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ABSTRACT 

TRACKING ENVIRONMENTAL TRENDS IN THE GREAT BAY ESTUARINE 
SYSTEM: AN EXAMINATION OF WATER QUALITY AND NUISANCE 

MACROALGAL BLOOMS 

by 

Jeremy C. Nettleton 

University of New Hampshire, May, 2012 

Monitoring macroalgae populations is an effective means of detecting long term water 

quality changes in estuarine systems. To investigate the environmental status of New 

Hampshire's Great Bay National Estuarine Research Reserve, this study assessed the 

abundance/distribution of macrophytes, particularly Gracilaria and Ulva species, relative 

to eutrophication patterns; compared historical (1970s-1990s) and current algal 

biomass/cover at several sites; and compared Ulva and Gracilaria tissue N/P content to 

ambient and historical levels. Nitrogen and phosphorus testing revealed that the estuarine 

system has become eutrophic, and Ulva and Gracilaria biomass/cover have increased 

significantly. The percent cover of Ulva species, at seasonal maxima, was over 90 times 

the value recorded in the 1970s at Lubberland Creek, and exceeded 50% cover at all sites 

in the upper estuary. Gracilaria cover was greater than 25% at Depot Road in the upper 

estuary, whereas the historical measure was 1%. Sequencing of ITS2, rbcL and COl 

revealed the presence of previously undetected Ulva and Gracilaria species, including 

Gracilaria vermiculophylla (Ohmi) Papenfuss, an invasive species of Asian origin. 



Gracilaria vermiculophylla has surpassed G. tikvahiae as the dominant Gracilaria 

species in the Great Bay Estuarine System. 

Field collections, evaluations of historical herbarium specimens, and molecular 

investigations (including COl gene sequencing) of Gracilaria vermiculophylla were used 

to document its present distribution and approximate dates of introduction within New 

England. It was found at 18 of 24 Northwest Atlantic sites with existing native Gracilaria 

tikvahiae populations. Presently G. vermiculophylla is recorded from Stamford, CT to 

Greenland, NH. Molecular screening of historical herbarium specimens revealed that G. 

vermiculophylla was collected from five sites in Massachusetts during 2000, while it was 

first collected in the middle of the Great Bay Estuarine System (Dover Point, NH) during 

2003. In Rhode Island, initial specimens were documented during 2007, while those in 

Connecticut were first confirmed during 2010. As G. vermiculophylla has gone primarily 

undetected in New England since at least 2000, this highlights the difficulty of 

documenting the arrival and spread of an invasive species that closely resembles a native 

congener. Hence, DNA sequencing is critical to clarifying the introduction and expansion 

of such non-native seaweeds. 

xii 



INTRODUCTION 

In the face of increasing worldwide eutrophication of estuarine and coastal 

systems, the focus of my doctoral work was on measuring related environmental and 

macroalgal community structure changes in the Great Bay Estuarine System. Chapter I, 

of this dissertation, describes coastal eutrophication, its causes, prevalence, and impacts. 

Chapter II outlines the changes in nutrient loads in the Great Bay Estuarine System 

through the measurement of present day water and algal tissue nitrogen and phosphorus 

while comparing these data to the findings of previous studies. Chapter III describes the 

unprecedented peak Ulva blooms observed in the 2006 to 2008 ground study. This 

chapter also identifies the Ulva species that were previously undetected in Great Bay and 

provides evidence for how long each has resided in the system. Chapter IV describes the 

record blooms of Gracilaria observed in the Great Bay during the 2006 to 2008 and fall 

2011 studies. This chapter quantifies the abundance of the recently introduced and 

potentially invasive Gracilaria vermiculophylla (Ohmi) Papenfuss. Although the 

residence time for this species has been brief, it has become the dominant Gracilaria 

species in Great Bay. Chapter V focuses on the current distribution of Gracilaria 

vermiculophylla in New England and provides approximate introduction times for 

various locations within the region. The final chapter of this dissertation focuses on 

recovery management efforts in eutrophic coastal systems, including the benefits, 

difficulties, and expectation setting in such endeavors. 
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CHAPTER I 

EUTROPHICATION AND HARMFUL ALGAL BLOOMS IN COASTAL AND 
ESTUARINE SYSTEMS: THE CAUSES AND IMPACTS 

Eutrophication is described by Schramm and Nienhius (1996) as a natural or 

anthropogenic nutrient enrichment (predominantly N and P) of an environment that 

disrupts the flow and cycling of nutrients. Further, hypertrophication is the addition of 

nutrients to such an extent that detrimental processes will cause potentially irreversible 

changes to the affected community structure. While high nutrient levels may be caused 

by natural or human mediated processes (Morand and Briand 1996), and blooms of 

ephemeral green algae can occur naturally in estuarine environments (Everett 1991), 

nutrients with anthropogenic origins are a prime factor in system eutrophication (Morand 

and Briand 1996). Macroalgal blooms are a response to this nutrient abundance 

(Burrows 1971; Golubic 1970; Lapointe and Bedford 2006; Morand and Briand 1996; 

McGlathery 2001; Sand-Jensen and Borum 2004; Steffensen 1976). 

Many worldwide changes have led to increased eutrophication and subsequent 

macroalgal blooms in recent years. Since the 1970s, the human population has expanded 

from 3.7 billion to over 7 billion (Anonymous 2012). In this same timeframe, terrestrial 

food production has increased from 4.6 billion tons to 6.8 billion tons (Anonymous 

2012). To power this increased production, fertilizer use has climbed from 32 million 

tons N per year to 88 million tons N per year (Smil 2002). Additionally, marine 

aquaculture production (both plants and animals) increased from 2.2 million tons per year 
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in the 1970s to nearly 38 million tons per year by 2009 (Anonymous 2012). Nutrient 

increases have been coupled with the bloom-enhancing warming effects brought about by 

the world's increased production of CO2. Emissions of CO2 have increased from 4.1 

gigatonnes (1 Gt = 1 trillion kg) in 1970 to 7.9 Gt in 2005 (Forster et al. 2007). 

Increased urbanization and industrialization have been linked to excess nutrient 

inputs (Deegan et al. 2002; de Jonge et al. 2002), with nutrients added from insufficiently 

treated municipal waste water, septic systems, agricultural wastes, fertilizer run

off/seepage, and industrial waste. The amount of nutrients contributed by agricultural 

sources can be quite staggering. For example, farmed livestock in Brittany, France, 

produce the effluent equivalent of 50 million people, or 15 times the human population of 

the region (Charlier et al. 2008). Livestock waste in this region is subject to far looser 

regulation than the human variety, and the majority of this waste is applied directly to the 

soil, with these nutrient inputs being only slightly diluted before transfer to nearby water 

sources (Charlier et al. 2008). Agricultural inputs were also the most significant 

identified source of nitrogen in the blooms observed in the Odense Fjord, Denmark 

(Frederiksen, 1987) and the Venice Lagoon, Italy (Sfriso et al. 1992). The resulting large 

influxes of nitrates from agricultural sources and phosphates and ammonia from domestic 

sources cause overgrowth and proliferation of Ulva and Gracilaria species (Morand and 

Briand 1996). 

Eutrophication occurs in both estuarine and shallow coastal environments (Duarte 

1995; Schories et al. 1997). Moderate to high degrees of eutrophication have been 

recorded in 67% of the combined surface area of the US estuaries (Boesch 2002). 

Similar assessments have been made for the estuarine systems in Asia (Boesch 2002) and 
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Europe (Vidal et al. 1999; Conley et al. 2002; Escaravage et al. 2006). Nitrogen is 

typically the limiting element in shallow coastal environments (Rosenberg 1985; 

Nienhuis 1989) and marine systems (Howarth 1988), but a combination of nitrogen and 

phosphorus has also been shown to be limiting (Gordon et al. 1981; Lapointe 1987). 

Occasionally, phosphorus is the limiting element in these systems (Lapointe 1987; Peckol 

et al. 1994). Finally, iron may be a secondary limiting element in some cases (Sequi et 

al. 1992). 

While eutrophic conditions can arise without resulting algal blooms, macroalgal 

bloom events cannot occur without excess nutrients (Morand and Briand 1996). When 

blooms do occur, there is a positive correlation between the level of eutrophication and 

the proliferation of macroalgae (Morand and Briand 1996). In most estuarine systems, 

increasing nitrogen levels have driven bloom events. An example of this found in the 

microcosm study by Fong et al. (1993), which showed that macroalgal biomass was 

positively proportional to N availability, but biomass was not correlated to P availability. 

Nutrient pollution from anthropogenic sources, such as those mentioned above, 

causes strong negative effects in estuaries (Morand and Briand 1996), however, 

systematic responses to eutrophication vary depending on abiotic factors, such as 

geomorphology and flushing time (de Jonge et al. 2002; Elliot and de Jonge 2002). The 

size of macroalgal blooms is greatest when the conditions of excess nutrients are 

combined with other abiotic factors, such as minimal current flow and slow rates of water 

renewal (Morand and Briand 1996). 

Bloom-forming seaweeds thrive in nutrient enriched environments. Greater 

tolerances for fluctuations of salinity, temperature, and light levels in common bloom-
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forming algae such as Ulva and Gracilaria contribute to their predominance in estuarine 

habitats (Morand and Briand 1996). Opportunistic species such as Ulva intestinalis 

demonstrate more efficient osmoregulation at lower salinities found in estuarine 

environments (Black and Weeks 1972), which gives them a distinct advantage. Many 

opportunistic bloom-forming macroalgae have a thin thallus and therefore a high surface 

area to volume ratio that facilitates high nutrient uptake (Littler and Littler 1980; 

Rosenberg and Ramus 1984). Opportunistic species are also better equipped to use 

alternative nutrient sources. While most macroalgal species take up NH/ preferentially 

over NO3" (Wallentinus 1984), Ulva species can utilize both nutrient forms at the same 

rate (Le Bozec, 1993). Additionally, Ulva species can take up nutrients 4-6 times faster 

than slow growth perennial species (Pedersen and Borum 1997). Even when ambient 

nitrogen concentrations are low, the addition of phosphorus can, in some cases, stimulate 

Ulva growth, (Steffensen 1976). Finally, thallus fragility, in response to current forces, 

causes increased opportunities for fragmentation and, consequently, vegetative 

reproduction in bloom-forming rapidly proliferating species (Morand and Briand 1996). 

Opportunistic macroalgal bloom events have become common worldwide in 

coastal environments and biomass totals range from 0.2 to 400 kg WW m2 (Morand and 

Briand 1996). While large macroalgal blooms have been reported since the early 1900s 

(Cotton 1910; Letts and Richard 1911), the number of incidents, regions affected, and 

incident severity have increased dramatically since the 1960s (Sawyer 1965; Perkins and 

Abbott 1972; Fahy et al. 1975; Dauer and Conner 1980; Soulsby et al. 1982,1985; Tubbs 

andTubbs 1983; Reise 1983,1985; Thrush 1986; Frederiksen 1987; Hull, 1987,1988; 

O'lafsson 1988; Sundback et al. 1990; Raffaelli et al. 1991,1998,1999; Bonsdorff 1992; 
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Sfriso et al. 1992; Everett 1994; Viaroli 1995; Raffaelli 2000; Osterling and Pihl 2001; 

Franz and Friedman 2002; Auffrey et al. 2004). 

Macroalgal blooms can be very extensive and long lasting. Free floating algae are 

prone to drift together, in estuarine environments, forming multi-layered canopies 

(Vergara et al. 1998). Spanish coastal blooms of Ulva were estimated to be between 250 

and 827 g/m2 DW(Niell et al. 1996). Sfriso et al. (1992) reported Ulva biomass levels of 

700 to 1400 g/m2 DW in the Venice Lagoons. On the Swedish west coast, Pihl et al. 

(1996) found Ulva biomass values between 425 and 625 g/m2 DW. Pregnall and Rudy 

(1985) measured an Oregon Ulva biomass value of 750 g/m DW. The peak abundance 

of bloom-forming algae can vary by location and year. In temperate environments 

macroalgal blooms begin in the spring, peak in the summer months, and diminish 

throughout the fall (Hull 1987). In areas of low hydrodynamic movement, macroalgal 

blooms can persist for months (Vergara et al. 1998). 

The consequences of macroalgal blooms are more varied, indirect, and longer 

term than those observed in microalgal blooms (Perkins and Abbott 1972; Fahy et al. 

1975; Dauer and Conner 1980; Soulsby et al. 1982,1985; Tubbs and Tubbs 1983; Reise 

1983, 1985; Thrush 1986; Hull, 1987,1988; O'lafsson 1988; Sundback et al. 1990; 

Raffaelli et al. 1991,1998,1999; Bonsdorff 1992; Everett 1994; Viaroli 1995; Raffaelli 

2000; Osterling and Pihl 2001; Franz and Friedman 2002; Auffrey et al. 2004; Lapointe 

and Bedford 2006). Macroalgal blooms have led to major structural and compositional 

changes in estuarine and coastal ecosystems (Rosenberg 1985; Nixon 1995). Winds and 

currents cause drifting and deposition of algae in concentrated areas, macroalgal mats can 

develop (Morand and Briand 1996; Vergara et al. 1998). The physical structure of algal 
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mats has been shown to filter out pelagic larvae, which disrupts the settlement process 

and can reduce recruitment and colonization of other species (O'lafsson 1988). 

Abundance and survival of bivalves has been shown to decline in the presence of dense 

algal mats (Petersen et al. 1994; Norkko and Bonsdorff 1996). The presence of 

macroalgal mats may cause a decline in the infaunal biodiversity in affected soft-

bottomed habitats (Franz and Friedman 2002; Jones and Pinn 2006). In some areas, long-

lived habitat-forming species such as Ascophyllum nodosum may be out competed in 

their colonization of rocky substrata by short-lived bloom forming algae (Lobban et al. 

1985), making habitat restoration difficult. The night time respiration of large Ulva 

blooms can create daily periods of anoxia (Johnson and Welsh 1985; D'Avanzo and 

Kremer 1994). Reduction of oxygen in dense Ulva beds is harmful and even fatal to 

shallow mudflat dwelling crabs (Johnson and Welsh 1985). Anoxic conditions caused by 

macroalgal blooms have also been linked to large fish die offs in Sweden (Rosenberg et 

al. 1990) and disappearance of macrofauna in the Italy (Ceretti et al. 1985). 

Macroalgal bloom events are seasonal in most systems, and bloom die-offs can be 

more harmful than the grow out phase. Bacterial decomposition of algal mats leads to 

anoxic conditions in the sediment and water column (Nedergaard et al. 2002), which can 

lead to the decline of long-lived habitat-forming seagrass and macroalgal species (Borum 

and Sand-Jenson 1996; Duarte 1995; Valiela et al. 1997; Schramm 1999). Hypoxic 

conditions can persist for weeks or months (Bolam et al. 2000), often causing the decline 

or disappearance of resident fauna (Reise 1983; Thorne-Miller et al. 1983; Johnson and 

Welsh 1985; O'lafsson 1988; Breuer and Schramm 1988; Nienhuis 1992b; Warwick and 

Clarke 1994; Villano and Warwick 1995; Hansen and Kristensen 1997). Rotting 
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seaweeds also give off harmful chemicals, such as H2S, which cause a foul smell that can 

cause reduced tourism in an affected area. At sufficient concentrations, the chemicals 

given off by rotting algae have been strong enough to remove lead-based paints from 

buildings and fences (Sawyer 1965). In several areas, rotting algal blooms have 

reportedly caused nuisance outbreaks of chironomids, non-biting midges (Buttermore 

1977; Orlandini 1988). 

In eutrophic environments, species with high nutrient tolerances or affinities 

survive while less adapted species diminish or disappear (Morand and Briand 1996). In 

soft bottomed ecosystems, seagrass beds often decline drastically in highly eutrophied 

systems (den Hartog 1994; Short et al. 1995). Deposits of Ulva in Langstone Harbour, 

England, caused the disappearance of Zostera beds due to shading and toxic decay (den 

Hartog 1994). In Australia's Oyster and Royal Princess Harbours, macroalgal blooms led 

to an 80-90% decrease in seagrass meadows (Morand and Briand 1996). Such algal 

blooms were the result of nutrient increases from agricultural runoff and, specifically in 

the case of Oyster Harbour, leakage from an agricultural fertilizer plant. 

Eutrophication and the resulting algal blooms are a worldwide problem. 

Unfortunately, our New England coastal ecosystems are not immune. The Great Bay 

Estuarine System watershed has been stressed in multiple ways in recent years. 

Impermeable surfaces, which lead to higher inputs of nutrient pollutants, have been 

increasing at a rate of 1,500 acres per year (Anonymous 2009). Over 7.5% of the 

watershed surface is currently impermeable, and irreversible damage is often observed 

when levels reach 10% (Anonymous 2009). The 18 wastewater treatment facilities in the 
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watershed are all contributing nitrogen loads far in excess of EPA regulations 

(Anonymous 2009). Additionally, over 60% of residents use septic systems, which are 

only inspected for nutrient release compliance when owners apply for property 

enhancement permits (Anonymous 2009). Application of chemical fertilizers in the 

region's urban settings are largely unregulated. The following chapter outlines the degree 

of eutrophication detected in the Great Bay Estuarine System of New Hampshire and 

Maine. The resulting blooms of Ulva and Gracilaria species are reported in Chapters III 

and IV. The New England distribution of the recently introduced Gracilaria 

vermiculophylla (Ohmi) Papenfuss is described in Chapter V. Restoration and 

management approaches and considerations are discussed in Chapter VI. 
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CHAPTER II 

ALGAL TISSUE NUTRIENT ANALYSIS AND WATER QUALITY TESTING: 
ASSESSING THE NUTRIENT STATUS OF THE GREAT BAY ESTUARINE 

SYSTEM 

Introduction 

Ecosystem changes have quickened beyond the pace of scientific progress, to the 

point that anthropogenic forces threaten to cause irreversible damage to ecosystems 

(Morand and Merceron 2005). Estuarine environments around the world are threatened 

by anthropogenic inputs of nitrogen and phosphorus. Human terrestrial nitrogen inputs 

have more than doubled the earth's total natural nitrogen inputs (Vitousek et al. 1997). 

Excess nitrogen applied to land can accumulate in soil, run off to surface waters, enter 

and travel through ground waters, or volatilize and reenter the atmosphere (Smith et al. 

1999). Agricultural inputs of phosphorus far outweigh phosphorus outputs in production 

in many locations and are in excess in the soils (Carpenter et al. 1998). Phosphorus 

leached from soil readily flow through regional watersheds. Both point and non-point 

sources of nitrogen and phosphorus can have dramatic effects on the receiving bodies of 

water (Carpenter et al. 1998; Correll 1998). Estuarine habitats receive more nutrient 

inputs per unit area than any other aquatic ecosystem (Howarth 1993). Such inputs can 

lead to eutrophic or hypertrophic conditions and ecosystem damage. 

The degree of nutrient pollution has been defined for several types of aquatic 

systems. Marine waters are defined as oligotrophic when total nitrogen (TN) 

concentrations are < 0.260 mg/L, mesotrophic when between 0.260-0.350 mg/L, 
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eutrophic from 0.350 to 0.400 mg/L, and hypertrophic above 0.400 mg/L (Hakanson 

1994). For total phosphorus (TP), marine waters are considered oligotrophic when 

phosphorus concentrations are < 0.010 mg/L, mesotrophic when between 0.010-0.030 

mg/L, eutrophic from 0.030 to 0.040 mg/L, and hypertrophic above 0.040 mg/L 

(Hakanson 1994). 

In 2000, the Swedish EPA (Smith 2003) published nutrient pollution guidelines 

for coastal marine waters based upon what they perceived would be pristine conditions. 

Nitrogen concentrations below 0.252 mg/L were considered very low, those between 

0.252 an 0.308 mg/L were considered low, 0.308 to 0.364 mg/L indicated moderate 

pollution, 0.364 to 0.448 mg/L was classified as high nutrient pollution, and above 0.448 

mg/L was considered very high. Phosphorus concentrations below 0.015 mg/L were 

considered very low, those between 0.015 an 0.019 mg/L were considered low, 0.019 to 

0.024 mg/L indicated moderate pollution, 0.024 to 0.031 mg/L was designated as high 

nutrient pollution, and above 0.031 mg/L was designated as very high. 

Eutrophication of estuaries can cause macroalgal blooms (Harlin and Thorne-

Miller 1981; Cambridge and McComb 1984; Lapointe and O'Connell 1989; Kinney and 

Roman 1998). Proliferations of green seaweeds, including Ulva spp., are common in 

highly eutrophic environments in Italy (Sfriso and Marcomini 1996; Tagliapietra et al. 

1998), Spain (Hernandez et al. 1997), France (Charlier et al. 2008), Scotland (Raffaelli et 

al. 1998), Britain (den Hartog 1994) Denmark (Frederiksen 1987), Australia (Morand and 

Briand 1996), and the US (Sawyer 1965). Opportunistic macroalgae respond positively 

to nutrient enrichment. In comparing two Massachusetts estuaries, Hauxwell et al. 

(2000) found that macroalgal biomass was consistently greater in the system with the 
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higher nutrient load. Further, flat bladed green species, like Ulva, have been shown to 

become more abundant than filamentous red species with increasing nutrients (Karez et 

al. 2004). The physiological responses of opportunistic macroalgae to nutrient 

enrichment produces higher tissue concentrations of nitrogen and lower amounts of 

structural carbon than is found in species like eelgrasses (Enriquez et al. 1993). 

Decomposition of this algal tissue with high nutrient content occurs far more rapidly than 

in high carbon plants. An abundance of decomposing algae can cause a rapid release of 

nitrogenous nutrients that can disrupt ecosystem balance. 

Plant yield is limited by elements available in the least quantity relative to the 

particular organism's growth needs (von Liebig 1855). Nitrogen versus phosphorus 

limitation is dependent on several factors including the supply rate of each element (Fong 

et al. 1993). The need for nitrogen and phosphorus can vary by species. In macroalgae, 

N:P ratios of less than 16:1 generally indicate that nitrogen is limited compared to 

phosphorus (Redfield 1958). Atomic N:P ratios above 24:1 indicate phosphorus 

limitation, and ratios between 16:1 and 24:1 indicate an adequate balance between the 

availability of nitrogen and phosphorus (Bjornsater and Wheeler 1990). 

The response of macroalgae to nutrient enrichment can vary by species, nutrient 

type, nutrient concentration, and other environmental conditions. Harlin and Thorne-

Miller (1981) found that additions of ammonium to the water column enhanced the 

growth of Ulva species, causing dense mat formation, while additions of phosphate had 

no effect on growth. The same study found that neither ammonium nor phosphate 

additions enhanced growth of the red seaweed Gracilaria tikvahiae McLachlan, but each 

caused tissue reddening (Harlin and Thorne-Miller 1981). Additions of nitrate enhanced 
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the growth of Ulva species, but to a lesser degree than ammonium (Harlin and Thorne-

Miller 1981). Nitrate additions caused some growth stimulation in Gracilaria tikvahiae 

and led to tissue reddening (Harlin and Thorne-Miller 1981). In N:P treatments with 

fixed 15:1 ratios, Ulva biomass was greatest when exposed to moderate inputs of both 

nitrogen and phosphorus (Fong et al. 1993). This same response pattern was seen across 

the varying treatments at a fixed 30:1 ratio (Fong et al. 1993). Thus, the actual amount of 

nitrogen and phosphorus present in a system, rather than the N:P ratio may better predict 

the growth response of opportunistic species. 

To assess the nutrient status of an estuarine system, one can test the nutrient levels 

in the water and in the tissues of resident algal species. Each method has advantages and 

disadvantages. While collecting water samples is fairly easy, pulses in nutrient inputs 

and community uptake can cause water column N:P ratios to fluctuate rapidly (Fong et al. 

1993), making it difficult to determine long-term trends. A high correlation has been 

reported between tissue nutrient levels in Ulva and long-term ambient nutrient levels (Ho 

1987). Consequently, analyzing tissue nutrients has the assumed advantage of providing 

a more stable picture of site nutrient levels. However, tissue nutrient levels do fluctuate 

across time. Lapointe and Bedford (2006) observed significant seasonal differences in 

N:P ratios of algal tissues, with higher means in August (25.4) than October (18.1). In 

addition collecting enough algal tissues to conduct robust nutrient testing maybe 

challenging or impossible at some sites and times. 

The current study was designed to determine the nutrient status of the Great Bay 

Estuarine System by measuring total nitrogen (TN) and total phosphorus (TP) in both 

water and algal tissue from five sites over a two year period beginning in September 

13 



2008. Water TN and TP concentrations were also compared to the nutrient pollution 

categories of Hakanson (1994). The atomic N:P ratios generated from water and tissue 

samples from each site and time were compared to the nutrient limitation ratios described 

by Redfield (1958) and Bjdmsater and Wheeler (1990). To compare present and 

historical nutrient enrichment status, tissue nutrient data from the current study were 

matched to the historical Great Bay Gracilaria tissue nutrient data described by 

Penniman (1983), and compared to the minimal growth requirements outlined by 

Pedersen and Borum (1997) and Villares and Carballeira (2004). Further, current water 

nutrient data were compared to the historical water nutrient concentrations for the region, 

which were outlined by Short (1992) and Jones (2000). 

Materials and Methods 

Site Descriptions and Sampling Regime 

Five Great Bay Estuarine System study sites were selected based on ease of 

access and proximity to historical algal community study sites (Figure 1). The sites were 

Cedar Point (CP), Wagon Hill Farm (WH), Lubberland Creek (LC), Depot Road (DR), 

and Sunset Farm (SF). The sites varied in substrata, hydrographic regime, and human 

traffic (Table 1). 

