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ABSTRACT 

THE IMPACT OF SEASONAL MOVEMENTS BY OVIGEROUS AMERICAN 
LOBSTERS (HOMARUS AMERICANUS) ON EGG DEVELOPMENT AND 

LARVAL RELEASE 

by 

Jason Seth Goldstein 

University of New Hampshire, May, 2012 

The American lobster (Homarus americanus) supports one of the most economically 

successful fisheries in the Gulf of Maine. The continued success of this fishery is 

attributed in part to vigilant broodstock conservation through the preservation of 

ovigerous (egg-bearing) females. Previous studies of ovigerous lobster movements 

indicate that some, if not most, display seasonal inshore-to-offshore movement patterns. 

While it has been assumed that these movements serve to expose eggs to thermal regimes 

that are optimal for development, this theory has never been rigorously tested. In Chapter 

1,1 present results from ultrasonic tracking studies designed to determine if lobsters in 

coastal New Hampshire waters exhibit this inshore-offshore pattern and also to identify 

where ovigerous females overwinter. In Chapter 2,1 assess how the movements of 

ovigerous lobsters would influence the temperature regimes they experienced and thus 

the development of their eggs. I evaluate this question using a combination of laboratory 

and field experiments that expose animals to seasonally fluctuating water temperatures 

they would experience if they remained inshore or moved offshore; data from these 
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experiments were then used to determine the influence of these thermal regimes on egg 

development, time to hatch, and larval survival. Finally, in Chapter 3,1 present results 

from a study using experimental ocean drifters deployed in areas where ovigerous 

females were located when their eggs hatched, to determine where these larvae might 

drift. 

Ultrasonic tracking revealed that most lobsters move offshore in the fall and ovigerous 

lobsters tend to remain there until after their eggs hatch the following summer (Chapter 

1). Eggs exposed to disparate thermal regimes (inshore and offshore) demonstrated that 

eggs carried by lobsters that moved offshore actually hatched later than those exposed to 

inshore temperatures (Chapter 2). Finally, most drifters released in offshore hatching 

locations were carried south or to offshore locations at the time when larvae would settle 

(Chapter 3). Taken together, these results suggest that seasonal movements of ovigerous 

lobsters have a strong influence on when and where eggs hatch and, subsequently, where 

larvae may settle. These findings have significant implications for population 

connectivity and management of the lobster fishery. 
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INTRODUCTION 

Rationale and Objectives 

The effective management of any commercial fishery is enhanced by studying its 

population dynamics and understanding the factors that influence its distribution and 

abundance. For large mobile crustaceans, like lobsters, their distribution and abundance 

is a function of: 1) their daily (e.g., homing and foraging) and seasonal (e.g., inshore to 

offshore) movements; 2) egg production and fecundity; 3) the release and transport of 

larvae to an appropriate (and hopefully favorable) settlement location (i.e., recruitment) 

and; 4) environmental factors that influence all of the above, such as temperature. This 

work seeks to test the overall hypothesis that ovigerous (berried) lobsters undertake 

seasonal migrations in order to expose their eggs to a thermal regime that optimizes egg 

development, the timing and location of larval hatch, and the dispersal and transport of 

larvae to areas that are best for settlement. 

The data and results generated from this work will greatly improve bio-physically 

coupled models of lobster larval transport that are currently being produced by a number 

of marine biologists and oceanographers for marine fishes and decapods alike (Katz et al 

1994, Wolanski et al. 1997, Carr et al. 2004, Cowen et al. 2006, Incze et al. 2006,2010, 

Leis 2007, Butler et al. 2011). As a result, scientists and fisheries managers will have an 

improved understanding of the potential sources of new recruits throughout coastal and 
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offshore waters of New England. Moreover, these data will be invaluable for aiding in 

the determination of potentially distinct regional lobster stocks, a critical component of 

an effective management strategy for the American lobster fishery. This work was aimed 

at carrying out a series of field and laboratory studies to test the overall hypothesis that 

seasonal lobster movements, in combination with seasonal water temperature 

fluctuations, strongly influence the rate of egg development, the time and location of 

larval hatching, and the initial dispersal of larvae. 

My first objective was to track the seasonal movements of berried lobsters and non-

berried lobsters, using ultrasonic telemetry, to test the hypothesis that there are 

differences between these groups of animals with respect to 1) their tendency to move 

offshore in the fall; 2) the timing of their offshore movements; and 3) the magnitude of 

these movements. Complementary to this, I quantified the thermal histories for some of 

these lobsters to determine if there were significant differences in the temperatures 

experienced by lobsters that remain inshore versus those that move offshore. My second 

objective was to examine how these seasonal movements might influence egg 

development, and time of hatch. I completed this objective by incubating berried lobsters 

both in the laboratory and in the field, and exposing them to the type of thermal 

fluctuations they would experience regardless of seasonal migrations. Finally, I used my 

knowledge of berried lobster movements and egg development rates, to determine where 

lobsters will be residing when larvae hatched in the late spring and early summer. I 

released surface ocean drifters in these locations to determine larval dispersal and the 

most probable settlement location for these larvae after they fall out of the water column. 
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Thus, I am testing the overall hypothesis that the seasonal movements of ovigerous 

lobsters have a significant impact on the time and location of larval hatch, as well as the 

probability that those larvae will settle in an area that is optimal for their survival. 

These studies attempt to provide better resolution to several long-standing questions 

about the life history strategies of ovigerous lobsters and the adaptive significance (e.g., 

costs and benefits) in animals that adopt an inshore-offshore movement strategy. It is the 

first to determine if the movements of females have an impact on their reproductive 

output, specifically the location of ovigerous females when they are hatching. On a 

larger scale, my data could potentially aid in identifying habitats where ovigerous 

females release their larvae, making it possible to model the fate of larvae, identify the 

source of recruits, and determine which populations or stocks may overlap, contributing 

to the idea of marine connectivity. These data are essential in sustaining this valuable 

marine resource through the establishment of sound fishing practices and the 

development of proper management strategies. Finally, changes in lobster movement 

dynamics or responses by lobsters to small and changing seasonal temperatures may 

provide a unique insight into some of the alterations that could be associated with ocean-

related climate change. 

An Overview of the H. americanus Life-cycle 

The life history of H. americanus includes a complex suite of embryonic, pelagic (larval), 

and benthic (juvenile and adult) developmental stages that are punctuated with a 
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dominant and often long-lived benthic period (see Lawton and Lavalli 1995 for overview; 

Fig. 1). Subsequent to mating, eggs are normally extruded anywhere from 1-6 months 

later and, as ova are released, they are fertilized externally by the spermatozoa stored in 

the seminal receptacle (Templeman 1936, Aiken et al. 2004). Freshly extruded lobster 

eggs are dark green and irregularly shaped and, as they develop, they increase in size and 

become elongated and lighter in color (Herrick 1909, Helluy and Beltz, 1991). The 

number of eggs in a given clutch ranges considerably (3,000 to 115,000) and is related to 

lobster size (Herrick 1909, Perkins 1971, Estrella and Cadrin 1995). Fertilized eggs 

become firmly attached to the pleopods where they develop for 9-11 months. 

Fig. 1. An illustrative depiction of the American lobster life-cycle that includes a protracted egg 
development period (9-12 months), four pelagic larval stages (20-30 days), and several years of 
growth until harvestable size (figure adapted from Lavalli and Lawton 1995). 
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Temperature is a key factor that determines the length of time the eggs are carried 

(Templeman 1940, Aiken and Waddy 1980). For example, eggs develop to the 16 cell 

stage in two days at 18.5 °C, compared with 4.8 days at 10.5 °C (Templeman 1940). 

Peak hatching typically occurs in June and early July when surface water temperatures 

are generally > 12 °C (MacKenzie 1988). 

Lobsters pass through one prelarval and four free-swimming larval (zoeal) stages 

(distinguished by morphological, behavioral, and physiological attributes) before settling 

to the bottom and molting into juveniles (Hadley 1908, Lawton and Lavalli 1995). All 

larval stages are normally completed in 25-35 days (Herrick 1895, Templeman 1940), but 

their pelagic duration is highly temperature dependent, and it has recently been argued 

that it is markedly shorter than previously thought (Annis et al. 2007). The distribution 

and abundance of larvae are affected by the locations of spawning females in tandem 

with a host of abiotic factors (e.g., temperature, salinity, light intensity, surface current 

and velocity, etc.; Phillips and Sastry 1980) that ultimately help to influence their final 

destination along with intrinsic larval behaviors (e.g., vertical migration and swimming, 

Harding et al. 1987, Ennis 1995). Late in Stage IV, postlarvae settle to the bottom and 

burrow into the substrate where they will eventually molt into benthic-dwelling juveniles 

(Cobb and Wahle 1994), although the presence of biologically relevant odor plumes and 

the presence of thermoclines have been reported to impact postlarval settlement 

(Boudreau et al. 1992, 1993). As in larvae, juveniles are distinguished by their ecological 

ontogeny until functional maturity and adulthood (see Lawton and Lavalli 1995). 

5 



Embryology 

Early works by Herrick (1891, 1895) and Bumpus (1891) provided the most 

comprehensive studies and detailed descriptions of H. americanus embryology including 

developmental rates of eggs at various temperatures in the laboratory and predictions for 

approximating egg extrusion dates. Bumpus (1891) provided additional descriptive 

embryology leading to the first staging table for early lobster egg development; he 

observed that in early development, following fertilization, lobster eggs go through 

superficial cleavage and rapid cellular division before reaching the 16-cell morula stage. 

The nuclei of dividing cells, each surrounded by an amoeboid mass of protoplasm, divide 

within the yolk and approach the periphery. As development continues, constant cellular 

division results in the formation of a biastuia leading to gastrulation. Gastrulation is then 

followed by the forming of the naupliar stage in the egg (oriented near the surface) that is 

situated dorsally, opposed to the yolk. The naupliar stage is the trademark developmental 

phase among crustacean decapods and is typified by a median eye along with three 

distinct appendage types: antennulae, antennae, and mandibles. 'Twitching' motions by 

the nauplius are typically observed by ~ 10 % development and indicates the existence of 

embryonic molting (Herrick 1895, Helluy and Beltz 1991). 

Herrick (1891) further observed that lobster eggs undergo up to three embryonic molts 

prior to the occurrence of the lateral eye pigment. Therefore, evidence for a protracted 

prelarval embryonic molting scheme (based on setal staging in the telson) seems to be 

very similar to that of the molting cycle for both larval and juvenile lobsters and is thus 
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affected by environmental variables such as temperature (Aiken 1980). Templeman 

(1940) built upon this early progress by reporting the time from 16-cell development to 

eyespot formation at a variety of temperatures. However it was Perkins's (1972) work 

that produced a series of lobster egg development curves of H. americanus thereby giving 

us a predictive ability for lobster hatch at various temperatures resulting in the Perkins 

Eye Index (PEI) function. 

The PEI has been modified and used for a variety of other lobster species to predict hatch 

(e.g., Richards and Wickins 1979, Charmantier and Mounet-Guillaume 1992). Most 

recently, a comprehensive reassessment of the H. americanus staging scheme, based on 

earlier studies, were used to incorporate detailed anatomical, morphological, and 

physiological descriptions as well as the characterization of 10 distinct embryonic stages 

(Helluy and Beltz 1991). In addition, this same study also included the conversion of PEI 

values into a percent-staging system along with descriptions of developmental landmarks 

through to hatch. As confirmed from the earlier works, Helluy and Beltz (1991) also 

substantiated the observation of two molts (within the egg) prior to hatch and the first 

larval stage, described as the beginning and end of the metanaupliar stage in the 

embryonic period. 
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The American Lobster Fishery 

Early History 

The American lobster, Homarus americanus, represents one of the most highly coveted 

marine species in the Northwest Atlantic and is one of the most productive and lucrative 

(> 40,000 mt in 2006; FAOStat 2008) commercial fisheries in the world. Although the 

geographic range of H. americanus occurs from Labrador, Canada to Cape Hatteras, 

North Carolina, USA, most commercially active fishing is concentrated from the 

Canadian Maritimes and into the New England States and encompasses one of the 

steepest latitudinal sea surface temperature gradients in the North Atlantic (Anthony and 

Caddy 1980, Fogarty 1995). The history of the American lobster fishery contains 

references to its earliest beginnings in colonial New England (see Nicosia and Lavalli 

1999 for review, Corson 2004). Early reports describe the ease by which lobsters were 

captured, and their almost ubiquitous existence in both coastal and offshore waters to the 

degree that they were commonly used as bait and as agricultural fertilizer (Cobb and 

Castro 2006). Colonial fishing practices involved a variety of hand-aided gear types 

including dip nets, gaffs, spears and hoop nets used from small boats. Despite the 

seemingly over-abundance of lobsters in nearshore waters, some were keen to note that 

unregulated lobstermen and their fishing efforts could have profound impacts on the 

fishery, particularly for larger lobsters (Herrick 1895). 
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A shift to a trap or pot-based fishery was in full swing by the mid-1840's (Dow 1949) 

and enabled large numbers of lobsters to be caught, covering a wider range of fishing 

areas. As a result, by the mid- 19th century, fishery declines were apparent thereby 

motivating individual states to enact protective legislation to ensure a continuous level of 

lobster catch (Rathbun 1884). Measures included resident-only permits, closed seasons, 

and the prohibition of catching, buying and selling of ovigerous (berried) lobsters (Dow 

1949). The additional enactment of marking ovigerous lobsters by hole-punching their 

tails (i.e., uropods) was later replaced with V-notching them with the goal of preserving 

broodstock in the fishery (Miller 1995). Because New England lobster landings 

continued to decline precipitously in the late 1880's (e.g., more than 23 % between 1889 

and 1892; Smith 1898), states enacted minimum sizes at catch to help mitigate the 

declining populations. These and other compensatory measures spurned a re­

examination of the preservation of large, mature lobsters and their associated role in egg 

production. Herrick's (1895) extensive studies of lobster fecundity and maturity served 

as biological benchmarks considering the rigorous sample sizes and comprehensive data 

that he collected. Since then, other studies have offered fecundity models that essentially 

validate Herrick's work (Krouse 1973, Estrella and McKieran 1989, Estrella and Cadrin 

1995). 

As a result of fluctuations in catch coupled with a more panoptic view of lobster 

reproductive dynamics, additional studies were aimed at examining the contributing role 

that environmental factors (e.g., temperature, salinity, water quality, photoperiod, disease, 

etc.) had on catch fluctuations and broodstock condition (Herrick 1911, Aiken and 
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Waddy 1986). However, it was generally accepted that, of the existing variables, 

temperature elicited the most pronounced effect on all aspects of lobster biology 

including larval development, egg production, and size at maturity (Hughes and 

Mattheissen 1962, Aiken and Waddy 1980). With this insight in mind, along with a 

significant loss of berried lobsters from illegal scrubbing (Herrick 1895, Smith 1898), 

researchers and managers decided that artificial propagation of lobster larvae was a viable 

way to mitigate egg loss and rebuild lobster stocks (Ryder 1886, Rathbun 1892, Herrick 

1895, Mead and Williams 1903, Scattergood 1949). These culturing efforts combined 

both field and laboratory-designed operations that included lobster parks, and the 

establishment of hatcheries with the goal of holding berried females, hatching their 

larvae, and seeding post-larval animals back into the sea (Nicosia and Lavalli 1999). 

Although the biological knowledge (e.g., growth, maturity, diet) gained from these efforts 

was exceptionally valuable, almost all hatchery and re-stocking efforts were cancelled 

due to their lack of biological and economic suitability (Nicosia and Lavalli 1999). 

Current Fishery Status 

Today, lobster fishery management and legislation has been streamlined by state and 

federal agencies into the Atlantic States Marine Fisheries Commission (ASMFC) 

(http://www.asmfc.org/). ASMFC manages lobster under Amendment 3 (enacted in 

1997) of the Interstate Fishery Management Plan (FMP) and includes area-specific 

management through industry participation organized by Lobster Conservation 

Management Teams. ASMFC also issues a stock-assessment report for lobster on a 
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periodic basis that details many fishery and population-level parameters that are integral 

to the management of this species (Cobb and Castro 2006, ASMFC 2099). The 

continued success of this fishery is largely attributed to a variety of management 

measures that particularly single out the conservation of broodstock including license 

controls, size limits, and the preservation of egg-bearing females through the prohibition 

of their landings (Kelly 1992, Miller 1995). Many aspects of the U.S. lobster fishery 

have changed dramatically over the past few decades including consecutive increases in 

traps fished and the average vessel size. Additional changes such as the switch from 

wooden lathe traps to coated wire mesh traps, combined with major advances in 

technology (e.g., GPS, radar, sonar) have had major impacts on fishery-mediated changes 

including an increased catch efficiency and effort. The impacts of these changes in 

heavily exploited crustacean fisheries (such as lobster) could potentially influence the 

reproductive dynamics of ovigerous lobsters. It has been demonstrated that density-

dependent reproduction can influence egg production (e.g., maturity at a smaller size, 

changes in fecundity and egg quality) towards compensatory mechanisms, as has been 

the case in spiny lobster (MacDiarmid 1989, Polovina 1989, DeMartini et al. 2003). 

In the U.S., commercial lobster fishing is designated among three distinct stock 

management units that include the Gulf of Maine (GoM), Georges Bank (GB), and 

Southern New England (SNE). By far, the GoM supports the largest and most productive 

stock with a total of ~ 76 % of all U.S. landings between 1981 and 2007, and has 

subsequently accounted for over 87 % of the landings since 2007 (ASMFC 2009). GoM 

biomass has increased significantly along with fishing effort, especially into areas that 
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have not been fished regularly in the past (Fig. 2). Some surmise these rapid increases in 

abundance and catch are not only due to increases in fishing effort but also with 

enhancements in fishing technology, water temperatures that favor growth, and decreases 

in keystone predators (e.g., cod; Fogarty et al. 2008). Although the GB stock remains 

relatively stable, SNE has experienced drastic declines since 2002 accounting for only 9 

% of all U.S. landings. A mean total of 11,900 permits were issued during the 1981-2007 

period, with a fair amount of variability surrounding each of the New England States. In 

the GoM, the historical and recent success in lobster fishing (400 % increase since 1985) 

has created a virtual ecosystem monoculture that some suggest may negatively impact 

economic and social aspects of this fishery in years to come (Steneck et al. 2011). 

Gulf of Maine 
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• landings 

140,000,000 

120,000,000 

100,000,000 
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Fig. 2. Biomass and commercial lobster landings in the Gulf of Maine. Various reasons 
including favorable temperatures, increased exploitation effort, and decreased predator 
assemblages have been postulated for the significant increases of lobster, (source: NOAA 2009). 
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Influence of Temperature on Attributes of Lobster Life-history 

Influence of Temperature on Ectotherms 

Temperature affects all of an ectotherm's physiological processes mainly through the 

alteration in biochemical pathways (e.g., enzyme activation rates, macromolecule 

formation, acid-base regulation etc. (see Hochachka and Somero 2002 for review) and 

thereby dramatically influences animal distributions, thermal preferences, and 

survivorship. For crustaceans like lobsters, temperature is arguably one of the most 

pervasive factors influencing metabolism, activity levels, spawning, development, 

growth, and possibly life span (see Hawkins 1996 for review). Changes in temperature 

also have striking effects resulting in at least a twofold increase in overall biological 

processes with each 10 °C rise in temperature (i.e., Qio temperature coefficient; Schmidt-

Nielsen 1991). Temperature also has directed effects on processes such as gas exchange, 

acid-base regulation, and protein synthesis among others (Whiteley et al. 1997). 

Remarkably, temperature can also operate as a selective force in many animals. Petersen 

and Steffensen (2003) found that juvenile cod (Gadus morhua) in Denmark waters could 

be distinguished by their hemoglobin genotype resulting in distributional differences 

based on their thermal preferences. The discovery by Liu et al. (1998) that small changes 

in temperature can entrain the biological clocks in reptiles and fungi or that subtle 

changes in seawater temperatures can trigger extensive coral bleaching events (Gates and 

Edmunds 1999) are some of the more dramatic examples. In these cases, thermal 
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dependence then becomes a 'universal currency' for most aquatic ectotherms, and many 

studies have sought to summarize and model these complex relationships examining 

growth and maturity in both temperate and tropical waters (Gillooly et al. 2002, 

Angilletta et al. 2004, Sponaugle et al. 2006). 

Reproduction and Maturity 

There is a resounding influence of water temperature on most aspects of lobster 

reproduction including maturation, spawning, molt cycle, embryogenesis and hatching 

(see Waddy and Aiken 1995 for review). While elevated temperatures accelerate the 

onset of reproductive maturity, low temperatures tend to delay ovarian maturation 

(Templeman 1936, Waddy and Aiken 1995). If increases in springtime water 

temperature are delayed, the final stages of ovarian maturation are inhibited and 

spawning is, for the most part, lost for that year (Waddy and Aiken 1992). Likewise, the 

exposure of ovigerous lobsters to sufficiently cold winter temperatures helps to 

synchronize proper timing of spawning and molt. A few weeks at temperatures below 5 

°C at the right time of year (typically Dec-Jan), insure spawning, and thermally sets the 

mode for other processes such as ovarian maturation and egg extrusion (Waddy and 

Aiken 1992). Differences in temperature also manifest themselves on much more 

localized scales (10s of km). For example, one area's lobster population may show 

markedly different reproductive dynamics (i.e. onset of molting or the start of spawning) 

compared with another area (Little and Watson 2005). Small variations among thermal 

regimes have been documented to influence lobster size at maturity in areas as close as 
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11 km away (Estrella and McKiernan 1989, Little and Watson 2005). Other studies, 

conducted along the coast and bays of Newfoundland, indicate that lobster populations 

differ thermally resulting in differential spawning (Squires et al. 1971, Ennis 1971). 

Temperature also has a direct influence on the rate and development of eggs; however, 

egg attachment and even egg loss can be impacted as well. Under a normal temperature 

regime, Waddy (1988) was able to show that egg development can be reset anywhere 

from 3-17 months under controlled laboratory temperatures. Talbot et al. (1984) 

discovered that elevated winter temperatures prior to spawning have an adverse effect on 

egg retention resulting in only 2 of 23 lobsters retaining or hatching a significant number 

of eggs. Other long-term laboratory studies implicate elevated temperatures in the 

significant loss of extruded eggs as well as their attachment to the abdomen, ultimately 

influencing hatching success (Talbot and Harper 1984, Waddy 1988). 

Physiology and Behavior 

Lobsters are exceptionally adroit at responding to small changes in temperature as 

demonstrated in previous work (Crossin et al. 1998, Jury and Watson 2000), and they 

respond both behaviorally (e.g., movement) and physiologically (e.g., changes in cardiac 

cycle) to this highly influential environmental parameter (McLeese and Wilder 1958). 

Additionally, lobsters in a thermal gradient tank (Crossin et al. 1998) were shown to 

exhibit a final thermal preference of 15.9 °C, which is very similar to the value of 16.5 °C 

found by Reynolds and Casterlin (1979), using a similar method; lobsters also tend to 
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avoid water temperatures below 5 °C and above 18 °C (Crossin et al. 1998). H. 

americanus are reported to live in areas that range in water temperature from 5-20 °C 

(Aiken and Waddy 1986), although this is a synergistic relationship involving varying 

levels of salinity and oxygen as well. Early laboratory experiments by McLeese (1956) 

gave us insight into the survivorship of lobsters subjected to combinations of varying 

temperatures, dissolved oxygen, and salinity. Lobsters tend not be directly stressed by 

water temperatures below 20 °C as long as oxygen levels are maintained at > 2 mg O2/L. 

However, Dove et al. (2005) more recently determined that the respiration rate of lobsters 

is significantly decreased at temperatures above 20.5 °C and this temperature has been 

used as an upper threshold for some lobster populations. 

Field evidence has further elucidated the responses of lobsters to temperature and salinity 

and how they influence their distribution and abundance. For example, following a 

hurricane, estuarine lobsters tend to move into colder, deeper, higher salinity water (Jury 

et al. 2005). This change to their normal movement patterns (moving into the estuary in 

the spring and out in the fall) may be explained, in part, by their responses to these 

variables (Watson et al. 1999). What is not clear is whether lobsters change their 

responses to temperature during their life history (e.g., immature, sexually mature, 

ovigerous) and if so, does this cause changes in their population dynamics? 

Temperature has certainly been implicated in influencing the behavior, activity, and 

movement patterns of lobsters throughout their range (reviews in Herrnkind 1980, 

Lawton and Lavalli 1995, Childress and Jury 2006). Temperature has also been shown to 
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significantly influence commercial lobster catch (Dow 1977) and as a possible cause for 

increased lobster abundances throughout the 1980s and early 1990s (Drinkwater et al. 

1996). Furthermore, increased temperatures in the GoM within the ranges predicted 

under proposed alternative climate change scenarios hold the potential for increased 

lobster productivity (Fogarty et al. 2008; Fig. 3). 

8 
V )  
o> 
c 
TJ c 
CO 

•"•Landings 

t i i i i i i i r 
1905 1915 1925 1935 1945 1955 1965 1975 1985 1995 

Year 

n> 
3 
T3 
0> —i 
24. 
c 
a> 
-o 
O 

Fig. 3. The relationship between Maine lobster landings and temperature readings (taken at 
Boothbay Harbor over a 100-year period. Lobster landings have more than tripled in Maine over 
the last decade (source: Fogarty et al. 2008). 

Temperature then can be thought of as an ecological resource that has boundaries within 

which animals can operate, and contains a directed (and perhaps selective) impact on the 

physical distribution of animals and their associated physiological processes and 

behaviors. 

Lobster Movements 

The concept of animal movements has been encapsulated in the general framework by 

Nathan et al. (2008) who describe the movement paradigm as having four essential 
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components: the internal state of the organism (i.e., intrinsic motivation to move), the 

motion and navigational mechanisms that define the animal's ability to move and 

influence where and when to move, and the broad range of external factors that affect 

movement. Addressing these kinds of questions allows for the exploration of the causes, 

mechanisms, and patterns of movement and the ecological and evolutionary implications 

(e.g., individual fitness) that follow. Movements that occur over a range of 

spatiotemporal scales can be used to answer a variety of questions. 

Long-distance movements (for both plants and animals) can significantly impact 

community and local population dynamics (Kokko and Lopez-Sepulcre 2006, Nathan 

2006) and plays a key role in species invasions, habitat fragmentation (Robertson and 

Butler 2009) responses to climate change (Polovina 2005, Brander 2010), and the spatial 

design of marine protected areas (MPAs) (e.g., lobsters; Kelly et al. 2002, Gofii et al. 

2010). Technological advances (e.g., GIS, ultrasonic telemetry) now allow us to collect 

movement data at a high spatiotemporal resolution and infer these patterns on many 

different levels (Pittman and McAlpine 2003). The patterns, and mechanisms of lobster 

movements are varied and have been studied extensively (see reviews in Herrnkind 1980, 

Lawton and Lavalli 1995). The dynamics of lobster movements have a great impact on 

their distribution and abundance, and knowledge of these movement patterns is integral 

to the fisheries management of coastal habitats and our understanding of their continued 

ecological function and economic success. 
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Movements by Ovigerous Lobsters 

Some brooding animals seem to utilize movements as a selective force that reflects their 

ancestral requirements linked to reproductive processes. This is seen consistently in 

many kinds of amphibians and terrestrial crustaceans that routinely return to waters to 

release their eggs or larvae (Dingle 1996, Adamczewska and Morris 2001). Certainly, 

some ovigerous marine crustaceans (spiny lobsters and crabs) that maintain external 

lecthiotrophic egg masses and hatch pelagic larvae have been reported to undergo 

brooding-related movements that serve to selectively position their progeny for transport 

away from deleterious environments and into areas that favor larval advection. The 

movements of gravid blue crabs (Callinectes sapidus) for example, to the mouths of 

estuaries and bays, allow crab zoeae to utilize offshore currents and avoid osmotic stress 

and predators (Forward et al. 2003). Booth (1997) compiled the long-distance 

movements by several spiny lobsters in the Pacific (Jasus spp.) and postulated that many 

of these inshore to offshore movement events were associated with molting or 

reproduction. Some of these movements are described as contranatant, acting to redress 

the dispersal of larvae back to maternal areas; this has also been the case in slipper lobster 

migrations as well (e.g., Stewart and Kennelly 1998). Finally, studies looking at the 

reproductive movements of late-stage ovigerous Caribbean spiny lobster (Panulirus 

argus) using ultrasonic telemetry determined that these animals made homing excursions 

from their dens on the reef to the reef edge to release their larvae (Bertelsen and 

Hornbeck 2009). Clearly, there is evidence that some ovigerous crabs and lobsters 

incorporate specific movements into their repertoire for purposes of reproduction. 
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Movement Effects on Egg Development and Larval Hatch 

Ovigerous lobsters incubate their eggs on average for 9-11 months (Bumpus 1891) and 

are known to exhibit a high degree of maternal care in keeping their eggs healthy and 

viable (Aiken and Waddy 1980). However, temperature elicits a first-order influence on 

overall development, and this period can be reduced to 6 months, or lengthened to 13 

months, depending on the thermal environment during incubation (Templeman 1940, 

Perkins 1972, Aiken and Waddy 1980, Chapter 2). Given that most ovigerous lobsters 

are exposed to temperatures below 11-12 °C while incubating their eggs through the 

winter, one can certainly imagine a number of different scenarios whereby lobster 

movements could influence hatching and larval survival. For example, by delaying 

inshore migration into warm water, a female could delay hatching, while a lobster inshore 

would be exposed to a rapid increase in water temperature in the spring so that hatching 

might occur before optimal conditions for larval survival. It is possible then, that 

ovigerous females have evolved a life history strategy that is based not on exposing their 

larvae to the warmest temperatures to achieve the fastest rates of development, but 

instead is based upon the need to time hatching so that it occurs at the right time and at 

the right place for optimal survival of their larvae. 

Ultrasonic Telemetry 

One way to ascertain both fine and large-scale movement patterns of animals in response 

to these cues is the use of ultrasonic telemetry. Ultrasonic telemetry is an excellent tool 
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for investigating the movements of aquatic species and lobsters in particular (Golet et al. 

2006, Bowlby et al. 2007, MacArthur et al. 2008, Scopel et al. 2009, Schaller et al. 2010). 

Despite the widespread and more economical use of tag-recapture studies and seasonal 

SCUBA surveys, these methods are often inherently confounded by a number of factors 

including inconsistent effort and catch (with traps) and limited geographic scale (Freire 

and Gonzalez-Gurriaran 1998, Dunnington et al. 2005). Although telemetry is often 

financially limited to focus on a much smaller pool of individuals, it can be much more 

foretelling of the spatial and temporal resolution for individuals and provides reliable and 

consistent data over discrete time periods. 

The use of fixed array telemetry systems, allows precise measurements of lobster 

movements on a minute-to-minute time scale with a resolution of ~ 1 meter. Combined 

with advances in multiscan ocean mapping techniques and GPS technologies, researchers 

and fisheries managers can now correlate fine scale movements with specific features of 

benthic habitats (e.g., Geraldi et al. 2009). As a result, we now have a window into the 

lives of lobsters that was not previously available, and we can take advantage of this 

opportunity to address several long-standing questions about the behavior of lobsters in 

their natural habitat. 
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CHAPTER 1 

SEASONAL OVIGEROUS LOBSTER (HOMARUS AMERICANUS) MOVEMENTS 
ALONG THE NEW HAMPSHIRE SEACOST 

Abstract 

Like many large mobile crustaceans, American lobsters (Homarus americanus) exhibit 

daily and seasonal movement patterns at both local and regional scales. In the case of 

ovigerous (egg bearing, berried) lobsters, while there is conflicting evidence concerning 

the timing, patterns, and purpose of their movements, it is generally accepted that some 

or most, move offshore during colder months and inshore into shallower water in the 

summer. To determine if this pattern applies to lobsters in New Hampshire (southern 

Gulf of Maine) coastal waters, 45 individuals (20 egg-bearing females, 15 non-egg 

bearing females, and 10 males) were equipped with ultrasonic transmitters and tracked 

for an average duration of 250 days in 2006-2009. We sought to determine 1) if 

ovigerous lobsters express different seasonal movement patterns than males or non-

ovigerous females; 2) what potential environmental triggers induce coastal lobsters to 

initiate offshore movements in the fall; and 3) the location of ovigerous lobsters when 

their eggs hatched. There were no significant differences (p > 0.05) in the seasonal 

movements of ovigerous lobsters compared with non-ovigerous females, but female and 

male movements were different, in the fall, spring and summer (p < 0.01). During the 

tracking period, a total of 82 % (n = 37) of lobsters showed movements (> 0.5 km) while 

the remainder (18 %) were resident. Of these animals, some moved small distances (< 5 
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km, n = 19,51 %), some modest distances (5-10 km, n = 7,19 %) while others (both 

large and small ovigerous and non-ovigerous females) moved greater distances offshore 

(> 10 km, n = 11, 30 %). As a group, large females (> 86 mm CL) moved the furthest 

(average = 7.3 km). Most lobsters that moved offshore in the fall initiated their 

movements between October and November, apparently cued by a combination of 

rapidly falling water temperatures (r2 = 0.85, p < 0.001) and increased wave activity 

resulting from fall storms (r2 = 0.64, p = 0.040). By the time eggs hatched in late 

spring/summer, ovigerous females were located at an average distance of 7.44 ± 1.38 km 

from their original inshore tagging location. Our working hypothesis is that the majority 

of lobsters move offshore in the fall/winter to avoid harsh coastal environments. These 

movements, in turn, influence the thermal history and hatching time of eggs carried by 

ovigerous females, as well as the location where these eggs will hatch. Therefore, the 

movements of ovigerous females ultimately influence the survival of their larvae, their 

dispersal and where new recruits potentially settle. 
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Introduction 

The movements of marine decapod crustaceans are highly diverse, often dramatic, and 

serve a variety of purposes (Dingle 1996, Pittman and McAlpine 2003, Nathan 2008). In 

general, these animals move to: 1) acquire resources and shelter; 2) avoid suboptimal 

habitats and environmental perturbations (e.g., extreme temperatures, turbulence); 3) 

enhance growth and development by moving to areas with optimal temperatures; or 4) 

improve the dispersal of progeny (e.g., eggs and larvae) (Herrnkind 1980, Herrnkind and 

Thistle 1987, Levin 1992, Bowler and Benton 2005, Childress and Jury 2006). Likewise, 

crustacean movements can also serve a homeostatic purpose that may enhance survival of 

both adults and offspring (Leggett 1985). 

American lobsters (Homarus americanus) are well known to exhibit daily and seasonal 

movement patterns at both local and regional scales (Cooper and Uzmann 1980, 

Haakonsen and Anoruo 1994, Lawton and Lavalli 1995, Scopel et al. 2009). While it is 

generally accepted that most lobster movements are local in nature, long-distance 

movements have also been documented (some of these could be considered migrations; 

see Hernnkind 1980 for definitions). In general, offshore lobsters appear to move the 

furthest, and some express homing tendencies and return migrations (Cooper and 

Uzmann 1971, 1980, Pezzack and Duggan 1986), suggestive of a panmictic stock in the 

Gulf of Maine (Fogarty 1995, Tam and Kornfield 1996). In contrast, tag-recapture 

studies of lobsters in coastal and estuarine waters indicate that they seldom move long-

distances (> 10 km) (reviewed by Krouse 1980, Haakonsen and Anoruo 1994, Lawton 
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and Lavalli 1995, Watson et al. 1999, Commeau and Savoie 2001, Cowan et al. 2006, 

Bowlby et al. 2008). Nevertheless, the seasonal inshore-to-offshore movements by 

inshore lobsters are fairly predictable and may have a significant impact on their 

physiology and ecology. These movements are influenced by changes in water 

temperatures and are believed to constitute a form of behavioral thermoregulation 

(McLeese and Wilder 1958, Reynolds and Casterlin 1979, Crossin et al. 1998, Jury and 

Watson 2000). 

Offshore water temperatures (below the mixing zone) typically remain warmer and 

more stable than inshore waters in winter; in contrast inshore waters tend to be 

warmer during the spring and summer (Flowers and Saila 1972, Oviatt 2004, 

Goldstein and Watson submitted). Therefore, lobsters that undertake seasonal 

migrations inshore in the summer and offshore in winter gain more degree-days 

which is likely to enhance their growth rate and may modulate other temperature-

dependent processes (e.g., ovary maturation, molt cycle) (Campbell 1986, Waddy and 

Aiken 1995). For ovigerous (i.e., berried) lobsters, increased water temperatures will 

also enhance egg development rates (Perkins 1972, Campbell 1986, Talbot and 

Helluy 1995). Finally, it has been demonstrated that larval survival decreases 

significantly below 12 °C (MacKenzie 1988, Annis et al. 2007), so the movement of 

berried lobsters to warmer waters may enhance both embryonic development and 

larval survival. 
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Some, if not most, ovigerous lobsters move offshore during colder months and then move 

inshore or into shallower water in summer to incubate their eggs and release their larvae 

(Campbell 1986, Harding and Trites 1988, Robichaud and Campbell 1995, Lawton and 

Lavalli 1995, Cowan et al. 2006). The existing paradigm is that these movements are 

probably driven by the need to incubate eggs at the warmest possible temperatures 

(Cooper and Uzmann 1980, Campbell 1986, Lawton and Lavalli 1995, Comeau and 

Savoie 2001), to increase overall rate of egg development. However, this pattern may not 

be universal (Childress and Jury 2006, Goldstein and Watson submitted). Several studies 

have demonstrated that females with late-stage eggs move very little (MacKay 1929, 

Jarvis 1989, Watson et al. 1999). For example, late-stage ovigerous lobsters tagged off 

outer Cape Cod (Massachusetts) made northward movements (averaging 28 km) along 

the outer coastal periphery (Morrissey 1971), compared to smaller excursions (10 km or 

less) by ovigerous lobsters in shallow lagoons, semi-enclosed bays, and estuaries (Munro 

and Therriault 1983, Watson et al. 1999, Commeau and Savoie 2001). Ovigerous 

lobsters in offshore waters have been reported to undertake seasonal migrations, and in 

the southern end of their range these movements can be quite large (Fogarty et al. 1980, 

Childress and Jury 2006). In contrast, lobsters in more northern regions do not have to 

move as far from wintering areas in deep offshore canyons to reach shallower, warmer 

banks (e.g., Browns, Georges) where they reside in the summer and fall (Saila and 

Flowers 1968, Cooper and Uzmann 1980, Pezzack et al. 1992). 

More recently, Cowan et al. (2006) addressed the question that ovigerous lobsters 

undergoing seasonal movements are exposed to disparate thermal histories by tracking 
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individual animals along the mid-coast of Maine and simultaneously monitoring the 

water temperatures these lobsters experienced. In general, smaller females moved shorter 

distances than larger lobsters. Furthermore, data from in situ temperature loggers 

demonstrated that inshore lobsters tended to experience larger and more rapid seasonal 

fluctuations in water temperature than those that moved offshore, even though both 

thermal histories resulted in a similar number of degree-days. Moreover, limited data 

from this study suggest that the duration of egg development was not always shorter for 

eggs exposed to the most degree-days. These data suggest that: 1) approximately one 

third of ovigerous females in coastal Maine waters move far enough to influence the 

temperature regime they experience, and these females tend to be > 93 mm carapace 

length; 2) lobsters that move offshore experience a more gradual decrease in water 

temperature in the fall, warmer water in the winter and a more gradual increase in water 

temperature in the spring; and 3) the duration of egg development is not simply a 

function of the number of degree-days. The primary goal of our study was to extend 

these findings to lobsters in coastal waters and determine if larger ovigerous females do, 

in fact, move into offshore, deeper waters than smaller ones. We also sought to 

determine if movements expressed by ovigerous females were indicative of a general 

pattern of movements expressed by all adult lobsters. 

Other marine crustaceans are also known to exhibit shallow to deeper water movements 

in response to seasonal changes in water temperature and other physical perturbations 

(e.g., spider crabs; Gonzalez-Gurriaran et al. 2002). One of the most dramatic of these 

seasonal migrations is the sudden orchestrated movement of Caribbean spiny lobsters 
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(Panulirus argus). It has been proposed that this migration is triggered by large drops in 

temperature and increased turbidity, as the result of autumn storms on the shallow banks 

of the Bahamas (Kanciruk and Herrnkind 1978). American lobsters movements are also 

most pronounced in the fall, as water temperatures are dropping and the probability of 

storms increases. For example, following a hurricane, lobsters tend to move into higher 

salinity, colder, deeper water (Jury et al. 1995). In the laboratory, it has been 

demonstrated that lobsters can detect very small changes in temperature (Jury and 

Watson 2000) and salinity (Dufort et al. 2001), and they avoid hyposaline water as well 

as adversely high or low temperatures (Jury et al. 1994, Crossin et al. 1998). The normal 

movement patterns of some lobsters into estuaries (e.g., Great Bay, NH) in summer and 

out in the fall may be explained, in part, by their attraction to warmer water and 

avoidance of low salinity (Watson et al. 1999). 

The most dramatic lobster movements generally occur in fall and spring, yet it is not clear 

what environmental factors might trigger these events (reviewed in Herrnkind 1980). 

Ennis (1984) observed that in the fall lobsters in a Newfoundland bay tended to move to 

deeper waters in response to increased storm turbulence and the breakdown of the 

thermocline. Environmental factors are very likely to have a strong influence on lobster 

movements and often correlate with specific times when they are more active (Gregory 

and Labisky 1986, Cockcroft 2001, Jury et al. 2005). A secondary goal of this study was 

to determine if the offshore movements expressed by lobsters along the New Hampshire 

coastline in the late fall were associated with distinct seasonal changes in the marine 

environment. 
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We used a variety of ultrasonic telemetry techniques to track seasonal movements of 

lobsters along the coast of New Hampshire in the Southern Gulf of Maine. Our major 

goals were to: 1) track the seasonal movements of ovigerous lobsters, male lobsters and 

non-ovigerous females, of different sizes, to determine if the movements of ovigerous 

females were unique; 2) evaluate potential environmental triggers that induce lobsters to 

initiate their seasonal movements; and 3) locate berried females when their eggs would 

be hatching to determine the influence of movements on the location where larvae are 

released. 

We found that most of the lobsters studied, of all sexes and sizes, moved modest 

distances offshore in the fall. These fall movements appeared to be triggered by a 

combination of rapidly cooling waters and increased turbulence (waves) created by fall 

storms. Most of the animals investigated remained offshore throughout the winter and 

well into the spring. Thus, ovigerous females were in these offshore areas when their 

eggs hatched in the early summer. These data suggest that, while all lobsters appear to be 

responding to the same environmental cues and express similar patterns of movements, 

these events have a significant impact on the timing and location of hatch and larval 

release. This, in turn, might influence the ultimate pattern of recruitment and the extent 

to which different lobster populations overlap. 
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Materials and Methods 

Study Site 

All tracking took place along the seacoast of New Hampshire (NH), USA between the 

fall of 2006 and summer of 2009 (three seasons total) (Fig. 1). Lobsters were captured in 

standard lobster traps, fitted with ultrasonic transmitters as described below, and released 

in a small cove just off New Castle Island, NH, at the mouth of the Piscataqua River 

(43°04.912 N; 70°42.456 W). Local benthic habitats included a prominent shallow rocky 

reef complex (2-8 m depth), surrounded by a heterogeneous mixture of sand and fine 

sediment flats interspersed with patchy eelgrass (Zostera marina) beds. Adjacent to the 

reef was a deeper channel (18-20 m). Bottom water temperatures, monitored with HOBO 

temperature data loggers (model UA-002-64; Onset Computer Corp., Pocassett, MA) 

ranged from 2-18 °C during the course of the study. Current speeds and directions 

measured at 1 m from the bottom in the area where lobsters were released ranged from 

0.03 to 28.9 cm8-1 throughout all tidal cycles (Golet et al. 2006). For purposes of this 

study, we considered inshore as areas < 5 km from shore corresponding to a depth range 

of 5-20 m (avg = 8 m) and offshore areas as > 5 km from shore at depths > 20 m (Fig. 1). 

The exception to this was areas around the Isles of Shoals (> 5 km from the tagging 

location) that had steep drop-offs and were considered offshore. 
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Fig. 1. Study area and release location (star) for lobsters tagged over three successive seasons, 
2006- 2009. Also pictured are locations where telemetry receiver/loggers (VR2s) were 
positioned (black circles). Dashed line indicates the approximate location of the 20 m isobath, 
used to delineate inshore from offshore areas. 

