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ABSTRACT 

EFFECTS OF NITROGEN-FIXING SYMBIOTIC CYANOBACTERIA ON THE 

MICROBIAL ECOLOGY OF THE CORAL, MONTASTRAEA CAVERNOSA 

By 

Jessica K. Jarett 

University of New Hampshire, May, 2012 

Corals form the physical structure of coral reefs, one of the most ecologically and 

economically important ecosystems in the world. The abundant and broadly distributed 

Caribbean coral Montastraea cavernosa forms a symbiosis with intracellular nitrogen-

fixing cyanobacteria in some, but not all colonies, which make up approximately 30% of 

the population and display a characteristic orange fluorescence. Diverse and functionally 

important microbial communities of dinoflagellates, bacteria, Archaea, viruses, fungi, and 

other organisms are also associated with corals and together with the host compose what 

is termed the coral holobiont. Whether the cyanobacteria are mutualists, commensals, or 

parasites, and their effects on the coral holobiont, are unknown. The influence of the 

cyanobacteria on the microbial ecology of M. cavernosa and overall holobiont fitness 

were investigated using sequencing of ribosomal RNA PCR amplicons, 

metatranscriptomic sequencing of rRNA and mRNA from the holobiont, and 

experimental tests of various fitness metrics. The cyanobacterial symbionts appear to be 

diverse, but many are Pleurocapsa-like and related to nitrogen-fixing cyanobacterial 
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symbionts of diatoms. Their presence does not affect the taxonomic composition of the 

diverse coral-associated prokaryotic community, but such communities do exhibit 

significant geographic differences. Metatranscriptomic analysis of mRNA indicates that 

coral-associated prokaryotes, including cyanobacteria, are transcriptionally active, 

although few transcripts related to nitrogen fixation were recovered. There were no 

significant fitness differences between colonies with and without cyanobacteria for any of 

the metrics tested, including coral growth, response to thermal stress, and the ability to 

deter predators and produce cyanobacterial toxins. Genotyping of coral hosts revealed 

that colonies with and without cyanobacteria form two genetically distinct populations at 

small spatial scales, providing evidence for selection. The cyanobacteria do not appear to 

be parasitic to the coral host, but any potential benefits they may convey remain 

unknown. Analysis of metatranscriptomic data to investigate differences in the functional 

activity of coral hosts and associated microbial communities is ongoing. 
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INTRODUCTION 

The coral Montastraea cavernosa is abundant on Caribbean and Eastern Atlantic 

coral reefs and has an extremely broad depth range from shallow waters (3 m) to the 

mesophotic zone (100 m) (Reed, 1985, Lesser, etal., 2010). A high degree of 

polymorphism exists in skeletal morphology (Goodbody-Gringley, et al., 2012) colony 

color (Kao, et al., 2007), and polyp behavior (Lasker, 1981), but molecular markers have 

confirmed that M. cavernosa is a single species across its range (Budd, et al., 2012). This 

coral sometimes forms a symbiosis with nitrogen-fixing cyanobacteria (Lesser, et al., 

2004) in addition to the typical dinoflagellate photosymbionts, Symbioindium 

(Freudenthal, 1962). These colonies are distinguished by a high density (107 cells cm"2) 

of intracellular cyanobacteria and a characteristic orange fluorescence. This color is 

attributed to autofluoresence of phycoerythrin, a cyanobcaterial photosynthetic pigment, 

although other host associated fluorescent pigments may also contribute to this color 

(Kao, et al, 2007). Most of the light-harvesting Photosystem II (PSII) units of the 

cyanobacteria are uncoupled from photochemistry, so the cyanobacteria are presumed to 

be living heterotrophically, likely utilizing glycerol which is present in high 

concentrations in coral tissue (Lesser, et al, 2004). The slightly higher respiration rates 

and significantly lower net photosynthesis rates of colonies with cyanobacteria support 

this hypothesis (Lesser, et al., 2007). 

Orange colonies fix nitrogen during the evening and early morning hours, when 

oxygen concentrations in the coral tissue are low (Lesser, et al., 2007). Although nitrogen 
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fixation has not been conclusively attributed to the cyanobacteria, these cells do contain 

nitrogenase (Lesser, et al., 2004), and only orange colonies reduce acetylene in controlled 

experiments (Lesser, et al., 2007). The principal enzyme involved in nitrogen fixation, 

nitrogenase, is highly sensitive to oxygen (Tripplett, 2000), so times of low oxygen are 

likely optimal for nitrogen fixation in this system. The cyanobacteria are thought to 

respire glycerol in order to provide energy for nitrogen fixation. Orange colonies are most 

abundant below 15 m, where they make up about a third of the total population. The 

lower irradiance and photosynthesis rates at depth result in a lower concentration of 

oxygen and are hypothesized to increase the number of hours in the day when nitrogen 

fixation is possible, explaining the distribution of these colonies (Lesser, et al., 2007). 

Ratios of naturally occurring stable isotopes indicate that the resident 

Symbiodinium populations are incorporating fixed nitrogen (Lesser, et al, 2007). This 

apparent transfer from the cyanobacteria to the dinoflagellates must be mediated by the 

coral host, because the two symbiont populations live in different tissue layers (the 

epidermis and gastrodermis, respectively) and have no direct contact with each other 

(Lesser, et al., 2004). Coral tissue does not have a significantly depleted 8I5N ratio, so the 

coral host does not utilize the fixed nitrogen directly. Symbiodinium densities are not 

significantly different in brown and orange colonies, but the DNA content per cell is 

increased in dinoflagellates from orange colonies (Lesser, et al., 2007). This indicates 

that more cells in this population are in the DNA synthesis (S), gap (G2) and mitosis (M) 

phases of the cell cycle, and thus have a higher rate of division (i.e., a higher growth 

rate). 
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Coral reefs are thought to be nitrogen-limited environments, so the input of fixed 

nitrogen from cyanobacteria seems likely to affect coral holobiont fitness in some way. 

However, if cyanobacteria confer a significant fitness benefit, it is curious that orange 

colonies are not more common, particularly at deeper depths where the increased 

potential for nitrogen fixation could make them even more advantageous. The fact that 

not all colonies host cyanobacteria implies that they may also impose fitness costs, 

perhaps under specific environmental conditions; or that not all colonies are equally 

capable of hosting cyanobacteria. At the same time, the relatively high frequency of 

orange colonies in the population implies that any deleterious effects on fitness must not 

be large, or these colonies would not persist. 

The presence of nitrogen-fixing cyanobacteria in a coral raises fundamental 

questions about the role of nitrogen in this system and the effects of an input of fixed 

nitrogen. The control of symbiotic algae by invertebrate hosts has been proposed to 

follow a chemostat model (Falkowski, et al., 1993), whereby the density and growth rate 

of the symbionts is controlled by the concentration of a limiting nutrient and the dilution 

rate at which cells are removed from the chemostat. Symbiodinium have a much higher 

potential growth rate than their host, and it has been believed that they are prevented from 

overgrowing their host by nitrogen limitation (Falkowski, et al., 1993). In the M. 

cavernosa system, Symbiodinium are supplemented with fixed nitrogen, yet their density 

remains constant. According to the chemostat model, there must be an increase in the 

dilution rate to compensate for the extra nutrient addition; increased dilution would also 

account for the observed increase in Symbiodinium growth rates in orange colonies. How 

the host controls symbiont density is not known, but the lack of an isotopic signal for 
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nitrogen fixation in coral host tissue implies that dinoflagellates are expelled rather than 

digested. 

An internal source of fixed nitrogen could provide several advantages to different 

organisms associated with the coral, and could also impact overall holobiont fitness. The 

dinoflagellates could benefit from an increased ability to turn over damaged 

photosynthetic enzymes, and may be able to translocate more fixed carbon to their host. 

The increased availability of nitrogen may change the nutritional composition of the coral 

mucus (Ducklow & Mitchell, 1979, Meikle, et al, 1988), or the ability to produce 

different antimicrobial compounds that are present in mucus (Ritchie, 2006, Geffen, et 

al, 2009), which could affect the diverse microbes associated with the coral mucus, 

tissue, and skeleton. Factors directly related to the presence of cyanobacteria could also 

affect the organisms associated with the coral colony. The consumption of oxygen by the 

symbiotic cyanobacteria while respiring glycerol may have an effect on oxygen 

concentration in coral tissue and mucus. Because coral tissues undergo large diel 

fluctuations in oxygen concentrations (Dykens & Shick, 1982, Kuhl, et al., 1995), this 

effect could be more pronounced during certain times of day. Cyanobacteria might also 

produce bioactive compounds (e.g., microcystin) that could affect the behavior, 

abundance, and distribution of microbes associated with the coral (Richardson, et al, 

2007). Even if only a few community members are directly affected by the cyanobacteria, 

they may be key species that interact with and affect many other species, possibly 

resulting in large indirect effects of the cyanobacteria. 

In this dissertation, I address outstanding questions about the M. cavernosa-

cyanobacteria symbiosis from multiple perspectives ranging from the molecular level to 
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the holobiont. I first review what is known about nitrogen-fixing symbioses in the marine 

environment, to place the M. cavernosa system in a broader context. A metagenetic 

survey of 16S rRNA PCR amplicons provides a taxonomic profile of the coral-associated 

prokaryotic community, attempts to identify the symbiotic cyanobacteria, and describes 

the effect of cyanobacteria on other members of the prokaryotic community. 

Metatranscriptomic analysis of expressed genes in brown and orange colonies explores 

the functions and activity of the coral host, Symbioindium, prokaryotes, and other 

members of the holobiont. In the final chapter, the effects of cyanobacteria on holobiont 

fitness are considered, to determine the possible ecological impacts of this symbiosis. 
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CHAPTER I 

NITROGEN-FIXING SYMBIOTIC ASSOCIATIONS IN THE 

MARINE ENVIRONMENT1 

Introduction 

The ability to convert atmospheric nitrogen into ammonia is restricted to members 

of the Bacterial and Archaeal domains in a process known as nitrogen fixation. Biological 

nitrogen fixation (BNF) has a long evolutionary history (Raymond, et al., 2004) and 

contributes significantly to the amount of "new" nitrogen available to a wide variety of 

terrestrial, aquatic and marine organisms (Galloway, et al., 1995, Falkowski, 1997). The 

availability of nutrients, especially nitrogen, influences the trophic biology and ecology 

of all organisms and ultimately their ecological distribution and abundance. In the marine 

environment, a ratio of 106:16:1 of carbon:nitrogen:phosphorus has been described for 

the open ocean planktonic primary producers. Known as the Redfield ratio, this ratio was 

long believed to reflect the absolute requirements for phytoplankton growth (Redfield, 

1934) with nitrogen often cited as a limiting macronutrient. The role of nitrogen as a 

limiting nutrient in the oceans over ecological timescales has generally been accepted as 

1 An excerpt of this chapter has been published as: Fiore CL, Jarett JK, Olson ND, Lesser 
MP (2010) Nitrogen fixation and nitrogen transformations in marine symbioses. Trends 
in Microbiology 18 (10): 455-463 
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a paradigm. However, the oeeanographic community has recently begun to grapple with 

the idea of multiple resource co-limitation on primary productivity in the worlds oceans 

instead of a simple Liebig's Law of the Minimum approach where only a single resource 

limits productivity (Arrigo, 2005). This is a fundamental shift in thinking about nutrient 

biogeochemistry in the world's oceans and has initiated many new studies on the 

physiology of phytoplankton that are essential for making accurate carbon flux 

calculations (Karl, et al, 2002, Zehr & Ward, 2002, Arrigo, 2005). Recent research has 

also found that the Redfield ratio more accurately represents a global average of the 

planktonic community, rather than a specific requirement for the growth of 

phytoplankton (Klausmeier, et al, 2004). Physical factors such as local oceanography (Li 

& Hansell, 2008, Church, et al., 2009), exogenous input from nutrient runoff, and aeolian 

deposition (Fanning, 1989, Dong, et al, 2000) are now known to influence deviations 

from this ratio which still supports the growth of primary producers. Additionally, 

biological factors such as the microbial transformation of nitrogen by nitrogen fixation, 

nitrification and denitrification have recently become more appreciated as processes 

influencing nutrient stoichiometry (Arrigo, 2005, Ward, et al, 2007). 

In the marine environment, nitrogen fixation was underestimated by early studies 

(Capone & Carpenter, 1982), but recent studies estimate fixation rates closer to that of 

terrestrial environments (90-130 Tg N yr"1) (Galloway, et al, 1995) or higher (Karl, et 

al, 2002, Quigg, et al, 2003). Several findings have helped to close this gap in nitrogen 

budgets, beginning with the upward correction of nitrogen fixation estimates for the 

cosmopolitan genus of free-living marine nitrogen-fixing bacteria Trichodesmium spp. 

(Capone, et al, 1997), followed by the discovery of large numbers of oceanic unicellular 
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cyanobacteria including Crocosphaera and Cyanothece using molecular approaches 

(Montoya, et al., 2004, Zehr, et al., 2007). More recently, a unique group of 

picoplanktonic cyanobacteria called UCYN-A was described and its genome sequenced 

(Tripp, et al, 2010). The reduced genome of these cells lacks the oxygen-evolving 

Photosystem II and several key metabolic pathways, and thus they can fix nitrogen during 

daylight hours. Although they cannot fix carbon, they can generate energy and reducing 

power from light and are thought to be photoheterotrophs that may depend on other 

organisms for critical nutrients (Bothe, et al, 2010). The abundance of UCYN-A in 

colder, deeper waters than either Trichodesmium or Crocosphaera also expands the 

geographic range in which oceanic nitrogen fixation is known to occur (Moisander, et al., 

2010). These discoveries, and the realization of the importance of marine sources of 

nitrogen in the global nitrogen budget has highlighted the need for continuing research 

into the complex cycling of nitrogen in the marine environment (Zehr & Ward, 

2002). While nitrogen cycling is also influenced by anthropogenic impacts (Vitousek, et 

al., 2002) and physical forcing (Zehr & Ward, 2002), microbial transformations of 

nutrients provide the fundamental underpinning to understand these processes and to 

improve our knowledge of the dynamics of microbial nitrogen cycling (Ward, et al., 

2007). The implications of nutrient transformations by marine microbes on seawater 

nutrient composition, global nutrient cycling, and plankton population distributions, were 

recently reviewed, highlighting the complexity and importance of microbes in nitrogen 

cycling (Arrigo, 2005, Ward, et al., 2007). Many studies have focused on free-living 

diazotrophs, which constitute a large proportion of nitrogen transformation; however, 

there are many gaps in our knowledge of which bacteria contribute to nitrogen fixation. 
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For example, nitrogen fixation by symbiotic bacteria has been described in zooplankton 

and phytoplankton (Braun, etal, 1999, Zehr, et al., 2000) and non-planktonic organisms 

(Carpenter & Culliney, 1975, Mohamed, et al., 2008) which could potentially contribute 

to filling in the unknowns for nitrogen budgets in specific habitats. Newly discovered 

symbiotic nitrogen fixers now appear to occur frequently, and these symbioses influence 

host ecology and may have potentially large impacts on global nutrient cycling. 

As a result of environmental nitrogen limitation in habitats such as mid-ocean 

gyres and shallow tropical waters, or nutrient poor food sources such as wood (Carpenter 

& Culliney, 1975), organisms in these habitats often experience nitrogen limitation. A 

number of organisms have coevolved into symbiotic relationships with diverse group of 

prokaryotes that can perform BNF to overcome this limitation. Nitrogen fixation is the 

transformation of dinitrogen gas (N2), the most abundant but also biologically unavailable 

form of nitrogen on the planet, into biologically available ammonia (NH3). Symbiotic 

bacteria that can fix nitrogen are not limited to the marine environment and many 

terrestrial nitrogen-fixing symbioses are often utilized in agronomy for their ability to 

replenish nutrients in the soil. Due to the important agricultural role nitrogen-fixing plant 

symbioses play around the world, these provide some of the best-understood models of 

bacterial symbiosis. The processes of initiation, recognition, infection and biochemical 

communication between the host plant and nitrogen-fixing bacteria are well described 

(Garg & Geetanjali, 2007). In freshwater systems, aquatic plants such as Azolla, which 

host heterocystous cyanobacteria as symbionts, as well as free-living cyanobacteria, are 

major sources of fixed nitrogen and are well-documented participants in nitrogen cycling 

in aquatic ecosystems (Kalff, 2002). Additionally, a majority of the early work on the 
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physiology and genetics of nitrogen fixation was conducted on culturable free-living 

terrestrial bacteria in the genera Klebsiella, Azotobacter and Clostridium (Klipp, et al, 

2004). Conversely, diversity and physiological ecology of marine diazotrophic 

symbioses are not as well understood. This review encompasses historical and recent 

studies on the nitrogen fixation process with a particular focus on marine symbiotic 

associations. I also address where significant gaps exist in our knowledge of nitrogen 

fixation in these unique symbioses. 

Biological Nitrogen Fixation 

Nitrogen fixation is an energetically expensive process in which the two nitrogen 

atoms of a dinitrogen molecule are each reduced to NH3. This process requires two 

enzymes, which form the nitrogenase complex. The Fe protein is a homo-dimer encoded 

by the nifH gene, and has a 4Fe:4S core. The Fe protein is reduced by the electron 

mediator, ferredoxin, and then reduces the second enzyme involved in the fixation 

process, the Mo-Fe protein. The Mo-Fe protein is a four-subunit (X2P2 protein with ap 

dimers that are coded for by the nijD and nijK genes respectively, and contains a unique 

Fe/Mo-cofactor. The Mo-Fe protein reduces the N2 molecule and is then subsequently 

reduced by the Fe-protein, completing the cyclic process. 

In addition to the nifHDK genes, 17 other genes have been discovered in the 

nitrogenase gene cluster; the function of a number of these still remains unknown. Some 

of the additional genes of known function encode for protein cofactors or products 

necessary for the biosynthesis of inorganic cofactors, or proteins involved in electron 

transport (Dixon, 2004). The rest of the suite of nif genes with known functions include 
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those that code for regulators of transcription and translation of the nitrogenase complex, 

as well as the overall fixation process. The reduction of the dinitrogen molecules is an 

energetically costly process, requiring 16 ATP molecules and 8 reduced electron carriers 

per molecule of dinitrogen reduced, necessitating tight regulation of this process and the 

biosynthesis of associated enzymes (Tripplett, 2000). Expression of nitrogen regulating 

genes is tightly controlled at the transcriptional and post-transcriptional levels, and varies 

from species to species, often involving numerous genes on multiple operons (Merrick, 

2004). Global regulation of nitrogen metabolism is controlled by nitrogen regulatory 

proteins (Ntr) such as NtrC, B, L, rpoN (a54), GlnK and GlnD that interact either directly 

or indirectly with the nif operon. Additionally, both negative (niJL) and positive (nifA) 

regulators of transcription are present within the nif operon itself (Klipp, et al, 2004). 

Oxygen (02) and NH3 are two main factors influencing the expression of nif 

genes and nitrogen fixation (Tripplett, 2000). O2 irreversibly inactivates both the Fe and 

MoFe proteins, by oxidizing the metal-S cores of the proteins, releasing two sulfhydryl 

groups and one S2~ in the case of the Fe protein and S2", Mo, and Fe from the MoFe 

protein. In addition to inactivating the metal cofactor, this reduction of O2 also produces 

reactive oxygen species including hydrogen peroxide, superoxide radicals, and possibly 

singlet O2, which contribute to oxidative damage of the protein and other cellular 

components. Several electron carriers involved in nitrogen fixation such as ferredoxin can 

also be oxidized by O2 and produce superoxide radicals. O2 down regulates nitrogenase 

transcription when present, and is sensed by a flavin cofactor (FAD) on the NifL protein 

(Merrick, 2004). When O2 levels are high, the NifL protein suppresses NifA activity so 

that the synthesis of 02-sensitive nitrogenase is shut down at transcription. 
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Sufficient concentrations of NH3 obviate the need for nitrogen fixation. When 

NH3 is low, the NtrC protein is activated and promotes transcription of nifA, which in 

turn promotes transcription of the nif operon, enabling nitrogen fixation to occur. When 

NH3 is in excess and therefore nitrogen fixation is unnecessary, the activity of NtrC and 

NtrL proteins is inhibited, resulting in inhibition of nif transcription. The NifL protein is 

regulated by glnD and glnK gene products, while NtrC activity is regulated by NtrB (an 

enzyme that is both a kinase and phosphatase), which in turn, is regulated by the nitrogen 

status of the cell (Merrick, 2004). Regulation of the nif operon and other operons 

involved in nitrogen fixation is complex and can vary among species, and research into 

the genetics of nitrogen fixation has predominantly been conducted in free-living bacteria 

(Klipp, et a!., 2004), but there may be differences in symbiotic bacterial gene 

expression. To illustrate this point, a recent study on the well-known Azolla-

cyanobacteria symbiosis, collected the first molecular data on post-translational 

modification of NifH in a symbiotic system (Ekman, et al, 2008). They found two forms 

of NifH, a modified form which was likely inactive in the cyanobiont, and an 

unmodified active form. The concentration of the active form of the protein NifH was 

over 9 times higher in the cyanobiont than the free-living cyanobacteria, and NifK was 

also 2.5 times more abundant. This correlated very well with the observation of increased 

rates of fixation when the bacteria are in hospite as compared to free-living (Watanabe, 

1982). The mechanism for this post-translational modification appears to differ between 

symbiotic and free-living systems; the mechanism and the identity of the modification 

remain to be determined. 
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Protection of nitrogenase from oxygen 

The transcriptional and translational regulation of nitrogenase synthesis described 

above is important in regulating the process of nitrogen fixation. Many diazotrophs, 

however, currently live and have evolved in environments where O2 is present at 

atmospheric concentrations or under conditions where oxygenic phototrophs, such as 

cyanobacteria, evolve O2. Under such conditions nitrogenase can be quickly degraded 

which decreases, or stops, nitrogen fixation and requires the energetically expensive 

replacement of the proteins, so these organisms have evolved several strategies for 

protecting nitrogenase from O2. Broadly speaking these strategies involve reducing O2 

concentrations in the cell, conformational changes of the nitrogenase protein, or spatial or 

temporal separation of the fixation process from O2. In symbioses, the host, the symbiont, 

or both partners may contribute to the protection of nitrogenase from O2, often using the 

same basic mechanisms utilized by free-living diazotrophs or adapting them to life in 

hospite. Additionally, some hosts create protected microaerobic or anaerobic 

environments for their nitrogen-fixing symbionts, such as root nodules in legumes or the 

gut in termites (Breznak, 1982, Udvardi & Day, 1997). 

Reducing the concentration of O2 in the cell is a common O2 protection strategy 

and can be achieved by a variety of mechanisms. Aerobic respiration both scavenges O2 

and produces ATP and reductant that can be used in nitrogen fixation (Hochman & 

Burris, 1981). Hydrogenase enzymes are present in all aerobic nitrogen-fixing organisms 

(Fay, 1992), and oxidize the H2 produced by nitrogenase in the oxyhydrogen or Knalgas 

reaction, thereby removing an inhibitor of nitrogen fixation (H2) (Mortenson, 1978), 

conserving reducing power, and consuming O2. Antioxidants such as catalase, 
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peroxidase, and particularly superoxide dismutase play important roles in reducing the 

concentration of reactive oxygen species (ROS) that are produced during photosynthesis 

and aerobic respiration, and can inactivate nitrogenase in addition to damaging other 

cellular components (Fay, 1992). 

Nitrogenase can be protected from the damaging effects of O2 by temporarily 

"shutting off and associating with a 2Fe-2S protein (Shetna's protein), (Scherings, et al, 

1977, Scherings, et al., 1983). This mechanism has been studied in Azotobacter spp.; in 

this system the 2Fe-2S protein oxidizes the Fe protein (encoded by niJH), and an oxygen-

tolerant complex containing the oxidized Fe protein, the Mo-Fe protein, and the 2Fe-2S 

protein is formed. Although this complex has not been directly observed in diazotrophs 

other than Azotobacter, results from other studies imply that a similar mechanism may 

exist in the cyanobacteria Oscillatoria sp. (Stal & Krumbein, 1985) andAnabaena sp. 

(Pienkos, etal, 1983). 

Spatial separation of nitrogen fixation from O2 is accomplished in several ways. 

Organisms may live in environments such as sediments that are anoxic or microaerobic. 

Additionally, some filamentous cyanobacteria form specialized cells (heterocysts) for 

nitrogen fixation, which have thick glycolipid layers that limit the diffusion of O2 into the 

cells (Thiel, 2004). Differentiation of heterocysts is a highly complex and tightly 

regulated process, and only occurs during nitrogen starvation (Wolk, etal., 1994). One of 

the drawbacks of heterocysts is their high metabolic cost; their maximum frequency in a 

filament of cells is only about 25%, and it is estimated that about 4-5 vegetative cells are 

required to support each heterocyst with reductant and carbon skeletons for assimilation 

of nitrogen (Thiel, 2004). Some symbiotic diazotrophs, such as the cyanobiont of Azolla, 
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also form heterocysts (Gebhardt & Nierzwicki-Baauer, 1991). It is presumed that the host 

provides some metabolic support or regulatory cues, or both, because heterocysts occur 

with much greater frequency in symbiosis than in the free-living state (Adams, 2000). 

Other diazotrophs utilize a temporal separation of nitrogen fixation from oxygenic 

photosynthesis. In free-living cyanobacteria, nitrogen fixation typically occurs at night in 

non-specialized, photosynthe tic ally competent cells (Bergman, etal, 1997). For most of 

the cyanobacteria in which these patterns have been studied the cycles of photosynthesis 

and nitrogen fixation are endogenous and persist even under constant environmental 

regimes (Bergman, etal, 1997). Temporal separation was also documented in the 

symbiotic diazotrophs of a scleractinian coral. Cyanobacterial symbionts of the coral 

Montastraea cavernosa display higher fixation rates in early morning and in the evening, 

when O2 concentrations in coral host tissue are lower, and are likely utilizing products of 

photosynthesis as an energy source (Lesser, et al., 2007). Because of the complexity of 

the processes of nitrogen fixation and photosynthesis, many possible mechanisms exist 

for control and separation; in symbiotic lifestyles, this gives both host and symbiont 

many methods of regulation and cooperation. 

A small number of free-living cyanobacterial species use a combination of spatial 

and temporal separation to protect nitrogenase from O2. The most notable of these is 

Trichodesmium, a non-heterocystous marine filamentous cyanobacterium that fixes 

nitrogen during daylight hours in a small number of cells that contain nitrogenase 

(Bergman & Carpenter, 1991, Janson, et al., 1994). Although nitrogen fixation is 

localized, these cells differ from heterocysts in that they appear to contain all the 

necessary photosynthetic machinery and are otherwise undifferentiated. Maximal 
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nitrogen fixation occurs in the middle of the light period, when quantum yields of 

chlorophyll fluorescence are low and carbon fixation decreases transiently, effectively 

separating the periods of highest nitrogen fixation and O2 evolution (Berman-Frank, et 

al., 2001). Although neither the spatial nor temporal separation in Trichodesmium is very 

efficient independently, in combination they allow nitrogen fixation to take place. The 

use of both temporal and spatial separation as in Trichodesmium presents another 

mechanism that could be at work in symbiotic nitrogen fixation associations, though it 

has yet to be reported. 

Newly discovered UCYN-A cyanobacteria have eliminated the conflict between 

photosynthesis and nitrogen fixation by living photoheterotrophically (Bothe, et al, 

2010). These diazotrophs do not possess the 02-evolving Photosystem II but are able to 

generate energy from light through cyclic photophosphorylation, enabling them to have 

maximal nifH transcript expression during daylight hours. UCYN-A is the only group 

currently known with this lifestyle, and they are found exclusively in the open ocean; 

however, other undiscovered diazotrophs in other environments may use the same 

strategy. 

When are nitrogen-fixing symbionts advantageous? 

The ability to fix nitrogen, either endogenously or via a symbiont, allows 

organisms to escape ecological limitations in a variety of habitats. Organisms may be 

able to expand their spatial niches into low-nutrient environments, or their dietary niches 

to resources that have low combined nitrogen content, and can thus reduce competition or 

gain a competitive advantage. Organisms harboring symbiotic diazotrophs in mutualisms 
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with highly evolved mechanisms for the efficient transfer of fixed nitrogen products are 

potentially more likely to gain these benefits. 

Nitrogen-fixing organisms are ubiquitous in aquatic and terrestrial environments 

with limited inorganic nitrogen resources (Zehr, et al., 2000, Vitousek, et al, 2002). 

Lichens may be the best terrestrial example; they are common not only in desert soil 

crusts (Eskew & Ting, 1978, Belnap, 2002), but also on rocks (Seneviratne & Indrasena, 

2006) and lava flows, where they help create soil and begin the process of primary 

ecological succession (Crews, et al, 2001, Kurina & Vitousek, 2001). In all of these 

environments, both competitors and predators are scarce or absent. Similarly, the 

associations between higher plants and rhizobia (e.g., in legumes) allow these plants to 

thrive even in nitrogen-poor soils, a clear advantage over their competitors. Coral reefs 

are a marine ecosystem where it is advantageous to host nitrogen-fixing symbionts. The 

growth and high productivity of coral reefs in these oligotrophic waters has been seen as 

a paradox since Darwin's voyage on the Beagle. It is now believed that both predation on 

plankton (Hamner, 1995, Hamner, 2007), which transforms the nitrogen content of the 

prey into predator biomass; and nitrogen fixation, coupled with efficient nutrient cycling, 

on and around reefs contribute significantly to the nitrogen requirements of reefs (Webb, 

et al, 1975). Diazotrophs are common in the water column (Hewson, et al, 2007), on the 

substrate (Larkum, et al., 1988, Charpy, et al., 2007), and in associations with 

invertebrates such as sponges (Mohamed, et al, 2008), corals (Lesser, et al, 2004) and 

possibly tunicates (Paerl, 1984, Odinstov, 1991). Other classically nitrogen-limited 

habitats include mid-ocean gyres; areas with low rates of water exchange, such as the 

Red Sea and the Persian Gulf; and places where there is strong seasonal stratification of 
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the water column. In these habitats, high C:N ratios limit the growth of phytoplankton, 

with the exception of nitrogen-fixing species, such as Trichodesmium spp., which 

commonly form large blooms (Sellner, 1997), and various diatoms which host nitrogen-

fixing symbionts (Foster & Zehr, 2006, Foster, et al, 2009). The abundance of these 

organisms and the large contribution they make to the nitrogen budget (Carpenter & 

Romans, 1991, Zehr, et al., 2000) of the ocean clearly illustrate the ecological advantages 

of nitrogen fixation in an open ocean environment. 

Environments that are nitrogen sufficient overall may still contain food sources 

that are nitrogen-poor and organisms that can subsist on these resources occupy a less 

competitive dietary niche. Wood-eating termites, which harbor symbiotic diazotrophs in 

their guts, are a typical terrestrial example (Breznak, 1982). Nitrogen-fixing microbes of 

various types are present in the guts of many other arthropods as well (Kim, et al., 2001, 

Lilburn, et al., 2001, Nardi, et al., 2002). Like termites, marine shipworms also consume 

wood, which has a very high C:N ratio, as a primary food source. They harbor dense 

cultures of nitrogen-fixing bacteria in a specialized organ called the gland of Deshayes 

(Waterbury, et al., 1983), which provide the host with fixed nitrogen and allow the 

shipworm to survive on a wood diet (Luyten, et al, 2006, Lechene, et al, 2007). 

Diazotrophic symbionts can also allow their hosts to adapt to fluctuating food 

resources. Herbivorous sea urchins in temperate regions consume kelps and other 

seaweeds in which nitrogen content varies seasonally, and the diazotrophic bacteria in 

their guts regulate nitrogen fixation accordingly to supply sufficient nitrogen resources to 

the urchin year round (Guerinot & Patriquin, 1981). 
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Marine nitrogen-fixing svmbioses 

The advantages of hosting diazotrophic symbionts are clear, but specifics such as 

the degree of integration between host and symbiont physiologies, transmission of 

symbionts, and significance of nutrient fluxes to hosts and/or symbionts vary from 

species to species. For some of the more well studied marine symbiotic systems such as 

shipworms, sea urchins, diatoms and dinoflagellates, as well as reef building corals and 

sponges some or all of these aspects of the symbiotic system are known. 

Shipworms 

The wood boring mollusks of the family Teredinidae, commonly known as 

shipworms, have caused significant destruction of man-made wooden structures placed in 

the ocean. Referred to as the termites of the sea, these mollusks bore holes in wood and 

utilize the cellulose as their sole nutrient source (Distel, 2003). Woody plants contain 

only 0.03% to 0.1% nitrogen, thus these shipworms require an additional source of 

nitrogen to supplement their diet. Acetylene reduction assays of three species, 

Psiloteredo megotar, Lyodrus pedicellatus, and Teredo navalis, revealed that the 

shipworms benefit from microbially fixed nitrogen (Carpenter & Culliney, 1975). For 

these three species, fixation rates were inversely correlated with dry weight, with higher 

fixation rates for juveniles when compared to the adults. This difference was attributed to 

juveniles having small gills making them inefficient filter feeders, and T. navalis 

collected from the oligotrophic Sargasso Sea exhibited a fixation rate 20 times higher 

compared to the other species which were found only in coastal habitats. The higher 

fixation rates for the juveniles and Sargasso Sea samples indicates that the symbiotic 
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bacteria are able to adjust their nitrogen contribution to the system depending on the 

host's nitrogen deficiency (Carpenter & Culliney, 1975). A recent study utilizing multi-

isotope imaging mass spectrometry (MIMS) in Lyrodus pedicellatus directly 

demonstrated that the symbiotic bacteria were fixing nitrogen, which was transferred to 

the host cells (Lechene, et al., 2007). 

Characterization of the symbionts was first conducted on cultured isolates. Axenic 

cultures of nitrogen-fixing bacteria (family Spirillaceae) isolated from the cecum of I. 

pedicellatus fix nitrogen anaerobically, but are also capable of aerobic growth (Carpenter 

& Culliney, 1975). Further analysis of this symbiosis was based on isolates obtained from 

five additional species of shipworms: Bankia gouldi, T. naval is, Teredo furcifera, Teredo 

bartischi,and Psiloteredo healdi. The symbionts identified were endosymbiotic, residing 

within bacteriocytes in the host gill tissue. The same isolate was obtained from all six 

species and was not only capable of nitrogen fixation but also possessed cellulolytic 

activity. The ability of the symbiotic bacteria to digest cellulose indicates an additional 

host derived benefit of the symbiosis: the bacteria assist in the digestion of the host's sole 

food source (Waterbury, et al., 1983). 

Ribotype analysis of the symbionts resulted in the description of a novel genus of 

g-proteobacteria named Teredinibacter, with the original isolate given the species name 

turnerae (Distel, et al, 1991, Distel, et al., 2002). Additional symbionts within this genus 

have been identified and all host bacteriocytes contain a single dominant symbiont 

ribotype, as well as a second less abundant ribotype (Distel, et al., 1991, Distel, et al., 

2002, Luyten, et al., 2006). Although multiple symbionts were identified in this work the 

functional role of each is unknown. The nitrogen fixation rate was found to vary between 
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bacterial types within the bacteriocytes, indicating the potential for individual ribotypes 

to contribute different amounts to the total fixed nitrogen (Lechene, et al, 2007). It is 

also speculated that the presence of multiple symbionts allows the host to digest multiple 

wood types or produce various celluolytic enymes (Distel, et al, 2002). 

Investigations into the transmission of symbionts in teredinids indicate they may 

have the ability to acquire symbionts both vertically and horizontally (Sipe, et al, 

2000). Symbionts have yet to be cultured from juvenile shipworms, and the bacteria 

appear well suited to a free-living life style, implying a horizontal mode of transmission 

for a number of species (Greene & Freer, 1986, Imam, etal, 1990). However, a PCR 

based investigation of the species Bankia setacea revealed a novel species within the 

Teredinibacter genus as well as its presence in host eggs and ovaries, indicating vertical 

transmission (Sipe, et al, 2000). 

It is unclear if the bacterial associates of shipworms are obligately symbiotic. The 

genome of T. turnerae does not have the features typically seen in obligate symbionts 

such as reduced genome size or loss of % G + C content, and in fact has many features in 

common with genomes of free-living bacteria, such as a large repertoire of genes for the 

production of secondary metabolites and protection from bacteriophage (Yang, et al, 

2009). This would suggest that T. turnerae is a facultative endosymbiont that was 

recently or is currently existing in a free-living state. Yet, recent molecular evidence 

strongly suggests that wood-eating bivalves are monophyletic and arose at approximately 

the same time that bacterial symbionts were acquired, then subsequently diversified into 

shallow and deep water lineages (Distel, et al, 2011). Co-evolution of nitrogen-fixing 

bacteria with shipworm hosts would tend to suggest that this relationship is closer and 
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more obligate than previously assumed, and has certainly opened niches to shipworms 

and facilitated their evolutionary success. 

Sea Urchins 

Another type of marine organism that has evolved a symbiotic association with 

nitrogen-fixing bacteria due to nitrogen limitation in its diet are some species of sea 

urchins. Nitrogen-fixing bacteria associated with sea urchins occur worldwide and in 

multiple urchin species, though the presence and abundance of the symbionts varies 

depending on season, and food being consumed by the host. The urchin 

Strongylocentrotus droebachiensis contains nitrogen-fixing symbionts in its intestinal 

tract, but only in individuals that are fed on kelp, which is a nitrogen deficient food 

source in the late spring and summer when it is primarily consumed (Guerinot, et ah, 

1977). Further investigation using multiple species or urchins from different habitats 

(Nova Scotia kelp bed; Barbados eelgrass, rocks, and shallow reef; and Canada 

Northwest territory shallow water) found a significant inverse relationship between kelp 

nitrogen content and urchin nitrogenase activity (Guerinot & Patriquin, 1981), and a 

similar relationship for eelgrass. Nitrogen fixation in tropical urchins was highly variable, 

probably as a result of the differences in diet; Tripneustes ventricosus had the highest 

fixation rates and feeds on eelgrass which has low nitrogen content, while Diadema 

antillarum and Echinometra lacunter had much lower fixation rates and feed on coral 

polyps, encrusting algae, diatoms and macroalgae, which have comparatively higher 

levels of nitrogen. Variation within the temperate urchins was also observed and 
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appeared to fluctuate in response to the level of nitrogen in the food source. Up to 5-fold 

seasonal fluctuations in the nitrogen content of kelp were documented. Correspondingly, 

seasonal variation in fixation rates in urchins suggested that in the summer and fall when 

nitrogen content of kelp is low, nitrogen fixation could be an important source of 

nutrients. Nitrogenase may be suppressed by metabolic products, because some urchins 

that tested negative for nitrogen fixation still contained nitrogen-fixing bacteria (Guerinot 

& Patriquin, 1981). The nitrogen-fixing bacteria appeared to reside specifically in the gut 

and were identified as Vibrio spp. based on cultures, but were not molecularly identified. 