Water samples and samples of Ulva were collected from each site at low tide on a 

bi-monthly basis during autumn, spring and summer from September 2008 through July 

2010 . Samples of Gracilaria were collected from three of the sites (DR, LC and SF) 

during the first year only. Three 250 ml water samples for dissolved nutrient analyses 

were taken from 10 cm below the water surface at each study site during each visit. The 
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samples were filtered through cellulose membrane filters (Millipore® HAWP 0.45 |im 

pore) and kept at -20°C until being of analyzed. Temperatures and salinities were 

enumerated for each site at the time of collection using a floating thermometer and a 

refractometer, respectively. 

Whole thalli of at least 12 specimens of Ulva were collected at each site during 

each visit. The whole thalli at least Gracilaria specimens were also collected at the three 

southern bay sites during year one of the study. They were washed in the field with 

seawater to remove sediment and detritus, placed in plastic bags, and returned to the 

laboratory within one hour. In the lab, the samples were gently brushed under running 

fresh water until clean, then rinsed with distilled water, and dried at 90 °C until a constant 

weight (up to three days). Dried materials were kept at -20 °C until chemical analysis. 

Nutrient Analysis 

Tissue total nitrogen and total phosphorus were determined for a subset of Ulva 

and Gracilaria specimens. The analyses were done by Penn State's Agricultural 

Analytical Lab using combustion (Horneck et al. 1998) and dry ash methods (Miller 

1998). Dry tissue material of at least 200 mg was used for each replicate test of total 

nitrogen percentage. Another 200 mg dry material was used for each test of total 

phosphorus percentage. For each species and sampling event, at least three independent, 

from different thalli, measurements of tissue N and P were performed, provided adequate 

amounts of tissue were available on site. For each species, mean tissue nitrogen and 

phosphorus levels were compared between sites and between seasons via single-factor 

analysis of variance (ANOVA) with significance level a=0.05 (Zar 1999), followed with 
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a Tukey's multiple comparison test. All statistical test analyses were done using Systat 

13 (Systat, Inc.) 

Surface water total nitrogen and total phosphorus were measured by the 

University of New Hampshire Water Quality Analysis Lab using an alkaline persulfate 

digestion followed by colorimetric measurement of NO3 and PO4, yielding results in 

mg/L. 

Results 

Great Bay Estuarine System mean water and Ulva tissue nitrogen and phosphorus 

measured during the two year study (Figures 2-5, Appendices A-B) showed no 

significant differences between the months (p>0.05). Mean monthly total nitrogen levels 

were hypertrophic (TN concentrations from 0.508 to 0.664 mg/L) in all but July 2010 

(Figure 2), at which time the water was highly eutrophic (TN concentration 0.398 mg/L). 

Meanwhile, the Great Bay Estuarine System's mean monthly Ulva tissue nitrogen 

percentages remained between 2.3 and 4.1% (Figure 3), which is above the 2.2% 

threshold for unlimited growth (Pedersen and Borum 1997). Mean monthly water 

phosphorus concentrations were between 0.028 and 0.070 mg/L across the Great Bay 

Estuarine System (Figure 4). Phosphorus concentrations were mesotrophic during one 

month, March 2010 (0.028 mg/L), and eutrophic in one month, May 2009. In all other 

months, the phosphorus levels were above the hypertrophic threshold of 0.040 mg/L. 

Ulva tissue mean phosphorus percentages stayed between 0.13 and 0.18% (Figure 5), 

well above the 0.03% minimum needed for growth (Villares and Carballeira 2004). 
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The mean total nitrogen of water from each study site was compared (Figure 6). 

The mean nitrogen values were above Hakanson's (1994) 0.400 mg/L threshold for 

hypertrophication for each site, except Cedar Point. Total nitrogen mean concentration 

for Cedar Point was below the eutrophic threshold of 0.350 mg/L. 

The mean total nitrogen (TN) from Ulva tissue was also compared between sites 

(Figure 7). There were no significant differences between the sites, but it must be noted 

that Ulva was not available for nutrient testing at Cedar Point during November 2009 and 

July 2010, months with low tissue nitrogen measures at the other sites. Mean tissue 

nitrogen for every site was above the 2.2% threshold needed for unlimited Ulva growth. 

The mean water TP for each site was above the 0.030 mg/L eutrophication 

threshold, and all sites other than Cedar Point were above the 0.040 mg/L definition of 

hypertrophy (Figure 8). The trend was for higher ambient phosphorus in the southern 

portion of Great Bay (P=0.01) with the highest mean concentration at Sunset Farm (0.080 

mg/L + 0.04 SD). 

Ulva tissue was used to track mean phosphorus levels at all sites in the Great Bay 

Estuarine System (Figure 9). Cedar Point Ulva tissue, on average, contained a slightly 

lower percentage of phosphorus (0.136% + 0.036 SD) than any other site (P<0.01). Still, 

mean tissue phosphorus levels were well above the 0.03% minimum required for growth. 

No significant differences in N:P ratios for water and Ulva tissue samples were 

found between sites. Comparisons of the methods revealed a trend of lower N:P ratios in 

the water than in the Ulva tissues at four of five sites (Figure 10). Mean water N:P ratios 

for the two year study ranged between 15.2 + 7.9 SD (Cedar Point) and 25.7 + 15.4 SD 

(Lubberland Creek), whereas mean tissue N:P ratios were between 37 + 19.7 SD (Wagon 

17 



Hill Farm) and 74.1 + 16.1 SD (Cedar Point). With the exception of Cedar Point's mean 

water N:P, all of the observed water and tissue summary mean atomic ratios for each site 

were well above the normal 16:1 Redfield Ratio. 

Mean Ulva tissue and water N:P ratios were also examined by collection month 

across the Great Bay Estuarine System (Figure 11). While no significant differences 

were found in mean N:P ratios over time in water or tissue, the ratios were generally 

higher in tissue than in water. In the water, N:P ratios ranged from a high of 33.2 + 15.8 

SD in March 2010 to a low of 11.8 ± 4.4 SD in July of the same year. In tissue tests, the 

N:P ratios ranged from a low of 38.5 + 9.5 SD in May 2010 to a high of 61 + 20.4 SD in 

November 2008. 

Seasonal changes in TN, TP and N:P ratios in water and Ulva tissue were 

examined for each collection site (Table 2, Figures 12 and 13). At Sunset Farm, no 

significant differences were found between months using the water analyses. Mean 

monthly water N:P ratios remained between 7.7 + 0.6 SD and 35.1 + 17.5 SD during the 

entire study. Between-month differences in mean N:P ratios were found using the tissue 

analyses (P<0.01), but no clear seasonal trends were evident. The highest mean N:P ratio 

was observed in November 2009 (65.0 + 4.4 SD), and the lowest in September 2008 

(34.3 ±1.2 SD), the first month of the study. 

The Sunset Farm monthly water nitrogen means were in the hypertrophic range 

(above 0.400 mg/L) each month of the study (Figure 14). Monthly water phosphorus 

means were hypertrophic for all but two months (Figure 15), November 2008 and March 

2010, in which they were in the eutrophic range (between 0.030 and 0.040 mg/L. 
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For Depot Road samples, no significant differences in water N:P were found 

between months (Figure 16). Mean monthly water N:P ratios remained between 12.2 + 

10.2 SD and 39.5 + 42.0 SD during the course of the study. Monthly means were above 

the 16:1 Redfield ratio in all but three months (September 2008, March 2009, and July 

2010). Significant between-month differences in mean N:P ratios were not found using 

the tissue analyses (Figure 17). The highest mean N:P ratio was observed in March 2008 

(76.6 hk 11.2 SD), and the lowest mean value was in September 2008 (39.7 + 3.3 SD), the 

first month of the study. 

Total nitrogen in Depot Road site water was oligotrophic (<0.260 mg/L) during 

November 2008, May 2009, and July 2010 (Figure 18). Nitrogen concentrations were in 

the mesotrophic range (0.260 to 0.350 mg/L) September 2008, and hypertrophic (above 

0.400 mg/L) during the other 6 measurement periods. 

Mean monthly total phosphorus concentrations at the Depot Road site (Figure 19) 

were in the mesotrophic range (between 0.010 and 0.030 mg/L) during November 2008, 

May 2009, July 2009, July 2010, eutrophic during September 2008 and March 2009, and 

hypertrophic during the other four measurement periods. 

Water and Ulva tissue from the Lubberland Creek site were analyzed for seasonal 

variation in N:P ratios (Figures 20 and 21). No significant differences were found 

between the months using the either method of analysis. The trend was for more 

fluctuation in the water N:P ratios across the months, whereas Ulva tissue means were 

fairly constant through the study period. Mean monthly water N:P ratios remained 

between 12.6 ± 2.3 SD (July 2010) and 52.8 ± 12.8 SD (May 2009). The 16:1 Redfield 

ratio was exceeded in the water at this site in all but two months (July 2009 and 2010). In 
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the tissue analyses, the mean N:P ratios remained between 39.8 + 0.6 SD and 76.8 + 6.0 

SD. 

Mean monthly water total nitrogen concentrations at the Lubberland Creek site 

(Figure 22) were at eutrophic levels during May 2010 and at hypertrophic levels (above 

0.400 mg/L) during all other months. The mean monthly water phosphorus 

concentrations at this site were in the eutrophic range during five months (March, May 

and November 2009, and March and May 2010). Phosphorus concentrations were in the 

hypertrophic range (above 0.040 mg/L) during the other measurement periods (Figure 

23). 

Water and Ulva tissue from the Wagon Hill Farm site were analyzed for temporal 

variation in N:P ratios (Figures 24 and 25). Significant differences (P<0.01) were found 

between the months using both methods of analysis. Peak means in the water N:P ratio 

occurred in March 2009 and March 2010 with measures above 37 in each case. Overall, 

lower water N:P ratios were registered at this site, relative to the southern bay sites, with 

four months below the N:P of 16. 

The lone peak in the tissue mean N:P ratio was recorded for November 2008 

(85.4 + 15.8 SD). Otherwise, in the tissue analyses, the mean N:P ratios remained 

between 19.1 + 2.5 SD and 38.4 + 2.0 SD. 

Mean monthly water nitrogen concentrations from the Wagon Hill Farm site 

(Figure 26) were in the oligotrophic range during one month (May 2009) and in the 

mesotrophic range during three months (November 2009, March 2010, and July 2010). 

Nitrogen concentrations were in the eutrophic range during July 2009 and May 2010 and 

in the hypertrophic range during the remaining months. 
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Mean monthly phosphorus concentrations were in the oligotrophy range during 

March 2010 and in the mesotrophic range during March 2009 and July 2010 (Figure 27). 

Phosphorus concentrations were in the eutrophic range during May 2009 and 2010, and 

July 2010. Relative to phosphorus, hypertrophic conditions were found during two 

months (November 2008 and 2009). 

Water and Ulva tissue from the Cedar Point site were analyzed for seasonal 

variation in N:P ratios (Figures 28 and 29). No significant differences were found 

between months using either method of analysis. Peaks in mean water N:P ratios were 

recorded in the fall of both 2008 and 2009 with values above 20. Mean water N:P ratios 

only exceeded Redfield's 16:1 in three months (September 2008, November 2008, and 

November '09). The amount of dried Ulva tissue biomass necessary for analysis was 

minimal at Cedar Point during several months of the study, with the N:P ratios of the 

remaining months varying between 31.7 and 94.3. 

The mean monthly water nitrogen concentrations from Cedar Point(Figure 30) 

were in the oligotrophic range during three months (May 2009, July 2009, and July 2010) 

and in the mesotrophic range during three other months (March 2009, September 2009, 

and May 2010). Nitrogen concentrations were in the eutrophic range during March 2010, 

and in the hypertrophic range during the remaining three measurement periods. 

The mean monthly water phosphorus concentrations from the Cedar Point site 

were in the mesotrophic range during September and November 2008, and July 2009. 

Phosphorus concentrations were in the eutrophic range during May, September and 

November 2009, and in March and July 2010 (Figure 31) and hypertrophic during March 

2008 and May 2010. 
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Gracilaria tissue samples collected in southern Great Bay during year one of the 

study were analyzed for %N and %P contents, and these results were used to calculate 

atomic N:P ratios. Comparisons between the tissue nutrients of Gracilaria and Ulva 

collected at the same sites and times suggest that Gracilaria tissues contained lower 

concentrations of nitrogen and higher concentrations of phosphorus, which led to lower 

N:P ratios (Table 3). 

Discussion 

The Great Bay Estuarine System is currently in a highly nutrient enriched state 

with excess nitrogen and phosphorus. The mean water nitrogen concentrations across the 

study sites and times indicated that the bay was highly eutrophic or hypertrophic during 

the entire two year study. Likewise, mean water phosphorus concentrations were at 

highly eutrophic or hypertrophic levels during all but one month of the two year study, 

with values ranging between 0.028 and 0.070 mg/L across the system. 

Nitrogen values found in the Great Bay Estuarine System (0.398 to 0.664 mg/L) 

were comparable to and in some cases higher than those observed in other eutrophic 

systems during nuisance macroalgal blooms. In the study of water samples linked to the 

sea lettuce (Ulva) blooms in Boston Harbor in the early 1960s, Sawyer (1965) found 

maximal ammonia nitrogen to be 0.750 mg/L at a station in immediate proximity to the 

city's sewage outfall pipe. Further inland where the bloom occurred, ammonia levels 

were mostly between 0.050 and 0.200 mg/L. While total nitrogen water at rural sites 

around Hong Kong Island was 0.050 mg/L (Ho 1987), in sites near heavily populated 

areas, where blooms occurred, the nitrogen concentrations were 0.294 mg/L (Ho (1987). 
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Excessive growth of Monostroma was observed in Arcachon Bay, New Zealand, where 

the nitrogen level was 0.200 mg/L (Le Bozec, 1993). 

The mean total phosphorus values in the Great Bay Estuarine System (0.028 to 

0.070) were again comparable to those observed in other eutrophic systems during 

nuisance macroalgal blooms. Phosphorus levels associated with Ulva blooms near 

heavily populated areas around Hong Kong were 0.045 mg/L (Ho 1987). 

Meanwhile the Great Bay Estuarine System's mean monthly Ulva tissue nitrogen 

percentages remained between 2.3 and 4.1%, which is above the 2.2% threshold for 

unlimited growth (Pedersen and Borum 1997). Ulva tissue mean phosphorus percentages 

ranged between 0.13 and 0.18%, which is well above the 0.03% minimum needed for 

growth (Villares and Carballeira 2004). The critical tissue N and P concentrations, or 

the concentrations at which maximal growth rate is achieved, for Ulva rigida are 20 and 

0.25 mg/g DW, or 2% and 0.025% respectively (Lavery and McComb 1991), so for this 

species, phosphorus limitation in the estuary could be preventing maximal growth. 

The Ulva tissue values in the Great Bay Estuarine System compare well with 

those found in other bloom studies. For example, the mean tissue N and P percentages in 

Ulva blooms in Hong Kong were between 2.2-5.2 and 0.08-0.31, respectively (Ho 1987). 

In that study, Ulva tissue nitrogen and phosphorus were 71 and 97% higher, respectively, 

in urban than in rural sites (Ho 1987). In the heavily eutrophied Venice Lagoon, Italy, 

Sfriso et al. (1993) observed algal N and P content to be 2.17% and 0.19% of dry weight, 

respectively. Maximal Ulva tissue N percentages in the Veerse Meer Lagoon, the 

Netherlands, were 5.5 and 5.01% DW in 1992 and 1994 respectively (Malta 2000). 

Minimal Ulva tissue N percentages in the same years were 0.89 and 1.49% DW. 
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Gracilaria tissue nitrogen and phosphorus were tested over several months in the 

southern Great Bay sites. Penniman (1983) measured the percent nitrogen and 

phosphorus in Gracilaria tikvahiae specimens collected subtidally near Nannie Island 

(close to Sunset Farm). The tissue nitrogen values during 1976 and 1977 ranged from 2% 

to 4.5%, and the phosphorus values ranged from 0.18% to 0.35%. These should be 

compared to the ranges of 2.5% - 3.6% (TN) and 0.17% - 0.33% (TP) levels observed in 

the current study. Such stability in the face of increasing nutrient availability could be 

indicative of a preferred steady state for these organisms. Since Gracilaria sp. can grow 

very rapidly (Lapointe 1987), it is likely that excess available nutrients are directly 

converted into increased biomass production. Hence, the thalli, or the populations grow 

via nutrient uptake, but the overall tissue nutrient concentrations remain unchanged. 

Hydrodynamic forces and differing source nutrient sources have created a non

uniform nutrient regime within the Great Bay Estuarine System. Although all sites were 

eutrophic or hypertrophic overall, significant between-site differences were observed 

using the water nitrogen analysis, which revealed that Wagon Hill Farm had lower TN 

than Sunset Farm when values were averaged across the entire study time. Such a trend 

was also revealed in tissue nitrogen analysis, but differences were not significant. In 

measures of TP, water analysis revealed that Sunset Farm had significantly higher mean 

values than either of the northern sites, Wagon Hill Farm and Cedar Point. Tissue tests of 

TP revealed that Cedar Point Ulva only had slightly lower levels than those found at any 

other study site. Atomic N:P ratios generated from both water and tissue testing revealed 

no significant differences between site or nutrient evaluation method. However, the 

mean N:P ratios were generally higher in tissues than the water column, which is likely 
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due to the tendency of Ulva to preferentially sequester nitrogen at times of availability 

(Hanisak, 1983). 

Mean monthly nitrogen and phosphorus were averaged among the sites over the 

study period using both water and Ulva tissue analyses. Neither method revealed any 

significant temporal differences in TN, TP, or atomic N:P ratios, but the trend in water 

samples had seasonal N:P highs in spring and lows in fall. Mean water TN remained 

between 0.4 and 0.7 mg/L, or above 9 |uM, throughout the study sites. Such a value is in 

line with the 10 |aM nitrogen concentrations reported by Short (1992) and the eight year 

average 8.8 |iM DIN concentration in the 1988-1996 study of Great Bay's Furber Strait 

(Jones 2000). Such figures are comparable to mean DIN concentrations found in 

macroagal bloom affected Florida regions, which were 7.36 |aM (Lapointe and Bedford 

2006). The Great Bay Estuarine System's mean water TP was between 0.028 and 0.07 

mg/L, or around 0.5 |iM , which was lower than the mean value (0.9 (aM) found by Short 

(1992) and the eight year average value (0.85 (iM) for Furber Strait (Jones 2002), but still 

elevated. 

Atomic N:P ratios of water were above the Redfield Ratio of 16:1 (Redfield 1958) 

at most times and sites (26 out of 47), with water values ranging from 7.3:1 to 52.8:1. 

The mean water N:P ratio across all times and sites was 20.2:1, which is nearly three 

times higher than the NOAA 1989 values for the Great Bay Estuarine System which were 

7:1 (Short 1992) and marks an overall shift from nitrogen limitation to conditions in 

which neither phosphorus nor nitrogen is limiting to nuisance macroalgal growth, even at 

the times of heaviest algal blooms. 
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The mean water N:P ratios observed in the Great Bay Estuarine System are 

comparable to those found in other studies of eutrophic coastal marine habitats. Lapointe 

and Bedford (2006) observed significant seasonal differences in N:P ratios of algal 

tissues, with higher means in August (25.4) than in October (18.1). The lowest N:P ratio 

at any site and time in their study was 12.8, and the highest was 42.4. 

In the present study, Ulva tissue atomic N:P ratios were from 38.5:1 to 61:1 and 

the Gracilaria atomic N:P ratios from 22:1 to 41:1, which indicate that these organisms 

were not nitrogen limited, even at peak bloom. According to Bjornsater & Wheeler's 

(1990) assessment, tissues with N:P ratios of less than 16:1 indicate nitrogen limitation, 

greater than 24:1 indicate phosphorus limitation, and intermediate values indicate 

sufficient nitrogen and phosphorus for continued growth. Although the mean Ulva tissue 

N:P ratios observed in the Great Bay Estuarine System were greater than 24:1,1 would be 

reluctant to classify the organisms as phosphorus limited given that tissue phosphorus 

percentages were far above those needed for growth, and given the fact that bloom events 

seemed limited not by nutrient availability, but rather by the seasonal effects of 

diminishing daylight hours, decreased temperature, and, in the southern bay, winter over-

icing. Other studies have found that Ulva growth may not be nitrogen limited when 

ambient water N:P ratios fall below 16:1. During a major bloom in the Venice Lagoon, 

the N:P ratio remained below 10 during the macroalgal growing season (Sfriso et al. 

1989). Boynton et al. (1982) found that N:P ratios were below the 16:1 ratio in 22 of 27 

estuarine sites at the time of peak algal growth. Waite and Mitchell (1972) concluded 

that limitation by either nitrogen or phosphorus is unlikely for Ulva because growth was 

stimulated by increases in either nutrient in their study. 
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In comparing the methods of estimating nutrient regime by site and time, this 

study found water testing to be slightly superior to tissue testing in its ability to reveal 

significant differences, although neither method revealed many conspicuous differences. 

One major advantage with water testing is that water is obviously always available at a 

study site. Its presence does not fluctuate with the seasons, as does that of ephemeral 

algal species. Although water nutrient concentrations have been shown to fluctuate 

dramatically over short periods of time (Loder et al. 1983), this was not observed in the 

Great Bay Estuarine System monthly mean values estimated in this study. It was 

expected that the tissue values would be significantly more stable over time, but this was 

not the case. Furthermore, acquiring adequate amounts of dried Ulva tissue (at least 1.2 g 

dry weight) at each site and collection time proved an impossibility, which led to smaller 

sample sizes and fewer nutrient measurements than was desired. For future marine 

studies, which aim to measure nutrient regimes across various sites over time, I would 

recommend researchers not rely solely on algal tissues for these analyses, and if funding 

were to allow for only one approach, I would recommend water nutrient analyses. But 

both methods are valuable, for with both data sets comparisons can be made to a wider 

range of ecological studies. Also, both water and tissues sampling methods demonstrated 

the excessive nutrient enrichment of the Great Bay Estuarine System. 

As the Great Bay Estuarine System has become an ecosystem that can be 

classified as eutrophic or even hypertrophic, restoration steps must be considered. Non-

point nutrient pollution of surface waters can be reduced by lowering nitrogen inputs 

generated through fossil fuel burning, altering farming practices by limiting chemical 

fertilizer and manure application to non-excessive levels, and reducing runoff from 
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farming and industry (Carpenter et al. 1998). It is possible to reverse eutrophication in 

marine systems through reductions nitrogen and phosphorus inputs, but recovery can take 

a very long time due to a multitude of reasons (Carpenter et al. 1998). The primary 

reservoir of long lasting stored excess nutrients in eutrophic systems is the sediment, 

which is an important source of NH4 and PO4 for estuarine macroalgae (Morand and 

Briand 1996). 

Although the restoration battle in the Great Bay Estuarine System may be a long 

one, it should be waged. Successes have been seen in systems more heavily impacted 

than our own. Following restoration changes to the Tunis Lagoon, Tunisia, water 

nitrogen concentration dropped from 4.000 mg/L to 0.400 mg/L, while water phosphorus 

fell from 0.600 mg/L to 0.020 mg/L (Morand and Merceron 2005). Ulva production fell 

more than three fold in the two years following this change. 
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Figure 1 Map of the Great Bay Estuarine System, New Hampshire showing the locations 
of the five study sites. From top center and clockwise: Wagon Hill Farm (WH), Cedar 
Point (CP), Sunset Farm (SF), Depot Road (DR), and Lubberland Creek (LC)~ satellite 
image courtesy of Google Maps. 
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Table 1 GBES study site descriptions and locations 

Abbrev. Site Name Coordinate* | Habitat Description Blooming Taxa Found j 

Rocky substrata, dominant cover by 
43°Q7"42"N Ascophyllum nodosum and Fucus 

CP Cedar Point 70°51i3"W vesicubsus , strong tidal current Ulva ngida, Ulva mtestinaks 

Mudflat with mowed grass shoreline, adjacent • 
43,07"27"N to a public swimming area, stronger current Ulva ngida, Ulva intestinalis, 

WH Wagon Hill Farm 70°5Z07"W than found at the southern sites Ulva comprassa 

Mudflat between Vol's Island and the mouth of! 
43°Q4'30"N Lubberland Creek that is characterized by low ; Ulva ngida, Gracilana 

LC Lubberland Creek 70°54'12"W water motion and sizeable fall algal blooms tikvahiae, G vermiculophylla 
Muddy substratum, at the Great Bay 
Discovery Center boat launch, site 

43°03*22"N characterized by Ulva and Gractiana blooms Ulva ngida, Gracilana 

DR Depot Road 70"53'50"W in the fall tikvahiae, G vermiculophylla 

Mudflat near public golf course and popular ice Ulva rigtda, U.compmssa, 

43°0324"N fishing access point with dominant fall cover j Gracilaria tikvahiae, G. 

SF Sunset Farm 70'50'03"W by Ulva and Gracilana species vermiculophylla 
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Figure 2 GBES water mean total nitrogen by month (2008-2010) averaged across the 
five study sites. Error bars represent standard error. 
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Figure 3 GBES Ulva tissue mean total nitrogen as percent dry weight (2008-2010) 
averaged across the five study sites. Error bars represent standard error. 
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Figure 4 GBES water mean total phosphorus by month (2008-2010) averaged across the 
five study sites. Error bars represent standard error. 
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Figure 5 GBES Ulva tissue mean total phosphorus as percent dry weight (2008-2010) 
averaged across the five study sites. Error bars represent standard error. 

