1,2,....} 

Let InitiateTime represent the hour at which the user initiates the transmission. 

InitiateTime = j where j € {0,1,2, ....,22,23}: the hour (time) at which the user 

initiates the transfer. 

8.1.1 Performance metrics 

The following performance metrics are of interest: 

1. Transmission Time 

sendTT, recTTe {1,2,...}: number of hours that sender and receiver's LANs, 

respectively, are busy transmitting the file. 

TTe {1,2,...}: maximum number of hours that the network is utilized during 

the transmission of the file's data. 

Suppose a file is transmitted from sender to an intermediate server in 2 hours; 

the file is then transmitted to the receiver in 1 hour. In this case, sendTT= 2, 

recTT= 1, TT= 2, the maximum of the two transmission times. 

2. Wait Time 

sendWTG {0,1,2,...}: number of idle (no transmission) hours between Initiate-

Time and completion of transmission from the sender's LAN. 

recWT€ {0,1,2,...}: number of idle (no transmission) hours at the receiver 

between InitiateTime and completion of transmission (arrival of file) at the re­

ceiver's computer. 
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3. Response Time 

RTe {1,2,...}: number of hours between InitiateTime and the completion of the 

transmission. 

Note that the time unit is an hour - transmissions start on the hour and end on 

the hour; if a transmission completes in less than an hour, the transmission time is 

rounded up to an hour. 

8.2 Nice model 

In order to avail of maximum installed bandwidth without impacting other users, 

the key is to open multiple transmission streams during low traffic. If the sender 

and receiver are in the same time zone then a direct transmission from sender to 

receiver is feasible. If the sender and receiver are in different time zones, then the 

low traffic periods at the two end points do not coincide. In this instance, the file is 

transmitted from the sender to one or more staging server (s), placed in the Internet 

zone. Depending on the Internet configuration between the sender and receiver, the 

file may be transmitted to a single staging server via multiple streams or the file 

may be divided and parts of the file are transmitted concurrently to multiple staging 

servers. When the receiver's LAN traffic is low, the file can be transmitted from the 

staging server(s) to the receiver. A file transmission tool such as GridFTP could be 

used for the transmission from the sender to the staging server(s) and from the staging 

server(s) to the receiver. Figure 8.2 represents the nice model. A transmission tool 

based on the nice model is parallel, store-and-forward. 

It is assumed that the sender and receiver LAN traffic pattern is similar. This is 

a reasonable assumption since the traffic pattern is modeled after human behavior. 

Using Figure 8.1 as the basis, the high traffic period starts at 9:00AM and ends at 

midnight 12:00AM. HighTrafficHours= { 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 
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Figure 8.2: Nice model 

22, 23 } 

Note that while the traffic pattern is similar, the installed bandwidth at the sender 

and receiver campuses may be different. For example, during low traffic hours 0-9, the 

bandwidth at the sender's LAN may be 5Gb/s while the bandwidth at the receiver's 

LAN is lGb/s. 

The user initiates the transmission; if it is high traffic at the sender's LAN, then 

the transmission does not begin until low traffic. At low traffic, the file transmission 

starts from the sender to the staging server at rate SendBW. If it is currently high 

traffic at the receiver, the transmitted portions of the file remain at the staging server. 

When low traffic period starts at the receiver's campus, then transmission proceeds 

to the receiver. 

In order to focus on the essential aspects of nice's design, we do not explicitly code 

parallelism, but we capture the impact of parallelism by using the maximum available 

bandwidth. If the sender and receiver are in the same time zone, the staging server 

can be used to absorb the bandwidth differential between sender and receiver. For 

example, if the sender has a bandwidth of 5 Gb/s and the receiver has a bandwidth 

of 1 Gb/s, the sender can transmit at the higher rate using the staging server as a 

buffer. 

The nice algorithm computes performance metrics for a transmission tool based 
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on the nice model. To keep code simple, we have set SendBW[i] = RecBW[i] = 0 

when i 6 HighTrafficHours. This initialization does not impact performance metrics 

since a transmission tool based on the nice model does not transmit during high 

traffic hours. However, if the remaining portion of a file is small enough (equivalent 

to standard files), the code can be modified to allow transmission of this remaining 

portion of the file during the high traffic time. The variables SendRemain, StageFile, 

RecFile represent the file sizes at the sender, staging server, and receiver. The variables 

SendTransmit and RecTransmit represent the amount of data transmitted at the sender 

and receiver during the current hour. In line 4, the function TimeZone computes 

the time at the receiver given the time at the sender and the difference in time zones 

between sender and receiver. 