Tagging Protocol 

Lobsters were captured using conventional baited commercial lobster traps and then their 

sex, size (carapace length, CL, to 1 mm increments using calipers) and molt stage was 

determined. Only lobsters that were postmolt (stage 'C'; Waddy and Aiken 1992) were 

used for this study because, unlike sphyrion tags, ultrasonic transmitters are lost when a 

lobster molts. For most ovigerous lobsters, a small sample (10-15) of eggs was removed 
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from the abdomen and placed in a 1.5 mL tube with 4 % formalin-seawater for later 

determination of developmental stage (Helluy and Beltz 1991). 

Lobsters were fitted with VEMCO V13-1L coded tags (69 kHz, 13 mm diameter, 36 mm 

long, 6 g in water, estimated battery life > 600 days, VEMCO-AMIRIX Systems Inc., 

Halifax, Canada). Animals were also tagged with small (19 mm diameter) vinyl 

laminated disc tags (Floy Tag Co., Seattle, WA) containing contact information, and a 

message requesting lobstermen to either keep or release lobsters depending on their time 

at large. A select number of lobsters (ovigerous; n = 10) were also fitted with HOBO 

Tidbit temperature loggers (Onset Computer Corp.) that recorded temperature every 30 

minutes and could be downloaded using a PC-based software package (HOBOware Pro 

v. 3.0) upon recapture. 

Ultrasonic tags were secured by gluing them inside a piece of Tygon® tubing then 

attaching the tubing to each lobster using a cable-tie fastened between the second and 

third pair of walking legs (Fig. 2; Golet et al. 2006, Scopel et al. 2009). The disc tag and 

temperature logger (where applicable) were then cable-tied onto the main transmitter 

harness using a combination of smaller cable ties. Finally, a small amount of 

cyanoacrylate glue and 1.5 cm duct-tape squares were fastened from the cable tie to the 

carapace to prevent the backpack from slipping. The entire tagging process took ~ 3-5 

minutes. 

After tagging, lobsters were placed into old standard single-parlor lobster traps that had 

their doors and vent removed to facilitate escape. After lobsters were lowered to the 
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bottom, they gradually left the traps and took up residence in the same vicinity (verified 

by tracking with a high resolution VRAP telemetry system, VEMCO-AMIRIX Systems 

Inc., Golet et al. 2006, Scopel et al. 2009). This approach seemed to reduce the tendency 

of lobsters to move large distances after being handled. While we did not directly 

examine the influence of transmitter backpacks on lobster behavior and locomotion, 

distances traveled by tagged and untagged lobsters in both field and laboratory settings 

were not significantly different (Jepsen et al. 2002, Golet et al. 2006, Scopel et al. 2009). 

Fig. 2. Attachment of an instrument backpack to a lobster. All animals were fitted with an 
ultrasonic transmitter and laminated disc tag; some were also equipped with a temperature logger. 

We tagged a total of 53 lobsters. However, only 45 lobsters (18 females and 0 males in 

2006; 12 females and 6 males in 2007; 5 females and 4 males in 2008; n = 10 ovigerous 

animals with temperature loggers; Fig. 3) yielded sufficient data to be included in our 

final analyses. Most lobsters were fitted with transmitters in the late summer and fall and 

tracked throughout the winter and the following spring and summer. Although the 

primary focus was to determine if there were differences between the movements 

expressed by ovigerous and non-ovigerous lobsters, more ovigerous lobsters were tagged 

temperature logging device 

laminated disc tag 

sonic tag 
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for two reasons. First, movement data obtained from egg-bearing lobsters was also part 

of a companion egg development study (Goldstein and Watson submitted). Second, 

ovigerous lobsters caught by fishermen must legally be released, so they remain at large 

longer than those without eggs. 
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Fig. 3. Size frequency distribution for all lobsters fitted with transmitters in 2006-2009. Lobsters 
are sorted by class and include: ovigerous females (n = 20, CLavg = 87.7 ± 2.3), females (n = 15, 
CLavg = 90.9 ± 2.5), and males (n = 10, CLavg = 86.7 ± 2.0). 

Ultrasonic Telemetry 

Lobsters were tracked throughout the study using three types of commercially available 

hydrophone-receiver instrumentation. First, a series of fixed underwater acoustic 
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receivers (VR2s) that function as low resolution, high-coverage (300-400 m radius) 

'gateways' along constrained hydrodynamic features (e.g., river channels, land points, 

islands). Seven single receiver listening stations (VR2s) were moored along the NH 

coast and out to the Isles of Shoals (Fig. 1). These self-contained units detected the 

presence of transmitters within ~ 400 m and logged the time and transmitter ID. Second, 

a mobile acoustic receiver (VR100) was connected to an omni-directional hydrophone 

and towed behind a research boat on a custom-made harness at a depth of 3-4 m. This 

receiver provided medium-scale resolution (within 20-100 m of a tag) and enabled us to 

locate animals in virtually any location. Finally, a fixed array listening system (VRAP) 

utilized a triangulation algorithm to locate animals within the range of the array with a 

resolution of a few meters. All telemetry equipment and associated software was 

obtained from VEMCO-AMIRIX Systems Inc. (Halifax, Nova Scotia, Canada, 

http://www.vemco.com). 

The high resolution fixed array radio-acoustic positioning system (VRAP) was deployed 

in the fall of 2006 to track lobster movements during the fall to winter transition. The 

goal was to determine exactly when lobsters initiated their offshore movements during 

this time of year. The VRAP system consisted of a three-buoy array and a base station. 

The buoys were moored ~ 150 m apart in an equilateral triangle (Fig. 4). Details of this 

tracking system are found in Golet et al. (2006) and Watson and Chabot (2010). Briefly, 

each buoy contains a hydrophone that detects the ultrasonic transmissions, and a radio 

that communicates with an onshore base station (receiver/computer). The computer then 

triangulates the position of each transmitter based upon signal arrival times at each buoy; 
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the system is accurate to within 1 -3 m under optimal conditions. Data are obtained for 

each lobster in the vicinity of the array approximately every 5 minutes. 

560 

500 
520 
540 

650 600 550 500 450 400 350 300 250 200 150 100 50 

Fig. 4. Release location (arrow) and position of VRAP fixed acoustical system (2006 only, 
triangle covering the tagging site) consisting of a three-buoy array positioned as an equilateral 
triangle (scale in meters), and base station (onshore at the UNH Coastal Marine Lab (CML). This 
system plotted real-time positions of tagged lobsters based upon signal arrival times received by 
each buoy. See Golet et al. 2006 for details. 

Manual Tracking 

It took approximately one month to cover the entire grid using manual tracking methods 

(Fig. 5). Manual (VR100) tracking was conducted at weekly, or sometimes biweekly 

(wintertime) intervals, throughout the year; tracking areas were covered in a grid-like 

fashion (lines separated by ~ 300 m). However, positions of animals inshore, around the 

release location, and from downloads of the VR2s, were obtained on a weekly basis. 

Therefore, while weekly data were available for some animals, seasonal movements were 

generally analyzed using monthly data. 
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The accuracy and reliability of the manual (VR100) telemetry system were verified in 

two ways. First, a simple range test was conducted to determine the distance at which a 

particular tag could be detected (Webber 2009). A tag was mounted on a small brick 

with underwater marine epoxy and placed at-depth in the vicinity of the release location. 

The hydrophone was towed away from the tag location behind a small boat in each of the 

four cardinal directions until the signal could no longer be detected (i.e., the receiver 

could not identify the tag number). Tags in the study area could be heard and identified 

within 300-500 m of their location. 

A second test determined the most probable location of a lobster, given that the manual 

tracking system often logged multiple fixes for a given animal as the hydrophone was 

being towed past the animal. Data obtained using the VRAP system were used to 

ground-truth the actual position of a given lobster/transmitter, and this position was then 

compared to GPS locations obtained using the towed system. Averaging all the GPS 

coordinates obtained for a given lobster as the vessel passed by it yielded single GPS 

locations within 10-15 m of the animal's actual position. However, since the manual 

system was not always towed right over the transmitter, data obtained with the manual 

tracking system were most conservatively accurate to within 30-50 m of the pinger's 

location. 

In addition to data from telemetry, we frequently received positional information from 

lobstermen who caught tagged lobsters and phoned or emailed this information (per 

instructions on the disc tags). Informational flyers were distributed among lobster 
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pounds, fishermens' co-ops, and lobster wholesalers in the area to alert fishermen to the 

details of this study. 
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Fig. 5. Area monitored during study duration. The total area (~ 375 km2) was covered monthly, 
primarily using manual tracking methods and the downloading of VR2 units. Telemetry 
receiver/loggers (VR2s) are indicated by black circles (see Fig. 1). 

Environmental Data 

Daily water temperature data were acquired using a combination of HOBO pendant 

temperature loggers attached to VR2s in fixed locations and HOBO Tidbit temperature 

loggers recovered from some recaptured lobsters. Wave height measurements, indicative 

of storm events, were obtained from ocean observation buoys for the fall of 2006. Wave 

height data was queried as daily averages and downloaded for selected time frames from 

the Gulf of Maine Ocean Observing system (GOMOOS; http://www.gomoos.org) and 

two GOMOOS buoy locations: 1) NOAA CMAN IOSN3 (Isles of Shoals, 42°58'12" N, 
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70° 3712" W); and 2) Buoy B01 (Western Maine Shelf, 43° 10*51" N, 70° 25'40" W). 

Relationships between lobster emigration, temperature and wave heights were analyzed 

using pairwise correlations in JMP v. 9.0.3 (SAS Institute, Cary, NC). 

Data Processing and Analysis 

Lobster positional information was plotted using the ArcGIS v.9.3 software package 

(ESRI Inc., Redlands, CA). If more than one position was obtained on a given day 

during manual tracking or from the VRAP system, GPS fixes were averaged to yield a 

single location per day. Positional fixes based on VR2s were considered to be the 

location of the VR2 unit. 

To calculate the distance a given animal moved from one season to the next we used the 

two points (one from each season) that yielded their maximum distance. The three 

seasonal time periods (4 months each) chosen for our calculations included fall (Sept 1-

Jan 1), winter (Jan 2-April 1) and spring (April 2-July 1). The partitioning of seasons in 

this manner also corresponded to periods when: 1) temperatures were decreasing the most 

(fall); 2) temperatures remained < 6 °C (winter); and 3) lobsters generally re-initiated 

their movements (temperatures > 6 °C; spring). Calculations beyond this time frame 

were confounded by transmitters that were expiring; however, we did track some animals 

into August and September when possible. Additionally, lobsters that were recaptured by 

fishermen provided added data as well. If animals moved away from the coast, distances 

were recorded as positive values, while movements towards the coast were recorded as 
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negative values. To calculate 'net' distances positive and negative values were summed, 

or averaged. For comparison of distances traveled by individual lobsters of different 

categories animals were grouped as large females (86-120 mm CL; n = 10), small 

females (70-85 mm CL; n = 5), large ovigerous females (n = 14), small ovigerous 

females (n = 6), large males (n = 4) and small males (n = 6). 

To establish the time at which lobsters left the VRAP array (in 2006) we utilized the 

'Playback' command module in the VEMCO software package (VRAP v. 5.1.4), which 

allows playback and visualization of the tracking history for each individual. For each 

individual, the Julian day of movement outside of the VRAP array and towards offshore 

locations was noted. All movement analyses were conducted using the statistical 

software package JMP v. 9.0.3. Directional data were analyzed from a Rayleigh's Z-test 

using Oriana v. 3.0 software (Kovach Computing Services, UK). Data that did not meet 

parametric assumptions were analyzed using non-parametric Mann-Whitney U-tests. All 

means are given ± se. 

Results 

A total of 45 lobsters were tagged and tracked in each of three successive seasons: 2006 

(n = 18), 2007 (n = 14), and 2008 (n = 7) (Table 1). A total of 82 % (n = 37) of lobsters 

showed movements (> 0.5 km) while the remainder (13 %) was resident over a 150 day 

period. Of these animals that moved, some moved small distances (< 5 km; n = 19, 51 

%), some modest distances (5-10 km; n = 7, 19 %) while others (both large and small 
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ovigerous and non-ovigerous females) moved greater distances offshore (> 10 km; n = 

11,30 %). As a group, large females (> 86 mm CL) moved the furthest (avg. = 7.3 km). 

Davs-at-large (DAL) 

Overall, all 39 lobsters were at large for an average of 216.3 days. However, ovigerous 

females exhibited slightly longer DAL (mean = 248.2 ±17.1) than non-ovigerous females 

(mean = 220.9 ± 19.7) or males (mean = 180.0 ± 24.1; Fig. 6). This was presumably 

because lobstermen were legally required to release any ovigerous lobsters captured. 

Nevertheless, DAL was not significantly different among the three lobster classes 

(ANOVA; F = 2.69, df = 2,44, p = 0.081). There were also no differences when 

comparing the same DAL for large versus small lobsters within and between classes (2-

factor ANOVA; F = 1.20, df = 5,44, p = 0.326; Fig. 7). Interestingly, small males (mean 

= 161.5 ± 32.0) were not at large significantly more than large males (mean = 207.3 ± 

39.1), or either ovigerous or non-ovigerous females (range = 217.2-251.1) (Tukey HSD; 

q = 3.01, p > 0.05, a = 0.05). A total of 37 lobsters (82.2 %) were caught at least once by 

commercial fishermen; eight lobsters were caught more than once. 
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Fig. 6. Days-at-large (DAL) for three lobster classes: ovigerous females (n = 20), females (n = 
15) and males (n = 10) tagged over three consecutive fall seasons and tracked through successive 
summers, 2006-2009. There were no significant differences among the three lobster classes 
(ANOVA, F = 2.69, df = 2,44, p = 0.081). Means are expressed ± se. 
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Fig. 7. Days-at-large (DAL) for three lobster classes by size: ovigerous females (nsman = 6, niarge = 
14), females (nsman = 5, n^ = 10) and males (nsman = 6, nIarge = 4) tagged over three consecutive 
fall seasons and tracked through successive summers, 2006-2009. Means are expressed ± se. 
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Year Sex 
Size 
(CL) 

Date Tagged 
Days-at-Large 

(DAL) 
Max. Absolute 
Dist. Traveled 

Egg Dev. % 

2006 

F(o) 79 
12/06/06 211 7.73 

62 
F(o) 82 10/03/06 216 0.28 38 
F(o) 84 09/22/06 315 11.35 58 
F(o) 84 11/02/06 206 19.59 52 
F(o) 86 08/30/06 250 20.73 0 
F(o) 88 09/26/06 99 0.54 0 
F(o) 89 09/19/06 370 1.65 0 
F(o) 90 09/22/06 296 7.40 34 
F(o) 103 10/26/06 336 5.90 43 
F(o) 104 10/04/06 309 14.44 0 
F(o) 122 09/19/06 345 11.72 0 

F 82 11/09/06 264 12.49 
F 87 11/02/06 180 0.97 
F 92 09/26/06 217 2.64 
F 95 09/29/06 124 21.82 
F 99 09/29/06 220 1.98 
F 109 09/26/06 223 9.20 
F 112 10/13/06 206 5.80 

2007 

F(o) 90 10/26/07 250 15.07 30 
F(o) 90 10/16/07 252 3.57 15 
F(o) 91 10/22/07 260 10.05 12 
F(o) 101 10/16/07 204 10.79 

F 80 07/20/07 152 5.20 
F 80 11/14/07 241 4.03 
F 85 10/26/07 229 22.54 
F 89 10/16/07 340 1.15 
F 92 10/22/07 247 3.17 
M 80 10/26/07 221 0.31 
M 81 11/09/07 207 3.41 
M 82 10/22/07 39 0.62 
M 91 10/22/07 58 0.50 
M 94 10/23/07 196 2.81 

2008 

F(o) 80 09/30/08 225 0.58 8 

F(o) 84 09/30/08 275 7.73 66 
F 81 09/30/08 200 3.23 
F 90 10/14/08 232 0.77 
M 83 09/30/08 250 1.20 
M 83 10/14/08 208 0.98 
M 92 10/14/08 308 3.10 

Table 1. Inventory of all lobsters tagged and tracked (n,otal = 39) in each season: 2006 (n = 18), 
2007 (n = 14), and 2008 (n = 7). Categories include ovigerous females, F(o), females (F), and 
males (M). Egg assessment is based on the Perkins Eye Index (Perkins 1972) and calculated for a 
subset of eggs. Eggs with 0 % development lacked discernible eyespots, and were not measured. 
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Movement and Distance 

The maximum absolute distances traveled by the three classes of lobsters were 

significantly different (Fig. 8; ANOVA; F = 3.43, df = 2,44, MS = 130.5, p = 0.041). 

Distances traveled by ovigerous lobsters were the greatest (7.44 ± 1.38 km), compared 

with non-ovigerous females (6.33 ± 1.59 km) and males (1.29 ± 1.95 km). Furthermore, 

the mean distance traveled by ovigerous females was significantly different from the 

mean distance moved by males, but not significantly different from non-ovigerous female 

movements (Tukey HSD; q = 2.42, p < 0.05; Fig. 8). 

2 5 -

20-

i is-
s 
C 
<9 

1 
u 10-

i 
5 -

Ovigerous Females Females Males 

Lobster class 

Fig. 8. Maximum distance traveled by three classes of lobsters (all sizes combined). Diamonds 
indicate 95 % confidence intervals, with horizontal lines representing means for each class. 
Different letters above bars indicate significant differences (p < 0.05, a = 0.05). 

Within each season there were moderate differences in movement by lobster type 

(ANOVA; F = 3.43, df = 2,44, p = 0.051), but no differences by lobster size (ANOVA; F 
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= 0.46, df = 1,41, p = 0.97). However, there were strong differences in lobster movement 

across different seasons (ANOVA; F = 4.79, df = 2, 84, p = 0.011; Fig. 9). From fall-

winter both types of females moved significantly farther than males. Between December 

and March (winter-spring) minimal movement by all lobsters was observed, including 

comparatively diminished movements by males (Fig. 9). By late spring and early 

summer, there were dramatic movement events observed for ovigerous females (avg. = 

2.55 ± 0.66 km) compared with non-ovigerous females (avg. = 1.56 ± 0.64 km) and 

males (0.41 ± 0.31 km). These seasonal differences by each lobster class are shown in 

Figure 10. An example of seasonal movements of two individual lobsters (ovigerous and 

non-ovigerous females) is given in Figure 11. 

Ovigaroui Female* 
a 

Females Males 

Winter Fall Winter Spring 

C 

i 
Fall Winter Spring 

Fig. 9. (Top): Net movements by lobster class for animals moving > 0.5 km, and at large for at 
least 150 days, for each of three seasons (all sizes combined): fall, winter and spring. Means 
expressed ± se. Shared letters above bars indicate no significant differences (p > 0.05, a = 0.05). 
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Fig. 10. Composite seasonal movements by lobster type, ovigerous, non-ovigerous, and male, 
sizes combined, over three seasons, 2006-2009. Panel A depicts both ovigerous females (n = 20, 
circles) and females (n = 15, squares) across each of the three seasons while Panel B includes all 
male lobsters (n = 10, triangle) over the same three seasons. The original tagging location is 
designated by a star, and the dashed black line indicates the 20 m isobath, used to delineate 
inshore from offshore movements (also see Fig. 1). 
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Fig. 11. Contrasting seasonal movements between a large ovigerous female (CL = 90) and a 
small male lobster (CL = 82) in 2006-2007. The track of the large ovigerous female is fairly 
typical for this group, characterized by large rapid offshore movements in the fall, a stationary 
period in the winter months, and movement after the predicted hatching date (H). While some 
smaller non-ovigerous females expressed the same seasonal movements as some large ovigerous 
animals, most males (large and small) remained exclusively within inshore waters. 

Initiation of Fall Offshore Movements 

A total of 18 lobsters were tracked with the high resolution VRAP system in the fall of 

2006 (11 ovigerous, CLmean = 92.0 ± 8.3 mm and 7 non-ovigerous, CLmean = 95.6 ± 11.7 

mm). Most lobsters (n = 16) moved away from the VRAP array (Fig. 4) over a period of 

21 Julian days (avg. = Nov-1; 95 % CI = Oct-22 to Nov-11; Fig. 12). Lobsters tagged 

before Oct-5 (n = 13 or 72.2 %) expressed strong site fidelity, remaining near the tagging 

for 39.5 ± 6.6 days before moving offshore. In contrast, those tagged after Oct-5 

remained in the area for significantly less time (1.5 ± 1.5 days; t= 3.781, df = 17, p = 

0.0015). There were no differences between ovigerous and non-ovigerous lobsters in 
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terms of their propensity to leave the tagging site (Mann-Whitney test; U = 35.0, p = 

0.68). Initial lobster movements offshore were in a SSE direction, with a mean vector of 

159° (Rayleigh test; Z = 25.35, p < 0.001). Many of the tagged lobsters showed daily and 

sometimes longer movement patterns within the periphery of the array; however, they 

were not considered as having vacated the array until they were undetected by the VRAP 

array for > 24 hr. 
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Fig. 12. Top: Number of lobsters moving out of the VRAP array towards offshore waters by 
date. The solid black line indicates the mean date of departure (Nov-1) for all tagged lobsters, 
and dotted lines the 95 % CI (range = 295-315 Julian days). On average, lobsters moved 
offshore in a SSE direction, with a mean vector of 159°. Bottom: Example of the fine-scale 
movements (> 1,500 positional readings) of an ovigerous lobster (89 mm CL, tagged on 8/29/06) 
on the day it left the VRAP array (triangle, Oct-31) and continued to move offshore (scale in 
meters). This lobster remained in this area for 40 days before leaving. 
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Environmental Cues 

Since drops in water temperature and storm events may trigger the offshore movements 

of lobsters, we monitored water temperatures and wave heights before, during, and after 

the period when lobsters left the tagging location (Sept-Dec of 2006) to test for a 

correlation between these environmental cues and lobster movements (Fig. 13). Water 

temperatures were generally stable in the period leading up to the initiation of offshore 

movements (avg. = 14.1 ± 0.3 °C; range = 12.9-15.7 °C). However, starting in mid-

October, when offshore movements began, there was a significant decrease in 

temperature (-28.4 %; avg. = 10.3 ± 0.5 °C; range = 9.0-12.8 °C, over the period when 

lobsters emigrated from the VRAP array (Mann-Whitney U-test; %2= 12.9, df = 1, p = 

0.0003; Fig. 13). 

Likewise, wave heights during the two time periods were significantly different (Mann-

Whitney U-test; x2 = 5.8, df = 1, p = 0.0160), averaging 0.8 ± 0.08 m (range = 0.43-1.17 

m) before the migration period and 1.2 ± 0.13 m (~ 36 % increase; range = 0.58-1.77 m) 

after offshore movements commenced (Fig. 13). A strong relationship was evident 

between temperature and week (i^adj= 0.851, p < 0.001) over the tagging time period (21 

weeks). 
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Fig. 13. Weekly water temperatures and wave heights in the fall of 2006 during the time period 
before, and during lobster offshore movements. Temperature data were obtained from local 
temperature logging devices at the inshore tagging location, while wave height data were 
obtained from a local oceanographic buoy (GoMOOS databse, see methods). Lobster symbols 
indicate movement events away from inshore waters by individual animals. A total of 75 % of 
the lobsters (n = 16) in the area left between Oct 22 and Nov 21. 

Movements and Egg Development 

During 2006-2009, we tracked a total of 17 ovigerous females carrying eggs that were 

25.9 ± 6.0 % (range = 0-66 %) developed when first tagged. There was no relationship 

between distance traveled by these lobsters and the initial stage of the eggs they were 

carrying (r = 0.24, Spearman p = 0.26). The thermal histories of six ovigerous lobsters 

(attached temperature loggers, see methods) that were tracked in the fall of 2006 and re­

captured were also analyzed. Of these six animals, two remained inshore, while four 

moved offshore in the fall. The predicted hatch for each animal was determined from 1) 

tracking; 2) the recapture and report of tagged lobsters by commercial fishermen; and 3) 

calculations of egg development from starting egg values, water temperatures, and use of 

a modified Perkin's (1972) eye index (PEI) (Goldstein and Watson submitted). Inshore 
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lobsters were predicted to hatch between Jul-15 and Jul-27 compared to August 1-14 for 

offshore lobsters (Fig. 14). 
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Fig 14. Example thermal histories for the seasonal movements by two ovigerous lobsters 
described in Table 1. Arrows indicate the average predicted hatch time (Hi, inshore; H0, 
offshore) for each group of lobsters, based on lab data from a previous study (Goldstein and 
Watson submitted) and observations by fishermen when these lobsters were recaptured in traps. 
Lobsters that remained inshore, hatched inshore. Likewise, lobsters that moved offshore hatched 
offshore. 

Discussion 

Moderate to long distance movement is typically driven by a number of different biotic 

and abiotic factors. This study augments and complements previous work on the 

seasonal movements of ovigerous lobsters and offers a new perspective. We 

demonstrated that most ovigerous lobsters (60 %) move offshore in the winter. However, 

we also demonstrated that 46 % of all adult lobsters move offshore in the winter, 

regardless of their sex or reproductive status. These movements appeared to be triggered 

by a combination of rapidly cooling waters and increased turbulence and waves caused 

by fall storms. Taken together, these data suggest that offshore movements are likely 
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adaptive for all types of lobsters, and they might be seeking a more stable environment to 

inhabit during cold months when they tend to be less active and require less food. 

We found many lobsters remained offshore throughout winter and well into spring. 

Thus, ovigerous females were in these offshore areas when their eggs hatched in the early 

summer. These data suggest that, while most lobsters appear to be responding to the 

same environmental cues and express similar patterns of movements as other lobsters, 

these events have a significant influence on the timing and location of hatch and larval 

release. This, in turn, might influence recruitment patterns and the extent of overlap 

between different populations. 

Reliably documenting seasonal patterns of lobster movements depends on the area 

studied as well as the type and duration of the study (Pittman and McAlpine 2003). By 

combining three different ultrasonic telemetry techniques, we documented both the 

small-scale movements of lobsters as they initiated their offshore movements in the fall, 

and larger scale seasonal movements over multiple seasons. We found that while VR2s 

are very useful in locations such as the coast and at the mouth of bays and rivers, once 

animals move into the open ocean too many are required to cover the entire area. 

Therefore, while time-consuming, manual tracking is required. Lobster movements are 

easier to study than those of other aquatic species because telemetry data are 

complemented by data from fishermen who routinely capture lobsters in traps. 

Fishermen were also able to provide additional status of tagged animals that were 

recaptured, especially ovigerous lobsters and their eggs. 
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Previous reports on the seasonal movements of lobsters have included a number of 

patterns including mature lobsters moving further than immature ones, return movements 

by some lobsters back into either inshore waters or shallow banks, and local movements 

of other lobsters (e.g., homing) (Campbell 1986, Pezzack and Duggan 1986, Bowlby et 

al. 2007, Scopel et al. 2009). Most lobsters moved short (< 5 km) to moderate (5-10 km) 

distances including limited movements by all lobsters in the winter (Dec-Mar; Fig. 9), 

mirroring the general trend seen in many other lobster movement studies. In addition, we 

found no statistically significant differences in the movements of lobsters by size and this 

has also been documented in at least one other study (Watson et al. 1999). Finally, 

environmental factors that appear to initiate the autumnal movements of American 

lobsters have not been documented very often, especially compared to other lobster 

species. 

The Northwestern Atlantic Ocean has only recently been recolonized by H. americanus 

(~ 10,000 years ago); thus, lobster populations have had a relatively short time (~ 1,000 

generations) to evolve strategies to optimize their survival and recruitment of their eggs 

and larvae (Kenchington et al. 2009). Thus, the motivations and associated mechanisms 

of seasonal movement patterns in all lobsters are still largely undetermined. A variety of 

factors acting alone or synergistically may influence patterns of ovigerous lobster 

movements and include: 1) optimizing thermal regimes for biological processes; 2) sex-

biased movements; 3) habitat structure and marine landscapes; 4) foraging activity; and 

5) movements associated with larval hatch and dispersal. 
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Movements to Optimize Thermal Regimes 

Lobsters can detect small changes in temperature and avoid water that is either to hot or 

too cold (behavioral thermoregulation; Crossin et al. 1998, Jury and Watson 2000), and 

most studies of lobster movements have proposed that temperature is the primary driver 

(Drinkwater et al. 1996; Watson et al., 1999). The seasonal movements of H. americanus 

are widely thought to be temperature- and depth-dependent, rather than distance-

dependent (Lawton and Lavalli 1995). 

The association of seasonal movements with maximum optimal temperatures (i.e., degree 

days) needed for biological functions has been well documented, especially in ovigerous 

lobsters (Waddy and Aiken 1992, Waddy et al. 1995). Evidence suggests that ovigerous 

lobsters move as a strategy to subject their eggs to a sufficient and optimal number of 

degree-days in offshore waters to allow their eggs to develop and hatch inshore during 

the following summer (Campbell 1986, Cowan et al. 2006). However, a companion 

study has recently shown that in coastal New Hampshire waters, degree days between 

inshore and offshore locations do not differ enough to elicit such a pattern. Instead, the 

rate of temperature increase in the spring had the greatest effect on the timing of hatch 

(Goldstein and Watson submitted), with inshore lobsters actually hatching sooner than 

offshore lobsters. Offshore movements actually delay hatching and ovigerous lobsters 

remained offshore until after their eggs hatched in the summer, even though inshore 

movements would have accelerated hatching. Together, these findings suggest lobsters 

that undertake inshore-offshore movements in the NH region of the Gulf of Maine do not 

necessarily do so in order to gain degree-days and accelerate development. However, it 



remains unknown if such a selective pressure originally evolved to facilitate the 

acquisition of an optimal number of degree days. 

Sex-biased Movements 

Sex-biased movements have been documented for a variety of animals including birds 

(Greenwood 1980), butterflies (Baguette et al. 1998) and fishes (Hutchings and Gerber 

2002), and are linked to mating and reproductive strategies. In all these cases sexual 

selection strongly shapes mating strategies by modifying behavior, leading to divergent 

movement patterns between sexes. Other studies have shown differential sensitivity to 

environmental cues, reflecting differences in the evolutionary pressures to disperse 

(Benton and Bowler 2005). Breeding migrations in crabs have also been documented and 

show a variety of patterns as well (Stone et al. 1992, Stone and O'Clair 2002, Carr et al. 

2004). The movements of female gravid blue crabs (Callinectes sapidus) for example, to 

the mouths of estuaries and bays, allow crab zoeae to utilize offshore currents and avoid 

osmotic stress and predators (Forward et al. 2003). These studies suggest differential 

movements can result in skewed sex ratios. 

One goal of our study was to ascertain if seasonal movement patterns expressed by 

ovigerous lobsters (to deeper, colder, more stable habitats) were different from those of 

their male or non-ovigerous female counterparts. Even though this was not entirely the 

case, we still observed that the movements by ovigerous lobsters were disproportionately 

longer (60 % moved > 5 km) compared with males (no male moved > 4 km). This result 
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is somewhat contrary to other work, which reported male-biased (Jury et al. 1994) and 

female-biased (Campbell and Stasko 1986) movements of H. americanus in some coastal 

waters. 

Sex-biased movements are most frequently attributed to selective pressures acting on 

reproductive strategies or physiological requirements that differ between sexes 

(Haakonsen and Auoruo 1994, Jury et al. 1994). For example, male lobsters exhibit a 

wider range of physiological tolerances in estuarine waters (e.g., Great Bay estuary, NH) 

that reflects the timing and magnitude of their movements into such locations (Howell et 

al. 1999, Watson et al. 1999). Such patterns in coastal waters exist but are not as 

pronounced. Campbell and Stasko (1985) and Templeman (1940) found that mature 

females moved greater distances than mature males in some areas, but not others. These 

patterns are consistent with previous reports of greater mobility of male spiny lobster 

(MacDiarmid and Butler 1999, Gofli et al. 2010). However, Fogarty et al. (1980) and 

Krouse (1981) found no differences in movement as a function of sex or size, possibly 

because those lobsters were immature. On Cape Cod, Morrissey (1971) reported that 

ovigerous females moved further and faster than other lobsters. 

More recently, den Heyer et al. (2009) found a small, but significant difference in the 

movement (displacement) rates between male and female lobsters, in Northumberland 

Strait Canada. Although we did not compare the movements of ovigerous females to that 

of males in the first year of this study, we did observe that all female lobsters were 

capable of moving out of the tagging array (VRAP array 2006), and most did so, 
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regardless of their reproductive state (Figs. 12,13). Female-biased lobster movements 

may be associated with mating and reproduction. By comparison, male lobsters are 

territorial and defend dens, especially during the mating season (Karnofsky et al. 1989). 

Therefore, males may be less mobile than females, especially during certain times of year 

(e.g., molting, den acquisition) but may increase their activity in the spring when 

temperatures warm and they are foraging (Golet et al. 2006). Because we followed all 

types of lobsters throughout the year including during their breeding season, it is possible 

that some differences between male movements (and their counterparts) are driven by 

mating-related behaviors including the defense of dens. 

Movements and Habitat 

The presence of appropriate habitats is likely to have a significant influence on the 

tendency of lobsters to move. For example, Comeau and Savoie (2001) suggest that 

lobster movements in Northumberland Strait are facilitated by an overall flat 

homogeneous bottom. The topography and shape of the Strait also provide a large area 

conducive to movement. Cooper and Uzmann (1980) proposed that the shallowly-sloped 

continental shelf would also favor movement. Both Watson et al. (1999) and Estrella and 

Morrissey (1997) found that lobsters were more likely to move (and did so rapidly) when 

presented with suboptimal habitats in Great Bay Estuary and outer Cape Cod, 

respectively. 
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More recently, Geraldi et al. (2009) determined that lobster movements were dependent 

on the quality of habitats through which they were moving. Even in some estuarine 

environments, complex hard-bottom areas between soft-sediment patches (e.g., eelgrass 

beds) can serve as corridors and passageways (see Micheli and Peterson 1999) for 

lobsters and crabs engaged in short- or long-term movements (Selgrath et al. 2007, 

Goldstein unpub. data). Movements by other crustaceans (e.g., spider and king crabs) 

have also been tied to habitat selection on a seasonal basis (Stone et al. 1992, Gonzalez-

Gurriaran et al. 2002). 

We observed no differences in movement patterns between lobsters with varying degrees 

of egg development stage (0-66 %), however Jarvis (1989) documented strong resident 

behavior in late-stage ovigerous lobsters in areas of suitable habitat, compared with more 

transient behavior where habitats were described as featureless (i.e., sand flats). 

Likewise, Watson et al. (1999) observed a similar pattern in an estuary. This 

phenomenon has been described in Dungeness crab (Cancer magister), and has been 

attributed to habitat correlates (substrate type) that enhance brooding for developing 

embryos (Stone and O'Clair 2002). 

Our choice in tagging sites was characterized predominantly by boulder-gravel 

complexes (male shelters were also observed) in the general area that likely afforded 

lobsters ample structure for residency and foraging (Poppe et al. 2003, Scopel et al. 2009, 

CCOM-JHC, 2012). Alternatively, had this study been conducted at a nearby site 

dominated by flat, sandy habitats, we surmise that lobsters would exhibit much more 
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transient behavior (Geraldi et al. 2009). Lobsters may switch from one type of habitat to 

another on a seasonal basis, move when habitats are limiting, or come back to areas when 

conditions improve. These cyclical patterns are particularly evident in estuaries and bays 

where physical conditions can change very dramatically (Watson et al. 1999). Finally, 

the tendency of lobsters in this study to leave the tagging site with similar directionality 

suggests that their movements are not arbitrary. For those animals that undertake 

seasonal movements, it is highly likely that habitat features (e.g., depth contours, 

substrate composition) act as signposts and influence the trajectories and movement rates 

in these animals (Herrnkind and Thistle 1987). Clearly, more work is needed to more 

accurately determine the correlation between habitat quality, marine landscape, and 

movements of lobsters (both transient and resident). These data will be especially 

relevant to the design and establishment of marine protected areas (Gofli et al. 2010). 

Movements and Foraging 

There are a variety of explanations for offshore movement in the winter, but the 

motivation to move inshore in the spring and summer is less clear. Movements in marine 

organisms are often linked to the procurement of food resources over a range of habitat 

scales (Polis et al. 1997). As a result, many lobsters are considered key predatory 

species, exerting a strong influence on the ecosystem dynamics through their foraging 

activity on benthic communities (Langlois et al. 2005). American lobsters frequently 

influence the dynamics in local benthic communities as evidenced by the broad spectrum 

of food items that they consume (Scarratt 1980, Conklin 1995, Palma et al. 1998). 
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Feeding activity in lobsters has also been linked with temperature and movement patterns 

(Lawton and Lavalli 1995). On a daily basis, foraging activity by lobsters accounts for 

small movements on the order of 1-2 km (typically 100-300 m or less, Cooper and 

Uzmann 1971, Ennis 1984, Watson et al. 2009). Although lobsters do not move very far 

during their daily foraging excursions, it is possible that their larger seasonal migrations 

are motivated by a need to move into areas with a high abundance of prey. While there is 

no direct evidence that lobsters exhibit seasonal movements inshore related to food 

availability, they often shift their prey based on a spatiotemporal scale and this may drive 

some patterns of movement (Scarratt 1980, Elner and Campbell 1987). 

Environmental Perturbations 

The cues that initiate and control seasonal, directed movements in American lobsters are 

largely unknown. Movements are typically correlated with seasonal changes in 

temperature and, in locations such as estuaries, fluctuations in salinity (Wahle 1993, Jury 

et al. 1995, Watson et al. 1999). However, Cooper et al. (1975) observed that lobsters 

typically moved from shoal waters (5-20 m) to deeper waters (30-60 m) over strong wind 

events and increasing wave heights. Others report that a combination of ice scour and 

wave action to shallow bottom sediments (coupled with low water temperatures) 

triggered lobsters to shelter beneath hard substrate features or in deep water (Ennis 1984, 

Karnofsky et al. 1989). Some of the best evidence for environmental triggers for 

seasonal lobster movements comes from studies on spiny lobsters (Herrnkind 1980). The 

occurrence of frequent autumnal storms (waves and turbidity), coupled with decreasing 
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water temperatures, was enough to trigger the mass migration of Caribbean spiny lobster, 

Panulirus argus (Kanciruk and Herrnkind 1978, Nevitt et al. 1995). 

Two environmental parameters (water temperature and wave height) were quantified 

during the first year of this study, when we were able to obtain high resolution tracks of 

lobsters to accurately assess when they left the coast. Changes in temperature and wave 

height provide a good metric of environmental disturbance and have been used to assess 

the changes in benthic communities in other studies (e.g., Schiebling and Gagnon 2010). 

Both factors were strongly linked to the propensity of lobsters to leave the tagging site. 

In our study, we observed a clear window of opportunity when lobsters tended to move 

offshore and this was associated with an increase in storm events and rapidly falling 

temperatures (Fig. 13). Additionally, because most lobsters were tagged well before this 

event (~ 40 days prior), we conclude that fall movements offshore were not an artifact of 

our tagging protocol. 

A follow-up analysis for all three tagging seasons (combined fall, 2006-2009) indicated a 

strong correlation between these two parameters (temperature and wave height) and the 

emigration of lobsters (r = 0.72, p = 0.028). Interestingly, in a nearby estuary (Great Bay, 

NH) over the same years (2006-2009) drops in fall water temperatures are even more 

extreme, but wave action is minimal and lobsters moved very little (Goldstein et al. 

unpub.). This suggests that perhaps seasonal movements are not initiated by changes in 

temperature per se but are more influenced by a thermal threshold that elicits such 

movements. Triggers that are implicated in the fall movements of lobsters are not well 
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understood but may include associated cues such as seasonal changes in photoperiod 

(Aiken 1969), alterations in barometric pressure and internal changes in endocrine 

processes, which work to modulate lobsters' physiological state (Kanciruk and Herrnkind 

1978, Herrnkind 1980). Therefore, our working hypothesis is that lobsters tend to move 

from coastal to offshore waters in the fall because this is when they are most likely to 

encounter a combination of falling temperatures and increased wave action. However, 

multi-year studies designed to look at a variety of cues both in the field and laboratory 

would be beneficial in future studies. 

Movements Related to Larval Hatch and Dispersal 

Many ovigerous marine decapods (spiny lobsters and crabs) that maintain external 

lecithotrophic egg masses and hatch pelagic larvae undergo brooding-related movements 

that are thought to selectively position larvae for transport away from deleterious 

environments. For example, the movements of gravid blue crabs (Callinectes sapidus) to 

the mouths of estuaries and bays allow crab zoeae to be transported in offshore currents 

to avoid osmotic stress and predators (Carr et al. 2004). Booth (1997) compiled 

information about the long-distance movements by several Pacific spiny lobsters and 

postulated that inshore-to-offshore movement events were associated with reproduction 

and molting. Other such lobster movements are described as contranatant, acting to 

redress the dispersal of larvae back to maternal areas. Movements of late-stage ovigerous 

Caribbean spiny lobsters (Panulirus argus) using ultrasonic telemetry determined that 

some individuals make homing excursions from their dens to the reef edge to release their 
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larvae (Bertelsen and Hornbeck 2009). There is clear evidence that some ovigerous crabs 

and lobsters incorporate brooding-specific movements into their repertoire for purposes 

of larval release. 

Most ovigerous H. americanus are exposed to temperatures well below 11 °C while 

incubating their eggs throughout the winter; a number of different scenarios involving 

movements to warmer waters could influence the timing of hatch and larval survival. For 

example, by delaying inshore migration into warm water, a female could delay hatching, 

while a lobster inshore would be exposed to a rapid increase in water temperature in the 

spring and hatching might occur before optimal conditions for larval survival. Ovigerous 

lobsters may have evolved a life-history strategy that is based not on exposing their 

larvae to the warmest temperatures to achieve the fastest rates of egg development, but 

rather upon the need to time hatching so that it occurs at a time and location conducive to 

optimal larval dispersal and survival. 

Superimposed on these biological patterns are the attributes of both local (10s of km) and 

regional (100s of km) oceanography that further influence larval dispersal and ultimate 

settlement locations. This is particularly true in the Gulf of Maine (GoM) where features 

such as river run-off and the seasonal strength of coastal currents can affect larval 

dispersal between inshore and offshore locations on both temporal and spatial scales 

(e.g., Mountain and Manning 1994, Pringle 2006). Because larval hatch and dispersal 

may be constrained by locally influential physical events (e.g., tidal fronts, eddies, 

convergence zones), the locations of ovigerous lobsters near their time of hatching is of 

significant value. Thus, even modest movements (10s of km) can influence these 



processes. This has been shown in other marine species with planktonic larvae, 

particularly larval marine fishes, which exhibit self-recruitment back to natal reefs 

(Almany et al. 2007, Paris et al. 2007). Therefore, an understanding of adult lobster 

movements and their locations of hatching could help to further elucidate the degree to 

which larval dispersal occurs and the scale of marine connectivity for H. americanus. 

Evolutionary Perspective 

Many studies suggest that long-distance movements of mature lobsters provide evidence 

for a panmictic population throughout the GoM. This has been confirmed by a variety of 

genetic studies (isozymes, mitochondrial DNA, microsatellite tags) showing low levels of 

genetic variability between American lobster populations, including inshore and offshore 

groups (Tracey et al. 1975, Tam and Kornfield 1996, Harding et al. 1997). Recently 

evidence for the existence of sub-populations of H. americanus that are attributable to 

morphological differences among some geographical regions has been documented 

(Harding et al. 1993, Atema et al. unpub. data). Therefore, at present, evidence suggests 

that the movement patterns expressed by lobsters and their effect on larval dispersal may 

be sufficient to maintain a single, homogenous biological lobster stock in the GoM. 

Long-distance movements (for both plants and animals) can significantly impact 

community and local population dynamics (Kokko and Lopez-Sepulcre 2006) and plays a 

key role in species invasions, habitat fragmentation, responses to climate change 

(Brander 2010), and the spatial design of marine protected areas (Gofii et al. 2010). 

Technological advances in telemetry now allow us to collect movement data at a high 
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spatiotemporal resolution and infer these patterns on many different levels. The 

dynamics of lobster movements have a great impact on their distribution and abundance 

and knowledge of these movement patterns is integral to the fisheries management of 

coastal habitats and our understanding of their continued ecological function and 

economic success. 
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CHAPTER 2 

INFLUENCE OF NATURAL INSHORE AND OFFSHORE THERMAL REGIMES ON 
EGG DEVELOPMENT AND TIME OF HATCH IN THE AMERICAN LOBSTER, 

HOMARUS AMERICANUS 

Abstract 

Some egg-bearing (ovigerous) lobsters (Homarus americanus) make seasonal inshore-to-

offshore movements that expose their eggs to a different thermal regime than eggs carried 

by lobsters that do not migrate. The overall aim for this study was to determine if these 

different thermal regimes influence the rate of egg development, and the time to hatch. 