Nitrogen-fixing bacteria may be environmentally acquired by sea urchins, but 

their normal mode of transmission is currently unknown. Transmission of nitrogen fixing 

bacteria was initially investigated using feeding experiments in S. droebachiensis 

(Guerinot & Patriquin, 1981, Guerinot & Patriquin, 1981). Groups of urchins were 

starved for three months and nitrogen fixation rates and bacterial counts were 

quantified. These urchins were then fed kelp or placed in tanks of filtered seawater with 

antibiotics, followed by putting the urchins in unfiltered seawater and providing kelp 

again. The kelp-fed group of urchins was initially negative for nitrogen fixation activity 

and only low numbers of nitrogen-fixing bacteria were present in the gut, however, after 

two weeks of being fed excess kelp, nitrogen fixation was observed and these urchins 

contained significantly higher numbers of nitrogen-fixing bacteria. Urchins exposed to 

antibiotics did not exhibit measurable rates of nitrogen fixation and no nitrogen-fixing 

bacteria were detected. Urchins from the antibiotic treated seawater that were placed in 

seawater with no antibiotics and fed kelp started to exhibit nitrogen fixation activity, and 

nitrogen-fixing bacteria were detected after 18 days. While the described experiments 
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indicate there is environmental acquisition of nitrogen-fixing bacteria by the urchin S. 

droebachiensis, there has been no documentation of vertical transmission for this 

system. Additionally, there is little information on the diversity of these symbionts, which 

could easily be assessed using molecular techniques, and is thus a potential topic for 

future investigations into this system, particularly given the commercial and ecological 

importance of many urchin species. 

Dinoflagellates 

The unicellular protists, diatoms and dinoflagellates, often inhabit nutrient poor 

ecosystems such as mid ocean gyres and thus symbiotic associations with nitrogen-fixing 

bacteria are potentially advantageous. Blooms of dinoflagellates and diatoms can often be 

detected remotely from space and due to their high abundance they play an important role 

in nutrient cycling in oceanic and freshwater systems. Many of these planktonic protists 

harbor symbiotic cyanobacteria and the association can vary from endosymbiont to 

epibiont. The heterotrophic dinoflagellates Ornithocercus, Histioneis and Citharistes 

have cyanobacterial symbionts of the genera Synechococcus and Synechocystis, which 

reside within the horizontal groove in Ornithocercus and Histioneis and in a special 

chamber within the cells in Citharistes (Gordon, et al., 1994). Ornithocercus sp. also 

commonly host large unpigmented bacterial cells as epibionts. 

Gordon et al. (1994) proposed that the hosts are likely receiving fixed nitrogen 

and fixed carbon from the symbionts, providing the host species with an advantage over 

other heterotrophic plankton during times of nutrient limitation. This hypothesis is 

supported by the spatial and temporal distribution of these dinoflagellates, which is 
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correlated with ambient nutrient levels. They are common in surface waters of tropical 

and subtropical seas, and their abundance fluctuates seasonally in the Gulf of Aqaba's 

surface waters, peaking during the autumn when stratification and nutrient limitation are 

high (Gordon, et ah, 1994). Populations are homogeneous throughout their depth of 

occurrence in early spring following winter mixing, but their numbers increase in surface 

waters when summer stratification begins and peak in the fall when nitrate levels at the 

surface reach their lowest concentration (Gordon, et ah, 1994). Similarly, symbiotic 

associations of cyanobacteria and dinoflagellates in the Bay of Bengal were more 

common in the spring intermonsoon period than during the summer and winter monsoon; 

the spring intermonsoon is also a period of nitrate limitation in surface waters 

(Jyothibabu, et ah, 2006). O2 levels in the seawater are also high at this time, thus the 

host may provide a unique low O2 environment for nitrogen fixation (Gordon, et al., 

1994, Jyothibabu, et ah, 2006). 

Early investigations of Ornithocercus magnificus and O. steinii detected no 

nitrogen fixation using the acetylene reduction method, but noted that carbon transport 

between the symbionts and host was still possible (Janson, et ah, 1995). Foster and others 

found several different morphotypes of cyanobacteria and other bacteria associated with 

Ornithocercus and Histioneis depressa, some of which were expressing nitrogenase as 

indicated by immunolabeling (Foster, et ah, 2006). Recent work by Farnelid and others 

suggests that non-cyanobacterial symbionts are likely responsible for most of the nitrogen 

fixation observed in intact symbioses of Ornithocercus and Amphisolenia (which hosts 

photosynthetic eukaryotie endosymbionts) (Farnelid, et ah, 2010). Nitrogenase (nifH) 

sequences were amplified from 62% of single-cell specimens, but only 2 of these 21 
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sequences were cyanobacterial in origin; the rest were from diverse heterotrophic bacteria 

and included representatives from ni/H Clusters I, II, and III, as well as a putative new 

cluster. Thus, they proposed that the cyanobacteria are photobionts, and perform a 

photosynthetic rather than a diazotrophic function. The presence of cyanobiont-like 

particles in food vacuoles of Ornithocercus may mean that hosts derive nutrition from 

symbionts by digesting them (Tarangkoon, et al., 2010). 

Diatoms 

Diatoms, another common member of the phytoplankton community, are well 

documented hosts of cyanobacterial symbionts in both aquatic and marine habitats, but 

nitrogen fixation has only been investigated in a few species. The best known of these is 

Rhopalodia gibba, found in freshwater, in which each cell contains 1 to 10 vertically 

transmitted spheroid bodies capable of nitrogen fixation (Geitler, 1977, DeYoe, et al., 

1992, Prechtl, et al., 2004). The spheroid bodies are cyanobacteria-like but do not contain 

chlorophyll or phycyoerythrin, so they are incapable of performing photosynthesis and 

are obligately dependent on the host. They are closely related to UCYN-A, a newly 

discovered group of free-living photoheterotrophic cyanobacteria that fix nitrogen but 

lack the oxygenic Photosystem II (Bothe, et al., 2010). Several studies have demonstrated 

that the assocation of spheroid bodies with Rhopalodia is a highly developed and 

evolutionarily old symbiosis. The genome of the spheroid bodies is greatly reduced in 

size compared to free-living cyanobacterial relatives, and shares many features with the 

genomes of mitochondria and chloroplasts (Kneip, et al., 2008). Analysis of the small 

subunit ribosomal DNA of the host and spheroid bodies showed parallel phylogenies and 
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indicated that symbionts were acquired by a common ancestor approximately 12 million 

years ago and retained as the host lineage diversified (Nakayama, et al, 2011). The 

spheroid bodies are now classified as organelles and commonly used as a model system 

to study the evolution and acquisition of organelles, as they are evolutionarily much 

younger than plastids or mitochondria (Bothe, et al., 2010, Nakayama, et al., 2011). 

Several genera of marine diatoms also harbor cyanobacterial symbionts. 

Hemiaulus sp. and Rhizosolenia host the heterocystous Richelia intracellularis, 

Chaetoceros associates with extracelluar Calothrix cyanobacteria, and the symbiont of 

Climacodium frauenfeldianum has been indentified as Crocosphaera watsonii (Janson, et 

al., 1999, Carpenter & Janson, 2000, Foster, et al., 2011). Nitrogen fixation was 

demonstrated for Richelia associated with Hemiaulus via acetylene reduction (Carpenter, 

et al., 1999), and precise fixation and growth rates for both intact associations and free-

living symbionts were determined by Foster and others for the hosts Hemiaulus, 

Chaetoceros, and Climacodium; and the symbionts Calothrix, Richelia, and 

Crocosphaera (Foster, et al., 2011). These symbioses appear to be both specific and 

mutually beneficial. Richelia spp. are monophyletic and only distantly related to other 

cyanobacterial endosymbionts, but the hetR gene (involved in heterocyst differentiation) 

sequences differed in Richelia associated with different host genera, indicating a high 

degree of host specificity (Janson, etal., 1999). This specificity also suggests that 

symbionts may be vertically transmitted. Diatoms and cyanobacteria have higher growth 

rates in symbiosis than apart, and diatom hosts appear to influence the metabolism and 

growth of the symbionts, because Richelia fixed 81-744% more N than required for its 

own growth when grown with a host. Fixed nitrogen is transferred to the host on a 
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timescale of minutes to hours, but the mechanism of transfer and the identity of the 

product transferred remain unknown. 

Diatom symbioses make large contributions to the nitrogen budget of the 

ecosystems in which they are found, particularly under bloom conditions. Blooms of 

Richelia intracellularis associated with Hemiaulus hauckii are responsible for 89-100% 

of nitrogen fixation in the western tropical North Atlantic when they are present (Foster, 

et al., 2007), and the same symbiont hosted by Rhizosolenia contributes 35 - 48% of 

nitrogen fixation in the Gulf of California, and 40-70% in the Mediterranean Sea. Foster 

et al estimated that symbiotic diatom populations may be an equally important source of 

fixed nitrogen as Trichodesmium on an ocean basin scale (Foster, et al., 2011). 

Corals 

Coral reefs provide an opportunity to study relatively newly discovered 

associations between nitrogen-fixing bacteria and hosts such as corals and sponges that 

provide important ecosystem services (Moberg & Folke, 1999). These symbioses have 

allowed hosts to be ecologically successful despite the low combined nitrogen of these 

tropical coastal environments. Nitrogen-fixing bacteria have been hypothesized to be 

symbionts of reef building corals since Williams et al. identified nitrogen fixation in the 

skeleton of Acropora variabilis (Williams, et al., 1987). This preliminary research did not 

investigate the diversity of symbionts or whether the host or symbiont gained any benefit 

from the association. However, based on the results from light/dark acetylene reduction 

assays it was hypothesized that the symbionts were photosynthetic cyanobacteria 

(Williams, et al., 1987). Similarly, Odinstov observed nitrogenase activity in the 
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hydrocoral Millepora and zooxanthellae, unicellular green algae and bacteria were noted 

in the skeleton as well as the tissue (Odinstov, et al., 1987). It was not clear, however, 

which member of the consortium was fixing nitrogen or how similar this association 

might be to that of hermatypic corals. Further investigation into the coral-diazotroph 

symbiosis identified nitrogen-fixing bacteria of the class y-proteobacteria associated with 

the skelton of Favia favus (Shashar, et al., 1994), which displayed higher rates of fixation 

under illumination, and with exposure to glucose-enriched seawater. These results 

indicate that the nitrogen-fixing bacteria are utilizing glucose from either the host or algal 

co-symbiont as an energy source, implicating a potential benefit for the symbionts in this 

relationship. Vibrio spp. capable of nitrogen fixation (as measured by acetylene 

reduction) have also been cultured on nitrogen-free media from the mucus of Mussimilia 

hispida from Brazil (Chimetto, et al., 2008). 

Microbial communities associated with corals are highly diverse and dynamic, 

and include many possible nitrogen-fixing bacteria (Rohwer, et al., 2002, Wegley, et al., 

2007, Vega Thurber, et al., 2009). Metagenomic analyses found representatives from 

nitrogen-fixing bacterial lineages, as well as sequences coding for nitrogenase proteins 

(Wegley, et al., 2007, Vega Thurber, et al, 2009). However, it was not until 2004 that an 

endosymbiotic nitrogen-fixing bacteria symbiont was conclusively identified (Lesser, et 

al., 2004). The cyanobacterial symbionts transfer fixed nitrogen to the coral's algal 

symbionts, and fixed carbon in the form of glycerol has been hypothesized to be respired 

by the cyanobacteria to provide energy for nitrogen fixation (Lesser, et al., 2007). The 

cyanobacteria cannot meet their energetic requirements with photosynthesis as more than 

80% of Photosystem II units are uncoupled from photochemistry. Thus, the cyanobacteria 
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likely respire the glycerol to meet their energetic requirements, thereby increasing the 

total respiration of the coral colony, which may account for observed lower net 

photosynthesis rates in colonies with cyanobacteria (Lesser, et al., 2007). Initial analysis 

of the bacterial diversity for this system indicated that this symbiosis is comprised of a 

single cyanobacterial species (Lesser et al. 2004), but newer results from deep 

sequencing of 16s rRNA genes show that the cyanobacterial population is diverse (Jarett, 

unpublished). Morphologically similar cyanobacteria have been observed in multiple 

samples of Acropora cytherea from the Great Barrier Reef, but were not investigated 

further (Kvennefors & Roff, 2009). Nitrogen-fixing cyanobacteria and proteobacteria 

have been observed in close association with tissue of the Hawaiian corals Montipora 

capitata and Montipora flabellata. The benefits to each partner in these symbioses as 

well as whether the bacteria are endo- or epibionts remains unknown; however, a 

correlation was found between Vibrionaceae nifH transcript number and algal symbiont 

abundance for M. capitata, suggesting a close relationship (Olson, et al, 2009). A diverse 

community of bacteria were identified but a conserved phylogenetic cluster of bacteria in 

the Vibrionacea family were found only in association with M. capitata, and a less 

conserved cluster of g-proteobacteria were only associated with M. flabellata. This 

symbiont specificity may indicate coevolved, highly specific, symbiotic associations. 

For most of these associations, it is unknown if there is direct transfer of fixed 

nitrogen to the coral, if the symbiosis is a mutualism, parasitism, or neither, or even how 

widespread this symbiosis is among coral taxa and how this impacts the health and 

growth of the coral host. Whether symbionts are acquired by horizontal or vertical 

transmission is also largely unknown. For tissue-associated microbes in particular, the 
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transmission of photosynthetic dinoflagellate symbionts of reef-building corals may offer 

clues. Symbiodinium are transmitted both vertically and horizontally, but vertical 

transmission appears to create or facilitate more specific symbioses (Stat, et al., 2008), 

and is more common in areas geographically isolated from other reefs, such as Hawai'i 

(LaJeunesse, et al., 2004). The diversity of nitrogen-fixing bacteria that have been 

identified with different coral species indicates the potential for a range of types of 

symbiotic associations between the coral host, its alga, and nitrogen-fixing symbionts. 

Sponges 

Microbial nitrogen transformations have also been observed in sponges, another 

prominent coral reef organism. Sponges are an important component in reef ecosystems 

as they consolidate rubble, have high biodiversity and biomass, and influence 

constituents of the surrounding water (Reiswig, 1973, Diaz & Rutzler, 2001, Taylor, et 

al, 2007). Many sponges, termed bacteriosponges or high microbial abundance (HMA) 

sponges, contain high densities of diverse bacteria, a large fraction of which are 

metabolically active (Kamke, et al, 2010) and have been shown to be important in 

nitrogen cycling. 

All nitrogen transformations have been observed in sponges, although not all 

occur in the same sponge. The ability of sponges to control their pumping rates allows 

them to control the oxygen content of their tissues and influence the metabolism of 

associated bacteria, such that both aerobic and anaerobic processes can occur in the same 

sponge. Denitrification, anammox and nitrification were conclusively observed in the 
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cold water sponge Geodia baretti (Hoffmann, et al., 2009), while nitrification and 

nitrogen fixation have been documented in multiple studies on sponges (Wilkinson & 

Fay, 1979, Southwell, et al., 2008). Surprisingly, even low microbial abundance (LMA) 

sponges have been shown to have high rates of nitrification and denitrification, despite 

their much smaller bacterial populations (Schlappy, etal., 2009). 

The association of nitrogen-fixing bacteria with sponges was first noted by 

Wilkinson and Fay (1979) using the acetylene reduction assay on sponges from the Red 

Sea. This activity was attributed to cyanobacteria because the sponges that tested positive 

all contained cyanobacteria, while the sponge that tested negative contained no 

cyanobacteria. The acetylene reduction assay was also used to detect nitrogen fixation in 

the sponge Halichondria sp. from the coast of Taiwan (Shieh & Lin, 1994). However, it 

was found that 15N2 tracer studies were more reliable in the detection of nitrogen fixation 

(Wilkinson, et al, 1999) and stable isotope signatures (615N2) have since been used to 

screen sponges that may harbor nitrogen-fixing bacteria (Mohamed, et al., 2008). 

Mohamed et al (2008) used molecular genetic technqiues to examine nitrogen fixation in 

sponges from the Florida Keys. Diverse nifH sequences from a- and y-proteobacteria, 

cyanobacteria, and Desulfovibrio spp. were detected in sponges that exhibited low d15N2 

values indicative of nitrogen fixation (Ircinia strobilina and Mycale laxissma). While 

nitrogen fixation in sponges was first attributed to cyanobacteria, heterotrophic bacteria 

such as Vibronaceae species are also associated with this process (Shieh & Lin, 1994). 

Expression of nifH was only detected from cyanobacteria by Mohamed et al, which was 

attributed to sampling during daylight hours; expression of nifH by other bacteria may 
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take place at other times. Most of the sequences obtained from the sponge samples were 

novel and were not observed in the water column. 

There are many indications that the association of microbes, including 

diazotrophs, with sponges is a highly evolved relationship. Many of the microbial 

lineages occur only in sponges (Simister, et al., 2011), and some groups are genus- or 

species-specific (Montalvo & Hill, 2011), with closely related sponges hosting very 

similar communities even if they are geographically very distant (Montalvo & Hill, 

2011). This specificity may be enabled by vertical transmission. Some sponge gametes or 

larvae harbor a single bacterial species or a complex assemblage, including 

Cyanobacteria, Proteobacteria, Actinobacteria, Bacteroidetes, and Planctomycetes (Oren, 

et al., 2005, Usher, et al., 2005). Much of this information has been based on electron 

microscopy, which provides visual confirmation of the microbial community but 

generally does not provide phylogenetic or metabolic information. Recent studies using 

16s rRNA identified bacteria in the larvae and gametes of sponges (Steindler, et al., 

2005), however, analysis of functional genes such as nifH is needed to determine if 

nitrogen-fixing bacteria are transmitted vertically and if fixation is occurring in the 

larvae. The morphological and physiological differences between LMA and HMA 

sponges indicate that symbiotic microbes may have influenced the evolution of sponges 

(Weisz, et al, 2008). LMA sponges are adapted to filter large quantities of water in order 

to acquire as much particulate organic matter as possible. HMA sponges are more dense, 

and have more complex internal morphology that increases the surface area inside the 

sponge and maximizes the contact time with water. Along with their slower pumping 

rates, this allows HMA sponges to create steep concentration gradients within their 
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tissues and fosters the growth of dense and diverse microbial communities (Weisz, et al., 

2008). The bacteria in these symbioses presumably benefit from the availability of a 

suitable habitat, whereas the sponges benefit from the transfer of fixed nitrogen (Freeman 

& Thacker, 2011). Little is known about how nitrogen is transferred to the host or in what 

form (Wilkinson, et al., 1999). Despite the wealth of knowledge about sponge-associated 

bacteria, relatively little is known about which bacteria are fixing nitrogen, how they are 

transmitted, how prevalent this symbiosis is, and how this affects nutrient cycling within 

the sponge and on the reef. 

The data from studying urchins as well as some of the other well studied 

symbiotic systems such as dinoflagellates, shipworms and plants indicate the main 

benefit to the host is receiving a source of fixed nitrogen, while the benefit to the 

symbionts, if these are mutualisms, is often less clear. As suggested by various studies 

the biggest advantage for the symbionts may be that the host provides a suitable 

microaerobic environment for the symbionts to fix nitrogen (Gordon, et al., 1994, 

Jyothibabu, et al., 2006). Many of the nitrogen-fixing bacteria are also photosynthetic and 

so the host may provide a suitable environment for this process as well, depending on 

where the bacteria are found on or within the host. In the corals, it has been speculated 

that the symbiotic cyanobacteria, because they are capable of minimal photosynthesis, are 

living heterotrophically and gain carbon in the form of glycerol from the host (Lesser, et 

al, 2007). Hosts appear to provide a safe refuge from predation, which may be an added 

benefit to these symbionts, however, more research into the specificity and evolution of 

these associations is needed before these questions can be answered. 
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Evolution and ecology of marine nitrogen fixing symbiosis 

Symbiotic associations between nitrogen-fixing bacteria and their eukaryotic 

hosts cover a continuum of symbiotic associations. These continua may be characterized 

in a number of ways three of which are: (1) spatial and temporal aspects of the 

association, (2) specificity of members involved, and (3) the necessity of the association 

to the individual members (Starr, 1975). 

The temporal and spatial continuum is apparent when looking at nitrogen fixing 

symbiosis involving diatoms and dinoflagellates. In the summer months when 

environmental biologically available nitrogen levels are low, diatoms and dinoflagellates 

are more abundant and more often associated with nitrogen-fixing symbionts 

(Jyothibabu, et al., 2006). There is also variation in symbiont location on and in the host 

in these symbiosis, wherein symbionts are sometimes found as epibionts and sometimes 

as endobionts as with the diatoms Chaetoceros spp. and Rhodophilia gibba respectively 

(Prechtl, et al., 2004, Foster & Zehr, 2006). 

The host and symbiont specificity of the association also varies among host 

species and may also fall along the commensal - mutualistic - parasitic 

continuum. Highly specific symbioses are generally considered more evolved symbiotic 

associations and are largely mutualistic in nature (Douglas, 1995). A high diversity of 

nitrogen-fixing bacteria are associated with tropical marine sponges with bacterial 

symbiont representatives from all major nitrogen-fixing bacterial taxonomic groups 

(Mohamed, et al, 2008). In contrast to this diverse symbiosis only a few bacterial 

symbiont types are present in marine shipworms (Distel, et al, 2002). For these 
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symbioses it is clear that the symbiosis is more evolved for shipworms when compared to 

that of sponges. 

The third continuum is the necessity of the symbiosis to the members 

involved. For some members the association is obligatory in that they are unable to 

survive aposymbiotically or in a free-living state. When examining the Montastraea 

cavernosa symbiosis a colony of an aposymbiotic host can be found neighboring a 

symbiotic host, indicating that this association, although perhaps beneficial to both host 

and/ or symbiont, is not obligatory (Lesser, et al., 2004). On the other end of the 

continuum is the intracellular spheroid body symbiont of the diatom Rhopalodia gibba 

where neither host nor symbiont has been observed or cultured without the presence of 

the other member of the association (Prechtl, et al, 2004). Where each of the individual 

marine nitrogen-fixing symbioses falls along these continua can reveal insight into the 

ecological and evolutionary aspects of these associations. Because of this, it is necessary 

to address gaps in our understanding of these symbioses in regards to their placement 

along these continua. 

Future research directions 

The paucity of knowledge about most marine nitrogen-fixing symbioses is 

important to recognize, and address, because we do not know the impact that these 

associations have on the ecology of either the hosts or of the larger ecosystems of which 

they are a part. The presence of symbiotic diazotrophs can raise fundamental questions 

about our understanding of their hosts. It is thought that the photosynthetic dinoflagellate 

symbionts of corals are nitrogen limited, and that this limitation controls their growth and 
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prevents them from multiplying faster than the host cells (Falkowski, et al., 

1993). However, in the Montastraea cavernosa/'cyanobacterial symbiosis, nitrogen fixed 

by the cyanobacteria is transferred to the dinoflagellates in quantities sufficient to 

generate a stable isotope signal consistent with the utilization of nitrogen fixation, but 

without causing a significant increase in zooxanthellae growth rates (Lesser, et al., 2007), 

challenging this classical understanding. 

On a larger scale, nitrogen budgets have been calculated for many ecosystems, but 

marine nitrogen budgets seldom take into account diazotrophic symbioses that appear to 

be uncommon. We do not yet know the magnitude of their contribution, but it may be 

substantial, particularly considering that many symbioses may remain undiscovered. For 

instance, sponges have not typically been considered major players in nitrogen cycling on 

coral reefs, but in light of recent studies (Mohamed, et al, 2008, Hoffmann, et al., 2009) 

this should be reconsidered. Similarly, the contributions of symbionts of dinoflagellates 

and diatoms have not always been considered in the estimation of global and oceanic 

nitrogen budgets, but new estimates of their nitrogen fixation rates clearly indicate that 

they should be included (Foster, et al., 2011). 

The potential impact of changing environmental conditions, such as 

eutrophication, ocean acidification, and climate change on these symbioses is also 

unknown. Biologically available nitrogen is often abundant in eutrophic areas; this could 

obviate the need for nitrogen fixation and make these symbioses between nitrogen fixing 

bacteria and a variety of hosts less common. Symbioses that are obligate for each 

partner, such as the Rhopalodia gibba and spheroid body partnership, might have greatly 

reduced fitness in such environments and perhaps be extirpated from these areas. High 
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atmospheric CO2 concentrations that cause ocean acidification increase nitrogen fixation 

rates in the free-living cyanobacterium Trichodesmium (Hutchins, et al., 2007, Levitan, et 

al., 2007), but living inside a host-mediated environment may impose different 

challenges and restrictions on symbionts, or none at all if the host buffers against these 

changes. Ocean acidification poses threats to calcifying organisms (Jokiel, et al., 2008, 

Doney, et al., 2009), some of which (shipworms, corals, sea urchins, and some sponges) 

are hosts to diazotrophic symbionts. Reductions in abundance or species richness of these 

hosts may lead to a loss of diversity in symbionts as well. Rising sea surface temperatures 

due to climate change also affect many of the host organisms discussed above or their 

other symbionts, particularly corals, sponges, and plankton (Hays, et al, 2005, Hoegh-

Guldberg, et al., 2007, Webster, et al., 2008). Future research should focus on three broad 

goals: (1) characterization of known symbioses, particularly with respect to nutrient and 

energy exchange between partners, to determine if relationships are mutualisms; (2) 

discovery of new diazotrophic symbioses; (3) describing the impacts of these symbioses 

on their respective hosts and the ecosystems of which they are a part. As our 

understanding of the ecology and physiology of these system increases so will our 

understanding of their global importance. 
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CHAPTER II 

METAGENETIC ANALYSIS OF THE PROKARYOTIC COMMUNITIES 
ASSOCIATED WITH BROWN AND ORANGE COLONIES OF THE CORAL 

MONTASTRAEA CAVERNOSA 

Introduction 

Microbial Communities Associated with Corals and Coral Reefs 

Microbes, both eukaryotes and prokaryotes, are responsible for many key 

processes and nutrient transformations on coral reefs, from photosynthesis to nitrogen 

cycling (Dinsdale, et al, 2008). While many of these microbes are free living in the water 

column or the benthos, others are associated with various host organisms such as algae 

(Barott, et al, 2011), sponges (Webster & Taylor, 2011), or corals (Rohwer, et al, 2002, 

Wegley, et al, 2007). Some are only loosely associated with their hosts, whereas others 

are integrated into obligate or facultative symbioses. Among the most important of these 

symbionts on coral reefs are the dinoflagellates Symbiodinium sp. that are associated with 

scleractinian corals and some other cnidarians (Freudenthal, 1962). The dinoflagellates 

perform photosynthesis and translocate much of the fixed carbon to the host, supporting 

growth, metabolism, and reproduction (Muscatine, 1967, Falkowski, et al, 1984). 

Although once considered a single panmictic species (Freudenthal, 1962), Symbiodinium 

are now known to be genetically diverse and the impact of different 'clades' or genotypes 

of Symbiodinium on the coral holobiont has been studied extensively. The presence of 

different clades in symbiosis with corals can affect their response to thermal and light 
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stress (Rowan, et al, 1997, Sampayo, et al, 2008, Howells, et al, 2012), growth (Little, 

et al., 2004), and possibly resistance to disease (Stat, et al., 2008, Correa, et al, 2009),. 

The study of other microbes, including Bacteria, Archaea, fungi, and viruses, 

associated with corals is a relatively new field. Initial studies revealed abundant and 

diverse communities of microbes (Rohwer, et al, 2002, Wegley, et al, 2004, Wegley, et 

al, 2007, Vega Thurber, et al, 2009) that are distinct from that of the water column 

(Rohwer, et al, 2002, Wegley, et al, 2004, Wegley, et al, 2007, Vega Thurber, et al, 

2009, Sunagawa, et al, 2010). Much of the initial research in this area focused on 

cataloging the full extent of diversity within these communities and describing 

biogeographic and temporal patterns. Using clone libraries and rarefaction curves, 

Rohwer et al. (2002) proposed that three species of Caribbean corals had approximately 

6,000 different bacterial operational taxonomic units (OTUs, roughly equivalent to 

species) associated with them. Later studies utilizing high-throughput sequencing 

technology (e.g., 454 pyrosequencing) yielded somewhat lower diversity estimates 

(Sunagawa, et al., 2010), although the absolute numbers in any study should be taken 

with some caution as PCR and sequencing error can greatly inflate diversity estimates in 

pyrosequencing data sets in particular (Quince, et al, 2009, Behnke, et al, 2011). Corals 

from different families have distinct prokaryotic communities; some associates are 

apparently species-specific, and taxa that are shared are often present at different levels of 

abundance (Rohwer, et al, 2002, Sunagawa, et al, 2010). More closely related coral 

species, however, have very similar prokaryotic communities, as Littman et al. (2009) 

found in three species of the genus Acropora from the Great Barrier Reef (GBR). Spatial 

differences have been investigated from the small scale, within a single coral colony, to a 
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regional scale, comparing geographic patterns. Corals are often described as being 

composed of several 'compartments,' namely the skeleton, coral tissue, and surface 

mucus layer, and the prokaryotes found in each compartment can differ (Sweet, et al., 

2010). Communities on outer tips can differ from those on the inner areas of branches in 

corals with diffuse morphology (Rohwer, et al, 2002), and even very closely spaced 

samples from colonies with less complex mounding morphologies show significant 

variability (Daniels, et al., 2011). Studies at larger spatial scales have found that corals 

have generally consistent bacterial communities, but the types that dominate can vary at 

different locations. Rohwer, et al. (2002) found very similar communities in the same 

coral species separated by 3000 km, whereas Littman, et al. (2009) found that the species 

dominating coral-associated communities were different in two locations on the GBR. 

Temporal stability in bacterial communities has been found in some studies but not 

others. Communities associated with Isopora palifera and in the water column in Taiwan 

change rapidly with the seasons (Chen, et al., 2011) and all but one of the dominant 

bacterial groups on Oculina patagonica in the Mediterranean are different in the summer 

and winter (Koren & Rosenberg, 2006). However, Acropora millepora bacterial 

assemblages on the central GBR are consistent throughout the year (Littman, et al., 

2009). These seemingly conflicting results may be explained by the magnitude of 

seasonal changes at the different study sites. Both the Mediterranean Sea and Taiwan are 

at higher latitudes than the central GBR, and experience large changes in temperature and 

rainfall in different seasons, which likely contributed to the seasonal differences in water 

column communities observed by Chen et al (2011). Variation in the water column 
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community may also affect the coral-associated community, but with the exception of 

Chen et al (2011) the water column was not sampled in these studies. 

The function of coral-associated microbial communities is also beginning to be 

explored, although much remains speculative or unknown. Many possible functions have 

been proposed based on what is known about the microenvironment of the coral 

holobiont, and the chemical and biological resources available there. Coral tissue and 

mucus layers experience large diel changes in oxygen concentrations, with hyperoxic 

conditions during the day and hypoxic or anoxic conditions during darkness (Dykens & 

Shick, 1982, Kuhl, et al., 1995). This enables both oxic and anoxic processes to take 

place in this environment, broadening the possible range of bacterial metabolism. Coral 

associated bacteria are thought to perform several steps in nitrogen cycling, including 

nitrogen fixation (Lesser, et al, 2004, Lesser, et al., 2007), and ammonia oxidation 

(Wegley, et al, 2007). Cycling of sulfur, particularly in the forms of 

dimethylsulfoniopropionate (DMSP) and dimethyl sulfide (DMS), is also an important 

process in coral microbial communities (Raina, et al., 2010). DMS and DMSP have been 

used as sole carbon sources in media to culture dominant bacterial types associated with 

Montipora and Acropora (Raina, et al., 2009). Coral-associated bacteria are also known 

to be prolific producers of antimicrobial compounds, which are postulated to play key 

roles in structuring the microbial community and protecting the coral host from invading 

or endogenous opportunistic pathogens (Ritchie, 2006, Rypien, et al., 2010). Multiple 

genes involved in the production of and resistance to antimicrobial compounds and 

toxins, as well as genes involved in virulence and the oxidative stress response, have been 
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found in metagenomes from healthy and stressed corals (Wegley, et al, 2007, Vega 

Thurber, et al, 2009). 

More recent research into coral-associated microbial communities has 

investigated the response to environmental stressors, disease, and the physiological 

condition of the coral host. Bacterial communities respond to several different 

environmental conditions, including water depth (a proxy for light) (Klaus, et al, 2007), 

nutrient and dissolved organic carbon concentrations (Klaus, et al., 2007, Vega Thurber, 

et al., 2009), pH (Meron, et al, 2011), and temperature (Ritchie, 2006, Vega Thurber, et 

al, 2009, Littman, et al., 2010). In addition to changing the composition of the 

community, there is evidence that the activity of the bacteria also changes with 

environmental conditions. Culturable bacteria associated with Montastraea annularis 

changed both their production of and resistance to antimicrobial compounds at 25° and 

31° C (Rypien, et al, 2010). Under environmental conditions that are considered stressful 

or detrimental for the coral host, the universal pattern of change in bacterial communities 

is increased abundance and activity of Vibrio spp. and other "disease-associated" groups, 

and an increase in genes associated with virulence (Bourne, et al, 2008, Vega Thurber, et 

al, 2009, Littman, et al, 2011). A key factor that seems to drive these changes is the 

physiological condition of the coral host. For example, Acropora millepora colonies that 

experience seasonal changes in water temperature of more than 10° C have stable 

bacterial communities throughout the year (Littman, et al, 2009). Despite this adaptive 

capacity, above-average temperatures, even if they are below the threshold for bleaching, 

stress the host and shift the microbial assemblages (Ritchie, 2006, Vega Thurber, et al., 

2009). Bacterial communities associated with corals harboring opportunistic or 'weedy' 
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Symbiodinium types that may not contribute as much fixed carbon to host metabolism 

(Stat, et al, 2008), particularly clade D, also exhibit much larger changes in response to 

thermal stress and greater abundances of Vibrio species (Littman, et al., 2009, Littman, et 

al, 2010). Interestingly, bacterial communities very similar to those found in diseased or 

stressed corals (Sunagawa, et al., 2009, Kimes, et al, 2010) are also found in sponges 

subjected to thermal stress, even though their normal microbial communities are different 

from those of corals (Webster, et al, 2008). It is clear that microbial communities in 

corals are structured by external environmental conditions, the physiological state of the 

host, and interactions with other members of the holobiont. 

Methods for Studying Microbial Communities 

In the past, all studies of environmental prokaryotes were culture-based and could 

enumerate only those bacteria that were able to grow on traditional media. Direct 

microscope counts indicated that a vast number of bacteria, as much as 99% of the cells 

in the environment, were present and viable but non-culturable (Staley & Konopka, 1985, 

Rappe & Giovannoni, 2003). Host-associated and symbiotic microbes in particular 

remain difficult to culture because of their specific metabolic and environmental 

requirements, although new methods such as transcriptomics are useful for directing 

culturing attempts. For example, a metatranscriptome from the medicinal leech Hirudo 

verbana revealed that a Rikenella-like bacterium in the gut utilizes mucin glycans, and a 

culture medium containing mucin was designed that allowed the cultivation of this 

organism for the first time (Bomar, et al., 2011). It was not until the advent of DNA 

sequencing technology that information about the "uncultured majority" became 
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accessible. Until very recently, the majority of studies involved amplification, restriction 

mapping or sequencing of a phylogenetically informative gene, usually the small subunit 

of the ribosomal RNA gene (16S rRNA). This is still a very popular approach, and a 

variety of different techniques and tools are available, with varying degrees of specificity, 

coverage per sample, and cost per sequence. 

Terminal restriction fragment length polymorphism (T-RFLP) is a PCR based 

approach wherein the gene of interest is amplified using fluorescently labeled primers 

and the PCR amplicons are digested with a restriction enzyme. The length of the resulting 

fragments is determined by capillary electrophoresis, yielding a "fingerprint" of the 

community. This is a low cost method that delivers consistent results and thus can be 

applied to many different samples (Osborn, et al., 2000). However, it may not reveal the 

full diversity of the community because terminal restriction fragments (TRFs) from 

different organisms may be the same length, and fragments that are very similar in size 

may not be distinguishable depending on the sequencing instrument that is used. This 

method is also subject to the inherent biases of PCR, and can only supply 

presence/absence data, not information on the abundance of the groups represented by 

each TRF. A related method is automated ribosomal intergenic spacer analysis (ARISA), 

where the internal transcribed spacer region between ribosomal RNA genes is PCR 

amplified with fluorescently labeled primers and the length of the amplicons is 

determined. ARISA is less frequently used than T-RFLP but has many of the same 

benefits and drawbacks. 

Denaturing gradient gel electrophoresis (DGGE) is also PCR based, but primers 

include a GC-rich "clamp" sequence on the 5' end of the amplicons, which prevents the 
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complete dissociation of PCR products when they are separated by DGGE. The bands on 

the gel are visualized and the banding patterns are compared; bands of interest can be 

excised and sequenced to determine their identity. DGGE results can be variable and thus 

internal standards on each gel are necessary for the accurate comparison of different gels. 

DGGE has the same issues as TRJFLP in that bands of the same size may represent 

multiple sequences, and data are limited to presence/absence. This technique, combined 

with sequencing of the dominant bands, has been particularly common in studies of 

Symbioindium diversity using the ITS2 genetic marker (LaJeunesse, 2002, LaJeunesse, et 

al, 2004), although it is being replaced by the amplification, cloning and sequencing of 

other informative markers with less intragenomic variation such as cp23S (Apprill & 

Gates, 2007, Stat, et al., 2008, Correa & Baker, 2009). 