Means 
o> 0.5 
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Figure 6 GBES water mean TN by site (2008-2010). Cedar Point (CP), Depot Road 
(DR), Lubberland Creek (LC), Sunset Farm (SF), Wagon Hill Farm (WH). Error bars 
represent standard error. 
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Figure 7 GBES Ulva tissue mean nitrogen by site (2008-2010). Cedar Point (CP), Depot 
Road (DR), Lubberland Creek (LC), Sunset Farm (SF), Wagon Hill Farm (WH). Error 
bars represent standard error. 
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Figure 8 GBES water mean total phosphorus by site (2008-2010). Cedar Point (CP), 
Depot Road (DR), Lubberland Creek (LC), Sunset Farm (SF), Wagon Hill Farm (WH). 
Error bars represent standard error. 
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Figure 9 GBES Ulva tissue mean total phosphorus by site as percent dry weight (2008-
2010). Cedar Point (CP), Depot Road (DR), Lubberland Creek (LC), Sunset Farm (SF), 
Wagon Hill Farm (WH). Error bars represent standard error. 
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Figure 10 GBES Ulva tissue and water mean atomic N:P ratios by site for 
the two year study period (2008-2010). Cedar Point (CP), Depot Road (DR), Lubberland 
Creek (LC), Sunset Farm (SF), Wagon Hill Farm (WH). Error bars represent standard 
error. 
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Figure 11 GBES Ulva tissue and water monthly atomic N:P ratios averaged across all 
study sites. Error bars represent standard error. 
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Figure 12 Sunset Farm water mean atomic N:P ratios by month (2008-2010). Error bars 
represent standard error. 

35 



Figure 13 Sunset Farm Ulva tissue mean atomic N:P ratios by month (2008-2010). Error 
bars represent standard error. 
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Table 2 Ulva tissue mean monthly TN and TP from 2008-2010 
VWVWW •* 

Cedar Point Depot Rd Itiifetesds ad Creek Sunset Farm Waqon H II Farm 
j %N %P %N %p %N %P %N %P %N %P 
i SEP 
: NOV 
I MAR 

4.258 0.125 
0.118 

4421 0.200 
0 151 
0 129 

3.802 0.164 
0 237 

3.721 0.232 i SEP 
: NOV 
I MAR 

3 879 
0.125 
0.118 4.505 

0.200 
0 151 
0 129 

4.397 
4 325 

0.164 
0 237 3.862 0208 3 875 

2 718 
0 098 

i SEP 
: NOV 
I MAR 4.579 

0.200 
0 151 
0 129 

4.397 
4 325 0.164 

0.170 
4.615 
3 968 
3 650 
2 633 
3 472 

0.172 
0 180 

3 875 
2 718 0.161 

0 137 j MAY 4-205 
4 980 
3.320 

0.185 3452 
4 103 
2 578 

0.183 
0 146 

4.112 
0.164 
0.170 

4.615 
3 968 
3 650 
2 633 
3 472 

0.172 
0 180 2.451 

0.161 
0 137 

| JUL 
I SEP 

4-205 
4 980 
3.320 

0.113 
0 098 

3452 
4 103 
2 578 

0.183 
0 146 3.901 

2518 
0 156 

4.615 
3 968 
3 650 
2 633 
3 472 

0.146 
0 118 
0110 
0 165 

0 153 

1 498 
1 783 
2057 

0.122 | JUL 
I SEP 

4-205 
4 980 
3.320 

0.113 
0 098 

3452 
4 103 
2 578 0.117 

3.901 
2518 0.108 

4.615 
3 968 
3 650 
2 633 
3 472 

0.146 
0 118 
0110 
0 165 

0 153 

1 498 
1 783 
2057 

0.130 
0160 1 NOV 

j MAR 
[MAY 
I JUL 

4302 
_____.. 3272 0.132 3819 

4 985 
0.127 
0 144 

4.615 
3 968 
3 650 
2 633 
3 472 

0.146 
0 118 
0110 
0 165 

0 153 

1 498 
1 783 
2057 

0.130 
0160 1 NOV 

j MAR 
[MAY 
I JUL 

4302 
_____.. 

2 257 
2333 

0 122 
0 112 

3819 
4 985 

0.127 
0 144 4.689 

5 307 
3 2Q3 

0.146 
0 118 
0110 
0 165 

0 153 

2.326 0.160 
1 NOV 
j MAR 
[MAY 
I JUL 

4302 
_____.. 

2 257 
2333 

0 122 
0 112 

5.470 
2717 

0.229 
0 122 

4.689 
5 307 
3 2Q3 

0.146 
0 118 
0110 
0 165 

0 153 
2 724 
0 976 

0.188 
0.116 
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Figure 14 Sunset Farm water mean total nitrogen (2008-2010). Error bars represent 
standard error. 
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Figure 15 Sunset Farm water mean total phosphorus (2008-2010). Error bars represent 
standard error. 
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Figure 16 Depot Road water mean atomic N:P ratios by month (2008-2010). Error bars 
represent standard error. 
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Figure 17 Depot Road Ulva tissue mean atomic N:P ratios by month (2008-2010). Error 
bars represent standard error. 
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Figure 18 Depot Rd water mean total nitrogen (2008-2010). Error bars represent 
standard error. 
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Figure 19 Depot Rd water mean total phosphorus (2008-2010). Error bars represent 
standard error. 
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Figure 20 Lubberland Creek water mean monthly atomic N:P ratios (2008-2010). Error 
bars represent standard error. 
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Figure 21 Lubberland Creek Ulva tissue mean monthly atomic N:P ratios (2008-2010). 
Error bars represent standard error. 
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Figure 22 Lubberland Creek water mean total nitrogen (2008-2010). Error bars 
represent standard error. 
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Figure 23 Lubberland Creek water mean total phosphorus (2008-2010). Error bars 
represent standard error. 

42 



120 n 

100 -

60 -
0. • • 
z 

40 -

20 

SEP NOV MAR MAY JUL SEP NOV MAR MAY JUL 
-20 

Figure 24 Wagon Hill Farm water mean monthly atomic N:P ratios (2008-2010). Error 
bars represent standard error. 

Figure 25 Wagon Hill Farm Ulva tissue mean monthly atomic N:P ratios (2008-2010). 
Error bars represent standard error. 
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Figure 26 Wagon Hill Farm water mean total nitrogen (2008-2010). Error bars represent 
standard error. 
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Figure 27 Wagon Hill Farm water mean total phosphorus (2008-2010). Error bars 
represent standard error. 
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Figure 28 Cedar Point water mean monthly atomic N:P ratios (2008-2010). Error bars 
represent standard error. 
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Figure 29 Cedar Point Ulva tissue mean monthly atomic N:P ratios (2008-2010). Error 
bars represent standard error. 
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Figure 30 Cedar Point water mean total nitrogen (2008-2010). Error bars represent 
standard error. 
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Figure 31 Cedar Point water mean total phosphorus (2008-2010). Error bars represent 
standard error. 
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Table 3 Comparison of mean atomic N:P ratios, %N, and %P from analyses of 
Gracilaria and Ulva tissue samples from southern Great Bay (2008-2009) 

Gracllarla tissue analyses 
Atomic N:P %N %P 

DR LC SF DR LC SF DR LC SF 
S 32.10 16.45 3.12 2.36 2.55 0.21 0.33 
N 22.25 15.19 20.24 2.65 2.50 3.01 0.25 0.35 0.34 
MC 39.52 25.89 32.37 2.96 2.99 3.08 0.17 0.26 0.20 
MY 41.61 41.63 46.62 3.72 3.59 3.65 0.19 0.18 0.17 
JY 24.35 39.24 3.28 3.73 0.29 0.20 

Ulva tissue analyses 
Atomic N:P %N %P 

DR LC SF DR LC SF DR LC SF 
S 49.13 51.44 34.32 4.42 3.80 3.72 0.20 0.16 0.23 
N 66.21 39.76 39.90 4.50 4.40 3.86 0.15 0.24 0.21 
MC 76.61 57.89 57.80 4.58 4.33 4.61 0.13 0.16 0.17 
MY 40.78 51.82 47.17 3.45 4.11 3.97 0.18 0.17 0.18 
JY 60.23 54.26 53.72 4.10 3.90 3.65 0.15 0.16 0.15 



CHAPTER III 

ULVA DISTRIBUTION, DENSITY, AND BIOMASS IN THE GREAT BAY 
ESTUARINE SYSTEM: AN HISTORICAL COMPARISON 

Introduction 

Excessive nutrient enrichment within the Great Bay Estuarine System appears to 

be causing enhanced growth of nuisance green tide seaweeds like Ulva (Fletcher 1996), 

which are cosmopolitan, opportunistic, stress-tolerant annuals with broad physiological 

tolerances (Sawyer 1965; Kindig and Littler 1980; Raffaelli et al. 1998; Diaz et al. 2002; 

Raven and Taylor 2003). Many of these ulvoid green algae grow in eutrophied and 

hydrologically variable habitats like those found within the Great Bay Estuarine System. 

In summarizing effects of eutrophication on seaweed populations, Schramm and 

Nienhuis (1996) outlined three patterns that were expected to occur within the Great Bay 

Estuarine System: (1) a decline or disappearance of certain perennial plant communities 

(eelgrass) that are often replaced by annual, fast growing forms (e.g. foliose green algae 

or filamentous red algae); (2) a reduced diversity of associated flora and fauna; and (3) 

mass blooms of short-lived annuals {Ulva) or 'nuisance algae' such as Gracilaria. 

Many earlier studies of the Great Bay Estuarine System serve as a strong baseline 

to assess current water quality and green tide problems. Mathieson and Hehre (1986) 

summarized the species composition, phenology, longevity, and distributional patterns of 

New Hampshire seaweeds, while Mathieson and Penniman (1986,1991) summarized 

analogous studies within the Great Bay Estuarine System. Mathieson and Fralick (1973) 
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compared the seaweed populations from the Merimack River Estuary, MA, which was 

one of the most polluted rivers in New England (Jerome et al. 1965; Miller et al. 1971), 

finding a depauperate flora dominated by ulvoid green algae and lower numbers of 

taxa/sites versus the Great Bay and Hampton-Seabrook Estuarine Systems of New 

Hampshire (Maine). Hardwick-Witman and Mathieson (1983) established a series of 

sites from the outer to inner reaches of the Great Bay System and recorded the dominant 

benthic plant and animal populations. Chock and Mathieson (1976,1983) and West et al. 

(2001) provide a detailed quantification of biomass for seaweeds and salt marsh 

populations within the Great Bay Estuarine System. In the fall of 2007, the gross 

distribution of macroalgae and eelgrass in the Great Bay system were estimated with 

hyperspectral imaging (Pe'eri et al. 2008). 

The present study aimed to identify of all of the bloom forming Ulva species in 

the Great Bay Estuarine System, and, in the case of newly detected species, to determine 

approximate introduction dates. The study aimed to assess the abundance and 

distribution of Ulva within the Great Bay Estuarine System of New Hampshire relative to 

major patterns of eutrophication, and compare historical and current biomass and percent 

cover measurements for algal populations at several sites where ecological studies were 

previously conducted. 

Materials and Methods 

Algal sampling was conducted within the intertidal zones at five sites in Great 

Bay Estuarine System, NH (Figure 1 cf. Chapter II). The sites were designated as Cedar 

Point, Wagon Hill Farm, Lubberland Creek, Depot Road, and Sunset Farm. At each site 
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and collection time, specimens of all conspicuous macroalgal species were gathered and 

identified based on morphological characteristics. Voucher specimens were collected 

outside of the transect lines for use in molecular verification of species identity. 

Percent cover of component species was measured bi-monthly at the five study 

sites along four 10 xl m line transects oriented parallel to shore with elevations of 

approximately 0.0 m, 0.5m, 1.0 m, and 1.5 m above mean low water. Ten quadrats (0.5 

m by 0.5 m) per transect were measured for percent cover using digital photography. 

Images were analyzed using a point intersect method. For this purpose, 25 randomly 

distributed dots were drawn on a clear sheet of plastic which was laid over the digital 

image for manual estimations of cover. Only algal specimens with holdfasts in the 

quadrats were included, with the exception of the free floating species found in the 

southern bay. When quadrats contained multiple layers of algae, each tier was assessed 

individually. 

Additionally, an unused series of Kodachrome slides of Brackett's Point quadrats, 

taken during Hardwick-Whitman and Mathieson's (1983) study, were examined for 

further historical percent cover measures. The above point intercept methods were used 

in these analyses. 

Percent cover data were arcsine transformed. Analyses of variance, using the 

General Linear Model in Systat 13, were performed to determine the effects of elevation, 

time, and site on the abundance of Ulva populations. Post-hoc pair-wise comparisons 

were perfomed using Tukey's test. 

Biomass (g dry wt/m ) of component species was estimated through destructive 

sampling during each collection month and site along the above transect lines. Within 
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each of the forty quadrats, 10 randomly selected 0.1 m by 0.1 m sections were denuded. 

All algal and plant materials were removed and placed in plastic bags specifically labeled 

for the collection date, site, and quadrat number. In the laboratory, the algae (and marsh 

grasses) were sorted. Tentative identifications of macroalgae were made based upon 

macroscopic and microscopic characters using keys to the marine algae of the 

northwestern Atlantic (Villalard- Bohnsack 1995; Sears 2002). Specimens were rinsed 

in freshwater, dried at 90 °C for up to 72 hours, weighed, and converted to g dry weight/ 

m2 biomass values. 

The results for each species separately and for total measurements of all species 

combined were analyzed by single-factor analysis of variance (ANOVA) with 

significance level a=0.05 (Zar, 1996), followed with a Tukey's multiple comparison test. 

Time and site were the only factors considered in ANOVA. 

Molecular Methods 

Historical (Appendix E) and freshly collected (Appendix F) Ulva samples were 

ground in labeled 1.7 ml microcentifuge tubes using disposable plastic pestles, a pinch of 
» 

molecular grade sand, and 300 ml of Gentra Puregene® Cell Lysis Solution (D-5002). 

The DNA was extracted with a Gentra Puregene ® Isolation Kit as per the 

manufacturer's instructions. Samples were incubated in a 65°C heatblock for one hour 

inverting 10 times at 30 minutes and cooled to room temperature before 100 ^1 of Protein 

Precipitation Solution (Gentra D-5003) was added. Samples were inverted 150 times and 

chilled at -20°C for 45 minutes before they were centrifuged for 15 minutes at 13,000 

rpm. The supernatant was then poured into a new 1.7 ml microcentifuge tube containing 
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300 |il of 100% isopropanol and inverted 50 times before centrifugation for 10 minutes at 

13,000 rpm. The alcohol was decanted and replaced with 300 pi of 70% ethanol before 

inversion and 5 minutes of centrifugation at 13,000 rpm. The alcohol was decanted, and 

the sample was air dried for 60 minutes before 50 |il of DNA Hydration Solution (Gentra 

D-5004) was added. After briefly mixing, the samples were incubated in a 65°C 

heatblock for one hour and centrifuged for 5 minutes. 

Polymerase chain reactions were carried out in 50 pi volumes containing 4 pi 

extracted DNA, 10 pi Taq buffer (Promega GoTaq® Flexi Green), (0.2 mM) Mg2+, 1 pi 

dNTPs, 1 pi each (20 mM) primer, and 0.25 pi Taq polymerase (GoTaq® Flexi). The 

primers used for amplification and sequencing were ITS2 F5.8S30 (5'-GCA ACG ATG 

AAG AAC GCA GC-3') and ITS2 R ENT26S (5'-GCT TAT TGA TAT GCT TAA GTT 

CAG CGG GT-3'). 

The PCR products were separated by electrophoresis on a SYBR®Safe treated 

low-melt agarose gel (0.8%) in nTBE Buffer (0.5x). On a UV lightbox, the desired DNA 

bands were excised using microscope slide covers and transferred to 1.7 ml tubes, 

incubated at in a 65°C heatblock for five minutes, and then transferred to 37°C heatblock. 

To each tube, 1.5 pi of agarase (Sigma A6303, 50 units/ml) were added, and the mixture 

was incubated overnight. 

Concentrations of DNA were quantified using an Invitrogen™ Quant-iT™ 

dsDNA BR Assay Kit (Q32851) and an Invitrogen™ Qubit™ fluorometer (Q32857) as 

per the manufacturer's instructions, and appropriate volumes of DNA and primers were 

sent to Hubbard Genomic Center (UNH) for clean-up and sequencing reactions using 
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Applied Biosystems BigDye Terminator Cycle Sequencing Kits (vl.l and v3.1). The 

DNA samples were resolved by capillary electrophoresis on an ABI3130 DNA Analyzer. 

Resulting sequences were trimmed in Chromas (version 2.2, Technelysium, Pty. 

Ltd., Tewantin, Queensland, Australia). Sequence assembly, alignments were made and 

proofed using Seq Man II (version 7.1 for Windows, DNAStar, Inc., Madison, 

Wisconsin). Comparative alignments and GenBank searches were performed using 

MegAlign (version 7.1 for Windows, DNAStar, Inc., Madison, Wisconsin). 

Site Descriptions 

Five Great Bay Estuarine System study sites were selected based on ease of 

access and proximity to historical algal community study sites (Figure 1 cf. Chapter II). 

These sites were Cedar Point (CP), Wagon Hill Farm (WH), Lubberland Creek (LC), 

Depot Road (DR), and Sunset Farm (SF). The sites varied in substrata, hydrographic 

regime, and human traffic (Table 1 cf. Chapter II). 

The Cedar Point study transects were established on and adjacent to a public boat 

launch at the northern end of Little Bay (Figure 32). The site's substrata consist of shale 

scree and metamorphic boulders. Fucoid algae made up the dominant cover year round. 

The Wagon Hill Farm transects were located on a tidal mudflat near the mouth of the 

Oyster River (Figure 33). Scattered sticks, logs, shells, rocks, dislocated marsh-grass 

hummocks and the protected stream-bank provided the only means of attachment for 

Ulva specimens at this site. Tidal currents could be strong. The Lubberland Creek site is 

located in the southwestern section of Great Bay (Figure 34). The tidal mudflat is home 

to large blooms of unattached Ulva and Gracilaria specimens in the fall. Water motion 

at this site is minimal. The Depot Road site has a sandy shore leading to an open 
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mudflat. There is a public boat launch here, which is mainly used for kayaks, but a large 

gundalow is occasionally docked there during the summer months for educational 

purposes (Figure 35). Ulva and Gracilaria are the dominant cover species at this site, but 

their presence is seasonal (fall blooms). Again, most algae here are unattached and water 

motion is minimal. The Sunset Farm site (Figure 36) is located near the Portsmouth 

Country Club, a popular golf course. The site experiences fall bloom events comprised 

of Ulva and Gracilaria species. Like the other two sites in southern Great Bay, this site 

is completely covered with snow and ice for several months during a typical year. In the 

winter, it is a popular access point for ice-fishermen. 

Results 

DNA analysis of blade forming Ulva specimens revealed the presence of Ulva 

rigida C. Agardh, and U. compressa Linnaeus, but no U. lactuca Linnaeus at the five 

study sites (Appendix F). 

Molecular screening of historical Great Bay Estuarine System herbarium 

specimens (Appendix E), demonstrated that U. rigida had been present, but misidentified 

since 1966. The foliose form of U. compressa had been present but undetected since 

1972. Ulva pertussa, an introduced Asian species, which was not found at any of the 

study sites, but was verified at other Great Bay Estuarine System sites in another study 

(Hofmann et al. 2010), was revealed to have been present, yet unidentified in the Great 

Bay Estuarine System since 1967. 

The mean Ulva biomass for each Great Bay Estuarine System study site was 

determined from September 2008- July 2010 (Figure 37, Appendix C). Differences 

between sites were statistically significant (P<0.01), with the greatest mean Ulva biomass 
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in the southern portion of Great Bay. The Lubberland Creek site had the highest mean 

Ulva biomass (138.2 g dry weight/m2 + 228.9 SD) followed by Sunset Farm (97.1 g dry 

weight/m2 + 174.6 SD) and Depot Road (79.6 g dry weight/m2 + 102.1 SD). The Wagon 

Hill Farm site in the Little Bay had the lowest mean Ulva biomass for the study period 

(6.8 g dry weight/m2 + 8.7 SD). 

The mean Ulva biomass for all study sites was determined for each of the ten 

collection times from September 2008- July 2010 (Figure 38). Significant seasonal 

variation was observed (P<0.01). Seasonal Ulva biomass lows occurred in March of both 

years following ice out (2.3 g dry weight/m2 + 2.5 SD and 5.8 g dry weight/m2 + 5.7 SD). 

Biomass levels remained low throughout the spring and summer months, but major 

blooms occurred in the fall of both years. The greatest yearly mean Ulva biomass was 

observed in November of 2008 and 2009 (227.4 g dry weight/m2 + 299.9 SD and 115.3 g 

dry weight/m2 + 116.6 SD). 

The mean percent cover of Ulva followed the same trends across the sites as were 

observed for mean biomass (Figure 39, Appendix D), with significant differences 

between the sites (P<0.01). The greatest mean percent cover of Ulva during the two year 

study was observed at Lubberland Creek (39.3% +40.1 SD), followed by the other two 

sites in southern Great Bay, Depot Road (21.8% + 32.1 SD) and Sunset Farm (21.0% + 

31.6 SD). Wagon Hill and Cedar Point, the northernmost sites, had the lowest mean Ulva 

cover of 11.2% ± 24.4 SD and 1.3% ± 6.7 SD. 

Seasonal trends in mean percent cover of Ulva were observed throughout the 

study period (Figure 40), with significant differences between fall maxima and 

spring/summer minima (P<0.01). Peak cover occurred in November of 2008 and 2009 
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(38.7% + 40.6 SD and 31.2% + 42.6SD). The seasonal mean Ulva percent cover low 

occurred in July of 2009 (14.5% + 25.5 SD), whereas the 2010 low, which was 

significantly lower than the previous year, was observed in March immediately following 

ice-out (2.9% ±11.6 SD). 

Great Bay Estuarine System mean macroalgal biomass varied by site. The Cedar 

Point site, though not home to Ulva blooms, had the highest total algal biomass, owing to 

its substantial population of Ascophyllum nodosum (Linnaeus) Le Jolis (Figure 41). 

Within site mean Ulva biomass was calculated for each month of the study at the 

Sunset Farm site (Figure 42). Mean biomass varied with time (P<0.01), with peak levels 

during the fall of both 2008 and 2009. The seasonal maxima achieved in September 2008 

was significantly greater (P<0.01) than the maxima observed in November of the 

following year (547.8 g dry weight/m2 + 802.1 SD vs. 124.3 g dry weight/m2 + 163.5 

SD). Seasonal mean biomass lows occurred both years following ice-out in March, with 

Ulva biomass remaining below 5 g dry weight/m2 through July of 2009 and below 35 g 

dry weight/m2 through July 2010. 

The mean monthly percent cover of Ulva was tracked at Sunset Farm (Figure 43), 

and significant seasonal differences were found (P<0.01). Cover maxima were observed 

in November 2008 and November 2009 (59.9% + 33.1 SD and 45.2% + 46.1 SD), and 

seasonal minima were in March of both study years (5.2% + 8.7 SD and 0.7%+ 2.5 SD). 

Trends in Ulva elevation were examined throughout the study period. Although 

significant differences were not found, Ulva distributions tended to be slightly more 

concentrated at higher elevations, although the vast majority of specimens were free 

floating and able to move with the prevailing tides. 
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Within site mean Ulva biomass was calculated for each month of the study at the 

Depot Road site (Figure 44). Mean biomass varied with time (P<0.01), with peak levels 

in the fall of both 2008 and 2009. Peak bloom was observed in November 2008 and 

November 2009 (170 g dry weight/m2 + 245.8 SD and 272.8 g dry weight/m2 + 443 SD). 

Seasonal mean biomass lows were pronounced and occurred both years following ice-out 

in March, with Ulva biomass remaining below 6 g dry weight/m through July of 2009 

and below 12 g dry weight/m2 through July 2010. 

Ulva mean percent cover per month was tracked at Depot Road (Figure 45), and 

significant seasonal differences were found (P<0.01). Percent cover was maximal in the 

fall of both years, September 2008 (55.3% ± 35.7 SD) and November 2009 (42.8% ± 

46.0 SD), and seasonal minima were observed in May 2009 (14.0% + 23.4 SD) and 

March 2010 (0.1%±0.63 SD). 

Trends in Ulva elevational distribution were examined throughout the study 

period. Ulva distribution favored mid-low elevations of approximately 0.05 m above 

mean low water (P=0.01). It should be noted that the vast majority of specimens 

observed at this site were free floating and able to move with prevailing tides. 

Mean Ulva biomass was calculated for each month of the study at the Lubberland 

Creek site (Figure 46). Mean biomass varied with time (P<0.01), with peak values 

measured in the fall of both 2008 and 2009. The peak value observed in November 2008 

(733.8 g dry weight/m2 + 613.0 SD) was significantly greater (P<0.01) than that observed 

the following November (175.8 g dry weight/m + 211.5 SD and). Seasonal mean 

biomass lows were pronounced and occurred both years following ice-out in March, with 
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Ulva biomass remaining below 5 g dry weight/m2 through July of 2009 and below 12 g 

dry weight/m through May 2010. 

Ulva mean percent cover per month at Lubberland Creek (Figure 47) showed 

significant seasonal differences (P<0.01). Percent cover was maximal in November of 

both years (90.1% + 18.4 SD and 54.0% + 46.0SD). During the November 2008 bloom, 

the mudflats at this site were almost entirely covered by Ulva tissues several layers thick. 