We subjected ovigerous lobsters to natural inshore or offshore water temperatures from 

September-August, either in the laboratory (n = 16/each, inshore and offshore), or in the 

field (n = 16/each, inshore and offshore), combined for two consecutive years. 

Temperatures averaged 7.1 ± 0.19 °C (range = 2.1-14.2 ) for inshore laboratory 

simulations, compared with 6.4 ± 0.17 °C (range = 2.8-12.4) for the offshore thermal 

regime. There were no significant differences between natural or simulated inshore or 

offshore thermal regimes or mean temperatures (p > 0.05). Likewise, cumulative 

growing degree-days (GDD) over the full course of egg development did not differ 

significantly between the two treatments (meanjnshore 
= 938.0 ± 10.3 GDD, mean0ffShore= 

904.7 ± 13.0 GDD, p = 0.061). Although the rate of egg development between inshore 
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and offshore conditions did not differ significantly in the fall (p - 0.570), inshore eggs 

developed faster in the spring (p < 0.001). As a result, eggs exposed to inshore thermal 

regimes hatched ~ 30 days earlier (mean = June 26) than offshore eggs (mean = July 27), 

and their time of development from extrusion to hatch was significantly shorter (inshore 

= 287 ± 11 days vs. offshore: 311.5 ± 7.5 days, p = 0.034). These results suggest that 

seasonal movements of ovigerous lobsters strongly influence both the time and location 

of hatching. This finding has important implications for the transport and recruitment of 

larvae to coastal and offshore locations. 
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Introduction 

Water temperature modulates the physiology and behavior of most marine ectotherms 

and influences the movements of many mobile species. Both temporal and spatial 

fluctuations in water temperature can have a substantial impact on species distributions, 

including both population-level responses (e.g, dispersal, allocation of resources, 

survivorship) and the adaptations of individuals to changing environments (Whiteley et 

al. 1997, Pittman and McAlpine 2003, Nathan 2008). For crustaceans like lobsters, 

temperature is arguably one of the most important factors influencing their metabolism, 

growth, life cycle, and possibly even life span (reviews in Talbot and Helluy 1995, 

Waddy et al. 1995, Hawkins 1996). 

North American lobsters {Homarus americanus), are endemic to coastal and offshore 

waters from Labrador, Canada to North Carolina, USA, and occupy a variety of thermal 

niches over a steep gradient (Fogarty 1995, ASMFC 2009). Lobsters can sense small 

changes in water temperature (Jury and Watson 2000), and they behaviorally 

thermoregulate by moving into water that is at their preferred temperature (Reynolds and 

Casterlin 1979, Crossin et al. 1998). Thermal preferences are thought to influence lobster 

movements and thus overall distribution within gradients ranging from inshore to 

offshore, and shallow to deep waters (reviewed in Cooper and Uzmann 1980, Lawton and 

Lavalli 1995). For egg-bearing (ovigerous) lobsters in particular, it has been proposed 

that seasonal movements from coastal to offshore waters in the winter serve to expose 

their eggs to elevated temperatures during the colder months (Cooper and Uzmann 1971, 
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Campbell 1986, Pezzack and Duggan 1986, Cowan et al. 2006). This, in turn, is 

associated with maximizing degree-days neededfor molting, growth, gonad development, 

egg extrusion, and egg development (Campbell 1986). 

Water temperature has a pervasive influence on H. americanus egg development 

(Templeman 1940, Pandian 1970, Perkins 1972, Aiken and Waddy 1980). Both Perkins 

(1972) and Helluy and Beltz (1991) quantified the effect of temperature on embryonic 

development and time to hatch in the laboratory, by exposing eggs to a constant 

temperature and measuring embryonic eye (pigmentation) size as an index of 

development. Additional studies at constant temperatures served as a basis for 

temperature-specific growth models for egg development in other lobster species, such as 

the European lobster, Homarus gammarus, (Charmantier and Mounet-Guillaume 1992) 

and New Zealand rock lobster Jasus edwardsii (Tong et al. 2000). Although these 

studies are relevant to the management of captive broodstock and the operation of year-

round hatcheries, they do not address how naturally fluctuating temperatures influence 

the rate of egg development and therefore the time from egg extrusion to hatch, which 

may have critical ecological implications. 

Herrick (1895, 1909) and Bumpus (1891) provide the most comprehensive descriptions 

of H. americanus embryology, including developmental rates of eggs at various 

temperatures. Bumpus (1891) was the first to create a staging table for early lobster egg 

development. Herrick further noted that lobster eggs undergo up to three embryonic 

molts prior to the appearance of the lateral eye pigment (i.e., eyespot). This protracted 
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prelarval embryonic molting scheme seems to be very similar to the molting cycles of 

both larval and juvenile lobsters, and they appear to be influenced by environmental 

variables such as temperature (Aiken and Waddy 1980). Templeman (1940) reported the 

time between the 16-ceIl stage of development and eyespot formation at a variety of 

temperatures. Finally, Perkins's (1972) described a series of development curves for 

lobster eggs exposed to different temperatures. This, in turn, gave rise to the Perkins Eye 

Index (PEI) function. Hence, Perkin's work is fundamental to all subsequent efforts to 

predict lobster hatch dates for eggs exposed to a range of temperatures. 

Lobster egg development 'pauses' when development is both 50 % and 80 % complete, 

based on PEI (Helluy and Beltz 1991). Delayed hatching is also common in frogs, 

salamanders, and salt marsh fishes (reviewed in Martin 1999). This temporal 

developmental plasticity may help developing embryos compensate for, or adjust to, sub-

optimal environmental conditions (e.g., temperature, air exposure). For example, if 

lobster eggs are in an elevated thermal environment (> 11 °C), they will proceed 

continuously through development (Perkins, 1972). If an embryo reaches 80 % 

development and the temperature is suboptimal (< 4 °C), it ceases to develop and remains 

in stasis at the 80 % development plateau until ambient temperatures increase (Helluy 

and Beltz 1991, Waddy and Aiken 1992). However, the embiyo remains metabolically 

active while development is curtailed and continues to use valuable yolk reserves (Sasaki 

et al. 1986, Sibert et al. 2004). Thus, the longer the eggs remain in stasis, the fewer 

energy reserves will be available to the larvae upon hatching (Attard and Hudon 1987). 
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Given that most egg-bearing American lobsters are exposed to temperatures below 11-12 

°C while incubating their eggs throughout the winter (Waddy and Aiken 1995), the well-

documented mobility of lobsters, along with spatial and temporal variability in water 

temperatures inshore and offshore, suggest that lobster movements could influence their 

time of hatching through several different scenarios. 

Lobster movements both at seasonal (e.g., inshore-to-offshore migrations) and local, 

(e.g., homing and initial dispersal) scales may influence the thermal profiles they 

experience (Cooper and Uzmann 1980, Lawton and Lavalli 1995, Watsofi et al. 1999, 

Bowlby et al. 2007, Scopel et al. 2009). Even relatively short migrations or movements 

(< 15 km) can significantly affect growth and molting (Waddy and Aiken 1995), egg 

development (Ennis 1984, Campbell 1990, Cowan et al. 2006) and size at maturity 

(Landers et al. 2001, Little and Watson 2005). While numerous studies have documented 

the long distance migrations and local movements of American lobsters (reviewed by 

Krouse 1980, Cooper and Uzmann 1980, Haakonsen and Anoruo 1994, Lawton and 

Lavalli 1995), few have focused on ovigerous lobsters and how movements may 

influence egg development and time to hatch. The existing paradigm is that ovigerous 

lobsters seek deeper (offshore) waters in the fall and winter because these areas tend to be 

warmer or more stable than inshore habitats during the colder months (Chapter 1). 

Lobsters move back inshore in spring and summer to gain the advantage of seasonally 

warmer inshore waters. It has been proposed that these seasonal movement patterns 

allow eggs to gain sufficient degree-days to maximize egg development, leading to 
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earlier hatch (Campbell 1986, Pezzack and Duggan 1986; although see Gendron and 

Ouellet 2009). 

Cowan et al. (2006) further examined the relationship between ovigerous lobster 

movements and water temperature using ultrasonic telemetry. They found that small (< 

93 mm carapace length) ovigerous females tended to remain closer to shore than larger 

ones and, as a result, their eggs were exposed to more extreme thermal fluctuations. 

However, no previous study has tested the hypothesis that seasonal movements of 

ovigerous lobsters to offshore waters lead to enhanced egg development and earlier 

hatching of their eggs. To test this hypothesis, we investigated the effects of naturally 

fluctuating thermal profiles on the development of American lobster eggs. 

We sought to determine whether natural seasonal fluctuations in water temperature, 

characteristic of inshore and offshore habitats, influenced the duration of egg 

development and thus, the time of hatch. We found that lobster eggs exposed to typical 

inshore thermal regimes, which are characterized by more rapid cooling in the fall and 

warming in the spring, hatched significantly earlier than those exposed to more stable 

offshore thermal regimes. We also show that typical offshore movements of some 

ovigerous females in the fall led to a delay in the time of hatching, as well as a change in 

the location where larvae will be released. 
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Materials and Methods 

Lobsters and Egg Assessment 

Ovigerous lobsters were collected in late August and early September in 2006 and 2007 

along the New Hampshire (NH) seacoast, near Rye, NH and Gunboat Shoals (43 °.0274 

N; 70 °.6938 W; Fig. 1), by permitted commercial lobstermen using standard baited traps. 

Lobsters were transported to the University of New Hampshire (UNH) Coastal Marine 

Laboratory in Newcastle, NH and initially held in large 1,200 L fiberglass tanks 

containing PVC shelters. Tanks were exposed to ambient light and received sand-filtered 

ambient seawater (average temp = 15.3 ± 0.5 °C). A subset of the eggs in each clutch 

were viewed under a dissecting scope and staged according to the methods outlined by 

Helluy and Beltz (1991). Only lobster embryos whose initial eye index was less than 18 

% were used for this study. Lobster carapace lengths (CL) were measured to the nearest 

1 mm using digital calipers (Mitutoyo IP 65, Mitutoyo Corp., Japan). A single, circular, 

laminated disc tag (diameter = 2.0 cm; Floy Tag Inc., Seattle, WA) was fastened to the 

claw knuckle of each adult animal for individual identification during the study. 
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70°40'0" W 

Fig. 1. Locations where lobsters were obtained and maintained along the NH Seacoast. The 
collection location for all lobsters, near Rye, NH (Gunboat Shoals), is indicated by a star. 
Additional symbols show locations of incubation cages (rectangles): inshore (I) cages were near 
New Castle Common, and offshore cages (O) were near Duck Island, ME (Isles of Shoals). Also 
indicated on the map is the location of the UNH Coastal Marine Laboratory, where the laboratory 
component of the study was conducted (black circle, L). The mixed thermal treatment involved 
moving lobster cages that resided offshore at Duck Is. (MI) from fall to winter to the inshore 
location (M2) in the spring, (see methods for detailed descriptions). Dashed line indicates 
delineation (20 m isobaths) between inshore and offshore locations. 

Simulated Inshore and Offshore Conditions in the Laboratory 

For purposes of this study, inshore locations (shallow and coastal) were delineated as 2-5 

km from shore (8-10 m depth), while offshore locations were designated as 12-20 km 

from shore (20-30 m depth) (Fig. 1; see Chapter 1 methods). A series of four 0.91 m 
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diameter (600 L) tanks were used to hold lobsters under simulated inshore or offshore 

temperature regimes. Trials were repeated twice, using two groups of 16 lobsters, 

between the fall of 2007 and summer of 2009, with two tanks / treatment (n = 32 total). 

Lobsters averaged 91.2 ± 2.39 mm CL (range = 76-117, mode = 80). All tanks were 

insulated with Formular 5 cm-thick insulation (r-value = 10; Owens Corning Co., 

Toledo, OH) and were divided into four sections with coated lobster trap mesh wire (Fig. 

2). 

Incoming seawater from an intake pipe at a depth of 8 m was run through sand-filtration, 

UV sterilization, (model E120S, Emperor Aquatics, Pottstown, PA), and 100 cotton-

wound filter canisters before being distributed into either inshore or offshore (600 L) 

header-tanks (Fig. 2). Inshore tanks were run primarily as a flow-through system (no 

heating or cooling) so lobsters were exposed to ambient coastal seawater. Seawater for 

offshore tanks was pre-treated (heated or cooled) in each header tank before being fed 

into the individual tanks holding the lobsters, and then pumped (Maxijet 1200, 295 GPH, 

Aquatic Ecosystems, Apopka, FL) back into the header tanks. A steady trickle of fresh 

seawater was fed into the offshore system as well, creating a semi-closed system. 
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Fig. 2. Tank arrangement for holding lobsters. Top: Tank design for exposing lobsters to 
simulated inshore and offshore temperature regimes. Shaded containers had simulated offshore 
conditions, with incoming seawater pre-treated (heated or cooled) in the header tanks before 
being gravity-fed into treatment tanks (0.91 m diameter, 600 L) holding lobsters. Inshore tanks 
received ambient seawater. All tanks were maintained on a seasonal photoperiod using 
programmable timers. Bottom: Incubation chambers housing individual lobsters. Prior to the 
time when the eggs were due to hatch, lobsters were maintained in separate areas of the tank 
using mesh dividers. Close to hatch time, lobsters were placed into tanks with individual 
seawater inputs (bottom two lobsters in figure), and larvae drained through a small one-way valve 
into a collection basket 
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Seawater was heated using two 1,500 W titanium immersion heaters (model QDTYL5, 

Cleveland Process Corp., Homestead, FL) and cooled with portable bath cold finger 

chiller units (Cyclone model CY-2 1/5 hp, Aqualogic Inc., San Diego, CA). Heating and 

cooling regimes were controlled with digital thermostat controllers (model Nema type 

4X, Aqualogic Inc., San Diego, CA) and adjusted as needed. Offshore thermal regimes 

were based on temperature data obtained from: 1) buoys (GoMOOS Buoy B, 20 m depth) 

situated at the western edge of the Gulf of Maine (http://www.gomoos.org); and 2) 

HOBO pendant temperature loggers (model UA-002-64, Onset Computer, Bourne, MA) 

mounted on commercial lobster traps (20-30 m depth) at the Isle of Shoals (43°.0050 N, -

70°.5905 W), logging temperature at 30-minute intervals. Water temperatures in each 

treatment tank were monitored using submersible HOBO temperature loggers (accurate 

to ± 0.47 °C), as well as real-time temperature readouts from small digital thermometers 

(Coralife CD-18773, Aquatic Ecosystems, Apopka, FL). Temperature data were 

downloaded at weekly intervals using a PC-based software (HOBOware Pro. v. 3.0). 

Photoperiod was controlled using an astronomic timer (model SS8, Intermatic, Inc., 

Spring Grove, IL) adjusted for seasonal changes in photoperiod. Lighting was provided 

using 20 cm diameter 40 W hooded lamp-lights filtered with Roscolux colored lighting 

gels to simulate natural daylight (# 61 for inshore, transmission = 62 %; # 388 for 

offshore, transmission = 76 %, Rosco Labs, Inc., Stamford, CT). 
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All lobsters were provided with shelters (clay flower pots) and fed fresh squid, shrimp, or 

mussels twice weekly. Tanks were cleaned once per month and uneaten food was 

removed to maintain water quality. All tanks were continuously aerated. 

When embryos were close to hatching, ovigerous adults were placed into individual 

holding tanks (32 cm x 18 cm x 12 cm, L x W x D) with separate seawater supplies and 

drains for each tank. Tanks were designed such that hatching larvae would exit the drain 

line and collect in attached screened baskets (Fig. 2). This also served to eliminate any 

conspecific chemical cues associated with hatching (e.g., Ziegler and Forward 2007). 

The first signs of hatch (observed in collection baskets) provided a benchmark date that 

was then used to estimate the date when 50 % of the larvae were released, and the 50 % 

hatch date was used to calculate the mean hatch date for each lobster. 

Lobster Incubation Cages (Field Component) 

In parallel with the lab-based study, we assessed the development of eggs exposed to 

natural thermal regimes in the field. A total of 16 ovigerous lobsters (CLavg = 95.3 ± 5.0 

mm, range = 77-131, mode = 79) were held in cages in two locations: 1) off Newcastle 

common (depth ~ 8-10 m, inshore); and 2) near Duck Island, Maine, Isle of Shoals (depth 

~ 30 m, offshore). Two cages were placed at each location with four lobsters/cage (n = 

16 total; Fig. 1). In addition, there was also a 'mixed' treatment containing two cages 

with three lobsters each (n = 6 total) designed to simulate a scenario where lobsters 

migrate offshore in fall, and then move back inshore in spring and summer (Campbell 
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and Staskol986, Campbell 1990). For this treatment cages were located ~ 2 km from 

Duck Island in fall and winter and were moved to Newcastle Common (inshore) the 

following spring (15-March) by transporting traps using a commercial fishing vessel (Fig, 

1). Transport handling and stress were minimized by removing lobsters from their cages 

and immediately placing them onboard holding tanks with running ambient seawater for 

transport to inshore locations; this process took a total of 50 minutes. 

For all field treatments, lobsters were held in standard vinyl-coated lobster traps (1.2 m x 

0.6 m x 0.4 m, 3.8 cm square mesh) constructed without vents or entrances and divided 

into four sections by the insertion of additional coated mesh wire. A single lobster was 

placed into each compartment along with a bait bag holder. Offshore traps were 

weighted with concrete blocks to minimize their excessive movement from offshore 

winter storms. Temperature loggers were fastened with cable ties to each trap. 

Fortnightly, all cages were pulled and lobsters were rapidly checked and fed with fresh 

bait. Offshore cages were maintained by commercial lobstermen throughout most of the 

year. When lobster eggs reached late-stage development (typically one month prior to 

hatch), individual females were isolated in screened baskets within traps so that hatched 

larvae would be retained. 

Egg Staging and Morphometries 

For all lobsters a set of 10-15 eggs were removed at monthly intervals, placed in plastic 

2.0 mL storage tubes, preserved in a 4 % formalin and sterile seawater solution (see 
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Ouellet and Plante 2004), and stored at 4 °C. Bi-weekly samples were taken during the 

first and last months to account for the rapid changes that occur during early development 

and close to hatch (see Sibert et al. 2004). Eggs from each sample were staged according 

to Helluy and Beltz (1991). For each sample a digital picture was taken for each egg 

under a dissecting microsope (Nikon SMZ-2T, Nikon USA Inc., Melville, NY) at a 

magnification of 25x using a scope-mounted Nikon Coolpix 995 digital camera. All egg 

image files were imported into an image processing software (Image J v. 1.35; see 

http://rsb.info.nih.gov/ij/) and digital measurements were taken of each egg's eyespot's 

maximum length and width to generate an eye index (0-570 jim, PEI; Fig. 3). All 

eyespot measurements were made to the nearest 0.01 mm (then converted to urn) and 

values for all 10-15 eggs in each sample were averaged (mean ± se). 
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Fig. 3. Method used for determining day of extrusion for eggs. A curve was fit to the growth 
data for all the egg clutches in the inshore treatment (all females and associated eggs were 
obtained from inshore waters, see Fig. 1), and the curve was constrained to have a y-intercept of 
zero on day zero (equation: y = -le-07x4 + 0.000lx3 - 0.0325x2 = 4.4703x, r2 = 0.995). This 
curve was then used to determine how many days it took for an egg of a given eye index to reach 
that size, and these data were then used to calculate when each clutch of eggs was extruded. For 
example, inshore lobster #503 had eyespots that were 57 |im on Oct-1. Solving the equation for 
'x' (days from extrusion) gives a calculated value of 11 days old, or a predicted extrusion date of 
Sept-21. Right: Digital measurements used to stage lobster eggs. Arrows indicate the longest 
length and width measurements (eye size) obtained using Image J software. Measurements from 
all eggs in each sample were averaged together (longest length and width / 570, the eye index 
prior to hatch) to obtain a mean Perkins Eye Index (PEI). Scale bar = 300 ^m. 
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Egg Development Calculations 

The major hypothesis that was being tested in this study was that eggs exposed to 

different temperature regimes would hatch at different times. Egg extrusion (the time 

when eggs are fertilized and deposited along the underside of the female), was estimated 

when the eyespot size equaled zero. For lobsters in all treatments, % development was 

described using the Perkin's Eye Index (PEI; Perkins, 1972) (from Oct-1 to the time of 

hatch). Then, for each treatment, mean growth rate of the eggs was averaged and the 

slope of the curve was used as a representative of the rate of development of those eggs 

(Fig. 3). A best fit (r2 > 0.99 in all cases) equation was determined for the line using a 

fourth-order polynomial (JMP 9.0.3; SAS Institute, Cary, NC). The intercept was set to 

(0,0), so that 0 eye size corresponded to 0 days of development. The equation for the 

curve was then used to estimate an extrusion date for a given clutch by calculating how 

many days it would have taken for an egg exposed to that range of water temperatures to 

reach the earliest stage we observed. Estimated extrusion date was then used as the 'birth 

date', enabling us to calculate the entire incubation duration, from extrusion to hatch for 

each clutch of eggs. 

Egg staging used the PEI equation: Z,_h =(Wh - Wl)/(-S.3151 + 2.6019T0(.), where the 

number of weeks necessary for a lobster egg to hatch (Z,—h) is determined based on Wj, 

an average measurement of eye diameter, Wh, the size at complete development, and T,°c, 

temperature (Perkins 1972). The size of a lobster's eyespot at hatching (Wh) ranges from 

560-580 |xm (Helluy and Beltz 1991). We chose a median PEI value of 570 [Am (based 
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on our observations of previous eggs) for a fully developed egg; an egg with PEI = 285 

|xm would be 50 % developed. Using the above equation, it can be shown that an egg at 

50 % development requires 15.8 weeks to fully develop at 10 °C, but only 9.1 weeks at a 

temperature of 15 °C. The median hatch date (50 %) for each clutch of eggs was 

determined and converted to a Julian day (1-365), to average hatch dates for each clutch 

of eggs in each treatment. A Student's t-test was used to determine if mean hatch dates 

differed between treatments. 

Cumulative heat-related growth or growing degree-days (GDD) was estimated for the 

duration of egg development (from extrusion to hatch) as daily temperature minus a 

thermal threshold value*the total days of development. We used a value of 4 °C as our 

thermal threshold value, derived from a compilation of reproductive-based studies 

summarized in Waddy and Aiken (1995) and Aiken and Waddy (1992). 

Egg development was analyzed using ANOVA in the statistical software JMP v. 9.0.3. 

Where the parametric assumptions of normality and homogeneity of variance were not 

met, data were transformed and re-evaluated. All post-hoc tests were conducted using 

Tukey's HSD tests. A split-plot repeated measures ANOVA was used to investigate the 

effects of thermal treatment (inshore and offshore; factor 1) by month (12 levels; factor 2) 

with the potential effects of tank (whole-plot factor) and individual lobster (sub-plot 

factor). Associated temperature data (including GDD) were analyzed using a series of t-

tests, and in all cases met parametric assumptions. 
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Larval Measurements and Survivorship 

A secondary goal for this study was to assess if there were differences in larval quality 

between eggs incubated under inshore or offshore thermal regimes. Two assays were 

used to provide an index of larval quality. In the first, standard carapace lengths (CLSTD, 

from the posterior margin of the eye socket to the posterior edge of the median dorsal line 

of the carapace) were measured for Stage I larval lobsters (n = 15/female) from a 

randomized sample of 6 lobsters from both inshore (lab and field) and offshore (lab and 

field) treatments (n = 12 lobsters or 180 larvae). Larvae were removed from collection 

vessels by washing them with seawater into individual sample jars at ~ 50 % hatch. 

Larval CLSTD'S were averaged (± se) and compared between inshore and offshore (lab 

and field combined) treatments using a Mann-Whitney U test for non-parametric data. 

The second assay measured the survivorship of first-stage larvae by determining how 

long they could survive without food (e.g., Mikami and Takashima 1993, Abruhosa and 

Kittaka 1997). For each larval cohort (n = 15 larvae x 12 females, total = 180), larvae 

were added in triplicate to clusters of six 15 mL individual wells (Costar 3516 culture 

clusters, Corning Inc., Corning, NY) (experimental unit = well; replicate = cluster). 

Clusters were labeled on one side and screened on the other to ample water exchange and 

circulation. All clusters were floated in a well-aerated temperature-controlled (18 °C) 

aquarium at 32-35 psu and exposed to a 10:14 L:D lighting regime. Water changes were 

conducted every few days while temperature was monitored via a digital data logger 

(HOBO, Onset Computer Corp.). Mortalities were checked daily, for two weeks by 
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observing larval activity and movement. Non-responsive larvae (mortalities) were 

removed from cells immediately. Larval survival was analyzed with a Kaplan-Meier 

survival algorithm (Sokal and Rohlf, 1995) using the PROC LifeTest algorithm with SAS 

v. 9.3 (SAS Institute Inc., Cary, NC, USA). 

Results 

Laboratory Temperatures 

A total of 14 ovigerous females (two mortalities from 16 original) (six in 2007 and eight 

in 2008) were held in the lab from September-July of 2007-8 and 2008-9 under thermal 

regimes comparable to those they would experience if they resided in inshore waters. 

Inshore water temperatures (Fig. 4) averaged 6.7 ± 0.18 °C (min = 2.8 °C, max = 13.5 °C) 

in 2007-08, and 7.3 ± 0.22 °C (min = 1.5 °C, max 15.0 °C) in 2008-09. There was no 

significant difference in the mean water temperatures between years (paired t-test; ti,n = 

2.015, p = 0.072), so data were combined for subsequent analyses. 

In parallel to inshore temperature studies, a total of 16 ovigerous females (8 each year) 

were held at simulated offshore water temperatures (Fig. 4). Offshore water temperatures 

averaged 6.9 ± 0.10 °C (min = 2.6 °C, max = 13.7 °C) in 2007-08 and 7.2 ± 0.10 °C in 

2008-09 (min = 2.6 °C, max 13.1 °C). There were no significant differences between the 

mean offshore temperature regimes for either year (paired t-test; ti,i i = 1.902, p = 0.065), 

so these data were also pooled for subsequent analyses. 
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Fig. 4. Thermal regimes experienced by ovigerous females. Top: Average inshore and offshore 
temperatures (both lab and field, combined) from September to August, 2007-2009, with the 4 °C 
threshold temperature (solid line). Bottom: Associated growing degree-days (GDD) over the 
same time frame (calculated by subtracting the threshold temperature from the actual temperature 
each day and then adding all the days together). Data for each treatment terminated upon the 
average hatching date (vertical arrows), which was sooner for inshore lobsters (also see time to 
hatch section). 

Field (Cage) Temperatures 

A total of 16 ovigerous females were held in holding cages submerged in ambient 

seawater in situ inshore (n = 8; four in 2007-8 and four in 2008-9) and offshore (n = 8; 

2007-8 = 3; 2008-9 = 5). Lobsters were held in these locations during the same time 

period, September to August, as for the laboratory studies. Inshore temperatures were the 
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same as in the laboratory trials (i.e., same source of water; see Fig. 4); however, offshore 

temperatures averaged 6.8 ± 0.40 "C (min = 2.8, max = 11.2 °C) in 2007-08 and 6.4 ± 

0.32 °C (min = 3.1 "C, max = 10.6 °C) in 2008-09. These mean temperatures were 

slightly cooler than those simulated in the laboratory but differences were not statistically 

significant (p > 0.05). 

In an attempt to simulate the natural movements of lobsters to offshore waters in the fall 

(move in Sep-Oct and remain offshore until March) and then back to inshore waters in 

the spring (move Apr-May and remain until hatching in May-June), the cages of the 

mixed treatment group of animals (n = 6) were moved back into inshore waters in mid-

March in each year of the study, resulting in a large spike in water temperature and 

cumulative GDD of 840.1 (Fig. 5). 
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Fig. 5. Temperature profiles for those lobsters subjected to offshore conditions in the fall and 
winter and to inshore thermal conditions in the spring and summer ('mixed' treatment, field-
study). Arrow indicates when cages were moved from offshore to inshore in the spring (15-
March), leading to a sudden change in the thermal profile (dotted line). The offshore profile is 
continued for comparison. This scenario was designed to address the temperature changes that 
ensue for lobsters that undergo seasonal movements. 
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Inshore vs. Offshore Water Temperatures 

During October-March inshore and offshore water temperatures were similar, while from 

April-September, there were significant differences (ANOVA; F124 = 2.20, MS = 2.85, p 

= 0.045; Tukey HSD; p < 0.05, a = 0.05; Fig. 6). Average monthly seawater temperature 

for the months of September, April, May, June, and July was significantly warmer 

inshore, while in January and February temperatures were slightly warmer offshore. As a 

result of being exposed to inshore water temperatures that were much warmer in April-

July, inshore lobsters accumulated 336.3 GDD during this time period in comparison to 

only 163.8 GDD for offshore lobsters. In addition, inshore lobster eggs grew at a faster 

rate than offshore eggs during this time period. 
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Fig. 6. Mean (± se) water temperatures for inshore and offshore locations during the months 
when eggs were developing (2007-09). While inshore and offshore water temperatures were 
similar from October through March, from April-July inshore temperatures were as much as two 
degrees warmer than offshore temperature. Asterisks (*) above treatment month comparisons 
denote significant differences (p < 0.05, a = 0.05). 
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Egg Development 

Developmental rates of eggs exposed to inshore and offshore thermal regimes were 

significantly different (ANOVA; Fi,604 = 37.37, MS = 23458, p < 0.0001, a = 0.05). 

However, there were no significant differences between the rates in egg development by 

lobsters in the laboratory vs. those held in the field, under the same thermal regimes 

(ANOVA block effect in analysis; F2,604 = 1-37, MS = 858.1, p = 0.256, 1-p = 0.58). The 

development of all eggs (inshore and offshore) followed the same general trend each 

year, with rapid development in the fall, followed by a plateau at - 50 % development 

(PEI ~ 250-300 (am) during colder months, and then a rapid increase in developmental 

rate just prior to hatching in warmer months (Figs. 8,9). Differences in the rate of egg 

development between inshore and offshore treatments paralleled those between mean 

monthly temperatures (Fig. 7). When water temperatures were similar between locations, 

as in the late fall and winter, developmental rates were also similar. However, when 

inshore waters warmed up more rapidly than offshore in spring and summer, growth rates 

diverged (Table 1; Fig. 7). While cumulative GDDs did not differ significantly between 

inshore and offshore thermal treatments (meanjnshore - 938.0 ± 10.3 GDD, mean0ffShore -

904.7 ± 13.0 GDD; tys = 2.01, p = 0.061; Table 2) over the total duration of 

development, they were acquired more rapidly by eggs exposed to inshore thermal 

regimes in the spring and early summer (Figs. 5, 9). For example, between April 1 and 

July 1 inshore sites yielded a total of 336.3 GDD compared to 163.8 for offshore sites. 
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Fig. 7. A comparison of mean egg growth rates (eye size) for inshore and offshore treatments. 
Both data sets show a clear pattern, with very limited growth in the winter (45-50 % plateau, 
shaded area). Horizontal dotted line indicates PEI = 285 um, 50 %. A second, but more 
abbreviated plateau is seen at 80 % preceeded by increased growth in the spring and early 
summer. 

Month Temp (p-value) Egg index (p-value) 
Sept 0.047 0.127 

Oct 0.603 0.937 

Nov 0.665 0.490 

Dec 0.696 0.637 

Jan 0.574 0.100 

Feb 0.517 0.332 

Mar 0.696 0.098 

Apr 0.045 0.021 
May 0.060 < 0.001 
Jun 0.005 <0.001 
Jul 0.016 <0.001 
Aug 0.008 0.592 

Table 1 
Results (p-values) from ANOVAs comparing the mean monthly water temperatures and egg 
development index (PEI), between inshore and offshore treatments. The shaded portion of the 
table indicates months (spring and early summer) when both temperature and egg development 
were significantly different between the two treatments. Underlined values indicate when there 
were only significant differences in temperature between the inshore and offshore thermal 
regimes. 
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Fig. 8. A comparison of the growth rates of eggs exposed to inshore vs. offshore thermal 
regimes. Top: Differences (in urn) between inshore and offshore eye size (Perkins Eye Index, 
PEI) at monthly and biweekly intervals throughout egg development. Eye size was comparable 
for both inshore and offshore treatments from October through March and then eggs subjected to 
inshore water temperatures increased in size dramatically from April-July. Bottom: Percent-
change in eye size over the course of development for both inshore and offshore lobsters (lab and 
field data, combined). While growth was similar in the fall and winter months, differences in egg 
development rates were most noticeable starting in March and were significantly different by 
May. Offshore growth extended through July as a result of their longer development and delayed 
hatch. 

Time to Hatch 

Eggs incubated inshore hatched 

from offshore lobsters (Fig. 9). 

earlier and over a shorter time period compared to eggs 

Egg incubation times in both the lab and field trials 
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showed clear differences in hatch as a function of temperature regime (F2,67 = 64.73, MS 

= 183.55, p < 0.0001, a = 0.05). Subsequent pairwise comparisons showed differences 

between all three thermal treatments (Tukey HSD; q = 8.4, p < 0.0001) (inshore, offshore 

and mixed; Figs. 10,11). Eggs that were incubated under inshore temperature regimes 

hatched earlier (time at 50 % hatch) (mean = 177 ± 2.2 Julian days, median = 175, range 

= 161 -196; or June 10-July 15,35 days total) than those in the offshore treatment (mean 

= 208 ± 3.3 Julian days, median = 211, range = 184-230, or July 3-August 18, 46 days 

total; Fig. 10). Lobsters that underwent simulated seasonal movements (mixed treatment) 

hatched the earliest (mean = 165 ± 2.8 Julian days, median = 165, range = 141-200 Julian 

days, or May 21-July 19; Fig. 10) and over the longest period of time (59 days). 
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Fig. 9. The total number of lobsters with eggs hatching each week between June and August, for 
2008 and 2009. Data are combined for animals exposed to laboratory and field conditions and 
exposed to either inshore or offshore temperatures. Eggs exposed to offshore temperatures not 
only hatched later, but over a longer period of time, compared with those exposed to inshore 
temperatures. Symbols (H[and Ho) denote the mean hatching date for inshore and offshore 
treatments, respectively. 
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Fig. 10. The duration of time when eggs were hatching from lobsters exposed to one of three 
thermal treatments: inshore, offshore, or mixed. Mean hatching dates for each group of animals 
(H) are encompassed by their associated range of hatching times. Notice that inshore lobsters 
hatched earlier and over a shorter period of time. The mixed treatment group (simulating 
offshore to inshore migration) hatched first and exhibited the longest overall hatching time. 
Different letters above mean dates indicate significant differences (p < 0.0001, a = 0.05). 

Estimating Total Duration of Development 

Although all the lobsters used in this study were captured between August-15 and 

September-20, not all eggs were at the same growth stage when trials were initiated in 

September. There were no significant differences between the mean initial stages of the 

eggs in the inshore group (PEI = 77.5 ± 5.8, or 14 % developed) compared to the offshore 

group (PEI = 78.5 ± 6.1, or 15 % developed) (unpaired t-test; tj, 46 = 0.068, p = 0.946). 

To more precisely determine if exposure to different water temperatures influenced the 

total duration of egg development, we estimated the date of extrusion for the eggs carried 

by each lobster and then used that estimated extrusion date to calculate the total time for 

egg development (see methods). As expected, the mean duration of egg development for 

eggs experiencing inshore temperatures was significantly shorter (287 ± 11 days for 
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inshore vs. 311.5 ± 7.5 days for offshore) than the total duration of egg development for 

eggs incubated at offshore temperatures (p = 0.034; Fig. 11). 
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Fig. II. Egg growth, from the day of extrusion, for eggs exposed to inshore and offshore 
temperatures. Data were combined from: 1) both years of the study; and 2) both eggs from 
ovigerous lobsters held in the field as well as those maintained in the lab. Data points represent 
empirical egg size information from our study. The growth curve and day of extrusion (eye size = 
zero) were calculated by fitting the empirical data to a fourth-order polynominal equation. The 
shaded area represents the portion of the curve that was extrapolated based on this equation. 

Mean Total 
to Hatch 

Total GDD 
Period I Period II Period III (300 day 

period) 
Inshore 938 612 26 383 1021 
Offshore 905 564 36 200 800 
Mixed 840 612 (in) 36 (off) 383 (in) 1031 

Table 2 
Associated GDD values for each treatment, (in)shore, (off)shore, and mixed, over each of the 3 
developmental time periods (100 days each). 'Total to hatch' values represent average GDD 
totals (range,nshore = 818-974, mode = 974; range0ffShore= 780-1005, mode = 850) through to 
hatching for each treatment. 
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Larval Size and Survivorship 

There were no significant differences in mean larval size (CLSTD) between inshore (mean 

CLSTD = 1.90 ± 0.018) and offshore (mean CLSTD = 1.98 ± 0.015) thermal treatments 

(Mann-Whitney; U = 15002, p = 0.060). Starvation trials revealed no apparent 

differences between inshore and offshore with respect to survivorship (SAS PROC 

LifeTest; yl = 1.765; df = 1; p = 0.216); a starting sample 90 larvae / treatment, resulted 

in a mean survival of 45.3 ± 4.1 % for inshore larvae and 47.5 ± 3.6 % for offshore larvae 

over the 14-day trial period. 

Discussion 

Many lobster species carry out seasonal migrations, and numerous explanations for these 

movements have been suggested. However, there remains a great deal of speculation and 

many exceptions to the rules. For example, it is generally accepted that the inshore-

offshore migrations of ovigerous American lobsters enhance egg development because 

the deeper offshore waters are wanner and more stable in the late fall and winter. Thus, 

eggs should be subjected to more GDDs and hatch sooner. However, we found the 

opposite to be true: eggs exposed to offshore water temperatures took longer to develop 

and hatched later in the summer compared to eggs at inshore water temperatures. We 

focused on the existing paradigm that some ovigerous lobsters make directed seasonal 

movements, setting up potentially differing outcomes with respect to when and where 

larvae hatch, and the significance (if any) of seasonal movements that augment this 
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process. Importantly, it appears that this difference is due to the rapid warming of 

inshore waters in the spring, and not from overall differences in water temperature 

between inshore and offshore locations. This study utilized a comprehensive approach 

including field- and lab-based designs to examine the differences in egg development and 

timing of hatch over spatially disparate thermal environments while simulating local 

conditions under which lobsters would remain in one location year-round (inshore), 

undergo seasonal movements in the fall (offshore), or move and come back (mixed). 

Patterns of Egg Development and Growth 

Our findings corroborate previous work demonstrating the strong connection between 

water temperature and the development of lobster eggs (Templeman 1940, Perkins, 1972, 

Helluy and Beltz 1991, Gendron and Ouellet 2009). The pattern of egg development we 

observed generally followed those described in previous studies (Bumpus 1891, Herrick 

1895, Templeman 1940, Helluy and Beltz 1991, Sibert et al. 2004, Gendron and Ouellet 

2009): 1) rapid development in the fall, when water temperatures were decreasing; 2) a 

protracted period of developmental latency over the winter months at water temperatures 

< 4 °C; 3) a pronounced increase in growth rate in the spring as water temperatures 

increased; and 4) a brief pause in development about one month before hatch. 

Interestingly, despite the differences in thermal profiles, inshore and offshore egg 

development trajectories were very similar until the spring (Fig. 4). The rate of 

temperature increase from May through August was significantly different between 

inshore and offshore treatments (Table 1), and it was during this time period that egg 
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development diverged. In all treatment groups we observed a well-defined ~ 3.5-month 

plateau in growth at ~ 50 % (PEI = 285 jim) over the winter months and a shorter and 

less well defined one at 80 % (PEI = 455 that occurred in late spring and early 

summer. 

Developmental plateaus, during which neither the growth of the eye or the 

cephalothoracic segment is evident, have been documented in both crabs (Stevens et al. 

2008) and lobsters (Helluy and Beltz 1991). The earlier, more prolonged, developmental 

plateau at 50 % could be the result of the culmination of the majority of morphological 

development and organogenesis that occurs before water temperatures decrease to sub-

optimal growth levels in the late fall and winter. However, Sibert et al. (2004) 

determined that almost 65 % of the live biomass (total proteins) of hatching larvae 

accumulated during the last few weeks of development, indicating that a significant 

amount of growth and development is occurring at this time. Most likely, the lobsters in 

this study exhibited a plateau at 50 % because of exposure to colder winter temperatures 

(Gendron and Ouellett 2009). 

The later plateau at 80 % seems to be related to the transition between the premolt 

metanaupliar stage, as the larva prepares for hatch, comparable to pre-molt pauses in 

growth in juvenile lobsters (Aiken 1973, Helluy and Beltz 1991). Additionally, Helluy 

and Beltz (1991) observed that developmental plateaus were observed at a variety of 

stages (PEI = 350-450, ~ 60-80 %). A developmental plateau is evident at 80 % even at 

constant temperatures (Helluy and Beltz 1991) (but not at 50 %), and the causes of this 
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80 % plateau remain largely unknown. During a prolonged 'resting period' (not 

considered a true diapause phase like in other marine crustaceans (e.g., copepods; Hansen 

et al., 2010), no measurable growth was recorded presumably because temperatures were 

low enough to subdue growth. These 'biological zero' points (Wear 1974) may, 

however, have imperceptible growth that is not captured by standard egg size 

measurements. Some species of Pacific crabs, for example, can continue growth at 

temperatures below 1 °C (Shirley et al. 1990, Stevens and Swiney 2007). Although other 

studies document suspended lobster egg growth below 5 °C (Pandian 1970, Perkins 

1972), one study documented growth at temperatures as low as 1-1.5 °C in H. americanus 

(Gendron and Ouellett 2009). One possible explanation for this discrepancy may be the 

genetic variability associated with differing thermal habitats that is evident in lobsters 

from disparate geographic locations (Hedgecock et al. 1976, Hochachka and Somero 

2002). 

A variety of other factors also influence overall growth and egg development in lobsters 

and may manifest themselves in both the rate and the success of development. For 

example, thermally-induced hormonal changes (Talbot and Helluy 1995), the timing of 

reproductive cycles (successive- vs. alternate-year spawning; Waddy and Aiken 1986), 

overall reproductive history of ovigerous lobsters (primiparous or multiparous; Comeau 

and Savoie 2001), maternal effects (nutrition; Moland et al. 2010), and female size 

(Attard and Hudon 1987) all may influence how long eggs remain at a particular plateau. 
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Degree-days and Growth 

The growing degree-days (GDD) metric is one way to quantify the influence of 

fluctuating water temperatures on the growth of ectotherms (Neuheimer and Taggart 

2007). Historically, GDD has been used as an index of the thermal history experienced 

by ovigerous lobsters, and has included a cold threshold value below which, no growth is 

assumed to occur (4 °C threshold, this study). Degree-day calculations have been used to 

approximate total egg development and time to hatch in H. americanus in a variety of 

locations such as: Grand Manan, Canada (1,832 GDD; Campbell 1986), mid-coast Maine 

(952-983 GDD; Cowan et al. 2006), Massachusetts Bay (807-1,490 GDD; Tlusty et al. 

2008), and the Magdalen Islands in Quebec (1,300-1,440 GDD; Gendron and Ouellet 

2009). We obtained GDD from extrusion to hatch of 905 (coastal) and 938 (offshore) 

that are lower than any previously reported values (Table 2). However, making direct 

comparisons of GDD across studies is difficult since most do not estimate total 

development time from extrusion to hatch. 

Additionally, lower threshold values for the calculation of GDD can vary based on local 

thermal profiles, helping to explain dramatic differences in lobster growth (along with 

environmental heterogeneity) that temperature elicits over both regional (e.g., northern 

vs. southern ranges) and local (10's of km) scales (Little and Watson 2005; Wahle and 

Fogarty 2006, Bergeron 2011). Clearly, the relationship between temperature and growth 

needs to be evaluated at several different scales that reflect a realism associated with 

changes in growth over time. We found no significant differences in GDD values for 
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lobsters incubated at inshore and offshore temperatures, even though mean monthly water 

temperatures were different at certain times of the year (Fig. 6). Contrary to other studies 

(e.g., Campbell 1986), we found that lobsters that remained inshore not only acquired 

enough GDD to complete development, but also hatched earlier than offshore lobsters 

(Fig. 10), suggesting that offshore movements do not necessarily maximize the rate of 

egg development. However, the combination of seasonal movements offshore in the 

winter and inshore in the spring does maximize egg growth and development. While the 

GDDs of our 'mixed' group were not significantly different from either inshore or 

offshore treatments, these animals hatched almost two weeks earlier (comparing means, 

Fig. 10). 