Newer methods of prokaryotic community analysis rely on DNA sequencing 

rather than fingerprinting. The first of these methods to come into common use was clone 

library sequencing. A gene of interest is amplified with PCR, and single sequences are 

inserted into vectors, which are then transformed into bacterial cells and grown on agar 

plates. Transformed colonies are selected and grown in broth, the plasmids are purified 

and the inserts are sequenced. This technique has the highest cost per sequence of any of 

these methods and is time-intensive, but it can yield full-length 16s rRNA sequences. 

Because of the costs, a significant trade-off exists between increasing the number of 

samples or increasing the depth of sequencing on each sample. Additionally, if the gene 

of interest codes for a product that is lethal to the host cell or otherwise restricts its 

growth, clone libraries may not be not technically feasible. 
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All of the methods discussed above produce a relatively small amount of data that 

can easily be analyzed on a standard laptop computer with traditional analysis programs. 

However, capturing most of the diversity present in samples (i.e., producing saturated 

rarefaction curves) with these methods is typically prohibitively expensive, time-

consuming, or both, and conclusions drawn from such under-sampled communities are 

uncertain. Advancements in sequencing technology such as pyrosequencing and 

Illumina/Solexa have enabled the rapid generation of orders of magnitude more data at a 

much lower cost per base, and the resulting flood of data has moved the bottleneck from 

the production of sequence data to its analysis and interpretation (Glenn, 2011). Many 

high-throughput sequencing data sets require special analysis programs and much more 

extensive computational resources that may cost more than the sequencing itself. Despite 

these issues, high-throughput sequencing has revealed the diversity and biological 

patterns of even the most complex microbial communities in unprecedented detail, and 

new platforms that yield even more data at even lower cost are continually being 

developed. 

High-throughput sequencing is available from several platforms, with varying 

costs per base, bases per run, read length, and error rates (Glenn, 2011). The most 

commonly used are Illumina and 454 pyrosequencing, both of which allow sample 

multiplexing to reduce costs (Hamady, et al., 2008). Shotgun or amplicon-based 

sequencing can be performed on any platform. Thousands to millions of reads are 

produced per run, allowing many more samples to be analyzed in much greater depth 

than was previously possible. Read lengths are shorter than traditional Sanger 

sequencing, with Illumina currently at 200 bp (paired-end), and 454 reads near 700 bp, 
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although newer chemistry can produce about 3000 bp reads with a high error rate (Glenn, 

2011). These shorter reads are less phylogenetically informative than full-length 

sequences, although with careful selection of the amplified gene region even short reads 

can contain adequate taxonomic and phylogenetic information (Quince, et al, 2009, 

Youssef, et al, 2009, Kunin, et al, 2010, Schloss, 2010, Jeraldo, et al., 2011). However, 

some 16S rRNA gene regions may be more prone to sequencing error, and thus less 

informative, due primarily to the presence of long homopolymers (Behnke, et al., 2011). 

Overall error rates, particularly for pyrosequencing, remain problematic but several 

computational approaches have been devised to ameliorate this (Quince, et al, 2009, 

Behnke, et al, 2011, Quince, et al, 2011). 

All of these methods, from T-RFLP to pyrosequencing, share a critical step: the 

amplification of the gene of interest with PCR. The quality and reliability of results is 

therefore dependent on how well the PCR amplicons reflect the organisms present in the 

sample. The template (i.e., sample), reaction conditions, and primer sequences can all be 

sources of bias and error in PCR. The mixture of DNA molecules in the template may be 

biased due to the sample preservation technique (Sekar, et al, 2009) and/or DNA 

extraction method (Wilson, 1997, Hong, et al, 2009), which may not lyse all cells or may 

fragment nucleic acids (von Wintzingerode, et al, 1997). Such bias within samples is 

problematic for all types of downstream analysis. Inhibitors of PCR such as 

polysaccharides, enzymes, and proteins are frequently present and may have different 

concentrations in different samples, biasing comparisons (Wilson, 1997). Differential 

amplification of mixtures of template molecules is a common issue with PCR and is 

influenced by the primer sequences, template G+C content, annealing temperature, and 
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cycle number (von Wintzingerode, et al, 1997, Wilson, 1997, Sipos, et al., 2007). Ideally 

all templates would have equal hybridization efficiency with the chosen primers, but this 

is difficult to achieve, especially with universal primers that often contain degeneracies. 

Higher annealing temperatures can increase preferential amplification of templates 

perfectly matching the primer sequence over those with one or more mismatches (Sipos, 

et al, 2007). Restricting the number of cycles may reduce this bias, but probably only in 

low-diversity template mixtures (Suzuki & Giovannoni, 1996). 

PCR reactions can also generate artifacts, or sequences that did not exist in the 

original sample, including chimeric sequences. Chimeras are hybrid products of multiple 

parent sequences formed when a truncated extension product from an earlier cycle of 

PCR anneals to a different template and is extended. Chimeras can appear to be novel, 

genuine sequences, leading to the 'discovery' of organisms that do not actually exist and 

artificially inflating diversity estimates, particularly in high-throughput sequencing data 

sets (Quince, et al, 2009, Edgar, et al, 2011). Damaged template DNA and mixtures of 

highly similar sequences are more likely to generate chimeras, but increasing elongation 

times and limiting cycle number during PCR can reduce their formation (von 

Wintzingerode, et al, 1997). The same chimeras can form reproducibly in independent 

PCR reactions, and can make up a large percentage (up to 45%) of the sequences in a 

library (Haas, et al, 2011). Several programs now exist for the detection of chimeric 

molecules either de novo or utilizing a reference database of potential parent sequences 

(Huber, et al, 2004, Edgar, et al, 2011, Haas, et al, 2011). 

Primer sequence may be the most critical factor in PCR, particularly when 

attempting to amplify a variety of template sequences. Ideal primers match perfectly to 
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the sequence of interest and are not complementary to other sequences, i.e., they are 

highly specific. The 16S rRNA gene is most commonly targeted in surveys of 

prokaryotes, and it produces a transcript with a complex secondary structure of conserved 

functional loops and variable stems that mostly provide structural support. Even within 

this highly conserved gene, it is not possible to design truly universal primers that match 

perfectly to all known taxa, and thus mismatches are inevitable within at least some 

taxonomic groups, particularly those that contain unique or unusual base changes or 

motifs (Baker, et al, 2003, Teske & Sorensen, 2008). Mismatches to the primer result in 

preferential amplification of templates that match the primer more completely, or 

perfectly, and even high-abundance taxa can be missed if they anneal poorly to the 

primer (Sipos, et al, 2007). Increased sequencing depth is unable to compensate for 

mismatches or non-matches to PCR primers (Hong, et al., 2009). The task of primer 

design becomes even more difficult when the length of the amplicons is critical, as for 

most high-throughput sequencing platforms that can only produce short reads, because 

the regions of the 16S rRNA gene are variably informative (Schloss, 2010). The optimal 

combination of primers, gene region, and amplicon length will also vary depending on 

the environment being studied, as demonstrated by Soergel et al. in a recent 

comprehensive survey of all viable combinations of these parameters (Soergel, et al., 

2012). Different environments are not equally represented in reference databases, and 

even 'universal' primers will match different proportions of the total diversity in different 

environments. Thus, a primer pair or gene region that is optimal for studying the human 

gut may not accurately reflect the diversity of the termite gut, or ocean water, and vice 

versa. In this study, the coral associated community was shown to be particularly under-
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represented in reference databases (Soergel, et al., 2012). The ultimate weakness of 

primers is that they can only be designed based on information that is already known. 

Sequences from organisms in the environment with no representatives in databases 

cannot be used to design primers, and if they do not match existing primers they will be 

missed. Moreover, there is no way to know using PCR if these organisms exist at all, or 

how diverse or abundant they may be. All primers are biased, so it is important to select 

primers based on what is known about their coverage and about the organisms present in 

the environment of interest. Because of this bias, even studies with the best experimental 

design and sequencing can yield seriously flawed or incomplete results if the wrong 

primers are chosen. These issues are driving the ongoing shift from PCR-based 

approaches to "shotgun" approaches such as metagenomics and metatranscriptomics. 

The goals of this chapter were to characterize the prokaryotic communities 

associated with brown/green and orange colonies of Montastraea cavernosa, and 

determine if they differ in the two colony types. Spatial differences in these communities 

were investigated by sampling corals from three different locations around the Caribbean 

and comparing the coral associated communities with those found in the water column. 

We also aimed to identify the symbiotic cyanobacteria, and investigate their relationship 

to other cyanobacteria. 

Methods and Materials 

Sample Collection and Processing 

Samples from three orange and three brown/green colonies of the coral 

Montastraea cavernosa were collected with a hammer and chisel on SCUBA from a 

51 



depth of 15 m at each of three locations in the Caribbean. Corals were sampled in August 

of 2010 and 2011 at North Perry Reef, Lee Stocking Island, Bahamas (LSI, 23°47'0.03" 

N, 76°6'5.14" W); in July of 2011 at Conch Reef, Key Largo, Florida (FL, 25°0'7.73" N, 

80°22'48.68" W); and in May of 2008 at Rock Bottom Wall, Little Cayman, Cayman 

Islands (LC, 19°42'6.32" N, 80°3'25.11" W). Three replicate water samples (4 L) were 

collected from 1 m above the reef substrate at each location in 2011, contemporaneously 

with coral collections. An additional water sample was collected from a depth of 30m at 

Little Cayman in 2008. Coral and water samples were transported back to laboratories in 

covered, seawater-filled coolers and processed within 1 hr of collection. 

Coral samples were gently airbrushed while being held upside down with 0.2 jxm 

filtered sea water from a distance of approximately 15 cm to remove mucus and loosely 

associated bacteria then placed in saline DMSO buffer (Seutin et al. 1991) for the 

preservation of DNA, frozen at -20° C or below, and transported to the University of 

New Hampshire. Water samples were vacuum filtered onto 47 mm 0.2 |im pore size filter 

membranes (Millipore), preserved and transported as described above. Genomic DNA 

was extracted from corals and water filters using a PowerSoil DNA extraction kit 

(MoBio) and stored at -20° C. A CTAB protocol was used to extract DNA from water 

filters. Briefly, samples were minced with a razor blade and homogenized with a plastic 

pestle in 600 \i\ CTAB buffer (cetyltrimethyl ammonium bromide 2% w/v, EDTA 0.744 

% w/v, sodium chloride 8.18% w/v, Tris base 1.21% w/v, P-mercaptoethanol 0.2% v/v), 

incubated with 5|il 20 mg ml"1 Proteinase K at 65° C for 2 to 3 hours, and extracted with 

an equal volume of chloroform. DNA was precipitated with cold 100% ethanol, washed 

twice with 70% ethanol, the pellet was air-dried and re-suspended in molecular grade 
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water, and stored at -20° C. DNA samples were quantitated with a Nanodrop 2000c 

spectrophotometer (Thermo Scientific) and CTAB and PowerSoil extractions of water 

filters were pooled in an equimolar fashion. 

Primer Testing 

Several different PCR primer sets were tested to determine the best approach for 

amplifying both Bacterial and Archaeal 16s rRNA genes. Primers were designed to be 

complementary to either Eubacteria or Archaea, or were 'universal' and had good 

theoretical coverage in both domains. First, a eubacterial primer set was sequenced on a 

pilot scale. Pyrosequencing fusion primers consisting of Roche Titanium A (forward) or 

B (reverse) adapter sequences and a 10-base molecular identifier (MID) tag unique to 

each sample prepended to PCR primers 968-F (5'-AACGCGAAGAACCTTAC-3') and 

1401-R (5'-CGGTGTGTACAAGGCCCGGGAACG-3') (S. Minocha, University of 

New Hampshire). The final amplicon size produced by these primers was 503 bp. DNA 

from two samples of M. cavernosa, one brown and one orange collected from LSI in 

2010, was used as template in triplicate PCR reactions containing 0.5^1 Titanium Taq 

polymerase (Clontech), 1 x Titanium Taq PCR buffer, 0.2 mM dNTPs (Promega), 1 |J.M 

of each primer, and 7 or 6.2 ng total template (M. cavernosa brown and orange, 

respectively). Cycling conditions were 95° for 2 min, followed by 30 cycles of 95° for 1 

min, 53° for 45 sec, 72° for 3 min, and a final extension at 72° for 10 min. Five jxl of each 

PCR product was visualized on a 1% agarose gel to check for amplification, then PCR 

products were pooled, separated on a gel, and excised bands were purified using a 

QIAquick Gel Extraction kit (Qiagen). PCR products were quantitated with a Nanodrop 
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2000c spectrophotometer (ThermoScientific) and pooled in an equimolar fashion, further 

purified using AMPure XP beads (Agencourt), and quantitated with a DynaQuant 200 

fluorometer (GE Healthcare). The final pooled products were sent to the W.M. Keck 

Center for Comparative and Functional Genomics at the University of Illinois at Urbana-

Champaign where bidirectional multiplex pyrosequencing was carried out on 1/8 of a 

picotiter plate. 

Primers specific to Archaea were also tested (Baker, et a!., 2003, Teske & 

Sorensen, 2008, Wang & Qian, 2009, Lee, et al., 2010, Porat, et al., 2010) (Table 2.1). 

For each primer pair, multiple samples of brown and orange Montastraea cavernosa 

DNA were tested in PCR reactions containing 0.25^,1 Titanium Taq polymerase 

(Clontech), 1 x Titanium Taq PCR buffer, 0.2 mM dNTPs (Promega), 1.25 (J.M of each 

primer, and 25 ng total template. Reactions were incubated at 95° for 5 min, followed by 

30 cycles of 95° for 1 min, x° for 1 min, and 72° for 1 min, where x is given for each 

primer pair tested in Table 2.2. PCR products were visualized and if present, bands of the 

correct size were excised and gel purified as described above, then ligated overnight into 

pGEM-T Easy vectors and transformed into JM109 high-efficiency competent cells with 

a Promega cloning kit according to the manufacturer's directions. Cells were incubated at 

37° C for 24 hr on Luria-Bertani (LB) agar plates with 100 |ig ml"1 ampicillin, spread 

with 100 fil of 100 mM IPTG (isopropyl p-D-1 -thiogalactopyranoside) and 20 |il of 50 

mg ml"1 X-Gal (5-bromo-4-chloro-3-indolyl-|3-D-galactoside). White colonies were 

transferred to LB broth with ampicillin and grown overnight at 37° C, then plasmids were 

isolated using a PureYield Plasmid Miniprep kit (Promega) and inserts were Sanger 

sequenced from primer SP6 at the University of New Hampshire Hubbard Center for 
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Genome Studies DNA sequencing core facility. For the U789F/U1068R primer set, 

frozen cultures were sent to Functional Biosciences for plasmid isolation and Sanger 

sequencing from the T7 primer. Sequences were trimmed in Geneious, aligned to the 

SILVA reference database (version 108), and classified to the least common ancestor 

(LCA) against the SILVA taxonomy. The closest sequence match in the SILVA database 

was also recorded. 

Pyrosequencing with Universal Primers 

The universal U789F/U1068R primer set was selected for full-scale sequencing 

due to its performance in the previously described primer testing, its ability to capture 

94.8 - 97.7 % of publically available bacterial and Archaeal 16s rRNA sequences (Wang 

& Qian, 2009), and its proven success in sponge and marine water samples (Lee, et al., 

2010). The V5-V6 hypervariable regions of the 16s rRNA bracketed by these primers 

were amplified with PCR and sequenced by bidirectional multiplex pyrosequencing using 

barcoded primers (Table 2.3). Fusion primers were designed as described above using the 

PCR primers U789F (5'-TAGATACCCSSGTAGTCC-3') and U1068R (5'-

CTGACGRCRGCCATGC-3'), then analyzed with OligoAnalyzer 3.1 (Integrated DNA 

Technologies) to identify primers and primer pairs with strong interactions. These 

primers were re-designed with different MID tags and re-tested until strong interactions 

were minimized. The final amplicon size including the MID tag and 454 adapters was 

349 bp. Triplicate 25^,1 PCR reactions containing 2.5 - 78 ng total template and reagents 

as for Archaea primer testing were incubated under the following conditions: 95° for 5 

min, followed by 30 cycles of 95° for 30 sec, 53° for 30 sec, 72° for 45 sec, and a final 
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elongation at 72° for 6 min. PCR products were checked and purified as for the 

eubacterial primer pilot pyrosequencing, except that samples were pooled after AMPure 

XP bead purification and quantitation by fluorometry. The final pooled sample was sent 

to the W.M. Keck Center for Comparative and Functional Genomics at the University of 

Illinois at Urbana-Champaign where bidirectional pyrosequencing was carried out first on 

1/16 of a picotiter plate to test for an equal distribution of MID tags. Based on these 

results, the individual samples were re-quantitated with a Qubit dsDNA HS assay kit 

(Invitrogen) and pooled into a new sample, which was sequenced on a full picotiter plate. 

Pyrosequencing Data Analysis 

Sequences from the 968F/1401R (eubacterial) and U789F/U1068R (universal) 

primer sets were analyzed separately, using the Quantitative Insights Into Microbial 

Ecology (QIIME) pipeline (Caporaso, et al, 2010) on the Amazon Elastic Compute 

Cloud (EC2) except where noted, with appropriate modifications for each primer set. For 

both data sets, sequences from Xestospongia muta samples were included in clustering 

along with coral samples, but were not included in downstream analyses. Raw sequence 

reads less than 300 (eubacterial) or 200 (universal) bp in length, with more than two 

mismatches with the primer sequence, with ambiguous nucleotides, or with an average 

quality score less than 25 were discarded. Primers were trimmed from the sequences, 

reads were assigned to their samples of origin based on MID tags, and reads originating 

from the B adapter (i.e., reverse reads) were reverse complemented. Reads were clustered 

with trie, which collapses reads that are prefixes of each other into clusters (Qiime team, 

unpublished), and singleton reads that were not part of any cluster were discarded. 
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Singleton reads are almost universally erroneous, and their removal is a rapid and 

effective alternative to computationally intensive denoising for reducing error within a 

population of reads (Behnke, et al., 2011). Remaining reads were clustered into 

operational taxonomic units (OTUs) at 97% sequence similarity using the uclust 

algorithm (Edgar, 2010) and settings -max accepts 20, -max rejects 500, -stepwords 

20, and -word length 12, and the most abundant sequence in each cluster was selected as 

the representative sequence. Representative sequences were imported into ARB (Ludwig, 

et al., 2004) and aligned to the SIL VA non-redundant reference database, release 108 

(Pruesse, et al., 2007) using the SINA plug-in. Aligned sequences exported from ARB 

were re-formatted for use in the QIIME pipeline using QI1ME and custom Perl scripts. 

Sequences that were poorly aligned (defined as sequences with a run of at least 50 

nucleotides without gaps), flagged as possibly chimeric by UCHIME (Haas, et al., 2011), 

or with significant BLAST (Altschul, et al., 1990) matches to a custom database of likely 

contaminants were removed from further analysis. The contaminants database was built 

from the SILVA reference database and contained 18s rRNA sequences for alveolates 

(including Symbiodinium), Faviid corals, and Demospongiae. Sequences were searched 

with a word size of 50 and were considered significant matches if the E-value was less 

than 1 x 10"'° and percent identity was at least 97%. The identity of OTUs was 

determined by assigning taxonomy to each representative sequence using the RDP 

classifier and a minimum confidence cutoff of 0.8 (Wang, et al., 2007) within QIIME. 

OTUs assigned as "Root" or "Root:Bacteria" were considered suspect and BLASTed 

against the NCBI nr database, and removed from further analysis if the top hit was not 

16s rRNA. OTUs with "Chloroplast" in the RDP assigned taxonomy were also removed. 
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OTU tables were rarefied to equalize sampling depth across all samples, then observed 

species were counted and rarefaction curves were drawn. Eubacterial OTU tables were 

subsampled at a depth of 100 to 7,002 sequences with 30 steps in between, and 

rarefaction was repeated a total of 10 times. Universal OTU tables were rarefied in the 

same manner from 100 to 26,518 sequences with 50 steps in between. An approximately-

maximum-likelihood phylogenetic tree was created for each dataset with Fasttree 2 

(Price, et al., 2010) in QI1ME and used to calculate weighted UniFrac distance values and 

perform the UniFrac Monte Carlo significance test (Hamady, et al., 2010). These distance 

values were used to generate principal coordinates which were plotted in 2 dimensions. 

Analyses of variance and G-tests were used to determine if any OTUs were significantly 

more abundant or more commonly present in a given sample type. Read count data for 

OTUs were square root transformed and the Bray-Curtis similarity index was calculated 

in PRIMER; the resulting similarity matrix was used in multidimensional scaling (MDS) 

and analysis of similarities (ANOSIM). 

OTUs assigned as Cyanobacteria from sequencing with Eubacterial primers were 

analyzed separately. Sequences of cyanobacterial OTUs were aligned to the SILVA 

reference database using the SINA aligner, the closest match in the SILVA database was 

determined at a minimum identity of 0.95. Query sequences were classified with the 

lowest common ancestor algorithm against the SILVA and RDP taxonomies, with the top 

90% of the search results used in LCA classification. OTUs were then imported to ARB, 

aligned, and added to the reference tree using the parsimony method. The reference tree 

was pruned, retaining imported OTUs and their closest matches from the database search, 

as well as other taxa of interest. 
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In-silico primer coverage comparison 

Cyanobacteria are a group of primary interest to this study, so an in silico 

comparison of primer coverage within this group was performed using the ProbeMatch 

tool on the Ribosomal Database Project (RDP) website (Cole, et al., 2009). Coverage of 

the eubacterial and universal PCR primer pairs was determined and compared for 0, 1, 

and 2 mismatches at various levels of the cyanobacterial phylogeny. 

Results 

Eubacterial Primer Testing 

Pyrosequencing of eubacterial PCR amplicons resulted in 49,885 total reads, 

43,359 of which passed quality filters and 21,242 of which were non-singletons. 

Clustering at a similarity threshold of 97% produced 848 OTUs. Screening with 

UCHIME resulted in 9.3% of OTUs (n=79) being flagged as chimeras and removed. 

OTUs that did not align to the reference database (n=20) or had best BLAST matches that 

were not prokaryotic 16S rRNA genes (n=14) were also removed from analysis; 735 

OTUs remained and were used in all downstream analyses. Rarefaction curves of OTUs 

(Figure 2.1) reached asymptotes well before the maximum sequencing depth, indicating 

that the sequence recovery for these communities was saturated. 

OTUs were assigned to 14 different phyla by RDP, but 22.1% of reads in orange 

and 54.3 % of reads in brown M. cavernosa were classified only as bacteria and could not 

be assigned to a phylum (Figure 2.2). The most abundant phyla in orange M. cavernosa 

were Cyanobacteria (34%), Proteobacteria (29%), unassigned bacteria (22.1%), and 
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Actinobacteria (5.8%) whereas brown M. cavernosa was markedly different, with 

unassigned bacteria most abundant (54.3%), followed by Proteobacteria (27.5%), 

Bacteriodetes (6.2%), and Actinobacteria (4.3%). Within the Proteobacteria, a-

proteobacteria were more abundant in orange than brown M. cavernosa (18.8% vs 7.8%, 

respectively), while y-proteobacteria were more common in brown than orange (12.4% 

and 5.2%). 

Putative Cyanobacterial Symbionts 

A diverse and abundant putative cyanobacterial symbiont group was found 

exclusively in the orange colony. The cyanobacterial community was dominated by only 

a few OTUs, but a tail of low-abundance OTUs was also present (Figure 2.3). Lowest 

common ancestor classification with the SILVA reference database classified three of the 

top five most abundant cyanobacterial OTUs as Pleurocapsa (OTUs 86, 761, and 421), 

one OTU as Planktothrix (OTU 0), but the most abundant OTU (OTU 793) could not be 

assigned at the given similarity cutoff (Table 2.4). When they were added to the SILVA 

reference tree, OTUs 86, 761, and 421 grouped together with Pleurocapsa and closely 

related groups, OTU 793 clustered with Gloeocapsopsis crepidinium, Nostoc, and 

Trichormus azollae, and OTU 0 was most closely related to Trichodesmium erythraeum, 

Planktothrix rubescens, and other planktonic cyanobacteria (Figure 2.4). The first two 

groups, although separate from each other, both include known symbionts, such as the 

spheroid bodies of Rhopalodia gibba (AJ582391), the symbiont of Climacodium 

frauenfe/dianum (AF193247), and Trichormus azollae (AJ630454). Also found in both 

groups are sequences isolated from or known to be found in extreme environments, such 
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as thermal springs (Pleurocapsa DQ293994, unicellular thermophilic cyanobacterium 

DQ471449) and desert hypoliths (Myxosarcina AJ344561, Chrococcidiopsis polansiana 

AJ344556, uncultured bacterium HM241058), as well as known nitrogen fixers 

(Pleurocapsa, Rhopalodia gibba, and Trichormus azollae). These two groups may 

represent a mixed, diverse population of nitrogen-fixing cyanobacterial symbionts. 

OTU 0 was most closely related to planktonic cyanobacteria such as 

Trichodesmium (Figure 2.4). This clade does not include any known symbionts and may 

represent microbes from the water column that were trapped in the mucus of the coral 

and not completely removed by airbrushing. Similarly, many other low-abundance OTUs 

also group with other cyanobacteria that are known to be planktonic, such as OTUs 469 

and 239, which are closely related to WH7803 and other strains of Synechococcus. 

The cyanobacterial sequence originally amplified from M. cavernosa using 

cyanobacteria-specific primers when the symbiosis was first described was also added to 

the tree. This sequence clustered with an OTU from the brown colony and Candidatus 

Synechococcus spongiarum from the sponge Xestospongia muta, but was not closely 

related to any of the high-abundance OTUs from the orange colony in this study. 

Archaea and Universal Primer Testing 

Testing of Archaea-specific primers yielded five primer pairs that produced clear, 

bright bands (amplicons) of the anticipated size. These amplicons were cloned and a 

small number (n = 2 - 4) of clones were sequenced for each primer pair. These sequences 

were primarily 18S rRNA, Eubacterial 16S rRNA, or had no matches of prokaryotic 

origin in the NCBI nr database. A small clone library was constructed from the universal 
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primers U789F and U1068R, which recovered 16 different Eubacterial sequences from 

17 16S rRNA clones (Table 2.5). 

Pyrosequencing with Universal Primers 

The full-scale pyrosequencing of universal primer amplicons produced 804,513 

total reads, 711,780 of which passed quality filters. Singleton reads (n= 175,880) were 

discarded, for a final total of 535,900 reads. From these, 4,609 OTUs clustering at 97% 

similarity were identified. 1,080 of these OTUs were discarded because they did not align 

to the reference alignment (791), were flagged as chimeras (94) were contaminants (7), or 

had a best BLAST match to a non-16S rRNA sequence in the NCBI nr database (189). 

All water samples were sequenced to saturation (representative samples shown, Figure 

2.5). Rarefaction curves of observed OTUs did not reach an asymptote for some coral 

samples (Figure 2.5). 

Analyses of (3-diversity were performed using several different diversity metrics 

to describe both community diversity and the factors influencing community structure, an 

approach that has been advocated by several investigators (Kuczynski, et al., 2010, 

Anderson, et al., 2011). Multidimensional scaling (MDS) of the Bray-Curtis similarity 

index on square-root transformed abundance data showed that communities in corals and 

water are distinct, but coral-associated prokaryotes are not different in brown and orange 

M. cavernosa (Figure 2.6). Principal coordinates analysis (PCoA) of the weighted 

UniFrac distance, a phylogenetic diversity metric that takes into account the evolutionary 

distance between communities and the abundance of sequences (Lozupone, et al., 2006, 

Lozupone, et al, 2007), had similar results (Figure 2.7). The first two principal 
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coordinates explained 37.12% and 25.23% of the variation between samples. 

Significance testing using the same weighted UniFrac metric found that few samples 

were significantly different from each other (Table 2.6). Clustering based on Bray-Curtis 

similarity separated water samples from corals, and brown and orange coral samples from 

LSI were grouped into a single cluster (Figure 2.8). 

Analyses of similarity (ANOSIM) were performed in PRIMER 5.0 to test for 

differences between groups of samples. Water samples were significantly different from 

coral samples (P= 0.01, Global R = 0.846), as suggested by their groupings on MDS and 

PCoA plots (Figures 2.6, 2.7). A two-way ANOSIM on coral samples found that brown 

and orange coral samples were not significantly different (P= 0.683, Global R = -0.062), 

but samples from all three different locations were (P=0.02, global R =0.543; FL vs. LC: 

R statistic = 0.407, P = 0.01; FL vs. LSI: R statistic = 0.444, P = 0.05; LC vs. LSI: R 

statistic = 0.796, P = 0.01). ANOVA and the G test of independence were used to 

determine which OTUs, if any, were significantly associated with a sample type. A 

number of OTUs were significantly more abundant or more commonly present in water 

samples (ANOVA and G test, respectively, Bonferroni corrected P < 0.05), but no OTUs 

were significantly different between brown and orange coral samples or between coral 

samples from different locations. 

Taxonomic classification of OTUs at the phylum level by RDP revealed the 

patterns in diversity of prokaryotic communities possibly contributing to the observed 

differences between water and coral samples (Figure 2.9). Water samples from all 

locations contained a similar diversity of prokaryotes, with differences in the relative 

abundance of some taxa at different sampling locations. In water samples from LSI, 
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unassigned bacteria were more abundant than at other locations, but cyanobacteria were 

less abundant. Euryarchaeota and other Archaea were more abundant in water from FL 

and water from 30 m depth at LC. Communities in coral samples were more diverse than 

water samples and were highly variable, even within replicate samples of the same color 

morph from the same location. Coral samples contained several phyla that were rare or 

absent in water samples, including Acidobacteria, Chlamydiae, Chlorobi, Chloroflexi, 

Firmicutes, and Candidate Poribacteria which is a group of bacteria usually identified as 

symbionts of sponges. Bacteria that could not be assigned to a phylum were also more 

abundant in coral samples, indicating that these communities are not well represented in 

reference databases. Although the total percentage of reads assigned to Archaea was low, 

some patterns in the diversity of this group were apparent. Water samples contained 

mostly Euryarchaeota, while coral samples hosted primarily Crenarchaeota (Figure 2.9). 

Among coral samples from LSI, brown colonies consistently had more Archaea than 

orange colonies; Archaeal communities were similar in brown and orange samples from 

FL and LC. 

Proteobacteria dominated both water and coral samples, but the composition of 

proteobacterial orders was very different. Water samples were primarily composed of a-

proteobacteria, including Rickettsiales, Rhodospirillales, and Rhodobacterales, and the y-

proteobacteria Oceanospirillales were also prominent (Figure 2.10). The proteobacterial 

community in the water sample from 30 m at LC clearly differentiated this sample from 

other water samples, with an increased abundance of Alteromonadales, Rhodobacterales, 

and a decrease in Rhodospirillales. Communities in coral samples were more variable and 

diverse than those in water, similar to the pattern seen for other prokaryotic phyla (Figure 
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2.10). Rhizobiales and Vibrionales were often more abundant in coral samples than water 

samples. Vibrionales and Alteromonadales both contain known or suspected coral 

pathogens and were consistently less abundant in samples from LSI than from FL or LC. 

Desulfovibrionales were prominent in a single orange colony from LC; 95% of these 

reads originated from a single OTU in this sample, which shares 100% identity with the 

corresponding region of the 16s rRNA sequence of Desulfovibrio marinisediminis (Takii, 

et al., 2008). Very similar sulfate-reducing bacteria have also been repeatedly isolated 

from corals infected with black band disease (Viehman, et al., 2006). 

Many of the reads assigned as cyanobacteria, particularly in coral samples, 

originated from chloroplasts (Figure 2.11). Cyanobacterial reads in water samples were 

mostly classified as Synechococcales, whereas those in coral samples were primarily 

chloroplasts. The true cyanobacteria that were present in coral samples included groups 

such as the Pseudoanabaenales, Chroococcales, and Oscillatoriales that were absent from 

the water column. Chloroplasts from candidate division CAB-I and Chlorophyta 

dominated coral libraries, although stramenopile and Rhodophyta chloroplasts were 

abundant in some samples. Several of the most abundant Chlorophyta OTUs were highly 

similar to Ostreobium, a green alga commonly found living in coral skeletons (Lukas, 

1974). A cyanobacterial OTU represented by 4801 reads in a single coral sample 

(McBr.LC.l) was most closely related to the chloroplast of Fucus vesiculosus (94% 

sequence similarity to FM957154.1, e = 10"100) and was suspected to be a contaminant, 

perhaps representing benthic algae that were inadvertently sampled. This OTU and all 

other chloroplast OTUs were excluded from analyses. 
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The universal primer set did not appear to re-capture the putative cyanobacterial 

symbionts that were seen from pyrosequencing with eubacterial primers. True 

cyanobacterial reads made up only a small proportion of coral sample libraries, and no 

clear increase in cyanobacterial reads was observed in orange coral samples using the 

universal primer set. While 34% of the reads were cyanobacterial in the orange sample of 

M. cavernosa sequenced with eubacterial primers (Figure 2.2), the greatest abundance of 

cyanobacterial reads from sequencing with universal primers was just 4%, found in an 

orange coral sample from the same location, LSI. Non-chloroplast cyanobacterial reads 

made up on average 8.2% of the reads in water samples, an unusually low proportion that 

led to the investigation of differences in primer coverage discussed below (In-silico 

primer comparison). Given that coral-associated cyanobacteria appear to be poorly 

represented in the universal primer data set, the community analyses above address only 

the non-cyanobacterial portion of the prokaryotic communities in orange and brown M 

cavernosa samples. 

Generally speaking, ^-diversity analyses did not reveal clear differences between 

prokaryotic communities in brown and orange M cavernosa, although coral and water 

samples were significantly different by all metrics. The absence of reads from the 

putative cyanobacterial symbionts in the universal primer data set likely contributed to 

the apparent close similarity of the captured brown and orange communities. If the 

symbionts had been captured, these sequences might have differentiated the two colony 

types. 
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In-Silico Primer Coverage Comparison 

Coverage of the cyanobacteria sequences in the RDP database was compared for 

the universal and eubacterial primer sets. The percentage of total sequences that matched 

primers perfectly (0 mismatches), and with 1 and 2 mismatches was determined for each 

family of cyanobacteria. 

While the total coverage of the universal primer set was higher for most families, the 

eubacterial primers perfectly matched a higher percentage of sequences than the universal 

primers for all families (Figure 2.12). Total coverage of each primer set was less than 

50% for most families. 

Discussion 

Eubacterial Primer Sequencing 

Pyrosequencing with Eubacterial primers captured a diverse coral-associated 

bacterial community, as well as putative cyanobacterial symbionts (Figure 2.2). The 

dominant bacterial phyla in brown and orange Montastraea cavernosa samples were 

different, with the brown sample dominated by unassigned bacteria, and the orange 

sample by cyanobacteria. Cyanobacterial OTUs found exclusively in the orange colony 

were designated as putative symbionts, but it must be noted that without replicate 

samples of each colony type to demonstrate that these cyanobacteria are consistently 

present in orange samples and absent in brown samples, it is not possible to conclusively 

identify these cyanobacteria as symbionts. However, the large differences in abundance 

of all cyanobacterial OTUs between the orange and brown sample (Figure 2.2), in 
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combination with the high density (107 per cm2) of cyanobacterial symbionts in coral 

tissue (Lesser, et al., 2004), suggests that these sequences likely do represent the 

symbionts. 

The most abundant putative symbiont OTUs grouped into three clades, with three 

of the top five OTUs similar to Pleurocapsa, one closely related to Gloeocapsopsis, and 

one affiliated with Trichodesmium and Planktothrix (Figure 2.4). The Pleurocapsa group 

contains sequences from nitrogen-fixing symbionts of the diatoms Rhopaloida gibba 

(Prechtl, et al., 2004) and Climacodium frauenfeldianum (Foster, et al., 2011), and the 

Gloeocapsopsis group includes Trichormus azollae, a diazotroph associated with the 

water fern Azolla (Baker, et al, 2003). Interestingly, both of these groups also include 

taxa that are found in extreme environments; Pleurocapsa and the unicellular 

thermophilic cyanobacterium (DQ471449) can be found in thermal springs (Ward & 

Castenholz, 2002), and Chrococcoidiopsis, Myxosarcina, and an uncultured bacterium 

(HM241058) exist as hypoliths on the undersides of rocks in desert environments (Lopez-

Cortes, et al., 2001). The affiliation of bacteria from corals with those from extreme 

environments may seem unusual, but the high redox potential often found in hot springs 

(Segerer, et al., 1993) and coral tissues (Dykens & Shick, 1982) may create similar 

selective forces in both environments. The presence of multiple phylogenetically distinct 

and abundant groups of cyanobacteria associated with M. cavernosa suggests that the 

symbionts may exist as a mixed population, perhaps serving different ecological or 

functional roles in the coral holobiont. The Planktothrix group and other low-abundance 

OTUs are likely to represent bacteria from the water column that were trapped in the 

coral mucus and not completely removed by airbrushing, because the Planktothrix group 
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does not include any known symbionts. The presence of a cyanobacterial OTU from the 

orange colony in this group supports this hypothesis. 

A cyanobacterial sequence isolated from orange M. cavernosa when the 

symbiosis was initially described (Lesser, et al., 2004) was not recaptured from the 

orange colony in this study. Colonies in both studies were sampled from the same 

location, LSI, so genetic differences in cyanobacteria due to biogeographic differences 

seem unlikely. The cyanobacteria-specific 16s rRNA primers used in the 2004 study may 

have preferentially amplified a low-abundance bacterial population, perhaps explaining 

why a similar OTU was only found in the brown colony in this study. Both sequences 

were closely related to Candidatus Synechococcus spongiarum, which has previously 

been reported exclusively in association with sponges, including the giant barrel sponge 

Xestospongia muta (Erwin & Thacker, 2007, Erwin & Thacker, 2008). Like M. 

cavernosa, X. muta is abundant on Caribbean coral reefs and has a very broad depth 

range. Microbes associated with sponges and corals experience similar frequent 

fluctuations in oxygen concentrations, so these hosts may share some members of their 

microbial communities (Fiore, et al, 2010). Although the results of this sequencing 

suggest that these sequences are not the cyanobacterial symbionts, they may represent 

generally coral-associated cyanobacteria, which have been found in many other studies 

(Rohwer, et al., 2002, Hong, et al., 2009, Sunagawa, et al., 2010, Ceh, et al., 2011, Chen, 

et al., 2011, Meron, et al. ,2011). 