After the abundant bloom of 2008, the seasonal Ulva cover minimum was not observed 

the following year until July (18.3% + 27.9 SD). The seasonal low mean Ulva cover for 

the 2010 season was observed in March (3.1%+ 6.6 SD). 

Ulva elevational distributions were examined throughout the study at the 

Lubberland Creek site. Ulva distribution was even throughout the site. As was true at 

the other southern Great Bay sites, the vast majority of the specimens located here were 

free floating and able to move with the water currents. 

Mean Ulva biomass was estimated each month at the Wagon Hill Farm site 

(Figure 48). It varied with time (P<0.01), with only one distinct peak bloom in May 2010 

(29.8 g dry weight/m + 64.5 SD). Ulva specimens on the transect lines at this site were 

mostly Ulva intestinalis, and they were found almost exclusively growing attached to the 

mud on the site's upper bank. No free floating blade forming specimens were found at 

this site. When present, these organisms were attached to shells, fucoid algae, sticks, 

logs, and displaced peat islands. At this Oyster River site, the influence of water motion 

was greater than was seen at the three sites in southern Great Bay. Also, there was open 

water at this site throughout the majority of the winter months, but freezing of the 

mudflats and shoreline was common at low tide on cold days. 
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Ulva mean percent cover per month at Wagon Hill Farm (Figure 49) showed 

significant temporal differences (P<0.01). Percent cover increased between late fall and 

late spring during both years of the study. The Ulva intestinalis population at this site 

flourished during the cooler months and died back during the warmer summer periods. 

The mean Ulva cover was greatest in May of 2009 and 2010 (21.4% + 31.3 SD and 

16.1% + 28.1 SD). The seasonal mean Ulva cover lows were recorded in July of 2009 

and 2010 (2.7% ± 6.6 SD and 5.9% ± 14.0 SD). 

Ulva elevational distributions were examined throughout the study at the Wagon 

Hill Farm site. Its distribution was concentrated at the mid-high to high elevations 

(P=0.01), which were approximately 1.0 and 1.5 m above mean low water. The site was 

comprised of a lower and upper stream bank, to which the bulk of the Ulva specimens 

were attached. 

The mean Ulva biomass was recorded bi-monthly at Cedar Point site (Figure 50). 

It varied with time (P<0.01), with only one distinct peak occurring in September 2009 

•y 

(134.3 g dry weight/m + 330.1 SD) with this consisting of some large clumps of Ulva 

rigida on lowest transect line. During most other months, Ulva intestinalis was the 

dominant Ulva species at this site, as it grew on the small bare rocks in the active path of 

the boat launch. Throughout the rest of the site, Ascophylum nodosum and Ascophylum 

nodosum ecad scorpiodes and Fucus vesiculosus formed the dominant cover and made up 

the bulk of the site's algal biomass. 

Ulva mean percent cover at Cedar Point (Figure 51) showed significant temporal 

differences were found (P<0.01), which matched those observed for mean Ulva biomass. 

The greatest mean percent cover occurred in September of 2008 (3.0% + 6.0 SD) and 
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2009 (7.3% + 15.8 SD). These seasonal maxima levels were dwarfed by the blooms 

observed in southern Great Bay. 

Discussion 

The molecular verification of the presence of Ulva rigida, U. pertusa and blade 

forms of U. compressa in the Great Bay Estuarine System dating back to the 1960s and 

1970s was surprising. Due to confounding morphological plasticity of organisms in the 

Ulva genus, and the previous absence of DNA sequencing technologies, these species 

went undetected in the Great Bay Estuarine System for around 40 years. In all previous 

ecological studies, the U. lactuca identity had been assigned to the distromatic blade-

forming Ulva specimens observed in the Great Bay Estuarine System (Reynolds 1971; 

Chock and Mathieson 1983; Hardwick-Witman and Mathieson 1983; Mathieson and 

Hehre 1986; Mathieson and Penniman 1986; West 2001). It is likely that historically 

reported U. lactuca biomass and cover statistics actually represent values for multiple 

Ulva species. It is also possible that, in some instances, U. lactuca was not present when 

such measurements were taken. 

The difficulty in distinguishing distromatic blade-forming Ulva species persists 

today (Blomster et al. 1999; Malta et al. 1999; Tan et al. 1999; Hofmann et al. 2010). To 

ensure certainty in percent cover and biomass estimates by species, an exhaustive, and 

very costly amount of molecular analysis would be needed, which was beyond the scope 

of the current study. As a result, current biomass and cover data have been lumped under 

the heading of Ulva for comparison to the historical figures, which likely also represented 

suites of Ulva species. Because the recently discovered U. pertusa and U. rigida have 
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been in the Great Bay Estuarine System since the time of the historical studies, the 

increases in blooms observed in this study cannot be attributed to species introductions. 

Over the course of the two year study, Ulva biomass, which was a combination of 

the biomass of Ulva compressa, U. rigida, and U. intestinalis, was greater in the 

southern Great Bay study sites (Lubberland Creek, Depot Road, and Sunset Farm), with 

means between 75 and 140 g/m DW. The same trend was seen in Ulva cover, with mean 

values of the southern sites between 20% and 40% for the duration of the study. As algal 

annual production should be estimated to be between 1.5 and 4.5 times the maximum 

yearly biomass (Sfriso et al. 1993), the total yearly Ulva production in the southern sites 

could be estimated to be between 210 and 630 g/m DW. 

Because the Ulva species observed in this study were mostly free-floating (not 

attached to the substratum by a holdfast), the southern sites (Sunset Farm, Depot Road, 

and Lubberland Creek), with less energetic hydrodynamics, provided better protection for 

these organisms and allowed for longer residence times than at the more energetic 

northern sites. If the organisms were physically held in place in the southern sites, it was 

often by partial burial in sediments. At the northern sites (Cedar Point and Wagon Hill 

Farm), nearly all Ulva specimens were attached by holdfasts to sticks, shells, stones, or 

other algal species. Presumably, unattached specimens would have been routinely 

flushed from these sites. Such hydrodynamic differences between the northern and 

southern sites are likely a large factor in the different abundance patterns observed, given 

the nutrient and temperature regimes were similar in both areas. The drifting of free 

floating bloom-forming macroalgae is common. For example, Ulva species in the 

Prevost Lagoon (France) have been observed to start growing attached to the substratum, 
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only to become free floating in the early spring and summer months (Casabianca-

Chassany, 1989). 

Ulva mean biomass peaked in the fall of both 2008 and 2009, with values being 

significantly greater than during the spring and summer. The peak bloom for the study 

occurred in November 2008 with mean biomass values greater than 225 g/m2 DW and 

percent cover greater than 38% when all sites were combined. Such a peak is well above 

the maximum historical measures for intertidal Ulva from any one site including 

Reynolds's (1971) October, 1967 max of 124 g/m DW (converted from damp/dry 

weight per 557 in2) at Dover Point, Hardwick-Witman and Mathieson's (1983) fall 1979 

max of < 1% cover at Lubberland Creek and 0% at Wagon Hill Farm, Chock and 

Mathieson's (1983) November 1972 max of 60 g/ m2 DWat Cedar Point, West's (2001) 

November 1998 max of 41.7 g/m2 DW, or Hardwick-Witman's (unpublished) September 

1978 max cover of 0.6 % at Brackett's Point (based on analysis of quadrat slides taken at 

the southern estuary site between Depot Road and Sunset Farm). 

The yearly differences in peak Ulva blooms, observed in this study, can occur for 

natural abiotic reasons such as between year changes in temperature, nutrient availability, 

or light conditions. Biotic factors can also be involved. Both abiotic and biotic factors 

have been attributed to large between year variations seen in other systems. Ulva 

biomass decreased in the Venice Lagoon, Italy, in the early 1990s, and in 1995, its peak 

biomass was 95% lower than that observed in the 80s. Such a decline did not induce an 

upswing in the abundance of other species, and it was thought to have been brought on by 

increased grazer pressure and sediment resuspension (Sfriso and Marcomini, 1996). 
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The Ulva biomass peaks in the Great Bay Estuarine System are comparable to 

other notable major blooms around the world. In Spain's Palmones River Estuary, Ulva 

biomass was 200 g/m2 DW (Hernandez et al. 1997). Ulva biomass in Italy's Venice 

Lagoon (central area) it was 0.1-15 kg/m2 WW (Sfriso and Marcomini 1996) or roughly 

10-1,500 g/m2 DW. In the Palude della Rosa sites within the Venice Lagoon, Ulva 

biomass reached 3.5 kg/m2 WW (Tagliapietra et al. 1998) or roughly 350 g/m2 DW. In 

Italy's Sacca di Goro, the biomass of Ulva and Gracilaria reach peaks of 500 g/m2 

(Morand and Briand 1996). Ulva biomass reached measures of 280 g/m2 DW in 

Scotland's Ythan Estuary (Raffaelli et al. 1998). On the Breton coast of France, Ulva can 

reach abundances of 400 kg/m2 with mat thicknesses of one meter (Briand 1991). In the 

Langstone Harbour in England, Ulva peak biomass was 35 g/m2 DW (Lowthion et al. 

1985), and in the Avon- Heathcote Estuary in Christchurch, New Zealand, Ulva blooms 

peaked at 130 g/m DW (Steffensen 1976). Wet weights of Ulva biomass at peak bloom 

in Massachusetts were 650 g m"2, 370 g/m2 in Rhode Island, and 6 kg/m2 in Connecticut 

(Morand and Briand 1996), while other Ulva blooms reached 400g/m2 DW in Rhode 

Island (Thorne-Miller et al. 1983) and 500 g/m2 WW in Connecticut (Welsh et al. 1982). 

Pregnall and Rudy (1985) measured average dry biomass of Ulva in an Oregon coastal 

region to be 300 g/m . In the Veerse Meere Lagoons of the Netherlands, Ulva species 

make up 90% of the peak macroalgae biomass found in the shallows (Nienhuis 1992). At 

peak production, Ulva species in the Prevost Lagoon (France) comprise 95% of the algal 

biomass in the system (Casabianca-Chassany 1989). In Maine, Ulva mats have been 

measured at thicknesses of 8-10 cm (Vadas and Beal 1987), while in Scotland's Firth of 

Clyde, Ulva mats of 15 to 20 cm thickness were measured (Perkins and Abbott, 1972). 
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Analysis of the monthly cover of all seaweeds within each site revealed peak Ulva 

blooms of unprecedented size. In the falls of 2008 and 2009 Ulva blooms in southern 

Great Bay dwarfed those observed in previous regional studies, with biomass and percent 

cover increases being substantial. Lubberland Creek's peak percent Ulva cover was more 

than 90 times greater than that observed for the same site by Harwick-Witman and 

Mathieson (1983), while the Ulva cover at Depot Road (55%) and Sunset Farm (59%) 

were far greater than the maximum (<1%) observed at Brackett's Point (between the 

sites) in 1978 (Hardwick-Witman, unpublished). While the Ulva peaks the following fall 

were generally smaller, the abundance values still eclipsed those measured in previous 

studies. 

In the northern study sites in the Great Bay Estuarine System, Ulva abundance 

changes since the earlier studies were less pronounced. At Wagon Hill Farm Ulva did 

not exhibit fall peaks, but instead the biomass remained below 5 g/m2 DW throughout all 

but the last three months of the study. Ulva percent cover estimates at this site in all but 

the first month were between 2% and 21% and were always higher than the < 1% 

observed by Harwick-Witman and Mathieson (1983). 

Ulva biomass trends at Cedar Point were similar to those seen for Wagon Hill 

Farm, with low baseline values of around 5 g dry weight/ m2 throughout the study. There 

was one exceptional spike in September 2009 of over 130 g/m2 DW, which was higher 

than the max observed in several previous Little Bay studies [124 g/m2 DW (converted 

from damp/dry weight per 557 in2) Reynold's (1971) October, 1967 observation at Cedar 

Point, and Chock and Mathieson's (1983) November 1972 max of 60 g/m2 DW at Cedar 

Point, and West's (2001) November 1998 max of 41.7 g/m2 DW at Dover Point]. 
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Although this anomalous spike was larger than the values observed at max in the 

previous studies, this peak should probably be dismissed because the bulk of the Ulva 

measured at Cedar Point in September 2009 was drift algae that had been recently 

deposited in the lower intertidal zone and likely washed away with the subsequent tides. 

As drift algae is often deposited close to its source, this leads one to wonder about the 

subtidal density of Ulva near the Cedar Point site. 

In summary, three previously undetected distromatic blade-forming Ulva 

species,U. rigida, U. pertussa, and U. compressa, have been identified as having been in 

the Great Bay Estuarine System since 1966,1967, and 1972, respectively. They have 

likely been included in subsequent GBES ecological studies under the category ' Ulva 

lactuca.' Major increases in both mean and peak Ulva biomass and percent cover have 

occurred in the Great Bay Estuarine System, and these changes coincide with the 

increased eutrophication by nitrogen and phosphorus during the past two decades. 

Current nitrogen and phosphorus levels in the system are substantial enough to support 

even larger Ulva blooms than were observed, based on minimum growth requirements 

(cf. Chapter II). If efforts are not made to reduce nutrient inputs, such harmful algal 

blooms, and their related side effects of hypoxia and habitat alteration, should be 

expected in the Great Bay Estuarine System for the foreseeable future. 
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Figure 32 Cedar Point boat launch A) facing south B) facing north with boat launch and 
retaining wall. 
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Figure 33 Wagon Hill Farm A) broad view of mudflat with transect line B) Ulva 
specimen found attached to shell. 



Figure 34 Lubberland Creek A) west facing, Ulva bloom (November 2008) B) east 
facing, two months earlier (September 2008). 
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Figure 35 Depot Road A) summer 2009 with gundalow and student group B) quadrat on 
transect line 
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Figure 36 Sunset Farm A) Ulva and Gracilaria bloom (September 2008) B) winter snow 
and ice cover can last for a few months in southern Great Bay 

70 



160.00 

140.00 
w 120.00 
E 

o> 
"5 
£ 
£ 
Q 

100.00 

80.00 
60.00 

40.00 

20.00 
0.00 

-20.00 

B 

CP DR 

1 

LC 

AB 1 

SF WH 

Figure 37 GBES Ulva mean biomass by site from 2008-2010. Letter designations 
denote significant differences (P<0.05). Error bars represent standard error. 
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Figure 38 GBES Ulva mean monthly biomass across five study sites (2008-2010). 
Letter designations denote significant differences (P<0.05). Error bars represent standard 
error. 
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Figure 39 GBES Ulva mean percent cover by site from 2008-2010. Letter designations 
denote significant differences (P<0.05). Error bars represent standard error. 
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Figure 40 GBES Ulva mean monthly cover across 5 sites from 2008-2010. Letter 
designations denote significant differences (P<0.05). Error bars represent standard error. 
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Figure 41 GBES algae mean biomass by site (2008-2010). Letter designations denote 
significant differences (P<0.05). Error bars represent standard error. 
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Figure 42 Sunset Farm Ulva mean biomass per month (2008-2010). Error bars represent 
standard error. 
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Figure 43 Sunset Farm Ulva mean percent cover (non-transformed) 2008-2010. Error 
bars represent standard error. 
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Figure 44 Depot Road Ulva mean monthly biomass (2008-2010). Error bars represent 
standard error. 
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Figure 45 Depot Road Ulva mean monthly percent cover (non-transformed) 2008-2010. 
Error bars represent standard error. 
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Figure 46 Lubberland Creek Ulva mean monthly biomass (2008-2010). Error bars 
represent standard error. 
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Figure 47 Lubberland Creek Ulva mean monthly percent cover (non-transformed) 
2008-2010). Error bars represent standard error. 
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Figure 48 Wagon Hill Farm Ulva mean monthly biomass (2008-2010). Error bars 
represent standard error. 
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Figure 49 Wagon Hill Farm Ulva mean monthly percent cover (non-transformed) 
2008-2010. Error bars represent standard error. 
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Figure 50 Cedar Point Ulva mean monthly biomass (2008-2010). Error bars represent 
standard error. 
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Figure 51 Cedar Point Ulva tissue mean monthly percent cover (non-transformed) 
2008-2010. Error bars represent standard error. 



CHAPTER IV 

GRACILARIA VERMICULOPHYLLA INTRODUCTION, PREVALENCE, AND 
IMPACT WITHIN THE GREAT BAY ESTUARINE SYSTEM 

Introduction 

The recent discovery of an introduced Asian red algae, Gracilaria 

vermiculophylla (Ohmi) Papenfuss, in the Great Bay Estuarine System is alarming, 

because it has been shown to grow rapidly, often causing environmental and economic 

problems in affected regions (Bellorin et al. 2004; Rueness 2005; Nyberg 2007). Its 

blooms have been quite extensive worldwide (Bellorin et al. 2004; Rueness 2005; 

Freshwater et al. 2006; Thomsen et al. 2006) 

Gracilaria species are adapted to thrive in nutrient enriched conditions, and 

blooms have been widely documented. In the embayment of Sacca di Goro, Italy, 

biomass of Gracilaria species reached peaks of 500 g/m2 (Morand and Briand 1996). In 

Rhode Island, Gracilaria biomass has been measured at 250 g/m2 DW, (Thorne-Miller et 

al. 1983) and 500 g/m2 WW in Connecticut (Welsh et al. 1982). Virnstein and Carbonara 

'j 

(1985) measured the dry weight of Gracilaria species to be 15 kg/m in an accumulation 

area within Florida's Indian River Lagoon, with average spring values of 400 g/m WW. 

In Spain's Tancada Lagoon, Gracilaria biomass reached measures of 200 g/m2 DW 

(Menendez and Comin 2000). In Hog Island Bay, Virginia, USA, G. vermiculophylla 

was the dominant seaweed from 1998 through 2002, making up 74% of the total biomass 

across all study sites and seasons (Thomsen et al. 2006). Further, it has been 
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demonstrated that Gracilaria vermiculophylla congeners can double in biomass in less 

than three days given appropriate temperatures, irradiance, or nutrients (Lapointe et al. 

1984). 

As G. vermiculophylla has spread, it has been deemed an invasive species in 

many parts of the world (Bellorin et al. 2004; Rueness 2005; Nyberg 2007). Using 

assessment criteria involving 13 parameters. Nyberg (2007) determined that G. 

vermiculophylla was the most invasive red algal species in Europe, with the highest 

scores in transportation probability, survival time out of water, reproductive mode and 

morphology. Gracilaria vermiculophylla, even at low density, was shown to have a 

negative impact on long term habitat forming species such as Zostera marina (Nyberg 

2007). In the Carolinas, G. vermiculophylla has negatively affected fishing operations 

and industries reliant on natural coolant water intake (Freshwater et al. 2006). 

The present study set out to compare blooms of Gracilaria in Great Bay relative 

to historical data. I also wished to determine if G. vermiculophylla was present in the 

system, and if so, determine its approximate introduction date and the extent of its 

introduction. To quantify blooms, both percent cover estimation and destructive biomass 

sampling were employed. Molecular identification of Gracilaria specimens to species, 

was done by DNA sequencing and RFLP analyses. 

Materials and Methods 

Algal sampling was conducted within the intertidal zones at five sites in the Great 

Bay Estuarine System, NH. The sites were designated as Cedar Point, Wagon Hill Farm, 

Lubberland Creek, Depot Road, and Sunset Farm. Gracilaria collection techniques, 
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percent cover analyses and biomass measures followed the methods described in Chapter 

III. 

Molecular Methods 

Historical (Appendix E) and freshly collected (Appendix F) Gracilaria samples 

were prepared for molecular analyses using the methods described in Chapter III. The 

DNA sequencing techniques matched those described in Chapter III, with the exception 

of the primer pairs used. The primers used for amplification and sequencing of 

Gracilaria samples were C01F328 (5' ACA GGA TGA ACA GTK TAT CCY C 3') and 

C01R634 (5' CCA CCT GCW GGA TCA AAG A 3'). 

RFLP analyses (Appendix G) used DNA samples amplified using the above 

primers. Following PCR, samples (10 |il) were digested with 1 fil DpnII enzyme (New 

England Biolabs) in 2 pi DpnII buffer solution and dHaO (7 pi). The reactions were 

incubated at 37°C for 60 minutes. The enzyme was deactivated through a 20 minute 

incubation at 65°C. Resulting samples were run on a 2% analytical grade agarose gel 

(Promega) stained with SYBR®safe (Invitrogen). Electrophosis occurred in a 0.5 TBE 

bath at 5V per cm until band separation was clearly visible under UV light. Fragment 

sizes were compared to those on a 50 bp DNA ladder (New England Biolabs). 

The DpnII enzyme, which was derived from an Escherichia coli strain carrying 

Diplococcus pneumonia G41 (S. Lacks), was chosen following COI sequence 

comparisons using New England Biolabs' online program NEBcutterV2.0. Analysis 

revealed that the COI regions of each of this study's Gracilaria species could be cut at 

two unique places by the DpnII enzyme, which cleaves at the 5' end of 5' GATC 3' 
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recognition sites. In the native Gracilaria tikvahiae McLachlan, this cleavage creates 

segment lengths of 231 bp and 62 bp, while the introduced Gracilaria vermiculophylla 

digestion produces 189 bp and 104 bp segments (Figure 52). 

Results 

DNA analysis of Gracilaria specimens verified the presence of both the native 

Gracilaria tikvahiae McLachlan and the introduced, possibly invasive, G. 

vermiculophylla at all of the study sites in southern Great Bay (Appendix F). During the 

2008 to 2010 study, both Gracilaria tikvahiae and G. vermiculophylla were lumped 

together in analyses of biomass and percent cover due to the impossibility of 

identification through morphological methods. 

The mean Gracilaria biomass was tracked across the five study sites from 2008-

2010 (Figure 53). Differences were found between the sites (P<0.01), with no Gracilaria 

measured at Wagon Hill Farm and Cedar Point in Little Bay, and a significantly higher 

amount at the southern Great Bay sites. Mean Gracilaria biomass was greatest at Depot 

Road (82.8 g dry weight/m2 + 141.7 SD) and Sunset Farm (72.6 g dry weight/m2 + 109.5 

SD), while it was significantly lower at Lubberland Creek(16.2 g dry weight/m2 + 20.7 

SD). 

Seasonal differences in mean Gracilaria biomass were observed throughout Great 

Bay (P<0.01), with maxima occurring during the fall of both years (Figure 54). The peak 

Gracilaria biomass (245.8 g dry weight/m2 +195.4 SD) during November 2008 was 

significantly greater P=0.01) than the peak in November 2009 (122.5 g dry weight/m2 + 
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130.7 SD). Minima levels of Gracilaria biomass were observed from March (ice-out) 

through July of both study years. 

Mean Gracilaria cover results closely followed the trends seen in Gracilaria 

biomass (Figure 55), with highest levels measured at the Sunset Farm (15.5% + 15.1 SD) 

and Depot Road (12.4% + 12.9 SD). The Lubberland Creek site had significantly lower 

mean Gracilaria cover (4.8% + 4.7 SD) during the study period. 

Gracilaria cover exhibited a significant (P<0.01) seasonal trend across the Great 

Bay study sites (Figure 56). Seasonal highs in mean cover were observed in November 

of 2008 (30.9% + 18.8 SD) and 2009 (15.9% + 16.5 SD) with the maxima in 2008 being 

significantly greater (P<0.01, post-hoc). The lowest mean cover values were observed in 

May of both 2009 (2.2%+ 1.6 SD) and 2010 (0.3% + 0.27 SD), which was later than that 

seen for Ulva percent cover patterns. 

Mean algal biomass differed across sites within the Great Bay Estuarine System 

(P<0.01), with Cedar Point's values (1078.3 g dry weight/m2 ± 1070.2 SD) far exceeding 

the other four sites (Figure 57). The major contributors to the mean biomass at Cedar 

Point were the attached fucoid algae species found growing attached to the site's shale 

substratum. 

The mean Gracilaria biomass was also calculated for each collection month at the 

Sunset Farm site (Figure 58). Seasonal differences were found (P<0.01), with peak 

biomass in November of both 2008 (264.8 g dry weight/m2 + 391.9 SD) and 2009 (273.6 

g dry weight/m2 + 380.6 SD). As was observed with Ulva at this site, there was a 

pronounced decline in Gracilaria mean biomass during months of ice cover, with 
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seasonal minima levels observed in March 2009 (1.97 g dry weight/m2 + 4.1 SD) and 

May 2010 (0.06 g dry weight/m2 + 0.36 SD). 

The mean monthly Gracilaria cover was also determined by month for the Sunset 

Farm (Figure 59) showed a significant seasonal trend (P<0.01), with peak bloom in 

November of both years (39.2% + 35.9 SD and 34.9 + 37.3 SD). Mean Gracilaria 

percent cover was lowest in May of 2009 (3.1% + 7.3 SD) and 2010 (0.6% + 1.7 SD), 

which lagged behind the March ice-out. 

Trends in Gracilaria elevation were examined throughout the study period. 

Although no significant differences were found, Gracilaria distributions tended to be 

slightly more concentrated at higher elevations, though the vast majority of the specimens 

were free floating and able to move with the prevailing tides. 

Mean monthly Gracilaria biomass from Depot Road (Figure 60) showed 

significant seasonal differences (P<0.01), with peak values during November 2008 

(431.lg dry weight/m2 + 774.3 SD) and September 2009 (158.8 g dry weight/m2 + 383.0 

SD). As was observed with Ulva at this site, there was a pronounced decline in 

Gracilaria mean biomass during periods of ice cover, with seasonal minima means 

remaining below 6.3 g dry weight/m2 from March through July 2009 and below 0.25 g 
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dry weight/m during the same period the following year. 