We suggest that the key factor influencing the time of hatch in H. americanus eggs is the 

rate of increase in water temperature, and therefore GDD, during the spring and early 

summer, rather than the total GDD accumulated throughout the entirety of development. 

Both mean water temperature and GDD were very similar between our treatments during 

the first two-thirds of egg development, but then differed significantly during the last 

third, leading to earlier hatch for eggs exposed to the most rapid increase in water 

temperature. 

Moreover, animals that moved inshore from offshore waters (mixed treatment) hatched 

even earlier because they were exposed to offshore water temperatures in the winter and 

then also experienced the rapid warming of inshore waters in the spring (Fig. 6). If 

spring hatching is advantageous, then a pattern of inshore to offshore migrations in the 
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fall, combined with offshore to inshore movements in the spring would be optimal. Such 

a pattern of seasonal migration has already been documented in some locations (Cooper 

and Uzmann 1980, reviewed in Lawton and Lavalli 1995). However, in coastal souther 

Gulf of Maine waters few lobsters that move offshore in the fall moved back inshore in 

the spring while they were carrying eggs (Goldstein and Watson in prep.). Rather, most 

remained offshore until their eggs hatch. This observation suggests a need to reexamine 

the adaptive significance of seasonal movement patterns in lobsters. 

Time to Hatch 

Our data do not support the hypothesis that offshore movements of ovigerous females 

result in a greater accumulation of GDD and therefore earlier hatching of larvae. Rather, 

eggs exposed to inshore coastal New Hampshire water temperatures hatched an average 

of four weeks earlier than eggs incubated at offshore thermal regimes. Hatching earlier 

in the spring/summer may be significant for a combination of reasons that are framed by 

two long-standing hypotheses: Hjort's (1914) critical period hypothesis contends that the 

presence and strength of larval year-classes are determined by the availability of food 

during a 'critical period' while Cushing's (1990) match-mismatch hypothesis states that 

variations in larval food supply are a function of the timing of the spring phytoplankton 

bloom when larval hatch occurs. 

Although these hypotheses have been difficult to support, new innovations in remote 

sensing technologies (e.g., ocean color analysis) are helping to reveal the potential 
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relationships between the timing of larval hatch, the availability of food resources and 

subsequent larval survival. For example, Ouellet et al. (2007), found that the larvae of 

successful shrimp (Pandalus borealis) year classes tended to hatch during periods when 

colder sea-surface temperatures (SSTs) were followed by the rapid warming of the 

surface layers. While embryonic development rate in lobsters is most strongly influenced 

by temperature, the timing of the spring plankton bloom in coastal waters also depends 

on a combination of other factors including changes in photoperiod and seasonal 

circulation patterns. Alterations in such timed events could not only influence 

survivorship and hatchability of marine crustacean larvae (including lobster), it could also 

shift the time frame over which larval hatch is critical to survival in the plankton 

(Edwards and Richards 2004). Therefore, if movements of ovigerous females have 

evolved to ensure that hatching occurs at the right time of year, when both SSTs (> 12 

°C; Mackenzie 1988, Annis 2005) as well as phytoplankton and associated zooplankton 

blooms are optimal for larval survival, then these events should correlate with hatch times 

of offshore, rather than inshore larval hatch. Just as critical is the exposure of larvae to 

thermal conditions that are conducive to larval survivorship and optimal growth in the 

plankton. 

MacKenzie (1988) demonstrated in a series of laboratory rearing studies that larvae 

hatching at 10 °C can develop successfully through Stages I and II; however, warmer 

water is needed to complete development to Stage IV and the early benthic juvenile 

phase, Stage V (4 % larval survivorship at 10 °C vs. 56 % at 12 °C larval survivorship, 

MacKenzie, 1988). Similarly, Sastry and Vargo (1977) reported significantly lower 
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survivorship to Stage V below 10 °C, and Harding et al. (1983) found that larval hatching 

usually occurred when water temperatures rose above 12 °C. The possible and 

intentional movement towards such thermal regimes by some ovigerous lobsters may 

optimize larval development, growth, and survival, but this remains largely untested. 

We found that the average water temperature when inshore larvae hatched was 11.5 °C, 

compared to 10.5 °C offshore at the same time (Fig. 6). So, to some extent, the 

differences in hatch date allowed lobsters in both areas to hatch when water temperatures 

were fairly favorable for growth and survival. Further investigation is needed and should 

shed light both on Cushing's match-mismatch hypothesis, and the overall adaptive 

significance of seasonal lobster movements. 

While Perkins's (1972) equations for predicting hatch in eggs incubated at constant 

temperatures have been very useful for laboratory- and hatchery-based research, it is not 

as functional for animals in natural habitats characterized by large seasonal fluctuations 

in water temperature (Jarvis 1989). We sought to test the usefulness of the Perkins 

equations for eggs exposed to naturally fluctuating water temperatures by using the mean 

temperature for the duration of the incubation period as the constant temperature (Fig. 

12). The discrepancy between predicted hatch dates and those empirically observed (in 

this study) suggest that is difficult to rely solely on Perkin's (1972) equations to predict 

the hatch dates of eggs in situ, and alternative models are necessary that take into account 

the effects of changing temperatures on overall egg development. 
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Fig. 12. Days from extrusion to hatch for a subset of ovigerous lobsters (n = 4, size range: 84-95 
mm CL), whose egg hatch dates were calculated from either: 1) Perkin's (1972) PEI equation, 
using an average temperature (6.2 °C offshore, 6.7 °C inshore) over which egg development 
occurred (October-July); and 2) through empirically-derived egg development data from this 
study. The remaining weeks until hatch were calculated and added to the October-1 date to 
calculate predicted hatch. For animals subjected to offshore waters, PEI predicted eggs would 
hatch on November-7,93 days later from the average observed hatch compared to inshore eggs 
hatching on September-28 or ~ 100 days from observed hatch. Differences were significant using 
a goodness-of-fit test for both offshore (G = 14.27, p < 0.001) and inshore (G = 17.31, p < 0.001) 
treatments and indicates the need for egg development models that take into account changing 
temperatures eggs encounter under natural conditions. 

Larval Dispersal and Survivorship 

We found no apparent differences between inshore and offshore larval size or survival. 

Various indicators of larval variability in other crustacean and fish larvae have included 

size at hatch and lipid profiles, among others (reviewed in Jaeckle 1995). For example, 

after raising spiny lobster larvae (phyllosomas) at various thermal profiles Smith et al. 

(2002) reported that Stage I phyllosomas cultured at warmer temperatures were smaller. 

Changes in incubation temperatures have also been shown to affect larval size in other 

lobsters (e.g., Jasus edwardsii) (Tong et al. 2000) and crabs (Shirley et al. 1987). One 
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advantage of H. americanus eggs developing more slowly at colder temperatures could 

be the conservation of metabolic reserves (e.g., lipids) during development, leaving more 

energetic reserves available during the first few days as larvae (Appendix A). However, 

this may not be a major issue, because even lobster eggs cultured at elevated 

temperatures contain residual yolk at the time of hatching (Sasaki et al. 1986, Appendix 

A). Therefore, differences in the thermal regimes between inshore and offshore New 

Hampshire waters do not appear to influence the viability of the larvae that hatch from 

eggs, and thus the offshore movements of ovigerous females might have evolved to serve 

another purpose. 

Another possible explanation for the movement of ovigerous lobsters offshore in the late 

fall and winter is that these movements serve to position them in areas that will enhance 

larval survival and transport to optimal settlement areas; this has been conjectured for 

spiny lobsters (see Booth 1997 for review). According to tracking data, most ovigerous 

lobsters that migrate offshore remain there until after their eggs hatch the following 

spring/summer (Goldstein and Watson in prep.). Furthermore, preliminary data from 

oceanic drifters released in offshore areas at the time of hatching, indicate that larvae 

from NH waters are most likely transported to coastal locales in Massachusetts (to the 

south), where they will settle ~ 3-4 weeks later (Goldstein unpub. data). In contrast, 

drifters released in inshore areas were frequently and rapidly transported farther inshore, 

presumably too soon for developing larvae to reach a stage at which they are competent 

to settle (Goldstein unpub. data). 
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Our working hypothesis that the offshore movements of ovigerous females may optimize 

larval survivorship is important for two reasons. First, their larvae hatch when sea-

surface temperatures are best for their survival. Second, larvae that hatch in offshore 

areas will typically spend at least 2-3 weeks drifting, feeding and growing in the 

plankton, and will be competent to settle, by the time they reach a variety of suitable 

inshore settlement areas. 

Conclusions 

Given the narrow thermal constraints of all life history phases of H. americanus (Fogarty 

1995), and the sensitivity of lobster growth and reproductive dynamics to variations in 

temperature regimes (Waddy and Aiken 1995) it is not too hard to prognosticate how 

climatological changes could affect broodstock fecundity, size at maturity, egg 

development, and hatch, among others. For example, rising seawater temperatures would 

accelerate egg development and hatching, thereby shortening larval development. In 

some areas, offshore movements by lobsters seeking to avoid warm water could cause 

eggs to hatch too far offshore, setting up sub-optimal dispersal trajectories and possible 

larval wastage. Other climate-related scenarios are certainly possible; however, our data 

suggest that lobster eggs are flexible with respect to their ability to adjust their rates of 

development, and ovigerous lobsters can move to areas that allow hatch during favorable 

times of the year. 
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The role of temperature in lobster egg development and time to hatch has been explored 

in this study within a relatively small window (two full seasons) of thermal variability. 

Thus, the implications of our results in the context of longer-term climate change 

scenarios are uncertain. Changes in ocean temperatures will undoubtedly cause 

alterations to thermal profiles that would have cascading effects on the movement 

dynamics of ovigerous lobsters, which in turn, would influence egg development rates, 

timing of hatch, and ultimately, larval survivorship and dispersal. Continued and more 

detailed investigations of the physiological tolerances, thermal thresholds, and behaviors 

of ovigerous lobsters, their eggs and larvae would certainly contribute to current and 

changing oceanographic conditions for one of the most commercially important 

crustaceans in the North Atlantic. 
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CHAPTER 3 

TRACKING LARVAL LOBSTER DISPERSAL ALONG THE NEW HAMPSHIRE 
COAST USING GPS-ENABLED DRIFTERS 

Abstract 

The distribution and abundance of marine decapod larvae are affected by the locations of 

spawning females in tandem with a host of abiotic factors (e.g., currents) that ultimately 

influence their final destination. Knowledge of these factors is imperative to our 

understanding of marine population connectivity and the management of commercially 

important species such as the American lobster, Homarus americanus. The goal of this 

study was to combine our knowledge of the location of ovigerous (egg-bearing) females 

along with predicted hatch times for their eggs, and data from ocean drifters released at 

appropriate times and locations, to predict the fate of larvae and the locations where they 

might settle. A total of 23 surface ocean drifters were released in three different areas 

where ovigerous lobsters were located when their eggs were hatching: inshore (< 5 km 

from the New Hampshire coast), offshore (5-10 km from the coast), and in the Great Bay 

estuary (GBE). Drifters released at inshore locations (n = 8, days-at-large, DALavg =13.5 

±2.1) showed a variety of patterns including: 1) alongshore transport; 2) retention in the 

vicinity of release; 3) movements further inshore; and; 4) in rare cases, movements 

offshore. Drifters released offshore (n = 7, DALavg = 28.1 ± 7.5) generally showed 

southerly movements towards coastal Massachusetts waters; however, some drifters 

exhibited movements back inshore, particularly in late summer. In the GBE all drifters 
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were retained (n = 8, DALavg = 5.8 ± 0.93), despite strong currents (> 30 cm/s) associated 

with tides. In situ temperature data indicates that larvae can complete the majority of 

their development within ~ two weeks. Overall, our data suggest that trajectories of 

drifters (larval dispersal) are, in large part, a function of where spawning occurs and may 

reflect a combination of transport away from local sources or partial retention over 

others. 
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Introduction 

Whether larvae disperse widely or remain near their natal source, they must still 

somehow transit from the pelagic realm to coastal benthic nurseries where they settle, 

metamorphose, and become demersal. The amount of time spent in the water column, 

often referred to as pelagic larval duration (PLD), is probably the single biggest factor 

influencing dispersal and recruitment in marine populations (Sponaugle et al. 2002, 

Cowen and Sponaugle 2009). Physical factors such as tidal fronts, internal wave slicks, 

turbulence, and Ekman transport (among many others; Shanks 1995) work in tandem 

with larval behaviors (e.g., directional swimming, attraction to surface, depth regulation) 

to situate larvae in areas suitable for settlement and survival (Young 1995). The ability to 

couple both biological aspects of PLD with physical aspects of circulation makes it 

possible to evaluate the connectivity of populations (Cowen et al. 2000,2006, Sale and 

Kritzer 2003, Butler et al. 2011, Incze et al. 2010) and is central to considering the 

population dynamics of commercially important marine species (Warner and Cowen 

2002, Lubchenco et al. 2003, Palumbi 2003, Sale et al. 2005). Such data are vital for 

addressing critical management and conservation issues in marine populations. 

Physical parameters at the time (and site) of hatching set the initial conditions for larval 

dispersal, and vary depending on the timing of this event. Larval release in many marine 

fishes and invertebrates is often synchronized to environmental cycles (e.g., tides, light-

dark cycle), meteorological conditions, and seasonal factors such as the spring plankton 

bloom (Forward 1987, Edwards and Richards 2004). This is especially true in marine 
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decapods (crabs and lobsters) whose complex life histories and physiology are strongly 

modulated by their environment (Morgan 1995, Mente 2003, Jury et al. 2005). 

Environmental variables are especially influential in the growth, reproduction, and 

distribution of American lobsters (Homarus americanus) (Waddy et al. 1995). A variety 

of environmental changes (e.g., temperature, salinity, storm events, etc.) initiate moderate 

to extensive seasonal movements (Cooper and Uzmann 1980, Lawton and Lavalli 1995, 

Jury et al. 2005, Chapter I) and these movements, in turn, impact egg development and 

larval survival (Chapters 1 and 2). Ovigerous lobsters carry their eggs from 9-11 months, 

depending on temperature (Bumpus 1891), and typically release their larvae in small 

batches on successive nights during the summer (Ennis 1975). 

The complex larval life-cycle of H. americanus includes four larval stages, three of 

which are known to drift passively under geostrophic and wind-forced currents (Katz et 

al. 1994), although studies have shown that early stages are positively phototactic, and 

later stages are capable of vertical migration (Harding et al. 1987). Stage IV (postlarval) 

lobsters are considered neustonic and exhibit strong swimming abilities, allowing them to 

search for optimal settlement habitat (Rooney and Cobb 1991, Annis et al. 2007). 

Plankton sampling data suggest 65-96 % of lobster postlarvae reside in the top 0-0.8 m of 

the water column (Hudon and Fradette 1988, Annis 2005, Annis et al. 2007). The 

residence time for lobster larvae in the water column is controlled predominantly by 

surface water temperatures and, to a lesser extent, by food availability (Mackenzie 1988, 
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Annis 2005). The average total duration of passive and swimming stages (i.e., PLD) 

ranges from 15-30 days. A re-examination of historical lab data (Templeman 1936), 

coupled with more recent in situ field studies, suggests that PLD may be skewed toward 

the lower end (10-15 days). Thus, local retention of larvae may be more likely than 

previously predicted in at least some locations (Incze et al. 2006, Annis et. al. 2007). 

In addition to PLD, the location of larval release can have profound implications for their 

fate. Mobile invertebrates, such as lobsters, generally reside in an environment favorable 

to their own survival; however this may not necessarily optimize the survival of eggs and 

larvae or the dispersal of larvae to suitable settlement habitats. It remains largely 

unknown if the seasonal inshore-to-offshore migrations by ovigerous lobsters (Lawton 

and Lavalli 1995, Cowan et al. 2006, Chapter 1) place their eggs in environments that 

maximize egg development, larval survival, or even dispersal trajectories that result in 

recruitment to optimal settlement habitat s (Byers and Pringle 2006, Goldstein and 

Watson in-prep.). 

Lobsters may move into offshore waters to release their larvae in order to place them in a 

hydrodynamic environment that is more conducive to initial larval dispersal and 

survivorship (Goldstein and Watson in-prep.). Other ovigerous marine decapods migrate 

to specific areas for spawning and larval release and Booth (1997) documents a variety of 

brooding-related movements in a number of lobster species. For example, ovigerous 

Caribbean spiny lobster (Panulirus argus) appear to make directed movements from 

lagoonal or reef habitats to the reef tract to release larvae, presumably facilitating their 
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transport to seaward currents off the reef and to offshore nursery areas elsewhere 

(Bertelsen and Hornbeck 2009). 

Other ovigerous lobsters such as the South African rock lobster (Palinurus gilchristi) and 

the slipper lobster (Ibacus peronii) make directed migrations that act to redress the 

downstream (contranatant) dispersal of phyllosomal larvae via currents (Stewart and 

Kenelly 1998, Groeneveld and Branch 2002). In addition, blue crabs (Callinectes 

sapidus) exhibit directed movements down-estuary and offshore using ebb-tide transport, 

an important determinant of larval dispersal back into settlement grounds in the estuary 

(Carr et al. 2004). Stone and O'Clair (2002) reported that the onshore movement of 

brooding female Dungeness crabs (Cancer magister) serves to situate these animals 

within appropriate brooding habitats during the spring phytoplankton bloom. Using a 

combination of archival tags and ultrasonic telemetry, Gonzalez et al. (2002) determined 

that female spider crabs (Maja squinado) off the coast of Spain routinely choose specific 

deep wintering habitats for mating and spawning before returning to shallower waters to 

hatch their eggs. 

Given the strong evidence in other species that female movements may situate larvae in 

optimal areas for dispersal and survival, it is logical to assume the movements of 

ovigerous American lobsters serve the same purpose. The major goal of this study was to 

estimate the initial trajectories taken by lobster larvae by using oceanic surface drifters 

released at times and locations that corresponded to hatching events (Goldstein and 
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Watson submitted). Drifter data could then be used to determine how movements of 

female lobsters might influence the dispersal of their offspring. 

Large-scale modeling of the origins, distribution, drift, and settlement of lobster larvae in 

the Gulf of Maine (GoM) has yielded several approaches to predicting their dispersal, 

degree of retention, and subsequent recruitment from disparate origins (Katz et al. 1994, 

Incze and Naimie 2000, Harding et al. 2005, Incze et al. 2006, Xue et al. 2008, Chasse 

and Miller 2010, Incze et al. 2010). These studies have incorporated a variety of 

components including hypothetical larval trajectories, mortality estimates, larval 

biochemical data and 3-D circulation models. The general consensus is that the GoM is a 

single interconnected lobster recruitment region (see Goldstein, Appendix C for review). 

However, very little is known about the fate of larvae on a much more localized scale 

(i.e., 10s of kms) and the physical oceanographic elements that shape initial larval 

advection (e.g., Lough and Manning 2001, Manning et al. 2009). 

Oceanic drifters are an inexpensive tool for studying the dispersion of surface particles, 

such as fish or crustacean larvae, as well as other plankton (e.g., red tides) and buoyant 

pollutants such as oil (Levin 1983, Davis 1985, Tegner and Butler 1985, Thorpe et al. 

2004, Keafer et al. 2005, Gawarkiewicz et al. 2007, Hare and Walsh 2007, Price et al. 

2007, Caballero et al. 2008). Studies in the GoM involving these types of drifters have 

been used to observe Lagrangian flow along the Maine coastal current (Manning et al. 

2009), estimate the rates of tidal-front entrainment and subsequent retention of fish larvae 

on Georges Bank (Lough and Manning 2001, Manning and Churchill 2006), and make 
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observations on a variety of local and regional current features (see: 

http://www.nefsc.noaa.gov/drifter/). We adopted this well-established technology for our 

study. 

By combining our knowledge of the location of ovigerous females along the New 

Hampshire seacoast (Goldstein and Watson in prep.), along with their predicted hatch 

times (Goldstein and Watson submitted), we were able to deploy drifters when and where 

lobster larvae are released. Our goal was to follow the trajectories of the drifters for a 

period of time corresponding to larval development (2-3 weeks) so that we could estimate 

the locations where larvae might settle. We hypothesized that drifters deployed inshore 

would move in a pattern suggesting larval retention, while those released offshore would 

take paths suggesting recruitment of New Hampshire larvae to southern waters (e.g., 

Massachusetts). An additional set of drifters was released in an adjacent estuary (Great 

Bay, NH) to test the hypothesis that larvae hatched by resident ovigerous adults are 

retained there. 

Overall, we found that drifters released at inshore locations predominantly moved parallel 

to the coast in a south to southeasterly direction although some released too close to shore 

became grounded on the coast nearby. Still, others were transited to offshore waters. In 

comparison, drifters released offshore generally showed movements to Georges bank and 

even to some drifters exhibited movements back inshore particularly in late summer. In a 

large estuarine system, all drifters were retained even over several tidal cycles. 
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Materials and Methods 

Study Locations 

Drifters were released in three separate locations: coastal (inshore) areas off New 

Hampshire (NH), offshore areas (2008-2009), and in an estuarine system (Great Bay, 

2008-2009,2011). 

Coastal & Offshore 

Coastal (inshore) locations for drifter deployments (~ 2-3 km from shore; Fig. 1) were 

near the mouth of the Piscataqua River (43°04 N; 70°42 W) and characterized by tidal 

influences and wind-driven currents. Offshore locations (8-15 km from shore) included 

an archipelago of islands, the Isles of Shoals (IOS) ~ 10 km from NH coast (42°59 N; 

70°37 W; Fig. 1). The 20 m isobath was chosen as the boundary delineating inshore 

from offshore waters, to maintain consistency with previous studies of lobster movement 

in these areas (Scopel et al. 2009, Goldstein and Watson in prep., Chapter 1). 

Great Bay Estuary 

Drifters were also released in the Great Bay Estuary (GBE). The GBE is a large, tidal ly 

mixed, basin 15-25 km from the coast that comprises 23 km2 of surface water and over 

160 km of coastline. The GBE is linked to the ocean through the Piscataqua River 
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estuarine complex in New Hampshire and Maine, as well as through Little Bay (Brown 

and Arellano 1979, Fig. 1). The habitats of Great Bay and Little Bay are generally 

characterized by eelgrass beds, extensive mud flats, and oyster reefs (Short 1992), with 

freshwater input from several rivers that intermingle with tidal waters. Two locations 

with an abundance of egg-bearing lobsters were selected as drifter release sites (Langley 

et al. in prep.). 
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Fig. 1. Release areas for ocean drifters. Inshore (triangle, 2-3 km from shore) and offshore 
locations (square, 8-15 km from shore) were delineated by the 20 m isobath line (dashed line). 
Additional drifters were released in the Great Bay Estuary (circles) ~ 15-25 km from the inshore 
site (see text for detailed description). Drifters were released in all locations between 2008-2009. 
Additional drifters were also released in GBE in 2011. 
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Ovigerous Lobster Locations & Hatch Times 

From 2006-2009 over 20 egg-bearing lobsters were fitted with ultrasonic tags and tracked 

using 1) hand-held and boat-towed hydrophones, and 2) fixed receiver stations (VR2s) in 

the Piscataqua River, NH seacoast (inshore) and around the IOS (offshore; > 30m depth). 

Additional information was provided by lobstermen who recaptured and reported 

information about tagged lobsters. These data were then used to determine the locations 

of ovigerous females throughout the year (Goldstein and Watson, in prep., Chapter 1). In 

addition, a series of lab-based studies generated empirical data on egg development that 

were then used to predicted hatch time (Goldstein and Watson submitted, Chapter 2). 

The combined data were then used to determine when and where most larvae hatched in 

NH coastal and estuarine waters. 

Drifter Designs 

Rachel drifters were modeled after the traditional 'Davis drifter' design widely used by 

physical oceanographers (Davis 1985). All components of the 'Rachel' drifters were 

designed to be below the waterline (~ 1 m) except for a small portion that contained the 

GPS unit and surface floats (Fig. 2). Drifters were constructed using a variety of 

materials including PVC for the main frame, a sash weight mounted at the bottom and 

foam floats at all four corners to maintain stability and neutral buoyancy. 
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A total of four sails were fabricated out of vinyl sail material and fastened along a series 

of fiberglass rods held together with stainless hardware (see Appendix D for details). 

Additional modifications to some of the drifters included a flashing light beacon 

(Guardian LED, Essential Gear Inc., Greenfield, MA) and reflective tape. A GPS 

mounted-unit (AXXON Tracker MMT, www.globalstart.com), contained in a clear 

water-proof case (Pelican model 1040, Pelican Products, Torrance, CA), was used to 

obtain regular positions in tandem with a GLOBALSTAT satellite communications 

system (accurate to within 300 m) at regular intervals, typically 30 minutes to 1 hour. 

A second type of drifter used in this study was the 'Paul' drifter, commonly used to 

model tidal currents and wind-driven transport in confined waterways (bays and 

estuaries); this design has a more compact profile than its oceanic counterpart (Fig. 2). 

Each unit (modified 18 L bucket) contained a top-mounted GIS unit and a light beacon. 

This inverted bucket design was modified with floats and weights as ballast to achieve 

neutral buoyancy just below the surface. Full design details and building schematics for 

both drifter designs are available at: http://www.nefsc.noaa.gov/drifter/ and in Goldstein 

(Appendix D). 
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Fig. 2. Drifter units constructed and deployed in this study. (Top): A surface ocean 'Rachel' 
drifter standing design with 1.5 m PVC pole, sails, floats, and surface flag. Secured to some 
drifters were larval containment devices used to assess the final stage and survivorship of lobster 
larvae exposed to ambient seawater conditions during the residence time in some drifters. Inset: 
In situ deployment of Rachel drifter; GPS unit and flag are the only components that remain 
above the waterline. (Bottom): 'Paul' bucket drifters for use in estuarine trials. Each unit 
(modified inverted 18 L bucket) contained a GIS unit, and light beacon. This drifter was 
modified underneath with a series of floats and weights to achieve neutral buoyancy just below 
the surface. 

Assays 

Some drifters were fitted with additional components that were retrieved for analysis. 

Temperature loggers (n = 4) (HOBO temperature pendant loggers, model UA-002-64, 

Onset Computer Corp., Pocassett, MA) were fastened to the bottom pole to log 

subsurface water temperatures (~ 1 m) over the course of drifter residency to capture 

changes in seawater temperatures that would be experienced by larvae following the 
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same path. These loggers were downloaded on a PC-computer and software package 

(HOBOware Pro v. 3.0) to obtain average daily temperatures over the course of each 

drifter's spatial track. 

In tandem with the temperature loggers, the same four drifters each carried a larval 

holding device containing five individual Stage I lobster larvae (n = 20 larvae total; Fig. 

2). These devices provided a way to assess larval mortality and growth. The 

containment device was screened on both sides, allowing ample seawater and food 

exchange, and fastened to the bottom sail rod (Fig. 2). Upon retrieval of the drifters 

carrying these devices, larval activity (i.e., swimming and twitching movements) was 

assessed and animals were staged according to Hadley (1906). For each trial, we 

determined: 1) the proportion of larvae that survived; and'2) the number that was 

represented from each developmental Stage (1-4). 

Time-lapse cameras (GardenCam, Brinno, Industry, CA) were mounted onto one inshore 

and one offshore drifter unit ~ 0.5 m from the top using metal hose clamps. This was 

designed to ascertain potential predators that might contribute to larval mortality while in 

the plankton. The camera was housed in a clear waterproof case (Pelican Products, 

Torrance, CA) and oriented to capture a 180° view. The camera captured a still digital 

photo every 30 sec. and stored these images on a 2 GB USB drive. Upon retrieval, 

images were downloaded and stitched together as a movie using iMovie 11 v. 9.0.4 

software (Apple Computer, Co.). Observations of predators captured by camera were 

visually assessed and compared between the two drifter units over the first 24 hr. 
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Deployment Scenarios 

A total of 15 'Rachel' drifters were deployed and tracked inshore (n = 8) and offshore (n 

= 7). These were launched at times when, and locations where, we predicted larvae would 

hatch (Fig. 2). An additional set of drifters was launched in the GBE (n = 4,2008-2009; 

n = 4,2011) in locations where most ovigerous females have been observed (see 

Appendix E for details). Drifters were tracked for 2-3 weeks (longer when possible), 

which is the typical duration of larval development in the field. In the GBE, drifters were 

released exclusively on outgoing tides. While many soon grounded due to the prevalence 

of shallow habitats, most drifter trials in the GBE continued through multiple tidal cycles 

and thus had several opportunities to leave the estuary. 

Two additional types of drifter trials were conducted. First, we performed a preliminary 

calibration test (prior to the main drifter deployments) using two drifters at each of two 

separate inshore locations (n = 4). These tests were designed to determine if drifters 

released at the same location and at the same time would follow the same initial 

trajectory. These drifter pairs remained at large for 24-36 hours before retrieval. We 

analyzed their trajectories (as hourly compass headings in degrees) and compared these 

tracks using a Watson-Williams goodness-of-fit U-test (Oriana v. 3.0 software, Kovach 

Computing Services, UK). Paths did not differ significantly within each pair (Watson Li­

test; U = 18.76, p > 0.05). In the second trial, drifters (n = 4 total, two at each time 

period) were launched at times that were considered temporal extremes for larval hatch 

and did not coincide within predictable hatch times in our area of study. These releases 
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represented larval trajectories taken at inopportune hatching times (e.g., late fall and early 

spring; see Chapter 2). Drifter headings were compared at hourly intervals and early vs. 

late tracks were statistically compared using a Watson-Williams U-test to see if their 

mean angles differed. Comparisons of these two simulations indicated a significant 

difference between the two time periods (Watson U-test; U = 1.662, p < 0.005). 

Data Analyses 

Throughout the deployment of each drifter, positional (GPS, decimal degrees) data was 

received every 30-minutes (coastal and GBE) or 1 hour (offshore). Positional data were 

maintained and archived online using the AeroAstro database (Comtech AeroAstro, Inc., 

Ashburn, VA), and raw data from each drifter were downloaded and plotted using 

ArcGIS v. 9.3 software package (ESRI Inc., Redlands, CA) to map a trajectory. In some 

cases a series of filters were applied to those drifters that stalled or temporarily grounded 

themselves (as was the case in several estuarine drifters). Filters and corrected tracks 

were applied using a series of algorithms using MATLAB v. 7.1.3 (Natick, MA) (see 

Manning et al. 2009). The average continuous velocity for each drifter was also filtered 

using a series of looping routines and an average calculated for each group of drifters 

(inshore, offshore and estuarine) (Manning et al. 2009). For each drifter the days-at-large 

(DAL), total distance traveled (km), linear distance (km), and average velocity (cm/s) 

were calculated and compared between all three locations using non-parametric ANOVA 

(Kruskal-Wallis test). 
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Results 

A total of 19 drifters were released and tracked in 2008-2009 in three general locations: 

inshore (n = 8), offshore (n = 7) and the Great Bay Estuary (GBE, n = 4). An additional 

four drifters were deployed in 2011 in the GBE (ntotai - 8) for a total of 23 drifters for all 

years and locations (Table 1). Drifters traveled a combined total of 1,404 km (linear 

distance) and logged over 2,602 individual GPS positions. Drifters were released at 

times when eggs carried by ovigerous female lobsters were predicted to be hatching and 

followed for a time frame that included as much larval development time as possible. To 

meet these criteria, drifters were released in the GBE and inshore locations about a month 

earlier than in offshore areas. Because drifters released inshore and in the estuary 

grounded more often, offshore drifters spent more time at large compared with those 

deployed in the GBE (this was statistically valid) and their DAL were only significantly 

different from those drifters released in the GBE (ANOVA; Kruskal-Wallis test; KW = 

13.34, p = 0.0013). 

Likewise, linear distances between inshore and offshore drifters were not different from 

each other, but were both significantly different from those in the GBE (ANOVA; 

Kruskal-Wallis test; KW = 16.42, p = 0.0003). Drifter velocities between inshore and 

offshore drifters were not different but were both significantly different from those in 

GBE (ANOVA; Kruskal-Wallis test; KW = 18.42, p = 0.012). 
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Inshore Offshore Great Bay Estuary 
Drifters deployed (n) 
Release period 
DAL (avg) 
DAL (max) 
Avg. mean speed (cm/s) 
Avg. total distance (km) 
Avg. linear distance (km) 

21 ± 12.1 

172.3 ±95.8 
26.1 ±26.2 

Jun-Aug 
13.5 ±2.1 

26 

8 

28.1 ±7.5 
68 

18 ±8.3 
485.3 ± 182.5 
137.1 ±48.0 

7 
Jul-Aug 

5.8 ± 0.93 
10 

35 ± 18.7 
86.8 ± 16.4 
6.8 ± 0.98 

8 
Jun-Sep 

Table 1. Summary of all regular drifter deployments, June-August, 2008-2011 (n = 23 total). 
Days-at-large (DAL), average mean speeds (50 cm/s ~ 1 knot), and distance are given from the 
day of deployment to the last known position or active retrieval. 

Inshore (coastal) Drifter Patterns 

Eight drifters were released at inshore locations along the NH Seacoast between June and 

August. Most of these drifters moved parallel to the coast, in a south to southeasterly 

direction. However, those released too close to shore (e.g., mouth of the Piscataqua 

River), were carried partially up into the estuary, or onto a beach (Fig. 3). Some inshore 

drifters that were carried out to the IOS, were retained for 3-4 days in the vicinity of the 

IOS. One inshore drifter followed a counter-flow current northward, before taking a 

more southerly track back towards the IOS. Inshore drifters were at large for an average 

of 14 days and maintained an averge speed of 21 ± 12.1 cm/s (Table 1). 
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Fig. 3. Sample tracks of drifters released inshore (2008-2009) from June-August. Drifters (n = 6 
pictured) were released (star) at locations where ovigerous lobsters were known to contain late-
stage eggs (hatching events). Drifters exhibited a variety of movement patterns including 
transport southward along-shore, movements up into Portsmouth Harbor (NH), and offshore 
around the Isles of Shoals, IOS. Inshore drifters were at large for an average of 14 days (see 
Table 1). 

Offshore Drifter Patterns 

Seven drifters were released at offshore locations near the IOS (Fig. 4; stars indicate 

release locations). Some of these units (n = 3) moved in a southerly direction and 

approached the Massachusetts coastline after about 2-3 weeks. Other drifters (n = 3) 

continued in a more eastward pattern for ~ 1 month, eventually moving out to Georges 
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Bank (Figs. 4, 5). Offshore drifters were at large for an average of ~ 28 days and 

maintained an averge speed of 18 ± 8.3 cm/s (Table 1). 

Fig. 4. Three sample tracks of drifters released offshore (2008-2009) from June-August of each 
year. Drifters were released at locations (stars) where ovigerous lobsters were known to contain 
late-stage eggs (hatching events). One drifter moved toward the coast of NH, another ended up 
along the coast of Massachusetts, and yet another moved to Georges Bank in about a month. 
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Fig. 5. Two other examples of offshore drifter tracks. (Left): This drifter was released (star) in 
July-09 (2008) near the IOS (offshore) at the same time that some ovigerous lobsters were 
hatching. It reached Georges Bank ~ 30 days later (Aug-7) and was recovered by an offshore 
fishing vessel. Dots indicate weekly locations. (Right): This drifter was also released near the 
IOS (June-18, black dots indicate daily locations). It was at large for 9 days, moving first in the 
northerly direction and then south, parallel to the coast. Eventualy it was grounded on Cape Ann, 
Massachusetts, near Gloucester. 

Estuarine Drifter Patterns 

Drifters released in the GBE were all retained within the estuary system (Little Bay, or 

the Piscataqua River; Fig. 6, Table 1). Estuarine drifters were at large for an average of ~ 

6 days because they often ran aground due to the extensive shoal areas exposed during 

low tides. Due to the strong currents in the estuary, these estuarine drifters moved 

significantly faster than those released in coastal waters (35 ± 18.7 cm/s; Table 1). 

Interestingly, all of the drifters we released in Little Bay, near Goat Island (a very likely 

source of larvae in the estuary) remained within the GBE, even though they were released 
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on an outgoing tide. Even the drifters at large the longest (10 consecutive days for 2 

drifters) maintained their positions in the GBE after more than 20 complete tidal cycles 

(Fig. 7). 

Fig. 6. A compilation of positional fixes (colored dots indicate individual drifter units) for 
estuarine drifters released in each of two locations in GBE (stars; also see Fig. 1). Drifter 
residence times averaged 5.8 ± 0.93 days and included multiple tidal cycles; despite this, all 
drifters were retained in the GBE. This suggests that larvae are not exported out of the system 
and may settle and provide new recruits to this area. 
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Fig. 7. Spaghetti plots for two 'Paul' drifters released in Little Bay (GBE) in July, 2011. Both 
drifters were at-large over 10 days and were exposed to ~ 20 tidal cycles. This pattern was 
common in the other drifters we deployed regardless of the time we released them. 

Assays 

Temperatures & Larval Development 

A total of three drifters (from the original four) were retrieved (one from each location, 

inshore, offshore, GBE) in 2009 with temperature data that could be downloaded. 

Average temperatures for each time period were as follows: 1) inshore (17.2 ± 0.31 °C, 

June 18 - 27); 2) offshore (19.6 ± 0.26 °C, July 16 - September 21; Fig. 8); and 3) the 

GBE (23.1 ± 0.25 °C, July 5-10). 
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Fig. 8. (Top): Offshore drifter plot from Jul-16 (release date) through Sep-21, 2008 (closed 
circles indicate weekly positions). Drifter was released near the IOS and retrieved 68 days later 
by an offshore fishing vessel; this drifter track was similar to other offshore ones. (Bottom): 
Associated temperature profile (daily averages downloaded from in situ logger) for this drifter 
along its track. Temperatures averaged 19.6 ± 0.26 °C over the total track of this drifter. 

A total of two larval collection devices (5 larvae/drifter) were successfully retrieved with 

live animals (one inshore and one offshore drifter). Larvae in the inshore drifter were at 
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large for ~ 12 days (July 5-17) and transported along the coast (avg. temp = 18.6 ± 0.75 

°C), compared with those in the offshore drifter, that was at large for ~ 15 days and 

transported back inshore (avg. temp = 21.7 ± 0.50 °C). A total of three of the inshore 

larvae and two of the offshore larvae survived. All three larvae from the inshore drifter 

grew to developmental Stage III, compared with one Stage III and one Stage IV 

(postlarval) for the offshore larvae. 

In situ Camera Assay 

There were two kinds of predators that we were able readily identify from the camera 

video and almost always appeared in schools: Butterfish, Poronotus tricanthus and 

Atlantic striped bass, Morone saxatilis. These predator items for inshore drifters 

averaged 0.5 fish/hour (one every two hours) compared to 0.2 fish/hour (one every five 

hours) for the offshore drifter trial. 

Discussion 

The reproduction and movement dynamics in mobile marine decapods have profound 

effects on the location and timing in larval hatch and have been the subject of many 

empirical and theoretical studies (Thorrold et al. 2002, Pittman and McAlpine 2003, 

Carson et al. 2010). Those animals with planktotrophic larvae that are known to exhibit 

medium (1-2 weeks) to extended (> 3 weeks) pelagic larval durations are particularly 

vulnerable to the vagaries of physical oceanographic features (e.g., fronts, eddies, 

convergence zones). In addition, larvae are able to control their vertical and horizontal 
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positions thereby further altering their dispersal. In this study, we did not address these 

behavioral traits, instead, we were interested in the variability of the initial trajectories 

that ocean drifters would take given disparate locations (inshore vs. offshore) and times 

when ovigerous lobsters were spawning. Incze and Naime (2000) emphasize the critical 

importance in obtaining better resolution on the migrations and locations of females at 

the time of hatching in order ' to describe the average patterns of planktonic transport 

throughout the seasonThese kinds of empirical data are of paramount importance in 

further defining and manipulating existing and future biophysical models for the 

connectivity of Homarus americanus stocks in the Gulf of Maine (GoM) (Harding et al. 

2005, Xue et al. 2008, Incze et al. 2010). 

Our lobster tracking data has determined several locations where ovigerous females 

incubate their eggs; associated laboratory and field egg incubation trials have 

demonstrated when these eggs will hatch (Goldstein and Watson submitted). The next 

step was to determine where prevailing seasonal ocean currents carry larvae that hatch at 

these locations including specific times of the year. The observations and analysis of our 

tracks of drifters in this study that were released along coastal and offshore locations of 

New Hampshire in the southern GoM indicate that, at least initially, lobster larvae are 

exported to broad areas throughout the region that encompass southern coastal waters 

(primarily in Massachusetts), offshore locations (Georges Bank) and, rarely, northward 

towards Maine (Figs. 3,4). In addition, drifters released in a large estuarine system were 

retained over a number of days and throughout multiple tidal cycles. 
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The drifters we used are designed so their movements are controlled by the currents in 

the top few meters of the water column where lobster larvae tend to reside throughout a 

large part of their development (Harding et al. 1987, Annis et al. 2007). Although 

lobsters are capable of exerting some degree of vertical control in the water column, most 

current larval transport studies consider the top 5 m for simulating their transport in the 

GoM (Wahle and Incze 1997, Incze and Naime 2000). The utilitarian application of such 

drifters is ideal in studying fundamental current patterns and such drifters have been used 

to track a variety of marine organisms with planktonic larvae including: green abalone, 

krili, polycheate worms, and lobster larvae (Leven 1983, Tegner and Butler 1985, 

Harding and Trites 1988, Thorpe et al. 2004). 

Like other low-cost GPS-tracked drifters (e.g., George and Largier 1996, Austin and 

Atkinson 2004), the devices used in this study were capable of sampling a variety of 

water masses (over 10s of km) and operating in coastal, offshore, and estuarine systems. 

However drifters and drogues are limited in their ability to sample more than one 

circulation feature, and they are significantly larger than planktonic larvae and therefore 

do not experience the small-scale physical features (e.g., shear mixing) that would 

influence larval movements in the water column. One solution is the development of 

'smart' drifters that are capable of adjusting their buoyancy to mimic larval behavior 

(Gawarkiewicz et al. 2007). 

The drifters used in this study identified several important larval trajectories between 

inshore, offshore and estuarine waters and demonstrated patterns of dispersal that were 
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largely, in agreement with generalized circulation features of the GoM. For example, 

some drifters that were released inshore showed directed movements downstream along 

the coast, presumably a function of the GoM Coastal current. Some offshore drifters 

began in a similar fashion to those from inshore locations, but were entrained by cyclonic 

currents off Cape Cod and carried towards Georges Bank. Still, other drifters were 

retained near their release locations and were most likely subjected to tidally-influenced 

features (e.g., eddies). There is considerable variation in the circulation patterns of the 

GoM from year to year. Variations in temperature and volume of water flowing into the 

GoM (including freshwater input from rivers) along with atmospheric fluctuations 

(temperature and wind patterns) are all factors that significantly affect the scale and 

duration of GoM circulation features like water masses (different densities), gyres, and 

alongshore currents (Mountain and Manning 1994). 

In particular, the role of cyclonic eddies seem to be especially effective at larval retention 

(Limouzy-Paris et al. 1997, Paris and Cowan 2004) and Largier (2003) asserts that 

nearshore larval drift is influenced more by eddy diffusion than advection. Several of our 

drifters were entrained in eddies over varying time periods and provides further support 

of cyclonic eddies in potential larval transport. Brooks (1994) showed that river plumes 

tend to form back eddies that can generate northeast flow in the nearshore areas of the 

GoM, but can be highly variable depending on river discharge periods. At least two 

drifters released close to the mouth of the Piscataqua River (inshore) were substantially 

influenced by back eddies and transported northward before returning to the same area a 

few days later (Fig. 5). Some drifter tracks also showed that even after being entrained in 

coastal or offshore current flows drifters could be detrained and move from inshore to 

134 



offshore waters (Fig. 3). However, for larval retention to occur, the temporal scales of 

the eddy must correspond to the length of larval development and the degree to which 

eddies truly retain larvae and contribute to self-recruitment (Sponaugle et al. 2002). We 

did not observe entrainment by drifters over a period long enough to correspond to the 

full course of larval development however, further drifter deployments could prove this. 