8.3 Parallel model 

Current large file transmission tools such as GridFTP and BitTorrent are designed 

on the parallel model. Both protocols allow the downloading of parts of the file from 

different locations - one receiver, several senders. We are interested in how these 

protocols transmit big data between two locations - one receiver, one sender. Since 

bandwidth is critical to transfer time, multiple concurrent TCP streams are opened 

between the two locations, and parts of the file are transmitted concurrently. Opening 

multiple streams potentially distributes Internet load if a different network route is 

used for each stream. However, the multiple streams converge at both end point 

LANs, thereby straining the capacity of congested campus LANs. 

Figure 8.3 depicts the parallel model for file transmissions. The transmission 

model is end-to-end with streams of transmission from sender to receiver. Thus, the 

rate of transmission is determined by the minimum bandwidth along the path. The 

parallel algorithm computes performance metrics for the parallel transmission tool. 

The transmission begins at InitiateTime so sendWT and recWT are 0. 

91 



Algorithm 1: NICE ALGORITHM 

Initialize sendTT, recTT, StageFile, RecFile, RT, recWT to 0; 
FileNotTransferred= TRUE; 
SendRemain= FileSize; 

i = InitiateTime; 

j = TimeZone(lnitiateTime, TimeDifF); 

while FileNotTransferred do 
SendTransmit= SendBW[i] * 60 * 60; 

if SendRemain> 0 && SendTransmit> 0 then 
sendTT -|—|-; 

if SendTransmit> SendRemain then 
[_ SendTransmit= SendRemain; 

SendRemain= SendRemain- SendTransmit; 
|_ StageFile= StageFile+ SendTransmit; 

RecTransmit= RecBW[j] * 60 * 60; 

if StageFile> 0 && RecTransmit> 0 then 
recTT++; 

if RecTransmit> StageFile then 
L RecTransmit= StageFile; 

StageFile= StageFile- RecTransmit; 
|_ RecFile= RecFile+ RecTransmit; 

if (SendRemain> 0 && SendTransmit== 0) || (RecTransmit== 0) then 
L recWT++; 

RT++; 

if RecFile>= FileSize then 
|_ FileNotTransferred= FALSE; 

i = (i+1) MOD 24; 

_ j = 0+1) MOD 24; 

TT= MAXIMUM (sendTT, recTT); 

print RT, TT; 

8.4 Related work: Data transfers over the Internet 

Data transfers between users on shared networks, like campus networks, will utilize 

a data path similar to the following. The transfer initiates on a node on the campus 

network, which is generally a well-managed and heavily utilized system depending on 

the size of the university. It can be considered its own autonomous system (AS), which 

is a network that is administrated independently (90). The campus network connects 

to the Internet via one or more ISPs that provide dedicated bandwidth availability. 
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Algorithm 2: PARALLEL ALGORITHM 
RemainingFile = FileSize; 

CompleteTime = 0; 
i = InitiateTime; 

while RemainingFile > 0 do 
j = TimeZone(i, TimeDiff); 

CurrentBW = MIN(SendBW[i], RecBWjj]); 

TransmittedFile = CurrentBW * 60 * 60; 
RemainingFile= RemainingFile- TransmittedFile; 

CompleteTime = CompleteTime+ 1; 

_ i = (i + 1) MOD 24; 
RT = CompleteTime; 

TT = CompleteTime; 

Many large universities have several Internet connections and can be considered to be 

multi-homed, in that it has the access to the Internet via different service providers 

and different physical links (35; 122). After leaving the campus network, data pass 

through the server providers' AS and reach a peering point where their networks 

connect with other service providers and telecommunication companies' ASes. The 

data transfer operates as transit traffic on backbone connections towards the destina­

tion. This middle portion of the data path can be referred to as the transit networks. 

These high-speed, high-capacity links are engineered and managed for high efficiency 

and availability. Eventually the data will reach the service provider for the receiver's 

campus network. The data are then forwarded through recipient's network to the 

final destination. The transit network portion of the data path is the most abstract 
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from the end user. The specifics of the routing, such as next-best-hop heuristics (92), 

and bandwidth availability are hidden from users. Network providers also use traffic 

engineering to determine efficient routing and to satisfy economical objectives (126). 

It is therefore difficult to identify the ability of these networks to move large amounts 

of data without access to proprietary network information. 