Although the results from eubacterial primers were promising, we also wanted to 

characterize the Archaeal community associated with M. cavernosa. Archaea living on 

corals are diverse, novel, and highly abundant, making up nearly 50% of the total 
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prokaryotic population in Pontes astreoides (Wegley, et al., 2004), they do not appear to 

form host species-specific associations with corals (Kellogg, 2004, Wegley, et al., 2004). 

In this study and others, Archaea were found to make up only a small fraction of the 

reads in 16S rRNA libraries. However, a recent study in the sponge Geodia barretti 

found low representation of Archaea in 16S clone libraries despite the high abundance 

and transcriptional activity of these cells (Radax, et al., 2012). The low ribosome content 

of most Archaea may account for this bias (Valentine, 2007), and suggests that Archaea 

may be more important members of the holobiont than previously thought. None of the 

Archaea-specific primers tested gave satisfactory results, so a universal primer set that 

amplified both eubacteria and Archaea was selected. This primer set had previously been 

used successfully with several species of sponges from the Red Sea, as well as 

corresponding water samples (Lee, et al2010). It was known a priori that Archaea were 

likely to make up only a small proportion of the total reads, as in the previous study. 

Universal Primer Sequencing 

A diverse prokaryotic community of both Eubacteria and Archaea was recovered 

using universal primers. Unfortunately, the putative symbiotic cyanobacteria identified in 

sequencing with universal primers were not recaptured. Most OTUs assigned as 

cyanobacteria originated from chloroplasts, and after these OTUs were excluded from 

analysis, very few cyanobacterial OTUs and reads remained. The maximum abundance 

of cyanobacteria in any coral sample was just 4%, in an orange sample from LSI. Given 

that the symbiotic cyanobacteria are present in high densities and that cyanobacterial 

reads and OTUs were abundant in the orange colony sequenced with eubacterial primers, 
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a much greater proportion of cyanobacterial reads would be expected if the symbionts 

were captured with the universal primers. Other lines of evidence including flow 

cytometry, electron microscopy, and acetylene reduction assays support that the 

symbiotic cyanobacteria are indeed present, but were not captured by this primer set. 

Cyanobacteria made up on average just 8.2% of reads from water samples, an unusually 

low proportion compared to other studies, where cyanobacteria typically compose 

approximately 30-40% of reads (Frias-Lopez, et al., 2002, Sunagawa, et al., 2010), so 

primer bias against cyanobacterial sequences, discussed below, is probably responsible. 

Without the cyanobacterial OTUs, this study is essentially comparing the 

prokaryotic communities less the cyanobacteria, addressing the question of whether the 

cyanobacteria or the fixed nitrogen they provide influence the coral-associated 

prokaryotic community. No significant differences were observed between brown and 

orange coral samples at any location, or as a whole, for any metric tested (Figures 2.6, 

2.7). The highly abundant putative symbiotic cyanobacteria found in sequencing with 

eubacterial primers are likely to be primarily responsible for distinguishing the 

prokaryotic communities in the two colony types, so their absence in sequences obtained 

with the universal primers makes these samples seem more similar than if the entire 

prokaryotic community had been captured. The universal primers may also have been 

biased against other taxonomic groups whose presence could have distinguished the 

colony types, although this cannot be confirmed with these data. 

Prokaryotic communities in coral samples were significantly different from those 

in water samples, and contained taxa not present in the water column. One group of 

particular interest is the Rhizobiales, an abundant part of the proteobacterial fraction of 
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reads in some but not all coral samples (Figure 2.10). Rhizobiales have been repeatedly 

implicated as nitrogen fixers associated with corals, and similar Bradyrhizobium-like 

sequences for the nitrogenase enzyme (nifH) have been recovered from M. cavernosa and 

other corals in Hawai'i and Australia (Olson, et al, 2009, Olson, 2010, Lema, et al, 

2012). These reads may represent a generally coral-associated group with functional 

importance in nitrogen cycling within the holobiont. 

The overall communities in water samples were relatively consistent among 

replicate samples and locations, but communities associated with corals were highly 

variable, even within replicate samples of the same colony color from the same location 

(Figure 2.9). There is disagreement as to the degree of variability that can be expected 

between replicate coral samples, perhaps because of differences in spatial scale, sampling 

methodology, and the method used to characterize the microbial community. Using clone 

libraries, DGGE, and T-RFLP, Littman et al. (2009) found that replicate samples of three 

species of branching Acropora were highly similar, and samples of the massive coral 

Montastraea annularis that were pyrosequenced by Barott et al (2011) were also very 

similar to each other. However, other studies have indicated that prokaryotic 

communities associated with corals may be much more variable, even at small spatial 

scales (i.e., within a single colony) (Hong, et al, 2009, Kvennefors, et al, 2010, Chen, et 

al, 2011, Daniels, et al, 2011). This may be due to the temporary dominance of a 

particular group of bacteria (Chen, et al, 2011); such variation is greatest in the summer 

(Hong, et al, 2009), which was when samples for this study were collected. It has been 

suggested that samples from at least six replicate colonies are required to capture all of 
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the prokaryotic diversity associated with a particular species of coral at a particular site 

(using DGGE, (Kvennefors, et al, 2010), but this level of replication is rarely achieved. 

Prokaryotic communities associated with M. cavernosa were significantly 

different at all three sampling locations, despite the variability between replicate coral 

samples. Differences in coral-associated prokaryotic communities at different sites are 

commonly observed at spatial scales from less than 1 km to hundreds of km (Reia & 

John, 2006, Littman, et al, 2009, Kvennefors, et al, 2010, Barott, et al, 2011). 

Interestingly, water from FL and LC contained more reads assigned to the order 

Vibrionales, and reads from coral disease-associated taxa were more abundant in coral 

samples from these locations (Figure 2.10). A similar correspondence between 

communities in the water column and in corals was observed at a much smaller scale, at 

sites near Heron Island on the GBR, indicating that local environmental conditions are 

likely to influence both free-living and host-associated prokaryotic communities 

(Kvennefors, et al, 2010). Given the much larger distance between locations in this 

study, differences between locations are expected to be even more distinct. 

In some samples of M. cavernosa, proteobacterial taxa that have been associated 

with diseased or stressed corals in previous studies were abundant or even dominant 

members of the prokaryotic community (Figure 2.10). Other studies have characterized 

various species within Rhodobacterales, Clostridiales, Camplyobacterales, 

Alteromonadaceae, Vibrionales, and Desulfovibironales as being associated with corals 

affected with several different diseases or syndromes (Mitchell & Chet, 1975, Frias-

Lopez, et al, 2002, Frias-Lopez, et al, 2003, Sunagawa, et al, 2009) as well as 

seemingly healthy corals that have been subjected to stress (Ritchie, 2006, Garren, et al, 
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2009, Vega Thurber, et a!., 2009, Littman, et al, 2010). However, members of the genus 

Vibrio associated with Montipora in Hawai'i have also been found to contain functional 

nifH sequences (Olson, et al., 2009), and most of the culturable nitrogen-fixing bacteria 

from the coral Mussismilia in Brazil were Vibrios (Chimetto, et al., 2008), suggesting 

that this genus may be beneficial to the holobiont. The y-proteobacterial orders 

Vibrionales and Alteromonadales were the most common stress- or disease-associated 

taxa in this study, and seemed to be more frequently associated with corals from LC and 

FL. The water column at both of these locations also contained more reads assigned to 

Vibrionales than water from LSI. There was no clear association between the presence of 

cyanobacteria and the abundance of stress-associated groups. However, one orange 

colony from LC did contain many reads from Desulfovibrio marinisediminis (Takii, et 

al, 2008), which is free-living in sediments and genetically very similar to sulfate-

reducing bacteria that have been repeatedly isolated from colonies affected by black band 

disease (Viehman, et al, 2006). This colony appeared to be healthy when visually 

inspected before sampling, but the presence of this OTU could indicate that this colony 

was in the preliminary stages of black band disease. Alternatively, this OTU could have 

arisen from sediment that was inadvertently collected along with the coral. 

Comparison of Results from Eubacterial and Universal Primers 

The eubacterial and universal primer sets yielded conflicting results, particularly 

about the key cyanobacterial members of the prokaryotic community. The eubacterial 

primers recovered a diverse set of OTUs from putative symbiotic cyanobacteria, whereas 

the universal primers produced mainly chloroplast sequences and did not recover the 
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cyanobacterial symbionts. Marked differences in the coverage of each family of 

cyanobacteria for the two primer sets were suspected to be responsible for the lack of 

cyanobacterial reads from sequencing with universal primers (Figure 2.12). The largest 

difference between the coverage of the two primer sets was in the number of sequences 

with perfect matches to the primers (i.e., 0 mismatches). Universal primers did not match 

any sequences perfectly in Family III or Families V - XIII. Based on the number of 

perfect matches to the primer in each cyanobacterial family, the cyanobacterial group 

most effectively captured by the universal primers is chloroplasts, a prediction that is 

confirmed by the prevalence of reads originating from chloroplasts in this dataset. 

Sequences perfectly matching the primers are known to be preferentially amplified over 

sequences with mismatches; even sequences making up a high proportion of a mixed 

community may be nearly absent in the amplicon pool due to this phenomenon (Sipos, et 

ai, 2007). Thus, it appears that strong bias against most cyanobacterial families in the 

universal primer set is responsible for the failure to capture the cyanobacterial symbionts. 

When an abundant and likely functionally important member of the prokaryotic 

community is known to be missing from the results, it is difficult to draw robust 

conclusions about differences or patterns in these communities. 

The contrasting results of the two primer sets used in this study illustrate the 

seriousness of primer bias. While bias against rare taxa or groups poorly represented in 

reference databases, such as the Nanoarchaeota (Baker, et ai, 2003), is widely known, it 

has been believed that different primer sets would reveal similar patterns in a given 

prokaiyotic community, and that similar overall conclusions could be reached. The 

failure of biased primers to recover numerically and functionally significant members of 
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the community, and the incorrect or incomplete conclusions resulting from this, has only 

recently been appreciated (Hong, et al., 2009). A recent comprehensive analysis of the 

taxonomic informativeness of thousands of combinations of primers, amplicon length, 

and environment showed that the selection of 16S rRNA gene region, primers, and 

amplicon length is critical to generate the most informative data set for a given level of 

sequencing effort (Soergel, et al., 2012)Different regions of the 16S gene varied in 

informativeness, but contrary to what many other studies have found, it was not 

necessary to target hypervariable regions. Most importantly, different primers will 

amplify different proportions of the total diversity in different environments; this was 

shown to be particularly problematic in environments such as coral reefs whose diversity 

is under-represented in reference databases used to assign taxonomy. In the case of this 

study, the universal primer set did not recover the symbiotic cyanobacteria observed in 

the initial analysis using eubacterial primers. If sequencing had been the only method 

used to investigate the prokaryotic community of M. cavernosa, this symbiosis might 

never have been discovered. Soergel et al. (2012) recommend a priori validation of the 

combination of primers, read length, environment, and reference database for all studies; 

while this may not be feasible for all investigators, the coverage of different taxonomic 

groups by a primer set is easy to determine using tools like the RPD Probe Match utility 

(Cole, et al, 2009). However, even with the most thorough optimization of these 

parameters, the coverage of taxa that are remaining to be discovered and are thus absent 

from reference databases cannot be determined. 

Shotgun approaches to characterizing microbial diversity are able to overcome the 

inherent biases of PCR-based approaches, and are becoming increasingly popular for this 
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reason. These approaches also provide a great deal of functional information in addition 

to the taxonomic information provided by classical PCR-based amplification of 

ribosomal genes. Shotgun sequencing of DNA or RNA (metagenomics and 

metatranscriptomics, respectively) from an environmental sample can be used to 

characterize the function of the entire community. If RNA samples are used, the 

abundance of a given rRNA or transcript can be used as a proxy for the activity level of 

the given species or gene, respectively (Gaidos, et al, 2011, Helbling, et al., 2011). A 

major drawback of shotgun approaches is that a usually only a small fraction of reads can 

be annotated functionally or taxonomically, and the increasing volume of reads produced 

as sequencing costs drop has created a computational bottleneck. However, the discovery 

of novel sequences and the depth and breadth of information that are now easily 

attainable are also key factors driving the shift towards these approaches. 
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TABLE 2.1 Archaea-specific and universal primer sequences. 

Primer Sequence (3'-5' 
U341-F 

A346-F 

A519-F 
U519-F 
U779-R 
U789-F 
U789-R 
Arch806-
R 

A884-R 

A958-F 

A1052-R 
U1053-R 
U1068-R 
UA1406-
R 

Reference 
CCTACGGGRSGCAGCAG 

GGGGYGCAGCAGGCG 

CAGCMGCCGCGGTAA 
CAGCMGCCGCGGTAATWC 
GGGTATCTAATCCSSTTAGC 
TAGATACCCSSGTAGTCC 
GGACTACSSGGGTATCTA 

Baker et al. 2003 
Wang and Qian 
2009 
Wang and Qian 
2009 
Baker et al. 2003 
Baker et al. 2003 
Baket et al. 2003 
Baker et al. 2003 

GGACT ACNSGGGTMTCT AAT 

CGDMCGT ACTY CCC A 

AATTGGABTCAACGCC 

GARCTGRCGRCGGCCATGCA 
CTGACGRCRGCCATGC 
CTGACGRCRGCCATGC 

Porat et al. 2010 
Wang and Qian 
2009 
Wang and Qian 
2009 
Wang and Qian 
2009 
Baker et al. 2003 
Baker et al. 2003 

ACGGGCGGT G W GTRC A A Baker et al. 2003 
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TABLE 2.2 Archaea-specific PCR primer testing 
Forward 
primer 

Reverse 
primer Annealing temperature (°C) Cloned 

U341-F U779-R 50, 53 No 
U341-F A884-R 50, 54 No 
A346-F A884-R 55, 56, 57, 58,60, 62, 64 No 
A346-F U779-R 50, 53 No 
A346-F U789-R 54 Yes 
A519-F A958-R 55 No 
A519-F A958-R 54, 56, 58, 60 No 
A519-F A1052-R 60 No 
A519-F U1053-R 55, 60 No 
U519-F A1052-R 55 Yes 
U519-F U1053-R 55 No 
U519-F A958-R 50 Yes 
U519F Arch806-R 55 Yes 
U789-F U1068-R 53 Yes 
A958-F UA1406-R 55 No 



TABLE 2.3 Universal pyrosequencing fusion primer elements 

Primer element Sequence 
MID-1 ACGAGTGCGT 

MID-2 ACGCTCGACA 

MID3 AGACGCACTC 

MID-4 AGCACTGTAG 

MID-5 ATCAGACACG 

MID-6 ATATCGCGAG 

MID-7 CGTGTCTCTA 

MID-8 CTCGCGTGTC 

MID-9 TAGTATCAGC 
MID-10 TCTCTATGCG 

MID-11 TGATACGTCT 

MID-13 CATAGTAGTG 

MID-14 CGAGAGATAC 

MID-15 ATACGACGTA 

MID-16 TCACGTACTA 

MID-17 CGTCTAGTAC 
MID-18 TCTACGTAGC 

MID-19 TGTACTACTC 

MID-20 ACGACTACAG 

MID-21 CGTAGACTAG 

MID-22 TACGAGTATG 

MID-23 TACTCTCGTG 

MID-24 TAGAGACGAG 

MID-25 TCGTCGCTCG 

MID-26 ACATACGCGT 

MID-27 ACGCGAGTAT 

MID-28 ACTACTATGT 
MID-30 AGACTATACT 

MID-32 AGTACGCTAT 

MID-33 ATAGAGTACT 

MID-34 CACGCTACGT 

MID-35 CAGTAGACGT 

MID-36 CGACGTGACT 

MID-37 TACACACACT 

MID-38 TACACGTGAT 

MID-39 TACAGATCGT 

MID-41 TAGTGTAGAT 
primer F-789 TAGATACCCSSGTAGTCC 

80 



primer R-1068 CTGACGRCRGCCATGC 

TitaniumA CGTATCGCCTCCCTCGCGCCATCAG 

TitaniumB CTATGCGCCTTGCCAGCCCGCTCAG 
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TABLE 2.4 Taxonomic assignment of putative symbiotic cyanobacterial OTUs. 
%of Closest 

OTU reads SILVA lowest common ancestor match 
793 23.7 Unclassified; 

Bacteria;Cyanobacteria;SubsectionII; SubgroupII; 
86 21.6 Pleurocapsa; AJ344559 

0 16.3 Bacteria;Cyanobacteria;SubsectionIII; Planktothrix; HM126903 
Bacteria;Cyanobacteria;SubsectionII; SubgroupII; 

761 12.5 Pleurocapsa; HQ832924 
Bacteria;Cyanobacteria;SubsectionII; SubgroupII; 

421 5.4 Pleurocapsa; JF344064 
208 3.4 Bacteria;Cyanobacteria;SubsectionIII; Leptolyngbya; AB275351 
385 3.1 Bacteria;Cyanobacteria;uncultured; HM241058 
535 2.4 Bacteria;Cyanobacteria;SubsectionIV; Subgroupl; AY328898 

Bacteria;Cyanobacteria;SubsectionII; SubgroupII; 
828 1.9 Chroococcidiopsis; DQ532167 
773 1.6 Bacteria;Cyanobacteria;SubsectionI; Synechococcus; HM585026 
94 1.3 Bacteria;Cyanobacteria;SubsectionIII; Leptolyngbya; FJ203552 

551 1.0 Bacteria;Cyanobacteria; SubsectionI; AF132771 
632 1.0 Bacteria;Cyanobacteria; AB275351 
347 0.8 Bacteria;Cyanobacteria; FJ589716 
812 0.6 Bacteria;Cyanobacteria; HM241066 
469 0.5 Bacteria;Cyanobacteria;SubsectionI; Synechococcus; AY 172803 
817 0.5 Bacteria;Cyanobacteria;SubsectionI; Cyanobacterium; EU259177 
698 0.3 Bacteria;Cyanobacteria;SubsectionIII; Leptolyngbya; AY493590 
322 0.3 Unclassified; 
642 0.2 Bacteria;Cyanobacteria;SubsectionIII; EF654035 
239 0.2 Bacteria;Cyanobacteria;SubsectionI; Synechococcus; HM 129360 
223 0.2 Unclassified; 
170 0.2 Unclassified; 
113 0.1 Unclassified; 
234 0.1 Unclassified; 

Bacteria;Cyanobacteria;SubsectionII; SubgroupII; 
522 0.1 Chroococcidiopsis; DQ532167 
594 0.1 Bacteria;Cyanobacteria; FJ230792 
727 0.1 Unclassified; 
747 0.1 Bacteria;Cyanobacteria;SubsectionI; Cyanobacterium; EU259177 

Bacteria;Cyanobacteria;SubsectionII; SubgroupII; 
231 0.1 Pleurocapsa; HQ832924 

TABLE 2.5 Affiliation of cloned sequences from universal primers. 

Sample Lowest common ancestor (SILVA) Closest match 
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McBr Bacteria;Acidobacteria;Holophagae HQ153882 
Bacteria;Actinobacteria;Acidimicrobiia; 
Acidimicrobiales FJ229965 
Bacteria;Actinobacteria;Acidimicrobiia; 
Acidimicrobiales; Sva0996 marine group FJ229958 
Bacteria;Cyanobacteria;Chloroplast GU119715 
Bacteria;Cyanobacteria;Chloroplast GU 119621 
Bacteria;Cyanobacteria;SubsectionI; uncultured EF159853 
Bacteria;Nitrospirae;Nitrospira; Nitrospirales; 
Nitrospiraceae; Nitrospira; GU 118615 
Bacteria;Proteobacteria; Alphaproteobacteria; 
Rhizobiales; Methylobacteriaceae; Methylobacterium DQ471331 
Bacteria;Proteobacteria; Alphaproteobacteria; 
Rhodobacterales; Rhodobacteraceae; Pseudovibrio AY372904 
Bacteria;Proteobacteria; Alphaproteobacteria; 
Rhodospirillales; Rhodospirillaceae FJ202655 
Bacteria;Proteobacteria; Betaproteobacteria; 
Burkholderiales; Burkholderiaceae; Ralstonia FJ193819 
Bacteria;Proteobacteria; Betaproteobacteria; 
Burkholderiales; Comamonadaceae; Delftia FJ 192309 
Bacteria;Proteobacteria; Deltaproteobacteria; Sh765B-
TzT-29 FJ203559 
Bacteria;"Proteobacteria"; Alphaproteobacteria; 

McOr unclassified_ Alphaproteobacteria; GU 118192 
Bacteria;"Planctomycetes"; "Planctomycetacia"; 
Planctomycetales; Planctomycetaceae; GU 118069 
Bacteria; "Proteobacteria"; Betaproteobacteria; 
Burkholderiales; Burkholderiaceae; Burkholderia; AY178059 

TABLE 2.6 Comparison of samples using 
weighted UniFrac metric. Only 



comparisons with a significant Bonferroni-
corrected P-value are shown. 

Sample comparison P-value 

H20.FL.1 McOr.LSI.2 <0.01 

H20.FL.3 McOr.LSI.2 <0.01 

H20.LC.2 McOr.LSI.3 <0.01 

H20.LC.3 McOr.LSI.2 <0.01 

H20.LSI.2 McBr.LSI.3 <0.01 

H20.LSI.2 McOr.LSI.2 <0.01 

H20.LSI.3 McBr.LSI.3 <0.01 

H20.LSI.3 McOr.LSI.2 <0.01 

McBr.FL.2 McBr.LC.2 <0.01 

McBr.LC.2 McOr.LSI.3 <0.01 

McBr.LSI.3 McOr.LSI.3 <0.01 

McOr.FL.3 McOr.LSI.2 <0.01 

McOr.FL.3 McOr.LSI.3 <0.01 
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Figure 2.1. Rarefaction curves of observed OTUs (clustered at 97% similarity) for 
pyrosequencing of a brown and an orange colony of Montastraea cavernosa with 
Eubacterial primers. 
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Figure 2.2. Relative abundance of reads assigned to prokaryotic phyla from sequencing of 
a brown and an orange colony of Montastraea cavernosa with Eubacterial primers. 
Sequences were classified at a confidence level of 0.8 using the RDP classifier. 
'Unassigned' reads could not be assigned to any known taxonomic group, and 'Bacteria, 
unassigned' reads were classified as Bacteria but could not be identified further. A total 
of 7174 reads from the orange colony and 4061 reads from the brown colony were 
analyzed. 
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Figure 2.3. Rank abundance curve for putative cyanobacterial symbionts, OTUs 
classified as Phylum Cyanobacteria at a confidence level of 0.8 by the RDP classifier and 
found exclusively in the orange colony of M. cavernosa. Relative abundance is given as 
the proportion of cyanobacterial reads, not the total reads per sample. 
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Figure 2.4 (previous page). 16S rDNA phylogeny trimmed from the SILVA reference 
tree, with cyanobacterial OTUs from sequencing with Eubacterial primers added with 
parsimony tool in ARB. OTUs found exclusively in the orange colony are labeled 
'McOr' and shown in red; OTUs found exclusively in the brown colony or shared 
between samples are labeled 'McBr' and 'McBrOr' respectively, and shown in green; 
sequence from Lesser et al. 2004 is labeled 'McOr 2004' and shown in orange. 
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Figure 2.5. Rarefaction curves of observed OTUs (clustered at 97% similarity) for 
pyrosequencing of brown (McBr) and orange (McOr) M. cavernosa samples and selected 
water samples with Universal primers. Water sample rarefaction curves were all similar 
and the samples displayed are representative. 
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Figure 2.6. Multidimensional scaling (MDS) plot of differences in prokaryotic 
communities associated with brown and orange samples of M. cavernosa and water 
samples from the Florida Keys (FL), Little Cayman Island (LC), and Lee Stocking Island 
(LSI). Plotted from Bray-Curtis similarity of square-root transformed read counts for 
each OTU. 
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Figure 2.7. Principal coordinates analysis of weighted UniFrac distance from 
pyrosequencing of prokaryotic communities associated with M. cavernosa and water 
samples with Universal primers. Color key: Brown M. cavernosa from LC: lime green 
circles; FL: dark green triangles; LSI: Olive green diamonds. Orange M. cavernosa from 
LC: orange triangles; FL: red triangles; LSI: brown triangles. Water from LC: light blue 
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Figure 2.8. Complete linkage clustering of prokaryotic communities in coral and water 
samples sequenced with Universal primers, based on Bray-Curtis similarity of square-
root transformed read counts for each OTU. 
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Figure 2.9. Relative abundance of prokaryotic phyla in the water column and associated 
with brown (McBr) and orange (McOr) M. cavernosa from the Florida Keys (FL), Little 
Cayman Island (LC), and Lee Stocking Island, Bahamas (LSI). Numbers indicate 
replicate samples. Sequences were classified at a confidence level of 0.8 using the RDP 
classifier. 'Unassigned' reads could not be assigned to any known taxonomic group, and 
'Bacteria, unassigned' reads were classified as Bacteria but could not be identified 
further. 'Other phyla' include Armatimonadetes, Fusobacteria, Gemmatimonadetes, 
Lentisphaerae, Nitrospirae, Spirochaetes, Synergistetes, Tenericutes, ABY1, GN02, 
MSBL6, NKB19, OP3, TM6, TM7, WPS-2, WS3, ZB2, and ZB3. 
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Figure 2.10. Relative abundance of Proteobacterial taxa in the water column and 
associated with brown (McBr) and orange (McOr) M cavernosa from the Florida Keys 
(FL), Little Cayman Island (LC), and Lee Stocking Island, Bahamas (LSI). Numbers 
indicate replicate samples. Sequences were classified at a confidence level of 0.8 using 
the RDP classifier. Key: see next page. 
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Figure 2.11. Relative abundance of reads assigned to the phylum "Cyanobacteria" in the 
water column and associated with brown (McBr) and orange (McOr) M. cavernosa from 
the Florida Keys (FL), Little Cayman Island (LC), and Lee Stocking Island, Bahamas 
(LSI). Numbers indicate replicate samples. Sequences were classified at a confidence 
level of 0.8 using the RDP classifier. Key: see next page. 
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Figure 2.12a. Coverage of cyanobacterial families I - VIII in the RDP database by 
Universal and Eubacterial primers with 0, 1, and 2 mismatches with primer. Key: see 
next page. 
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Figure 2.12b. Coverage of cyanobacterial families IX - XIII, chloroplasts, and 
unclassified cyanobacteria in the RDP database by Universal and Eubacterial primers 
with 0, I, and 2 mismatches with primer. 
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CHAPTER III 

METATRANSCRIPTOMIC ANALYSIS OF MONTASTREA CAVERNOSA 

HOLOBIONTS 

Introduction 

Development of Metatranscriptomics 

The study of bacteria in the natural environment has a long history. For many 

decades this involved isolating bacteria from the environment, and conducting 

experiments using pure cultures in the laboratory. However, comparisons of microscope 

counts of cells from natural samples to the number of colonies and colony types that were 

cultured from such samples revealed that more than 99% of the bacteria present did not 

grow on traditional culture media, a phenomenon known as the "great plate count 

anomaly" (Staley & Konopka, 1985, Rappe & Giovannoni, 2003). Many of these bacteria 

remain uncultured today, due to nutritional or environmental requirements that are 

unknown or difficult to meet with traditional culture media and conditions. This 

shortcoming of traditional culturing led to the development and widespread use of DNA-

based surveys of environmental prokaryotes using phylogenetic markers, most commonly 

the small subunit of the ribosomal RNA gene (16S or SSU rRNA) (Schmidt, et al., 1991). 
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Many studies successfully explored "who is there" in the environment with this approach, 

resulting in the discovery of many new phylotypes of bacteria, some of which, such as 

Candidatus Pelagibacter ubique, are dominant members of their respective communities 

(Morris, et al, 2002, Rappe, et al, 2002). The main drawback of phylogenetic markers is 

that they cannot provide reliable information about the genomes, function, and 

physiology of the bacteria they represent, because even strains within a single species can 

have significant differences in their genome content and phenotype (Rasko, et al., 2008). 

Newer approaches have focused on the complete genomes of prokaryotic 

communities as a way of revealing processes and functions in their natural environments 

(DeLong, 2005). Metagenomics, the sequencing of DNA from environmental samples, is 

a way to study the genomic repertoire of all the organisms present in a sample. DNA is 

isolated from a sample and either cloned into bacteria and sequenced or sequenced 

directly, without the bias or difficulties of PCR. A landmark metagenomic study of the 

microbes in the Sargasso Sea was conducted by Venter et al in 2004 (Venter, et al, 

2004), discovering new bacterial phylotypes, many previously unknown genes, and the 

widespread distribution of proteorhodopsin (Beja, et al., 2000). Other groups 

investigated the communities in acid mine drainage (Tyson, et al, 2004), soil, and whale 

falls in the deep sea (Tringe, et al, 2005). These early studies sequenced DNA using 

clone libraries, but most investigators have transitioned to high-throughput sequencing 

methods such as pyrosequencing, Illumina, SOLiD, or other short-read sequencers, due to 

the greatly decreased cost per base (Poretsky, et al, 2009, Glenn, 2011, Qi, et al, 2011, 

Marchetti, et al, 2012). 
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Comparison of metagenomes to reference databases allows function and 

taxonomy to be assigned to those reads that have significant similarity to sequences in the 

database, creating a catalog of the functional potential of the microbes in an environment, 

as well as the taxa that are present. The number of reads that can be annotated and the 

reliability of the annotation depend on the quantity, quality, and diversity of information 

in the reference databases. The inability to annotate a large proportion of sequences in a 

metagenome is a perennial problem; most environmental DNA is either not similar to 

anything in the database, or its matches have no known function or taxonomic 

classification (Tyson, et al., 2004, Venter, et al, 2004, Tringe, et al, 2005). Even if a 

sequence is similar to that of an annotated protein, functions within a protein family can 

be so diverse that the characterized representatives of that family may not share the same 

function as the protein sequence from the metagenome (e.g., (Howard, et al, 2006)). 

Because metagenomes are derived from DNA rather than RNA, unannotated sequences 

can also represent pseudogenes or non-functional copies of genes that are present in the 

genome but are not expressed. A high proportion of annotated sequences is particularly 

hard to achieve in data sets from environments that are poorly represented in reference 

databases, including coral reefs (Soergel, et al, 2012). Characterizing and confirming the 

function of genes is a time-consuming process, so the lack of information about 

environmental sequences is likely to remain a problem well into the future. 

The drawbacks of metagenomes are related to the fact that they are sequenced 

from genomic DNA. Even with very deep sequencing, most metagenomes are not well 

sampled because the DNA pool is very large (Riesenfeld, et al., 2004). Significant 

sequencing effort is required to cover a single genome, but an environmental sample 
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includes genomes from every organism present in the sample, so adequate coverage is 

difficult to achieve. DNA-based approaches also reveal only the functional potential of 

the community, not which genes are actually being expressed, or how they change in 

response to the environment. 

Metatranscriptomics has become popular as a way to overcome many of the 

disadvantages of metagenomics, but is not without drawbacks of its own. The power of 

this approach comes from sequencing of RNA rather than DNA, to reveal the actual 

function of a community at a given point in time, not just its functional potential. Enzyme 

activity levels have been shown to be closely correlated with the expression of their 

transcripts in the metatranscriptome, allowing predictions to be made about processes 

occurring in the environment (Helbling, et ai, 2011). Metatranscriptomes can be used to 

compare environments or time points, or measure responses to experimental treatments 

(Poretsky, et al, 2009, Gilbert, et al., 2010, Hewson, et al., 2010, Marchetti, et ai, 2012). 

In addition to ability to measure rapid or short-term changes in expression of genes, 

detection of alternative splicing and different gene isoforms is a significant potential 

advantage of metatranscriptomics over metagenomics (Trapnell, etal., 2009). 

Metatranscriptomes can be easier to deal with bioinformatically because they are by 

definition a subset of all the genomes in the sample, so good depth of coverage is easier 

to attain. However, in complex environments with diverse biota the transcriptome pool is 

large enough that even high-throughput sequencing (~1 million reads) may only achieve 

1% coverage, or less (Gifford, et ai, 2011). Difficulties with pseudogenes are minimized 

because sequences in transcriptomes represent expressed genes that are assumed to be 

functional. Transcriptomes from a single organism (Kreps, et ai, 2002, Okazaki, et ai, 
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2002) have been used for over a decade, but metatranscriptomics with mixed or 

environmental samples has only recently become common (Frias-Lopez, et al., 2008, 

Urich, et al, 2008, Poretsky, et al., 2009, Gifford, et al., 2011, Radax, et al., 2012). 

Whereas single-source transcriptomes can be mapped to reference genomes where they 

are available, reliable annotation of metatranscriptomes, like metagenomes, remains 

problematic and many transcripts cannot be assigned to a function or taxonomic origin. 

Sequencing the genomes of single cells is now possible and has been used to compare 

small numbers of cells from the same environment (Yoon, et al., 2011), often in tandem 

with a metagenome from the same sample (Blainey, et al, 2011). This technique may 

eventually replace metagenomics and metatranscriptomics in the future. 

Ribosomal RNA in Transcriptomics 

The goal of most RNA sequencing is to obtain transcripts, or messenger RNA 

(mRNA) sequences, so contamination with ribosomal RNA (rRNA) is a major issue in 

most transcriptomes, and particularly in metatranscriptomes that contain a mix of 

different rRNA molecules. Messenger RNAs make up just 1-5% of total cellular RNA in 

Escherichia coli (Neidhart & Umbarger, 1996), so if steps are not taken to reduce the 

amount of rRNA, ribosomal sequences can make up over 90% of the reads in a 

metatranscriptome (Urich, et al, 2008, He, et al, 2010, Stewart, et al, 2010). Even when 

rRNA is depleted, it is extremely difficult to remove it completely. As sequencing costs 

decrease, it has become more common to remove rRNA reads in bioinformatics 

processing rather than removing rRNA molecules from the sample, but these methods are 

typically used in tandem. Several methods are available for removing rRNA from total 
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RNA samples, which vary in their specificity, effectiveness, and ability to preserve the 

original abundance distribution of mRNAs. If only eukaryotic transcripts are desired, an 

oligo-dT selection to capture polyadenylated mRNA is typically used (Bailly, et al, 

2007, Qi, et al, 2011); this method is not effective for prokaryotic mRNA, most of which 

lacks poly-A tails (Dreyfus & Regnier, 2002). 

Alternatively, removal of rRNAs may be performed. The use of duplex-specific 

nucleases takes advantage of the high abundance of rRNA in most RNA samples. Total 

RNA is reverse-transcribed into cDNA, denatured, and allowed to reassociate; the rRNA 

molecules will tend to form duplexes, which are then cleaved by the nuclease (Yi, et al, 

2011). This method can alter the relative abundances of mRNAs by depleting highly 

abundant transcripts, but has the advantage of working well even with partially degraded 

RNA. Exonucleases degrade RNAs possessing a 5' monophosphate, the majority of 

which are thought to be rRNAs (Burgmann, et al, 2007, Garbeva & de Boer, 2009). 

However, exonucleases are less efficient at rRNA removal than other methods, and also 

appear to target partially degraded mRNAs, resulting in skewed mRNA relative 

abundances (He, et al, 2010). Subtractive hybridization uses oligonucleotide probes that 

hybridize with rRNAs and are then removed (Stewart, et al, 2010, Chen & Duan, 2011). 

The effectiveness of this process depends on the degree of complementarity between the 

probe sequence and the target sequence(s); only rRNAs complementary to the probes will 

be removed. A variety of kits are commercially available with probes targeting 

commonly used experimental organisms, such as humans, mice, plants, and yeast (Chen 

& Duan, 2011). For environmental samples or non-model organisms, it is possible to 

create a custom probe mixture based on the sequences in an individual sample (Stewart, 
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et al., 2010), but this is a very labor-intensive process and best used only when the 

organisms in the sample are known to be poorly removed by other kits or methods (e.g., 

for many Archaea (He, et al., 2010, Stewart, et al., 2010)). All subtractive hybridizations 

require intact RNA, because degraded RNAs may not contain the target site for the 

probes. This method has the advantage of preserving transcript abundances with high 

fidelity (He, et al., 2010). None of the rRNA reduction methods above will completely 

eliminate rRNA, so ribosomal sequences must be removed during bioinformatics 

processing. It is critical to do this before annotation because rRNA sequences can 

generate up to 90% false positive matches to proteins (Tripp, et al., 2011). 

When phylogenetic information about the community is desired, total RNA can 

be sequenced without any rRNA removal in what is sometimes called a "double-RNA" 

approach (Urich, et al., 2008). The mRNA sequences are used to provide information 

about the function of the community, as in traditional transcriptomics. The rRNA 

sequences are used as a rough indicator of the abundance, metabolic activity, and 

taxonomy of the prokaryotic community. The abundance of rRNA within a cell is 

positively correlated with metabolic activity, so the abundance of rRNAs from a given 

taxon can be used to infer how active that taxon is in the environment (Campbell, et al., 

2011, Gaidos, et al., 2011). Sequencing or amplification of environmental DNA often 

recovers many species or phylotypes of bacteria represented by only a few reads, termed 

the "rare biosphere" (Sogin, et al, 2006, Pedros-Alio, 2007). However, when the same 

methods are applied to RNA, this long tail is absent or greatly reduced (Gaidos, et al., 

2011), indicating that some members of the rare biosphere are metabolically inactive at 

any given point in time. A study of oceanic bacteria at multiple time points showed that 
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while abundance and activity were correlated in most bacteria, approximately 50% of the 

rare biosphere is metabolically active, and about half of the members of the prokaryotic 

community experience periodic cycles of rarity and abundance (Campbell, et al., 2011). 

The tandem sequencing of mRNA can reveal what metabolic and biogeochemical 

processes these members of the rare biosphere are involved in. The double-RNA 

approach was pioneered in soil samples (Urich, et al., 2008), and has also been used to 

investigate nitrogen transformations in the cold-water sponge Geodia barretti (Radax, et 

al, 2012). 

Coral Transcriptomes 

Transcriptomics has only recently been applied to corals and their symbionts, and 

studies usually address the interactions of corals and dinoflagellate symbionts and the 

response to ecologically relevant stressors, particularly thermal stress. An early 

microarray study on the temperate anemone Anthopleura elegantissima revealed the 

transcriptional changes in cell cycle and apoptosis mediators that are necessary to 

maintain symbiosis with dinoflagellates (Rodriguez-Lanetty, et al., 2006). Schwarz et al. 