Drifters released in the Great Bay Estuary (GBE) were all retained in the system even 

over extended periods (10 days) and throughout more than 20 tidal cycles (Fig. 7). 

Although larval transport and self-recruitment has been well studied in many estuarine 

species (e.g., crabs, barnacles, oysters), few studies of larval lobster transport and 

recruitment in estuarine systems have been conducted. Deep estuaries such as the GBE 

are characterized by two-layer circulation however strong tidal currents often mix the 

water column and break the existing stratification (Short 1992). Larvae that are capable 

of regulating their depth may utilize these currents to increase their retention in estuaries 

and thus exploit a wider range of areas. Although there are established lobster 

populations in the GBE (Watson et al. 1999), it is still unclear how seasonal movements 

by some of these lobsters (especially ovigerous females) may influence the degree to 

which larvae are retained in the estuary (Appendix D). 

Islands (such as Isles of Shoals, IOS), feature circulation patterns and processes that limit 

larval dispersal away from an island source and include trapped eddies and other effects 

such as topographically steered currents (Paris and Cowen 2004). One of the best studies 

for the distribution and settlement of neustonic lobster postlarvae around islands was 

undertaken by Wahle and Incze (1997) in coastal Maine. This study determined that 
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wind-driven surface transport produces an asymmetric postlarval supply to the two sides 

of the island during the settlement season, favoring transport of postlarvae to the 

windward side. In addition, the topography of the island itself influences the retention of 

larvae in some areas more than others on a local scale. Wahle and Incze's results (1997) 

demonstrate the importance of wind-driven circulation to small-scale patterns of larval 

supply and benthic recruitment in Homarus americanus (Hudon and Fradette 1993) as 

well as other marine fishes and decapods (e.g., Roughgarden et al. 1988, Jones et al. 

2009, Pringle et al. 2011). Because physical features and currents around the IOS 

influenced some of our drifters, we suspect that larvae in this area may be impacted by 

patterns of island-induced circulation. 

Various sources and sinks have been suggested for lobster larvae (e.g., wind direction, 

nutrients, drift; Chasse and Miller 2010) in the GoM, although matching these with 

empirical data to predict hatch and settlement has yet to be fully determined. The most 

commonly used approach for quantifying larval transport are three-dimensional 

circulation models coupled with Lagrangian particle tracking algorithms (Werner et al. 

2001); several key studies have looked at forecasting larval dispersal and settlement in 

the GoM. Incze and Naime (2000) reported on cross-shelf transport and the ability of 

larvae to utilize onshore sea breeze transport towards shore. Harding et al. (2005) 

showed that dispersal and retention on Georges and Browns Banks was possible based on 

measured wind fields (using drifters) and by measuring larval condition (lipid profiles). 

Recently, Xue et al. (2008) and Incze et al. (2010) identified sources and sinks for 15 

coastal areas and modeled larval release and dispersal over a period of four months. 
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These models demonstrate cyclonic dispersal on a scale of 100s of kilometers and over a 

> 50-day drift. However, when daily larval mortality (values range; Chasse and Miller 

2010) and realistic development times are factored into the model, residence time in the 

plankton is significantly less (20-30 days; Incze et al. 2010). In addition, it is now well 

known that larvae contain an extensive toolbox of behaviors, as well as morphological 

and physiological adaptations that allow them to overcome passive processes in large-

scale ocean transport and exploit their environments. This is especially true in marine 

larval fishes (Jones et al. 2009) but has also been documented in one species of spiny 

lobster (Panulirus argus) where larval behavior (i.e., vertical migration) constrains the 

dispersal of even long-lived (> 4 months) larvae (phyllosomes), particularly in tandem 

with retentive oceanographic environments (Butler et al. 2011). 

A variety of sources (e.g., predation, food quality; Morgan 1995) contribute to mortality 

in the field although being able to obtain accurate measurements remains challenging. 

Predation in the plankton may be a major cause of mortality and a primary factor 

controlling the ultimate survival of postlarvae. Established predators of postlarval 

lobsters include Cunner (Tautogolabrus adspersus) and Scombrid fishes (e.g., 

Scomberesox saurus) (Ennis 1995, Harding unpub. data). We found two dominant 

species of fishes in our predation survey: Butterfish (Poronotus tricanthus) and striped 

bass (Morone saxatilis). However, our results only indicate the presence of such 

potential predators since we did not confirm predation on actual larval lobsters and the 

presence of such fishes could be confounded with the presence of structure (drifter) that 

is known to attract fish. While predation rates on Stage I larvae are assumed to be the 
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highest (Chasse and Miller 2010), there is little direct laboratory or field evidence that 

addresses the causes of stage-specific predation over the full duration of their PLD. 

Our study was not designed to model the dispersal and settlement of larvae over large 

regions and did not account for changes in larval dispersal over a vertical gradient of the 

water column. However, we did demonstrate that larvae were capable of completing the 

majority of their development over a period of ~ 10 days when they resided within a few 

meters of the surface. Larval development is not just affected by temperature but by a 

host of other factors (e.g., egg quality, food availability, genetics; Annis et al. 2007, 

Appendix A) that may protract or curtail PLD. Further, larval development times in the 

laboratory (Templeman 1936, MacKenzie 1988) are thought to over-estimate larval 

duration and studies that have been conducted in situ suggest development times in the 

field are significantly less (e.g., Annis et al. 2007). 

While ocean currents and winds strongly influence their movements, lobster larvae 

(especially Stage IV, postlarvae) are also strong swimmers and exercise control over their 

ultimate settlement location (Ennis 1995). Several recent studies have attempted to 

estimate the pattern of recruitment of lobsters in the GoM by conducting broad trawl 

surveys of the locations of ovigerous females, (Incze and Naimie 2000, Incze et al. 2010, 

Chasse and Miller 2010). These studies provide a great deal of insight concerning the 

extent to which certain populations provide recruits for other areas of the fishery. 

However, the accuracy of these models depends a great deal on two variables that were 

investigated in our study: 1) the location of ovigerous females while they are carrying 
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late-stage eggs (Chapter 1) and; 2) the accuracy of laboratory models concerning the 

influence of temperature on egg development and hatching (Chapter 2). Most of the 

aforementioned studies are not currently adapted for the intricacies of local sources of 

ovigerous lobsters and their initial larval dispersal. Our goal was to ascertain how the 

timing of hatch in disparate locations affects larval dispersal by using drifter trajectories 

as a proxy. 

Coupled biophysical models require well-grounded biological inputs (e.g., hatch location, 

PLD, mortality) as well as data sets with which to evaluate model performance. Our 

findings suggest that hatching farther inshore favors retention along the coast (via 

alongshore currents), and that seasonal movements of lobsters may vary sufficiently to 

cause differences. Furthermore, results from our offshore drifters suggest that larvae 

hatching in these locations are exposed to a wider array of currents that may offer a 

transport advantage in finding the best possibilities for settlement. However, 

comprehensive biophysical models of larval transport throughout the GoM (Xue et al. 

2008, Incze et al. 2010) show that the predominant direction of larval transport (from all 

simulated hatching locations) is southwest and follows the cyclonic coastal current 

system. However, within-year and inter-annual variations substantially modify these 

expectations. These studies suggest that dispersal patterns would be further modified by 

spatial and temporal differences in hatching patterns. Finally, there is a significant 

amount of retention in most zones, indicating considerable potential for local recruitment 

in populations. 
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This study, along with existing biophysical coupled models, suggests that future work is 

needed to further illuminate the transport of lobster larvae in the GoM. First, additional 

studies will need to further address the transport of larvae closer to the mainland, taking 

into consideration a variety of topographic elements (bays, headlands, islands) that will 

inevitably influence larval dispersal and behavior. Second, further documentation of the 

distribution of lobsters hatching over a variety of depths, including deep offshore waters, 

will be beneficial to modeling larval dispersal over both large- and small-scale circulation 

features. We considered the release of our drifters during times and locations of hatch 

(Chapters 1 & 2) and over two general depth regimes, inshore (< 20 m) and offshore (> 

20 m). However, data for lobsters that hatch in depths > 100 m is unknown, but we 

suspect that greater depths may impact the dispersal and transport of larvae to various 

regions. Finally, the ability to document (and model) the origins of larval hatch is vitally 

important:1 Migration and locations offemales at the time of hatching remain critically 

important questions.' (Incze and Naime 2000). 

Our study assessed the fate of lobster larvae hatching in known locations due to the 

effects of hydrodynamic features (10s of km) coupled with temperature-based larval 

development. Modeling these attributes using individually-based models (IBMs) for 

lobsters in the GoM has since shown that a combination of outcomes are possible 

including downstream dispersal to adjacent areas, some long-distance dispersal, and local 

retention of larvae (Incze et al. 2010). Superimposed on these patterns are the potential 

changes to the GoM circulation regime and the timing of biological events due to climate 
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change, which would undoubtedly impact patterns of larval dispersal and subsequent 

settlement (Nye 2010, Appendix E). 

Therefore, the use of ocean drifters, released at biologically relevant temporal and spatial 

scales, provides at least initial estimates of the dispersal, location, and destinations for 

larvae. Applying these biological correlates to other ongoing and future modeling studies 

will help to clarify the marine connectivity of lobster in the GoM and provide data for the 

future management of this important marine species. 
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APPENDIX A 

BIOCHEMICAL CHANGES THROUGHOUT EARLY AND MIDDLE STAGES OF 
EMBRYOGENESIS IN LOBSTERS (HOMARUS AMERICANUS) UNDER THREE 

THERMAL REGMES 

Abstract 

Most marine crustacean eggs contain a full complement of nutritional resources that fuel 

the growth and metabolic processes over the course of their development. In terms of 

biochemical constituents, lipids and proteins play pivotal and central roles in these 

processes and, accordingly, have been studied extensively in crustaceans. Given the 

propensity of some ovigerous (egg-bearing) American lobsters (Homarus americanus) to 

undergo seasonal inshore-to-offshore migrations, thereby exposing their eggs to varying 

thermal regimes, this study's goal was to assess egg quality over their course of 

development by documenting changes in total lipids, proteins, and egg size (volume) in 

lobsters subjected to one of three simulated thermal regimes (inshore, offshore, constant 

(12 °C), n = 5 / trt, 15 total) in the laboratory and sampled at five discrete time intervals. 

Total egg lipids showed a marked decrease over time (r^dj = 0.85, p < 0.0001), early in 

the fall (average = -26 %) and late spring (-62 %), compared with stark increases in 

proteins over the same period (r^adj= 0.63, p < 0.0001, averages = 60 %, 34 %, fall and 

spring). Although there were no significant differences in total lipid or protein values (or 

egg sizes) between eggs exposed to inshore and offshore temperatures (p > 0.05), 

differences occurred in eggs exposed to a constant temperature, and they hatched almost 
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three months sooner than inshore or offshore ones. Seasonal temperature fluctuations 

also appear to control the rates of biochemical processes in lobster eggs but may be 

confounded by other variables. 

Introduction 

Egg development for most marine crustaceans relies heavily on the production and 

sequestering of nutrients required for the development and maintenance over the entire 

process of embryogenesis. In terms of biochemical constituents, both lipids and proteins 

play pivotal and central roles throughout development, and, as a result, have been studied 

extensively in both crustaceans and fishes alike. (Fraser 1989, Jaeckle 1995, Rosa et al. 

2007). Lipids comprise the structural integrity of most cells and are responsible for the 

overall metabolism of growing crustacean embryos. Remarkably, these constituents have 

been reported to account for upwards of 60 % of the total energy expenditure for growth 

(Holland 1978, Amsler and George 1984). By contrast, the role of proteins as the basic 

building blocks of animal tissues are well known (Holland 1978), and function as 

alternative energy sources under certain conditions (Schmidt-Nielsen 1991, Heras et al. 

2000). 

Egg development in crustaceans is especially linked to temperature such that incubation 

periods can be extended (cold temps) or reduced (warm temps). Closely coupled 

metabolic rates increase with temperature thereby modulating yolk absorption, growth 

and ultimately, the survival of eggs (Pandian 1970, Schmidt-Nielsen 1991). 
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Development and metamorphosis of planktotrophic larvae, including decapod 

crustaceans, depends to a great extent on nutrition (Racotta and Ibarra 2003) from both 

exogenous (from feeding) and endogenous (yolk reserves) sources which are important 

metrics during early postembryonic development (Sasaki et al. 1986, Clarke et al. 1990). 

Together, the relationship between the primary biochemical components in crustacean 

eggs and their associated variability are considered central to the early-life history 

patterns for these organisms (Vance 1973, Jaeckle 1995). 

This is especially true for American lobsters, Homarus americanus H. Milne-Edwards, 

1837, characterized as large, highly mobile decapods whose habitats include coastal and 

continental shelf waters, bays and estuaries from Labrador, Canada to Cape Hatteras, 

U.S. (Fogarty 1995). Because the American lobster fishery garners such tremendous 

economic influence, fisheries scientists and managers focus much of their attention on 

many aspects of stock assessment including the fecundity, spawning stock biomass, and 

abundance of egg-bearing (ovigerous) females that are historically protected from being 

landed (ASMFC 2009). The life history of H. americanus includes a complex suite of 

embryonic, pelagic (larval), and benthic (juvenile and adult) developmental stages (see 

review in Lawton and Lavalli 1995), most notably, their yolk-laden eggs that are 

extruded and carried for 9-11 months over the full course of their development (Talbot 

and Helluy 1995); temperature is a key factor that determines the length of time the eggs 

are carried (Templeman 1940, Aiken and Waddy 1980). Mature lobster oocytes are large 

(1.4-1.6 mm diameter upon extrusion) and typically contain large amounts of high-

density lipoproteins (> 40 %, lipovitellins) that are allocated as yolk material through a 
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complex suite of primary and secondary vitellogenesis (Nelson et al. 1988, Talbot and 

Helluy 1995). 

Besides the often protracted egg development in H. americanus, one of the most 

interesting and sometimes dramatic features of some ovigerous lobsters is their 

propensity to migrate seasonally over an array of habitat types (including thermal 

ones) and distances (typically, 5-10 km, but sometimes much greater) throughout the 

development of their eggs (see reviews by Cooper and Uzmann 1980, Lawton and 

Lavalli 1995). The implications of such movement events in ovigerous lobsters has 

the potential to shape the developmental dynamics of the eggs they carry by 

subjecting them to differing thermal regimes whose rates of change can be quite 

different (Campbell and Stasko 1986, Cowan et al. 2006, Goldstein Chapter 2). For 

example, ovigerous lobsters subjected to inshore thermal regimes in the lab exhibited 

more rapid egg development and hatched sooner than their offshore counterparts 

(Goldstein Chapter 2). Therefore, the seasonal movements of ovigerous lobsters to 

thermally disparate waters may be strategies to both enhance egg development and 

the survival of larvae in the plankton. 

Biochemical and energetics considerations in lobster eggs have been well studied and 

suggest the following key patterns: 1) differing thermal regimes influence the utilization 

of energy reserves in developing embryos and embryos raised at accelerated temperatures 

contain residual yolk reserves upon hatch (Sasaki et al. 1986); 2) the energy content of 

eggs tend to increase with female size (Attard and Hudon 1987); and 3) larval size at 
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hatch is independent of female size (Ouellet and Plante 2004). Despite some 

contradictory evidence between some of these studies, it is evident that egg resources 

influence their growth and development. 

Although optimal temperatures for lobster egg growth are not fully known, naturally 

fluctuating temperatures result in disparate growth patterns and subsequently, differing 

hatch times (Sibert et al. 2004, Goldstein Chapter 2). In general, crustacean eggs 

subjected to either prolonged warm or cold temperatures can have a deleterious effect on 

the use of their yolk reserves (Garcia-Guerrero et al. 2003, Manush et al. 2006), and it has 

been suggested that prolonged cold temperatures (< 4 °C) negatively affect egg 

development in H. americanus (Waddy and Aiken 1995). Therefore, one way of 

assessing the effects of temperature on the overall development of lobster eggs is through 

the proximate analysis of their biochemical components, namely, lipids and proteins. 

The goal of this study was to further elucidate the effects of lobster movements over 

varying thermal regimes (inshore and offshore) during the course of egg development, 

complementing existing work on egg development and hatch under differing thermal 

regimes in the laboratory, by quantifying two key biochemical descriptors (lipids and 

proteins) of egg resource utilization as well as changes in egg size. A constant, slightly 

elevated temperature was also used to compare egg development under non-fluctuating 

thermal conditions. 
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Materials and Methods 

Lobster Source and Egg Assessment 

Egg-bearing (ovigerous) lobsters were collected in late August and early September 

(2006) along the New Hampshire (NH) seacoast near Rye, NH and Gunboat Shoals 

(43°.0274 N; 70°.6938 W) by permitted commercial lobstermen using standard baited 

traps. Lobsters were transported to the University of New Hampshire (UNH) Coastal 

Marine Laboratory in Newcastle, NH and initially held in a large 1,200 L fiberglass tanks 

with shelters. Tanks were exposed to ambient light and sand-filtered seawater (average 

temp = 15.3 ± 0.5°C), and lobsters were fed a combination of fresh squid and crabs 

(Cancer spp.), twice weekly. 

A subset of the eggs in each clutch were viewed under a dissecting scope and staged 

according to the methods outlined by Helluy and Beltz (1991). These samples also 

served as covariates for all subsequent statistical analyses. Only lobsters whose eye 

index was less than 18 % were used for this study (Perkins 1972, Chapter 2) in order to 

encompass as much of the early development process as possible. Lobster carapace 

lengths (CL) were measured to the nearest 1 mm using digital calipers (Mitutoyo IP 65, 

Mitutoyo Corp., Japan). A single, circular, laminated disc tag (diameter = 2.0 cm, Floy 

Tag Inc., Seattle, WA) was fastened to the claw knuckle of each animal for individual 

identification throughout the duration of the study. 
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Thermal Treatments and Sampling 

The experimental setup and thermal treatments followed a companion study that served 

to concurrently quantify lobster egg development and hatch time in the same group of 

lobsters (see Goldstein Chapter 2). Briefly, a series of four 0.91 m diameter (600 L) 

tanks (2 tanks / treatment) were used to simulate either inshore, offshore, or constant (12 

± 0.4 °C) temperature regimes on a year-round basis (Fig. 1). For purposes of this study, 

inshore locations (shallow and coastal) were considered the same areas where animals 

were collected (2-5 km from shore, 8-10 m depth), while offshore ones were designated 

as 12-20 km from shore (20-30 m depth) to simulate those lobsters that might make 

seasonal, fall migrations offshore (see Chapter 1 methods). Constant temperatures were 

chosen to simulate a favorable growth temperature similar to eggs observed in Mackenzie 

(1988). Temperatures in all tanks were logged automatically every 30-minutes using 

HOBO pendant loggers (model UA-002-64, Onset Computer, Bourne, MA) and later 

downloaded into Microsoft Excel using Hoboware software (HOBOware Pro v. 3.0). 

Temperature profiles from the offshore tank treatment were adjusted semi-regularly to 

simulate seasonal temperature changes in the field and monitored from historical and real 

time data published on the Gulf of Maine Ocean Observing Systen (GOMOOS, 

www.gomoos.org; also see Chapter 2). A subset of five ovigerous females were sampled 

at each temperature treatment for a total of 15 lobsters. All lobsters were sampled for 

eggs at five discrete time periods: twice in the fall and spring (during periods of rapid 

growth; Sibert et al. 2004) and once in the winter. 
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water flow regime 
reservoir tank 

partition 

treatment tank 

Fig. 1. Tank design for exposing lobsters to simulated inshore, offshore and constant temperature 
regimes. Inshore tanks received ambient seawater while offshore and constant tank treatments 
were manipulated using a series of heaters and chiller units (see Goldstein Chapter 2, for details). 
All tanks were maintained on a seasonal photoperiod using programmable timers. Tanks were 
partitioned to hold individual lobsters (n = 5 / tank). 

Lobster eggs (~ 100 / sample) were removed from the center of each clutch with a pair of 

fine forceps and placed in labeled plastic sample trays. All egg samples were rinsed and 

gently agitated with a 0.5 % sodium hypochlorite and distilled water solution for ~ 1 

min., after which they were rinsed with 100 % distilled water and blotted dry to remove 

the cement matrix holding the eggs together (P. Talbot pers. comm.). Rather than 

mechanically separate eggs, this technique was chosen for its efficacy. Preliminary 

studies that were conducted indicated that this chemical separation technique was non­

invasive and did not compromise the biochemical integrity of the egg due to their 

complex and thickened membranes (Johnson et al. 2011). 

172 



For biochemical analyses, egg samples (~ 30 / sample) were frozen at -80 °C prior to 

processing and freeze-dried at -40 °C for 24 hr (Labconco Freeze Dryer 5, Kansas City, 

MO). Dried egg samples were then ground down into a fine power using an industrial-

grade milling machine (Wiley Mill #4,40 |a.m mesh screen, Thomas Scientific, 

Swedesboro, NJ) and samples were stored in labeled polyethelene scintillation storage 

vials for subsequent analyses (Fig. 2). 

WBm 
Fig. 2. Overview of methods used for some lobster egg analyses: A) image of lobster egg 
depicting eyespot and yolk mass; B) freeze-drying egg samples in preparation for biochemical 
analysis; C) grinding and milling egg samples after freeze-drying and; D) lipid extraction of egg 
samples using a shaker tray and water bath (also see Goldstein Appendix B). 

Biochemical Analyses 

Over each sampling interval, a total of three replicate egg samples/female were pooled 

for lipid and protein values. Total protein levels were determined using a modified 

Lowry method (Lowry et al. 1951) using a BioRad protein assay kit with Coomassie 

173 



Brilliant Blue G-250 (reagent) and bovine serum albumin as a standard (Biorad 

Laboratories, Hercules, CA). Egg samples were digested in IN NaOH, filtered and read 

on a spectrophotometer (Beckman DU-250; X- 595). Total lipid was quantified 

gravimetrically using the general protocol detailed in Bligh and Dyer (1959). The 

procedure was modified in a ratio of 1:2:2.5 chloroform-methanol-water extraction, 

respectively. Samples were dried for 24 hr. at 37 °C and stored in a glass dessicator, 

before being weighed on an analytic balance (Fig. 2). Detailed protocols for both total 

lipids and proteins can be found in Appendix B. 

Egg Volumes 

For calculating egg volumes, 10-15 eggs were removed at each of the aforementioned 

five time periods and placed in plastic 2.0 mL storage tubes, preserved in a 4 % formalin 

and sterile seawater solution and stored at 4 °C. For each egg, a digital picture was taken 

under a dissecting microsope (Nikon SMZ-2T, Nikon USA Inc., Melville, NY) using a 

scope-mounted Nikon Coolpix 995 digital camera. All egg images were imported into an 

image processing software (Image J v. 1.35, see http://rsb.info.nih.gov/ij/) and a digital 

measuring tool was used to make calculations of each egg's longest length. All 

calculations were measured to the nearest 0.01 mm (then converted to |a.m) and values for 

each sample were averaged (± se). Egg volumes were then calculated using the formula: 

V = 4/3*(7t r3), where r is the radius for spheroid-shaped embryos (Garcia-Guerrero and 

Hendrickx 2004). 
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Data Analysis 

Analysis of variance (ANOVA) was used to investigate potential differences in egg 

protein and lipid content between the three thermal regimes (fixed factor 1) at each of the 

five sampling intervals (fixed factor 2). A 3x5 full factorial design was used and 

analyzed as a split-plot (SP) ANOVA (whole-plot = temperature, sub-plot = month, dftotai 

= 15) using a PROC MIXED model in SAS v. 9.3 (SAS Institute Inc., Cary, NC). 

Differences between groups were compared using the PDIFF function in SAS. 

Regression analyses were carried out using JMP v. 9.3 (SAS Institute Inc., Cary, NC) 

statistical software. All means are expressed ± se. 

Results 

Water Temperatures 

Seawater temperatures over the course of this study (October-May) averaged 7.1 ± 0.24 

°C (range = 2.1-11.2) for inshore laboratory simulations, compared with 6.0 ± 0.19 °C 

(range = 2.8-10.1) for the offshore thermal regime, and 12.2 ± 0.21 °C for the constant 

treatment tank (see Chapter 2). There was an overall significant difference in water 

temperatures between the constant tank treatment and both inshore and offshore ones 

(ANOVA; F2/7 = 10.32, p < 0.0001) but not between inshore and offshore. 
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Lipid and Protein Content 

Total egg lipid levels from inshore and offshore thermal regimes were very different from 

their constant temperature counterpart (SPANOVA; F2,44 = 10.3, p = 0.0002) and also 

differed by month (F4,44= 302.9, p < 0.0001; Fig. 3). Likewise, total protein levels in 

lobster eggs between inshore and offshore thermal regimes also differed from eggs 

exposed to constant temperatures (SPANOVA; F2,44 = 67.17, p = 0.0002) as well as by 

month (F4)44 = 350. 3, P<0 .0001, Fig. 3). The interactive effect of temperature and 

month was significant for both lipid (F7.44 = 2.27, p < 0.045) and protein levels (F7,44 = 

46.5, p < 0.0001) and are summarized in Tables 1 & 2. 

176 



350 

300 

S 250 

I 
a 200 
« •o 
a. 150 

% 100 

50 

0 

Inshore 

-•—Offshore 

Constant 

500 

450 

Jj 400 

"j! 350 

~ 300 

| 250 
2 
a. 200 

| 150 

100 

50 

0 
Oct Nov Jan Mar May 

Month 

Fig. 3. Change in lipids (top) and protein (bottom) levels through the course of seven months of 
egg development for all lobsters sampled (n = 5 / trt). Lobsters subjected to inshore and offshore 
thermal treatments did not hatch their eggs until after May, unlike eggs from the constant 
treatment, where eggs hatched (H) in April. Points for each treatment represent the means for 
each treatment group, standard errors are shown in Table 2, below. 
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Lipids 
October November January March May 

Inshore 322.2 ±7.5 268.2 ± 9.6 262.6 ± 12.2 186.4 ±7.3 67.6 ± 3.6 
Offshore 324.6 ± 7.4 255.2 ± 11.7 247.0 ± 12.5 200.8 ± 3.8 82.4 ± 7.3 
Constant 315.7 ±8.7 237.3 ± 4.8 224.0 ± 7.2 146.4 ± 12 

Proteins 
October November January March May 

Inshore 322.2 ± 7.5 268.2 ± 9.6 262.6 ± 12.2 186.4 ±7.3 67.6 ±3.6 
Offshore 324.6 ± 7.4 255.2 ± 11.7 247.0 ± 12.5 200.8 ± 3.8 82.4 ± 7.3 
Constant 315.7 ±8.7 237.3 ± 4.8 224.0 ±7.2 146.4 ± 12 

Post-hoc PDIFF Results (a = 0.05) 
Treatment group: Constant4 Inshore Offshoreb 

Table 1. 
A summary of means (± se) for lobster egg total lipids and total proteins over five months. Post-
hoc differences (from SAS) for both variables are given below; groups with different superscripts 
denote treatment differences (p < 0.001). 

Treatment October November January March May 
inshore * offshore 0.85 0.30 0.21 0.25 0.24 
inshore * constant 0.89 0.03 0.002 0.002 
constant * offshore 0.72 0.22 0.04 < 0.0001 

Table 2. 
Pairwise comparisons between temperature treatment and month for both lipids and protein 
values. Shaded p-values (< 0.05) denote significant differences between temperatures for a 
specific month. 

Overall egg lipid values showed a marked decrease over time (equation: lipids = 381.76 -

55.00*month, r2adj = 0.85, p < 0.0001; Fig. 4), falling most dramatically early in the fall (-

16.8 % inshore, -21.4 % offshore, -24.8 % constant) and late spring (-63.7 % inshore, -

59.0 % offshore). By contrast, total lobster egg protein values increased over the same 

time frame (equation: proteins = -35.53 + 69.1 l*month, i^adj = 0.63, p < 0.0001; Fig. 4), 

but exhibited large increases in the fall (60.4 % inshore, 57.7 % offshore, 66.5 % 

constant) and spring (30.1 % inshore, 37.1 % offshore) and much more modest ones in 

the winter, typically 10-15 %. 
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Fig. 4. Relationship between lipids (left) and protein (right) over the course of seven months of 
egg development for all lobsters sampled (n = 5 / trt). Total lobster egg lipid values showed a 
marked decrease over time (equation: lipids = 381.76 - 55.00""month, radj = 0.85, p < 0.0001). 
By contrast, total lobster egg protein values increased over the same time frame (equation: 
proteins = -35.53 + 69.1 l*month, r2

adj = 0.63, p < 0.0001). 

Egg Volumes 

Overall, there was a significant increase in egg volume over time for all eggs over all 

treatments (r^dj = 0.413, p < 0.001). Although there were no significant changes with 

respect to egg volume by treatment (F = 0.73, df = 2, p = 0.513) (overall means: inshore = 

3226 ± 163 fxm3, offshore = 3254 ± 167 fim3, constant = 3476 ± 152 jxm3) differences 

from month-to-month did exist (F = 2.25, df = 3, p < 0.001; Fig. 5). Gains in egg volume 

(for all treatments) accounted for ~ 52 % between September and February, although 

there was a slight decrease (-13.5 %) in egg volume for the constant treatment between 

November and January. 

179 



• Inshore 

•Offshore 

•Constant 

September November January February 

Month 

Fig. 5. A summary of means (± se) for changes in lobster egg volumes (given in (W) over a six 
month period. There were no significant differences in egg volume by treatment (Tukey's HSD; 
q = 2.40, p > 0.05), but differences did exist from month-to-month (F= 2.25, df = 3, p < 0.001) 

The main goal of this study was to document the changes in lipids and proteins in lobster 

eggs over three disparate thermal regimes and the effect that temperature has on these 

important biochemical processes. In general, the trends during embryogenesis in H. 

americanus were typical of other decapods: lipid reserves were catabolized while 

proteins were utilized to make tissues (Holland 1978, Sasaki et al. 1986, Jacobs et al. 

2003, Brillon et al. 2005). In tandem with these patterns, eggs were also shown to absorb 

water during development with a resultant increase in egg diameter. Not surprisingly, 

lobster eggs exposed to an elevated, constant temperature elicited dramatic changes 

compared with inshore and offshore ones and, as a result, hatched sooner. Furthermore, 

the methods that were employed in this study were able to replicate those of other studies 

that tracked similar metrics in lobster eggs over time (Pandian 1970, Sasaki et al. 1986, 

Sibert et al. 2004). 

Discussion 
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This study did not obtain data for biochemical changes that occurred in eggs that were 

approaching hatch (~ 30 days prior) or the effects of such changes on larval survivorship 

or condition. As a result, there were no apparent biochemical differences in lobster eggs 

between inshore and offshore temperature treatments. Despite this, it has been shown 

that large changes in egg yolk lipids and protein levels occur within the last few weeks of 

development (Sibert et al. 2004), suggesting a large influence in the rate of temperature 

change between inshore and offshore locations. Concurrent with this are the associated 

(but different) rates of temperature increase that occur between inshore and offshore 

waters especially in the late spring and early summer that impact when lobsters hatch 

(Chapter 2). As a result, this could change how energetic reserves are allocated near the 

end of development more intensively, compared to the beginning. 

Other studies have shown the influence of such thermal exposures on larval condition 

(Sasaki et al. 1986, Ouellet and Plante 2004), and it was very clear that significant 

changes to lobster egg biochemistry are apparent in the first couple months of 

development (this study) as well as leading up to the month before hatching (Sasaki et al. 

1986). The effect of temperature on metabolic and developmental rates is expressed 

through changes in the consumption rates of metabolic reserves that are affected by 

changing temperatures (Sasaki et al. 1986). Thus, the seasonal aspects of fluctuating 

temperature have a 'real' impact on the rates and course of development in lobster eggs. 

It is suggested that fluctuating seasonal temperatures help to accelerate egg development 

during some time frames while depressing it at others, providing temporal windows 
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where hatching generally takes place (Helluy and Beltz 1991,Waddy and Aiken 1995, 

Chapter 2). 

Seasonal movements by ovigerous lobsters provide one potential strategy for exposing 

their eggs to variable seawater temperatures and locations where the timing of hatch 

could be favorable. These movements influence overall egg incubation time and may 

affect how internal egg resources are utilized (Sasaki et al. 1986, Chapter 2). This was 

seen most clearly in eggs that were exposed to constant, elevated temperatures. In this 

case, egg lipid and protein levels changed dramatically and eggs hatched almost three 

months prior to inshore and offshore egg treatments (Fig. 3). It is presumed that egg 

hatching in March or April would be detrimental to survival in the plankton due to 

suboptimal levels in temperature and food across most areas (e.g., match-mismatch 

hypothesis). Seasonally changing temperatures, including a refractory period of cold 

seawater temperatures (< 5 °C), are important to conserving egg resources for more rapid 

increases in temperature (> 10 °C) that typically occur later on (Waddy and Aiken 1995). 

These thermal conditions were simulated in both inshore and offshore treatments and 

resulted in egg development that extended well into the spring and early summer 

(offshore). Although eggs exposed to a constant temperature, hatched much sooner, they 

also contained residual yolk reserves upon hatch; this was also documented by Sasaki et 

al. (1986). 
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Lipids and Proteins 

Most studies conducted on crustacean eggs show that lipids are the major energy reserve 

(Holland 1978, Fraser 1989, Clarke et al. 1990, Heras et al. 2000). Egg yolk lipids were 

rapidly consumed in all thermal treatments and throughout all months, although much 

more modestly in winter (Fig. 3; Table 1). This pattern is seen consistently in other 

crustaceans at similar rates. For example, the egg lipid content of fiddler crab (Uca 

rapax) decreases significantly (78.4 %) through embryogenesis, confirming that lipids 

constitute an important energy source for embryonic development. In addition, lipids are 

also used as structural components of cell membranes that are being formed as they grow 

(Rosa and Nunes 2003). Thus, the catabolism of lipids is a classic feature of crustacean 

eggs and many other crustaceans produce eggs with large lipid reserves that are used 

throughout embryogenesis (Rosa et al. 2007). Lipid depletion rates are directly related to 

incubation temperature, and it has been observed in other crustaceans that the energy 

consumption per day, mostly provided by lipids, slightly intensified 3 or 4 days before 

hatching (esp. with higher temps), could be related to a higher energy production need at 

this time (Heras et al. 2000). Yolk lipids tend to become catabolized first followed by 

yolk proteins. These ratios change and can be used to estimate the cost of egg 

development at differing temperatures (Sasaki et al. 1986). In the field, lipid profiles 

(e.g., fatty acids) have been used to identify offshore from inshore lobster eggs (Castell et 

al. 1995); therefore, it is possible that these constituents are utilized differently across 

different geographic regions that correspond to disparate thermal regimes. 

183 



For proteins, the consumption rate during embryogenesis may increase as temperature 

rises (Conceicao et ai. 1998). Proteins not only function as building blocks for tissue and 

organs but more so, may act as intermediates in carbohydrate and lipid metabolism 

(Schmidt-Nielsen 1991). Thus, trying to quantify protein levels may be masked by their 

intricate link to other biochemical components. Over prolonged cold temperatures or 

those conditions in which temperatures are too high for even short periods of time, some 

crustacean embryos may instead utilize proteins as an energy source if lipids are low due 

to thermally-induced demands (Conceicao et al. 1998). 

At elevated temperatures (constant), increases in protein levels were clearly detected. At 

sub-optimal temperatures tissue synthesis tends to be inefficient and more protein might 

be used as energy instead (Garcia-Guerrero et al. 2003). Therefore, the duration and rates 

of differing thermal profiles would most certainly affect these biochemical changes and 

allocations of resource components over time. How this translates to larval survivorship 

remains poorly understood. However, Sasaki et al. (1986) showed that up until Stage IV 

(post-larval), lobsters depended upon stored capacities of lipids and that these residual 

lipids maybe favorable to settlement processes. 

Egg Volume 

The increase of water in the eggs (egg volume) as seen in this study and others is directly 

related to water uptake during new cell formation in the embryo and has been noted to 

increase by more than 50 % over the course of development (Pandian 1970). Increases in 
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egg volume are primarily due to water uptake by the embryo as well as from the retention 

of metabolic water resulting from respiration (Pandian 1970, Petersen and Anger 1997). 

The associated osmotic changes that ensue during egg development can be an important 

component to hatching and have also been implicated in mechanically aiding the 

breakage of the chorion near the time of hatch (Pandian 1970). Slight changes in lobster 

egg volume have been previously explained as a function of a plastic response to 

variations in salinity (Charmantier and Aiken 1987), and for later eggs, a consequence of 

physiological factors during development (Pinheiro and Hattori 2003). In this case, the 

movements or residency of lobsters in certain locations where seawater salinities can vary 

dramatically during certain times of the year (e.g., estuaries; Watson et al. 1999) may 

have an impact on aspects of development or hatch, especially near the latter part of egg 

development (Charmantier and Aiken 1987). 

Female Size and Condition 

In this study we did not specifically address the influence of maternal size or nutritional 

condition on egg quality. However, other related studies have showed that caloric energy 

content per egg increases with female size (Attard and Hudon 1987). Sibert et al. (2004) 

described this relationship by creating a growth index model for egg development and 

found that bigger eggs used yolk lipids more efficiently and sustained faster embryonic 

growth compared with smaller eggs. In addition, Ouellet and Plante (2004) reported that 

first-time (primiparous) spawners produced compromised larvae compared to larger, 

multiple ones (although larval size was independent of female size). Results from these 
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key studies point out the need to more clearly investigate these factors in more depth. 

Since female size and reproductive history may play a role in the allocation of metabolic 

egg reserves. 

Large invertebrate eggs often have greater organic content than small eggs (Clarke et al. 

1990, Clarke 1992) but egg size is not always an accurate predictor of organic content in 

decapods. Jacobs et al. (2003) for example, found that the larger size of blue crab 

(Callinectes sapidus) embryos in the spring is due, for the most part, to increased water 

uptake and the concomitant increase in inorganic salts (ash) commonly seen in crustacean 

embryos (Pandian 1970). An effect of female size on egg reserve allocation has been 

reported in other decapods including snow crab (Chionoecetes opilio), giant crab 

(Pseudocarcius gigas) and lobster (Homarus americanus) (Attard and Hudon 1987, 

Sainte-Marie 1993, Gardner 2001). In lobsters it has been speculated that the effect of 

female size may mean that larger females make a greater contribution towards egg 

reserves (Attard and Hudon 1987). However, the added effect of temperature on egg 

'quality' may, in some cases override this effect and more work is needed to address this. 

In addition to female size are potential effects that maternal nutrition has on enhancing or 

deterring egg quality (Appendix F). The lecithotrophic nature of lobster eggs is 

determined largely through the sequestering of maternal nutrients throughout the 

processes of primary and secondary vitellogenesis during oocyte formation, the latter of 

which is highly dependent on the female's organic energy reserves (e.g., lipoprotein; 

Dehn et al. 1983). Therefore, the biochemical composition of eggs is directly related to 
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the physiological and nutritional status of the female (Sasaki et al. 1986, Racotta and 

Ibarra 2003), and has an influence on the success of embryonic and larval development 

(Holland 1978). 

The rates of biochemical processes and incubation time for developing lobster embryos 

are temperature dependent. Although the changes in biochemical components (lipids and 

proteins) were not dramatically different from inshore and offshore thermal regimes, 

there is still the potential for variations in the energetics of embryogenesis based on the 

seasonal movements of some lobsters to and from differing geographic regions. 
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APPENDIX B 

BIOCHEMICAL PROTOCOLS 

Modified Total Lipid Procedure 

I. PRINCIPLE: Quantify total lipids using a modified Bligh and Dyer extraction 
procedure 

II. REAGENTS & STANDARDS: 
1. Chloroform 
2. Methanol 
3. dH20 

Table 1. Lipid chemical ratios to add 

CHC13 Methanol MeOH dH20 
10 20 8 

For example*: 500 mL 1000 mL 400 mL 
*this gives a total of 1900 mL based on above ratios 

III. PROCEDURE: 

1. Weigh out 30 eggs to obtain an average weight; ratios of chloroform, 
methanol, and water can then be determined 

2. Grind egg samples and add to 50 mL plastic centrifuge tubes 
3. Cap and/or wrap tubes sufficiently with Durseal® sealing film (Diversified 

Biotech, Boston) 
4. Place tubes on their sides in a shaking water bath (mdoel Precision, Precision 

Scientific Group, Chicago, IL) with enough water to cover bottom of tubes 
5. Let tubes shake for 24 hr. at an RPM = 186 oscillations/min (OPM) 
6. Remove egg tubes from shaker 
7. Filter solution using Whatman #41 (9.0 cm) ashless filters into glass (acid-

washed), pre-weighed 25 mL Erlenmeyer flasks 
8. Add 1ml chloroform first to rinse and then finally 2ml dH^O solution as 

needed (make this fresh) to rinse tubes and enhance phase formation in flasks 
9. Let egg slurry sit at room temp, for ~ 30-45 minutes to allow layering to occur 
10. Pipette out (glass pipettes) methanol- dH20 layer and place in clean (also 

acid-washed) culture tube 
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11. Place rubber sleeve stoppers and Duraseal® sealing film over tube and insert 
two 19 gauge needles into stopper for gas setup 

12. Place flasks into warm water bath (37 °C) shaking at 186 OPM and start N2 
gas flow. 

13. Leave flasks until dry (~ 20-30 minutes) 
14. Place all flasks in drying oven (VWR model 1380 FM) at 37 °C for 24 hr. 
15. Move all flasks to dessicator and allow them to cool to room temp. (~ 30 

min). 
16. Clean outside of flasks with lens paper and weigh to 0.0001 g using an 

analytical balance (model A-200 DS, Denver Instruments Co.) 
17. Do a subtraction to calculate total lipid 

IV. TUBE PREPARATION 

1. Acid-wash (1M HC1) and dry tubes at 60 °C in drying oven (VWR model 
1380 FM) for 24 hr. 

2. Label tubes accordingly 
3. Place in dessicator for storage 
4. Remove from dessicator with tongs and clean tubes thoroughly with lens 

paper 
5. Weigh tubes to 0.0001 g (model A-200 DS, Denver Instruments Co.) 
6. Place back in dessicator until needed 

V. EQUIPMENT: (see procedure section) 

VI. REFERENCES: 

Bligh, E.G. and W.J. Dyer. 1959. A rapid method of total lipid extraction and 
purification. Canadian Journal of Biochemistry and Physiology. 37(8): 911-
917. 

Sasaki, G.C., J. McDowell Capuzzo and P. Biesot. 1986. Nutritional and 
bioenergetic considerations in the development of the American lobster 
Homarus americanus. Canadian Journal of Fisheries and Aquatic Sciences. 
43:2311-2319. 

Silbert, V., P. Ouellet and J-C. Brethes. Changes in yolk proteins and lipid 
components and embryonic rates during lobster (Homarus americanus) egg 
development under a simulated seasonal temperature cycle. 2004. Marine 
Biology. 114: 1075-1086. 

Modified Protein Procedure 

I. PRINCIPLE: Quantify total protein using a modified Lowry procedure and a 
Biorad Protein Assay Kit 

II. REAGENTS & STANDARDS: 
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1. Biorad Protein Reagent: Coomassie Brilliant Blue G-250 

Filter (Nalgene 160 filter unit, pore size= 0.45 um) 1 part reagent to 4 parts 
dH.20. This solution can be made in advance and storedfor 1-2 weeks. 

2. Standards: Bovine serum albumin (BSA) 

Reconstitute serum with 20ml dH20 and mix to dissolve 

% ug/ntl Stock (BSA) dH20 
0 0 0 1 

12.5 187.5 0.125 0.875 
25.0 375.0 0.250 0.750 
37.5 562.5 0.375 0.625 
50.0 750.0 0.500 0.500 
62.5 937.5 0.625 0.375 
75.0 1125.0 0.750 0.250 
87.5 1312.5 0.875 0.125 
100.0 1500.0 1 0 

Table 2. BSA Standard dilutions for Biorad Protein Assay (green 
highlighted values represent standards used). 