The ability to transfer large amounts of delay tolerant data through transit net­

works on the Internet is examined in (31; 63; 64; 75). These studies have unfettered 

access to large ISP/transit networks' configurations and actual workloads. They find 

that there is ample bandwidth available in the major transit networks of the Inter­

net to move large amounts of data without incurring additional cost or overhead for 

telecommunication companies. They find that the Internet is not the bottleneck in 

large data transfers between end users, since there is enough capacity to move massive 

data sets during off-peak hours. Internet transit networks exhibit a diurnal pattern 

where load peaks between noon and midnight and then shows a dramatic decrease 

until the following afternoon (60; 105). The studies also find that under varying pric­

ing schemes used by service providers (32; 43; 47; 89; 108) they were able to transfer 

data at no cost or at a minimal expense, especially in comparison to physically ship­

ping data at regular intervals. For some users with very limited bandwidth, utilizing 

postal mail or courier services still remain the best option (123). 

In order to gain access to larger amounts of bandwidth for large data transfers, a 

consumer could purchase dedicated network connections. Backbone optical networks 

can be provisioned for a customer's private connection, however the process can take 

several weeks and be very costly (74). For most users dedicated communication lines 

are not a viable option, so users must make the best of their existing connections. 

There are several technologies that allow users to customize their data paths to max­

imize throughput. Overlay networks are one such technology, where users have the 

ability to specify their own route through the Internet and utilize faster/less con­
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gested links (15; 20; 83; 99). Using smart algorithms specific or dynamic pathways 

through multi-hop networks can be devised (55). A user connected to a multi-homed 

network has the ability to select from a set of network pathways and utilize them to 

varying degrees in order to gain access to larger bandwidth links (43). 

An emerging network technology, OpenFlow, is a perfect fit for transferring large 

amounts of data through local networks and transit ISPs. OpenFlow is based on 

software-defined networking where the individual network components are programmable 

entities that a high-level management application can control in order to optimize 

traffic flows to take the shortest path and to optimize the network to maximize link 

utilization (70). Typical wide area networks may only have a 30 % utilization on aver­

age, since administrators must save bandwidth for bursting periods. Using OpenFlow 

it is possible to repurpose this idle bandwidth for bulk data transfers and thereby 

increasing the overall utilization of network connections. Since the OpenFlow man­

agement software controls all aspects of the network, it is able to successfully operate 

at 90-95 % utilization, which is something that large companies like Google is al­

ready doing today (50). The OpenFlow technology removes the burden of routing 

calculations from the individual routers in the network and eliminates duplicated 

work by having a centralized "route compiler in the sky", RCITS (90). Using this 

methodology, OpenFlow enables adminstrators to program the network for different 

optimizations on a per-flow basis, which means that latency-sensitive traffic can take 

the fastest path and bulk flows can take the cheapest (70). As the technology is 

further developed, it may become the ideal candidate for moving large amounts of 

data through transit ISPs. 

8.5 Summary 

Current big data transmission tools are based on the parallel model where the 

goal is to access a major share of available bandwidth. The parallel model is short 
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sighted in that the design does not look beyond the tool's requirements to the impact 

on other users of the Internet. We have developed a nice model that utilizes avail­

able bandwidth without impacting other Internet applications. The nice model goes 

beyond the parallel model in that it incorporates both the requirements of big data 

transfers and the architecture and public accessibility of the Internet. 

In the next chapter, I experimentally evaluate the nice and parallel models. I show 

that the nice model is superior to the parallel model for big data transfers across the 

globe. 

96 



CHAPTER IX 

Evaluating the nice model for big data transfers 

In this chapter, I evaluate the performances of the nice and parallel models using 

the OPNET network simulator and a simulator that I developed. The OPNET sim­

ulator is a well-known, commercial simulator capable of simulating a wide variety of 

network components and workloads (73; 88). Figure 9.1 represents the setup for our 

experiments. Due to the constraints of the simulator, which only allows file transfers 

up to 50000000 bytes, the bandwidth of the shared Internet link is set to a maximum 

of 1.5 Mb/s. The results of the simulations are scaled appropriately so that the trans­

mission rate is 1 Gb/s and the file size is 1 TB. As presented in the previous chapter, 

the time unit used in my evaluations is an hour - transmissions start on the hour and 

end on the hour; if a transmission completes in less than an hour, the transmission 

time is rounded up to an hour. 

Three client/server machine pairs are setup to emulate the workload of the most 

popular traffic classes found on the campus network: streaming video, web browsing 

and VoIP. In the simulations, the workloads of the three popular traffic classes are 

varied to represent the background utilization of the shared Internet connection at 

various times of the day. The fourth server is used to simulate big data transfers. 

Another server handles staging for big transmissions. The following sections present 

the main results of my experimental evaluation. 