(2008) created expressed sequence tag libraries from Acropora palmata and Montastraea 

faveolata at life history stages from egg to adult coral. More recent research has typically 

utilized high-throughput pyrosequencing (Meyer, et al, 2009, Polato, et al., 2011, 

Traylor-Knowles, et al., 2011). There are only two published transcriptomic surveys of 

Symbiodiniam. The first is an EST library created by Leggat et al. (2007, 2011) from 

symbionts in hospite and freshly isolated from the host, subjected to several thermal 

stress treatments, ammonium addition, and altered inorganic carbon concentrations 

108 



(Leggat, et al, 2007, Leggat, et al, 2011). The second is a large pyrosequenced data set 

from two cultures exposed to heat, cold, darkness, and high light (Bayer, et al., 2012). 

The few studies that have addressed gene expression in the prokaryotic members of the 

coral holobiont have typically utilized microarray technology (Kimes, et al., 2010). A 

newly released metatranscriptome from the cold water sponge Geodia barretti found 

abundant transcripts coding for key nutrient transformations mediated by microbes that 

are known to occur in this sponge (Radax, et al., 2012). Corals and many types of 

sponges both possess diverse and abundant microbial communities (Rohwer, et al., 2002, 

Littman, et al., 2009, Sunagawa, et al., 2010, Chen, et al., 2011, Schmitt, et al., 2012), so 

metatranscriptomics could be fruitful in studies of corals as well. 

Previous transcriptomic studies of corals tend to suffer from the same set of 

problems, only some of which are due to logistical constraints related to the biology of 

corals. Many of these studies do not have replicated experimental designs (Leggat, et al, 

2007, Schwarz, et al., 2008, Meyer, et al, 2009), or if properly replicated, samples within 

a treatment or samples from multiple treatments were pooled prior to sequencing, 

obscuring variation (Polato, et al., 2011, Traylor-Knowles, et al, 2011). Lack of 

replication limits statistical analyses and reduces the ability to draw conclusions about 

biology, regardless of the depth of sequencing per sample (Prosser, 2010). Most of these 

studies utilize corals in the larval stage that have not yet acquired symbionts to reduce 

contamination with symbiont RNA, but the applicability of such studies to adult corals 

with dinoflagellate symbionts is questionable. The presence of photosymbionts is 

associated with dramatic transcriptional changes in temperate anemones related to reef-

building corals (Rodriguez-Lanetty, et al, 2006), although the initiation of symbiosis 
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with compatible Symbiodinium in Acroporapalmata and Montastraea faveolata occurs 

with only minimal changes to the host transcriptome (Voolstra, et al, 2009). EST 

libraries from the same two corals at different developmental stages from unfertilized 

eggs to adult corals also provide evidence that expression signatures at different stages 

are distinct (Schwarz, et al., 2008). Metagenomes from Porites and Acropora have 

included sequences from prokaryotes, viruses, and fungi associated with corals (Wegley, 

et al., 2007, Vega Thurber, et al., 2009, Littman, et al., 2011), but with the exception of 

fungi (Amend, et al., 2011), there are no published transcriptome data for these members 

of the holobiont, and no previous transcriptomic studies consider the holobiont as an 

intact system. Given the importance of these organisms to the functions and fitness of the 

coral holobiont (Ainsworth, et al., 2010, Gates & Ainsworth, 2011), this is a significant 

gap in our knowledge. 

The prokaryotic community of corals has frequently been characterized using 

marker genes such as the 16S ribosomal RNA (Rohwer, et al., 2002, Littman, et al., 

2009, Sunagawa, et al, 2010, Chen, et al., 2011). Studies of sediment and ocean water 

comparing sequences derived from DNA and RNA have demonstrated that the most 

active fraction of the prokaryotic community is not always the most abundant, and vice 

versa (Campbell, et al., 2011, Gaidos, et al., 2011). The prokaryotic community 

associated with M. cavernosa has been profiled using high-throughput pyrosequencing 

(i.e., 454) of PCR amplicons derived from DNA (Chapter 2), and the sequence data from 

this chapter can be utilized in a "double-RNA" approach to compare community profiles 

from DNA and RNA (Urich, et al., 2008). This will yield not only a robust 

characterization of the taxonomy of the community that is free of PCR bias, but also 
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estimates of the functional diversity of different taxa. This study is the first 

metatranscriptome from coral holobionts, including the ecologically and functionally 

important prokaryotic community. In this chapter, the functional (mRNA) portion of the 

metatranscriptome will be analyzed for changes in gene expression in brown and orange 

colonies within the coral host, dinoflagellate, and prokaryotic compartments. Comparing 

the expression of genes in the two transcriptomes will yield important insights into the 

functional differences and ecological niches of brown and orange colonies. 

Methods and Materials 

Sample Collection, Preparation, and Sequencing 

Samples from three orange and three brown/green colonies of the coral 

Montastraea cavernosa were collected with a hammer and chisel on SCUBA from North 

Perry Reef, Lee Stocking Island, Bahamas (23°47'0.03" N, 76°6'5.14" W) near midday 

in August of 2011. Coral samples were transported to the laboratory in covered coolers 

filled with seawater, then gently airbrushed while being held upside down with 0.2 |im 

filtered sea water from a distance of approximately 15 cm to remove mucus and loosely 

associated bacteria. Samples were placed in RNA-Later buffer (Ambion), frozen at -20° 

C or below, and transported to the University of New Hampshire. 

Total RNA was extracted from coral samples using an RNAqueous extraction kit 

(Invitrogen) according to the manufacturer's instructions except for the following 

modifications: tissue was homogenized by bead beating in 750 ^il of lysis buffer with 

0.3g of 160 p.m glass beads for 3 min at maximum speed in a Vortex Genie 2 with 
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Turbomix attachment (Scientific Industries, Inc.), and total RNA was eluted twice with 

50 p.1 and 15 (il of elution solution. DNA was removed using the "rigorous" protocol for 

the TURBO DNA-free kit (Invitrogen), and complete digestion of DNA was confirmed 

by the absence of visible bands from PCRs amplifying cnidarian actin and Eubacterial 

16S rRNA. RNA samples were diluted 1:10 and run on a Bioanalyzer using the RNA 

6000 Pico Assay kit (Agilent). The RNA Integrity Number and concentration were 

recorded for each sample, and electropherograms were examined for the presence of the 

18S and 28S rRNA peaks, a level baseline, and the absence of peaks smaller than the 18S 

or larger than the 28S which typically indicate RNA degradation and genomic DNA 

contamination, respectively. Samples were sent to the W. M. Keck Center for 

Comparative and Functional Genomics at the University of Illinois for the preparation of 

libraries and Illumina sequencing. Eukaryotic rRNA was removed from ljig of total RNA 

from each sample using subtractive hybridization with a RiboMinus Eukaryote kit 

(Invitrogen) according to the manufacturer's instructions. Libraries were prepared with 

TruSeq RNAseq sample prep kits (Illumina), pooled in equimolar concentrations, and 

quantitated with qPCR. Multiplexed samples were sequenced on a HiSeq2000 using a 

TruSeq SBS sequencing kit (version 3), on a single lane for 100 cycles from each end of 

the fragments. The sequencing run was analyzed with Casava 1.8 (pipeline 1.8). 

Data Analysis 

Sequence analysis was conducted using CLC Genomics Workbench (CLCbio). 

Failed reads were removed and sequences from all coral samples were assembled de novo 

with a mismatch cost of 2, insertion and deletion cost of 3, length fraction of 0.5, 
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similarity of 0.8, automatic selection of word size, and conflicts resolved by voting. 

Reads were mapped back to the assembly to check and refine the contigs. Contigs less 

than 300 nt in length were removed and the N50 was calculated using a custom perl 

script. Trimmed contigs were screened forrRNA against all available databases (SILVA, 

Greengenes, RDP-II, Rfam, and NCBI and HMP reference genomes) using riboPicker 

(Schmieden et al, 2012), with contigs aligning over 30 nt at a minimum of 20% 

coverage and 75% identity flagged as putative rRNA and excluded from further analysis. 

Cutoffs for the identification of rRNA were selected with guidance from the coverage-

identity plot provided in riboPicker. 

Expression levels were determined by mapping all of the reads for each coral 

sample to the list of putative mRNA contigs using the RNA-Seq utility in CLC. Reads 

were mapped with a minimum length fraction of 0.9, a minimum similarity fraction of 

0.8, a maximum of 10 hits per read, and broken pairs were not included. Total read 

counts were summarized over all samples for each contig, then exported and analyzed in 

DESeq, an R package which utilizes a model based on the negative bionomial 

distribution to test for differential expression (DE) with high power and accuracy (Anders 

& Huber, 2010). P-values were Bonferroni corrected for multiple comparisons, and 

significantly differentially expressed contigs (P < 0.05) were sorted into two lists: those 

with a higher expression level in brown samples, and those with a higher expression level 

in orange samples. Each contig list was used to query the RefSeq protein database using 

BLASTX through the CAMERA web portal (Sun, et al., 2011), with 100 hits per query, a 

minimum E-value of 1 x 10"3, filtering of low-complexity sequences, a gap opening 

penalty of 11, and a gap extension penalty of 1. All non-rRNA contigs were annotated 
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using the same database and search settings, and all BLAST results were imported into 

MEGAN4 (Huson, et al, 2011), which uses a lowest common ancestor algorithm based 

on the taxonomic assignments of multiple BLAST hits to assign taxonomy to sequences. 

In MEGAN4, contigs were divided into subsets based on their lowest common 

ancestor assignment and analyzed separately. "Prokaryote" contigs included those 

assigned to Archaea and Bacteria, "Zooxanthellae" contigs were those assigned to 

Alveolata or Viridiplantae, and remaining contigs were assigned to the "Coral host" 

category, except for Fungi contigs that were excluded from analysis. The SEED 

annotations and KEGG functions of contigs from the whole metatranscriptome and those 

that were significantly differentially expressed from each of the three subsets were 

compared in MEGAN. 

Results 

Illumina sequencing produced 34,011,854 to 45,494,072 paired-end reads per 

sample (average 40,840,612 reads per sample), for a total of 245,043,674 reads from 

fragments averaging 240 nt in length. Reads were assembled into 213,010 contigs, with 

an N50 for the assembly of 948 nt. Contigs less than 300 nt in length (n = 458) or flagged 

as rRNA by riboPicker (n = 895) were trimmed from the assembly, for a total of 211,657 

putative mRNA contigs. On average, 34.4% of reads from each sample (± 8.6%) could be 

mapped back to mRNA contigs in RNA-seq analysis. 842 contigs were significantly 

differentially expressed (DE) between brown and orange samples; 314 of these had 
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higher expression in brown samples and 528 had higher expression in orange samples 

(Figure 3.1). 

Comparison of the metatranscriptome to the RefSeq database with BLASTX 

resulted in low annotation rates (Table 3.1). Based on taxonomic annotations, contigs 

were split into three groups based on their presumed compartment within the holobiont: 

prokaryote, zooxanthellae, and coral host. Almost 10 times more contigs were assigned to 

the coral host grouping than to the prokaryote or zooxanthellae grouping (Table 3.1). 

Twenty-three DE contigs originated from the prokaryote group, and the remainder were 

assigned to the coral host group. 

Prokaryotic Contigs 

Prokaryotic mRNA contigs included 5,066 assigned to Bacteria and 67 to 

Archaea. Contigs were assigned to diverse taxa, but the order Burkholderiales within the 

P-proteobacteria was clearly dominant (Figures 3.2, 3.3). Cyanobacteria had the second 

largest number of contigs, and were represented by three orders: Chroococcales, 

Nostocales, and Oscillatoriales (Figure 3.4). Archaeal contigs were primarily assigned to 

Halobacteria and Methanocella within Euryarchaeota, Nitrosopumiales within the 

Thaumarchaeota, and Thermoprotei and Sulfolobus within the Crenarchaeota (Figure 

3.5). 

The SEED functions assigned to prokaryotic contigs revealed a functionally 

diverse community with diverse metabolic capabilities and possible roles in the 

holobiont. Contigs consistent with both photoautotrophy and heterotrophy were present, 

and the housekeeping functions that would be expected in a complete transcriptome, such 
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as those for transcription, translation, and the cell cycle, were represented (Figure 3.6). 

Many contigs that could be important to holobiont fitness and microbial interactions 

within the coral-associated community were present (Figure 3.7). Nitrogen cycling was 

represented by ammonia assimilation and nifS, which is a part of the nif gene cluster 

involved in nitrogen fixation. NifS catalyzes a reaction producing sulfide necessary to 

form the iron-sulfide core of the nitrogenase enzyme (Zheng & Dean, 1994) and is 

required for nitrogenase activity (Kennedy & Dean, 1992). The assimilation and 

oxidation of sulfur, and metabolism of aromatic compounds were also present. Contigs 

related to the oxidative stress response, including an iron superoxide dismutase and 

rubrerythrin, made up the majority of the stress response category, reflecting the 

hyperoxic conditions of coral tissue during daylight hours. The most abundant SEED 

category was virulence (Figure 3.6); this group was comprised primarily of contigs 

involved in resistance to antibiotics and the acquisition and uptake of iron (Figure 3.8). 

Phages and secondary metabolism were the least abundant categories. 

Differentially expressed contigs in the prokaryote group were all assigned to 

either Bacteria or Phylum Proteobacteria. None could be annotated with SEED functions, 

but two could be assigned to KEGG pathways. One contig that was significantly more 

expressed in orange than brown colonies was annotated as entF, which is involved in the 

synthesis of enterobactin, a siderophore from Gram negative bacteria with the highest 

known affinity for iron. The second contig was also more expressed in orange colonies, 

and was annotated as UBC, which is involved in ubiquitination. 
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Zooxanthellae Contigs 

Contigs assigned to both Alveolata (n = 4,942) and Viridiplantae (n = 2,057) were 

grouped into the zooxanthellae category, in an attempt to include the photosynthetic 

functions of Symbiodinium. There were no assignments to dinoflagellates specifically, but 

many of the Alveolata contigs were from related parasites and pathogens, including 

Perkinsus and the apicomplexans Toxoplasma, Cryptosporidium, Babesia, and 

Plasmodium (Figure 3.9). Viridiplantae contigs were assigned mostly to Chlorophyta, or 

to lower plants such as mosses. 

SEED annotations of zooxanthellae contigs included functions necessary for a 

photoautotrophic lifestyle, such as photosynthesis, CO2 fixation and metabolism, 

respiration, and response to oxidative stress (Figure 3.10). Contigs functioning in 

translation initiation and RNA processing and modification were more abundant than 

those involved in transcription (Figure 3.11). Several functional categories, including cell 

cycle and potassium homeostasis (within the membrane transport category) may contain 

contigs important in mediating interactions with the coral host (Figure 3.12). Ammonia 

transporters and flavohemoprotein comprised the nitrogen metabolism category. There 

were no DE contigs in the zooxanthellae category. 

Coral Host Contigs 

Taxonomic assignments of contigs in the coral host category were diverse, but 

were primarily Cnidaria (Figure 3.13). Some other taxa are known to be members of the 

holobiont, such as Fungi and stramenopiles, or are common coral reef inhabitants and 

could come from contamination of the sample during collection (e.g., Tunicata, 

117 



Demospongiae, Echinodermata). Fungi contigs were excluded from functional analysis 

because Fungi are transcriptionally active members of the holobiont and thus these 

contigs are unlikely to originate from the coral host (Amend, et al., 2011). Most DE 

contigs were classified as Cnidaria, but a few were assigned to Demospongiae and taxa 

within Coelomata (Figure 3.13). 

Functional annotations of coral host contigs included some SEED categories that 

appear to originate from other members of the holobiont, because their functions are not 

biologically relevant to the host transcriptome. These categories included photosynthesis, 

CO2 fixation, cell wall and capsule, dormancy and sporulation, and prokaryotic cell cycle 

(Figure 3.14). Housekeeping and general metabolic functions such as the metabolism of 

carbohydrates, DNA, and protein, made up the greatest number of contigs, but some 

categories of special interest to coral physiology were present. Stress response was the 

fourth most abundant functional category; most of these contigs were related to oxidative 

stress, but transcripts for osmotic stress and xenobiotic detoxification were also 

represented (Figure 3.15). Contigs related to potassium homeostasis were found in the 

coral host group as well as the zooxanthellae group of contigs, although those assigned to 

the coral host included genes such as KefC and TrkA that likely originate from mis-

annotated prokaryotes (Jan & Jan, 1997). 

DE contigs in the coral host group were distributed across several functions and 

pathways (Table 3.2). Respiratory complex I, the first enzyme complex involved in 

oxidative phosphorylation, had several of its NADH dehydrogenase subunits more highly 

expressed in orange than brown (Figure 3.16). Most other DE contigs were part of cell 

signaling pathways (Table 3.2). In orange colonies, the MAPK, Notch, calcium signaling, 
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and Toll-like/RIG-I-like receptor pathways and cell adhesion molecules had contigs that 

were significantly DE compared to brown morphs. Part of the cell cycle and p53 

pathways and several cytochrome C oxidase subunits were more highly expressed in 

brown colonies. 

Discussion 

Taxonomic Groups in the Metatranscriptome 

Contigs from the metatranscriptome of Montastraea cavernosa revealed the 

diverse communities of organisms composing the holobiont, and some of their functional 

capabilities that may contribute to overall holobiont fitness. Taxonomic assignments were 

made from BLASTX hits to putative mRNA contigs, but these may not be as reliable as 

assignments made from marker gene sequences such as the 16S rRNA. Protein coding 

genes vary in how phylogenetically informative they are, and while sequenced genomes 

are available for a growing number of taxa, many other taxa are represented by only a 

few functional genes or marker gene sequences. Taxonomic assignments are expected to 

be biased towards taxa that contain many representative sequences in the database, and 

against poorly characterized taxa. This problem is particularly acute for the wide 

diversity of prokaryotes and unicellular protists that remain uncultured (Behnke, et al., 

2011). Analysis of the rRNA fraction of the metatranscriptome will be used in the future 

to characterize the taxonomic composition of the community and confirm the results of 

mRNA annotation. 

Based on putative mRNA sequences, a diverse prokaryotic community including 

bacteria and Archaea was present in M. cavernosa samples (Figure 3.1). Among the 
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bacteria, Proteobacteria and in particular the Burkholderiales had the largest number of 

contigs (Figure 3.1, 3.3). Pyrosequencing of PCR amplicons of the 16S rRNA gene from 

the same samples also found that Proteobacteria were dominant members of the 

prokaryotic community, but Burkholderiales made up only a small fraction of these reads 

(Chapter 2), suggesting that this group is highly transcriptionally active. Cyanobacteria 

were the second most common source of prokaryotic mRNA contigs, and were mostly 

composed of Chroococcales and Oscillatoriales (Figure 3.4), supporting the results of 

pyrosequencing with eubacterial primers (Chapter 2) and cyanobacteria-specific primers 

(Lesser, et al, 2004) that placed the putative cyanobacterial symbionts within the 

Chroococcales. Putative mRNA contigs were assigned to several cyanobacterial groups 

that were probably not present in the coral holobiont. Taxonomic groups with many full 

genome sequences tend to collect more mRNA annotations than groups with fewer 

sequenced representatives; this documented bias likely affected the taxonomic 

assignment of contigs in this study. Examples of taxa that may have collected annotations 

but are probably not present include Acaryochloris and Microcystis aeruginosa. 

Acaryochloris commonly lives in shaded habitats beneath ascidians and possesses a 

unique form of chlorophyll d that allows it to utilize far-red light for photosynthesis 

(Miyashita, et al., 2003, Kuhl, et al., 2005). However, far-red light is not present at the 

depth of sample collection due to attenuation by the water column, so it is unlikely that 

this group is genuinely present. While Microcystis aeruginosa is found exclusively in 

freshwater, it is a prolific producer of microcystins and other secondary metabolites, 

which ELISA assays of coral tissue extracts showed to be present in a small number of 

orange colonies of M. cavernosa (Chapter 4). Microcystins are also found in the 
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microbial mat of black band disease of corals, as well as some free-living marine 

cyanobacteria on reefs (Richardson, et al, 2007, Gantar, et al, 2009, Stanic, et al, 2011). 

Other groups are more likely to be present in the holobiont, and are also of special 

functional interest. The filamentous marine cyanobacterium Moorea producta is also 

known to produce secondary metabolites (Engene, et al., 2011). Several taxa including 

Nostoc, Trichodesmium, and Lyngbya are capable of fixing nitrogen and might contribute 

to nitrogen cycling within the holobiont. 

Previous studies have found that Archaea are abundant on some corals such as 

Porites but apparently are not associated with others, including Caribbean Acropora 

(Wegley, et al., 2004). Here, contigs from three phyla of Archaea (Euryarchaeota, 

Thaumarchaeota, and Crenarchaeota) were observed (Figure 3.5). Similar taxa have been 

found in Acanthastrea, Favia, and Fungia from Australia and the Red Sea (Siboni, et al., 

2008). Communities in these corals were dominated by Nitrosopumilus, which oxidizes 

ammonia to nitrite (Konneke, et al., 2005) and is thought to play an important role in 

nitrogen cycling in corals. Nitrosopumilus was recently re-classified in the new phylum 

Thaumarchaeota (Brochier-Armanet, et al., 2008, Molloy, 2011), which contained many 

contig assignments in this study. In the sponge Geodia barretti, Archaea are numerically 

abundant and highly transcriptionally active cells, but were poorly represented in rRNA 

sequence counts from a metatranscriptome and in cloned 16S rRNA sequences (Radax, et 

al., 2012). A low abundance of rRNA molecules appears to be a general Archaeal trait 

(Valentine, 2007), a hypothesis that can be tested using the ratio of mRNA and rRNA 

assigned to Archaea within this study. Combined with the finding of Crenarchaeotes in 
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16S rRNA sequencing (Chapter 2), it appears that Archaea are present and active in M. 

cavernosa. 

The zooxanthellae group included contigs annotated as Alveolata and 

Viridiplantae (Figure 3.9), in an attempt to include the contigs related to photosynthesis 

and autotrophy in Symbiodinium. There were no dinoflagellate annotations, but sequence 

data on dinoflagellates is limited due to the immense size and unusual features of their 

genomes, none of which have yet been fully sequenced (Lin, 2011). Many of the 

assignments were to related apicomplexan parasites or pathogens, perhaps indicating that 

some mechanisms for associating with a host may be shared between parasites and 

symbionts (Figure 3.9) (Dale & Moran, 2006, Bright & Bulgheresi, 2010). 

The coral host contigs were assigned primarily to Cnidaria, but a variety of other 

taxa were identified as well. Some of these may represent genes that are genuinely 

present in the host transcriptome but have not been previously described from cnidarians. 

Cnidarian genomes that are currently available include the hydrozoans Hydractinia 

echinata (Soza-Ried, et al., 2010) and Hydra magnipapillata (Chapman, et al., 2010), the 

scleractinian Acropora digitifera (Shinzato, et al, 2011), and the actinarian Nematostella 

vectensis (Putnam, et al., 2007); their genes often have high similarity to those of 

vertebrates, and many appear to be unique to cnidarians (Soza-Ried, et al., 2010), so a 

finding of new sequences would not be unprecedented but merits further investigation. 

Other contigs not assigned to Cnidaria could represent other members of the holobiont 

that were present in the samples. Coral-associated fungi are diverse and metabolically 

active (Wegley, et al., 2007, Amend, et al., 2011, Littman, et al, 2011), and 

stramenopiles have recently been reported to be embedded in the mucus and tissue of the 
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massive coral Favia sp. in the Red Sea, forming a "white film" over the colony surface 

(Siboni, et al., 2010). Similar films have also been observed on M. cavernosa (Lasker, 

1981, Kao, etal., 2007). 

Expressed Genes in the Compartments of the Holobiont 

Prokaryotic genes in the metatranscriptome reflected the diversity of taxonomic 

assignments, and coral-associated prokaryotes appear to have diverse modes of nutrition 

and express many genes that could play a role in holobiont fitness (Figure 3.6, 3.7). 

Indications of nitrogen cycling were present, including nifS, which plays an essential role 

in the production of the Fe-S metalloclusters of nitrogenase (Zheng & Dean, 1994). This 

gene is required for the full function of nitrogenases in Azotobacter, but may also be 

involved in the synthesis of Fe-S metalloclusters required for other enzymes (Johnson, et 

al., 2005), as nifS-like genes have been found in organisms that do not fix nitrogen 

(Zheng, et al., 1993). The presence of a contig annotated as rubrerythrin supports the 

hypothesis that NifS is involved in nitrogen fixation in this system, because the 

antioxidant activity of this protein has been shown to protect nitrogenase from reactive 

oxygen species in heterocystous cyanobacteria (Zhao, et al., 2007). Multiple contigs 

involved in ammonia assimilation were found, allowing the prokaryotes to take up and 

utilize ammonia excreted by the coral host or fixed nitrogen (Figure 3.7). Genes for the 

metabolism of aromatic compounds and the stress response may help bacteria occupy 

unique nutritional niches and tolerate the fluctuating redox conditions in coral tissue and 

mucus (Dykens & Shick, 1982). 
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The most highly represented SEED system in the prokaryotic portion of the 

metatranscriptome was virulence (Figure 3.6) and these contigs were related primarily to 

resistance to antibiotics and the scavenging and uptake of iron (Figure 3.8a). Degradation 

rather than efflux of antimicrobial compounds seems to be the primary strategy of 

resistance (Figure 3.8b). A majority of the culturable bacteria associated with corals 

produce antimicrobial compounds (Ritchie, 2006, Rypien, et al, 2010), so a large 

repertoire of genes for inactivating such compounds is not unexpected. Interestingly, the 

addition of nitrogen caused a significant increase in genes associated with antibiotic 

resistance in metagenomes of Pontes compressa, perhaps indicating an additional effect 

of fixed nitrogen in orange colonies (Vega Thurber, et al., 2009). The large number of 

contigs for iron acquisition could be involved in functions that are beneficial to the coral 

holobiont. Corals can ingest their mucus, so it has been hypothesized that iron scavenged 

by bacteria living in mucus may be utilized by the host (Knowlton & Rohwer, 2003). One 

of the two DE contigs in the prokaryotic fraction was EntF, which along with related 

genes catalyzes the formation of enterobactin (Raymond, et al., 2003). This gene was 

more highly expressed in the orange morph. Orange colonies contain dense (107 cells cm" 

2) populations of symbiotic cyanobacteria (Lesser, et al, 2004), which require iron for 

their redox enzymes as well as the Fe-S metalloclusters in the nitrogenase enzyme 

required to fix nitrogen, so orange holobionts likely have a greater total requirement for 

iron, necessitating aggressive scavenging with this high-affinity siderophore. 

There were no contigs taxonomically assigned to dinoflagellates within the 

zooxanthellae group and no contigs were significantly DE, but the unique features of the 

genome and gene expression in dinoflagellates may account for this. Symbiodinium has a 
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relatively small genome, approximately the size of the human genome, but other 

dinoflagellates have genomes up to 50 times larger (LaJeunesse, et al., 2005). Because of 

their extremely large genomes, there are no fully sequenced dinoflagellates, only EST 

libraries and similar data sets, so dinoflagellates are under-represented in sequence 

databases (Leggat, et al, 2007, Lin, et al., 2010, Jaeckisch, et al, 2011, Bayer, et al., 

2012). Features that can complicate the analysis of dinoflagellate genomes include their 

high GC content, non-conventional bases, and many horizontally transferred genes. 

Genomic DNA in dinoflagellate cells exists as permanently condensed chromosomes, 

which appears to have necessitated unusual methods of gene regulation that are not well 

understood (Hackett, et al., 2004). Almost all dinoflagellate mRNAs are capped with a 

conserved 22-bp spliced-leader sequence that may be involved in regulating translation 

(Zhang, et al., 2007). This sequence has recently been utilized as a target for PCR 

primers to amplify cDNAs (Lin, et al, 2010). The minimal changes in transcription 

observed in many studies of dinoflagellates suggest that either much of the gene 

regulation occurs post-transcriptionally (reviewed in (Leggat, et al, 2011)), or that 

specific targeting of the spliced-leader sequences may be necessary to efficiently recover 

transcripts. Interestingly, exposure to bacteria provokes a relatively large transcriptional 

response, which has implications for dinoflagellates within the coral holobiont (Leggat, et 

al, 2011). 

SEED functions assigned to zooxanthellae contigs included the expected 

processes in a photosynthetic eukaryote, and reflected the environment of the coral 

holobiont. Photosynthesis, carbon fixation (including Rubisco), response to oxidative 

stress, heat shock proteins, and respiration were all represented (Figure 3.10). The contigs 
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involved in potassium homeostasis may be important to osmoregulation and the 

maintenance of symbiosis with the coral host (Mayfield & Gates, 2007), as in rhizobial 

symbioses (Domi-nguez-Ferreras, et al., 2009). The greater number of contigs assigned 

to translation initiation and RNA processing relative to transcription supports what is 

known about gene regulation in dinoflagellates (Figure 3.11). 

Taxonomic and functional assignments of coral contigs were diverse and likely reflected 

both the actual taxa and functions as well as some mis-annotations. While most contigs 

were assigned to Cnidaria, assignments to Vertebrata and other higher taxa are not 

unexpected as many coral genes are more similar to those in vertebrates than other 

invertebrates (Putnam, et al., 2007, Soza-Ried, et al., 2010). Many of the expected SEED 

subsystems were represented, like oxidative stress (Figure 3.14). However, some contigs 

are clearly mis-categorized and do not originate from the coral host, such as those 

assigned to photosynthesis, cell wall and capsule, and dormancy and sporulation. 

Potential Role of Osmotic Stress in Orange M. cavernosa 

Many of the differentially expressed contigs found in orange colonies may be 

related to the demands of maintaining a large population of mostly heterotrophic 

intracellular symbionts, namely the cyanobacteria. Mayfield and Gates (2007) have 

proposed that osmoregulation is an important and dynamic process that helps to maintain 

the symbiosis between coral and dinoflagellate, and that osmotic stress is a key factor in 

the breakdown of this association during thermal stress (Mayfield & Gates, 2007). 

Functional zooxanthellae perform photosynthesis and translocate glycerol, which in 

addition to serving as a carbon source for the metabolism of the coral host, is also an 
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osmolyte. When zooxanthellae are damaged by thermal stress, carbon fixation is 

impaired and the amount of glycerol translocated to the host is decreased, resulting in 

osmotic imbalance. In the proposed models, the host will attempt to produce more 

osmolytes, increasing its respiration rate and thereby producing more reactive oxygen 

species (ROS). If the condition persists, changes in cellular pH and volume can denature 

proteins, cause a loss of adhesion of cells, and eventually the loss or ejection of 

symbionts. In M. cavernosa, the majority of the Photosystem II complexes in the 

cyanobacteria are uncoupled from photochemistry and the cyanobacteria appear to be 

living heterotrophically, likely respiring glycerol (Lesser, et al., 2007). Given the density 

of cyanobacteria populations, this depletion of the pool of glycerol could be significant, 

and might create chronic osmotic stress in these colonies. 

All of the responses described above are predicated on the ability of the coral to 

sense osmotic stress and cue other cellular components to respond. The MAPK signaling 

pathway is involved in osmoregulation in eukaryotes (Cowan & Storey, 2003), and 

several components of this pathway were more expressed in orange colonies (Table 3.2). 

Parts of the respiratory complex I were also overexpressed (Table 3.2), which could be 

related to the energetic demands of correcting osmotic imbalances, or to the presumably 

increased need for membrane transport (e.g., of compounds containing newly fixed 

nitrogen from cyanobacteria to zooxanthellae) in orange colonies. Respiratory complex I 

is also a primary site of electron leakage to O2 and thus generates ROS. The reason for 

higher expression in brown colonies of some parts of the p53 pathway is unclear, but 

could reflect significant down regulation in orange colonies, rather than upregulation in 

brown colonies. 
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Metatranscriptomic Sampling and Analysis 

Many genes and functional categories that were of interest a priori based on 

knowledge of the M. cavernosa system were not recovered in this metatranscriptome. In 

particular, genes related to nitrogen fixation, assimilation, and other nitrogen 

transformations (e.g., ammonia oxidation) were poorly represented, and neither the 

cyanobacterial pigment phycoerythrin (PE) or any green fluorescent protein (GFP) 

homologs were found. For logistical reasons, the samples sequenced here were collected 

at midday, a time when nitrogen fixation is not occurring in this system (Lesser, et al., 

2007). The hyperoxic conditions in coral tissue during the daylight hours (Dykens & 

Shick, 1982) would irreversibly inactivate nitrogenase, so transcription of nitrogenase 

likely does not take place until the late afternoon or early evening, when oxygen 

concentrations are low and fixation begins. Respiration in the cyanobacteria may also aid 

in the protection of nitrogenase. Many of the other nitrogen-related genes would be 

required only when there is fixed nitrogen to be assimilated, metabolized or stored, so 

these genes are apparently not expressed during daylight hours. Phycoerythrin is a highly 

abundant protein in orange M. cavernosa and gives the colonies their characteristic 

fluorescence, so the lack of PE transcripts was unexpected. Although it is a light 

harvesting pigment in most cyanobacteria and thus might be expected to be expressed 

during the light period, PE can also serve as a nitrogen storage compound (Wyman, et al., 

1985) and may be transcribed only in the evening when fixed nitrogen is available. 

Metatranscriptomic sequencing of samples collected during nighttime hours would likely 

yield a significantly different array of processes and functions. 
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The choices made in data analysis of this metatranscriptome almost certainly 

affected the quality of the results. Although failed reads were discarded, reads were not 

trimmed for quality before they were assembled, which may explain why a relatively low 

percentage of the reads were successfully mapped back to the assembled contigs during 

RNA-Seq analysis (S. Vollmer, pers. comm.). The contributions of erroneous or poor-

quality reads to the consensus sequences of contigs may have altered the true mRNA 

sequences sufficiently to reduce the number of significant BLASTX hits, despite the 

relatively high (i.e., permissive) E-value cutoff. Annotations discussed here are limited to 

hits to known and annotated genes, and do not include hits to hypothetical proteins, or to 

sequences recovered from other corals or similar organisms that may be of interest but 

whose function is unknown. The annotation rate of contigs in this study was 

approximately 32% for taxonomic annotations and less than 1% for functional SEED 

annotations, which is low compared to other marine metatranscriptomes (Poretsky, et al, 

2009, Marchetti, et al, 2012, Radax, et al, 2012). 

Future Directions 

Several hypotheses about the M. cavernosa holobiont are presented here, but this 

study is merely a preliminary analysis of a very large and complex data set, and the 

interpretations may change with further investigation. An alternative pipeline for re

analyzing the putative mRNA contigs is under development. Reads will be trimmed for 

quality with extremely high stringency, and assembled in Trinity, which is designed for 

the unique features of transcriptome data (Grabherr, et al, 2011). New contigs will be 

annotated with a custom pipeline utilizing the SwissProt and UniRef 90 databases, and 
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also compared directly to databases from genomic or transcriptomic sequencing of 

relevant organisms including Nematostella, Pocillopora damicornis, Acropora digitifera, 

A. palmata, and Symbiodinium (Putnam, et al., 2007, Polato, et al, 2011, Shinzato, et al., 

2011, Traylor-Knowles, et al, 2011, Bayer, et al, 2012). Differential expression analysis 

will be repeated, and specific taxonomic groups (Fungi, Archaea, viruses, etc.) will be 

investigated in more detail. Modification of the MEGAN program or its data inputs will 

be attempted, to display expression values rather than contig counts for more intuitive 

data visualization. 

Analysis of the rRNA portion of the metatranscriptome is planned, to complete the 

"double-RNA" approach. This data will serve as a comparison to the mRNA data, as well 

as the pyrosequenced 16S rRNA PCR amplicon data (Chapter 2). A new iterative method 

utilizing mapping to a reference database of SSU sequences will be used to reconstruct 

full-length rRNA sequences from the total pool of reads. Reads will be mapped back to 

contigs with RNA-Seq and analyzed with the QIIME pipeline (Caporaso, et al., 2010) to 

explore the relative abundance of different taxa. 
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TABLE 3.1. Annotation of putative mRNA contigs from each holobiont 
compartment. 

Total contigs 
Taxonomy 
assigned 
SEED assigned 
KEGG assigned 

All 
contigs Prokaryotic "Zooxanthellae" 

"Coral 
host" 

211,657 

67,248 
1897 

16464 

5133 
618 

1087 

6999 
179 

1411 

42661 
509 

9947 

TABLE 3.2 A. KEGG annotation of contigs with significantly higher expression 



brown colonies. 
Contigs gene KO Pathway Function 

Apoptosis, p53 signaling 
2 CytC 8738 pathway cytochrome C 
1 CDK5 2090 Axon guidance cycylin-dependent kinase 5 

roundabout, axon guidance 
1 Robo2 6754 Axon guidance receptor 2 
1 ACSM 1896 Butanoate metabolism acyl-CoA synethtase 
1 TTN 12567 Cardiovascular diseases titin 

Cell adhesion molecules neural cell adhesion 
3 NCAM 6491 (CAMs) molecule 

Cell cycle, p53 signaling serine/threonine-protein 
1 Chkl 2216 pathway kinase 

Cell cycle, p53 signaling serine/threonine-protein 
2 Chk2 6641 pathway kinase 
1 FOLR 13649 Endocytosis folate receptor 
2 NPC 12385 Lysosome lysosome membrane protein 

CD63 antigen, lysosome 
1 LIMP 6497 Lysosome membrane protein 

Oxidative 
phosphorylation, 

1 COX1 2256 Respiratory complex IV cytochrome C oxidase 
Oxidative ubiquinol-cytochrome C 
phosphorylation, reductase iron-sulfur 

2 Cyto 411 Respiratory complex IV subunit 
Oxidative 
phosphorylation, cytochrome C oxidase 

1 COX3 2262 Respiratory complex IV subunit 3 
3 SF3b 12828 Spliceosome splicing factor 3B subunit 1 

TABLE 3.2 B. KEGG annotation of contigs with significantly higher expression in 
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orange colonies. 