The mean Gracilaria percent cover at Depot Road (Figure 61) revealed a 

significant seasonal trend (P<0.01), with peak bloom in November 2008 (44.1% + 33.7 

SD) and September 2009 (14.8% + 25.7 SD). The peak bloom in 2008 was significantly 

greater than in 2009 (P<0.01). Mean Gracilaria cover was lowest in May of 2009 (3.2% 

+ 10.5 SD) and March of 2010 (0% + 0 SD). The 2009 low lagged two months behind 
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the thawing of the site's ice cover. Although Gracilaria specimens were present in 

March and May of 2010, none were within the study's transect lines. 

Trends in Gracilaria elevational distribution were examined throughout the study 

period. No significant differences were found in Gracilaria distributions, but they tended 

to be slightly more concentrated at the lower elevations. The majority of the specimens 

observed at this site were free floating and able to move with the prevailing water 

currents. 

The mean monthly Gracilaria biomass at Lubberland Creek (Figure 62) varied 

seasonally (P<0.01), with peak values in November 2008 (41.7g dry weight/m2 + 71.3 

SD) and 2009 (55.9 g dry weight/m2 + 110.9 SD). As observed with Ulva population at 

this site, there was a marked decline in Gracilaria mean biomass during the months of ice 

cover, with seasonal lows below 0.9 g dry weight/m2 from March through July 2009 and 

below 5.7 g dry weight/m2 during the same period the following year. 

Mean monthly Gracilaria percent cover at Lubberland Creek (Figure 63) showed 

significant seasonal trend (P<0.01), with peak values in March 2009 (10.8% + 18.6 SD) 

and September 2009 (12% + 22.4 SD). Mean Gracilaria cover was lowest in July of 

2009 (0.4% ± 1.5 SD) and May of 2010 (0.3% ± 1.4 SD). 

Gracilaria elevational distribution was examined throughout the study at the 

Lubberland Creek site. Its distributions were slightly more concentrated at the highest 

elevations (P=0.05), especially at the marsh-grass/open-mudflat boundary. Like at the 

other southern Great Bay sites, the majority of specimens here were free floating and able 

to move with the tides. 
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No Gracilaria specimens were found at the Wagon Hill Farm site at any time 

between September 2008 and July 2010. While few specimens were found adrift at 

Cedar Point during the final collection in July 2010, no Gracilaria specimens were 

observed within the intertidal zone at this site at any other time during the entire study. 

The RFLP study from September and November of 2011 revealed the relative 

abundance of Gracilaria vermiculophylla and G. tikvahiae at the three southern bay sites 

(Figure 64, Appendix G). Of the Gracilaria collected in September 2011, G. 

vermiculophylla comprised 100% of the specimens from both Lubberland Creek (n=34) 

and Sunset Farm (n=32). At the Depot Rd site, 72% of the Gracilaria specimens 

collected were G. vermiculophylla (n=26), and 28% were the native G. tikvahiae (n=10). 

In November 2011, again 100% of the Gracilaria collected from both Lubberland Creek 

and Sunset Farm were verified G. vermiculophylla specimens (n=28 and n=27 

respectively). At Depot, 59% of the Gracilaria collected was G. vermiculophylla (n=17) 

and 41% was G. tikvahiae (n=12). Overall, G. vermiculophylla comprised 88% of the 

Great Bay Gracilaria specimens identified via RFLP in 2011. 

Gracilaria percent cover was also determined for the three southern bay sites in 

September and November of 2011. The total Gracilaria coverage for the Lubberland 

Creek site in September 2011 was 19.5% + 5.6 SE and 38.0% + 6.6 SE in November 

2011. At Depot Rd, the total Gracilaria coverage was 40.5% + 6.8 SE and 77.0% ± 6.5 

SE during September and November respectively. At the Sunset Farm site, Gracilaria 

cover was 53.8% ± 6.7 SE in September and 30.7% + 6.4 SE in November. 

Extrapolating from the findings of the RFLP identification study, percent cover of 

Gracilaria vermiculophylla was estimated for each of the study sites and times (Figure 
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65). Gracilaria vermiculophylla comprised 100% of the Gracilaria specimens observed 

in the cover studies at both Lubberland Creek and Sunset Farm in September and 

November of 2011. Therefore, G. vermiculophylla coverage at Lubberland Creek was 

19.5% + 5.6 SE and 38.0% + 6.6 SE, while at Sunset Farm, during those two months the 

percent cover of G. vermiculophylla was 53.8% + 6.7 SE and 30.7% + 6.4 SE, 

respectively. The Gracilaria observed at the Depot Rd site was a mixture of both native 

G. tikvahiae and introduced G. vermiculophylla. In September 2011, the G. tikvahiae 

percent cover was 11.3% + 1.9 SE, and the G. vermiculophylla cover was 29.3% + 4.9 

SE. In November 2011, G. tikvahiae percent cover was 31.9% + 2.7 SE, and G. 

vermiculophylla was 45.1% ± 3.8 SE. 

Discussion 

The Great Bay Estuarine System introduction of G. vermiculophylla, an Asian 

species known to be harmfully invasive in other regions of the world (Freshwater et al., 

2006; Thomsen et al. 2007), appears to have occurred within the last decade, with the 

oldest known specimen for the region dating to a 2003 collection from Dover Point 

(Appendix E). This represents the northernmost record of the species in the 

Northwestern Atlantic, with the nearest known population more than 100 miles to the 

south in Rhode Island. Screening of G. tikvahiae labeled specimens collected in the 

Great Bay Estuarine System between 2002 and 1967 revealed only the native species, 

which strongly suggests that any historical G. tikvahiae biomass, cover, and tissue 

nutrient data are truly measures for that species. 
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Although G. vermiculophylla and G. tikvahiae can be differentiated using 

traditional morphological techniques, the high degree of morphological plasticity in these 

organisms makes these methods unreliable for the bulk of specimens collected in the field 

(Thomsen et al. 2007). Such a problem is compounded at sites that are known to support 

both species, which is the case for the three southern Great Bay sites observed here. 

Because of excessive costs and efforts mentioned previously for Ulva, only a small subset 

of Gracilaria specimens collected in this study were screened for molecular 

identification, and all metrics for the two species were combined under the heading 

Gracilaria. Since more than half of the specimens screened in the current study were G. 

vermiculophylla, increases in Gracilaria biomass and cover since the Hardwick-Witman 

and Mathieson (1983) study are certainly influenced by the presence of the newly 

introduced species, which has been shown to grow rapidly and has become a nuisance in 

other parts of the world (Freshwater et al. 2006; Thomsen et al. 2007). Of course, 

increases in Gracilaria abundance may also represent changes brought about by abiotic 

factors such as global warming and increased availability of nutrients. 

The combined Gracilaria biomass and percent cover were tracked at all five sites 

during the two year study. Gracilaria was all but absent at the northern two sites, but 

found throughout the year at the three southern study sites, with mean biomass and cover 

values highest at the Depot Road and Sunset Farm study sites (being > 70 g dry weight/ 

m2 and >12% during the entire study period). Such values far exceeded even the single 

month maxima values observed by Harwick-Witman (1983) in which max biomass never 

•j 9 
exceeded 1 g dry weight/ m or 1% cover per m . 
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Again, the bulk of the Gracilaria specimens observed in this study were 

unattached and held in residence at a given site by partial burial in mud coupled with low 

site hydrodynamics. The temperature and nutrient regimes of the northern sites appear to 

be suitable to support Gracilaria growth, but its growth may be restricted by the limited 

suitable substrata for attachment, coupled with the more energetic water motion at these 

sites. 

In the southern Bay, there was an inverse relationship between the prevalence of 

Ulva and Gracilaria. Lubberland Creek had significantly higher mean biomass and 

percent cover of Ulva than Depot Road and Sunset Farm, whereas Lubberland Creek had 

the opposite pattern for Gracilaria growth. Such a pattern is likely a function of Ulva 

overgrowth at Lubberland Creek during the fall of 2008. Due its large bladed 

morphology, Ulva can easily shade out other species, such as Gracilaria in major bloom 

events. The physical effects of 90% Ulva cover observed at the Lubberland Creek site in 

November 2008 could have caused a major decrease in the Gracilaria bloom. Lower 

growth at this critical time can have carry-over effects during subsequent years, as spring 

and summer populations build from the individuals that survived the long winter months 

of snow and ice cover. 

Gracilaria monthly mean biomass and percent cover trends in the southern Bay 

followed those seen in Ulva, with peaks observed in November 2008 and 2009. The 

mean cover and biomass across the three southern sites exceeded 40% and 250 g dry 

weight/ m2 in November 2008. Again, these values far exceeded any single site values 

recorded by Harwick-Witman and Mathieson (1983) or Hardwick-Witman (unpublished, 
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1978), and further demonstrates that nuisance algal species growth has increased 

markedly in the Great Bay Estuarine System over the past three decades. 

Although concentrations of nitrogen have increased since these earlier studies, the 

tissue concentrations in Gracilaria specimens have remained relatively stable. Penniman 

(1983) measured the percent of nitrogen and phosphorus in Gracilaria tikvahiae 

specimens collected subtidally near Nannie Island (close to Sunset Farm). The tissue 

nitrogen values in 1976 and 1977 ranged from 2% - 4.5%, and phosphorus values ranged 

from 0.18% - 0.35%, compared to the ranges of 2.5% - 3.6% TN and 0.17% - 0.33% TP 

observed in the current study. Such stability in the face of increasing nutrient availability 

could be indicative of a preferred steady state for these organisms. Because Gracilaria 

can grow very rapidly, it is possible that excess nutrients are directly converted into 

increased biomass production. The thalli, or the populations grow via nutrient uptake, 

but the overall tissue nutrient concentrations remain unchanged. 

Analysis of monthly percent cover within each site revealed peak Gracilaria 

blooms of unprecedented size. Gracilaria abundance increases were staggering, with 

Lubberland Creek's cover exceeding 10%. This was more than ten times the maxima 

observed by any previous intertidal study (Hardwick-Witman unpublished; Hardwick-

Witman and Mathieson 1983) in the Great Bay Estuarine System. At Depot Road and 

Sunset Farm, the cover values were 44% and 39%, which dwarfed the less than 1% 

Gracilaria cover observed at both Brackett's Point and Lubberland Creek by Harwick-

Witman (unpublished) and Harwick-Witman and Mathieson (1983). While the 

Gracilaria peak the following fall was smaller in general, the abundance values still 

eclipsed those measured in previous studies. 
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Although G. vermiculophylla has not been reported as a nuisance to any maritime 

industry in New England, the abundance of the species in some locations could cause 

ecological harm. In the Great Bay Estuarine System, where the introduction occurred 

around 2003, the species accounted for approximately half of the record high Gracilaria 

cover and biomass observations during the falls of 2008 and 2009, and 88% of the current 

Gracilaria cover in the southern bay. Introduced species, adapted to thrive in nutrient 

enriched environments can alter the composition of local vegetation (Morand and 

Merceron 2005). Overgrowth of the species can have deleterious effects, including 

enhanced shading, disruption of the nutrient balance, altered hydrodynamics, and anoxic 

or hypoxic conditions following die-back. Any of these factors can cause decreased 

species richness, including the loss of long-lived habitat-forming species, such as 

eelgrass. 

In an assessment of the invasiveness of G. vermiculophylla in North Carolina, 

Freshwater et al. (2006) found the species met six of Chapman and Carlton's (1991) ten 

qualifying characteristics including the appearance in local regions where it was 

previously not found, its association with human mechanisms of dispersal (boat 

entanglement), relatively restricted distribution on the continent compared with native 

species (at the time, the invasion appeared to be geographically limited), disjunct 

populations, insufficient active dispersal mechanism to account for the expanded 

distribution, and exotic evolutionary origin. With the extent of the G. vermiculophylla 

distribution in New England (cf. Chapter V), a seventh criterion can be added to the list: 

initial expansion following introduction. In a decade, G. vermiculophylla has invaded 

and become established in disconnected lagoons and estuaries across thousands of 
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kilometers of the US Atlantic coastline, rivaling the distribution of the native G. 

tikvahiae, which is found continuously along the Western Atlantic coast of North 

America from southern Mexico to southern Canada (Gurgel et al. 2004). 

Based on observations from other parts of the world, Gracilaria vermiculophylla 

is particularly well suited to thrive in New England estuarine environments. In Virginia 

lagoons, the species demonstrated excessive growth in shallow, nutrient-rich, muddy 

bottomed locations with limited water flow. Thomsen et al. (2007) found that, when 

artificial panels were provided, G. vermiculophylla had the highest level of recruitment, 

with twice the percentage cover of oysters and more than five times that of the second 

most abundant macroalgal species, making it a formidable competitor in its new 

environment and making its permanency in the system more likely. Gracilaria 

vermiculophylla has also demonstrated higher growth in enhanced nutrient treatments 

(Thomsen and McGlathery 2007), which is important since many estuarine environments 

in New England are eutrophied, including the Great Bay system (cf. Chapter II). Further, 

Thomsen and McGlathery (2007) found that G. vermiculophylla growth, in the presence 

of grazers, increased with the increased excreted nitrogen. Gracilaria vermiculophylla 

has a strong tolerance for low salinity conditions (Nyberg 2007), giving the species an 

advantage in these brackish environments where there is a lower intensity of competition 

for space and resources than is often found on the open coast (Weinberger et al. 2008). 

Gracilaria vermiculophylla is a hardy species, able to survive long periods of 

burial and total darkness (Thomsen and McGlathery 2007; Nyberg and Wallentinus 

2009). In light limited conditions, which are found in the layered blooms of Great Bay, 

members of the Gracilaria genus increase production of phycoerythrin (Lapointe 1981), 
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which aids in photosynthesis and acts as a N storage pool to allow growth when ambient 

N concentrations decrease. The hardiness of G. vermiculophylla leaves them particularly 

well suited to survive sedimentation, cold temperatures, and periodic ice and snow cover 

found in New England estuaries during long winter periods. While biomass and cover 

were greatly reduced in Great Bay G. vermiculophylla populations during these months 

of cold and darkness (caused by ice and snow cover), the populations were able rebound 

during the subsequent spring and summer seasons, indicating a high probability of 

permanence in the system. 

The initial introduction vector for the New England G. vermiculophylla is not 

certain, but speculation in other parts of the world has suggested accidental arrival 

through shellfish mariculture. Thomsen et al. (2007) deduced that the introduction to 

Europe and the western Atlantic was through attachment to transplanted oysters, due to 

the proximity of population to oyster farms, but they reasoned that further distribution 

within the various regions was probably facilitated by entanglement with boat screws, 

fishing nets and trawls, and other extensions of smaller boats, for which they had seen 

many examples. In Brittany, France, G. vermiculophylla was again thought to have been 

introduced by the culturing of oysters imported from Asia (Rueness 2005). Likewise, 

Thomsen and McGlathery (2007) believed transplanted oysters were the vector its 

introduction in Virginia. It is plausible that the plant's introduction to New England was 

facilitated by hitch-hiking on imported shells, as maricultural operations can be found 

throughout the region. It is also likely that much of the subsequent dispersal within New 

England has been facilitated by entanglement with traveling fishing and recreational 

boats. As G. vermiculophylla is negatively buoyant (Thomsen et al. 2006) and lacks 
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motile gametes, natural long distance dispersal is unlikely. Given this fact, officials in 

Maine, the only New England state currently free of G. vermiculophylla invasion, may 

wish to regulate and/or educate the boaters traveling between their state and estuarine 

environments within the rest of the region in order to prevent or delay initial inoculation. 

Host community and environmental characteristics are of great importance in 

successful invasions. Valentine et al. (2007) outlined conditions that encouraged the 

introduction and successful colonization of invasive species, including disturbance in the 

receiving community through nutrient, substrata, or water temperature disruption, high 

levels of other invaders, and macroalgal removal through grazing or disease. When 

seagrass or macroalgal cover is low, resistance to invasion is weakened (Cecchereli and 

Cinelli 1999). As the human population in New England has increased and the 

anthropogenic pressures have expanded, the above disturbances have been seen in the 

region's estuarine environments (Jerome et al. 1965; Miller et al. 1971; Mathieson and 

Fralick 1973; Burdick et al. 2006), leaving vulnerable many locations for G. 

vermiculophylla invasion. Although sites in New Hampshire mark the current northern 

limit for G. vermiculophylla in the western Atlantic, environments with suitable abiotic 

factors such as temperature, salinity, hydrological regime, substrata, and light conditions 

occur farther north in Maine. Given the hardiness of the species, the plentiful vectors of 

transport, and the rapid spread thus far, it is likely the range of G. vermiculophylla will 

continue to expand northwards. 

Few studies have examined sites prior to, or in the early stages of, invasion 

(Schaffelke and Hewitt 2007). As this kind of study can provide valuable information on 

the impact of introduced species, researchers should document baseline community data 
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for New England estuaries that currently host no G. vermiculophylla. As it has been 

observed that aliens often remain background species with little impact before expanding 

to the point of becoming invasive (Stockwell et al. 2003), similar community studies 

should be undertaken in New England locations with small G. vermiculophylla 

populations. 

While those species that are labeled invasive are harmful by definition, not all 

introduced species are considered to be invasive. Species that have been labeled invasive 

in one region can have positive impacts in another. Loose lying specimens of G. 

vermiculophylla were collected in the southern study sites. Since these organisms can 

thrive without the need for solid attachment, they are able to occupy zones that other 

algal species cannot. In open tidal mudflats, G. vermiculophylla can provide otherwise-

absent three dimensional structures that serve as protection for small fish, and an 

attachment substratum for many epiphytic algal species (Norkko et al. 2000; Thomsen et 

al. 2006; Wallentinus and Nyberg 2007). Therefore the presence of large amounts of 

loose-lying G. vermiculophylla can have some positive effects on the ecological structure 

of invaded sites. 

Introduced species can also have a positive economic effect on invaded region. 

For example, Gracilaria vermiculophylla has shown great potential as a bioremediator in 

integrated aquaculture systems due to its ability to effectively reduce nutrients while 

growing rapidly to produce commercially valuable products (Wallentinus and Nyberg 

2007, Abreu et al. 201 la,b,c). Due to its potential accidental, the use of G. 

vermiculophylla should be avoided in non-impacted areas, but the aquacultural industry 

should embrace the species as a valuable bioremediator in thoroughly affected regions. 
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In summary, the recently introduced and potentially invasive species, Gracilaria 

vermiculophylla was discovered in the Great Bay Estuarine System. Large increases in 

both its mean and peak biomass and percent cover have occurred. These changes are 

associated with eutrophic and hypertrophic water nitrogen and phosphorus concentrations 

recently observed. The increases in nuisance algal blooms are likely the result of excess 

nutrient loading in the Bay, and, in the case of Gracilaria vermiculophylla, may also be a 

symptom of a harmful invasion. Current nitrogen and phosphorus levels in the system 

are high enough to support even larger Gracilaria blooms than observed here, based on 

minimum growth requirements. If efforts are not made to reduce nutrient inputs, such 

harmful algal blooms and their related side effects of hypoxia and habitat alteration 

should be expected in the Great Bay Estuarine System for the foreseeable future. 
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Figure 52 Digest of 3' end of COI gene revealing the cut pattern for G. vermiculophylla 
(Gv) and G. tikvahiae (Gt) using the DpnII restriction enzyme. This cleavage creates 
segment lengths of 231 bp and 62 bp in the amplified 3' COI region of G. tikvahiae, 
while the digestion of this region of the introduced Gracilaria vermiculophylla produces 
189 bp and 104 bp segments. 

97 



CM 
< 

E 
cfc 

CD 
'55 
Hi 
£ 
a 

100.00 
90.00 
80.00 
70.00 
60.00 

50.00 
40.00 
30.00 
20.00 
10.00 
0.00 

DR 

B 

LC SF 

Figure 53 Great Bay Gracilaria biomass by site from 2008-2010. Letter designations 
denote significant differences (P<0.05). Error bars represent standard error. 
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Figure 54 Southern Great Bay Gracilaria monthly mean biomass from 2008-
2010. The Cedar Point and Wagon Hill Farm sites were not included in these 
calculations due to absence of organisms. Letter designations denote significant 
differences (P<0.05). Error bars represent standard error. 
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Figure 55 Southern Great Bay Gracilaria mean cover by site (2008-2010). Letter 
designations denote significant differences (P<0.05). Error bars represent standard error. 
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Figure 56 Southern Great Bay mean monthly Gracilaria cover (2008-2010). Letter 
designations denote significant differences (P<0.05). Error bars represent standard error. 
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Figure 57 GBES algae mean biomass by site (2008-2010). Letter designations denote 
significant differences (P<0.05). Error bars represent standard error. 

SEP NOV MAR MAY JUL SEP NOV MAR MAY JUL 

Figure 58 Sunset Farm Gracilaria mean biomass per month (2008-2010). Error bars 
represent standard error. 
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Figure 59 Sunset Farm Gracilaria mean percent cover (non-transformed) 2008-2010. 
Error bars represent standard error. 
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Figure 60 Depot Road Gracilaria mean monthly biomass (2008-2010). Error bars 
represent standard error. 
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Figure 61 Depot Road Gracilaria mean percent cover (non-transformed) 2008-2010. 
Error bars represent standard error. 

3 50 
£ 40 o> 

^ 30 

SEP NOV MAR MAY JUL SEP NOV MAR MAY JUL 

Figure 62 Lubberland Creek Gracilaria mean monthly biomass (2008-2010). Error bars 
represent standard error. 
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Figure 63 Lubberland Creek Gracilaria mean monthly percent cover (non-transformed) 
2008-2010). Error bars represent standard error. 
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Figure 64 Number of specimens of each Gracilaria species verified from each study site 
in September and November of 2011. Identities were assigned through RFLP analyses. 
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Gracilaria vermiculophylla cover in southern Great Bay during Fall 2011 
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Figure 65 Gracilaria vermiculophylla mean percent cover during September and 
November 2011. Error bars represent standard error. 



CHAPTER V 

INTRODUCTION AND DISTRIBUTION OF GRACILARIA VERMICULOPHYLLA 
(RHODOPHYTA, GRACILARIALES) IN NEW ENGLAND, USA 

Introduction 

Currently there are more than 120 known introduced seaweeds worldwide, with 

many of these causing environmental and economic harm (Mathieson et al. 2008; Nyberg 

and Wallentinus 2005). Twenty-four introduced seaweeds are known from the Northwest 

Atlantic, including three green, four brown, and 17 red algae (Hofmann et al. 2010; 

Mathieson et al. 2008a,b; Schneider 2010; Thornber et al. 2009); many of these species 

were previously overlooked due to morphological similarities to native species. One such 

example is the native Gracilaria tikvahiae McLachlan and the morphologically similar 

congener G. vermiculophylla (Ohmi) Papenfuss, which has recently and rapidly spread 

around the globe (Rueness 2005), with introductions in the Eastern Pacific (Bellorin et al. 

2004; Saunders 2009), Northeastern Atlantic including Denmark, Sweden (Nyberg 2007), 

Germany (Thomsen et al. 2007; Weinberger et al. 2008), and France (Rueness 2005), 

plus the Mid-Atlantic coast of North America (Freshwater et al. 2006; Thomsen et al. 

2006) and New England (Mathieson et al. 2008; Saunders 2009; Schneider 2010; 

Thornber et al. 2009). 

The speed of dispersal and subsequent success of Gracilaria vermiculophylla in 

these regions is notable. In the Northeastern Atlantic, it was first detected in the Goteborg 

archipelago, Sweden during 2003, and in two years it spread to over 30 sites with a 
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distributional range of 150 km (Nyberg 2007). A few years after its introduction to 

Germany and Denmark, it became the most abundant seaweed in many soft-bottom 

estuarine sites, particularly those with low salinities (Thomsen et al. 2007). A half decade 

after its introduction in France, G. vermiculophylla was present in most estuaries of the 

Brittany and Iberian coasts, often forming extensive unialgal entangled mats (Abreu 

2011; Rueness 2005; Saunders 2009). In the southeastern Gulf of California, it was 

frequently observed forming expansive blooms in coastal lagoons (Pinion-Gimate et al. 

2009). In the Mid-Atlantic coast of North America, it was first discovered in North 

Carolina in 2000, and by 2002 its extensive growth on gill nets and trawls hindered 

commercial fishing and fouled intake screens at the Brunswick Nuclear Plant (Freshwater 

et al. 2006). In Hog Island Bay, Virginia, USA, G. vermiculophylla was the dominant 

seaweed from 1998 through 2002, making up 74% of the total biomass across all study 

sites and seasons (Thomsen et al. 2006). It has continued to have significant impacts on 

saltmarsh habitat complexity, species richness and abundance, nutrient availability, 

productivity, and trophic interactions at several Virginia sites (Thomsen et al. 2009). The 

first published records of G. vermiculophylla from New England were from Narragansett 

Bay, Rhode Island (Schneider 2010; Thornber et al. 2009), but these accounts gave no 

details regarding its regional distribution or initial dates of introduction. Hence, the 

present study has attempted to clarify this information for this invasion. 

As with many successful invaders, Gracilaria vermiculophylla has broad 

tolerances to temperatures, salinities (Abreu 2011; Nyberg 2007), nutrients, sediment 

burial, and grazing (Abreu et al. 201 la,b; Thomsen and McGlathery 2007). It also grows 

extensively from fragments (Abreu et al. 201 la,b; Nyberg and Wallentinus 2009), and is 

106 



capable of successfully colonizing and expanding in regions where its entire life history 

may not be expressed. Nyberg and Wallentinus (2009) also found that it could survive 

175 days in moist conditions under total darkness, resuming exponential growth 

following a return to normal light, salinity, and immersion conditions. Hence, the species 

is well suited for long distance transport in ballast water, on ship hulls, or ship decks and 

can survive long term burial in estuarine environments (Nyberg and Wallentinus 2009). 