HI. PROCEDURE: 

1. Count out, and grind 10 eggs/larvae per sample x 2 
2. Add ground egg sample to 5 mL IN NaOH in glass tubes 
3. V igorously vortex each tube 
4. Count out, and grind 10 eggs/larvae per sample x 2 
5. Let samples sit (digest) for 24 hr. 
6. Filter sample using Whatman #1 (110mm) 
7. Pipette 100 nL of sample or standard into 16 x 125 culture glass tubes. 
8. Add 5 ml of reagent to all tubes 
9. Let samples sit (react) for 5 min. 
10. Transfer to disposable cuvettes 
11. Read samples (A. = 595) using the spectophotometer 

IV. EQUIPMENT: 

1. Beckman DU 520 Spectrophotometer 
2. Suction Apparatus (for filtering reagent and samples) using a Nalgene 160 

filter unit 
3. Disposable glass tubes, cuvettes, pipettes, tips, etc. 
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APPENDIX C 

AN OVERVIEW OF GULF OF MAINE OCEANOGRAPHY AND ASSOCIATED 
MECHANISMS FOR LARVAL LOBSTER DISPERSAL 

Abstract 

The Gulf of Maine (GoM) contains one of the most biologically productive ecosystems in 

the world and, as a result, has supported some of the most successful and historically 

lucrative commercial fisheries including cod, tuna, herring, and lobster. However, this 

high level of biological productivity and ecological diversity would not be so without the 

unique physical make-up of the GoM basin and its associated circulation system. This 

overview serves as background for putting larval lobster dispersal in the GoM into a bio­

physical contextual framework as well as to describe some of the major features. 

Applying a variety of biological correlates to other ongoing and future modeling studies 

will help to clarify the marine connectivity of lobster in the GoM and provides data for 

the future management of this important marine species. In addition, some of the relevant 

links to my thesis are also emphasized. 
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Gulf of Maine Oceanography 

Geography 

The Gulf of Maine (GoM) is a large, semi-enclosed sea adjacent to the northeast corner 

of the United States and includes parts of maritime Canada as well (Fig. 1). The GoM is 

delineated by Cape Cod to the southwest and Cape Sable located to the northeast and 

includes the coastlines of New Hampshire, Maine, and Massachusetts (north of Cape 

Cod) as well as the southern and western coastlines of New Brunswick and Nova Scotia 

(Pringle 2006). 

The GoM encompasses over 93,000 km2 of ocean and has an average depth of only 150 

m (492 ft). Undersea valleys in the central basin can reach depths of 500 m while 

undersea mountains rise over 200 m from the sea floor, almost reaching the surface in 

some locations and creating islands in others (see Beardsley et al. 1997, for review). 

The GoM is also bounded offshore by large shallow banks and shelves including Georges 

Bank (GB), Brown's Bank, Nantucket Shoals, and the Scotian Shelf (SS). There are also 

three major basins contained within the Gulf of Maine: Wilkinson Basin to the west, 

Jordan Basin in the northeast, and Georges Basin in the south, which are isolated from 

each other beneath the 200 m isobath. The Northeast Channel is the major channel 

between the Gulf and the rest of the Northwest Atlantic although a secondary, shallower 

connection to the rest of the Atlantic is the Great South Channel, located between GB and 

Nantucket Shoals (Bigelow 1927, Brooks 1985). The watershed of the GoM contains an 
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area roughly 180,00 km2 (69,000 m2) including several prominent large river systems that 

empty into the GoM: St. Croix, St. John, Kennebec-Androscoggin, Penobscot, Saco, 

Piscataqua, and Merrimack rivers. Taken together these riverine systems greatly 

influence seasonal freshwater input into the GoM system (Keafer et al. 2005, Pettigrew et 

al. 2005, Pringle 2006). 

Fig.I. Geography of the Gulf of Maine, its coastal boundaries, and some of its features. (Source: 
USGS, Woods Hole, MA). 

198 



Circulation Overview 

Overall circulation in the Gulf of Maine consists of a counterclockwise (cyclonic) gyre 

that rotates around the coast from Nova Scotia to Cape Cod (Bigelow 1927; Fig. 2). 

Jordan Basin is considered the central cyclonic circulation cell located in the eastern 

GoM (Pettigrew et al. 1998). Circulation patterns in the GoM are highly complex, 

featuring elements of varying degrees of scale that include river plumes, coastal currents, 

wind-driven flows, strong tides, thermohaline influences and deep gyres (Xue et al. 2000, 

Keafer et al. 2005, Pettigrew et al. 2005, Pringle 2006). Although flow is seasonally 

variable, it is driven, in large part, by buoyancy fluxes (i.e., freshwater input from large 

rivers); this is especially the case around the perimeter of the GoM (Xue et al. 2000, 

Pringle 2006). A mixture of waters from the St. Lawrence River system (and other large 

rivers) along with Labrador Current water over the SS and into the GoM regulates an 

upstream buoyancy current (Xue et al. 2000, Brown and Irish 1992). It has been 

suggested that the circulation in the GoM is related to its evolving density structure (Xue 

et al. 2000, Brown and Irish 1992). As the water in the interior GoM warms, it expands, 

(thermal expansion) becoming less dense. The difference in density between these more 

buoyant waters and cooler offshore waters contributes to a pressure gradient (Beardsley 

et al. 1997, Pringle 2006), and the force of this gradient presumably creates a downward 

slope of water towards offshore (Coriolis forces this water to the right; Brooks 1985). 

The resulting westerly flowing coastal current helps to draw water into the GoM. Factors 

that influence the density distribution inside the GoM include wind, winter cooling, river 

runoff, the inflow from the SS, the deep inflow of the slope water, and tidal mixing. In 

addition, wind changes from predominantly northwesterly in winter to predominantly 
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southwesterly in summer provide summer upwelling along the Maine coast. Winter 

cooling erodes the stratification in the upper water column, whereas the warming in 

summer reestablishes the stratification. 

Relatively fresh, cold water enters the GoM over the SS and tends to flow northeastward 

around the tip of Nova Scotia (Brooks 1985). After a turn through the Bay of Fundy, this 

current flows southwestward, setting up the coastal current that dominates circulation 

along the coast of Maine (Keafer et al. 2005, Pettigrew et al. 2005). Riverine discharge 

(seasonally significant at times) and tidal flows contribute to the coastal current and give 

the GoM its distinct estuarine character (Mountain and Manning 1994). Dense, warmer 

and more saline water from the continental slope (outside of the GoM) enters through the 

Northeast Channel, a deep valley between GB and Browns Bank. This water mass flows 

into Georges Basin and characterizes the cyclonic gyres (Georges and Jordan). The 

outflow of seawater from the GoM occurs primarily at two points: the Great South 

Channel and upper layers of the Northeast Channel. 

The dynamics of the coastal current that flows southwestward along the coast of Maine 

divides the central Gulf of Maine into two oceanographically distinct areas. The eastern 

portion of this current (also known as the eastern Maine Coastal Current (EMCC), Keafer 

et al. 2005, Pettigrew et al. 2005) is relatively fast moving and somewhat colder than the 

western portion of the current (i.e., western Maine Coastal Current, WMCC). Where the 

two meet in the vicinity of the Penobscot Bay area, the faster moving eastern current is. 

to a large degree, deflected offshore. These waters are, in turn, entrained in the cyclonic 
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gyres that flow over Georges and Jordan Basins. This process divides the interior Gulf 

into eastern and western portions that are relatively isolated from one another. 

Circulation Patterns 

The circulation of the GoM has a distinct seasonal pattern (Xue et al. 2000). The 

counterclockwise gyre takes shape in the early spring. As the season proceeds, the 

discharge of freshwater from over 60 rivers in the GoM watershed contributes to the 

currents, and the action of the tides strengthens the summer circulation (Mountain and 

Manning 1994). In addition, the warming of the surface of the ocean results in 

stratification; a warmer layer floats on top of a mid-depth layer that preserves winter 

temperatures and salinities. It, in turn, is underlain by more saline bottom water. 

Stratification is most pronounced in the deeper areas of the western GoM. The 

counterclockwise gyre is established in the top layer, and the current picks up speed as 

the top layer slides over the middle layer. These currents reach their broadest extent and 

greatest speeds by the end of December (Pettigrew et al. 2005). Then, cooling of the 

atmosphere results in cooling of the ocean surface. As it cools, surface waters sink, 

replacing the stratified layers with well-mixed waters. As the currents mix downward 

they are slowed by the friction encountered when they reach the bottom. By February, 

the counterclockwise circulation pattern is generally diminished. 
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Gulf of Maine 

Georges Bank 

Fig. 2. The overall circulation patterns in the GoM. Notice the combination of both cy Ionic and 
anticyclonic flow regimes as well at the inflow and outflow of water from the system. Letters 
dots (A-L) indicate locations of ocean-observing buoys. (Source: www.GOMOOS.org). 

There are several physical features of the GoM that contribute to its overall circulation 

and inter-annual variability (Fig. 2) that include, but are not limited to: 

1. A large estuarine component emanating from a large amount of freshwater 

entering from the SS in addition to local runoff from coastal riverine systems that 

mix with salty slope water from the Northeast Channel. This produces water of 

intermediate salinities that flow westward along the shelf and off the shelf 

(Brooks 1985, Manning et al. 2009). 

2. Strong influence by bottom topography, with clockwise (anticyclonic) flow over 

Browns and GB, and Nantucket Shoals compared with counterclockwise 

(cyclonic) flow over Jordan, Wilkinson, and Georges Basins. The Northeast 
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Channel is the only partial barrier to the cross-over of SS water from Browns to 

GB (Brown and Irish 1992, Brooks 1985, Fig. 3). 

3. Circulation patterns that vary on a wide range of time and space scales, but strong 

tidal currents over regions such as GB, generating strong turbulent mixing in 

bottom layers and large amplitude internal waves on the flanks of the bank 

especially in Wilkinson Basin (Loder et al. 1992, Werner 1996, Manning et al. 

2001). Additionally, other periodic events such as shelf-slope interactions and the 

formation of warm-core rings that operate on seasonal levels with a high degree 

of variability (Lough and Manning 2001, Mountain et al. 1996), thereby setting 

up various scenarios for off-bank (or shelf) dispersal by marine larvae. 

4. A variety of meso-scale type circulation patterns, especially in the western Gulf, 

that include a complex and highly variable coastal current system that flows from 

Nova Scotia down to Massachusetts - The GoM Coastal Current or GMCC 

contains two distinct branches whose waters tend to bifurcate to offshore 

locations at specific temporal and spatial locations, and has implications for flow 

and dispersal of particles (Brooks and Townsend 1989, Pettigrew et al. 2005). 

Georges Bank 

The presence and features of GB, a shallow, sediment-covered plateau, greatly impacts 

the characteristics and productivity of the GoM. This immense underwater bank creates a 

situation where the GoM is more greatly influenced by the colder waters of the Labrador 

Current from the north than the Gulf Stream waters to the south. Therefore, the waters of 
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the GoM are more nutrient-rich than more southern waters, an important factor that has 

helped sustain this area as a historical fishing ground for centuries (Bigelow 1927, 

Kurlansky 1997). 

Flow over GB is dominated by strong Mb tidal currents that exhibit a rotary-like flow 

over the bank that increases as the water becomes shallower (Lough and Manning 2001). 

An interesting oceanographic event occurs on banks such as Georges when long, 

barotropic, tidal waves propagate from the deep ocean onto the shallow bank and its 

topography. The resultant effect, a clockwise (anticyclonic) flow is generated over the 

bank due to the 'nonlinear transfer of vorticity and momentum from tidal currents' 

(Loder 1980). This phenomenon has the effect of then moving current in an eastward 

direction (current jets of 20 cm/s on the northern flank) and, at the same time, re­

circulates westward as a relatively broad and weaker flow (1-3 cm/s) on the southern 

flank of GB (Lough and Manning 2001, Manning et al. 2001, Manning and Churchill 

2006). Another feature around GB occurs when waters stratify thereby causing various 

levels of tidally-induced vertical mixing and the formation of tidally-mixed fronts 

(TMFs) (Shanks 1995), especially in shallow areas of GB (Loder and Wright 1985). 

Throughout the summer months, the TMF is well established (especially on the southern 

bank of GB) but tends to disappear in the winter due to strong mixing from wind coupled 

with surface cooling. Therefore, TMFs influence on the circulation patterns over GB can 

often vary quite a bit seasonally (strongest in the summer) (Loder and Wright 1985, Chen 

et al. 1995) and impact the advection and retention of certain fish larvae such as cod and 

haddock on the bank (Manning et al. 2001). The unique physical processes operating 
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around GB that include clockwise gyral circulation, and tidal mixing make it one of the 

most productive shelf ecosystems in the world (Home et al. 1989, Wiebe and Beardsley 

etal. 1997). 

Aspects of Larval Lobster Dispersal 

Overview of Larval Lobster Life-History 

Ovigerous lobsters (Homarus americanus) carry and incubate their eggs for 9-12 months 

prior to hatching, and these prelarvae are released over hatching events that occur over 

the course of several days to a couple of weeks, typically in the spring and summer 

(Herrick 1909, see introduction). These larvae quickly molt into positively buoyant, 

Stage I zoeal larvae and, along with Stage II and III larvae, remain planktonic mostly in 

the top 10 m of the water column (Harding et al. 1987, Ennis 1995). At Stage IV, larvae 

metamorphose into a specialized, strongly swimming, postlarval stage that swims close to 

the surface for 10-30 days (Cobb et al. 1989) before making the transition from a pelagic 

to a benthic realm. At any of these stages, larvae can be transported considerable 

distances (e.g., Katz et al. 1994). Although the complete cycle of stages is normally 

completed in 20-30 days (Herrick 1895, Templeman 1940), larval duration in the 

plankton is highly temperature dependent, and it has recently been argued that it is 

markedly shorter than previously thought (Annis et al. 2007). The distribution and 

abundance of larvae are affected by the locations of spawning females in tandem with a 

host of abiotic factors (e.g., temperature, salinity, light intensity, surface current and 
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velocity, etc., Phillips and Sastry 1980) that ultimately help to influence their final 

destination along with intrinsic larval behaviors (e.g., vertical migration and swimming, 

Harding et al. 1987, Ennis 1995). 

Larval Lobster Transport 

Larvae may be present in the water column for longer periods of time (summarized 

above) because their rate of development is a function of water temperature (MacKenzie 

1988, Hudon and Fradette 1988). While ocean currents and winds strongly influence their 

movements, they are also strong swimmers and thus exercise some control over their 

ultimate settlement location (Ennis 1995). By taking a number of these factors into 

account, several recent studies have attempted to estimate the pattern of recruitment of 

lobsters in the GoM, given the distribution of ovigerous females (Incze and Naimie 2000, 

Incze et al. 2003, Incze et al. 2010, Chasse and Miller 2010). All of these modeling 

studies have provided a great deal of insight concerning lobster stocks and the extent to 

which certain lobster populations provide recruits for other areas of the fishery. However, 

the accuracy of these models depends a great deal on two variables that have been 

investigated in-depth in this thesis: 1) the location of ovigerous females while they are 

carrying late-stage eggs and; 2) the accuracy of laboratory models concerning the 

influence of temperature on egg development and hatching. 
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Selected Physical Elements that Impact Larval Distribution 

There is considerable variation in the circulation patterns of the GoM from year to year. 

Variations in temperature and volume of water flowing into the GoM (including 

freshwater input) for example, along with atmospheric fluctuations in temperature and 

wind patterns are all factors that significantly affect the scale and duration of GoM 

circulation features like water masses (different densities), gyres, and alongshore 

currents. As a result, the cross-shelf or offshore to onshore dispersal of marine 

invertebrate larvae is often accomplished through a combination of behavioral traits in 

tandem with the oceanographic features they encounter. The goal of this section is to 

outline some of the physical elements that might facilitate larval advection, retention or 

dispersal. Examples of how larval behavior can be exploited to help utilize these flow 

features to maximize their transport for settlement (see Shanks 1995 for full review) is 

also discussed. 

To a large part, the cross-shelf transport of larvae depends heavily on the physical 

geometry of the shelf (e.g., Georges Bank, continental shelf) that sets up a variety of 

features important to larval dispersal and transport (Incze et al. 1997). Additionally, 

coastal complexity (i.e.. the interaction of flow fields along variable topographic relief) 

can be characterized over a length of spatial and temporal scales by the presence and 

duration of fronts, eddies, convergence zones, and upwelling events, among others 

(Wolanski and Hamner 1988, reviewed in Sponaugle et al. 2002). Flow variability 

207 



(advective or diffusive) and water column structure of ocean realms are influenced by 

many factors. Below are descriptions and overviews of some of the most prominent: 

Winds 

The major types of wind-derived water movements include wind drift currents, surface 

waves, and Langmuir circulation (LC, Langmuir 1938). LC typically operates at ~ 1.5 

m/s, oriented into the direction of the wind. Wind drift current and surface waves then 

alternate in a clock and counter-clockwise direction (Coriolis effect), creating rotating 

currents. This movement forms jets that flow downward, then angle upward in a more 

diffuse pattern, often represented as surface slicks or 'foam lines' that delineate 

convergence zones. Based on plankton tows conducted in LC areas, Stommel (1949) 

concluded that negatively-buoyant larvae could be retained in these zones (i.e., Stommel 

Retention Zones, SRZ). STZs exist where 'upwelling currents are roughly equal and 

opposite to their downward sinking or swimming' (Stommel 1949). More recent work 

has built on this by looking at the distribution and buoyancy of particles at varying 

degrees (e.g., Buranathanitt et al. 1982). There are few studies investigating the 

association of marine larvae with LC however, Jillett and Zeldis (1985; crab larvae) and 

Kingsford et al. (1991; jellyfish) both found evidence for larval convergence in these 

types of oceanographic features. Harding et al. (2005) observed that stage IV lobster 

larvae were found in flotsam lines and speculated that perhaps these larvae collected in 

convergence zones. 
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Breezes are another important wind-type that can help facilitate the surface transport of 

larvae, especially at certain times of the day. Diurnal sea breezes (reviewed in Atkinson 

1981) set up in the morning when the land warms faster than the ocean, creating low 

pressure thereby 'sucking' air from the ocean. Alternatively, land breezes form in the 

afternoons and evenings when the land is cooling faster than the ocean thereby creating a 

low pressure air flow from land. Both sea and land breezes thus produce surface currents 

directed on- and offshore, respectively. Therefore, larvae that may be near the surface 

during the day (positively phototactic) for example, would be exposed to onshore 

transport. 

Wind Drift Currents 

Winds affect water motion by setting up an Ekman spiral, in which the wind sets surface 

water in motion. Due to the Coriolis effect, these waters are deflected to the right (about 

45 °; over 20-30 m depth) in the northern hemisphere and, as depth increases, the 

deflection angle is increased. If this flow is integrated throughout all depths, the net 

result is Ekman transport. The exceptions to this include situations where low wind 

speeds would yield little deflection, and if near land, water would move more downward 

(downwelling). The recruitment of cod larvae in the GoM is a particularly good example 

of the role of downwelling and its ability to send larvae closer to shore (Churchill et al. 

2011). Along with larval behavior (diel vertical migration), Churchill et al. 2011 

determined that cod larval retention is favored during downwelling events within the 

western GoM. Alternatively, given situations where an offshore wind persists, sea levels 
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would drop near the coast as subsurface flows move shoreward causing upwelling 

events. The overall effect of wind drift on larval transport depends on the depth where 

larvae reside. When this is known, it is possible to model the direction and extent of 

transport, based on average wind speeds over several months (Johnson and Hess 1990). 

Studies with crab larvae have found a positive relationship between the strength of 

onshore wind and recruitment of crab megalopae to adult (benthic) populations (e.g., 

Johnson and Hess 1990, McConnaughey et at. 1992). Despite these modeling efforts, 

two important limitations remain: 1) the inter-annual variability in oceanographic features 

(e.g., downwelling) that can affect larval dispersal, transport and mortality; and 2) 

behavioral attributes of larvae (e.g., vertical migration in the water column) that can 

result in larvae that choose disparate ocean depths and thus, different transport scenarios, 

resulting from Ekman spiral. 

Internal Waves and Tidal Bores 

Internal waves are derived from a combination of tidal currents and features of the 

bottom topography. Typically, a tide ebbs off a sharp relief (bank or reef), a lee wave is 

formed, and then at flood tide, a wave is propagated and evolves into a set of waves. 

Internal waves are capable of transporting plankton, especially those found in the 

convergence zone (i.e., slicks), in a shoreward direction. The best evidence of this comes 

from studies with flotsam and surface drifters. Shanks (1988) set out drifters that were 

carried by internal waves and showed that barnacle larvae had 10 times better settlement 

when utilizing internal waves. Internal waves that have been shown to originate from 
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neap to spring tidal cycles have been implicated in the roughly two-week pulsing of large 

numbers of larvae to some coastal areas. These larvae include crab, fishes, and spiny 

lobster (Shanks 1983, Robertson et al. 1988). Like surface waves, internal waves are 

refracted by bottom topography and therefore deposited unevenly along the shore, 

providing spatial variability in larval settlement. Internal tidal bores result when an 

internal wave gets too big, and the wave breaks forming a bore; the tail end of the bore is 

made up of large amplitude waves. Internal tidal bores can propagate into very shallow 

water and, as a result, the amplitude of these waves is affected by ebbing tides. Larval 

transport by tidal bores is reviewed and described in detail in Pineda (1991). 

Fronts and Eddies 

These features typically occur at sharp surface boundaries between two water masses. 

The flow at fronts is convergent and sets up strong vertical water masses. This is 

important in the horizontal transport of larvae since the convergence of fronts can act to 

concentrate larvae (LeFevre 1986, Kingsford 1990). However, the retention of larvae in 

fronts is only as good as the depth-dependent behaviors of the larvae that reside there. 

Fronts are often barriers to horizontal transport except when waters mix. Changes in 

larval behavior may occur at frontal boundaries where low-density water (e.g., estuary 

plume) meets denser shelf water. There is little data suggesting the behavioral responses 

of larvae when contact frontal boundaries except that depth regulation (Sulkin 1984) and 

swimming ability probably play a large role. 
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Eddies are characterized as rotary currents that range in scale from centimeters to 

hundreds of kilometers and play a major role in the cross-shelf transport. Eddies are also 

commonly formed from currents flowing around an obstruction (e.g., island, shelf or 

bank), and the directions of eddy rotation on the lee side are governed by flow regimes 

such as von Karmen vortex streets that provide a back-spinning of currents. Eddies 

usually reside in the upper 100 m of the ocean and begin to attenuate after several days, 

traveling downstream of the general flow. Eddies produce convergences at their center 

and therefore can concentrate larvae (Boehlert et al. 1992). The retention of larvae in 

these features is based on the length of time in the eddy, which can be advected over 

large distances. Some have suggested that eddies may, in fact act as retention 

mechanisms keeping some larvae trapped and close to shoreline features like coastlines 

and islands (e.g., Crawford et al. 1990). The key to how retentive eddies can be for 

larvae is more dependent on eddy residence time (i.e., eddies with short retentive time 

may be beneficial to larvae with short development times). Other studies suggest that 

eddies forming far offshore are capable of transporting marine plankton (especially larval 

fishes) closer inshore, and those generated close to shore can transport larvae out towards 

the continental shelf (e.g., Hare and Cowen 1991). 

Selected Biological Elements that Impact Larval Distributions 

Along with the influence of physical oceanographic features (described above), pelagic 

marine larvae are capable of controlling both their horizontal and vertical distribution in 

the water column using a variety of behaviorally-derived traits. Below, 1 have 
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summarized some mechanisms by which larvae respond to biotic and abiotic attributes 

while swimming, thereby influencing their distributions. A full review with detailed 

examples can be found in Young (1995). 

Buoyancy and Swimming 

Buoyancy and drag are used by larvae to slow their sinking by increasing their drag. 

Morphological features such as feathery appendages, neutrally buoyant shells and lipid 

accumulation help to facilitate these functions (Sulkin 1984). Swimming speeds and 

their associated trajectories involve movements that are often a function of temperature 

and viscosity. For example, sand dollar larvae (Dendraster excentricus) swimming 

speeds are reduced by over 40 % over a 10 °C drop (Podolsky and Emlet 1993). Directed 

movements by copepods give them fine control over their vertical movements while 

crustacean and fish larvae possess a variety of features (e.g., pleopods, fusiform shapes) 

that reflect significant horizontal swimming capabilities (Leis 2007,2010). Some 

crustacean larvae propel themselves by contracting muscles in their tails (e.g., postlarval 

lobsters). In turn, the larva creates an effective forward stroke and maximum thrust by 

taking advantage of the large surface area of water that the abdominal section comes in 

contact with. Likewise, backward thrusts are shortened by 'reducing the area on the 

recovery stroke' by folding it up under the abdomen (Young 1995). These kinds of 

movements are particularly important especially for the postlarval stage of both clawed 

and spiny lobsters that are typically found in the upper few meters of the water column 

(Rooney and Cobb 1991, Acosta and Butler 1999). To a large part, these animals use 
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their strong swimming capabilities to propel themselves towards suitable settlement 

habitats. 

Movement of many other kinds of larvae through the use of ciliary bands is very common 

in sponges, cnidarians, trematodes, and the larvae of nemerteans (see Emlet 1991 for 

review). The complex patterns of ciliary arrangements and their associated ontogentic 

changes are typical in some larvae such as echinoderms. More dramatic is the condition 

in some larvae referred to as metachrony or the oscillations of bands of cilia that result in 

the spinning while swimming phenomenon seen commonly in echinoderms. 

Depth Regulation 

Larvae often use depth regulation to position themselves in very specific water masses 

for food, transport, or to avoid predators. The behavioral basis for depth regulation 

usually include -tropism (an organism turning toward or away from a stimulus), -taxes 

(directional movements to a particular cue), or -kinesis (changes in the speed or rate). 

Scalar cues often are described as barokinesis, halokinesis, thermokinesis, photokinesis, 

thigmokinesis while vector cues typically encompass geotaxis, phototaxis, rheotaxis, or 

polarotaxis. Geotaxis behaviors for example occur in species that possess statocysts that 

allow them to sense gravitational pull, and most larvae possess a high center of gravity 

that makes them fall head first. Crustacean larvae have been studied extensively in this 

area and are known to demonstrate complex larval behaviors associated with vertical 

migration and depth regulation. Theoretically, a larva with sensory structures on opposite 
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sides of its body (e.g., spiny lobster phyllosoma) contains chemoreceptors at the ends of 

its appendages that can discriminate sharp gradients (e.g., salinity) on small scales 

(Phillips and Macmillan 1987). Alaskan king crab larvae are positively rheotactic, 

however they swim so slowly that they cannot resist most currents (Shirley and Shirley 

1988). H. americanus larvae are also positively rheotactic. Interestingly, many 

invertebrate marine larvae exhibit barokinesis but the mechanisms are mostly unknown. 

Forward (1990) found that pressure is a graded response in crab larvae and that these 

animals are capable of very precise depth regulation. 

Defensive behaviors and intraspecific aggregation are also often associated with control 

over pelagic transport and movement in the water column. In some larvae these include 

ciliary reversal, velums that are drawn in, and swarming events (which have been 

observed in mysid shrimp and portunid crabs (e.g., Gonor and Gonor 1973). 

Interestingly, some crustacean larvae (crab larvae) are known to also use photokinetic 

responses in abrupt shading to help drive their transport (Forward 1986). 

Many marine larvae are also adept at responding to specific oceanic features that, in turn, 

help to influence their ultimate location. For example, discontinuities in water masses 

(i.e., pycnoclines) are often places where larvae can accumulate as the discrete density 

gradients can act as physical barriers. Larvae will also commonly respond behaviorally 

to thermal or salinity changes to the pycnocline by temporarily halting their swimming 

and sinking for some time. This has been reported in several kinds of marine larvae 

including hermit crabs and lobsters (Scarratt and Raine 1967). In particular, post-larval 
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lobsters are able to detect these features and discriminate among depths and will not settle 

on bottom habitats where the thermal gradient is too steep (Boudreau et al. 1992). 

Feeding and Turbulence 

The effects of turbulence, although ubiquitous in the marine environment, are much 

harder to quantify as a physical parameter affecting marine larvae (see Kiorboe 1993 for 

review). Turbulence is caused by a combination of wind, currents, and tides both at the 

surface and the bottom and, as a consequence, increases the encounter rates between 

larvae and their food (reviewed in Rothschild and Osborn 1988). However, there is also 

an optimal window for turbulence such that levels too high or low are not conducive to 

feeding (e.g., larval cod and haddock; Lough and Mountain 1996, MacKenzie and 

Kiorboe 2000). The benefits of increased feeding efficiency with turbulence have been 

shown in studies with cod larvae and their predation on copepod (Calanus) nauplii 

(MacKenzie and Leggett 1991). In one other study, Sundby (1997) looked at predation 

rates of cod larvae on plankton and found feeding rates that were 7-10 times greater as 

wind speeds increased. Some invertebrate larvae can detect and respond to turbulent 

conditions. Conch {Strombus gigas) veligers respond by stopping their swimming and 

drawing in their velums (Young 1995). Specialized structures (statocysts and setal hairs) 

in some spiny lobster phyllosomes (e.g., Jasus edwardsii) are capable of detecting 

turbulence and changes in water motion (Nishida and Kittaka 1992). Most of the 

information on turbulence related to marine crustacean larvae is very speculative and 

warrants a great deal more research. 
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Tidallv-Driven Larval Transport 

Early-stage larvae tend to show diel vertical migrations (DVM) whereby they are found 

at depth during the day and near the surface at night. These tend to be regular 

occurrences but can change with ontogeny. For example, postlarvae of several species 

are known to make reverse DVM, perhaps as an evolutionary strategy, to exploit cross-

shelf transport in tandem with a diurnal sea breeze (described above). Blue crab 

(Callinectes sapidus) larvae are known to utilize DVM to migrate to the surface on 

nighttime flood tides (prior to sitting on the bottom during ebb flow), as a way to be 

transported into or out of a bay or estuary (selective tidal stream transport). Most 

recently, spiny lobster (Panulirus argus) larvae have been shown to exhibit clear changes 

in their vertical position in the water column using a combination of ontogenetic vertical 

migration, and DVM controlled by an endogenous circadian rhythm (Ziegler et al. 2010, 

Butler et al. 2011). At present, there is limited evidence of these kinds of behaviors in H. 

americanus (see Cobb and Wahle 1994 for review). 

Considerations and Applications for Modeling Larval Lobster Dispersal 

Connectivity 

Levins (1969) formulated and described the term metapopulation as a population of 

populations. More specifically, a metapopulation can be thought of as a group of 

populations (of the same species) that are separated spatially but can interact at some 
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level (Fig. 3). The theory of metapopulations extends to other ideas about the levels of 

independence or connectivity between sub-populations based on the structure or size of 

each population. 

Connectivity is the demographic linking of local populations through the exchange of 

individuals among them as larvae, juveniles, or adults (Jones et al. 2009). If no 

connectivity exists, then populations are isolated and referred to as closed populations. 

On the other hand, if there is high connectivity due to numerous exchanges, then the 

populations are considered to be open populations. As such, population connectivity 

plays a fundamental role in local and metapopulation dynamics, genetic diversity, and the 

resiliency of populations (Cowen and Sponaugle 2009). It establishes the spatial scales 

over which a population is connected, as well as the primary scale over which population 

interactions and ecosystem dynamics occur (Cowen et al. 2006). 

Connectivity between populations in the marine environment is maintained primarily 

through larval dispersal, the spread of larvae away from a source to settlement site at the 

Fig. 3. A representation of metapopulations 
and their connectivity. Source A contributes to 
B and C, both sink populations. Population D 
has some exchange with A. Population E is an 
example of a self-recruiting/sustaining 
population. Populations F and G are going 
extinct (F more recently) due to some 
environmental forcing event and are not being 
supported by any others. Also, D may 
contribute propagules to C but not 
consistently. This hypothetical model 
represents the dispersal and retention of many 
kinds of marine larval fishes and 
invertebrates. 
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end of the larval stage (Pineda et al. 2007). The extent of this larval movement is 

important for determining the natural processes that limit population growth and 

resilience to disturbances (Cowen et al. 2006). Factors that can influence the scale of 

dispersal include pelagic larval duration (PLD), water currents, larval behavior, and the 

availability of suitable habitat for settling (Munday et al. 2009, Bulter et al. 2011). 

Larval dispersal is often described and quantified as dispersal kernels. Dispersal kernels 

relate the probability that a larva released from a particular location will disperse to 

another specific location with suitable habitat and settle successfully (Largier 2003, 

Pelc et al. 2010). These kernels are continuous functions that represent the spatial 

distribution of dispersed larvae, and can vary in magnitude, width and displacement 

symmetry at a variety of spatial and temporal scales (Botsford et al. 2009). 

Understanding the scale of connectivity becomes important for designing effective 

networks of Marine Protected Areas (MPAs) for example and for effectively managing 

fishery stocks (Munday et al. 2009, Gaines et al. 2010). Connectivity helps to determine 

the optimal size and spacing of the areas for conservation and the potential for larval 

dispersal and recruitment to non-reserve areas. Connectivity can also have implications 

for how MPAs are managed (Cowen et al. 2006), especially as it helps to exhibit the 

importance of adopting a metapopulation perspective in which the subpopulations, linked 

through dispersal, can serve as the management unit (Botsford et al. 2009). 
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Biophysical Modeling 

The process of larval dispersal is intrinsically a biophysical problem. It involves 

interactions between biological traits of the larvae and physical properties of the 

environment operating on multiple scales (Cowen and Sponaugle 2009). Although the 

horizontal transport of larvae has traditionally been attributed solely to advection in the 

direction of the flow, larval behavior along with other related biological factors (e.g., 

origin of larvae and PLD) have recently emerged as having a considerable influence on 

the outcome of dispersal (Kingsford et al. 2002, Levin 2006, Metaxas and Saunders 2009, 

Leis et al 2010, Butler et al. 2011). Therefore, a full understanding of population 

connectivity within the marine environment requires an adequate comprehension of both 

the biological and physical process involved in dispersal and transport of larval 

propagules. 

Biophysical models are increasingly being used as predictive tools for larval dispersal 

and for the general evaluation of the various factors responsible for larval transport. By 

coupling general circulation models with particle tracking models that can simulate larval 

transport, these models can be used as methods to quantify larval transport, assess the 

role of transport in regulating population connectivity, and evaluate the role of different 

biological and physical factors on dispersal (Metaxas and Saunders 2009). Development 

of these models requires an interdisciplinary approach that combines larval biology with 

the physical oceanography of the study area of focus (Incze et al. 2010). The physical 

processes that affect larval dispersion involve both advection and diffusion properties of 
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water circulation; the advection comes from the mean current velocity and direction, 

while the turbulent diffusion comes from instabilities generated by stochastic motion of 

the mean current. These physical factors are determined by hydrodynamic processes that 

include: tidal currents, Ekman transport, density gradients, frontal structures, and vertical 

stratification (described above). It is also important to note that these physical processes 

have the ability to limit larval transport at all spatial scales (Cowen et al. 2006, Pineda et 

al. 2007, Werner et al. 2007). 

Alternatively, the biological processes within the biophysical model include those that 

influence offspring production, growth, development, and survival. Biological 

parameters that influence dispersion include spawning behavior, larval duration, larval 

mortality, and larval behavior such as vertical migrations, settlement behavior, and 

navigation (Werner et al. 2007). Two models are commonly used to simulate larval 

dispersion in marine organisms: eulerian and lagrangian models. Eulerian models are 

used to solve an advection-diffusion equation while providing the spatial and temporal 

changes in larval concentrations. This model type is used primarily when knowledge of 

the biological parameters are limited. Lagrangian models, also known as individual-

based models (IBMs), are used to capture individual particle pathways (Paris et al. 2007). 

The latter model is widely used to simulate dispersal by following the trajectories of a 

large number of particles with specific parameters. The use of IBMs allow for the 

parameterization of the biological variables that are specific to a particular area, thereby 

reflecting the most accurate scenario (Paris et al. 2007, Cowen and Sponaugle 2009). 
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Larval Connectivity in the GoM 

Larval transport is one mechanism that presumably links inshore (coastal) and offshore 

(basin) lobster populations (Incze et al. 2010). With hatching occurring over a period of 

two months, beginning generally in late June in southern areas and a month later in 

northern areas, conditions experienced by developing larvae can be very different. 

Favorable conditions for larvae can greatly increase development rate and when coupled 

with the typical physical forcing factors observed within the GoM, as described above, 

create a delivery mechanism of competent larvae to nearshore nursery grounds (Incze and 

Naimie 2000). As larvae develop in the summer on Georges Bank, a strong cyclonic 

gyre tightens and increases residence time to 50 days inside the 100 m isobath (GLOBEC 

1997). By contrast, in Southern New England, Fogarty (1983) observed peak larval 

densities following periods of onshore winds in the days preceding sampling in Block 

Island Sound (Rhode Island) and identified offshore areas and Long Island Sound as 

larval sources. Lund and Stewart (1970) suggest that relatively high concentrations of 

larvae in western Long Island Sound are a result of surface currents creating a larval 

retention area. This notion of oceanographic forcing is confirmed in a review by Epifanio 

and Garvine (2001) who suggest that larval transport is primarily influenced by onshore 

wind stress and water density differences along the Atlantic continental shelf. 

Superimposed over these existing patterns and processes are the potential changes to the 

current circulation regime in the GoM, and the timing of biological events due to future 

climate change. Predicted forecasts suggest increases in overall coastal sea surface 
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temperatures, a freshening (decreased salinity) of water from the SS from Arctic sea ice 

melt, increased acidification of ocean waters due to the stressed buffering capacity of the 

sea to absorb CO2, an overall rise in mean sea level and an increase in the frequency and 

intensity of storm events (Nye 2010). There are a variety of changes that might ensue 

resulting in marked changes in the survival of larval lobsters and the alterations to their 

physical transport. A better understanding of these biological and physical factors is 

important to identifying and managing these changes as they occur. 

Summary & Conclusions 

There should be little doubt that a discussion of larval dispersal is only one-dimensional 

if only considering the physical characteristics by which larvae are subjected to or the 

inherent behaviors that help to influence and orchestrate their ultimate locations. Instead, 

this recently new paradigm of bio-physically coupled larval dispersal has been solidified 

with examples from both larval fishes and invertebrates in both temperate and tropical 

oceans. The Gulf of Maine is no exception and has been the subject of several good 

studies including lobster. These findings have quantified the effects of larval lobster fate 

from the effects of mostly large-scale current fields and associated hydrodynamic 

features (100s of kilometers) along with temperature-based larval development and their 

distribution in the water column. Modeling these attributes using individually-based 

models (IBMs) for lobster in the GoM has since shown that a combination of outcomes 

are possible including downstream dispersal to adjacent areas, some long-distance 

dispersal, and still other areas that retain larvae. Superimposed on these patterns are the 
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potential changes to the GoM circulation regime and the timing of biological events due 

to climate change. 

My work seeks to complement these studies and the existing knowledge base of GoM 

oceanography by focusing on the use of empirical, biological data to help calibrate 

existing dispersal models especially at local (10s of kilometers) scales for which there is a 

paucity of data. Specifically, my work is aimed at tracking the seasonal movements of 

egg-bearing lobsters and their location when they are close to hatching (Chapter 1) and to 

quantify the development of lobster eggs at naturally fluctuating temperatures (Chapter 

2), both inshore and offshore to look at changes in hatching based on location. Together, 

these studies lend credence to the timing and location of larval hatch, two parameters that 

are vital biological inputs for future modeling studies. Additionally, the use of surface-

ocean drifters (Chapter 3), released at biologically relevant temporal and spatial scales, 

provides at least initial estimates of the dispersal, location, and destinations for larvae that 

are released there. Applying these biological correlates to other ongoing and future 

modeling studies will help to clarify the marine connectivity of lobster in the GoM and 

provides data for the future management of this important marine species. 
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APPENDIX D 

CONSTRUCTION OF THE RACHEL DRIFTER 

1. Starting with a 50" length of 2" PVC drill a W spar hole 2" from the bottom of 
the pipe. Used jig supplied. (Note: if your shower drain includes a coupling, 
you should start with a 49" length of pipe) 

2. Drill a second spar hole 36" (on center) above the first. 

3. Rotate pipe 90° and drill a spar hole 2" from the bottom and a second 36" OC 
above. (Note: To ensure the holes are perpendicular to each other, we often use 
a jig wrapped around the pipe which has holes equi-distant from each other.) 

4. Measure the window weight, add four inches to the length and drill a hole for 
the 3/8" bolt at that distance from the bottom. 

5. Pad window weight with pipe insulation and duct tape and insert weight into 
pipe. Insert bolt to hold the weight in position and tighten the locknut. 

6. Heat plastic sleeve and position in the center of the 55" spars. 

7. Drill two cotterpin holes in both ends of the 55" spar W and 7/8" from the 
end. 

8. Drill one cotterpin hole in each end of the 48" spar 1/4" from the end (Note: 
This step is optional since these cotterpins are used to hold washers that 
prevent sails from sliding off the spars at the bottom but one might 
alternatively use several wraps of electric tape) 

9. Cut sail material to 41"x 19". Fold and glue edges to create a sleeve for the 
spars to a finish length of 36". (Note: If the material has a shiny side and a dull 
side, you want to glue the dull side. So, makes lines on the shiny side 2.5 
inches from the edges to depict where the fold is made and make lines on the 
dull side 4.75" from the edge to mark where the fold should reach. Apply glue 
on both sides but make sure there is no excess glue at the fold that would 
prevent the spar from sliding into place. After glue has setup, insert spars 
temporarily to test the sleeve.) 

10. Drill two 3/8" holes (W and 1 !4") from the bottom of the buoy sticks. 
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11. Secure two toggles Secure two toggles (brown net buoys) to each buoy stick - a 
rubber mallet works well for this (Put a piece of scrap PVC pipe between the 
toggle and the mallet). Keep hammering the pair of toggles until there is a few 
inches of buoy stick poking through. 

12. Add buoyancy to PVC (optional but recommended in winter conditions) 
• Cut a 3" disk of 3" diameter "floatie" material 
• Shove it down the top of the PVC pipe as far as the topmost spar hole 
• Pour in approximated 4oz of 2-part marine urethane foam 

13. Attach GPS transmitter: 
• Drill Vi hole in the bottom of the shower drain so that water doesn't 

collect in it 
• Clean pipe & shower drain w/PVC cleaner & primer and PVC glue 

together 
• Protect GPS transmitter with either 4200 or 5200 marine caulking 
• Double bag the transmitter with bags made of extra sail cloth (Note; Put a 

note inside the bag describing the project, your contact info, and ask 
finders to mail transmitter back.) 

• Drill two side-by-side Vi holes through both sides of the PVC pipe 
approximately !4" from the shower drain or, if a coupling is used, through 
the coupling 

• Place transmitter on top and secure with 6V2" hose clamp (Note: To 
prevent the hose clamp from chaffing through the bag material, pad with 
rubber or similar material) 

Materials List 

Item Quantity 

PVC pipe - Sched40 - 2" by 50" 

Cesspool or Shower drain* 

Fiberglass Spars 48" 

Fiberglass Spars 55" 

Vinyl sails 39x19 (material supplied) 

Plastic sleeves for spars - 3.5" 

Buoy sticks 

Toggles 

GPS transmitter 

5/8" hose clamp 

6 1/2" hose clamp 

Cotter pins 3/32x1 1/4 

Washers 3/8" 

Hex head bolt - 3/8 " x 3 1/4" 

12 

14 

2 
2 
4 

4 

4 

8 

8 
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1 

1 

4oz 
1 
1 
cans 
1 
1 

10 inches 
1 
12" by 2" 

• HH66 Cement 

*A11 Hardware should be Stainless Steel. 

Tools List: 

• Hack saw 
• Tape measure 
• Drill and drill bits: 1/2", 3/8", 3/32", 13/32" 
• Files: flat and round 
• Scissors 
• Heat gun 
• Vise 
• Rubber mallet 
• Screw driver 
• Wrench: 3/8" 

• Lock nut for hex-head bolt 

• Window weight 4.5 - 5.5 lb. 