8s gene KO Pathway Function 
Amino sugar and 
nucleotide sugar 

1 CHIA 1183 metabolism chitinase 
class II, major 

Antigen processing histocompatability complex, 
2 CIITA 8060 and presentation transactivator 

Calcium signaling 
1 CD38 1242 pathway NAD+ nucleosidase 

Cardiovascular 
1 TTN 12567 diseases titin 

Cell adhesion 
2 SELP 6496 molecules (CAMs) selectin, platele 

Cell adhesion vascular cell adhesion 
2 VCAM1 6527 molecules (CAMs) molecule 

Cell adhesion 
5 NCAM 6491 molecules (CAMs) neural cell adhesion molecule 

Cell cycle, p53 
1 Brnl 6676 signaling pathway condensin complex subunit 2 

ECM-receptor Heparan sulfate proteoglycan 2 
1 HSPG2 6255 interaction (perlecan) 
1 FOLR 13649 Endocytosis folate receptor 

Folding, sorting and stress-induced phosphoprotein 
1 STI1 9553 degradation 1 

Folding, sorting and 
2 UBC 8770 degradation ubiquitin C 

Hedgehog signaling Hedgehog, intercellular 
1 Hh 6224 pathway signaling 

Immune system, 
hematopoetic cell 

2 CD59 4008 lineage CD59 antigen 
MAPK signaling 

1 SRF 4378 pathway serum response factor 
MEKK2 MAPK signaling mitogen-activated protein 

2 B 4420 pathway kinase 
MAPK signaling mitogen-activated protein 

1 MEKK 4461 pathway kinase 
Notch signaling Notch transmembrane receptor 

4 Notch 2599 pathway protein 
Nucleotide excision 

1 XPF 10848 repair DNA excision repair protein 
Oxidative 
phosphorylation, 
Respiratory complex 

1 NuoA 330 I NADH dehydrogenase 
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Oxidative 
phosphorylation, 
Respiratory complex 

1 NuoK 340 I 
1 deaD 5592 RNA degradation 

Toll-like, RIG-I-like 
receptor signaling 

2 TRAF3 3174 pathways 
Toll-like, RIG-I-like 
receptor signaling 

3 TBK1 5410 pathways 
Vascular smooth 

1 Kca 4936 muscle contraction 

NADH dehydrogenase 
helicases 

TNF receptor-associated factor 
3 

TANK-binding kinase 1 
potassium large conductance 
Ca-activated channel 
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log2(Mean) 

Figure 3.1. Volcano plot comparing mean expression values of putative mRNA contigs 
and fold change in expression between brown and orange colonies. Contigs with a 
negative value on the y-axis have higher expression in brown colonies; contigs with a 
positive value have higher expression in orange colonies. Contigs marked in red are 
significantly differentially expressed (Bonferroni corrected P < 0.05). 
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Figure 3.2. Taxonomic assignments of putative mRNA contigs annotated as Bacteria and 
Archaea (prokaryotic contigs). Note that values represent the number of different contigs, 
not their expression levels. 
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Figure 3.3. Taxonomic assignments of prokaryotic contigs annotated as Proteobacteria. 
Note that values represent the number of different contigs, not their expression levels. 
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Figure 3.4. Taxonomic assignments of prokaryotic contigs annotated as Cyanobacteria. 
Note that values represent the number of different contigs, not their expression levels. 
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Figure 3.5. Taxonomic assignments of prokaryotic contigs annotated as Archaea. Note 
that values represent the number of different contigs, not their expression levels. 
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Figure 3.6. Functional assignment of prokaryotic contigs to SEED metabolic subsystems. 
Note that values represent the number of different contigs, not their expression levels. 
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Figure 3.7. Functional assignment of prokaryotic contigs to SEED metabolic subsystems 
of special interest, presented in hierarchical format. Note that values represent the number 
of different contigs, not their expression levels. 
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(Previous pages) 
Figure 3.8. A) Prokaryotic contigs assigned to the virulence subsystem. B) Prokaryotic 
contigs assigned to the virulence subsystem, detailed view. Note that values represent the 
number of different contigs, not their expression levels. 
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Figure 3.9. Taxonomic assignments of putative mRNA contigs annotated as Alveolata 
and Viridiplantae (zooxanthellae contigs), in hierarchical format. Note that values 
represent the number of different contigs, not their expression levels. 
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Figure 3.10. Functional assignment of zooxanthellae contigs to SEED metabolic 
subsystems. Note that values represent the number of different contigs, not their 
expression levels. 
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Figure 3.12. Functional assignment of zooxanthellae contigs to metabolic subsystems of 
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Figure 3.13. Taxonomic assignments of putative mRNA contigs annotated as "coral 
host." Note that values represent the number of different contigs, not their expression 
levels. "Brown" contigs had significantly higher expression levels in brown colonies, and 
"orange" contigs had significantly higher expression levels in orange colonies. 
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Figure 3.14. Functional assignment of coral host contigs to SEED metabolic subsystems. 
"Brown" contigs had significantly higher expression levels in brown colonies, and 
"orange" contigs had significantly higher expression levels in orange colonies. Note that 
values represent the number of different contigs, not their expression levels. 
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Figure 3.16. Coral host contigs assigned to the Respiratory complex I subsystem, within 
Respiration. "Brown" contigs had significantly higher expression levels in brown 
colonies, and "orange" contigs had significantly higher expression levels in orange 
colonies. Note that values represent the number of different contigs, not their expression 
levels. 
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CHAPTER IV 

EFFECTS OF SYMBIOTIC NITROGEN-FIXING CYANOBACTERIA ON FITNESS 

OF THE HOST CORAL MONTASTRAEA CAVERNOSA 

Introduction 

Symbiosis 

Symbioses, defined in the broadest sense as the close association of two or more 

organisms of different species, are ubiquitous and diverse in nature. Since Darwin's time, 

naturalists have been able to easily explain the existence of parasitism, but the evolution 

and persistence of mutualisms was more difficult to understand, as it seemed impossible 

for two different species to evolve to benefit each other without conflicts of interest 

occurring. Yet, mutualisms have arisen repeatedly and have persisted over evolutionary 

time. This can be explained by examining the genomes and evolutionary history of the 

organisms involved (Moran, 2007). Many organisms lack functional copies of genes 

coding for necessary products, either because they descended from ancestors that did not 

possess such genes, or through gene loss events. This loss of critical metabolic 

capabilities is common when organisms can obtain the necessary substances, such as 

vitamins, from their diet or environment. Animals are a particularly dramatic example of 

this; they lack the ability to synthesize many essential amino acids. Some organisms, 
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particularly bacteria, are able to readily integrate foreign genes into their genomes, but 

the frequency of horizontal transfer events and their impacts on function and fitness are 

less understood in eukaryotes, and horizontal gene transfer appears to be less common in 

some lineages than others (Keeling & Palmer, 2008), Even in bacteria, the successful 

horizontal transfer of complex biosynthetic or metabolic pathways involving multiple 

genes is not common. Because of the differences in metabolic capabilities of different 

organisms, and the difficulty of acquiring new genes, mutually beneficial symbioses 

based on the exchange of needed products can arise readily (Moran, 2007). In this way, 

metabolic pathways are "acquired" through the symbiont. When one or both partners 

experience increased fitness through the association, traits that promote the symbiosis are 

selected for and the partnership is stabilized through evolution. Many symbioses involve 

nutritional exchanges, but "exchanges" can also include protection from predators. In the 

Euprymna- Vibrio fischeri symbiosis, the bacteria live in a specialized organ and produce 

light that camouflages the squid by counter-illumination (Jones & Nishiguchi, 2004). 

Some species of aphids contain Rickettsiella endosymbionts that change the body color of 

the insect from red to green, helping it avoid predators (Tsuchida, et al., 2010). 

Symbioses exist in many different forms, which fall along gradients from 

mutualism to parasitism, and from obligate to facultative. Mutualists and parasites were 

once thought to share few characteristics, but new research has shown that these types of 

associations have much in common, including many basic biological and evolutionary 

mechanisms (Sachs, et al., 2011). Parasites are commonly thought to share several 

evolutionary patterns that help them to evade host defenses and maintain their fitness in 

the face of host adaptation. These patterns include negative frequency selection (i.e., rare 
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phenotypes are more fit), high rates of sexual reproduction (which can produce new 

genotypes and phenotypes), arms races with hosts, and a rapid rate of evolution. 

In contrast, evolution in mutualisms is constrained by the need to maintain the 

positive interactions between host and symbiont to maximize fitness for both partners. 

Positive frequency selection (i.e., common phenotypes are more fit), slow rates of 

evolution or even evolutionary stasis, and asexuality were thought to characterize the 

evolution of mutualists. Recent research demonstrates that the characteristics of 

mutualisms in particular are very diverse, and that the facultative symbionts involved in 

most mutualisms (Bright & Bulgheresi, 2010) share many features with pathogens. The 

molecular and genetic mechanisms necessary for association with a host are similar in 

mutualists and pathogens, including protein secretion systems (Dale & Moran, 2006), 

surface sugars and lectins for recognition and adhesion, and antioxidant enzymes for 

resisting host immune response (Bright & Bulgheresi, 2010). Negative frequency 

selection typically attributed to parasitic relationships has been observed in coral hosts at 

loci that are involved in interactions with beneficial symbiotic dinoflagellates (Schwarz, 

et al., 2008). The large taxonomic diversity of symbiotic dinoflagellates (Rowan & 

Powers, 1992, Wilcox, 1998) and the similar evolutionary rates in symbiotic and free-

living lineages (Wilcox, 1998) contradict the theory of evolutionary stasis in mutualists. 

In contrast to horizontally transmitted or facultative symbionts, obligate or "captured" 

mutualists such as the symbionts of insects (reviewed in (Moran, et al., 2008) or the 

spheroid bodies of Rhopalodia gibba (Kneip, et al., 2008) are unlike pathogens in many 

aspects of their genomes and interactions with hosts (Bright & Bulgheresi, 2010). 
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When the fitness of a host and symbiont are linked as they are in mutualisms, 

factors that strengthen or increase this linkage will tend to stabilize a symbiosis, while 

those that uncouple the fitness of the partners promote shifts to parasitic relationships or 

to a free-living state. Changes in the environment or evolution of the partners can affect 

the stability of symbioses (Sachs, et al, 2011), but shifts to parasitism are more rare, and 

may be constrained by gene loss or pleiotropy (Sachs & Simms, 2006). Partner fidelity 

(e.g., vertical transmission), partner choice, and sanctions against "cheaters" (Kiers, et 

al, 2003) can help to maintain mutualisms (Sachs & Simms, 2006). In some 

relationships, one partner provides a benefit to the other but incurs little or no fitness cost 

for doing so; for example, one partner may utilize a waste product or metabolic 

byproduct of the other. Such associations are particularly stable against shifts to 

parasitism, because there is little to be gained by "cheating" or withholding the benefit. 

Mutualism abandonment, in which one or both partners revert to a free-living state, has 

occurred multiple times in diverse lineages, with the important exception of obligately 

symbiotic lineages (Sachs & Simms, 2006). Abandonment appears to be more common 

in symbioses where one partner received only a small fitness benefit from the association, 

and in nutritional mutualisms. 

Symbioses are integral to the fitness and ecological function of corals, a fact that 

has been acknowledged by the "holobiont" concept, in which the unit of selection 

includes the coral host, symbiotic dinoflagellates, and associated microbes (Rohwer, et 

al., 2002). This idea has recently been expanded to the "symbiome," which includes all 

organisms within the sphere of the coral colony that share a common fate. The limits, 

capabilities, and tolerances of the symbiome reflect those of all the associated organisms 
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that make up the whole (Gates & Ainsworth, 2011). In this study, this new concept is 

applied to the characterization of a novel symbiosis between Montastraea cavernosa and 

intracellular nitrogen-fixing cyanobacteria. I measure the impacts of symbiotic 

cyanobacteria on several measures of coral fitness to elucidate the potential costs and 

benefits of the association to the host. Fitness metrics were selected either because of 

their known importance to overall coral fitness, because they could plausibly be affected 

by the presence of cyanobacteria or the fixed nitrogen they provide, or for both reasons. 

The growth rates of colonies, their ability to deter predators, and their response to thermal 

stress were determined. In addition, Symbiodinium and coral host populations were 

genotyped to determine if genetic variation in the other partners of the holobiont could be 

responsible for any observed differences. 

Growth 

Coral growth is an integrated response to all contributions to holobiont fitness, 

both positive and negative, from the environment and from the members of the 

symbiome. Growth is important to both coral fitness and the formation and persistence of 

coral reefs. Rapid skeletal growth allows coral colonies to compete effectively for light 

and shade their competitors, while also providing the physical support for increasing 

biomass and surface area. Increased light collection provides additional energy that is 

then available to the coral for reproduction or other energetic demands. Many corals do 

not reproduce or allocate only minimal effort to reproduction until they have reached a 

minimum size (Szmant, 1991), demonstrating the importance of growth to reproduction 

as well as competition. Growth and disturbance also interact to influence coral fitness. 
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Larger coral colonies or fragments of colonies are more likely to survive storms 

(Highsmith, et ai, 1980), and this persistence and subsequent regrowth is a major driver 

of community structure on coral reefs (Wakeford, et al., 2008). 

Erosion from both living organisms and chemical and physical processes occurs 

continuously on coral reefs, and growth is necessary to compensate for this. External 

bioeroders include parrotfish (Labridae), pufferfish (Tetrodontidae), Diadema, and other 

grazers that remove part of the coral skeleton, whereas boring invertebrates such as 

sponges, bivalves, and polychaetes erode the skeleton internally. Many of these 

invertebrates preferentially bore in corals with dense skeletons, which offer greater 

protection from predators (Highsmith, 1981). Microbes including bacteria and fungi can 

also contribute to significant bioerosion. At a larger scale, when coral growth outpaces 

erosion, the physical structure of reefs is maintained and built, which allows reef 

ecosystems to persist in geological time. 

Multiple environmental and physiological factors influence the rate of coral 

growth. Light and temperature have long been recognized as the most important of these 

factors for hermatypic corals (Weber & White, 1974, Baker & Weber, 1975, Jon, et al., 

1975). Light affects photosynthesis by Symbioidinium and thus the total amount of 

energy available for growth. In most coral species, growth decreases with increasing 

depth, although some species display maximum growth in the middle of their depth 

range, and the growth of a few species does not vary significantly with depth (Huston, 

1985). Typically, faster growing coral species dominate the reef crest and shallow areas, 

whereas slower growing corals occupy deeper areas of the reef (Huston, 1985). 

Maximum growth rates occur within a relatively narrow temperature range for most 
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corals. Cool water slows growth and is a key factor limiting the geographical range of 

coral reefs, and corals in warmer regions have higher average growth rates (Jon, et al., 

1975). However, temperatures slightly above average summer maxima can lead to 

thermal stress, bleaching, and reduced growth (Glynn, 1993). After corals recover from 

thermal stress, growth typically resumes at a normal rate, although this recovery can be 

protracted (Goreau & Macfarlane, 1990, Mendes & Woodley, 2002). Coral reefs are 

nutrient-limited environments, and elevated levels of both nitrogen and phosphorus can 

decrease coral growth by favoring the growth and division of Symbiodinium rather than 

calcification (Tomascik & Sander, 1987, Marubini & Davies, 1996). 

As coral colonies become larger, the mass of both the living tissue and the 

skeleton increases, but in scleractinian corals "growth" typically refers to the growth of 

the skeleton rather than the animal itself. There are two main types of skeletal 

morphology, which are formed slightly differently. In imperforate corals (e.g. 

Montastraea spp.), the tissue overlays the outermost layer of the skeleton, and new layers 

of skeleton are formed when the tissue periodically uplifts. These horizontal layers are 

called dissepiments and form a "floor" for each polyp within the corallites. In imperforate 

corals, dissepiments cannot be thickened after they are formed because the living tissue is 

no longer in physical contact with previous layers of skeleton after it uplifts. 

Dissepiments are deposited in a similar way in perforate corals (e.g., Pontes spp.), but 

the polyp tissue is interconnected through the upper part of the skeleton via holes in 

vertical skeletal elements, so previously deposited dissepiments may continue to thicken 

for several months after they are initially formed, as long as the living tissue remains in 

contact (Barnes & Lough, 1996). 
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Skeletal dissepiments contribute to banding patterns that record growth over time in 

the skeleton. In addition to very fine daily banding patterns, many corals display monthly 

or lunar banding and annual banding (Winter & Sammarco, 2010). Dissepiment 

formation in Montastraea spp. is related to the lunar cycle and this influence results in 

regularly spaced dissepiments, although the spacing varies between colonies. Water 

temperatures lower or higher than normal can suppress the formation of dissepiments 

(Mendes & Woodley, 2002, Winter & Sammarco, 2010), so even though dissepiment 

spacing is regular, the total linear extension of a coral can vary from year to year and 

between colonies (Dodge, et al., 1992, Davalos-Dehullu, et al., 2008). The more 

prominent high-density and low-density banding patterns apparent in coral skeletons 

were shown to be annual with each year consisting of one high- and one low-density 

band, using radioactive fallout from nuclear arms testing that was incorporated into coral 

skeletons (Knutson, et al., 1972). High-density bands are deposited during warm summer 

temperatures, whereas low-density bands are formed during the winter months (Cruz-

Pinon, et al., 2003). Thus, a pair of annual bands represents the time between annual 

thermal maxima (a "soft" year) rather than an exact calendar year (Carricart-Ganivet, 

2011). 

Variations in tissue thickness are primarily responsible for the width of banding 

patterns in the skeleton. In Montastraea, high density bands are formed by thickening of 

dissepiments, not an increase in their number or change in their spacing (Dodge, et al., 

1992). Thus, the more time that coral tissue remains on a given layer of the skeleton 

without uplifting to form a new dissepiment, the wider and denser the resulting band will 

be. Corals that are energetically replete have thicker tissue that grows more quickly 
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(Barnes & Lough, 1996), and uplifts more frequently, forming low-density skeletal 

bands. In contrast, when environmental conditions are not as favorable, tissue layers are 

thinner and corals must divide their energetic resources between skeletal accretion and 

tissue growth (Cohen, et al., 2004). Because a similar amount of calcium carbonate is 

deposited over a thinner tissue layer, higher density bands are formed. Re-allocation of 

energy from skeletal to tissue growth can also occur when tissues are performing 

energetically expensive processes such as gametogenesis or recovery from bleaching 

(Anthony, et al, 2002). Coral tissue thickness varies seasonally and is responsive to 

environmental conditions (Anthony, et al., 2002), with lowest levels generally in the late 

summer when Symbiodinium populations are less dense and providing less fixed carbon, 

and higher levels in winter and spring when symbiont populations are at their largest and 

the most energy is available (Fitt, et al., 2000). High and low density bands are generally 

widened when seasonal variation is exaggerated by warmer or colder than normal 

conditions, respectively. There is also evidence that suboptimal, eutrophic conditions can 

decrease calcification but increase the width of bands in what has been termed a 

"stretching" response (Carricart-Ganivet & Merino, 2001). Species with hemispherical 

colonies such as M. cavernosa allocate most of the energy available for growth to the 

skeleton rather than the tissue once they are larger than 5 - 14 cm radius (Anthony, et al., 

2002). 

Colonial corals grow indeterminately and some massive corals can live for 

centuries, so coral skeletons represent an excellent source of information about the 

environment during these spans of time. Aside from density banding patterns, stable 

isotopes in the material of the skeleton and inclusions within it also reflect the 
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18 
environment surrounding the coral as it grew. Oxygen-18 ( O) is typically measured to 

determine water temperature, although it can also record rainfall in equatorial regions 

where the annual variation in temperature is small (Barnes & Lough, 1996). Variations in 

13C are generally considered to be mediated by Symbiodinium and indicate light intensity 

and photosynthetic activity (Barnes & Lough, 1996). Strontium has also been used to 

investigate water temperature, and 15N in the organic matrix of the skeleton can show 

past levels of this element (Marion, et al., 2005). All of these factors ensure that corals 

will continue to be used as natural environmental recorders. 

There are several different methods of measuring growth in corals, but the best 

method depends on the growth metric of interest. Skeletal growth in corals involves both 

extending the skeleton linearly and modulating its density; if both of these parameters are 

measured, calcification rate can be determined. These three metrics are non-redundant 

and at least two of them (from which the third can be calculated) are required for a 

complete description of growth. However, density, linear extension, and calcification rate 

are not independent of each other. Density and linear extension are known to be inversely 

correlated in Montastraea (Bosscher, 1993), and in M. annularis linear extension and 

calcification rate are positively correlated (Carricart-Ganivet & Merino, 2001). Both the 

frequency of tissue uplift and the deposition of calcium carbonate are related to the 

physiological condition of the coral animal, so calcification rate is the considered to most 

directly reflect the environmental conditions and the coral's response. Because 

calcification rate can be complex to measure, linear extension is a more commonly used 

metric. Caution must be used when interpreting patterns in linear extension, because 

corals experiencing poor environmental conditions can still maintain or even increase 

162 



their rate of linear extension by decreasing their skeletal density (Carricart-Ganivet & 

Merino, 2001) or decreasing the mass or quality of their tissue (Anthony, et al., 2002), so 

high extension rates do not necessarily indicate healthy corals or reefs. 

Variation within and between coral colonies is also a source of error. Some 

skeletal elements display more informative variation than others; endothecal elements 

have frequently been considered to have little useful information (Dodge, et al., 1992, 

Davalos-Dehullu, et al., 2008), but more advanced techniques can also reveal patterns 

that older methods cannot detect (Helmle, et al, 2000). Some coral species have much 

more clear density banding patterns than others and are therefore used more commonly in 

studies; these are almost exclusively massive type corals, including Montastraea spp. and 

Pontes spp. Within these species, some individual colonies may not have clear banding 

patterns, even if they are sampled from very similar, adjacent environments (Huston, 

1985). Even within a single colony, the uplift process that forms new dissepiments can 

occur at different times and to different levels in different part of the colony, so records 

within a colony may not have consistent timing (Barnes & Lough, 1996). This extensive 

variation highlights the need for biological and technical replicates when measuring 

growth in corals. 

Many classical methods of measuring coral growth can be labor intensive, 

imprecise, and have undesirable environmental impact, but sometimes they are the best 

way to definitively measure coral growth. Needle measurements, which involve fixing a 

nail into a colony and measuring the decrease in the length of the exposed portion of the 

nail over time, require multiple measurements but have minimal impact (Cruz-Pinon, et 

al., 2003). Buoyant weighing is a non-destructive technique that allows an unlimited 

163 



number of measurements, but it is typically limited to small colonies that can be easily 

transported to the balance for weighing (Davies, 1989). However, this is an excellent and 

frequently used technique for branching and foliose corals that are difficult to measure 

with other methods. A third method involves the collection of whole colonies for 

sectioning and X-ray imaging. Although the coral slabs obtained can yield samples for 

stable isotope measurements, as well as density and linear extension, this method is 

highly destructive and relies on sectioning the colony along the correct growth axis and 

creating slices of the optimal thickness for X-rays and other measurements. Staining 

living coral colonies with Alizarin red dye creates a red band in the skeleton that can be 

used to mark a known date in colonies that will be sampled later. In addition to the 

disadvantages of sectioning and X-ray, this method is labor intensive, colonies must be 

re-visited to be collected, and the dye itself can suppress growth for up to a week (Dodge, 

etal, 1984). 

Modern methods for measuring coral growth are somewhat less destructive and yield 

much more precise estimates. Samples are usually collected by coring rather than whole-

colony sections, although cores can have similar issues as colony sectioning if they are 

not collected along the main growth axis of the colony. Coring holes can also be patched 

with underwater epoxy or similar materials to reduce impact. Cores can be scanned with 

computerized tomography (CT) scanners to create 3-D images that allow repeated virtual 

slicing to optimize the angle relative to the growth axis, or work with a curved growth 

axis (Bosscher, 1993, Cantin, et al, 2010). Slice thickness and other properties can also 

be adjusted virtually to make features of interest easier to detect. The increased detail and 
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resolution available from CT images have made measurements of some features and 

skeletal elements easier and more precise (Helmle, et al., 2000, Cantin, et al., 2010). 

Predator Deterrence 

Predation is an important structuring force on coral reefs for all organisms, 

including corals (Rotjan & Lewis, 2008). It can define the spatial range of organisms, 

limit their abundance, and affect the fitness of both predators and prey. Corals are preyed 

upon by fishes and invertebrates; these two groups have different patterns of predation 

and impacts. Invertebrate predators (e.g., Drupella snails) are typically uncommon but 

have periodic episodes of high abundance, when they have large impacts on coral 

mortality and cover (Rotjan & Lewis, 2008). Fish predators have different impacts 

depending on whether they consume the skeleton along with the tissue, but most fish are 

responsible for only partial mortality of adult coral colonies and represent a chronic 

stressor rather than a large disturbance and source of immediate mortality (Cole, et al., 

2010). 

The major invertebrate predators of coral are molluscs, including the gastropods 

Drupella (Turner, 1994) and Coralliophila (Brawley & Adey, 1982); and echinoderms 

such as Acanthaster planci. Many other groups including nudibranchs, annelids, and 

crabs also prey on corals but have limited impact (reviewed in (Rotjan & Lewis, 2008)). 

Acanthaster planci is the best-known invertebrate corallivore, and is likely the species of 

greatest influence on Pacific coral reefs. Local population densities are highly variable 

but when they peak, these sea stars can destroy large areas of reef and cause high coral 

mortality. They feed preferentially on Acropora, Montipora, and Pocillopora, which can 
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cause shifts in coral communities lasting for years. Snails of the genus Drupella also 

experience outbreaks, and are specialized feeders on acroporid corals (Turner, 1994). In 

the Caribbean, the snail Coralliophila abbreviata is responsible for high mortality of 

Acropora, Agaricia, and Montastraea in areas of outbreaks (Hayes, 1990), which tend to 

occur after hurricanes and other physical disturbances (Knowlton, et al., 1990). In 

general, the pattern of high but localized coral mortality that is created by major 

invertebrate predators is similar to a disturbance event, and the recovery of the reef 

ecosystem follows a similar trajectory. 

Corallivorous fish fall into two general categories: those that graze exclusively on 

coral tissue, and those that consume or damage the skeleton in addition to the tissue. 

Members of the latter group, which includes scarids, tetrodontids, and balistids, tend to 

be more generalist feeders, but they can still exert strong effects on the coral community 

(Rotjan & Lewis, 2008). There are many known examples where such predators limit the 

spatial and depth distribution of their preferred prey. Pocillopora damicornis is restricted 

to shallow lagoon habitats in Guam partly because of predation by balistid fishes 

(Neudecker, 1979), and in the Florida Keys Madracis mirabilis transplanted from 20 m to 

13 m was highly damaged by scarids and tetrodontids (Grottoli-Everett & Wellington, 

1997). Artificial lesions on Montastraea annularis similar to feeding scars caused by this 

group of fishes reduced coral growth for several months, so it is likely that their feeding 

activity has a similar effect (Meesters, et al., 1994). 

Small corallivores that remove only coral tissue and mucus, including 

chaetodontids (butterflyfish) and labrids (wrasses), are ecologically analogous to small 

herbivores in the terrestrial environment. They consume only small parts of the whole 
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coral, very rarely cause colony mortality, and represent a chronic stressor on the colonies 

they feed on. Many of these fishes are obligate corallivores and feed very selectively; in 

the Pacific, tabular acroporids and other fast-growing corals make up the majority of their 

diet and are disproportionately consumed relative to their abundance (Cole, et al, 2010). 

New estimates of grazing by butterflyfish on the Great Barrier Reef show that the impact 

of these fishes is much greater than previously appreciated. Just three species of 

butterflyfish consumed 8.9 - 13.5% of the total tissue biomass and 52 - 79% of the 

annual productivity of their preferred prey, tabular Acropora species (Cole, et al, 2010). 

This seems likely to have a strong effect on coral fitness, reproduction, and community 

structure, but few studies have investigated these issues. Corallivores do appear to affect 

coral reproduction by selectively preying upon areas of colonies with the greatest 

reproductive effort and thus nutritional value (Rotjan & Lewis, 2008). These fish may 

also serve as vectors of coral disease, either through their feeding activity or fecal 

transmission. A variety of corallivorous fish have been observed to feed selectively on 

diseased areas of coral colonies (Chong-Seng, et al, 2010), and in aquarium studies the 

presence of butterflyfish increased transmission of black band disease, even if the corals 

were caged (Aeby & Santavy, 2006). 

The large impacts of predators on coral fitness have driven the evolution of 

several different strategies for deterring predation, which are not mutually exclusive. 

While many coral reef organisms have developed a cryptic habit to avoid encountering 

predators, this strategy is not feasible for hermatypic corals that require sunlight for their 

photosymbionts. Many species of fast-growing acroporid and pocilloporid corals host 

small symbiotic crabs and shrimp that can detect (Glynn, 1980) and help deter 
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invertebrate predators, increasing survivorship of their hosts (Glynn, 1983). The coral 

Pontes compressa changes the behavior of its polyps and increases its nematocyst 

density in response to predation, making it less palatable to butterflyfish (Gochfeld, 

2004). Structural adaptations such as a calcified skeleton or hard spicules are common in 

many invertebrates on coral reefs and have been thought to provide a physical defense 

against predators, but they are often not deterrent in isolation, and appear to play only a 

supplementary role in deterring grazing (Waddell & Pawlik, 2000, O'Neal & Pawlik, 

2002). 

Noxious chemical compounds, sometimes called antifeedants, are perhaps the 

most important predator deterrence strategy used by many organisms on coral reefs, and 

their presence can have important indirect effects. Many species of macroalgae produce 

deterrent compounds that discourage grazing and can create refugia for other more 

palatable species of algae or small invertebrates (Littler, et al, 1986, Hay, et al, 1989). 

Many of the most conspicuous sponges on coral reefs are heavily chemically defended 

and avoided by fish predators (Pawlik, 2011). Few scleractians have been tested for 

antifeedants, but octocorals commonly contain them (Wylie & Paul, 1989, Sammarco & 

Coll, 1992). The distribution and concentration of these chemicals within the coral can be 

heterogeneous to maximize the protection of highly grazed or energetically costly 

structures, such as new growth (Wylie & Paul, 1989). Coral predators have been shown 

to respond to these chemical cues and have distinct feeding preferences for less-defended 

coral species (Alino, et al, 1992). Although most chemical ecology studies have focused 

on octocorals or sponges rather than scleractinians, antifeedants may be more prevalent 

and more important in scleractians than currently appreciated. A recent review of the 
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chemical ecology of Caribbean sponges defined groups of sponges based on their 

different adaptive strategies: a "palatable" group that lacks strong deterrent compounds, 

and allocates resources to growth, healing, and reproduction rather than defense; and a 

"defended" group that is avoided by predators, and grows, heals, and reproduces more 

slowly (Pawlik, 2011). A third group of "preferred" sponges are restricted to specific 

spatial refuges from predators. Scleractinian corals may also fall into similar groups 

based on their chemical defenses and life history traits. Although predator deterrence was 

not measured, an early study found that 91% of the 58 scleractinian species tested had at 

least one extract with bioactivity (e.g., cytotoxic, hemolytic, antimicrobial) (Gunthorpe & 

Cameron, 1990), indicating that many of these corals may be chemically defended. Many 

corallivores have strong feeding preferences for Acropora, Pocillopora, Montipora, 

Agaricia, and the Montastraea annularis species complex. These genera include fast-

growing and highly productive species and the intensity upon which they are grazed 

suggests that they are not strongly chemically defended. Indeed, extracts from the fast-

growing branching corals Acropora, Pocillopora and Seriatopora had little to no 

bioactivity, but other corals that are not preferred and typically grow more slowly, such 

as Montastraea and Favites species, had a higher frequency of extracts with bioactivity 

(Gunthorpe & Cameron, 1990). 

Secondary metabolites are highly diverse chemically and serve equally diverse 

ecological functions in the organisms that produce them (Hay & Fenical, 1996, Nagle & 

Paul, 1999, Van Wagoner, et al., 2007). Aside from being antifeedants, secondary 

metabolites can have antifouling or allelopathic properties that assist in competition for 

space (Engel & Pawlik, 2000, Morrow, et al, 2011). They may attract gametes to each 
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other (Coll, et ah, 1995, Slattery, et ah, 1999), or specialized consumers to their preferred 

prey (Nagle & Paul, 1999). Secondary metabolites can stimulate or inhibit the growth of 

bacterial populations of symbionts, pathogens, or fouling organisms in a bacterial 

species-specific manner (Morrow, et ah, 2011); similar effects can also be achieved by 

interference with quorum sensing (Givskov, et ah, 1996, Kwan, et ah, 2011). Many 

organisms produce multiple secondary metabolites, and a single compound can have 

multiple functions (Becerro, et ah, 1997, Kubanek, et ah, 2002). Additionally, the 

ecological functions of many compounds are unknown because so much research has 

focused on functions of potential pharmacologic importance such as cytotoxicity towards 

cancer cells. Secondary metabolites are often produced by the organism that they are 

isolated from, but they can also be obtained from dietary sources or microbial symbionts 

(Simmons, et al., 2008). Nudibranchs that feed on Sinularia sequester antifeedants from 

their diet that make them unpalatable to their predators (Slattery, et ah, 1998). The 

structural resemblance of many secondary metabolites found in invertebrates to those 

found in bacteria first suggested that these chemicals were being synthesized by bacteria 

and subsequently transferred to the host (Konig, et ah, 2006). A well characterized 

example of this is the sponge Theonella swinhoei, which contains large populations of 

multiple bacterial symbionts. Filamentous oc-proteobacteria Candidatus Entotheonella 

palauensis produce the peptide theopalauamide (Schmidt, et al., 2000), and heterotrophic 

unicellular bacteria produce the macrolide swinholide A. The symbiotic cyanobacterium 

Aphanocapsa feldmanni and the sponge tissue do not, however, contain bioactive 

compounds (Bewley, et ah, 1996, Magnino, et ah, 1999). Symbiotic microbes can thus 
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make significant contributions to host fitness by providing natural products that serve an 

adaptive purpose. 

Cyanobacteria are important and prolific producers of bioactive chemicals in both 

a free-living and symbiotic state (Nagle & Paul, 1999, Van Wagoner, et al, 2007). 

Several distinct chemical structures are utilized, and a single species can often produce 

multiple types of secondary metabolites (Kaebernick & Neilan, 2001, Oksanen, et al, 

2004). Although many of these metabolites are of health and economic concern due to 

their toxicity to animals, they are postulated to serve diverse functional roles in the 

natural environment (Kaebernick & Neilan, 2001). Some of the most commonly studied 

cyanobacterial toxins are microcystins, cyclic non-ribosomal peptides often found during 

cyanobacterial blooms in freshwater lakes (Paerl, et al., 2001). On coral reefs, 

microcystin is produced by cyanobacterial pathogens that form part of the corsortium of 

microbes that cause black band disease (BBD) of corals (Frias-Lopez, et al, 2003, 

Richardson, et al, 2007, Miller & Richardson, 2011). Both sulfide and microcystin 

contribute to the etiology of this polymicrobial disease (Richardson, et al., 2009). 

Microcystin in BBD appears to be produced primarily by strains of Leptolyngbya, 

Geitlerinema, and Oscillatoria (Myers, et al, 2007, Richardson, et al, 2007, Gantar, et 

al., 2009), and includes both microcystin-LR and YR (Stanic, et al, 2011). Different 

strains of cyanobacteria produce different toxins, and display maximal toxin synthesis 

rates under different environmental conditions (Stanic, et al, 2011). Microcystins are 

also found in some free-living cyanobacteria from coral reef sediments and microbial 

mats (Gantar, et al, 2009). The cyanobacteria associated with Montastraea cavernosa 
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could produce microcystin or other secondary metabolites that could act as antifeedants, 

providing a benefit to the coral host. 

A final strategy for deterring predators is aposematic coloration, the use of bright 

or distinctive colors or patterns to warn predators that an organism is chemically 

defended or unpalatable. This strategy is effective only against visual predators, which 

once conditioned typically do not sample, or release unharmed, these prey organisms. 

Some organisms that are not chemically defended have adapted to mimic the coloration 

of others that are, for example the North American viceroy butterfly (Basilarchia 

archippus) mimics the toxic monarch butterfly (Danaus plexippus). Marine examples of 

aposematic coloration include gastropods that feed on sponges (Becerro, et al., 2006) and 

many species of nudibranchs (Faulkner & Ghiselin, 1983, Rudman, 1991). Colonies of 

M. cavernosa with and without cyanobacteria are distinctly different in color, and many 

fish have trichromatic vision that would be required to detect this difference. Reef fish 

can quickly learn to associate prey color with feeding deterrents and remember this 

association (Gimenez-Casalduero, et al., 1999), so while the orange color is derived from 

phycoerythrin fluorescence, it could also serve a secondary purpose as aposematic 

coloration. 

Thermal Stress 

The impact of warmer than normal temperatures on corals was first noted in the 

mid 1970s by Jokiel and Coles, who documented bleaching and mortality of corals near 

the site of coolant water discharge by a nuclear power plant (Jokiel & Coles, 1974). 

Bleaching is characterized by a pale or white appearance of the coral colony due to the 
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loss of symbiotic dinoflagellates or their photosynthetic pigment; prolonged or severe 

bleaching often leads to mortality of the coral host. Bleaching is a generalized stress 

response of corals (Lesser, 2006, Weis, 2008, Lesser, 2011) and can occur after various 

stresses such as exposure to low temperatures, changes in salinity, or prolonged darkness, 

but only increased temperature is considered here, as it is the cause of the vast majority of 

bleaching events. The maximum thermal tolerances of coral holobionts vary widely 

depending on their location, but most corals live within about 1 - 2° C of their maximum 

thermal limits, regardless of the local temperature regime (Jokiel & Coles, 1990, Glynn, 

1993, Hughes, et al., 2003). When these thermal limits are exceeded for sustained periods 

of time, mass bleaching events occur, often leading to widespread coral mortality (Eakin, 

et al., 2009, Eakin, et al., 2010). Such events have increased in frequency and severity in 

recent decades due to anthropogenic warming of the climate, and threaten the continued 

existence of coral reefs (Hughes, et al., 2003). 