Detection of Gracilaria vermiculophylla may be difficult because it is 

morphologically very similar to other species like Gracilaria tikvahiae. Gracilaria 

species have highly plastic morphologies and exhibit subtly distinguishing vegetative 

features when growing under ideal conditions (Gurgel et al. 2004; Rueness 2005; 

Saunders 2009). In the absence of sexual characteristics, which is common in Gracilaria 

(Rueness 2005), molecular analysis is the most useful method of species identification 

(Saunders 2009; Thomsen et al., 2006). In order to determine the current distribution and 

approximate introduction times of G. vermiculophylla in New England I used a three 

pronged approach, involving field sampling, investigations of historical collections, and 

molecular identifications of specimens by sequencing of the COl gene. 

Materials And Methods 

I surveyed 24 New England estuarine sites having known Gracilaria populations, 

with these ranging from western Connecticut to mid-coastal Maine (Table 4; Figure 66). 

In addition, three other Maine sites (Wilbur Neck, Pembroke; Little Augusta River, 

Whiting; Winslow Park, South Freeport) and one additional Massachusetts site (Damon's 

Point, Greenbush) with no previous Gracilaria records were also surveyed. The sites 

were either evaluated on foot at low tide or by snorkeling at mid tide. Depending on local 
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abundance, between five and 15 Gracilaria thalli/site were collected for morphological 

and/or molecular analysis. 

In the field, all collected specimens were initially rinsed in situ to remove 

sediments and then placed in labeled zip-lock bags for transfer to the lab where they were 

floated in seawater, pressed as voucher specimens, and deposited in the Hodgdon 

Herbarium (NHA) at the University of New Hampshire, or in the herbaria at the 

Universities of New Brunswick (UNB) or Rhode Island (KIRI). 

Gracilaria specimens collected from Connecticut, Rhode Island, Massachusetts, 

New Hampshire, and Maine between 1966 and 2011 were molecularly screened to 

confirm their species identifications and potential dates of introduction using the methods 

for DNA extraction, amplification, purification, sequencing, alignment, and GenBank 

comparison as outlined previously in Chapter IV. Representative voucher specimen 

sequences were deposited in GenBank (accession numbers JQ675682-JQ675712, 

JQ699274-699286, and JQ716364-JQ716366). 

The segment of DNA amplified was 307 bp in length extending from position 328 

of COl. The 307 bp 3' end of COl was used for our identifications because it amplified 

more readily in historical collections than did the 5' end of the COl gene, and it revealed 

clear differences between all Gracilaria species with reference GenBank sequences. 

Within this region of COl, a 13% (41 bp) divergence was evident between G. tikvahiae 

and G. vermiculophylla (Nettleton, pers. obs.). 

Results 

Based upon DNA identifications of the COl gene (matched to GenBank 

accessions FJ499599-FJ499628), the presence of Gracilaria vermiculophylla was 
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confirmed at 18 of the 24 New England sites (75%) known to have Gracilaria 

populations, with these ranging from Stamford, CT to Greenland, NH (Table 4, Figure 

66). Such results expand the documented range of this introduction by over 200 km 

north, 100 km east, and 150 km west. No G. vermiculophylla populations were found at 

any of the five Maine sites where G. tikvahiae was previously recorded, while no 

Gracilaria was found at three other Maine sites and one Massachusetts site where such 

populations were previously unknown (cf. Materials and Methods). Mixed populations of 

G. tikvahiae and G. vermiculophylla were found at four New Hampshire sites, as well as 

in Potter Pond, South Kingston, RI, and Holly Pond, Stamford, CT. In the eight 

Massachusetts sites surveyed during March 2011, only G. vermiculophylla populations 

were found. The sequenced COl region revealed no genetic differences between or 

within G. vermiculophylla populations. 

Gracilaria vermiculophylla was primarily found in estuarine sites having muddy 

or fine sandy bottoms. New Hampshire specimens were almost exclusively loose-lying or 

partially buried in sediment, whereas those from Massachusetts, Rhode Island, and 

Connecticut were typically attached to shells, small rocks, and other hard surfaces, with 

only occasional drifting specimens. Triphasic life history patterns (i.e. male, female and 

tetrasporic) of Rhode Island Gracilaria vermiculophylla populations have been 

confirmed by Thornber (unpubl. obs.), which suggests that the plant exhibits both sporic 

and vegetative fragmentation as a means of reproduction. 

Molecular screening of historical collections showed the initial occurrence of 

Gracilaria vermiculophylla during 2000 at five Massachusetts sites. In New Hampshire, 

its first occurrence was during 2003 from Dover Point within the middle of the Great Bay 
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Estuarine System. An initial confirmation of G. vermiculophylla was made from Rhode 

Island during 2007 (Saunders 2009; Thornber et al. 2009), while it was not found in 

Connecticut prior to 2010. 

Discussion 

Based upon molecular evaluations of historical collections, Grcicilaria 

vermiculophylla has existed primarily undetected in New England since at least 2000, 

several years prior to the first published records (Schneider 2010; Thornber et al. 2009). 

Such findings confirm the difficulty of documenting the arrival and spread of an invasive 

species that closely resembles a native congener (e.g. Gracilaria tikvahiae). To 

complicate matters, both species can survive year round within estuarine low 

intertidal/subtidal habitats, and they often grow together. For example, in Great Bay, New 

Hampshire, I frequently found vegetative specimens of both species within a single 0.25 

m2 quadrat frame. As such, species determinations in the field are impossible, and DNA 

sequencing is essential for their identification, like other cryptic introduced species in 

New England (Hofmann et al. 2010). 

Since its initial collection in Virginia during 1998 (Thomsen et al. 2006) 

Gracilaria vermiculophylla has invaded and become established in disconnected 

estuaries across thousands of kilometers along the US Atlantic coastline. Its distribution 

now rivals G. tikvahiae in the western North Atlantic, which occurs in estuarine 

environments from southern Mexico to the Canadian Maritime Provinces (Gurgel et al. 

2004). 
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Although Gracilaria vermiculophylla has not been reported as a nuisance to any 

maritime industries in New England, its wide distribution (over 500 km) and abundance 

in some locations could cause ecological problems. Even at low density, it has a negative 

impact on eelgrass or Zostera marina L. (Nyberg 2007; Wallentinus and Nyberg 2007), a 

species that is an important food source, nutrient cycler, and habitat for various 

invertebrates and small juvenile fish. Zostera populations in the Great Bay Estuarine 

System, NH/ME, Narragansett Bay, RI, and Long Island Sound, CT have been threatened 

for several decades (Oviatt 2004; Short 1992; Yarish 2006), and the inevitable spread of 

G. vermiculophylla within these systems could hinder their recovery. 

I l l  
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Table 4 Historical/present day Gracilaria collections at 24 sites ranging from mid-coastal Maine to Stamford Connecticut GT and 
GV represent G. tikvahiae and G. vermiculophylla respectively 

Site Location 
Latitude Longitude 

°W 
Year 

Collected Species Herbarium Acc. 
Oyster Creek, Salt Bay, Damariscotta. ME 44° 03*28" 69° 30 "34" 2010 GT NHA554802 

7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
1? 
20 
21 
22 
23 
24 

Salt Bay, Damariscotta, ME 
Upper New Meadows. River, Bath. ME 
Pennellville Landing, Brunswick, ME 

I, boat launch, Brunswick, ME 
Wharton Point, hjlaquaA Bay. Brunswick, ME 
Dover Point, Great. Bay, Durham. MH 
Sunset Farm, Great Bay, Greenland. NH 
Depot Road, Great Bay, Greenland, NH 

Creek Great Bay, Newmarket..NH 
Mateteasat Ct Town Landing. D.uxbury. MA 
Biuefish. River, Shipyard Center, DuxJaury.MA 
EJlisviiie. Harbor State. Park, Plymouth.. MA 
Indian Trail Rd. BarnstaWe. MA 
Mitlmv Beach, Barnstable..MA 
Prow ncetGwn Harbor, MA 
Capt. Nathaniel W.ixaa Dock. W. hiarMCk. MA 
Lewis Pond, Sea Gull Beach. W. Yarmouth, 
Goddard State Park, Warwick,..Rl 

.MA 

44° 03*00" 
43°55"50" 

69°51'40" 
69031'41" 

43°51*18" 
3°4942" 

43"52*01" 
3°07*15" 

43°03'24" 
43° 03*22" 
43° 04*30" 
42° 02*22" 
42° 0247" 
41 "50*28" 
41 "42*35" 
41°42'34" 
42° 02*58" 
41° 39*29" 

EMlfiflfl Farm. Warwick. Rl 
Bass Rock, Narragansett, Rl 
Potter Pond. South Kingston, Rl 
.Seaside. Be. ach, Bridgeport,. CT 
Holly Pond, Cave Island. State Park, Stamford, CT 

41"38"12" 
4! "40*03" 
41 "41 *10" 
41s 24*18" 
4 r 22*56" 
4r 09*10" 
41° 02*57" 

69857*39" 
70°00"59" 
69° 59 33" 
70°49'35* 
70°50"03" 
70° 53*50" 
70° 54*12" 
70°40'11" 

2010 
2010 
2010 
2010 
2010 
2003 
2008-2010 

GT 
GT 
GT 
GT 
GT 
GV, GT 

NHA554806-7 
NHA554805 
NHA554803-4 

GV, GT 
2008-2011 
2008-2012 

GV, GT 
GV, GT 

NHA554809 
NHA554801 
NHA554808 
NHA524468-9 
NHA554 795 
NHA524474 

70®40'18" 
70° 32*07" 

2000/2011 
2000/2011 
2000 

70° 17*02" 
70° 17*59" 

2011 
2011 

QY 
GV 
GV 
GV 

NHA554785, NHA554798 
NHA554787-8^NHA554799 
NHA554796 
NHA554789 

70° 11 *09" 2000 
70°06"55" 2011 

GV 
GV 
GV 

NHA554793-4 
NHA554786 

70° 13*40" 
71°25'52" 

2000/2011 
2007 

GV 
GV 

71°25*24" 
7"! "27*27" 

2007 GV 

71°32*04" 
73°12'39" 
73*30*08" 

2007 
2009 
2010 

GV 
GV GT 

NHA554792 
NHA554797, NHA554790 
NHA556929-30 7_" 
NHA556931-3 
NHA556985 
NHA556934 

GV GWS022482-3 
2010 GV, GT ! NHA 524712 
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Figure 66. Gracilaria vermiculophylla and G. tikvahiae distribution in New England. 
The site numbers correspond to those given in Table 4. 

114 



CHAPTER VI 

RECOVERY MANAGEMENT EFFORTS IN EUTROPHIC COASTAL SYSTEMS: 
THE BENEFITS, DIFFICULTIES, AND EXPECTATION SETTING 

The Great Bay Estuarine system is currently highly enriched with nutrients. Such 

eutrophication alters ecosystems, leading to a reduction in species diversity, often of both 

long lived habitat forming seagrasses and macroalgae, which in turn causes faunal loss of 

diversity (Thorne-Miller et al. 1983; Breuer and Schramm 1988; Nienhuis 1992b; Villano 

and Warwick 1995). Disturbed ecosystems are more susceptible to invasion (Cecchereli 

and Cinelli 1999; Valentine et al. 2007). Unprecedented blooms of nuisance macroalgae, 

including the invasive Gracilaria vermiculophylla (Ohmi) Papenfuss, have been recorded 

in Great Bay Estuarine System in recent years (cf. Chapters III and IV), and, without 

coordinated intervention, further ecosystem change is likely. 

While the effects of eutrophication and subsequent macroalgal blooms are 

overwhelmingly negative, some bloom events have had positive effects in their 

environment. For example, by winning the competition for nutrients, macroalgal bloom-

forming species have controlled harmful phytoplankton blooms (Sfriso et al. 1992), and 

have greatly reduced red tides (Tang et al. 2003). While the opposite is true for most 

infaunal species, well-segmented worms, Oligiochaetes, can remain at high densities 

below algal mats (Thiel and Watling 1998), possibly due to the provided cover that 

serves to protect them from predators (Norkko 1998). Blooms can have a positive effect 

on grazers (McGlathery 1995), due to the influx of food sources and protective habitat. 
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High densities of small animals have been found in certain Gracilaria beds (Virnstein 

and Carbonara 1985), at least temporarily increasing biodiversity and population loads. 

The algal biomass itself can be a positive for an over enriched system, as the bloom-

forming organisms absorb excess nutrients (Brault 1983). But unless the nutrient-

capturing organisms are removed, the excess nutrients will cycle back into the system. 

Although excess nitrogen and phosphorus have been known to play the key role 

in creating harmful macroalgal blooms, such as the ones observed in the Great Bay 

Estuarine System, ineffective management of affected regions has been the norm (de 

Jonge et al. 2002; Morand and Merceron 2004). Part of the problem is that it is difficult 

to recognize that a system has become eutrophic. The excess nutrients themselves are 

invisible to the eye and only detectable through water sampling methods unlikely to be 

performed without cause. Certain macroalgal species can increase the odds of early 

detection. Ulva is a good bioindicator of water quality, as its increased growth is 

correlated to pollution by coastal nutrient inputs (Levine and Wilce 1980; Ho 1987). 

When masses of these indicator species are seen, the odds are good that the environment 

is over enriched. 

While adequate grazer pressure may neutralize Ulva growth even when the 

availability of nutrients is increased (Karez et al. 2004), system restoration requires that 

the problematic excess nutrients be removed from the environment rather allowing them 

to cycle back in. Physical removal of macroalgal blooms has been carried out in several 

places in order to reduce the negative environmental impacts of the algal mats themselves 

and to remove and reuse the stored nutrients (Orlandini 1988; Morand et al. 1991; Cuomo 

et al. 1993; Sfriso et al. 1993). In Brittany, excess seaweeds have been collected for 
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many uses including fertilizers for fruit and vegetable growth and livestock feed (Morand 

et al. 1991). Harvested seaweeds were considered for years for use as an alternative 

energy source in Brittany, but costs were prohibitive for use on a large scale. That is the 

production of one therm (100,000 BTU) from seaweed biomass ranged from 10-18 Euro 

cents versus 5-7 Euro cents for the same energy output from petroleum products (Charlier 

et al. 2008). In the Venice Lagoon in the late 1980s, 6,000 - 7,000 tons of Gracilaria 

were removed yearly and sold to industry for approximately $420,000 USD (Orlandini 

1988). In this same lagoon, -50,000 m"3 of Ulva were collected by special harvesting 

boats each year in the late 1980s and early 1990s (Cuomo et al. 1993). Reaping machines 

were also employed in the Venice Lagoon with a yearly estimated Ulva extraction of 

100,000 tons WW (Sfriso et al. 1993). 

Extraction of seaweeds from bloom affected regions comes with both 

environmental and economic problems. Removing seaweed from mudflats causes 

extensive loss of sediment, due to the low selectivity of mechanized methods (Brault and 

Golven 1983). Additionally, vehicular and human traffic, used during the algal removal 

process, damage the superficial sediment layer, which has negative consequences for the 

resident flora. Accidental removal of sediment stabilizing organisms can also lead to 

beach erosion, as was observed in the Peel Inlet (Atkins et al. 1993). Removal is also 

expensive (Briand 1989; Atkins et al. 1993), with annual costs of $161,000 USD (Peel 

Inlet, Australia) to $200,000 USD (Bays of Saint-Brieuc and Lannion, France). 

Nutrient input reduction is the best strategy for successful management and 

restoration of eutrophic systems. Regulation of agricultural practices, both in fertilizer 

application management and livestock effluent treatment can lead to great reductions in N 
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and P inputs. Renovating and upgrading private and municipal sewage wastewater 

treatment facilities and practices can greatly reduce the release of nutrient pollution. 

Limiting lawn fertilizer use and industrial inputs aids system health. Through nutrient 

abatement programs and physical watershed alteration, some degree of restoration is 

possible. Following a major Ulva bloom, restoration efforts involving water flow 

redirection in a Tunisian lagoon caused a decrease in N inputs from 4000 ng/L to 400 

|ig/L and P inputs from 600 pg/L to 20 |ig/L (Morand and Briand 1996). Using reduced 

chlorophyll a readings as a tested measure of restoration response (Cloern 2001), 

reductions in nutrient imputs have improved system health in Tampa Bay, FL (Greening 

and Janicki 2006) and in the Potomac and Patuxent Rivers, VA (Kemp et al. 2005). 

Complete restoration to pre-enrichment conditions may prove difficult or 

impossible. Reducing nutrients doesn't always lead to the predicted outcomes (Philippart 

and Cadee 2000; Colijn and Cadee 2003). Duarte et al. (2009) found that nutrient 

abatement restoration efforts in four heavily studied eutrophic environments (Odense 

Fjord, Denmark; Gulf of Riga, Latvia/Estonia; Marsdiep, The Netherlands; Helgoland, 

Germany) were unable to return system conditions to those found prior to the nutrient 

enrichments that began between the 1960s and 1980s. Years after nutrient levels were 

reduced in these systems, chlorophyll a or diatom biomass remained at levels associated 

with their eutrophic peaks. 

Lack of complete restoration, however, does not mean these nutrient reduction 

efforts were a failure. Abating nutrient inputs halted the steady deterioration of these 

systems rather than fully reversing the course of the decline (Duarte et al. 2009). 

Considering the multiple change-inducing pressures on a given disturbed ecosystem 
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(over-fishing, warming, increased atmospheric CO2, marine acidification, invasion, and 

eutrophication) complete environmental restoration should not be the anticipated result of 

addressing only one of the causative factors. Yet, from a managerial and preservation 

standpoint, preventing excess nutrient inputs is a vital step in arresting deterioration in 

eutrophic coastal systems. Such efforts in Great Bay should be undertaken posthaste, 

with the understanding that complete system restoration, to pre-eutrophic conditions, 

should not be considered a likely final outcome. 
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APPENDIX A 

Water Total Nitrogen and Total Phosphorus 

Cedar Point Water Total Nitrogen (mg/L) 2008-2010 Cedar Point Water Total Phosphorus (mg/L) 2008-2010 

A B C Mean SD A B C Mean SD 

SEP 0.351 0.3211 0.6319 0.4347 0.1714 SEP 0.0033 0.0195 0.0457 0.0228 0.0214 

NOV 0.2604 0.3619 0.8122 0.4782 0.2937 NOV 0.0201 0.0274 0.0365 0.028 0.0082 

MAR 0.352 0.3063 0.3285 0.3289 0.0229 MAR 0.0582 0.047 0.0837 0.063 0.0188 

MAY 0.1174 0.0705 0.2976 0.1618 0.1199 MAY 0.0147 0.0405 0.0451 0.0334 0.0164 

JUL 0.4473 0.1531 0.1412 0.2472 0.1734 JUL 0.0299 0.0328 0.0134 0.0254 0.0105 

SEP 0.1723 0.2682 0.5149 0.3185 0.1767 SEP 0.0208 0.0258 0.0685 0.0384 0.0262 

NOV 0.6592 0.4016 0.3398 0.4669 0.1694 NOV 0.0035 0.0377 0.0589 0.0333 0.0279 

MAR 0.4622 0.3228 0.331 0.372 0.0782 MAR 0.0603 0.027 0.0231 0.0368 0.0205 

MAY 0.1716 0.217 0.6176 0.3354 0.2454 MAY 0.0388 0.0323 0.0984 0.0565 0.0364 

JUL 0.1326 0.2199 0.2005 0.1843 0.0458 JUL 0.03 0.031 0.055 0.0387 0.0142 

Wagon Hill Water Total Nitrogen (mg/L) 2008-2010 Wagon Hill Water Total Phosphorus (mg/L) 2008-2010 

A B C Mean SD A B C Mean SD 

SEP SEP 
NOV 1.0541 0.9592 0.6061 0.8731 0.2361 NOV 0.0997 0.1311 0.0701 0.1003 0.0305 

MAR 0.3032 0.36 0.9633 0.5422 0.3658 MAR 0.0127 0.0166 0.0374 0.0222 0.0133 

MAY 0.2631 0.3442 0.1524 0.2532 0.0963 MAY 0.009 0.0574 0.0234 0.0299 0.0248 

JUL 0.3203 0.4949 0.3178 0.3776 0.1016 JUL 0.0158 0.0387 0.0357 0.03 0.0125 

SEP SEP 
NOV 0.3433 0.3574 0.2856 0.3288 0.0381 NOV 0.065 0.0479 0.0416 0.0515 0.0121 

MAR 0.3344 0.3269 0.1563 0.2725 0.1007 MAR 0.0211 0.0046 0.0012 0.009 0.0107 

MAY 0.5354 0.2733 0.3497 0.3861 0.1348 MAY 0.0541 0.0157 0.048 0.0393 0.0206 

JUL 0.2785 0.5083 0.1236 0.3035 0.1936 JUL 0.022 0.03 0.023 0.025 0.0044 

Lubberland Creek Water Total Nitrogen (mg/L) 2008-2010 

ABC Mean SD 

Lubberland Creek Water Total Phosphorus (mg/L) 
2008-2010 

A B C  M e a n  S D  

SEP SEP 
NOV 0.9336 0.3414 0.244 0.5064 0.3732 NOV 0.0379 0.0425 0.0594 0.0466 0.0113 

MAR 0.495 0.6607 0.571 0.5755 0.083 MAR 0.0384 0.0367 0.0352 0.0368 0.0016 

MAY 1.0659 1.5104 0.8619 1.1461 0.3316 MAY 0.0355 0.0344 0.0298 0.0332 0.003 

JUL 0.7217 0.5245 0.6014 0.6159 0.0994 JUL 0.0946 0.0569 0.0705 0.074 0.0191 

SEP 1.0672 0.5247 0.9251 0.839 0.2813 SEP 0.0509 0.0627 0.047 0.0535 0.0082 

NOV 0.6675 0.5794 0.4222 0.5563 0.1243 NOV 0.004 0.0667 0.0455 0.0387 0.0319 

MAR 2.0496 0.476 0.4213 0.9823 0.9247 MAR 0.0679 0.0127 0.0096 0.03 0.0328 

MAY 0.3057 0.4541 0.3897 0.3831 0.0744 MAY 0.0369 0.0369 0.0338 0.0359 0.0018 

JUL 0.7191 0.7309 0.6138 0.6879 0.0645 JUL 0.088 0.087 0.076 0.0837 0.0067 
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Depot Road Water Total Nitrogen (mg/L) 2008-2010 Depot Road Water Total Phosphorus (mg/L) 2008-2010 

A B C Mean SD A B C Mean SD 

SEP 0.3 0.3778 0.326 0.3346 0.0396 SEP 0.0423 0.0573 0.0176 0.0391 0.02 

NOV 0.3717 0.1786 0.198 0.2494 0.1063 NOV 0.0454 0.0191 0.0063 0.0236 0.02 

MAR 0.2951 0.5823 0.3544 0.4106 0.1516 MAR 0.0238 0.0589 0.043 0.0419 0.0176 

MAY 0.1443 0.1211 0.336 0.2005 0.1179 MAY 0.0092 0.0234 0.0083 0.0136 0.0085 

JUL 0.6944 1.0302 0.4354 0.72 0.2982 JUL 0.0338 0.0162 0.0338 0.0279 0.0102 

SEP 0.3967 0.365 1.5324 0.7647 0.665 SEP 0.046 0.0492 0.0627 0.0526 0.0089 

NOV 1.1408 1.3585 1.1639 1.2211 0.1195 NOV 0.1224 0.0498 0.0796 0.0839 0.0365 

MAR 0.4144 0.4545 0.3726 0.4138 0.041 MAR 0.0307 0.0438 0.0279 0.0342 0.0085 

MAY 1.0555 0.8717 0.7212 0.8828 0.1674 MAY 0.1219 0.0357 0.0108 0.0561 0.0583 

JUL 0.1958 0.375 0.0515 0.2074 0.1621 JUL 0.022 0.025 0.031 0.026 0.0046 

Sunset Farm Water Total Phosphorus (mg/L) 2008-
Sunset Farm Water Total Nitrogen (mg/L) 2008-2010 2010 

A B C Mean SD A B C Mean SD 

SEP 0.6039 0.746 0.8933 0.7478 0.1447 SEP 0.1329 0.1431 0.1709 0.149 0.0197 

NOV 0.5129 0.299 0.4657 0.4259 0.1124 NOV 0.0454 0.0273 0.0358 0.0362 0.0091 

MAR 1.5171 0.8392 0.7948 1.0504 0.4048 MAR 0.0602 0.0697 0.0709 0.0669 0.0058 

MAY 1.2139 1.5049 0.0769 0.9319 0.7546 MAY 0.0622 0.0099 0.0647 0.0456 0.0309 

JUL 0.6473 1.0299 0.8983 0.8585 0.1944 JUL 0.0862 0.1433 0.1358 0.1218 0.031 

SEP 0.7727 0.7948 0.6354 0.7343 0.0864 SEP 0.0876 0.0898 0.0481 0.0752 0.0234 

NOV 0.4755 0.8104 0.8444 0.7101 0.2039 NOV 0.0701 0.0956 0.0891 0.085 0.0132 

MAR 0.4515 0.5086 1.2373 0.7325 0.4381 MAR 0.0321 0.0289 0.0349 0.032 0.003 

MAY 0.9407 0.9285 1.1083 0.9925 0.1005 MAY 0.0553 0.0776 0.0623 0.0651 0.0114 

JUL 0.5944 0.9772 0.2511 0.6076 0.3632 JUL 0.099 0.124 0.105 0.1093 0.0131 
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APPENDIX B 