• Pourable 2-part Marine Urethane Foam 
• 3" length of 3" diameter "floatie" 
• Extra vinyl cloth to protect GPS units 
• PVC cleaner, primer, and glue 
• tube of Marine caulking (5200 best) 
• Jig for marking hole positions 
• pipe insulation (wraps window weight) 
• electric tape for securing the insulation 
• strips of rubber-like chaffing guard 
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APPENDIX E 

A COMPARISON OF HABITAT COMPOSITION AND CORRELATES TO 
SEASONAL LOBSTER MOVEMENTS IN A NEW ENGLAND ESTUARY 

Abstract 

Estuarine habitats provide interesting insights into the population dynamics and 

physiological tolerances of lobsters and may serve an adaptive significance in lobsters 

(Homarus americanus) residing and utilizing estuarine habitats like Great Bay Estuary 

(GBE). While many lobsters in GBE show directed seasonal movements into and out of 

GBE, a proportion remain resident year-round within the estuary, including ovigerous 

(egg-bearing) females. Few studies consider the actual utilization of estuarine habitats 

among mature, adult lobsters especially those that are egg-bearing and are potentially 

able to contribute future recruits to the fishery. The goal of this study was to correlate 

known positions of tagged lobsters in GBE by characterizing the habitats where these 

animals resided or moved to over a two-year tagging study. Underwater habitat mapping 

(videography) in tandem with diver surveys were conducted in four locations where 

lobsters were released. Habitat types, compiled and analyzed with a random-point count 

software package revealed significant differences between some sites (sandy, soft 

sediment) and others that comprised habitats that were characteristically more coastal 

marine habitats (estuarine tidal rapids) where lobsters preferentially exhibited long 

resident times. The strong relationship between complex, 
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rocky habitats and lobster residency suggest that habitat quality, marine landscape, and 

movements of lobsters (both transient and resident) are key criteria for lobster 

management and potential larval recruitment in some estuarine systems. 

Introduction 

Although the American lobster (Homarus americanus) supports one of the most 

important and successful fisheries in the Gulf of Maine (ASMFC 2009), lobster also 

comprises ecologically consequential populations in estuaries, such as the Great Bay 

estuary (GBE) in New Hampshire. GBE is a large, tidally mixed basin that comprises 23 

km2 of surface water and over 160 km of coastline intimately linked to the ocean through 

the Piscataqua River estuarine complex in New Hampshire and Maine as well as through 

Little Bay at a distance of 15 - 25 km from the coast (Brown and Arellano 1979; Fig. 1). 

Both Great Bay (GB) and Little Bay (LB) possess habitats that are generally 

characterized by eelgrass beds, extensive mud flats, and oyster reefs (Short 1992) with 

freshwater input from seven rivers that intermingle with tidal waters, influencing salinity 

levels, especially after severe episodic events. 

Maine 

New Hampshire 

Massachusetts 

Fig. 1. Great Bay Estuary (GBE) is a 
large, tidally-mixed esutary with 
freshwater input from seven river 
systems. The upper reaches of GB are ~ 
25 km from the ocean making it highly 
insulated. Historical and present habitats 
including eelgrass beds and oyster reefs 
make this system biologically diverse and 
ecologically significant, (map courtesy of 
UNH CCOM-JHC; http://ccom.unh.edu/). 

238 

http://ccom.unh.edu/


Over the past decade commercial lobstering in GBE has generated over 100,000 pounds 

of lobsters at a value in excess of $500,000 (NHFG 2009). Estuarine habitats provide 

interesting insights into the population dynamics, behavioral patterns, and physiological 

tolerances of lobsters (Jury et al. 1994, Howell et al. 1999) and there may be an adaptive 

significance in lobsters residing and utilizing estuarine habitats that includes accelerated 

growth and molting cycles (due to warmer temperatures), protection from predation, 

reproduction, and the utilization of nursery habitats (Lawton and Lavalli 1995, Moriysu 

et al. 1999, Short et al. 2001). Both lab and field studies all indicate that lobsters in GBE 

can detect small changes in both temperature and salinity and also show predictable 

patterns of seasonal movements, highlighted most dramatically in the fall and spring 

(Vetrovs 1990, Jury et al. 1994, Crossin et al. 1998, Watson et al. 1999). While many 

lobsters in GBE show directed seasonal migrations into and out of the estuary (Watson et 

al. 1999), some remain year-round including ovigerous females (Chapter 2). These 

animals carry their eggs over the winter and spring months, and they subsequently hatch 

in the summer after a 9-11 month incubation period (Waddy and Aiken 1992). 

Although lobsters are also regularly found in estuaries from Canada to New England, few 

studies consider the actual utilization of estuarine habitats among mature, adult lobsters 

especially those that are egg-bearing and are potentially able to contribute to future 

recruits to the fishery. Limited historical data from neuston tows in GBE indicate that 

lobster larvae (Stages I-IV) are present in the water column during the summer months 

(NHFG 2009). More recently, small young-of-year (YOY) lobsters were captured during 

juvenile lobster surveys in the Piscataqua River, just outside the Great Bay reserve area 
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(NHFG 2008). Taken together, these data suggest that lobster larvae are released and 

settle in the GBE and that some proportion of the population is derived from resident 

lobster reproduction. 

It is more than likely that adult lobsters utilize benthic habitats in estuaries that are 

conducive as shelters for overwintering. These marine landscapes, often composed of a 

mosaic of habitat types, can often delineate the ecological conditions for that area 

influencing things like resource utilization and survival (Saunders et al. 1991). Changes 

in habitat use can be influenced by contrasting habitat types, the presence of other 

species, and the age and size of organisms, among others. The movements by animals 

such as lobsters in fragmented landscapes (e.g., estuaries) may involve trade-offs between 

foraging, reproduction, or predation risk (Werner and Gilliam 1984). Lobsters utilize a 

variety of habitat types (e.g., nearshore rocky areas, offshore canyons, enclosed 

embayments, estuaries) that differ in their abiotic and biotic features over spatial and 

temporal scales (Selgrath et al. 2007). Habitat types and usage can also change over the 

course of lobster development (i.e., ontogenetic shifts; Lawton and Lavalli 1995). For 

example, during the early benthic settlement phase, small lobsters have been reported to 

preferentially select habitats for shelter that include cobble beds or salt-marsh peet reefs 

(Able et al. 1988, Wahle and Steneck 1992, Hovel and Wahle 2010). In addition, Short 

et al. (2001) found evidence of adolescent lobsters and their preference for eelgrass beds 

in the lower portion of the GBE. 

The GBE contains a diverse cross-section of potentially conducive lobster settlement and 

juvenile nursery habitats including eelgrass beds and rocky intertidal habitat, among 
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others (Short 1992). Recruitment studies of lobsters to estuaries are rare although in one 

study, Wahle (1993) used a combination of population censuses and underwater surveys 

to quantify lobster recruits and found a gradient of settlement occurring up into 

Narragansett Bay. One goal of this study was to ascertain if there are characteristics of 

GBE habitats that are distinctly advantageous to both early-benthic-phase lobsters as well 

as adults. 

Despite some of the aforementioned studies of habitat preference and utilization by early 

benthic and juvenile-stage lobsters, almost no information exists for habitat preference 

and utilization by sub-legal and adult-sized lobsters in estuaries. In fact, most papers that 

involve studies of seasonal movements by adult crustaceans (primary crabs and lobsters) 

neglect to single out habitat type as a correlate to explain movements or residency in an 

area. Stone and O'Clair (2002) used ultrasonic telemetry to track female Dungeness 

crabs (Cancer magister) over the course of a season in an Alaskan estuary and relate 

seasonal movements to habitat use. These findings suggest that female crabs utilized 

benthic sediments for brooding their eggs over the winter and then moved into more 

shallow rocky habitats in the spring where dissolved oxygen levels were higher to release 

their larvae. Geraldi et al. (2009) used a combination of geo-referenced lobster-trap 

arrays to measure catch and describe associated benthic habitats (using side-scan sonar) 

to determine that lobster movements depend on the quality of habitat which, in turn, 

affect their movements (i.e., habitat-related behavior). 

The goal of this study was to correlate known positions of tagged lobsters in GBE with 

habitat use by characterizing local habitats where these animals resided or moved to over 
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a two-year tagging study. Correlates of these habitat types may be beneficial to egg 

development, shelter, or foraging activities. 

Materials and Methods 

Study Site 

Underwater video mapping was conducted in the fall of 2009 at four selected areas within 

the Little Bay-Piscataqua River complex in areas where lobsters were tagged and 

followed over two successive seasons from 2007-2009. Specifically, these areas 

consisted of sections of benthic habitats around the peripheries of Goat Island (GI) (north 

and south), Fox Point (FP), and Little Bay (LB) with an average depth of 5 m (Fig. 2). 

Movement studies and analyses using ultrasonic telemetry revealed that a large 

proportion of lobsters of all sizes (including ovigerous lobsters) stayed within the 

confines of the areas that were mapped (see Langley et al. in prep.). 
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Fig. 2. Map of the Great Bay 
(GBE) estuary complex 
including the Piscataqua River, 
leading to Portsmouth, NH. 
Lobsters were tagged with 
ultrasonic tags and released at 
two separate sites from 2007-
2008. All animals were 
tracked both manually and 
using a fixed array of logging 
devices (VRs) set out within 
GB. The majority of lobsters 
tagged in 2007 stayed within 
the shaded area compared with 
lobsters that tended to move 
down-estuary at the 2008 
release site. 

* 

Videographv System 

Underwater video mapping was conducted using a custom-made underwater videography 

system consisting of a Sea-Drop 650 underwater color camera complete with 45 m of 

fabricated cable mounted on a stainless-steel benthic sled (see Grizzle et al. 2008 for 

details). Video was viewed live on an onboard LCD screen and recorded to an 80 GB 

hard-drive using a SEA-DVR, mini digital video recorder and a SEA-TRAK™ GPS 

video overlay which was selected for later spatial analysis using ArcGIS v. 9.3 (ESRI 

Corp. Redlands, CA). All video components were purchased and customized from an 

underwater video specialty manufacturer (SeaViewer Inc., Tampa, FL). The camera-sled 
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system was typically deployed into the water with a steel cable on a manually operated 

winch from a boat (Fig. 3). After positioning the camera at a height suitable for obtaining 

adequate image quality and swath width (typically about 0.5 m), the unit was slowly 

towed (~ 1.5 knots) alongside the boat so that it remained directly below the winch. 

Video images were viewed in real-time to allow for quick adjustments of the camera 

throughout the survey. For purposes of this study, continuous video imagery was 

acquired from 3-5 boat transects parallel across each study area, and an additional set of 

3-5 transects set perpendicular. A total of 40-55 minutes of video was recorded for each 

location. 

Fig. 3. Benthic sled design and setup for 
video-mapping selected nearshore areas of 
Great Bay. Stainless steel sled included a 
color camera connected to 45 m of video 
cable fed topside to a small research boat 
pulling the sled at ~ 1.5 knots. Video was 
viewed live onboard, recorded to a DVR, 
and over-layed with GPS coordinates for 
further analysis (see results). 

Video and Habitat Analysis 

All digital video was uploaded from its hard-drive to a Mac-mini computer (Apple Inc., 

Cupertino, CA). Still images from video recordings were digitally captured at 30-second 

intervals using QuickTime Pro v.7.0 (Apple Inc.) and saved as individual JPEG files for a 

total of 50-60 images per site. The compilation of all still images were then imported 

into a random-point count software program (Coral Point Count with Excel extensions, 

CPCe v. 3.6; see: http://www.nova.edu/ocean/cpce/) that assigns points to prominent 
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bottom habitat features (e.g., coral, rubble, algae, sand, etc.) to visually identify and 

quantify them (see Kohler and Gill 2006 for details). CPCe uses a matrix of randomly 

distributed points overlaid on digital images to quantify the proportion of substrate types 

and then statistically compiles these values to estimate the proportion of biota present. 

For this analysis, a stratified random design (5 rows, 5 columns, and 1 point per cell) was 

chosen with a total of 25 points for each image (Fig. 4). 

Preset coral categories were customized to six categories representative of local benthic 

habitats (verified by SCUBA) and included: cobble, rubble, boulder, sand, macroalgae, 

and other. Habitat features were categorized according methods and descriptions in both 

Wahle and Steneck (1991) and Wahle (1993). CPCe analysis gave the average % cover 

(± se) for each image as well as ascribing a Shannon-Weiner diversity index based on 

comparisons of each of the 6 habitat types defined for each image. A Shannon-Weiner 

Fig. 4. Example of image 
processing in Coral Point Count 
with Excel extensions, CPCe v. 
3.6; www.nova.edu/ocean/cpce/). 
Habitat features are assigned 
based on pre-defined features and 
quantified using a stratified 
random design (side and bottom 
graphics bars). Points are 
assigned as letters and black 
horizontal line designates the 
cutoff of benthic habitat that is 
being analyzed. 
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index (H) in this case, takes into account the proportion of each habitat (evenness) and 

the amount of each habitat feature (richness) represented by the following function: 

3 

l-L 

Where H is the diversity index, s is the number of species, and /?, is the proportion of 

th 
individuals of the total sample belonging to the i species (Smith and Smith 2001). 

Statistics 

Data compiled by the CPCe algorithm from each of the four sites were pooled into two 

sites demarcated by Fox Point (FP): 1) Goat Island and downstream of FP; and 2) FP and 

upstream to Little Bay (Fig. 2). Overall differences between sites were analyzed as a 2-

factor nested ANOVA (model I) using SPSS v. 18.0 (SPSS Inc., Chicago, Illinois). A 

GLM (univariate) model was fit for 2 factors: location (2 levels), and habitat types (6 

levels) with the dependent variable, %-cover. Raw data were arc-sin transformed to meet 

the parametric assumptions of homogeneity of variance and normality. Differences 

among habitat features in the interaction term (location*habitat type) were assessed using 

a series of post-hoc Tukey's HSD tests at an a = 0.05. Differences in diversity indicies 

(H) were tested using a one-way ANOVA between each of the two sites. All graphical 

output is represented as the mean ± se. 
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Diver Surveys 

For each of the four areas a total of two SCUBA surveys were conducted with the goals 

of 1) confirming and comparing major habitat types seen by the video analysis; and 2) 

visually censusing lobsters. For the first goal, two divers surveyed a 2 m swath along 25 . 

m transects placed out from a center point in each of the four cardinal compass directions. 

Habitat types (mentioned above) were quantified as % cover calculated as a proportion of 

habitat along each transect. For the second goal, divers conducted 30-mintue visual 

surveys in each area to count all lobsters encountered. Coverages for each habitat type 

were compared to similar data from the video surveys using a series of one-way ANOVA 

analyses at an a = 0.05 

Results 

Overall, a total of 114 images and 121 images were extracted and analyzed from videos 

at site 1 (GI - FP downstream) and site 2 (LB - FP upstream), respectively. In general, 

habitat composition was different with respect to habitat type and coverage between the 

two locations (Fig. 5). LB can be typically characterized by large, sand-covered sections 

and mud bottoms interspersed with small patches of cobble and some boulder compared 

with GI, a predominantly rocky cover containing complex macroalgal patches and some 

sandy areas. A photomontage (Fig. 6) also shows details of habitat differences among 

survey sites. 
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Fig. 5. A comparison of typical bottom habitat between A) Little Bay and B) Goat Island. 
Lobsters were tagged at each site however, animals that were tagged in Little Bay had a 
propensity to move toward Fox Point and Goat Island, especially to over-winter in such habitats. 
All images were taken as still frame JPEGs from video. Pictures were imported into the CPCe 
software and analyzed below the yellow line. GPS overlays for all video (and images) provide 
georeferencing for mapping areas covered using ArcGIS v. 9.3. 
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Little Bay 

m itdbxai is, 
# 2007 Release Point 

"&2008 Release Point 

Fig. 6. A photomontage of habitat composition between sites: 1) Little Bay and upriver of Fox 
Point (blue and yellow) 256,947 m2, and 2) Goat Island and downriver of Fox Point and 
Downriver (green and red) 177,465 m2. Digital images are representative of habitat features for 
each area and averaged from a compilation of still images extracted from video. Points for each 
location were georeferenced to images and mapped using ArcGIS v. 9.3. 

Habitat Analysis and Diversity Indices 

Total %-cover of all habitat types suggests a predominant mix of cobble, boulder, and 

sand downstream from Fox Point to Goat Island, compared with a shift more towards 
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sand and cobble upstream from Fox Point into Little Bay (Table 1). Pooled data between 

GI and FP (downriver) and LB and FP (upriver), indicated a significant difference was 

seen between sites with respect to habitat coverage (F = 49.04, df = 5,304; p = 0.001,1-P 

= 1.00) and the interaction of location with habitat (F = 4.720, df = 5,304; p = 0.001,1 -P 

= 0.98) (Table 2). Post-hoc comparisons of each of the 6 habitat types examined showed 

that three of the habitat types: boulder, sand, and macroalgae, were markedly different in 

overall %-cover at GI compared with LB (Tukey's HSD; p = 0.001; Fig. 7). Average 

sand and macroalgal coverages in LB were 74.4 and 14.1 % compared with 11.5 and 23.6 

% for GI (Fig. 6). 

Location: Goat Island 
Fox Point 

(downriver) 
Fox Point 

(upriver) 
Little Bay 

Habitat: 

cobble 38.63 ± 6.63 62.35 ± 6.24 49.17 ±6.81 30.25 ± 7.33 

rubble 5.38 ± 1.98 3.53 ± 1.44 1.08 ±0.57 7.00 ± 2.44 
boulder 8.63 ± 3.07 18.59 ±4.66 1.17 ± 1.01 4.5 ± 2.43 

macroalgae 15.5 ±2.86 6.24 ± 2.82 3.42 ± 1.08 8.5 ± 2.02 

sand 30.38 ±5.78 8.12 ±3.91 42.92 ±6.11 49.63 ±7.17 

other 1.5 ±0.67 1.18 ± 0.52 2.25 ± 0.75 0.13 ± 0.13 

TOTAL 100.00 100.00 100.00 100.00 

Table 1. Averages (± sem) for total %-coverage between areas that were mapped using 
videography. Also see Fig. 6 for spatial references to each specific location. 

Source of variation df MS F P 1-P 

location 1 0.570 3.83 0.051 0.50 
habitat type 5 7.311 49.04 0.001 1.00 
location*habitat type 5 0.704 4.720 0.001 0.98 

within Groups (Error) 304 0.149 

Total 315 8.734 

Table 2. ANOVA summary 
table for the analysis of 
habitat type differences 
between upstream of Fox 
Point (including a portion 
of Little Bay) and 
downstream of Fox Point, 
including Goat Island. 
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Fig. 7. Habitat coverage for Goat Island and Little Bay (pooled with Fox Pt data from either 
upriver or downriver). Habitat types were compiled from images derived from video surveys at 
each location and analyzed with a random-point count software package (CPCe). Data are 
presented as means ± se. Different letters denote a significant difference between habitat types 
(ANOVA, p < 0.05). 

Overall, Shannon-Weiner indices (H) were higher and significantly different at GI (HAVG 

= 0.75 ± 0.041; n = 55) compared with LB (HAVG = 0.56 ± 0.49; n = 51) (1-way 

ANOVA; F = 8.312, df = 1,102; p = 0.005) indicating a more diverse and even habitat 

composition around GI than LB. 

Diver Surveys 

SCUBA surveys from GI and LB verified that habitats were representative of what was 

captured by underwater video surveys and also not significantly different from any of the 

six habitat types measured (one-way ANOVAs; p > 0.05; Fig 8). A total of 22 lobsters 
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were counted at LB dive sites compared with 53 lobsters at GI. Divers confirmed a 

variety of sizes (sublegal and legal) at each site but individual lobster measurements were 

not conducted due to logistical constraints with the dives. 

Goat Island 
100 • 

90 • p > 0.05 p > 0.05 

Little Bay 

SO 

70 
•Cobble 

O Rubble 

•Boulder 

40 • 1 

30 • JL 

•Macroalga* 

•Sand 

•Other 

Video SCUBA Video SCUBA 

Method 

Fig. 8. Habitat coverage for Goat Island and Little Bay (pooled with Fox Pt data from either 
upriver or downriver) between video and SCUBA methodologies. Data are presented as means ± 
se. There were no significant differences between any of the habitat types among both 
methodologies that were used (ANOVA, p > 0.05). 

It is generally considered that elements of habitat quality and its associated spatial 

distribution are factors that can significantly shape the distribution, movements, and 

population structure of local species (Pittman and McAlpine 2003). The impetus for this 

study was to determine if differences in habitat composition could be used to help 

characterize the movements or residency of lobsters that were tagged in areas of the GBE 

over a two-year period. Although the bathymetry and generalized habitat features of 

GBE have recently been mapped (CCOM-JHC 2002), this study was aimed at mapping 

and quantifying habitat features that were associated with known areas of lobster 

Discussion 
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movement and residency at a much smaller, but at a more detailed biological resolution 

(i.e., microhabitat). Overall, these findings suggest that habitat composition was 

markedly different between upstream and downstream locations of Fox Point (FP). 

Areas downstream of FP are complex and often described as 'ocean-like' with high, rapid 

flows and patches of kelp interspersed with cobble and boulder fields (NHFG 1990, 

Becker 1994, Grizzle 2005, this study). Mathieson et al. (1981,1983) described a variety 

of flora including Irish moss (Chondrus crispus) and subtidal kelp (Laminaria digitata) 

beds in the lower reaches of the GBE (downstream from FP) that are more typical of 

coastal areas (i.e., estuarine tidal rapids) than estuaries. Although LB contained some 

areas of cobble (closer to FP), most of the area that was surveyed encompassed extensive 

sand and mud flats. 

Becker (1994) conducted a more extensive SCUBA survey of habitat composition in LB 

and an adjacent cove just downstream of our GI survey site that also corroborates a 

measureable difference in bottom cover between similar locations. Becker (1994) 

quantified over 15 types of bottom cover including 6 types of cobble and boulder size 

compositions to find that > 80 % of coverage in the lower reaches of the GBE estuary 

were composed of cobble-boulder complexes compared with 80 % soft-sediment 

coverage upstream of FP. It was somewhat surprising that cobble habitat was not 

statistically different between the sites examined, however this particular study was 

designed to examine habitats in areas only specific to lobster release sites and areas 

where animals resided (Figs. 2,6) whereas larger, macro-scale surveys were more 

comprehensive in their study area. Additionally, what is generally termed 'rocky habitat' 
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(boulder and cobble) were analyzed as separate categories in this study (Table 1); 

Selgrath et al. (2007) defined cobble as a mixture of unconsolidated pebbles, cobbles, and 

boulders, 1-400 cm. When conducting an additional ANOVA analysis combining both 

cobble and boulder between sites, we found that they are significantly different (1-way 

ANOVA; p = 0.018) with a total coverage of 66 % and 48 % for GI and FP, respectively. 

Use of Complex Habitats by Lobsters 

What was not surprising was the affinity of lobsters for complex habitats as was the case 

in an order of magnitude difference of lobsters found downstream from FP compared 

with LB. Although lobster size frequencies were not amassed for this study, Becker 

(1994) found that > 50 % of all lobsters found in their dive surveys were between 40-60 

mm CL downstream of FP including a proportion of very small, newly recruited, lobsters 

(10-30 mm CL). The ecological ontogeny of small lobsters to complex habitats such as 

cobble, boulder, and algal beds affords them advantages in shelter and foraging (Wahle 

and Steneck 1991, see Lawton and Lavalli 1995 for review) and some studies suggest a 

positive correlation between complex habitats and a representation of a variety of lobster 

sizes (Selgrath et al. 2007). Often referred to as microhabitat features, such areas are 

capable of supporting a variety of flora and fauna influencing the distribution of 

organisms in particular areas (Saunders et al. 1991). The higher diversity index (H) in 

habitat coverage at GI compared with LI further supports the complexity of habitat 

variety in these areas. 
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Lobster Movements and Distributions 

Movement to and residency of lobsters in complex habitats may be related to behavioral 

traits and requirements for both juvenile and adult lobsters (Lawton and Lavalli 1995). 

For example, it has been well documented that some lobsters from the coast more up into 

GBE during the summer months (Watson et al. 1999), however it remains unclear how 

many stay as densities of animals that do remain resident may be in proportion to the total 

number of available shelters or suitable habitat that is available (Cobb 1971, Wahle and 

Incze 1997). There are few, if any, reports of year-round resident adult lobster 

populations in estuarine systems (e.g., Wahle 1993) however, given that selected areas 

from this survey support appropriate lobster habitat, it is reasonable to speculate that a 

proportion of animals reside there. In 2007, over 30 lobsters (70-90 mm CL) were tagged 

at GI and although some moved downstream to Great Bay Marina, an overall distance of 

about 0.5-0.75 km, most remained near their original tagging location for a full season. 

By comparison, lobsters tagged and released in 2008 in LB showed a net cumulative 

movement downstream towards FP and GI (Langley et al. in-prep.). Although 

environmental cues (e.g., temperature, salinity, photoperiod) are most likely punctuating 

these movements (Watson et al. 1999), the presence of functional habitat may also elicit a 

significant influence on residency once it is encountered or becomes available. In one 

study using seabed mapping and lobster trap and tagging techniques, Geraldi et al. (2009) 

found that lobsters caught in rocky, complex substrates moved far less than those caught 

and released in soft sediment habitats. Specifically, 82 % of lobsters caught on rocky 
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substrate were caught again in the same habitat. Furthermore, it is suggested that some 

areas of sediment between bedrock outcroppings or deep channels serve as corridors for 

lobsters engaged in short- or long-term movements to finding sheltering habitats (Geraldi 

et al. 2009). Other crustacean (spider and king crabs) movements have been attributed to 

ontogenetic movements in response to habitat selection on a seasonal basis and have been 

characterized by temperature and substrate type (Stone et al. 1992, Gonzalez-Gurriaran et 

al. 2002). Clearly, more work is needed to accurately determine the relationship between 

habitat quality, marine landscape, and movements of lobsters (both transient and resident) 

as a key consideration for lobster management and for the consideration of no-take areas. 

Implications of Habitat and Lobster Movements 

Lobsters that may concentrate and reside in smaller regions of preferred habitat in 

locations like the GBE suggest that these areas provide direct benefits to local lobster 

populations and the fishery. Rowe (2002) for example found that no-take reserves in 

Bonavista Bay, Newfoundland in suitable lobster habitat increased lobster density and 

suggested this to offer shelter for ovigerous females. Similarly, Selgrath et al. (2007) 

reported that patchy environments (particularly edges), that included cobble and seagrass, 

were integral to the survival and distribution of lobsters among a range of sizes. 

Fragmented habitats also are known to hold significant refuge value for crustaceans as 

well as influence predator-prey dynamics (Micheli and Peterson 1999, Hovel and Lipcius 

2001, Grabowski et al. 2008, Hovel and Wahle 2010). Other studies have looked 

extensively at lobster densities in eelgrass beds (Short et al. 2001) but more studies are 
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needed to determine potential populations in other kinds of habitats. Wind-drive surface 

drifters released around FP and GI tended to show that larvae released from ovigerous 

females are largely retained locally in the system (Chapter 3) suggesting that settlement 

by at least a proportion of these larvae, would be most favorable to survival in complex 

marine habitats such as GI where cobble fields and macroalgal beds afford the most 

conducive habitat type for shelter (Wahle and Steneck 1991, Wahle and Steneck 1992). 

The endpoint of larval transport (i.e., settlement) could also fill in other knowledge gaps 

in local settlement patterns for important estuarine shellfish species including oyster as 

well as aid in modeling potential larval retention (connectivity) as has been done for a 

variety of marine larvae including lobster in the Gulf of Maine (Incze et al. 2010). 

Special habitats such as these have potential management implications for lobsters in the 

GBE as it relates to essential fish habitat (EFH; Steneck 1995) and may provide evidence 

for habitat correlates for all life-stages of lobsters that are distinct traits of EFH over both 

spatial and temporal scales and would be highly unique to estuarine systems. 
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APPENDIX F 

BAIT-SUBSIDIZED DIETS AND THEIR EFFECTS ON OVARY AND EGG 
QUALITY IN OVIGEROUS AMERICAN LOBSTERS, HOMARUS AMERICANUS 

Abstract 

Ovigerous (egg-bearing) American lobsters (Homarus americanus) exhibit a protracted 

period of ovary maturation and maternal care while incubating their eggs thereby 

influencing offspring fitness. Lobsters consume a wide and flexible range of food items; 

however, trap bait may comprise a large proportion of the diet in some fished areas, and 

the long-term consequences of a bait-based diet remain largely unexplored. We tested 

the hypothesis that disproportionate amounts of bait in the diets of pre-ovigerous females 

affect the quality of their ovaries and eggs. A total of 15 pre-ovigerous lobsters were 

collected and held over a period of ~ 300 days (range = 270-378) while being fed diets of 

herring bait, natural foods, or a combination. Nutritional status, measured as biweekly 

blood indices and total glucose levels, indicated differences between lobsters fed a 

natural or combination diet and lobsters fed a bait-based diet (ANOVA; p < 0.05). Bait 

diets contained more protein (58.5 %) and lipids (31.6 %) compared to natural diets (34.5 

% and 13.2 %, respectively). Lipid levels in ovaries and eggs were significantly 

correlated for all treatments (r = 0.76, n = 15, p = 0.028). Finally, histopathological 

analyses suggest that ovary tissue was compromised in lobsters that were starved or fed 

with bait. Our findings suggest that a varied diet of food constituents promotes the 
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overall fitness of ovigerous lobsters and the associated reserves that are used for ovary 

development and subsequent oocyte formation 

Introduction 

Ovigerous (egg-bearing) American lobsters (Homarus americanus) exhibit a protracted 

period of ovary maturation and maternal care in comparison to other marine crustaceans, 

carrying their eggs (externally) in excess of nine months (Bumpus 1891, Talbot and 

Helluy 1995). Such maternal effects, defined broadly as nongenetic traits that are 

acquiredfrom the mother, elicit potentially significant impacts on the ecological and 

evolutionary life histories of marine organisms (reviewed in Bernardo 1996). Within 

marine populations, environmental stressors (e.g., salinity, temperature, pollution) and 

food availability can all negatively affect egg size and offspring fitness (reviewed in 

Marshall and Keough 2008). In particular, maternal nutrition can have pronounced 'carry 

over effects' on offspring fitness as is the case in a variety of invertebrate species 

including beetles, polycheate worms, bryozoans, and crabs (Bernardo 1996, Qian and 

Chia 1991, Fox 2000, Marshall and Keough 2004, Sato and Suzuki 2010), although there 

are exceptions to this (see Lewis and Choat 1993). Based on these complex 

relationships, theoretical models that build on the linkages between maternal size and 

offspring fitness incorporate the influence of maternal nutritional state among other 

factors including environmental changes and fishing pressure, among others (Marshall 

and Keough 2008, Brander 2010, Moland et al. 2010). 

263 



American lobsters are fished intensively throughout their range in the U.S. and Canadian 

maritimes, and the fishery relies heavily on baited-traps (ASMFC 2009). It is estimated 

that coastal Maine alone fishes in excess of 650,000 traps per season (Maine DMR 2010) 

resulting in almost 70 % of Atlantic herring (Clupea harengus) landings (70,000-75,000 

metric tons) being reintroduced back as lobster bait into coastal benthic habitats (Salia et 

al. 2002, Grabowski et al. 2010). Consequently, it is strongly believed that herring bait 

subsidizes lobster growth and population increases in some areas of its range (Salia et al. 

2002, Grabowski et al. 2009). The mechanisms by which this happens are debated and 

largely unproven, but may be enhanced by: 1) inefficiencies of the traps themselves, 

creating a disproportionate number of sub-legal lobsters that enter traps and escape 

(Karnofsky and Price 1989, Jury et al. 2001, Watson et al. 2009); 2) changes in trophic 

level dynamics (e.g., decline in large predatory fishes, Steneck and Wilson 2001); 3) 

changes in long-term management practices (e.g., protection of egg-bearing females, 

Miller 1995); and 4) alterations to physical oceanographic conditions (e.g., increased 

seawater temperatures, Drinkwater et al. 1996). 

It is proposed that bait may comprise a large proportion of a lobster's diet (upwards of 

34-55 %), which could substantially impact overall lobster health (Myers and Tlusty 

2009). A recent survey of bait use by Nova Scotian lobstermen indicated an average of 

860 g (1.9 lbs.) of bait was used each time a trap was set, translating to over 5,216 kg 

(11,500 lbs.) of bait/year/lobsterman (Harnish and Willison 2009). With such large 

volumes of bait being used in some areas, the ecological and economical implications of 

bait subsidies are a concern to both scientists and industry (Thunberg 2007). 
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Nonetheless, the biological impacts resulting from a disproportionate amount of bait 

input into the lobster fishery are largely uninvestigated but could very likely act as 

potential nutritional stressors increasing the susceptibility of lobsters to a number of 

aquatic diseases (Sindermann 1990, Tlusty et al. 2000,2008, Myers and Tlusty 2009). 

Lobster bait in the Gulf of Maine predominantly comprises salted or fresh herring or 

mackerel (Scomber scombrus) that, if not included among a more diverse diet, is depleted 

of certain nutritional constituents (e.g., amino acids, minerals, Gendron et al. 2001). The 

nutritional requirements of adult lobsters have yet to be fully resolved (reviewed in 

Conklin 1995); however, the best growth results from larval and juvenile culture 

operations have been obtained from a varied diet (Conklin 1995, Tlusty et al. 2005a, b). 

In the absence of fishing, lobsters forage among a wide spectrum of plants and animals 

that include crustaceans, mollusks, echinoderms, polycheates, and macroalgae. Lobsters 

are also known to temporally shift their diet depending on season or habitat (Elner and 

Campbell 1987, Conklin 1995) and are considered 'keystone' predators, capable of 

driving the trophic dynamics in many benthic communities (Mann and Breen 1972). In 

addition, ovigerous lobsters are known to undertake sometimes long and dramatic 

seasonal movements, allowing them to encounter a variety of benthic habitat types as 

well as fishing areas of varying trap densities (Cooper and Uzmann 1980, Campbell and 

Stasko 1985, Cowan et al. 2006). These patterns of behavior and activity potentially 

affect the kinds and quantities of food items that they encounter. 
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Alternatively, the prevalence of bait and natural foraging items for lobsters depends 

heavily on the habitats they occupy, trap densities being fished, and the distribution and 

abundance of lobsters in a particular area (Geraldi et al. 2009, Watson et al. 2009, 

Grabowski et al. 2010). Laboratory studies (using juvenile lobsters) have shown that a 

diet composed primarily of fish can cause phenotypic changes in shell color, but it 

remains unknown if an exclusive diet of fish induces deleterious effects on maturation, 

egg production, or shell integrity in adults (Tlusty et al. 2008). There is some evidence to 

suggest negative, short-term consequences associated with lobsters consuming bait. 

Prince et al. (1995) for example observed a reduction in the overall incidence of shell 

disease in a lobster pound fed with an artificial diet compared to one that used salted cod 

racks. Gendron et al. (2001) reported that a varied natural diet, augmented by rock crab 

{Cancer irroratus) rations over a 3-week period had favorable effects on ovary condition 

throughout the maturation process. Using stable isotope ratio analysis, Grabowski et al. 

(2010) showed that bait-subsidized lobsters grew faster than those animals in seasonally 

closed fishing areas. However, the long-term consequences of lobsters fed primarily on 

bait, particularly the effects on ovary and egg condition in mature adult lobsters, remains 

unexplored. 

Pre-ovigerous female lobsters presumably enter lobster traps as frequently as other 

lobsters, possibly more often during periods of seasonal movement events (Herrick 1895, 

Campbell 1986). If these animals feed primarily on the bait from traps, nutritionally-

mediated maternal effects could result in carry over effects on ovary condition, leading to 

poor egg quality (e.g., low lipid content) - this is the working hypothesis for this study. 
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Sexually mature females may spend most of the year prior to egg extrusion foraging to 

build energy reserves in preparation for ovary maturation and oviposition (Waddy and 

Aiken 1992). It is not unreasonable then, that food items that are readily consumed (trap 

bait and natural foods) would have an impact on ovary, and in turn, egg constitution. 

Newly extruded eggs are high in lipid content presumably a reflection of maternal 

provisioning that originates from the ovary maturation process and the sequestering of 

yolk reserves during vitellogenesis (Sasaki et al. 1986, Talbot and Helluy 1995). If pre-

ovigerous lobsters are consuming disproportionate amounts of low quality bait in their 

diets, their health could be compromised or altered at many levels (e.g., decreased disease 

resistance, altered maturation schedules, egg quality) and may ultimately translate into 

variable egg quality and larval survival. Nutritional provisioning in lobsters from mother 

to offspring may have direct carry-over effects manifested at any level of their life-

history and has been documented for other marine invertebrates (e.g., sea urchins, 

Bertram and Strathmann 1998). 

The impetus for this study came from many of our recent studies involving egg 

development, seasonal movements, and mating dynamics of ovigerous lobsters (Johnson 

et al. 2011, Goldstein and Watson submitted, Pugh et al. in prep., Goldstein et al. in 

prep.). In light of the potential disparity in quality between natural food sources and trap 

bait, the goal of this study was to ascertain the potential nutritional effects that bait-

subsidized diets have on lobster health by focusing on ovigerous lobsters and their ovary 

tissue and egg quality. The hypothesis that was tested was that pre-ovigerous females 

that consume disproportionate amounts of bait could compromise their ovary condition 
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and egg quality (i.e., egg reserves). To begin to address this, pre-ovigerous lobsters were 

collected and held long-term while being fed diets of herring bait, natural foods, or a 

combination of the two. 

Materials and Methods 

Animal Collection and Assessment 

Pre-ovigerous female lobsters were collected by permitted lobstermen in Massachusetts 

(Cape Ann) and New Hampshire coastal waters in the spring of 2009. All lobsters were 

held onboard commercial fishing boats in live-wells with running ambient seawater. All 

animals were transported to the University of New Hampshire's Coastal Marine 

Laboratory (CML) in New Castle, New Hampshire, USA where all subsequent work was 

conducted. A total of 15 lobsters (size range = 85-96 mm carapace length, CL, average = 

94 ± 2.2 sem) were measured using digital calipers to I mm (Mitutoyo IP 65, Mitutoyo 

Corp., Japan) and selected for this study. A preliminary analysis was conducted to 

confirm that there were no significant differences in the sizes of lobsters used between 

treatment groups (1-way ANOVA; F314 = 0.62, p = 0.62). 

The reproductive histories of all female lobsters were assessed in the laboratory as they 

were used in a previous mating study (duration ~ 30 days) and fed a combination of fresh 

and frozen fish, squid and shrimp. In these cases, animals were visually confirmed (by 

video; Pugh unpub. data) as having mated and were sampled noninvasively for the 

presence of a small amount of fresh sperm plug from individual spermatophores 
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(Goldstein et al. in prep.). At the start of the study (July-2009), all lobsters were tagged 

with small circular laminated disc tags (diameter = 2.0 cm; Floy Tag and Mfg., Inc. 

Seattle, WA) fastened to the knuckle of their claw and held individually in floating totes 

(81.3 cm x 50.8 cm x 38 cm, LxWxH) subjected to ambient seawater flow (16.3 ± 1.6 

°C; mean ± se) and light in an outside impoundment until they extruded their egg 

clutches (Fig. 1). 

Diet Treatments 

Lobsters were divided randomly among four diet treatment groups: 1) lobsters (n = 3) 

which received no food items (control); 2) a mixed fish (bait) diet (n = 4) consisting of 

frozen herring (Clupea harengus) and American shad (Alosa sapidissima); 3) natural 

diets (n = 4) consisting of fresh local food items including fish (same as bait diet), urchin 

(Strongylocentrotus droebachiensis), rock- (Cancer irroratus) and Jonah crab (Cancer 

borealis), blue mussel (Mytilus edulis), and a mix of red, green, and brown macroalgae 

(Ulva lactuca, Laminaria agardhii, Chondrus crispus, Rhodymeniapalmata) and; 4) a 

mixed diet (n = 4) composed of a ~ 50/50 combination of bait and natural feed items. 

Fish was purchased in bulk 18 kg frozen flat trays from a single source (The Bait Lady, 

Newington, NH). 

All natural food items were collected locally on a periodic basis by SCUBA divers and 

held in separate holding totes from the lobsters. Lobsters were fed to satiation 

twice/week over the summer and fall months (July-November) and once/week during the 
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rest of the year. Uneaten food items were removed upon each feeding event, and totes 

were cleaned periodically. Prior to starting any of the treatments, all lobsters were 

starved for a total of two weeks to insure the absence of any previous food items. 

tote ID tag 

divider food items 

Fig. 1. Lobster diet treatment setup. Animals were kept in floating totes (dimensions: 81.3 cm x 
50.8 cm x 38 cm) and held at ambient light and temperature in an outside impoundment subject to 
natural flowing seawater. 

Nutritional Status 

Female lobster nutritional status was monitored by collecting a small sample of 

hemolymph on a biweekly basis, similar to other lobster studies (Leavitt and Bayer 1977, 

Oliver and MacDiarmid 2001). A total of 30 |iL of hemolymph was collected from the 

base (sinus) of the fifth walking leg of each animal using a 3.0 mL 22-gauge syringe. 

Samples were then placed on an analog clinical protein refractometer (model CLX-1, 

resolution = ± 0.2, VEE GEE Scientific, Inc. Kirkland, WA) and a blood refractive index 

(BRI) was recorded (g/100 mL). The refractometer was calibrated with deionized water 
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prior to each use and a bovine albumin serum (Sigma-Aldrich, St. Louis, MO) was used 

to create a standardized curve by which raw data values could be compared. 

On three occasions (start, middle and end of trials), larger samples (1.0 mL) of whole 

lobster blood were drawn and frozen at -80 °C for later total glucose analysis. Total 

glucose was quantified from total blood serum using a standardized glucose in-vitro assay 

(kit # 439-90901; Wako Chemicals USA Inc., Richmond, VA). Both hemolymph and 

total glucose values were averaged across all individuals for each of the four treatments 

and compared using a repeated-measures ANOVA using JMP v. 9.0.3 statistical software 

package (SAS Institute, Cary, NC). 

Diet and Egg Analysis 

Representative feed samples from each diet treatment were collected at three separate 

time intervals (the outset of the trials, mid-January, and June, day chosen randomly) and 

temporarily frozen at -80 °C, before being freeze dried at -40 °C for 24 hr. (Labconco 

Freeze Dryer 5, Kansas City, MO). Samples for each diet treatment were combined to 

obtain enough sample (15-20 g) for analysis and were ground down into a fine powder 

using an industrial-grade milling machine (Wiley Mill #4,40 |im mesh screen, Thomas 

Scientific, Swedesboro, NJ) and stored in polyethelene storage vials. Samples were then 

sent out for analysis (Forage Testing Laboratory, Dairy One, Inc., Ithaca, New York), and 

three major components (total protein, lipid, and ash) were analyzed and reported on a % 

- dry weight basis. 
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Small samples of ovary tissue were extracted from each lobster ~ 1 month prior to 

estimated egg extrusion (see Johnson et al. 2011 for details). Briefly, a small square was 

cut into the lateral side of the carapace (behind the eye), and a section of ovarian tissue 

was removed with blunt forceps. The incision was sealed with the use of cyanoacrylate 

glue, gauze, and adhesive tape; all lobsters survived. Upon egg extrusion, ~ 500 

eggs/lobster were gently removed in clumps, washed with cold, sterile seawater and 

placed in clean, labeled storage vials. Both egg and ovary samples were processed 

similarly to feed samples. 

Histolopathological Analysis 

Once egg extrusion was completed, each lobster was sacrificed so that tissue samples 

could be extracted and analyzed. Samples of ovary, hepatopancreas, claw muscle, shell 

cuticle, and midgut were removed, stored in individual tissue cassettes (Fisher Tissue 

Path cassettes IV), and preserved in a solution of 10 % neutral buffered formalin. After 

36 hours, tissue samples were transferred into 70 % ethanol and shipped to the Virginia 

Institute of Marine Science (VIMS, Gloucester Point, VA). All tissue samples were 

processed using paraffin histological techniques and stained with Mayer's hematoxylin 

and eosin (see Wheeler et al. 2007). 

Prepared slides were viewed and photographed using an Olympus BX51 compound 

microscope and a Nikon DXM1200 digital camera, respectively. 
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Results 

Hemolvmph Indices 

Overall, nutritional status (measured as blood refractive index, BRI) in ovigerous lobsters 

was highest in the 50/50 diet treatment (BRI = 5.8 ± 0.1) compared with the natural (BRI 

= 5.4 ± 0.2), bait (BRI = 4.9 ± 0.1), and starved (BRI = 2.3 ± 0.3) lobsters (Fig. 2; Table 

1). With the exception of the starved treatment, all other treatments indicated an 

increasing trend, especially in the last few weeks (Fig. 2). The largest increase in 

nutritional condition over the course of the study was seen in the natural diet treatment (+ 

54 %); likewise the biggest loss occurred in animals that were starved (-79 %). BRI 

values were significantly different between treatments (ANOVA; Kruskal-Wallis test, x2 

= 128.91, p < 0.0001). Post-hoc follow-up tests (Dunn's Multiple Comparison tests) 

revealed differences in diets (Table 1) although the starved treatment differed very 

significantly from all other treatments (p < 0.001). 