97 



Big Data 
Server 

Streaming 
Video 
Server 

VoIP 

HTTP 
Server 

Big Data 
Staging 

Big Data 
Client 

Streaming 
Video 
Client 

VoIP 

HTTP 
Client 

Figure 9.1: Simulator configuration map: The left side of the map represents that 
sending campus network and its client/server machines. The right side 
of the map represents the receiving campus network and its client/server 
machines. The staging server in the middle of the map is utilized when 
the sender/receiver networks have non-synchronous low demand periods. 

9.1 Transmission time (TT as TimeDiff and InitiateTime varies): 

Figure 9.2 plots the transmission time (TT) and response time (RT), as the re­

quest submission time (InitiateTime) varies during a 24 hour period starting at 8AM. 

In the top graph, the sender and receiver are in the same time zone (TimeDiff = 0). 

In the bottom graph, there is a 12 hour time zone difference (TimeDiff = 12). The 

transmission time (TT) of the nice model is invariant of the request submission time 

(InitiateTime) and the time zone difference (TimeDiff). For the parallel model, the 

response and transmission times (TT) are sensitive to both InitiateTime and TimeD­

iff. The response time (RT) of the nice model varies with the request submission 

time (InitiateTime) due to the necessary waiting times for the low demand period to 

commence. 

Figures 9.3, 9.4, 9.5, 9.6 plot the transmission time (TT) in hours, as the request 

submission time (InitiateTime) varies. Each graph displays a different time zone vari­

ance (TimeDiff). The graphs shows that the transmission times for parallel and nice 

are closest in performance when the start time (InitiateTime) is in a low traffic period 
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Figure 9.2: Transmitting a 1 TB data set when TimeDiff = 0 (top graph) and 
TimeDiff = 12 (bottom graph). 
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Figure 9.3: Transmitting a 1 TB data set when TimeDiff = 0 (top graph) and 
TimeDiff = 3 (bottom graph). 
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Figure 9.4: Transmitting a 1 TB data set when TimeDiff = 6 (top graph) and 
TimeDiff = 9 (bottom graph). 
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Figure 9.5: Transmitting a 1 TB data set when TimeDiff = 12 (top graph) and 
TimeDiff = 15 (bottom graph). 
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and the time zone difference (TimeDiff) is small. Nice significantly outperforms par­

allel when the time zone difference is 12 hours, which indicates that the sender and 

receiver have completely opposite low and high demand periods. 

A comparison of the transmission times between the parallel and nice models 

for varying time zone differences is shown in the next group of graphs. Figures 9.7 

and 9.8 illustrate the variations in transmission times for the parallel model under 

all time zone differences. Figure 9.9 shows the variations in transmission times for 

the nice model under all time zone differences. The parallel model experiences vast 

fluctuations in transmission time for all time zone differences, whereas the nice model's 

transmission times only varies by one or two hours. The nice model significantly 

reduces the transmission time for transferring the 1 GB data set when the sender and 

receiver have the greatest variations in low demand periods. 

The percentage improvement in transmission time when the nice model is used 

instead of the parallel model is shown in Figure 9.10. As the time zone difference 

(TimeDiff) increases, the performance of the parallel model degrades, while the perfor­

mance of nice remains unchanged. There is a near 100% improvement in transmission 

time (TT) of nice when the time zone difference is 12 (TimeDiff = 12). Figure 9.11 

reconfirms the percentage improvement by graphing the reduction in transmission 

times afforded by the nice model in comparison to the parallel. Again, the nice model 

provides the greatest reduction in transfer time (over 240 hours) when the time zone 

difference is 12. 

The improvement offered by the nice model can also be illustrated in figures 9.12, 

9.13, 9.14, and 9.15. These graphs plot transmission time (TT) as time zone difference 

(TimeDiff) changes for various request submission times. When TimeDiff = 12, the 

sender and receiver are in orthogonal time zones (i.e., there is no overlap of low traffic 

times at the sender and receiver), and the parallel model always transmits over small 

bandwidth. 
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Figure 9.7: Transmission time comparison for transmitting a 1 TB data set using the 
parallel model when the time zone difference is between 0-8 hours (top 
graph) and 9-12 hours (bottom graph). 
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Figure 9.8: Transmission time comparison for transmitting a 1 TB data set using the 
parallel model when the time zone difference is between 13-16 hours (top 