Ulva tissue nitrogen and phosphorus 

Cedar Point Ulva 
2010 

tissue Total Nitrogen Percent 2008- Cedar Point Uh/a tissue Total Phosphorus Percent 2008-
2010 

A B C Mean SD A B C Mean SD 

SEP 4,435 4.16 4.179 4.258 0.154 SEP 0.149 0.124 0.102 0.125 0.023 

NOV 4.314 3.132 4.192 3.879 0.65 NOV 0.092 0.134 0.128 0.118 0.023 

MAR MAR 
MAY 4.205 4.205 MAY 0.185 0.185 

JUL 4.98 4.98 JUL 0.113 0.113 

SEP 2.992 3.387 3.582 3.32 0.301 SEP 0.131 0.086 0.078 0.098 0.029 

NOV NOV 
MAR MAR 
MAY 2.638 5.966 4.139 4.248 1.666 MAY 0.178 0.178 

JUL JUL 

Wagon Hill Farm 
2008-2010 

Ulva tissue Total Nitrogen Percent Wagon Hill Farm Ulva tissue 
2008-2010 

Total Phosphorus Percent 

A B C Mean SD A B C Mean SD 

SEP SEP 
NOV 4.286 4.222 3.116 3.875 0.658 NOV 0.089 0.12 0.086 0.098 0.019 

MAR 2.499 2.927 2.726 2.718 0.214 MAR 0.174 0.147 0.16 0.161 0.014 

MAY 2.168 2.598 2.587 2.451 0.245 MAY 0.114 0.15 0.148 0.137 0.02 

JUL 1.668 0.666 2.161 1.498 0.761 JUL 0.133 0.108 0.125 0.122 0.013 

SEP 1.611 1.955 1.783 0.243 SEP 0.122 0.137 0.13 0.011 

NOV 2.191 1.924 2.057 0.188 NOV 0.165 0.156 0.16 0.006 

MAR 1.616 1.995 3.366 2.326 0.921 MAR 0.157 0.162 0.262 0.194 0.059 

MAY 2.418 2.847 2.906 2.724 0.266 MAY 0.192 0.186 0.185 0.188 0.004 

JUL 0.933 0.868 1.128 0.976 0.135 JUL 0.115 0.116 0.116 5E-04 

Lubberiand Creek Ulva tissue Total Nitrogen Percent 
2008-2010 

Lubberiand 
2008-2010 

Creek Ulva tissue Total Phosphorus Percent 

A B C Mean SD A B C Mean SD 

SEP 3.519 3.898 3.988 3.802 0.249 SEP 0.203 0.133 0.157 0.164 0.035 

NOV 4.57 4.306 4.316 4.397 0.149 NOV 0.245 0.229 0.236 0.237 0.008 

MAR 3.736 4.605 4.635 4.325 0.511 MAR 0.175 0.136 0.179 0.164 0.024 

MAY 3.98 4.108 4.249 4.112 0.134 MAY 0.166 0.166 0.178 0.17 0.007 

JUL 3.906 3.888 3.91 3.901 0.012 JUL 0.171 0.16 0.136 0.156 0.018 

SEP 2.581 2.462 2.511 2.518 0.06 SEP 0.135 0.114 0.075 0.108 0.03 

NOV 3.925 3.251 4.281 3.819 0.523 NOV 0.102 0.153 0.103 0.119 0.029 

MAR 5.105 5.079 4.772 4.985 0.185 MAR 0.134 0.155 0.13 0.14 0.013 

MAY 5.887 5.014 5.509 5.47 0.437 MAY 0.255 0.195 0.238 0.229 0.031 

JUL 2.798 2.671 2.683 2.717 0.07 JUL 0.128 0.116 0.123 0.122 0.006 
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Depot Road Ulva tissue Total Nitrogen Percent 2008-
2010 

Depot Road Ulva tissue Total Phosphorus Percent 
2008-2010 

A B C Mean SD A B C Mean SD 

SEP 3.649 4.766 4.847 4.421 0.669 SEP 0.23 0.211 0.16 0.2 0.036 

NOV 4.325 4.605 4.585 4.505 0.156 NOV 0.12 0.193 0.14 0.151 0.038 

MAR 4.785 4.324 4.628 4.579 0.234 MAR 0.136 0.14 0.112 0.129 0.015 

MAY 3.823 3.773 2.76 3.452 0.6 MAY 0.18 0.175 0.192 0.183 0.008 

JUL 3.951 4.127 4.23 4.103 0.141 JUL 0.145 0.15 0.144 0.146 0.003 

SEP 1.991 2.918 2.825 2.578 0.51 SEP 0.139 0.105 0.107 0.117 0.019 

NOV 3.376 3.47 2.969 3.272 0.266 NOV 0.116 0.149 0.09 0.118 0.029 

MAR MAR 
MAY 2.419 2.135 2.215 2.257 0.146 MAY 0.124 0.11 0.132 0.122 0.011 

JUL 2.362 2.347 2.288 2.333 0.039 JUL 0.114 0.114 0.108 0.112 0.004 

Sunset Farm Ulva tissue Total Nitrogen Percent 2008-
2010 

Sunset Farm Ulva tissue Total Phosphorus Percent 
2008-2010 

A B C Mean SD A B C Mean SD 

SEP 3.679 3.543 3.942 3.721 0.203 SEP 0.229 0.229 0.238 0.232 0.005 

NOV 4.04 3.017 4.53 3.862 0.772 NOV 0.221 0.158 0.245 0.208 0.045 

MAR 4.653 4.702 4.49 4.615 0.111 MAR 0.178 0.159 0.177 0.172 0.011 

MAY 4.074 3.594 4.235 3.968 0.333 MAY 0.194 0.167 0.18 0.18 0.014 

JUL 3.446 3.628 3.876 3.65 0.216 JUL 0.145 0.144 0.148 0.146 0.002 

SEP 2.865 2.603 2.433 2.633 0.217 SEP 0.113 0.102 0.137 0.118 0.018 

NOV 3.451 3.248 3.718 3.472 0.236 NOV 0.106 0.113 0.125 0.115 0.01 

MAR 4.657 4.847 4.564 4.689 0.144 MAR 0.147 0.184 0.17 0.167 0.018 

MAY 5.307 5.307 MAY 
JUL 3.195 3.127 3.286 3.203 0.08 JUL 0.152 0.152 0.156 0.153 0.002 

142 



APPENDIX C 

Monthly biomass by site (g dry weight/m ) +-SD, n=40 

Cedar Point Biomass (g dry weight/mA2) 2008-2010 

Fucus 
vesiculosus Ulva 

Foliose Polysiphonia Ascophyllum + ecad Chondms intest & Zostera 
Ulva Gracilaria stricta nodosum scorpiodes crispus prolifera marina 

7 Q*Vi~ 
SEP 37.1 0+-0 

1187.03+-
0.05+-0.22 2165.1 

66.85+-
231.2 0+-0 0+-0 

2.88+-
6.85 

5.03+-
NOV 11.15 0+-0 2.23+-7.57 

3522.5+-
4658.09 

23.28+-
100.87 0+-0 0+-0 

2.85+-
13.58 

0.003+-
MAH 0.016 0+-0 

114.03+-
0.003+-0.016 70.43 1.97+-7.35 0+-0 0+-0 

0.59+-
3.62 

0.07+-
MAY 0.24 0+-0 0.13+-0.37 65.0+-123.29 

20.01+-
100.91 

0.03+-
0.16 

0.03+-
0.21 0+-0 

JUL 0+-0 
0.05+-
0.12 0.13+-0.51 

118.06+-
122.44 1.92+-0.51 

0.08+-
0.51 0+-0 

0.12+-
0.22 

134.3+-
SEP 330.1 0+-0 1.5+-4.46 

407.34+-
546.6 

60.71+-
159.87 

8.4+-
38.42 0+-0 

3.47+-
6.28 

0.19+-
NOV 1.15 0+-0 0.04+-0.24 

1971.4+-
6588.2 

22.42+-
79.36 0+-0 0+-0 

0.05+-
0.33 

0.49+-
MAR 2.39 0+-0 

1463.7+-
0.01+-0.02 1814.5 48.7+-161.2 0+-0 0+-0 0+-0 

MAY 
0.34+-
2.17 0+-0 0.06+-0.19 

678.6+-
1189.39 

75.86+-
183.5 0+-0 0+-0 0.3+-0.9 

JUL 
0.49+-
1.95 0.05+-0.3 0.03+-0.09 896.3+-996.6 20.2+-68.7 

0.012+-
0.08 0+-0 0.9+-2.4 
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Wagon Hill Farm Biomass (g dry weight/mA2) 2008-2010 

Ascophyllum 
Foliose Ulva Gracilaria nodosum 

Fucus Ahnfeltia Ulva Infest Zostera 
vesiculosus plicata & pmllfera marina 

SEP 3.25+-20.6 0+-0 0+-0 0+-0 0+-0 0+-0 0+-0 

NOV 2.75+-5.9 0+-0 352.9+-1520.8 
216.2+-
718.9 0+-0 0.35+-1.1 0+-0 

MAR 0+-0 0+-0 0+-0 0+-0 0+-0 0.39+-0.9 0+-0 

MAY 0.013+-0.06 0+-0 2.6+-15.3 2.97+-14.05 0+-0 3.5+-7.3 0.07+-0.25 

JUL 0+-0 0+-0 7.9+-27.1 6.9+-17.98 0+-0 2.14+-5.8 0+-0 

SEP 0.05+-0.32 0+-0 52.44-329.3 23.9+-140.2 0+-0 3.6+-18.8 0+-0 

NOV 0.72+-3.1 0+-0 
141.7+-

45.17+-285.7 841.5 0+-0 2.5+-9.2 1.31 +-6.6 

MAR 0.5+-1.6 0+-0 0+-0 15.7+-71.1 0.05+-0.32 10.18+-26.2 0+-0 

MAY 6.04+-23.3 0+-0 5.7+-34.6 15.1+-94.7 0+-0 23.8+-57.9 0+-0 

JUL 5..2+-17.9 0+-0 125.5+-366.7 17.3+-83.1 0+-0 3.2+-18.8 0+-0 
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Lubbetland Creek Biomass (g dry weight/mA2) 2008-2010 

Follose Ulva Gracilaria 
Polysiphonia 
stricta 

Ascophyllum Fucus Ulva infest Zostera 
nodosum vesiculosus & prolifera marina 

260.4+-
SEP 608.8 28.4+-133.1 0+-0 0+-0 0+-0 0+-0 1.08+-5.7 

733.8+-
NOV 613.0 41.7+-79.4 0+-0 0+-0 

241.1+-
1S24.5 0+-0 2.7+-3.8 

MAR 4.5+-4.7 0.84+-2.5 0+-0 1.4+-8.6 1.8+-5.9 0+-0 1.2+-3.0 

MAY 4.3+-7.2 0.43+-1.7 0+-0 0+-0 3.7+-11.7 0.03+-0.19 0.13+-0.5 

JUL 1.7+-3.0 0.19+-0.66 0+-0 0+-0 2.5+-9.8 0+-0 0.29+-1.8 

98.76+-
SEP 180.8 28.5+-88.5 0+-0 0+-0 0+-0 0+-0 3.2+-8.B 

175.8+-
NOV 211.5 55.85+-110.9 0.35+-1.16 6.2+-39.0 0+-0 0+-0 4.18+-9.2 

MAR 12.4+-23.3 S.7+-25.7 0+-0 0+-0 0+-0 0+-0 22.2+-51.4 

MAY 12.2+-21.5 0.12+-0.48 0+-0 0+-0 0+-0 0+-0 0.01+-0.04 

JUL 24.16+-34.0 0.47+-0.93 0+-0 0+-0 0+-0 0+-0 0.18+-0.3 
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Depot Road Biomass (g dry weight/mA2) 2008-2010 

Ulva 
Foliose Polysiphonia Ascophyllum Fucus Ceramium Ahnfeltia intesl & Zostera 
Ulva Gracilaria stricta nodosum vesiculosus rubrum plicata prolilera marina 

144.8+- 191.6+- 0.15+-
SEP 266.5 833.1 2.5+-7.4 1.6+-10.3 15.9+-78.9 0.58 0+-0 0+-0 4.4+-S.3 

431.1+- 0.28+-
NOV 170+-245.8 774.2 0+-0 0+-0 0+-0 1.01 0+-0 0+-0 4.4+-7.2 

0.01+-
MAR 5.35+-7.7 6.3+-11.3 0+-0 0.6+-4.1 0.12+-0.76 0.02 0+-0 1.8+-3.5 

0.01+-
MAY 2.8+-5.7 1.5+-5.5 0+-0 0+-0 0+-0 0+-0 0+-0 0+-0 0.05 

0.05+-
JUL 1.76+-4.7 0.06+-0.14 0.01+-0.03 0+-0 0+-0 0+-0 0+-0 0+-0 0.18 

180.98+- 158.8+- 26.4+-
SEP 391.5 383.0 0+-0 0+-0 0+-0 0+-0 0+-0 1.15+-4.2 111.5 

272.8+-
NOV 443.0 38.4+-93.1 0.2+-1.2 0+-0 0.03+-0.16 0+-0 0+-0 0+-0 8.9+-12.0 

MAR 0+-0 0+-0 0+-0 0+-0 0+-0 0+-0 0+-0 0+-0 0+-0 

MAY 6.6+-38.0 0+-0 0+-0 0+-0 0+-0 0+-0 0+-0 0+-0 0.1+-0.6 

JUL 11.3+-41.0 0.23+-1.0 0+-0 0+-0 0+-0 0+-0 0+-0 0.6+-4.1 0.16+-0.8 

146 



Sunset Farm Biomass (g dry weight/mA2) 2008-2010 

Polysiphonia 
Foliose Ulva Gracilaria stricta 

Ascophyllum Fucus Chondrus 
nodosum vesiculosus crispus 

Zostera 
marina 

547.8+-
SEP 802.1 115.3+-266.2 0+-0 0+-0 0+-0 0+-0 0.9+-1.7 

NOV 225.6+-S77 264.8+-391.9 0+-0 24.0+-151.8 0+-0 0+-0 1.85+-2.7 

MAR 1.3+-2.5 2.0+-4.1 0+-0 0.2+-0.9 0+-0 0+-0 0.2+-0.5 

MAY 2.1+-3,8 0.7+-2.5 0.01+-0.02 0+-0 0+-0 0+-0 0+-0 

JUL 1.9+-4.2 2.1+-5.5 0.01+-0.02 0+-0 0+-0 0+-0 0+-0 

SEP 38.0+-72.5 47.5+-113.3 0.2+-0.8 0+-0 0+-0 0+-0 1.8+-5.6 

124.3+-
NOV 163.4 273.1 +-380.6 0.02+-0.4 0+-0 0+-0 0.14+-0.9 5.9+-10.7 

MAR 5.2+-18.8 19.15+-47.2 0+-0 0+-0 0+-0 0.003+-0.02 3.2+-7.0 

MAY 0.6+-3.0 0.06+-0.4 0+-0 0+-0 13.5+-70.5 0+-0 0.4+-1.5 

JUL 24.2+-34.0 1.09+-3.9 0+-0 0+-0 0+-0 0+-0 0.7+-4.1 



APPENDIX D 

Monthly percent cover by site (+- SD, n=40) 

Cedar Point Percent Cover 2008-2010 

Ascophyllum 
nodosum + 

Foliose ecad Fucus Chondrus Ulva intest Zostera 
Ulva Gracilaria scorpiodes vesiculosus crispus & prolifera marina 

2.95+-
SEP 6.03 0+-0 80.25+-17.7 0.55+-2.78 0.5+-2.2 0+-0 0.7+-1.57 

NOV 1+-3.4 0+-0 74.9+-20.3 1.6+-7.12 0+-0 0+-0 0.1+-0.63 

MAR 0+-0 0+-0 82.2+-14.8 0+-0 0+-0 0+-0 0+-0 

MAY 0.1+-0.6 0+-0 62.6+-27.9 5.0+-16.8 0+-0 0+-0 0.1+-0.6 

JUL 0.1+-0.6 Q+-0 68.7+-22.b 2.2+-6.3 0.2+-1.3 I.3+-8.2 0+-0 

SEP 7.3+-15.8 0+-0 68.4+-28.0 1.3+-3.8 0+-0 0.1+-0.6 0+-0 

NOV 1.2+-5.9 0+-0 69.3+-22.7 1.9+-10.9 0+-0 0+-0 0+-0 

MAR 0+-0 0+-0 68.7+-28.4 3.0+-15.9 0+-0 0+-0 0.2+-.9 

MAY 0+-0 0+-0 54.4+-26.1 6.6+-12.5 0+-0 0+-0 2.6+-5.0 

JUL 0+-0 0+-0 56.2+-21.( 2.3+-5.3 0+-0 0+-0 3.3+-6.1 
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Wagon Hill Farm Percent Cover 2008-2010 

Ascophyllum Fucus Ulva intest Zostera 
Foliose Ulva Gracilaria nodosum vesiculosus & prolifera marina 

SEP 0+-0 0+-0 0+-0 0+-0 0+-0 0+-0 

NOV 17.6+-30.4 0+-0 14.2+-33.6 2.0+-9.2 0+-0 12.3+-24.8 

MAR 17.8+-30.9 0+-0 4.5+-16.7 1.3+-7.6 0+-0 4.2+-11.9 

MAY 0.1+-0.6 0+-0 10.9+-26.5 0.9+-2.5 21.3+-31.1 0+-0 

JUL 0.1+-0.6 0+-0 8.8+-24.0 1.5+-6.2 2.6+-6.6 0+-0 

SEP 0+-0 0+-0 8.6+-20.4 2.8+-9.5 6.9+-16.2 0+-0 

NOV 0+-0 0+-0 7.8+-22.7 0+-0 12.9+-26.0 0+-0 

MAR 0.2+-).9 0+-0 2.8+-8.3 2.1+-6.7 10.5+-23.6 0+-0 

MAY 0+-0 0+-0 8.2+-22.0 0.9+-2.3 16.1+-28.1 0+-0 

JUL 0+-0 0+-0 2.3+-5.7 2.9+-8.4 5.9+-14.0 0.4+-1.5 



Lubberiand Creek Percent Cover 2008-2010 

Foliose Fucus Zostera 
Ulva Qracilaria vesiculosus marina 

SEP 86.7+-14.3 6.3+-6.4 0+-0 0+-0 

NOV 90.1+-18.4 9.4+-12.7 0+-0 0+-0 

MAR 39.1+-35.4 10.75+-18.6 4.3+-12.5 1.9+-4.8 

MAY 21.8+-32.9 0.4+-1.5 2.3+-8.2 0+-0 

JUL 18.3+-27.9 0.4+-1.5 0+-0 1.0+-3.7 

SEP 30.6+-35.1 12+-22.4 0+-0 3.6+-9.2 

NOV 54+-46.0 6.1+-12.5 0+-0 0.4+-2.0 

MAR 3.1+-6.6 0.4+-1.5 0.9+-4.6 31.5+-36.3 

MAY 20.8+-32.5 0.3+-1.4 2.4+-0.7 0+-0 

JUL 28.6+-31.4 2.1+-5.4 1.2+-5.1 2.9+-5.7 
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Depot Road Percent Cover 2008-2010 

Foliose Ascophyllum Fucus Zostera 
Ulva Gracilaria nodosum vesiculosus marina 

SEP 55.3+-35.7 24.3+-29.6 0+-0 0+-0 2.5+-3.2 

NOV 25.1 +-28.0 44.1+-33.7 0+-0 0+-0 0.1+-0.6 

MAR 20.9+-27.2 27.9+-38.8 0.1+-0.6 0+-0 1.9+-3.9 

MAY 14.0+-23.4 3.2+-10.5 0+-0 0+-0 0+-0 

JUL 14.1+-22.2 1.2+-3.6 0+-0 0.2+-1.3 0.8+-5.1 

SEP 36.3+-34.5 14.8+-25.7 0+-0 0+-0 5.9+-16.6 

NOV 42.8+-46.0 6.7+-1S.8 0+-0 0+-0 9.2+-22.9 

MAR 0.1+-0.6 0+-0 0+-0 0.6+-3.2 0+-0 

MAY 1.7+-5.0 0+-0 0+-0 0.5+-3.2 0.2+-0.9 

JUL 7.6+-17.7 1.6+-3.6 0+-0 0+-0 0.2+-0.9 



Sunset Farm Percent Cover 2008-2010 

Foliose Ulva Gracilaria Fucus vesiculosus Zostera marina 

SEP 38.1+-35.9 21.7+-26.4 0+-0 0.7+-1.4 

NOV 59.9+-33.1 39.2+-35.9 0+-0 0+-0 

MAR 5.2+-8.7 12.2+-23.2 1.4+-8.9 0.7+-4.4 

MAY 15.3+-19.7 3.1+-7.3 0+-0 2.1+-7.1 

JUL 15.2+-24.6 7.2+-15.2 0+-0 2.4+-10.0 

SEP 21.9+-22.3 16.0+-22.7 0+-0 3.7+-14.9 

NOV 45.2+-46.1 34.9+-37.3 0+-0 3.4+-15.7 

MAR 0.7+-2.5 11.2+-25.9 0.1+-0.6 2.0+-5.7 

MAY 2.1+-4.7 0.6+-1.7 0+-0 4.7+-17.8 

JUL 6.6+-14.6 8.7+-15.6 0+-0 0+-0 



APPENDIX E 

Herbarium collections identified through DNA sequencing of the designated gene. COl is the cytochrome c oxidase 1 region of the 
mitochondrial genome. ITS2 is the internal transcribed spacer 2 region of the nucleus. All sequences were matched to sample 
sequences found on GenBank. 

Acc # Site Date Collector Species Confirmation 

70056 Mere Point, Brunswick. ME U: 1:19.99 Mathieson, A. G. tikvahiae 
Sequenced 
COl 

78278 Dover Point, NH 10:18:2005 Mathieson, A. G tikvahiae 
Sequenced 
COl 

78247 Dover Point, 11:12.2003 Johnson, K. G vermicuiophyila 
Sequenced 
COl 

15551 Dover Point, NH 5/29/1996 Reynolds, N.B G. tikvahiae 
Sequenced 
COl 

57001 Meduacook Rtvet; ME 6,17:1995 Mathieson, A. G tikvahiae 
Sequenced 
COl 

58130 Glidden PT, Dam*:i&CQtta>.ME 6:16.1995 Mathieson, A., EL Hehre G tikvahiae 
Sequenced 
COl 

54075 Oyster River. NH 9:21.19.94 Mathieson, A. G. tikvahiae 
Sequenced 
COl 

53058 SaltBav. Nobkboro.ME 8 I t .  1994 Mathieson, A.. E Hehre G tikvahiae 
Sequenced 
COl 



63876 Dover Point, Ml 9:11993 Gerwick, J. G tikvahiae 
Sequenced 
COl 

50299 Welsh Cove, Great. Bay, NH 2:24 1993 Mathieson. A. G tikvahiae 
Sequenced 
CO! 

48948 Damaxisc oitaRiver .ME .7:4,198.5 Penmman. C. G tOaahiae 
Sequeoced 
COl 

48284 Dover Point, MI 94 19.8.3 Turgeon, L. G tikvahiae 
Sequenced 
COl 

35218 Ctysta River, NH .8:8,1977 Euttertoji, P. G. tikvahiae 
Sequenced 
COl 

35822 Moody PT, NH 8 3.1977 Costa, M., P. Fuller ton G. tikvahiae 
Sequenced 
COl 

27963 Goat Island, Great Bay, .NH .6:1219.76 Mathieson, A. G tikvahiae 
Sequenced 
COl 

24068 Dover Point, NH 8.2.1:1975 
Norall, T. & M. 
Josselvn G. tikvahiae 

Sequenced 
COl 

23944 Sullivan bridge, GBES, NH 711 1975 Mathieson, A. G tikvahiae 
Sequenced 
COl 

18191 Welsh Cove, Great Bay, NH &2M972 Hutchinsoa B. G. tikvahiae 
Sequenced 
COl 

10183A Weeks PT, Great Bay, NH 89,1967 Mathieson, A. G. tikvahiae 
Sequenced 
COl 

748 Saodv Point. Greenland. NH 7 20 1966 Mathieson. A. G tikvahiae 
Sequenced 
COl 



4535 Weeks PT, Great Bay, XH 4 23 1966 Searles, MJP. G. itkxahiae 
Sequenced 
COl 

75757 ElJi&vilte Harbor. S.taK. Park,. MA 11.18:2000 Mathieson, A.C. 
G. 
vermiculoprnlla 

Sequenced 
COl 

72810 Duxbury Marsh, Duxb)*y„MA .12/2/2000 Mathieson, A.C. 
G. 
vermicuiophylla 

Sequenced 
COl 

72561 Duxbury Public Pier, Duxbury, MA mim Mathieson. A.C. 
G. 
vermiculophylla 

Sequenced 
COl 

73768 
West Yarmouth, MA: Seagull 
Beach llf.4x2.QQQ Mathieson, A.C. 

G. 
vermiculophylla 

Sequenced 
COl 

72355 Bourne, MA: MAMaritime Acad. .8/1.1:2000 Mathieson, A.C. G. tikx:ahiae 
Sequenced 
COl 

73062 ProvincetownHarbor, MA 114-2000 Mathieson, A.C. 
G. 
vermiculcphylla 

Sequenced 
COl 

23781 
Sullivan Bridge- Piling 4E, GBES, 
NH 7,18/1975 Mathieson, A. U rigida 

Sequenced 
ITS 

15269 Dover Point, NH 2141969 Reynolds, N.B U pertusa 
Sequenced 
ITS 

8407 Fort Stark, New castle, NH 4'2.0'1967 
Mathieson, Hehre, 
Conway U pertusa 

Sequenced 
ITS 

78229 Rye Harbor, Rye, NH 1/25(2003 Carrmgton & Glieco U. pertusa 
Sequenced 
ITS 

48077 Seabrook, NH station 17 offshore 9/12(1982 Scott. H. U. iactuca 
Sequenced 
ITS 

1—* 
U\ Ul 



36242 Qvsrer River, Durham. Ml 10/25/1977 Costa, M. U compressa 
Sequenced 
ITS 

24989 Bunker Creek, Durham. Ml 9.121968 Mathieson. A. U pertusa 
Sequenced 
ITS 

19518A Little Bay Site, Durham, NH .8:24 1972 Hutchinson. B. U compressa 
Sequenced 
ITS 

4352 Woodman Pt. Xevvinstoo. Ml 8 191966 Conway. Shipman U rigida 
Sequenced 
ITS 



APPENDIX F 

Doctoral study collections identified through DNA sequencing of the designated gene. COl is the cytochrome c oxidase 1 region of 
the mitochondrial genome. ITS2 is the internal transcribed spacer 2 region of the nucleus. All sequences were matdied to sample 
sequences found on GenBank. 