273 



8 

7 

3 
i 4 

£ 
0 s 

E ® -
1 2 

- Natural 

- 50>50 

—• • Starvad 

0 
2 3 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 1 4 

Week 

Fig. 2. Mean (± se) hemolymph values (blood refractive index, BRI) for lobsters held in one of 
four diet treatments. Values were averaged for all lobsters in each treatment (n = 4, n = 3 
starved). BRI values in the starved treatment were only measured up until week 13, as there was 
100 % mortality thereafter. 

Diet Average ± sem Range 

natural 5.4 ± 0.2 3.8-7.7 

50/50 5.8 ±0.1 0
 

1 o
o
 

bait 4.9 ±0.1 3.9-6.0 

starved 2.3 ± 0.3 

O
O

 

i 

v-
> 

Dunn's MC test: 

natural 50/50 bait starved 

Table 1. Average BRI values for each diet treatment with range. A nonparametric Kruskal-
Wallis test indicated differences among some diets with a Dunn's multiple comparison test 
indicating those differences. Treatments that share a line are considered different (p < 0.001) at 
the a = 0.05 level. 

Glucose Levels 

Glucose values (means ± se) are given 

changed over time (RMANOVA; F2,is 

in Table 

= 19.28, 
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1. Total glucose values significantly 

p = 0.0014), between treatments (F3,4 = 



7.80, p = 0.0379) and the interaction (time*trt) (Fsjs = 6.20, p = 0.017). At the outset of 

the trial period glucose values averaged 8.9 mg/dL, decreased to 4.1 mg/dL in winter and 

increased significantly over the last sampling period (average = 15.6 mg/dL; Fig. 3). In 

addition, the relationship between glucose values and absorbance (standard curve values) 

were fit using logistical regression and were significant (r = 0.99, p < 0.001; Fig. 4). 

• Initial 

B Middle 

8 16 

Natural Bait 50/50 Starved 

Diet 

Fig. 3. Total blood glucose values (means ± se) for lobsters held in each of four diet treatments 
and sampled at three time intervals: 1) initial (fall); 2) middle (winter); and 3) late (spring). 
Values were averaged for all lobsters in each treatment (n = 4, n = 3 starved). Values in the 
starved treatment were unavailable in the spring due to 100 % mortality. Significant differences 
(p < 0.05) between groups over each time period are indicated by an (*). 

Natural Bait 50/50 Starved 
Initial 9.0 ± 1.45 8.7 ±0.9 8.8 ±0.28 9.0 ±0.95 
Middle 6.1 ±2.5 4.4 ±2.4 4.2 ±1.4 1.8 ±0.4 

Late 16.4 ±3.4 8.3 ±0.3 22.0 ±3.2 

Table 2. Total glucose levels (means ± se) for lobsters sampled at three time intervals. 
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Fig. 4. The relationship between glucose values and absorbance (standard curve values). Values 
were fit using logistical regression and were significant (p < 0.001). This model used bovine 
albumin serum as a protein standard. 

Diet and Nutritional Analysis 

Bait-fed diets contained higher amounts of both protein (58.5 %) and lipids (31.6 %), 

compared with natural diets (34.5 % and 13.2 %, respectively) (Fig. 5). In addition, 

natural diets comprised > 50 % of its constituents from ash (inorganic materials), 

including large amounts of calcium. 

Fig. 5. Nutritional components for bait and natural diets expressed on a % - dry-weight basis. 
The breakdown of diet components was obtained from processed diet materials that were pooled 
from three separate time periods. 

Natural Bait 
9.7 

52.3 
•Protein 
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We did not see statistically significant differences in the proportion of total lipids 

between ovary samples of diet treatments with the exception of lobsters in the starved 

treatment (ANOVA; F3J5, p < 0.05; Fig. 6). A similar outcome was also seen in lobster 

eggs (p = 0.081; Fig. 6). There was a significant correlation between lipid levels in 

ovaries and eggs for all treatments (r = 0.76, n = 15, p = 0.028). 

30 
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Fig. 6. Comparison of total lipid (as %) for both egg and ovary samples from lobsters of all diet 
treatments. Correlation between egg and ovary values (r = 0.76, n = 15) was significant (p = 
0.028). 

Histolopathological Analysis 

Although other tissues were examined in this study, both hepatopancreas and ovary 

allowed for the best comparisons between individual lobsters and their diet treatments. 

Lobsters that were starved typically displayed hepatopancreas tissue that was devoid of 

reserve inclusion (RI) cells (Figs. 7-9). 
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Fig. 7. Hepatopancreas with sparse clumps of RI (reserve inclusion) cells that are granular in 
appearance (1 Ox) - example of a starved lobster. (Scale bar = 100 Mm)-

Fig. 8. Ovary sections from two lobsters. Left: lobster (CL = 92) fed a 50/50 diet of bait and 
natural food items. Right: lobster (CL = 88) fed herring bait diet only. Individual ova in the 
50/50 diet were characterized as highly variable in size (range =) and patchy (indicative of active 
ova production and vitellogenesis). More comments on RI cells. While ova from the bait diet 
were not as prevalent in the smaller sizes. Also no apparent RI cells or lipid mobilization in 
tissues. Mag = 4x, (Scale bar = 200 Mm). 
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Fig. 9. Hepatopancreas sections from two lobsters. Left: lobster (CL = 95) from starved (control) 
treatment. Right: lobster (CL = 85) fed a natural diet. The hepatopancreas in the starved lobster 
contained no reserve inclusion (RI) cells and was characterized as having tubules with little B cell 
activation, tightly packed, few arterioles with fixed phagocytes present. Additionally, there were 
few hemocytes in the hemal sinuses in the arterioles around the organ. Comparatively, the lobster 
in the natural diet (some notes/comments here). Mag = 20 x, (Scale bar = 50 Mm). 

Discussion 

The extended ovary maturation process followed by equally long maternal care that 

lobsters provide to their egg clutches affords the opportunity to allocate significant 

amounts of nutritional reserves even before egg extrusion through the complex 

biochemical pathways of vitellogenesis. The nutritional aspects of adult broodstock often 

translate into egg quality and larval success in other marine invertebrate species (Sasaki 

et al. 1986, Jaeckle 1995, Sibert et al. 2004). To our knowledge, this is the first study to 

address the effects of a trap-based bait diet on the long-term aspects of ovigerous lobster 

health, ovary condition, and egg quality in mature adult lobsters, compared with other 

diets. We were able to follow the health and egg quality in female lobsters over a period 

of ~ 300 days (range = 270-378) that were subjected to a variety of diet types. Our 

findings suggest that a varied diet of food constituents is probably integral to the overall 
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fitness in adult lobsters, in particular ovigerous females and the reserves that are used for 

ovary maturation and subsequent oocyte development. 

It has been proposed that lobsters in many areas of the commercial fishery are actively 

being 'farmed' due to their propensity to frequent traps, consume bait, and revisit other 

traps (Grabowski et al. 2010) and this was a major impetus for this study. We sought to 

quantify the potential effects in lobster ovaries and eggs from lobsters fed 

disproportionate amounts of bait. Overall, we did see some deleterious effects on 

lobsters, their ovary condition and their eggs when compared to those animals that were 

allowed to feed exclusively on natural foraging items. However, we did not allow eggs 

to continue to develop and hatch. Under this scenario, we might expect to see true carry­

over effects with respect to larval competency and survivorship. 

Other studies have shown a link between maternal nutrition and the fecundity and 

hatchability in marine crustaceans, particularly with dietary lipids (Castell and Kean 

1986). Even though it has been suggested that in some areas of the fishery herring bait 

may augment the growth rates in some lobsters (Saila et al. 2002, Grabowski et al. 2010), 

three factors may diminish this effect: changes in lobster density, variable fishing effort 

and the availability and abundance of a natural prey base. In addition, both historic and 

recent analyses of in situ dynamics of lobsters in traps suggest that their bait consumption 

is highly variable, as lobsters are often out-competed from by-catch (e.g., crabs and 

fishes) and bait washout (Jury et al. 2001, Watson et al. unpub. data). Clearly, there 

needs to be more effort aimed at ascertaining the actual consumption of bait by different 
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kinds of lobsters and the effects of this on a number of different levels including the 

storage of nutrients by adults for subsequent biological processes (e.g., growth, 

maturation). 

In addition, recent evidence suggests that the timing and sequestering of energy stores 

can impact reproductive schedules. As a result of low-quality food sources, some fishes 

can manipulate oocyte development, adjust the number of eggs they produce, or forego 

egg production (i.e., skipped spawning) altogether (Rideout and Tomkiewicz 2011). 

Some of these disruptions have been documented in American lobsters and include 

changes to inter-annual molting schedules and spawning during sub-optimal times but 

little conclusive evidence has been made (Waddy et al. 1995). Thus, alterations in these 

events could influence not only the survivorship and hatchability of larvae in this species 

it could also alter the timeframe of hatch that is critical to survival in the plankton (e.g., 

match-mismatch, Cushing 1990). 

Although lobsters are described as opportunistic foragers consuming prey over a variety 

of taxa (Conklin 1995, Sainte-Marie and Chabot 2002), there is evidence to suggest that 

they have preferences to certain food items, namely crab. Rock crab provides a 

disproportionate amount of nutritional constituents (e.g., amino acids, proteins) to lobster 

diets compared to other fauna (Boghen et al. 1982, Gendron et al. 2001). In addition, 

lobsters are known to be chemically attracted to rock crabs, and they may contain 

mechanisms for stimulating their ingestion of such tissue and associated metabolites 

(Hirtle and Mann 1978). Because rock crabs are common and dominant decapods in 
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many coastal communities (Palma et al. 1998), interactions of these two species could 

easily provide a large and readily available food base for lobsters. We incorporated rock 

crab into our natural diet treatments and surmise that this component is integral in the 

overall health of lobsters (Gendron et al. 2001). Although crab lipid is known to be an 

important diet component for lobsters, especially to the growth and health of lab-cultured 

juvenile lobsters (Kean et al. 1985, Conklin 1995), bait diets registered the highest overall 

total lipid content which was not too surprising. 

Lipids play a major role in embryo growth and are a vital source of metabolic reserves 

(Holland 1978). Lobster ovary tissue sequesters the majority of lipids allocated for egg 

reserves, comprising over 30 % of wet tissue weight (Castell, unpub. data). For most 

crustaceans, lipids significantly affect ovarian development, fecundity, and the 

hatchability of eggs (Amsler and George 1984, Sasaki et al. 1986). Obtaining sufficient 

kinds of lipids are also pivotal to some biochemical processes. For example, triglyceride 

reserves at the time of hatch can impact the initial food resources for planktotrophic 

lobster larvae (Castell and Kean 1986, Sasaki et al. 1986, Sibert et al. 2004). Although 

we did not differentiate between lipid classes in this study, we surmise that lipids derived 

from a variety of dietary sources are best for embryo growth and development, including 

the requisitioning of other kinds of dietary lipids. 

One such lipid class, carotenoids (lipochrotnes), are natural, fat-soluble pigments derived 

from plant-based pigments (reviewed in Myers and Latscha 1997, Linan-Cabello et al. 

2002). Dietary carotenoids are purported to be involved in aspects of egg production and 
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facilitate hatchability in some crustaceans and fishes (Miki et al. 1982, Latscha 1990). 

The characteristic dark green color in newly extruded lobster eggs is characteristic of the 

carotenoid astaxanthin. The dietary role of astaxanthin in lobsters remains largely 

unknown, however there is evidence in other animals that astaxanthin plays a 

physiological role as an antioxidant and as a hormone that promotes fertilization in some 

animals (e.g., trout and shrimp, Myers and Latscha 1997). Castel (unpub. data) noticed a 

negative correlation between lighter-colored lobster eggs and the viability of larvae. It is 

likely that astaxanthin plays an important role in embryonic development. In some 

fishes, carotenoids are important in the coloration and protection of eggs against 

environmental factors (e.g., light, temperature) during respiration (Castell and Kean 

1986). 

Most lobster diets (especially bait) are devoid of carotenoids. However, these pigments 

likely play a key role in lobster reproduction (e.g., vitellin production, embryo 

development), as is the case in other marine crustaceans (Bordner et al. 1983, Conklin 

1995, Linan-Cabello et al. 2002). The natural diets used in this study included a variety 

of animal and plant constituents that contain components that are beneficial to the ovary 

and egg maturation process in some lobsters. The ingestion of plant matter by some 

lobsters would offer one mechanism by which carotenoids could be obtained under a 

scenario of natural foraging. The common occurrence of macroalgal material found in 

lobster stomachs seem to suggest that plants are not just ingested by chance (along with 

epiphytic invertebrates) and are actively sought as a viable nutritional component 

(Scarratt 1980, Elner and Campbell 1987). 
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Herrick (1909) typically observed seaweed in the stomachs of wild-caught lobsters and 

suggested that the mineral constituents in these materials were beneficial to overall 

lobster health. In a lab-based formulated diet study, Gallagher et al (1982) reported that 

optimal ratios of C:P in juvenile lobsters were also beneficial to adult lobsters. In this 

study, natural feed diets contained proportionately more inorganic materials compared to 

other diet treatments and, as a result, may provide a variety of trace minerals for overall 

biological and physiological function. 

While there is a paucity of detailed dietary requirements and nutritional deficiencies in 

adult lobsters, more information exists for juvenile lobsters, largely stemming from 

hatchery and aquaculture-related studies (Conklin 1995, Tlusty et al. 2005a,b). 

Therefore, more directed efforts investigating the nutrient requirements for adult lobsters 

and the foods they most commonly consume are paramount to understanding the 

potential changes to larval mortality and recruitment. 

One of the most important considerations with sub-optimal diets is their link to disease. 

This is especially true in specific areas of the fishery where environmental stressors (e.g., 

increased temperatures) have been implicated. Most notably are lobsters that acquire 

shell disease (Glenn and Pugh 2006). Although there are a variety of factors that may 

increase lobster susceptibility to aquatic diseases, nutritional stress has been a prime 

candidate. For example, lobsters that show signs of nutritional stress may show clinical 

signs of compromised hepatopancreas function (e.g., Figs.7, 9) and altered lipid 
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metabolism. Myers and Tlusty (2009) were able to show the cuticles of juvenile lobsters 

fed a bait diet were thinner and weaker compared with lobsters fed other diets. 

Laboratory-cultured lobsters fed a diverse array of food constituents more often confers 

the greatest overall benefits to overall health (e.g., growth, molting cycles, Conklin 1995, 

Tlusty et al. 2005a,b, Tlusty et al. 2008). The susceptibility of lobsters to some diseases 

have not yet been conclusively shown to be affected by varying or sub-optimal levels of 

food and in some cases the reverse was found (see Stewart et al. 1972, Bethoney et al. 

2011). However, the degree to which diet contributes to disease in lobsters is probably 

augmented by more than one environmental stressor and is difficult to quantify. 

This study's goal was to ascertain potential carry over effects of a sub-optimal diet on the 

ovary and egg condition in mature female lobsters. Our results suggest that lobsters fed 

on an exclusive bait diet are compromised nutritionally. However, without coupling this 

to other exacerbating effects, it is difficult to truly document this in wild populations over 

a sufficient time frame. We speculate that in the field, lobsters are feeding on a large 

variety of taxa including trap-based bait. With the increase of bait input into some areas 

of the lobster fishery, it would be important to address the variability and quality of 

herring being used (Melvin and Stephenson 2007) over temporal scales, as well as the 

consumption of bait by lobsters compared with natural foraging items. Understanding 

these kinds of relationships would allow fisheries managers to address more accurately 

the impacts of lobster bait (along with changing environmental conditions) on the health 

of the fishery throughout its range. 
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APPENDIX G 

TWO METHODS FOR DETERMINING THE FERTILITY STATUS OF EARLY-
STAGE AMERICAN LOBSTER, HOMARUS AMERICANUS, EGGS 

Abstract 

The American lobster (Homarus americanus Milne Edwards, 1837) is the focus of the 

most important commercial fishery in New England and relies on a variety of biological 

monitoring programs and surveys to guide the development of appropriate management 

plans. One key piece of information provided by these surveys is the number of females 

that are carrying eggs (ovigerous) that will subsequently contribute new recruits to the 

fishery. A major assumption is that all eggs carried by ovigerous females are fertilized 

and will thus result in viable recruits. However, because some lobsters extrude, and 

briefly carry, unfertilized eggs, this assumption needs to be re-evaluated. In particular, it 

is important to determine the approximate proportion of newly extruded eggs that are 

either fertilized, or not. The major goal of this project was to develop reliable methods for 

determining if early-stage lobster eggs (live and preserved) are in fact fertilized. One 

method involved using a nucleic acid stain to visualize egg DNA, after pretreatment of 

eggs with a proteolytic and collagenolytic enzyme solution to facilitate stain penetration 

through the egg membrane. With this method multi-nucleated (fertilized) eggs could be 

clearly distinguished from unfertilized eggs. A total of 20 egg clutches were tested to 

determine their fertility status using this method. Of these, 16 clutches (80 %) were 

fertilized while 4 were unfertilized (20 %). Of the 16 clutches with fertilized eggs, two 
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had a mix of both fertilized and unfertilized eggs. A second method, using fluorometry to 

obtain measurements of total egg DNA, was also developed. There was a significant 

difference between the total DNAconcentration in unfertilized control oocytes and early-

stage fertilized eggs (p < 0.001), and the total amount of DNA gradually increased as 

eggs developed (r = 0.961, p < 0.0001). Both of these methods will make it possible to 

make a more accurate assessment of the proportion of female lobsters that will actually 

contribute new recruits to the fishery. 

KEY WORDS: American lobster, DNA, egg development, Hoechst stain, Homarus americanus, 
lobster eggs, proteolytic and collagenolytic enzymes, ovigerous 

This Appendix has since been published in: J. Crustacean Biology. 31 (4): 693-700 (2011). 
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Introduction 

The American lobster, Homarus americanus H. Milne-Edwards, 1837, is one of the most 

valuable commercial fisheries in the North Atlantic and supports the economy of many 

New England coastal communities ($372 million in 2007; FAO Stat 2009). As a result, 

fisheries scientists and managers spend a considerable amount of time and effort 

monitoring the fishery so they can make informed decisions and effectively manage this 

resource. Along with data on growth, mortality, and reproduction (fecundity, spawning 

stock biomass), some surveys assess the abundance of egg-bearing (ovigerous) females 

that will contribute new recruits to the fishery. Estimates of the reproductive capacity and 

future recruitment rates of the stock are then based, in part, on the number of ovigerous 

females caught during these surveys (ASMFC 2009). 

There are a number of models and indices used in American lobster stock assessment, 

two of which are the spawning stock biomass (SSB) index of abundance, and the egg per 

recruit (EPR) model (Fogarty 1995, ASMFC 2009). SSB indices are used to estimate the 

total reproductive potential of a population and can be done on a statewide or regional 

basis (ASMFC 2009). EPR models (modified from finfish models) generally use the 

number of mature lobsters on the bottom, their carapace length, and the probability of 

surviving and producing eggs, as a means of calculating the number of eggs that will be 

produced in the near future. In the case of the EPR model used in a recent lobster stock 

assessment (ASMFC 2009), the model assumes that sexually mature females, provided 

they survive, will mate and extrude a quantity of eggs based on their total fecundity, 

which is dependent on their carapace length (CL) (Herrick 1909). The assumption of 
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these EPR models is that female lobsters fertilize 100 % of the eggs that they carry. 

While some crustacean fisheries (spiny lobster and crab) tend to be quite resilient to 

heavy exploitation (Pollock 1993, Hankin et al. 1997), it is unclear how fishing pressure 

might influence the reproductive dynamics of American lobsters. For example, slight 

shifts in size-at-maturity schedules and sex ratios (Landers et al. 2001, Little and Watson 

2005) could reduce mating success in some areas, and this might be manifested in a 

decline in fertilization rates and eventually, new recruits. 

Although the length and timing has been debated (see Waddy and Aiken 2005), the 

female American lobster reproductive cycle typically involves molting and mating in the 

summer, the storage of sperm in the spermatophore, the extrusion and presumed 

fertilization of the egg clutch, and the incubation of eggs for 9-12 months until they hatch 

into larvae 1-2 summers later (Bumpus 1891, Herrick 1895). Throughout egg 

development, growth measurements of the size of the prominent eyespot, along with egg 

color and other morphological and physiological features, are often used to stage eggs 

and determine if they are fertilized (Bumpus 1891, Herrick 1909, Templeman 1940, 

Perkins 1972, Helluy and Beltz 1991). However, with newly extruded egg clutches, it is 

virtually impossible to visually determine if eggs are fertilized, especially in the field. 

Early-stage eggs (> 2 months old) are characterized as featureless, solid, and dark green, 

with no discernible differences from eggs that are unfertilized (Fig. 1). 
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Fig. 1. A: Typical clutch of lobster eggs. At 20 days through at least one month old, (green eggs, 
size range = 1.6-1.7 mm ± 0.4 mm in diameter), there are no discernible features that indicate 
fertilization status. B: Photograph of eggs taken under a dissecting microscope at a total 
magnification of 40X (scale bar = 50 urn). 

Growing evidence from both lab and field studies suggest that female lobsters may 

extrude unfertilized egg masses that are a result of unsuccessful mating attempts or 

perhaps inadequate sperm stores (i.e., sperm limitation; Knight 1918, Talbot and Harper 

1984, Aiken and Waddy 1982, MacDiarmid and Butler 1999, Gosselin et al. 2003, Pugh 

et. al. unpub. data). In at least two studies, females of H. americanus have been observed 

extruding unfertilized eggs that they subsequently carried for varying amounts of time 

(Talbot and Harper 1984, Talbot et al. 1984). This has also been observed in spiny 

lobsters (e.g., Panulirus cygnus, Chittleborough 1976). 

Other studies suggest significant egg attrition (early on) from lobsters in both lab and 

field studies originating from a variety of causes including disease, trap handling, faulty 

egg-attachment, and sub-optimal environmental conditions (e.g., increased temperatures; 

Perkins 1971, Aiken and Waddy 1980, Hedgecock 1983, Talbot and Harper 1984). 
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However, discerning the origin of these losses early on, especially for those egg clutches 

that could be unfertile, remains elusive and largely uninvestigated. Therefore, if some 

ovigerous females observed during assessments are carrying unfertilized eggs, managers 

could be overestimating the number of new recruits to the fishery. A major goal of this 

project was to develop a technique for determining if early stage eggs are fertilized. 

Eventually, we hope to use the methods developed to estimate the percentage of 

ovigerous females in a given population that are carrying unfertilized eggs and thus not 

contributing recruits to the population that year. 

Lab-based methods that have been developed to assess fertilization of early developing 

eggs using nucleic acid stains (e.g., DAPI and Hoechst) have become common among a 

diverse range of terrestrial and aquatic invertebrates (Buttino et al. 2003, Masci and 

Monteiro 2005, Zirbel et al. 2007). Because of the strong affinity of DNA-binding 

proteins and their specificity to the major groove of DNA and its A-T rich region, nuclei 

can be readily visualized with these DNA specific stains, especially if there are multiple 

nuclei and cells that are actively dividing (Dervan 1983). However, staining techniques 

for lobster eggs have not been very successful due, in part, to their complex morphology 

and the nature of their fertilization membranes compared with other decapod crustaceans 

(Cheung 1966, Talbot and Goudeau 1988). For example, during the extrusion process, 

lobster eggs develop two prominent, thick, outer envelopes that help protect the 

developing embryo. The mechanism by which these membranes are formed has been 

debated, however in a study by Talbot and Goudeau (1988), it was concluded that the 

outer coat of the oocyte is formed in the ovary and the inner coat originates from a 
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complex cortical reaction that occurs during fertilization. Together, these tightly bonded 

coats comprise the fertilization envelope of the developing egg and, due to its 

impermeable nature, make typical DNA staining extremely challenging. 

In this study, we modified existing nuclear staining methods so they would work 

consistently with American lobster eggs. Specifically, we used an enzyme solution to 

breakdown the outer egg membranes so that a nuclear staining agent was able to 

penetrate into the egg and bind with the DNA. We also demonstrated that this method 

will work with fixed eggs, making it possible to obtain numerous egg samples from field 

sampling surveys and then store them prior to subsequent analyses in the laboratory. In 

addition, a secondary method of fertility testing was utilized to quantify the amount of 

DNA within individual lobster eggs using fluorescence spectroscopy (i.e., fluorometry). 

This method allowed us to quantify and compare the amount of DNA present in 

unfertilized control oocytes and early- and late-staged fertilized eggs. Like the DNA 

staining method, this technique made it possible to reliably determine if eggs were 

fertilized and contained a large amount of DNA due to multiple nuclei, or were 

unfertilized. In the future either method will make it possible to obtain data that could 

improve the accuracy of programs designed to predict the number of new recruits that 

will be added to the lobster fishery in a given year. 
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Materials and Methods 

Animals 

A total of 14 female lobsters were caught in standard traps along the New Hampshire 

seacoast near Rye, New Hampshire, USA, by permitted commercial lobstermen and 

transported to the University of New Hampshire (UNH) Coastal Marine Laboratory in 

Newcastle, New Hampshire. All animals were held in floating totes (81.3 cm X 50.8 cm 

X 38 cm) at ambient light and temperature levels (16.3 ± 1.6 °C; mean ± SD) in an 

outside impoundment until they extruded their egg clutches. Lobsters were fed twice 

weekly with fresh herring and rock crabs (Cancer spp.) and checked for egg extrusion 

three times per week. 

In order to monitor the appearance of eyespot formation (and confirm fertilization status), 

after egg clutches were extruded, small batches of eggs (n = 10/lobster) were removed 

from each lobster's clutch with forceps at weekly intervals (from 1 June to 15 August) 

and photographed. All sampled eggs were disinfected for 5-10 minutes by dipping them 

in a 10 % solution of medical-grade iodine and sterile seawater at a concentration of ~ 

150 mgL'1 (Uglem et al. 1996) to clean them (externally) of epibiotic bacteria. Digital 

images of a subset of eggs from each clutch were taken with an Olympus SZH-5 

stereomicroscope equipped with a color digital Olympus DP-20 camera system (Olympus 

America, Center Valley, Pennsylvania) to monitor the appearance of eyespot formation. 

In some cases (later-developed eggs), developmental stage was determined using staging 
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tables described in Helluy and Beltz (1991). 

Egg samples were collected from an additional six ovigerous females during sea 

sampling efforts in the same area (n = 10 eggs/lobster). However, these eggs were first 

photographed and then placed into 1.5 mL sample vials containing the following fixative: 

97 % glucamine-acetate buffer, 2 % formalin, and 1 % Triton-X (Sainte-Marie and 

Carriere 1995). Therefore, a total of 20 clutches of eggs (4 fixed and 16 live) were used 

for testing the two methods developed for this study. 

Method I: Nuclear Staining of Lobster Eggs 

Fertilization status was determined by sampling a single subset of eggs from each lobster 

within 1-2 weeks after egg extrusion. Nuclear staining was performed on both the fixed 

and live eggs that had been photographed earlier. For live eggs, a total of five eggs were 

removed from each clutch (one time) and stained, for a total of 70 eggs (n = 5 eggs X 14 

clutches). For fixed eggs, a total of five eggs/clutch were stained from the samples 

collected from the six lobsters sampled at sea, yielding a total of 30 fixed eggs. Both 

fixed and live eggs (5 eggs/sample) were first placed into 1.5 mL plastic conical tubes 

and rinsed 3X in a PTA buffer solution (phosphate buffered saline, 0.4 % Triton X-100, 

0.1 % sodium azide). Eggs were then set in 100 |xL of Accutase™ enzyme solution 

(A6964, Sigma-Aldrich, Inc., St. Louis, Missouri) and left on a rotating plate (Nutator 

model 421105) at room temperature for 24 h. Samples were then rinsed 3X in PTA, 

placed in 100 jiL of Hoechst nucleic stain (H6024, Sigma-Aldrich, Inc.) and placed back 
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on the rotating plate for 24 h. Finally, eggs were rinsed 3X in PTA and placed on silica 

glass depression slides with a few drops of sterile seawater (32 psu) for viewing. 

Stained eggs (live and fixed) were observed and photographed using a Zeiss Axioplan-2 

imaging compound microscope (Carl Zeiss IMT Corp., Thornwood, New York) using a 

DAPI filter cube (excitation = 358 nm; emission = 463 nm). These filter cubes are 

typically inserted into the fluorescence filter revolver of the microscope and reflect UV 

excitation while transmitting DAPI emission (see http://www.zeiss.com, for details). 

Successive digital images were taken using AxioVision v.4.7 software and the multi­

dimensional acquisition routine (z-stacking) through an Axiocam MRm/MRc5 camera 

(Carl Zeiss IMT Corp.) connected to a PC-based computer (Dell Optiplex G2410T). Eggs 

with multiple stained nuclei were considered fertilized, while those with either one or no 

nuclei visible, were considered not fertilized. 

Extraction of Unfertilized Oocytes (control) 

Pre-extruded oocytes were removed from the intact lobster ovaries of eight females (CL 

range: 86-98 mm; n = 5 eggs/lobster) (ntotai= 40 eggs) according to methods described in 

Little and Watson (2005). Briefly, a small square was cut in the carapace behind the eyes, 

and a section of ovarian tissue was removed with blunt forceps. Pressure was then 

applied to the wound to stop the blood flow and the incision was sealed with the use of 

cyanoacrylate glue, gauze, and adhesive tape (lobsters typically survived this procedure). 
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The dissected ovaries were then placed in a small glass petri dish with sterile seawater, 

and the ova were gently teased away and separated from their connective tissue (Talbot 

1981). The same nucleic acid staining protocol used for fertilized eggs was then 

followed. Typically, staining of one nucleus was observed under UV excitation as 

opposed to the visualization of multiple nuclei in fertilized eggs. 

Method II: Egg DNA Measurements (fluorometry) 

In tandem with staining, total DNA concentration was measured in unfertilized and 

fertilized eggs (each measurement was made using a total of 5 eggs), as well as some that 

were at more advanced stages of egg development. Samples (n = 10 eggs/female) from 

two control females (oocytes extracted from the ovaries) yielded a total of 20 unfertilized 

ova. Samples of fertilized eggs (n = 10 eggs/lobster) were obtained from three females 

(rhotai = 30 eggs) when eggs were 5-10 days old and again when their eggs were 20-30 

days old. An additional subset of eggs (n = 10 eggs/female) was removed from two 

additional lobsters (nt0tai = 20 eggs) that were developmental^ staged as advanced (50-60 

% developed; Perkins 1972). All egg samples were set in 200 mL of SDS buffer solution 

and carefully homogenized in separate 1.5 mL plastic conical tubes. Next, the tubes were 

vortexed (Vortex-Genie 2, model G-560) for 5 seconds and placed onto a rotating plate 

(Nutator model 421105) at room temperature for 24 h. Egg samples were again 

homogenized and vortexed and then allowed to sit and settle for 30 min before 

measurements were obtained. 
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The fluorometer unit (Hoefer DyNA Quant 200, Hoefer Inc., Holliston, MA) was 

calibrated with a known 100 fiL standard before each trial (calf thymus DNA; D3664, 

Sigma-Aldrich, Inc.). A 2 mL aliquot of reagent solution (100 |^L Hoechst with 100 mL 

1XTNE) was mixed with 2 jiL of homogenized egg solution in a 5 mL cuvette and gently 

shaken. The cuvette was then placed into the fluorometer and the concentration of DNA 

in the sample was measured in ng/mL. Each sample was measured in triplicate and the 

values averaged. A correlation analysis was conducted using JMP v. 8.0.2 (SAS Institute, 

Cary, NC, USA) to examine the relationship between days after egg extrusion and the 

total amount of DNA per egg, with the expectation that DNA content increased as eggs 

developed. 

Results 

Method I: Nucleic Acid Staining 

A total of 20 lobster egg clutches were tested to determine their fertility status (14 from 

females kept in holding tanks and 6 from lobsters captured while sea sampling); a total of 

16 clutches (80 %) were fertilized and 4 were not (20 %). Of the 16 clutches with 

fertilized eggs two had a mix of both fertile and unfertilized eggs (Table 1). 
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D CL Extrusion date Staining result Egg development 
(mm) (fertilized)? (eyespot formed)? 

05 86 28-Jun yes yes 
17 98 30-Jun yes yes 
01 85 10-Jul mixed some 
26 87 11-Jul yes yes 
14 87 17-Jul yes yes 
43 86 17-Jul yes yes 
48 85 17-Jul yes yes 
53 93 17-Jul yes yes 
66 92 17-Jul yes yes 
89 88 21-Jul yes yes 
04 100 28-Jul no no 
10 82 28-Jul mixed some 
12 83 2-Aug yes yes 

42 86 2-Aug no no 
100 88 unknown yes N/A 
101 78 unknown no N/A 
102 91 unknown yes N/A 
103 86 unknown yes N/A 
104 82 unknown no N/A 
105 87 unknown yes N/A 

Table 1. Lobsters that served as a source of eggs for this study. A total of 14 egg-bearing lobsters 
(two-digit ID numbers) were held in totes at ambient seawater temperatures (16.3 ± 1.6 °C; mean 
± SD) and photoperiod until they extruded their clutches from 28 June-2 August 2010. We 
continued to hold these lobsters, remove eggs weekly (n = 10/lobster), and examine the eggs to 
determine if they developed normally or not. An additional 6 egg-bearing lobsters were collected 
during seasampling trips (ID: 100-105) and their eggs were fixed and also examined (n = 20 
lobsters total). For staining purposes, we collected a total of 70 live eggs (n = 5 eggs X 14 
clutches) and 30 fixed eggs (n = 5 eggs X 6 clutches). Lobsters were sized (carapace length, CL), 
and in some cases egg extrusion date was noted. 

Eggs that were fertile typically displayed multiple nuclei that were readily visualized 

when exposed to UV illumination (Fig. 2). Conversely, stained unfertile eggs emitted a 

hazy blue halo around the outer egg membrane and occasionally a single nucleus was 

also visible. Thus, it was simple to distinguish between fertilized and unfertilized eggs 

using this staining procedure. While fertilized eggs of all different developmental stages 

were successfully stained, the most important finding was that this method made it 
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possible to determine if eggs as early as 7 days old, expressing no other discernable 

biological indicators of their fertility status, were fertilized or not (Fig. 3). 

In order to confirm that DNA staining was yielding an accurate assessment of egg 

fertilization status, after we removed eggs for staining, we retained the 14 ovigerous 

females and held them at ambient conditions so that their eggs could continue to develop. 

The eggs carried by these females were observed weekly to determine if they were 

fertilized or not. Appearance of an eyespot after ~ 25 days indicated they were fertilized, 

while unfertilized eggs either fell off the females, turned a yellowish-orange color, or did 

not develop an eyespot after ~ 30 days. In all cases, if the staining method indicated that a 

female was carrying fertile eggs, these eggs continued to grow until the eyespot stage of 

development (Perkins 1972; Table 1). In addition, in the few cases where staining yielded 

mixed results, a female was carrying a clutch of eggs that contained some eggs that 

developed eyespots and some infertile eggs that never developed, started to deteriorate or 

changed color. Thus, while only 14 clutches (lobsters in holding) were tested, this method 

indicated their fertilization status with an accuracy of 100 %. 

Method II: DNA Fluorometric Measurements 

Measurements of total DNA in unfertilized eggs and eggs at various stages of 

development were obtained to determine if, as cells divided, DNA levels would increase 

and thus serve as another proxy of fertilization status. There were significant differences 

in DNA concentrations between eggs that were: 1) unfertilized (n = 4, 5 eggs/sample, 20 

306 



eggs total); 2) 5-10 days old (n = 6); 3) 20-30 days old (n = 6) and; 4) 60-80 days old (50-

60 % developed) (n = 4) (r = 0.961, p < 0.0001; Fig. 4). Importantly, for our purposes, 

there was also a difference in the total DNA concentration between unfertilized control 

oOcytes and early stage fertilized eggs that did not have eyespots (unpaired t test, t = 

8.581, p < 0.001). The average concentration of DNA in unfertilized oocytes was 28.6 ± 

16.1 ng/mL (range =10-50 ng/mL), compared with 80.5 ± 5.86 ng/mL (range = 55 -

131 ng/mL) in fertilized eggs (Fig. 4). Therefore, it appears as if this fluorometric assay 

could also be used effectively to determine if young eggs had been fertilized or not. 

Fig. 2. A: Dividing cells in a fertilized lobster egg visible under bright field illumination; B: The 
same dividing cells with nuclei visible (arrow) after being treated with Accutase™ and Hoechst 
stain and viewed under UV light (X = 463 nm). Note the appearance of dividing nuclei resulting 
in the visualization of two clusters of DNA present within some cells, (total magnification = 
100X). 
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Fig. 3. Appearance of lobster eggs following DNA staining. A: Stained nuclei are visible in an 
early-stage egg (7 days after extrusion, DAE) exposed to fluorescent excitation and created as a z-
stack image; B: Stained nuclei in an egg taken from the same clutch 14 DAE. Notice the 
increased number of nuclei present due to continued mitotic divisions, (total magnification = 
100X). (scale bar = 100 jum). 

Discussion 

We have described two simple procedures for determining if early-stage lobster eggs 

have been fertilized. The first method, nucleic staining of DNA with the use of the 

enzyme Accutase™ and Hoechst stain, enabled us to visualize nuclei and distinguish 

fertilized eggs with multiple nuclei from unfertilized, haploid eggs. Fluorometry was also 

used to demonstrate that the amount of DNA differed in a predictable manner between 

unfertilized, early fertilized, and more advanced-staged eggs. Although our results from 

both egg nuclear staining and fluorometric methods complement each other, nucleic acid 

staining should be considered the preferred method to test for lobster egg fertility status 

because it is: 1) more cost-effective ($ US 50.00/~ 300 eggs); 2) less time consuming; 

and 3) a more consistent and reliable procedure that allows for a clear-cut determination 

based on the presence or absence of multiple stained nuclei. 
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The major modification that made it possible to attain consistent results with Hoechst 

stain was the use of the Accutase™ enzyme solution to degrade egg membranes enough 

so that the stain could penetrate into the egg. Talbot (1981) reported that hydrolytic 

enzymes, such as collagenase, appear to weaken lobster egg cell membranes and allow in 

vitro fertilization to occur. While our initial attempts with collagenase and other enzymes 

were only moderately successful, we found that Accutase™, a cell detachment solution 

consisting of a mixture of proteolytic and collagenolytic enzymes, was the most 

successful at degrading egg membranes and allowing the Hoechst stain to penetrate and 

bind to egg DNA. Eggs that were first preserved with fixative and then set in Accutase™ 

and Hoechst stain also showed successful staining of nuclei. Fixing eggs makes it 

possible to collect eggs in the field and store them for subsequent examination in the 

laboratory. Therefore, for example, eggs could be collected and preserved by offshore 

lobstermen who are often at sea for up to 10 consecutive days. 

In early development, following fertilization, lobster eggs go through superficial cleavage 

and rapid cellular division before reaching the 16-cell morula stage. The nuclei of 

dividing cells, each surrounded by an amoeboid mass of protoplasm, divide within the 

yolk and approach the periphery (Bumpus 1891). As development continues, constant 

cellular division results in the formation of a blastula and eventually leads to gastrulation. 

This growth and increase in cellular density can be visualized as eggs develop based on 

the amount or concentration of stained nuclei present in the egg. Thus, while very young 

eggs can be seen dividing using a light microscope, eggs that are days to weeks old are 

difficult to stage, especially due to the high degree of yolk reserves present that often 
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occlude developmental features (Sasaki et al. 1986). These are the kinds of eggs that this 

method was designed to examine. 

675 

60-80 

Days after extrusion 

Fig. 4. Total DNA (ng/mL) per egg determined by fluorometry (see text for sampling details). 
Eggs: unfertilized (5 eggs/sample; n = 20 eggs, 2 females X 10 eggs each), early-stage (5-10 days 
old, n = 30 eggs, 3 females X 10 eggs each), early-stage (20-30 days old, n = 30 eggs, 3 females 
X 10 eggs each), and advanced-stage (60-80 days old, n = 20 eggs, 2 females X 10 eggs each). 
Inset: correlation between DAE and total DNA concentration (r = 0.961, p < 0.0001). 

Unfertilized haploid oocytes contain one nucleus and one set of DNA within that nucleus. 

Ideally, upon staining, one strand of DNA should be visible. However, we found that the 

single haploid nucleus was difficult to locate within the oocyte. Rather, stained 

unfertilized eggs contained a hazy-blue overall stain and no evidence of the individually 

stained nuclei seen in fertilized eggs. Therefore, while it is not easy to identify one 

haploid nucleus in an unfertilized egg, it is easy to determine if an egg is fertilized or not. 
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Our staining assay allowed us to collect data on the fertility status of 20 different clutches 

of lobster eggs (Table 1). Egg clutches that had not been fertilized (n = 4 lobsters, size 

range = 78-100 mm CL) were likely the result of females that molted and then failed to 

mate (e.g., lobster 04; Table 1). At the present time, it is not clear how common this 

phenomenon is in natural populations. In a separate study, female lobsters (n = 6) were 

held in isolation after they had molted, so that they did not have a chance to mate. Four of 

these lobsters did not extrude eggs and the remaining two extruded eggs that were 

unfertilized; if a spermatophore is present, it is lost when they molt (Aiken and Waddy 

1980). Sato et al. (2006) reported that on occasion, female king crabs, Paralithodes 

brevipes (Milne Edwards and Lucas 1841), extrude eggs that are not fertile due to 

insufficient sperm allocation from males. We also found two cases where lobsters (CL = 

82, 85 mm) had a mixed clutch of eggs. This situation is likely caused by a female 

attempting to fertilize a clutch of eggs using a spermatophore that does not contain 

sufficient sperm for all the eggs. 

Both of the aforementioned situations suggest that some sexually mature females are not 

obtaining sufficient sperm to fertilize all their eggs. Possible causes for this situation may 

include: 1) females molting and failing to find a mate during the time period when they 

are most receptive; 2) females mating with a male that produces a smaller than normal 

spermatophore due, for example, to an effort to allocate sperm to many different females; 

or 3) females using a single spermatophore to fertilize more than one clutch of eggs (but 

see Gosselin et al. 2005). Male sperm depletion has been confirmed in both spiny and 

clawed lobsters (Gosselin et al. 2003, MacDiarmid and Stewart 2005), and sperm supply 
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is now considered a potential factor limiting the reproductive output in some lobster and 

crab populations (MacDiarmid and Butler 1999, Rondeau and Sainte-Marie 2001, 

Kendall et al. 2002, Gosselin et al. 2003, Hines et al. 2003, Sato and Goshima 2007). 

Although sperm limitation has not been formally documented in American lobster 

populations, several observations suggest that in some heavily exploited areas where 

there is a highly skewed sex ratio, the reproductive dynamics could be altered (e.g., 

evidence for multiple paternity in some females; Gosselin et al. 2005, ASMFC 2009). 

Sperm limitation has not been well documented or quantified in American lobsters 

because either pre-extruded, unfertilized eggs are resorbed (Waddy et al. 1995) or 

extruded, unfertilized eggs tend to fall off females within a month and, during this first 

month, before they develop eyespots, unfertilized eggs look very similar to fertilized 

eggs. We anticipate that the methods reported in this paper will make it possible to 

examine these early eggs and develop a much better understanding of the reproductive 

dynamics of different American lobster populations. In particular, it will be useful to 

know if some type of sperm limitation is occurring and, if so, why? 

The potential now exists for fishery biologists and managers alike to use these methods 

when conducting biological surveys to help determine the fertilization status of early-

staged eggs before the development of eyespots. Combined, these methods alongside 

seasonally-timed surveys (e.g., fall lobster surveys) would improve measurements of the 

reproductive potential of ovigerous populations of lobsters, especially in areas where 

differences in reproductive dynamics may exist (e.g., sex ratios, mating structure, male 

size differential). The ability to quantify those females that fall into a potential 'sperm 
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limitation' category will make it possible to improve models that predict the number of 

new recruits to the fishery and also better understand how the fishery may, or may not, be 

influencing the reproductive dynamics of this very valuable marine resource. 
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