graph) and 17-23 hours (bottom graph). 
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Figure 9.10: Percentage improvement (max 100%) in transmission time when the nice 
model is used instead of the parallel model for time zone differences 0-12 
(top graph) and 13-23 (bottom graph). 
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Figure 9.11: Reduction in transmission time when the nice model is used instead of 
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Figure 9.12: Comparison of transmission times for the 1 TB data set for both nice 
and parallel models under all time zone differences when the request 
submission time is 12AM (top graph) and 3AM (bottom graph). 
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Figure 9.13: Comparison of transmission times for the 1 TB data set for both nice 
and parallel models under all time zone differences when the request 
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Figure 9.14: Comparison of transmission times for the 1 TB data set for both nice 
and parallel models under all time zone differences when the request 
submission time is 12PM (top graph) and 3PM (bottom graph). 
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Figure 9.15: Comparison of transmission times for the 1 TB data set for both nice 
and parallel models under all time zone differences when the request 
submission time is 6PM (top graph) and 9PM (bottom graph). 
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Figure 9.16: Comparison of response times for the 1 TB data set for both nice and 
parallel models when the time zone differences are 0 (top graph) and 3 
(bottom graph). 
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Figure 9.17: Comparison of response times for the 1 TB data set for both nice and 
parallel models when the time zone differences are 6 (top graph) and 9 
(bottom graph). 
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Figure 9.18: Comparison of response times for the 1 TB data set for both nice and 
parallel models when the time zone differences are 12 (top graph) and 
15 (bottom graph). 
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Figure 9.19: Comparison of response times for the 1 TB data set for both nice and 
parallel models when the time zone differences are 18 (top graph) and 
21 (bottom graph). 
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Figure 9.20: Percentage improvement (max 100%) in response time when the nice 
model is used instead of the parallel model for time zone differences 0-12 
(top graph) and 13-23 (bottom graph). 

118 



9.2 Response time (RT as TimeDiff and InitiateTime varies): 

Figures 9.16, 9.17, 9.18, and 9.19 plot the response times (RT) for both the nice 

and parallel models when transferring the 1 GB data set with varying time zone 

differences. Note that for the parallel model, the response time is the same as the 

transmission time (RT = TT). Both models perform better when TimeDiff = 0. As 

the time difference increases, the wait time in the nice model increases and in the 

parallel model, the time zones don't synchronize resulting in low bandwidth trans­

mission. The percentage improvement in response time is shown in figure 9.20. The 

greatest improvement when using the nice model over the parallel model occurs at 

time difference 12. 

9.3 Bandwidth differential between sender and receiver: 

In the previous sections, both the sender and receiver had equal bandwidth ca­

pacities. The maximum available bandwidth for both was 1 Gbps. In this section, 

I set the receiver to have 4 times the available bandwidth of the sender. Both the 

sender and receiver still follow the bandwidth availability percentages provided in Fig­

ure 8.1. In the evaluation of this setup, I focus on the receiver's transmission time. 

Since the nice model uses a store-and-forward approach instead of parallel models' 

end-to-end technique, the receiver has the ability to receive the data faster than the 

sender transmits the data to the staging server. 

Figures 9.21, 9.22, 9.23, and 9.24 plot the transmission time at the receiver's LAN 

(recTT) when the receiver has 4 times as much bandwidth as sender. For the parallel 

model, the faster transmission rate at receiver has no impact on performance. For the 

nice model, when there is no time difference (TimeDiff = 0), the faster transmission 

rate of receiver has no impact. Comparing the top graphs in Figure 9.3 and Figure 9.21 

shows the same transmission times for the nice model. 
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When there is a time difference (TimeDiff > 0) however, the receiver's transmis­

sion time (recTT) is faster under the nice model. This improvement is shown when 

TimeDiff = 9 in Figure 9.4 and Figure 9.22 are compared. A comparison of Figures 9.5 

and 9.23 also shows the decreased receiver's transmission times when TimeDiff = 15. 

9.4 Summary 

These evaluations show that the performance of the parallel model is dependent 

on the time difference (TimeDiff) and the request submission time (InitiateTime), 

while the performance of the nice model is not. The nice model performs better than 

parallel. In the next chapter, I explain these experiments using theoretical evaluation. 

On a side note, I also collect data regarding the negative impact of big transmis­

sions on other applications during high traffic periods. I observe significant increases 

in end-to-end packet delays: the streaming video client experiences a 52% increase in 

packet delays on average and the VoIP client has an even higher increase of 67%. 
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Figure 9.21: Transmitting a 1 TB data set when TimeDiff = 0 (top graph) and 
TimeDiff = 3 (bottom graph) where the receiver has 4 times the available 
bandwidth than the sender. 
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Figure 9.22: Transmitting a 1 TB data set when TimeDifF = 6 (top graph) and 
TimeDiff = 9 (bottom graph) where the receiver has 4 times the available 
bandwidth than the sender. 
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Figure 9.23: Transmitting a 1 TB data set when TimeDiff = 12 (top graph) and 
TimeDiff = 15 (bottom graph) where the receiver has 4 times the avail­
able bandwidth than the sender. 
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4X Receiver Bandwidth (Time Zone Difference = 18) 
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Figure 9.24: Transmitting a 1 TB data set when TimeDiff = 18 (top graph) and 
TimeDiff = 21 (bottom graph) where the receiver has 4 times the avail­
able bandwidth than the sender. 
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CHAPTER X 