Acc# Date Location Collector Species Confirmation 

NHA 524468 .11/1522008 Sunset Farm, GBES, N.H JCN G. vermiculophylla Sequenced C01 

NHA 524469 1.1/.15./20Q8 Sunset Farm, GB.E.S,.N.H JCN G. vermicuiop hylla Sequenced C01 

NHA S24474 1.1/.17/2Q08 Lubberland Creek, GB.ES...NH JCN G, vermiculop hylla Sequenced C01 

NHA 524473 5/23/20,0.9 Sunset Farm, GB.ES...N.H JCN G vermiculophylla Sequenced C01 

NHA 524472 5/23/2009 Sunset Farm, GBES.NH JCN G. vermiculophylla Sequenced COl 

NHA 524471 5/23/2009 Sunset Farm, GBES.N.H JCN G vermiculophylla Sequenced C01 

NHA 524470 5/28/2009 Sunset Farm, GBE.S,.W.H JCN G. tikvahiae Sequenced C01 

NHA 524478 .5/23/200.9 Depot Rd, GBES.NH JCN G tikvahiae Sequenced C01 

NHA 524479 5/23/2009 Depot Rd. GBES.NH JCN G. tikvahiae Sequenced C01 

NHA 524480 5/23/2009 Depot Rd, GBES.NH JCN G. tikvahiae Sequenced C01 

NHA 524476 5/27/2QQ9 Lubberland Creek, GBES.MH JCN G. tikvahiae Sequenced C01 

NHA 524475 5/27/.200.9 Lubberland Creek, GB.E5...N.H JCN G. vermiculophylla Sequenced C01 

NHA 524714 7/23/200.9 Depot Rd, GBES.NH JCN G. tikvahiae Sequenced C01 

NHA 554795A 7/23/2009 Depot Rd, GBES. NH JCN G tikvahiae Sequenced C01 

NHA 554795B .7/23/200.9 Depot Rd, .GBES. NH JCN G vermiculophylla Sequenced C01 

NHA 554793A .3/17/201.1 BarnstaWe.MA, MiJ!way&.ea,c)) JCNTSB G. vermiculophylla Sequenced C01 



NHA 554793E 3/.17/20.11 BacnstaWe.MA. MiJlway.Bea.ch JCNTSB 6 vermicutophyila Sequenced C01 

NHA 554794D .3/17/20.11 Barnstabte.WA, Milway Beach JCN TSB G. vermicutophyila Sequenced CQ1 

NHA 554792A 3/17/.20.11 W. Harwich,MA Near Herring mouth JCN TSB G. vermicutophyila Sequenced C01 

NHA 554792£ 3/17/201.1 W. Warwick,. MA Near Herring mouth JCN TSB G. vermicutophyila Sequenced C01 

NHA 554790A .3/.1.7/2ail W,.Yarmouth,..WA Lews Pond JCNTSB G. vermicutophyila Sequenced C01 

NHA 554789C 3/17/20.11 Barnstable.. WA, near Audobon JCNTSB G. vermicutophyila Sequenced C01 

NHA 554789D 3/1.7/2011 Barnstable,. MA, near Audobon JCN TSB G. vermicutophyila Sequenced COI 

NHA 554799C .3/23/20.11 Quxbury,..MA, pubic shipyard JCN G vermicutophyila Sequenced C01 

NHA 554799D 3/23/20.1.1 Quxi>ury,MA. public shipyard JCN G. vermicutophyila Sequenced COI 

NHA 554788B .3/23/2011 Duxbury...MA, public shipyard JCN G vermicutophyila Sequenced C01 

NHA 554798A 3/23/2011 Quxbury, MA, town landing JCN G. vermicutophyila Sequenced C01 

NHA 554798D 3/24/2011 Du*bufy,..MA, town landing JCN G. vermicutophyila Sequenced COI 

NHA 524449 9/30/2008 Sunset Farm, GB.ES, NH JCN U. rigkia Sequenced ITS2 

NHA 524450 9/30/20.08 Sunset Farm, GBES, NH JCN U. compressa Sequenced ITS2 

NHA 524451 9/30/20.08 Sunset Farm, GB.ES, NH JCN U. compressa Sequenced ITS2 

NHA 524438 9/3.0/2008 Depot Rd, GfiE.S.N.H JCN U. rigkia Sequenced ITS2 

NHA 524439 .9/30/2008 Depot Rd, GBES..MH JCN U. rigkia Sequenced ITS2 

NHA 524423 1.1/.1.4/2CG8 Cedar Pt, G3ES..N.H JCN U rigkia Sequenced ITS2 

NHA 524429 11/15/2Q08 Bunker Creek, GB.ES., N.H JCN U. compressa Sequenced ITS2 

NHA 524430 .11/16/2008 Wagon Hil Farm, GB.ES(.N.H JCN U. compressa SequencedITS2 

NHA 524431 11/16/2008 Wagon Hil Farm, GBE3, N.H JCN U. compressa Sequenced ITS2 

NHA 524426 .11/16/2008 Cedar Pt, .G0.ES..NH JCN U. rigkia Sequenced ITS2 

NHA 524426 .1.1/16/2008 Cedar Pt. GBES. NH JCN U. riattia Sequenced ITS2 



NHA 524460 1.1/.17/2Q08 Lubberland Creek, GB.ES.tlH JCN U. rigkla Sequenced ITS2 

NHA 524462 1.1/.1.7/2008 Lubberland Creek, GBES.NH JCN (J rigkia Sequenced ITS2 

NHA 524463 1.1/.17/20.08 Lubberland Creek, GB.ES.N.H JCN U rigida Sequenced ITS2 

NHA 524464 1.1/.17/2Q08 Lubberland Creek, GB.ES. N.H JCN U. rigida Sequenced ITS2 

NHA 556S89A 5/15/2COS Chariestown Breach way, Ri JCN U compress# Sequenced ITS2 

556589 B 5/15/2008 .Chariestown Breach way.RI JCN U. compressa Sequenced ITS2 

NHA 556591A 5/15/2008 NewHaven.CI JCN U compressa Sequenced ITS2 

556591 B 5/15/2008 New. Haven.. CI JCN U. compressa Sequenced ITS2 

556591C 5/15/2008 New. Haven,. C.T JCN U. compressa Sequenced ITS2 

NHA 556592 5/.15/20.0.8 Black Point, Narraaanssett.R! JCN U laciuca Sequenced ITS2 

NHA 556593 5/.15/2008 Black Point, Narrasanssett,.R! JCN U. protifera Sequenced ITS2 

NHA 556594 5/.15/200.8 Rocky Neck SP, Rl JCN U. lactoa Sequenced ITS2 

NHA 556595 5/15/200.8 Falmouth. He istits. MA JCN U prolifera Sequenced ITS2 

NHA 524742 7/28/2009 Depot Rd, GBES.N.H JCN U compressa Sequenced ITS2 

NHA 524738A .7/2S/.2Q0.9 Depot Rd, GB£S.,.N.H JCN U rigkia Sequenced ITS2 

5247 38B .7/28/2009 Depot Rd, GB.ES. N.H JCN U compressa Sequenced ITS2 

NHA 554342 .1.1/20/20.09 N ew Meadows River, M E. JCN U. protifera Sequenced ITS2 

NHA 554843 1.1/20/20.03 Wharton Pt., M E JCN U. rigkia Sequenced ITS2 

NHA 556568 11/20/2009 Mere Pt., ME JCN U compressa Sequenced ITS2 

NHA 556569 .1.1/2.0/2009 Mere Neck, ME JCN U. mtestinalis Sequenced ITS2 

NHA 556570 .1.1/2.0/20.09 South. free port, ME JCN U. protifera Sequenced ITS2 

NHA 556572 .11/20/20.09 Motel East, EastportWE JCN U. mtestinalis Sequenced ITS2 

NHA 556572 .1.1/2.0/2009 Motel East, Eastaori.M.E JCN £/. prolifera Sequenced ITS2 



NHA 556573 11/202009 Motel East, Ea&tportWE JCN U lactuca Sequenced ITS2 

NHA 556573 11/202009 Motel East, Ea&tportME JCN U prolifera Sequenced ITS2 

NHA 556574 .1.1/22/2009 Little Augusta, Whiting, ME JCN U rigida Sequenced ITS2 

NHA 556575 1.1/22/20.09 Little Augusta, Whiting, ME JCN U. prolifera Sequenced ITS2 

NHA 556576 1.1/22/2009 Wilber Neck, EaatR0.rt. M E JCN U. prolifera Sequenced ITS2 

NHA 556578 1.1/22/2009 Wilber Neck, EastftO.rt.ME JCN U. intestinalis Sequenced ITS2 

NHA 554822 12/.14/20.Q9 C. Challenger hull at ,CML...Ntt JCN U lactua Sequenced ITS2 

NHA 554823 .12/1.4/2009 C. Challenger hull at CML,..NH. JCN U lactua Sequenced ITS2 

NHA 554824 12/.1.4/200S C. Challenger hull at CML...NW JCN U. lactua Sequenced ITS2 



APPENDIX G 

Restriction Fragment Length Polymorphism identifications. Restriction digests of 
the 3' end of COl using the DpnII enzyme revealed clear band size differences 
between species. 

Sample ID Accession # Collected Location Collector Species ID Confirmation 

JCN760A NHA 556612 
28-Sep-

11 
Lubberland 
Creek JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN760B 

NHA 556612 
28-Sep-

11 
Lubberland 
Creek JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN760C 

NHA 556612 

28-Sep-
11 

Lubberland 
Creek JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN760D 

NHA 556612 

28-Sep-
11 

Lubberland 
Creek JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN761A NHA 556613 
28-Sep-

11 
Lubberland 
Creek JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN761B 

NHA 556613 
28-Sep-

11 
Lubberland 
Creek JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN761C 

NHA 556613 

28-Sep-
11 

Lubberland 
Creek JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN761D 

NHA 556613 

28-Sep-
11 

Lubberland 
Creek JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN762A NHA 556614 
28-Sep-

11 
Lubberland 
Creek JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN762B 

NHA 556614 
28-Sep-

11 
Lubberland 
Creek JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN762C 

NHA 556614 

28-Sep-
11 

Lubberland 
Creek JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN762D 

NHA 556614 

28-Sep-
11 

Lubberland 
Creek JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN763A NHA 556615 
28-Sep-

11 
Lubberland 
Creek JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN763B 

NHA 556615 
28-Sep-

11 
Lubberland 
Creek JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN763C 

NHA 556615 

28-Sep-
11 

Lubberland 
Creek JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN763D 

NHA 556615 

28-Sep-
11 

Lubberland 
Creek JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN764A NHA 556616 
28-Sep-

11 
Lubberland 
Creek JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN764B 

NHA 556616 
28-Sep-

11 
Lubberland 
Creek JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN764C 

NHA 556616 

28-Sep-
11 

Lubberland 
Creek JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN765A NHA 556617 
28-Sep-

11 
Lubberland 
Creek JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN765A 

NHA 556617 
28-Sep-

11 
Lubberland 
Creek JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN765A 

NHA 556617 

28-Sep-
11 

Lubberland 
Creek JCN 

G. 
vermiculophylla 

Verified by 
RFLP 
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JCN766A NHA 556618 
28-Sep-

11 
Lubberland 
Creek JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN766B 

NHA 556618 
28-Sep-

11 
Lubberland 
Creek JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN766C 

NHA 556618 

28-Sep-
11 

' Lubberland 
Creek JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN767A NHA 556619 
28-Sep-

11 
Lubberland 
Creek JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN767B 

NHA 556619 
28-Sep-

11 
Lubberland 
Creek JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN767C 

NHA 556619 

28-Sep-
11 

Lubberland 
Creek JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN768A NHA 556620 
28-Sep-

11 
Lubberland 
Creek JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN768B 

NHA 556620 
28-Sep-

11 
Lubberland 
Creek JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN768C 

NHA 556620 

28-Sep-
11 

Lubberland 
Creek JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN769A NHA 556621 
28-Sep-

11 
Lubberland 
Creek JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN769B 

NHA 556621 
28-Sep-

11 
Lubberland 
Creek JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN769C 

NHA 556621 

28-Sep-
11 

Lubberland 
Creek JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN770A NHA 556622 
28-Sep-

11 Depot Rd JCN 
G. 
vermiculophylla 

Verified by 
RFLP 

JCN770B 

NHA 556622 
28-Sep-

11 Depot Rd JCN 
G. 
vermiculophylla 

Verified by 
RFLP 

JCN770C 

NHA 556622 

28-Sep-
11 Depot Rd JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN770D 

NHA 556622 

28-Sep-
11 Depot Rd JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN771A NHA 556623 
28-Sep-

11 Depot Rd JCN 
G. 
vermiculophylla 

Verified by 
RFLP 

JCN771B 

NHA 556623 
28-Sep-

11 Depot Rd JCN 
G. 
vermiculophylla 

Verified by 
RFLP 

JCN771C 

NHA 556623 

28-Sep-
11 Depot Rd JCN G. tikvahiae 

Verified by 
RFLP 

JCN771D 

NHA 556623 

28-Sep-
11 Depot Rd JCN G. tikvahiae 

Verified by 
RFLP 

JCN772A NHA 556624 
28-Sep-

11 Depot Rd JCN 
G. 
vermiculophylla 

Verified by 
RFLP 

JCN772B 

NHA 556624 
28-Sep-

11 Depot Rd JCN G. tikvahiae 
Verified by 
RFLP 

JCN772C 

NHA 556624 

28-Sep-
11 Depot Rd JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN772D 

NHA 556624 

28-Sep-
11 Depot Rd JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN773A NHA 556625 
28-Sep-

11 Depot Rd JCN 
G. 
vermiculophylla 

Verified by 
RFLP 

JCN773B 

NHA 556625 
28-Sep-

11 Depot Rd JCN 
G. 
vermiculophylla 

Verified by 
RFLP 

JCN773C 

NHA 556625 

28-Sep-
11 Depot Rd JCN 

G. 
vermiculophylla 

Verified by 
RFLP 
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JCN774A NHA 556626 
28-Sep-

11 Depot Rd JCN 
G. 
vermiculophylla 

Verified by 
RFLP 

JCN774B 

NHA 556626 
28-Sep-

11 Depot Rd JCN 
G. 
vermiculophylla 

Verified by 
RFLP 

JCN774C 

NHA 556626 

28-Sep-
11 Depot Rd JCN G. tikvahiae 

Verified by 
RFLP 

JCN774D 

NHA 556626 

28-Sep-
11 Depot Rd JCN G. tikvahiae 

Verified by 
RFLP 

JCN775A NHA 556627 
28-Sep-

11 Depot Rd JCN 
G. 
vermiculophylla 

Verified by 
RFLP 

JCN775B 

NHA 556627 
28-Sep-

11 Depot Rd JCN 
G. 
vermiculophylla 

Verified by 
RFLP 

JCN777C 

NHA 556627 

28-Sep-
11 Depot Rd JCN G. tikvahiae 

Verified by 
RFLP 

JCN776A NHA 556628 
28-Sep-

11 Depot Rd JCN 
G. 
vermiculophylla 

Verified by 
RFLP 

JCN776B 

NHA 556628 
28-Sep-

11 Depot Rd JCN No Band 

JCN776B2 

NHA 556628 

28-Sep-
11 Depot Rd JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN777A NHA 556629 
28-Sep-

11 Depot Rd JCN G. tikvahiae 
Verified by 
RFLP 

JCN777B 

NHA 556629 
28-Sep-

11 Depot Rd JCN 
G. 
vermiculophylla 

Verified by 
RFLP 

JCN777C 

NHA 556629 

28-Sep-
11 Depot Rd JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN778A NHA 556630 
28-Sep-

11 Depot Rd JCN 
G. 
vermiculophylla 

Verified by 
RFLP 

JCN778A2 

NHA 556630 
28-Sep-

11 Depot Rd JCN 
G. 
vermiculophylla 

Verified by 
RFLP 

JCN778B 

NHA 556630 

28-Sep-
11 Depot Rd JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN778B2 

NHA 556630 

28-Sep-
11 Depot Rd JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN778C 

NHA 556630 

28-Sep-
11 Depot Rd JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN779A NHA 556925 
28-Sep-

11 Depot Rd JCN G. tikvahiae 
Verified by 
RFLP 

JCN779B 

NHA 556925 
28-Sep-

11 Depot Rd JCN G. tikvahiae 
Verified by 
RFLP 

JCN779C 

NHA 556925 

28-Sep-
11 Depot Rd JCN G. tikvahiae 

Verified by 
RFLP 

JCN779D 

NHA 556925 

28-Sep-
11 Depot Rd JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN780A NHA 556631 
28-Sep-

11 
Sunset 
Farm JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN780B 

NHA 556631 
28-Sep-

11 
Sunset 
Farm JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN780C 

NHA 556631 

28-Sep-
11 

Sunset 
Farm JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN780D 

NHA 556631 

28-Sep-
11 

Sunset 
Farm JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN781A NHA 556632 
28-Sep-

11 
Sunset 
Farm JCN 

G. 
vermiculophylla 

Verified by 
RFLP 
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JCN781B 
28-Sep-

11 
Sunset 
Farm JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN781C 
28-Sep-

11 
Sunset 
Farm JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN781D 
28-Sep-

11 
Sunset 
Farm JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN782A NHA 556897 
28-Sep-

11 
Sunset 
Farm JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN782B 

NHA 556897 
28-Sep-

11 
Sunset 
Farm JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN782C 

NHA 556897 

28-Sep-
11 

Sunset 
Farm JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN782D 

NHA 556897 

28-Sep-
11 

Sunset 
Farm JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN783B NHA 556898 
28-Sep-

11 
Sunset 
Farm JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN783C 

NHA 556898 
28-Sep-

11 
Sunset 
Farm JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN783D 

NHA 556898 

28-Sep-
11 

Sunset 
Farm JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN784A NHA 556899 
28-Sep-

11 
Sunset 
Farm JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN784B 

NHA 556899 
28-Sep-

11 
Sunset 
Farm JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN784C 

NHA 556899 

28-Sep-
11 

Sunset 
Farm JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN784D 

NHA 556899 

28-Sep-
11 

Sunset 
Farm JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN785A NHA 556900 
28-Sep-

11 
Sunset 
Farm JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN785B 

NHA 556900 
28-Sep-

11 
Sunset 
Farm JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN785C 

NHA 556900 

28-Sep-
11 

Sunset 
Farm JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN785D 

NHA 556900 

28-Sep-
11 

Sunset 
Farm JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN786A NHA 556901 
28-Sep-

11 
Sunset 
Farm JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN786B 

NHA 556901 
28-Sep-

11 
Sunset 
Farm JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN786C 

NHA 556901 

28-Sep-
11 

Sunset 
Farm JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN787A NHA 556902 
28-Sep-

11 
Sunset 
Farm JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN787B 

NHA 556902 
28-Sep-

11 
Sunset 
Farm JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN787C 

NHA 556902 

28-Sep-
11 

Sunset 
Farm JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN788A NHA 556903 
28-Sep-

11 
Sunset 
Farm JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN788B 

NHA 556903 
28-Sep-

11 
Sunset 
Farm JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN788C 

NHA 556903 

28-Sep-
11 

Sunset 
Farm JCN 

G. 
vermiculophylla 

Verified by 
RFLP 
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JCN789A NHA 556911 
28-Nov-

11 
Sunset 
Farm JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN789B 

NHA 556911 
28-Nov-

11 
Sunset 
Farm JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN789C 

NHA 556911 

28-Nov-
11 

Sunset 
Farm JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN789D 

NHA 556911 

28-Nov-
11 

Sunset 
Farm JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN789E 

NHA 556911 

28-Nov-
11 

Sunset 
Farm JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN790A NHA 556912 
28-Nov-

11 
Sunset 
Farm JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN790B 

NHA 556912 
28-Nov-

11 
Sunset 
Farm JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN790C 

NHA 556912 

28-Nov-
11 

Sunset 
Farm JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN790D 

NHA 556912 

28-Nov-
11 

Sunset 
Farm JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN790E 

NHA 556912 

28-Nov-
11 

Sunset 
Farm JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN790F 

NHA 556912 

28-Nov-
11 

Sunset 
Farm JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN791A NHA 556913 
28-Nov-

11 
Sunset 
Farm JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN791B 

NHA 556913 
28-Nov-

11 
Sunset 
Farm JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN791C 

NHA 556913 

28-Nov-
11 

Sunset 
Farm JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN791D 

NHA 556913 

28-Nov-
11 

Sunset 
Farm JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN791E 

NHA 556913 

28-Nov-
11 

Sunset 
Farm JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN791F 

NHA 556913 

28-Nov-
11 

Sunset 
Farm JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN791G 

NHA 556913 

28-Nov-
11 

Sunset 
Farm JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN792A NHA 556904 
28-Nov-

11 Depot Rd JCN 
G. 
vermiculophylla 

Verified by 
RFLP 

JCN792B 

NHA 556904 
28-Nov-

11 Depot Rd JCN G. tikvahiae 
Verified by 
RFLP 

JCN792C 

NHA 556904 

28-Nov-
11 Depot Rd JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN792D 

NHA 556904 

28-Nov-
11 Depot Rd JCN G. tikvahiae 

Verified by 
RFLP 

JCN792E 

NHA 556904 

28-Nov-
11 Depot Rd JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN793A NHA 556905 
28-Nov-

11 Depot Rd JCN G. tikvahiae 
Verified by 
RFLP 

JCN793B 

NHA 556905 
28-Nov-

11 Depot Rd JCN 
G. 
vermiculophylla 

Verified by 
RFLP 

JCN793C 

NHA 556905 

28-Nov-
11 Depot Rd JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN793D 

NHA 556905 

28-Nov-
11 Depot Rd JCN 

G. 
vermiculophylla 

Verified by 
RFLP 
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JCN794A NHA 556906 
28-Nov-

11 Depot Rd JCN 
G. 
vermiculophylla 

Verified by 
RFLP 

JCN794B 

NHA 556906 
28-Nov-

11 Depot Rd JCN 
G. 
vermiculophylla 

Verified by 
RFLP 

JCN794C 

NHA 556906 

28-Nov-
11 Depot Rd JCN G. tikvahiae 

Verified by 
RFLP 

JCN794D 

NHA 556906 

28-Nov-
11 Depot Rd JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN795A NHA 556907 
28-Nov-

11 Depot Rd JCN G. tikvahiae 
Verified by 
RFLP 

JCN795B 

NHA 556907 
28-Nov-

11 Depot Rd JCN 
G. 
vermiculophylla 

Verified by 
RFLP 

JCN795C 

NHA 556907 

28-Nov-
11 Depot Rd JCN G. tikvahiae 

Verified by 
RFLP 

JCN795D 

NHA 556907 

28-Nov-
11 Depot Rd JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN795E 

NHA 556907 

28-Nov-
11 Depot Rd JCN G. tikvahiae 

Verified by 
RFLP 

JCN796A NHA 556908 
28-Nov-

11 Depot Rd JCN G. tikvahiae 
Verified by 
RFLP 

JCN796B 

NHA 556908 
28-Nov-

11 Depot Rd JCN 
G. 
vermiculophylla 

Verified by 
RFLP 

JCN796C 

NHA 556908 

28-Nov-
11 Depot Rd JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN796D 

NHA 556908 

28-Nov-
11 Depot Rd JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN797A NHA 556909 
28-Nov-

11 Depot Rd JCN G. tikvahiae 
Verified by 
RFLP 

JCN797B 

NHA 556909 
28-Nov-

11 Depot Rd JCN No Band 

JCN797C 

NHA 556909 

28-Nov-
11 Depot Rd JCN G. tikvahiae 

Verified by 
RFLP 

JCN797D 

NHA 556909 

28-Nov-
11 Depot Rd JCN G. tikvahiae 

Verified by 
RFLP 

JCN797E 

NHA 556909 

28-Nov-
11 Depot Rd JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN798A NHA 556910 
28-Nov-

11 Depot Rd JCN G. tikvahiae 
Verified by 
RFLP 

JCN798B 

NHA 556910 
28-Nov-

11 Depot Rd JCN 
G. 
vermiculophylla 

Verified by 
RFLP 

JCN798C 

NHA 556910 

28-Nov-
11 Depot Rd JCN 

G. 
vermiculophylla 

Verified by 
RFLP 

JCN799B NHA 556914 
28-Nov-
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