The earliest investigations of coral bleaching noted that not all corals are equally 

susceptible to thermal stress. Bleaching is conspicuously patchy at all spatial scales, from 

within a single colony to between reefs. High irradiance interacts with the effects of 

thermal stress (Lesser & Farrell, 2004), so shaded areas of colonies are frequently less 

bleached than non-shaded areas. Variable bleaching within a colony can also be due to 

the spatial distribution of different Symbiodinium types with different susceptibility 

(Rowan, et al., 1997, Sampayo, et al., 2008). Within a single coral species, some 

genotypes may be more sensitive than others (Edmunds, 1994). Corals with a branching 

morphology are known to be more vulnerable to thermal stress than corals with a massive 

growth form, and colonies living at deeper depths are often spared the worst effects of 
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bleaching due to the lower irradiance and sometimes lower temperature at depth 

(Marshall & Baird, 2000). Different reefs may experience different levels of bleaching 

due to current or weather patterns; some reefs in the Society Islands that were under 

cloud cover during the peak of the 1998 bleaching event had much lower mortality than 

neighboring reefs which had been sunny (Mumby, et al, 2001). 

The ultimate cause of most mass bleaching events is thermal stress, which at the 

physiological level leads to the breakdown of photosynthetic processes in Symbiodinium, 

a lack of transfer of fixed carbon to the coral host, and eventually death of the 

Symbiodinium and/or their rejection by the host. In a typical healthy coral, the maximum 

daily light intensity exceeds the saturating irradiance of photosynthesis, i.e., there is more 

energy than the photosynthetic machinery of the dinoflagellates can absorb. This excess 

excitation energy (EEE) can lead to the generation of reactive oxygen species (ROS) and 

cellular damage, so dinoflagellates employ several photoprotective mechanisms to 

prevent this, including state transitions and non-photochemical quenching via 

xanthophyll cycling (Brown, et al., 1999, Lesser, 2006, Lesser, 2011). In corals living in 

shallow water, photoprotection cannot completely compensate for EEE, and 

photodamage accumulates and is repaired on a daily basis, a phenomenon known as 

dynamic photoinhibition. This leads to fluctuations in photosynthetic parameters over the 

course of a typical day, that can reflect the light history of the coral (Jones & Hoegh-

Guldberg, 2001, Winters, etal., 2003). 

The first site of damage from thermal stress is still debated, but three main 

hypotheses have been proposed. The first claims that the D1 protein subunit of 

Photosystem II (PSII) is damaged (Iglesias-Prieto, et al, 1992). Damage to enzymes in 
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the Calvin cycle, responsible for the fixation of CO2, can reduce sinks for excitation 

energy, leading to a buildup of ROS (Lesser, 2006, Lesser, 2011). Finally, varying 

thermal stability of thylakoid membranes with different lipid profiles can lead to loss of 

membrane integrity, the dissipation of proton gradients, and a lack of ATP necessary for 

carbon fixation (Tchernov, et al, 2004). Under this hypothesis, there is no direct damage 

to PSII so it continues to split water and generate O2 and ROS, damaging the cell. New 

research demonstrating that the primary site of damage can vary depending on the 

genotype of the Symbiodimum has resolved some of this controversy (Buxton, et al, 

2012). Regardless of the first site of damage, the net result is the same: EEE generates 

ROS, creating oxidative stress (Lesser, 1997, Lesser, 2006, Lesser, 2011) leading to loss 

of functional PSII units. As the photosynthetic capacity declines, the same amount of 

light produces more EEE, and a positive feedback loop is created wherein the rate of 

damage to photosynethetic machinery exceeds the rate of repair. If there is inadequate 

time for the dinoflagellates to recover, bleaching and mortality results. 

The photochemical processes upstream of carbon fixation can be measured easily 

and non-destructively with chlorophyll fluorometry. The most commonly used instrument 

for this purpose is a pulse amplitude modulated (PAM) fluorometer. Like other 

fluorometers, it measures the chlorophyll fluorescence emitted by PSII. However, in 

PAM instruments only fluorescence emitted in phase with a measuring light whose 

amplitude is continuously modulated is measured, allowing the detection of the weak 

fluorescence of PSII even in the presence of ambient light (Schreiber, et al, 1986, 

Warner, et al, 2010). The amount of PSII fluorescence indicates how many of these 

reaction centers are "open" or oxidized, and can therefore pass absorbed light energy onto 
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the electron transport chain. "Closed" or reduced reaction centers cannot absorb the 

excitation energy and it is re-emitted as fluorescence. Based on the ambient light 

conditions, the light history of the coral, and what is known about photochemistry, many 

different parameters can be measured with a PAM (Schreiber, 2004, Warner, et al., 

2010). Specialized PAMs that operate underwater (Diving-PAM) (Winters, et al., 2003) 

and integrate information into images (Imaging-PAM) (Ralph, et al, 2005) are also used 

to study corals. 

The most commonly measured parameter in studies of coral and Symbiodinium 

physiology is the quantum yield of PSII fluorescence, also called photochemical 

efficiency, and it reflects the number of functional PSII units. This is calculated as (Fm-

F)/Fm, where F is the fluorescence emitted under ambient light, and Fm is the 

1 
fluorescence emitted after a brief pulse of saturating light (-10,000 ^mol photons m" s~), 

which closes all of the reaction centers (Schreiber, 2004). When the coral has been 

acclimated to darkness for at least 20 min, this parameter represents the maximum 

quantum yield (sometimes called the dark-acclimated yield), and is written as FJFm\ 

when the coral is illuminated, it is the effective, or steady state, quantum yield, FJFm 

These parameters are a measure of how much of the excitation energy absorbed by PSII 

is being transferred to photochemical reactions. The effective quantum yield is affected 

by the light history of the coral, and in healthy corals it follows a typical cycle with 

maximal values at dawn and dusk and a minimum shortly after the solar maximum; the 

amplitude of the cycle is decreased in corals living in deeper water and exposed only to 

sub-saturating irradiances (Lesser & Gorbunov, 2001, Winters, et al., 2003). If yields do 

not recover in the dark as expected, this indicates that photodamage accumulated over the 
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course of the day has not been fully repaired (Jones & Hoegh-Guldberg, 2001). Thus, 

yields provide a sensitive and quantitative indicator of stress in Symbiodinium that can be 

measured before bleaching is visually apparent. Other metrics for measuring the effects 

of thermal stress on corals can be categorized as early or late indicators. Changes in gene 

expression levels and rates of respiration and oxygen evolution can detect stress before 

bleaching is visible, whereas cell counts performed with a hemocytometer or by flow 

cytometry, as well as changes in the color of the coral colony, are late indicators that 

show significant changes only after bleaching is underway or has already occurred. 

Coral bleaching is a visual indication that the symbiosis between coral and 

Symbiodinium has broken down, an event that often results in mortality of the coral 

holobiont. Widespread coral mortality threatens the long term survival of reefs as well as 

the ecological services they provide (Hoegh-Guldberg, et al., 2007), but even when corals 

survive and recover from bleaching, a variety of sub-lethal effects reduce their fitness. 

Many corals appear to consume their own structural components, gametes (if present at 

the time of bleaching) and lipid reserves to fulfill their energetic requirements when 

Symbiodinium are not providing sufficient nutrition (Szmant & Gassman, 1990, Ward, et 

al., 2000, Grottoli, et al, 2004). This results in reproductive failure or reduced 

reproductive output (Szmant & Gassman, 1990, Ward, et al., 2000), reduced growth 

(Goreau & Macfarlane, 1990), reduced lipid stores and increased susceptibility to future 

stress (Ward, et al., 2000, Grottoli, et al., 2004), all of which have a negative impact on 

overall coral fitness. 
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Intrinsic differences 

There are a wide variety of factors that can lead to changes in the metrics of 

fitness discussed above, some of which are intrinsic to the specific coral holobiont in 

question. The species and colony morphology of the coral host are important, with 

branching and massive type colonies having pronounced differences in fitness and 

response to environmental stressors (Loya, et ah, 2001, Baird & Marshall, 2002). Within 

a single coral species, differences in pigment (e.g., GFP-like proteins), stress-related gene 

expression, and other factors can affect the stress response (Edmunds, 1994, Dove, 2004, 

Bay, et ah, 2009, Polato, et ah, 2010). Clades and genotypes of Symbiodinium differ in 

their rates of carbon fixation and translocation to the host, as well as their resistance to 

thermal stress (Rowan, et ah, 1997, Robison & Warner, 2006, Stat, et ah, 2008, Buxton, 

et ah, 2012); these and perhaps other differences change their interactions with the coral-

associated prokaryotic community (Littman, et ah, 2010). Variation in the composition or 

activity of the microbial community could lead to differences in the production of 

antifeedants, antimicrobials, and other secondary metabolites; the prevalence of stress-

and disease-associated microbes; and the cycling of nitrogen, sulfur, and other important 

elements. To detect differences in fitness that are due to symbiosis with cyanobacteria, it 

is necessary to account for as many of these factors as possible. The composition of the 

prokaryotic community is investigated in Chapter 2 using pyrosequencing of 16S rRNA 

amplicons, and the gene expression and activity of the coral host, Symbiodinium, and 

microbial community are addressed in Chapter 3 using an Illumina-sequenced 

metatranscriptome. Here, genotyping of the coral host and Symbioidinium is used to 

determine if there are genetic differences in these members of the holobiont between 
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brown and orange colonies. If the composition of genotypes is not significantly different 

in the two colony types, it is assumed that they are physiologically equivalent. 

Population studies of most animals utilize markers based on mitochondrial genes, 

because their relatively rapid evolutionary rate makes them useful for distinguishing 

recently diverged populations, and their maternal inheritance simplifies analysis. 

However, mitochondrial genes evolve very slowly in anthozoans (Shearer, et al, 2002) 

and are thus not useful for population-level studies. Microsatellite markers have been 

used by some coral researchers, but often suffer from low polymorphism and must be 

developed for each species of interest in an expensive and time-consuming process 

(Shearer & Coffroth, 2004, Wang, et al, 2009). Amplified fragment length 

polymorphism (AFLP) has been used in coral research (Brazeau, et al, 2005, Amar, et 

al, 2008) because it includes markers from across the nuclear genome and requires no 

knowledge of DNA sequence. The protocol is nearly universal for all species, and a large 

number of markers can be developed very rapidly. The procedure utilizes a digest of 

genomic DNA with two different restriction enzymes, selective amplification of the 

resulting fragments, and gel electrophoresis to determine the length of all the fragments 

in the amplicon pool (Vos, et al, 1995). The presence and absence of bands in different 

samples can be analyzed with several different statistical methods (Duchesne & 

Bernatchez, 2002). One of the drawbacks of AFLP is that the sequence of markers of 

interest cannot be determined without additional effort. The use of AFLP in Montastraea 

cavernosa from Little Cayman and Lee Stocking Island revealed significant population 

structure between locations and at different depths ranging from 3 to 90 m, illustrating 
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the successful application of this technique to this species (S lattery, et al, 2011, Brazeau, 

et al., in press). 

Genotyping of Symbiodinium came into frequent use after sequencing of the SSU 

rRNA genes revealed a diversity within the genus that was comparable to that typically 

observed between orders of dinoflagellates (Rowan & Powers, 1992). Previously, 

zooxanthellae were thought to comprise a single panmictic species in all corals, 

Symbiodinium microadriaticum (Freudenthal, 1962). The genus was subsequently 

divided into several lineages or clades (reviewed in (Rowan, 1998)), and currently 11 

clades (A through I) and many types within each clade are recognized (Pochon & Gates, 

2010). Clade-level differences roughly correspond to family-level differences, but the 

appropriate classification of types and subtypes is still debated. 

The internal transcribed spacer unit between the 5.8S and 28S rRNA genes (ITS2) 

is almost universally used as the marker gene for typing Symbiodinium, because this 

noncoding region evolves more rapidly than genes whose function is selectively 

constrained, and thus it can reveal more fine-scale, sub-cladal differences that may be 

ecologically important (LaJeunesse, 2001). The best method for analyzing the resulting 

sequences is a point of contention. Classically, denaturing gradient gel electrophoresis 

(DGGE) has been used to distinguish types based on their migration through the gel, 

accompanied by sequencing of dominant bands (LaJeunesse, 2002). However, sequences 

with a high number of nucleotide differences (up to 15) may co-migrate on the gel, 

whereas those differing by only one nucleotide can form distinct bands (Apprill & Gates, 

2007). These co-migrating sequences may not be detected in subsequent re-amplification 

and sequencing of excised bands, perhaps due to preferential amplification of abundant 
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sequences in the PCR reaction (Sipos, et al, 2007). Cloning and sequencing of ITS 

sequences has been utilized by some groups, and typically recovers greater diversity than 

DGGE, even discovering new types in well-studied corals (Apprill & Gates, 2007). 

While some researchers contend that cloning and sequencing introduces errors into the 

ITS sequences, cloning is a widely used technique to isolate sequences from 

environmental samples, and protocols for Symbiodinium ITS sequences have been 

established wherein putative new types must be present in multiple PCR reactions, and 

are checked for correct folding into the functional secondary structure (Apprill & Gates, 

2007, Lesser, et al, 2010, Stat, et al, 2011). Additionally, most error in sequences is 

introduced in the PCR step (von Wintzingerode, et al, 1997), which is common to both 

DGGE and cloning approaches. 

The ITS marker is a multi-copy gene, and the variation between copies in a 

genome as well as the presence of pseudogenes can lead to difficulties in interpreting 

results, no matter what the sequencing approach (Thornhill, et al, 2007). For this reason, 

some researchers use length polymorphisms of the chloroplast large subunit ribosomal 

RNA gene (cp23), although this marker is most useful for detecting fine scale, intracladal 

differences (Santos, et al, 2003). The ecological significance of such fine-scale diversity 

in both the cp23 and ITS markers, where some types are distinguished by only one or two 

nucleotides, remains unclear. In a recent study, type CI Symbiodinium with identical ITS 

sequences that were sampled from two locations on the Great Barrier Reef were shown to 

have significantly different responses to thermal stress. This suggests local adaptation is 

occurring that is not reflected in the ITS sequence (Howells, et al, 2012). 
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Montastraea cavernosa colonies host diverse Symbiodinium communities 

containing unique C types ("Mcav") that appear to be adapted to variations in the light 

environment over this coral's broad depth range (Lesser, et al, 2010). Brown colonies 

living in deep water (>45) have distinct communities from those in shallower water, but 

no significant differences have been detected between brown and orange colonies 

(Lesser, et al, 2007). 

Methods and Materials 

Growth 

Two brown and two orange colonies of Montastraea cavernosa were sampled in 

August 2008 at Conch Reef in Florida (25°0'7.73" N, 80°22'48.68" W), and five 

additional colonies of each type were sampled in March 2009. At North Perry, Lee 

Stocking Island, Bahamas (23°47'0.03" N, 76°6'5.14" W), one colony of each type was 

sampled in July 2009, and six orange and five brown colonies were sampled in July 2010. 

Cores 38 mm in diameter were removed from living colonies at a depth of 15 m using a 

pneumatic drill with compressed air supplied by SCUBA tanks. Cores were frozen intact 

for shipping back to the University of New Hampshire, then dried at 37° C for 

approximately 72 hours, with the exception of cores sampled from Florida, which had the 

tissue removed with a Water-Pik before freezing. 

Cores were scanned using a Siemens Volume Zoom Helical Computerized 

Tomography (CT) scanner at the Woods Hole Oceanographic Institution. Scans were 
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conducted at 350 mAs and 120 kV with a spiral acquisition protocol using a 0.5 mm 

width collimator, 0.5 mm slice thickness and a 0.5 mm table pitch. Cores were scanned 

along a transaxial plane and reconstructed using an ultra-high bone algorithm (u90u) at 

0.1 mm increments. 3-D images were assembled and manipulated using Amira software 

(Visage Imaging). The use of CT imaging allows multiple virtual slices to be taken from 

cores to find the optimal thickness and angle for visualizing annual density bands in each 

core (Bosscher, 1993, Cantin, et ah, 2010). The annual linear extension rate was 

measured as the distance in mm between consecutive annual high-density bands. For 

each core, an image of the slice with the clearest bands beginning at the top of the core 

was exported from Amira. Bands in either exothecal (outside the corallite) or endothecal 

(inside the corallite) dissepiments were measured, depending on which skeletal element 

produced the clearest banding pattern for each core. In some very dense cores it was not 

possible to visualize exothecal banding patterns. Although it has been reported that 

endothecal dissepiments do not display clear banding patterns in Montastraea, the studies 

in which this was found utilized X-radiography on cut slabs of coral (Dodge, et al., 1992, 

Davalos-Dehullu, et ah, 2008). Fine details of the skeletal architecture are not always 

apparent in such X-rays. By using CT it is possible to optimize slice thickness to 

visualize either endothecal or exothecal elements, and image analysis software can detect 

clear banding patterns that are not readily apparent to the naked eye and likely would not 

be visible on traditional X-radiographs. This allowed the use of both exothecal and 

endothecal elements in this study, and in cores where both endothecal and exothecal 

bands were visible, a correspondence in banding patterns was clearly evident (Figure 

4.1). 

183 



In each image, the distance between annual density bands was measured along 

replicate virtual transects drawn in ImageJ (NIH). At least three parallel transects were 

drawn from the top of the core and the grayscale variability plotted for each. The use of 

greyscale variability plots allows for more precise determination and measurement of 

density bands than examining images by eye. Transects varied in width from core to core 

as necessary to optimize peaks in greyscale plots. The correspondence of pixels to mm 

distance was determined using a scale saved in each image by Amira. The peaks in 

greyscale plots were compared to the marked transects in the corresponding image to 

determine the distance between each annual high-density band. A calendar year was 

assigned to each high-density band based on the number of bands from the top of the core 

and the date the core was sampled, and the linear extension for each year was averaged 

over the three replicate transects in each core. The linear extension over the calendar 

years 2010-2009 and 2009-2008 was averaged for each core, and a two-way ANOVA 

was used to compare the extension of cores from each colony type and sampling location. 

Cores with incomplete data for a given time window were excluded from that analysis. 

Predator Deterrence 

Sharpnose pufferfish (Canthigaster rostrata) were used to determine the response 

of fish predators to the coloration and chemical contents of brown and orange M 

cavernosa colonies. Pufferfish are suitable model predators for this study because they 

feed on a wide variety of invertebrates in the field, have trichromatic vision, and 

acclimate readily to laboratory conditions (see (Slattery, et al., 1998) for the use of 

congeners in the Pacific). 
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Aposematic Coloration 

To determine if predators respond differently to Montastraea cavernosa colonies 

with and without cyanobacteria on the basis of colony color, red and green fluorescent 

proteins and phycoerythrin were tested in feeding assays. When red and green fluorescent 

proteins (Invitrogen) were mixed with squid paste as described below in concentrations 

of 2.46 |xl/cm2 and 24.6 fil/cm2, red and green colored food pellets were produced that 

pufferfish would be able to visually distinguish. B-phycoerythrin from Porphyridium 

cruentum (Sigma) was tested in three concentrations: the estimated natural concentration 

(lx), and lOx and lOOx the estimated natural concentration. An estimate of 1.49 jig 

phycoerythrin per cm3 of coral tissue was determined assuming a tissue depth of 0.369 

7 J 
cm (D. Gochfeld, personal communication), 10 cyanobacterial cells per cm of coral 

surface area (Lesser, et al, 2004), and 55 fg of phycoerythrin per cyanobacterial cell 

(Wyman, et al., 1985). These colored foods were presented to pufferfish in assays as 

described below. 

Squid paste was used as a maintenance food for pufferfish and as a base for 

mixing with treatment substances (i.e., colored substances and chemical extracts). Equal 

masses of squid mantle flesh and distilled water were pureed in a kitchen blender with 

sodium alginate at 2% of the wet mass, and the resulting paste was frozen for transport to 

the field site. Once thawed, the squid paste was centrifiiged for several minutes just 

before use to remove excess water. Phycoerythrin or fluorescent proteins were mixed 

with 300 |il of squid paste, collected in a 100 (xl glass syringe, and extruded into a 0.25 M 

CaCb solution to form a firm spaghetti-like strand of food. Plain squid paste for 

maintenance feeding and controls was prepared in the same manner but without the 
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addition of extracts. If treatment foods containing extracts were colored, similarly colored 

controls were prepared with commercial food coloring to ensure that color did not 

influence fish behavior. All foods were presented to pufferfish in small pieces ("pellets") 

that could be consumed in a single bite. 

Fish used in assays to test the deterrence of phycoerythrin were captured from Lee 

Stocking Island using hand nets, transported to the laboratory in a bucket, then 

maintained outdoors in individual 9 L tanks with flowing seawater covered with shade 

cloth. Fish were held for approximately 2 weeks and fed plain squid pellets three times a 

day. Each assay consisted of a maximum of three treatment foods (containing 

phycoerythrin) and corresponding controls, and assays were conducted at midday and 

mid-afternoon each day. Fish were pre-fed plain squid paste pellets before each assay to 

reduce hunger, then presented with treatment pellets one at a time. The different 

treatment foods were presented to each fish in a haphazard order. Treatment pellets were 

recorded as accepted if the fish swallowed and did not regurgitate the food, or rejected if 

the fish did not eat, "mouthed," or swallowed and then regurgitated the food. A control 

pellet was offered after each treatment pellet to control for satiation. If the fish rejected 

the control pellet, the response to the preceding extract was not included in the analysis. 

Each treatment food was tested on 10 - 14 fish. Fluorescent proteins were tested in the 

same manner at Little Cayman Island using locally caught pufferfish. 

To determine if each individual treatment food was significantly deterrent, the 

number of fish that ate treatment pellets was compared to the number of fish that ate plain 

controls (always 100%) using a Fisher's exact test. Foods with P values less than or equal 

to 0.05 were scored as deterrent. To compare the deterrence of red and green fluorescent 
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proteins, the proportion of fish that accepted each type was calculated, and then 

proportions were compared with /-tests. 

Feeding Deterrence 

Samples from brown and orange Montastraea cavernosa colonies were collected 

with hammer and chisel from a depth of 15 m at Little Cayman, Cayman Islands (n = 10 

orange, n = 10 brown) and Lee Stocking Island, Bahamas (n = 5 orange, n = 5 brown). 

Samples were transported to the laboratory in seawater and immediately frozen, then 

transported to the University of Mississippi for processing. 

Both organic and aqueous extracts were made from each sample from Little 

Cayman, because bioactive metabolites have been found in both of these fractions in 

other corals and invertebrates (Gochfeld & Aeby, 2008, Slattery & Paul, 2008). Each 

sample was placed in a covered beaker with 1:1 dichloromethane:methanol to produce an 

organic extract. After organic extraction, samples were placed in another beaker with 

Millipore water replaced daily for 3 days, to produce an aqueous extract. Both extracts 

were filtered, lyophilized, and weighed. Only organic extracts were made from samples 

from the Bahamas. The surface area of each coral sample was determined using the wax 

method (Gochfeld, 1991), and the tissue volume calculated using average tissue depth for 

this species, determined with decalcified replicate samples. Because predators perceive 

bioactive compounds on a per-volume basis, an amount of extract corresponding to 300 

jil of coral tissue was used for each feeding assay. 

Treatment foods for feeding assays were prepared as described above for 

phycoerythrin and fluorescent proteins, except that aqueous extracts were mixed with 300 
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(il of squid paste and sufficient sodium alginate to produce a firm paste (< 1 g per 

sample), not with CaCb. Because the addition of sodium alginate produces a different 

food texture, controls for aqueous extracts were also prepared with sodium alginate rather 

than CaCh. Assays were conducted on 10-14 fish at Lee Stocking Island as described 

above. Data were analyzed as described above, with extracts grouped by type and 

sampling location (i.e., Little Cayman organic, Little Cayman aqueous, Bahamas 

organic). 

Microcystin Assays 

To determine if any observed deterrence of pufferfish was due to toxins produced 

by the symbiotic cyanobacteria, assays for microcytin were conducted. Microcystins 

produced by various cyanobacteria including Microcystis spp, and can be detected by 

their inhibition of eukaryotic protein phosphatases (An & Carmichael, 1994). Preliminary 

mass spectrometry results had suggested but not confirmed the presence of microcystin in 

samples of M. cavernosa with cyanobacteria (M. Slattery, personal communication). 

Samples from four orange and five brown colonies of Montastraea cavernosa 

were collected from a depth of 15m at North Perry, Lee Stocking Island, Bahamas. 

Samples were gently airbrushed with 0.2 |im filtered sea water (FSW) from a distance of 

approximately 15 cm to remove mucus and loosely associated bacteria, frozen at -50° C, 

and transported to the University of New Hampshire. 

Pieces of coral tissue and skeleton approximately 1 cm2 surface area were made 

with bone cutters and incubated with 1 mL of molecular-grade water in glass test tubes 

with rubber stoppers for 90 min at 65° C to remove all tissue from skeletons. Coral 
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skeletons were removed and air-dried for later surface area determination with the 

aluminum foil method (Marsh, 1970). Methanol (Sigma) was added to a final 

concentration of 75% and samples were sonicated for 2 min at 50% duty cycle (Branson 

Sonifier 450). Samples were filtered through GF/F filters (Whatman) using vacuum filter 

flasks, and water was added to the filtrate to bring methanol concentration to < 5%. C18 

columns (SepPak, Waters) were prepared by filtering two column volumes of 100% 

methanol followed by four column volumes of water, and then samples were filtered 

through the columns using a glass syringe. Columns were washed with two volumes of 

20% methanol and excess liquid removed using a gentle vacuum. Columns were eluted 

into glass tubes with 2 mL 100% methanol and this eluate was stored at 4° C and used in 

ELISA assays. To ensure that this extraction procedure was effective, six coral samples 

were spiked with 5 ppm of microcystin-LR (Sigma-Aldrich) each before the incubation at 

65° C, which would have yielded a final concentration of 5 ppb with 100% recovery. 

A commercial ELISA kit for detecting microcystins (QuantiPlate kit for 

microcystins - EP 022, Envirologix) was used according the manufacturer's instructions. 

This assay detects several different types of microcystins, including LR, LA, RR, YR, as 

well as nodularin so it was expected that any microcystins present in the coral would be 

detected. A 1:1 dilution of each coral extract, and 1:40 and 1:80 dilutions of spiked 

samples were run concurrently. Microcystin concentrations were determined using the 

standard curves for each assay. Recovery rate was determined using the calculated 

concentration from the standard curve and a 100% recovery concentration of 50 ppb. 

Natural concentrations of microcystin were estimated using coral surface area and 

calculated recovery rate. Samples were scored as positive if the calculated microcystin 
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concentration was higher than that of the lowest standard calibrator (0.16 ppb). A 

Fisher's exact test was used to compare the number of samples from brown and orange 

colonies that contained microcystin. 

Thermal Stress 

Five orange and five brown colonies of Montastraea cavernosa were collected 

from North Perry, Lee Stocking Island at a depth of 15 m. Colonies were transported to 

the lab in covered seawater-filled coolers and placed in large tanks with constantly 

running seawater, covered with two layers of neutral density screening. Each colony 

(genet) was split into 10 replicates (ramets) of approximately equal size using a hammer 

and chisel, and each ramet was marked on the underside with nontoxic colored modeling 

clay to distinguish ramets from the same genet (Figure 4.2). Ramets were allowed to heal 

for three days before the experiment began. 

During the experiment, replicates were held in 56 L glass aquaria in water-filled 

tables with constantly running seawater. Treatment tanks were heated by 300 W 

aquarium heaters (MarineLand Visi-Therm). Treatment and control tanks were paired, 

and each pair of tanks contained ramets from a single brown genet and a single orange 

genet (i.e., tanks were blocked by genotype). Five brown and 5 orange ramets were 

arranged in an alternating fashion within each tank (Figure 4.2). A total of 5 pairs of 

treatment and control tanks were used. Each tank contained an airstone for circulation 

and was covered with two layers of neutral density screening, approximating the 

irradiance at the collection depth of the parent colonies. HOBO temperature loggers 
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(Onset, Bourne MA) were placed in four treatment tanks and two control tanks and 

recorded temperature every five minutes. 

Coral replicates were held at ambient temperature (approximately 30 - 31° C) for 

sampling on day 0, then temperature was increased to approximately 0.5° C over ambient 

on day 1, and to approximately 1° C over ambient on day 2, then heaters were turned off 

and tanks allowed to cool to ambient temperature after sampling on day 7. Samples were 

collected on day 0,4, 7, and 10. At each time point, one brown and one orange ramet 

were selected with a random number table and taken from each tank and processed as 

described below. On day 10, the experiment was terminated and all remaining ramets 

(two brown and two orange from each tank) were processed. 

Ramets were gently airbrushed with FSW to remove mucus as described 

previously, and a small piece was removed with bone cutters, placed in RNALater 

(Ambion) and frozen at -50° C. On day 0, a small additional piece of each ramet was 

frozen in saline DMSO buffer (Seutin, etal, 1991) for the preservation of DNA. The 

tissue on the remaining piece of each ramet was removed by airbrushing with FSW and 

the resulting slurry homogenized at moderate speed until the viscosity of the solution was 

similar to that of water. The total volume of slurry was recorded and 200 (il was 

preserved in 4% paraformaldehyde and frozen at -50° C for cell counts. Coral skeletons 

were air-dried and surface area determined using the tin foil method (Marsh, 1970). 

Both Symbiodinium and cyanobacterial cells were analyzed by FACScan at the 

J.J. Maclsaac Aquatic Cytometry Facility (Bigelow Laboratory for Ocean Sciences, West 

Boothbay Harbor, Maine, USA). Cell abundances were measured with a Becton 

Dickinson FACScan flow cytometer (Franklin Lakes, New Jersey, USA) fitted with a 15-
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mW, 488 nm, air-cooled Argon ion laser. Forward light scatter (FSC, or relative size), 

90° light scatter (SSC), chlorophyll fluorescence (>650 nm), and phycoerythrin 

fluorescence (560-590 nm) were measured for all samples. Cell counts were normalized 

to surface area using the total volume of tissue slurry and the surface area of each ramet. 

Beginning the night before the first sampling, all ramets were measured each 

night with a pulse amplitude modulated fluorometer (Diving-PAM, Walz, Germany) to 

determine their maximum quantum yield of Photosystem II (PSII). Damping was set at 2, 

measuring light intensity at 8, and gain at 2; settings were consistent each night with the 

exception of the gain, which was increased to 5 on the evening of day 2. An auto-zero 

correction was made each night immediately before measuring the first sample. 

Measurements were taken a minimum of 30 minutes after sunset, after corals 

acclimatized to the dark, and the manufacturer's plastic holder was used to hold the fiber 

optic probe. 

Two-way repeated measures analyses of variance (ANOVA) were used to 

determine the statistical significance of observed differences in cell counts of 

Symbiodinium and cyanobacteria, and quantum yields of PSII. Each variable was tested 

for normal distribution using the Shapiro-Wilk test, and those that failed this test were 

natural log-transformed. Cell count data passed normality tests but no transformation 

achieved normality in the quantum yield data. Variables were also tested for sphericity 

using Mauchly's sphericity test, and data that violated this assumption are presented with 

Greenhouse-Geisser and Huynh-Feldt corrections. Time, treatment, colony color, and 

their interactions were used as factors in the ANOVA. 
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Coral host genotyping 

Coral populations were genotyped using amplified fragment length polymorphism 

(AFLP). The three main steps of the protocol are: (1) digestion of genomic DNA and 

ligation of oligonucleotide adapters; (2) selective amplification of restriction fragments; 

and (3) analysis of amplified fragments on a gel (Vos, et al, 1995). Modifications made 

for use in corals include the separation of Symbiodinium cells from coral host tissue prior 

to DNA isolation, and the addition of a pre-selective amplification step (Brazeau, et al., 

in press). 

Samples were collected with hammer and chisel across a depth gradient at Lee 

Stocking Island, Bahamas. Three brown colonies were sampled at 3,10, 15, 22, 30, 45, 

60, and 76 m. Six orange colonies were sampled at 10,15, and 22 m, 5 colonies at 30 m, 

4 colonies at 45 m, and one colony at 60 m. Samples were airbrushed to remove mucus as 

described previously, frozen in saline DMSO buffer (Seutin, et al., 1991), and transported 

to the University of Buffalo. Symbiodinium cells were separated from coral tissue by 

macerating samples in saline DMSO buffer, then spun at 16,000 x g for 5 min. Genomic 

DNA was isolated from the homogenate using the Wizard SV Genomic DNA 

Purification System (Promega, Madison WI) according to the manufacturer's protocol for 

animal tissues. All samples were determined to be free of detectable Symbioindium DNA 

by a stringent Symbiodinium-specific PCR (Brazeau, et al., 2005). 

Because AFLP can be sensitive to PCR conditions, samples were processed at 

each step in large, random lots containing samples from multiple depths and from brown 

and orange colonies, to uniformly distribute any experimental error due to reaction 

conditions. All PCR reactions were done using a single thermal cycler, the final selective 
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PCR step was repeated three times for each sample, and bands were scored as present 

only if they appeared in all three replicates for the sample. 

Genomic DNA was digested with EcoRl and Msel and ligated to corresponding 

adapters. These two enzymes represent a "frequent cutter" and a "rare cutter" 

respectively (Vos, et al., 1995), where the use of the frequent cutter produces small DNA 

fragments ideal for separation on the gel, and the inclusion of the rare cutter reduces the 

number of fragments that are amplified. The reaction was carried out with both EcoRl 

and Msel adapters as specified in Brazeau et al. (in press). A pre-selective PCR reaction 

using primers complementary to the adapters with the addition of a single nucleotide was 

used on diluted DNA fragments from the digestion/ligation reaction. A second selective 

PCR reaction contained primers with the same sequence, with the addition of 2 more 

selective nucleotides and a FAM tag. Final products were sequenced at the University of 

Florida's Interdisciplinary Center for Biotechnology Research, on an Amersham 

MegaBACE 1000 96 capillary sequencer, and electropherograms analyzed for bands 50 

to 400 bp in size in 5 bp increments. 

Two statistical analyses were used to determine if brown and orange colonies 

comprise a single population or multiple populations. Presence/absence banding patterns 

were used as the input for AFLPOP (Duchesne & Bernatchez, 2002), which allocates 

individuals to populations based on log-likelihood values. The log-likelihood threshold 

was set to 0, resulting in samples being assigned to the population with the highest 

likelihood for that genotype (banding pattern). Multiple discriminant function analysis 

(DFA) was used as a second method of classification. Unlike AFLPOP, which utilizes all 

markers, only markers that significantly contributed to the differentiation of populations 
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were used in the DFA. These markers were identified using a forward stepwise analysis 

for model building, and added one at a time to the model, beginning with the marker with 

the largest contribution to differences between populations. A minimum tolerance-value 

of 0.01 was set to avoid adding redundant markers to the model. 

Symbiodinium Genotyping 

To ensure that physiological differences in Symbiodinium were not contributing to 

observed differences in fitness, Symbiodinium populations were genotyped in colonies 

used in the thermal stress experiment. Samples were prepared for DNA extraction by 

removing a small portion of coral tissue preserved in saline DMSO buffer (Seutin, et al, 

1991) from the skeleton and homogenizing tissue (Tissuemiser, Fisher Scientific) in 0.6 

mL of 10X TE buffer (100 mM Tris, 10 mM EDTA, pH 8.0). Homogenates were 

centrifuged at 20,000 x g for 30 min and DNA was extracted from the resulting pellet 

using a Mo Bio PowerSoil DNA extraction kit according to the manufacturer's 

instructions, except that DNA was eluted in 40 |J,1 of molecular water. DNA concentration 

and quality were measured using a Nanodrop 2000c spectrophotometer. 

The internal transcribed spacer 2 region (ITS2) and flanking 5.8S and 28S regions 

of the rDNA were amplified using the primers ITSintfor2 (LaJeunesse, 2002) and 

ITS2rev (Apprill & Gates, 2007). Each 25 (xl PCR reaction contained 0.5 jiM of each 

primer, 200 jiM of each dNTP, 0.25 jil of 50X Titanium Tag DNA polymerase 

(Clontech), IX Titanium Taq buffer (Clontech), and 1 |il of template DNA. 

Amplification was performed using a touchdown PCR protocol with annealing 

temperatures from 62- 52° C (Apprill & Gates, 2007). PCR products were separated on a 
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1.0% agarose gel, excised and purified using a Qiagen QIAquick Gel Extraction kit and 

Silica-Gel columns (Denville Scientific) according to the manufacturer's instructions. 

Amplicons were ligated into the pGEM-T Easy Vector and transformed into Escherichia 

coli JM109 competent cells using a Promega cloning kit according to the manufacturer's 

instructions. Blue/white screening was performed by plating on Luria-Bertani (LB) agar 

plates supplemented with 100 fig ml"1 of ampicillin (Sigma), 100 jil of lOOmM IPTG 

(isopropyl p-D-thiogalactopyranoside), and 20 (il of 50 mg ml"1 X-Gal (5-bromo-4-

chloro-3-indolyl-p-D-galactoside) per plate. White colonies were inoculated into LB 

broth with ampicillin using sterile toothpicks, grown overnight with shaking at 37° C, and 

pelleted by centrifuging at 1500 rpm for 15 min. Supernatant was removed by inverting 

the plate, plates were covered with adhesive foil covers, frozen at -70°C and sent to 

Functional Biosciences (Madison, Wisconsin) for plasmid purification and sequencing 

using the plasmid-based T7 promoter primer. 

Sequences were trimmed for quality and to remove cloning vectors, and 

sequences identified as Symbiodinium ITS2 using BLAST (GenBank) in Geneious 

(Drummond, et al., 2010) were aligned in MEGA (Tamura, etal., 2011). The alignment 

was compared to an existing non-redundant reference database of aligned Symbiodinium 

ITS2 sequences (R. Gates) and manually edited. The alignment was edited column by 

column, and non-consensus bases that did not occur in at least two independent clone 

libraries originating from different PCR reactions were in the case of sequences with 

single base changes, insertions, or deletions, edited back to the consensus for that 

position; or excluded from further analysis in the case of sequences with larger insertions 

or deletions. Sequences without an exact match in the reference base, but occurring in at 
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least two independent PCR reactions, were considered to be genuine. This is a commonly 

used screening protocol for cloned ITS sequences to minimize the impact of PCR and 

sequencing errors (Lesser, et al, 2010, Stat, et al, 2011). Remaining sequences were 

compared to the Symbiodinium ITS2 reference database with BLAST to assign an 

identity. If a sequence matched exactly two sequences in the reference database equally 

well, a new category was created from both type names, but the sequence was counted 

only once. The abundances of each type in each coral were tallied and arranged in a 

matrix, the matrix was square root transformed, a Bray-Curtis similarity matrix was 

created, and non-metric multidimensional scaling was performed in PRIMER. Two-way 

analysis of similarities (ANOSIM) was performed to detect significant differences in 

Symbiodinium communities from different colony types or locations, and one-way 

ANOSIM was used to compare brown and orange samples at each location. The 

similarity percentages (SIMPER) tests was used to determine which types were 

contributing to the observed dissimilarity between the groups tested. 