Analysis of Evaluations 

The experiments in the previous chapter clearly show that the nice model far 

outperforms the parallel model. Prom experimental analysis alone, it is hard to 

quantify the impact of the request submission time (InitiateTime), the time zone 

difference (TimeDiff), and the bandwidth differential on performance. The goal of 

this theoretical analysis is to better understand the experiment results. 

Before starting the theoretical analysis, we define a few more variables. All the 

variables are either defined here or in Chapter VIII. The parameters SendBW[i], 

RecBW[i] capture the impact of traffic intensity on the transmission tool. The anal­

ysis can be simplified, without changing the essential performance characteristics, by 

assuming that SendBW and RecBW do not vary by the hour. Instead, the band­

width available for big data transmissions is a fixed low value during the high traffic 

period and a fixed high value during the low traffic period. Let SendLowBW and 

Send High BW represent the low and high transmission rate per hour, respectively, at 

the sender's LAN; let RecLowBW and RecHighBW represent the low and high trans­

mission rate per hour, respectively, at the receiver's LAN. Note that the transmission 

rate is given in units of per hour, not per second; If low transmission rate is 10 Mb/s, 

then SendLowBW = 10 * 60 * 60 = 36000Mb/h. The only reason for using hour as the 

unit is to improve the readability of the analysis by not having to constantly multiply 
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by 60 * 60. 

At any hour, the sender and receiver LANs are in one of the following four 

states: 1) SendLowBW, RecLowBW; 2) SendLowBW, RecHighBW; 3) SendHighBW, 

RecLowBW; and 4) SendHighBW, RecHighBW. Since end-to-end transmission rate is 

dependent on the smallest bandwidth, the bandwidth rate at any hour would be one 

of: 

Low = M/iV{SendLowBW, RecLowBW}; 

SendLow = M/N{SendLowBW, RecHighBW}; 

RecLow = M/iV{SendHighBW, RecLowBW}; 

High = M/iV{SendHighBW, RecHighBW}; 

Let #HighBWHrs and #LowBWHrs represent the number of hours in a day when 

traffic is off-peak and peak, respectively. Recall that, on our campus LAN, the off-

peak traffic period is from hours 0 to 9, while the peak traffic period is from hours 

10 to 23. Therefore, #HighBWHrs = 10 and #LowBWHrs = 14. 

10.0.1 Nice 

Maximum FileSize transmitted in 24 hours: 

Let 24hrFileSize represent the maximum FileSize that can be transmitted during 24 

hours. 

24hrFileSize = High x #HighBWHrs 

Result 1. For nice, the maximum data that can be transmitted during 24 hours is 

determined only by High; 24hrFileSize is independent o/TimeDiff and InitiateTime. 

Response time RT: 

The RT is computed in terms of receiver wait time and receiver transmission time. 

RT = recWT + recTT 
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recWT is the time from InitiateTime until the start of transmission to the receiver. The 

receiver's transmission starts at the first high bandwidth hour that is greater than 

or equal to the sender's first transmission hour. Since the staging server transmits 

only when the receiver starts off-peak period, recWT is a function of InitiateTime and 

TimeDiff. 

Result 2. sendWT is dependent on InitiateTime. recWT is dependent on both Initi­

ateTime and TimeDiff. Consequently, RT is dependent on both parameters. 

Transmission times sendTT, recTT, TT: 

TT = MAX(sendTT, recTT) = ] 

The sender's transmission time depends only on the bandwidth at the sender due to 

the buffering available at the staging servers. 

se"dTT = rdlgiwi 

Calculating recTT is tricky; depending on TimeDiff, the transmission from sender to 

receiver may be completely concurrent, partially concurrent, or serial. The computa­

tion of recTT also depends on whether the sender or the receiver is faster. 

If SendHighBW > RecHighBW, then 

recTT = I" FileSize 1 1 1 I RecHighBW I' 

If SendHighBW < RecHighBW and TimeDiff = 0, then 

recTT = f FileSize 1 
,C(-' 1 I SendHighBW I-

If SendHighBW < RecHighBW and {TimeDiff| > 0, then the value of recTT depends 

on how much of the file, StageFile, has been transmitted to the staging server before 

the receiver's transmission time starts. While the receiver catches up with the sender, 

the file is transmitted at the receiver's faster rate and then afterward, any remaining 

portion is transmitted at the sender's slower rate. 

TT — r (StageFile+) , FileSize-(StageFile+) -i 
l-ec I I — | RecHighBW "I" SendHighBW I' 
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The + in StageFile+ represents the additional transmission from the sender while the 

receiver is trying to catch up. As TimeDiff increases, recTT becomes more dependent 

on RecHighBW (and less dependent on High =MIN(SendHighBW, RecHighBW)). 

Result 3. sendTT only depends on SendHighBW. 

As TimeDiff increases, recTT becomes less dependent on High and more dependent on 

RecHighBW. 

Result 3 explains the bandwidth differential graphs in Figures 9.21,9.22,9.23, and 9.24. 

The presence of the staging servers ensures that the bandwidth differential between 

sender and receiver is hidden. 

Result 4. The TT of the nice model only depends on High; TT is insensitive to 

TimeDiff and InitiateTime. 

10.0.2 Parallel 

Maximum FileSize transmitted in 24 hours: 

The total data transmitted depends on TimeDiff between sender and receiver. 

1) TimeDiff= 0: 

24hrFileSize = (High x #HighBWHrs) + (Low x #LowBWHrs) 

2) |TimeDiff| = d where 0 < d < #HighBWHrs: 

24hrFileSize = (RecLow x d )  + (High x (#HighBWHrs - d ) )  +  (SendLow x d ) )  

+(Low x (#LowBWHrs — d ) )  

3)|TimeDiff| = d where #HighBWHrs < d < #LowBWHrs 

24hrFileSize = (RecLow x #HighBWHrs) + (Low x (d - #HighBWHrs)) 

+(SendLow x #HighBWHrs)) + (Low x (#LowBWHrs — d ) )  

From 3), it follows that when transmitting between LANs in India and the US, 

or between LANs in Japan and the US, the entire parallel transmission is 
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carried out in low bandwidth. Equations 1 to 3 (above) explain the performance 

of parallel in our experiments. Note that 23 > d > #LowBWHrs is not evaluated 

since it reduces to one of the above cases. 

Result 5. Parallel: When TimeDiff=0, 24hrFileSize is maximum. As TimeDiff in­

creases, 24hrFileSize decreases. At TimeDiff > #HighBWHrs, the data are entirely 

transmitted at low bandwidth, so 24hrFileSize is smallest. 

When TimeDiff = 0, parallel transmits more data than nice. However, depending 

on the difference in bandwidth during high traffic and low traffic times, the percentage 

improvement is insignificant. For example, for a 10Mb low bandwidth and a 1 Gb 

high bandwidth, parallel transmits only 1.6% more data than nice during the high 

traffic hours. 

For the parallel model: RT = TT = sendTT = recTT. 

Result 6. The transmission times of the parallel model are sensitive to parameters 

InitiateTime, TimeDiff, bandwidth availability, and transmission rate differential be­

tween sender and receiver. 

10.0.3 Summary 

Theorem 1. For a given FileSize, the TT of the nice model is faster than that of the 

parallel model. 

Parallel is best in comparison to nice when TimeDiff is close to 0 and the sender and 

receiver have similar transmission rates. 

Parallel is worst in comparison to nice when there is no overlap of low traffic times 

between sender and receiver. 

Thus, the nice model is better suited to big transmissions over large distances that 

span time zones and varying network capabilities. In essence, big data transmission 

via public Internet is a "first mile, last mile" problem. The sender has to wait for 
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ample bandwidth at its LAN before transmitting; if the receiver LAN is not in synch 

with the sender, then the big file has to wait at one or more intermediate server(s) 

until ample bandwidth is available at the receiver - parallel, store-and-forward. Again, 

the name, nice, is a play on words linking our transmission model to the nice program 

in Unix. The nice transmission model waits for off-peak hours when bandwidth is 

available, so it is nice to other Internet users. 
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CHAPTER XI 

Conclusions and Future Work 

My research journey from grid computing to the issues and challenges of big 

data transfers was not straightforward. It was through my many discoveries along 

the way that led me to this point. From the outset it was not clear that this was 

even a problem that needed to be examined. While attempting to transfer big data 

sets, I experienced the difficulties associated with transferring large amounts of data 

through shared networks firsthand. It was clear that this a problem that needs to be 

investigated. 