Results 

Growth 

Mean linear extension rates were highly variable, but the relative differences 

between brown and orange colonies at each location were consistent between 2008-2009 

(Figure 4.3) and 2009-2010 (Figure 4.4). Brown colonies had mean extension rates that 

were slightly higher than, but not significantly different from, those of orange colonies at 

Lee Stocking Island, but brown and orange were indistinguishable in Florida. However, 
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there was no significant effect of colony color or location on linear extension in either the 

2008-2009 or the 2009-2010 period (Table 4.1). There was a high degree of 

morphological polymorphism (Figure 4.11) as well as variation in density (Figure 4.12) 

among samples, which may have contributed to the observed high variability in linear 

extension rates. 

Predator Deterrence 

Aposematic coloration 

Red and green fluorescent proteins did not differ significantly in deterrence 

(paired t (8)= 2.306, P= 0.917), indicating that pufferfish do not discriminate between 

colonies of M. cavernosa based on color. On average, 65% (± 12.29%) of fish consumed 

red fluorescent protein foods, and 66% (± 3.59%) ate green fluorescent protein foods. All 

fish accepted phycoerythrin at all concentrations, thus phycoerythrin was judged to be not 

deterrent (P = 1 for all concentrations, Fisher's exact test). These results indicate that 

colony color does not affect the feeding behavior of sharpnose pufferfish. 

Feeding Deterrence 

There were no significant differences in deterrence between brown and orange 

colonies, for either aqueous (paired t (13)= 1.461, P = 0.168), or organic (paired 1(18) = 

1.448, P = 0.165) extracts from Little Cayman, or organic extracts from the Bahamas 

(Mann-Whitney test, median of 0.615 for orange colonies and 0.538 for brown colonies, 

(7=5.000, ni=n2=5, P (exact) = 0.151). Organic extracts were generally more deterrent; 

87% of extracts from orange colonies and 60% of extracts from brown colonies had P-
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values less than or equal to 0.05 for Fisher's exact tests on individual extracts. Aqueous 

extracts were typically not deterrent; only 29% of extracts from brown colonies and 0% 

from orange colonies were significantly deterrent. 

Microcystin Assays 

An average of 33% (± 3.5%) of added microcystin was recovered from spiked 

samples (n=6). Microcystin concentrations were below the detection limit in samples 

from brown/green colonies, but two of five samples from orange colonies were positive 

for microcystin. Estimated natural concentrations of microcystin in these samples were 

0.43 ppb cm2 and 1.18 ppb cm2, accounting for extraction recovery. The number of 

samples containing detectable amounts of microcystin was not significantly different in 

brown/green and orange colony types (Fisher's exact test, P = 0.167). 

Thermal Stress 

The temperature in treatment tanks was approximately 1° C higher than in control 

tanks on days 1 to 7, but due to a natural thermal stress event, temperatures in control 

tanks ranged from 30.5° C to over 32° C during this time, peaking on day 2 (Figure 4.5). 

Temperatures in control and treatment tanks equalized after heaters were turned off on 

day 7 to allow recovery, but remained over 30° C until days 9 and 10. Temperatures over 

30° C are generally considered to be stressful for most corals (Fitt & Warner, 1995), so 

both treatment and control corals were assumed to be thermally stressed during this 

experiment. 
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Maximum quantum yields of PSII fluorescence were significantly different in 

orange and brown colonies and changed over time, but no other factors or interactions 

had a significant effect (Table 4.2). Yield data departed significantly from the assumption 

of sphericity, so Greenhouse-Giesser and Huynh-Feldt corrected p values are given. The 

effect of time is clearly apparent in the increased yields in all corals on days 1 and 2 

(Figure 4.6). Maximum quantum yields increased from approximately 0.75 at the start of 

the experiment to near 0.8 on the evenings of day 1 and 2, then decreased and remained 

between approximately 0.7 and 0.6 for the remainder of the experiment. Differences 

between brown and orange colonies were most obvious on days 4, 5, 6, 7, and 9, but were 

subtle overall. 

Samples were collected throughout the experiment and cyanobacteria and 

Symbiodinium cells were counted with flow cytometry. Symbiodinium counts passed the 

sphericity tests but cyanobacteria counts did not. As expected, cyanobacteria densities 

were significantly higher in orange than brown samples, and while time and treatment 

were not significant factors in isolation, their 3-way interaction with color was significant 

(Table 4.3). This appears to be due to a slight increase in cyanobacteria densities over the 

course of the experiment in all groups, but particularly in brown corals in control tanks 

(Figure 4.7). Symbiodinium densities were equal in brown and orange colonies at the 

beginning of the experiment, and there was no effect of colony color, time, treatment, or 

any interactions of these factors on cell densities (Figure 4.8, Table 4.4). 
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Symbiodinium Genotyping 

Genotyping of the ITS region of the 18S rRNA of Symbiodinium recovered 15 

distinct types, all within clade C (Figure 4.9). Some sequences did not have an exact 

match in the database but were equally similar to two types, both of which are included in 

the sequence names. Many sequences designated "Mcav" previously found in M 

cavernosa were recovered (Lesser, et al., 2010). 

There was no significant difference between Symbiodinium communities in brown 

and orange colonies when samples from all locations were considered together 

(ANOSIM, Global R = 0.123, P= 0.24), and multidimensional scaling (MDS) did not 

separate brown and orange colonies (Figure 4.10). When locations were tested 

individually, R values were lowest for Little Cayman and Florida (Figure 4.9a, Figure 

4.9b, ANOSIM, Global R = -0.037, P - 0.7 for both), and highest for Lee Stocking Island 

(Figure 4.9c, ANOSIM, Global R = 0.444, P= 0.10), indicating that brown and orange 

colonies were most dissimilar at Lee Stocking Island, although not significantly so. 

Several ITS types were restricted to one colony type; Mcavl, Mcav7, and CI 182 were 

found exclusively in orange colonies, whereas Mcav9, C3/Clf, C1002/C3e, and 

C21/3d/C3k were found only in brown colonies. The effect of location on Symbiodinium 

populations was not significant (ANOSIM, Global R = 0.333, P=0.13), and sites were not 

well separated by MDS (Figure 4.10). Overall, colony color and location were not 

significant factors and no types were consistently or exclusively associated with either 

color at all locations. 
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Coral Host Genotyping 

Brown and orange M. cavernosa from Lee Stocking Island formed two distinct 

populations based on colony color. Analysis with AFLPOP, which utilizes all of the 

markers to distinguish populations, correctly assigned orange samples to the "orange" 

population 87.5% of the time, whereas brown samples were correctly categorized just 

50.5% of the time. However, discriminant function analysis that considers only markers 

that contribute significantly to differences between groups was able to correctly assign 

100% of both brown and orange samples to their population of origin. 

Discussion 

Growth 

Linear extension rates in Florida and Lee Stocking Island were comparable to the 

lower estimates from a previous study, which range from 2.0 to 10.9 mm/year for M 

cavernosa living at depths of 6 to 25 m in Jamaica (Huston, 1985). Brown and orange 

colonies did not have significant differences in linear extension rates (Table 4.1), and 

neither did colonies at two locations, but genuine differences may have been obscured by 

the high variability observed both within and between colonies (Figures 4.3, 4.4). It is 

possible that a greater number of samples or longer time windows might have yielded 

different results. Extension rates in M. cavernosa, M. annularis, and four other Caribbean 

corals were shown to be variable by Huston (1985), and the many factors that influence 

growth, including light (Baker & Weber, 1975, Huston, 1985), temperature (Jon, et al., 

1975, Lough & Barnes, 2000), and water quality (Tomascik & Sander, 1987), likely 
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interact with the genetics and physiology of the coral holobiont at multiple spatial and 

temporal scales to produce this variability, such that even colonies in very close 

proximity may have different linear extension rates. Internal waves transporting cold, 

nutrient-rich water from depth up to the reef may have had an additional influence on 

growth in Florida, where such events have been recorded at the Conch Reef sampling site 

(Leichter, et al, 2003). 

Some investigators advocate the use of calcification rate rather than linear 

extension for measuring growth, as the deposition of calcium carbonate is more closely 

linked to the physiological state of the coral and thus the environmental conditions. The 

extension of the skeleton depends on both the deposition of material and the skeletal 

architecture (Carricart-Ganivet, 2011). Montastraea cavernosa colonies are notoriously 

highly polymorphic (Lasker, 1981, Budd, et al., 2012), and samples collected in this 

study reflected this morphological variability (Figure 4.11), as well as exhibiting great 

differences in density (Figure 4.12). The range and magnitude of differences between 

colonies sampled would have made the determination of calcification rate extremely 

difficult, so this was not undertaken. 

A few researchers have cast doubt on the use of any skeletal growth parameters as 

indicators of coral health or environmental conditions (Anthony, et al., 2002). In 

experiments with small colonies of Goniastrea retiformis and Porites cylindrica 

subjected to combinations of light limitation and sediment stress, growth of the skeleton 

and the tissue was largely uncoupled. Growth of the skeleton was insensitive to the 

experimental treatments, and energetic investment in skeletal growth was very small 

relative to that of tissue growth. However, these effects are likely to be different in larger 
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colonies (>5 -14 cm for hemispherical colony forms), which are predicted to allocate 

more of their energy to skeletal rather than tissue growth. Indeed, a recent documentation 

of a long-term decline in growth rates of Diploastrea heliopora in the Red Sea attributed 

to rising sea surface temperatures clearly demonstrates that skeletal growth rates respond 

to the environment (Cantin, et al, 2010). 

Predator Deterrence 

M. cavernosa was found to be generally deterrent to an omnivorous fish predator, 

Canthigaster rostrata, but there were no differences in the deterrence of extracts from 

brown vs. orange colonies. Controls colored with red and green fluorescent proteins and 

phycoerythrin were readily consumed by fish, indicating that color differences do not 

affect predator preferences. Results from feeding and microcystin assays were congruent. 

Although ELISAs revealed detectable levels of microcystin in two of five orange 

colonies, differences between brown and orange colonies were not significant. If 

microcystin were present, the aqueous extracts would be expected to contain it, but fish 

were significantly deterred by just 29% of aqueous extracts from brown colonies, and 0% 

of extracts from orange colonies, so the observed differences in microcystin 

concentration do not appear to be ecologically relevant to predators. Together these 

results demonstrate that symbiotic cyanobacteria do not play a role in visually or 

chemically deterring predators. 

Although commonly perceived as being limited to blooms of planktonic 

cyanobacteria in freshwater (Paerl, et al, 2001), microcystins are appropriate toxins to 

test for in this system. They are present not only in free-living cyanobacteria on coral 
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reefs (Gantar, et al, 2009), but also in multiple types of cyanobacteria involved in black 

band disease (Myers, et al, 2007, Richardson, et al, 2007, Stanic, et al., 2011), so it is 

feasible that the marine cyanobacteria associated with M. cavernosa might also produce 

toxins. Like antibiotics that are now appreciated for their signaling and other non-toxic 

environmental functions (reviewed in (Martinez, 2008) microcystin may act in other 

ways in cyanobacteria, and not just as a toxin. Microcystin synthetase genes are 

evolutionarily ancient and their origin predates the existence of metazoans, so it is 

unlikely that microcystins evolved to serve a defensive function against grazers (Rantala, 

et al., 2004). Although its precise function is still unclear, microcystin may be involved in 

intra- and inter-specific cell signaling and communication and sensing the environment, 

all of which could be advantageous in a symbiosis (Dittmann, et al., 2001, Babica, et al., 

2006, Schatz, et al., 2007). 

Thermal Stress 

There were several differences in the response of brown and orange colonies to 

temperature treatment (Figures 4.6-8, Tables 4.2-4), most of which corresponded to what 

is known about the unique response of this coral to thermal stress. There was a slight but 

significant effect of color on maximum quantum yields of PS1I, with orange colonies 

having higher values. A previous study found no differences in yield between colony 

types under typical environmental conditions (Lesser, et al, 2007), so our finding 

suggests that cyanobacteria may enable orange colonies to maintain higher 

photochemical efficiency during thermal stress. This could confer a small fitness 

advantage. Symbiodinium densities were unchanged throughout the experiment (Figure 
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4.8), but cyanobacteria densities showed a significant interactive effect of time, 

treatment, and colony color. Cyanobacterial counts increased over the course of the 

experiment, particularly in brown colonies in control tanks (Figure 4.7). Because the 

cyanobacteria are likely living as heterotrophs rather than performing photosynthesis, 

they may not suffer from extensive photodamage as Symbiodinium does, and thus may 

exhibit a Qio response to elevated temperature rather than a typical bleaching response. It 

is unclear how an increase in cyanobacterial densities would affect holobiont fitness. 

M. cavernosa is known to be highly tolerant of thermal stress, and often remains 

visually healthy while other corals are undergoing bleaching (Fitt & Warner, 1995), 

which may account for the lack of a dramatic response to the temperature treatment. The 

increase in ambient seawater temperature that was ongoing during the experiment 

resulted in control corals being exposed to higher temperatures than anticipated, such that 

both control and treatment groups were likely exposed to significant thermal stress 

(Figure 4.5). Thus, the comparison of control and treatment corals is not comparing 

unstressed and stressed corals, but moderately stressed and highly stressed corals. 

Differences between the two groups were likely less pronounced than they would have 

been if control temperatures had been lower. 

In addition to not visibly bleaching when exposed to high temperatures, many 

other physiological indicators in M. cavernosa show little response to short-term thermal 

stress. Gross photosynthesis, the gross photosynthesis/respiration ratio, and the ratio of 

chlorophyll fluorescence before and after exposure to the herbicide DCMU (a measure of 

how many PSII units are damaged and not contributing to photochemistry) of freshly 

isolated Symbiodinium show no significant change after 2 days in hospite at temperatures 
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up to 32° C (Fitt & Warner, 1995). The density of Symbiodinium and their chlorophyll 

content per cell were unaffected by temperatures up to 34° C. Given the apparently robust 

nature of these symbionts, the lack of response to temperatures up to 33° C in this 

experiment (Figure 4.5) is not surprising. 

Intrinsic Differences 

Genotyping of coral hosts and Symbiodinium populations revealed significant 

differences in the coral host based on colony color, but not in Symbiodinium. The brown 

and orange colonies of M. cavernosa sampled at Lee Stocking Island each formed a 

distinct population that could be reliably distinguished based on AFLP profiles. It is 

important to note that the diagnostic bands in AFLP profiles are not sequenced, so the 

specific genetic differences between the two populations remain unknown. Another study 

using AFLP on samples of brown M. cavernosa from across broad depth gradients at Lee 

Stocking Island and Little Cayman Island found that the two locations were genetically 

distinct, and also revealed significant structuring of the population with depth, even 

though some colonies were only tens of meters apart (Brazeau, et al., in press). These 

results illustrate that M. cavernosa is able to diverge into distinct populations at small 

spatial scales. This is surprising given that this coral is a broadcast spawner and thus has 

high dispersal potential (Szmant, 1991). The structuring of populations with depth and by 

colony color (i.e., symbiotic status) are both likely due to the forces of selection. The 

small spatial scale of sampling in both cases and the reproductive mode of M. cavernosa 

makes local recruitment or retention of larvae implausible, and if sweepstakes 

recruitment were occurring in M. cavernosa, the sampling of colonies of different sizes 
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should have reduced any effect this would have by ensuring that several different cohorts 

were sampled (Flowers, et al, 2002). Evidence that selection drives differences between 

colonies with and without cyanobacteria suggests that coral hosts may have adapted to 

cyanobacterial symbiosis over a long evolutionary history. It is possible that the genetic 

differences in orange colonies are responsible for their ability to host cyanobacteria, and 

perhaps brown colonies are unable to establish or maintain this association. These genetic 

changes could also contribute to reproductive isolation of brown and orange colonies, 

further promoting their differentiation despite their close proximity to each other. 

Symbiodinium take up nitrogen fixed by the cyanobacteria (Lesser, et al., 2007), 

and although this might be expected to influence the assortment of genotypes found in 

orange colonies, there was no overall difference between the communities in brown and 

orange colonies or between colonies from different locations. Some types were found 

exclusively in one colony type at a single location, but no types were consistently and 

specifically associated with brown or orange colonies across locations. This confirms 

previous results that found no differences in Symbiodinium populations (Lesser, et al., 

2007). 

Most of the Symbiodinium sequences recovered in this study represent very 

closely related types, and the ecological and functional significance of these kinds of sub-

cladal differences remains a point of contention. Several groups utilize a new cluster-

based method that attempts to divide Symbiondium into ecotypes in which all the 

sequences in the group share an ecological niche and are more closely related to each 

other than they are to sequences in other groups (Correa & Baker, 2009, Stat, et al., 

2011). This analysis was not performed on this dataset, but given the lack of significant 
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differences in classical ITS typing and in any fitness metrics tested in this study, it seems 

unlikely that any potentially different ecotypes in brown and orange colonies have an 

effect on growth, predator deterrence, or the response to thermal stress. However, it is 

possible that other aspects of fitness in M. cavernosa that were not measured are affected 

by the complement of Symbioindium genotypes. While differences in the ITS2 sequence 

are thought to correspond with differences in functional aspects of genome, new research 

has shown that the converse is not always true. Functional differences due to local 

adaptation are present in types with identical ITS2 sequences (Howells, et al, 2012). The 

locations used in this study were separated by hundreds of km, equivalent to the spatial 

scale in Howells et al. (2011) so local adaptation may explain why sites with varying 

oceanographic conditions, and colonies with and without cyanobacteria, seem to share 

the same assortment of Symbiodinium genotypes. 

Possible Factors Affecting Fitness in Montastraea cavernosa 

Few significant fitness differences were detected between orange colonies with 

cyanobacteria and brown colonies without. Although there is no direct evidence that the 

cyanobacteria are beneficial symbionts to the coral, there is also no evidence to suggest 

that they are parasitic or pathogenic, because a significant fitness cost would be expected 

in such a condition. There are several possible scenarios that could explain this lack of 

differential fitness. 

As the host animal, corals are typically thought of as exerting some control over 

their symbionts, and deriving the primary benefit from them; however, symbionts within 

a coral may interact with each other and derive costs and benefits that do not directly 
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affect the host. It is possible that the primary benefit of the symbiotic cyanobacteria is 

conferred to the Symbiodinium. 

The dinoflagellates in orange colonies display a strongly depleted 515N isotopic signal 

typical of nitrogen fixation, indicating that they take up most of the "new" nitrogen 

(Lesser, et al., 2007), and they have a higher growth rate than dinoflagellates in brown 

colonies. But dinoflagellate densities are similar in brown and orange colonies, so part of 

the population in orange colonies must be diluted, as in a chemostat that maintains a 

constant cell density. The mechanism by which this occurs is unknown. Corals are 

capable of digesting their symbionts, but this would be expected to deplete the 815N ratio 

of the host tissue fraction, which has not been observed (Lesser, et al, 2007), so it is 

more probable that the Symbiodinium are expelled (Hoegh-Guldberg, et al, 1987). If 

symbionts are expelled from the colony intact, this increased 'seeding' of the reef 

environment from orange colonies may make these Symbiodinium more likely to be taken 

up by newly settled corals and thus increase their reproductive success. A similar 

phenomenon occurs when the squid Euprymna scolopes vent their light organs each day, 

increasing the abundance of their symbiont Vibrio fischeri in the local environment by as 

much as 30-fold, and ensuring a supply of symbionts for newly hatched aposymbiotic 

squid (Lee & Ruby, 1994). The benefits of cyanobacteria to the coral host could also be 

subtle and indirect, if the availability of nitrogen increases the ability of Symbiodinium to 

provide photosynthate to the coral, or increases its ability to resist or recover from 

environmental stress. 

Colonies with cyanobacteria have a different depth distribution than colonies 

without, and appear to exist in a specific niche in deeper water. The relative abundance of 
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colonies with cyanobacteria peaks at approximately 35% of the population at 15 m depth, 

then remains constant down to 46 m (Lesser, et al., 2007). Presumably, the fitness 

benefits of hosting cyanobacteria are maximized in this range, and may only be apparent 

in the environmental conditions present at depth. Changes in the environment are known 

to alter the fitness of symbioses, and can shift them along the continuum from mutualism 

to parasitism, or cause abandonment of the partnership (Bronstein, 1994). The collection 

depth of 15 m represents the shallower edge of this distribution, and was selected partly 

because of the accessibility of sampling sites at this depth at all locations, and the 

reasonable amount of bottom time available for sampling using open-circuit SCUBA. 

However, fitness differences may have been more apparent if experiments had been 

conducted with colonies from 25 or 30 m depth, closer to the middle of the range. This 

sampling depth presents logistical problems, mostly because the no-decompression limit 

bottom times using SCUBA with air at such depth are quite limited. 

The lack of observed differences in fitness could be due to the metrics chosen and 

how they were measured. The effects of cyanobacteria might be revealed by more 

sensitive measurements (e.g. tissue quality or growth, rather than skeletal growth), or in 

different aspects of fitness, such as reproduction. Gametes are energy-intensive to 

produce and contain high concentrations of nutrients (Ward, 1995, Leuzinger, et al, 

2003), so it is plausible that orange colonies might produce more gametes or gametes of 

higher quality. Sperm and eggs require different investments of energy and nutrients, and 

M cavernosa is gonochoric (Szmant, 1991), so it is possible that the fitness effects of 

cyanobacteria are specific to male or female colonies. Tissue samples were collected in 

2011 to determine the sex ratios of orange and brown colonies and determine their 
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reproductive output, but no gametes were found. Other investigators reported that M. 

cavernosa around the Caribbean either failed to spawn or had minimal spawning of male 

colonies only, so this appears to be a general reproductive failure in 2011, rather than a 

sampling issue (A. Szmant, pers. comm.). Future work should include repeating these 

reproductive surveys, and repeating the thermal stress experiment with a greater 

difference between control and treatment temperatures and control tanks at a lower, non-

stressful temperature might also yield different results. Ocean acidification is an 

important stressor that has already begun to affect coral reefs and will increased in the 

future, in combination with increased water temperatures (Doney, et al, 2009). An 

experiment comparing the response of brown and orange colonies to increased 

temperature, decreased pH, and a combination of the two factors was conducted in 2011, 

and RNA and DNA samples could be used for a variety of analyses. 
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TABLE 4.1. Results of two-way analyses of variance on the effect of colony color 
and location on linear extension from 2008-2009 and 2009-2010. 
2008-

Source of variation SS df MS F P 

Color 0.60759 1 0.60759 0.50726 0.48498 

Location 1.99836 1 1.99836 1.66838 0.21197 

Color x Location 0.70398 1 0.70398 0.58774 0.45272 

Within Groups 22.75791 19 1.19778 

Total 26.06785 22 1.1849 

2009-
Source of variation SS df MS F P 
Color 0.52577 1 0.52577 0.51069 0.48454 

Location 1.44654 1 1.44654 1.40505 0.25219 

Color x Location 1.03894 1 1.03894 1.00914 0.32919 
Within Groups 17.50205 17 1.02953 

Total 20.5133 20 1.02567 
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TABLE 4.2. Results of two-way repeated measures analysis of variance on the effects 
of colony color, temperature treatment, and time on quantum yields of photochemistry. 
Mauchly's test of sphericity also shown. G-G, Greenhouse-Geisser and H-F, Huynh-
Feldt epsilon corrections. 

Chi-
Mauchly's W Square df p 

0.03304 110.709 54 <0.00001* 

Effect df F P G-G H-F 

Treatment 1 0.4926 0.487 - -

Color 1 5.496 0.025* - -

Treatment x Color 1 0.0001 0.99 - -

Time 10 26.9098 <0.0001* <0.0001* <0.0001* 

Time x Treatment 10 1.0486 0.432 0.619 0.656 

Time x Color 10 1.7025 0.132 0.084 0.062 

Time x Treatment x Color 10 0.966 0.494 0.491 0.511 
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TABLE 4.3. Results of two-way repeated measures analysis of variance on the effects 
of colony color, temperature treatment, and time on densities of cyanobacterial cells. 
Maunchly's test of sphericity also shown. G-G, Greenhouse-Geisser and H-F, Huynh-
Feldt epsilon corrections. 

Mauchly's W Chi-Square df p 

0.32524 16.55355 5 0.0055* 

Effect df F P G-G H-F 

Treatment 1 0.5419 0.472 - -

Color 1 46.3839 <0.0001* - -

Treatment x Color 1 0.0093 0.924 - -

Time 3 1.5319 0.25 0.261 0.259 
Time x Treatment 3 3.1014 0.061 0.144 0.127 

Time x Color 3 1.1459 0.365 0.251 0.247 

Time x Treatment x Color 3 6.8061 0.0046* 0.0098* 0.0044* 
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TABLE 4.4. Results of two-way repeated measures analysis of 
variance on the effects of colony color, temperature treatment, and time 
on densities of Symbiodinium cells. Maunchly's test of sphericity also 
shown. 

Mauchly's W Chi-Square df P 
0.51905 9.6541 5 0.0856 

Effect df F P 
Treatment 1 0.1217 0.732 

Color 1 0.0002 0.988 

Treatment x Color 1 0.5296 0.477 

Time 3 0.563 0.648 
Time x Treatment 3 0.3893 0.763 

Time x Color 3 0.6078 0.621 
Time x Treatment x Color 3 1.6465 0.224 



Figure 4.1. Virtual slice from a reconstructed computed tomography 3-D image of a core 
of Montastraea cavernosa, showing density banding patterns in both exothecal (red 
arrows) and endothecal (blue arrows) skeletal elements. Slice shown is roughly parallel to 
growth axis. 
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Orange: 5 genets Brown: 5 genets 

/ \ 10 ramets per genet ^ ^ 10 ramets per genet 

Control 

Treatment 

Per paired set of tanks: 
1 orange genet 
1 brown genet 

Total: 
5 control tanks 
5 treatment tanks 

Figure 4.2. Diagram of experimental design for thermal stress experiment. Five colonies 
(genets) of each type were collected and each was separated into 10 ramets. All of the 
ramets from one orange genet and one brown genet were distributed into paired treatment 
(heated) and control tanks. A total of 5 treatment and 5 control tanks were used. 
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Brown FL Orange FL Brown LSI Orange LSI 

Figure 4.3. Dotplot of linear extension of brown and orange Montastraea cavernosa 
colonies from Lee Stocking Island, Bahamas (LSI) and the Florida Keys (FL) from 2008 
- 2009. Each symbol represents a single colony, horizontal bars are the mean. 
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Figure 4.4. Dotplot of linear extension of brown and orange Montastraea cavernosa 
colonies from Lee Stocking Island, Bahamas (LSI) and the Florida Keys (FL) from 2009 
-2010. Each symbol represents a single colony, horizontal bars are the mean. 
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Figure 4.5. Temperature in control and treatment tanks during thermal stress experiment. 
Error bars are standard deviation. 
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Figure 4.6. Maximum quantum yield of photochemistry (F/Fm) in brown and orange 
Montastraea cavernosa in control and treatment tanks during thermal stress experiment. 
Measurements were made on corals that had been dark-acclimated for a minimum of 30 
min. Error bars are standard deviation. 
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Figure 4.7. Density of cyanobacterial cells in tissue of brown and orange Montastraea 
cavernosa in control and treatment tanks during thermal stress experiment. Error bars are 
standard deviation. 
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Figure 4.8. Density of Symbiodinium cells in tissue of brown and orange Montastraea 
cavernosa in control and treatment tanks during thermal stress experiment. Error bars are 
standard deviation. 
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Figure 4.9. Symbiodinium rRNA ITS2 types from brown and orange colonies of 
Montastraea cavernosa colonies from (a) the Florida Keys; (b) Little Cayman, Cayman 
Islands; (c) Lee Stocking Island, Bahamas. Each pie chart represents a single coral 
colony, and each sector represents a single ITS2 sequence. The number of sequences per 
colony varies as indicated by the number of sectors. 
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Figure 4.10. Multidimensional scaling plot of differences in Symbiodinium rRNA ITS2 
types from brown and orange colonies from the Florida Keys (FL), Little Cayman (LC), 
and Lee Stocking Island, Bahamas (LSI). Plotted from Bray-Curtis similarity measure on 
square-root transformed abundance data. 
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Figure 4.11. Views of representative Montastraea cavernosa cores from reconstructed 
computed tomography 3-D images. Views are perpendicular to the growth axis, 
equivalent to the visible surface of the colony. These images illustrate the high degree of 
polymorphism in skeletal morphology within the whole population, not differences 
between brown and orange colonies specifically. 
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Figure 4.12. Virtual slices from reconstructed computed tomography 3-D images of cores 
of Montastraea cavernosa, showing the high degree of variation in skeletal density 
within the population. Both cores were sampled from orange colonies from Lee Stocking 
Island, Bahamas, but variations in density were also present in brown colonies. Slices 
shown are roughly parallel to the growth axis. 
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CONCLUSIONS 

Symbioses, defined in the broadest sense as the living together of dissimilar 

organisms (sensu de Bary, 1879), can be classified in a variety of ways. Any given 

partnership can be placed along a continuum based on its persistence in time and space, 

the specificity of the relationship, necessity for the survival of both partners, and whether 

it is beneficial or detrimental to each partner. Symbioses occupying many positions on 

this continuum are critical to the existence, formation, and ecological function of coral 

reefs. In particular, the coral animal harbors intracellular, symbiotic, photosynthetic 

dinoflagellates, Symbiodinium (Freudenthal, 1962). In the broadest sense this relationship 

is facultative for Symbiodinium but obligate for the coral because without these 

symbionts the coral will die. However, most studies have shown that both partners 

benefit, the coral gaining a source of fixed carbon and the algae gaining a protected 

habitat where they reach high population densities. The relationship has persisted over 

evolutionary time, and both partners have developed varying degrees of specificity 

depending on the host and genetics of the symbiont (Weis, et al, 2001, LaJeunesse, et al., 

2004, Mauricio, et al, 2004, Wood-Charlson, et al., 2006). 

Corals are also found in symbiosis with a wide variety of other microbes, 

including Fungi, bacteria, Archaea, and viruses (Rohwer, et al, 2002, Wegley, et al., 

2004, Wegley, et al., 2007, Vega Thurber, et al., 2008, Amend, et al, 2011, Littman, et 

al, 2011) with unknown benefits or consequences . Some bacteria are intracellular 

(Lesser, et al., 2004, Ainsworth, et al., 2006), whereas others are associated with the 
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skeleton (Lukas, 1974, Sweet, et al., 2010) or mucus rather than the tissue (Reia & John, 

2006, Sweet, et al., 2010). Some bacteria are consistently found with the same corals 

even in locations separated geographically over long distances (Rohwer, et al., 2002) and 

in different seasons (Littman, et al., 2009), implying a degree of specificity and 

potentially an obligate symbiosis. Other bacteria proliferate only during specific 

environmental conditions such as increased temperature, and may become opportunistic 

pathogens (Ritchie, 2006, Sunagawa, et al., 2009, Vega Thurber, et al., 2009). 

A recently discovered symbiosis on coral reefs is that of the coral Montastraea 

cavernosa with nitrogen-fixing cyanobacteria, in addition to the typical dinoflagellate 

Symbiodinium (Lesser, etal., 2004, Lesser, et al., 2007). The cyanobacteria are present in 

only some colonies, raising important questions about the costs and benefits of this 

relationship and its prevalence in the population. If the cyanobacteria are beneficial, why 

are they not more common? If they are detrimental, why do they persist? The goal of this 

research was to characterize this symbiosis and explore its effects on the coral host and 

the other functionally important microbial associates of the coral. Here, I review and 

integrate the results of this study and suggest areas where further research is necessary. 

A preliminary identification of the symbiotic cyanobacteria was made based on 

sequencing of a single orange colony with eubacterial primers. The cyanobacterial 

population associated with the orange colony appears to include several distinct lineages, 

including a Pleurocapsa-like and a Gloeocapsopsis-like group, both of which are related 

to other known symbionts. In order to conclusively identify the cyanobacteria, it will be 

necessary to recover similar sequences from multiple orange colonies and use fluorescent 

in-situ hybridization (FISH) or a similar technique to localize these cells within coral 
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tissue. The presence of a mixed population of cyanobacteria suggests that specificity in 

this association may be lower than anticipated, despite the intracellular location of 

symbionts. Sequencing of additional coral colonies will reveal if the same types of 

cyanobacteria, or closely related types, are consistently present. Relationships of this type 

are common in sponges; many bacterial symbionts are species-specific but are closely 

related to the symbionts found in other species of sponges (Schmitt, et al., 2012). 

The presence of cyanobacteria does not significantly affect the abundance or 

diversity of the rest of the coral-associated prokaryotic community. However, ongoing 

analysis of the metatranscriptome may reveal differences in the gene expression and 

activity of shared taxa. Low-abundance taxa in particular have been shown to have 

disproportionately high activity levels in previous studies (Campbell, et al, 2011, Gaidos, 

et al., 2011). A high number of putative mRNA contigs in the metatranscriptome were 

assigned to Burkholderiales, despite the fact that this group made up only a small 

percentage of 16S rRNA amplicon libraries. This suggests that low-abundance 

prokaryotes may be highly transcriptionally active and functionally important in M. 

cavernosa. 

Prokaryotic communities included numerous sequences from disease- and stress-

associated taxa such as Vibrionales and Alteromonadales in coral samples. Although the 

Vibrionales in particular are frequently associated with stressed corals and have been 

implicated as opportunistic pathogens in coral diseases (Frias-Lopez, et al., 2002, Garren, 

et al., 2009, Sunagawa, et al., 2009), this group may also be important nitrogen-fixers in 

the holobiont. Nitrogen-fixing Vibrio have been isolated from the mucus of Mussismilia 

hispida in Brazil (Chimetto, et al, 2008), and the abundance of Vibrio-like nitrogenase 
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inifH) sequences was positively correlated with Symbiodinium density in two species of 

Montipora from Hawaii (Olson, et al., 2009), suggesting a benefit was conferred by the 

bacteria. It is possible that these taxa or related taxa may contribute to the nitrogen 

fixation previously observed in orange colonies of M. cavernosa. Multi-isotope imaging 

mass spectrometry (MIMS) has been used successfully in shipworms to definitely 

identify the site of nitrogen fixation and the fate of the nitrogen products (Lechene, et al., 

2007). Applying this approach to the M. cavernosa system in conjunction with stable 

isotopes would definitively demonstrate if the cyanobacteria or some other coral-

associated bacteria are responsible for nitrogen fixation. 

The composition of prokaryotic communities varied significantly at different 

locations, with Lee Stocking Island distinguished from Florida and Little Cayman by a 

lower abundance of some proteobacterial taxa, including Vibrionales and 

Alteromonadales. The similarity between Little Cayman Island and Florida was 

unexpected. Little Cayman is the most geographically isolated of the sites studied and has 

a very small permanent human population, whereas the Florida Keys are densely 

populated and the water quality is heavily impacted by runoff of nutrients and sediment 

(Lapointe & Clark, 1992). However, these sites are hydrographically linked by the 

Caribbean Current, which becomes the Loop Current as it passes through the Gulf of 

Mexico and eventually the Gulf Stream off the Florida coast (Kameo, et al., 2004). In 

contrast, the Bahamas are influenced by the Antilles Current, which may account for the 

differences in bacterial populations at this site. 

Samples from Lee Stocking Island were chosen for metatranscriptomic analysis 

and many contigs were differentially expressed in brown and orange colonies. These 
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significant differences suggest that changes in components of the holobiont may result in 

important functional differences between the two colony morphs. Further analysis and 

annotation of the metatranscriptome will reveal if different members of the holobiont 

such as Fungi or prokaryotes are transcriptionally active in brown and orange colonies, 

and how the gene expression of the coral host and Symbiodinium may differ. The size of 

the dataset and the replicated samples will enable powerful statistical comparisons of 

colony types. This in-depth profile of the transcriptional activity of normal adult coral 

holobionts with fully established symbioses will also serve as an important comparison to 

existing transcriptomic data sets, which originate primarily from aposymbiotic coral 

larvae, stressed adult corals, or cultures of Symbiodinium (Polato, et ah, 2011, Traylor-

Knowles, et al., 2011, Bayer, et al., 2012). 

The effects of cyanobacteria on fitness appear to be neutral, although a significant 

effect on the quantum yield of photochemistry was observed in the thermal stress 

experiment. Growth, the ability to deter predators and produce toxins were unaffected by 

the presence of cyanobacterial symbionts, but investigation of other aspects of fitness 

may be more fruitful. Symbiodinium have higher growth rates in orange colonies (Lesser, 

et al., 2007), and may also be able to translocate more carbon to the coral host. Alone or 

in conjunction with fixed nitrogen products, this could lead to differences in reproductive 

output that might have a large impact on coral fitness. Intriguingly, brown and orange 

colonies form two genetically distinct populations at Lee Stocking Island, and possibly at 

other sites as well, although this was not investigated. The high dispersal potential of this 

species along with the small spatial scale of sampling implicates local selection as the 
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driver of these genetic differences. This further suggests that fitness differences may 

exist, and that such traits may be under selection. 

With this research we are only beginning to understand the nature of the 

symbiosis between M. cavernosa and cyanobacteria, and many questions remain 

unanswered. The cyanobacteria do not appear to be parasitic, but their exact placement 

on the continuum from mutualism to parasitism is unclear. While the symbiosis is clearly 

not obligate for M. cavernosa as a species, the genetic differences in brown and orange 

colonies leave open the possibility that it may be obligate for the population of orange 

colonies. Further research will help to clarify unresolved questions. In particular, MIMS 

or a similar technique is warranted to establish if the intracellular cyanobacteria or other 

prokaryotes are fixing nitrogen, which would clarify their functional role in the holobiont. 

Microscopic and molecular investigation of freshly spawned gametes could reveal if 

cyanobacteria and perhaps other microbes are vertically transmitted, as they are in some 

sponges (Schmitt, et al., 2008). Vertical transmission tends to occur in symbioses that are 

more obligate and specific and have a longer evolutionary history (Bright & Bulgheresi, 

2010). The cyanobacterial symbionts of M. cavernosa are distinguished from many of the 

other associated prokaryotes by their intracellular location and presumably intimate 

relationship with the host, but the nature of most of these symbioses and their ecological 

importance are still obscure. 
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