Big data transfers via the Internet are not a commonplace task for most users 

today. Currently, there are no tools to facilitate these kinds of transmissions. The 

task of transferring massive amounts of data across the country or even the globe is a 

challenging and daunting undertaking for any user. As the popularity of distributed 

storage propagates and the amount of scientific data continues to surge, the demand 

for big data transfers will grow at a tremendous rate. The existing tools for moving 

large amounts of data are based on the parallel model, which is designed to grab 

as much bandwidth as possible by opening concurrent data streams. This greedy 

approach may be good for a single user's transfer, however it is not scalable for 

multiple users on a shared network. The entire system suffers when users attempt to 

grab bandwidth. 
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My solution to this problem is the nice model for big data transfers. Under this 

model, these transfers are relegated to low demand periods when there is ample, idle 

bandwidth available. This bandwidth can then be repurposed for big data trans­

missions without impacting other users in the system. Since the nice model uses a 

store-and-forward approach by utilizing staging servers, the model is able to accom­

modate differences in time zones and variations in bandwidth. Prom my evaluations 

and theoretical analysis, I have shown that the nice model significantly outperforms 

the existing greedy, parallel model. It is clear that nice is better than greedy when it 

comes to big data transmissions. 

11.1 Future Work: CargoExchange application 

In order for multiple users to successfully utilize the nice model for big data 

transmissions in a shared system, like the campus network, there should be a system-

level service that supports these users' workloads. After speaking with researchers 

in various departments around campus, I received an overwhelming response from 

these users that they only want guaranteed delivery and ease of use when it comes 

to this type of transfer. Users do not want to be burdened with error recovery, re­

transmissions, security and bandwidth issues. Administrators want to ensure that 

big data transfers do not impact other applications/users on the network. A system-

level service, called CargoExchange, could provide users with this simplicity and 

administrators with quality of service guarantees. 

The CargoExchange service would handle big data transmission for all users on 

the shared network. The service is called CargoExchange since it bears similarities 

to companies like UPS and FedEx that are specifically designed to transport large 

amounts of goods or cargo. The CargoExchange service would be tasked solely with 

transporting users' big data. This service at the sender, receiver and staging sites 

would be able to communicate and facilitate all facets of the transfers. In order for 
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this service to function properly, there are several aspects that would need to be 

addressed. 

Client Interface: The client interface would be web based. The client would 

enter the specifications for the data transfer. Clients have no control over how the data 

are transmitted, but they can log in and check on the status of their transfers. There 

may be other features such as payment options and delivery options (fast, regular, 

etc.). Once a transmission is completed, a client will receive an email notification. 

File System: The servers utilized by the CargoExchange service are required to 

store big data sets and retrieve all or parts of files at any time. Since standard file 

systems are primarily designed for smaller files, the CargoExchange servers should 

have file systems specifically designed for storage and retrieval of big data (2). 

Tracking System: The CargoExchange servers must keep track of the users' 

files while they are being transmitted and once they arrive at their location. The 

algorithms for keeping track of file movement will need to be explored and potentially 

developed. 

Security: The files transmitted via the CargoExchange service would be private. 

Before transmission, files must be encrypted. Recent advances in encryption (23; 44; 

72) can be utilized to ensure that scalable, fast, and reliable security is available to 

users. 

Compression: The service could utilize compression techniques in order to re­

duce file sizes. These techniques must be able to compress large data files at a fairly 

fast rate. Recent work (59; 71; 79; 85) in this area has resulted in improved per­

formance, however new compression techniques may need to be developed for big 

data. 

Routing Algorithms: This is a critical aspect of the CargoExchange service. 

The routing algorithms refer to routing at a high level, not at the network level. Using 

the analogy of the roadway system for example, in order to travel from Durham, NH to 
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Montreal, Canada, one could choose to go via Maine or Vermont. The CargoExchange 

would determine the selection of Maine or Vermont (or both in the case of parallel 

transmission). The CargoExchange decides when and how to route users' data, which 

may include multiple paths. 

Traffic Monitoring: The CargoExchange service must have knowledge of the 

traffic present on network links in order to properly schedule data transmissions. The 

servers will work directly with traffic monitoring and bandwidth management devices, 

which have an accurate view of the traffic on their networks. CargoExchange servers 

will use and share this information with other servers in order to facilitate big data 

transmissions and to utilize available bandwidth. 

Network Protocols: New network protocols may be required for big data trans­

missions (58; 76; 91). Advances in network hardware technologies could also be uti­

lized by the CargoExchange service. Since the nitty-gritty of the transfers is removed 

from the users, the service could implement and utilize any new software/hardware 

advances that might improve transfer performance or reliability. 
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